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This thesis exajnines analytically (using asymptotic theory) and via Monte Carlo sim-
ulations the eSects of two types of misspeciScations on the LR tests for cointegration 
proposed by Johansen (1988, 1996). 

The first type of misspeciHcation is intercept shifts, represented by step dummy 
variables. It is assumed that the DGP consists of 7(1) processes which are cointe-
grated and some of them contain intercept shifts. The presence of intercept shifts 
is ignored in the construction of the statistical model (SM) used for cointegration 
testing. It is shown that under the above misspeciGcation the tests over%timate the 
cointegrating rank with probabihty one as the sample size tends to infinity. An upper 
bound is found for the number of spurious cointegrating vectors that arise in the limit, 
and it is given by the number of distinct intercept shifts in the DGP. The attainment 
of the bound depends on the weak exogeneity status of the variables. Monte Carlo 
experiments designed in a way that allows control over the local power show that 
aa the sample size and the magnitude of the shift become larger the frequency of 
accepting a bigger cointegrating rank than that in the DGP, increases. The impacts 
of intercept shifts are quite noticeable for sample sizes and model speciGcations used 
in empirical works. 

The second type of misspeciScation is the presence of irrelevant variables in the 
SM or omission of relevant variables from the SM used for cointegration testing. We 
show that the inclusion of irrelevant variables does not affect the inference about the 
cointegrating rank or the consistency of the estimators of the cointegrating vectors, 
adjustment coeSicients and variance of the errors, but simulations show a reduction 
in the power of the tests. We also show that the omission of relevant variables 
from the SM leads to either failure in detecting cointegration or underestimation of 
the cointegrating rank. Although in the latter case the estimator of the detected 
cointegrating vectors is shown to be consistent, this is not the case for the estimators 
of the adjustment coefficients and the variance of the errors. 
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Chapter 1 
Introduction 

Many economic variables appear to be integrated of order one (with a drift), denoted 

by / ( I ) , (see e.g. Nelson and Plosser (1982)) that is they have non-constant unconditional 

means and divergent unconditional variances as the date of the observation becomes large. 

In other words they show a type of stochastic non-stationarity where random shocks have a 

permanent effect. Even though the variables individually might exhibit the non-stationary 

behaviour mentioned above, it is possible that certain linear combinations of them have 

lower order of integration and in this instance these linear combinations are integrated of 

order zero, denoted by 7(0), or loosely, stationary. If this is the case, the variables are 

said to be cointegrated. The existence of linear combinations of variables with lower order 

of integration than the component variables i.e. cointegration, is implied by the notion of 

long-run equilibrium in economic theory, see Engle and Granger (1987). 

Ascertaining the existence of cointegration among non-stationary (7(1)) variables, 

has particular consequences for their econometric analysis as well. Various tests for de-

tecting cointegration have been proposed in the literature. These tests can be divided 

into two categories: tests that are based on single equation regression, e.g. Engle and 

Granger (1987), Phillips (1987) and tests based on systems of equations (vector autore-

gression (VAR) models), e.g. Johansen (1988, 1991a, 1994, 1996) (henceforth Johansen 

(1988, 1996)), Perron and Campbell (1993), Reinsel and Ahn (1992), Stock and Watson 

(1988). The testing procedures in the first category are essentially unit root-type tests, for 

12 



Introduction 

example (augmented) Dickey - Fuller ((A)DF) or Phillips' or tests, on the residu-

als of the static (cointegrating) regression. In the case which more than two variables are 

jointly under examination, more than one cointegrating relation might be present. So, the 

tests in the second category can be used to determine the number of cointegrating relations 

or alternatively the number of common stochastic trends. 

The most commonly used tests in applied works, for the number of cointegrating rela-

tions/vectors or cointegrating rank are the likelihood ratio (LR) tests proposed by Johansen 

(1988, 1996), which can be implemented using either the trace or the maximal eigenvalue 

statistic. The asymptotic distributions of these statistics are non-standard, involving inte-

grals of Brownian motion, and they depend on the number of unit roots in the model. These 

distributions also depend on the nature of the deterministic terms (such as the intercept or 

linear time trend) included in the data generating process (DGP) and in the statistical model 

(SM) used for cointegration testing. Therefore, these asymptotic tests are not similar but 

they can be asymptotically similar with respect to certain parameters, see Nielsen (1997), 

Nielsen and Rahbek (2000). 

In the literature there are works that investigate approximations to the asymptotic 

distribution of the LR tests for the cointegrating rank. Johansen (1988) suggests approxi-

mating the asymptotic distribution by cx~{f) where / equals twice the square of common 

trends (unit roots) in the model and c = 0.85 — 0.58// . Doomik (1998) gives an approxi-

mation using the Gamma distribution and Larsson (1999) derives tail approximation of the 

asymptotic distribution using multivariate saddlepoint approximation. 
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The asymptotic nature of the LR tests for cointegration has triggered various Monte 

Carlo studies in the literature. For example Toda (1995) investigates through Monte Carlo 

simulation the finite sample performance of LR tests for cointegration proposed by Jo-

hansen (1991a). His findings suggest that a sample size of at least 300 observations is 

required in order for the tests to achieve good performance, over the values of the nuisance 

parameters and the cointegrating rank. In addition, Toda (1994) examines the finite sample 

properties of LR tests for 'stochastic cointegration' (i.e. linear combinations of variables 

are trend stationary) proposed by Johansen (1994) and Perron and Campbell (1993). He 

finds (as in Toda (1995)) that these asymptotic test procedures exhibit sensitivity to the 

value of the stationary root(s) of the process and to the correlation between the errors of the 

stationary and non-stationary components. In both papers (Toda (1994, 1995)) the analysis 

takes place in the framework of a bivariate VAR transformed into 'canonical form'. 

Moreover, there are works that examine small sample corrections of the LR tests 

for the cointegrating rank. For the bivariate first order model Nielsen (1997) provides a 

new asymptotic distribution whose moments approximate well the finite sample moments. 

Johansen (1999) derives the Bartlett correction for the LR test for the cointegrating rank in 

a VAR model. 

Since the LR tests for the cointegrating rank have been so widely applied in empirical 

research it is of interest to study their behaviour under various types of misspecification of 

the SM, used for cointegration testing. The robustness of the LR tests for cointegration was 

investigated using Monte Carlo simulations under omitted or irrelevant (redundant) step or 

impulse dummy variables (Andrade et al. (1994)), dynamic misspecification using a DGP 
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with autoregressive and moving average dynamics (Boswijk and Frames (1992), Cheung 

and Lai (1993)), and non-normality assuming non-symmetric and leptokurtic innovations 

(Cheung and Lai (1993)). 

The purpose of this thesis is to investigate the behaviour of LR. tests for cointegra-

tion proposed by Johansen (1988, 1996), under misspecifications, analytically (asymptotic 

analysis) and via Monte Carlo simulations. By misspecification we mean that the model fit-

ted to the data (the SM) and used for cointegration testing differs from the DGP in terms of 

specification of either the deterministic components or the endogenous variables included 

in the VAR model. Thus, we examine the effects of two types of misspecification; intercept 

shifts and irrelevant or omitted variables. 

1.1 Intercept shifts 

The LR tests for cointegration proposed by Johansen (1988, 1996) were derived under 

the assumption of constant parameters in the error correction model (ECM) and correctly 

specified deterministic components. However structural changes in the economy such as oil 

shocks or policy regime shifts induce the estimated parameters in a SM to change over time. 

If those changes are left undetected and therefore unmodelled, their presence will invalidate 

the use of inferential procedures that assume parameter constancy. One of the issues we 

seek to explore is the robustness of Johansen's (1988, 1996) LR tests for cointegration 

when intercept shifts, represented by step dummies, are present in the DGP but not in the 

VAR model used for performing cointegration tests (the SM). Thus, the DGP consists of 

non-stationary (/(I)) variables, which are cointegrated, and some of them possess intercept 
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shifts. Under these assumptions we And that the test statistics tend to infinity as the sample 

size increases, therefore the true null hypothesis of cointegrating rank r is rejected with 

probability that tends to unity as the sample size tends to infinity. In addition, we investigate 

the impacts of intercept shifts via Monte Carlo simulations in a setup that allows us to 

control, to some extent, the local power of the tests. We conclude that the tests are not robust 

to this form of misspecification since they lead to the acceptance of spurious cointegrating 

relations as the sample size and the magnitude of the shift are increased. The results of the 

simulations are in accordance with the asymptotic analysis. 

Andrade et al. (1994) study the effects of impulse and step dummy variables on the 

Engle and Granger (1987) procedure and Johansen (1988) tests for cointegration, using a 

bivariate model. In the case of the Engle and Granger procedure they examine dummies 

included in the SM and therefore in testing, but not in the DGP and vice versa, whereas 

for the Johansen procedure they investigate only the case of dummies in the SM. They find 

that the impact of a step dummy on the performance of the tests is greater than that of 

an impulse dummy. When a step dummy is included in the DGP they find that the Engle 

and Granger procedure suggests spurious stationarity. When the step dummy is present 

in testing all tests under consideration are found to over-reject the true null hypothesis of 

no cointegration and one cointegrating vector for the Engle and Granger, and Johansen 

procedures respectively. 

O'Brien (1996, 1997, 1999) provides an asymptotic analysis and Monte Carlo sim-

ulations for the case that step dummy variables (operative at a common or different dates) 

are present in the DGP but not in the SM. He proves that among a set of uncorrelated ran-
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dom walks (thus he considers only the null case of no cointegration) the false hypothesis 

of cointegration is accepted with probability one as the sample size tends to inf nity. 

The presence of a structural break or a shift in the intercept of univariate autoregres-

sive (AR) processes, has considerable consequences on unit root tests, which can be viewed 

as the predecessors of cointegration tests. Hendry and Neale (1991), conduct a Monte Carlo 

investigation and conclude that the power of standard ADF or DF tests, to distinguish be-

tween a non-stationary series and a stationary one with an intercept shift, is low. Perron 

(1989) shows analytically and by a small Monte Carlo experiment, that the unit root hy-

pothesis cannot be rejected by the standard tests against trend stationary alternatives, when 

the DGP is a trend stationary AR process with a break, in either the intercept or the slope 

of the linear trend, or both. He extends the DF testing procedure to the case that there is 

one-time exogenous (known) shift (in the intercept or in the slope of the trend or both) un-

der both the null of unit root and the alternative of trend stationarity. Perron and Vogelsang 

(1992) provide a class of test statistics along with simulated critical values for testing the 

null of a unit root when there is a change in the mean at an unknown date, under both the 

null and the alternative. Other relevant works in the literature include Zivot and Andrews 

(1992) and Banerjee et al. (1992). Zivot and Andrews (1992) consider a variation of Per-

ron's (1989) test in which the structural break is only under the alternative and the choice 

of the date of the break is estimated rather than being exogenous. For this purpose they 

suggest the minimum one-sided t statistic (for testing the null of unit root) over all possible 

dates of the break. Baneijee et al. (1992) give the asymptotic distributions and simulated 
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critical values for recursive rolling, and sequential tests for unit roots and/or shift in the 

coefficients of the AR process. 

There are also studies that investigate the effects of structural breaks on the tests for 

cointegration and some of them propose tests for parameter stability in cointegrated models. 

For example, Campos et al. (1996) compare via Monte Carlo experiments, the power of the 

DP test for cointegration and of t-test on the coefficient of the error correction term. They 

consider a dynamic model reparametrised as an ECM, where the marginal process of one 

of the cointegrated variables is stationary with a structural break. Their analysis suggests 

that the (-test based on the ECM is more powerful than the DP test, when there are no 

common factor restrictions in the DGR However, under the occurrence of both a break 

and a unit root only the marginal process is considered. Gregory et al. (1996) employ a 

'linear quadratic model' to evaluate, using Monte Carlo simulations, Hansen's (1992) tests 

for structural breaks in the cointegrating relations. They also use Monte Carlo experiments 

to examine the behaviour of the ADF test for cointegration, when breaks are present in the 

cointegrating relation and they find considerable reduction in the rejection frequency of the 

test. 

For the single equation framework Hansen (1992) and Quintos and Phillips (1993) 

provide Lagrange multiplier (LM)-type tests for parameter stability in cointegrating regres-

sions. The tests proposed by Hansen (1992) refer to all the coefficients of the cointegrating 

regression (full cointegrating vector), whereas the tests of Quintos and Phillips (1993) can 

also be applied to a subset of the cointegrating coefficients. Some of the statistics they pro-

pose can be used to test the null hypothesis of cointegration against the alternative of no 
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cointegration, which is equivalent to testing parameter constancy against a random walk 

alternative for the intercept coefRcient. Hao (1996) compares the various statistics sug-

gested by Hansen (1992) and Quintos and Phillips (1993) analytically and via a Monte 

Carlo study. He also suggests a test for cointegration which is robust to a discrete jump 

in the intercept. Gregory and Hansen (1996a, 1996b) provide ADF, Zq, and Zt -type tests 

for testing the null of no cointegration against the alternative of cointegration. The inter-

cept and/or cointegrating slope coefficients are allowed to change at an unknown date only 

under the alternative. 

For the multivariate framework Quintos (1997) proposes tests for rank stability and 

tests for the stability of the long-run matrix in an ECM, under the assumption of correctly 

specified cointegrating rank. Kuo (1998) proposes LM-type tests for non-constancy in 

subsets of the cointegrating coefficients when the non-constancy of the parameters is ei-

ther in the form of random walk coefficients or single jump at an unknown date. Seo 

(1998) suggests LM statistics for structural change in the cointegrating vector and/or ad-

justment coefficient vector at an unknown change point, under known cointegrating rank 

and a normalisation of the cointegrating vector. His tests are based on maximum likelihood 

estimation of the ECM and do not require sequential estimation, unlike some of the tests 

mentioned above, which in addition require fully modified estimation (e.g. Hansen (1992), 

Kuo (1998), Quintos and Phillips (1993)). Hansen and Johansen (1999) propose methods 

of testing parameter constancy in a cointegrated VAR model based on recursive estimation 

of the model and suggest tests for constancy of the long-run parameters in an ECM. 
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Saikkonen and Lutkepohl (1998) propose LM and LR-type tests for the cointegrating 

rank of a YAR process, when some of the variables have a shift in the mean (modelled by 

step or impulse dummies) at known date. The first stage of their procedure involves the es-

timation and subtraction of the deterministic parts (including the impulse and step dummy 

variables) of the model and at the second stage the cointegration rank of the adjusted series 

is tested. They find that the inclusion of step and impulse dummies in the model and the es-

timation of their coefficients do not affect the asymptotic distribution of the tests. Johansen 

et al. (2000) propose a LR test for the cointegrating rank in a model with piecewise lin-

ear trend and known breakpoints. The asymptotic distribution of the test statistic depends 

on the relative length of the regimes induced by the breaks. Inoue (1999) proposes tests 

of the cointegrating rank in the presence of a trend break, at an unknown date under the 

alternative hypothesis. 

1.2 Irrelevant or omitted variables 

One of the motivations for studying the effects of irrelevant or omitted variables is the 

well-known results from the standard regression analysis, namely that (i) the ordinary least 

squares estimators (of the regression coefficients and the variance of the errors) are un-

biased but inefficient when irrelevant variables have been included in the SM and (ii) the 

ordinary least squares estimators are biased when relevant variables have been omitted from 

the SM. 

For this type of misspecification we investigate analytically and via Monte Carlo sim-

ulations the effects of irrelevant 7(1) variables in the SM and omitted f (1) variables from 
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the SM, on the inference about the cointegrating rank. The consistency of the estimators of 

the parameters of the ECM under this form of misspecification is also considered. We show 

that the inclusion of irrelevant variables does not affect the inference about the cointegrat-

ing rank or the consistency of the estimators of the cointegrating vectors and the adjustment 

coefficients. However, simulations show that the inclusion of irrelevant variables leads to 

reduction in the power of the tests. We also show that omission of relevant variables from 

the SM leads to either failure in detecting cointegration or underestimation of the cointe-

grating rank. Moreover, in the omitted variables case, we show that although the estimator 

of the detected cointegrating vectors is consistent, this is not the case for the estimator of 

the ac^ustment coe&cient matrix. 

This second type of misspecification under consideration can be seen as overspeci-

fication or underspecification of the statistical model used for cointegration testing. This 

means that with respect to the DGP, either some variables have been omitted from the SM 

(underspecification) or some of the variables included in the SM are irrelevant (overspeci-

fication). 

Podivinsky (1998) investigates the performance of the LR tests for cointegration 

when there is a mismatch between the variables used in the SM (used for the cointegra-

tion tests) and the variables entering the true cointegrating vectors. Using Monte Carlo 

simulations he finds that the LR tests performed on an overspecified SM detect at least the 

true number of cointegrating vectors. He also finds that LR tests based on only two vari-

ables: (i) have low power when there are in fact two cointegrating vectors among three 



1.3 Organisation 22 

variables, and (ii) may not detect the cointegrating vector if there is only one cointegrating 

vector among three variables. 

The issue of omitted variables in relation to the LR tests for cointegration was also 

considered in the applied econometrics literature (see e.g. DeLoach (2001)). 

Finally, other works in the literature relate to the effect of including an irrelevant 

random walk in the SM, on the test for 'Granger non-causality' using the Wald statistic, 

see Ohanian (1988) and Toda and Phillips (1993). 

1.3 Organisation 

The organisation of the subsequent chapters is as follows. Chapter 2 gives an overview of 

Johansen's maximum likelihood estimation method of cointegrated models and LR tests for 

the cointegrating rank. Chapter 3 considers the algorithm used in the Monte Carlo simula-

tions for computing the trace and the maximal eigenvalue statistics as well as the estimates 

of the cointegrating vectors and adjustment coefficients. Chapter 4 employs asymptotic the-

ory to examine the effects of the presence of intercept shifts (occurring at either different 

dates or a common date) in the DGP (given by a cointegrated VAR process) on the infer-

ence about the cointegrating rank, when the SM does not account for those shifts. Chapter 

5 provides an extensive Monte Carlo investigation of the performance of the LR tests for 

cointegration using the trace and the maximal eigenvalue statistics, in the presence of in-

tercept shifts. Chapter 6 considers the effects of including irrelevant / ( I ) variables in or 

omitting relevant / ( I ) variables from the SM, on the inference about the cointegrating rank 

and the consistency of the estimators of the parameters in the ECM. Chapter 7 concludes. 
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1.4 Notation 

The symbol ' i—denotes a mapping or function, [n] gives the largest integer that is 

less than or equal to «, Z is the lag operator and A = 1 — Z. and |M| denote the 

trace and determinant respectively of a square matrix M, denotes the rank of 

the matrix M, sp{M) denotes the space spanned by the columns of the matrix M, In 

denotes the identity matrix of dimension n and is a diagonal matrix 

with ( m i , . . . . m„) the elements on the main diagonal. 0 is used to denote both the number 

(scalar) zero and the null matrix or vector, and its dimensions can be inferred from the 

context. The symbols and denote deterministic convergence, convergence 

in probability and convergence in distribution respectively, as the sample size, T, tends to 

infinity. The symbols O, o and Op, Op denote the order of magnitude of approximations 

of deterministic and stochastic sequences respectively. Moreover, ), yor(-), Ccw() 

and ^lim(-) denote the expected value, variance, covariance and probability limit of the 

argument random quantity respectively. The notation 'Yt ~ i.i.d.{M,Vy states that the 

random variable/vector, Yt is independent and identically distributed with mean M and 

variance V, Nn{M, V) stands for the ^-dimensional normal distribution with mean M and 

^ The convergence in distribution of to X is equivalent to the weak convergence of to F, usually 
denoted by F, where F„ and F are the distribution functions of and X respectively. Moreover, 
since /i = //((—oc, z)) and F (similarly = /i„((—co, x]) and F„) for each x e M, represent the same 
probability measure, ^ I.L is equivalent to => F. However, the weak convergence of distribution 
functions is linked to K whereas the weak convergence of probability measures => jj.) can be used 
for any metric space (see Billingsley (1968)). In this thesis we use the term 'convergence in distribution' 

denoted by ' - i ' to mean that the sequence of probability measures associated with a sequence of random 
variables/vectors, converges weakly to the Wiener measure (Brownian motion) or a fijntional of it. A special 
case of this is the central limit theorem. 
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variance and states that the random variable/vector is integrated of order 

where = 0.1. 



Johansen^s procedure 

This chapter describes the maximum hkelihood method, proposed by Johansen (1988, 

1996), for the estimation of the parameters of an ECM under the assumption of cointegra-

tion, and the LR statistics for the determination of the cointegrating rank. In addition it 

provides an outline of the procedure for deriving the asymptotic distribution of the LR test 

for the cointegrating rank. This procedure will be followed in some of the derivations in 

Chapters 4 and 6. 

2.1 Definitions 

We give some definitions that will be used throughout the thesis. The definitions were taken 

from Johansen (1996, Chapter 3). 

Let {st} be ap X 1 sequence and s* fl) for all t. 

27. A't M q/" ortfer zero, 7(0), 

OO 
Xt — E(%() = C(Z,)6:t, wAgrg C(7^) — C(l) ^ 0 aW C(?/) ^ cornvgrggMfybr 

1 = 0 

I2/I < 1 + w aW(^ > 0. 

0 ,1 ,2 , . . . , i / -A ' ' (%(-E(%t) ) f^7(0). 

25 
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2. J. jpmcgjj %( /j' /o com/egra^g^y or(/gf 

d) 6, C/((f. 6), wz/A comfggrafmg vgcfor /3 ^ 0, //"(%) zj f (G() an /̂ zj' /(c( — 6), 

d = 1,2,...; 6 = 1,2,...fi?. 

In this thesis we deal with the case C / ( l , 1) that is / ( I ) processes, linear combina-

tions of which are 7(0). 

2.2 The model 

Consider a ̂ -dimensional process Xt generated by a A:-th order VAR, 

Xt = + • • • + HkXt-k + ^Dt + £t, ( = 1 , 2 , . . . , T (2.1) 

for 6xed values of %_k+i,... , A'o and St 2.z.d.A^(0, ^]). is a g x 1 vector of deter-

ministic terms such as constant, linear trend, seasonal dummies, intervention dummies or 

other non-stochastic and fixed regressors. 

k 
The characteristic polynomial of (2.1), A{y) = Ip — 11̂%/% satisfies the condition 

i = l 

that if \A{y)\ — 0 then either \y\ > 1 or y = 1, which ensures that Xt can be made 

stationary by differencing. 

Equation (2.1) can equivalently be written in an error correction form, 

fc-i 
AXt = n%t_i + ^ r, t = 1 ,2 , . . . , T (2.2) 

k k 
where H = ^ H; — fp and T, = — ^ Hj. 

1=1 i=i+i 

As far as the rank of the matrix H is concerned, three cases might arise: (i) ramA:(n) = 

p, that is n has full rank, which means that Xt is /(O); (ii) rank{Il) = 0, therefore IT = 0 
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and the VAR model can be expressed in first diSerences; (iii) 0 < ronA:(n) < p, that is H 

has reduced rank, r say, 0 < r < p, so H can be expressed as the product of two p x r ma-

trices a and j3 of rank r, i.e. li = ajS . Without any a priori information a and P are not 

unique because 11 = a/3 = a f f = a*/?* (with a* = a f and f ) for all 

invertible r x r matrices P. Thus, one can only estimate the space spanned by the columns 

of j3 (the cointegrating space) and the space spanned by the columns of a. The matrices 

a and (5 correspond to the adjustment coefficients and cointegrating vectors respectively. 

0 Xt are the cointegrating relations which are stationary although Xt is not. 

The characteristic polynomial derived from (2.2) is given by 

k-l 
A{y) = (1 - ») / , - n y - 5 ^ r . ( l - y)y' 

i=l 

and for case (iii) the characteristic equation \A{y)\ = 0 has {p — r) unit roots {y = 1) and 

r roots with modulus strictly greater than unity (|y| > 1). 

2.3 Maximum likelihood estimation 

In what follows we consider the model given by (2.2) under case (iii) (see section 2.2). 

Thus, Xt ^ 7(1), /3'Xt 7(0) and 7(0). The detailed properties of the process X* 

are given in Theorem 2.1. 

The purpose of Johansen's procedure is to derive an estimator for the unrestricted 

cointegrating vectors and test statistics for the hypothesis of the cointegrating rank under 

the assumption that there are at most r cointegrating vectors i.e. 

7f(r) : ra'nA;(n) < r or H — a/) . (2 3) 
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Lst lot — 5'ii = Y2t = • • • , D^) and $ = ( F i , . . . . r&_i, $) , 

where is [p(A; — 1) + x 1 and Tl' is p x [p(A; — 1) + g]. Using the above notation together 

with the rank restriction (2.3), (2.2) can be written as 

0̂4 = + ct, t = 1, 2, . . . , T (2.4) 

where ^ is unrestricted. Reinsel and Ahn (1992) analyse the case where constraints can be 

imposed on the coefficient matrices of the first differences of the variables (i.e. restrictions 

on F i , . . . , Ft- i ) . Since the coefficient of Yu has reduced rank the technique of reduced 

rank regression has to be employed, see Anderson (1951). The log-likelihood function of 

the problem is 

To T 
log /:(a, f̂ ) ^ ^ log(27r) - - log |f |̂ (2.5) 

1 ^ 

" 2 
(=1 

Concentrating (2.5) with respect to $ we obtain the following first order condition, 

T 

^ ( } ^ - - % ) ] ^ ; = 0 (2.6) 

t=l 

and ^ denotes the maximum likelihood estimator of see equation (2.8). 

Define the product moment matrices as 

T 

M,, = ^ = 0,1,2. (2.7) 
(=1 

Then from (2.6) we have, 

$(A, ,J) = - a / ) ' ( 2 . 8 ) 
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which is the unrestricted estimator of ^ for Axed a, and i]. By substituting (2.8) into 

(2.4) we get the residuals 

= Rqi ~ Rit (2.9) 

where and .Rif = Thus, are the residuals we 

obtain from the regression of (or AX() on Ygt (or . . . , ^() and 

are the residuals &om the regression of (or Xt_i) on (or . . . , A%(_t+i, D )̂, 

by application of Frisch-Waugh Theorem (see Davidson (2000, p. 8)). Therefore, (2.9) can 

take the form of a reduced rank regression in the residuals, 

Rot — (^0 Rit + (2.10) 

with the following log-likelihood function, 

logZ:(a:,^, $ , n ) = — ^ l o g ( 2 7 r ) - — l o g | n | (2.11) 

1 ^ , 
— - ^^(-Rpi — a/? Rit) ^{Rm — Oi0 Ru) 

t=i 

which is the log-likelihood function concentrated with respect to 

Define the residual sums of squares as 

T 

^ 2,; = 0,1. (2.12) 
t=i 

Then the estimators of a and O obtained by regression of i?ot on 3 Ru for fixed /) are given 

by 

&(/?) - (2.13) 

0(/)) = %o - (2.14) 
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'S'oo <̂ 01 

By inserting (2.13) and (2.14) into (2.11) we get the maximised likelihood for Axed /3, 

jr-s/T == (27re)P|(l(/3)| (2.15) 

= (27re)^|^oo-^oi/)(/)'^n/))-V^io| 

where the third equality follows from the expansion of the determinant 

£ - 2 / r jg minimised (maximised) among all p x r matrices [3 by solving the eigenvalue 

problem 

IP'S'ii — (5'ii — S'lo'̂ oô '̂ oi)! = 0 

or for — (1 — p) by solving 

lC^i i -^ io%'%i | = 0 (2.16) 

with eigenvalues 1 > ^̂  > . . . > > 0 and eigenvectors y = (i)i,... , ?)p) normalised by 

= 4 -

The estimates of the cointegrating vectors are given by — (7)1,... , 0r), that is 

the eigenvectors that correspond to the r largest eigenvalues. Thus, the eigenvalues found 

by the reduced rank regression technique are the squared sample canonical correlations 

between RQI and i?u, in other words they are the squared sample canonical correlations 

between /S.Xt and AVi after removing the effects of lagged differences and deterministic 

terms. 
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Having found ̂  we substitute back into (2.13) and (2.14) to And 6 and 0. 

The maximised likehhood function is 

= r-2/^ = [5„„| I | ( l - C.) (2.17) 
*=1 

because the normalisation of the eigenvectors leads to 0 SnP = Ir and P SIQSQQSQIP = 

diag{(^,.... Using (2.17) we can derive the LR test statistics for the hypotheses (i) 

H{r) against H{p) and (ii) H{r) against H{r + 1). The trace statistic 

-2\ogQ(H{r)\H{p)) = - T J ] log(l - ( J (2.18) 
i=r+l 

corresponds to (i) and the maximal eigenvalue statistic 

-21ogQ(7:f(r)|^(r + 1)) = - T l o g ( l - ( ,+,) (2.19) 

corresponds to (ii). 

The asymptotic distribution of (2.18) is given by 

- 2 1 o g 0 ( ^ ( r ) | j f ( p ) ) - ^ ( r { / ( d B ) ^ ^ / ^'((fB)'}. (2.20) 
Jo Jo Jo 

B is a (p—r)-dimensional Brownian motion, and the elements of F depend on the elements 

of B and on the deterministic terms in the model. (2.20) was tabulated, for alternative 

specifications of the deterministic components, by Johansen (1988, 1996), Johansen and 

Juselius (1990), Osterwald-Lenum (1992) and MacKinnon et al. (1999) using response 

surfaces. 



2.4 Asymptotic distribution 32 

2.4 Asymptotic distribution 

The asymptotic distribution (2.20) is derived in Johansen (1988, 1996) and the limiting 

result holds for independent and identically distributed errors, without assuming normality. 

The basic tool needed for the derivation of (2.20) and for various results in this thesis is the 

Granger Representation Theorem, which is given below. 

Theorem 2.7^ (Granger Representation Theorem). Let Xt be defined by (2.2) for t = 

1 , 2 , . . . , Zef 11 = a / ) / b r a a W aj' ^ 0, wAgre aj , 

are p x (p — r) /Mafrzcgj q / " ( f ) — r), fo a aW rgjpecffvg/y (z.g. 

= 0), a W F = ^ P,. C = — 
i=l 

E'(AJQ) aw/ — .B(/3 mzfzW JwcA f/zaf A%f 7(0), 

f(0) aW ^ i ( l ) . AJ^t (zW Aove fAe 

AXt = C(^)(6t + $Dt) (2.21) 

t 
Xt = C ^ ( s , + $D,) + Ci(Z,)(Q + + A (2.22) 

i = l 

wAerg v4. = — ^o) fwcA = 0 }o OM a, 

OO 
CKj, aW 5o- = C'(l) + (1 — Z')C'i(:[') (^(1) = C". C'W = 12 com;g/ggMf 

i = 0 

OO OO 

ybr 1̂ 1 < 1 + w, w > 0. Ci(^) - ^ T/'Ci;, w/zere Qi = — ^ Q, i = 0 ,1 , . . . , ẑ  a/jo 
%=0 j=%+l 

OO 

ybr ji/l < 1 + w, w > 0. fz/f/Zzer/Morg, C'i(l) = —dC(?/)/(i2/|̂ =i = — ^ zQ. 
i=l 

fmq/T See Johansen (1991a, 1996). 

' The theorem is adapted from Johansen (199 la. Theorem 4.1) and Johansen (1996, Theorem 4.2) . 

This follows by Lemma 4.1 in Johansen (1996). 
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The assumption that ^ 0 is a necessary and su&cient condition for — 

and to be given initial distributions such that they become 7(0). 

Next we give an outline of the derivation of (2.20). Detailed derivations can be found 

in Johansen (1988, 1996). We present the results for the case where = /j., i.e. there is 

an unrestricted constant in the model (2.2). 

From the representation (2.22) we can see that when = fi the process Xt is the 

sum of a random walk, a linear trend, an infinite moving average process (stationary) and a 

constant. Therefore, the process Xt behaves differently in different directions, depending 

on which linear combination of the process we consider. To see this, let 7 and r = Cjj, be 

p X (p — r — 1) and p x 1 respectively such that 7, and T are mutually orthogonal and 

(;3, "y, T) is p X p and has rank p. In the direction, the matrix of cointegrating vectors 

eliminates the non-stationary component since 0 C = 0 and /3'Xi is a stationary process. 

If we consider the linear combination YXt, then the random walk component dominates, 

since 7 V = 0. In the r direction, the process r 'Xt is dominated by a linear trend. 

Below we give some results concerning the asymptotic behaviour of Sij i , j = 0,1 in 

various directions, which are used in the derivation of (2.20), 

0̂0 ^ Eoo (2.23) 

^ 2 ,̂6 (2.24) 

^ (2.25) 

(2.2G) 
Vo 
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./o 
(2.27) 

where yor( ... ^ X f _ (—t+1̂  

7 = 7(7'?) T = T(r'T) G = 

^00 

7'C(ty(ii) - jg" M/(u)d?/) 
%f- l /2 

(2.28) 

; = (^, wiA 

,wi±r - : /2YX[T. ] 

^/CW{u), W{u) = W i s a Brownian motion with variance matrix fi! and T~'^t X^xu] u, 

E [0,1]. For ± e proofs of the above results see Johansen (1996, pp. 146-148). 

Using the above results and the fact that the ordered solutions of (2.16) are continuous 

functions of the elements of Sij i.j = 0,1, we can show that the r largest eigenvalues of 

(2.16) converge to the eigenvalues of — Z^oE^Eoal = 0 and the (p — r) smallest 

eigenvalues of (2.16) converge to zero at rate T. 

Let = (/), and ^(() = then by (2.23)-(2.28), 

0 
1 /-,/V 0 0 0 

vo 

which shows that there are {p — r) zero eigenvalues since the stochastic matrix GG'du 

is assumed to be positive definite almost surely. 

The asymptotic distribution is derived under the null hypothesis that the cointegrating 

rank is r. Let be an eigenvalue of (2.16) such that |5'((J| = 0. We then consider the 

asymptotic behaviour of 6 '((J in the stationary and non-stationary directions using the 
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following scaling. 

l ( , 3 , i ; T ) ' s ( c . ) ( ; ? . - e T ) l 
3 5(C.)a 9'S[QBT 

BrS{Q0 BlrS(QBT 
(2.29) 

= |a'S(Ci),a||flT[5(C.) - S(C.)(3(,9'S(C.)/3)*'/3'5(C.)IflTl = 0. 

For any of the (p — r) smallest eigenvalues we have 

for r + 1 < 2 < p 

assuming that the asymptotic distribution of /q exists, see Davidson (2000, Chapter 16). 

Using again the results (2.23)-(2.28) we have 

fl'S(C,)/3 = {TQ{T-^i3'Snl3) - ^ 

and 

= ( T ( J ( T - : g ; ^ n g r ) - + Op(l) 

Jo Jo Jo 

In the second equality the identities and - Z^a!(aE^^cK)"^a:'E^ = 

a!j_(o!^no:_L)''̂ a^ are used, see Johansen (1996, p. 142). 

Since has fiill rank asymptotically (E^o^oî  ̂ o/3 is r x r of rank r) the (p—r) 

smallest eigenvalues of (2.16) scaled by T converge to the solutions of 

/ ((fl'y)G'| = o. (2.30) 
Vo Vo Vo 

We de6ne the standard Brownian motion B = (B^, Bg)' where — ('-y cnc/-y) 

and Bz = = (^,-^2)', where Fj = 
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— 1/2. Then (2.30) becomes 

k / FF'dT/- / F(dB)' / ( d B ) y | - 0 . 
Jo Jo Jo 

From (2.18) we have 

-21ogQ(/ / ( r ) | i / (p) ) = - r ^ log(l - C.) = T ^ Ci + 0,(1) 
i=r4-1 %=r-|-] 

= ( r { / ((fB)y[/ 
7—7*-4-1 ^ 0 Jo i=r4-l 



Chapter 3 
Solving the eigenvalue problem: an algorithm 

This chapter describes the algorithm used in the simulation experiments, that appear 

in Chapters 4, 5 and 6, for the calculation of the trace and maximal eigenvalue statistics 

as well as the estimators of the cointegrating vectors and adjustment coefficients. The 

algorithm was programmed in Ox 3.00 (see Doomik (1999)) in the form of a 'function' to 

produce the simulation results discussed in the following chapters. 

Consider the ECM 

t - i 
^ ( = 1 , 2 , . . . , r (3.1) 

2 = 1 

where Xt is a p-dimensional, 1(1), random vector, the initial values . . . , XQ) are 

fixed and s* f]). = (%(_ ,̂ cf̂ )' i s x 1, where = p + (ft and Dt 

are vectors of deterministic variables of dimensions m x 1 and g x 1 respectively. 

Under the assumption of at most r cointegrating vectors the matrix H* can be fac-

torised into 11* = a3' where a and ,5 are p x r and pi x r respectively, of rank r. We 

assume that m, deterministic variables (such as constant or linear trend) lie in the cointe-

grating space whereas the lagged differences and the deterministic variables held by A are 

unrestricted (i.e. they lie outside the cointegrating space). 

The maximum likelihood method proposed by Johansen (1988, 1996), which is de-

scribed in Chapter 2, amounts to solving the eigenvalue problem 

— 'S'io5'nn̂ 5'oi| — 0 (3.2) 
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Twliere == Lj :== 0.1. irQ == (rgi rqir) aful r| == (rii .7%?̂ ). irot 

and ( = 1 : 2 . . . . T are the residuals obtained from the regression of and 

respectively on the lagged differences and unrestricted deterministic terms. The solution to 

(3.2) gives 1 > > - - - > (^ > (^+1 = (p+2 = . . . = 0. 

The trace statistic for the hypothesis .E(r) : romA;(n*) < r against .ff(p) : ranA;(n*) < 

p is given by 

-2\ogQ(H{r)\H(p)) =-T '»g(l - C.) (3.3) 
i = r + l 

and the maximal eigenvalue statistic for H(r) against H(r + 1) ; rankijl*) < r + 1 is 

given by 

-21ogQ(^(r)|j:f(r + 1)) - - r i o g ( l - C+J- (3.4) 

Define . . . , A%(), which is the t-th row of the T x 

(pt + + g) matrix ly, where = (wi , . . . , wr)- hi order to implement Johansen's 

procedure we employ the following algorithm. 

Proposition 3.1. (Doornik and O'Brien (2001), O'Brien (1996)). If W has full column 

rank then the estimates of (, a and (3 can he calculated by: 

(a) OR decomposition of W : 

I f 

x/Aerg Q T X +g) f W Q'Q = i+, ^ /.y +?) x +?). 

upper triangidar with positive diagonal elements, i.e. 

R = 
-Rii ^12 ^13 

0 -̂ 22 ^23 
0 0 ^33 
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wAere - 1) + 9] x — 1) 4- g], A22 iy Pi x aW ^33 /j' p x p. 

wAgfg [/ Pi X p y fj' p X p ûcA fAaf f/'C/ = y y = 7̂  E;% = d%ap(o-],... , (7̂ ). 

(7i, % — 1 , . . . ,p are fAe wA/cA are reaZ, MOM-Mggaffvg awcf 

ordered (Tj > • • • > o-p. The number of non-zero singular values corresponds to the rank 

o/" ^23^%. 

The estimates of interest are given by 

C ^ + 0-?) i = 1 •P 

wAerg 5'r 
Ir 

0 , a p X r /Ma/rur. 

frnq/T We partition l y into l y = ( Wi W2 where holds ± e lagged dif-
Tx[p(t—l)-t-q]T'xpi Txp 

ferences of Xt and the unrestricted deterministic terms. The f-th rows of M4 and are 

given by and respectively. 

From the QB. decomposition we have 

1/ / ;y = jz'Q'QTi! = 

or 

M^pyi PkgWg 
M / % 
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^12-̂ 11 ^12-̂ 12 + -̂ 22-̂ 22 -̂ 12-̂ 13 + -̂ 22-̂ 23 
^13^11 ^13-̂ 12 + 'R23%2 ^13^13 + -̂ 23^23 + ^33^33 

Using the equality of the above matrices we get 

(3.5) 

^12 = (3.6) 

^13 = (3.7) 

^ (3.8) 

- PFi(M/^i4'i)-'W^]W3 = % (3.9) 

^^3^23 + ^^3^33 = - ^13^13 = " Wi(I'l/Wi)-4l/]W^3 = ^^00-
(3.10) 

Substituting (3.8)-(3.10) into (3.2) gives an alternative eigenvalue problem, 

0 = iC'S'ii — 'S'iO'5'oô 'S'oil 

- RaAR22 + 

= - 1 ) 4 . + [/,. - A3(fl;,,-R23 + 

| T - ' " 4 , | | ( C - 1 ) 4 . + 1 4 . + R2MaRm)-''B:2,]-'\\T-''''R-22\ (3.11) 
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and (3.11) follows from the equality 

[4)1 + -R23(-R33-R33) ^ — -4)1 " -̂ 23 (̂ 33-̂ 33 + -̂ ^3^23) ^ 2̂3 

by applying the formula for the partitioned inverse to the matrix 

Then, (3.11) implies 

-̂ 1 -̂ 23 
^23 "^33^33 

1-^23(^3^33) -̂̂ 23 - ( ! - ( ) %4il = 0 (3.12) 

and (3.12) follows from the fact that the eigenvalues of (3.11) are the reciprocals of the 

eigenvalues of (3.12). 

From the singular value decomposition of R23Rsi we have 

;̂ 23;z;3 (^33-')'A23 = 

The singular values of R23R3S are the non-negative square roots of the eigenvalues of 

-R23-R33 (%3"^)'^3 i-e. o-i = % = 1 , . . . ,P from which we have = 

0-^/(1 + cr̂ ), % = ! , . . . , p. The eigenvectors of (3.2) which correspond to = 1 , . . . , pi, 

are A = (e^,... ,epj, say, and are normalised by The eigenvectors of 

(3.11) which correspond to the symmetric eigenvalue problem 

IC4i - = 0 

are given by [/ and So, 

^ = (e , , . . . , e,) = ^ 

by (3.8) and 

6 = 
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by (3.9) and the above expression for ,3. 0 

Having calculated the C/s we can then compute (3.3) and (3.4) i.e. the LR test statis-

tics for the test for the cointearatina rank. 



Chapter 4 
LR tests for cointegration and intercept shifts: 

an asymptotic analysis 

In this chapter we use asymptotic theory to investigate the effects of intercept shifts on 

the inference about the cointegrating rank. We consider shifts occurring at different dates 

as well as at a common date. We also discuss the effects under alternative specifications of 

the deterministic term. The asymptotic findings are checked via Monte Carlo simulations. 

4.1 The model and preliminary results 

The DGP is given by the following VAR(l) model in error correction form 

AXt = UXt-i + + -tj t = 1, 2 , . . . , T (4.1) 

where is a p-dimensional vector of 7(1) variables, which is partitioned into XgJ 

Xit is pi X 1 and contains / ( I ) variables with intercept shifts and X2t is ps x 1 and contains 

1(1) variables with a drift. The error process St is i.i.d. with mean zero, variance Q and 

finite fourth moments. li — ad' where a and 8 are p x r matrices of rank r and 0 < r < p, 

i.e. the variables in the DGP are cointegrated with cointegrating rank r. Dt isaqxl vector 

of deterministic terms partitioned into 1] and zt is x 1 subvector of intercept shifts 

thus, q = Qi + 1. We consider the case of distinct, non-coincident shifts thus pi = qi and 

the p X g coefAcient matrix $ when partitioned conformably with D* takes the following 

43 
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form. 

$ = 
I 0 

P l X p i P l X l 

0 y 
P 2 X P l X l 

(4.2) 

For any arbitraiy breakpoint fo, where (o = [TA], A 6 (0,1), a typical, e.g. the j-th, 

( j = 1 ,2 , . . . ,qi) step dummy variable (shift) is given by 

_ f 0, 1 < ^ < (o 
to + 1 < ^ < T ' 

Following O'Brien (1997, 1999) to simplify the algebra we use the de-meaned shift Zjt = 

z t - zj, where z* = T ^ ^ z l . So 

In addition. 

t = : l 

5j(A — 1), 1 < t < to 
<5jA, to + 1 ^ t < T (4.3) 

Zjt = 0, t < 0 

Zjt = SO ZjT = 0 
3=1 

and by rescaling the time axis, 

-u E [0,1] 

(4.4) 

(4.5) 

(4.6) 

Z/t^) = Z.tT.i/T', E [0,1]. (4.7) 

Then, when we collect all the step dummies and cumulative step dummies in (= Pi) x 1 

vectors we have z(M), Zt and Z(22) with their ^-th element given by (4.6), (4.5) and (4.7) 

respectively. The detailed algebraic properties of zt and Zt are given in O'Brien (1996, 

1997,1999). 
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The SM Atted to the data is 

= KiXt-i + + fit, t = 1.2.... (4.8) 

with = 1 so only an intercept is included in the model. 

As described in Chapter 2 the LR test statistics for the hypothesis ) are given by 

-2logQ(H{r)\H(p)) = - 7 ^ log{l (. (4.9a) 
i = r - | - l 2 = r + l 

-21ogQ(a-(r) |^(r + 1)) = - T l o g ( l - (4.9b) 

and (r+i, - - , Cp correspond to the smallest eigenvalues of - 5'io%^5'oi| = 0. So, 

the asymptotic behaviour of (4.9a) and (4.9b) calculated from the misspecified model (4.8) 

depends on the asymptotic properties of the residual sums of squares matrices, Sij i,j = 

0,1, also calculated &om (4.8), which in turn depend on the DGP (4.1). 

T 
For the particular SM under examination, 5'̂ ; = ^ j = 0,1, (where 

f—l 

Rot and Ru are the residuals from the regressions of AXt and Xt_i respectively on a vector 

of ones) can be obtained by applying Frisch-Waugh Theorem as follows. Define the p x T 

matrices = [A%i A%2... AX^] and X' = [%o Xg . . . ^T-i] with AX^ and X(_i, 

( = 1 ,2 , . . . , T of dimensions p x 1. Let f = i(i'i)"^i% where i is a T x 1 vector of ones, 

r = [1,1, . . . , 1] so that f is a T X T matrix. Let M = /-r — f - Then 
T 

5-00 = A X ' M A X = ^ A X ^ A ^ - A X A Y (4.10) 
t=i 

T 
where A X = T ^ ^ AXt. Similarly, 

f=i 

(4.11) 
(=1 
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where X = T ^ ^ and 
t~ 1 

T 

1̂0 = (4.12) 
£ — 1 

From (4.10)-(4.12) it is apparent that 5"̂ ,̂ %, j = 0,1, are functions of the original vector 

process Xf. The structure of Xt, which in turn will determine the limiting properties of 

Sij, i,j = 0,1, can be analysed using the Granger Representation Theorem. Since we 

use Johansen's (1996, Chapters 10, 11) methodology in deriving the asymptotic results 

in this chapter, we apply Johansen's (1991a, 1996) version of the Granger Representation 

Theorem given in Chapter 2 (Theorem 2.1). 

In what follows we give various preliminary asymptotic results necessary to establish 

the final result. The asymptotic properties of Xt are different in the various directions as 

shown below. 

gzvgM (2.22) wz/A = [zj 1] m (4.2) aW y? 7̂  0. 

Zef T = q/"c/f/Me/iyfOM P x g. Zef "y, q / " p x (p — r — g), p > (r + g), 

cAoj'eM orf/zogoMaZ fo /3 r .yz/cA f/zaf (/), T, v) are /MwA/aZ/y anaf jpa/i 

TTzgM, i f A g M T —> 0 0 a W K E [ 0 , 1 ] 

^ 7 CM/(«) (4.13) 

Xi u 
(4.14) 

w/zgrg "y = 7(7 7) T = T(T-r) ^ aW VF('u) fj' a wf/A 

var/aMcg 0, 0/7 /Ag on [0,1] 6y C[0,1]. 
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/Ag p X (p — r) m = (T, T" fAgM 

A/brgovg/; 

- X) A Go(?/) - Go = G : 

Ti/Agrg Go — Go(7/)(Z?/. 

Z(^) 
u 

Yc(PKW - w 
Z(?/) - z 
u — 1/2 

(4.15) 

(4.16) 

Proof. See Appendix B. 

Another set of preliminary results concerning the asymptotic behaviour of the resid-

ual sums of squares is given in the following lemma. In fact the following results are similar 

to those in section 2.4 (see results (2.23)-(2.28)) but the former account for the presence of 

step dummy variables. 

2. [/Mckr fAe q / " 7 

,900 2oo + C = 2 00 

/3'^io^2/,o + / ) ' c^( ikc ; = z;o 

^ ^ 0 ] c ' = y c ; 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 
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9 0 
0 0 

r 
a W ^ ^ p (2, j)-r/z g/g/Menf — A^) aW A/ 

t=l 
w/zgrg J? z 

rmn(Ai, A )̂, A^ = max(Ai, Aj). (1) Q are fAg_/z7'j'rpi co/w/MMj p/Ci( l ) awcf C 

rg^gcfzvg(y ^gg TTzgorem 27) F = Go(if)z(u)'(i%/. 

Proof. See Appendix B. 

The results of Lemma 4.1 are similar to those in Johansen (1996, Lemma 10.2) but 

Lemma 4.1 allows pi dimensions in for the step dummies. Comparing the results of 

Lemma 4.2 with those for the standard case, i.e. no intercept shifts (see Johansen (1996, 

Lemma 10.3)) we notice that the presence of step dummies in the model increases the 

(conditional) variance of the stationary components, (4.17) and (4.18) and alters 

the covariance (4.19) between them. The stochastic order of magnitude of SnP and 5io 

in the non-stationary directions increases by (4.21, 4.22) compared with the case that 

no step dummies are present in the DGP. So these terms turn out to be Op(T^/^) instead 

of (9p(l) because the contribution of the vector with the step dummies ( z j dominates the 

asymptotic behaviour of the product moment matrices of the residuals. 

If no shifts are present, i.e. 8j = 0 for j = 1 ,2 , . . . ,pi, the results of Lemma 4.2 

reduce to those for the standard case. 

Comparing the results of Lemma 4.1 and 4.2 with the null case (see O'Brien (1996, 

1997, 1999)), we observe that in the null case the problem with the order of magnitude 

appears when the random walk processes (with or without step dummies) in the model 

interact with the stationary analogue (Arst diSerences) of the random walks with the step 

dummies. In the cointegrated case the problem with the order of magnitude also arises from 



4.2 The ejects of step dummy variables 49 

the interaction of the non-stationary components with the stationary, which in this case are 

the first differences and the cointegrating relations (j3'Xt). 

4.2 The effects of step dummy variables 

Using the preliminary results given in section 4.1 we analyse the effects of step dummy 

variables on the LR tests for cointegration. The null hypothesis is that there are r coin-

tegrating vectors, H(r), against the alternative of stationarity, Hip), (i.e. the p com-

ponents of the VAR process are stationary) with test statistic —21ogQ(.ff(r)|7if(p)) = 
p 

—T ^ log(l — (̂ J, or against the alternative of (r + 1) cointegrating vectors, jif(r + l) 
i=r-f-l 

with test statistic - 2 l o g Q(j7(r)|.ff(r + 1)) = —T'log(l - Cr+i)- Cr+i, - - , Cp are the 

smallest solutions of 

1^(01 = 0 (4.23) 

where 5(C) = C'S'ii — In the standard case (no intercept shifts), under the null 

hypothesis of r cointegrating vectors the ordered eigenvalues of (4.23) converge in proba-

bility to (Ci,... , (r, 0, - - , 0), where ( i , . . . , are the ordered (positive) eigenvalues of 

= 0, see Johansen (1988, Lemma 4). 

Next we analyse the asymptotic properties of 5(C) in the presence of intercept shifts, 

bearing in mind that the ordered eigenvalues of (4.23) are continuous functions of the ele-

ments of 5; ,̂ i j = 0,1, see Andersson et al. (1983, p. 395). 
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Let = (/), T r -̂r) ±en is a p x p non-singular matrix 

since /), "y and T span (see section 4.1). Hence the eigenvalues of (4.23) also satisfy 

|A2i;S(C)AT |̂ = 0 (4.24) 

see Anderson (1984, p. 589). Partitioning (4.24) we get 

|A;r^(()vlT| = 

(4.25) 

Using the results of Lemma 4.2 and (4.25) we find that 

I^t'^(C)^t| 

(Sw - C0'cl(i)v' - e5„e;„-'c ,v ' 
(vci(i)'3 - V C ; E ; „ - ' S ; 3 C / „ ca'du - vC.n'^^cy 

|î iV/x — Afg I — 0 (4.26) 

where M^ = 
Ew 1}'CI(1)V' 

lvci(i)'p f„'Ga'duj 

s n * y * —1 V * T / ' 
'̂ ;80'̂ 00 '̂ O/) /̂30'̂ 00 
vc ;E;J 'EJ , vc;s ;„- 'c i i ' ' 

and Mg = 

Ml and Mg are symmetric and Mi is the probability limit of 5ii which is by assumption 

non-singular. 

Unlike the standard case, (4.26) is not the determinant of a diagonal matrix so it is 

not obvious how many of the roots of (4.23) converge in probability to positive and how 

many to zero eigenvalues of (4.26). 

Let F = then F is positive semi-de6nite and symmetric and 

\(̂ Mi — M2\ — \Mi\\(^Ip — -F| — 0. 



4.2 The effects of step dummy variables 51 

Thus, the rank of f , which is the number of non-zero eigenvalues of F and equivalently the 

number of non-zero roots of (4.26), is informative in establishing an upper (lower) bound 

for the number of positive (zero) eigenvalues in the limit and consequently an upper bound 

for the number of spurious cointegrating vectors that might arise asymptotically. 

Define 

4 0 
T / ^ Y*—1 YI* /V* T 

-'p-r 

a non-singular matrix (|Q| = 1) and 

D = 
y * y * —1 y * n 
/̂30'̂ 00 '̂ 0/3 U 

0 

where 

Then = QDQ' and 

raMA;(F) — ronA;(M2) — ro7iA;(D) 

= r + ronA:(yCi;V*Ciy') 

since (S^qEqo ^Eq^) is assumed to be non-singular of rank r. Hence in the limit there 

are more than r positive eigenvalues given that {VC'iN*CiV') is not the null matrix and 

romA;(yC|7V*Ciy') is positive. Thus, asymptotically there appear to be more cointegrating 

vectors (cointegrating/stationary relationships) than in the DGP. 

fropojzf/oM ̂ .7. TTzg ranA: yCj, 6 wA/cA w ar pi (i.e. 6 < pi) gzvgj a/z zipper 

6oz/M6/ybr rAg /zoM-zem gzggm/aZẑ gĵ , f/zaf ^ f/ze q/jpwrzowj' comfegrarz/zg 

rg/afzoMj/z^j' //zaf [T —̂  oo. 
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f is a p X p matrix of rank (p — r) since = 0 and therefore TV* lies in the 

null space spanned by the columns of which has rank r. So TV* can be decomposed 

into AT* = f *' where f * is ap x (p — r) matrix of rank (p — r) and P* — 0. Then 

min[raMA;(T/(%), (p — r)] < min[pi, (p — r)] = p̂  

because V is (p — r) x pi, Ci is p x pi and of the restriction [p — r — q) > 0 indicating the 

existence of the 7 direction. • 

frqpoj'ffzoM 4̂ .2. TTzg — I. ^ 0 j C /i, Mw/MAer q/"varz-

a6/ej' wzf/z or /Mgar co/»6zMaA'ow /̂zerec f̂/zaf are 

fmq/T y c ; = [ y 0 ] C' where jif = 

is (p—r) xp and has rank (p—r), by definition. Partitioning a± conformably with [ V 0 

pix(p-r) 

p2x(p-r) 

H 

E" = 

Thus, ra?iA;(yC^) = ranA;(ycK^^j7) < r(mA;(o:̂ )̂ and the rank of depends on the 

number of variables with intercept shifts that are weakly exogenous. Partitioning a into 

a pixr 
C,(2) 
P2 xr 

and noting that the matrix [ a CKI Q;(2) Q,(̂ ) 
has full rank, p, we 

must have ranA;(o:(̂ )) +roMA;(o^^) = pi. Suppose that Zi < pi rows of are zero, which 

We refer to the notion of weak exogeneity as it is given in Theorem 8.1 in Johansen (1996). 
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means that variables with intercept shifts are weakly exogenous, and that the remaining 

(Pi — ) rows are linearly independent giving — ZJ. Then, rows of 

must be non-zero and linearly independent with = Zi. Hence, ranA;(yC^) < 

and Proposition 4.2 follows. Second, suppose — Zi), but contains no 

zero rows. If we take appropriate linear combinations of the pi variables involved, we can 

generate a transformed with li zero rows corresponding to weakly exogenous linear 

combinations of the shifted variables. Finally, note that we can transform an ECM such 

that the adjustment coefficient matrix a has r linearly independent rows and {p — r) zero 

rows. 0 

CoroZ/a;}/ -̂ .7. = 0 w/A/cA rgj'frzcfzoM 

= Pi ^ 0 = pi /.g. MOMg q/"varfaA/ej mfercgpf 

M gxoggMozty, fAgM ranA;(y(%) = 0. 

Com/Za/y ^̂ .2. varzaAZe.y w/f/zowf j'Az/?.; are aZZ exogenozty z.g. = 

0 (w/AfcA = P2) fAe comfegraf/Mg ranÂ  gĝ wa/̂  /Ae Mw/M̂gr q/"varz-

a6Zg.y W/A mfgrcgpf = Pi) /̂zgM ri2MA;(a:̂ )̂ = 0. 

Corollaries 4.1 and 4.2 describe special cases, where spurious cointegration does not 

arise, despite the presence of intercept shifts in the DGP. 

Corollary 4.2 uses the fact that ronA;(o!_L) = (p — r) and if r = pi, ronA;(a!_L) = P2 = 

since all the linearly independent rows of aj, are given by the p2 rows of 0!ĵ \ 

If we have r cointegrating relations loading on the first r variables, with the remain-

ing (p — r) weakly exogenous and the shifted variables are a subset of the former, then 
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intuitively the system is driven by unshifted stochastic trends, and the shifts do not affect 

its long-run behaviour. 

The above analysis suggests that there are more than r (less than p — r) eigenvalues of 

(4.23) which are Op(l) (Op(T^^)). An intuitive explanation of this finding is given below. 

Let % = 1 ,2 , . . . be an eigenvalue of (4.23) and the corresponding eigenvectors 

are given by the columns of y = (01,02,... , 0p), then 

2 = 1 ,2 , . . . (4.27) 

Since the eigenvectors are normalised by V 'SuV = Ip (see section 2.3), pre-multiplying 

(4.27) by 0̂  we get 

Ci ~ '̂ i^iQ^oo SoiVi, 2 = 1 ,2 , . . . ,p. (4.28) 

However, the normalisation V'SuV = Ip eliminates 5*11 from the expression for the 

eigenvalue and (4.28) is not informative about the stochastic order of magnitude of the 

eigenvalue. Thus, a re-normalisation of the eigenvectors is required, see Davidson (2000, 

p. 395). Let Gi = be a vector of unit length and by 

= Jp, then (4.28) becomes 

^ = 1 . 2 , . . . . p . (4.29) 

The stochastic order of the various terms in (4.29) depends on whether e, and hence D, 

converge to a point in the cointegrating space. The following argument under correct spec-

ification (absence of intercept shifts) assumes convergence of the r eigenvectors, that cor-

respond to the r largest eigenvalues, to points in the cointegrating space, see Davidson 

(2000, p. 395). We assume that this remains true in the presence of intercept shifts. There-
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fore, we expect the eigenvectors which correspond to the r largest eigenvalues of (4.23) 

to converge to points in the cointegrating space, so that ê S'io and are 0^(1) and 

therefore = 0^(1), for z = 1 , . . . , r (by (4.17)-(4.19)). For the remaining (p — r) eigen-

vectors which correspond to the (p — r) smallest eigenvalues of (4.23), in the presence of 

intercept shifts, we 6nd that ê 5'io is Op(T^/^) for z = r + 1, . . . ,p, by (4.22), instead of 

Op(l), but fbrz = r + 1 , . . . ,p behaves as in the standard case, i.e. it is Op(T') 

by (4.20). Thus, the r largest eigenvalues are Op{l) and therefore 'well behaved' asymp-

totically. However, we find that some of the remaining {p — r) eigenvalues are spuriously 

C)p(l) (at most Pi have positive probability limits, see Proposition 4.1) instead of Op(T"^). 

Given that in the presence of 'effective' intercept shifts (i.e. 6 > 0) there are more 

than r eigenvalues which are 0^(1), using the test statistics designed for the standard case 

(correctly specified model) we find that both tests reject the null hypothesis of r cointe-

grating vectors with probability one as the sample size tends to infinity. The maximal 

eigenvalue statistic uses the largest of the (p — r) smallest eigenvalues of (4.23) which ac-

cording to the analysis of (4.26) seems to be non-zero in the limit and therefore Op{l). 

Thus, 

-21ogQ(ff(r)|j7(r + 1)) = - T l o g ( l - C+i) > oo 
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as T —̂  oc and is rejected with probability one. For the trace statistic which is the 

sum of the (p — r) smallest eigenvalues of (4.23) we have 

-21oe.QlH{r)\H{p)} = -T - c.) > r c. 
%=r4-1 i=r-|-l 
6 p 

= T ^ C. + r 5] C, = TOp(l) + TO,(T CX3 

i=r+l =6+1 

as r ^ oo and E (̂r) is rejected with probability one asymptotically. 

Below we explore the procedure followed by Johansen (1996, Chapter 11) in deriving 

the asymptotic distribution of the test statistics. We find that this procedure fails in the 

presence of intercept shifts since they change the stochastic order of certain residual product 

moment matrices and consequently the stochastic order of the eigenvalues used in the tests. 

The asymptotic distributions of the trace and the maximal eigenvalue statistics, as 

outlined in Chapter 2, are derived by first finding the limit of the eigenvalue equation (4.23), 

under the maintained hypothesis that the cointegrating rank is r and therefore that the (p—r) 

smallest eigenvalues (associated with the non-stationary directions) are Op(T^^). Then the 

limiting expression is a stochastic (p — r) x (p — r) matrix whose eigenvalues are used in 

the tabulation of the asymptotic distributions of the trace and maximal eigenvalue statistics. 

Initially we consider the eigenvalue equation (4.23) in the stationary and non-stationary 

directions. 

K/),BT)XC)(/3,BT)| = 

0. (4.30) 
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The procedure assumes that the (p — r) roots of (4.30) are 0^(7'"^) so as T —̂  oo, for any 

of the smallest (p — r) eigenvalues, ( say, we have ^ /(. Multiplying and dividing the 

first matrix in (4.30) by T and using the stochastic order of magnitude of the matrices in 

(4.30) (see Lemma 4.2) we have 

Op(l) Op(l) 
Op(l) Op(l) 

0X1) o / r : / 2 ) 
!_ Op(TV2) 0 

or, after expanding (4.30), 

|o^(i)l X |KOp(i)-Op(r) | = o 

which is not defined as T —» oo. Note that in the absence of intercept shifts for (4.30) we 

have |Op(l)| x |KOp(l) — 0^(1) | = 0 (see Johansen (1996, pp. 159-160)) and therefore an 

asymptotic distribution. It would seem necessary to define a new direction of dimension b 

and scale accordingly, but this does not seem possible. 

4.3 Monte Carlo simulations 

Monte Carlo simulations can be regarded as having (at least) two functions. One is to 

measure the size of small sample effects, and this is deferred until Chapter 5. Another is 

to verify the correctness of asymptotic results. Below we illustrate the asymptotic findings 

using the results from Monte Carlo simulations. All simulation experiments are based on 

10,000 replications and were programmed in Ox 3.00 (see Doomik (1999)). A detailed 

presentation of the DGPs used for the simulations appears in Appendix C. 

Figures 4.1 and 4.2 show the rejection firequency (abbreviated as rf on the vertical 

axis) of the null hypotheses of one and two cointegrating vectors using the trace and maxi-
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mal eigenvalue statistics. The DGP includes four random walks, three of which have drifts, 

one has an intercept shift of magnitude 0.5 (i.e. 6 = 0.5), at T/2, and there is one cointe-

grating vector. The true null hypothesis is rejected with frequency that tends to one as the 

sample size increases, implying the incorrect acceptance of at least two cointegrating vec-

tors. The false null hypothesis of two cointegrating vectors is rejected with frequency that 

does not exceed 0.11 which reflects the distortion occurring in the size of the test due to 

misspecification caused by the unmodelled intercept shift. 

Figures 4.3 and 4.4 show the frequency of rejecting the null hypotheses of one, two 

and three cointegrating vectors when the DGP contains five random walks, two of which 

have intercept shifts (of magnitude 0.5) at two different dates, T/S and 2T'/3. The remain-

ing three random walks have drifts. The frequency of rejecting the true null hypothesis 

of one cointegrating vector tends to one as the sample size increases. The false null of 

two cointegrating vectors is rejected with frequency that increases with the sample size and 

which is much higher than the asymptotic size of the test. So as the sample size gets larger 

the tests indicate (quite often) that there are three cointegrating relations, as the asymptotic 

analysis suggests. 

Figure 4.5 shows the rejection frequency of the true null hypothesis of one cointe-

grating vector when the DGP consists of four random walks, one of which has an intercept 

shift (of magnitude 0.5 at T'/2) and is not weakly exogenous with respect to the single 

cointegrating relation. The other three random walks contain drifts. In accordance with 

the asymptotic result, the rejection frequency is very close to the size of the tests hence 

systematic acceptance of spurious cointegrating relations is not expected. 



4.3 Monte Carlo simulations 59 

T ra c c sta tis tic 

Figure 4.1. Frequency of rejecting the null hypotheses r < 1 (true) and r < 2 using the 
trace statistic. 

\4 aximal eimeovalue statistic 

Figure 4.2. Frequency of rejecting the null hypotheses r < 1 (true) and r < 2 using the 
maximal eigenvalue statistic. 

_T race statistic 

Figure 4.3. Frequency of rejecting the null hypotheses r < 1 (true), r < 2 and r < 3 using 
the trace statistic. 
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\i axunalciccn value sian s i i c 

Figure 4.4. Frequency of rejecting the null hypotheses r <l (true), r < 2 and r < 3 using 
the maximal eigenvalue statistic. 

maximal eigenva^^ r<-l 

Figure 4.5. Frequency of rejecting the null hypothesis r < 1 (true) using the trace and the 
maximal eigenvalue statistics. 

41.41 ]riie null (xaise 

Below we investigate how the results reduce in the null case (r = 0), without a constant 

term in the DGP, which is the case analysed by O'Brien (1996, 1997, 1999) where a differ-

ent approach is followed in deriving the asymptotic results. 

The directions of the process X* under consideration are "y (p x p — a n d p—pi = P2) 

and T (p X pi) which correspond to the stochastic trends and the non-stationary part of the 

process due to intercept shifts respectively. In addition, when r = 0, C = Ip. 
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The roots of 

1(4 - '5'i/5'io6'oo^5'oi| = 0 (4.31) 

are the same as those of (4.23). We use the fact that the eigenvalues are continuous func-

tions of the elements of 5^, z, j = 0,1, to investigate the stochastic order of the eigenvalues. 

Let be X non-singular matrix, then 

and = 0^(1) (by (4.20) and (4.22) us-

ing de&ned in this section) which makes the roots of (4.23) and (4.31) 0^(1). 

Thus, an expression for the asymptotic distribution can be found, 

^ C , = (r{(r-'B;SnBT)-'(T-"'4Sio)5o"o'(SoiBTr-i''^)} ^ 
1=1 

= tr{ 
0 0 

^ r { ( / Go(2/)zW'(fw)'(/ G o M z W ' d i 6 ) m (4.32) 
Vo Vo Vo 

where now Go( /̂) 
Z(?/) 

,G 
Y(VF(it) - jF) 

z w - f 
I'F (w) is p2 X 1 and Zgo ̂  

1 ^12 
ip*' y * 
^12 ^̂ 2 

We can set 6/s to unity by writing Go(ti) = TgGo(t() where Tg 
Ip-pi 0 

0 A 

A = d2o^(<^i... <$pj and Go(i() 
Yl/F('u) with Z*('u) = A ^Z(ii). Similarly G = 
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Then (4.32) becomes 

(4.33) 

./o ./o Vo 

To simplify even further we consider the case = 1, where z*(?/)Z*(i^)dK = 0, see 
O'Brien (1996). Let = ^2(2/) then dropping it argument, (4.33) is written as 

o][F(W2,z^ 
0 } 

where ^(Wz, Z*) 

Using the formula for the partitioned inverse and the fact that {Z* — Z*Ydu = 

Â (A — 1)^/12 (see O'Brien (1999, equations (1) and (3), p. 25)) the limit of the trace 

statistic found above becomes, 

Vo Vo 

where 

/(M^2,Z3 = 

which coincides with the result in O'Brien (1999, p. 12). 

4.5 Occurrence of intercept shifts at a common date 

In this section we consider the case that the intercept shifts, concerning the last m, 2 < 

< Pi, elements of the vector process occur at a common date. The effect of this as-

sumption is to 'redistribute' the number of variables between the non-stationary stochastic 

(^) and deterministic (-r) directions of 
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For simplicity we use the following form of step dummy variable, 

^ _ f 0, 1 < ^ < 

toi + 1 ^ ^ ^ ^ ' 

and for shift dates = m, m + 1 , . . . ,pi we assume that 

The error correction form of the model 

Ôpi • 

(4.34) 

(4.35) 

— aP + £t, t — 1 , 2 , . . . , T 

with all its components defined as previously, can be written as 

Xt = TXt-i + dt + St 

where T = + a/)', is api x 1 vector of step dummy variables and 

is a p2 X 1 vector of constants. 

Let 

H = 
I 0 0 

^22 0 
0 

pi—771 

0 

where the submatrix .5̂ 22 is m, x m defined as 

1 0 0 0 -
-Ai 1 0 0 -

0 —/l2 1 0 

0 0 0 0 -

^22 = 

0 0 
0 0 
0 0 

-h m—l 

and % = 1 ,2 , . . . ,m - 1. We can then transform (4.35), by 

pre-multiplying by H, into 

% = 

or more compactly, 

+ d; + (4.36) 
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where A"* = T* = cf* = | z*' y?*' I, z* is (pi — (m — 1)) x 1, y; is 

(P2 + ( m — 1 ) ) X 1 with the first ( m — 1) elements equal to zero. Then ( 4 . 3 6 ) can be written 

in an error correction form as 

= + + (4.3?) 

since T* - 7, = (T - 7 )̂̂ -̂̂  = = a*/)*' where a* = f fa , and 

raMA;(a:*) = ra)%A;(/?*) = r. 

The transformed system (4.37) has the same properties as (4.34), since H is non-

singular, but the dimensions of the non-stationary directions change. The dimension of the 

non-stationary deterministic direction (r) is reduced by (m — 1) and becomes pi — {m ~ 

1) + 1, = g* say. The non-stationary stochastic direction (^) is increased by (m — 1) and 

becomes — (m — 1)] 4- [p2 + — 1)] — — (Pi — — 1) + 1) = P — — 9*, since 

the number of variables with the intercept shifts is reduced by (m — 1) and the set of non-

shifted variables now involves p2 random walks with drifts, as before, and (m — 1) random 

walks without drift. 

The method of analysis presented in section 4.2 can be similarly applied using (4.37) 

and appropriately modifying the dimensions of 7 and r . In this case the matrix V is (p — 

r) X [pi - (m - 1)] and Q is p x [pi - (m — 1)]. Therefore an upper bound for the number 

of spurious cointegrating relations that arise as T 00 is given by 

roMA;(yCj) < niin(p — r, — (m — 1)) = — (m — 1) 

since p - r - (pi - (m - 1)) > 1, assuming that the 7 direction exists. 
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Thus, when there are m variables with intercept shifts at a common date the upper 

bound for the number of spurious cointegrating relations is given by the number of distinct 

shifts in the DGP. 

Figures 4.6 and 4.7 show the rejection frequency for the null hypotheses of one and 

two cointegrating vectors, using the trace and maximal eigenvalue statistics, when the DGP 

consists of five random walks and one cointegrating vector. Three random walks have 

drifts, and two have intercept shifts of magnitude 0.5, occurring at a common date, r / 2 

(detailed description of the DGP can be found in Appendix C). For both statistics the fre-

quency of rejecting the true null hypothesis of one cointegrating vector tends to unity as 

the sample size increases. The rejection frequency of the false null hypothesis of two coin-

tegrating vectors does not seem to indicate acceptance of a third cointegrating vector too 

often, which agrees with the asymptotic result. 

T racc statistic 

Figure 4.6. Frequency of rejecting the null hypotheses r < 1 (true) and r < 2 using the 
trace statistic. 
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Figure 4.7. Frequency of rejecting the null hypotheses r < 1 (true) and r < 2 using the 
maximal eigenvalue statistic. 

4.6 A generalisation 

In this section we show that the result concerning the overestimation of the cointegrating 

rank follows unchanged when we allow for a more general model. However, in the general 

form of the model presented in this section it is not obvious how the weak exogeneity status 

of the variables affects the results about the overfit of the cointegrating rank. 

A generalised version of (4.1) would require changing the original parameter # , = 

0 
say, into 

0 y; 

of distinct intercept shifts. 

= I" P 
pxpi pxl 

, with ranfc($) = pi to maintain the assumption 

Let M = 0 $_L 
PXpi px(p—Pi) he ap X p full rank matrix with = 0, then pre-

multiplying (4.1) by M, we get the generalised specification, 

(4.38) 

where a* = Mo:, = M ] and c* = Met 

with mean zero and variance MOM'. 
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The representations given below follow from the Granger Representation Theorem, 

-y; = c - Y^{E' + $ „ a , ) + CI(L)[E: + + . 4 - (4.39) 
2=1 

( 4 . 4 0 ) 

where C*(l) = C* = M C M - \ A* = 

MA and therefore = 0, = 0. 

Let r* = C*$„ and 7* be chosen such that (/)*, 7*, r*) are mutually orthogonal and 

span RP, then the preliminary results given in section 4.1 can be derived in the same way 

using (4.39) and (4.40), and can be restated as follows: 

( 4 . 4 1 ) 

( 4 . 4 2 ) 

( 4 . 4 3 ) 

where - (7*,?-^/^^*), 7* = 7*(7*1*)"\ = T*(T*T*)-\ G* 
7 * ' C W ( « ) 

and M/*(î ) = MT^(i/); 

( 4 . 4 4 ) 

(̂ 0 — jo 

G, 
u 

( 4 . 4 5 ) 

( 4 . 4 6 ) 

where V* = Goz(ti)'c('u. 
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<9,;, j = 0,1 the residual product moment matrices calculated 6om (4.38) and 

Z*, z, j = 0, are just the expressions defined in section 4.1. 

Let = (/?*, and 5'*(() = ('6'*2 th^n the limit of the scaled 

form of the eigenvalue equation |A^5'*(C)v4^| = 0 is given by 

where Mi* and 

M: 
y * l y * 

'̂ 0/3 

As M* and Ml ^re symmetric matrices and M* is non-singular 

= |C/p-F*| = 0 

where F* = M* M* can be decomposed into = Q*D*Q* where r*—1/2 

D* 

Ir 0 

V i . ' c - ' M ' s ; „ - ' s s a ( s ' E j a ) 4 - ' 
0 yi* vi*—lyi* 

and 

0 c* M 

The rank of F* gives the number of non-zero eigenvalues in the limit and 

ranA;(F*) = ranA;(M2) = ro7iA;(D*) 

raMA;(2;o2So 

Decomposing TV*, as in section 4.2, into TV* = P * f where f * is ap x (2) — r) matrix of 

rank (p — r), we can find an upper bound for the number of spurious cointegrating relations 

that is given by 

ranA:(y*0'M-VAr*CM-^#y*') = rGMA;(y*$'A/-"C'f*) < -1/^' D*^ 
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min[raMA;(y$ ). p — r] = niin(pi. p — r) = 

as in section 4.2, because y* is (p — r) x pi, $ is p x and has rank pi, and of the 

assumption {p — r — q) > 0 which assures the existence of the direction 7*. 

The key expression in this case is V*^' and because of the presence of the matrix 

$ the exogeneity status of the variables does not seem to affect the upper bound for the 

number of spurious cointegrating vectors. When V*^' C*' = 0 spurious cointegration does 

not occur and this happens i f a ^ $ = 0 i.e. when the cumulative shift does not enter the 

level of the process (see (4.39)). 

When m of the intercept shifts occur at the same date, there are pi — (m — 1) distinct 

intercept shifts and # does not have full column rank, in fact ranfc(l>) = (pi — m + 1) and 

then the upper bound becomes (pi — m + 1) i.e. the number of distinct shifts in the model 

(see also section 4.5). 

4.7 Co-breaking 

Co-breaking refers to the elimination of deterministic shifts using linear combinations of 

variables, either at the same point in time (contemporaneous co-breaking) or at different 

points in time (intertemporal co-breaking). Co-breaking is defined for processes with well-

defined unconditional expectations. 

Let {Yt} ,t=l,2,... , be a p-dimensional stochastic process, whose unconditional 

expectation arotmd an initial parameter ^ at t = 0 is given by 

- G ( } ^ - ^ ) = lAttI < 0 0 
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then we have the following definitions (Clements and Hendry (1999, pp. 249-252)): 

7. 77;g p x a /Ma/rix F .s (p > g > 0) /.yaW /o 6g 

/Mean co-WaAzng q/"or̂ fe/- sybr z/" F = 0, t = 1 ,2 , . . . . T. 

m 
D^MzfzoM ^.2. TTzg p X a mafrix: F(Z') = ^ (fggrgg m > 0 w/fA 

i=0 

ranA;[(j^ = 5, (p > a > 0) fo 6g ZMferfg/Mpom//Mgan co-6rgaA;Mg 

q/"or(/gr s { 1 ^ } F(Z,)'//( = 0, t = 1 ,2, . . . , T aW MO p x g ma/rix: j!70^»07»W q/" 

(fggrgg (m — aW s a»»zAy/afgj' t = 1 , 2 , . . . ,7". 

When a process is non-stationary co-breaking can be considered in terms of func-

tions of the process which have well-defined unconditional expectations such as the first 

differences or the cointegrating relations. 

In order to consider co-breaking we use the general form of (4.1) given by (4.38), 

where the deterministic term of each equation of the VAR model involves a linear combi-

nation of the step dummy variables and a constant. 

Taking the expectations of the stationary components in (4.39) and (4.40) we obtain 

E ( / ) * ' x ; ) = = / ) ' ' ( c r ( ^ ) $ z t + c r ( i ) . ^ ) -

E ( A x ; ) = = c"(i:)0zt + . 

Below we examine whether the transformed cointegrating vectors /?* are co-breaking for 

jdf, i.e. whether they eliminate changes in / i f . 

(4.38) in mean deviation form becomes 

a x ; = i ^ t + a ' l T ' X U - f C i ) + (4.47) 
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Pre-multiplying (4.47) by /)* and taking expectations we have 

' AX() = or 

= /3* 

If A^f = /3*'C*(L)<lAzt = 0, for all t then the mean of the cointegrating relations does not 

change and the transformed cointegrating vectors, (3* are co-breaking for AXf. However, in 

general f3*' CI {L)^i\zt is not zero for all t, regardless of whether the intercept shifts occur 

at different or at the same date. Azt is not equal to zero for all values of t and 0* (1) ^ 0 

(since is 7(0), see DeSnition 2.1). Thus, the transformed cointegrating vectors, /)*, 

do not seem to induce contemporaneous co-breaking for the impact of intercept shifts on 

A%t. 

For example when pi = 2 and the intercept shifts occur at two different dates, toi and 

to2, we have for t = 2 , . . . , T 

r r /f, 1 
t — toi + A; + 1 

^~t—k — ^ 

0 
0 
<5-2 

, t — t()2 + A; + 1 

0, otherwise 

and therefore 

0 
0 
2̂ 

0, otherwise 

, t — toi + k 1 

, t = to2 + k + 1 

If on the other hand the intercept shifts occur at the same date, to, 

, g , t = to + k + 1 

0, otherwise 
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and 

& , t — ^0 + A; + 1 

0, otherwise 

Nevertheless, the matrix (such Aat = 0) which characterises common trends is 

co-breaking (contemporaneously) for changes in the mean of the cointegrating relations but 

the effects of intercept shifts are not eliminated, 

c,]; A X ; = e; 

since the transformed system still depends on the intercept shifts affecting the mean of 

AX*. Note that a*̂  eliminates both shifts in the mean of the cointegrating relations and the 

cointegrating relations themselves. 

Next we show that the cointegrating vectors in the transformed model (4.38) can 

induce intertemporal co-breaking for changes in the mean of the cointegrating relations 

under certain restrictions. 

After pre-multiplying (4.38) by (3*' and taking expectations we have, 

F(Z,)'E(^''Xt) = or 

where F(Z,)' = — (-^ + Thus, intertemporal co-breaking of order r occurs if 

= 0 so that F(i^)'/.t^ = 0 and F(Z,) is a matrix polynomial of degree one. 

Below we give an example in which the cointegrating vectors are co-breaking in the 

intertemporal sense when there is a common shift. 
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Let p = 2, $ = (Pi 
91)2 

, = Zt, /) = .̂ 1 and = 1̂ 2, A = — s u c h that 

,5 <& = 0 then the ECM takes the form 

iS.Xt — Q-fS Xt—i 4- + c(. 

Pre-multiplying (4.48) by (3 and taking expectations we have 

[ ! - ( ! + = 0 or 

[1 — (1 + /) CK)Z/]/2̂  — 0. 

(4.49) can be written in the form 

f ( l ) / . f = 0 

(4.48) 

(4.49) 

(4.50) 

where F{L) = 1 — (1 + p'a)L. (4.50) coincides with the definition of intertemporal co-

breaking of order 1, where the matrix polynomial F(L) is of degree one. 

4.8 A digression: alternative speciAcations of the 
deterministic term 

Consider again the model (DGP) in error correction form 

AJff = a/3 Xt-.i + ^Dt + — 1,2 , . . . , T (4.51) 

with all its components except ^Dt defined as in section 4.1. 

Since the asymptotic distribution of the LR tests for cointegration depends on the 

deterministic terms in the model, we examine how alternative specifications of the deter-

ministic term, affect the analysis in the presence of intercept shifts. There are many 

cases regarding the deterministic terms depending on whether the constant and/or the linear 
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trend in the DGP lie in the cointegrating space (see Johansen (1996, p. 81)) and whether 

the SM coincides with the DGP. Below we analyse three cases, which are by no means 

exhaustive. These cases are: 

Case (i); unrestricted constant in the SM but the linear trend is absent from the level of the 

process, Xt in the DGP. 

Case (ii); constant restricted to lie in the cointegrating space in the DGP and SM. 

Case (iii): constant and step dummy variables restricted to lie in the cointegrating space in 

the DGP and restricted constant in the SM. 

Given the different directions in which the process Xt behaves differently, and the 

representation of Xt and AXt given by the Granger Representation Theorem, the asymp-

totic results for the three cases can be derived. The proofs parallel those for the main case 

analysed in sections 4.1, 4.2 and in the Appendices A and B, so detailed derivations are 

omitted. 

We assume that = 0, where C 
pXpi pXp2 

; $ = 
0 

0 yp 
P2Xl 

and 

Dt 
Zt 

pixl 
1 

In this case the SM is estimated as in the case where the constant is unrestricted (see 

section 4.1). The linear trend is absent A-om the level of the process It follows &om the 

Granger Representation Theorem that 

.Yt = C ^ 2 + Ci(jL)(6t + $D() + A 
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and 

+ Cizt + Q(Z,)(1 -

The asymptotic properties of the process are considered in three different directions; the 

stationaiy given by /?, p x r, the non-stationary that annihilates the deterministic terms 

given by 7, p X (p — r — pi) and the direction that annihilates the stochastic trends, given by 

r = Ci, p X pi. 7, r) span The residual product moment matrices, j = 0,1 

deSned as in section 4.1 and By = (7, ), with 7 = 7(7 7)"^ aiid ^ = T(T''r)"\ 

Then (4.17)-(4.19) follow unchanged. We now have 

are 

where G 7 - I f ) 
- Z 

Jo 

where Gn = 7CM/W 
Z{u) 

and 

T'̂ lO (4.52) 

Adapting Proposition 4.1 we 6nd that the rank of the limiting matrix in (4.52), ronA;(V(i)C|) 

= 6, say where 6 < and Goz(t()'di6 a (p — r) x matrix, gives an upper bound 

for the number of spurious cointegrating relationships as T —̂  00. 

Cajg (Zip 

We assume that $ px 1 ' ^ '̂ '̂ 0 (4.51) can be written as 

= a/)* 
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where ] and 1 ]. Then, 

t 
X, = + A 

and 

2=1 

where D[ = \_ z[ 1 ]. In this case the eigenvalues used in the LR tests are obtained by 

solving 

= 0 

where 6"̂ , z, j = 0,1 are the product moment matrices of AA't and 1). 

In deriving the asymptotic results we consider the behaviour of the process Xt in three 

directions. The stationary direction given by /)"'" = ^ , (P + 1) the non-stationary 

r 7 0 1 
with the restricted constant given by 'y'*' = ^ , (P +1) ^ — Pi +1 ) 

direction where the step dummy variables dominate given by r+ = 

and f are p X {p — r — pi) and p x pi respectively and mutually orthogonal. In this setup 

the asymptotic results are modified as follows, 

% ^ 2oo + 

r 
0 

, (p + 1) xp i . -y 
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where vR 
^ 0 
0 0 

as before, R 
g 0 
0 1 g is defined as in section 4.1 and $ is given 

above. Let ] then 

where G* 1 

vo 

where G 0 
Z(u) 

and 

( 4 . 5 3 ) 

The rank of the limiting matrix in (4.53) rGnA;(V(M)6'C') = 6, where (?z(?/)'o(K a 

(p —r + 1) xp i , does not exceed min(pi^ p —r) — pi (i.e. b < pi) which is the upper bound 

for the number of spurious cointegrating vectors. Note that in this case the restriction for 

the existence o f d i r e c t i o n is (p — r) > (pi — 1), which implies (p — r) > therefore 

is still an upper bound. 

We assume that there mc k < r step dummy variables that lie, together with the 

constant term, in the cointegrating space. Thus, $ = a:$o, where $o is r x (A; + 1), 

rxt 
and D, 

1 xfc 
. Then (4.51) can be expressed as 

= a/3* 
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where ^ 0 ] and 1 ]. From the Granger Representa-

tion Theorem we obtain 

t 
Xt = C ^ ^ Ei -j- C'l{L){st + + A 

2=1 

and 

The residual product moment matrices S*j, i.j — 0,1 are computed as in the restricted 

constant case (case (ii)), assuming that a restricted constant is included in the SM but the 

presence of shifts is (again) ignored. The properties of the process Xt differ in the direction 

3 P 
0 

and BT = 
0 

0 7^/^ 
(where = / ) _ L ( / ) _ [ / ) w h i c h correspond to 

the stationary and non-stationary (stochastic trends) directions respectively. 

The two problematic terms B'j,S*il3 and B'̂ S^Q (that need to be rescaled in the pres-

ence of intercept shifts) are Op(l) in this case (as in the standard case i.e. no intercept 

shifts), thus if scaled by they converge in probability to zero. This is due to the fact 

that the cumulative step dummy variables do not appear in the representation of the level 

of Xt, because of the way $ is defined. Only the variances/covariances of the stationary 

components seem to be affected by the presence of intercept shifts, but not the inference 

for the cointegrating rank. In this case the impact of the intercept shifts is only in the form 

of 'smoothed' dummy variables, which enter the representation of as an infnite-lag 

polynomial for 

To sum up, the scaled version of the matrix, which has the same eigenvalues as the 

roots of (4.23), i.e. the eigenvalues used in the LR tests, for the case analysed in sections 
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4.1 and 4.2 and case (i) of this section is 

= = Op(l) 

(with BT appropriately defined for each case) and for case (ii) 

= {B+'sr,Bf = 0,(1) 

instead of Op(T"^) as in the absence of intercept shifts. For case (iii) we have 

(T-'S^S;,ST)-'(BTSr„)S'oc'(S„',iJT) 

T(B'^Sl,BT)-\B'^S',^)S^a\S-„,BT) = 0,(1) 

therefore 

Thus, applying the trace or the maximal eigenvalue statistic, which require scaling by T, 

in the case analysed in sections 4.1 and 4.2 and cases (i) and (ii) will lead to rejection of 

the null hypothesis of cointegrating rank r with probability one as T —» oo. On the other 

hand, intercept shifts that lie in the cointegrating space but are omitted fi-om the SM will 

not affect the inference about the cointegrating rank. 
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4.9 Concluding remarks 

This chapter has considered the effects of intercept shifts on the trace and maximal eigen-

value statistics used for cointegration testing. It was shown that when step dummy vari-

ables, which capture the impacts of intercept shifts, are present in the DGP but not in the 

statistical model used for cointegration testing, these statistics reject the null hypothesis 

of r cointegrating vectors with probability one as T oo. As a result, the cointegrating 

rank is overestimated. The extent of the overestimation depends on the number of distinct 

intercept shifts in the DGP and on the weak exogeneity status of the variables. 

The model under examination is quite simple, being a VAR(l). A restrictive assump-

tion in the analysis is the one about the existence of the non-stationary stochastic direction 

('y), given by (p—r) > g. When (p—r) = g the asymptotic results do not involve stochastic 

terms (Brownian motions). 

A possible extension of this investigation is the derivation of the asymptotic distri-

bution of the test statistics considered, in the presence of intercept shifts. Although for the 

null case (r = 0) the procedure of deriving the asymptotic distribution is tractable (see 

O'Brien (1999)) this does not seem to be the case under the assumption of cointegration 

(r > 0). 

However, it seems that under certain circumstances, ignoring the presence of inter-

cept shifts leads to misleading inference about the cointegrating rank. So a priori testing for 

the presence of shifts applied on the univariate representation of the processes involved in 

the YAR (see e.g. Perron (1989), Perron and Vogelsang (1992), Zivot and Andrews (1992)) 

and/or application of comtegration tests that allow for shifts in the mean of the process (see 
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e.g. Gregory and Hansen (1996a,b), Inoue (1999), Johansen et al. (2000), Saikkonen and 

Liitkepohl (1998)) appear to be a 'safer' strategy to follow. 
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LR tests kr cointegration and intercept shifts: 
a finite sample analysis 

In this chapter we use Monte Carlo simulations to investigate the finite sample per-

fbrmance of the LR tests for cointegration in the presence of intercept shiAs, implemented 

using the trace or the maximal eigenvalue statistic. The investigation is carried out using al-

ternative specifications for the constant term (absence of constant term, constant restricted 

to lie in the cointegrating space and unrestricted constant term) in the SM, in conjunction 

with alternative designs concerning the variables (shifted, non-shifted) entering the cointe-

grating vectors. The setup of the analysis allows for some degree of control over the local 

power of the tests. All simulation experiments were programmed in Ox 3.00 (see Doomik 

(1999)). 

5.1 Local power 

Since the aim of this chapter is the investigation of the finite sample performance of the 

LR tests for cointegration under misspecification, it is necessary to have some degree of 

control on the power of the tests so that the conclusions drawn will be conditional on a cer-

tain power level. The motivation for this is as follows. If the power of the tests for the 

cointegrating rank is low, and correct inferences are difficult, mistakes caused by spurious 

cointegration may be less important. In such situations inference will tend to be impre-

cise in any case. If, however, the tests for the cointegrating rank are very likely to detect 

82 



5.1 Local power 

the correct cointegrating rank in the absence of intercept shifts, but spurious cointegration 

appears with appreciable probability, then it may be taken more seriously, as distorting an 

otherwise clear picture. In the absence of control over the exact power, we approximate by 

endeavouring to control local asymptotic power. 

Below we present the theoretical framework, which is the simplest possible one, 

without deterministic terms and short-term dynamics. For detailed treatments of the model 

without deterministic terms see Johansen (1991b; 1996, Chapter 14). Cases involving 

deterministic terms are analysed by Rahbek (1994) and Saikkonen and Liitkepohl (1999). 

The model is given by 

AXj = nXt_i + St, t = 1,2,... ,T 

where s* 0) , Xo = 0. 

The null hypothesis is 

j7(r) : n = a/;' 

and the local alternative is 

a) : 

where a, are p x r and cti, are p x 5, so under the local alternative there are (r + g) 

cointegrating vectors, s of which are attached adjustment coefficients whose magnitude is 

inversely proportional to the sample size and therefore small. Thus, the a cointegrating 

vectors cannot be easily detected by the cointegration tests. 
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Assuming that the eigenvalues of the matrix (7̂  + a) lie inside the unit circle i.e. 

the process Xt is / ( I ) under H{r), then the asymptotic distribution of the trace statistic^ 

(2.18) (for the hypothesis H{;r) : H = al3 ) under the local alternative g) : Hr = 

a/)' + is given by 

( 5 . 1 ) 
Vo Vo Vo 

where K isdi{p — r) Omstein-Uhlenbeck process which is defined by the stochastic differ-

ential equation 

+ djiTW = dBW, It G [0,1] 

or equivalently by 

—06 / + A'(tt) = B('u), u E [0,1] (5.2) 
Jo 

and B{u) is a (p — r)-dimensional standard Brownian motion. The asymptotic distribution 

under the local alternative depends on the parameters of the model through 

and 

where and are p x (p - r) matrices orthogonal to a and /) respectively. 

^ For a discussion on the local power of the LR test based on the maximal eigenvalue statistic see Paruolo 
(2001). 
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When 5 = 1 so that ai and <3̂  are p x 1 vectors the asymptotic power function 

depends on 

/ = 6 o = < 0 

and 

where C = furthermore when (p — r) = 1 the asymptotic power depends 

only on / , see Johansen (1991b, p. 327). 

The process (5.2) can be decomposed into three orthogonal directions so that it de-

pends only on o n, 6 6 and 6'a (see equations (14.16)-(14.18) in Johansen (1996)) and for 

s = 1 these are given by 

- / / jri(g)dg + ;ri(t() = Bi(?/) (5.3) 
Vo 

~g f Ki[s)ds -i- K2{u) = B2{u) (5.4) 
Jo 

j;r3(%z) = B3(?/) (5.5) 

where the first two equations are one-dimensional and the third is {p-r- 2)-dimensional. 

The DGPs used in the Monte Carlo analysis in section 5.2 are four-dimensional VAR 

processes (p = 4) with one cointegrating vector. So we simulate the local power of the 

LR tests for (p — r) = 4 to investigate the probability with which the single stationary (or 

near-integrated) relation can be detected (by rqecting r = 0) for different values of / and 

9-
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Since ± e main quantity in ± e expression for the asymptotic power (5.1) is the process 

it is required to simulate the discrete analogues of (5.3)-(5.5) for (p — r) = 4, 

= (1 4- T" (5.6) 

-̂ 2( = + (3̂  + ttgt (5.7) 

(5.8) 

^4( = + 'U4f (5.9) 

f = 1 ,2 , . . . ,T,T = 400, K-io = 0, ua ~ i.i.d.N(0,1), 2 = 1,2, 3, 4. 

We can then calculate 

T r r 
t r { J 2 K t K f y ^ i f , ' A O (5.10) 

t=l t=l 1=1 

and 

r T T 
(5 .11 ) 

1 t—1 t=l 

where = (A'if,A'2f,^3t,^4f) maxe%^{ } denotes the largest eigenvalue of the 

argument matrix. (5.10) and (5.11) were computed for three alternative specifications of 

the deterministic term in the DGP, which give rise to three alternative definitions for K^: 

(i) no deterministic term, where 

(ii) constant restricted to lie in the cointegrating space, where = (^Li = 1) 

(iii) in the DGP the constant is restricted to lie in the cointegrating space but the SM allows 
T 

for unrestricted constant, where A'* = A't-i — ^ 
t=i 
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The asymptotic power for different values of / and p is computed as the rejection 

fi-equency of the null hypothesis ^(0), by comparing (5.10) and (5.11) with the appropriate 

95% critical values (under the null) given in Tables 0 and 1* in Osterwald-Lenum (1992), 

for cases (i) and (ii) respectively, and in Table A2 in Johansen and Juselius (1990) for case 

(iii). The number of replications is 5,000. 

The tables for the simulated power function appear in Appendix D. For all cases the 

probability associated with f = g = 0 corresponds to the asymptotic size of the tests, 

which is 5%. For the trace test in case (i) (without deterministic terms) the power is lower 

for (p — r) = 4 compared to the cases where (p — r) = 1,2,3, which appear in Johansen 

(1991b, 1996). This is a manifestation of the results stated in Johansen (1991b, 1996) 

and Saikkonen and Lutkepohl (1999), namely that the power decreases as the number of 

common trends, {p — r), increases, which makes it more difficult for the test to distinguish 

the near-integrated process from the integrated ones. It is also observed that for both test 

statistics the power is higher when there are no deterministic terms (in either the DGP or 

the SM). The same result was found by Saikkonen and Lutkepohl (1999) for the trace test 

and {p — r) = 1,2,3. Moreover, looking at the tabulated values of the local power, neither 

test seems to dominate uniformly the other (in terms of local power). The trace test appears 

to have higher local power for moderate values of / and g, whereas the maximal eigenvalue 

test tends to be more powerful (locally) for extreme values of / and g. This observation is 

in agreement with the findings of Paruolo (2001) for [p — r) = 1,2, 3. 
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5.2 Monte Carlo experiments 

The general form of the DGPs written in error correction form is given by 

A.Xt = (i[5 4- t = 1,2,... ,T (5.12) 

where Xt is a four-dimensional 7(1) process, a' = [ ai 0=2 0:3 j, 

I 0 
2x2 2x2 and zt is a 2 X 1 ,3 = [ 5, A A g,],xf_, = [*;_, i].4>; = 

vector of de-meaned step dummy variables (they sum to zero over the sample period) used 

to model intercept shifts. For any arbitrary date, 1 < ôi < ôi = ^ (0,1), 

a typical (%-th) element of zt, is deSned by 

_ _ J î(Ai — 1), 1 < ^ < (oi 
(% + ! < ( < T ' 

Sit i i d . # ( 0 , 1 ) , 2 = 1,2,3,4, t = 1 ,2 , . . . , T, where T = 50,100,200. So we consider 

four-variable models with two variables having equations in the ECM that contain intercept 

shifts and one cointegrating vector. The shifts z'̂  = [ zu zgt ] are either at two different 

dates, T/S and 2T/3 (distinct shifts) with Ai = 1/3, A2 — 2/3 and zit ^ Z2t, or at a 

common date, T'/2, with Ai = Ag = 1/2 and zit = In addition the impact of the 

magnitude of the shift on the LR tests is also examined by allowing different values for 

in particular — 0,0.5,0.6,0.7,0.85,1. These values were also used in studying the 

effects of intercept shifts in the null case in O'Brien (1996, 1997, 1999). 

Since the local power of the LR tests for cases (ii) and (iii) (see section 5.1) is not 

affected by the actual value of /j, (see Saikkonen and Liitkepohl (1999)) we set ^ = 0 in 

generating the data (in the DGPs). However, the value of has noticeable effect on the 

speed with which the small sample behaviour tends to the asymptotic distribution under 
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the local alternatives as can be discovered by simulations with diSerent values for // (see 

O'Brien (2001)). It would be possible to investigate the small sample eSects of varying 

but this would substantially increase the number of experiments, and possibly also the range 

of T values to be considered, given the slower convergence to the asymptotic distribution 

associated with /i 7̂  0. 

As far as the specification of the constant term in (5.12) is concerned // is set to zero 

in all DGPs, as mentioned above. In the SM we employ the three cases described in section 

5.1: 

Case (i) no deterministic term; /.( = 0, = Xt_i. 

Case (ii) constant restricted to lie in the cointegrating space; aji ^ 0. 

Case (iii) constant restricted to lie in the cointegrating space in the DGP (i.e. ^ 0) but 

the SM is estimated unrestrictedly. 

Furthermore, we use three alternative designs which give rise to paxametrisations 

which are compatible with those of the system in (5.6)-(5.9). Hence, the parameters of the 

DGPs can be expressed in terms of / and g (the parameters upon which the local power of 

the tests depends) and for given values of / and g a certain level of asymptotic local power 

can be attained. Accordingly we gain a certain degree of control over the asymptotic power 

and we can investigate the effects of the misspecification (intercept shifts in the DGP but 

not in the SM) for cases that the LR tests have low, medium and high local power. 

Having set /i = 0 so that 

= aB Xt-^i + 4- c(, t = 1, 2 , . . . , T (5.13) 

the three designs used are: 
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(Dl) ag ^ 0, 0:4 0, = 1, — 1, Ai = a? = = 0 

(D2) 0=1 ̂  0, 0:2 ^ 0, Z?! = 1, = — 1, <33 = 0:4 = = 0 

(D3) 0:2 ^ 0, 0:3 ^ 0, /92 = 1, = "1, «! = 0:4 = /)i = /̂ ^ = 0 

and in matrix form; 

( D l ) a ' = [ 0 0 ^3 ^4 ] , / ) ' = [ 0 0 1 - 1 ] 

( D 2 ) a ' = [ a i ag 0 0 ] , / ) ' = [ l - 1 0 O] 

( D 3 ) a = [ 0 0:2 «3 0 ] , / ) ' = [ 0 1 - 1 0 ] . 

The cointegrating vector involves only non-shifted variables in (Dl), only shifted 

variables in (D2) and a mixture of shifted and non-shifted variables in (D3). The only 

undetermined parameters in the designs are the adjustment coefiicients and their relation 

with the parameters / and g is given in the following proposition. 

J. 7. = ( / + g)/2T aW — /)/2T' /b/" 2 = 3,1,2 aW j = 4,2,3 m 

(Dl), (D2), (D3) 

The proof is given only for (Dl) since it is similar for the rest of the designs. 

Proof. We are interested in situations where inferences are clear in the absence of step 

dummy variables. Thus, we set $0 = 0 in (5.13) i.e. 

= a/) .ATt-i + t — 1,2 , . . . , T (5-14) 

or 

Xt = {Ia + O-B )Xt^i 4- t = 1 ,2 , . . . , T (5.15) 

in order to relate the parameters of (5.15) to those in (5.6)-(5.9). 
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Let B = l / ) / ) j ^ | , a p x p full rank matrix. Given a possible choice for is 

1 0 0 
0 1 0 
0 0 1 
0 0 1 

so that B 

0 1 0 0 
0 0 1 0 
1 0 0 1 

- 1 0 0 1 

By pre-multiplying (5.15) by B' we obtain 

— (1 + 0=3 — CK4)(^3(t-l) — ^4(t-l)) + — 64t) (5.16) 

+ 2'lt (5.17) 

— ^2(t-l) + -2t (5.18) 

-̂ 3f + + -^4(t-I) + (0:3 + a!4)(^3(t-l) " ^4(t-l)) + (̂ 3f + ^4()- (5.19) 

Let A'lf = %3t - %4f, a stationary or near-integrated process, + ^4f, ^3f = 

Ku = ^2t, / ( I ) processes, by definition. Then the system (5.16)-(5.19) can be expressed 

as 

= ( 1 + 0:3 - 0:4) + l / K (5.20) 

7̂ 2* — + (0:3 + Q!4)-^l(t-l) + (5.21) 

-A'sf = -^3(f-l) + ^3t (5.22) 

-fQt — -R4(t-1) + !̂ 4t (5.23) 

where wit ^ 631 - 64*, t/zt = Sst + 4̂*, "Ust = tt4t = E2(- Comparing the coefRcients in 

(5.20)-(5.23) to those in (5.6)-(5.9) we obtain. 

«3 - C t 4 = T ' / (5.24) 
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^3 + ^ 4 = (5.25) 

Proposition 5.1 follows by solving (5.24) and (5.25) simultaneously with respect to 0:3 and 

04. 0 

Note that the LR test statistics calculated from (5.14) and (5.20)-(5.23) are alge-

braically equivalent due to the invariance of the eigenvalues to linear transformations. The 

eigenvalues associated with (5.14) are calculated from 

— 5'io'9oo^5'oi| = 0 

(see Chapters 2 and 3), then the corresponding eigenvalue equation for (5.20)-(5.23) is 

and thus A = (. 

An alternative way to express the parameters of (5.14) in terms of / and g is to apply 

the formulae for / and g given in section 5.1. Since we consider the case of just one extra 

cointegrating vector, i.e. r = 0 and a = 1, under the null C = Q = I4, and /3j_ are 

p X matrices with full rank and ai , in section 5.1 correspond to a, respectively used 

in this section. Then, 
a — 0:3 — 0:4 

= a'cK/)'/) - (/̂  a)^ = (03 + CK4)̂  

which coincide with (5.24) and (5.25), using again a, (3 as defined in (Dl). 

In Johansen's (1996, equation 14.2) notation, the deviation from the null is 

corresponding to a/) used in this section. Thus, / = in Johansen (1996), after 
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simplification, corresponds to T/) a as shown above. A similar adjustment is required for 

9-

Consequently the presence of the cointegrating vector can be detected with different 

probabilities, in other words with different local power, depending on the values taken by 

/ and g. For each of the cases (i)-(iii) concerning the deterministic term, we use six pairs 

of (/, g) values, two pairs for each power level: low (about 0.2), medium (about 0.55) and 

high (about 0.85). The values of (/ , p) are: {(-21,0), (-21,6), (-18,18), (-30,12), (-15,24), 

(-48, 6)} for case (i), {(-15, 12), (-24, 6), (-27, 18), (-30, 18), (-42, 24), (-54, 6)} for case 

(ii) and {(-9, 12), (-21, 6), (-24, 18), (-36, 6), (-9, 24), (-48, 12)} for case (iii). The exact 

value of the asymptotic local power which corresponds to each pair appears underlined in 

the appropriate table (Tables D.1-D.6) in Appendix D. For some pairs involving extreme 

values of / and g the power for the maximal eigenvalue test is slightly higher and for pairs 

with moderate values of / and g the trace test is slightly more powerful (see also section 

5.1). 

To verify that the designs under consideration conform with the chosen power levels, 

we computed the frequencies of rejecting the null of r = 0, given that the DGPs contain 

one cointegrating vector, with ac^ustment coefBcients given by the relevant / and ̂  values 

that are associated with the chosen power level. Setting 6̂  = 0 for this experiment, and 

using T = 50,100,200 and 10,000 replications the rejection frequencies seem to converge 

(though slowly in some cases) to the predetermined power levels indicated by the choice of 

/ and g. The tables are omitted for the sake of brevity. 
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The condition for the presence of one cointegrating vector, i.e. the stability condition 

for the cointegrating relation (stationary process) is that the eigenvalues of the matrix (7̂  + 

d'a) lie inside the unit circle, which reduces to 

—2 < < 0 

for 2 = 3,1,2 and j = 4,2,3 in (Dl), (D2), (D3) respectively, or equivalently 

- 2 < T - Y < 0 (5.26) 

for all designs. / is always negative, by definition (see section 5.1), and given the choices 

of / and T values, the stability condition (5.26) is satisfied. 

Finally a word on the taxonomy of the Monte Carlo experiments. Each of the designs 

is used together with each of the three cases regarding the specification of the deterministic 

term, which generates nine experiments as shown in Table 5.1. The nine experiments 

shown in Table 5.1 were conducted both under the assumption of distinct and common 

shifts resulting in eighteen experiments in all. 

Table 5.1. The taxonomy of the experiments 
Design 

Specification of deterministic term 
Dl D2 D3 

case (i) Dl(i) D2(i) D3(i) 
case (ii) Dl(ii) D2(ii) D3(ii) 
case (iii) Dl(iii) D2(iii) D3(iii) 

5.3 Monte Carlo results 

The results of the simulations are presented graphically in Appendix E. The graphs show 

the rejection frequency (abbreviated as rf on the vertical axis) of the null hypothesis of one 
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cointegrating vector (detected with various power levels) for difkrent magnitudes of the 

shift (6) and different sample sizes, using the experiments shown in Table 5.1. 

In each set of six graphs, the left hand column shows rejection &equencies for the 

trace test; the right hand column shows rejection frequencies for the maximal eigenvalue 

test. The three rows of graphs represent low, medium and high power respectively, as one 

works down. On each graph there are six 'curves', two for each of three sample sizes 

(T = 50, 100, 200). First we discuss Figures E.1-E.18. 

The rejection frequencies increase as the sample size increases (which is in agreement 

with the asymptotic analysis) and as the magnitude of the shift grows larger. This pattern 

persists for Figures E.1-E.18. 

The higher the power with which the cointegrating vector can be detected, the higher 

the rejection frequency of the true null. Thus, as one works down through a sextet of graphs, 

the rejection frequency curves rise. Again, the pattern persists for Figures E.1-E.18. So in 

the cases where genuine cointegration cannot be easily detected, spurious cointegration 

arises less A-equentiy. 

However, for many cases the frequency of rejecting the true null is approximately 

equal to or exceeds the probability of finding the true cointegrating vector (i.e. the empirical 

size exceeds the asymptotic local power). This occurs when the rejection frequency exceeds 

0.2 in the top graphs in a sextet (Figures E.l, E.3, E.4, E.6, E.7, E.9, E.IO, E. l l , E.13, E.14, 

E.16, E.l7, E.l8), or 0.5 in the middle graphs (Figures E.l, E.4, E.6, E.7, E.9, E.IO, E. 11, 

E.13, E.16, E.l7), or 0.8 in the bottom graphs (Figures E.4, E.7, E.9, E.IO, E.l l , E.13, 

E.14, E.16, E.17). 
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When there are two distinct intercept shiAs in variables in the cointegrating vector, 

D2 (Figures E.2, E.5, E.8) yields lower rejection A-equencies than Dl (Figures E.l, E.4, 

E.7), where the variables in the cointegrating vector do not have shifts and D3 (Figures 

E.3, E.6, E.9), the mixed case, especially at low and medium power levels. When there is a 

common shift D3 (Figures E.12, E.15, E.18) generates lower rejection frequencies. 

For both the distinct and common shifts specifications the rejection fi-equencies ap-

pear to be higher when a constant term (restricted or unrestricted) is introduced in the model 

(compare Figures E.I-E.3 and E.10-E.12 with Figures E.4-E.9 and E.13-E.18). 

For most cases the rejection frequencies for the same sample size evolve similarly 

along the 6-axis for a given power level. An apparent exception is the case of D2 for large 

T and medium/high power level (see Figures E.2, E.5, E.8, E.l 1, E.14, E.17). 

In general, Dl seems to produce larger impact of intercept shifts on the rejection 

frequencies of the LR tests. This relates to Corollary 4.1 (Chapter 4) according to which 

overfit of the cointegrating rank does not occur when = 0 , where aY'' is the pi x (p—r) 

submatrix of a± which corresponds to the variables with the intercept shifts. 

Even though a± is not uniquely defined a plausible choice (for the sake of argu-

„ ( i ) 

ment) could be aj. 

1 0 0 
0 1 0 
0 0 —0:2 
0 0 

for Dl, a_L = 

0 0 —0:2 
0 0 CKi 
1 0 0 
0 1 0 

for D2 and aj. 

1 0 0 
0 0 —0:2 
0 0 
0 1 0 

for D3. Thus, for Dl a (1) 1 0 0 
0 1 0 

is clearly non-null whereas for 

D2 a (1) 0 and for D3 a (1) 1 0 0 
0 0 0 

, as T ^ 00, by the definition of ai and 

0=2 (see Proposition 5.1). So the higher rejection frequencies associated with Dl, as T be-
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comes large, are somewhat expected since D1 is fiirther &om the argument of Corollary 

4.1 than the other two designs. 

Figures E.19-E.21 show the rejection frequencies of the trace and maximal eigen-

value statistics when = 0 (see also Corollaiy 4.1). The DGP for this experiment is D2 

with a2 = 0, therefore the power levels are chosen for different values of / and such 

that / = —g. From the formulae for / and g"^ in section 5.1 (scaling appropriately by T~^) 

we find that f = a i < 0 and (T'^g)^ = af thus T~^g = ~ai and therefore / = —g. 

So, the DGP includes only one variable with intercept shift at T/2, which is not weakly 

exogenous with respect to the cointegrating relation. The rejection frequencies appear to 

be close to the asymptotic size of the tests (5%) hence systematic acceptance of spurious 

cointegration does not seem to occur in this case. The Monte Carlo precision with 10,000 

replications is ±0.43%, so the tests seem marginally oversized for high power levels still at 

T = 200 (last row of the sextets in E.19-E.21). 

In the absence of intercept shifts (5i = 0) the rejection frequencies correspond to the 

empirical size, and for most cases they are reasonably close to 5%. Under the assumption 

5i = 0 there is no distinction among designs so the results of the simulations for the dif-

ferent designs are combined for the purposes of Figures E.22 and E.23. Figure E.22 shows 

the empirical size for different power levels indicated by the numbers 1, 2 and 3, which 

correspond to low, medium and high power. The empirical size increases with asymptotic 

power. For the low power level tests are undersized and size corrected tests would give 

® f = —g = —12, —18, —24; / = —g = —12, —18, —30; / = —g — —12, —18, —30 for cases (i), (ii) 
and (iii) respectively and each value of / (— -g) corresponds to low, medium and high power (see Tables 
[X1-CX6). 
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more rejections. For the medium power level this effect is slight. For the high power level 

some cases are oversized and size corrected tests would give fewer rejections. This pat-

tern is similar for the trace and the maximal eigenvalue statistic. Figure E.23 shows the 

empirical size for different sample sizes (T) indicated by the numbers 1, 2 and 3, which 

correspond to T = 50, T = 100 and T = 200. There is large variation of the empirical size 

for a given sample size. Even for T = 200 the concentration around 5% seems to be low. 

Again the behaviour of the trace and maximal eigenvalue tests is similar. The scatter dia-

grams also indicate that the power level and the deterministic term specification dominate 

the effect of the sample size. 

For comparison with O'Brien (1999), Figures E.24-E.25 and E.26-E.27 show the 

rejection frequency for alternative designs and power levels when there are two different 

shifts (at T /3 and 2T/3) and a common shift (at 7 /2 ) respectively. The sample size is 

150 which is representative of many econometric applications and the magnitude of the 

shift is set to 0.5, since a shift of that size can be easily missed in empirical work and not 

accounted for in the SM. For the majority of cases the frequency of rejecting the true null of 

one cointegrating vector is above 5% (asymptotic size) regardless of whether the effect of 

design or power is examined. Particularly there are situations that the rejection frequency 

exceeds 30%. As noticed before D2 seems to produce lower rejection frequencies when 

the shifts are distinct and D3 gives lower rejection frequency when there is a common shift 

in the DGP. In addition we observe that the higher the power level the higher the rejection 

frequency, as before. 
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5.4 Concluding remarks 

In this chapter we have investigated the finite sample performance of the LR tests for coin-

tegration proposed by Johansen (1988,1996) when the DGP includes intercept shiAs which 

are not accounted for in the SM used for cointegration testing. The effects of the misspeci-

fication are analysed for different levels of local power and different experimental designs 

with regard to which variables (shifted/non-shifted) enter the cointegrating vector. As the 

asymptotic analysis predicts (see Chapter 4) the frequency of rejecting the true null hypoth-

esis of one cointegrating vector increases as the sample size becomes larger; therefore we 

spuriously accept more cointegrating relations than in the DGP. In addition, it is found that 

the true null hypothesis is rejected more frequently as the magnitude of the shift increases. 

These patterns arise in the presence of both a common shift and distinct shifts. 

Since we opted to have some degree of control on the asymptotic power the analysis 

is carried out in a rather simplified setup. In considering the local asymptotic power we 

assume that r = 0 under the null and that a — 1 i.e. there is a single cointegrating vector, 

under the local alternative. However, assuming r = 1 under the null and carrying out the 

investigation for s = 2 under local alternatives complicates the parametrisation, because a±_ 

and (3^ are no longer invertible matrices and C is no longer the identity matrix. Moreover, 

controlling for the local power in the case of more than one extra cointegrating vector under 

the alternative (a > 1) also complicates the analysis because the parameters upon which 

the power depends are no longer scalars. 

Overall it appears that the intercept shifts have rather noticeable effect on the LR tests 

for cointegration. For example, for T = 200,6 = 0.5 and medium local power, in cases (ii) 
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and (iii) (which are model specifications frequently used in empirical works) the rejection 

frequencies of the true null are 30%-36% and 21%-29% for the common shift and distinct 

shifts cases respectively. 



Chapter 6 
Irrelevant or omitted variables in 

cointegration analysis 

This chapter examines the impact of including irrelevant / ( I ) variables in, or omitting 

relevant 7(1) variables &om the SM used for cointegration analysis, on the inference about 

the cointegrating rank and the consistency of the estimators of the parameters of the ECM. 

The analytical findings are supplemented by a Monte Carlo investigation. 

6.1 Irrelevant variables 

One might think that one could rely on the assertion that Johansen's procedure (see Chap-

ter 2) does not assume any row o f o r a is non-zero. Thus, as a zero row of excludes a 

variable from the cointegrating relations and a zero row of a excludes the cointegrating re-

lations from the process generating a variable, it may be 'obvious' that such an 'irrelevant' 

variable will not affect the estimation, and the zero rows will be as efficiently estimated 

as the other rows of beta. However, to justify this assertion, a careful check of Johansen's 

procedure is required. This section provides such a check. 

By the term 'irrelevant' variables we refer to variables that do not enter the coin-

tegrating relations. We do not assume that the error terms of the relevant variables (i.e. 

variables that enter the cointegrating relations) are uncorrelated with those of the irrelevant 

ones as we analyse this as a special case. 

101 
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6.1.1 The model and some results 

The DGP is given by a VAR(l) model in error correction form. 

+ c£, t — 1,2,... ,T (6.1) 

where ^ 2.id.(0, f]) vyith 6mte fourth moments and is a p x 1, 7(1) process. 

is also cointegrated with r < p cointegrating vectors, hence 11 = af]' (a and p are p x r 

matrices) and p Xt ^ /(O). The SM used for performing cointegration tests consists of 

> p variables so that I = (p+ — p) 7(1) variables are irrelevant (i.e. they do not enter 

any of the r cointegrating relations). The SM in error correction form is then 

A%+ = n+%+1 + 6+ f = 1 ,2 , . . . , r (6.2) 

where ^ i.i.d.{0, f2+) with finite fourth moments and X^ is p^ x 1, 2(1) process with 

its first p elements being those in (6.1) i.e. 

Xit 

X m (6.3) 

where % (0' Ap+t ]. Thus, ^ 7(1) and also non-cointegrated. 

We define the x p selection matrix H = 

equation for the SM (6.2) is 

4 
0 

Ixp 
, then The eigenvalue 

|^+(()| = 0 (6.4) 

where 5'+(C) = (5'^ - 5̂"̂ . In addition, 

T 
- x + ) ( x + ^ - %+) 

t=i 



6.1 Irrelevant variables 103 

% = r ' E(Axr - AX^xax,-- - a x + ) ' 
t=l 

0+ _ c+ 
'̂ 10 — "̂ 01 - x+)(A%+ - AX+)' 

4=1 
T T 

where — T ^ ^ and A%"̂  = T ^ ^ A%^. Using the partition in (6.3) we 
t=l i=l 

obtain 

' % — 

'S'll 

'5'izi 'S'l/i/ 

^11 = r - : - X) 

'S'oo <̂ 00/ 
'S'ozo 'S'omz 

'S'lo 5̂ 10/ 
'S'1/0 '5'im/ 

t=i 

6'n/ = 
t=i 

^uiz = E ( x g i - - XW)' 
t=i 

%o = E(AJ^t - AX)(AXt - AX)' 
t=l 

^oz = 4 o - E(A%t - A%)(AX(') - AZW)' 
t=l 

^0/0/ = 2"-' E(AX(') - AX('))(A%(') - AJCW)' 
t=i 
T 

^ 1 0 = r - : - ;^)(A%t - A%)' 
t=i 

Smi = s;„, = r - i Z(X,-r - X)(AX™ - AX!'))' 
£=1 

^1/0/ = r - : - X(0)(AX(') - A%m)' 
£=1 

where 

andX = T - i f f (') = r - : E A% = f } AX^, A%(') = f ] A% '̂). 
t=l t=l t—1 (=1 

We then define 

y^r 
- A%+ v+ v+ 

'̂ 00 '̂ 0/3 
. % E a a . 

which can be expanded into 

r A%t -
A%y) 

^00 ^00/ 
^0/0 ômz ^o//3 

/̂30 /̂30/ /̂3,3 
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where E, 00 
^00 Zoo( andZ 
Ewo 2ww 

Note that in this chapter sufficient conditions (assumptions) for the Weak Law of 

Large Numbers (WLLN) used, are et ~ i.i.d.{0,Q) with finite fourth moments, which 

can be expressed in terms of the elements of the vector as E < oo for 

i.j, k,l = 1,2,... ,p. Given that after application of the Granger Representation Theorem 

(see Theorem 2.1) the first differences (AX^) and cointegrating relations (fi'Xt) have infi-

nite moving average representations, with convergent lag polynomials, the assumptions on 

et imply (see Hamilton (1994, Propositions 10.2 and 18.1)); 

(a) finite fourth moments for the first differences and cointegrating relations i.e. 

< oo, < oo for = 1 ,2 , . . . 

and for all ti, 3̂, where AX^t and Wit are the z-th elements of AX^ and respec-

tively 

(b) ergodicity for the second moments of the first differences and cointegrating relations 

i.e. ^ AX îf A E(AXi(A^(t_a)) and ^ ^ 
t=i t=i 

for z, J = 1 ,2 , . . . ,p and for all a. 

The implications of (a) and (b) above also hold for A X ^ and AX® used in this section 

and AA7 and P'nX* in section 6.2, since they can be written as infinite lag polynomials 

with error terms that are i.i.d. with finite fourth moments. 

Let he a x full rank matrix given by Bj 
+ 

p+xr p+x(p+—r) 
where 

P 
pXr 

0 
(xr 

, a n d = 0, then 
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n+' Q + r,-| 1 r>+ nA 
P '̂ lO'̂ OO 

'7^-1/2/3+' q+ ci—1 q+ 

13+' r,4- r,4—l 4̂- 3+ 7-1-1/2,0+ c+ cH—1 c+ a+ 7 -̂1/3+' c+ c4—1 c+ a 

For the asymptotic analysis of (6.5) we need the following results 

(6.5) 

(6.6) 

<̂ 10 = [ /̂  '5'lO [ ,̂80 /̂30Z ] (6.7: 

— 

'S'oo <̂ 00/ 
'S'o/o 'S'o/of "̂ 00 

Eoo ôof 
^om ôzoz 

(6.8) 

by the WLLN. For (6.8), by Slutsky's Theorem (see Davidson (2000, pp. 39, 46)) and 

assuming invertibility in the limit we obtain 

5, -1 p. 
00 

gOO gOOZ 
(6.9) 

where the probability limit on the right-hand side is the partitioned inverse of Z ^ . Further-

more. 

= Op(l) (6.10) 

= Op(l) (6.11) 

because they are averages of products of an 1(0) and an 7(1) process. 

Along with we de8ne CK'' 
a 

pxr 

/xr . 

such that n+ in (6.2) can be written as 

n+ = 0!+J"*" and a t is such that a:"̂ 'o!T = 0. 
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By the Granger Representation Theorem the process has the following represen-

tation 

t 
%+ = ^ + C+(Z,)6+ (6.12) 

t=i 

(see Theorem 2.1) and C"*" = 0, where so that = 

^ 7(0). Then we consider the behaviour of (6.12) in the non-

stationary direction By application of the Functional Central Limit Theorem on (6.12) 

and the CMT (see Theorems A.l and A.3) we have 

+ c+(i)ei^„,) - 0icnv+(u) 
i=l 

where W^{u) is a-dimensional Brownian motion with variance 0+, u € [0,1], 

Vo 

and 

- X*){XU - X^)'K 
t=l 

- I ~ _ 

(6.13) 
Vo 

where # + = M/+(?/) - M^+(^)dii. 

Using the results in (6.6), (6.7), (6.9), (6.10), (6.11) and (6.13) the limit of (6.5) 

becomes. 

|B+'^+(C)g, +1 
rl 

^ 0 

0 
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= X C+ / = 0 (6.14) 
Vo 

where ^ = ZaozZ"'°Zo/; + + E^o/EO™Zoz/3. 

(6.14) has r positive eigenvalues given by the Arst factor and (^+ — r) zero eigen-

values given by the second, since the stochastic matrix C"'' with 

dimensions (p+ — r) x (p+ — r) is positive definite almost surely. Note that 

i i m E [ r - % ' ( x + - x ) ( x + - x ) ' / 3 + ] = 
?—»oo 

+ \ - l 

which is a (p+ — r) x (p+ — r) matrix of rank (p""" — r) and corresponds to the long-

run covariance matrix of the process in the non-stationary direction, which is positive 

definite^. For given ^^+(1^) ^ 7V(0, ̂ 0+) sothat.E(T^+(u)l^+(u)') = Thus, 

is positive deSnite ahnost surely and C'*' has Aill 

rank (p+ — r) almost surely (see also Davidson (2000, Chapter 15), Hamilton (1994, Chap-

ter 18)). 

Therefore when performing LR tests for cointegration on the overspecified model 

(6.2) we must be able to infer the true cointegrating rank as the sample size becomes large 

though the number of common trends is overestimated. 

In particular the effect of irrelevant variables depends on whether Eqq is block diag-

onal and whether the irrelevant variables are weakly exogenous for the parameters a and /5 

that appear in the DGP. Below we state more precisely what we mean by weak exogeneity. 

Limit Theorem to hold (see Davidson (2000, p. 365); Phillips and Durlauf (1986)). 

^ The positive definiteness of ^lim E{T pj_) is an assumption for the Functional Central 
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We use the partition W' and the fact that H"*" can be written as the 

product of two X r matrices a ' and of rank r i.e. H' — with «+ and 

defined as above. Then (6.2) can be written as 

AX. 
(0 a 

a 
W [/)' 0 ] (0 -W 

H 

or 

r AXt 
+ 

4 " . 

where 4 
Ixp IxZ 

a y+ y-1 

£t . Note that with respect to the underlying parameters of the SM 

see equation (10.3) in Johansen (1996). 

If = 0 we say that the vector process x f ^ is weakly exogenous for the parameters 

a and 3 and their maximum likelihood estimators can be calculated from the conditional 

model (conditional on AX®). In fact this is the definition of weak exogeneity given in 

Johansen (1996, Theorem 8.1). 

Then the four cases that arise are: 

(i) E q q block diagonal and Eqz/j = 0 (implying = 0); the inclusion of irrelevant vari-

ables does not affect the probability limit of the r positive eigenvalues (^ = 0). 

(ii) block diagonal and Zoz/3 7̂  0 (implying ^ 0); the inclusion of irrelevant 

variables changes the magnitude of the probability limit of the r positive eigenvalues ($ ^ 

0). 

(iii) non-block diagonal and Zoz/3 = 0 (implying = 0); the inclusion of irrelevant 

variables does not change the magnitude of the probability limit of the r positive eigen-
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values = 0). However, diagonalising changes the exogeneity status of from 

weakly exogenous to non-weakly exogenous. 

(iv) non-block diagonal and Eoz/s 7̂  0 (implying ^ 0); the inclusion of irrelevant 

variables changes the magnitude of the probability limit of the r positive eigenvalues ^ 

0) and Xf^ is not weakly exogenous with respect to ,3 and a in the DGP. 

In the case that is not block diagonal one can transform (6.2) into 

+ 6++ 

where A X / + = f % = PX+1, &++ = f 6^, a++ = and 

P is such that Var{AX^) = Eqq = p - i p ' - i and Var{PAXj^) = Ip+. Thus, P might be 
" Pii 0, " 

pxp PX' 

P21 P22 
Ixp Ixl 

the Cholesky factor of E^ ^ and P . Then 

Pn 0 
o-
22 

l/3'Pn 0] 

and 

' ^ 1 0 ' a f i i a 
fz i ^22 fglO! + 

However, the transformation to achieve the block diagonality of E Jq reparametrises a. For 

case (iii), since ^ 0 the irrelevant variables are no longer weakly exogenous even 

though = 0 . 

Although we can detect the true number of cointegrating vectors (r), in general, the 

magnitude of the positive eigenvalues in the limit is altered by the presence of irrelevant 

variables. 
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6.1.2 Consistency 

Under the assumption of cointegrating rank r, in (6.2) can be written as 11+ — o:"'"/)"'", 

where a''" and are x r matrices of rank r. Let ^ and 0'*' be the maxi-

mum likelihood estimators of 3^, and Q+ respectively in the SM (6.2). In order 

to analyse the consistency properties of the estimators we consider a linear transforma-

tion of the columns o f n a m e l y = ^^(;^^^^)"\ where 

and 0^ also maximises the likelihood function. We also consider a'^ = 0'^ = 

where the second equality follows from the de&iition of and the 

1+ / fact that 6"̂  = 5'̂ ;^ (̂ ^ \ see equation (2.13) in section 2.3. 

Since and /) span and the inverse of is given by ^ = 

by forming ^ the following relation holds 

rxp+ 

2^1/2^+' 
( p + — r ) x p + 

Then, 

(6.15) 

= /3+ + ;g;6^ 

where 6"̂  = /3"}" 

^ In fact for any normalisation c we can define 0^ = P{c 0)~^ = 0{c expanding around 0 and 
normaUsing j9 and by c ^ = c ,3 = fr, we obtain ^ = (7p — /3c )(^ — + Op(|j8 — /3|̂ ) (Johansen 
(1996, p. 180)) therefore the properties of 0 follow from those of0. 
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TTzg ajjoczafec/ w/zVA /Ag ovez-jpgcy/zetf /»o(/g/ (6.2) /.y 

COM&Z^fgMf z.g. /3 — = 
P 
0 

7 % g p mwj q/r/ig gĵ fz/Mafor 6+ = cw^oc/afgcf x/jfA (6.2) arg 

cowf̂ fgMf gjfz/Maforf f/zg aĉ 'wj'/TMgMf co^czg/7ff (1:̂  m /Ag DGf (6.1). 

(zz^ TTzg f o p p X j ) AZocA: q / " 0 + = % — 6 " ^ ; ^ ^ ) " ^ ^ ^ ;S{o M a c o M f z f f g M f 

g.;fz/Mafor q/̂  = yar(E() ZM f/zg DGf. 

f m q / T ( i ) L e t y + = 
L + /3 1̂ + 

p + x r p+x{p+—r) 
be the p^ x p+ matrix whose columns correspond 

to the eigenvectors of (6.4). The eigenvectors that correspond to the r largest eigenvalues 

of (6.4) define p . (6.5) has the same eigenvalues as (6.4) but its eigenvectors are given by 

The space spanned by the 8rst r eigenvectors of (6.5) is given by = 

ap(B^ /̂) '), sinceisalineartransfbrmationof/) ,aiid ;4- . , + 

+ ' 

P 
211/2^+' 

p Ir 

Ti/2/)+'/)+6+ ]nl/2^+ (6.16) 

The ordered eigenvalues of (6.5) converge to the eigenvalues of (6.14) and therefore the 

last (p+ — r) rows of (6.16) must converge in probability to zero, since in the limit there 

are only r positive eigenvalues (given by the first factor of (6.14)) which correspond to the 

eigenvectors given by the first block of (6.16). Hence, 

2̂ 1/26+ ^ 0 (6_17) 

and by (6.15) 

r^/^( ;g^-^+)AO. (6.18) 

Thus, (6.18) shows the consistency of ^ and in addition that (;3^ — /3"̂ ) = 0 (̂7"" /̂̂ ). 
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(ii) We need to And the limits of and Using (6.15) 

f = (/)+ + ^+6+)'^+(^+ + ^+6+) 

+(T^/^6+') (T^/^6+) 

by (6.6), (6.10), (6.13) and (6.17); 

= ^+(/)+ + ^ f 6 + ) = ^+/)+ + 7-:/"^+^+(r^/^6+) 

by (6.7), (6.11) and (6.17). Thus, by (6.19), (6.20) and Slutsky's Theorem, 

' ^01/3 p ^0/3 

a ' 0̂/3 ̂ g/3 
a 

a 
m 

( 6 . 1 9 ) 

(6.20) 

where a = which is the definition of a in the DGP (6.1), see equation (10.3) in 

Johansen (1996). 

(iii) First note that the right-hand side of the equality of 0+ follows from the definition of 

and the fact that see equation (2.14) in section 

2.3. Then using (6.8), (6.19), (6.20) and Slutsky's Theorem we find that 

0+ ^00 ^00( ' -

^0/0 ôzoz _ ^0//9 _ 

^00 ôoz a 

_ Zozo 
s a a (ly 
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2oo — Eoof — 
^0/0 — ^0/0/ — 

and Zoo - = 0, see equation (10.4) in Johansen (1996). 0 

6.2 Omitted variables 

Next we investigate the case where relevant / ( I ) variables have been omitted from the 

VAR model used for cointegration analysis. The analysis is based on the fact that the 

cointegrating vectors, 0, (as well as the adjustment coefficients, a) are not identified so 0 

(and therefore a) can be replaced by a non-singular transformation e.g. we can replace p' 

by a row equivalent matrix of . To avoid complicating the notation we retain the same 

symbols for the parameters (and variables) and their non-singular transformations. 

6.2.1 The model and some results 

The DGP is given by a VAR(l) model in error correction form. 

^Xt — £t, t — 1 ,2 , . . . T (6.21) 

where ^ 2.z.d.(0,n) with 6nite fourth moments and is a p x 1, 7(1) process. In 

addition Xt is cointegrated so that li = a0 (a and 0 arc p x r matrices) with r < p — 1 

cointegrating vectors such that ^ 7(0). 

The SM used for cointegration testing is assumed to be underspecified i.e. it includes 

0 
txp' 

be a selection only a subset of the variables of the DGP. More specifically, let H = 

matrix, then the SM includes p* < p variables given by %* = so that A; = (f — P* 

relevant variables are omitted. 
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The misspeciAed SM takes the form of a multivariate regression of ' 

on The relation between AX* and does not have an error correction form as 

the model 

A%; = n'x;Li + <, ( = 1,2,... , r (6.22) 

is misspecified. In particular e* is correlated with We also define = H'0, and 

= jT'a, but H* f a(^)^(^)'and n* ^ as ^ jp. 

Although is 7(0), is not necessarily 1(0) since a linear combination of 

/ ( I ) variables is in general 7(1). The nature o f X * is determined by the variables en-

tering the cointegrating relations in the DGP. Since only the space spanned by the columns 

of p can be estimated, in general, (r — k) cointegrating vectors (stationary relations) can be 

found by applying elementary row operations on f3 . Thus, p can be transformed so that 

/5' = 

% % 
Pu Pi 

f]+ 
' (p-r)l 

r/^ii 
/̂ 12 /̂ 22 ,̂ p2 

_ /̂ Ir Ppr 

1 0 0 

%-(r--1))2 1 0 

/5 

0 

0 

(p-l)r 

0 
0 

(6.23) 

where the symbol % denotes the row equivalent matrix of 0 given by (6.23) and p — {r — 

i) = p* — {r — k) + i, i = 1,2,... , r is the number of non-zero elements on the i-th 

row. Given that only p* variables are included in the SM, we should be able to recover i 

cointegrating relations (using the underspecified SM), as long as f)* — (r — t) -I- % < p*. 

Thus, at most {i = r — k), {r — k) cointegrating relations can be estimated from the SM, 

by applying the same row operations on as on . 
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Below we distinguish two cases: 

Case (i). (r — A;) < 0 , where all the cointegrating relations in the DGP involve at least one 

of the omitted variables, therefore X* 7(1). 

Case (ii). (r — A;) > 0, where there are g < r, g > (r — A;), cointegrating relations 

in the DGP which do not involve any of the k omitted variables, accounting also for the 

event of fortuitous zeros. Therefore, some elements of X*, PuX^, say are stationary, 

where Bn is a submatrix of (3̂ ^̂  in the following partition, = 11 3 12 . Then 
p'xg p''x(r-g) 

and -̂ (0) while 7(1). Here we assume that the 
J 

actual cointegrating vectors can be found at the first q rows of . Nevertheless, if the 

above ordering is not satisfied, the cointegrating vectors can be isolated in the first q rows 

of using elementary row operations (see above). 

The eigenvalue equation that corresponds to (6.22) is 

|/-c* _ q* q*-iq* i _ n (6.24) 

where % = E(%r_i - %*)(%;_i - X*)% % = E ( A X ; - A X 1 ( A X ; 
t=l t—l 

AX' ) ' , % = 5;; = r - 1 Eixu-x-)(^x;-Ax-)', x- = r - ' z x u and A x -
t = l t=l 

t=i 

The eigenvalue equation that corresponds to the DGP is 

A "̂!! - 5'io5'oQ '̂S'oi| = 0 

with S'ij , 2, J = 0,1, defined in terms of the process (DGP) similarly as above. 

Note that we can partition the stochastic process into 

X* 
p'xl 

_ fcxl 

where 

the upper (p* x 1) block holds the variables included in the SM and the lower (A; x 1) 
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block corresponds to the omitted variables. Then, 6'^, z, j = 0,1, is given by the top leA 

submatrix of the corresponding j = 

The matrix has the same eigenvalues as the roots of (6.24), which 

coincide with the non-zero eigenvalues of 

= (D^iiD)+(D^ioD)(D^ooD)+(D^oiD) 

and here the superscript + denotes the Moore-Penrose (gener-where D = 

alised) inverse. 

Let Q = 

/p» 0 
p' xk 

0 0 

% 0 
0 _ 

K 4 -

IQI ^ 0 then, 

= = 0, 

where 6'*(() = Q(C^ — 5'*). Expanding the above equation. 

|S%()| 
/- C* c * C*—-l c * 
S^ll ~ 1̂0*̂ 00 0̂1 

0 

0 
C4 

1/̂  r lire* Q* o*—lo* I 
I VkllWii '̂ lO'̂ OO "̂ 011 

0. ( 6 . 2 5 ) 

As expected, there are k zero eigenvalues which correspond to the omitted variables. The 

second factor of (6.25) is the characteristic polynomial in (6.24) associated with the SM. If 

the LR tests are to indicate the existence of cointegration in the underspecified model, the 

second factor of (6.25) must give some eigenvalues with positive probability limits. 

DeAne = (/3, where /)_[_ is p x (p — r) such that 

= 0 and /? = 
fl<" - " 

p* xr 

^(2) 

p'x(p-r) 

/3 f 
then, 

. kxr . _ tx(p-r) _ 
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C(,3"''5;i3'" + r-"2c(,3"''5n3™ + ,3<^>'3?) 

r-"2C(3!i''5ri/3"' + r-'C(,3™'5;,,3™ + 3 f ' 3 f ) 

Tt-l/S/](!)'C* C'*-1C'* 
rp—llbW Q* Q* —1 C* 0. (6.26) 

In order to analyse the limiting behaviour of (6.26) we resort to the Granger Representation 

Theorem which gives the following representation for Xt in (6.21) 

Xt — C ^ ^ £i + Ci{L)et ( 6 . 2 7 ) 

1=1 

(see Theorem 2.1). Then for the p*-dimensional vector of variables X^ included in the SM 

we have the following representation, by using (6.27), 

x,- = c " ^ £ . + c r ( £ ) s (6.28) 
i=l 

where C* = Tif'C, C*(Z,) = j7'Ci(iL) both of dimensions p* xpand ro7iA;(C*) = min(p*, 

p* — (r — A;)). Thus, for case (i) ronA;(C*) = p* and for case (ii) raMA;(C*) = (p* — g). 

Let the non-stationaiy direction for the process X* be B* which is p* x p for case 

(i) and p* x (p — g) for case (ii) (for the detailed form of B* see under the relevant cases 

below). By application of the Functional Central Limit Theorem on (6.28) and the CMT 

(see Theorems A.l and A.3) we have 

[Tii] 

1=1 

where W{u) is a p-dimensional Brownian motion with variance Q,ue [0,1] 

B* JIT* A B* C* / M/(«)(iw 
Vo 
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and 

T 

(6 29) 
t=i 

C* / H/M/" C 
Vo 

where IV = W(u) — W(u)(f'u. 

Below we present the asymptotics for the two cases. 

Since %* is not 7(0), because of the omission of relevant variables, (6.26) is 

not appropriately scaled for convergence. Pre- and post-multiplying (6.26) by the scaling 

0 matrix T r = 
0 I p—r 

we obtain, 

+ 0^1) + Op(l) 

+ Op(l) + Op(l) 

Op(l) Op(l) 
Op(l) Op(l) 

(6.30) 

where B* , p* X p. The second matrix in (6.30) is Op(l) because its blocks 

are products of averages of products of either two 1(0) processes ( % ) or an 7(0) and an 

7(1) process (B* ^ ) , which are Op(l) (see (A.IO) in Appendix A), thus after scaling by 

they all become Op(l). 

Then we have 

|T^g^^*(()BrTr| = + Op(l) 

( g * C* / C* 
vo 

(6.31) 
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by (6.29). 

From (6.31) we find that in the limit there are p roots at zero ^ of which exist by 

construction. This suggests that performing the LR tests for cointegration using the under-

specified model will lead to the rejection of the hypothesis of cointegration (i.e. acceptance 

of r = 0) as the sample size becomes larger. 

Caje (zV) 

In what follows we will use the row equivalent form of /3 that appears in (6.23). 

Consequently in a 2 x 2 block-partition of P the lower left block of (3 or equivalently the 

upper right block of /)' is zero. Thus, 

d 11 12 
p'xg p"x(r-g) 

/̂ 21 /322 
011 
0 /?, 22 

or 

0 = 
A i 
gx^ 

/̂ 12 
(r-g) xp" 

0 
gxt 

/̂ 22 
(T—q)xk 

We then have the following partitions: ] deSned above and 

3 21 22 = [ 0 /322 ] - Note that must satisfy the condition = 0 so that 
txg tx(r—g) 

= /?nCr(f,)6, - 7(0), by (6.28). 

Then (6.26) becomes 
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C/3ii "̂ 11/̂ 12 

CC 1̂2'̂ ll/̂ 12 "I" /)22/̂ 22) 
T-^'W±'Sna,2 + s^a 

r-"=C/?uSr,3™ 

r-"-c(,.a;2ST,3i" + ,423f'' 

22,) 
(1) K2ya(2)\ 

q' Q* Q*—l n* Q a' Q* c*—1 c* 4 
Kll'̂ 10'̂ 00 '̂ 01̂ 11 l̂l'̂ lO'̂ OO "̂ 01̂ 12 
a' n* c*-l Q* a n' n* c*—1 c* Q 
.(̂ 12'̂ 10'̂ 00 "̂ 01/̂ 11 K12'̂ 10'̂ 00 '̂ 01X12 
qW q* c>* —i q* n qK^I q* Q* —1 C* f3 ^) Q* C*—1 C* /3 

_ '̂ lO'̂ OO ^OlPll /̂ _L '̂ lO'̂ OO '̂ 01/̂ 12 ;̂ ± '̂ lO'̂ OO "̂ OlP. 
:<*—1 b(l)' 

p' q* q* — l q* oW 

q' q* c*—1 C* Z)(^) 
i(l) 

lO'-'OO 

(6.32) 

Since is assumed to be 7(1) the iirst term of (6.32) needs to be rescaled. Let now 

T t 

L. 0 
0 r - g 

0 
0 

0 0 r 

then 

Op(l) 

Op(l) 

Op(l) Op(l) 

C.T-^0nSh!3,2 + OpW CT~^i3\ABf + »,(1) 

+ op(i) cr- '? i"'sr ,^i" + o,(i) 

^p(̂ ) 
Op(l) 
Op(l) 

,(1) 

Op(l) Op(l) 
Op(l) Op(l) 

Op(l) 
+ Op(l) 

(6.33) 

where now /)l2 
(1) ,p* X ( p - g ) . 

The Op(l) blocks are blocks that were 0^(1) before scaling by because they were 

products of averages of products of ei±er two 7(0) processes (/)n5'*o, % ) or an 7(0) and 

an 7(1) process (B^ ^ , B*'%,^ii), see (A.9) and (A.IO) in Appendix A. 

In order to find the limit of (6.33) we need the following: 

5, 00 - '00 7f 2oo^ (6.34) 

11-10 - ^ 

/^ii'^ii/^ii 

(6.35) 

(6.36) 
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and 5'oo Zoo, '5'io ^ao and ^ by the WLLN (see also Johansen (1996, 

Lemma 10.3)). Furthermore, we define 

for the SM and 

for the DGP. 

Thus, 

-

yor 

y * 

' AX, ' Zoo Zo/3 ' 

. . Z/;o 

Op(l) + 

/"V* V * v * — i v * 

1/"̂ * yi*—lyi* 00 ^0/3ii = 0 (6.37] 
'o 

by (6.34)-(6.36) for the 6rst factor and by (6.29) for the second. 

Thus (6.37) indicates that there are q non-zero and {p — q) zero roots in the limit, 

which suggests that q cointegrating vectors can be detected in the underspecified model 

as the sample size becomes large. The stochastic matrix B*'C* WW'duC*'B* with 

dimensions — g) x (p — g) has rank (p* — g) almost surely (see also section 6.1.1) and 

the A; = (p - p*) zero roots appear in the second factor of (6.37) by construction. 
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6.2.2 Consistency 

The analysis of consistency is carried out only for case (ii) where some cointegrating vec-

tors can be detected. 

For the analysis of consistency we use the partition of [3 that appears in subsection 

6.2.1, 

0 = p'xq p*x{7—q) 

kxq kx{i—q) 

where — 0. We define B = and B ^ = where 
'11 

gxp* 

0111 ~ Pii±if^ii±Pii±) 1̂ 11 — 0iiiPii(^ii) ^ Piif^iix = 0- B and B ^ are such 

0, 

that the following relationship holds 

( 6 . 3 8 ) 

We have shown in subsection 6.2.1 that the tests detect q cointegrating vectors, hence under 

the assumption of cointegration H* in (6.22) has rank q. Thus, 11* can be expressed as 

n* = where and are p* x g matrices of rank g. The SM then takes the 

form 

( 6 . 3 9 ) 

with yor(e*) = A*. 

Partitioning a similarly to 0 we obtain a = where H A = = »11 a:i2 
p'xg p -x (r -g ) 

ail CK12 
p'xg p ' x ( r - g ) 
a!21 Ck22 
hxq kx{r—q) 

and a n are the adjustment coefficients that correspond to the cointegrating vectors detectable in the under-
specified model. 
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Let 611 and A* be the maximum likelihood estimators of a n and A* cal-

culated from the SM (6.22) (using (6.24)). The parameters and an correspond to the 

p* X q submatrices of p, a in the DGP. 

For the analysis of consistency we use a linear transformation of the columns of ,5^, 

which also maximises the likelihood function (see subsection 6.1.2, footnote 8), given by 

1̂ 11 " (6.40) 

where the second equality follows by using (6.38) and bi = 

We also define a n = such that an/)n = aiid 

^11 — "̂ 01/̂ 11 ^ 1̂1̂ 11 

where the first equality follows fi-om the fact that a n — (see equation 

(2.13) in section 2.3) given that we can estimate ,5n by solving (6.24). 

In addition, 

where the first equality follows from the expression for the estimator of the variance-

covariance matrix of the errors in the SM (see equation (2.14) in section 2.3) and the second 

equality follows from the definition of/5n-
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The proposition below establishes the consistency of the maximum likelihood esti-

mator for the cointegrating vectors in the sense that the estimator fi-om the SM converges 

in probability to a submatrix of the parameter, in the DGP, which is associated with the 

included variables. 

(6.22) m aj)(/)), z.e. /3 11-

Proof. The equations (6.25) and (6.26) have the same eigenvalues but (6.26) has eigen-

vectors where F = 

vectors of (6.25) and 

A 
o> pxg PX(p-g) 

A i 
0 

is the matrix whose columns are the eigen-

. The eigenvalues of (6.26) converge to the 

eigenvalues of (6.37). Thus, the space spanned by the g first eigenvectors of (6.26) which 

correspond to the q largest eigenvalues converges to the space spanned by vectors with ze-

ros in the last (p — g) positions. The space spanned by the first g eigenvectors of (6.26) is 

ap(B^^&) = ) where & = and 

First we analyse block (1,1). Using the formula for the partitioned inverse we have, 

- 1 

F 
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where 

— [/̂ 22/̂ 22 + /̂ 12̂ 11_L/̂ 11±/̂ 12] 

and the last equality follows from the relationship in (6.38). 

Thus, 

Ai ' 
Ao 

-(>^n0n)-%A2f 
F 

where 

. /̂ 12̂ 11 j 

and 

= +/);2f^/);2Ai(/)nAi)-'/)n -/^i2f'/);2]Ai 
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Then we analyse which appears in block (2,1). Partitioning as in /)j 

6 0 
(2)' 

(p—r)xp'' (p—7')xt 
we obtain 

^11 
0 

,(1)' 

by the assumption /3 = 0 (or = 0) which gives 

p'f PT' 
0 /̂ 22 

.si" fl„ g f 0r2 + g f 0 22 

and therefore 

Thus, 

0. 

gxg 

(r-g)xg 

(p-r)xg 

(6.41) 

By the form of (6.37) the last two blocks of (6.41) should converge to zero (in other words 

sp{B^^^g) should converge to the space spanned by vectors with zeros in the last (p — q) 

coordinates. A necessary condition for this is 0. Thengp(Bj,^;^g) ap( 

From (6.40) we obtain A 0 and that (̂ ^̂  -

) • 

We then consider the probability limits of a n and A* obtained from the underspeci-

( t ) (see also subsec-fied model. We first partition a and P conformably with Xt 

tion 6.2.1) and we use the transformed, row equivalent form of Then, the DGP (6.21) 

becomes, 

A%; 

/\Xi 
t 

( k ) 
0=11 aig 
O21 CK22 

/)n 0 

/)l2 /̂ 22 x t \ 
+ 10 
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The part of the DGP that corresponds to the included variables is 

or 

A%* — + aigZt-i + ef ( 6 . 4 2 ) 

where g* = jf'st ^ and Z(_i = -^(0), 

is the part of the DGP that cannot be estimated due to the omission of Using the full 

sample, (6.42) can be written as 

AJT* — 1 4" CKl2 -̂l "t" -* ( 6 . 4 3 ) 

where AX*, XZi, e* are p* x T, Z_i is (r — g) x T and they are the full sample counterparts 

of A%*, 6* and respectively. 

Using the partitioned form of Xt and p. 

= yGr(/3'Xt_i) = E(/3'X(_iX-i/)) 

y* y* 

( 6 . 4 4 ) 

-'ZZ 

and the second equality follows from the fact that there are no deterministic terms in the 

DGP. 

The proposition below relates to the 'inconsistency' of a n and A* in the sense that 

their probability limits are different from the parameters, in the underspecified model, that 

thev aim to estimate. 
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J. 7%g aW A* are 'zMCow/j'reMf'yDr f/zg jpara/Mgfgr.y a n and 

(1* m (6.42) m fAe (/o »of com/grge fo r/zg ̂ wAma/rfcg^ a aw/11 

eters of the DGP) that correspond to the included variables i.e. plim dn ^ an and plim 

A* f 

Proof. Since f3ii can be estimated consistently (see Proposition 6.2) 

jOl ima„=;7 l imS; ,5u( f lu5^/?u) - '=pUm[r- 'AX-X! \ /3„(T- '^; iA:; iXri f t i ) - ' ] 

where the second equality is due to the absence of deterministic terms in the SM. Substi-

tuting for AX* as it is given in (6.43) and using Slutsky's Theorem, 

(6.45) 

and the probability limits equal the corresponding population moments since the process 

(and therefore and Zt_i) is stationary and ergodic (see subsection 6.1.1). 

(6.45) shows that a n is 'inconsistent' (or asymptotically biased) unless aiz = 0 or ;7lim 

= 0. A stronger condition to achieve consistency is = 0 i.e. 

Z_i is orthogonal to XlVJi 
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For the estimator of the variance-covariance matrix of the errors (again using the 

consistency of we have 

/plimA* = plim 

- ;;lim(T-^AX'AX*') 

= ;7limr-^AX*M*AX*' 

where M* = 7^ - Substituting for AX* using (6.43), 

;7lim A* = ;;lim + ai2Z_iM*s*' + 

and M*Z'_i can be viewed as the residuals from the regression of Z'_i on PnX^ i . By the 

WLLN we have 

;7limr-^Z_iM*6*' = E(Z_iM*6*') = 0 

since = E[E(Z_iM*g*'|A^_i)] = E[Z_iM*E(e*'|;k^_i)] = 0, where 

is the minimal cr-field generated by the random vector Xt- i . Furthermore, 

since = 0 (see also 

footnote 10). Hence, 

;7limA* = ;?lim(T-^6V)+;7lim(T-^ai2Z_iArzLia;2) (6.46) 

— O* + 0=12 
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since 6* and are stationary random variables and by the WLLN the probability limits 

in (6.46) equal their corresponding population moments. Therefore, A* is 'inconsistent' 

unless ai2 = 0. 0 

From (6.45) and (6.46) we observe that in order to gauge the magnitude of the incon-

sistency (or the asymptotic bias), {plim an — an) and {pMm A * — Vt*) we need to estimate 

0=12, which is infeasible. 

6.3 Monte Carlo simulations 

In this section we present the results of some Monte Carlo experiments in order to illustrate 

the asymptotic results presented in sections 6.1 and 6.2 and to give some idea about the 

consequences of possible misspecifications of the SM, in finite samples, in the case of 

irrelevant or omitted variables. 

We use experimental designs similar to those in Podivinsky (1998, p. 6)^\ which 

allow for up to two cointegrating vectors among up to three variables. All calculations 

were done using Ox 3.00 (see Doomik (1999)). The number of replications is 10,000 for all 

experiments. We use the 95% tabulated asymptotic critical values from Osterwald-Lenum 

(1992, Case 0), thus the tests are carried out at 5% significance level. 

For DGPl we use different cointegrating vectors, 0, and for DGP3 and DGP4 we use a different adjust-
ment coefficient matrix, a. 
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6.3.1 Inference about the cointegrating rank (r) 

The first DGP (DGPl) consists of two variables and one cointegrating vector and the 

second (DGP2) of three variables and two cointegrating vectors. These are given below in 

error correction forms, 

- 0 . 4 
0.1 

1 - 1 + Sit 
-2t 

( D G P l ) 

and 

' - 0 . 4 0.1 " 
A%2t _ 0.1 0.2 

0.1 0.3 

- 2 

-0.5 
1 

-0.5 + 

_ _ . 3̂̂  _ 
(DGP2) 

where ^ = 1 ,2 , . . . , T, i2.d.7Vj(0,7), 6̂  = [ Sif sgf ] with j = 2 for DGPl and 

62t 63( ] with j = 3 for DGP2. 

The SMs used for performing the cointegration tests consist of three variables for 

DGPl and four variables for DGP2. Thus, we augment the DGPs with an independent 

random walk which has innovations with zero mean and unit variance. 

Tables 6.1 and 6.2 show the rejection frequencies using the trace and the maximal 

eigenvalue statistics for different rank hypotheses and different sample sizes. The simula-

tion results agree with the asymptotic analysis of section 6.1, according to which the LR 

tests for cointegration should detect the true number of cointegrating vectors, r (i.e. the 

cointegrating rank in the DGP) as the sample size becomes large, when an overspecified 

SM is used for cointegration testing. 
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Table 6.1. Rejection frequencies using the trace and 

the maximal eigenvalue statistics (DGPl). 
Sample size 

Rank hypothesis 50 100 150 500 800 

Trace statistic 

r = 0 0.8024 0L99# 1 1 1 

r < 1 0.0524 0.0498 0.0499 0.04550 0.04670 

Maximal eigenvalue statistic 

r = 0 (18515 1 1 1 I 

r < 1 (10516 0.0471 0.0474 0.0449 0.0440 

Table 6.2. Rejection frequencies using the trace and 

the maximal eigenvalue statistics (DGP2). 
Sample size 

50 mo ^ 0 500 800 Rank hypothesis 50 mo ^ 0 500 800 

Trace statistic 

r = 0 1 1 I 1 1 

r < 1 0.9945 1 1 1 I 

r < 2 0.0989 0.0762 0.0618 0.0556 0^W6 

Maximal eigenvalue statistic 

r = 0 1 1 1 1 1 

r < 1 0 9956 1 I 1 1 

r <2 0.0960 0.0732 0.0612 0.0540 O^WO 

From Tables 6.1 and 6.2 we can see that we tend to accept the hypothesis of r = 1 

and r = 2 for DGPl and DGP2 respectively, since the corresponding rejection frequencies 

for these hypotheses are quite close to the nominal size of the tests. 

Next we conduct another experiment in which we control the local power of the test. 

We use the same DGP as in DGPl but we let the adjustment coefficients vary so that the 

single cointegrating vector can be detected with high, medium or low asymptotic local 

power. Thus, the setup of the DGP is such that the cointegrating vector has adjustment 

coefRcients that tend to zero as the sample size becomes large. In other words there is no 

cointegration (r = 0) under the null hypothesis and under the local alternative there is one 
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cointegrating vector (r = 1). The DGP then takes the form. 

X 
X 

l(f-l) 

g:2t 
( D G P l * ) 

where t = 1 ,2 , . . . ,T, = [ ai ag ], = [ 1 - 1 ] and 6% ] 

%.z.(f.jV2(0,7). 

Under the local alternative of one cointegrating vector the asymptotic local power 

depends only on two parameters / and g given by^^ 

= 0!i - ^2 

and 

(T — (ai + 0:2)̂  

see Johansen (1996, p. 209)^^. Therefore we can express the adjustment coefficients in 

terms of the parameters that affect the local power as 

CKi = ( / + 

and 

as = (^ - / ) / 2 r . 

We can then control local power by choosing combinations of / and g that correspond to a 

particular level of local power and use them in the DGP. We use six pairs of (/ , g), two pairs 

for each power level, high, medium and low as shown in Table 6.3. The values in Table 6.3 

Since under the null we assume r = 0. the matrices C = h, /3j_ and that appear in the definitions o f / 
and g in Johansen (1996, p. 209) have full rank and from the properties of errors in DGPl* we have Q = h 
(see also sections 5.1 and 5.2). 

In Johansen's (1996, equation 14.2) notation, the deviation from the null is T^^a iP i , corresponding to 
used here. Thus, / = SiUi in Johansen (1996), after simplification, corresponds to r/3(i)a(i). A 

similar adjustment is required for g. Hence, / and g change with T across the simulations. 
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were taken from Johansen (1996, Table 15.6) and given DGPl* we have (p — r) = 2. The 

values that appear in Table 6.3 were computed using T = 400 and 2,000 replications. 

Table 6.3. / , g and asymptotic local power 

( / , 2 ) power 

0.850 (high) 

(-18. 12) 0.830 (high) 

(-18, 0) 0.565 (medium) 

(-15, 6) 0.513 (medium) 

(-6,6) 0.272 (low) 

(-12,0) 0.269 (low) 

For the particular pairs and sample sizes used we also calculated the local power (using 

10,000 replications) as the rejection frequencies of r = 0 under DGPl* to verify the dis-

tinction among high, medium and low power levels. The results of this experiment show 

that the distinction made to the power levels applies, since the rejection frequencies for all 

sample sizes are approximately 0.8 for (-3, 12) and (-18, 12), 0.5 for (-18, 0) and (-15, 

6) and 0.25 for (-6, 6) and (-12, 0). However, the rejection frequencies do not always ap-

proach the limit expected monotonically. The detailed tables for this experiment appear in 

Appendix F, Tables F. 1 and F.2. 

Tables 6.4 and 6.5 show the rejection frequencies of the hypothesis of r = 0 against 

the alternative of r = 1 computed from the overspecified model, using the trace and the 

maximal eigenvalue statistics respectively. We observe that for both statistics the rejection 

frequencies are systematically below the prespecified level, which suggests that including 

an irrelevant variable in the SM reduces the power of the LR tests for cointegration. 
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Table 6.4. Rejection frequencies of the hypothesis 

r = 0 using the trace statistic. 
Sample size 
Power level 50 100 150 500 800 

0.850 0.6601 0.6715 0.6801 0.6787 0.6845 

0.830 0.5314 0.4973 0.5024 0.4816 0.4787 

0.565 0.2986 0.2756 0.2532 0.2512 0.2472 

0.513 0.2823 0.2582 0.2515 0.2359 0.2392 

0.272 0.1503 0.1381 0.1386 0.1267 0.1315 

0.269 0.1690 0.1623 0.1584 0.1525 0.1491 

Table 6.5. Rejection frequencies of the hypothesis 

r = 0 using the maximal eigenvalue statistic. 
Sample size 
Power level 50 100 150 500 800 

0.850 0.6457 0.6684 0.6765 0.6764 0.6811 

0.830 0.5547 0.5268 0.5197 0.5041 0.5000 

0.565 0.2986 0.2610 0.2557 0.2494 0.2424 

0.513 0.2699 0.2492 0.2400 0.2256 0.2270 

0.272 0.1381 0.1222 0.1236 0.1146 0.1216 

0.269 0.1443 0.1395 0.1399 0.1308 0.1214 

Omitted variables 

Again we use two DGPs which are chosen on the basis of the asymptotic analysis to 

reflect the cases {r — k) = 0 and {r — k) > 0, treated in section 6.2. Both DGPs consist 

of three variables, but the first one (DGP3) has one cointegrating vector involving all three 

variables whereas the second one (DGP4) has two cointegrating vectors both involving all 

three variables. Thus, 

0.1 
= 0.1 [ 1 —2 1 j (DGPS) 

—0.7 _ Est 

and 

0.433 0.233 
= 0.5 0.3 

_ ^'^3^ . 0.366 0.366 

where t = 1 ,2. . • 1T, c( = r c 14 

1 - 2 1 

1 - 0 . 5 -0 .5 

1̂) S'K 
^2(t--1) + (DGP4) 

_ ̂ 3(t--1) . _ 

If c3t iz.(f.7V3(0,7) for DGP3 and DGP4. 
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The SMs used for the calculation of the trace and maximal eigenvalue statistics in-

clude only and %2t-

Tables 6.6 and 6.7 show the rejection frequencies for various rank hypotheses using 

the trace and the maximal eigenvalue statistics, for different sample sizes. 

Table 6.6. Rejection frequencies using the trace and 

the maximal eigenvalue statistics (DGP3). 

R a r T i ^ o S i s '^0 500 800 

Trace statistic 

r = 0 0.1363 0.1474 0.1517 0.1571 0.1606 

r < 0.0166 0.0168 0.0178 0.0162 0.0164 

Maximal eigenvalue statistic 

r = 0 0.1379 0.1503 0.1563 0.1583 0.1627 

r < 1 0.0166 0.0168 0.0178 0.0162 0.0164 

Table 6.7. Rejection frequencies using the trace and 

the maximal eigenvalue statistics (DGP4). 

Sample size ] 800 
Rank hypothesis 

Trace statistic 

r = 0 1 I 1 1 1 
r < 1 0.0747 0.0686 0.0669 0.0722 0.0686 

Maximal eigenvalue statistic 

r = 0 1 1 1 1 1 

r < 1 0.0747 0.0686 0.0669 0.0722 0.0686 

From Table 6.6 we can see that the tests might not detect any cointegrating vectors 

(low rejection 6equencies of r = 0, especially 6)r small sample sizes) which is what we 

expected since (r - /c) = 0 (see section 6.2). From Table 6.7 we conclude that with DGP4 

the LR tests are very likely to detect one cointegrating vector and this is in accordance with 

the theoretical finding which suggests that if (r - A;) > 0 the tests detect at least (r - /c) 

(2-1=1, in this case) cointegrating vectors. 

14 Since there are only two variables in the S M the trace and the maximal eigenvalue statistics for r < 1 

coincide, similarly for the corresponding hypothesis in Table 6.7. 
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6.3.2 Consistency 

We use DGPl and DGP2 to check the consistency of the cointegrating vectors sug-

gested in Proposition 6.1(i). In DGPI, there is one cointegrating vector and one irrelevant 

variable, and in DGP2 there are two cointegrating vectors and one irrelevant variable. We 

use T = 5,000 and compute the 1%, 5%, 10%, 25%, 50%, 75%, 90% and 99% quantiles 

of the elements of the estimated cointegrating vector(s) (i.e. the elements of the eigenvec-

tors that correspond to the largest eigenvalue(s)) for each DGP in 10,000 replications. In 

particular we use the normalised form of the estimated cointegrating vectors {0^ instead of 

/3 ) that is given in (6.15). The reason for using this normalisation is (as shown in subsec-

tion 6.1.2) that we can achieve convergence to the true (known) cointegrating vectors and 

not just the space spanned by them. The simulation results appear in Tables 6.8 and 6.9. 

Table 6.8. Quantiles of the elements of 

the estimated cointegrating vector (DGPl). 

Ouantiles & % 
1% 0.9975 -1.0024 -0.0039 

5% 0.9985 -1.0015 -0.0025 

10% 0.9989 -1.0011 -0.0017 

25% 0.9995 -1.0005 -0.0008 

50% 1.0000 -1.0000 -0.0000 

75% 1.0005 -0.9995 0.0007 

90% 1 . 0 0 1 1 -0.9989 CL0017 

95% 1.0015 -0.9985 0.0024 

99% 1.0024 -0.9975 0.0041 

^21 /̂ 31(ir) ^Note. -

p that corresponds to the irrelevant variable. 

is the normalised estimated cointegrating vector. is the element of 
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Table 6.9. Quantiles of the elements of 

the estimated cointegrating vectors (DGP2). 

r ' 
Ouantiles % /)l2 <̂ 42(11,) 

1% 0.9996 -2.0004 0.9996 -0.0040 0.9995 -0.5004 -0.5004 -0.0045 

5% 0.9997 -2.0002 0.9997 -0.0023 0.9997 -0.5002 -0.5002 -0.0027 

10% 0.9998 -2.0002 0.9998 -0.0017 0.9998 -0.5002 -0.5002 -0.0020 

25% 0.9999 -2.0001 0.9999 0.0007 0.9999 -0.5000 -0.5000 -0.0009 

50% 1.0000 -2.0000 1.0000 0.0000 1.0000 -0.5000 -0.5000 0.0000 

75% 1.0001 -1.9999 1.0001 0.0007 1.0001 -0.4999 -0.4999 0.0008 

90% 1.0002 -1.9998 1.0002 0.0017 1.0002 -0.4998 -0.4998 0.0019 

95% 1.0003 -1.9997 1.0003 0.0023 1.0003 -0.4997 -0.4997 0.0026 

99% 1.0004 1.9996 1.0004 0.0038 1.0005 -0.4995 0.4995 0.0044 

t 31 
• Note. The rows of IJ 

,̂ 22 ^ 

"11 
% 

/̂ 42(ii,) 

, + 

are the estimated cointegrating vectors, and 

i^42{iv) the elements of (3 that correspond to the irrelevant variable. 

From Tables 6.8 and 6.9, we observe that the normalised estimated cointegrating 

vectors converge to the true cointegrating vectors and the elements of (5 that correspond 

to the irrelevant variable are zero to four decimal places for the 50% quantile. 

According to the asymptotic analysis in section 6.2 and the simulation results in 

Table 6.6, using DGP3 along with a two-variable SM, the eigenvalue equation should yield 

eigenvectors sufficiently close to zero. Table 6.10 shows the quantiles of the elements of 

the estimated eigenvectors in 10.000 replications using T = 5,000. 
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^N#e. U 

7(1). 

6^ 

Table 6.10. Quantiles of the elements of 

the estimated eigenvectors (DGP3). 
yt 

Oiiantiles ^11 1)21 ^12 

1% -0.0563 -0.1026 -0.0457 -0.0428 

5% -0.0398 -0.0820 -0.0341 -0.0310 

10% -0.0310 -0.0696 -0.0283 -0.0252 

25% -0.0133 -0.0442 -0.0198 -0.0159 

50% 0.0099 0.0079 -0.0097 -0.0028 

75% 0.0327 0.0454 0.0109 0.0113 

90% 0.0496 0.0685 0.0215 0.0219 

95% 0.0587 0.0814 0.0269 0.0282 

99% 0.0739 0.1051 0.0367 0.0400 

is the matrix whose columns hold the estimated eigenvectors and V 

Next we use a modified form of DGP4, particularly, we use a matrix whose rows are 

linear transformations of the rows of P found by adding to the first row twice the second 

row I.e. 

1 - 2 1 

1 -0 .5 -0 .5 
3 - 3 0 
1 -0 .5 -0 .5 

where % denotes a row equivalent matrix. Based on the asymptotic analysis of section 

6.2, if we omit variable Xat we should expect one cointegrating vector whose estimator 

converges to the space spanned by in the notation of section 6.2, and in this case = 

3 —3 1. Table 6.11 shows the quantiles of the elements of the estimated cointegrating 

vector, 11 
3 

0 

(1) 

11 
(2) 

11 

(associated with the largest eigenvalue) and the elements of the 

eigenvector corresponding to the smallest eigenvalue. In fact we use the normalised form 

of the estimated cointegrating vectors, Pn given in (6.40), in order to achieve convergence 
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to the true (known) submatrix of the true /), instead of a linear combination of it. Again 

the estimation is carried out using T = 5,000 and 10,000 replications. 

Table 6.11, Quantiles of the elements of 

the estimated eigenvectors (DGP4). 

Ouantiles 'Dl2 ^22 

1% 2.9999 -3.0001 -0.0303 -0.0315 

5% 3.0000 -3.0000 -0.0186 -0.0219 

10% 3.0000 -3.0000 -0.0127 -0.0157 

25% 3.0001 -2.9999 -0.0058 -0.0057 

50% 3.0001 -2.9999 0.0001 -0.0000 

75% 3.0003 -2.9997 0.0061 0.0053 

90% 3.0005 -2.9995 0.0133 0.0151 

95% 3.0007 -2.9993 0.0194 0.0209 

99% 3.0011 -2.9989 0.0296 0.0321 

^Note. The first column of V 
/3ll %12 

holds the eigenvector which corresponds to the largest eigenvalue, 

i.e. the normalised estimated cointegrating vector,/?2i whereas {vi2^it + ^ 2 2 ^ 2 t ) ~ 7 ( 1 ) . 

In Table 6.10 the elements of the estimated eigenvectors are sufficiently close to zero 

which is in accordance with the absence of any cointegrating vectors. In Table 6.11 we can 

see that the elements of the estimated cointegrating vector, after normalisation converge 

to the appropriate elements of the submatrix of in the DGP namely = [ 3 —3 ]. 

The elements of the other estimated eigenvector, which is associated with the smallest 

eigenvalue seem to be sufficiently small. 

Next we use DGP4 and a SM with only Xu and to compute the quantiles of the 

elements of the estimated adjustment coefficient matrix. The estimator of a n used in the 

simulations is given by a n = (sGS subsection 6.2.2) which is a transformation 

of 6ii such that For T = 5,000 and 10,000 replications the estimated ad-
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justment coefficients seem to converge to the sum of the true adjustment coefficient matrix 

(i.e. the part of a, a n say, in the DGP that corresponds to the single cointegrating vector 

that can be detected using the misspecified SM) and the asymptotic bias, which is com-

puted using T = 5,000 and 10,000 replications (this sum is given by the right-hand side of 

(6.45)). For this case we have a n = 4 ; ' • ' 0.433 ' 

. J 
0.5 

, and a n 
(1) 
11 
(2) 
11 

is the 

transformed estimator of ctn. The results appear in Tables 6.12 and 6.13. 

Table 6.12. Quantiles of the estimated 

adjustment coefficients. 

Ouanriles 4 ? 
1% 0.4879 0.5730 

5% (X4901 0.5752 

10% (X4914 0.5763 

25% (X4935 0.5783 

50% 0.4957 0.5804 

75% 0.4980 0.5826 

90% 0.5002 0.5847 

95% (L5014 0 5859 

99% CL5036 0.5880 

Tables 6.12 and 6.13 provide an illustration of Proposition 6.3 namely that the estima-

tor of the adjustment coefficients in an underspecified SM is inconsistent or asymptotically 

biased. From Table 6.12 we can see that the normalised estimated adjustment coefficients 

are biased upwards. 
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Table 6.13. Quantiles of CKn plus 

estimated asymptotic bias. 

a i 1 + est. as. bias 

Ouantiles "11' + est. as. bias 
(2) 

+est. as. bias 

1% 0.49102 (15741 

3% 0.49251 OJ%W 

10% 0.4932 0.5770 

25% O^&W (X5785 

50% 0.4958 0.5803 

75% 0.4971 (X5820 

90% 0.4984 (X5837 

95% 0.4992 0 J M 7 

99% 0.5005 0.5864 

6.4 Concluding remarks 

This chapter has considered the effects of overspecifying (inclusion of irrelevant variables) 

or underspecifying (omission of relevant variables) the SM on the LR tests for cointegration 

proposed by Johansen (1988, 1996). We showed that including irrelevant variables in the 

SM will aifect neither the inference about the cointegrating rank nor the consistency of 

the estimated cointegrating vectors and adjustment coefficients as the sample size becomes 

large. However, simulations showed that overspecifying the SM reduces the power of 

cointegration tests for both small/medium (T = 50,100) and large sample sizes (T = 500, 

800). We also showed that omitting relevant variables from the SM will lead to either no 

detection of cointegrating relationships, if the true cointegrating rank is smaller than or 

equal to the number of omitted variables (r < k) or the detection of q < r cointegrating 

relationships, if the true cointegrating rank is greater than the number of omitted variables 

(r > k). In addition, the use of an underspecified SM does not affect the consistency of the 

estimated cointegrating vectors since they still converge to a subspace of sp{,3) but it does 
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affect the consistency of the estimators of the adjustment coefficient matrix and variance of 

the errors. 

Although the analytical results are asymptotic, small sample simulations show that 

the theoretical findings also arise in sample sizes used in empirical work. 

The omitted variables can also be 7(0). Since the inclusion of a stationary variable 

increases the dimensions of the cointegrating space by one, the omission of only 7(0) vari-

ables will lead to the underestimation of the cointegrating rank by the number of omitted 

7(0) variables. 

Overall we conclude that the omission of relevant variables from the SM has more 

serious consequences (especially when followed by tests for linear restrictions on a and 3 

conditional on the wrong cointegrating rank) on cointegration analysis than the inclusion 

of irrelevant variables, which is in accordance with the simulation results of Podivinsky 

(1998) as well as with the known "verdict' in the standard regression analysis. 



([Zli2&])lbejr IF 

Conclusions 

This chapter provides an overview of the aims and findings of the thesis along with 

some limitations and possible extensions of the results herein. 

7.1 Aim 

The thesis aimed to study the effects of two types of misspecifications on the LR tests 

of cointegration proposed by Johansen (1988, 1996), implemented using the trace or the 

maximal eigenvalue statistic. In other words we assume that the SM used for cointegration 

testing differs from the DGP (since the DGP is unknown to the modeller) and we examine 

the sensitivity of the tests to misspecifications of the SM. 

The misspecifications under consideration are: (i) intercept shifts present in the DGP 

but ignored in modelling (absence from the SM of step dummy variables accounting for 

the intercept shifts), (ii) presence of irrelevant variables in the SM or omission of relevant 

variables (present in the DGP) from the SM. 

In investigating the effects of the above misspecifications we use (i) asymptotic anal-

ysis i.e. we examine the asymptotic behaviour of the eigenvalue equation and therefore the 

behaviour of the eigenvalues used in the trace and maximal eigenvalue statistics and (ii) 

Monte Carlo simulations to check the asymptotic findings and evaluate the impact of the 

misspeciAcations in fimte samples. 

144 
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Since we analyse the e@ects of misspeciAcations, it is desirable to have some degree 

of control over the power of the tests, in carrying out the Monte Carlo experiments. Thus, 

where appropriate, the experiments were designed in a way that we can control the level of 

asymptotic local power. 

For the first type of misspecification (intercept shifts) both methods of analysis were 

employed to examine the effects of shifts at different or common dates along with alterna-

tive specifications of the deterministic term. 

For the second type of misspecification (irrelevant or omitted variables) both methods 

of analysis were used to study the consistency of the estimators of the parameters in the 

ECbi 

7.2 Findings 

In Chapter 4 we show that under the first type of misspecification the tests reject the true 

null hypothesis of cointegrating rank r (0 < r < p) with probability one as the sample 

size tends to infinity. Thus, we tend to accept spurious cointegrating relations/vectors not 

present in the DGP. An upper bound is found for the number {b) of spurious cointegrating 

vectors that arise asymptotically and it is given by the number of variables with intercept 

shifts (pi). In the case of shifts at a common date the upper bound is given by the number 

distinct/different shifts in the DGP. The attainment of the upper bound depends on the 

weak exogeneity status of the variables. It is found that (i) when none of the variables with 

intercept shifts are weakly exogenous or (ii) when all the variables &ee of shifts are weakly 

exogenous no spurious cointegration occurs (6 = 0). 
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In Chapter 5, using Monte Carlo simulations we And that for a given level of asymp-

totic local power, the frequency of rejecting the true null hypothesis r = 1 increases as 

the sample size becomes larger. This finding is in accordance with the asymptotic analysis 

of Chapter 4. Furthermore, the frequency with which the true null hypothesis is rejected 

rises as the magnitude of the shift increases. These patterns arise under the assumption of 

both distinct shifts and shifts at a common date as well as under all constant term specifi-

cations (no constant, restricted and unrestricted constant) considered. For sample sizes and 

constant term specifications commonly used in applied works, together with a magnitude 

of shift (e.g. 6 = 0.5) that is difficult to detect, the rejection frequencies of the true null 

hypothesis are fkr-ofF (sometimes they exceed 30%) the asymptotic size of the tests (5%). 

O'Brien (1999) argues that shifts of this size may be difficult to detect visually, and when 

their location is not known, difiicult to detect by testing. 

In Chapter 6 we show that inclusion of irrelevant variables does not affect the infer-

ence about the cointegrating rank but it does affect the magnitude of the probability limit 

of the positive eigenvalues. In addition, the consistency of the estimators of the parame-

ters in the ECM is not affected. However, simulations show reduction in the power of the 

tests when irrelevant variables are included in the SM. Moreover, we find that omitting rel-

evant variables from the SM affects the inference about the cointegrating rank. The tests 

either fail to detect cointegration when r < /c, or they detect g < r cointegrating vectors 

when r > k. In the case that q < r cointegrating vectors can be detected their estimators 

are 'consistent' in the sense that they converge to a subspace of sp{3). Nevertheless, the 

estimators of the adjustment coefficients and variance of the errors of the SM are inconsis-
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tent. The results of the Monte Carlo simulations conform with the asymptotic results and 

the effects of this misspecification are apparent for sample sizes used in empirical works 

(T - 50,100). 

7.3 Limitations and extensions 

No asymptotic distributions were derived under the types of misspecifications considered. 

In the case of intercept shifts the asymptotic distribution was derived for the null case 

(r = 0) and was tabulated (for pi = 1) by O'Brien (1999). For r > 0, that is the case 

analysed in Chapter 4, the limit of the eigenvalue equation is not the determinant of a block 

diagonal matrix, which indicates the need for adopting a difterent scaling than that used in 

Johansen (1996). However, it was shown (see section 4.4) that the asymptotic distribution 

for r = 0 can be derived as a sub-case using the asymptotic results derived for 0 < r < p. 

An extension of Chapter 4 would be the derivation of the asymptotic distribution by re-

defining the directions in appropriately. 

Even though the Monte Carlo investigation in Chapter 5 is quite extensive, a response 

surface analysis would provide useful insights into the dependency of the rejection fi-equen-

cies on the sample size, design and deterministic term specification. 

For the irrelevant variables case presented in Chapter 6 it would be useful to derive 

the variances of the estimators and compare them with those from the correctly specified 

model in order to make more specific efficiency statements. For the omitted variables case 

we could gain more understanding if the asymptotic distribution under misspecification was 

derived. Moreover, for both cases analysed in Chapter 6 an investigation of the behaviour 



7.4 Contribution 148 

of the estimators in small samples would be informative. Finally an extension of Chapter 6 

would be to analyse the case that the SM includes irrelevant variables and at the same time 

does not take into account relevant variables. 

7.4 Contribution 

Although the LR tests for cointegration proposed by Johansen (1988, 1996) are routinely 

used in applied works, the literature concerning the effects of misspecifications on these 

tests is limited to some Monte Carlo studies with the exception of O'Brien (1996, 1997, 

1999). The contribution of this thesis is to provide analytical (asymptotic results) and nu-

merical (Monte Carlo results) evidence about the robustness of these tests under misspeci-

fications. 

The asymptotic analysis (Chapters 4 and 6) provides knowledge as to which param-

eters of the model play key roles under misspecification and this knowledge is utilised to 

design informative Monte Carlo experiments. The asymptotic analysis proved to be use-

ful since the parameter space, especially in the case of ECMs is impossible to be fully 

explored. 

In addition, the thesis can act as a caveat for the applied worker since the cointegration 

analysis is shown to be distorted under the misspecifications mentioned above. For the first 

type of misspecification to be avoided, the modellers should perform tests for shifts on the 

univariate processes included in the SM (see e.g. Perron (1989), Perron and Vogelsang 

(1992), Zivot and Andrews (1992)) and/or cointegration tests that allow for shifts in the 
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mean of the vector processes (see e.g. Johansen et ai. (2000), Inoue (1999), Saikkonen and 

Liitkepohl (1998)). 

For the second type of misspecification considered, the impact of omitted variables 

on cointegration analysis seems more serious than that of irrelevant variables, since in the 

case of the former only part of the model can be recovered and the modeller might use the 

'inadequate' model to test structural hypotheses on 0 and a and reach misleading conclu-

sions. Since the inclusion of irrelevant variables does not appear to distort cointegration 

analysis (except for a reduction in the power of the tests), this finding can be used as an 

advocate of general-to-specific approach to modelling (see Hendry (1995)). 

Overall we can conclude that the LR tests for cointegration are sensitive to the mis-

specifications considered. The use of a misspecified model affects the analysis in various 

ways such as the inference about the cointegrating rank, the consistency of the estimators 

or the power of the tests. Thus, application of pre-tests on the univariate processes, diag-

nostic tests or modified tests for cointegration are necessary to avoid misspecifications or 

limit their effects. 



Appendix A: Preliminary results 

In the proofs we repeatedly use some asymptotic properties of linear processes which 

are stated in the following theorems. In addition we provide some results about the order of 

magnitude of linear functions of step dummy variables needed in the proofs of Lemma 4.1 

and 4.2. Note that any terms in parentheses written as subscripts or superscripts indicate 

indices. 

Theorem A. 1. Let {st} be a sequence ofp-dimensional random vectors with mean 

zero aW vwzaMce /MaZrix: fAg .growMzaM M/zYA varf-

t 
aMCg R OM C[0,1]. ^ 

1=1 

fwcA f/zar / ( ) OM [0,1]. 77zg», 

T - ' " Y 1 » = - Win) (A.l) 
1=1 

T 1 
W(u)W{u)'du ( A . 2 ) 

Vo (=1 

T 

f w { d w ) ' {A.3) 
t . i Jo 

^ f i ' i W ) / (A.4) 
(=1 

T .1 

^ / W(u)f(uUu. (A.d) 
1.1 Jo 

Functional central limit theorems can be derived by imposing weaker conditions on the process {g^} and 
also by considering convergence in the space of cadlag functions, see e.g. Billingsley (1968, Chapters 3 and 
4), Phillips and Durlauf (1986), Phillips (1987), Phillips and Solo (1992). 

150 



Appendix A: Preliminary results 151 

TTzeorg/M ̂ 4.2 lef c( aW oiy z» 77zeoyg/M ̂ 4.7 aW m /gr 6; Am;g 

3C OO 
yzMffg^wrf/z /MOTMgMf̂ . Zgf ^ e,6t_i aW ?;t = ^ ivz/A co^c/gMf^ 

2 = 0 1=0 
fAaf 6/gcrgajg g^oMg/iW^x ŵcA f W e(i/) = ^ /z(^) = ^ arg coMvgrggMr 

i=0 1=0 

yor |?/| < 1 + w, w > 0. 7%g», 

T max |tf(| ^ 0 
i<t<r 

rj^—l/2 ^ ^ Ut [ <1) 1 

. . 
/ , ( ! ) 

W{ij.) 

r-'"5^K,/TW'-e(i) f\dw)/ 
(=1 -/o 

T 

T ^ ^ E{UFVF_^_G) — ^ ] EIQH^_^G — F^, s — 0,1,2, 
t=i i=0 

T t - 1 

£=1 i=l 

r - ' E ( E « ' K ^ < = ( i ) / widw)'hii)' + Y , r . . 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A.IO) 
5 = 1 

Another useful result that will be used in the proofs is given by the following theorem. 

TTzgorg/M ŷ . j. CoMffMMOWJ 77zgorg/M (1CMT). Zgf ^ ( ) 6g a co»^mwoz/f 

OM C[0,1] fwcA r W ^ ( ) : C[0,1] i—> RP or p(-) : C[0,1] ;—^ C[0,1]. 

X e C[0,1], rAg« ^ 

Theorems A.l, A.2 and A.3 are given in Johansen (1996, Theorems B.12, B.13 and 

B.5) and in Hamilton (1994, Proposition 18.1). 

In the proofs of Lemma 4.1 and Lemma 4.2 we encounter products of lag polynomi-

als, step (or shift) dummy variables (z/s) and error terms. In Lemma A.2 we establish some 
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results concerning the order of magnitude of these terms. First we explain the notation to 

be adopted. 

The p X p matrix lag polynomial is partitioned conformably with = 

, (with zt. Pi X 1 subvector of step dummies and 9?, p2 x 1 subvector of constants, 
Zt 

Pi+P2=f») in toCi (Z , )= [ ], where (7i(Z,)ispx^i andCi(Z,) ispxp2. 

Moreover, Cj(I/) = : : 

. Gpl (Z/) • • • Cppj {V) _ 

Note that the submatrices Cl{L) and Cf(-L) as well as the elements eij{L), i — 

1,2 , . . . ,p, J = 1 ,2 , . . . ,pi inherit the properties of Ci(Z,) (see Hamilton (1994, pp. 258, 

545)) stated in Theorem 2.1. 

Below we give Lemma A. 1 which is used for the proofs of some of the results given 

in Lemma A.2. 

P bi 
Zgf 5" = ^ aW5"̂  = ^ <% = 0, = 00, = 6n-i+l, 

i=0 k=ai 

n = 1 ,2 , . . . Oi —> 00, ^ 00 aj' T —00/ f/zgM "S" — ^ ^o-
A:=0 

froq/" 

S = Sq Si Sp = 

bo 61 00 

A;=0 A;=ai 

t + [ t a™ A, - x : 4'.'AJ + I E i l A a - ^ + 
k=Q k~0 k=0 k—Q k—O 

k=0 k=0 
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^ 1̂-1 
y i - ^i) + ^ - Ag) 4 1- ^ e^^(Ap_i - Ap) + ^ Ap 
k—Q k— 
30 

^ e^Ao, oa r oc. 

k=0 k=0 k=0 / c = 0 

30 

t=0 

Lemma A.l requires A, to be 0(1). Later we use the symbol At for expressions that 

are not 0(1) but separate demonstrations are given therein. 

For the proofs of A(v), A(vi), B(i), C(i), C(ii), E(ii), E(iii) and F in Lemma 

A.2 we use an algebraic decomposition of Ci(L),which is referred to as the Beveridge-

Nelson decomposition (see Beveridge and Nelson (1981)) in econometric literature. Note 

that this decomposition is initially applied on C{L) that appears in Theorem 2.1 (Granger 

Representation Theorem) and has the form C(Z,) = (7(1) + (1 — .L)Ci(Z,). Then Ci(Z,) = 

OO 
^ which is also convergent (see Theorem 2.1) can be expressed as 
i=0 

Q(i:) = c i ( i ) + ( i - i : ) c r ( i : ) 

OO OC OO OO OO 

where (7^(2}) = E C'r, = ' E = E E Q = E O - and 
k=0 i=k-\~l i=k-\'l j~i-rl j~2 

OO OO 0 0 

C*(l) — E Q t = 12 — 2 ThG validity of the above decom-
fc=0 j=l j=2 

position hinges on the fact that C*(i}) is convergent, which follows from Lemma 4.1 in 

Johansen (1996). 
OO . 

Moreover, a typical element of Ci(2/) would be eij(i/) = E , which is con-
t=o 

vergent for |i/| < 1 + w, w > 0, by definition (see Theorem 2.1). It then follows that 
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< o*, where o = (1 + w) ^ and 0 < a < 1. We then have 

f] fc.™ < f; k\^>\ <'£ka'' = 41 - a)-'' < oc. 
k=0 k=0 k=0 

The expressions of Lemma A.2 involve only the submatrix, of therefore 

the decomposition of the lag polynomial is (Z,) = C ^ l ) + *(%,)(! - 1), which also 

applies to each element of * (jL) is p x and consists of the first pi columns of 

(that appears in the Beveridge-Nelson decomposition of Ci(Z,), shown above). 

Finally, note that for an arbitrary breakpoint to = [TA], A G (0,1), [TA] = TX 

for TX integer, which implies A = to/T, and [TA] = (T - 1)A, otherwise, which implies 

X = to/{T—l). In deriving the asymptotic results we write X = to/T to avoid complicating 

the demonstration since to = = 0 (T ) for TA integer and to = T'A - A = 0 (T) + 

0(1) = 0(T) , otherwise. 

Igf ft = Ci(Z^)gt. 27 Ci(Z,), fAe 

assumptions of section 4.1 about Zt, Zt and the assumptions of Theorems A. 1 and A.2 about 

St, 

( u ) j : C l { L ) ( l - L ) z , 
t=i 

t=i 

(iv) E ( c ; ( i ) ( l - L)z,][z\(l - L)Cl{L)'] 
t=l 

(v)^Cl(L)z, 

N - Z)CX^)'] 0(1), 
i = l 

B. fi) hc}{L)z,-iU_,C}(Ly] 
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't-i (ii) 
t=i 

mo E iJ.-iizid - L)c}(L)'] 
t=i 

r/y) - i ) N ( i - o m , 
t=i 

c (i) E z,_i[z;_ic;(L)'] 
t—l 

{ii) E ( ( - are 0{T'). 

a ti) f:E,14(1 - L)CHi)'] 
t=l 

E [ ( i -

mo £ [ { 1 - L)v,][z[(l - L)Cl(L)'] 

( i v ) ^ v , - , [ z l , ( l ~ L ) C l ( L ) ' ] 
t = l 

t=i 

t=i 

t=i 

(h-> E - i)C;(£)'] are 
t=l 

4=1 

fmo/" A. (i) We analyse CXZ,)zf. 

eii(-L) eipX-^) 

_ ̂ pi (-̂ ) • • • ^ppi (^) 

Gli 

- -

Pi 

E 
1=1 
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The (z, j)-th element of ^ is convergent for |?/| < 1 + w, a; > 0 
A:=0 

and the coefficients e-^^'s are exponentially decreasing. From \y\ < I + w, it follows that 

,(6)| < (1 + w) ^ and ^ + ^) 
t=0 

I _ , _y — ^ I _ — 1 + which shows that 

are absolutely summable. From the definition of the typical j-th step dummy, Zj(t-k), we 

have —6; < which implies < |6;| which implies < 

Taking the inSnite sum both sides, | ^ ^ < "i; 
oo 

k=0 k=0 

6j\ < oo as e-"'''s are absolutely summable. So, there exists 0 < m < oo such that 
k=0 

< m, Aerefbre is bounded, hence 0(1). It then follows that 

is 0(1). 

T 
A . ( i i ) E ( : X ^ ) ( i - ^ ) z , 

t=i 

PI 

E 
2=1 

Z] 6l:(Z')(l — Z')Zif 
t=l 

^ 6p:(I,)(l — Z,)Zit 
t = l 

— 1), ^ — 1 
As (Z,f — ^«(f-l)) = ^ ( = 0̂: + 1 , 

0, Otherwise 
analysing the typical, j-th, element of this vector we have 

T oo 

ej;(Z')(zit — Z;(t_i)) — ^ ^ — Zi(f_i_t)) 
t=i t = l k=0 

A;—0 t^k-k-l 

Z4r 
fc=0 

^ -̂ 1(0)) + (-̂ <2) — 'Zi(l)) -I + (̂ i(r-A:) — 
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where. 

So, 

E 
A;=0 

At. = — 1), ^ ^ A; > %"(! — Â ) 
SiXi, otherwise 

A:=0 /c=0 t=T(l-Ai 

^ < oo 
A:=0 

by Lemma A.l. Thus, ^ Ci(Z,)(l - Z,)zf is 0(1). 
t=i 

A . ( i i i )Ez , [z ; ( l - i : )C: (Z,y] = 
t=l 

VI 

E 
1=1 

T T 

t=l t=l 

r r 

i = l £=1 

Analysing the typical (/, m)-th element of the above matrix we have, 

r r oo 

t=l t=l A;=0 
oo T 

/:=0 t=A;+l 

— — Zi(o)) + ^Z(t+2)('Zi(2) — 4 + — -2:1(7-̂ -1))] 
k=0 

53e!;,'Al;'',J = 1,2.3.4.5, 
k=0 
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with 

A ? 

— 1), % < A; + 1, ^ J = 1 
A«, 0̂/ < A; + 1, (oi < T — A;, J = 2 

— l)(Ai — 1), ^ ^ + 1, ^ ^ ^ = 3 
— l)Ai, % > A; + 1, % < T — A;, % ^ (oi + ^ = 4 

SiSi(XiXi — A, + 1 ) , toi > k + 1, toi < T — k, toi < toi + k, j = 5 

Rewriting the restrictions with respect to k. 

A (j) 

SiSiXi{Xi — 1), k > toi, k >T — toi, i = 1 

6f6iA(A ,̂ A; > toz, A; < - ôi, j = 2 
6/6i(A/ — l)(Ai — 1), A; < (of, A; > T — j = 3 

<$/̂ i(A; - l)Ai, A; < ^ < T" - A: < tg; - t*, ; = 4 
<̂ z<̂ i(A/Ai — Ai + 1), A; < ôf, A; < T — A; > tof " (̂x, j = 5 

The ranges for A; depend on whether (oz ^ ^ and ^ Thus, we distinguish 

four cases as follows, for j = 1,2,3,4,5 

(&) ̂ OZ ^ — Ôi, 0̂( > (oi 

C 

E i l A 
(*:) A 0) — 

•k — 
fc=0 

tof—̂ Oi T " — O C 
E + E + E + E - ^ 2 4 " 
k=0 fc=toi—toi+1 k=T—tQi k=toi 

E 6A (A, - i)A. E i 1 < 00. 
t=0 A;=0 

(b) ^ — (̂X, < Ôi 

E i ' i A , 
(k) A U) 

k 

t=0 

'oi —1 
" E " 4 ' . ' A f + ^ e L l A f + E » - A < " 

fc=0 k=T—toi k=tQi 

y i — Ai + 1) ^ < oo. 
k=0 t=0 

The case where toi = % is not considered since w e assume distinct shifts. 
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(C) < T — 

30 
(̂ ) A (;) 

k 
k=^0 

t o z — ^ o f —1 T—tô  —1 oo 

E + E + E i ' - 'A" 
A:=0 fc=to;—toi+l k=tQi k=T—toi 

^ - l)Ai ^ e 2 < oo-
k=0 k=0 

(d) ô; < T — Ôi, ôz < Ôi 

OO 

V-gWAU) 

k=0 

toi —1 T—toi — l oc 

k=0 k=toi k=T—toi 

EilA® = «,«.(A,A.-A. + l )E e™ < oo-
k=0 fe=0 

In order to find the limits in cases (a)-(d), we apply Lemma A. 1. Since the deterministic 

T 

process in all cases converges to a bounded sum, ^ — Z,)Ci is 0(1). 
t=i 

A. (iv) E P K i X l - i)z,][z;(l - L ) C } ( L ) ' ] = 

p p ji — Z,)eij(Z,) - - - eii(Z,)(l — — Zf)epj(Zr) 

E Z E : : 
. 6p:(Z')(l — — Z,)eij(Z,)] - - - epi(Z,)(l — — Z,)epj(Z/) _ 

The {I, m)-th element of the above matrix has the form 

i = l 

r oo 

t=l fc=0 s = 0 
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3G OO 

EE-'"-" 
fc=0 3 = 0 t=n-rl 

s) i fn — max(A;, g). 

For A(iv) the finite sum and consequently the infinite sum are not non-zero for the whole 

range of k and s. So we have the following non-trivial cases, 

OC . . OO , ^ 

(a) — l)(Aj — 1) ^ ^ , for A; = a, ^ 
t=0 3=0 

OO . . OO , . 

(b) A(2) = - 1) E 4 E 6%, for a = A; + %, 
A;=0 3=0 
30 \ OO , . 

(c) A(3) = - 1) E 4 E for A; = a -p ô; , 
A;=0 3=0 

OO OO . . 
(d) A(̂ ) = E 4 E G%', for 8 = A; + (oi - and ôi > toj, 

k—0 5 = 0 
OO GO . . 

(e) A(̂ ) = E 4 E % , for A; = a + (oj - ôi and to; > Ôi-
fc=0 3=0 

Given the above cases we have, 

OO OO r 

k=0 3=0 t=n4-l 

A'*' < OO, / ! = 1,2,3,4,5. 

Thus, E P i H i X l - L)z,]\z,(l - DCliL)'] is 0 ( 1 ) . 
t=l 

A. (v) ^ = 
t=l 

Y } C l ( l ) + Cl'{L)(l^L)]z,== 
t=l 

T T 

t=l t~l 

The first term sums to zero by definition (see (4.5)) and the second term is 0(1) because it 

T 

has ± e same form as A(ii). So, ^ (Z,)zt is 0(1). 
t=i 
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A, (vi) - L)Cl{L)'] = 

(=1 

T 

- Z,)CXZ,) ] 
t=i 

(̂ 1 (1) 2 ] — Z,)CXZr) + ^ Ci*(Zr)(l - - Z,)Ci (Z,) 
( = 1 ( = 1 

T 

which by A(iii) and A(iv) is the sum of two 0(1) terms, therefore ^ [C^ (Z,) z* _ i ] ^ (1 -
t=i 

i ) c ; ( i ) ' l i s o ( i ) . 

B, i : i )hc l (L)z ,^x\ [z l ,Cl{L) ' ] = 
t=l 

t=\ 

(̂ 1 (1) IZ (1) 1 ] 
(=1 (=1 

+ E c ; - { t ) { i - L ) 2 , _ i z ; _ i c ; ( i ) ' + f ; c ; - ( L ) ( i - L ) z , „ , 2 ; _ i ( i - L ) c ; - ( £ ) ' . 
t=\ 

The first term is 0{T) (see O'Brien (1997, p. 25)) and the remaining terms are 0(1) by 

A(iii) and A(iv).So, 

T-'hc\{L)z,.^][z,_,ci{L)'\ - T - ' c ; ( i ) - c ; ( i ) j c ; ( i ) ' . with 
t=\ t=l the (%, j)-th element of ^ being ^;6j Az(l-A^) and A; = min(Ai, Aj) and A^ = maj((A ,̂ A 

see O'Brien (1997, p. 25). 

t=i 

T 

7^(1) + C'i*(Z,)(l — Z,)]zt_iz(_ 
t=:l 

r T 
0 i ( l ) + ^ C i * ( Z , ) ( l — 

t=\ t~l 

The first term is 0 ( T ) (see O'Brien (1997, p. 25)) and the second term is 0(1) by A(iii). 

So, r - i h c H D z . ^ i U l i ^ r - ' c ; ( i ) £ z , _ , z l , ^ c ' W g . 
(=1 t=l 
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r 

t=i 

Pi 

E 
1=1 

t=i t=i 

t=l t=l 

The (/, m)-th element of the matrix is 

T T oo 

t=l t=l k=0 

oo r 

k=0 t=k+l 

- 'Zi(o))^z(t) -I 1- ('Zi(r-&) -
t=:0 

fc=0 

where 

At 
> T - A: A: > r ( l - A,) 

^ Otherwise 

So, 

t=0 

T(l~Xi)~l T(l—Aj) —1 CO 

k=0 k=0 k=T(l—Xi) 

oo r(l—Aj) —1 

k=0 k=Q 
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For the first term above we have. 

7 _ I — 1), A; < — TAf 
I otherwise 

then 

fc=o 

(t) /L\ °° ri.\ °° 

k=0 fc™TA;+l A:=TA/+1 

0(1) 

because ^ /reV < oo (see properties of above); ^ A;eV < 
k=0 k=0 k=^TXi +1 

oo oo 
^ — (TAf+l)a^^''''^/(l—a)+o^^'+^/(l—a)^ —̂  OasT—»' ooandT ^ 

A:=TA;+1 k=TXi-j-l 
oo ... 

< T Y] — o)—^^OasT^oo and 0 < o < 1. For the 
t^TAi+l 

second term we have, 

y _ r (̂ Ol + ^ 1), ^ 0̂« + ^ 
1 " 1) "t" (̂ 0: + /: — toz)<̂ !'̂ (: ÔZ < toi + ^ 

and 

T(l-A()-1 
^iJi^l(toi+k) 

k=0 

toi—toi T(l — \ i ) — l 

— 1) ^ (̂ 0: 4- A;)ê ^ + ^ — 1) + (to, + A; — ^o()6/Af]e^^ 
k=0 k=tQi—toi + l 

r(A;-A{) r(Ai-Ai) 
= T6î (Af(Af — 1) ^ + 6,^/(A/ — 1) ^ 

k=0 k=0 

r(i-A^)-i r(i-Ai)-i T(i-A{)-i 
+76(Az(A/-l) ^ IZ A;e^^+T(Ai-A/)6/A, ^ 

k=T(A;-Ai)+l k=T(A;-Ai)+l A:=T(A2-A{)+1 
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which is O(T') because of the first term. The second term is convergent and the remaining 

terms tend to zero as T —» oc (using similar arguments to those used for the components of 

the Arst term above). Therefore, ^ At and hence ^ - Z,)Ci (Z/)'] are 0(T). 
k=0 t=l 

B. ( i v ) E ( f - l ) [ 2 ; ( l - Z : ) C : ( Z , y ] = 
t=l 

P i T 

— 1) [ - - - (zit — ] 

1=1 

Extracting a typical element e.g. the j-th we have 

T r oo 

£—1 (=1 A:=0 

cc T 

t=0 t=A;4-l 

oo 
— Zi(o)) + (A; + l)(zi(2) — Zi(i)) 4 1- (T — — Zi(T-t-i))] 

fc=0 

where, 

A _ / Si{Xi — l)k, toi > T — k k > T{1 — Aj) 
^ " I otherwise 

Then, 

r(l-Ai)-l oo 

k~0 k=0 k=T(l—Xi) 
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oo oc Tfl—A,) —1 
6A.f^kef-S, Y . t e j* ' + M . A . ^ ef = 0(T) 

t=0 t=0 

because E 4 ' < E «" = = 0 (7 ) . Thus, the 
fc=0 k=0 

T 
sum ^(t-l)[(ztt-z^(t_i))eji(Z})] has to be scaled by to be convergent. It then follows 

t—X 

that E(^ - l)[z;(l - ^)Cj^(l)l is 0 ( r ) . 
4=1 

c. ( i ) E ^ < - i K _ , c ; ( i ) ' l = 
(=1 

Y , z , - i { z l A c } W ' + (1 -
t=l 

T 

(1) + ^ Zf_iZ^_i(l — Z,)Ci*(Zr) . 
t—l t=l 

-72 \ The first term is 0{T'^) (see O'Brien (1997, p. 23)) and the second term is 0{T) by B(iii). 

Scaling by T"'^ we get 

T 

t—l 

T .1 
r - 2 ^ Z ^ _ i z ; _ i C : ( l ) ' / Z(i/)z(ii)'d?/Cj'(l)'. 

zr;̂  Vo (=1 

For the {i. j)-th element of the limit above we have 

T 

T ^ — l)A(Ai, Aj)]/2, 
t=i 

with /i(Ai, Aj) = ^ and A/, A^ de&ned as above. A detailed derivation 

of this result can be found in O'Brien (1997, pp. 23-24). 

c . ( i i ) E ( ^ - i ) K _ i C K ^ y ] = 

T 

y i ( ^ - + (1 ^ ]} 
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t=i «=i 

The 6rst term is O(T^) (see O'Brien (1996, p. 35) and the second term is 0 ( T ) by B(iv). 

Therefore, = C)(r^) since it is the sum of an 0(^2) and an 0(T) 

term. 

T 

D. (i)2:s,(z;(i-L)c;(i)'i 
(=1 

Pi 

E 
j=i 

(=1 (=1 

t=i 

Analysing the typical (Z, m)-th element gives 

T OG 

t=l t=l k=Q 

oo T 

k=0 t=k+l 

E 
t=o 

'i(l) - + ^Z(t+2)(̂ i(2) — 'Zi(l)) + 1- 6z(T)(Zi(T_A:) - Zi(T-t-l)). 

E 
fc=0 

where, 

AA 
— l)Q(t+l); Ôi ^ ^ ^ ^ ^ — A;) 

(̂ i(Â  - l)Q(A;+i) +($iez(to,+k+i), Otherwise 

Then, 

E4?A. 
A;=0 
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- 1) ^ 
A:=0 

^li '~litoi+k+\) 
t=0 

.(A.-1) E ( t ) 
G/i C((A:+1) 

A:=r(l-Ai 

OO r(l —Aj) —1 

= l5̂ (Ai - 1) ^ ^ = Op(l) 
fc=0 k=0 

because it is the sum of an infinite and a finite weighted sum of i.i.d. random variables 

(with exponentially decreasing weights) with zero means and finite variances <5̂  (A, — 

^ and ^ - o )̂ for ± e 8rst and 
A:=0 k=0 

second term respectively, where cuu is the (I, l)-th element of n = Var(et) and < a^, 

0 < o < 1. Therefore, ^ (Z )̂'] is Op(l). 
t=l 

D. ( i i ) E [ ( l - ^ N 4 = 

t=l Vpt^plt 

and the (/, m)-th element has the form 

T 

— 

(=1 

which is Op(l) because it has zero mean and finite variance since u* = with 

3 0 OO 

= 0, andst isz.id. with 
i~0 i~0 

T 
E(c() = 0 and yar(6t) = H. Hence, ^ [ ( 1 — is Op(l). 

t=i 
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Pi 

E 
2 = 1 

D. (Hi) ^ [ ( 1 - ] — 
£=1 

^ [ ( 1 — — Z / ) e i i ( Z , ) ] --- ^ [ ( 1 — — I , ) e p i ( I / ) ] 
t=i f=i 

2][(1 — — I,)eii(Z,)] - - - — Z,)epi(Z,)] 
4=1 t=l 

and the (/, m)-th element is given by 

T 

t=i 

(=1 t=0 

oo T 

k=0 t=k+l 

- z^(o)) -I 1- (7;z(r) - ' ( ; z ( r - i ) ) ( ' Z , ( r - t ) -

A=0 

OO 

A;=0 

where. 

1 — l)(iiz(jk+i) — '(;/(&)) + <^i(ff(toi+t+i) " Otherwise 

Then. 

OO 

k=0 
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=̂0 k=^0 
oo 

+6:(A^ - 1) ^ 
t=T(l-A<) 

OO r ( l ~ A j ) —1 

6i(A^ - 1) ^ ('(̂ f(t+i) - 'z;z(t)) + 1̂1 ^ = 
A:=0 A:=0 

OO T(l™Ai) —1 

A:=0 A;=0 

with = 0. The above expression is Op{l) because it is the sum of an infinite and a fi-

nite weighted sum (with exponentially decreasing weights) of random variables, which can 

be expressed as moving averages and therefore they have zero means and finite variances. 

T 
D- (iv) ^ - Z,)Ci ] is Op(l). The proof parallels that of D(i) since 

t=l 

and Vt are of the same stochastic order of magnitude, i.e. Op(l). 

D. (v) Y^[Cl{L)zt-l][v^{l - L)] = 
T 

E 
(=1 

T 

t=l 

T T 

Ci(l) — Z,) + ^ — Z,), 
t=i t=i 

which is Op(l) because it is the sum of two Op{l) terms, by D(ii) and D(iii). 

T 
E. (i) From (A.8) it follows that the sum ^ is Op(T'̂ /̂ ). 
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E. (ii) E = 
t=i 

T 

t=i 

T 

t—X (=:! 

which is because the 8rst term is by E(i), and the second is Op(l), by 

D(iv). 

E. ( i i i )E[c:( i : )zt_iK 
( = 1 

T 
(1) + C'i*(Z,)(l -

f=l 

r r 
(1) ^ ^ 

t=i t=i 

which is because the 8rst term is by (A.4), and the second is 0^(1), by 

D(i). 

I 
T T 

Pi 

E 
1=1 

t=x t=l 

T T 

t=l t=l 

with (/, m)-th element 

r T oo 

t=l t=l k~0 

oo r 

k~0 t=k-i-l 
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/ - -2:1(0)) + ^Z(t+1)(-Zi(2) - -I 1-
A:=0 

= f : 4 ' . ' A , 
A:=0 

where. 

^ ^ r ôi > r - A; A; > T(1 - Â ) 
' ^ Otherwise 

Then, 

A:=0 

«.(A.-1) E % . ) + «, E i ' k , + « . ( A . -1) E 41&m = 
t=0 A:=0 t=T(l-A%) 

oc T(l—A?) —1 

- 1) ^ ^ e^kz(to(+t) = 

k=Q k=0 

00 00 r(l-Ai)-l 
k=Q j=k k=0 k=l j=k 

whichisOp(T^/^) b e c a u s e ( s e e ( A . l ) ) . Thus, isOp(r̂ /̂ ) 
t=i 

F. E 6 - , [ z L i C i W I = 
=̂1 

+ (1 - L)Cl'(L)']} = 
t=l 

E«,-i-vic;(i)' + - L)ci'{L)\ 
(=1 (=1 

The 8rst term is Op(T'̂ /̂ ) by (A.5) and the second term is by E(iv). So, the hrst 

T 

term dominates asymptotically and ^ Scaling by and 
t=i 
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using (A. 5) we have 

t=i 

i /' W(u)z(uyduCl(l)'. 

For the (i, j)-th element of the above limit we have 

t=l 

see O'Brien (1997, p. 29). 

Next, let 

yar AXt ^00 ^0/3 
/̂30 

which is the covariance matrix of the stationary components when is 7(1) and cointe-

grated. Because of the absence of short-run dynamics in the model (VAR(l)) the condi-

tional means and variances coincide with the unconditional. From the representation (2.21) 

we have 

E(A;^() = c( i : )$D( 

and 

yar(AXt) = = E 
2 — 0 

From the representation (2.22) we have 

00- (A.11) 

E(/)'%,_i)=/)'Ci(^)0Dt_i 
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and 

DO 
^ = 2^^. (A.12) 

1=0 

We also have 

OO 

)']/)} = ^ = So/)- (A.13) 
1 = 0 

The mean of the stationary functions of Xt is affected by a smoothed version of the intercept 

shift since the step dummies enter in an infinite lag form. To give an example, we can 

analyse 

_ hp2{L) 

Pi — 

i=i 

hipi (L) 

hppi {L) _ 

Zlt 

hij {LJzjt 

where is the p x pi submatrix of C(Z/) in the partition C(Z}) 

(A. 14) 

p x p i PXP2 

and ^ Then the i-th element of (A.14) takes the form 
A;=0 

P i 

j=l 

Pi 

z 
i=i 

t~toi — l 

^ — 1) ^ \ ^ 4- A; 
fc=0 

Pi 

j=l k=t~toi 

Thus E'(AXt) = C(Z,)$Dt = (7^(i})zt + C (̂1)Y? (where the second equality follows by 

introducing the partition of C(Z,) mentioned above) is aSected by the 'smoothed' intercept 

shifts (step dummy variables), by (A.14) and (A. 15). 

1 . . . . , p. (A.15) 



Appendix B: Proofs of lemma 4.1 and 4.2 

froq/" 4(. 7. 

Using the representation (2.22) we analyse the limiting behaviour of in ± e 

directions of"/ and r. First we need to show that This is the 

direction that annihilates the deterministic components. 

Tu — r - ' / 2 [ 7 ' C ^ C , + 7'A(L)(£[r„| + $C[r„l) + i A \ 

= r - ' / ' i ' l C f i r . ! + + c;(i)z[r«) + Cf ( l )v + 4 

- i icwiu) 

by (A.I) for the first term, (A.6) and A(i) which show that in the second equality above the 

second and third terms are Op(r^/^) and 0(1) respectively. 

Then, we need to show that T V X[tu 
Z(^) 

u 
. This is the direction in which 

deterministic terms dominate stochastic trends (random walk process). 

M = T 

t=l 

+ T + T A] 

d Z(2i) 
U 

M 
+ T + C'l + ^)] 

by (4.7) for the second term, (A.l), (A.6) and A(i) which show that in the second equal-

ity above the 6rst, third and fourth terms are 0^(7'^/^), Op(T'̂ /̂ ) and 0(1) respectively. 

Combining the two limiting results above we get Go(^) given in (4.15). 

174 
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Finally we need to show that 

1/2 

This result follows directly from the CMT (Theorem A.3) because the mapping Xi •. x ^ 

JQ x{u)du is continuous, for x{-) a continuous function on [0,1]. Therefore, combining the 

CMT with (4.15) we get Go- Putting together GQ{U) and Go we get (4.16). M 

Proof of Lemma 4.2. 

Proof of (4.17). 

We need to show that .9oo ^oo + . 

5oo = T ' ^ Y l — AXAX' . We analyse the first term by substituting the 
t=\ 

representation (2.21) for AXj. So, 

T T 

r - ' ^ AX^AX = 7 - ' ^ + $Dt)(6t + $A)'C(^)' = 
t=i i=l 

T 

t=\. 

The terms of the above expression are numbered (l)-(4) and we analyse each of these 

terms separately. 

(1) E C(Z:)gt6;C(2)' ^ Eoo by (A.9) and (A.l 1). 
t=\ 

(2) T - i E C(L)e,D['S>'C(L)' = 
t=l 

+ CctD;$'(l - Z,)Ci(Z,)' + C i ( l ) ( l -
t=l 

+Ci(z,)(i - - ^)Ci(z,y] 

and the four terms in this expression are numbered 2(i)-2(iv). 
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2(i) T ^ ^ C' = T ^ ^ C [ ct<̂ ' ] C' 0 by (A.4) for block (1,1) and 
(=1 (=1 

(A.l) for block (1,2). 

2(ii) T - i £ C=",D;#'(1 - L)Ci(i)' = T - ' £ Ce,{z, - 2 , , , ) 'C;(i) ' i 0 by D(i). 
t=X t=l 

2{iii) T - ' E Ci{ i ) ( l - L)e,D[i'C' = T"' £ [ (1 - L)t,,z; (1 - L ) , „ P ' 1 C' I 0 
t=l t = l 

by D(ii) for block (1,1) and (A.6) for block (1,2). 

t==l t=l 

0 by D(iii). 

' p 

So, T C{L)etD^^ C{L)' —> 0 since all of its components converge in probability to 
t=i 

zero. 

(3) E C(l)$Dt6;C(Z,)' = ^ O, by (2) above. 
t=l t=l 

(4) E = 
t=l 

+ Ci(i:)(i -
(=1 

+Ci(i;)(i - - z,)Ci(];)']. 

The terms in this expression are numbered 4(i)-4(iv) and we analyse each one below. 

T 
4(i) E E C 

t=l 

g 0 
0 1 

t = l 

T 

(7 ^ C 9 0^ 
0 

C' 

$'C% where T ^ ^ a x matrix with (z, ji)-th element 
(=1 

6i6jA((l — Am) and A; = min(Ai, A )̂, A^ = maa:(A ,̂ Â ) (see O'Brien (1997,1999)). 

zt(zt — Z(_i) ^7 (̂1,) 
4(ii) E E C 

t—\ 

A(iii) for block (1,1) and A(ii) for block (2,1). 

(̂ (zt — zt_i) (71(2/) 
0 by 

4(iii) E C'i(Z)(l - ^ 0 be-
t~\ t—\ 

cause it is the transpose of 4(ii) above. 
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4(iv) E = 

Z 0 by A(iv). 

T 
Thus, the first term of /Soo, T" ^ ^ ^ Eoo+C^ 

t=x 

g 0 
0 1 $'C'. Next, we analyse 

A X 

the average, A X in order to find a limiting expression for AX AX' . 

r T 
^ AX, = r - : ^ 
t=l ^=1 
T 

r - ' + c $ D , + (1 -

T 

T - ' 

t=l 
T 

t=l ( = 1 t=i 
" 0 • 

= 
" 0 • 

y 1 
(B.l) 

by (4.5) for the second term in the fourth equality, (A.7) and A(ii) which show that in the 

fourth equality above the first and third terms are Op{T^^^) and 0(1) respectively. It then 

follows from Slutsky's Theorem (see Davidson (2000, pp. 39, 46)), that the second term of 

'S'oo, 

AXAX' A 
0 0 
0 1 

$ 0 

Combining the limits of the two terms of 5oo we have 5oo —̂  Soo + 0 $ 

+ where g ° 

9 0 
0 0 

$ ( 7 = 

Proof of (4.18). 

We need to show + /)'0X1)^(^1 (1)'/̂ -
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T 
^ ^ — /) %%'/). Since is cointegrated we use repre-

t=i 
sentation (2.22) in the Grst term of ,<3 and we have 

T T 

r - ' ^ = T - i ^ (!)(£,_, + $ A - i ) ( s , - i + 
t—1 t=l 

I t=i 

The terms in the above expression are numbered (l)-(4). 

(1) T - : E A 2^^, by (A.9) and (A.12). 
t=i 

(2) r - i E ,i3'c,(L)E,_iB;_i4'Ci(i);a = T - i E/?>,_,2;_,c';(i)'+t'.-i»''c'f(i)')/3 i 
t=l t—1 

0, by E(ii) and (A.7). 

(3) r - ' f ; ,8 'c , (L)#A- iE;_ iCi (L) ' ,a = r - ' o, 
t=l t=l 

because it is the transpose of (2) above. 

(4) E = 

= r- ' E ,a'[c;(i)z,_.z;_,c;(£)' + + c;(l)z,_,^'cJ(i)' 
t=i 

+ c f ( i ) w ' c f ( i ) > ^ ^'(c;( i )9c;( i ) ' + cui)fvcui)']0, by 

B(i) and A(v). Ci(Z,) and (Z,) are p x and p x pg respectively and they consti-

tute a partition of Ci (î ) i.e. Q (i^) = 

we have 

CXI) C f ( f ) 
pxpi pxp2 So for the first term of /) 
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r ^ ^ A + ,3 (l)^Ci (1)' + Ci ( ! ) ( / ? ( / ? ' T h e n we analyse 
(=1 

the limiting behaviour of ^ 

T T 

t=l t=l 

X T T 

t=\ t=l t=l 

- (B.2) 

since by (A. 7) and A(v) the first and second terms of the third equality above are Op{T^/'̂ ) 

and 0(1) respectively. For the product of the averages we have 

By combining the asymptotic results for the sum of the products and the product of the 

averages we get the limiting result for which is +/3'Ci 

Proof of (4.19). 

We need to show /̂  .S'lo ^ 
T 

/)%9io = ^ /3'Xt_iAX^ — U s i n g the representations (2.21) and (2.22) 
t=i 

we can write the Grst term of /) S'lo ^ follows 

T 

t=i 
T 

t=i 
T 

t = l 

and the terms are numbered (l)-(4). 
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(1) ^ 2^0 by (A.9) and (A.13). 

t=l (=1 

= ^ /3' [ ) C + ^ 0 ] ^ 0, 
t=l t—1 

by E(i), (A.7) and D(iv). 

(=1 

= r - ' + c f ( i )9E;c ' ) + r - i - %_i)' 
t=l (=1 

+Ci ] —*- 0, by E(iii), (A.l), D(v) and (A.6). 

(4) r - ' E = 
t=i 

t = l t=\ 

r - 1 E /?'(c"(i)z,_iz;c; + cl(i)vzfi[ + c;{L)z,_ ,^'c; + cqm^^'cf,) 
t=i 

+%" ^ ^ [Ci(Z,)zt_i(zt — Zt_i) Ci(Z,) + Ci (l)y(zt — Zf_i) (71(2,) ] 
t=i 

/3'(C:(1)^C; + Cf by B(ii), (4.5), A(v), A(vi) and A(ii). Ci and C2 

are pxpi and pxp2 respectively and constitute the partition of C i.e. C • Ci C2 
pxpi pxp2 

So the first term of 3 Siq asymptotically takes the form 

T 

t=l 

From (B. 1) and (B.2) the second term of /) 5'io has the following limiting form, /) X A X ' 

Therefore,/)'^10 ^ +/)'CMl)pC;. 

Proof of (4.20). 

We need to show that GG dn. 
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(p—r—g)xfp—r—g) (p—r—g)xg 

gx(p—r—g) gxg 
For block (1,1) we have (see also (A.2)) 

. We analyse separately each block. 

-%)(%,_! -1/2 

t=l 

Yc(M/(%/) - :y)(M/(«) - i y ) ' c 

JQ 

by block (1,1) of (4.16) and the CMT since the mapping : T i—^ jQ̂ %(2̂ )a;(%/)'o(?/ is 

continuous, and x{-) is a continuous function on [0,1]. For block (1,2) we have 
T 

- x)(%f_i - x ) 
t=l 

f.1 
/" YC(V (̂%i) - W) [ (Z(^) - Z)' It - 1/2 ] dit 

Vo 

by (4.16) and the CMT, since the mappings J3 : {x, y) 1—^ x{u)y{u)'du and J4 : x 1—> 

x{u)udu are continuous for x{-) and y{-) continuous functions on [0,1]. For block (2,2) 

we have 

T 

4=1 

d \ J^{Z{u)-Z){Z{u)-Z)'du j^{Z{u)- Z){u-ll2)du' 

~" [ Si(u^ll2)(Z{u)-Z)'du 1/12 

by blocks (2,1) and (3,1) of (4.16) and the CMT. Assembling the results for all the blocks 

we get 

^ where G 
YC(M/'(?i) - M̂ ) 

Z(«) - Z 
2 / - 1/2 

, defined in (4.16). 

Proof of (4.21). 

We need to show that y C j (1)\8. 
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. Block (1,1) can be written as 

r 

t=i 

Using the representation (2.22) the first term can be expressed as 

x,.X-iP 
t=l 

i-1 
+ Q(Z,)$Dt_i + A)(Ci(l)e(_i + Ci(i:)$D,_i)'/) 

t=l i=l 

i=l 

+ + Ci(^)$Dt_i?;Li 

+ Q(^)0A_iD;_i$ 'Ci( j : ) ' + + AD;_i0'Q(i,)')/?. 

The corresponding orders of magnitude for each of the terms in the expression above are 

as follows: 

r - 3 / 2 ( 0 p ( r ) + + O p ( T ) + O p ( r : / 2 ) + O p ( T V 2 ) + + o ^ T V ^ ) + o ^ ( r ) ) . 

Except for the second term, all the others converge in probability to zero by (A. 10) (which 

is the generalisation of (A.3) when the error process is autocorrelated), with e(l) = 1, 

A(l) = Q f l ) a:id = 0, a = 1 ,2 , . . . (first term); (A.9) (third term), E(ii) and (A.7) 

(fourth and fifth term); B(i) and A(v) (sixth term); (A.7) (seventh term) and A(v) (eighth 

term). The asymptotically non-degenerate term (second) has the following limit, 

r - ' /» E 7'cf ,_ ,D;_,4. 'c , ( i ) ' /3 = T-3/2 f 7'c(e,_,2;_ic;{i)'+e.-iv"'cf (1)') J 
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by F and (A.l) and the 

CMT. 

From block (1,1) of (4.16) and the CMT, and (B.2) the second term of con-

verges in distribution, 

Vo 

So for block (1,1) ? C M/(t()z(2/)'di/C|(l)'/). 

The element of block (1,2) is given by 

T 

^ XX'/). 

t=i 

Analysing the first term we get 

r r f - i f - i 

t=l t~l 2=1 2 = 1 

+f 'Ci ( i : )$A_i + f'^)(e,_i + $Dt_i)'Ci(i:)'/? 

T t-1 t-1 

= r-= + f'C(,_A-i<S>'Ci{L)' + Y , D.vi^P + Y . D.D[_,'S>'Ci{L)' 
t=l i=l i=l 

+T Vt-iVf_i + f C'i(-Zv) + f Ci(L)^Dt-iV/-_^ 

+ f Ci(f)$Dt_iD;_i$'Ci(i:)' + + f'AD;_i$'Ci(^)')/) 

with the following orders of magnitude. 

All the terms except for the fourth converge in probability to zero by (A. 10) with e(l) = 0, 

A(l) = Ci(l) and = 0, g = 1 ,2 , . . . (first term); F, (A.l) and ± e CMT (second term); 

the proof of (10) in O'Brien (1999, p. 29) (third term); (A.9) (8Ah term); E(ii) and (A.7) 
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(sixth and seventh term); B(i) and A(v) (eighth term); (A.7) (ninth term) and A(v) (tenth 

term). Next we analyse the non-degenerate (fourth) term 

T 

(=1 

T 

t=l 
(( - l)Z(_iCi(Z,) + (̂  — l)y? (1) 

Z(?/)z(t()(ft(Ci (1)' + (1)' 
j^t(z(^/)'c(itCi(l)' + l/2(/?'Ci(l)' 

P 

0, 

by C(i) and equation (1) in O'Brien (1997, p. 23) for block (1,1) and C(ii) for the first term 

in block (1,2). Therefore, for the first term ofT~^TSi iP we have 

j^Kz(u)'(fitCi(l)' + l/2yi'Ci(l)' 

The limit of the product of the averages (second term o f T ' ^ r S u P ) is 

0. 

jq" Z(?/)d'U(̂ 'Cf (1)'/? 
l/2y,'C?(l)'/) 

by using blocks (2,1) and (3,1) of (4.16) and the CMT. 

Z('u)z('u)'<iuCi (1) 
Thus, p. 

Combining the asymptotic results for and we get (4.21) i.e. 

where y 
yCVF('u)z(2/)'dif 

= Go(K)z('u) 'd'u. 

Proof of (4.22). 

We need to show ^ ^ 0 ] ( / . 
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1̂0 
Block (1,1) has the form 

T 

t=x 

The first term can be written as 

t~l 

T t - l 

= T y ]^ (C ^ ]6; + Ci(I/)ct_i + Ci(L)$Z)t_i + A){st + ^Df) C{L) 

t=l 1=1 

t=i 

+ ?;t_iD;$'C(^)' + Ci(i:)$D(_i^;C(l)' 

+ Ci(^)4>D*_iD;$'c(i:)' + A6;c(z,)' + ^D;0'c(i;)') 

and the terms above have the following orders of magnitude 

7-3/2(0p(r)+Op(r3/2) + +Oy(T:/2) + Op(r : /2 )+ox :r )+^^(r /^ )+0^(7 ) ) . 

So, only the second term does not vanish asymptotically, the remaining terms converge in 

probability to zero by (A. 10) (first term); (A.9) (third term); (A.8), (A.7) and D(iv) (fourth 

term); E(iii), (A.l), D(v) and (A.6) (6fth term); B(ii), A(v), A(vi) and A(ii) (sixth term); 

(A.7) (seventh term); (4.5) and A(ii) (eighth term). For the non-degenerate second term we 

have 

t=i (=1 

t=l 
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T T 

(=1 (=1 

by (A.5) (see also O'Brien (1999, pp. 30-31)), (A.l) and ± e CMT and E(iv). For ± e 6rst 

term of SIQ we have 

T 

^ ^ [ Jo IV(11)̂ ; ̂ ^̂  ] C . 
t=i 

From block (1,1) of (4.16) and the CMT, and (B.l) it follows that the second term of 

has the following limit 

^ Y c [ 0 j;,' M/(̂ /)yp'dM ] cx. 

Thus, 7-^/^7 1̂0 7 C [ jg' ty(t/)z(i/)'(ft( 0 ] C . 

Next we analyse block (1,2) of T^^/~Br5'io which is given by 

T 

r - V ^ i o = Xt_iAx; -
t=i 

We analyse the first term 

r - 2 = r - 2 E ( T c E s , + E +^'c'i(^)gt_i+f'Ci(i:)$Dt_i + 
t~l t=l i=l 2=1 

f A)(6t + $D^)'C(2)' 

T f-1 
= r-:: ^( f 'C( ,_ i6;C(I , ) ' + f'C(,_iD;$'C(^)' + D,E;C(Z,)' + 

t~l i=X 

t— 1 

^ D , D ; $ ' C ( ^ ) ' +f'i;t_ic;c(l,)' + f 
2 = 1 

+ T Ci(i:)$Dt_i6;c(i:)' + f'Ci(z,)$Dt_iD;$'c(z;)' 

+ f ' ^ g ; c ( i ) ' + f AD;$'c(i:)', 

which gives the following orders of magnitude 
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^ 0^(2-3/2) + ^ + Op(T:/2) + + 0 / 7 ) + 

Op(r:/=) + OpM). 

All terms but the fourth converge in probability to zero by (A. 10) with e(l) = 1, h{l) = 

Ci(l) and Fg = 0, g = 1 ,2 , . . . (first term); (A.5), (A.l) and the CMT and E(iv) (second 

term); (A.7) (third term); (A.9) (fifth term); (A.8), (A.7) and D(iv) (sixth term); E(iii), 

(A.l), D(v) and (A.6) (seventh term); B(ii), A(v), A(vi) and A(ii) (eighth term); (A.7) 

(ninth term); (4.5) and A(ii) (tenth term). 

The limit of the fourth term is 

t = l 2 = 1 

T 

(=1 (̂  - 1)Z( (t - l)y)' t=i 

1 

(̂  - l)zt(l — Z,)CXZ,) 

C 

by O'Brien (1997, pp. 23-24) for block (1,1) (see also the proof of C(i)), result (2) in 

O'Brien (1997, p. 23) for block (1,2), (4.6) and the CMT for block (2,1), for the first term. 

The second term converges to zero by B(iii) for block (1,1) and B(iv) for block (2,1). 

Therefore the first term of SIQ in the limit is 

T 
T 

• T 
t=l 

1/2 
C 

The limit of the second term of T V5'io is found from blocks (2,1) and (3,1) of (4.16) and 

the CMT, and (B.l) as 

/ d 0 Z('u)d'uy 
0 l/2y,' 

C 
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Combming the last two results we have T V5'io 

assembling the results for T and T ^r'Sw we get (4.22), 

C and then 

^ [ y 0 ] c ' 

where [ V 0 ] 
'az('u)'ii'u 0 

O ] . 



The DGPs used for the simulation experiments in Chapter 4 are of the form; 

AXt — a(3 Xt^i + ^Dt + cf, t — 1.2,... ,T 

where all the components are defined as in Chapter 4. 

The DGP used for Figures 4.1 and 4.2 is 

0 --1 --1 1 

' - 0 
A%2t 0 
A%3t 0 

- 0 J 5 

" 1 0 " £it 
0 1 

+ Est 
0 1 1 + 

0 I 4̂̂  

TAdiere Ej* z.:L(Z..A/XO, 1) for j == 1, . . == 

For Figures 4.3 and 4.4 the DGP is 

[ 0 0 - 1 - 1 1 ] 

0 
0 

= 0 
AA4f 0 

- 0 . 7 5 

Clt 

Sat 

where %.z.d.#(0,1) for j = 1 , . . . 5, Zit = 

_ r --0J.66, 1 f <: [2]"/3] 
3̂* ^ 0.333, [23r/3l] 4-1 fC f <: ' 

For Figure 4.5 the DGP takes the form 

' --0.75 ' 
0 

A%3( 0 

A ^ 4 ( 0 

1 - 1 0] 

1 <: z <: [!r/2] 
0.25, 4- 1 

" 1 0 0 " 
0 1 0 

+ 0 0 1 
0 0 1 
0 0 1 

1 

--0X333, 1 f <: [T/S] 
O.lfHG, [7-/3] 4-1 ' ' " 

' 1 0 " 

_l_ 
0 1 Zt _j_ 0 1 1 3̂* 
0 1 S4t 

189 
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where syt i i d . # ( 0 , 1 ) for j = 1 , . . . 4 and zg = 

For Figures 4.6 and 4.7 the DGP is 

[ 0 0 - 1 - 1 1 ] 

-0.25, 1 < ^ < [r/2] 
0.25, [T/2] + 1 < t < r 

' AXu ' 0 
0 

= 0 
AX4t 0 

-0 .75 

1 0 
1 0 

+ 0 1 
0 1 
0 1 

Zt 
1 

where ^ i2.(f.Ar(0,1) for,; = 1 , . . . 5 and = 
-0.25, 1 < ^ < [T/2] 

0.25, [r/2] + 1 < ( < r ' 

2'3t 

S'st 

For all of the above DGPs the corresponding SM is estimated with unrestricted con-

stant term and for T = 100,200,300,400,500,600,700,800,900,1,000. The critical val-

ues used can be found in Osterwald-Lenum (1992, Table 1). 



]]): TTlbue fi:ncti()ii ft):" 
— 7") = <4 

Table D. 1. The power function for the trace statistic, case (i). 

£ f 0 6 12 18 24 30 36 42 48 54 60 

0 0.048 0.443 0.820 0.959 0.992 0.999 0.999 1 1 1 I 

-3 0.035 0.162 0.579 0.872 0.971 0.996 0.999 1 1 1 1 

-6 0.049 0.099 0.395 0.752 0.931 0.989 0.998 I 1 1 1 

-9 0.066 0.107 0.295 0.649 0.885 0.977 0.996 0.999 1 1 1 

-12 0.085 0.115 0.288 0.572 0.841 0.965 0.993 0.998 0.999 1 1 

-15 0.115 0.145 0.279 0.547 0.802 0.937 0.988 0.998 1 1 1 

-18 0.152 0.188 0.312 0.527 0.783 0.929 0.985 0.998 I 1 1 

-21 0.192 0.226 0.347 0.547 0.775 0.925 0.979 0.997 0.999 1 1 

-24 0.247 0.285 0.383 0.576 0.774 0.913 0.974 0.995 0 . 9 # 1 1 

-27 0.318 0.356 0.437 0.615 0.786 0.912 0.977 0.994 0.998 1 1 

-30 0.395 0.429 0.514 0.658 0.803 0.921 0.981 0.996 0.999 1 1 

-36 0.554 0581 0.641 0.752 0.862 0.936 0.981 0.995 0.999 1 1 

-42 0.705 0.716 0.774 0.842 0.912 0.957 0.984 CL998 0.999 1 1 

-48 0.815 0.834 &864 0.907 0.949 0.975 0.990 CL997 &999 1 1 

-54 0.914 0.921 0.938 0.958 0.974 0.988 0L995 CL999 &999 1 1 

-60 0 964 0.963 0.968 0.981 0.989 0.995 CL999 CL999 1 1 1 

a. 
Table D.2. The power function for the maximal eigenvalue statistic, case (i). 

0 12 18 24 30 36 42 48 54 60 

0 0.054 0.415 0.819 0.963 0.994 0.999 

-3 0.044 0.135 0.579 0.885 0.977 0.998 1 

-6 0.053 0.096 0.387 0.782 0.952 0.995 0.999 

-9 0.069 0.101 0.304 0.685 0.915 0.988 0.999 

-12 0.085 0.109 0.287 0.608 0.893 0.983 0.998 0.999 

-15 0.118 0.151 0.291 0.607 0.869 0.969 0.996 0.999 

-18 0.158 0.197 0.338 0.598 0.850 0.968 0.996 1 

-21 0.209 0.256 0.389 0.627 0.854 0.964 0.994 0.999 

-24 0.281 0.326 0.441 0.660 0.860 0.964 0.994 0.999 

-27 0.369 0.405 0.529 0.709 0.877 0.962 0.993 0.998 

-30 0.460 0.516 0.605 0.765 0.899 0.969 0.995 

-36 0.666 0.686 0.771 0.862 0.943 0.981 0.995 

-42 0.827 0.841 0.887 0.937 0.970 0.989 0.996 

-48 0.917 0.933 0.952 0.971 0.986 0.996 1 

-54 0.978 0.979 0.987 0.993 0.996 0.999 

-60 0.994 0.993 0.998 0.998 0.999 1 

191 
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Table D.3. The power function for the trace statistic, case (ii). 

0 \1 18 24 30 36 42 48 54 60 

0 0.049 0.411 0.789 0.945 0.985 0.997 0.999 

-3 0.044 0.143 0.525 0.825 0.955 0.988 0.998 

-6 0.050 0.091 0.327 0.675 0.894 0.973 0.996 0.999 

-9 0.056 0.087 0.241 0.553 0.826 0.956 0.991 0.999 

-12 0.070 0.096 0.232 0.464 0.764 0.926 0.981 0.997 

-15 0.088 0.113 0.204 0.445 0.695 0.886 0.970 0.994 

-18 0.114 0.132 0.235 0.410 0.673 0.865 0.963 0.992 0.999 

-21 0.147 0.178 0.252 0.431 0.663 0.842 0.951 0.989 0.997 

-24 0.182 0.211 0.295 0.442 0.654 0.826 0.941 0.983 0.997 

-27 0.227 0.268 0.322 0.483 0.656 0.820 0.936 0.981 0.995 0.999 

-30 0.289 0.322 0.392 0.519 0.678 0.839 0.934 0.983 0.996 0.999 

-36 0.411 0.433 0.493 0.605 0.730 0.859 0.937 0.977 0.996 0.999 

-42 0.547 0.565 0.631 0.717 0.809 0.885 0.951 0.986 0.999 0.999 

-48 0.678 0.696 0.735 0.797 0.861 0.926 0.965 0.988 0.997 0.999 

-54 0.790 0.813 0.847 0.879 0.912 0.959 0.981 0.994 0.997 0.999 

-60 0.891 0.889 0.907 0.933 0.957 0.975 0.992 0.993 0.998 0.999 

1 
JL 

Table D.4. The power function for the maximal eigenvalue statistic, case (ii). 

0 12 18 24 30 36 42 48 54 60 

0 0.053 0.370 0.778 0.347 0.989 0.999 

-3 0.052 0.110 0.495 0.841 0.961 0.994 0.999 

-6 0.051 0.076 0.303 0.702 0.920 0.988 0.998 

-9 0.059 0.076 0.219 0.581 0.861 0.975 0.997 1 

-12 0.062 0.081 0.205 0.482 0.815 0.956 0.994 0.999 

-15 0.089 0.103 0.202 0.470 0.770 0.935 0.989 0.998 

-18 0.107 0.128 0.237 0.450 0.743 0.923 0.988 0.997 

-21 0.144 0.175 0.267 0.474 0.743 0.914 0.979 0.997 

-24 0.185 0.214 0.312 0.500 0.745 0.907 0.980 0.996 

-27 0.253 0.279 0.374 0.563 0.763 0.906 0.977 0.997 0.999 

-30 0.310 0.362 0.456 0.612 0.788 0.916 0.980 0.998 0.999 

-36 0.483 0.525 0.612 0.731 0.856 0.937 0.984 0.997 

-42 0.676 0.688 0.762 0.838 0.917 0.965 O.S 0.998 

-48 0.815 0.825 0.870 0.914 0.957 0.980 0.993 0.997 

-54 0.914 0.925 0.943 0.963 0.980 0.992 0.998 1 

-60 0.970 0.972 0.981 0.987 0.993 0.995 0.999 
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Table D.5. The power function for the trace statistic, case (iii). 
9 f 0 6 12 18 24 30 36 42 48 54 60 

0 0.055 (1176 0.573 0.858 0.960 (1991 0.998 1 1 1 1 

-3 (1057 11113 (1366 (1701 (1901 (1977 0.996 0.999 1 1 I 

-6 0.069 (1095 (1281 (1594 (1838 0 953 (1993 0.999 1 1 1 

-9 0.077 0.104 (1239 (1510 (1787 (1932 (1987 0.998 0.999 I 1 

-12 0.098 (1118 (1247 0.465 (1745 (1912 (1975 0.997 1 1 1 

-15 (1112 (1141 (1238 (1459 0.692 (1879 (1969 0.992 0.999 1 1 

-18 (1148 (1171 0.264 0.446 (1685 0.868 (1962 0.991 0.998 1 1 

-21 (1189 (1215 0.304 (1470 (1693 (1858 (1951 (1988 0.997 1 1 

-24 0.227 (1268 (1343 (1496 (1681 0.846 0.947 (1987 0.996 1 1 

-27 (1286 0.326 0.384 (1537 0.697 0.850 0.945 (1983 0.997 1 

-30 (1356 0.389 (1452 (1569 0.741 0.860 (1949 0 9 M 0.996 0 4 M 1 

-36 0.485 0.508 0.568 (1676 0.786 0.885 (1952 0.984 CL997 1 

-42 0.627 0L641 0.700 0.776 0.858 0 4 % 0.965 0.992 0.999 1 1 

-48 (1752 0 J # (1795 (1850 0.903 0.950 (1978 0.992 0.998 0 4 # 1 

-54 0.851 0 8 6 0 0.894 (1917 0.942 0.973 (1988 0.996 0.998 1 1 

-60 0.928 0 9 2 9 0.937 0.957 0.972 0.985 0.995 CL997 0.999 1 1 

Table D.6. The power function for the maximal eigenvalue statistic, case (iii). 

I f 0 6 12 18 24 30 36 42 48 54 60 

0 (1051 0.148 (1556 (1859 (1970 0.995 (1999 1 1 1 1 

-3 (1056 (1081 (1305 (1701 (1918 (1985 0.999 1 1 1 1 

-6 (1054 (1069 (1218 (1593 0.862 (1971 (1995 0.999 1 1 1 

-9 0.062 (1078 0.190 (1497 0.809 (1957 (1997 0.999 I 1 I 

-12 0.068 0.087 0.192 0.440 0.769 (1938 C1991 0.998 1 1 1 

-15 0.096 (1112 0.204 0.446 (1739 (1917 (1986 0.998 1 I I 

-18 (1118 0.141 (1245 0.444 (1731 (1913 0.983 0.996 1 1 1 

-21 (1163 (1187 (1281 (1475 (1737 0.909 0 . 9 # (1996 1 I 1 

-24 (1207 (1238 (1328 (1511 (1747 0.902 0.976 (1996 1 1 1 

-27 (1277 0.304 (1395 (1558 (1772 (1910 0.975 (1996 1 1 1 

-30 (1343 (1391 0.476 (1636 0.798 (1919 0.982 0.998 1 1 

-36 (1517 (1561 0.643 0.754 0.872 0.945 0.987 0.997 1 1 1 

-42 0.714 0.722 (1788 0.860 0.930 0.970 0.990 0.999 1 1 1 

-48 0.839 0.856 0.888 0428 Oj#3 0.982 0.996 0.998 I 1 1 

-54 0.933 0941 0.953 0 9 7 2 0.985 CL993 0.998 1 1 I 1 

-60 0.979 0.980 0.986 CL990 0.995 0 9 % 1 1 1 I 1 



Appendix E: A graphical representation of 
the results of the experiments in 5.2 

1.0 

0 . 5 

Rejection frequency of the trace statistic; low powg-

T = 5 0 B-B- T = 5 0 
- e - e - T - l O O A A T = 1 0 0 

T - 2 0 0 T = 2 0 0 

1.0 

rf 

0 . 5 -

Rejection frequency oCthe maximal eigenvalue stdistic; lowpowq-

- » - , - T = 3 0 

- - T - 2 0 0 

-a-B- T=50 
6 A T=IOO 

T = 2 0 0 

0.0 0 . 2 0 . 4 0 . 6 
Rejectioa ficquenp- ofthe trace statistic; niediumpower 

T=50 -B-B- T=50 
T=IOO A A T = 1 0 0 

^ - T - 2 0 0 T - 2 0 0 

0 . 5 

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 

Rejection frequency ofthe maxiinal eigenvalue statistic; mediumpower 

T - 3 0 

» T<W 
T - 5 0 AAT̂W 
T - 2 0 0 

0 . 5 

0 . 0 0 . 2 0 . 4 0 . 6 

Rejection frequaicy of the trace statistic; high power 
0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 

Rejection frequaicy of the maximal eiaoivalue statistic; high power 

T - lOO A A T-IOO - 0 - 8 - T - l O O A A T - l O O 
T=200 r = 2 0 0 T = 2 0 0 

Figure E. 1. Frequency of rejecting the true null hypothesis r < 1 for Dl(i) (two different 
shifts). 
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1.0 
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Figure E.2. Frequency of rejecting the true null hypothesis r < 1 for D2(i) (two different 

shifts). 
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Figure E.3. Frequency of rejecting the true null hypothesis r < 1 for D3(i) (two different 
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Figure E.5. Frequency of rejecting the true null hypothesis r < 1 for D2(ii) (two different 
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Figure E.7. Frequency of rejecting the true null hypothesis r < 1 for Dl(iii) (two different 
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Figure E.8. Frequency of rejecting the true null hypothesis r < 1 for D2(iii) (two different 
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Figure E.IO. Frequency of rejecting the true null hypothesis r < 1 for Dl(i) (a common 
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Figure E. 11. Frequency of rejecting the true null hypothesis r < 1 for D2(i) (a common 
shift). 
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Figure E.13. Frequency of rejecting the true null hypothesis r < 1 for Dl(ii) (a common 
shift). 
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Figure E.14. Frequency of rejecting the true null hypothesis r < 1 for D2(ii) (a common 
shift). 
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Figure E.15. Frequency of rejecting the true null hypothesis r < 1 for D3(ii) (a common 
shift). 
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Figure E.16. Frequency of rejecting the true null hypothesis r < 1 for Dl(iii) (a common 

shift). 
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Figure E.17. Frequency of rejecting the true null hypothesis r < 1 for D2(iii) (a common 
shift). 
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Figure E.18. Frequency of rejecting the true null hypothesis r < 1 for D3(iii) (a common 
shift). 
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Figure E.19. Frequency of rejecting the true null hypothesis r < 1 with a y — 0; case (i) 

(a single shift). 
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Figure E.20. Frequency of rejecting the true null hypothesis r < 1 with = 0; case (ii) 
(a single shift). 
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(a single shift). 
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Figure E.22. The empirical size for low, medium and high power levels. 
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Figure E.23. The empirical size for different sample sizes. 
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Figure E.24. Rejection frequency for different power levels (two different shifts; T = 150, 
6 = 0 . 5 ) . 
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Figure E.25. Rejection frequency for different designs (two different shifts; T = 150, 
= 0 . 5 ) . 
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Figure E.26. Rejection frequency for different power levels (a common shift; T = 150, 
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Figure E.27. Rejection frequency for different designs (a common shift; T — 150, 

S = 0.5). 



Appendix F: Estimates of the local power 

Table F. 1. Rejection frequencies of the hypothesis r = 0 

using the trace statistic when DGPl = S M . 
Sample size 
f / , 9,power) 50 100 150 500 800 

( -3 ,12,0 .850) (18136 0.8270 (18295 (18274 (18331 

(-18,12,CL830) (X8359 0.8284 (18215 118078 O^GW 

(-15,6 ,0 .565) 0.5354 0.5095 (14991 (14855 0.4801 

( -18,0 ,0 .513) (15889 0.5509 0.5364 (15194 0.5156 

(-6, 6, 0.272) (12657 (12635 (12539 (12582 0.2604 

( -12,0 ,0 .269) 0.2789 0.2714 (12702 0.2588 0.2548 

Table F.2. Rejection frequencies of the hypothesis r 

using the maximal eigenvalue statistic when DGPl 5 

= 0 

=SM. 

Sample size 
( / , g,power) 50 100 150 500 800 

(-3, 12, 0.850) 0.8073 0.8210 0.8258 0.8253 0.8333 

(-18,12,0.830) O a # 7 0.8345 0.8318 0.8208 (18187 

(-15, 6, 0.565) 0.5272 0.5036 0.4899 0.4800 0.4758 

( -18,0 ,0 .513) 0.5920 0.5550 0.5398 0.5227 0.5110 

(-6, 6, 0.272) 0.2463 & 2 0 2 0.2412 0.2447 0.2446 

(-12, 0, 0.269) 0.2653 0.2571 0.2473 0.2473 0.2384 
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