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This thesis examines analytically (using asymptotic theory) and via Monte Carlo sim-
ulations the effects of two types of misspecifications on the LR tests for cointegration
proposed by Johansen (1988, 1996).

The first type of misspecification is intercept shifts, represented by step dummy
variables. It is assumed that the DGP consists of I(1) processes which are cointe-
grated and some of them contain intercept shifts. The presence of intercept shifts
is ignored in the construction of the statistical model (SM) used for cointegration
testing. It is shown that under the above misspecification the tests overestimate the
cointegrating rank with probability one as the sample size tends to infinity. An upper
bound is found for the number of spurious cointegrating vectors that arise in the limit,
and it is given by the number of distinct intercept shifts in the DGP. The attainment
of the bound depends on the weak exogeneity status of the variables. Monte Carlo
experiments designed in a way that allows control over the local power show that
as the sample size and the magnitude of the shift become larger the frequency of
accepting a bigger cointegrating rank than that in the DGP, increases. The impacts
of intercept shifts are quite noticeable for sample sizes and model specifications used
in empirical works.

The second type of misspecification is the presence of irrelevant variables in the
SM or omission of relevant variables from the SM used for cointegration testing. We
show that the inclusion of irrelevant variables does not affect the inference about the
cointegrating rank or the consistency of the estimators of the cointegrating vectors,
adjustment coefficients and variance of the errors, but simulations show a reduction
in the power of the tests. We also show that the omission of relevant variables
from the SM leads to either failure in detecting cointegration or underestimation of
the cointegrating rank. Although in the latter case the estimator of the detected
cointegrating vectors is shown to be consistent, this is not the case for the estimators
of the adjustment coefficients and the variance of the errors.
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Chapter 1
Introduction

Many economic variables appear to be integrated of order one (with a drift), denoted
by 1(1), (see e.g. Nelson and Plosser (1982)) that is they have non-constant unconditional
means and divergent unconditional variances as the date of the observation becomes large.
In other words they show a type of stochastic non-stationarity where random shocks have a
permanent effect. Even though the variables individually might exhibit the non-stationary
behaviour mentioned above, it is possible that certain linear combinations of them have
lower order of integration and in this instance these linear combinations are integrated of
order zero, denoted by I(0), or loosely, stationary. If this is the case, the variables are
said to be cointegrated. The existence of linear combinations of variables with lower order
of integration than the component variables i.e. cointegration, is implied by the notion of
long-run equilibrium in economic theory, see Engle and Granger (1987).

Ascertaining the existence of cointegration among non-stationary (/(1)) variables,
has particular consequences for their econometric analysis as well. Various tests for de-
tecting cointegration have been proposed in the literature. These tests can be divided
into two categories: tests that are based on single equation regression, e.g. Engle and
Granger (1987), Phillips (1987) and tests based on systems of equations (vector autore-
gression (VAR) models), e.g. Johansen (1988, 1991a, 1994, 1996) (henceforth Johansen
(1988, 1996)), Perron’ and Campbell (1993), Reinsel and Ahn (1992), Stock and Watson

(1988). The testing procedures in the first category are essentially unit root-type tests, for

12



1 Introduction 13

example (augmented) Dickey - Fuller ((A)DF) or Phillips’ Z,, or Z; tests, on the residu-
als of the static (cointegrating) regression. In the case which more than two variables are
jointly under examination, more than one cointegrating relation might be present. So, the
tests in the second category can be used to determine the number of cointegrating relations
or alternatively the number of common stochastic trends.

The most commonly used tests in applied works, for the number of cointegrating rela-
tions/vectors or cointegrating rank are the likelihood ratio (LR) tests proposed by Johansen
(1988, 1996), which can be implemented using either the trace or the maximal eigenvalue
statistic. The asymptotic distributions of these statistics are non-standard, involving inte-
grals of Brownian motion, and they depend on the number of unit roots in the model. These
distributions also depend on the nature of the deterministic terms (such as the intercept or
linear time trend) included in the data generating process (DGP) and in the statistical model
(SM) used for cointegration testing. Therefore, these asymptotic tests are not similar but
they can be asymptotically similar with respect to certain parameters, see Nielsen (1997),
Nielsen and Rahbek (2000).

In the literature there are works that investigate approximations to the asymptotic
distribution of the LR tests for the cointegrating rank. Johansen (1988) suggests approxi-
mating the asymptotic distribution by c¢x?(f) where f equals twice the square of common
trends (unit roots) in the model and ¢ = 0.85 — 0.58/ f. Doornik (1998) gives an approxi-
mation using the Gamma distribution and Larsson (1999) derives tail approximation of the

asymptotic distribution using multivariate saddlepoint approximation.
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The asymptotic nature of the LR tests for cointegration has triggered various Monte
Carlo studies in the literature. For example Toda (1995) investigates through Monte Carlo
simulation the finite sample performance of LR tests for cointegration proposed by Jo-
hansen (1991a). His findings suggest that a sample size of at least 300 observations is
required in order for the tests to achieve good performance, over the values of the nuisance
parameters and the cointegrating rank. In addition, Toda (1994) examines the finite sample
properties of LR tests for ‘stochastic cointegration’ (i.e. linear combinations of variables
are trend stationary) proposed by Johansen (1994) and Perron and Campbell (1993). He
finds (as in Toda (1995)) that these asymptotic test procedures exhibit sensitivity to the
value of the stationary root(s) of the process and to the correlation between the errors of the
stationary and non-stationary components. In both papers (Toda (1994, 1995)) the analysis
takes place in the framework of a bivariate VAR transformed into ‘canonical form’.

Moreover, there are works that examine small sample corrections of the LR tests
for the cointegrating rank. For the bivariate first order model Nielsen (1997) provides a
new asymptotic distribution whose moments approximate well the finite sample moments.
Johansen (1999) derives the Bartlett correction for the LR test for the cointegrating rank in
a VAR model.

Since the LR tests for the cointegrating rank have been so widely applied in empirical
research it is of interest to study their behaviour under various types of misspecification of
the SM, used for cointegration testing. The robustness of the LR tests for cointegration was
investigated using Monte Carlo simulations under omitted or irrelevant (redundant) step or

impulse dummy variables (Andrade et al. (1994)), dynamic misspecification using a DGP
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with autoregressive and moving average dynamics (Boswijk and Franses (1992), Cheung
and Lai (1993)). and non-normality assuming non-symmetric and leptokurtic innovations
(Cheung and Lai (1993)).

The purpose of this thesis is to investigate the behaviour of LR tests for cointegra-
tion proposed by Johansen (1988, 1996), under misspecifications, analytically (asymptotic
analysis) and via Monte Carlo simulations. By misspecification we mean that the model fit-
ted to the data (the SM) and used for cointegration testing differs from the DGP in terms of
specification of either the deterministic components or the endogenous variables included
in the VAR model. Thus, we examine the effects of two types of misspecification: intercept

shifts and irrelevant or omitted variables.

1.1 Intercept shifts

The LR tests for cointegration proposed by Johansen (1988, 1996) were derived under
the assumption of constant parameters in the error correction model (ECM) and correctly
specified deterministic components. However structural changes in the economy such as oil
shocks or policy regime shifts induce the estimated parameters in a SM to change over time.
If those changes are left undetected and therefore unmodelled, their presence will invalidate
the use of inferential procedures that assume parameter constancy. One of the issues we
seek to explore is the robustness of Johansen’s (1988, 1996) LR tests for cointegration
when intercept shifts, represented by step dummies, are present in the DGP but not in the
VAR model used for performing cointegration tests (the SM). Thus, the DGP consists of

non-stationary (/(1)) variables, which are cointegrated, and some of them possess intercept
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shifts. Under these assumptions we find that the test statistics tend to infinity as the sample
size increases, therefore the true null hypothesis of cointegrating rank 7 is rejected with
probability that tends to unity as the sample size tends to infinity. In addition, we investigate
the impacts of intercept shifts via Monte Carlo simulations in a setup that allows us to
control, to some extent, the local power of the tests. We conclude that the tests are not robust
to this form of misspecification since they lead to the acceptance of spurious cointegrating
relations as the sample size and the magnitude of the shift are increased. The results of the
simulations are in accordance with the asymptotic analysis.

Andrade et al. (1994) study the effects of impulse and step dummy variables on the
Engle and Granger (1987) procedure and Johansen (1988) tests for cointegration, using a
bivariate model. In the case of the Engle and Granger procedure they examine dummies
included in the SM and therefore in testing, but not in the DGP and vice versa, whereas
for the Johansen procedure they investigate only the case of dummies in the SM. They find
that the impact of a step dummy on the performance of the tests is greater than that of
an impulse dummy. When a step dummy is included in the DGP they find that the Engle
and Granger procedure suggests spurious stationarity. When the step dummy is present
in testing all tests under consideration are found to over-reject the true null hypothesis of
no cointegration and one cointegrating vector for the Engle and Granger, and Johansen
procedures respectively.

O’Brien (1996, 1997, 1999) provides an asymptotic analysis and Monte Carlo sim-
ulations for the case that step dummy variables (operative at a common or different dates)

are present in the DGP but not in the SM. He proves that among a set of uncorrelated ran-
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dom walks (thus he considers only the null case of no cointegration) the false hypothesis
of cointegration is accepted with probability one as the sample size tends to infinity.

The presence of a structural break or a shift in the intercept of univariate autoregres-
sive (AR) processes, has considerable consequences on unit root tests, which can be viewed
as the predecessors of cointegration tests. Hendry and Neale (1991), conduct a Monte Carlo
investigation and conclude that the power of standard ADF or DF tests, to distinguish be-
tween a non-stationary series and a stationary one with an intercept shift, is low. Perron
(1989) shows analytically and by a small Monte Carlo experiment, that the unit root hy-
pothesis cannot be rejected by the standard tests against trend stationary alternatives, when
the DGP is a trend stationary AR process with a break, in either the intercept or the slope
of the linear trend, or both. He extends the DF testing procedure to the case that there is
one-time exogenous (known) shift (in the intercept or in the slope of the trend or both) un-
der both the null of unit root and the alternative of trend stationarity. Perron and Vogelsang
(1992) provide a class of test statistics along with simulated critical values for testing the
null of a unit root when there is a change in the mean at an unknown date, under both the
null and the alternative. Other relevant works in the literature include Zivot and Andrews
(1992) and Banerjee et al. (1992). Zivot and Andrews (1992) consider a variation of Per-
ron’s (1989) test in which the structural break is only under the alternative and the choice
of the date of the break is estimated rather than being exogenous. For this purpose they
suggest the minimum one-sided ¢ statistic (for testing the null of unit root) over all possible

dates of the break. Banerjee et al. (1992) give the asymptotic distributions and simulated
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critical values for recursive rolling, and sequential tests for unit roots and/or shift in the
coefficients of the AR process.

There are also studies that investigate the effects of structural breaks on the tests for
cointegration and some of them propose tests for parameter stability in cointegrated models.
For example, Campos et al. (1996) compare via Monte Carlo experiments, the power of the
DF test for cointegration and of ¢-test on the coefficient of the error correction term. They
consider a dynamic model reparametrised as an ECM, where the marginal process of one
of the cointegrated variables is stationary with a structural break. Their analysis suggests
that the ¢-test based on the ECM is more powerful than the DF test, when there are no
common factor restrictions in the DGP. However, under the occurrence of both a break
and a unit root only the marginal process is considered. Gregory et al. (1996) employ a
‘linear quadratic model’ to evaluate, using Monte Carlo simulations, Hansen’s (1992) tests
for structural breaks in the cointegrating relations. They also use Monte Carlo experiments
to examine the behaviour of the ADF test for cointegration, when breaks are present in the
cointegrating relation and they find considerable reduction in the rejection frequency of the
test.

For the single equation framework Hansen (1992) and Quintos and Phillips (1993)
provide Lagrange multiplier (LM)-type tests for parameter stability in cointegrating regres-
sions. The tests proposed by Hansen (1992) refer to all the coefficients of the cointegrating
regression (full cointegrating vector), whereas the tests of Quintos and Phillips (1993) can
also be applied to a subset of the cointegrating coefficients. Some of the statistics they pro-

pose can be used to test the null hypothesis of cointegration against the alternative of no
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cointegration, which is equivalent to testing parameter constancy against a random walk
alternative for the intercept coefficient. Hao (1996) compares the various statistics sug-
gested by Hansen (1992) and Quintos and Phillips (1993) analytically and via a Monte
Carlo study. He also suggests a test for cointegration which is robust to a discrete jump
in the intercept. Gregory and Hansen (1996a, 1996b) provide ADF, Z, and Z; -type tests
for testing the null of no cointegration against the alternative of cointegration. The inter-
cept and/or cointegrating slope coefficients are allowed to change at an unknown date only
under the alternative.

For the multivariate framework Quintos (1997) proposes tests for rank stability and
tests for the stability of the long-run matrix in an ECM, under the assumption of correctly
specified cointegrating rank. Kuo (1998) proposes LM-type tests for non-constancy in
subsets of the cointegrating coefficients when the non-constancy of the parameters is ei-
ther in the form of random walk coefficients or single jump at an unknown date. Seo
(1998) suggests LM statistics for structural change in the cointegrating vector and/or ad-
justment coefficient vector at an unknown change point, under known cointegrating rank
and a normalisation of the cointegrating vector. His tests are based on maximum likelihood
estimation of the ECM and do not require sequential estimation, unlike some of the tests
mentioned above, which in addition require fully modified estimation (e.g. Hansen (1992),
Kuo (1998), Quintos and Phillips (1993)). Hansen and Johansen (1999) propose methods
of testing parameter constancy in a cointegrated VAR model based on recursive estimation

of the model and suggest tests for constancy of the long-run parameters in an ECM.
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Saikkonen and Liitkepohl (1998) propose LM and LR-type tests for the cointegrating
rank of a VAR process, when some of the variables have a shift in the mean (modelled by
step or impulse dummies) at known date. The first stage of their procedure involves the es-
timation and subtraction of the deterministic parts (including the impulse and step dummy
variables) of the model and at the second stage the cointegration rank of the adjusted series
is tested. They find that the inclusion of step and impulse dummies in the model and the es-
timation of their coefficients do not affect the asymptotic distribution of the tests. Johansen
et al. (2000) propose a LR test for the cointegrating rank in a model with piecewise lin-
ear trend and known breakpoints. The asymptotic distribution of the test statistic depends
on the relative length of the regimes induced by the breaks. Inoue (1999) proposes tests

of the cointegrating rank in the presence of a trend break, at an unknown date under the

alternative hypothesis.

1.2  Irrelevant or omitted variables

One of the motivations for studying the effects of irrelevant or omitted variables is the
well-known results from the standard regression analysis, namely that (i) the ordinary least
squares estimators (of the regression coefficients and the variance of the errors) are un-
biased but inefficient when irrelevant variables have been included in the SM and (ii) the
ordinary least squares estimators are biased when relevant variables have been omitted from
the SM.

For this type of misspecification we investigate analytically and via Monte Carlo sim-

ulations the effects of irrelevant I(1) variables in the SM and omitted /(1) variables from
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the SM, on the inference about the cointegrating rank. The consistency of the estimators of
the parameters of the ECM under this form of misspecification is also considered. We show
that the inclusion of irrelevant variables does not affect the inference about the cointegrat-
ing rank or the consistency of the estimators of the cointegrating vectors and the adjustment
coefficients. However, simulations show that the inclusion of irrelevant variables leads to
reduction in the power of the tests. We also show that omission of relevant variables from
the SM leads to either failure in detecting cointegration or underestimation of the cointe-
grating rank. Moreover, in the omitted variables case, we show that although the estimator
of the detected cointegrating vectors is consistent, this is not the case for the estimator of
the adjustment coefficient matrix.

This second type of misspecification under consideration can be seen as overspeci-
fication or underspecification of the statistical model used for cointegration testing. This
means that with respect to the DGP, either some variables have been omitted from the SM
(underspecification) or some of the variables included in the SM are irrelevant (overspeci-
fication).

Podivinsky (1998) investigates the performance of the LR tests for cointegration
when there is a mismatch between the variables used in the SM (used for the cointegra-
tion tests) and the variables entering the true cointegrating vectors. Using Monte Carlo
simulations he finds that the LR tests performed on an overspecified SM detect at least the
true number of cointegrating vectors. He also finds that LR tests based on only two vari-

ables: (i) have low power when there are in fact two cointegrating vectors among three
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variables, and (ii) may not detect the cointegrating vector if there is only one cointegrating
vector among three variables.

The issue of omitted variables in relation to the LR tests for cointegration was also
considered in the applied econometrics literature (see e.g. DeLoach (2001)).

Finally, other works in the literature relate to the effect of including an irrelevant
random walk in the SM, on the test for ‘Granger non-causality’ using the Wald statistic,

see Ohanian (1988) and Toda and Phillips (1993).

1.3 Organisation

The organisation of the subsequent chapters is as follows. Chapter 2 gives an overview of
Johansen’s maximum likelihood estimation method of cointegrated models and LR tests for
the cointegrating rank. Chapter 3 considers the algorithm used in the Monte Carlo simula-
tions for computing the trace and the maximal eigenvalue statistics as well as the estimates
of the cointegrating vectors and adjustment coefficients. Chapter 4 employs asymptotic the-
ory to examine the effects of the presence of intercept shifts (occurring at either different
dates or a common date) in the DGP (given by a cointegrated VAR process) on the infer-
ence about the cointegrating rank, when the SM does not account for those shifts. Chapter
5 provides an extensive Monte Carlo investigation of the performance of the LR tests for
cointegration using the trace and the maximal eigenvalue statistics, in the presence of in-
tercept shifts. Chapter 6 considers the effects of including irrelevant /(1) variables in or
omitting relevant /(1) variables from the SM, on the inference about the cointegrating rank

and the consistency of the estimators of the parameters in the ECM. Chapter 7 concludes.
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1.4 Notation

The symbol *——" denotes a mapping or function. [r] gives the largest integer that is
less than or equal to n, L is the lag operator and A = 1 — L. tr(M) and [M] denote the
trace and determinant respectively of a square matrix M, rank(M) denotes the rank of
the matrix M, sp(M) denotes the space spanned by the columns of the matrix A, I,
denotes the identity matrix of dimension n and diag(my,... ,m,) is a diagonal matrix
with (my, ... ,m,) the elements on the main diagonal. 0 is used to denote both the number
(scalar) zero and the null matrix or vector, and its dimensions can be inferred from the
context. The symbols *—’, ‘2,2 and <%’ denote deterministic convergence, convergence
in probability and convergence in distribution respectively, as the sample size, T, tends to
infinity. The symbols O, o and O,, o, denote the order of magnitude of approximations
of deterministic and stochastic sequences respectively. Moreover, E(-), Var(:), Cov(-)
and plim(-) denote the expected value, variance, covariance and probability limit of the
argument random quantity respectively. The notation ‘Y; ~ ¢.i.d.(M, V) states that the
random variable/vector, Y; is independent and identically distributed with mean M and

variance V', N, (M, V') stands for the n-dimensional normal distribution with mean M and

1 The convergence in distribution of X, to X is equivalent to the weak convergence of F}, to F, usually
denoted by F,, = F, where F,, and F are the distribution functions of X,, and X respectively. Moreover,
since pp = p((—oc, z]) and F (similarly p, = p,,((—oc0,z]) and F},) for each 2 € R, represent the same
probability measure, 1, = pu is equivalent to F,, = F. However, the weak convergence of distribution
functions is linked to R whereas the weak convergence of probability measures (1, = u) can be used
for any metric space (see Billingsley (1968)). In this thesis we use the term ‘convergence in distribution’

denoted by 2 t0 mean that the sequence of probability measures associated with a sequence of random
variables/vectors, converges weakly to the Wiener measure (Brownian motion) or a funtional of it. A special

case of this is the central limit theorem.
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variance V' and Y} ~ [(d)’ states that the random variable/vector Y; is integrated of order

d where d = 0, 1.



Chapter 2
Johansen’s procedure

This chapter describes the maximum likelihood method, proposed by Johansen (1988,
1996), for the estimation of the parameters of an ECM under the assumption of cointegra-
tion, and the LR statistics for the determination of the cointegrating rank. In addition it
provides an outline of the procedure for deriving the asymptotic distribution of the LR test

for the cointegrating rank. This procedure will be followed in some of the derivations in

Chapters 4 and 6.

2.1 Definitions

We give some definitions that will be used throughout the thesis. The definitions were taken

from Johansen (1996, Chapter 3).

Let {¢;} be ap x 1 sequence and &; ~ 4.7.d.(0,2) for all ¢.

Definition 2.1. A stochastic process X; is said to be integrated of order zero, 1(0), if
X: — E(X;) = C(L)e;, where C(L) = Y. C;L*, C(1) # 0 and C(y) is convergent for
=0

lyl <1+ wandw > 0.

Definition 2.2. A stochastic process X, is said to be integrated of order d, I(d), d =

0,1,2,...,if AYX, — E(X,)) is 1(0).
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Definition 2.3. A p-dimensional stochastic process X, is said to be cointegrated of order
d b, CI(d.b), with cointegrating vector 3 # 0, if (i) X, is I(d) and (i) 3 X, is I(d —b),

d=1,2,...:b=1,2,...d

In this thesis we deal with the case C'I(1, 1) that is I(1) processes, linear combina-

tions of which are 7(0).

2.2 The model

Consider a p-dimensional process X, generated by a k-th order VAR,
Xrt - Hl/Yt—J “*‘ Lo + HkXt—-k + @Dt + Et, t —_— 1,2, P ,T (21)

for fixed values of X_,.1,...,Xp and g, ~ 1.4.d.N,(0,€). D, is a ¢ x 1 vector of deter-

ministic terms such as constant, linear trend, seasonal dummies, intervention dummies or

other non-stochastic and fixed regressors.
k
The characteristic polynomial of (2.1), A(y) = I, — >_ I3, satisfies the condition
i=1

that if |A(y)] = O then either |[y| > 1 or y = 1, which ensures that X; can be made

stationary by differencing.

Equation (2.1) can equivalently be written in an error correction form,

k-1
AX,=TX, 1+ > TVAX, ;+®D;+5, t=1,2,...,T

i=1

N
b
B

>

k k
wherel1 =5 T, — I, and I'; = — > 1II;.

i=1 j=it1
As far as the rank of the matrix II is concerned, three cases might arise: (i) rank(II) =

p. that is II has full rank, which means that X is 1(0); (ii) rank(II) = 0, therefore II = 0
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and the VAR model can be expressed in first differences; (iii) 0 < rank(II) < p, that is II
has reduced rank, r say, 0 < 7 < p, so Il can be expressed as the product of two p x r ma-
trices o and 3 of rank r, i.e. II = a8’. Without any a priori information « and 3 are not
unique because II = aﬂ/ = aPP13 = a*,@*/ (with o = aP and g = P‘lb’l) for all
invertible 7 X r matrices P. Thus, one can only estimate the space spanned by the columns
of 3 (the cointegrating space) and the space spanned by the columns of . The matrices
o and [ correspond to the adjustment coefficients and cointegrating vectors respectively.
' X, are the cointegrating relations which are stationary although X, is not.

The characteristic polynomial derived from (2.2) is given by

k-1

Aly) =1 -y, -y - > Til—y)y

=1
and for case (iii) the characteristic equation |A(y)| = 0 has (p — r) unit roots (y = 1) and

7 roots with modulus strictly greater than unity (Jy| > 1).

2.3 Maximum likelihood estimation

In what follows we consider the model given by (2.2) under case (iii) (see section 2.2).
Thus, X; ~ I(1), 8 X; ~ I(0) and AX, ~ I(0). The detailed properties of the process X;

are given in Theorem 2.1.

The purpose of Johansen’s procedure is to derive an estimator for the unrestricted
cointegrating vectors and test statistics for the hypothesis of the cointegrating rank under

the assumption that there are at most r cointegrating vectors i.e.

H{r) :rank(Il) <r or T =af. (2.3)
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14

LetYp = AX, Yy = Xy 1, Yo, = (AX,_y,... ,AX, ,.,,D)) and ¥ = (Ty,... . Tp_y, B),
where Yy is [p(k—1)+q] x 1 and W is p x [p(k — 1) +q]. Using the above notation together

with the rank restriction (2.3), (2.2) can be written as
Yoo = af Y+ WYy + &, t =1,2,..., T (2.4)

where U is unrestricted. Reinsel and Ahn (1992) analyse the case where constraints can be
imposed on the coefficient matrices of the first differences of the variables (i.e. restrictions
on['y,...,T't_1). Since the coefficient of Yj; has reduced rank the technique of reduced

rank regression has to be employed, see Anderson (1951). The log-likelihood function of

the problem is

T T
log L(a, 5,9,Q) = —Eplog(%‘)—glog 12 (2.5)

T
1 ' 7 ’
““2‘ Z(th —af Yy — ‘I’YZt) Q_I(Y()t ~af Yy — ‘I’YQt)
t==1
Concentrating (2.5) with respect to ¥ we obtain the following first order condition,
T
S (Yor — af Yi, — UY3,)Ys, =0 (2.6)
t=1
and ¥ denotes the maximum likelihood estimator of U, see equation (2.8).
Define the product moment matrices as
T

My =T Y4V, i,5=0,1,2 (2.

t=1

[}
~1
N

Then from (2.6) we have,

U, B) = Moo M3yt — a8 Myg My} (2.8)
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which is the unrestricted estimator of ¥ for fixed o, & and 2. By substituting (2.8) into

(2.4) we get the residuals

¢ = Ry — CYﬁlRu (2-9)

oy

where Ry, = Yoi— Mog My Yor and Ry; = Yi,— My M,'Ya,. Thus, Ry, are the residuals we
obtain from the regression of Yy, (or AX;) on Y5, (or AX,_q,... ,AX, k11, D) and Ry,
are the residuals from the regression of Y7, (or X;_1)on Yy, (or AX; 1, ... ,AX; 1, Dy),
by application of Frisch-Waugh Theorem (see Davidson (2000, p. 8)). Therefore, (2.9) can

take the form of a reduced rank regression in the residuals,
R()t = CY:BIth -+ ét (210)
with the following log-likelihood function,
T T
log L{c, B,¥,82) = -—-;2-Z—) log(2m) — 3 log |€] 2.11)
1z
~5 > _(Bo = af Ry,) Q7 (R, — of Bu,)
=1
which is the log-likelihood function concentrated with respect to .
Define the residual sums of squares as
T
Siy=T™'>  RyRy, = My; — MpMy;' My, 4,5 =0, 1. (2.12)
t=1
Then the estimators of « and €2 obtained by regression of gy on 8 Ry, for fixed /3 are given
by

&(B) = SnuB(3 5118) ™" (2.13)

i !

QB) = Soo — S018(3 S118) "B Sho. (2.14)
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By inserting (2.13) and (2.14) into (2.11) we get the maximised likelihood for fixed 3,
LT = (2me)P|Q(B)] (2.15)
= (2me)?|Sop — Sor3(3 S118) 7B Suo
= (2me)?|Sool|8 (S11 — S10550" So1) 81/ 18 S11 ]
where the third equality follows from the expansion of the determinant

= |Soo|lB (Su — S1055'501) 3]

BS0 55np

= 18'SuBIS0w0 ~ So18(8 S118) 715 Sol.

LT (L) is minimised (maximised) among all p x r matrices 3 by solving the eigenvalue

problem
[pS11 — (S11 — S10S55-So1)| = 0

or for { = (1 — p) by solving

lCSll - 5105&)15011 = 0 (216)
with eigenvalues 1 > é P> > ip > 0 and eigenvectors V = (1, ... , Up) normalised by
V'SuV =1,

The estimates of the cointegrating vectors are given by 8 = (01,...,%), that is

the eigenvectors that correspond to the r largest eigenvalues. Thus, the eigenvalues found
by the reduced rank regression technique are the squared sample canonical correlations
between Ry, and Ry, in other words they are the squared sample canonical correlations

between AX; and X,;_, after removing the effects of lagged differences and deterministic

terms.
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Having found 3 we substitute back into (2.13) and (2.14) to find & and €.

The maximised likelihood function is
L7T(H(r)) = L7T = | Sy H(l -¢) (2.17)
=1

because the normalisation of the eigenvectors leads to B S8 = I and 3,5105'5015015 =
diag(Cy, .. - ,C,). Using (2.17) we can derive the LR test statistics for the hypotheses (i)
H(r) against H (p) and (ii) H(r) against H(r + 1). The trace statistic

—2log Q(H(r)|H(p)) = =T ) _ log(1—¢,) (2.18)

i=r+1
corresponds to (i) and the maximal eigenvalue statistic

A

—2log Q(H(r)|H(r + 1)) = —T'log(1 - (,.4) (2.19)

corresponds to (ii).

The asymptotic distribution of (2.18) is given by

—2log Q(H (r)|H(p)) % tr{ /O (dB)F'|[ /O FF du]™ /0 F(dB)'}. (2.20)

B isa (p—r)-dimensional Brownian motion, and the elements of F’ depend on the elements
of B and on the deterministic terms in the model. (2.20) was tabulated, for alternative
specifications of the deterministic components, by Johansen (1988, 1996), Johansen and

Juselius (1990), Osterwald-Lenum (1992) and MacKinnon et al. (1999) using response

surfaces.
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2.4 Asymptotic distribution

The asymptotic distribution (2.20) is derived in Johansen (1988, 1996) and the limiting
result holds for independent and identically distributed errors, without assuming normality.
The basic tool needed for the derivation of (2.20) and for various results in this thesis is the

Granger Representation Theorem, which is given below.

Theorem 2.1% (Granger Representation Theorem). Let X, be defined by (2.2) for t =
1,2,... ,andlet 11 = aﬁ/for a and 3 defined as above. Assume ]alFﬁL[ £ 0, where o
and 3, are p x (p — r) matrices of rank (p — r), orthogonal to o and 3 respectively (i.e.
oa=08=0),andT = I, — kz_jllfz Define C = 3, (a T8,) " a,. Then, AX, —
E(AX,) and 8 X, — E(8 X;) can I;e given initial distributions such that AX; ~ I(0),

B X; ~ I(0) and X; ~ I(1). In addition AX; and X, have the following representations

AX, = C(L)(s; +®D,) (2.21)

t
X, =C (54 ®D;) + Ci(L) (s, + ®D,) + A (2.22)
i=1

where A = ﬁi(ﬂlﬁl)“l(ﬁlXo —Y,) ice. it is such that 8 A = 0 and Y, depends on a,
oy and gg. C(L) = C(1) + (1 — L)Cy (L) and C(1) = C. C(y) = Y y*C; is convergent
i=0
Jor [yl < 1+w,w>0. Ci(y) = Y. y'Cr, where Cy; = — Y C;, 1 =0,1,...,isalso
+=0 j=irl

convergent® for |y| < 1+ w,w > 0. Furthermore, C1(1) = —dC(y)/dyly=1 = — Z 1C;.
i=1

Proof. See Johansen (1991a, 1996).

2 The theorem is adapted from Johansen (1991a, Theorem 4.1) and Johansen (1996, Theorem 4.2} .
3 This follows by Lemma 4.1 in Johansen (1996).
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The assumption that |/, '3, | # 0 is a necessary and sufficient condition for A X, —
E(AX,) and 8 X, — E(3 X,) to be given initial distributions such that they become 1(0).

Next we give an outline of the derivation of (2.20). Detailed derivations can be found
in Johansen (1988, 1996). We present the results for the case where ®D; = p, i.e. there is
an unrestricted constant in the model (2.2).

From the representation (2.22) we can see that when ®D; = p the process X; is the
sum of a random walk, a linear trend, an infinite moving average process (stationary) and a
constant. Therefore, the process X, behaves differently in different directions, depending
on which linear combination of the process we consider. To see this, let y and 7 = C'u be
p X (p—r—1)and p x 1 respectively such that 3, v, and 7 are mutually orthogonal and
(8,7, 7) is p X p and has rank p. In the 3 direction, the matrix of cointegrating vectors 3,
eliminates the non-stationary component since 8'C = 0and 8 X, is a stationary process.
If we consider the linear combination ' X, then the random walk component dominates,
since "/l7' = (. In the 7 direction, the process 7 X, is dominated by a linear trend.

Below we give some results concerning the asymptotic behaviour of 5;; ¢,5 = 0,1 in

various directions, which are used in the derivation of (2.20),

Soo = Zoo (2.23)
351185 S (2.24)
85y 2 Ta (2.25)

bo
b
(@2}
N

1
T~ BpSy,Br % / GG du (2.
/0
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I

'l
Br(Sip — S118a) % / G(dW)
WA

BrS18 € 0,(1) (2.28)

250 2/3,3
d

G=1(rr) LG = [ y oW o {72 J, with 77125 X,
d

5 CW (u), W(u) = W is a Brownian motion with variance matrix  and 717 X (Tu] = Us

where Var( { AX, } |AX; ... AX; pq) = [ 2o :Oﬂ } Br = (3, T~Y?%) with
-1

¥ =7(7"

€ [0, 1]. For the proofs of the above results see Johansen (1996, pp. 146-148).

Using the above results and the fact that the ordered solutions of (2.16) are continuous
functions of the elements of S;; 7.7 = 0,1, we can show that the r largest eigenvalues of
(2.16) converge to the eigenvalues of [(Zs5 — Y305 Tos| = 0 and the (p — ) smallest
eigenvalues of (2.16) converge to zero at rate 7.

Let A = (3, T~Y2By) and S(¢) = (S11 — S10555"So1, then by (2.23)-(2.28),

|ARS(C)Ar| 2

Cz',gg 0 _ 25026'0120’3 0
0 ¢f, GG'du 0 0

1
1255 — Za0Eap ZoslI¢ / GG du
[

which shows that there are (p — r) zero eigenvalues since the stochastic matrix fol GG du

is assumed to be positive definite almost surely.
The asymptotic distribution is derived under the null hypothesis that the cointegrating
rank is r. Let {, be an eigenvalue of (2.16) such that |S(C;)] = 0. We then consider the

asymptotic behaviour of IS (é Z)} in the stationary and non-stationary directions using the
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following scaling,

i@ﬂﬂﬂQWBﬂlzf“

= |8'S(C)BIIB7[S(C,) — S(C,)B(8 S(C,)8) 8 S())Br| = 0.
For any of the (p — r) smallest eigenvalues we have
Téi—‘i—)/{i, forr+1<i<p

assuming that the asymptotic distribution of x; exists, see Davidson (2000, Chapter 16).

Using again the results (2.23)-(2.28) we have

3'S()8 = (TCHT 8 S1B) — 8510855018 2 — S50 Tow

and

Br[S(¢) — S(C)B(8'S(C)B) 8 S(C,)]Br
= (T) (T BySi1Br) — BpSay (¢ Qo) e S1oBr + 0,(1)

1 1 1
< lwz/ GG du — / G(dW’)/ai(a’lQal)’la;/ (dW')Gl.
0 0 0

In the second equality the identities g3 = aXgs and X5 — Sta(a Sia) o' Sy =
o (o, Qay )~ la| are used, see Johansen (1996, p. 142).
Since 3'S(C,) (3 has full rank asymptotically (£ 0555 Log is 7 X r of rank 7) the (p—7°)

smallest eigenvalues of (2.16) scaled by 7" converge to the solutions of

1

1 1
ks / GG du — / G(dW) ay (o, Qa ) e, / (dW)G'| = 0. (2.30)
0 0

0

We define the standard Brownian motion B = (B;, B,) where B; = (' CQC'5)~Y/25 CTWW

and By = (o (@ Qo) e w) V2 ay (o Qo) le |\ W. F = (F,, F,), where F; =



2.4 Asymptotic distribution 36

By — [ Bydu. Fy = w —~ 1/2. Then (2.30) becomes
1 , 1 , 1 ,
mi/ FFdu— / F(dB) / (dB)F'| = 0.
0 S0 S0
From (2.18) we have

~210g QUH(M|H(p)) = —T > log(1-C)=T Y & +0,(1)

f=r4-] i=r-+1

KR f: Ky = tr{/ol(dB)F'[/OlFF'du]”l'/OlF(dB)'}.

iz 1



Chapter 3
Solving the eigenvalue problem: an algorithm

This chapter describes the algorithm used in the simulation experiments, that appear
in Chapters 4, 5 and 6, for the calculation of the trace and maximal eigenvalue statistics
as well as the estimators of the cointegrating vectors and adjustment coefficients. The
algorithm was programmed in Ox 3.00 (see Doornik (1999)) in the form of a ‘function’ to

produce the simulation results discussed in the following chapters.

Consider the ECM
k-1
AX,=TX 1+ Y TWAX, i+ @D +&, t=1,2,...,T (3.1)
=1
where X is a p-dimensional, /(1), random vector, the initial values (X _x.;....,Xy) are

fixed and =; ~ i.3.d.N,(0,Q). X}, = (X, ;.d,) isp; x 1, where p; = p+m, d; and D;
are vectors of deterministic variables of dimensions m x 1 and ¢ x 1 respectively.

Under the assumption of at most r cointegrating vectors the matrix [I* can be fac-
torised into IT* = /3 where « and 3 are p x r and p; x 7 respectively, of rank . We
assume that m deterministic variables (such as constant or linear trend) lie in the cointe-
grating space whereas the lagged differences and the deterministic variables held by D; are
unrestricted (i.e. they lie outside the cointegrating space).

The maximum likelihood method proposed by Johansen (1988, 1996). which is de-

scribed in Chapter 2, amounts to solving the eigenvalue problem

1CS11 — S10S5 Sl =0 (3.2)

(W8]
~J
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where S;; = T‘lr;rj. i.j = 0.1. ry = (rgy.... .ror) and roo= (ry.... 7). Tor
and ry;. t = 1.2.... . T are the residuals obtained from the regression of AX, and X7,
respectively on the lagged differences and unrestricted deterministic terms. The solution to
(3.2) gives 1> (> - > (> (oo = Cpun = - = 0.

The trace statistic for the hypothesis H (7) : rank(I1*) < r against H(p) : rank(IT*) <

p is given by

—2log Q(H(r)|H(p)) = =T ) _ log(1 —¢,) (3.3)

i=p-+1

and the maximal eigenvalue statistic for H(r) against H(r + 1) : rank(II*) < r + 1 is
given by

—2log Q(H (r)|H(r +1)) = ~Tlog(1~ (,.s). (3-4)
Define w, = (AX, 1,... . AX, .., D,. X ;,AX,), which is the t-th row of the T' x
(pk + p1 + q) matrix W, where W' = (w1, ... ,wr). In order to implement Johansen’s

procedure we employ the following algorithm.

Proposition 3.1. (Doornik and O’Brien (2001), O Brien (1996)). If W has full column
rank then the estimates of ¢, a and 3 can be calculated by:

(a) OR decomposition of W :
W =0QR

where Q) is T X (pk+p1+q) such that Q' Q = Lykip, +q and R is (pk+p;+q) x (pk+p +q).

upper triangular with positive diagonal elements, i.e.
Rin Rz Ris
R= 0 Ry R
0 0 R33
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where Rq1is [p(k — 1) + q] x [p(k — 1) + q|, Rus is p1 X py and Rs3 is p x p.

(b) Singular value decomposition of Ry Ry
RosRy = USRV

where U is py X pand V is p X psuch that U'U = V'V = [, and X = diag(oy, ... ,0,),

g, © = 1,....p are the singular values of R23R3'31, which are real, non-negative and

ordered oy > ... > o,. The number of non-zero singular values corresponds to the rank
-1

Of RQ’;R% .

The estimates of interest are given by

=o1+0) i=1.....p

-

where S, = [‘gJ,apxrmaﬁix.

Proof We partition Winto W = (W) W, Wj3) where W1 holds the lagged dif-
TxIplk~1)+q|Txp1y Txp

ferences of X, and the unrestricted deterministic terms. The ¢-th rows of W5 and W3 are
given by X', and AX| respectively.

From the () R decomposition we have
WW=RQQR=RR

or
W, WiW, W, Ws
W,W, WoW, WoWs; | =
W,W1 WoWs Wil
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R:MRU , Rlner, , R'Mle
RyyRn RpRio + Ry Ra RigRi3 + Roy Ros
R13R11 R13R12 “1"" R23R22 R13R13 + R23R23 'JF R33R33

Using the equality of the above matrices we get

Ry Ry = W, W, (3.5)

Riy = (R))"'W W, (3.6)

Ris = (Ry;) ™ 'W, Ws (3.7)

RiygRog = W,Wa — Ry Ryy = WylIp — Wi (W, W) "' W,]W, = TSy, (3.8)
Ry Ry = Wy, Ws — RygRiz = Wy[lIr — Wi (W, W1) "YW, [Ws = T'Sho (3.9)

RiqRas + RisRas = WaWs — Ry Ris = Wi lp — Wi(W, W) 7 W, ]W3 = T'Spo.
(3.10)

Substituting (3.8)-(3.10) into (3.2) gives an alternative eigenvalue problem,

0 = |¢S11 — S10S5" So1]

= T2 Ro||C Ly, — Ros(Ry3 Ros + Ri3Ra3) ™ Rog||T"/* Ry

= T2 Ry [|(¢ = 1)1, + [Ipy — Ras(RygRos + RagRss) ™' Raa]||T ™7 Ras|

= [T~ R0a[|(C = 1)1, + [, + Ros(RasRss) ™ Rog] Y| T~ R (3.11)
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and (3.11) follows from the equality

[Ipy + Ras(RayRa3) ™" Rog] ™" = I, — Ras( Ry Ras + RogRas) ™' Ry

by applying the formula for the partitioned inverse to the matrix [731 }?23 .
Ryy —Hg3lis

Then, (3.11) implies
| Roa(RizRsa) ™ Rog — (1= () 7'Clp [ =0 (3.12)

and (3.12) follows from the fact that the eigenvalues of (3.11) are the reciprocals of the

eigenvalues of (3.12).

From the singular value decomposition of Ra3 Rggl we have
RosRas (Rss ™) Ras = USRVV' SRU = USEU'.

The singular values of 1‘223}2??31 are the non-negative square roots of the eigenvalues of

RosRas (Rss™ 1) Rys ie. 07 = 1/C,(1 =)=, i = 1,...,p from which we have ¢, =
0?/(1+02),i=1,...,p. The eigenvectors of (3.2) which correspond to Cni=1,...,p1
are £ = (é.... ,€p, ), say, and are normalised by ESHE = I,,. The eigenvectors of

(3.11) which correspond to the symmetric eigenvalue problem
€Ly — 5751085 Son S % = 0
are given by U and £/ = S;ll/ZU. So,
B=(61.....8,) =S *US, = TV?*R;}US,,
by (3.8) and

= Sy 3 =T Y?R,US,

o



1
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by (3.9) and the above expression for 3. |

Having calculated the ¢ ;’s we can then compute (3.3) and (3.4) i.e. the LR test statis-

tics for the test for the cointegrating rank.



Chapter 4
LR tests for cointegration and intercept shifts:
an asymptotic analysis

In this chapter we use asymptotic theory to investigate the effects of intercept shifts on
the inference about the cointegrating rank. We consider shifts occurring at different dates
as well as at a common date. We also discuss the effects under alternative specifications of

the deterministic term. The asymptotic findings are checked via Monte Carlo simulations.

4.1 The model and preliminary results

The DGP is given by the following VAR(1) model in error correction form

AX, =1IX, 1 +®D, +¢, t=1,2,...,T (4.1)
where X;; is a p-dimensional vector of /(1) variables, which is partitioned into [X;, X,,]
X1t is p1 x 1 and contains /(1) variables with intercept shifts and X»; is p2 X 1 and contains
I(1) variables with a drift. The error process ; is 7.7.d. with mean zero, variance {2 and
finite fourth moments. IT = a3 where « and 3 are p X r matrices of rank rand 0 < r < p.
i.e. the variables in the DGP are cointegrated with cointegrating rank r. D; isa g X 1 vector
of deterministic terms partitioned into [z, 1] and z; is ¢; x 1 subvector of intercept shifts
thus. ¢ = q1 + 1. We consider the case of distinct, non-coincident shifts thus p; = g; and

the p x q coefficient matrix & when partitioned conformably with D, takes the following
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form,
I 0

d — p1xp1r pixl

0

P2 Xp1 pax1

44

(4.2)

For any arbitrary breakpoint ¢y, where t, = [TA], A € (0,1), a typical, e.g. the j-th,

(j =1,2,...,q) step dummy variable (shift) is given by

L_J 0 1<i<ty
Tt 6j,t0+1_<_tST.

Following O’Brien (1997, 1999) to simplify the algebra we use the de-meaned shift z;; =

T

* ok % __ m—1 *

25— Z;, where z; =T §1 z3. So,
fo==

th:{éj(A—n, 1<t<t

5j/\7 t0+1§t§T.

In addition,

Z]‘tzo, tSO
t

th = szs’ SO ZjT =0

s=1

and by rescaling the time axis,

zi(u) = zj7u, u € [0, 1]

Zi(u) = Zyry/T, ue|0,1].

Then, when we collect all the step dummies and cumulative step dummies in g1 (= p;) X 1

vectors we have z(u), Z; and Z(u) with their j-th element given by (4.6), (4.5) and (4.7)

respectively. The detailed algebraic properties of z; and Z; are given in O'Brien (1996,

1997.1999).
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The SM fitted to the data is
AX, =K\ Xo 1+ KoDy+e, t=1.2....,T (4.8)

with D, = 1 so only an intercept is included in the model.

As described in Chapter 2 the LR test statistics for the hypothesis H(r) are given by

p 14
—2log Q(H(r)|H(p) = =T ) log(1—-¢)=T Y (4.92)
1=r+1 1=r+1
—2log Q(H(r)|H(r +1)) = =Tlog(1 = (,\,) ~ TC,; (4.9b)
and &TH, e ,é“p correspond to the smallest eigenvalues of [(S1; — S10S55 So1| = 0. So,

the asymptotic behaviour of (4.9a) and (4.9b) calculated from the misspecified model (4.8)
depends on the asymptotic properties of the residual sums of squares matrices, S;; 4,j =
0, 1, also calculated from (4.8), which in turn depend on the DGP (4.1).

For the particular SM under examination, S;; = 71 tzf:l Rl»tR;t, 1,7 = 0,1, (where
Ro; and Ry, are the residuals from the regressions of A X, and;(t_l respectively on a vector
of ones) can be obtained by applying Frisch-Waugh Theorem as follows. Define the p x T’
matrices AX = [AX; AXy...AX7]and X' = [Xy X;... X7r_1] with AX; and X,_;.
t =1.2,...,T of dimensions p x 1. Let P = i(i'i)~'#, whereiisa T x 1 vector of ones,

i"=1[1,1,...,1] sothat Pisa T x T matrix. Let M = Iy — P. Then

T
Soo =T 'AX'MAX =T7' Y AXAX, - AXAX (4.10)
t=1
_ T
where AX =775 AX;. Similarly,

t=1

T
Su=T'X'MX=T"Y XX, , - XX

t=1

(4.11)
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.
where X = 7713 X;_; and

t=1

T
Si0=T X' MAX =T7'> X, 1AX, - XAX. (4.12)

t=1

From (4.10)-(4.12) it is apparent that S;;, 7,j = 0, 1, are functions of the original vector
process X;. The structure of X;, which in turn will determine the limiting properties of
Sij» 1,7 = 0,1, can be analysed using the Granger Representation Theorem. Since we
use Johansen’s (1996, Chapters 10, 11) methodology in deriving the asymptotic results
in this chapter, we apply Johansen’s (1991a, 1996) version of the Granger Representation
Theorem given in Chapter 2 (Theorem 2.1).

In what follows we give various preliminary asymptotic results necessary to establish

the final result. The asymptotic properties of X, are different in the various directions as

shown below.

Lemma 4.1. Let X, be given by (2.22) with D, = [z, 1] and ® as in (4.2) and © # 0.
Let 7 = C® be of dimension p x q. Let vy, of dimensionp x (p —r —q), p > (r + q),
be chosen orthogonal to B and T such that (3,~, T) are mutually orthogonal and span RP.

Then, when T — oc and u € [0, 1]

TV Xy % 5 CW (u) (4.13)
T7% Xy ( Zg”’) } (4.14)

where ¥ = y(v'v)"L, 7 = (7' 7)"t and W (u) is a p-dimensional Brownian motion, with

variance matrix ), on the space of continuous functions on [0, 1] denoted by C[0, 1]. Define
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the p x (p — r) matrix By as By = (7, T~Y?7) then

- , 7 CW (u)
T2 By Xy — Golu) = Z(u) : (4.15)
u
Moreover,
- . ) 5 C(W(u) - W)
TV Br( Xy — X) = Golu) — Go =G = Z(u) - Z (4.16)

u—1/2

where Gy = fol Go(u)du.
Proof. See Appendix B.

Another set of preliminary results concerning the asymptotic behaviour of the resid-
ual sums of squares is given in the following lemma. In fact the following results are similar

to those in section 2.4 (see results (2.23)-(2.28)) but the former account for the presence of

step dummy variables.

Lemma 4.2. Under the assumptions of Lemma 4.1

Soo & Lo + CORD'C' = 53, (4.17)
38118 L Tgs + G CHL)gCH(L) B = T54 (4.18)
3'S10 5 Tao + BC1H{1)gCy = T (4.19)
’ d L /
T 'BrS1Br — / GG du. (4.20)
0
T-Y?B.$.8 % Vel (1) B (4.21)

T-V2B.S L[V 0]C =V, (4.22)
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0 o
where R = { 8 0 } and T~1 ; zez, — g with (i, j)-th element 5;6; (1 — \,,) and \; =
min(A;, A;), A, = max(A;, \;). CH(1) and C; are the first py columns of C(1) and C

respectively (see Theorem 2.1) and V' = /01 Golu)z(u) du.

Proof. See Appendix B.

The results of Lemma 4.1 are similar to those in Johansen (1996, Lemma 10.2) but
Lemma 4.1 allows p; dimensions in RP for the step dummies. Comparing the results of
Lemma 4.2 with those for the standard case. i.e. no intercept shifts (see Johansen (1996,
Lemma 10.3)) we notice that the presence of step dummies in the model increases the
(conditional) variance of the stationary components, AX; (4.17) and 68X, (4.1 8) and alters
the covariance (4.19) between them. The stochastic order of magnitude of S1;3 and S
in the non-stationary directions increases by T*/? (4.21, 4.22) compared with the case that
no step dummies are present in the DGP. So these terms turn out to be O,(7T""/?) instead
of Op(1) because the contribution of the vector with the step dummies (z;) dominates the
asymptotic behaviour of the product moment matrices of the residuals.

If no shifts are present, i.e. 6; = 0 for j = 1,2,...,p1, the results of Lemma 4.2
reduce to those for the standard case.

Comparing the results of Lemma 4.1 and 4.2 with the null case (see O’Brien (1996,
1997, 1999)), we observe that in the null case the problem with the order of magnitude
appears when the random walk processes (with or without step dummies) in the model
interact with the stationary analogue (first differences) of the random walks with the step

dummies. In the cointegrated case the problem with the order of magnitude also arises from
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the interaction of the non-stationary components with the stationary, which in this case are

the first differences and the cointegrating relations (3 X,).

4.2 The effects of step dummy variables

Using the preliminary results given in section 4.1 we analyse the effects of step dummy
variables on the LR tests for cointegration. The null hypothesis is that there are r coin-
tegrating vectors, H(r), against the alternative of stationarity, H(p), (i.e. the p com-
ponents of the VAR process are stationary) with test statistic —2log Q(H(r)|H(p)) =

~

p
—T > log(1—¢,), or against the alternative of (r + 1) cointegrating vectors, H(r + 1)
i=r-1

with test statistic —2log Q(H(r)|H(r + 1)) = —~Tlog(l — Crp1) Crons- - ,ép are the

smallest solutions of

1S(Q)]=0 (4.23)

where S(() = (S11 — 5105&)1501. In the standard case (no intercept shifts), under the null
hypothesis of r cointegrating vectors the ordered eigenvalues of (4.23) converge in proba-
bility to (¢y,...,¢,,0,...,0), where (5, ... ,(, are the ordered (positive) eigenvalues of
1CZ55 — Lp0Zoy Log| = 0, see Johansen (1988, Lemma 4).

Next we analyse the asymptotic properties of S(() in the presence of intercept shifts,
bearing in mind that the ordered eigenvalues of (4.23) are continuous functions of the ele-

ments of S;;, 4.7 = 0, 1, see Andersson et al. (1983, p. 395).
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Let Ap = (3, T~Y2Br) = (3, T~"%%,T~'7) then Ay is a p x p non-singular matrix

since 3, v and 7 span RP? (see section 4.1). Hence the eigenvalues of (4.23) also satisfy
|A7S(¢) Ar| =0 (4.24)

see Anderson (1984, p. 589). Partitioning (4.24) we get

388 T-V*8S(¢)Br
T-Y2B;S(¢)8 T 'BrS(¢)Br

|A7S(¢) Ar| =

CB' 5110 — B S10S5-S01 3 T~Y2¢3 S11 By — T~Y23 81085} So1 Br

T=Y2¢BpS1 B — T~Y2B1S10S%0 8018 T~ '¢BpS1 Br — T~ BS10S54 So1 Br =0

(4.25)

Using the results of Lemma 4.2 and (4.25) we find that
|A7S(C)Ar] 5

(Ths — S5oT55'Sas  CACHUV' = SpoS CiV
CVOLH(1) 8- VCiZ5 Sy ( Jy GGdu -V S5 OV

=|CMy — M| =0 (4.26)

where M, = Yhs | g 1011(1,){// ngg*allzgﬁ quzgo—llcl V/I |
vei1)8 [y GG'du VO X S5 VCOEg GV
M, and M, are symmetric and M is the probability limit of S1; which is by assumption

} and M = [

non-singular.

Unlike the standard case, (4.26) is not the determinant of a diagonal matrix so it is
not obvious how many of the roots of (4.23) converge in probability to positive and how

many to zero eigenvalues of (4.26).

Let F'= M, Y Mo M7 "2 then F is positive semi-definite and symmetric and

(CMy — M| = |M;||CI, — F| = 0.
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Thus, the rank of £, which is the number of non-zero eigenvalues of " and equivalently the
number of non-zero roots of (4.26), is informative in establishing an upper (lower) bound
for the number of positive (zero) eigenvalues in the limit and consequently an upper bound
for the number of spurious cointegrating vectors that might arise asymptotically.

Define

o~ [
—VOIE5 Bos(The 00 Bhs) ™ Lp—r |
a non-singular matrix (|| = 1) and

Do | %0 T 0
0 VO, N*CV

where N* = X5 — X5 Ei5(Z50 X80 )~ Z50 00 -
Then M, = QDQ’ and
rank(F) = rank(My) = rank(D)
= rank(Z5 55 Shs) + rank(VCIN*CiV')
= r+rank(VCN*C,V")
since (25,200 '3%5) is assumed to be non-singular of rank . Hence in the limit there
are more than r positive eigenvalues given that (VO N*C,V") is not the null matrix and

rank(VC{N*C,V") is positive. Thus, asymptotically there appear to be more cointegrating

vectors (cointegrating/stationary relationships) than in the DGP.

Proposition 4.1. The rank of V. C\, b say, which is at most p; (i.e. b < p;) gives an upper
bound for the number of non-zero eigenvalues, that is the number of spurious cointegrating

relationships that arise as T — oc.



4.2 The effects of step dummy variables 52

Proof’ N*isap x p matrix of rank (p—r) since (}336)/N* = 0 and therefore V* lies in the
null space spanned by the columns of X;, which has rank . So N* can be decomposed

into N* = P*P* where P* isap x (p — r) matrix of rank (p — r) and P* %}, = 0. Then

rank(VOIN'CiV') = rank{(VC; P")(VC|P*) ] = rank(VC|P") <

min[rank(VC,), (p — )] < minfpy, (p~1)] = p,

because V' is (p —r) X p1, C1isp x p; and of the restriction (p — r — ¢) > 0 indicating the

existence of the ~y direction. [ |

Proposition 4.2. The rank of VO, = [ vV o ] C' cannot exceed 1y, the number of vari-

ables with intercept shifts or lirear combinations thereof that are weakly exogenous®*.

5'C 1W( ) ( )’du 0
Proof VC,=[V 0]C =| [z 0 | e H, where H = (8 c1)718
fo uz(u ) du 0
is (p—r)xp and has rank (p—7), by definition. Partitioning o, conformably with [ V' 0 ],
(1)

0 C’fo (u)z(u)du 0 a
N Z(w)z(u)du 0 1’1;({;)” H
i f uz(u) du 0 mxé‘,_r)

(u)
5'C fo W(w)z (1) duct”
= j;) Z(u) ( dua(l) H = VOLS})H
I fuz( ) duc

Thus, rank(VC}) = mnkz(chi H) < rank(a! N ) and the rank of a(j) depends on the

2

number of variables with intercept shifts that are weakly exogenous. Partitioning « into
&(1) a(l) (1)

o= ’;ég and noting that thematrix [ @ a; | = 2 (2 has full rank, p, we
paxr

must have rank(e(V)+rank(c\”) = p;. Suppose that I; < p; rows of oV are zero, which

+  We refer to the notion of weak exogeneity as it is given in Theorem 8.1 in Johansen (1996).
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means that /, variables with intercept shifts are weakly exogenous, and that the remaining

(1)

(p1 — 1) rows are linearly independent giving rank(a'Y) = (p; —1,). Then, [; rows of & 1
must be non-zero and linearly independent with rank( a(j)) = ;. Hence, rank(VC}) < I
and Proposition 4.2 follows. Second, suppose rank(aV) = (p, — I1), but oV contains no
zero rows. If we take appropriate linear combinations of the p; variables involved, we can
generate a transformed oY with [; zero rows corresponding to weakly exogenous linear

combinations of the shifted variables. Finally, note that we can transform an ECM such

that the adjustment coefficient matrix « has r linearly independent rows and (p — r) zero

rOWS. B

Corollary 4.1. If a(ﬁ) = 0 which together with the restriction rank(cM)) + mnk(ai1> )
= py imply that &V # 0 and rank(aV) = p, i.e. none of the variables with intercept

shifis is weakly exogenous, then rank(VC}) = 0.

Corollary 4.2. If the variables without intercept shifts are all weakly exogenous i.e. /¥ =

0 (which implies rank( a(f)) = po) and the cointegrating rank equals the number of vari-

ables with intercept shifts (r = p,) then mnk(a(j) ) =0.

Corollaries 4.1 and 4.2 describe special cases, where spurious cointegration does not

arise, despite the presence of intercept shifts in the DGP.
Corollary 4.2 uses the fact that rank(c, ) = (p—r) and if r = py, rank(ce)) = ps =
rank(ozf)) since all the linearly independent rows of «; are given by the ps rows of a(f) :

If we have 7 cointegrating relations loading on the first r variables, with the remain-

ing (p — r) weakly exogenous and the shifted variables are a subset of the former, then
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intuitively the system is driven by unshifted stochastic trends. and the shifts do not affect

its long-run behaviour.

The above analysis suggests that there are more than r (less than p—r) eigenvalues of

(4.23) which are O,(1) (O,(T™')). An intuitive explanation of this finding is given below.

Let(,, i =1,2,... ,p be an eigenvalue of (4.23) and the corresponding eigenvectors
are given by the columns of V = (9, 0, . . . , Up), then
Sll'ﬁz'a-i = 51050—01501@2', 1= 1, 2, ., P (427)

Since the eigenvectors are normalised by V'S,V = I, (see section 2.3), pre-multiplying
(4.27) by ©; we get
C, = 9,51085 Sortss 1 =1,2,... ,p. (4.28)

However, the normalisation V’SHV = [, eliminates S1; from the expression for the
eigenvalue and (4.28) is not informative about the stochastic order of magnitude of the
eigenvalue. Thus, a re-normalisation of the eigenvectors is required, see Davidson (2000,
p. 395). Let & = (i;0;)"Y/?0; be a vector of unit length and €,S1:6; = (0;;)7%, by
V'S,V = I,, then (4.28) becomes

5 6.510500 So16:
§, = GO0 90Ny oy, (4.29)
61-51161'

The stochastic order of the various terms in (4.29) depends on whether é; and hence ;
converge to a point in the cointegrating space. The following argument under correct spec-
ification (absence of intercept shifts) assumes convergence of the r eigenvectors, that cor-
respond to the r largest eigenvalues, to points in the cointegrating space, see Davidson

(2000, p. 395). We assume that this remains true in the presence of intercept shifts. There-
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fore, we expect the eigenvectors which correspond to the r largest eigenvalues of (4.23)
to converge to points in the cointegrating space. so that é;Sm and é;S 116; are O,(1) and
therefore Q = Op(1),fort =1,... r(by (4.17)-(4.19)). For the remaining (p — r) eigen-
vectors which correspond to the (p — r) smallest eigenvalues of (4.23), in the presence of
intercept shifts, we find that ;S is O,(TY?) fori =r+1,...,p, by (4.22), instead of
O,(1), but &,511&;, for i = 7+ 1,...,p behaves as in the standard case, i.e. it is O,(T)
by (4.20). Thus, the r largest eigenvalues are O,(1) and therefore ‘well behaved” asymp-
totically. However, we find that some of the remaining (p — r) eigenvalues are spuriously
O,(1) (at most p; have positive probability limits, see Proposition 4.1) instead of O, (7 ?).

Given that in the presence of ‘effective’ intercept shifts (i.e. b > 0) there are more
than r eigenvalues which are O, (1), using the test statistics designed for the standard case
(correctly specified model) we find that both tests reject the null hypothesis of » cointe-
grating vectors with probability one as the sample size tends to infinity. The maximal
eigenvalue statistic uses the largest of the (p — r) smallest eigenvalues of (4.23) which ac-

cording to the analysis of (4.26) seems to be non-zero in the limit and therefore O,(1).

Thus,

~2log QA (r)[H(r + 1)) = ~Tlog(1 = &,y 1) = Ty = TO(1) — o0
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as T — oc and H(r) is rejected with probability one. For the trace statistic which is the

sum of the (p — r) smallest eigenvalues of (4.23) we have

p 14
—2log QUH(n)|H(p)) = ~T > log1-¢)>T > ¢,
i=r-+1 1=r+1
b r
= T Y G+T Y (=TOp(1)+TOT™") = oo
i=r-+1 i=b+1

as T'— oo and H(r) is rejected with probability one asymptotically.

Below we explore the procedure followed by Johansen (1996, Chapter 11) in deriving
the asymptotic distribution of the test statistics. We find that this procedure fails in the
presence of intercept shifts since they change the stochastic order of certain residual product
moment matrices and consequently the stochastic order of the eigenvalues used in the tests.

The asymptotic distributions of the trace and the maximal eigenvalue statistics, as
outlined in Chapter 2, are derived by first finding the limit of the eigenvalue equation (4.23),
under the maintained hypothesis that the cointegrating rank is r and therefore that the (p—r)
smallest eigenvalues (associated with the non-stationary directions) are O,(7"~1). Then the
limiting expression is a stochastic (p — ) x (p — r) matrix whose eigenvalues are used in
the tabulation of the asymptotic distributions of the trace and maximal eigenvalue statistics.

Initially we consider the eigenvalue equation (4.23) in the stationary and non-stationary

directions.
(8. Br)'S(¢)(8, Br)| =
o 25 psmn | [ s I5Bes | Lo
B151,8 BpSiuBr B1S10S545m8 BrS10S0 So1 Br
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The procedure assumes that the (p — r) roots of (4.30) are O,(T"!) so as T — oc, for any
of the smallest (p — r) eigenvalues, ¢ say. we have TC — &. Multiplying and dividing the

first matrix in (4.30) by 7" and using the stochastic order of magnitude of the matrices in

(4.30) (see Lemma 4.2) we have

| oo(1) 0p(1) Op(1) OP(TUQ) —
‘“[ }‘[Op(TW) o, |'="

or, after expanding (4.30),
10p(1)] % [KOp(1) = Op(T)| =0

which is not defined as 7' — oo. Note that in the absence of intercept shifts for (4.30) we
have |O,(1)]| x |[KO,(1) — O,(1)| = 0 (see Johansen (1996, pp. 159-160)) and therefore an
asymptotic distribution. It would seem necessary to define a new direction of dimension b

and scale accordingly, but this does not seem possible.

4.3 Monte Carlo simulations

Monte Carlo simulations can be regarded as having (at least) two functions. One is to
measure the size of small sample effects, and this is deferred until Chapter 5. Another is
to verify the correctness of asymptotic results. Below we illustrate the asymptotic findings
using the results from Monte Carlo simulations. All simulation experiments are based on
10,000 replications and were programmed in Ox 3.00 (see Doornik (1999)). A detailed
presentation of the DGPs used for the simulations appears in Appendix C.

Figures 4.1 and 4.2 show the rejection frequency (abbreviated as rf on the vertical

axis) of the null hypotheses of one and two cointegrating vectors using the trace and maxi-
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mal eigenvalue statistics. The DGP includes four random walks, three of which have drifts,
one has an intercept shift of magnitude 0.5 (i.e. 6 = 0.5), at 7'/2, and there is one cointe-
grating vector. The true null hypothesis is rejected with frequency that tends to one as the
sample size increases. implying the incorrect acceptance of at least two cointegrating vec-
tors. The false null hypothesis of two cointegrating vectors is rejected with frequency that
does not exceed 0.11 which reflects the distortion occurring in the size of the test due to
misspecification caused by the unmodelled intercept shift.

Figures 4.3 and 4.4 show the frequency of rejecting the null hypotheses of one, two
and three cointegrating vectors when the DGP contains five random walks, two of which
have intercept shifts (of magnitude 0.5) at two different dates, 7'/3 and 27'/3. The remain-
ing three random walks have drifts. The frequency of rejecting the true null hypothesis
of one cointegrating vector tends to one as the sample size increases. The false null of
two cointegrating vectors is rejected with frequency that increases with the sample size and
which is much higher than the asymptotic size of the test. So as the sample size gets larger
the tests indicate (quite often) that there are three cointegrating relations, as the asymptotic
analysis suggests.

Figure 4.5 shows the rejection frequency of the true null hypothesis of one cointe-
grating vector when the DGP consists of four random walks, one of which has an intercept
shift (of magnitude 0.5 at 7'/2) and is not weakly exogenous with respect to the single
cointegrating relation. The other three random walks contain drifts. In accordance with
the asymptotic result, the rejection frequency is very close to the size of the tests hence

systematic acceptance of spurious cointegrating relations is not expected.
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Figure 4.1. Frequency of rejecting the null hypotheses r < 1 (true) and 7 < 2 using the
trace statistic.
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Figure 4.2. Frequency of rejecting the null hypotheses r < 1 (true) and r < 2 using the
maximal eigenvalue statistic.
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Figure 4.3. Frequency of rejecting the null hypotheses » < 1 (true), r < 2 and r < 3 using
the trace statistic.
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Figure 4.4. Frequency of rejecting the null hypotheses » < 1 (true), r < 2 and r < 3 using
the maximal eigenvalue statistic.
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Figure 4.5. Frequency of rejecting the null hypothesis r < 1 (true) using the trace and the
maximal eigenvalue statistics.

4.4 The null case

Below we investigate how the results reduce in the null case (r = 0), without a constant
term in the DGP, which is the case analysed by O’Brien (1996, 1997, 1999) where a differ-
ent approach is followed in deriving the asymptotic results.

The directions of the process X; under consideration are v (px p—p; and p—p; = p2)
and 7 (p X py) which correspond to the stochastic trends and the non-stationary part of the

process due to intercept shifts respectively. In addition, whenr = 0, C' = [,.
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The roots of
CT, — 551" 510859 Son| = 0 (4.31)

are the same as those of (4.23). We use the fact that the eigenvalues are continuous func-
tions of the elements of 5;;, %, j = 0, 1. to investigate the stochastic order of the eigenvalues.

Let By = (7, T~Y/%7) be a p x p non-singular matrix, then

¢, — S17" 510500 S| =

(CL, — (T BrS11Br) ~H(T Y2 B1S10)Seot (Sor BrT~Y2)| = 0

and (T~*B;S11 Br) " (T2 B;.510) S (Sor BrT~Y2) = 0,(1) (by (4.20) and (4.22) us-
ing By defined in this section) which makes the roots of (4.23) and (4.31) O,(1).

Thus, an expression for the asymptotic distribution can be found,

14
S8 = tr{(T7 B 81 Br) (T By.S10) oo (S0 BrT /%)) =

=1

/

tr{(/o GG,du)_1 [ fol Go(u)z(u)/du 0 } Yoot [ fol Go(u)z(u)'du 0 ] }

i { U Gole)=() ) (J} 66 )™ Gl ) 0 } —

=tr{(/olG0( u) du) /GGdu /GO du)T:) (4.32)

where now Go(u) = [A/W( )J,Gz {V(W(u)_w) },W( u)ispy x land T35 =

Z(u) Z(u)—Z
R
hong |
Iy 0}

We can set §;’s to unity by writing Go(u) = TsGj(u) where Ts = !i o A

A = diag(s; ...5,,) and Gj(u) = [ ”VZ”EELL)‘) } with Z*(u) = A-1Z(x). Similarly G =
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YsG*. Then (4.32) becomes
1 7 + 1 ! Al
tr{(/ Gh(u)z"(u) du) (/ G*G* du)”(/ Go(u)z*(u) du)X1}. (4.33)
Jo Jo Jo
To simplify even further we consider the case p; = 1, where j; 2*(u) Z*(u)du = 0, see
O’Brien (1996). Let %' W (u) = Ws(u) then dropping « argument, (4.33) is written as
1 fl Waoz*du
tr{[ [ zWadu 0 | [F(W, Z7)]7! { 0 5 J}

S (W — W) (Wo — Wa) du [ (Wy — Wa)(Z* — Z%)du J

[ (27 = Z%)(Wy — W) du (2= Z*)du
Using the formula for the partitioned inverse and the fact that fol( Z* — Z7*)du =

where F(W,, Z*) = [

A*(X — 1)%/12 (see O’Brien (1999, equations (1) and (3), p. 25)) the limit of the trace

statistic found above becomes,
1 1
tr{/ Z*Widu[ f (W, Z*)]_l/ Waz*duXi}
0 0
where

fWe, Z7) =

fol(WrWz)(WrWﬁldu“Aml;lp Jo Wo=Wol(Z*=Z%)du [, (Z*—Z*)(Wa—W2) du

which coincides with the result in O’Brien (1999, p. 12).

4.5 Occurrence of intercept shifts at a common date

In this section we consider the case that the intercept shifts, concerning the last m, 2 <
m < pq, elements of the vector process X;, occur at a common date. The effect of this as-

sumption is to ‘redistribute’ the number of variables between the non-stationary stochastic

(v) and deterministic (7) directions of R?.
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For simplicity we use the following form of step dummy variable,

. 0, 1 <t<1y
T byt +1<t<T

and for shift dates tp;, © = m,m + 1,... ,p; we assume that to,, = toime1) = -+ = top,.

The error correction form of the model
AX, =08 X,_1+®D+¢e, t=1,2,...,T (4.34)
with all its components defined as previously, can be written as
Xe=TX, 1 +di + 2 (4.35)

where T = I, + aﬁl, d; = [ z; 0 }, zt 1s a p; x 1 vector of step dummy variables and ¢

is a py x 1 vector of constants.

Let
Y/ 0
H - O HQQ O N
0 0 I
where the submatrix Has is m x m defined as
! 0O 00 --- 0 07
-h; 1 0 0 --- 0 0
Hoy = 0 —hy 1 0 --- 0 0
0 0 00 -+ —=hpg 1]
and h; = 8(p,—m+1+i)/O(p1—m+i» © = 1,2,...,m — 1. We can then transform (4.35), by

pre-multiplying by H, into
HX, = (HYH YHX, ,+ Hd; + Hs,
or more compactly,

Xr=T"X; +d +¢ (4.36)
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7

where X = HX,, T* = HYH L dl = [z o |,z is(pi—(m—1)) x 1, p" is
(pa+(m —1)) x 1 with the first (m — 1) elements equal to zero. Then (4.36) can be written

in an error correction form as
AX! =o' X, +df +< (4.37)

since YT* — I, = H(Y — [)H ' = Haf H! = o*3* where o* = He, 3* = H™'3 and
rank(a*) = rank(5") = r.

The transformed system (4.37) has the same properties as (4.34), since H is non-
singular, but the dimensions of the non-stationary directions change. The dimension of the
non-stationary deterministic direction (7) is reduced by (m — 1) and becomes p; — (m —
1) + 1,= ¢* say. The non-stationary stochastic direction (vy) is increased by (m — 1) and
becomes [p; — (m — 1)] +[po+ (m—1)]—r—(pr—(m—1)+ 1) =p—r — g*, since
the number of variables with the intercept shifts is reduced by (m — 1) and the set of non-
shifted variables now involves ps random walks with drifts, as before, and (m — 1) random
walks without drift.

The method of analysis presented in section 4.2 can be similarly applied using (4.37)
and appropriately modifying the dimensions of y and 7. In this case the matrix V' is (p —
r) x [p; —(m—1)] and C} is p X [p1 — (m — 1)]. Therefore an upper bound for the number

of spurious cointegrating relations that arise as 7' — oo 1s given by
rank(VC;) <min(p—r, pr — (m—1)) =p; — (m — 1)

sincep — r — (py — (m — 1)) > 1, assuming that the v direction exists.
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Thus. when there are m variables with intercept shifts at a common date the upper
bound for the number of spurious cointegrating relations is given by the number of distinct
shifts in the DGP.

Figures 4.6 and 4.7 show the rejection frequency for the null hypotheses of one and
two cointegrating vectors, using the trace and maximal eigenvalue statistics, when the DGP
consists of five random walks and one cointegrating vector. Three random walks have
drifts, and two have intercept shifts of magnitude 0.5, occurring at a common date, 7'/2
(detailed description of the DGP can be found in Appendix C). For both statistics the fre-
quency of rejecting the true null hypothesis of one cointegrating vector tends to unity as
the sample size increases. The rejection frequency of the false null hypothesis of two coin-
tegrating vectors does not seem to indicate acceptance of a third cointegrating vector too

often, which agrees with the asymptotic result.

Trace statistic B _

10 ~ —w—e o=} ceowo e

700 B00 900 1000

- - y 7 70
oo 200 300 400 500 600 samole 5198

Figure 4.6. Frequency of rejecting the null hypotheses » < 1 (true) and r < 2 using the
trace statistic.
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Maximaleigenvalue statistic T

100 200 304 a0 500 500 709 800 G
samole size

Figure 4.7. Frequency of rejecting the null hypotheses r < 1 (true) and » < 2 using the
maximal eigenvalue statistic.

4.6 A generalisation

In this section we show that the result concerning the overestimation of the cointegrating
rank follows unchanged when we allow for a more general model. However, in the general
form of the model presented in this section it is not obvious how the weak exogeneity status
of the variables affects the results about the overfit of the cointegrating rank.

A generalised version of (4.1) would require changing the original parameter ®, &, =

I, O . & ) = . .
{ 81 ” J say, into @, = [ pxp pfl J, with rank(®) = p; to maintain the assumption

of distinct intercept shifts.

Let M = [ o D, } be a p x p full rank matrix with ®'®, = 0, then pre-

PXP1 px(p—py

multiplying (4.1) by M, we get the generalised specification,
AX; =8 X} |+ ®,D,; +¢ (4.38)

where X = M X, a* = Ma, 3" = M~V3, 8, = M®, =[ & ®,¢ |ande; = Me,

with mean zero and variance MQM'.
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The representations given below follow from the Granger Representation Theorem,

t
X7 =C"> (5 + ®Di) + Cy (L) (2} + ®,Dy) + A” (4.39)

i=1

AX; = CH(L)(eF + ®,D,). (4.40)

where C7(L) = MCy(L)M™, C*(L) = MC(L)YM™, C*(1) = C* = MCM™, A* =
M A and therefore 3" C* = fCM~' =0, 3" A* = F A =0.

Let 7* = C*®,, and v* be chosen such that (3%, v*, 7*) are mutually orthogonal and
span RP, then the preliminary results given in section 4.1 can be derived in the same way

using (4.39) and (4.40), and can be restated as follows:

Spy 2 Mg M (4.41)
3788 B T (4.42)
3781 2 ThM (4.43)

/ d 1 ’
T7'ByS; By = / G*G* du (4.44)

J0
where B = (75, TV%7), 7 = v*(v"y*)"L 7 = m(r" )", G* = G — fol Ggdu,
¥ C*W*(u)
G§ = Z(u) and W*(u) = MW (u);
U

TR S8 L Ve Cr(1) 6 (4.45)
TRy S, L vd C (4.46)

where V* = ﬁjl Gyz(u) du.
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Syj» ¢, 7 = 0,1 are the residual product moment matrices calculated from (4.38) and

»*

51, J = 0,3 are just the expressions defined in section 4.1.

Let A% = (8", T7Y2B%) and S*(¢) = (S}, —S7,S5 ' S;;» then the limit of the scaled

form of the eigenvalue equation | A% .S*({)A%| = 0 is given by
A5 S*(Q) Ay 5 1CM; = M3] =0

3 grer1)eve
Py /33 7 L / d
v Cr1) 8 [ GG du }an
T T 7 LA
2 V' CH M IS Sy, VRO (M M) TICr eV

As M and M} are symmetric matrices and M is non-singular

where M{ = [

(M} — M| = |Cl, — F*| =0

where [ = N[f'l/ZlW;ZV[f—l/Z. M can be decomposed into M3 = Q*D*Q* where

Q* = - Iy 0 } and
—Vr® O M 555 555 (S50 %00 Boa) T T
pro | Ta¥o % 0 .
0 V' C* M -IN*MC*oV* |

The rank of F* gives the number of non-zero eigenvalues in the limit and

rank(F*) = rank(Ms) = rank(D")

= rank(S5,550 ' Sag) + rank(V*'C M TINTMTICT RV,

Decomposing N*, as in section 4.2, into N* = P*P*¥, where P*isap x (p — r) matrix of

rank (p—r), we can find an upper bound for the number of spurious cointegrating relations

that is given by

rank(V*® M~'C'N*CM~1®V*) = rank(V*® M~1C'P*) <
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min[rcmk(V*(i)f)7 p—r]=min(p,. p—r) =p

as in section 4.2, because V* is (p — r) X py, P is p X p; and has rank p;, and of the
assumption (p — r — q) > 0 which assures the existence of the direction 7*.

The key expression in this case is V*® and because of the presence of the matrix
® the exogeneity status of the variables does not seem to affect the upper bound for the
number of spurious cointegrating vectors. When V*&' C* = 0 spurious cointegration does
not occur and this happens if aié = 0 i.e. when the cumulative shift does not enter the
level of the process (see (4.39)).

When m of the intercept shifts occur at the same date, there are p; — (m — 1) distinct
intercept shifts and ® does not have full column rank, in fact rank(®) = (p; —m+1) and

then the upper bound becomes (p; — m + 1) i.e. the number of distinct shifts in the model

(see also section 4.5).

4.7 Co-breaking

Co-breaking refers to the elimination of deterministic shifts using linear combinations of
variables, either at the same point in time (contemporaneous co-breaking) or at different

points in time (intertemporal co-breaking). Co-breaking is defined for processes with well-

defined unconditional expectations.

Let {Y;},t=1,2,..., be a p-dimensional stochastic process, whose unconditional

expectation around an initial parameter ¥ at t = 0 is given by

E(Y: —¢) = py ] < o0
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then we have the following definitions (Clements and Hendry (1999, pp. 249-252)):

Definition 4.1. The p X s matrix F of rank s (p > s > 0) is said to be contemporaneous

mean co-breaking of order s for {Y;}if Fu, =0,t=1,2,....T.

Definition 4.2. The p x s polynomial matrix F(L) = Z F,L" of degree m > 0 with
i=0

rank[(Fy Fy... F.,_ | F.)] = s, (p > s > 0) is said to be intertemporal mean co-breaking

of order s for {Y;} if F(L)'u, = 0,t = 1,2,...,T and no p x s matrix polynomial of

degree (m — 1) and rank s annihilates p,, t =1,2,... ,T.

When a process is non-stationary co-breaking can be considered in terms of func-

tions of the process which have well-defined unconditional expectations such as the first

differences or the cointegrating relations.

In order to consider co-breaking we use the general form of (4.1) given by (4.38),
where the deterministic term of each equation of the VAR model involves a linear combi-
nation of the step dummy variables and a constant.

Taking the expectations of the stationary components in (4.39) and (4.40) we obtain

E(8"X;) = B"C}(L)®,D; = 87 (C} (L)®2 + C{(1)§) = p¢

E(AX}) = C*(L)®,D; = C*(L)dz + C*p = uf.
Below we examine whether the transformed cointegrating vectors 3" are co-breaking for

p2, i.e. whether they eliminate changes in y;*.

(4.38) in mean deviation form becomes

AXF=pP + o™ (3 X —ul )+ = (4.47)
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Pre-multiplying (4.47) by #*and taking expectations we have

E(8"AX,) = 5 u? or

3 %/
Apy = 8.

IfALS = 8 C3(L)®Az = 0, for all ¢ then the mean of the cointegrating relations does not
change and the transformed cointegrating vectors, 3* are co-breaking for AX,. However, in
general 8% C7(L)®Az is not zero for all ¢, regardless of whether the intercept shifts occur
at different or at the same date. Az, is not equal to zero for all values of ¢ and 3% C}(1) % 0
(since 8% X is 1(0), see Definition 2.1). Thus, the transformed cointegrating vectors, 3,
do not seem to induce contemporaneous co-breaking for the impact of intercept shifts on
AX,.

For example when p; = 2 and the intercept shifts occur at two different dates, ;; and
too, wehave fort =2,...,T
Jt=ty +k—+1

o1
0

Azep = 50 t=tep+k+1"’
2

0, otherwise

and therefore

B Cr(1)® % Jt=tn+k+1
B CHL)OAZ = 8Cr (1)@ 5'; Jdt=tee+k+1 "~
0, otherwise

If on the other hand the intercept shifts occur at the same date, ty,

b1

= E+1
Az, = 5, :],75 to+ K+

0, otherwise
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and

- /*’ * x 51
§Ci(L)dAz = { T I { 6

0, otherwise

J,tztg%—k’—f—l

Nevertheless, the matrix o (such that o’ o* = 0) which characterises common trends is
co-breaking (contemporaneously) for changes in the mean of the cointegrating relations but

the effects of intercept shifts are not eliminated,
ol AX; = ol +ale

since the transformed system still depends on the intercept shifts affecting the mean of

AX;. Note that o eliminates both shifts in the mean of the cointegrating relations and the

cointegrating relations themselves.

Next we show that the cointegrating vectors in the transformed model (4.38) can

induce intertemporal co-breaking for changes in the mean of the cointegrating relations

under certain restrictions.

After pre-multiplying (4.38) by 3 * and taking expectations we have,

F(LYE(3*X,) =3°®,D; or

F(L)1f = 8®,D;

where F(L) = I, — (I, + 8% «*)L. Thus, intertemporal co-breaking of order r occurs if
B8®, = 0o that F(L) i’ = 0 and F(L) is a matrix polynomial of degree one.
Below we give an example in which the cointegrating vectors are co-breaking in the

intertemporal sense when there is a common shift.
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P9
3'® = 0 then the ECM takes the form

Letp:: 2,@ = {01 :lyDt == Ztyﬁ = {’gl } arldl/a1 - ¢2,/82 = —@1 Suchthat

AX, =af X1+ Oz + &4 (4.48)
Pre-multiplying (4.48) by 3 and taking expectations we have

1-(1+8a)L]E(FX,) =0 or

1-1+Fa)Lly =o0. (4.49)
(4.49) can be written in the form
F(L) =0 (4.50)

where F(L) = 1 — (1 + 8 a)L. (4.50) coincides with the definition of intertemporal co-

breaking of order 1, where the matrix polynomial F'(L) is of degree one.

4.8 A digression: alternative specifications of the
deterministic term

Consider again the model (DGP) in error correction form
AX,=afB Xey +9D,+2, t=1,2,...,T (4.51)

with all its components except ® D, defined as in section 4.1.

Since the asymptotic distribution of the LR tests for cointegration depends on the
deterministic terms in the model, we examine how alternative specifications of the deter-
ministic term, ® D;, affect the analysis in the presence of intercept shifts. There are many

cases regarding the deterministic terms depending on whether the constant and/or the linear
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trend in the DGP lie in the cointegrating space (see Johansen (1996, p. 81)) and whether
the SM coincides with the DGP. Below we analyse three cases. which are by no means

exhaustive. These cases are:

Case (i): unrestricted constant in the SM but the linear trend is absent from the level of the
process, X; in the DGP.
Case (ii): constant restricted to lie in the cointegrating space in the DGP and SM.
Case (iii): constant and step dummy variables restricted to lie in the cointegrating space in
the DGP and restricted constant in the SM.

Given the different directions in which the process X; behaves differently, and the
representation of X; and A X, given by the Granger Representation Theorem, the asymp-
totic results for the three cases can be derived. The proofs parallel those for the main case

analysed in sections 4.1, 4.2 and in the Appendices A and B, so detailed derivations are

omitted.
Case (i)
¢ C Ly 0
We assume that Co = 0, where C = { 1 2 J; ¢ = 0 © and
pPXp1  pXp2 el

Zt
Dt = pix1l |,
1

In this case the SM is estimated as in the case where the constant is unrestricted (see
section 4.1). The linear trend is absent from the level of the process X;. It follows from the

Granger Representation Theorem that

t
X,=CY e+ C1Z+Ci(L)(s+®D,) + A

=1



4.8 A digression: alternative specifications of the deterministic term 75

and
AJYt = C(L)(Et -+ @Dt) = C(L)Et + Cth + C}(L)(l - L)@Dt

The asymptotic properties of the process are considered in three different directions; the
stationary given by 0, p x r, the non-stationary that annihilates the deterministic terms
given by 7, p X (p—r —p1) and the direction that annihilates the stochastic trends, given by
7= Ch, p X p1. (8,7, 7) span R?. The residual product moment matrices, S;;, 4, j = 0, 1
1

are defined as in section 4.1 and By = (3, T-Y/?7), with 7 = y(y'y) ' and 7 = 7(7'7)~L.

Then (4.17)-(4.19) follow unchanged. We now have
/ d ! ’
T~1BT511BT - / GG du
0

where G = [ v

where Gy = {
7 d 1 7 !
T~Y2B.Sy 5 / Goz(u) duCy. (4.52)
0

Adapting Proposition 4.1 we find that the rank of the limiting matrix in (4.52), rank(V(;C;)
= b, say where b < p; and V{;) = fol Goz(uw) dua (p—r) x p; matrix, gives an upper bound

for the number of spurious cointegrating relationships as T — oc.

Case (ii)

We assume that ¢ = l pf(ppl pf} J, © = aupg so that (4.51) can be written as

AX, =afB ' X+ Pz +e,
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where 3% = [ 3 } and X | = [ X 1 ] Then,
t —~
X;=C() 2+ ®Z)+ Ci(L)(e, + BDy) + A

=1

and
AX, = C(L)(g; + ®D;) = C(L)(g; + Dz,),

where D, = [ z 1 ] In this case the eigenvalues used in the LR tests are obtained by

solving
"S5y — S70S55 Sl =0

where S5, 7,7 = 0, 1 are the product moment matrices of AX; and (X, _, 1).

35

In deriving the asymptotic results we consider the behaviour of the process X; in three
directions. The stationary direction given by 37 = [ g }, (p+ 1) x r, the non-stationary
with the restricted constant given by 4+ = [ (3/ T?/g } ,(p+1)x(p—r—p +1)and the

direction where the step dummy variables dominate given by 7+ = [ g } ,(p+1) xp. 7

and 7 are p X (p — r — pp) and p X p; respectively and mutually orthogonal. In this setup

the asymptotic results are modified as follows,

Siy L Too + CORY'C
B8, B S+ FCL(1)PRY'C

gt 56" B D45+ B CL(1)ORD Cy(1) 8
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g 9
00 01

above. Let Bf = [ v T7'/27% ] then

where R = ri 0 J as before, R = { 0 J, g is defined as in section 4.1 and @ is given

1
T-'B; S;,Bf 2 / G*G* du
0
where G* = 1 ;

1
T-12BE 51,8t % / [ Gz(u) G* ]| dud®'Ci(1)'3
0

o [Aow(w
where G = 0 and
Z(u)
’ d ! ~ / =1
T-1?BF S 5 / Gz(u) dud C'. (4.53)
0

The rank of the limiting matrix in (4.53) rank(V;®'C") = b, where Vs = [} Gz(u)'dua
(p—r+1) X p1, does not exceed min(p;, p—r) = py (i.e. b < p;) which is the upper bound
for the number of spurious cointegrating vectors. Note that in this case the restriction for
the existence of y* direction is (p — r) > (p1 — 1), which implies (p — r) > p;therefore p;

is still an upper bound.

o

Case (iii)
We assume that there are k& < r step dummy variables that lie, together with the
constant term, in the cointegrating space. Thus, ® = a®,, where @ is r x (k + 1),

Py = ® ¢y landD = [ % 1] Then (4.51) can be expressed as
t 1xk

TXE

AX;=aB X}, +¢
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where 3% = f g & ©y ] and X7 | = [ X, oz 1 J From the Granger Representa-

tion Theorem we obtain
L
X, =C> &+ Ci(L)(er+PDy) + A
i=1
and
AX, = C(L)(g; + ®D;) = C(L)e; + C1(L)(1 — L)a®z,.

The residual product moment matrices S}, i, j = 0,1 are computed as in the restricted
constant case (case (ii)), assuming that a restricted constant is included in the SM but the
presence of shifts is (again) ignored. The properties of the process X; differ in the direction
3+:[ﬁJ iB Z[BL 0 } tere B — 3 (4 811 whi

,, o | aod Br 0 TV2 (where 3, = 3,(8,3,)"") which correspond to
the stationary and non-stationary (stochastic trends) directions respectively.

The two problematic terms B.S};/3 and Br.S}, (that need to be rescaled in the pres-
ence of intercept shifts) are O,(1) in this case (as in the standard case i.e. no intercept
shifts), thus if scaled by 7-1/2 they converge in probability to zero. This is due to the fact
that the cumulative step dummy variables do not appear in the representation of the level
of X, because of the way @ is defined. Only the variances/covariances of the stationary
components seem to be affected by the presence of intercept shifts, but not the inference
for the cointegrating rank. In this case the impact of the intercept shifts is only in the form
of ‘smoothed’ dummy variables, which enter the representation of X, as an infinite-lag
polynomial for z;.

To sum up, the scaled version of the matrix, which has the same eigenvalues as the

roots of (4.23), i.e. the eigenvalues used in the LR tests, for the case analysed in sections
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4.1 and 4.2 and case (i) of this section is

(T~'ByS11Br) Y (T2 B1.S10) S5t (So1 BrT~Y?)

= (BpS11Br) ™ (BrS10)Sx' (So1 Br) = Op(1)
(with Br appropriately defined for each case) and for case (ii)

(T BF $3,BF)™ (T2 B} i) Sig (S BET ™)

= (B S11B7) " (B 810) S0 (S51B7) = Op(1)
instead of O,(T"~1) as in the absence of intercept shifts. For case (iii) we have

(T~'B7S11Br) ™" (BrSi)Sa (551 Br)

T(BySt,Br) ™ (BrSio)Seo (S5,.B1) = Op(1)
therefore

(BpSt1Br) ™ (BrSio)Sa (S51Br) = Op(T 7).
Thus, applying the trace or the maximal eigenvalue statistic, which require scaling by 7',
in the case analysed in sections 4.1 and 4.2 and cases (i) and (ii) will lead to rejection of
the null hypothesis of cointegrating rank r with probability one as 7" — co. On the other

hand, intercept shifts that lie in the cointegrating space but are omitted from the SM will

not affect the inference about the cointegrating rank.
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4.9 Concluding remarks

This chapter has considered the effects of intercept shifts on the trace and maximal eigen-
value statistics used for cointegration testing. It was shown that when step dummy vari-
ables, which capture the impacts of intercept shifts, are present in the DGP but not in the
statistical model used for cointegration testing, these statistics reject the null hypothesis
of r cointegrating vectors with probability one as T' — oc. As a result, the cointegrating
rank is overestimated. The extent of the overestimation depends on the number of distinct
intercept shifts in the DGP and on the weak exogeneity status of the variables.

The model under examination is quite simple, being a VAR(1). A restrictive assump-
tion in the analysis is the one about the existence of the non-stationary stochastic direction
(7), given by (p—r) > q. When (p—r) = ¢ the asymptotic results do not involve stochastic
terms (Brownian motions).

A possible extension of this investigation is the derivation of the asymptotic distri-
bution of the test statistics considered, in the presence of intercept shifts. Although for the
null case (r = 0) the procedure of deriving the asymptotic distribution is tractable (see
O’Brien (1999)) this does not seem to be the case under the assumption of cointegration
(r>0).

However, it seems that under certain circumstances, ignoring the presence of inter-
cept shifts leads to misleading inference about the cointegrating rank. So a priori testing for
the presence of shifts applied on the univariate representation of the processes involved in
the VAR (see e.g. Perron (1989), Perron and Vogelsang (1992), Zivot and Andrews (1992))

and/or application of cointegration tests that allow for shifts in the mean of the process (see
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e.g. Gregory and Hansen (1996a,b), Inoue (1999), Johansen et al. (2000), Saikkonen and

Liitkepohl (1998)) appear to be a ‘safer’ strategy to follow.



Chapter 5
LR tests for cointegration and intercept shifts:
a finite sample analysis

In this chapter we use Monte Carlo simulations to investigate the finite sample per-
formance of the LR tests for cointegration in the presence of intercept shifts, implemented
using the trace or the maximal eigenvalue statistic. The investigation is carried out using al-
ternative specifications for the constant term (absence of constant term, constant restricted
to lie in the cointegrating space and unrestricted constant term) in the SM, in conjunction
with alternative designs concerning the variables (shifted, non-shifted) entering the cointe-
grating vectors. The setup of the analysis allows for some degree of control over the local

power of the tests. All simulation experiments were programmed in Ox 3.00 (see Doornik

(1999)).

5.1 Local power

Since the aim of this chapter is the investigation of the finite sample performance of the
LR tests for cointegration under misspecification, it is necessary to have some degree of
control on the power of the tests so that the conclusions drawn will be conditional on a cer-
tain power level. The motivation for this is as follows. If the power of the tests for the
cointegrating rank is low, and correct inferences are difficult, mistakes caused by spurious
cointegration may be less important. In such situations inference will tend to be impre-

cise in any case. If, however, the tests for the cointegrating rank are very likely to detect
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the correct cointegrating rank in the absence of intercept shifts, but spurious cointegration
appears with appreciable probability, then it may be taken more seriously, as distorting an
otherwise clear picture. In the absence of control over the exact power, we approximate by

endeavouring to control local asymptotic power.

Below we present the theoretical framework, which is the simplest possible one,
without deterministic terms and short-term dynamics. For detailed treatments of the model
without deterministic terms see Johansen (1991b; 1996, Chapter 14). Cases involving

deterministic terms are analysed by Rahbek (1994) and Saikkonen and Liitkepohl (1999).

The model is given by
AXt :HXt—l + &t = 1*2' 7T

where &; ~ .1.d.(0,Q), Xy = 0.

The null hypothesis is

and the local alternative is
HT(T', S) : HT = OZ,B/ -+ T_lOél,Bll

where «, (8 are p x r and 1, 3; are p X s, so under the local alternative there are (r + s)
cointegrating vectors, s of which are attached adjustment coefficients whose magnitude is

inversely proportional to the sample size and therefore small. Thus, the s cointegrating

vectors cannot be easily detected by the cointegration tests.
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Assuming that the eigenvalues of the matrix (I, + 3 o) lie inside the unit circle i.e.
the process X is I(1) under H(r), then the asymptotic distribution of the trace statistic®
(2.18) (for the hypothesis H(r) : IT = /') under the local alternative Hr(r, s) : IIy =

af + T~y 3, is given by
1 v 1 / 1 7
tr{/ (dK)K (/ KK du)—l/ K(dK)'} (5.1)
0 0 0

where K is a (p — r) Ornstein-Uhlenbeck process which is defined by the stochastic differ-

ential equation
—ab' K (u) + dK (u) = dB(u), u € [0,1]
or equivalently by
—ab’ /Ou K(s)ds + K(u) = B(u), u € [0,1] (5.2)

and B(u) is a (p — r)-dimensional standard Brownian motion. The asymptotic distribution

under the local alternative depends on the parameters of the model through
a=(c Qo) V% oy
and
b=(a Qo )*(B o) 8.0,

where o, and §, are p X (p — r) matrices orthogonal to « and J respectively.

5 For a discussion on the local power of the LR test based on the maximal eigenvalue statistic see Paruolo
(2001).
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When s = 1 so that a; and 3, are p x 1 vectors the asymptotic power function

depends on

f=ba=0,Ca <0

and
¢ = dabb
= (ejai(el001) 7l a1)(B,CC'E,) = (B,Cn)?
where C = 3, (o, 3,)~*c/, furthermore when (p — r) = 1 the asymptotic power depends

only on f, see Johansen (1991b, p. 327).

The process (5.2) can be decomposed into three orthogonal directions so that it de-

pends only on a'a, b'b and b a (see equations (14.16)-(14.18) in Johansen (1996)) and for

s = 1 these are given by

~f /0“ Ki(s)ds + Ky (u) = By(u) (5.3)
—g /Ou Ki(s)ds + Ky(u) = Ba(u) (5.4)
Ks(u) = Bs(u) (5.5)

where the first two equations are one-dimensional and the third is (p — r — 2)-dimensional.

The DGPs used in the Monte Carlo analysis in section 3.2 are four-dimensional VAR
processes (p = 4) with one cointegrating vector. So we simulate the local power of the
LR tests for (p — r) = 4 to investigate the probability with which the single stationary (or

near-integrated) relation can be detected (by rejecting » = 0) for different values of f and

g.
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Since the main quantity in the expression for the asymptotic power (5.1) is the process

K. it is required to simulate the discrete analogues of (5.3)-(5.5) for (p — r) = 4,

Ky =1+T7" f)Kye-1) + e (5.6)
Kot = K1y + (T7'g) K1) + ua (5.7)
Kst = Ks(t-1) + us (5.8)

Ky = Ky-1) + ug (5.9)

t=1,2,...,T,T =400, Ko = 0, ugy ~ i.i.d.N(0,1),i=1,2,3,4.

We can then calculate

T T T
tr{d AKK (Y KKV KIAKY (5.10)
t=1 t=1 t=1
and
T T T
maxeig{ Y AKK; (> KK)) KIAK} (5.11)
t=1 t=1 t==1

where K; = (Kys, Ko, K3, Kyy) and maxeig{-} denotes the largest eigenvalue of the
argument matrix. (5.10) and (5.11) were computed for three alternative specifications of
the deterministic term in the DGP, which give rise to three alternative definitions for K;':
(1) no deterministic term, where K, = K; 4

(ii) constant restricted to lie in the cointegrating space, where K} = (K,_; : 1)

(iii) in the DGP the constant is restricted to lie in the cointegrating space but the SM allows

T
for unrestricted constant, where K = K; 1 — T "> K;1.
t=1
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The asymptotic power for different values of f and g is computed as the rejection
frequency of the null hypothesis /7 (0), by comparing (5.10) and (5.11) with the appropriate
95% critical values (under the null) given in Tables 0 and 1* in Osterwald-Lenum (1992),
for cases (i) and (ii) respectively, and in Table A2 in Johansen and Juselius (1990) for case
(iii). The number of replications is 5,000.

The tables for the simulated power function appear in Appendix D. For all cases the
probability associated with f = g = 0 corresponds to the asymptotic size of the tests,
which is 5%. For the trace test in case (i) (without deterministic terms) the power is lower
for (p — r) = 4 compared to the cases where (p — r) = 1,2, 3, which appear in Johansen
(1991b, 1996). This is a manifestation of the results stated in Johansen (1991b, 1996)
and Saikkonen and Liitkepohl (1999), namely that the power decreases as the number of
common trends, (p — r), increases, which makes it more difficult for the test to distinguish
the near-integrated process from the integrated ones. It is also observed that for both test
statistics the power is higher when there are no deterministic terms (in either the DGP or
the SM). The same result was found by Saikkonen and Liitkepohl (1999) for the trace test
and (p — r) = 1, 2, 3. Moreover, looking at the tabulated values of the local power, neither
test seems to dominate uniformly the other (in terms of local power). The trace test appears
to have higher local power for moderate values of f and g, whereas the maximal eigenvalue
test tends to be more powerful (locally) for extreme values of f and g. This observation is

in agreement with the findings of Paruolo (2001) for (p — r) = 1,2, 3.
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5.2 Monte Carlo experiments
The general form of the DGPs written in error correction form is given by

AX, = aﬁ*lXt*—l +®oz e, t=1.2,...,T (5.12)

/

=[5 u]

G =18 8 By Bl X =[X 110 = |, 0, |andzisazxi

where X is a four-dimensional 7(1) process, & = [ oy s a3 « Jéj
4 s

vector of de-meaned step dummy variables (they sum to zero over the sample period) used
to model intercept shifts. For any arbitrary date, to;, 1 < to; < T to; = [TA], A; € (0,1),
a typical (i-th) element of z;, z; is defined by

o si(h—1), TSt <ty
T SN, tu+1<t<T

g~ 1.0.d.N(0,1),0=1,2,3,4,t=1,2,...,T, where T' = 50, 100, 200. So we consider
four-variable models with two variables having equations in the ECM that contain intercept
shifts and one cointegrating vector. The shifts z; = [ 21; 23 | are either at two different
dates, T'/3 and 27'/3 (distinct shifts) with \; = 1/3, Ay = 2/3 and 2z;; # 2o, Or ata
common date, 7/2, with A\; = Ay = 1/2 and 2z;; = zo. In addition the impact of the
magnitude of the shift on the LR tests is also examined by allowing different values for
0;; in particular 6; = 0,0.5,0.6,0.7,0.85, 1. These values were also used in studying the
effects of intercept shifts in the null case in O’Brien (1996, 1997, 1999).

Since the local power of the LR tests for cases (ii) and (iii) (see section 5.1) is not
affected by the actual value of u (see Saikkonen and Liitkepohl (1999)) we set u = 0 in
generating the data (in the DGPs). However, the value of 4 has noticeable effect on the

speed with which the small sample behaviour tends to the asymptotic distribution under
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the local alternatives as can be discovered by simulations with different values for u (see
O’Brien (2001)). It would be possible to investigate the small sample effects of varying p,
but this would substantially increase the number of experiments, and possibly also the range
of T values to be considered, given the slower convergence to the asymptotic distribution
associated with u # 0.

As far as the specification of the constant term in (5.12) is concerned y is set to zero
in all DGPs, as mentioned above. In the SM we employ the three cases described in section
5.1:

Case (i) no deterministic term; £ = 0, X ; = X;_1.

Case (ii) constant restricted to lie in the cointegrating space; ot # 0.

Case (iii) constant restricted to lie in the cointegrating space in the DGP (i.e. au’ # 0) but
the SM is estimated unrestrictedly.

Furthermore, we use three alternative designs which give rise to parametrisations
which are compatible with those of the system in (5.6)-(5.9). Hence, the parameters of the
DGPs can be expressed in terms of f and g (the parameters upon which the local power of
the tests depends) and for given values of f and g a certain level of asymptotic local power
can be attained. Accordingly we gain a certain degree of control over the asymptotic power
and we can investigate the effects of the misspecification (intercept shifts in the DGP but

not in the SM) for cases that the LR tests have low, medium and high local power.

Having set u = 0 so that

A)(t = a}@l‘xrt_,l + (I)()Zt -+ E¢, t= 1, 2, N ,T (513)

the three designs used are:
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Doy #0,as#0, 33, =10, =-1l, a0 ==03,=0,=0
D a; #0,a:#0,8,=1L0=-l,ag=as=03;=0,=0
D3)ar#0,a3#0, 5, =103 =-lar=au=0,=0,=0
and in matrix form:

DOha'=[00 a3 as ,A=[00 1 —1]

M)’ =[a a 0 0],8=[1 -1 0 0]

The cointegrating vector involves only non-shifted variables in (D1), only shifted
variables in (D2) and a mixture of shifted and non-shifted variables in (D3). The only
undetermined parameters in the designs are the adjustment coefficients and their relation

with the parameters f and g is given in the following proposition.

Proposition 5.1. o; = (f +9)/2T and a; = (g — f)/2T fori=3,1,2and j =4,2,3 in

(D1), (D2), (D3) respectively.
The proof'is given only for (D1) since it is similar for the rest of the designs.

Proof We are interested in situations where inferences are clear in the absence of step

dummy variables. Thus, we set &g = 0 in (5.13) i.e.

AX,=af X142, t=1,2,...,T (5.14)

or
Xe=(L+af)Xyo1+e, t=1,2,...,T (5.15)

in order to relate the parameters of (5.15) to those in (5.6)-(5.9).
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Let B = { 8 8. }, a p x p full rank matrix. Given 3, a possible choice for 3, is
1 00 0 1 00
- _ (0 10 /0 010
3, = 00 1 so that B = 1 00 1
0 01 -1 0 0 1
By pre-multiplying (5.15) by B" we obtain
/YBt et X4t = (1 - 3 — 054)(X3(t._1) - X4(t_1)) + (531; — 5475) (516)
X = X1¢-1) + 21t (5.17)
KXot = Xop—1) + € (5.18)

Xst + Xap = Xap—1) + Xap—1) + (a3 + o0) (Xsp—1) — Xup—1)) + (e3¢ +€40).  (5.19)

Let K = X3; — X4 a stationary or near-integrated process, Ko = X3 + X4, K3t = X3,

Ky = Xa, 1(1) processes, by definition. Then the system (5.16)-(5.19) can be expressed

as
K= (1+ a3 — ag) Ky +uy (5.20)

Ko = Koy + (a3 + o) Kye—1) + vz (5.21)

Ksr = K3p-1) + use (5.22)

Ky = Ky-1) + uar (5.23)

where w1; = €3¢ — 4z, Uy = E3¢ + Ear, Use = E1, Uz = E9¢. Comparing the coefficients in

(5.20)-(5.23) to those in (5.6)-(5.9) we obtain,

g —ay =T71f (5.24)
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as+oq =T g, (5.25)

Proposition 5.1 follows by solving (5.24) and (5.25) simultaneously with respect to a3 and

y. |

Note that the LR test statistics calculated from (5.14) and (5.20)-(5.23) are alge-
braically equivalent due to the invariance of the eigenvalues to linear transformations. The

eigenvalues associated with (5.14) are calculated from
IAS11 — 810555 S01] = 0
(see Chapters 2 and 3), then the corresponding eigenvalue equation for (5.20)-(5.23) is
I(B'S11B — B'S1oB(B SpoB) ™ B'Sp1B| = | B'||¢S11 — S10S55-Son||B| = 0

and thus A = (.

An alternative way to express the parameters of (5.14) in terms of f and g is to apply
the formulae for f and g given in section 5.1. Since we consider the case of just one extra
cointegrating vector, i.e. » = O and s = 1, under the null C' = 2 = I4, o and 3, are

p X p matrices with full rank and ¢, §, in section 5.1 correspond to ¢, 3 respectively used

in this section. Then,

Tlf=Fa=0a3—ay

(T79) =adaf B (8a) = (a3 + o)’

which coincide with (5.24) and (5.25), using again «, (3 as defined in (D1).
In Johansen’s (1996, equation 14.2) notation, the deviation from the null is 714 ,BII,

corresponding to o used in this section. Thus, f = ﬁ;al in Johansen (1996), after
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simplification, corresponds to 7’ 3 o as shown above. A similar adjustment is required for
g.

Consequently the presence of the cointegrating vector can be detected with different
probabilities, in other words with different local power, depending on the values taken by
f and g. For each of the cases (i)-(iii) concerning the deterministic term, we use six pairs
of (f, g) values, two pairs for each power level: low (about 0.2), medium (about 0.55) and
high (about 0.85). The values of ( f, g) are: {(-21, 0), (21, 6), (-18, 18), (-30, 12), (-15, 24),
(-48, 6)} for case (i), {(-15, 12), (-24, 6), (-27, 18), (-30, 18), (-42, 24), (-54, 6)} for case
(ii) and {(-9, 12), (-21, 6), (-24, 18), (-36, 6), (-9, 24), (-48, 12)} for case (iii). The exact
value of the asymptotic local power which corresponds to each pair appears underlined in
the appropriate table (Tables D.1-D.6) in Appendix D. For some pairs involving extreme
values of f and g the power for the maximal eigenvalue test is slightly higher and for pairs
with moderate values of f and g the trace test is slightly more powerful (see also section
5.1).

To verify that the designs under consideration conform with the chosen power levels,
we computed the frequencies of rejecting the null of » = 0, given that the DGPs contain
one cointegrating vector, with adjustment coefficients given by the relevant f and g values
that are associated with the chosen power level. Setting §; = 0 for this experiment, and
using 7' = 50, 100, 200 and 10,000 replications the rejection frequencies seem to converge
(though slowly in some cases) to the predetermined power levels indicated by the choice of

f and g. The tables are omitted for the sake of brevity.
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The condition for the presence of one cointegrating vector, i.e. the stability condition
for the cointegrating relation (stationary process) is that the eigenvalues of the matrix (/. +

,Bla) lie inside the unit circle, which reduces to
-2<o;—a; <0
fori =3,1,2and j = 4,2,3in(D1), (D2), (D3) respectively, or equivalently
—-2<T7'f<0 (5.26)

for all designs. f is always negative, by definition (see section 5.1), and given the choices
of f and T values, the stability condition (5.26) is satisfied.

Finally a word on the taxonomy of the Monte Carlo experiments. Each of the designs
is used together with each of the three cases regarding the specification of the deterministic
term, which generates nine experiments as shown in Table 5.1. The nine experiments

shown in Table 5.1 were conducted both under the assumption of distinct and common

shifts resulting in eighteen experiments in all.

Table 3.1. The taxonomy of the experiments

Specification ?fe(:;%:mﬂnistic term D 1 D2 D3
case (i) DiG) D2() D30
case (i1) DiGi) D2(i) D3(ii)
case (iil) Di(i) D2(ii) D3(ii)

5.3 Monte Carlo results

The results of the simulations are presented graphically in Appendix E. The graphs show

the rejection frequency (abbreviated as rf on the vertical axis) of the null hypothesis of one
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cointegrating vector (detected with various power levels) for different magnitudes of the
shift (6) and different sample sizes, using the experiments shown in Table 5.1.

In each set of six graphs, the left hand column shows rejection frequencies for the
trace test; the right hand column shows rejection frequencies for the maximal eigenvalue
test. The three rows of graphs represent low, medium and high power respectively, as one
works down. On each graph there are six ‘curves’, two for each of three sample sizes
(T = 50, 100, 200). First we discuss Figures E.1-E.18.

The rejection frequencies increase as the sample size increases (which is in agreement
with the asymptotic analysis) and as the magnitude of the shift grows larger. This pattern
persists for Figures E.1-E.18.

The higher the power with which the cointegrating vector can be detected, the higher
the rejection frequency of the true null. Thus, as one works down through a sextet of graphs,
the rejection frequency curves rise. Again, the pattern persists for Figures E.1-E.18. So in
the cases where genuine cointegration cannot be easily detected, spurious cointegration
arises less frequently.

However, for many cases the frequency of rejecting the true null is approximately
equal to or exceeds the probability of finding the true cointegrating vector (i.e. the empirical
size exceeds the asymptotic local power). This occurs when the rejection frequency exceeds
0.2 in the top graphs in a sextet (Figures E.1, E3,E.4,E.6,E.7,E9,E.10,E.11, E.13, E. 14,
E.16, E.17, E.18), or 0.5 in the middle graphs (Figures E.1, E4, E.6, E.7, E.9, E.10, E.11,

E.13, E.16, E.17), or 0.8 in the bottom graphs (Figures E.4, E.7, E.9, E.10, E.11, E.13,

E.14,E.16, E.17).
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When there are two distinct intercept shifts in variables in the cointegrating vector,
D2 (Figures E.2, E.5, E.8) yields lower rejection frequencies than D1 (Figures E.1, E.4,
E.7), where the variables in the cointegrating vector do not have shifts and D3 (Figures
E.3, E.6, E.9), the mixed case, especially at low and medium power levels. When there is a
common shift D3 (Figures E.12, E.15, E.18) generates lower rejection frequencies.

For both the distinct and common shifts specifications the rejection frequencies ap-
pear to be higher when a constant term (restricted or unrestricted) is introduced in the model
(compare Figures E.1-E.3 and E.10-E.12 with Figures E.4-E.9 and E.13-E.18).

For most cases the rejection frequencies for the same sample size evolve similarly
along the -axis for a given power level. An apparent exception is the case of D2 for large
T and medium/high power level (see Figures E.2, E.5, E.8, E.11, E.14, E.17).

In general, D1 seems to produce larger impact of intercept shifts on the rejection
frequencies of the LR tests. This relates to Corollary 4.1 (Chapter 4) according to which
overfit of the cointegrating rank does not occur when a(j) = (), where a(j) isthe p; x (p—7)
submatrix of «; which corresponds to the variables with the intercept shifts.

Even though o is not uniquely defined a plausible choice (for the sake of argu-

10 0 0 0 —a
01 O 0 0 om
= g 7 —_—
ment) could be o 0 0 —ay for D1, o 10 0 for D2 and o
00 o 01 O
1 0 0 ]
0 0 —as @ _ |1 00]. i
00 a for D3. Thus, for D1 o}’ = 010 is clearly non-null whereas for
01 O
D2 ofj) — 0 and for D3 ag_l) — (1) 8 8 ,as T — oo, by the definition of «; and

o (see Proposition 5.1). So the higher rejection frequencies associated with D1, as T’ be-
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comes large, are somewhat expected since D1 is further from the argument of Corollary
4.1 than the other two designs.

Figures E.19-E.21 show the rejection frequencies of the trace and maximal eigen-
value statistics when a(j) = 0 (see also Corollary 4.1). The DGP for this experiment is D2
with ap = 0, therefore the power levels are chosen for different values of f and g® such
that f = —g. From the formulae for f and g2 in section 5.1 (scaling appropriately by 7—1)
we find that 7-!f = a; < O and (T"1g)? = of thus T~'g = —c and therefore f = —g.
So, the DGP includes only one variable with intercept shift at 7'/2, which is not weakly
exogenous with respect to the cointegrating relation. The rejection frequencies appear to
be close to the asymptotic size of the tests (5%) hence systematic acceptance of spurious
cointegration does not seem to occur in this case. The Monte Carlo precision with 10,000
replications is £0.43%, so the tests seem marginally oversized for high power levels still at
T = 200 (last row of the sextets in E.19-E.21).

In the absence of intercept shifts (6; = 0) the rejection frequencies correspond to the
empirical size, and for most cases they are reasonably close to 5%. Under the assumption
6; = 0 there is no distinction among designs so the results of the simulations for the dif-
ferent designs are combined for the purposes of Figures E.22 and E.23. Figure E.22 shows
the empirical size for different power levels indicated by the numbers 1, 2 and 3, which
correspond to low, medium and high power. The empirical size increases with asymptotic

power. For the low power level tests are undersized and size corrected tests would give

6 f=—g=-12,-18,-24; f = —g = —12,-18,-30; f = —g = —12,—18, —30 for cases (i), (ii)
and (iii) respectively and each value of f (= —g) corresponds to low, medium and high power (see Tables
D.1-D.6).
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more rejections. For the medium power level this effect is slight. For the high power level
some cases are oversized and size corrected tests would give fewer rejections. This pat-
tern is similar for the trace and the maximal eigenvalue statistic. Figure E.23 shows the
empirical size for different sample sizes (7') indicated by the numbers 1, 2 and 3, which
correspond to 7" = 50, T' = 100 and T" = 200. There is large variation of the empirical size
for a given sample size. Even for 7" = 200 the concentration around 5% seems to be low.
Again the behaviour of the trace and maximal eigenvalue tests is similar. The scatter dia-
grams also indicate that the power level and the deterministic term specification dominate
the effect of the sample size.

For comparison with O’Brien (1999), Figures E.24-E.25 and E.26-E.27 show the
rejection frequency for alternative designs and power levels when there are two different
shifts (at 7/3 and 27'/3) and a common shift (at 7'/2) respectively. The sample size is
150 which is representative of many econometric applications and the magnitude of the
shift is set to 0.5, since a shift of that size can be easily missed in empirical work and not
accounted for in the SM. For the majority of cases the frequency of rejecting the true null of
one cointegrating vector is above 5% (asymptotic size) regardless of whether the effect of
design or power is examined. Particularly there are situations that the rejection frequency
exceeds 30%. As noticed before D2 seems to produce lower rejection frequencies when
the shifts are distinct and D3 gives lower rejection frequency when there is a common shift

in the DGP. In addition we observe that the higher the power level the higher the rejection

frequency, as before.
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5.4 Concluding remarks

[n this chapter we have investigated the finite sample performance of the LR tests for coin-
tegration proposed by Johansen (1988, 1996) when the DGP includes intercept shifts which
are not accounted for in the SM used for cointegration testing. The effects of the misspeci-
fication are analysed for different levels of local power and different experimental designs
with regard to which variables (shifted/non-shifted) enter the cointegrating vector. As the
asymptotic analysis predicts (see Chapter 4) the frequency of rejecting the true null hypoth-
esis of one cointegrating vector increases as the sample size becomes larger; therefore we
spuriously accept more cointegrating relations than in the DGP. In addition, it is found that
the true null hypothesis is rejected more frequently as the magnitude of the shift increases.
These patterns arise in the presence of both a common shift and distinct shifts.

Since we opted to have some degree of control on the asymptotic power the analysis
is carried out in a rather simplified setup. In considering the local asymptotic power we
assume that 7 = 0 under the null and that s = 1 i.e. there is a single cointegrating vector,
under the local alternative. However, assuming r = 1 under the null and carrying out the
investigation for s = 2 under local alternatives complicates the parametrisation, because o
and 3, are no longer invertible matrices and C'is no longer the identity matrix. Moreover,
controlling for the local power in the case of more than one extra cointegrating vector under
the alternative (s > 1) also complicates the analysis because the parameters upon which
the power depends are no longer scalars.

Overall it appears that the intercept shifts have rather noticeable effect on the LR tests

for cointegration. For example, for T = 200, § = 0.5 and medium local power, in cases (ii)
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and (iii) (which are model specifications frequently used in empirical works) the rejection
frequencies of the true null are 30%-36% and 21%-29% for the common shift and distinct

shifts cases respectively.



Chapter 6
Irrelevant or omitted variables in
cointegration analysis

This chapter examines the impact of including irrelevant /(1) variables in, or omitting
relevant /(1) variables from the SM used for cointegration analysis, on the inference about
the cointegrating rank and the consistency of the estimators of the parameters of the ECM.

The analytical findings are supplemented by a Monte Carlo investigation.

6.1 Irrelevant variables

One might think that one could rely on the assertion that Johansen’s procedure (see Chap-
ter 2) does not assume any row of 3 or « is non-zero. Thus, as a zero row of 3 excludes a
variable from the cointegrating relations and a zero row of « excludes the cointegrating re-
lations from the process generating a variable, it may be ‘obvious’ that such an ‘irrelevant’
variable will not affect the estimation, and the zero rows will be as efficiently estimated
as the other rows of beta. However, to justify this assertion, a careful check of Johansen’s
procedure is required. This section provides such a check.

By the term ‘irrelevant’ variables we refer to variables that do not enter the coin-
tegrating relations. We do not assume that the error terms of the relevant variables (i.e.

variables that enter the cointegrating relations) are uncorrelated with those of the irrelevant

ones as we analyse this as a special case.

101
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6.1.1 The model and some results
The DGP is given by a VAR(1) model in error correction form,

AXt:Hth_l‘Jr‘Et, t:1,2 ,T (61)

where ¢; ~ 1.1.d.(0,Q2) with finite fourth moments and X; isa p x 1, I(1) process. X;
is also cointegrated with » < p cointegrating vectors, hence Il = a8 (a and Fare p x r
matrices) and BX, ~ 1 (0). The SM used for performing cointegration tests consists of

pT > p variables so that [ = (p™ — p) I(1) variables are irrelevant (i.e. they do not enter

any of the r cointegrating relations). The SM in error correction form is then
AXF =TT"X | +¢f, t=1,2,...,T (6.2)

where &/ ~ 4.1.d.(0, Q") with finite fourth moments and X" is p* x 1, I(1) process with

its first p elements being those in (6.1) i.e.

X1t
< : Xt
X = o= 6.3
‘ X1yt [ X } (6:3)
Xp-i-t
where Xt(l), = [ Kp+1ye - Xpryg ] Thus, Xt(l) ~ I(1) and also non-cointegrated.

’} ,
We define the p™ x p selection matrix H = { Op J, then H X, = X,. The eigenvalue
Ixp

equation for the SM (6.2) is

STl =0 (6.4)

¢Si — 5755371 Sy; - In addition,

where ST (¢
S =T"
t

) =
S (X — X)X, — XY
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T - ¢ = 7
Soo =T ' S (AX] ~ AXT)(AX; — AXT)
=1
T - e 7
S =S5 =T ' Y (X7, — XY AX;S — AXH)
t=1

~ T o T
where X™ = 7713 X7 and AX™ = T7!Y  AX;". Using the partition in (6.3) we
=1

t=1
obtain
S 8 Soo S S S
+_ | Su Sw _ | Soo Soor | g+ _ | S0 S | g
51 [ S Suu :J oo { Sowo Souor J’ 10 { Suo  Suo J wHeTe
T

Su=T"" t:zl(Xt_l - X) (X - X)

Sy =S, =T"1 té(xt_l - X)X, - x0y

S =T (6% = KO, - X0

Soo =T} i(AXt ~ AX)(AX, — AX)

S = Sho = T (A, - AX)(AXY - AX0)

Soior =T~ 2( AXY - Ax0)(AxY - AXOY

Sio=T"1 ; (X1 — X)(AX, — AX)

S = Sigy = T zw - X)(ax" - Ax0y

Sun =T 5K~ RO)AXO — Ax)

and X = T‘ltZT;XH, X0 =71 Z XY AX =T Z AX,, AXD = ~1t§jl AxD.

We then define

MEAREES
8 X, Y5 Yss

which can be expanded into

AX? Yoo oo Zog
Var AXt( " =] Zao Yoor  Xoig
43X, Yigo g s
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Xoi0 oo

Note that in this chapter sufficient conditions (assumptions) for the Weak Law of

, b - oy
where £, = { o0 oo J and 5§, = [ 5o } .
03

Large Numbers (WLLN) used, are ¢; ~ i.1.d.(0,2) with finite fourth moments, which
can be expressed in terms of the elements of the vector ¢; as E |g;€ 66| < oo for
1,7,k 0 =1,2,...,p. Given that after application of the Granger Representation Theorem
(see Theorem 2.1) the first differences (A X;) and cointegrating relations (,B'Xt) have infi-
nite moving average representations, with convergent lag polynomials, the assumptions on
¢ imply (see Hamilton (1994, Propositions 10.2 and 18.1)):

(a) finite fourth moments for the first differences and cointegrating relations i.e.
EIAX;y, AXG1, AXiey AXyy, | < 00, E Wi, Wi Wieawye,| < oo ford, j, k0 =1,2,....,p
and for all ¢1, ty, 3, t4; where A X, and w;; are the i-th elements of AX; and ﬂ'Xt respec-
tively

(b) ergodicity for the second moments of the first differences and cointegrating relations
ie 771 i AXuAXji—s) 2 E(AXuAXj4—y) and T i WirWi—s) — E(Wiwji_s))
fori,j=1,2,...,pand forall s.

The implications of (a) and (b) above also hold for AX;" and AXt(l) used in this section
and AX; and ﬂ’llXt* in section 6.2, since they can be written as infinite lag polynomials
with error terms that are 7.7.d. with finite fourth moments.

8* T_I/QBi } where

prxr  prx(pt—r)

Let B be a p™ x p* full rank matrix given by Bf = {
Y

gt =| o | Bl =B1(ATF) " and 5751 = 0, then

Ixr

|BF ST(¢)BF| =
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CATSHBT  TTVABT ST
T-Y3TSHAT TOCB] SYLAL

ﬁ%‘/S%SS—O«lSa*—LB—i— Tul/?ﬁ-}—’sfbsgb—lsa—laz 0 (6 F)
- — _ = _ L= = u. s
T-Y287 SiySes ' S587  T7B1 S1ySos 'S8T
For the asymptotic analysis of (6.5) we need the following results
B SH8T =858 D Ses (6.6)
37 S = | 851 'S ] 2, [ 2p0 gl } (6.7)
Soo S - Yoo X

gt — 00 D000 | P g+ _ 00 2400 _

0 [ S Sowr | T oo Zoior (6.8)

by the WLLN. For (6.8), by Slutsky’s Theorem (see Davidson (2000, pp. 39, 46)) and

assuming invertibility in the limit we obtain

. EOO ZOOI
it = {Zozo ZWJ (6.9)

where the probability limit on the right-hand side is the partitioned inverse of ¥{. Further-

more,
3785 =0,01) (6.10)
G7SH8T =85y 85w ]BL =01 (6.11)

because they are averages of products of an /(0) and an (1) process.
o
Along with 37 we define o™ = { 2 i :' such that II* in (6.2) can be written as
Ixr

[I* = o3 and ot is such that a™ o™ = 0.
1 L
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By the Granger Representation Theorem the process X, has the following represen-

tation

t
X =CTY = +CF (L) (6.12)

=1
(see Theorem 2.1) and 3Y'C* = 0, where C* = §7 (el 87) o, so that 47 X} =
8X, = BTCF(L)ef ~ I(0). Then we consider the behaviour of (6.12) in the non-

stationary direction Bi By application of the Functional Central Limit Theorem on (6.12)

and the CMT (see Theorems A.1 and A.3) we have
—_ / —_— ! iTu] d —_ ’
T8 Xy =T BL(CT Y el + CF (L)efry) > BLCTW ()

i=1

where W (u) is a p*-dimensional Brownian motion with variance Q*, u € [0, 1],
—_ A d P ! 1
BrXT4 3T cr / W (u)du
0

and

T
TTB]SHBL =T7*6L Y (X - X1)(X5, - X)) 5]

t=1

/

1
L Bror / WHW* duCt 7] (6.13)
0

where W+ = W (u) — fol W (u)du.
Using the results in (6.6), (6.7), (6.9), (6.10), (6.11) and (6.13) the limit of (6.5)

becomes,

|BF'ST(Q)BF]

(Tgs — TpoEW805 — U 0
0 BT CT [y WHWH duCt BT



6.1 Irrelevant variables 107

~l
= [(Tys — DpX P85 — U] x [¢(3] C* / WHW duCt' 37| =0 (6.14)
J0

where U = ZQQZZOIOZQB -+ Z}@()ZOOZEO[‘B -+ ZﬁOlZOZOlZDm.
(6.14) has r positive eigenvalues given by the first factor and (p*™ — r) zero eigen-
values given by the second, since the stochastic matrix BI/C“L fol WHW+ duC+ Bi with

dimensions (p* — r) x (p* — r) is positive definite almost surely. Note that

lim E[T7'3] (X7 - X)(Xf - X)Bl] = BlCrorcvBl

= (al'BD) el Q el (T0]) ™,

which is a (p™ — r) x (p* — r) matrix of rank (p* — r) and corresponds to the long-
run covariance matrix of the process X, in the non-stationary direction, which is positive
definite”. For given u, W*(u) ~ N(0,uQ") so that E(W*(u)W*(u)) = uQ*. Thus,
JEWHW du is positive definite almost surely and 37 C* [ W+W+ duC* 37 has full
rank (p* — r) almost surely (see also Davidson (2000, Chapter 15), Hamilton (1994, Chap-
ter 18)).

Therefore when performing LR tests for cointegration on the overspecified model
(6.2) we must be able to infer the true cointegrating rank as the sample size becomes large
though the number of common trends is overestimated.

In particular the effect of irrelevant variables depends on whether 37, is block diag-
onal and whether the irrelevant variables are weakly exogenous for the parameters « and 3

that appear in the DGP. Below we state more precisely what we mean by weak exogeneity.

7 The positive definiteness of hm E(T™ 1/3 N YT YT ,8 l) is an assumption for the Functional Central

Limit Theorem to hold (see Dav1dson (2000, p. 365); Phillips and Durlauf (1986)).



6.1 Irrelevant variables 108

’

We use the partition X~ = ; X, th J and the fact that [I* can be written as the

product of two p* x r matrices o™ and 37 of rank r i.e. II" = o™ with o and 87

defined as above. Then (6.2) can be written as

AXt (84 i X_ £
— r t—1 £
[&5)-[5]0 o1[3]+[ 3]

or

[ AX; J N Ii a/B,Xt—l J 4 [ S? J
l — 1
Ax a8 X, et
=g ", Note that with respect to the underlying parameters of the SM

at =XiN) = [ g()olz;i_é }, see equation (10.3) in Johansen (1996).
If o® = 0 we say that the vector process Xt(l) 1s weakly exogenous for the parameters
a and 3 and their maximum likelihood estimators can be calculated from the conditional
model (conditional on AXt(l) ). In fact this is the definition of weak exogeneity given in
Johansen (1996, Theorem 8.1).
Then the four cases that arise are:
(i) £, block diagonal and o3 = 0 (implying ¥ = 0); the inclusion of irrelevant vari-
ables does not affect the probability limit of the r positive eigenvalues (¥ = 0).
(ii) £, block diagonal and g3 # 0 (implying oY # 0); the inclusion of irrelevant
variables changes the magnitude of the probability limit of the r positive eigenvalues (¥ #
0).
(iii) ¥, non-block diagonal and g5 = 0 (implying o) = 0); the inclusion of irrelevant

variables does not change the magnitude of the probability limit of the r positive eigen-
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values (¥ = 0). However, diagonalising ¥, changes the exogeneity status of Xtm from
weakly exogenous to non-weakly exogenous.

(iv) ©, non-block diagonal and g5 # 0 (implying oY) 5 0); the inclusion of irrelevant
variables changes the magnitude of the probability limit of the  positive eigenvalues (¥ #
0) and Xt(‘l) 1s not weakly exogenous with respect to 5 and « in the DGP.

In the case that £, is not block diagonal one can transform (6.2) into
AX[T =t 3 X et

where AX; " = PAX], X = PX[,, % = Pef, ot = Pat, 377 = 37 P~ and

P is such that Var(AX;") = £f = P71P'~! and Var(PAX,") = I,+. Thus, P might be

P10
the Cholesky factor of ©j;" and P = ;’; P ;;Xl . Then
o 1il

, N -1 ’ P_ll O . [
grE=[5 O}Lpgélpal PgalJ‘mpnl 0]
and

Pat = P; 0 « _ Pa
le PQQ O{(l) Pgla -+ PQQQ{(Z) )

However, the transformation to achieve the block diagonality of %3, reparametrises c. For
case (iil), since Poya # 0O the irrelevant variables are no longer weakly exogenous even
though a® = 0.

Although we can detect the true number of cointegrating vectors (r), in general, the

magnitude of the positive eigenvalues in the limit is altered by the presence of irrelevant

variables.
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6.1.2  Consistency

Under the assumption of cointegrating rank =, II* in (6.2) can be written as [T+ = o387,
where ot and 87 are p* x r matrices of rank r. Let ,@+, & and OF be the maxi-
mum likelihood estimators of 37, a™ and QT respectively in the SM (6.2). In order
to analyse the consistency properties of the estimators we consider a linear transforma-
: 378 At AT AT aTy-1 7t +( 3+ gHy-1
tion of the columns of § °, namely 5 = 3 (6 B8 )~', where 5° = S7(8757)7},
and B+ also maximises the likelihood function. We also consider &* = &+B+ B+ =
SHBT (B Sﬁ,~+)“1, where the second equality follows from the definition of 3" and the

fact that 6 = S35 3" S#37)71, see equation (2.13) in section 2.3.

5
Since 3+ and 3 span RP" and the inverse of B is given by B ! = TI;;I; co
L

: (pt—r)xp*

by forming B;. Bf ~! the following relation holds
878" + 38T = Is.
Then,
3T = g (6.15)

= BB BB BB (BT )

—_ 5+ + sz-#

where b+ = 875"

8 In fact for any normallsatlon ¢ we can define 3, = BBt = 3(~
norma 1sm06andﬂbycﬁ =c3= I,.,weobtamﬁ 8=Up— c)(,@
(1996, p. 180)) therefore the properties of 3 follow from those of 3.

[3) ; expanding around § and
- +O (18 — 81?) (Johansen
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Proposition 6.1. (i) The estimator B+ associated with the overspecified model (6.2) is
consistent ie. B+ L 3t = [ g J

(ii) The first p rows of the estimator & = S&BJ&(,@#Sﬁﬂb)“l associated with (6.2) are
consistent estimators of the adjustment coefficients (o) in the DGP (6.1).

(iii) The top left, p x p block of Q0" = S5, — S&B+(B+IS§,@+)"1B+/S§) is a consistent

estimator of Q0 = Var(e;) in the DGP.

N ot g .
Proof (i) Let VT = [ 5 v } be the p™ x p™ matrix whose columns correspond
ptxr  ptx(pt-r)

to the eigenvectors of (6.4). The eigenvectors that correspond to the r largest eigenvalues
of (6.4) define ff (6.5) has the same eigenvalues as (6.4) but its eigenvectors are given by
B, ~V+ The space spanned by the first  eigenvectors of (6.5) is given by sp(B3 ~* f)’+) =

e e S . ot
sp(B7T 137), since 3" is a linear transformation of 3, and

3" ~r 3"+ [ I
rrgr |0 T | megraes | T LT | (6.16)

The ordered eigenvalues of (6.5) converge to the eigenvalues of (6.14) and therefore the

—15t
BB =

last (p™ — r) rows of (6.16) must converge in probability to zero, since in the limit there
are only 7 positive eigenvalues (given by the first factor of (6.14)) which correspond to the

eigenvectors given by the first block of (6.16). Hence,

TV 50 (6.17)

and by (6.15)

TV2(3" — gty 2o, (6.18)

Thus, (6.18) shows the consistency of 3" and in addition that (3" — %) = 0,(T~Y/2).
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(ii) We need to find the limits of (3™ S:53") and (S5 3 7). Using (6.15)
BTSHET = (5% + BI67) SH(BT + BLbY)
— f6+l5ﬁ5+ + T—1/2,6+,SﬂBI(T1/2b+) + (T1/26+’)T—1/231"Si+—1/3+
IV SEFT(TY )
L B3YSHAY = 55108 5 Lap (6.19)
by (6.6), (6.10), (6.13) and (6.17):

S&B+ = S&(ﬁ+ —§—Bib+) — Sg‘lﬁ-f- + T—l/QSg—lBI(Tl/Qb—f-)

s3] 2[5

by (6.7), (6.11) and (6.17). Thus, by (6.19), (6.20) and Slutsky’s Theorem,
YosX ok o
~4+ P 0883 —
. [ ZoigZgs ™! J [ o) J
where o = Zoﬁzﬁ_ﬁl, which is the definition of « in the DGP (6.1), see equation (10.3) in

Johansen (1996).

(iii) First note that the right-hand side of the equality of Qt follows from the definition of
3" and the fact that " = S — S&B+(ﬁ+ St/ +)_1B+ S, see equation (2.14) in section

2.3. Then using (6.8), (6.19), (6.20) and Slutsky’s Theorem we find that

A by by ¥
+ 00 0ol | 03 1 /
Q — ,: ZOIO EOlOl } l: 2015 :’ Zﬁ,@ [ 2,30 E[)’Ol :l

_ ZQO ZOOI _ (0% ’ (l)'
B [Zozo Lot } {Oz(l) J Zas [ o ]
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_ | Zoo—oaZgsa Ty — ol
Yoo — P Egpa’ S — oV Spe!)

and g — azﬁ@o/ = (2, see equation (10.4) in Johansen (1996). B

6.2 Omitted variables

Next we investigate the case where relevant I(1) variables have been omitted from the
VAR model used for cointegration analysis. The analysis is based on the fact that the
cointegrating vectors, 3, (as well as the adjustment coefficients, «) are not identified so 5
(and therefore c) can be replaced by a non-singular transformation e.g. we can replace 3’
by a row equivalent matrix of 8. To avoid complicating the notation we retain the same

symbols for the parameters (and variables) and their non-singular transformations.

6.2.1 The model and some results

The DGP is given by a VAR(1) model in error correction form,
AXt = HXt—l +&, = 1, 27 T (621)

where ¢; ~ 1.1.d.(0, Q) with finite fourth moments and X; is a p x 1, I(1) process. In
addition X; is cointegrated so that IT = of (o and B are p X r matrices) withr < p — 1
cointegrating vectors 3 such that 8 X, ~ I(0).
The SM used for cointegration testing is assumed to be underspecified i.e. it includes
only a subset of the variables of the DGP. More specifically, let H = [ [6* } be a selection
kxp*

matrix, then the SM includes p* < p variables given by X = H X, so that k = (p — p*)

relevant variables are omitted.
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The misspecified SM takes the form of a multivariate regression of H AX; = AX;

on H' X,_;. The relation between AX; and X;_, does not have an error correction form as
the model
AX; =II"X] | +e;, t=12,...,T (6.22)

is misspecified. In particular e; is correlated with X, ;. We also define 8Y = H'B, and
o = Ha,but TI* # oWFW and 11" # H'IIH as HH' # I,

Although 3 X, is 1(0), 8" X7 is not necessarily I(0) since a linear combination of
I(1) variables is in general I(1). The nature of 3% X is determined by the variables en-
tering the cointegrating relations in the DGP. Since only the space spanned by the columns
of 3 can be estimated, in general, (r — k) cointegrating vectors (stationary relations) can be

found by applying elementary row operations on /3,. Thus, 8 can be transformed so that

B Bar 0 Bp
o | B B |
Bir Bop - /gpr
il ﬂ% 'B@—m 1 o 0 - 0 0
a+
M2 ,3.22 ﬁ(p—(r—l))E 1 0 0 0 (623)
i*'—r ﬁ;jr o s /8?;0—1)7- 1

where the symbol ~ denotes the row equivalent matrix of 3 given by (6.23) and p — (r —
1) =p"—(r—=k)+1i,1=1,2,..., r is the number of non-zero elements on the i-th
row. Given that only p* variables are included in the SM, we should be able to recover :
cointegrating relations (using the underspecified SM), as long as p* — (r — k) + 1 < p*.
Thus, at most (i = r — k), (r — k) cointegrating relations can be estimated from the SM,

by applying the same row operations on 3% as on 3.
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Below we distinguish two cases:

Case (i). (r — k) < 0, where all the cointegrating relations in the DGP involve at least one
of the omitted variables, therefore 3 X ~ I(1).

Case (ii). (r — k) > 0, where there are ¢ < 7, ¢ > (r — k), cointegrating relations
in the DGP which do not involve any of the £ omitted variables, accounting also for the
event of fortuitous zeros. Therefore, some elements of ﬁ(l)/Xt*, ﬂ;lXt*, say are stationary,
where 3, is a submatrix of B in the following partition, 3V = [ g ;lq - gliq) :I Then

AW xr = { g,”;(f* } and 8, X; ~ I(0) while 8, X7 ~ I(1). Here we assume that the
1240¢
actual cointegrating vectors can be found at the first ¢ rows of BY’. Nevertheless, if the

above ordering is not satisfied, the cointegrating vectors can be isolated in the first ¢ rows
of using elementary row operations (see above).

The eigenvalue equation that corresponds to (6.22) is
€S — 876550 ' Serl =0 (6.24)

where Sf; = T~ SO(X7, — X9 (X7, — X7), St = TV S (AX; — AX*)(AX] —

t=1 t=1

~ , , T _ _ .- T _
AXY), S5 =8 =TS (X7, —X)AX; —AX*), X*=T"'3 X; ;and AX* =
t=1 t=1

T
T AX:

The eigenvalue equation that corresponds to the DGP is
IAS11 — S10555 So1| = 0

with Sj;. 1, 7 = 0,1, defined in terms of the process X; (DGP) similarly as above.
X7
Note that we can partition the stochastic process X, into X; = f:z(kl) where
< t
kx1
the upper (p* x 1) block holds the variables included in the SM and the lower (k x 1)



6.2 Omitted variables 116

block corresponds to the omitted variables. Then, S7;, ¢.j = 0, 1, is given by the top left
submatrix of the corresponding .5,;, ¢, j = 0, 1.

The matrix S;7 157,555 'S5, has the same eigenvalues as the roots of (6.24), which

coincide with the non-zero eigenvalues of

S* = (DS11D)"(DS10D)(DSee D) (DSe1 D)

I 0
where D = P"<k | and here the superscript + denotes the Moore-Penrose (gener-
kxp* kxk

alised) inverse.

Let@Q = [Sgl SCJ,]Q]%Othen,

€L, = 8 = Q7HIQCL — S7)| =1Q7HIS* ()] =0,
where S*(¢) = Q(¢I, — S*). Expanding the above equation,

. St — S5Si sy 0 - * a1 o
15 (O!: ¢Sh (1)0 00 o I, :\UkHCSn"SloSoolSoﬂ:O- (6-25)

As expected, there are k zero eigenvalues which correspond to the omitted variables. The
second factor of (6.25) is the characteristic polynomial in (6.24) associated with the SM. If
the LR tests are to indicate the existence of cointegration in the underspecified model, the
second factor of (6.25) must give some eigenvalues with positive probability limits.

Define By = (8,T~Y23,), where 8, = 8,(3,8,)7%, 8, is p x (p — r) such that
A1)

g% L

G8, =0andf= | %5 | BL=| 5" | then,
s n
xr Ex(p=7)

gs()3  TV3S0)B,

|BpS™(¢)Br| = T-1V2F S*(C)8 T-1B.S*(0)3,
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C(3Y 5,80 + 57 3%) (B S5+ 35 )
5 —_ . ) _ 2 ’ , s . = ’ " i = 2 I3 _/2
| TR sn A + B ) 1B s + 3B

I

8V SiSi sp 80 T spssndY ]| 6.26
7-1/230 gx gs=1gx g(1)  p-131 g« gr-1gx 3(1) =4 (6.26)
L 21 210°00 2oL P 210”00 PoiFL

In order to analyse the limiting behaviour of (6.26) we resort to the Granger Representation
Theorem which gives the following representation for X; in (6.21)
t
X, =C)Y &+ Ci(L)e (6.27)
=1
(see Theorem 2.1). Then for the p*-dimensional vector of variables X included in the SM

we have the following representation, by using (6.27),
t
X;=C"> e+ Ci(L)e (6.28)
i=1
where C* = H' C, C;(L) = H C)(L) both of dimensions p* x p and rank(C*) = min(p*,
p* — (r — k)). Thus, for case (i) rank(C*) = p* and for case (ii) rank(C*) = (p* — q).
Let the non-stationary direction for the process X; be B* which is p* x p for case
(i) and p* x (p — q) for case (ii) (for the detailed form of B* see under the relevant cases

below). By application of the Functional Central Limit Theorem on (6.28) and the CMT

(see Theorems A.1 and A.3) we have

[Tu]
T—I/QB*IX?I’U] - T—I/QB*/(C* Z S[Tu] + C‘T(L)E[TU]) __t_i_) B*,C*‘/I/('u)

i=1

where W (u) is a p-dimensional Brownian motion with variance 2, u € [0, 1]

1
B* X4 B " / W (u)du
J0



6.2 Omitted variables 118

and
T
e 14

T™'BYS;B* = T7B" > (X7, - X")(X;, - X")B" (6.29)

=1
1
< Bie / WW'C¥ B*du
Jo
where W = W (u) — fol W (u)du.

Below we present the asymptotics for the two cases.

Case (i)

Since 8 X7 is not I(0), because of the omission of relevant variables, (6.26) is
not appropriately scaled for convergence. Pre- and post-multiplying (6.26) by the scaling
matrix Y7 = [ T “;/21; IPO—T } we obtain,

\Y7BrS*(¢)BrYr| =

1(/3 /B +o,(1) T 1§5(1) 5*1 _L +0p(1) _ [Op(l) Op(l):!
7-1¢3" 5m9 @ 4 o,(1) T-1¢BY 51,80 + 0,(1) (

— |T¢BS1,B" + 0y(1)|
where B* = [ gm 3o J, p* X p. The second matrix in (6.30) is 0,(1) because its blocks
are products of averages of products of either two I(0) processes (Sj,) or an I(0) and an
I(1) process (B* S;,), which are O, (1) (see (A.10) in Appendix A), thus after scaling by
Y7 they all become o0,(1).
Then we have

TrByS (Q)Br Tl = [T BYS,B" +0,(1)

1
2 \¢B¥C / WW'C* B*du| =0 (6.31)
JO
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by (6.29).

From (6.31) we find that in the limit there are p roots at zero % of which exist by
construction. This suggests that performing the LR tests for cointegration using the under-
specified model will lead to the rejection of the hypothesis of cointegration (i.e. acceptance

of r = 0) as the sample size becomes larger.

Case (ii)
In what follows we will use the row equivalent form of 3 that appears in (6.23).

Consequently in a 2 x 2 block-partition of 3 the lower left block of § or equivalently the

upper right block of 8 is zero. Thus,

Bu B12
3= | P*e px(r—a) | _ { B B }
" Ba1 Ba2 0 By

kxq  kx(r—q)

or
/
611 0
7 qxp* qu
8 i ,
512 .522

(r—g)xp*  (r—q)xk

We then have the following partitions: g = [ By B ] defined above and 3 =

[ kgfé kﬁ?}’_q) J = [ 0 By ] Note that 3,, must satisfy the condition 3;,C* = 0 so that

1 X7 = 81,Cr(L)e;, ~ 1(0), by (6.28).

Then (6.26) becomes

|BS*(¢)Br| =
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CF St ¢3S0 T-l/zwa_lsmﬁf’ B
CBWSTMBM ¢(3 125 11812 + 999/392) T~l/7§(/3195 JU +3f>o3( )

i 2 /2 2
LT s TG S8+ 57 ) TBY 53,80 « 57 50)
FuSioSss S AuSiuSia it B SiSy SuBL |
- 311’;5105 50 58101 5125 0S5 S8 BuShSi i Susl |- (6.32)
* * * * * (1 * * *
3! SioS55 S8 B 5 0S5 S5 B }510 S S
Since 3,X;" is assumed to be (1) the first term of (6.32) needs to be rescaled. Let now
I, 0 0
Tr=|0 T7Y2L._, 0 |then
0 0o I,
T7BrS*(()Brr| =
(8115180 op(1) 0p<1)

op(1) cT*._ﬁézﬁaﬂm +o,(1) (T- 1%2511@1 + 0p(1)
o)1) (T713Y'S18.1,+0,(1) ¢T3V 513" + 0,(1)

,8/115f058()_1551f311 op(1) 0;0(1)
- 0p(1) op(1) op(1)
0p(1) op(1) o0p(1)
_ Qﬁ’;leUBH - ,5/1151‘0550-1531511 ,Op(l) (6.33)
op(1) (T~1B* S}, B + 0,(1)

where now B* = [ 3, BY ],p* X (p=q).

The o,(1) blocks are blocks that were O,(1) before scaling by Y1 because they were
products of averages of products of either two I(0) processes (31,55, S¢p) or an I(0) and
an I(1) process (B* S;,, B* S, 3,,), see (A.9) and (A.10) in Appendix A.

In order to find the limit of (6.33) we need the following:

Spy B X5y = H SooH (6.34)
011550 = S0 = H SaoH (6.35)

81,518 B S5 5, = H SgH (6.36)
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and Sy 2 oo, 3 S10 = Lo and 38,8 £ L5 by the WLLN (see also Johansen (1996,

Lemma 10.3)). Furthermore, we define

Va/r[ A/Yt* J _ [ 280 2*8/311 J

B;I*Xt* 22110 2511511
for the SM and
AX, Yoo 2o J
VCM" ’ = s
{,6 Xt J [ Ego Eﬁg
for the DGP.
Thus,
X7 BrS*(¢)BrYr| =
) (811571811 — 811570555 5181 Iop(l) R
op(1) (T'B*S7,B* + 0,(1)
— CZEllﬁn - 22110286128/@11 ,_O -
0 (BYC* [} WW' duC* B*

1
= (T} 5., — 5. 0%05 ' Tas, |ICB¥ C /O WW duC* B*| =0 (6.37)

by (6.34)-(6.36) for the first factor and by (6.29) for the second.

Thus (6.37) indicates that there are ¢ non-zero and (p — ¢q) zero roots in the limit,
which suggests that ¢ cointegrating vectors can be detected in the underspecified model
as the sample size becomes large. The stochastic matrix B* C* fol WW' duC* B* with
dimensions (p — ¢) X (p — ¢) has rank (p* — ¢) almost surely (see also section 6.1.1) and

the k = (p — p*) zero roots appear in the second factor of (6.37) by construction.
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6.2.2  Consistency

The analysis of consistency is carried out only for case (ii) where some cointegrating vec-

tors can be detected.

For the analysis of consistency we use the partition of [ that appears in subsection

6.2.1,
B B
G=| X rxir=a
Bar B
kxq  kx(r—gq)
3 O
where 3,; = 0. We define B = [ @11 Buis ] and B~! = %P where
Prxe prx(pt-a) By
(p*—g)xp*

Byl = 511¢(/3/11L511¢)_1» By = 511(5,11511)_1 and ﬂlmglu = 0. B and B! are such

that the following relationship holds
B™'B= BB~ =B,y + Bui s = L (6.38)

We have shown in subsection 6.2.1 that the tests detect ¢ cointegrating vectors, hence under
the assumption of cointegration IT* in (6.22) has rank ¢. Thus, II* can be expressed as

I = ozn[j’;l, where a1,” and 3,; are p* X ¢ matrices of rank ¢. The SM then takes the

form

AX; = auByXi, +6 (6.39)

with Var(e}) = A"

11 a2
9 e . o . . o P*Xq  p*x(r—q) ’ _ A [ 11 (429 :I
Partitioning « similarly to 3 we obtain o« = . o where H o = PTXq  prx(r—q)
kxqg kx(r—q)

and a1 are the adjustment coefficients that correspond to the cointegrating vectors detectable in the under-
specified model.
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Let ,@11, &7 and A* be the maximum likelihood estimators of 0841, o171 and A* cal-
culated from the SM (6.22) (using (6.24)). The parameters 3,; and «; correspond to the
p* X g submatrices of 3, « in the DGP.

For the analysis of consistency we use a linear transformation of the columns of 3,

which also maximises the likelihood function (see subsection 6.1.2, footnote 8), given by

Bll = 311(»73)/11811)~1 (6.40)
= ‘311 +/{—311_1_/6111_£_,311(511[311)—1
= O+ Bi.b

where the second equality follows by using (6.38) and b; = /3/11 1 BM.

We also define &, = é113,,3,; such that &1 5;; = @&1,3;, and

tqp = 551/?11(3115{‘1@11)_1,311.811
=S58y (BuShBu)
where the first equality follows from the fact that &y, = S, 8,,(3,,55 f)’u)“l (see equation

(2.13) in section 2.3) given that we can estimate (3,; by solving (6.24).

In addition,
A" = Soo ‘551:811(/31151‘1311)*1311 10
= S50 — 551511(3115f1511)_1511 10

where the first equality follows from the expression for the estimator of the variance-

covariance matrix of the errors in the SM (see equation (2.14) in section 2.3) and the second

equality follows from the definition of 3.
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The proposition below establishes the consistency of the maximum likelihood esti-
mator for the cointegrating vectors in the sense that the estimator from the SM converges
in probability to a submatrix of the parameter, 3, in the DGP, which is associated with the

included variables.

Proposition 6.2. The estimator of the cointegrating vectors, Bu: associated with the under-

specified model (6.22) converges to vectors in sp(3), i.e. 3y, = By,

Proof. The equations (6.25) and (6.26) have the same eigenvalues but (6.26) has eigen-

vectors B;'V where V = [ B ng? 2 J is the matrix whose columns are the eigen-
pxq -

vectors of (6.25) and Bq = Hﬁn = [ 661 J The eigenvalues of (6.26) converge to the
eigenvalues of (6.37). Thus, the space spanned by the g first eigenvectors of (6.26) which
correspond to the g largest eigenvalues converges to the space spanned by vectors with ze-

ros in the last (p — q) positions. The space spanned by the first ¢ eigenvectors of (6.26) is

sp(B7'B3,) = sp(B;lﬁq) where Bq — Hpj,, and

L | B |5 _[We)es
BTlfgq - [ /_211/2‘»,3'L J ﬁq - { Tl/zﬁl,éqq J :

First we analyse block (1,1). Using the formula for the partitioned inverse we have,

/ ’ 1
(59 = [5}1511 L, Onbi ]
B12811 812815 + BaaBas
_ [ (811810, +,5£1‘312175/12,511(5114311)“1] —(811811) 7 81181 F
—F 815811 (81161) 7" F
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where

F = [B15815 + B8 — ,5/12511(,3/11511)_1;3’11512]”1
= [By2Ba + Bro(Tp — B13(81,811) " 61,)Bra] !
= (83282 + BroBr1. P11 Bra] !

and the last equality follows from the relationship in (6.38).
Thus,
(587168, =
(5,11/311)”1% +/ﬁ/11512f’/3l12511(5111.511)—1} *(/3/11/311)_1!3/11,81217 J [»8:11%?11 J
~F 15811 (811811) 7 F B12011
_ |4
= | 4

where
Ar = (81,81) Iy +81:812F 81981, (811 811) 18181~ (81.81) 811812 F Brafiy
= (81281) 7 Bullpr + B12F 812811 (B1B11) " 81 — B1aFB12]B1
= Fuslly — BuoF Bry(I = B11(B1181) 8118w
= B = B1aF BroBrs 1 B0 ) By + Burby)
= I, — B11B1F BoBrs by
and
Ay = —FB158:1(811811) 18118y + FBuBu
= FBylly — 811(BuB1u) " BulBn
= FB5811.80. (811 + Buab)

= F/6,12511_i_b1 .
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Then we analyse ﬂléq which appears in block (2,1). Partitioning ﬁ;_ asin 3, =

(1 (2
[ ey 81 Jwe obtain

(p;:) xp*  (p—r)xk

ol

/Blﬂéq = [ g f)l J { 5011 J = 8_1)1311 = ,B(Ll>/<ﬁ11 +0.01) = ﬁf)'ﬁmbl
by the assumption 488 L =0(or 6;,8 = () which gives

’ 4 I /6 ﬁ 4 ! !
ZB_Lﬂ:{ (j) f)}[ 61 /3;; :{ﬁf)ﬁu 5_2)512‘*‘55_2)/322]20

and therefore ,[)’S}yﬂu = 0.

Thus,

[— Iq - 311512F1311231ub1
,1%4

-13 Ff315811.0

By B, = L : (6.41)
7283y, by

(p—r)%q

By the form of (6.37) the last two blocks of (6.41) should converge to zero (in other words
sp(B7'(3 ,) should converge to the space spanned by vectors with zeros in the last (p — q)
coordinates. A necessary condition for this is 72/2b; = 0. Then sp(B}lﬁq) EN sp([ %’ })
From (6.40) we obtain T*/2(3,; — 3,,) = By, (T"?b;) £ 0 and that (8, — 8,;) =
0,(T/?). B
We then consider the probability limits of ¢&;; and A* obtained from the underspeci-
fied model. We first partition o and 3 conformably with X; = [ )ég;) J (see also subsec-

tion 6.2.1) and we use the transformed, row equivalent form of 3. Then, the DGP (6.21)

becomes,

AX; _ | an 2 /3:11 Q Xt*zl 4 5}2: 10
AxH Qo1 Qg2 B15 Do X% o '



6.2 Omitted variables 127

The part of the DGP that corresponds to the included variables is
AX] = 0611,5;1)(:_1 -+ 0412(%3,12‘ 1+ ABIQQ‘Xﬁ)l) +2f
or
AX; =018, X, + o0+ (6.42)

where e7 = H'g; ~ 1.4.d.(0,%), Q" = H'QH and Z,_; = B1,X7 | + By X" ~ I(0),
is the part of the DGP that cannot be estimated due to the omission of Xt(k) . Using the full

sample, (6.42) can be written as
AX" = Ckuﬁ/uXil + OtuZ-l +&* (643)

where AX*, X*,, e*are p* x T, Z_; is (r—q) x T and they are the full sample counterparts
of AX}, X ,, ¢} and Z;_, respectively.
Using the partitioned form of X; and 3,

Ses = Var(f Xio1) = E(8 X1 X;_18) (6.44)

_ [E(ﬁilxg_llelm E(6y1 X7 172, 1)
E(ZrX{aBn)  E(ZaZ, )

_ {25*11/511 EB*HZ}
ZZ,BH 2ZZ

and the second equality follows from the fact that there are no deterministic terms in the

DGP.

The proposition below relates to the ‘inconsistency’ of &1 and A* in the sense that

their probability limits are different from the parameters, in the underspecified model, that

they aim to estimate.
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Proposition 6.3. The estimators &1 and A* are ‘inconsistent’ Jfor the parameters o7 and
2" in (6.42) in the sense that they do not converge to the submatrices of o and ) (param-

eters of the DGP) that correspond to the included variables i.e. plim &1, # a1y and plim

A £ Q.

Proof’ Since 3,; can be estimated consistently (see Proposition 6.2)

plim 61 = plim 551/811(»9/115f1/611)—1 = plim [T“lAX*Xiﬁu(T—lﬂlllXilelﬁu)—l]

where the second equality is due to the absence of deterministic terms in the SM. Substi-
tuting for AX* as it is given in (6.43) and using Slutsky’s Theorem,
= o+ al?PIimKTﬂlz—lelﬁn)][Pﬁm(T_lﬁ,nXLXflﬁn)]—1

* k—1
= an+andzg 25 4,

and the probability limits equal the corresponding population moments since the process
3 X,_1 (and therefore 3,, X}, and Z;_;) is stationary and ergodic (see subsection 6.1.1).
(6.45) shows that &;; is ‘inconsistent’ (or asymptotically biased) unless a; = 0 or plim

(T—*Z_1X*,8;;) = 0. A stronger condition to achieve consistency is Z_1X* 8, =01e.

Z_, is orthogonal to X*,3,;.
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For the estimator of the variance-covariance matrix of the errors (again using the

consistency of 3,,) we have

plim A = plim [550 - 551511(13,1151‘1511)—1:6;15;0}
= plim (TT'AX*AXY)
—plim [T AX™ X" 8y, (T~ 8y, X2, X7 Byy) T 8, X7 AXY]

= plim T'AX*M*AX™
where M* = Iy — X*,8,,(8, X" X* 81,) 181, X*,. Substituting for AX* using (6.43),
plim A* = plim T o Z_\ M*Z o)y + anZ_ M*e* +*M*Z o + * M*e"]

and M*Z | can be viewed as the residuals from the regression of Z_; on 3, X* . By the

WLLN we have
plim T~ Z_ M*s* = E(Z_,M*c*) =0

since E(Z_1M*e*') = E[E(Z_1M*c*|X,_1)] = E[Z_1M*E(c*|X,_1)] = 0, where X,_;
is the minimal o-field generated by the random vector X;_;. Furthermore,

'

plim T8, X e = E(3,,X*%) =0

since E(3y,X*,e") = E|E(8,X* e |X-1)] = E[31,X* E(¥|X_1)] = 0 (see also
footnote 10). Hence,

plim A = plim (T~ ') + plim (T 0 Z_ 1 M*Z" ayy) (6.46)

—1 *

* * * * 4
= O +an(Yy; - 225,255, 25,2)00
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since " and Z_, are stationary random variables and by the WLLN the probability limits

in (6.46) equal their corresponding population moments. Therefore, A* is ‘inconsistent’

unless a1z = 0. |

From (6.45) and (6.46) we observe that in order to gauge the magnitude of the incon-
sistency (or the asymptotic bias), (plim é&1; — 1) and (plim A* — £2*) we need to estimate

* * * : M 3 e
a2, B3 g 2zg,, and X7, which is infeasible.

6.3 Monte Carlo simulations

In this section we present the results of some Monte Carlo experiments in order to illustrate
the asymptotic results presented in sections 6.1 and 6.2 and to give some idea about the
consequences of possible misspecifications of the SM, in finite samples, in the case of
irrelevant or omitted variables.

We use experimental designs similar to those in Podivinsky (1998, p. 6)!!, which
allow for up to two cointegrating vectors among up to three variables. All calculations
were done using Ox 3.00 (see Doornik (1999)). The number of replications is 10,000 for all
experiments. We use the 95% tabulated asymptotic critical values from Osterwald-Lenum

(1992, Case 0), thus the tests are carried out at 5% significance level.

11 For DGP1 we use different cointegrating vectors, 3, and for DGP3 and DGP4 we use a different adjust-
ment coefficient matrix, c.
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6.3.1 Inference about the cointegrating rank (7)

Irrelevant variables

The first DGP (DGP1) consists of two variables and one cointegrating vector and the
second (DGP2) of three variables and two cointegrating vectors. These are given below in

error correction forms,

AXy; -04 Xi(t-1) 1t
= 1 -1
[ AXoy J [ 0.1 } [ ] [ Xot-1) * €at (DGP1)
and
AXy; —-0.4 0.1 1 -2 1 Xig-1) €1t
AXo | = 0.1 0.2 [ 1 —O~5 —05 :l Xog-1y | + | €2 (DGP2)
A Xz 0.1 03 ' ' Xs(-1) 3t

where t = 1,2,...,T, g ~ 1.3.d.N;(0, I), s; = [ €1t Eot ] with j = 2 for DGP1 and
g, =[en ex e3 | withj =3 for DGP2.

The SMs used for performing the cointegration tests consist of three variables for
DGP1 and four variables for DGP2. Thus, we augment the DGPs with an independent
random walk which has innovations with zero mean and unit variance.

Tables 6.1 and 6.2 show the rejection frequencies using the trace and the maximal
eigenvalue statistics for different rank hypotheses and different sample sizes. The simula-
tion results agree with the asymptotic analysis of section 6.1, according to which the LR
tests for cointegration should detect the true number of cointegrating vectors, r (i.e. the

cointegrating rank in the DGP) as the sample size becomes large, when an overspecified

SM is used for cointegration testing.
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Table 6.1. Rejection frequencies using the trace and
the maximal eigenvalue statistics (DGP1).

Sample size < <
Rk bpobess 50 100 150 500 800

Trace statistic

r=1{ 0.8024  0.9999 1 I I

r<l1 0.0524 0.0498 0.0499 0.04550 0.04670
Maximal eigenvalue statistic

r=0 0.8515 1 1 1 1

r<l1 0.0516 0.0471 0.0474  0.0449  0.0440

Table 6.2. Rejection frequencies using the trace and

the maximal eigenvalue statistics (DGP2).

Sarapl
m%mﬁ%s%%ﬁ 50 100 150 500 800

Trace statistic

r=20 1 1 1 1 1

r<l1 0.9945 1 ! 1 1

r<?2 0.0989 0.0762 0.0618 0.0556 0.0446
Maximal eigenvalue statistic

r=10 1 1 1 1 1

r<l1 0.9936 1 1 1 1

r<2 0.0960 0.0732 0.0612 0.0540 0.0460

From Tables 6.1 and 6.2 we can see that we tend to accept the hypothesis of 7 = 1
and r = 2 for DGP1 and DGP2 respectively, since the corresponding rejection frequencies
for these hypotheses are quite close to the nominal size of the tests.

Next we conduct another experiment in which we control the local power of the test.
We use the same DGP as in DGP1 but we let the adjustment coefficients vary so that the
single cointegrating vector can be detected with high, medium or low asymptotic local
power. Thus, the setup of the DGP is such that the cointegrating vector has adjustment
coefficients that tend to zero as the sample size becomes large. In other words there is no

cointegration (r = 0) under the null hypothesis and under the local alternative there is one



6.3 Monte Carlo simulations 133

cointegrating vector (r = 1). The DGP then takes the form,
AXy, _ ! Xl(t—l) €1¢ *
{ AXoy J =awfu [XQ(t-l) * Eat (DGPT)
where t = 1,2,...,T, O‘El) =[a o ],,8'(1) =1 —1]ande, = [y &2 | ~
1.5.d.N2(0, I).
Under the local alternative of one cointegrating vector the asymptotic local power
depends only on two parameters f and g given by'?
T 'f = /3/(1)04(1) =a; — Q2
and
(T7'9)* = aye)By)Ba) — (Byaw)® = (a1 + a2)?
see Johansen (1996, p. 209)!3. Therefore we can express the adjustment coefficients in
terms of the parameters that affect the local power as
a1 = (f+g)/2T
and
az = (g~ [f)/2T.

We can then control local power by choosing combinations of f and g that correspond to a
particular level of local power and use them in the DGP. We use six pairs of ( f, g), two pairs

for each power level, high, medium and low as shown in Table 6.3. The values in Table 6.3

12 Qince under the null we assume 7 = 0. the matrices C' = I, 8, and o that appear in the definitions of f
and g in Johansen (1996, p. 209) have full rank and from the properties of errors in DGP1” we have Q = I
(see also sections 5.1 and 5.2).

13 In Johansen’s (1996, equation 14.2) notation, the deviation from the null is 7! 5,1, corresponding to

/1) used here. Thus, f = 5/1 o in Johansen (1996), after simplification, corresponds to T'8(1yc(1). A

)5
similar adjustment is required for g. Hence, f and g change with 7" across the simulations.
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were taken from Johansen (1996, Table 15.6) and given DGP1” we have (p — r) = 2. The

values that appear in Table 6.3 were computed using T = 400 and 2,000 replications.

Table 6.3. f, g and asymptotic local power

(f, 9) power

(-3, 12) 0.850 (high)

(-18, 12) 0.830 (high)
(-18,0) 0.565 (medium)
(-15, 6) 0.513 (medium)
(-6, 6) 0.272 (low)
(-12,0) 0.269 (low)

For the particular pairs and sample sizes used we also calculated the local power (using
10,000 replications) as the rejection frequencies of 7 = 0 under DGP1” to verify the dis-
tinction among high, medium and low power levels. The results of this experiment show
that the distinction made to the power levels applies, since the rejection frequencies for all
sample sizes are approximately 0.8 for (-3, 12) and (-18, 12), 0.5 for (-18, 0) and (-15,
6) and 0.25 for (-6, 6) and (-12, 0). However, the rejection frequencies do not always ap-
proach the limit expected monotonically. The detailed tables for this experiment appear in
Appendix F, Tables F.1 and F.2.

Tables 6.4 and 6.5 show the rejection frequencies of the hypothesis of » = 0 against
the alternative of 7 = 1 computed from the overspecified model, using the trace and the
maximal eigenvalue statistics respectively. We observe that for both statistics the rejection
frequencies are systematically below the prespecified level, which suggests that including

an irrelevant variable in the SM reduces the power of the LR tests for cointegration.
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Table 6.4. Rejection frequencies of the hypothesis

r = () using the trace statistic.

Sample size 5 100 150 500 800
0.850 0.6601 0.6715 0.6801 0.6787 0.6845
0.830 0.5314 0.4973 0.5024 0.4816 0.4787
0.565 0.2986 0.2756 0.2532 0.2512 0.2472
0.513 0.2823 0.2582 0.2515 0.2359 0.2392
0.272 0.1503 0.1381 0.1386 0.1267 0.1315
0.269 0.1690 0.1623 0.1584 0.1525 0.1491

Table 6.5. Rejection frequencies of the hypothesis
7 = () using the maximal eigenvalue statistic.

——R——-Is,irvnveieljﬁ 50 100 150 500 800
0.850 0.6457 0.6684 0.6765 0.6764 0.6811
0.830 0.5547 0.5268 0.5197 0.5041 0.5000
0.565 0.2986 0.2610 02557 0.2494 0.2424
0.513 0.2699 0.2492 02400 0.2256 0.2270
0.272 0.1381 0.1222  0.1236 0.1146 0.1216
0.269 0.1443  0.1395 0.1399 0.1308 0.1214

Omitted variables

135

Again we use two DGPs which are chosen on the basis of the asymptotic analysis to

reflect the cases (r — k) = 0 and (r — k) > 0, treated in section 6.2. Both DGPs consist

of three variables, but the first one (DGP3) has one cointegrating vector involving all three

variables whereas the second one (DGP4) has two cointegrating vectors both involving all

three variables. Thus,

AXy, 0.1
A}(Qt - Ol
A Xy -0.7

and

AXy, 0.433 0.233
AXy | = 0.5 0.3
A Xy 0.366 0.366

wheret =1,2,... ,T,at:[flt

(1 -2 1]

| ——
[T

gt

!

Xig-1)
Xogi—1)
X3(-1)

Xi(t—1)

X1y

X3(t-1)

+

(DGP3)
g1t
Eot (DGP—l)
3t

g3 | ~i.i.d.N3(0,I) for DGP3 and DGP4.
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The SMs used for the calculation of the trace and maximal eigenvalue statistics in-
clude only Xy, and X»;.
Tables 6.6 and 6.7 show the rejection frequencies for various rank hypotheses using

the trace and the maximal eigenvalue statistics, for different sample sizes.

Table 6.6. Rejection frequencies using the trace and
the maximal eigenvalue statistics (DGP3).

Sarmip] . - -
“J;‘Raiﬁv;ostﬁ:sis 50 100 150 500 800

Trace statistic

r= 0.1363 0.1474 0.1517 0.1571 0.1606

r< 114 0.0166 0.0168 0.0178 0.0162 0.0164
Maximal eigenvalue statistic

r=20 0.1379 0.1503 0.1563 0.1583 0.1627

r<1 0.0166 0.0168 0.0178 0.0162 0.0164

Table 6.7. Rejection frequencies using the trace and
the maximal eigenvalue statistics (DGP4).

Sample size
Rank hypothesis 50 100 150 500 800

Trace statistic

r=1( 1 1 1 1 1

r<1 0.0747 0.0686 0.0669 0.0722 0.0686
Maximal eigenvalue statistic

r=1( 1 1 1 1 1

r<l 0.0747 0.0686 0.0669 0.0722 0.0686

From Table 6.6 we can see that the tests might not detect any cointegrating vectors
(low rejection frequencies of » = 0, especially for small sample sizes) which is what we
expected since (r — k) = 0 (see section 6.2). From Table 6.7 we conclude that with DGP4
the LR tests are very likely to detect one cointegrating vector and this is in accordance with
the theoretical finding which suggests that if (r — k) > 0 the tests detect at least (r — k)

(2-1=1, in this case) cointegrating vectors.

14 Since there are only two variables in the SM the trace and the maximal eigenvalue statistics for r <1
coincide, similarly for the corresponding hypothesis in Table 6.7.
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6.3.2  Consistency

Irrelevant variables

We use DGP1 and DGP2 to check the consistency of the cointegrating vectors sug-
gested in Proposition 6.1(i). In DGP1, there is one cointegrating vector and one irrelevant
variable, and in DGP2 there are two cointegrating vectors and one irrelevant variable. We
use 7" = 5,000 and compute the 1%, 5%, 10%, 25%, 50%, 75%, 90% and 99% quantiles
of the elements of the estimated cointegrating vector(s) (i.e. the elements of the eigenvec-
tors that correspond to the largest eigenvalue(s)) for each DGP in 10,000 replications. In
particular we use the normalised form of the estimated cointegrating vectors (B+ instead of
5+) that is given in (6.15). The reason for using this normalisation is (as shown in subsec-
tion 6.1.2) that we can achieve convergence to the true (known) cointegrating vectors and

not just the space spanned by them. The simulation results appear in Tables 6.8 and 6.9.

Table 6.8. Quantiles of the elements of
the estimated cointegrating vector (DGP1).

5 ~+ >+ =+
__%mg_tﬁ B Bar 531(w)
1% 0.9975  -1.0024 -0.0039
5% 0.9985 -1.0015  -0.0025
10% 0.998% -1.0011 -0.0017
25% 0.9995 -1.0005 -0.0008
50%  1.0000 -1.0000  -0.0000
75%  1.0005  -0.9995  0.0007
90%  1.0011 -0.9989  0.0017
95% 1.0015  -0.9985 0.0024
99% 1.0024 -0.9975 0.0041

2 -~
1 AT _ | At At at . . . . . + .
Note. § = [ -611 ﬁ‘Zl ,6)31(”) is the normalised estimated cointegrating vector. ,631(2»,,) is the element of

~
O that corresponds to the irrelevant variable.

i
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Table 6.9. Quantiles of the elements of

the estimated cointegrating vectors (DGP2).
— — — o - T - = g
g Pu On By Bawy B Bn Bn Baow
1% 0.9996 -2.0004 0.9996 -0.0040 0.9995 -0.5004 -0.5004 -0.0045
3% 0.9997 -2.0002 0.9997 -0.0023 0.9997 -0.5002 -0.5002 -0.0027
10% 0.9998 -2.0002 0.9998 -0.0017 0.9998 -0.5002 -0.5002 -0.0020
25% 0.9999  -2.0001 0.9999  0.0007 0.9999 -0.5000 -0.5000 -0.0009
50% 1.0000 -2.0000 1.0000 0.0000 1.0000 -0.5000 -0.5000  0.0000
75% 1.0001 -1.9999 1.0001 0.0007 10001 -0.4999 -0.4999  0.0008
90% 1.0002 -1.9998 1.0002  0.0017 1.0002 -0.4998 -0.4998  0.0019
95% 1.0003  -1.9997 1.0003  0.0023  1.0003 -0.4997 -0.4997  0.0026

99% 1.0004 1.9996 1.0004 0.0038 1.0005 -0.4995 0.4995  0.0044

P e

+ at B B ,[3)31 ﬁ41(z‘v)
“Note. The rows ofﬁ = B o

. Bia Bay B3 /342(w)

3 42(1’11) are the elements of J  that correspond to the irrelevant variable.

P
are the estimated cointegrating vectors. (3 41(iv) and

From Tables 6.8 and 6.9, we observe that the normalised estimated cointegrating
vectors converge to the true cointegrating vectors and the elements of 8" that correspond

to the irrelevant variable are zero to four decimal places for the 50% quantile.

Omitted variables

According to the asymptotic analysis in section 6.2 and the simulation results in
Table 6.6, using DGP3 along with a two-variable SM, the eigenvalue equation should yield
eigenvectors sufficiently close to zero. Table 6.10 shows the quantiles of the elements of

the estimated eigenvectors in 10.000 replications using 7" = 5,000.
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Table 6.10. Quantiles of the elements of

the estimated eigenvectors (DGP3).

b

_ Quantiles V13 a1 V12 U2

1% -0.0563  -0.1026 -0.0457 -0.0428
3% -0.0398  -0.0820 -0.0341 -0.0310
10% -0.0310  -0.0696 -0.0283 -0.0252
25% -0.0133  -0.0442 -0.0198 -0.0159
50% 0.0099  0.0079 -0.0097 -0.0028
75% 0.0327  0.0454 0.0109 0.0113
90% 0.0496  0.0685 0.0215  0.0219
95% 0.0587 0.0814 0.0269  0.0282
99% 0.0739  0.1051  0.0367  0.0400

t X U1 U1z | ‘ . . o X
“Note. Vv = A N is the matrix whose columns hold the estimated eigenvectors and V
V21 Vo2 KXot

Next we use a modified form of DGP4, particularly, we use a matrix whose rows are

linear transformations of the rows of ﬁ/ found by adding to the first row twice the second
row 1Le.

1 -2 1 ] _[3 =3 0

1 =05 —-05| 7|1 —-05 —05 ]’
where ~ denotes a row equivalent matrix. Based on the asymptotic analysis of section
6.2, if we omit variable X3, we should expect one cointegrating vector whose estimator
converges to the space spanned by [;; in the notation of section 6.2, and in this case G =
[ 3 =3 ] Table 6.11 shows the quantiles of the elements of the estimated cointegrating

»)
vector, B;; = | L[5 | (associated with the largest eigenvalue) and the elements of the
P11
eigenvector corresponding to the smallest eigenvalue. In fact we use the normalised form

of the estimated cointegrating vectors, 3,; given in (6.40), in order to achieve convergence
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to the true (known) submatrix of the true 3, /3;,, instead of a linear combination of it. Again

the estimation is carried out using 7" = 5,000 and 10,000 replications.

Table 6.11. Quantiles of the elements of
the estimated eigenvectors (DGP4).
5 ~(1 ~(2
__oIaUniE §1) §1> 012 U

1% 29999 -3.0001 -0.0303 -0.0315
5% 3.0000 -3.0000 -0.0186 -0.0219
10% 3.0000 -3.0000 -0.0127 -0.0157
25% 3.0001 -2.9999 -0.0058 -0.0057
50% 3.0001 -2.9999 0.0001 -0.0000
75% 3.0003 -2.9997 0.0061  0.0053
90% 3.0005 -2.9995 0.0133  0.0151
95% 3.0007 -2.9993 0.0194  0.0209
99% 3.0011  -2.998% 0.0296  0.0321

3 gl) V12

Note. The first column of 7 = - (%)
Ji1 V22

holds the eigenvector which corresponds to the largest eigenvalue,

i.e. the normalised estimated cointegrating vector, ;311 whereas (@12X1t -+ ﬁgngt) ~ I(l).

In Table 6.10 the elements of the estimated eigenvectors are sufficiently close to zero
which is in accordance with the absence of any cointegrating vectors. In Table 6.11 we can
see that the elements of the estimated cointegrating vector, after normalisation converge
to the appropriate elements of the submatrix of 3 in the DGP namely §;, = (3 =31
The elements of the other estimated eigenvector, which is associated with the smallest
eigenvalue seem to be sufficiently small.

Next we use DGP4 and a SM with only X;; and X to compute the quantiles of the
elements of the estimated adjustment coefficient matrix. The estimator of «;; used in the
simulations is given by &1 = &11,5’/11 3, (see subsection 6.2.2) which is a transformation

of &;; such that &11,5’;1 = dnﬁn. ForT = 5,000 and 10,000 replications the estimated ad-
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justment coefficients seem to converge to the sum of the true adjustment coefficient matrix
(i.e. the part of «, 17 say, in the DGP that corresponds to the single cointegrating vector
that can be detected using the misspecified SM) and the asymptotic bias, which is com-

puted using T = 5,000 and 10,000 replications (this sum is given by the right-hand side of

(1)
(6.45)). For this case we have oy; = 122 DA I [ 0.433

—~ — all -
05 }, and &;; = ey is the

(2)
15381

transformed estimator of a11. The results appear in Tables 6.12 and 6.13.

Table 6.12. Quantiles of the estimated

adjustment coefficients.

g &Y aiy

1% 0.4879 0.5730
3% 0.4901 0.5752
10% 0.4914 0.5763
25% 0.4935 0.5783
50% 0.4957 0.5804
75% 0.4980 0.5826
90% 0.5002 0.5847
93% 0.5014 0.5859
99% 0.5036 0.5880

Tables 6.12 and 6.13 provide an illustration of Proposition 6.3 namely that the estima-
tor of the adjustment coefficients in an underspecified SM is inconsistent or asymptotically

biased. From Table 6.12 we can see that the normalised estimated adjustment coefficients

are biased upwards.
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Table 6.13. Quantiles of (¢11 plus
estimated asvmptotic bias.

11+ est. as. bi 1) . 2 .
& est. as. bias Oégl) + est. as. bias a‘n) + est. as. bias

Quantiles

1% 0.49102 0.5741
3% 0.49251 0.5760
10% 0.4932 0.5770
25% 0.4944 0.5785
50% 0.4958 0.5803
75% 0.4971 0.5820
90% 0.4984 0.5837
95% 0.4992 0.5847
99% 0.5005 0.5864

6.4 Concluding remarks

This chapter has considered the effects of overspecifying (inclusion of irrelevant variables)
or underspecifying (omission of relevant variables) the SM on the LR tests for cointegration
proposed by Johansen (1988, 1996). We showed that including irrelevant variables in the
SM will affect neither the inference about the cointegrating rank nor the consistency of
the estimated cointegrating vectors and adjustment coefficients as the sample size becomes
large. However, simulations showed that overspecifying the SM reduces the power of
cointegration tests for both small/medium (7" = 50, 100) and large sample sizes (7" = 500,
800). We also showed that omitting relevant variables from the SM will lead to either no
detection of cointegrating relationships, if the true cointegrating rank is smaller than or
equal to the number of omitted variables (» < k) or the detection of ¢ < r cointegrating
relationships, if the true cointegrating rank is greater than the number of omitted variables
(r > k). In addition, the use of an underspecified SM does not affect the consistency of the

estimated cointegrating vectors since they still converge to a subspace of sp(3) but it does
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atfect the consistency of the estimators of the adjustment coefficient matrix and variance of
the errors.

Although the analytical results are asymptotic, small sample simulations show that
the theoretical findings also arise in sample sizes used in empirical work.

The omitted variables can also be /(0). Since the inclusion of a stationary variable
increases the dimensions of the cointegrating space by one, the omission of only /(0) vari-
ables will lead to the underestimation of the cointegrating rank by the number of omitted
1(0) variables.

Overall we conclude that the omission of relevant variables from the SM has more
serious consequences (especially when followed by tests for linear restrictions on « and 3
conditional on the wrong cointegrating rank) on cointegration analysis than the inclusion
of irrelevant variables, which is in accordance with the simulation results of Podivinsky

(1998) as well as with the known “verdict’ in the standard regression analysis.



Chapter 7
Conclusions

This chapter provides an overview of the aims and findings of the thesis along with

some limitations and possible extensions of the results herein.

7.1 Aim

The thesis aimed to study the effects of two types of misspecifications on the LR tests
of cointegration proposed by Johansen (1988, 1996), implemented using the trace or the
maximal eigenvalue statistic. In other words we assume that the SM used for cointegration
testing differs from the DGP (since the DGP is unknown to the modeller) and we examine
the sensitivity of the tests to misspecifications of the SM.

The misspecifications under consideration are: (i) intercept shifts present in the DGP
but ignored in modelling (absence from the SM of step dummy variables accounting for
the intercept shifts), (ii) presence of irrelevant variables in the SM or omission of relevant
variables (present in the DGP) from the SM.

In investigating the effects of the above misspecifications we use (i) asymptotic anal-
ysis i.e. we examine the asymptotic behaviour of the eigenvalue equation and therefore the
behaviour of the eigenvalues used in the trace and maximal eigenvalue statistics and (ii)

Monte Carlo simulations to check the asymptotic findings and evaluate the impact of the

misspecifications in finite samples.

144



7.2 Findings 145

Since we analyse the effects of misspecifications, it is desirable to have some degree
of control over the power of the tests, in carrying out the Monte Carlo experiments. Thus,
where appropriate, the experiments were designed in a way that we can control the level of
asymptotic local power.

For the first type of misspecification (intercept shifts) both methods of analysis were
employed to examine the effects of shifts at different or common dates along with alterna-
tive specifications of the deterministic term.

For the second type of misspecification (irrelevant or omitted variables) both methods

of analysis were used to study the consistency of the estimators of the parameters in the

ECM.

7.2  Findings

In Chapter 4 we show that under the first type of misspecification the tests reject the true
null hypothesis of cointegrating rank r (0 < 7 < p) with probability one as the sample
size tends to infinity. Thus, we tend to accept spurious cointegrating relations/vectors not
present in the DGP. An upper bound is found for the number (b) of spurious cointegrating
vectors that arise asymptotically and it is given by the number of variables with intercept
shifts (p;). In the case of shifts at a common date the upper bound is given by the number
distinct/different shifts in the DGP. The attainment of the upper bound depends on the
weak exogeneity status of the variables. It is found that (i) when none of the variables with

intercept shifts are weakly exogenous or (ii) when all the variables free of shifts are weakly

exogenous no spurious cointegration occurs (b = 0).
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In Chapter 5, using Monte Carlo simulations we find that for a given level of asymp-
totic local power, the frequency of rejecting the true null hypothesis r = 1 increases as
the sample size becomes larger. This finding is in accordance with the asymptotic analysis
of Chapter 4. Furthermore, the frequency with which the true null hypothesis is rejected
rises as the magnitude of the shift increases. These patterns arise under the assumption of
both distinct shifts and shifts at a common date as well as under all constant term specifi-
cations (no constant, restricted and unrestricted constant) considered. For sample sizes and
constant term specifications commonly used in applied works, together with a magnitude
of shift (e.g. 6 = 0.5) that is difficult to detect, the rejection frequencies of the true null
hypothesis are far-off (sometimes they exceed 30%) the asymptotic size of the tests (5%).
O’Brien (1999) argues that shifts of this size may be difficult to detect visually, and when
their location is not known, difficult to detect by testing.

In Chapter 6 we show that inclusion of irrelevant variables does not affect the infer-
ence about the cointegrating rank but it does affect the magnitude of the probability limit
of the positive eigenvalues. In addition, the consistency of the estimators of the parame-
ters in the ECM is not affected. However, simulations show reduction in the power of the
tests when irrelevant variables are included in the SM. Moreover, we find that omitting rel-
evant variables from the SM affects the inference about the cointegrating rank. The tests
either fail to detect cointegration when r < £, or they detect ¢ < r cointegrating vectors
when r > k. In the case that ¢ < r cointegrating vectors can be detected their estimators
are ‘consistent’ in the sense that they converge to a subspace of sp(3). Nevertheless, the

estimators of the adjustment coefficients and variance of the errors of the SM are inconsis-
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tent. The results of the Monte Carlo simulations conform with the asymptotic results and

the effects of this misspecification are apparent for sample sizes used in empirical works

(T = 50,100).

7.3 Limitations and extensions

No asymptotic distributions were derived under the types of misspecifications considered.

In the case of intercept shifts the asymptotic distribution was derived for the null case
(r = 0) and was tabulated (for p; = 1) by O’Brien (1999). For r» > 0, that is the case
analysed in Chapter 4, the limit of the eigenvalue equation is not the determinant of a block
diagonal matrix, which indicates the need for adopting a different scaling than that used in
Johansen (1996). However, it was shown (see section 4.4) that the asymptotic distribution
for » = 0 can be derived as a sub-case using the asymptotic results derived for 0 < r < p.
An extension of Chapter 4 would be the derivation of the asymptotic distribution by re-
defining the directions in RP appropriately.

Even though the Monte Carlo investigation in Chapter 5 is quite extensive, a response
surface analysis would provide useful insights into the dependency of the rejection frequen-
cies on the sample size, design and deterministic term specification.

For the irrelevant variables case presented in Chapter 6 it would be useful to derive
the variances of the estimators and compare them with those from the correctly specified
model in order to make more specific efficiency statements. For the omitted variables case
we could gain more understanding if the asymptotic distribution under misspecification was

derived. Moreover, for both cases analysed in Chapter 6 an investigation of the behaviour
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of the estimators in small samples would be informative. Finally an extension of Chapter 6
would be to analyse the case that the SM includes irrelevant variables and at the same time

does not take into account relevant variables.

7.4 Contribution

Although the LR tests for cointegration proposed by Johansen (1988, 1996) are routinely
used in applied works, the literature concerning the effects of misspecifications on these
tests is limited to some Monte Carlo studies with the exception of O’Brien (1996, 1997,
1999). The contribution of this thesis is to provide analytical (asymptotic results) and nu-
merical (Monte Carlo results) evidence about the robustness of these tests under misspeci-
fications.

The asymptotic analysis (Chapters 4 and 6) provides knowledge as to which param-
eters of the model play key roles under misspecification and this knowledge is utilised to
design informative Monte Carlo experiments. The asymptotic analysis proved to be use-
ful since the parameter space, especially in the case of ECMs is impossible to be fully
explored.

In addition, the thesis can act as a caveat for the applied worker since the cointegration
analysis is shown to be distorted under the misspecifications mentioned above. For the first
type of misspecification to be avoided, the modellers should perform tests for shifts on the
univariate processes included in the SM (see e.g. Perron (1989), Perron and Vogelsang

(1992), Zivot and Andrews (1992)) and/or cointegration tests that allow for shifts in the
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mean of the vector processes (see e.g. Johansen et al. (2000), [noue (1999), Saikkonen and
Liitkepohl (1998)).

For the second type of misspecification considered. the impact of omitted variables
on cointegration analysis seems more serious than that of irrelevant variables, since in the
case of the former only part of the model can be recovered and the modeller might use the
‘inadequate’ model] to test structural hypotheses on § and a and reach misleading conclu-
sions. Since the inclusion of irrelevant variables does not appear to distort cointegration
analysis (except for a reduction in the power of the tests), this finding can be used as an
advocate of general-to-specific approach to modelling (see Hendry (1995)).

Overall we can conclude that the LR tests for cointegration are sensitive to the mis-
specifications considered. The use of a misspecified model affects the analysis in various
ways such as the inference about the cointegrating rank, the consistency of the estimators
or the power of the tests. Thus, application of pre-tests on the univariate processes, diag-

nostic tests or modified tests for cointegration are necessary to avoid misspecifications or

limit their effects.



Appendix A: Preliminary results

In the proofs we repeatedly use some asymptotic properties of linear processes which
are stated in the following theorems. In addition we provide some results about the order of
magnitude of linear functions of step dummy variables needed in the proofs of Lemma 4.1

and 4.2. Note that any terms in parentheses written as subscripts or superscripts indicate

indices.

Theorem A.1. Let {z.} be a sequence of p-dimensional i.i.d*® random vectors with mean
zero and variance matrix Q. Let W (u) be the p-dimensional Brownian motion, with vari-
13
ance Q, on C[0,1]. Define &, = > e Let {fr(t)}E., be a sequence of deterministic
i=1

Sunctions such that fr([Tu]) — f(w), with f(-) defined on [0, 1]. Then,

(T
T2 e = TV 5 W(w) (A.1)
g=1
T 1
T_Zzgtfg—%/ W (u)W (u) du (A.2)
t=1 0
T J 1
D MEEE | wiawy (A3)
T 1
TS gt L [ (am)s (A4)
t=1 0
T 1
T‘B/ngth(t)'f—l» /O W(w) f(u) du. (A.5)

15 Functional central limit theorems can be derived by imposing weaker conditions on the process {¢;} and
also by considering convergence in the space of cadlag functions, see e.g. Billingsley (1968, Chapters 3 and
4), Phillips and Durlauf (1986), Phillips (1987), Phillips and Solo (1992).
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Theorem A.2. Let ¢, and fr(-) be defined as in Theorem A.1 and in addition let ; have

> o oC
finite fourth moments. Let u, = ) e;g;_; and vy = > hier_; with coefficients e; and h;

=0

s, ¢} . 0 .
that decrease exponentially, such that e(y) = > e;y* and h(y) = 5. h;y* are convergent
=0 i=0

Jor |yl <1+ w, w > 0. Then,

~1/2 2
T 121ta§<Tfut[ 0 (A.6)

a u | d | e(l)

~1/2 t| 4
T ; [ o J [h(l) J W (u) (A7)
1 7

T waT e [ @)y (A5)

0
T Zut11t+s —~>E utvt+s Lezﬂh =1 s=0,1,2,... (A.9)

=1
T o]

~1 Zuz v S e(l /WdW +> T, (A.10)

t=1 =1 s=1

Another useful result that will be used in the proofs is given by the following theorem.

Theorem A.3. Continuous Mapping Theorem (CMT). Let g(-) be a continuous functional
on C[0,1] such that g(-) : C[0,1] — R? or g(-) : C[0,1] — C[0,1]. If X7 -5 X, with

X € C[0,1), then g(X7) % g(X).

Theorems A.1, A.2 and A.3 are given in Johansen (1996, Theorems B.12, B.13 and

B.5) and in Hamilton (1994, Proposition 18.1).
In the proofs of Lemma 4.1 and Lemma 4.2 we encounter products of lag polynomi-

als, step (or shift) dummy variables (z;’s) and error terms. In Lemma A.2 we establish some
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results concerning the order of magnitude of these terms. First we explain the notation to

be adopted.
The p x p matrix lag polynomial C;(L) is partitioned conformably with ®D, =
{ = :J, (with z;, py x 1 subvector of step dummies and ¢, p, X 1 subvector of constants,

pr+p2=p)into Cy(L) = [ CH(L) C}(L) |, where C}(L)isp x p; and C?(L) is p x pa.
en(L) -+ ey (L)

Moreover, C1 (L) = : :

epr(L) -+ epp (L)

Note that the submatrices C7(L) and C7(L) as well as the elements e;;(L), i =

1.2,...,p,0=1,2,... , p1 inherit the properties of C (L) (see Hamilton (1994, pp. 258,

545)) stated in Theorem 2.1.

Below we give Lemma A.1 which is used for the proofs of some of the results given

in Lemma A.2.

LemmaA.l. Let S = Z S;and S; = Z e Ai. Ifa; <b,ap=0b, =00 a,=b, 1+,

k=a;

n=12,...,pand a; — oo, b; — coas T — oo, z‘henS——»Ze()A
k=0

Proof.

S=5%+5S+...+5=

bo

b1
S e+ S ey 4k 3 e, =

k=0 k:al k= ap
bo b1 bo bo by
STeWAg+ 1D elIA =D eRIA] D ey = > el +
k=0 k=0 k=0 =0 k=0
bp 1

iek)z\. Ze’”)A

k=0 k=0
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})r) b1 bp-l 20
DB —A) + > e (A= Ao+ S WA, — )+ > elln,
k=0 k=0 k=0 k=0

eg;?AO, as T — oc. |

!
WK

o
i

0

Lemma A.1 requires A; to be O(1). Later we use the symbol Ay, for expressions that
are not O(1) but separate demonstrations are given therein.

For the proofs of A(v), A(vi), B(i), B(ii), C(i), C(ii), E(ii), E(iii) and F in Lemma
A.2 we use an algebraic decomposition of C(L),which is referred to as the Beveridge-
Nelson decomposition (see Beveridge and Nelson (1981)) in econometric literature. Note
that this decomposition is initially applied on C'(L) that appears in Theorem 2.1 (Granger
Representation Theorem) and has the form C(L) = C(1) + (1 — L)C1(L). Then C (L) =

S~ C1:L* which is also convergent (see Theorem 2.1) can be expressed as
=0

Ci(L) = (1) + (1 - L)C(L)

o0 ¢ oo o0 oG
where C}(L) = Z Cf;ch, e = Z Cu = Z E C; = Z(] ~ 1)C; and
k=0 i=k+1 i=k+1 j=it+l =2

Ci(1) = > Cro = 2. 7Cy = 3 > j(j — 1)C; < oc. The validity of the above decom-
k=0 j=1 j

=2

A

position hinges on the fact that C(L) is convergent, which follows from Lemma 4.1 in
Johansen (1996).
Moreover, a typical element of C](y) would be e;;(y) = k;yke,gf) , which is con-

vergent for |y] < 1 + w, w > 0, by definition (see Theorem 2.1). It then follows that
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g’eﬁ?} < a*, where a = (1+w) ' and 0 < a < 1. We then have

oC oC oC
Z keg?) < Z /c}eg-c)] < Zkak =a(l —a)™* < .
k=0 k=0 k=0

The expressions of Lemma A.2 involve only the submatrix, C{(L), of C;(L), therefore
the decomposition of the lag polynomial is C{ (L) = C}(1) + C}*(L)(1 — L), which also
applies to each element of C}(L). C1*(L) is p x p; and consists of the first p; columns of
C7 (L) (that appears in the Beveridge-Nelson decomposition of C; (L), shown above).
Finally, note that for an arbitrary breakpoint ty = [TA], A € (0,1), [TA] = T
for T'A integer, which implies A = ¢,/T, and [T'A] = (T' — 1)\, otherwise, which implies
A = to/(T—1). In deriving the asymptotic results we write A = ¢,/7 to avoid complicating
the demonstration since ¢y = TA = O(T') for TX integer and ¢ = TA — A = O(T) +

O(1) = O(T), otherwise.

Lemma A.2. Let vy = Cy(L)e;. Under the assumptions of Theorem 2.1 about C1(L), the

assumptions of section 4.1 about z;, Z; and the assumptions of Theorems A.1 and A.2 about
&t

4. () C1(L)z

i) ¥ CHI)(1 - D)z

(1 3 4l - DKL)

@ SICHL( - Dl - DICHD)'

w3 CHD)

o) CICHE 21— DCHD) | are O,

Bméwmemngn
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ﬁDéiKﬁ%L)%—déml

i) 3 Zues[a(1 — D)CHI)|

(iv) é(t — 1)[z,(1 — L)CHL)'] are O(T),
C.0 3 ZealzCHE)'

-

(ii) ;(t — 1)[z,_,CHL)] are O(T?),
D) R =ls(1 ~ CHD)'

i) Y11 - Dy

) 31— Dulla(1 - DOHLD))

T
> ve1[2_1 (1 = L)CH(L)']

M~

W ZNCHE)z-][vi(1 — L)] are O,(1),

Sl

E. (i) t_zlvt_lzz-l
() 3 vt 1 CHEY
i) 32(CHE -1
() 361241 = DICHEY ] are 0,(T),

36,2 CHI)] is Op(TH?)

Proof A. (i) We analyse C1(L)z;.

en(L) -+ e (L) 1t
G@m=[ S }[s
€p1 (L) o Eppy (L) Zpit



Appendix A: Preliminary results 156

The (3, j)-th element of C}(y), e;(y) Z y*e!™ is convergent for ly <1+ w,w >0
and the coefficients e@ ’s are exponentially decreasing. From |y| < 1 + w, it follows that
}ef.;c)[ < (14 w)™ and Z }e )| < Z(l + w)™® = 1+ w1, which shows that e(k)’

are absolutely summable. From the definition of the typical j-th step dummy, z;¢;_x), we
have —6; < zju-x) < 6; which implies |z;;_x)| < |6;] which implies [eﬁf)zj@_k)l <
{ 55, il =16; ]|e *)|. Taking the infinite sum both sides, | Z e” zjt wl < 165l Z e(k>| <
1] Z Ie(k) | < coas e( )*s are absolutely summable. So, there exists 0 < m < oo such that
le;;(L)z;e| < m, therefore e;;(L)zj: is bounded, hence O(1). It then follows that C}(L)z

is O(1).
A (ii)té CHL)(1 - L)z =

T
S en(D)(1 - L)z
i i=1
=1 T
> ep(L)(1 = L)z
i\ — 1), t =1
As (zi — zig-1)) = bt =1to +1

0, otherwise
analysing the typical, j-th, element of this vector we have

T T o
Z ejz'(L)(Zit - Zi(t—l)) = Z Z €; Zz t—k) T Zi(t—1— k:))
t=1 t=1 k=0

x>
=3 el [z — zi0) + (z2) — 2n) + -+ + (Zur-n) = Z(r-k-1)]
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=S,

k=0
where,
noo 0 — )t 2T —k=k2>T(1-\)
k= d;\;, otherwise :
So,
o0 T(1-X;)-1 oo
k=0 k=0 k=T(1—X;)
51/\1 Z e§f> < e,
k=0
T
by Lemma A.1. Thus, Y C1(L)(1 — L)z is O(1).
t=1

AL (i) 3> 2z (1 - L)CH(L)] =

r T T
o z=Z1 th[(zit - Zi(t-l))elz'(L)] s t; th[(zit - Zi(t—l))epi (L)]
2
i=1 T T
t___Zl Zpye[(2it — zie—1))eni(L)] -+ t:Zl 2yl (2t = Zi(e-1)) epi(L)]

Analysing the typical (I, m)-th element of the above matrix we have,

T T i,
Z 21 [emi([/)(zit - Zz'(t-1))] == Z 21 Z egfg((zi(t_k) — Zi(t—k~1)))
t=1 =1 =0

o0 T
k
= Z eﬁm) Z th(zi(t—k) - Zi(t—-/c—l))
k=0 t=k+1

o
k
= Z e [Zi140) (201) — 2i0)) + 2ups2) (2a2) — 2i)) + -+ + 20 (Zar—k) — Zi(T—k-1))]

eMAY) 5 =1,23,4,5

[
NE

e
I
o
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with
55(52'/\1(/\1‘ - 1), ty < k+ 1, ty; >T — /\”,, j = 1
' 515/\]/\@,1‘01</{,’+1,toz‘<T-—k,j=2
AY = 56N — D=1ty > k+1,t; >T —k, j=3
516()\1—1))\1,t01>k+1 tos < T — k‘ to = to; + Kk, j-—4
515(/\[/\ /\+1) f012k+1t02<T kt01<t01+/€,]—5

Rewriting the restrictions with respect to &,

6151/\1(/\2' et 1), k 2 tol,k Z T'— tOiy _] - 1
A 515/\1)\1,/€Zt01,/€<T——t0i,j=2
AY = §i6: (N = D)(Ni — 1), k < to, k>T —to;, j =3
515 ()\l — 1))\1,]{,‘ < toz,k’ < T—’toz-, k < tor — Lo, j=4
(515(/\1)\ - i +1) k<t01,k<T—t0i, k’>t01——t0¢, ]=5

The ranges for k depend on whether ; T — to; and to; = to;'®. Thus, we distinguish
four cases as follows, for j =1,2,3,4,5

@ty =T — to, tor > tos

o0
S eBAP =

k=0
tor—to: T—to;—1 3 tor—1
) DIECTVCIS SECNC I U CINCINS SV
k=0 k=tg;—to;+1 k=T—tg; k=tg;

Ze"’mw =66\ — 1A el < co.
k=0
d ty > T —toi, tor < tos

§:<mAm

T—tOi—l toz—l o0

ST AT L 3 BAD LS Al
k=0 k=T —to; k=tg;

[>o} >0

Ze(k) AD = 818, ( AN — X+ 1) Z e®) < oo,
k=0 k=0

16 The case where ¢y = tg; is not considered since we assume distinct shifts.
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(¢) tor < T — tos, tor > Lo

S -
k=0
tor—toi tor—1 3 T—tg;—1 o
Z ei,/ng,(f) + Z eifZ?A,S’) + Z eﬁ,’fﬁA,(f) + Z egsz,(CU —
k=0 k=tg;—to;+1 k=to; k=T —ty;
o0 oC
D elIAY = 880 — 1)A Z
(Dt < T — tos, tr < tos
X0
5 eng -
k=0
tor—1 T—tg;i—1
DICTRES SRCII WIS
k=0 k=to; k=T—tg;
o> o>
ST elAY =68 (Mhi =N+ 1) D el < oo
k=0 k=0

In order to find the limits in cases (a)-(d), we apply Lemma A.1. Since the deterministic

T
process in all cases converges to a bounded sum, > z[z,(1 — L)CI(L)'] is O(1).
t=1

A. (iv) 2[011( )(1 = L)z][z(1 — L)CH(L)] =
eh(L)( L)zizjs(1 = L)ey (L) -+ en(L)(1 = L)zipzj(1 — L)ep; (L)

8

1 P1
>

15=1

e

z

i

epi(L)(1 = L)ziezje(1 — L)ey; (L)] -+ ep(L)(1 — L)ziwze(1 — L)ep;(L)
The (I, m)-th element of the above matrix has the form

> len(L) (2 = zie—)ll(2j¢ — 2je—1))ems(L)] =

=1

o

T [oe)
Z Zeh Zit—k)y T Zi(t—k- 1))][2 es}(zj(t—s) - Zj(z~s-1))} =

t=1 k=0 5=0
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0 o
| :
Z Z ele e <S Z Zitt—k) — Zilt—k—1)) (Zj(t=s) = Zj(-s-1))], if n = max(k, s).

k=0 s=0 t—nﬁ—l
For A(iv) the finite sum and consequently the infinite sum are not non-zero for the whole
range of £ and s. So we have the following non-trivial cases,
(@) AW =86\ —1)(N; — 1) z:Oe(k) Z e%, for k = s, to; # toj,
(b) A® = 6,6,(\; — 1) z el¥) }j el for s =k + to;,
() A®) =6§6,(\—1) Z e,k) Z eﬁfg, for k = s + toj,
(d) AW = 6,6, Z elr) Z em], for s = k + to; — to; and to; > o5,
(e) AB) = 6,6, Z elf) Ze ,for k = s+ tg; — to; and to; > to;.

s=0

Given the above cases we have,

) (s
Z Z el el Z Zi(e—k) = Zi(t—k-1)) (Zi(t=s) = Zj(-s-1))] =

k=0 s=0 t=n-1
A® < oo, h=1,2,3,4,5.

Thus, S[CHEIN(L = L)=][Z(1 = L)CHL)]is O(1).
=1 .

A (V) t_Zl Ci(L)ze =

Z )(1 - L)]Zt =

t=1

T T
W)Y+ SO -

The first term sums to zero by definition (see (4.5)) and the second term is O(1) because it

has the same form as A(ii). So, Z CH(L)z is O(1).

t=1
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A. (vi) z{c” Az (1= L)CHIL) ] =
T
> AlCi) + (L) (1 = L)z} (1- L)CHL) | =

T T
Z a1 (L= L)CHL) + X CI(L)(1 = L)z, (1 = L)CH(L)
=1 t=1
T
which by A(iii) and A(iv) is the sum of two O(1) terms, therefore > [C}(L)2_1][z_, (1 —

t=1

LYCHL)Tis O(1).

B. () S [CHD) 2]l 1 CI(L)] =

t=1

N

}T:cmztwc (L)1 = Dzt [f 1 CH1) + 2, (1= L)C(L)] =
T

C%(l)ézt_lz;_lql( )OI K 1z, (1= L)CH(L)
+;Z?1C%*<L><1-L>Zt-1zt-lca<1> + }: CIN(L) (1= L)z, (1-L)CI(L).

The first term is O(T) (see O’Brien (1997, p. 25)) and the remaining terms are O(1) by
A(iil) and A(iv).So,

“ VICHD - CHEY] = TCHY) 3 s CHY — CHUGCH)', with
the (4, j)-th element of g being 6,0;7;(1— M) and A; = min(A;, A;) and A, = max(;, Aj),
see O’Brien (1997, p. 25).

T
B. (ii) ; [CHL)z-1)z4 =

T

dICi) + (L)1 = L))zoaz =

t=1

1*
Eztlztl+EC ztlztl

The first term is O(T') (see O’Brien (1997, p. 25)) and the second term is O(1) by A(iii).

T T
So. T 3 [CH(L)zi-1)zy = T7'CH(1) 3 2124 — Ci(l)g.
t=1 t=1
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B. (iii) i Zi|z(1 = L)CHL) ] =
t=1

- . ]
, 21 Zie-plza(l = Lyew(L)] - 3 Zip—nlza(l — L)ep(L)]
P1 {== t=1
i=1 T T '
t—21 Zpy(t-nlza(l — L)ew(L)] -~ ; Zi-vlz(1 — L)en(L)]
The (I, m)-th element of the matrix is
T oo
Z Zy-1ylzit(1 — L)emi(L }: Z ™)z k) = Zi(t—k—1)) Zi(t—1))
t=1 t=1 k=0
5] T
> emil D (i) — Figs-1) Zig-)]
k=0 t=k+1

et [(2i1) = Zi(0)) Zuy + - + (Zstr—k) — ZiT—k-1)) Zyr-1)] =

Zek>A

where
Ay = il M — Vi tos 2T —k=k>T(1 - N)
£ 6;(MNi — 1) Zywy + 85 Zysg,+x), Otherwise

So,
D emhe =
k=0

T(1-X)-1 T(1-X)~1 o
=1 > ez o Y. e Zpen o0 =1 > Wz
k=0 k=0 k=T(1=X;)

T(1-X)-1

= 0;(Mi — 1) Z ein) Zigxy + 6; Z e Zigton k)
k=0 k=0
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For the first term above we have,

Z . kél()\l t 1), /f S tOl = T/\l
(k) (k — T)6,\, otherwise  °

then
)\ - ]. Z € A)Z[
k=0

8,81\ —1)( /\l—l)Zkek)—HSél(/\- Dy Y ke oTss(h—1DN S e®) =

k=T +1 k=Tx+1
O(1)

TA; (k:) . oo (k)
because /-ce < Z ke,,; < oo (see properties of e;;(y) above); > ke, <
k=0 k=TA+1

S ka® = (Th+1)a"™ 1 /(1—a)+a™2/(1—a)? — 0asT — coand T Y. e
k=TA+1 k=TX\+1
<T S af=Td™+/(1—a) — 0asT — oo and |e¥)] < a*¥,0 < a < 1. For the

k=TA+1
second term we have,
7 _ (tos + k)6i( N — 1), tor > tos + &
Wotk) = 1ty A — 1) + (toi + & — to)Sihi, tor < tos + &
and
T(1-As)-1
b; Z egr]:z?Zl(foH-k) =
k=0
tor—tos T(1-X;)~1 .
55N —1) D (b + Bl + D ftadi(h — 1) + (for + B — to) i el
k=0 k==tg;—to;+1
T{A—X;) T{N—
=T6:s (N —1) Y e+ 65\ —1) Z Ae
k=0
T(1=X;)—1 T(1-X;)—1 T(1-X;)—1 )

+T51/\1<)\1 - 1) Z eg;) -+ 51)\1 Z /feg;) +T()\Z - )\1)51)\1 Z Cmi

kZT()\z~>\i)+1 k=T(A1-—~)\i>+l k:T(/\l—-)\i)-rl
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which is O(T') because of the first term. The second term is convergent and the remaining

terms tend to zero as T' — oc (using similar arguments to those used for the components of

0 T
the first term above). Therefore, S e'* A, and hence S Zyalz,(1 — LYCHL)] are O(T).
k=0 =

B. (i) z (t — DI - L)CHL)] =

pr T

ZZU — 1) [ (2 — zp—n)en(L) -+ (2 — zige—1))em(L) ]

Extracting a typical element e.g. the j-th we have

T T ~
k

Z(t — 1) (2 — Zz‘(t-—l))ﬁjz’([z) = Z(t - 1)[2 ej(i)(zz_(t_k) _ Zi(t—k—l))]
t=1 — pha

oo T

k
= Z egl)[ Z (t - 1)(zi(t—k) - Zi(t—-k—l))}
k=0 t=k-+1

= Z eé'lz‘c) E(zi1) — 2i0) + (b + D(zie) — 200) + -+ + (T = D)(27-1) — 2sr=4-1))]
k=0

k=0

where,

B 8: ik + T8;\;, otherwise :

Then,

T(1=X;)—1 T(1-A)—1 =
x> kel +TeN > e Hsh-1) Y kel) =

k=0 k=0 k=T(1-X;)
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~ T(1-A;)—1
: k k
X > kel Z kely) +T6h Y e = 0(T)
k=0 k=T(1-);) k=0
T(1—X;)~1 ") T(1=A;)—1 R
because T6; A D ey <T&N 3. af = T6M(=4—=—") = O(T). Thus, the
k=0 k=0
T
sum Y (t—1)[(zit— zie—1))e;:(L)] has to be scaled by T~! to be convergent. It then follows

t=1

thaté(t—n[ (1 — L)YCHL)] is O(T).

T
C. (i) t; Zy [z, CHL) ] =

S Za {5, [CH) + (1= DO (L))} =

Z Zi17 4 CL(1 Z Zi1z (1= L)CY (L)
t=1
The first term is O(T?) (see O’Brien (1997, p. 23)) and the second term is O(T’) by B(iii).

Scaling by T2 we get

T
Ty Zialz,CHL)T —

t=1
T

T—zZZt_lz;_l — / duCl( )
=1

For the (¢, j)-th element of the limit above we have
T
T2 Z Zit-1)Zj—1) = [0:0;M0(Am — 1)R( s, A5)]/2,
t=1

with h(A;, A;j) = { /\Zjll)\j )\/\1_:’%\ & and \;, A, defined as above. A detailed derivation
—
of this result can be found in O’Brien (1997, pp. 23-24).

C. (ii) é (t—1)[z_,CHL)] =

SO = DELCHY + (1= L)CE (L))} =
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T T
D=1z CHY + > (¢t~ )z (1 - L)CH(L) .
t=1 =1
The first term is O(7%) (see O’Brien (1996, p. 35) and the second term is O(T) by B(iv)
T
Therefore, > (t — 1)[z,_,CH(L)] =

] = O(T?) since it is the sum of an O(T?) and an O(T)
i=1
term.

D.() Y ezl - L)CHLY] =

o

T T
; eul(2n — zig-n)en(L)] -+ 3 enel(zie — zig—1))epi(L)]

[

(]

i=1 T T

231 Ept[(zz‘t - Zz‘(t-l))eli(L)] tzl Ept[(zit - Zz‘(t~1))€pi(L)]
- t= = -
Analysing the typical (I, m)-th element gives

T T oo
Zplt{(zzt — it 1) eml Z It Z el(f)(zi(t—k) - Zz'(t—k-l))}

t=1 t=1 k=0

Z Z u(Zigt—k) = Zit—k-1))]

-+ ey (Zir—ky — Zir—k-1)))

k=0
= Z i
where,
A, — 5l(/\l-— 1)61(k+1), tos ZT—k@kZT(l—)\Z)
B 0;(Ai = 1)€uks1) + 8i€igtgirk+1), Otherwise
Then,

x5
Sl =

k=0
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T(1-\;)—1 T(1-A;)—1 .
k k . k
(=1 > e ik + 6 > ef it rhen) + 6 — 1) > el <ighr)
k=0 k=0 k=T(1-A;)
0 T{1-X;)—1
k (k
= 6;(Ai — 1) Z el(z' )5l(k+1) + 0 Z €1 )51(t01+k+1) = 0p(1)
k=0 k=0

because it is the sum of an infinite and a finite weighted sum of i.i.d. random variables

(with exponentially decreasing weights) with zero means and finite variances 62()\; —
1)2wy Ii(el(ﬁy and 87wy T(l;ZA;)—l(el(f))? < 82wy(1 — a?TA=2)) /(1 — a?) for the first and
second —t—erm respectively, Whe;e wy 1s the ([, [)-th element of Q@ = Var(s,;) and Iel(f )[ < a*,
0 < a < 1. Therefore, ZT: ez (1 — L)CHL) ] is Op(1).

t=1

T
D. (i) tzzl[(l — L)z, =

T Vit21e v Vitcpyt
d(a-1) :
t=1 vptzlt cer UptZpt
and the ([, m)-th element has the form
T
Z(”lt — Vl(t-1)) Zmt =
t=1

[(viy — Vi) 2m1 + (Vi2) = Vi) Zma + -+ - + (Vi) — Vyr—1)) 2mr] =
(Vittom) — V1(0))0m (Am — 1) + (Vi) = Vitom))OmAm =

Sm [ Am(viry — vi(0)) — (Vittom) — Vi(0))]
which is O,(1) because it has zero mean and finite variance since v; = C1(L)s; with
E(v) =0, Var(v) = > Ch-QC;i, Cov(ve, Vewn) = Y CliQC’i(Hh) and g; is 7.7.d. with
i=0) =0 )

T
E(z;) = 0and Var(e;) = Q. Hence, Y [(1 — L))z, is Op(1).
t=1
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D. (i) 30[(1 = Lyw][z(1 = L)CYH(L)] =

S0 = Lpollze(l — Den(D)] - S0 = Lyonel{za(l — Lo (L)

i
L
I

N

i‘[(l — L)vpe)[zit(1 — L)ew(L))] (1 = L)vp][2(1 — L)egi(L)]

L t=1 t ]

Il
_

and the (I, m)-th element is given by

T
Z('Ult - Ul(t—l))[(zz't - Zz‘(t—l))emz'(L)] =
t=1

T fored
Z(Uzt — Vy-1)) | Ze (Zigt—k) — Zigt—k—1))] =
t==1 k=0
o'} T
Z | Z (vie — vie—1)) (Zige—k) — Zit—k—1))]
k=0 t=k+1

Z emi l(Vie+1) — Vi) (2igr) — Zig)) + -+ + (Vi) — vr—0) (2acr—) — 2i(T—k-1))]
k=0

-3 en,
k=0

where,

A = 51’(/\2' - 1)(”[(1:4—1) - Ul(k)) tao>T —k=k> T(l - /\') '
g 8:(Ni — 1)(viger1) — Vi) + 6i(Visos+k+1) — Vito;+k)), Otherwise

Then,
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T(1-A;)—1 T(1-X)—1
k k
G =1) Y e (i — i) T Y e (Uit — Vigaorin)
k=0 k=0
>0
k
+6i(h—1) Y e (Vigk1) = Vigey) =
k=T(1-A;)
o0 T(l—/\i)—l
k
=1 el (Vigket) — viry) + 6 D e Witgrket) — Vitorhy) =
k=0 k=0
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with eﬁ,;-l) = 0. The above expression is O,(1) because it is the sum of an infinite and a fi-
nite weighted sum (with exponentially decreasing weights) of random variables, which can
be expressed as moving averages and therefore they have zero means and finite variances.

D. (iv) Z v;_1]z,_1(1 — L)C}(L)'] is Op(1). The proof parallels that of D(i) since &,
and v, are of the same stochastic order of magnitude, i.e. O,(1).

D.(v) ém (L)zi]li(1 — L)] =

T

YAl + (L)1 = Daa}u (1~ L) =

t=1

Mﬂ

Zt— 1Ut 1“' +ZC Zt 1Ut(1 —-L),

t=1
which is O,(1) because it is the sum of two O,(1) terms, by D(ii) and D(iii).

T
E. (i) From (A.8) it follows that the sum 3" v, 12, is O, (T*/?).

t=1
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T
E. (i) Y vz, CL(L)] =
t=1

veor{z 4 [CH) + (1 - L)CH(L)]} =

E

t=1

T T
th*lz; 1 +th 121 ~ L)C{* (L),

t=1 t=1

which is O,(T/?) because the first term is O,(T/?), by E(i), and the second is O,(1)

D(iv).
E. (iif) i[C%(L)zt_ﬂe; =
t=1

S{CHY) + CIH(L)A - D)z 1), =

t=1

T

011( Zzt 1ct+zc Zt 1;t=

which is O,(T""/?) because the first term is O,(T"/2), by (A.4), and the second is O,(1), b

D(1).
E. () 61— DOHEY ] =
o iz_T: 1(t— 1)[(% — Zi{t- 1))612@)} 2:3 1(i— 1)[(Zzt  Zi(t- 1))%@)]
> oy (it — zie—1))epi(L)]

fp(t_l){(zz't = zi-1))en(L)]

M=

1

o
Il

H
Il
—

with (I, m)-th element

T T oo
Zgl(td)[(zit - Z'i(t—l))emi(L” - Zél(t—l){z €(k>(zz(t k) ™ Zi(t—k— 1))]
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~ Lk i
= Z "m)[fz w (zi) — 2i) + Eipany(Za2) — zy) + -+ Sur—1)(zir—r) — Zir—k—-1))]

.

k=0
-3
k=0
where,
= { 8i(M = Déyuys tor > T —k = k> T(1— \y)
ok 6N — D&y + 0:€ 110, +k)» Otherwise :
Then,
Ze% -
T(1-Ai)—1 T(1-2i)—1 s
k k k
SN —1) 3 e >§z DRI egm?&l(tgi—{-k) +6:( A —1) > 67(11351(/9) =
k=0 k=0 k=T(1-Xi)
T(1—X)—1
k
/\ - 1 Ze gl (k) + 0 Z 67(71361@01‘4-7‘?) =
k=0
o oo T(1-Xi)—1 T(A-Xi)—1 T(1-Xi)~1
. .
6i(Ai — 1) Ze(]) e +8:( Y e iton) + 6 o0 e eutoist)
k=0 j=k k=0 k=1 Jj=k

which is O, (T"/?) because of §,,., (see (A.1)). Thus, th [z (L=L)CHL) T is Ox(TY?).

F. t:Zl §ialz  CHL) ] =

D &i{zaalCi) + (1= D)o (L) ]} =

th 17,01 (1 +th 17 (1= L)C* (L)

The first term is O,(7%/?) by (A.5) and the second term is O,(T"/?) by E(iv). So, the first

r 3/9 . _
term dominates asymptotically and >_ &, [z, ,CL(L)] is O,(T®?). Scaling by 7%/2 and
i=1
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using (A.5) we have
T
- ' rod
T2 th—l[zt—lcll([’) =
t=1
T 1
TS 6l [ W duclay
t=1 0
For the (7, j)-th element of the above limit we have
d d
T2 Z §ae—1)%j(e-1)
t=1
1 by 1
/ Wilu)z;(u)du = 6;(A; — 1)/ Wi(u)du + 6j/\j/ W (u)du
0 0 A

7

see O’Brien (1997, p. 29). |

Next, let

_ | Lo Xog
g0 Lss

which is the covariance matrix of the stationary components when X, is I(1) and cointe-

Var[ AX; }

8 X

grated. Because of the absence of short-run dynamics in the model (VAR(1)) the condi-

tional means and variances coincide with the unconditional. From the representation (2.21)

we have
E(AXy)=C(L)®D;
and
Var(AX,) = E{[C(L)l][e,C(L)]} = f: CiQC, = Sop. (A.11)
=0
From the representation (2.22) we have

E(8 Xy-1) =B C1(L)®D;
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and

Var(8 X._1) = E{B[C1(L)es_1][e,_,CL(L) 18} = 5 Zcmch@ =55 (A.12)
=0
We also have
Cov(AXy, B X, 1) = E{[C(L)ed][e,_,C1(L) 18} = Y Cip1QCL,8 = Top.  (A13)
1=0

The mean of the stationary functions of X is affected by a smoothed version of the intercept

shift since the step dummies enter in an infinite lag form. To give an example, we can

analyse
CHL)z =
ha(L) hao(L) - (D) |
hpl:(L) hpo(L) - hp”:(L) Zpit _
h1;(L)z;e

2| ko (L)zje

D

j=1

(A.14)
hpi (L)251
where C*(L) is the p x p; submatrix of C'(L) in the partition C(L) = [ Ci(L) C*(L) J

pPXp1 PXp2

and h;; (L) = Z h(” LF. Then the i-th element of (A.14) takes the form

D1 t—1tgi— (kt)
p1 Zéz(/\l—l) Z hZ] s t§t01+l€
Zhij<L)th =4q 77 R=0 i=1,...,p. (A.15)
=1 Z(S/\ }: R, t >t +k
k=t—tg;

Thus E(AX;) = C (L)@Dt = CY(L)z + C?*(1)p (where the second equality follows by

introducing the partition of C'(L) mentioned above) is affected by the *smoothed’ intercept

shifts (step dummy variables), by (A.14) and (A.15).
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Proof of Lemma 4. 1.

Using the representation (2.22) we analyse the limiting behaviour of Xz, in the
directions of  and 7. First we need to show that T~Y/25 X, > %' CW (u). This is the

direction that annihilates the deterministic components.

(T
T—I/Q;}-/ X[Tu] — T—I/Q[F/C' Z e + ’T//Ol (L) (E[Tu] + @D[Tu]) + W’A}

i=1

= T_l/Q’T// [Cé.[Tu] + V[T + C%(L)Z[Tu] + ClQ(l)(’O + A]

’

CW (u)

d _
-7

by (A.1) for the first term, (A.6) and A(i) which show that in the second equality above the

second and third terms are o,(7"/2) and O(1) respectively.

Then, we need to show that 717 X (T 4 [ ZSJJ) } . This is the direction in which

deterministic terms dominate stochastic trends (random walk process).

2y

[Tu } -+ 7_‘/(01([/)5[1"“] + @D[Tu}) + 7_',A]

+

by (4.7) for the second term, (A.1), (A.6) and A(i) which show that in the second equal-
ity above the first, third and fourth terms are O,(TY2), 0,(T*%) and O(1) respectively.

Combining the two limiting results above we get G(u) given in (4.15).

174
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Finally we need to show that

T3 X

J 5 C fol W(u)du
T X } |

[} Z(u)du

T“I/QBT)Z = {
1/2

This result follows directly from the CMT (Theorem A.3) because the mapping Z; : z

f;)l z(u)du is continuous, for z(-) a continuous function on [0, 1]. Therefore, combining the

CMT with (4.15) we get Gy. Putting together Gy(u) and G,y we get (4.16). |

Proof of Lemma 4.2.

Proof of (4.17).
We need to show that Syg = S99 + COPRP'C'.

T N .
Spo = T ST AX;AX] — AXAX'. We analyse the first term by substituting the

t=1
representation (2.21) for AX,. So,

’

T T
T AXAX, =T C(L)(ee + ®Dy) (e, + ®D,) C(L) =
t=1 t=1

T

TS [C(L)ee,C(L) +C(L)e, D,®' C(L) +C(L)®D;e,C(L) +C(L)® D, D,®'C(L)'].
=1

The terms of the above expression are numbered (1)-(4) and we analyse each of these

terms separately.

T
()T 1S C(L)ee,C(L) L Zo by (A9) and (A.11).

t=1
T
Q)T 'Y C(L)zD,® C(L) =
t=1

T
T-13[CeD,®'C' + CeyD,® (1 — L)C (L) + C1(L)(1 — L)e,D,®'C’

t=1

+C1(L)(1 = L), D,d' (1 — L)Cy(L)]

and the four terms in this expression are numbered 2(1)-2(iv).
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2() Tt é Ce;D,®'C = T té Cl ez ¢ | C % 0by (Ad4) for block (1,1) and
(A.1) for block (1,2). _

2(ii) T-1 é CeD®' (1 — L)Cy (L) = T1 t_szl Cei(z — z1) CHL) 2 0 by D).

2(iii) 771 té Ci(L)(1 - L)e;D,®' C" = T—li [(1=Lwz, (1-Lwg' [C" 50

by D(i1) for block (1,1) and (A.6) for block (1:—2).

(v —vi-1) (2= 2-1) CH(L) >

=

2(iv) T-1 }Tj Ci(L)(1~L)e;D,® (1-L)Cy (L) =T1
t==1

t=1

0 by D(iii).
T

So, T~ 3" C(L)e,D,®'C(L)" £ 0 since all of its components converge in probability to
=1

Z€r0.

3) Tt fj C(L)®Dye,C(L) = T1 i[C(L)stD;qfc(L)’]' 2.0, by (2) above.
t=1

=1
T
(H TS C(L)®D,D,d'C(L) =
t=1
T
T3 [C®D:D,®' C" + C®D;D,® (1 — L)C1 (L) + C1(L)(1 — L)®D,D;®'C"
t==1
+Cy(L)(1 - L)®D,D,® (1 — L)C1(L)].
The terms in this expression are numbered 4(i)-4(iv) and we analyse each one below.
T T ¢ ! 0
4G T-'S. COD,D®C =T~y C [ AT J c'—cC { g7, J o
(T~ 2, cabby ZC| oa pp 0 ¢y

T
= Cd [ g (1) J ®'C’, where T~' 3" 2,2, — g, a p; x p; matrix with (¢, j)-th element
i=1

6:6;M(1 — Ay) and Ay = min(A;, A;), A, = max();, A;) (see O’Brien (1997, 1999)).
] - ) EA zi(2 — z1) CH(L)
AGil) T-1S° CODDE (1 — L)CY (L) = T2 ¢ | 2l = #-1) Ci(L) 0b
(11) t:z:l tL/y ( ) 1( ) t:Z:I ,: ga(zt _ Zt—l) Cll(L) - y
A(iii) for block (1,1) and A(ii) for block (2,1).
T T
4G T71 . C(L)(1 — L)®D,D,®'C" = T~ S [C®D;D,® (1 — L)C,(L)'] — 0 be-
t=1 t=1

cause it is the transpose of 4(ii) above.
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T
4iv) TS C(L)(1 - L)®D,D,® (1 — L)C, (L) =
t=1
T
T3 CHL) (2~ zea) (2 = 21) CH(L) — 0 by A(iv).
t=1
- |
Thus, the first term of Spo, 771 > AXtAX; 2 Yoo+ CP { g (1) ] ®'C’. Next, we analyse
t=1

the average, A X in order to find a limiting expression for AXAX".

T T

AX = T AX, =T C(L)(z + D)
t=1 t=1

T
= T [C(L)ee + COD; + (1 — L)Cy(L)BDy]

T T
= T7') CL)a+T7'y C { f’j ] +T7 Y " CHL) (2 — 21)

C
f»C{OJ =0@[H B.1)

by (4.5) for the second term in the fourth equality, (A.7) and A(ii) which show that in the
fourth equality above the first and third terms are O,(T"/2) and O(1) respectively. It then

follows from Slutsky’s Theorem (see Davidson (2000, pp. 39, 46)), that the second term of

SOO;

00

AXAX B Co [ 01 J o0

Combining the limits of the two terms of Sy we have Sgg = g0 + C® [ g 8 } d'C =

Soo + CPRP'C’, where R = { g 8 J

Proof of (4.18).

We need to show 59,8 2 Yp8 + ﬁlcll(l)gcf(l)lﬁ
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r ’ 7 L. | . N .
3SuB=T"1Y0X1X,_18— 3 XX 3. Since X; is cointegrated we use repre-
t=1

sentation (2.22) in the first term of 3 S;;3 and we have

T ZBXt X, B=T"" ZB(A Weto1 + @D 1) (511 + ®D,1) C1(L) B =

T
T IZ ,6 Cl Et 1vt 101( ),,B -+ ﬁ/Cl(L)Et_lD;__ﬁI)'C’l(L)//B
t=1

+ B CL(L)®D,15,_,C1(L) B+ B C1 (L) D, D,_1 &' Cy (L) B].

The terms in the above expression are numbered (1)-(4).
T / ’ !
(DTS B Ci(L)err2, 1 C1(L)' 3 2 Tps, by (A.9) and (A.12).
t=1
T / ’ ! 7 T / / ! ’ ’
T Y BC(L)er1 D, @ CL(L) B =T} B (v:-12,,C1(L) +vr-10 CF(1) )8 =
=1 =1

0, by E(ii) and (A.7).
Y4

(8 Ci(L)eeor D, @' C1(L)'B) & 0,

M‘ﬂ

t=1

(3) 71 tZT:l,6”01(L)(I)Dt_ls;_lcl(L)',B = 7!

because it_is the transpose of (2) above.

(4) T-1 t_szl B C(L)®D,_1D,_®'Cy(L) 3=

= T 32 I CHE 214, CHI) + AV ACHEY + CH( D)6 1Y
+CH(1)pe CHUI8 — B1CH1CH(1) + C(1)ee' CHLY]B, by

B(i) and A(v). C}(L) and C?(L) are p X p; and p x p, respectively and they consti-

tute a partition of C; (L) i.e. C1(L) = [ CH(L) Ci(L) J So for the first term of § 51,3

PXp1 PXp2

we have
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T ’ 2 ’ / 7 b ’ B ’
T-1 Zl X, X, 8 B S+ F[CH)gCHL) + C2(1)p C2(1)']3. Then we analyse
t=

the limiting behaviour of 3’ X,

T T
FX =T FX 1 =T"Y FCi(L)(s1-1 + PD_y)
t=1 t=1

T T T
= T7'Y Bua+T' Y BCHL) 2 +T7HY B CH1)p
t=1 t=1 t=1
= G C(1)e (B2)
since by (A.7) and A(v) the first and second terms of the third equality above are O,(T%/?)

and O(1) respectively. For the product of the averages we have
XX 0 CH)ee CH1) 5.
By combining the asymptotic results for the sum of the products and the product of the

averages we get the limiting result for 3 Sy, 8, whichis 5 51,8 2 Zas+8 CH1)gC(1) 8.

Proof of (4.19).
We need to show §' Sy = o + 3 CH(1)gCh.
’ T / ’ ! % 1/ . .
BSw=T"1> 88X, 1AX,—8 XAX . Using the representations (2.21) and (2.22)
=1

we can write the first term of 3 Sy as follows

T
T B X 1AX,

t=1

T
= T3 B Ci(L) (1 + ®Dey) (20 + @Dy) C(L)

!

T
=TS B(Cy(L)es—16,C(L) + C1(L)e;_1D,®'C(L) + C(L)®D;_1¢,C(L)
+Cy(L)®D;_1D,®' C(L)")

and the terms are numbered (1)-(4).
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()Tt té 3 C(L)er—16,C(L) £ g0 by (A9) and (A.13).
(2)T1 t‘i GCy(L)e_1 D@ C(LY
=71 gjl G v D®C +T é 1 D@ (1 — L)YCy(L)
=T"! gjl B[ vz, vy O+ T i B[ vz — 20) CHLY 0] 0,
by E(i), (A.7) and D(iv).
(3) 71 té G'C(LY®D;_1,C(L)
=71 t:};le B(CHL)2-16,C" + C2(1)pe,CT) + T té BCHL)z—1 (ve — vey)
+C2(1) (v — v:1)'] 2 0, by E(iii), (A.1), D(v) and (A.6).
(4)T! é B CL{LY®D,_D,®' C(L) =
T-1 é 3 C(L)®D,_1D,®' C' + T i 4 C(L)®D;_1D,® (1 — L)CL(L)

T / 7~ [ ’ o~ 9 !~
=T7 2 8(CH(L)a4C + CH1)ez L + CHL)ame G + Ci(1) g C)
t=

T ' ’ ! !
+T_lt;5 {Cll(L)Zt—l(Zt — 24-1) Cf(L) + 012(1><P(Zt — z-1) Cll(L) ]
% 6(CHLC; + CR(1)pw' Cy). by B, (4.5), AW). A(vD) and A(i). Cy and Cy

are p X p; and p X py respectively and constitute the partition of C i.e. C = [ p%l pgé J .

So the first term of 3 S1q asymptotically takes the form

T
T B X1 AX, B S0 + B(CHL)GC, + CH(1)pe Cy).

t=1

From (B.1) and (B.2) the second term of 3 Sy, has the following limiting form, 8 XAX 2

B'C2(1)¢p Cy. Therefore, 3 S1o 2> L0 + 3 CH{1)gCy.

Proof of (4.20).

We need to show that 77! B;.S1, By 2 fol GG du.
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T-Y%'Snwy  T7%%% S 7

po g | Gr-ax(p-r-a)  (p=r-
T~'B;S) By = 177““3?2?}:9;*;) r 2?,2,:1% . We analyse separately each block.
gx{p—r—q) axq

For block (1,1) we have (see also (A.2))
T
T79Suy = T7' ) T7V%% (Xoo = X)(Xoma — X)'5772
=1
d ! / 5 =yt
4 f 5 CW (w) = W) (W (u) — W) C'7du
0
by block (1,1) of (4.16) and the CMT since the mapping 7, : z +—— fol z(u)z(u) du is
continuous, and z(-) is a continuous function on [0, 1]. For block (1,2) we have
73?557 = T~ ZT—W- X0 — X)(Xoey — X) 7T
—>/’yC’ W - W) [ (Zw) - 2) u—1/2]du

by (4.16) and the CMT, since the mappings Z3 : (z,y) — fol z(u)y(u) duand I, : x —

‘ [01 z(u)udu are continuous for z(-) and y(-) continuous functions on [0, 1]. For block (2,2)
we have

T%'Sy7 = T} ZT—I' (Xpoy — X) (X — X) 7771

{fo (Z(w) — 2)(Z(w) — 2)'du [ (Z(u) - Z)(u~ 1/2)du
fo(u—l/2 Z(u) — Z)du 1/12

by blocks (2,1) and (3,1) of (4.16) and the CMT. Assembling the results for all the blocks

we get ~
L T W () = W)
T‘lBTSuBT — fo GG du, where G = Z(u)—Z , defined in (4.16).
u—1/2
Proof of (4.21).

We need to show that T-1/2B.51, 3 2, Vel B.
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T2 51,8

T_l/QB}S“ﬁ:{ T-1%'5,.8

J . Block (1,1) can be written as

TV 8B =T" 3/227 X1 X, 8-TV*3XX'3.

t=1

Using the representation (2.22) the first term can be expressed as

T
T3 3 X1 X, .,

t=1

T -1
=T33 "5(C> e+ Ci(L)er—y + C1(L)®Dey + A)(Ci(L)err + C1(L)®D;_1) 3

T
Z”_ (C& vy + CE 1D, @ CL(L) + veo1v,,
+v,1D, ' Cy(L) + C(L)®Dy_1v,_,

+Cy(L)®D,_\D,_,®'Cy(L) + Av, , + AD, &' Cy(L))B.

The corresponding orders of magnitude for each of the terms in the expression above are
as follows:

T=52(0y(T) + Op(T¥2) + Oy(T) + Op(T2) + Op(TH2) + 0p(T) + O, (TH?) + 0, (T).
Except for the second term, all the others converge in probability to zero by (A.10) (which
is the generalisation of (A.3) when the error process is autocorrelated), with e(1) = 1,
h(1) = Ci(1) and I’y = 0, s = 1,2,... (first term); (A.9) (third term), E(ii) and (A.7)
(fourth and fifth term); B(i) and A(v) (sixth term); (A.7) (seventh term) and A(v) (eighth
term). The asymptotically non-degenerate term (second) has the following limit,

T
T3/ Z ¥ C& 1D, @ Cl( ) B=T" 3/2 Z v C(gt 1Zt 1C1< ) +& 1 012(1) )3

t=1 t=1
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4 7’0({[01 W(u)z(u) duCt(1) + fo W (u)duy' C?(1))3, by F and (A.1) and the

CMT.

From block (1.1) of (4.16) and the CMT, and (B.2) the second term of 7-%/25'$,,3 con-

verges in distribution,
[N d / 1 7 ’
TV XX'35 5 C/ W (u)dup C2(1) 3.
0
So for block (1,1) 7725 S8 % 5'C [} W(u)z(u) duCi(1)'8.
The element of block (1,2) of T—1/2B.51 3 is given by

T
T#FSuB=T7"> 7X.X, ,8-T'FXX'8.

t=1
Analysing the first term we get
T T
T2 7 XX 8 = T° ZZ TC'ZEZ—{—ZD +7 C1(L)es
t=1
+7 Ol(L)cht_1 + 7 A)(st_l +®D,_1) Cy(L)'8
T t—1 t—1
= T (FC& v, +7CE D ¥ Ci(L) + > Dw; 18+ DiD, ,8'Ci(L)

1 i=1 i=1

+7 010, + T v D;_® C1(L) + 7 CL(L)®Dy_yv,_,

.
Il

+7Cy(L)®D;_1D,_,®' Cy(L) + 7 Av,_, +7 AD,_,®'C1(L)")p

with the following orders of magnitude,

T=2(0,(T) + Op(T%2) + Op(T¥2) + Oy(T2) + O,(T) + 0,(TV2) + Op(TH2) + 0,(T) +
0,(TY2) + 0,(T)).

All the terms except for the fourth converge in probability to zero by (A.10) with e(1) = 0,
A1) =Ci(1)and I’y = 0, s = 1,2, ... (first term); F, (A.1) and the CMT (second term);

the proof of (10) in O’Brien (1999, p. 29) (third term); (A.9) (fifth term); E(ii) and (A.7)
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(sixth and seventh term); B(i) and A(v) (eighth term); (A.7) (ninth term) and A(v) (tenth

term). Next we analyse the non-degenerate (fourth) term

T3 (> D)D, ,®'Ci(L) 3

(t - l)zt 1C1 (L) (t— )SO 02( )

(1) z(u duC’l 1)l fo de 01(1) }ﬁ
Jo uz(w)' duCi(1) + 1/29902( ) ’

_ T—Qi[ Z— 12;:1 (L)+Zt 10 CH(1) Jﬁ
Z(u

by C(1) and equation (1) in O’Brien (1997, p. 23) for block (1,1) and C(ii) for the first term

in block (1,2). Therefore, for the first term of 7~ 7' 51,3 we have

2T7__ d fo duC’1 -!—fO dpr’l()
T2 T XX { fJ <>du01<>+1/2go02<> Jﬁ'

The limit of the product of the averages (second term of 7717 Sy, 3) is

oo jo ducp C’Q( )3
by using blocks (2,1) and (3,1) of (4 16) and the CMT.
1 duC ( )
Thus, T7'7' 5,8 2 Jo 2 ! .
o 7o { fo uz(u duCl( ) J b
Combining the asymptotic results for 7-1/25'S;; 8 and 717 S, 8 we get (4.21) i.e.

T-Y?BL.5,:8 % VCi(1) 38
5'C 1I/V(u)z(u)'du

where V' = [ Iy Z(u)z(u) du } = fol Go(u)z(u) du.
fol uz(u),du

Proof of (4.22).

We need to show T-2B,.Sy A [voolcC.
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—1/2=/
T=Y%% S

T‘l/QBfllelo = [ T_l’T'ISIO J . Block (1,1) has the form

T
T4 819 = T73/2 Z ¥ XA AX; -T2 XAX.
t=1

The first term can be written as

T
T3/ Z ¥ X AX,

7

T t—1
Z’? 0262 -+ Cl )Ct-l -+ Cl(L)(I)Dt_l + A)(Et -+ @Dt)lC(L)
t=1 =1

’

T
Z (C¢,_,e,C(L) + C&,_ D& C(L) +vs_15,C(L)

+ v, D, C(L) + C1(L)®D;_16,C(L)

+ Cy(L)®D,_1D,® C(L) + Ae,C(L) + AD,®' C(L))

and the terms above have the following orders of magnitude

T=32(0p(T) + Op(T??) + Op(T) + Op(T?) + Op(TY?) + Op(T) + Op(T*?) + Op(T)).
So, only the second term does not vanish asymptotically, the remaining terms converge in
probability to zero by (A.10) (first term); (A.9) (third term); (A.8), (A.7) and D(iv) (fourth
term); E(iii), (A.1), D(v) and (A.6) (fifth term); B(ii), A(v), A(vi) and A(ii) (sixth term);
(A.7) (seventh term); (4.5) and A(ii) (eighth term). For the non-degenerate second term we

have
T T
A CE D) = TS CE D C
t=1 t==1

T
+T323 "5 C¢, D@ Cy(L) (1 - L)

t=1
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= 3/2270 §i12 & }C +17 3/9276& 1 _1)/C11<L),

t==1

[fo 2(u)du [} Wlu)g'du | C
by (A.5) (see also O’Brien (1999, pp. 30-31)), (A.1) and the CMT and E(iv). For the first

term of T~/25' S, we have

T
TIPS 7 X AX, S 7O [l Ww)z(w)du [ W(w)e'du ]| C.

t=1

From block (1,1) of (4.16) and the CMT, and (B.1) it follows that the second term of

T~'/25 )4 has the following limit
T-1%5 XAX' —»70[0 fo (u)'du | C.

Thus, T-Y25'S10 = 7'C [ [1 W (u)z(w)'du 0]C".
Next we analyse block (1,2) of T~'/?B1.S;, which is given by
T
T7 Sy =T7") 77X, AX, - T7'7F XAX .
t=1

We analyse the first term

T T t—1 t—1
T2 FXy g AX, =T 23 (FO S g;+ 3. Di+7Cy(L)gsy +7 CL(L)PDy_q +
i=1

t=1 t=1 1=1

7 A)(e, + ®D,)' C(LY

rCc} &, C(L) +7C6_ D@ C(L) + > Dig,C(L) +

HM*\}

Z D;D,®'C(L) +7 v_15,C(L) +7v,_1 D, C(LY
+ 7 Cy(L)®Dy_12,C(L) + 7 C(L)®D,_,D,® C(L)
+7 Ag,C(L) +7 AD,®' C(L),

which gives the following orders of magnitude



Appendix B: Proofs of lemma 4.1 and 4.2 187

T=HOu(T) + Op(T3?) + Op(T¥?) + Op(T?) + Op(T) + Op(T?) + O, (TV?) + O, (T) +
O,(T*?) + O,(T)).
All terms but the fourth converge in probability to zero by (A.10) with e(1) = 1, A(1) =
Ci(l)and I's = 0, s = 1,2,... (first term); (A.5), (A.1) and the CMT and E(iv) (second
term); (A.7) (third term); (A.9) (fifth term); (A.8), (A.7) and D(iv) (sixth term); E(iii),
(A.1), D(v) and (A.6) (seventh term); B(ii), A(v), A(vi) and A(ii) (eighth term); (A.7)
(ninth term); (4.5) and A(ii) (tenth term).

The limit of the fourth term is

T2 ZT:(t—Zl D))D,®'C(L) =

2 Z 1—1Z,5 1~; Zig / L[ Ziaz(1-L)CHL)
=y [ (t— 1)z (t—1)¢’JC TN [ (t—l)zt(l—L)C}(L)'}

[fo wz(u)du [} Z ducpJC

fo uz(u) du 1/2¢'
by O’Brien (1997, pp. 23-24) for block (1,1) (see also the proof of C(i)), result (2) in
O’Brien (1997, p. 23) for block (1,2), (4.6) and the CMT for block (2,1), for the first term.
The second term converges to zero by B(iii) for block (1,1) and B(iv) for block (2,1).

Therefore the first term of 77 Sy in the limit is

¥

T
= P fo u)z(u) du fo u)dugp' v
Ty xeax & | b b |

The limit of the second term of T~'7' Sy is found from blocks (2,1) and (3,1) of (4.16) and

the CMT, and (B.1) as

-1 FAY 4 0 fo duy '
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1 i
Combining the last two results we have T-7' S0 4 fO %(71} ~(1,L) du 0
Jo uz(u)du 0

assembling the results for T~/?% Sy and T—17 Sy we get (4.22),

C" and then

77288, S [V 0]C
yo [ I/V(u)z(,u)'du 0 1 /
where [ V 0 | = fol Zwz)du 0| =] [, Go(wz(w)du 0]. H

fal uz(u) du 0



Appendix C: DGPs

The DGPs used for the simulation experiments in Chapter 4 are of the form:
AX;=af X, 1+ ®D;+5, t=1,2,...,T

where all the components are defined as in Chapter 4.

The DGP used for Figures 4.1 and 4.2 is

A/Ylt 0 Xl(twl) 10 E1t
A Xy 0 XZ(t~l) 01 Zt €a¢
= 0 -1 -1 1
AX3¢ 0 [ ] A3(t—1) T 0 1 1 * E3¢
A1Y4t —0.75 X4(t,1) 01 E4t
~ - . . _ —0.25, 1 <t <[T/2]
where g5 ~ 1.4.d.N(0,1) forj =1,...4and 2, = { 025, [T/2] +1<t<T
For Figures 4.3 and 4.4 the DGP is ) )
AXy [0 [ Xige-) 1.0 0
A)(gt 0 Xg(tml) 010 21t
AXy | = 0 |[00 =1 =1 1]| Xgp—y |+ [0 0 1 || 2
A,X'Alt O X4(t_1) O O 1 1
AX5¢ ] L ‘O?S ] L X5(t_1) i L 0 O ]. ]
I €1t
E2t
+ | €3t
Eut
| S5t
- .. . . -0.333, 1 <t < [T/3]
where e, ~ 1.4.d.N(0,1) forj = 1,...5, 21, = { 0.166, [T/3] +1<t<T and
o —0.166, 1 <t < [27T/3]
U7 0333, [2T/3) +1<t<T "
For Figure 4.5 the DGP takes the form
AX]_t —0.75 Xl(t~l) 1 0 E1¢
A‘X'Qt . 0 _ . JX’Q(tﬁl) 0 1 Zt Eop
A‘X—gt - 0 [ 1 1 1o } Xg(t_l) + 01 1 * E3¢
A Xy 0 X4(t—1) 01 Eat
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—0.2 , 2
where ¢;; ~ 1.2.d.N(0,1) forj=1,...4and 2, = { 0 ’Pé)m[g;/é]g-}-tli[?/g]jj )

For Figures 4.6 and 4.7 the DGP is

T AX, [0 Xi-1) 10 £1e
A Xy 0 XQ(t—1) 10 p €2t
AXg [=| 0 [[00 =1 =1 1] Xgqepy |+ |0 1 [dJr o
AXy 0 X4(t——1) 01 Eqt
AX5t —0.75 ) X5(t_1) 0 1 Est

—0.2 <t <
where ¢;; ~ 1.4.d.N(0,1) forj =1,...5and z, = { 0 22' [?/;];tlz[f/f]T _

For all of the above DGPs the corresponding SM is estimated with unrestricted con-
stant term and for 7' = 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000. The critical val-

ues used can be found in Osterwald-Lenum (1992, Table 1).



Appendix D: The power function for
(p—r)=4

Table D.1. The power function for the trace statistic. case (i).

0 6 12 18 24 30 36 42 48 54 60

< Pl

0.048 0443 0.820 0.959 0.992 0.999 0.999 i

0.035 0.162 0579 0.872 0.971 0.99 0.999 1

1
(V8]

-6 0.049 0.099 0395 0.752 0931 0.989 0.998 1

b |t [t |
[os

-9 0066 0.107 0295 0.649 0885 0977 0.99 0.999

-12 0.085 0.115 0.28 0.572 0.841 0.965 0.993 0.998 0.999

-15 0115 0.145 0279 0.547 0.802 0.937 0988 0.998 1

-18  0.152  0.188 0312 0.527 0.783 0.929 0.985 0.998 1

21 0.192 0.226 0.347 0547 0.775 0925 0.979 0997 0.999

-24 0247 0285 038 0576 0.774 0913 0974 0.995 0.999

-27 0.318 0356 0437 0615 078 0912 0977 0.994 0.998

-30 0395 0429 0514 0.658 0.803 0921 0981 099% 0999

-36 0554 0581 0.641 0.752 0.862 0936 0981 0995 0.999

-42  0.705 0716 0774 0842 0.912 0957 0984 0.998 0.999

-48 0.815 0.834 0.864 0907 0949 0975 0990 0.997 0.999

-54 0514 0921 0938 0958 0.974 0988 0995 0999 0.999

el el Bl o T ™'Y VSO Ry
et bt |t [ | ot | o | o

-60 0964 0.963 0968 0981 0.989 0.995 0.999 0.999 1

Table D.2. The power function for the maximal eigenvalue statistic, case (i).

% 0 6 12 18 24 30 36 42 48 54 60
0 0054 0415 0819 0963 0994 0999 1 1
3 0.044 0.35 0579 0885 0977 0998 1 1
-6 0.053 0.096 0387 0.782 0.952 0995 0999 1

-9 0.069 0.101 0304 0685 0.915 0988 0.999 1

-12 0.085 0.109 0287 0.608 0.893 0.983 0.998 0.99%

-15 0.118 0.151 0291 0.607 0.869 0.969 0.99% 0.999

-18 0.158 0.197 0338 0.598 0.850 0.968 0.9% 1

-21  0.209 0.256 0389 0.627 0.854 0.964 0994 0.999

-24  0.281 0326 0.441 0.660 0.860 0.964 0994 0.999

-27 0365 0405 0529 0.709 0.877 0962 0.993 0.998

-30 0460 0516 0.605 0.765 0.899 0.969 0.995 1

-36 0.666 0.686 0.771 0.862 0.943 0.981 0.995

-48 0917 0933 0952 0971 0986 0.99 i

1
-42  0.827 0.841 0.887 0937 0.970 0.989 0.9% 1
1
1

-54 0978 0979 0987 0993 0.9% 0.999 1

Lol B T B Bl B T B B B B e 0 A TS "SURN [V REUEIR VAR BN
Ll el B el B B I s T ™ Riiey R (Ve VNN
Ll B T e e B e el R Bl N ™3 ™ U e G BN

-60  0.994 0993 0.998 0998 0.999 1 1 1
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Table D.3. The power function for the trace statistic. case (ii).

0

6

12

18

24

30

36

1

48

60

0.049

0.411

0.789

0.945

0.985

0.997

0.999

1

0.044

0.143

0.525

0.825

0.955

0.988

0.998

1

0.050

0.091

0.327

0.675

0.89%4

0.973

0.996

0.999

0.056

0.087

0.241

0.553

0.826

0.956

0.991

0.999

0.070

0.096

0.232

0.464

0.764

0.926

0.981

0.997

1

0.088

0.113

0.204

0.445

0.695

0.886

0.970

0.994

1

0.114

0.132

0.235

0.410

0.673

0.865

0.963

0.992

0.999

0.147

0.178

0.252

0.431

0.663

0.842

0.951

0.989

0.997

0.182

0.211

0.295

0.442

0.654

0.826

0.941

0.983

0.997

[N SR [N IR

0.227

0.268

0.322

0.483

0.656

0.820

0.936

0.981

0.995

0.999

0.289

0.322

0.392

0.519

0.678

0.839

0.934

0.983

0.996

0.999

0411

0.433

0.493

0.605

0.730

0.859

0.937

0.977

0.996

0.999

0.547

0.565

0.631

0.717

0.809

0.885

0.951

0.986

0.999

0.999

0.678

0.696

0.735

0.797

0.861

0.926

0.965

0.988

0.997

0.999

0.790

0.813

0.847

0.879

0.912

0.959

0.981

0.994

0.997

0.999

0.891

0.889

0.907

0.933

0.957

0.975

0.992

0.993

0.998

0.999

Table D.4. The power function for the maximal eigenvalue statistic, case (ii).

0

6

12

18

24

30

36

42

48

54 60

O fwkg

0.053

0.370

0.778

0.347

0.989

0.999

1

1
(8]

0.052

0.110

0.495

0.841

0.961

0.994

0.999

0.051

0.076

0.303

0.702

0.920

0.988

0.998

1
1
1

0.059

0.076

0.219

0.581

0.861

0.975

0.997

1

0.062

0.081

0.205

0.482

0.815

0.956

0.994

0.999

0.089

0.103

0.202

0.470

0.776

0.935

0.989

0.998

0.107

0.128

0.237

0.450

0.743

0.923

0.988

0.997

0.144

0.175

0.267

0.474

0.743

0914

0.979

0.997

0.185

0.214

0.312

0.500

0.745

0.907

0.980

0.996

0.253

0.279

0.374

0.563

0.763

0.506

0.977

0.997

0.310

0.362

0.456

0.612

0.788

0.916

0.980

0.998

0.483

0.525

0.612

0.731

0.856

0.937

0.984

0.997

0.676

0.688

0.762

0.838

0.917

0.965

0.988

0.998

0.815

0.825

0.870

0914

0.957

0.980

0.993

0.997

0.914

0.925

0.943

0.963

0.980

0.992

0.998

0.970

0.972

0.981

0.987

0.993

0.995

0.999

el B B B B A e e Tl W ™3 ey Ve IO DR N

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
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Table D.3. The power function for the trace statistic. case (iii).

0

6

12

18

24

30

36

42

48

0.055

0.176

0.573

0.858

0.960

0.991

0.998

1

1

0.057

0.113

0.366

0.701

0.901

0.977

0.996

0.999

1

0.069

0.095

0.281

0.594

0.838

0.953

0.993

0.999

i

0.077

0.104

0.239

0.510

0.787

0.932

0.987

0.998

0.999

0.098

0.118

0.247

0.465

0.745

0.912

0.975

0.997

1

0.112

0.141

0.238

0.459

0.692

0.879

0.969

0.992

0.999

-18

0.148

0.171

0.264

0.446

0.685

0.868

0.962

0.991

0.998

0.189

0.215

0.304

0.470

0.693

0.858

0.951

0.988

0.997

0.227

0.268

0.343

0.496

0.681

0.846

0.947

0.987

0.996

0.286

0.326

0.384

0.537

0.697

0.8350

0.945

0.983

0.997

0.999

0.356

0.389

0.452

0.569

0.741

0.860

0.949

0.984

0.996

0.999

0.485

0.508

0.568

0.676

0.786

0.885

0.952

0.984

0.997

0.999

0.627

0.641

0.700

0.776

0.858

0.923

0.965

0.992

0.999

0.752

0.766

0.795

0.850

0.903

0.950

0.978

0.992

0.998

0.999

0.851

0.860

0.894

0.917

0.942

0.973

0.983

0.996

0.998

0.928

0.929

0.937

0.957

0.972

0.985

0.995

0.997

0.999

Table D.6. The power function for the maximal eigenvalue statistic, case (iii).

0

6

12

18

24

30

36

42

48

i
o+

(o)
<

0.051

0.148

0.859

0.970

0.995

0.999

1

0.056

0.081

0.701

0.918

0.985

0.999

1

0.054

0.069

0.593

0.862

0.971

0.995

0.999

0.062

0.078

0.497

0.809

0.957

0.997

0.999

0.068

0.087

0.440

0.76%

0.938

0.991

0.998

0.096

0.112

0.446

0.739

0.917

0.986

0.998

ot o | ot | e | | o—

0.118

0.141

0.444

0.731

0.913

0.983

0.996

0.163

0.187

0.475

0.737

0.909

0.974

0.996

0.207

0.238

0.511

0.747

0.902

0.976

0.996

0.277

0.304

0.558

0.772

0.910

0.975

0.996

1
1
1
1
1
1
1
1
1
1

0.343

0.391

0.636

0.798

0.919

0.982

0.998

0.999

0.517

0.561

0.754

0.872

0.945

0.987

0.997

0.714

0.722

0.860

0.930

0.970

0.990

0.999

0.839

0.856

0.928

0.963

0.982

0.996

0.998

0.933

0.941

0.972

0.985

0.993

0.998

1

.9
1
1
1
1
1

bt |t et | | s

0.979

0.980

0.990

0.995

0.996

1

1
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Appendix E: A graphical representation of
the results of the experiments in 5.2

1.0 Rejection freqs ofthe maxinml cigenvalue statistic; low power
’ —+—+T=50 -8-8-T=50
©-6-T=100 A A T=100
T=200 T=200

L == T=50 -8 T=50

iy —y * T 7 - L =y n x i Loy
0.0 0.2 0.4 0.6 0.8 s 1.0 0.0 0.2 0.4 0.6 0.8 s 1O
1.0 jection frequency ofthe trace statistic; mediumpower 1.0 Rejection frequency ofthe maximal eigenvalue statistic; mediumpower
. ~+—+ T=50 -8—=s- T=50

©-6- T=100 A A T=100
T=200| f [

gt
e
0.2 0.4 0.6 0.8 5 1.0
ion frequency ofthe maximl eigenvalue statistic; high power _
—~+—+ T=50 =& T=50 W
of ©o-T=100 A A T=100
T=200 T=200
0.5
0.0 0.2 0.4 0.6 0.8 s 1.0 0.0 0.2 0.4 0.6 0.8 s 1.0

Figure E.1. Frequency of rejecting the true null hypothesis » < 1 for D1(i) (two different
shifts).
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P

|
s s —— 1:‘ ﬂ‘m—‘ 1 + B B T
0.0 0.2 0.4 0.6 0.8 s 1.0 0.0 0.2 0.4 0.6 0.8
1.0 Rejection frequency ofthe trace statistic: mediumpower jecti uency ofthe maximal eigenvalue statistic; mediumpower
. —+— T=50 -8 T=50 —++ T=50 -8 T=50
S T=100 A A T=100 L|e-e-T=100 A A T=100
< - T=200 T=200 - T=200 T=200
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: A
PO S
S :

T 1 2 i 1 "
0.0 0.2 0.4 0.6 0.8 s 1.0
1.0 Rejection frequency ofthe maximal eigenvalue statistic; high power
L[ T=50 == T=50
of ©-6-T=100 A A T=100
T=200 T=200

00 02 0.4

uency ofthe trace statistic: hi
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0.5 0.5
[ A
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Figure E.2. Frequency of rejecting the true null hypothesis r < 1 for D2(i) (two different
shifts).
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shifts).
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Figure E.11. Frequency of rejecting the true null hypothesis r < 1 for D2(i) (a common
shift).
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Figure E.12. Frequency of rejecting the true null hypothesis r < 1 for D3 (1) (a common
shift).
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Figure E.13. Frequency of rejecting the true null hypothesis r < 1 for D1(ii) (a common
shift).
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Figure E.14. Frequency of rejecting the true null hypothesis r < 1 for D2(ii) (a common
shift).
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Figure E.16. Frequency of rejecting the true null hypothesis < 1 for D1(iii) (a common
shift).
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Figure E.17. Frequency of rejecting the true null hypothesis r < 1 for D2(iii) (a common
shift).
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Figure E.18. Frequency of rejecting the true null hypothesis » < 1 for D3(iii) (a common

shift).
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The empirical size of the trace statistic for high, medium and low power levels
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Figure E.22. The empirical size for low, medium and high power levels.

The empirical size of the trace statistic for different sample sizes
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Rejection frequency of'the trace statistic for different power levels; T=150, §=0.5

0.3
[ = case(i) ° o case(ii) & & case(iii)] a
f | ‘
| °
%
| s &
0.2 {" & 8 °
| : :
| & )
| a
| o
018 : )
& g =
[ 2 o
| o
| 2 | b}
1 ower level 3
Rejection frequency of the maximal eigenvalue statistic for different power levels; T=150, §=0.5 P
| [ o case(i) o o case(ii) - o case(iii)] g
0.20 |- §
| s &
0.15 r 4 8
0.10 . ° A
! ; :
g o
0.05 L &
Le I |
1 2 power level 3

Figure E.24. Rejection frequency for different power levels (two different shifts; 7' = 150,

§ = 0.5).

0.3 - Rejection frequency ofthe trace statistic for different designs; T=150, § =0.5
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Figure E.25. Rejection frequency for different designs (two different shifts; 7" = 150,

§ = 0.5).
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Rejection frequency of'the trace statistic for different power levels; T=150, §=0.5
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Figure E.26. Rejection frequency for different power levels (a common shift; 7" = 150,
6 = 0.5).

Rejection frequency of the trace statistic for different designs; T=150, §=0.5
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Figure E.27. Rejection frequency for different designs (a common shift; 7" = 150,
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Appendix F: Estimates of the local power

Table F.1. Rejection frequencies of the hypothesis 7 = ()

using the trace statistic when DGP1™ =SM.

——E——(Sj?‘;‘gg;fs 50 100 150 3500 800
(-3,12,0.850) 0.8136 0.8270 0.8295 0.8274 0.8331
(-18,12,0.830) 0.8359 0.8284 0.8215 0.8078 0.8090
(-15,6,0.565) 0.3354 0.5095 0.4991 0.4855 0.4801
(-18,0,0.513) 0.5889 0.5509 0.5364 0.5194 0.5156

(-6, 6, 0.272) 0.2657 0.2635 0.2539 0.2582 0.2604
(-12,0,0.269) 0.2789 02714 0.2702 0.2588 0.2548

Table F.2. Rejection frequencies of the hypothesis 7 = 0
using the maximal eigenvalue statistic when DGPI” =SM.

% 50 100 150 500 800
(-3,12,0.850) 0.8073 08210 08258 08253 0.8333
(-18,12,0.830) 0.8457 0.8345 0.8318 0.8208 0.8187
(-15,6,0.565) 05272 0.5036 0.4899 04800 0.4758
(-18,0,0.513)  0.5920 05550 0.5398 0.5227 0.5110
(-6,6,0272)  0.2463 02432 02412 02447 02446
(-12,0,0.269)  0.2653 02571 02473 02473 0.2384
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