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by Philip Bonello

Squeeze film dampers (SFDs) are non-linear elements used in rotor assemblies such as aero-
engines to attenuate vibrations and transmitted forces, and to improve stability. However,
undesirable non-linear side effects under rotating unbalance excitation necessitate an
effective predictive tool for the resulting dynamics. The main contribution of this thesis is
the development of an efficient integrated non-linear modelling technique for the solution of
the unbalance response problem. It consists of the following three complementary blocks,
each of which is tractable to practical systems with many degrees of freedom:

(1) A Receptance Harmonic Balance method for the determination of periodic solutions. In
this method, the receptance functions of the rotating linear part of the system are used in the
non-linear analysis of the complete system.

(2) Stability analysis of these periodic solutions. This is done by applying Floquet theory to
a limited number of the perturbed modal equations of the system.

(3) Numerical integration of the modal equations, when necessary.
With such an approach, linear rotor-dynamic software packages used in industry can be used
to analyse the linear subsystem for receptance functions and modal parameters. The latter
quantities can then be used in a detailed non-linear analysis of the whole system that can be
implemented using standard mathematical software. The integrated model is tested on three
squeeze film damped rotor-dynamic systems, of increasing complexity. The SFD forces are
obtained from an extant model for the SFD that assumes a short incompressible film that
cavitates at absolute zero pressure. In each case studied, excellent correlation between the
results from the above mentioned modelling blocks is achieved. Depending on the operating
conditions, the systems considered are shown to exhibit undesirable non-linear phenomena
such as: amplitude jumps; periodic motion containing sub-harmonics and their integer
multiples; quasi-periodic motion containing combination frequencies; motion that appears to
be chaotic; and sub-critical super-harmonic resonance. The overall correlation with
experiment is also good. The validated integrated model is thus shown to be a valuable tool
in both the study and the design of squeeze film damped rotating systems.
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GLOSSARY OF TERMS

DEFINITION OF COMMONLY USED TERMS

Attractor

Bifurcation

Dynamical system

Equilibrium solution

Forced system

Journal

K-frequency quasi-
periodic motion

Linear subsystem

Non-linear degrees of
freedom

Receptance

Sprung SFD

Squeeze film damper
(SFD)

Stability

A bounded region in state space to which regions of initial
conditions shrink as time progresses.

A qualitative change in the dynamics that occurs as a system control
parameter is changed.

A continuous-time dynamical system is a physical system whose
dynamics can be modelled by a set of first order differential
equations.

Solutions to the dynamical system equations that are non-transient
i.e. exhibit long-term steady-state behaviour.

Dynamical system subjected to external time-varying excitation.
Ring fixed to the outer race of a rolling-element bearing and
mechanically prevented from rotating relative to the shaft axis.
Forms inner surface of SFD.

Motion that is composed of a mixture of K periodic motions that
have irrationally related fundamental frequencies.

Linear part of system, specifically, the system minus the squeeze |
film dampers.

Those degrees of freedom of the linear subsystem that are
associated with the non-linear forces.

Frequency response function that, for a given frequency, relates the
force/moment applied in the direction of one degree of freedom
with the consequent response of another degree of freedom.

SFD with parallel retainer spring.

Annulus of oil filling the clearance between the journal and the
inner surface of the bearing housing.

An equilibrium solution is said to be stable if small linearised

perturbations from it decay to zero as time progresses.

iX



State space A space that is used to specify the instantaneous values of the
dynamical variables (displacements and velocities) and (for a forced
system) the associated value of the independent variable (i.e. time).

Unsupported SFD An unsprung SFD in which the journal is fully eccentric within the

radial clearance under the static load in the static condition.

COMMONLY USED ABBREVIATIONS

EO Engine order: 1EO denotes the synchronous frequency component
in the frequency spectrum of the vibration time history
DFT Discrete Fourier transform, computed by the fast Fourier transform

(FFT) algorithm

FE Finite element

MI Mechanical impedance

RHB Receptance harmonic balance
SFD Squeeze film damper

LIST OF SYMBOLS FOR PRINCIPAL PARAMETERS

The following list is not exhaustive. However, all parameters are defined in the main text.
Greek letter symbols are listed towards the end. Vectors and matrices are in bold typeface

(vectors in lower case and matrices in upper case).

aggg i aﬁ‘;), a&‘"}, a)(,‘;)...etc. cosine coefficients in Fourier expansions of X,, ¥;, X,, ¥, ...etc.
Alr)  40r) 7" modal constants of rotor receptances &, (@), B, (@)
PQ » “App p ro\@W), Ppg

respectively, equal to ¢,(,”)¢é”), f,”')q)éyr) (kg™
Aésg’), A}f;’) " modal constants of receptances o, , (@), B, (@) respectively,
2 L Y o
equal to ¢,§f"”)¢§f"”, ¢£(,fyr)¢§fy') (kg™)

A, zero frequency value of accelerance matrix A, eq. (5.27)

b,(g}), b}(,;), b,(g",), bﬁj) ...etc. sine coefficients in Fourier expansions of X,, ¥,, X,, Y,...etc.
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f, fé“'), fs(s)
£, B2, £
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oQ

non-dimensional viscosity parameter used in Chapter 4, defined in
eq. (4.21a)
radial clearance of damper (m)

depth of oil supply groove of SFD (m)
width of gap at outlet of SFD (m)

diagonal matrix of squares of natural frequencies (eq. (5.31))
instantaneous eccentricity of J from B (m)

static offset of J from B in x and y directions respectively (m)

Px1 vector of forces external to linear subsystem
P x1 vector of unbalance forces and static loads (if taken into

account)

for RHB, f,, comprises the non-linear (i.e. SFD) forces only;
for the time domain analysis, fy, generally comprises all damping

forces (linear, as well as non-linear) and any gyroscopic moments

complex amplitude of f for f harmonic (eq. (5.6b))

cosine and sine coefficient vectors of f for f harmonic (eq. (5.6b))

Fourier coefficient vectors of f

Fourier coefficient vectors of fy
arc-length function, eq. (5.23)

vector of “linear” degrees of freedom

Fourier coefficient vectors of g

monodromy matrix, egs. (3.16), (3.20), (3.22)
vector of non-linear degrees of freedom (at SFDs)

static value of h
Fourier coefficient vectors of h

total number of modes considered in modal solution

modal matrices defined in egs. (5.30), (5.33)

matrix comprising H rows of H

nXn unit diagonal matrix i.e. with 1’s on leading diagonal
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equivalent stiffness of support structure at B (Chapter 6) (N/m)

equivalent stiffness of support structure at B, in x and y directions
(Chapter 8) (N/m)

SFD land length (m)

total number of harmonics taken in RHB solution

equivalent mass of rigid rotor at J (Chapters 4 and 6) (kg)

equivalent mass of support structure at B (Chapter 6) (kg)

equivalent mass of support structure at B, in x and y directions

(Chapter 8) (kg)
dimension of dynamical variables vector s

number of squeeze film dampers, unbalance discs, respectively
positive integer, (= /@)

instantaneous SFD pressure distribution (gauge, Pa)

cavitation pressure (gauge, Pa)

truncated SFD pressure distribution (gauge, Pa)

supply pressure (gauge, Pa)

sine coefficients in Fourier expansions of Q,, @, @,;, O,
left hand side of RHB vector equation (5.18)

total number of degrees of freedom

number of degrees of freedom associated with f
=P-P,
unbalance forces in x, y directions (N)

unbalance forces at U, in x, y directions (N)

sine coefficients in Fourier expansions of O, O, Q,;, Oy

/" modal coordinates for rotor vibration in xz and yz planes

respectively (Chapter 7)

7" modal coordinates for rotor vibration in xz and yz planes

respectively (Chapter 8)

7" modal coordinates for support structure vibration in xz and yz

planes respectively (Chapter 8)
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qg

Ox» Oy
0., 0,
Q.. 0,

i, u(c“'), ug“')

Uu,U,

<

eq,J

.

vector of modal coordinates g, ...q,

vector of modal coordinates of equilibrium periodic solution u,
radial and tangential SFD forces on journal (N)

Cartesian components of SFD forces on J (N)

Cartesian components of SFD forces on J; (N)

mean terms in Fourier expansions of Q_, 0., Q> Oy

SFD bearing housing bore (m)
receptance matrix
gap Reynolds number

positive integer, equal to the order of a harmonic in RHB solution

. . u u q q
vector of dynamical variables, equal to [lor [ ,J or li}or[ ,}
u u q q

equilibrium solution for s

matrix of receptances pertaining to non-linear degrees of freedom

zero frequency value of S
time (s)
period of rotation (=27/£2 ) (s)

matrix of receptances pertaining to linear degrees of freedom

zero frequency value of T

degrees of freedom vectors, defined in eq. (5.4)
equilibrium periodic solution for u

vector of RHB responses at H degrees of freedom

complex amplitude of u for u harmonic (eq. (5.6a))

cosine and sine coefficient vectors of u for u harmonic (eq. (5.6a))
Fourier coefficient vectors of u
unbalance at positions U , U, (kgm)

equivalent unbalance at J for rigid rotors of Chapters 4 and 6 (kgm)

non-dimensional dynamic load parameter for rigid rotors of

Chapters 4 and 6, defined in egs. (4.21c), (4.18)
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0y (@), Bro (@)
Oy (@), Bas (@)
Uy (@), By, (@)

periodic matrix defined in eq. (5.45a)
vector of unknown Fourier coefficients in h, h%’, h{

=v/c

it

periodic matrix defined in eq. (5.45b)

equivalent static load on SFD or SFD no. i, (N)

non-dimensional dynamic load parameter for rotors of Chapters 4
and 6, defined in eq. (4.21b)

coefficient matrix of perturbation equations, defined in egs. (3.13),
(5.44)

Cartesian coordinate system

£

Cartesian displacements of housing centre B or B; (m)

Cartesian displacements of journal centre J or J; (m)
displacements of arbitrary position P or Pr on rotor (m)

X=X, -X5, Y, =Y, =Y, X, =X, -X;. Y, =Y, -1,
mean terms in Fourier expansions of X,, ¥,, X,, Y,...etc.

axial coordinate of SFD (m) or global Cartesian axis

=(q —qg (i.e. vector of perturbations in q)

x, y receptances between positions P and Q (m/N)

x, y point receptances of support structure at B (m/N) (Chapter 6)

x, y receptances between positions B, and B, on support structure,

i, j =12 (m/N) (Chapter 8)
accelerance functions = —@’¢t, , (©), ~@* By, (@) (ms™N")

(Chapter 8)

equalto O for s # N andequalto 1 for s=N

non-dimensional instantaneous eccentricity of J from B (=¢/c)
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Q

non-dimensional x, y static offsets of SFD journal centre J from
housing centre B (= ¢, /¢, ¢,, /¢)

angular position around the SFD, measured from the maximum
film thickness position (rad)

attitude angle of SFD journal (rad)

non-linear vector function of s and 7 on the right hand side of the
dynamical equations (3.1)

h

" mass-normalised mode shapes of rotor in Chapter 7 at position P

in xz, yz planes (kg )

7" mass-normalised mode shapes of rotor in Chapters 6 and 8 at

position Pr in xz, yz planes (kg**)
#" mass-normalised mode shapes of support structure at position B
or B; in xz, yz planes (kg‘o's)

mass-normalised mode shape vector (h=1...H )
phase shift of unbalance at U; (rad)
leading eigenvalue of G (leading Floquet multiplier)

dynamic viscosity of oil (Nsm™)

structural damping loss factors for support structure vibration at B,

=t , non-dimensional time
= {2 , non-dimensional time
fundamental frequency of equilibrium periodic solution (rad/s)

general frequency (rad/s)

lowest undamped natural frequency with SFD locked (rad/s)
undamped natural frequency in mode A=1...H (rad/s)

undamped natural frequencies of rotor (Chapter 7) in mode r in xz
and yz planes (rad/s)

undamped natural frequencies of rotor (Chapter 8) in mode r in xz
and yz planes (rad/s)

undamped natural frequencies of support structure (Chapter 8) in
mode r in xz and yz planes (rad/s)

arc length parameter

rotor rotational speed (rad/s)
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non-dimensional speed parameter (= Q/w, )
period of equilibrium periodic solution (= NT') (s)

iX j matrix of zeros

diagonal matrix with vector [ ] on the leading diagonal
real and imaginary parts of ()
complex conjugate of ( )

applied to a matrix: real and imaginary parts of ( ) respectively

applied to a matrix or a vector ( ): transpose of ( )

d( )t

d( )dzord()dg
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1 INTRODUCTION

Squeeze film dampers are non-linear elements used in rotor assemblies, particularly aero-
engines, to attenuate vibrations and transmitted forces, and to improve stability. Figure 1.1
shows a schematic of a squeeze film damper (SFD) assembly. The inner surface of the
damper is formed by the “journal” which is a ring fixed to the outer race of a rolling-element
bearing. The journal is prevented from rotating relative to the shaft axis, but is free to orbit in
the oil-filled annular clearance in the bearing housing, forming the SFD. A retainer spring,
usually in the form of a squirrel cage (not shown in Figure 1.1) is optionally placed in parallel
with the SFD. This design is referred to here as the “sprung SFD”. The spring might be
inserted to tune the system natural frequencies. However, the primary function of the spring
is to support the static load on the journal (normally the gravity load). It also serves to
prevent the journal from rotating. Preloading of the spring is used in an effort to centralise
the journal in the housing, thus obtaining circular and concentric journal orbits, synchronous
with the rotational speed. However, in practice, there will be some degree of static
eccentricity of the journal within the bearing housing due to preloading error, omission of the
preloading mechanism for constructional simplicity, or, in extreme cases, partial failure of
the retainer spring in service. This offset results in non-circular orbits, with increased
likelihood of non-synchronous frequency components. In some engine designs, the retainer
spring is dispensed with altogether, as in Figure 1.1. This design is referred to here as the
“ansprung SFD”. In this design, the journal is prevented from rotating by anti-rotation pins
or dogs (in the schematic of Figure 1.1, dogs projecting from the right hand end of the journal
engage with similar ones on the right hand end-plate with sufficient clearance so as not to
obstruct relative movement in the x-y plane). The resulting simpler mechanical design avoids
problems of fatigue in the retainer spring and reduces manufacturing costs. If, in the static
condition, the journal of an unsprung SFD is fully eccentric under the static load of the rotor,
then the SFD is referred to as “unsupported”. When in operation, the unsupported SFD is
effectively in series with the bearing pedestal flexibility and performs the additional function
of a bearing (i.e. supports the static load). Paradoxically however, this is not possible if there
is no relative vibration between the journal and the housing since, in such a case, the two

would remain in contact. Hence, to operate, an unsupported SFD makes use of the ever-



present residual unbalance in the rotating system. An unsupported SFD is inherently non-
linear. Moreover, as will be shown later in this thesis, despite the unbalance excitation, the
journal can still “bottom” within the clearance under the gravity load over certain operating
regimes due to minimal relative vibration across the damper. Apart from wear problems,
such a condition introduces additional non-linear effects as a result of the ineffective SFD
behaving like a piecewise-linear (bilinear) spring wherein the journal experiences different
linear stiffnesses along the —y and +y axes.

The undesirable non-linear side effects introduced by SFDs are jump phenomena, non-
synchronous vibrations, and, indirectly, bilinear oscillator effects. A jump phenomenon is a
sudden jump-up or jump-down in amplitude upon increasing or decreasing the speed and is
associated with the non-linear spring-like characteristic of a SFD. In this thesis, “non-
synchronous vibration” is taken to mean any vibration that contains frequency components
that are not equal to (and hence not synchronous with) the excitation frequency, which, for
unbalance excitation is the rotational speed. This vibration therefore includes: (a) periodic
vibration containing super-harmonics (of the excitation frequency) or sub-harmonics (of the
excitation frequency) and their integer multiples; (b) quasi-periodic vibration containing
combination (sum and difference) frequency components; and (c) chaotic motion, with its
continuous frequency spectrum. Sub-synchronous flexural vibrations are undesirable in
rotors since they give rise to cyclic stresses, aggravating fatigue problems. It will also be
seen later that when an unsupported SFD degenerates into a bilinear oscillator, sub-critical
super-harmonic resonances and super-critical sub-harmonic resonances result. This myriad
of non-linear phenomena necessitates an effective predictive tool for the dynamics of
unbalanced squeeze film damped rotating systems. It is only the forced response problem
that is of interest since a SFD cannot introduce instability of the type that results in self-
excited vibration, unlike hydrodynamic journal bearings. It is in this respect that SFDs are
said to offer improved stability. Jump and sub-synchronous vibration phenomena in a system
with SFDs are the result of the instability of pre-existing, externally forced periodic
oscillations. Rotor unbalance is the major source of the external excitation. Moreover, the
state of balance can degrade progressively during service and change sharply as a result of
minor damage.

SFDs introduce non-linear motion-dependent forces into an otherwise linear rotor-
dynamic system. The techniques used for the determination of the unbalance response of

such systems can be broadly divided into two categories: periodic solution techniques and



time-marching methods. Periodic solution techniques are used to determine equilibrium
solutions (i.e. steady-state, non-transient solutions) of the periodic type, usually of assumed
period. These periodic solutions can be either (asymptotically) stable (forming periodic
attractors in state space) or unstable. Oscillations of the latter variety are not observed in
practice. Time-marching methods involve numerical integration of the system equations
from given initial conditions over sufficiently long integration times for transients to die out
and a stable equilibrium solution (attractor in state space) to be reached which need not
necessarily be periodic. While periodic solution techniques are essentially much faster than
time-marching methods, the solutions obtained need to be tested for stability and time-
marching becomes the only method of solution when no periodic attractor exists.

The main contribution of this thesis is the development of an efficient integrated non-
linear modelling technique for the solution of the unbalance response problem. The
integrated model consists of the following three complementary blocks, each of which is
tractable to systems with many degrees of freedom:

(1) The determination of the periodic solutions: a receptance harmonic balance (RHB)
method is proposed for such a purpose. In this method, the receptance functions of the
rotating linear part of the system are used in the non-linear analysis of the complete
system.

(2) Stability analysis of these periodic solutions. This is done by applying Floquet theory to a
limited number of the perturbed modal equations of the system.

(3) Numerical integration of the modal equations, when necessary.

During the course of this project, discussions with engineers in the UK aircraft industry

revealed that little or no non-linear analysis of squeeze film damped aero-engine systems is

performed. Instead, the SFDs are modelled as linear elements that can be incorporated into
industrial linear rotor-dynamic software packages. With the integrated model presented in
this thesis, these software packages can be used to analyse the linear subsystem for

receptance functions and modal parameters. These two sets of data can then be used in a

detailed non-linear analysis of the complete system that can be implemented using standard

mathematical software.

The integrated model is tested on three rotor-dynamic systems, of increasing complexity:
(A) Rigid rotor with one unsupported SFD in flexible housing.

(B) Flexible rotor with one rigidly housed SFD, with and without retainer spring.

(C) Flexible rotor with two unsupported SFDs in flexible housings.



The SFD forces are obtained from an extant model for the SFD suitable for the short,
unsealed dampers considered. This SFD model assumes a short incompressible film that
cavitates (ruptures) at absolute zero pressure. The fundamental objectives of each test are
two-fold. The first objective is to demonstrate the correlation between the simulation results
from the three complementary modelling blocks (i.e. RHB, stability analysis, time-
marching). The second objective is to assess the ability of the modelling technique to predict
and explain observed non-linear phenomena. Hence, where available, evidence from
experimental rigs for configurations (A), (B), and (C) is presented to validate the study.
Configurations (A) and (C) are based on aero-engine designs. Configuration (B) is typical of
a small centrifugal pump. With the exception of (C), these configurations had been analysed
analytically and experimentally in the literature. However, the lack of a comprehensive non-
linear model did not allow an adequate study of the non-linear effects highlighted above.
Hence, the analytical and experimental findings should shed new light on the non-linear
behaviour of squeeze film damped rotating systems. Moreover, the study should provide
useful additional validation of the model used to compute the SFD forces, since, despite
being generally considered the best available from a physical and practical viewpoint, this
SFD model is not definitive.

This chapter concludes in the next section (1.1) with a summary of the thesis objectives
and contributions. A critical review of previous research is given in Chapter 2. Chapter 3
outlines basic concepts in non-linear dynamics, with emphasis on stability and bifurcation of
periodic oscillations. In Chapter 4, the non-linear force expressions for a SFD, based on
existing theory, are presented. These expressions are illustrated by simulations for a simple
rotor system. The integrated model is developed in Chapter 5 for a general squeeze film
damped rotor-dynamic system and the advantages of this model over current models are
explained. The model is applied to configurations (A), (B), and (C) in Chapters 6 to &

respectively. The general conclusions are drawn in Chapter 9, along with recommendations

for future research.

1.1 THESIS OBJECTIVES AND CONTRIBUTIONS

The thesis objectives were:

- The development of an efficient integrated modelling technique for the solution of the

unbalance response problem of rotor-dynamic systems with squeeze film dampers.



- Validation of the integrated model in simulation for three squeeze film damped rotor-
dynamic configurations (A), (B), and (C).

- To assess the ability of the model to predict and explain non-linear performance. To
achieve this aim, experimental work is performed on test rigs for (B) and (C).
Limited experimental results from a test rig for (A) are reproduced from the literature.

The thesis contributions are:

- An integrated non-linear modelling technique that provides a comprehensive solution
to the unbalance response problem of squeeze film damped rotor-dynamic systems
over a wide range of operating conditions, that is efficient for systems with many
degrees of freedom, and that can be interfaced with linear rotor-dynamic modelling
techniques used in industry.

- Extension of research in the area of non-linear rotor-dynamics by applying the
modelling technique to predict and explain experimentally observed undesirable non-
linear phenomena in squeeze film damped systems.

- To alimited extent, as an outcome of the previously listed contribution, the provision
of additional experimental validation for the existing oil film model used to compute
the squeeze film damper forces.

It should be noted that the integrated model can be easily adapted to cover other types of

non-linearities in rotor-dynamic systems by using the appropriate non-linear forcing

functions.
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2 REVIEW OF PREVIOUS RESEARCH

2.1 INTRODUCTION

In this chapter a critical review of previous research relating to squeeze film damped rotor-
dynamic systems is presented. The first part of this review deals with solution techniques for
the unbalance response. The second part deals with reported studies on the non-linear
phenomena in such systems. Existing research into the models used for squeeze film damper

(SFD) force estimation is outlined in Chapter 4.

2.2 SOLUTION TECHNIQUES FOR THE UNBALANCE RESPONSE

Ever since Cooper [1] first patented a squeeze film damper bearing in 1964, efforts have been
made to develop efficient modelling techniques for the unbalance response of rotor-dynamic
systems fitted with such non-linear components. Time-marching (i.e. the numerical
integration of the differential equations of motion from given initial conditions) has been
applied to simple rigid rotors on non-linear supports for many years e.g. Craven and Holmes
[2] in 1972, Gunter et al. [3] in 1977, Cookson and Kossa [4] in 1979. However, the need for
faster solutions resulted in the development of non-linear rotor-dynamic periodic solution
techniques. The theoretical analysis of centrally preloaded dampers with circular, concentric,
and synchronous rotor motion is well documented [5-7]. The example considered by
McLean and Hahn [6], was a symmetric flexible rotor mounted on identical sprung SFDs and
the solution procedure was reduced to the solution of a single non-linear algebraic equation.
The stability problem for such computed orbits was considered by McLean and Hahn [7].
This was done by considering small linearised perturbations from the equilibrium orbit. By
virtue of the circular and synchronous nature of the orbit, the stability problem was reduced
to a simple eigenvalue problem by writing the perturbed time domain equations of motion
with respect to a rotating frame of reference, thus obtaining a system of linear differential
equations with constant coefficients. As evidenced by the unexpected instabilities discovered
by McLean and Hahn in this simplest of rotor configurations, the stability analysis of

periodic solutions is an essential requirement.



As discussed in the Introduction, some offset of varying degree will exist in sprung SFDs,
and unsupported SFDs are also used. For such situations, attempts have been made to obtain
periodic solutions by equivalent linearisation of the damper forces by Holmes and Dogan [8],
Hahn [9], Chen and Liu [10], and El-Shafei and Eranki [11]. These methods enable the
equivalent damping, stiffness and/or inertia coefficients to be used in conjunction with
existing linear rotor-dynamic modelling techniques. However, such solutions assume
synchronous motion and make no allowance for the possibility of sub-harmonic and super-
harmonic frequency components. More recently, it has been shown that reasonably accurate
periodic solutions with non-synchronous frequency components can be obtained by the
harmonic balance (HB) method [12] or the analogous trigonometric collocation (TC) method
[13, 14]. In particular, Chen ef al. [12] successfully analysed a symmetric rigid rotor with a
rigidly housed unsupported SFD at either end using harmonic balance for periodic solutions
with sub-harmonic fundamental frequencies. While HB and TC are different in the detail,
they are fundamentally similar in that both approximate the periodic motion with a truncated

Fourier series with m harmonics of an assumed fundamental frequency @ = /N where

Q rad/s is the rotational speed and N is a positive integer. Both methods ultimately result in
a system of non-linear algebraic equations with the unknowns being the Fourier coefficients
of the degrees of freedom at the non-linear elements. Hence, these unknowns total

P, (2m+1) where P, is the number of non-linear degrees of freedom of the system. In

either case, the system of equations is soluble (by iteration) so long as a solution of
fundamental frequency @ exists. For computational reasons, only a finite number of
harmonics m can be considered, so the periodic solution will be, strictly speaking,
approximate. However, in most practical problems, where N is small, the solution always
converges after a manageable number of harmonics m [12, 15]. However, Chen et al. [12]
found that convergence was difficult to achieve for oscillations with large N, since many
harmonics needed to be taken. In such situations it was considered more economical to use
time-marching. Moreover, the work in [12] showed that time-marching could be used with
HB to help locate different stable equilibrium solution possibilities. Zhao ez al. [13] used
arc-length continuation [16] with TC to negotiate regions of the unbalance response curve
where more than one solution was possible for a given rotational speed (as in bistable
regions). The stability analysis of non-circular periodic orbits with non-synchronous

frequency components was considered in [12, 13, 15]. The perturbed time domain equations



of motion were written in terms of a stationary frame, resulting in a system of linear
differential equations with periodic coefficients, which was then analysed by Floquet theory.
The extension of accurate periodic solution techniques employing TC or HB to practical
systems with many degrees of freedom has been studied in [14, 15, 17, 18]. The common
strategy was to regard the forces from the non-linear elements as external, acting on the
rotating linear part. Hahn and Chen [15] modelled the linear part by the finite element (FE)
method and the HB method was applied to the FE time domain equations of motion of the
system (which are of the general form Mii+ Ca+Ku=f, where M, C, and K are the mass,
damping/gyroscopic and stiffness matrices respectively and u and f are the vectors of the
degrees of freedom and the external forces/moments respectively). This resulted in a very

large set of non-linear algebraic equations with P(2m+ 1) unknowns where P was the total

number of degrees of freedom of the system. This number was then reduced to P, (2m+1)
(where P, = number of non-linear degrees of freedom) by applying a condensation

technique involving the inversion of potentially large FE matrices (of the order PXP). The
stability of the solution was tested by applying Floquet theory to the perturbed FE equations
of motion, again resulting in potentially large matrices. The work by Shiao and Jean [17]
was similar to that in [15], except that complex notation was used and no stability analysis
was performed. Such FE-based periodic solution and stability techniques are clearly not
useful for practical systems with many degrees of freedom. Nataraj and Nelson [14], adopted
a component mode synthesis approach. The TC method was applied to the modal equations
of the system, making the technique tractable to large order systems. This required the
solution of the eigen-problem of the rotating linear part and modal truncation. However, as
observed by Shiao and Jean [17], this needs to be done at each rotational speed if gyroscopic
effects are significant. More recently, Liew et al. [18] obtained the HB equations of non-
linear rotor-bearing systems by applying the transfer matrix (TM) method. While this
method is efficient, it is limited by its exclusive use of the TM method, which, as discussed
by Bonello and Brennan [19], is not effective at including the dynamics of the support
structure.

With time-marching methods, as with periodic solution techniques, the SFD forces are
included in the external force vector f. However, the integration of the FE equations of
motion is clearly impractical for large order systems. This is mostly due to the fact that the
step size required by the integration scheme to maintain the local error within a prescribed

tolerance is determined by the shortest period of the system, which corresponds to the highest



frequency mode. Hence, the step size decreases with increasing numbers of degrees of
freedom [20]. It may be considered to simplify the physical model by lumping mass in order
to reduce the number of degrees of freedom. However, this can seriously limit the range of
reliability of the results. For example, in order to overcome computing limitations, Chu and
Holmes [21] modelled a squeeze film damped flexible rotor rig (rig (B) described in the
Introduction and considered in Chapter 7) as a lumped parameter system with three masses.
Upon fixing the locations of two of the masses, the location of the third was chosen such that
the first two undamped critical speeds of the equivalent system matched those of the actual
continuous system, which had been previously estimated by the transfer matrix method. The
static influence coefficients of the simplified system were determined experimentally from
the rig. Despite this arduous simplification, the results obtained from such a model were
considered reliable only within a frequency range of 0-50 Hz. This not only restricted the
operating speed of the rig, which could otherwise be driven up to 100 rev/s, but must have
affected the super-synchronous frequency content of the predictions within the speed range
considered (0-50 rev/s). The only viable and accurate time-marching approach for large
systems (i.e. systems with many degrees of freedom) is the numerical integration of an
adequate number of the modal equations [20]. Becker and Steinhardt [22], and Armentrout
and Gunter [23] demonstrated how the transient response of a squeeze film damped rotating
system can be computed by numerically integrating the modal equations. However, apart
from these two demonstrations, to the author’s knowledge no modal time-marching studies of
such systems have yet been reported.

In the time marching approach, the differential equations of motion (whether in modal or
FE form) can be integrated using any convenient numerical integration scheme. SFD
researchers have tended to use the 4™ order Runge-Kutta (RK) method [8, 12, 24]. However,
the RK method is not suitable in situations where the system of equations is “stiff” (i.e. the
highest natural frequency is very high). In this situation, the step size required by the RK
method to maintain the local error within the prescribed tolerance is exceedingly small,
resulting in a very time consuming process that will most likely crash due to overload of the
computer memory. In [2], a method based on the trapezoidal integration rule was presented
in order to overcome this problem. This integration scheme was used in [21]. Moreover,
MATLAB® (version 5 and later) [25] has a whole suite of functions dedicated to the solution

of stiff systems.
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2.3 RESEARCH INTO NON-LINEAR PHENOMENA

The benefits of a squeeze film damper in attenuating vibrations in the critical speed regions
are illustrated in the work by Holmes and Dogan [8]. Chu and Holmes [26] used a simple
numerical example to show how a SFD, by virtue of the extra damping provided by its non-
linearity, can control instability introduced by components such as seals by limiting the
amplitude of the self-excited vibration. However, it is understandable that most research has
concentrated on the negative side effects introduced by the non-linearity of the SFD on the
unbalance response. These non-linear phenomena were listed in Chapter 1 as jump
phenomena, non-synchronous vibration, and, indirectly, bilinear oscillator effects.

Jump phenomena, resulting from non-linear spring characteristics of cavitated squeeze
film dampers have been reported by many researchers. Spring-hardening characteristics (i.e.
jump-down in amplitude on run-up in speed, Figure 2.1(a)) were reported by many
researchers in both theoretical and experimental work [6, 7, 13, 24, 27, 28-30]. In all these
works, this spring hardening characteristic was associated with the parallel combination of a
SFD and some flexibility. This flexibility was the retainer spring in [6, 7, 13, 24, 27]. In
[28-30] it was the engine carcass (i.e. support structure) flexibility. In [28, 29] the carcass
flexibility was located at a different bearing but was still effectively in parallel with the SFD.
Stability analysis for sprung dampers in [7, 13, 27] showed that, when three solutions existed
at one rotor speed, the middle solution was unstable while the upper and lower ones were
stable (hence the bistable regions in Figure 2.1). Spring-softening characteristics (i.e. jump-
up in amplitude on run-up in speed, Figure 2.1(b)) were reported in [8, 31], both with
horizontal rotor rigs involving rigidly housed unsupported SFDs carrying appreciable rotor
weight. A similar effect was obtained in [28, 32] with unsupported SFDs in flexibly mounted
housings.

Many researchers have observed super-harmonics and sub-harmonics (with integer
multiples) in the vibration signals from squeeze film damped rotating systems. Nikolajsen
and Holmes [33] reported sub-harmonics down to one quarter of the rotational speed (i.e.
1IEO/4, where 1EO refers to the synchronous frequency component — “EO” standing for
“engine order”) from a flexible rotor rig. Sykes and Holmes [28] demonstrated the existence
of severe sub-harmonics equal to 1EO/2 as well as strong super-harmonics, under various
conditions of static offset. A theoretical study on the sub-harmonic motion of a simple rigid
rotor in unsprung SFDs was done by Chen et al. [12]. Among other things it was concluded

that a resultant static load on the journal appeared necessary for sub-harmonic motion. This
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analysis was limited since it did not include the effect of the bearing pedestal flexibility (i.e.
the dynamic deflection of the bearing housing), which is often significant for practical gas
turbines [8] and was shown in various works [8, 28, 31, 32] to be highly influential in the
dynamics of unsupported SFDs. Using elementary analysis, Holmes and Box [30] showed
that, for a rigid rotor with an unsupported SFD that is in series with the pedestal flexibility, a
IEO/2 sub-harmonic was expected to be excited when the speed was close to the undamped
natural frequency. On the other hand, for a rigid rotor with a rigidly housed SFD in parallel
with a spring (or equivalent flexibility), the 1EO/2 sub-harmonic was expected when the

rotational speed was just around twice the undamped natural frequency. These results have
been confirmed in [8, 31] for the unsupported SFD and in [30] for the sprung SFD.

The bifurcation of periodic motion in a general non-linear system into quasi-periodic
motion is described in standard non-linear dynamics text books, for example [16, 34, 35]. As
shown in Chapter 3, a quasi-periodic signal is an aperiodic signal composed of two (or more)
periodic signals having irrationally related fundamental frequencies, one of which is normally
the excitation frequency. This motion is hard to distinguish from periodic motion with very
many sub-harmonics [34]. In 1976, Botman [36] observed what looked like quasi-periodic
motion on a high-speed oil film damper rig run by Pratt and Whitney of Canada Ltd. In that
very early research, this motion was given the general term “non-synchronous”. Reference to
Botman’s observations was made in the work by Li and Taylor [37], which was the first to
analyse numerically quasi-periodic motions in SFDs. This work considered a simple rigid
rotor with sprung SFDs and the same term as Botman was used to describe quasi-periodicity
(i.e. “non-synchronous”). When the computed quasi-periodic response was sampled at
intervals equal to the period of excitation and the samples plotted', a closed curve resulted.
This agrees with standard non-linear dynamics theory and is the hall-mark of quasi-periodic
motion with two fundamental frequencies [34, 38]. Li and Taylor concluded that the quasi-
periodic motion could be changed or suppressed into a periodic motion of period NT (where
T is the period of rotation and N a positive integer) by the introduction of a unidirectional
static force onto the otherwise centrally preloaded rotor. They also made the important
observation that the sub-synchronous phenomena in a system with SFDs are not self-excited
since their existence directly relates to the external excitation (unbalance force). The term
“quasi-periodic” was first used in the context of SFDs by Zhao et al. [13, 24, 27], who used

Poincaré maps and frequency spectra to analyse the aperiodic motion. In [13] they examined

A plot of such samples is referred to as a Poincaré map [13, 24, 27, 34, 38].
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theoretically a symmetric flexible rotor in identical centrally preloaded SFDs. Well beyond
the jump phenomenon described earlier, they discovered that the synchronous periodic
motion bifurcated into quasi-periodic motion that persisted over a limited speed range beyond
twice the pin-pin critical speed of the shaft. The effect of introducing a static offset in the
SFDs was to introduce a period-doubling bifurcation soon after the first pin-pin critical speed
such that there was stable periodic motion of period 2T (where T is the period of rotation)
over a short speed range. Additional theoretical work on quasi-periodic and sub-harmonic
motion was done by Zhao et al. in [24, 27] on a symmetric rigid rotor in identical eccentric
sprung SFDs. In [24], chaotic motions were also found to occur and were identified by the
fractal nature of the Poincaré Map. To the author’s knowledge, the work in [24] is the only
work related directly to SFDs where chaotic motion was investigated numerically.

The quasi-periodic motion in [13, 24, 27] was found to contain combination (or “sum and
difference”) frequency components of the general form =, f| +n,f, where n, and n, are
integers (positive, negative or zero) and f; and f, are the two irrationally related
fundamental frequencies of the motion. This feature of quasi-periodic motion is described in
the text-book by Ott [35]. Ehrich [39] observed combination frequencies in a General
Electric gas turbine engine. It was noted that two fundamental frequencies were involved —
one synchronous with the rotor rotation, associated with the unbalance, and an asynchronous
frequency that was attributed to fluid trapped in the rotor. It was concluded by Ehrich that
the source of the combination frequencies was the truncation of vibration, probably due to the
rotor being located eccentrically in a bearing clearance. Combination frequencies were also
observed experimentally by Holmes and Dede [31] in a twin rotor configuration coupled
through a SFD. This time however, the two fundamental frequencies were both due to
unbalance excitations, one on each rotor, and the generation of the combination frequencies
was attributed to the non-linearity of the coupling between the rotors.

Before leaving the subject of the SFD proper, two important issues are discussed: (a) the
correlation between experiment and theory, and (b) the practical significance of the SFD
systems studied in the literature. Of course, the correlation between experiment and theory
will be influenced by the actual model used to compute the SFD forces. As shall be seen in
Chapter 4, a major source of uncertainty is the modelling of the cavitation effect within the
SFD. The idealised “7z film” model applies for an externally unpressurised, short, and
unsealed damper in which the oil film is assumed to cavitate (rupture) at atmospheric

pressure. This leads to closed form expressions for the SFD forces, which are easy to use. A
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more realistic model called the *variable film” model allows for the supply pressure and
assumes cavitation at some sub-atmospheric pressure, usually absolute zero pressure.
However, the instantaneous SFD forces need to be computed numerically by double
integration. Most work reviewed in this section, pertaining to the non-linear dynamics of
SFD systems, can be divided into two contrasting categories. The first includes the works by
Zhao et al. [13, 24, 27], Chen et al. [12], and McLean and Hahn [6, 7], which apply all the
non-linear dynamics tools available (i.e. periodic solution computation, stability and
bifurcation analysis, time-marching, Poincaré maps, and frequency spectra) to analyse
theoretical models of both rigid rotor and flexible rotor systems. These works used a “7x
film” model for the SFD and no experimental verification was undertaken. The second
category involves the work done by Holmes with various co-researchers [8, 28, 31, 32] which
was restricted to the time-marching of the differential equations of motion of rigid rotor
models and the examination of the orbital motion, amplitude-speed plots, and frequency
spectra from the results obtained. However, these works used the variable film model and
were backed up by experimental work. Moreover, unlike the workers in the first category,
the rigid rotor systems considered by Holmes ez al. included those with flexible pedestals
(housings). According to Holmes and Box [20], practical squeeze film damped rotating
assemblies can be classified into one of two types of simple configurations, as a rough first
approximation: (i) rigid rotor-flexible housing systems, such as military aero-engines and
turbo-chargers, and (ii) flexible rotor-rigid housing systems like civil aero-engines and air
compressors. What appears to be lacking in the literature is an advanced non-linear study, on
a par with those performed by researchers in the first category mentioned above, on systems
of type (1) and (i1), that is backed by experimental evidence.

Bilinear oscillator effects, which are not exclusive to SFDs, are now discussed. Ehrich
[40, 41] did considerable research on unbalanced rotors operating eccentrically within a
clearance and in local contact with the stator. The rotor-stator interaction was modelled by a
piecewise-linear spring that was softer for the vertical motion of the rotor from its rest
position into the clearance and harder for the vertical motion from the rest position into the
direction of contact. This is illustrated in Figure 2.2. In [40], Ehrich cited a rotor just
bottomed in the squeeze film damper/bearing clearance as a typical example. Hence, the
non-linear SFD force expressions were replaced by the piecewise-linear spring characteristic.
The resulting oscillator was said to behave as a bilinear oscillator [41]. Simulations on a

simple unbalanced Jeffcott rotor [40, 41] showed that, for the direction of the non-linearity
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(i.e. vertical direction), super-critical sub-harmonic resonance at exactly 1/n of the excitation
frequency (n is a positive integer) occurred whenever the excitation frequency (the rotational
speed) was in the region of n times the natural frequency. Similarly, sub-critical super-
harmonic resonance at exactly »n times the excitation frequency occurred whenever the
excitation was in the region of 1/n times the natural frequency. It was also found that there
was a zone of characteristically chaotic behaviour located midway of each transition zone
between successive resonances. The results from the numerical simulation were used to
explain data collected from an aircraft gas turbine engine.

It appears from the literature that a direct correlation between SFDs and bilinear oscillator
effects has yet to be made i.e. the prediction of such effects using the SFD force expressions,
without recourse to piecewise-linear spring models. This is important since, by neglecting
the SFD forces, Ehrich [40, 41] assumed that the piecewise-linear spring model was
applicable over the entire operating range of the rotational speed. However, in a real system,
it is reasonable to expect that over part(s) of the operating range the SFD forces will create
sufficient sustained lift to counter the rotor offset within the clearance, thus rendering the

piecewise-linear spring model invalid.

2.4 CONCLUSION

The previous research into the analysis of the dynamics of unbalanced squeeze film damped
rotating systems has been reviewed in this chapter. The first part of this review (section 2.2)
dealt with solution techniques for the unbalance response. The second part (section 2.3) dealt
with reported studies on the non-linear phenomena in such systems. An integrated model has
been recently developed by the author [42] to overcome the shortcomings highlighted in
section 2.2. This forms the basis of this thesis. This model will be used to extend the

existing research into the non-linear phenomena presented in section 2.3.
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3 BACKGROUND NON-LINEAR DYNAMICS
THEORY

3.1 INTRODUCTION

This chapter describes the background non-linear dynamics theory relevant to this thesis.
Emphasis is placed on the stability and bifurcation of periodic oscillations of forced
dynamical systems. A description of quasi-periodic motiomr is given and the occurrence of
combination frequencies explained. This is followed by a brief discussion of chaos. A short
note on unforced systems is also given in this chapter. While this is not relevant to the
squeeze film damper (SFD) problem, it helps to explain the benefit of using a device like the
SFD over other fluid film devices. The chapter concludes with a note on the issue of
“numerical stability” i.e. the “stability” of numerical integration methods.

A dynamical system can be either a continuous-time system or a discrete-time system.
This thesis is concerned with the former. A continuous-time dynamical system can be
modelled as a set of n first order differential equations. For a non-autonomous system, the

independent time variable ¢ appears explicitly in the dynamical equations, so these are of the

form:
$=0(s,7) (3.1)

For an autonomous system, the independent time variable 7 does not appear explicitly in the

dynamical equations and so, these are of the form:

$ = ofs) (3.2)

© is an nx1 vector function of the dependent variable s = [s1 sn]T and (for a non-

autonomous system) the independent variable 7:

(p(s,t) =[ l(sl,...,sn,t) gon(sl,...,sn,t)]r (3.3)
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o) =lo,(s,..0s,) @, (505, )] (3.4)

The dynamical system (and its governing system of equations) is said to be “non-linear” if @
is a non-linear function of the dependent variable s i.e. the element functions of ¢ are non-
linear in the elements of s.

In the present context of structural dynamics, eqgs. (3.1) or (3.2) are the equations of
motion: eq. (3.1) corresponds to the forced case (i.e. a system subjected to time-varying
external excitation, for example the rotor unbalance force in a rotor-dynamic system) and eq.
(3.2) to the unforced case (i.e. a system not subjected to time-varying external excitation).
Except for the short notes on unforced non-linear systems in section 3.3 of this chapter and in
section 4.7 of Chapter 4, this thesis is confined to the study of non-linear systems with time-
varying external excitation that is harmonic with frequency (2 rad/s and period T =27/Q .
For an unbalanced rotor-dynamic system £2 is the rotational speed and the amplitude of the
unbalance forces is proportional to £2° for a given state of unbalance. s is an nx1 vector of
generalised coordinates and their time derivatives. Depending upon whether the original

second order differential equations of motion are cast in finite element (FE) or modal form:
u q
s=[s, - s =|. | (FEform), or | .| (modal form) (3.5)
u q

where u is the vector of degrees of freedom (as in the FE equations of page 9) and q is the

vector of modal coordinates (see Chapter 5, section 5.4). The first n/ 2 equations of (3.1) or
(3.2) are hence [s’l s'n/z]r = [sn/w SH]T. The remaining equations are then the

(originally second order) differential equations of motion. For the unforced system in eq.
(3.2), the nx1 vector s is referred to as the state vector. The specification of the state of the
forced system requires knowledge of both s and ¢ (or £2). Hence, in this case, the state

vector is defined as the augmented vector s,,,

s {Q’-} (3.6)
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The elements of the state vector are the state variables and the associated n or (n+1)—
dimensional space is the state space. For the forced system, when visualising plots of
trajectories of s(¢) from given initial conditions s(z, ) in the state space, the independent state
variable £ is an angular coordinate [16, 34]. In this way, a periodic solution to equation
(3.1) of period NT, where N is a positive integer i.e. s(t)= s(z + NT) will appear as a closed
loop in the state space since Q(t+ NT) (= Qr+ N27 ) will then represent the same angle as
Qs .

A Poincaré map is obtained by sampling the trajectory of s(t) in state space at discrete

times t,, £ =0,1,2,..., according to certain rules which are different for forced and unforced

systems [38]. The sampled points s(tk) are called the “return points”. For a periodically

driven system, the map is a stroboscopic picture of the trajectory i.e. the trajectory is sampled
at fixed intervals, usually equal to the period T of the excitation, hence t, =1, +k7T where 1,
is some arbitrarily chosen sampling start time. Hence, motion of period NT (“NT-periodic
motion”) appears as N discrete points on the map when the sampling interval is 7. A two-

dimensional Poincaré map is obtained by plotting two elements of the sampled vector s(tk )

Dissipative systems are characterised by attractors. An attractor is a bounded set of

points in state space which the trajectory of s(t) reaches after the transients due to the initial
conditions s(to) die out. Regions of initial conditions in state space shrink asymptotically on

to the attractor as time progresses. For a periodically driven system, an attractor may be one

of the following:

(a) Periodic attractor, where s(t)=s(¢t+1"), I" being the period and @ =27x/I" rad/s the
fundamental frequency of the oscillation. Since the frequency components of this
periodic motion are integer multiples of @ and the excitation frequency £2 is assumed to
be one of these, @ must be equal to /N where N is a positive integer, and so, the
motion 1s NT-periodic.

(b) Quasi-periodic attractor - motion with two (or more) fundamental frequencies.

(c) Strange attractor - chaotic motion.

An attractor can be located by integrating eq. (3.1) from arbitrarily chosen initial conditions

s =s(z‘o) at r=t, and allowing sufficient time for the initial transients to die out. This

process is referred to as “solving the initial value problem” or “time-marching” and is done

using a convenient step-by-step numerical integration scheme (e.g. Runge-Kutta, ...... etc.).
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Solutions to egs. (3.1) or (3.2) that are non-transient i.e. that exhibit long-term steady-
state behaviour (“steady-state” solutions) are referred to as equilibrium solutions [43] and are
denoted by sg(t). Attractors describe equilibrium solutions. The converse is not necessarily
true however. Consider (equilibrium) periodic solutions to the forced equation (3.1). As
discussed above, these are NT-periodic, such that s, (¢)=sg (z + NT ), and form closed loops

or cycles in state space. Like the static equilibria of unforced systems (section 3.3), these
periodic oscillations can be either stable or unstable. A periodic oscillation is said to be
asymptotically stable (or simply, stable) if trajectories starting from nearby initial conditions
converge towards the cycle. A stable periodic oscillation is a periodic attractor. Conversely,
an unstable periodic oscillation will repel trajectories from nearby initial conditions. Note
that, since this unstable periodic oscillation is a solution of equation (3.1), a trajectory
starting exactly at a point on the cycle will never leave it provided there is not the slightest
fluctuation in operating conditions. Such an oscillation clearly cannot be realised in practice:
even in the highly improbable case of getting conditions exactly on the cycle, the oscillation
cannot be maintained due to inevitable minor fluctuations in operating conditions. Likewise,
unstable periodic solutions cannot be calculated by time-marching, even in the highly
improbable cases of starting with initial conditions exactly on the cycle or getting there
through a stable manifold’. The reason for this is that the inevitable local integration error in

each time step introduces minute perturbations into the computed trajectory of s(t), thus

invariably driving it towards an attractor, which, by definition, is stable to minute
perturbations. As discussed in Chapters 1 and 2, periodic solution techniques using
analytical methods like harmonic balance (HB) or trigonometric collocation (TC) pre-assume
periodic solutions of given period. Hence, the resulting solutions need to be tested to
determine whether they represent stable or unstable periodic motion. It is noted in passing
that an alternative periodic solution technique not mentioned in Chapter 2 is to solve eq. (3.1)
as a two-point boundary value problem [16] rather than as an initial value problem.
However, the resulting periodic solutions still need to be tested for stability [16]. It is
customary to generate a batch of periodic solutions over a range of values of a system control
parameter and plot some property of the solutions (e.g. amplitude) versus the control
parameter to form a response curve of periodic solutions e.g. in rotating systems the control

parameter would be the rotational speed and the resulting plot called the speed response

! A stable manifold, if it exists, defines a certain set of initial conditions from which a point on an unstable cycle
can be reached [35].

20



curve of periodic solutions. The stability of each periodic solution on the response curve is
then analysed.

The following section deals with the issue of stability and bifurcation of periodic
solutions. A bifurcation is a qualitative change in the dynamics that occurs as a system
control parameter is changed. For example, in the following section it is shown that the onset

of instability of a periodic motion results in the three possible kinds of bifurcations.

3.2 STABILITY AND BIFURCATION OF PERIODIC SOLUTIONS

In this section the stability of a periodic solution of the forced system in eq. (3.1) with period
I' and fundamental frequency @ = 27/I rad/s is analysed. It is more convenient to work

with non-dimensional time 7 defined as 7 =@¢. The dynamical equations of the forced

system are then rewritten in the form

s'=0(s,7) (3.7)

7
where ( ) denotes differentiation with respect to T,

s:[s1 sn]r = L‘;] (FE form), or L?,] (modal form) (3.8)

and 0 6.7) =[e(s....5.,7) - @, (s,....5,,7) (3.9)

It should be noted that the elements of the vectors s and @ in egs. (3.8), (3.9) are generally

different from those of s and ¢ in egs. (3.3), (3.5). However, to economise on the use of

symbols, the same symbols s=[s1 sn]r and ¢ =] . q)n]T have been retained.
With this transformation of the independent variable, the (equilibrium) periodic solution of

period 27/ in t now has a period of 27 in 7, regardless of @ i.e. sg(t)=s; (T +27) and:
s, = (55,7) (3.10)
To test the stability of s, the evolution of a small perturbation x from s is considered:
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x(t)=s(t)-s4(7) (3.11)

Subtracting eq. (3.10) from eq. (3.7), expanding ¢ (S,T) into a Taylor series about s =s; and
retaining only terms that are linear in x=s-sg, the following linearised perturbation

equation is obtained:

x =Wtk (3.12)
99, 99,
3 os, os,
where, WE)=Wr+2r)=2% = : = (3.13)
08|y, 30, o0,
os, os,
= ~s=sg (1)

The theory developed from eq. (3.12) is called the linear stability theory [43]. Note that,
although the independent variable 7 disappears explicitly from the partial derivative
expressions of the nxn Jacobian matrix J@/ds, these expressions are evaluated at
s =s;(7), which is itself a periodic function of 7. Hence, W(r) must be periodic in 7,
period 27. Hence, eq. (3.12) is a system of ordinary linear homogeneous differential
equations with periodically varying coefficients. The study of the stability of the equilibrium
solution SE(T) has thus been reduced to the study of the stability of such a system of
equations, which can be conveniently done using Floquet theory [43, 44]. The coefficient
matrix W(z) for the general squeeze film damped rotor-dynamic model is derived in Chapter
5. In the following three sections the fundamentals of Floquet theory, the computation of the
Floquet transition matrix (governing stability), and the implications of instability (i.e.

bifurcations) are discussed.

3.2.1 Fundamentals of Floquet Theory [43, 44]

The system of equations (3.12) will have 7 linearly independent solutions %, (7),.......X, (7).

These can be collected into a fundamental matrix X(t):

X()=[%,z) ... %, (7) (3.14)
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If, in addition, X,(0)=[1 0 - o, x,0)=[0 1 - of, .., % (0)=[ - o 1T,
then X(r) is referred to as the principal fundamental matrix X, (t), which is unique. The

solution to eq. (3.12) that satisfies the initial conditions X(O) =X, is thus [44]:
x(t)=X, (1)x, (3.15)
In general neither X(7) nor X, (t) is periodic. The monodromy matrix G is defined as
G=X,(2n) (3.16)

If we define x, =x(k27), k=0,1,2,..., then it follows from eqs. (3.15), (3.16) and the fact

that W(t) is periodic with period 27 that
X, =Gx,,k=012,... (3.17)

For this reason, the monodromy matrix G is also referred to as the growth matrix {45, 46] or
the Floquet transition matrix [13]. Hence, the linear continuous-time system of eq. (3.12)
has been transformed to the linear discrete-time system of eq. (3.17). By substituting into eq.

(3.17) a trial solution of the form x, = A'e it is readily seen that A must be an eigenvalue of

G and e is an associated eigenvector. Hence, the solution to eq. (3.17) (which is the discrete

solution to eq. (3.12)) is of the general form

x, =Y che, k=012, (3.18)
i=1

where 4, (i=1...n) are the eigenvalues of G (also known as the Floquet multipliers), the e,
are corresponding eigenvectors and ¢, are arbitrary scalar constants. Hence, for the

asymptotic stability of the periodic solution sg (7) to eq. (3.1):

|A|<1,fori=1..n (3.19)
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3.2.2 Computation of the Monodromy Matrix
From the previous section, it can be seen that the stability test of a given periodic solution to
the dynamical equations (3.1) requires the knowledge of the associated monodromy matrix.

This section deals with the computation of G from the coefficient matrix W(’L’) of the

perturbation equation (3.12). Two methods are available for the computation of G, which
are referred to here as the “slow” and “fast” methods respectively.

The “slow” method is based on the definition of G given in the previous section, eq.
(3.16). Hence, this involves solving the perturbation equation (3.12) by a numerical

integration scheme (e.g. Runge-Kutta, ..... etc.) over the interval 7 =0 to 7 =27 for » initial
conditions %,(0)=[1 0 - o], %,(0)=fo 1 -~ o], .., x,(0)=[0 - 0 1], in
turn. The monodromy matrix G is then formed from the values of the resulting » solutions

at T=21:
G=[x0n) ... % (n) (3.20)

This method is extremely time consuming, which makes it impractical to test the stability of a
whole set of periodic solutions forming a response curve. This method was used by Chen et

al. [12] and Hahn and Chen [15].
Hsu [45, 46] developed a very fast approximate method for computing the monodromy

matrix, based on impulsive parametric excitation theory. This “fast” method was used by

Zhao et al. [13]. In this technique, the periodic interval [0,27] of the periodic matrix
function W(t) is divided into K equal segments AT . Let 7,, k=1...K, be the value of T at
the midpoint each segment. W(t) is replaced over [0, 27r] by a series of impulses of strength

W,AT where
W, =W(z,) (3.21)

It can be shown that G can be approximated by a product of matrix exponentials [45]:

G = eWrtTeWatt | Wbt Wile (3.22)
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The above product converges to the exact matrix G as K — . However, in all the

simulations presented in this thesis, K =200 gave highly accurate results.

3.2.3 Bifurcation of Periodic Solutions

From eq. (3.19), for the (equilibrium) periodic solution sg (r) to be stable, all the eigenvalues
of the associated monodromy matrix G must lie within a unit circle in the complex plane
centred at the origin. The stability is hence controlled by the eigenvalue of largest absolute
value (magnitude), known as the leading eigenvalue or leading Floquet multiplier, A,. This
eigenvalue is either real or one of a complex conjugate pair (2., A )2. If, as a system control
parameter is changed (e.g. the rotational speed €2 ), the leading eigenvalue A; escapes from
the circle, then sg (7) becomes unstable and a bifurcation occurs. As shown in Figure 3.1, the

leading eigenvalue has three possible escape routes and hence three kinds of bifurcation are
possible: (a) tangent bifurcation (escape along the positive real axis); (b) period-doubling
bifurcation (escape along the negative real axis); (c) secondary Hopf bifurcation
(simultaneous escape of two complex conjugate leading eigenvalues). These bifurcations are
explained in the following paragraphs with the aid of the Poincaré map. In what follows, the
sampling interval of the map is taken as the period of the equilibrium periodic solution

(period 27/@ = NT in the -domain and period 27 in the T -domain) rather than that of the

driving force (7 in the -domain), so that the cycle always appears as a single point on the

map, regardless of N. The evolution of the return points of the trajectory for an initial small

disturbance from an unstable equilibrium cycle is given by eq. (3.18) and if X, = x(k27z:) is
plotted rather than s(k27r), the point (0,0) on the two-dimensional Poincaré map will
correspond to the fixed point s, (k277) on the unstable equilibrium cycle.

Case (a): A, real and positive and |4, > 1:

From eq. (3.18)

X, =cAe, (3.23)

From eq. (3.23), since A, is real, consecutive return points on a Poincaré map will lie

approximately on a straight line of direction determined by the eigenvector e,. Since 4, >0,

2 . . . . . - .
“ Since G is a real matrix, any complex eigenvalues must occur in conjugate pairs.
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they will lie on the same side of the unstable equilibrium point (0,0) (at increasing distances

from it, since ]),l] >1). This illustrated in Figure 3.2(a), which plots the two elements of x,

against each other for 4, =1.1, ce, = [0.2 O.4]r. Hence, the perturbed trajectory tends to a
periodic motion of the same period as the unstable equilibrium cycle. If such a periodic
attractor exists in the vicinity, the return points eventually congregate at a single fixed point
at one end of the line as the trajectory settles down on the attractor. The onset of this type of
instability as one progresses along the response curve, marked by the escape of A, from the
unit circle along the positive real axis, is called a saddle-node bifurcation, tangent bifurcation,
or turning point bifurcation. This instability is normally associated with bistable regions of
the response curve (see Figure 2.1).

M| >1:

Case (b): A, real and negative,
Eq. (3.23) still applies and consecutive sampled points on a Poincaré map will approximately
lie on a straight line of direction determined by e,. However, since the leading multiplier

A, <0, consecutive return points flip on either side of the unstable equilibrium point (0,0) (at

increasing distances from it, since {/’tlt >1). This illustrated in Figure 3.2(b) for 4, =-1.1,

ce, = [0.2 04] (consecutive return points are indicated by crosses and circles). Hence,

the perturbed trajectory tends to a periodic motion of twice the period of the unstable
equilibrium cycle. If such a periodic attractor, having a fundamental frequency @/2 rad/s,
exists in the vicinity, the return points eventually congregate at two fixed points, on either
side of the unstable equilibrium point. The onset of this type of instability as one progresses
along the response curve, marked by the escape of A, from the unit circle along the negative

real axis, is called a period-doubling bifurcation or a flip bifurcation.

Case (c): A, complex, |A,|=|%|>1:

From eq. (3.18)
x, =c, e, +c,(1 fer (3.24)

Now A, =|4,|e”, hence, AF =|4,|"e™ =|4,|" {cos k¥ + jsin k). Just as for ordinary linear

homogeneous differential equations with constant coefficients [44], it can be shown that x,

can be expressed as x, =d, Re{l’,‘e,}ﬂ- d, Im{zl’,‘el} where d,, d, denote arbitrary scalar
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constants and Re{ }Im{ } denote the real and imaginary parts of { } respectively. Hence

X, is of the form
x, =|A,]"{d, coskd+d, sinks} (3.25)

where d,, d, are real vectors and ¢ is the phase angle of A4, (0<¥<2x). Eq. (3.25)
means that the return points will spiral out of the unstable equilibrium point (0,0). As an

example, the two elements of x, are plotted against each other for }/l,]z].l,

d, =[02 04[], d,=[04 02] in Figures 3.3(a-d). It is seen that, as the return points

spiral out around the origin, consecutive points hop from one spiral branch to the next, and
that the number of branches is equal to &, where ¥ = (122 / k, )Zﬂ , ky, k, being non-negative

integers with lgl > IEZ and having no common factor. Consecutive points are indicated by
crosses and circles in Figure 3.3(b), by crosses, circles and squares in Figure 3.3(c), and by
crosses, circles, squares and diamonds in Figure 3.3(d). This indicates that the perturbed

trajectory tends to a motion that contains two fundamental frequencies: the original one at @

rad/s and a new one that is approximately @3 / E, )75 rad/s where 123 is some positive integer

that has no factor in common with l;. If such a 2-frequency quasi-periodic attractor exists in
the vicinity, the return points stop diverging and settle down, densely filling a closed curve
around the origin. The reason for this curve or “drift ring” is that the two fundamental
frequencies are in general incommensurate (i.e. their ratio is an irrational number) and hence
the steady motion is aperiodic (more specifically, “quasi-periodic”), with the return points
never quite coinciding with each other. The onset of this type of instability as one progresses
along the response curve, marked by the simultaneous escape from the unit circle of two
complex conjugate leading eigenvalues, is called a secondary Hopf bifurcation. The reason
for this is that the birth of the 2-frequency quasi-periodic attractor from the periodic motion is
analogous to the birth of a periodic attractor from the static equilibrium point of an unforced

system (primary Hopf bifurcation). Note that, in the exceptional case that ¢ is exactly equal

to (Ez / 121 )27r the second fundamental frequency is exactly (123 / izl)ﬂ and hence
commensurate with the first. In this case (see Figures 3.4(a,b)), the El spiral branches

~—

straighten out and when steady conditions are reached, the return points congregate at k,
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fixed points around the origin. In this exceptional case, the generally quasi-periodic 2-
frequency motion is said to be locked into periodic motion of fundamental frequency GT/ l;l .
This “frequency-locking” is explained in more detail in section 3.4. Notice that the cases
when ¢ is exactly equal to (0/1)2z and (I/2)27 correspond to the previous cases (a) and (b)

respectively (Figures 3.2(a,b)).
From the above, the three types of bifurcation points on the response curve of periodic
solutions are defined at the onser of instability and classified according to the escape route of

the leading Floquet multiplier from the unit circle. However, for a general unstable periodic
solution, the position of the corresponding 4, on the complex plane is not by itself a definite

indicator of the type of attractor on which a disturbance from it will settle down, especially if
the unstable solution is well past the bifurcation point. The reason for this is that Floquet

theory applies for small linearised perturbations about sp: hence, apart from definitely
indicating that s; is unstable, eq. (3.18) can only indicate the type of motion that the
disturbed trajectory fends to in the initial stages of the perturbation when x, is small, and

gives no assurance that it will ultimately settle down to that motion. The attractor can only

be positively identified by time-marching from unstable equilibrium initial conditions.

3.3 NOTE ON UNFORCED SYSTEMS

Unforced systems were defined in section 3.1 as systems that are not subjected to time-
varying external excitation. One feature that distinguishes the unforced problem in eq. (3.2)
from the forced problem of eq. (3.1) is that an additional type of equilibrium solution (i.e.
steady-state solution) is possible — that describing static equilibrium. The static equilibrium
states are defined by time-independent solutions to eq. (3.2), obtained by setting the right

hand side of eq. (3.2) to zero and solving the resulting algebraic equation
o(s)=0 (3.26)

Each solution s=s., to eq. (3.26) corresponds to a state of static equilibrium in the
“Newtonian” sense (i.e. zero velocities and accelerations). The stability of each solution Sgg
is tested by considering the evolution of small perturbations Xg =S —Sgg, and as in section

3.2, this results in an equation of the form
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:
% =22 x, = Ax, (3.27)

where A :Bcp/as]m . However, the partial derivatives in this nxn Jacobian matrix are
=SES

now evaluated at s =sy¢, hence A will be constant with respect to time. Hence, eq. (3.27) is

a system of ordinary linear homogeneous differential equations with constant coefficients, the

stability of which being governed directly by the eigenvalues of A. s, is unstable when the

real part of one or more eigenvalues is positive [35]. The perturbation equations (3.27)
define the motion of the unforced system for small linearised displacements about the static
equilibrium position (i.e. the usual unforced “linear system” considered in texts on linear
dynamics e.g. [47, 48]). For oscillatory motion, the eigenvalues of A will all be complex,

occurring in conjugate pairs ¢. £ jv., i=1...n/2, where the v.’s are the damped natural
fand J g p i .] i i p

frequencies [47, 48]. Hence, as a system parameter is changed (e.g. the rotational speed (2 ),
the onset of instability is marked by a pair of purely imaginary conjugate eigenvalues, which
defines a primary Hopf bifurcation [16]. This bifurcation marks the birth of limit cycle
behaviour — “self-excited vibration”. Once such periodic attractors have developed, the
unforced system can proceed to bifurcate in one of the three ways described in section 3.2
(i.e. tangent, flip, or secondary Hopf bifurcation). In rotor-dynamics, journal bearings are
known to induce self-excited vibration [48]. Since some degree of unbalance will always be
present in practical rotating systems, the self-excited limit cycle will combine with the 7-
periodic response from the unbalance force to form (in general) quasi-periodic motion.
Hence, under low levels of unbalance excitation, a primary Hopf bifurcation of the unforced
system at some value of the system control parameter g manifests itself as a secondary Hopf
bifurcation of forced T-periodic oscillations at the same value of f. It is shown in Chapter
4, section 4.7, that squeeze film dampers (SFDs) cannot introduce self-excited vibration and
so, the unforced problem need not be considered in such applications. For SFDs therefore,
the existence of instability of forced T-periodic solutions relates directly to the external
excitation (unbalance force), as observed by Li and Taylor [37]. Certain rotor-dynamicists,
unaware of the general concept of stability in non-linear dynamics, have tended to associate

the concept of stability exclusively to eq. (3.27) [49].
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3.4 QUASI-PERIODICITY

K-frequency motion is a mixture of K periodic motions with respective periods 7,, r=1...K
and corresponding fundamental frequencies (2, =27/T, . The motion is said to be “K-
frequency quasi-periodic” if its K fundamental frequencies are “incommensurate” or
“rationally independent”. This means that none of the frequencies 2, can be expressed as a

linear combination of the others using coefficients that are rational numbers i.e. the relation
k2 +...+k, 2, =0 (3.28)

does not hold for any set of integers El .k x except for the trivial solution El =..=k «=0.

A simple form of K-frequency quasi-periodic motion would be the sum of the K periodic

motions, where each element of s(z)= [sl t) - s, (t)]r would be expressed as:

5.(t)= i e, & .+ ifckejm”’ (3.29)

fr=—co k=0

Each periodic motion in (3.29) has been expressed as a complex Fourier series [35]. On

taking the Fourier transform of (3.29), it is seen that the frequency spectrum consists of
discrete spikes at ]kQ] !,...,]kQ K] for k integer. However, in general, the mixture of the K
periodic motions goes beyond mere addition and in the general form of K-frequency quasi-
periodic motion, each element of s(t)= [sl t) - s, (t)]T can be expressed as a K-tuple

complex Fourier series [35]:

s, (t): i l_ckhmkxej(k,(zl+..,+k,(:2,< )3 (3.30)

kyoo kg oo

The special case of eq. (3.29) can be obtained from the general form in (3.30) by retaining

only the coefficients ,¢, o s Cox0..05 =<+ . .. oz, and setting the rest to zero. The
Fourier transform of (3.30) reveals that the frequency spectrum consists of discrete spikes at

combination (“sum and difference”) frequencies [k, 02, +...+ky Q.| where k, ...k, are
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integers (positive, negative, or zero). Of course, each of these spikes is modulated by the

corresponding amplitude, ;c, , . Consider the case of 2-frequency quasi-periodic motion

s; (t) = i ickhkzei(kxgﬁ"kzﬂz ) (3.31)

Ky ky=moe

Hence, the spectrum consists of spikes at ]k1Q1+k2Q2}. If Q, and £2, become
commensurate (i.e. rationally related), then £2, / 02, :122 / El where lgl and Ez are positive

integers with no common factor. Then the frequency spikes will occur at |k]1€1 + kzizzth] / /‘;1

and hence become integer multiples of (2, / k, . Hence, the 2-frequency motion is said to be

locked into periodic motion of fundamental frequency £2, / l;l . In fact, periodic motion is

merely a special case of the K-frequency motion defined by eq. (3.30) that occurs when the
generally incommensurate K fundamental frequencies become all commensurate with each

other. Notice, that for both cases €2, €2, incommensurate and £2,, £2, commensurate, the

frequency spectrum is discrete. Ineq. (3.31), by writing 8, =Q ¢, r=1,2:

5= D) ey e 0k (332)

k. kym—oa

In eq. (3.32), s, () is periodic in each of 6, and 6, with period 27 . Hence, regardless of the

size n of s(t), each of its elements is fully specified by two angle variables 6,, 0,.
Specification of two angles can be regarded geometrically as specifying a point on a two-
dimensional toroidal surface (“2-torus”), as in Figure 3.5. In full state space, the attractor
defined by eq. (3.32) is equivalent to a 2-torus (i.e. a distorted version of Figure 3.5) [35].
Since £2, and £2, are incommensurate, as ¢ progresses, the trajectory of s(t) never closes in
on itself and will eventually cover the whole surface of the 2-torus i.e. cover every possible
value of 6,, 6,. The reason for this type of aperiodic motion is explained as follows. If s(z)
is sampled at the period of 2, ie. t, =2, +kT,, k=0,1,..., then 6, =1, =z, +k27 .

Hence, the times ¢, are the instances when the trajectory s(z) passes the cross-section of the

2-torus in Figure 3.5 at 8, = £2,7,. Substituting for 7, into eq. (3.32):
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oo

s0)= Y (e, 00 ikt (3.33)

Ky doy=moo
where 0, = 2,1, = Q1) +k27(2,/Q,), k=0,1,... (3.34)

As k progresses, the sampled vector s(tk) will then trace a closed curve, densely filled with
drifting return points since 8,, covers all geometrically distinct angle values of 8, if the
ratio ,/€2, in eq. (3.34) is irrational. In the special case where £, and £2, are
commensurate, £2, / Q= l;z / 121 (as previously explained) and eq. (3.34) reduces to
0,, =Q,t, +k27r(l€2 / El ) Hence, as k progresses, 8,, covers only El geometrically distinct
angle values of 0, and the drift ring of s(z, ) degenerates into l;l distinct points. In this case,
the trajectory of s(t) can still be considered to ride on the 2-torus but it does not cover its
entire surface. Instead, it closes in on itself (forms a cycle) since it is locked into llel—

periodic motion (fundamental frequency €2, / k). In general, an attractor describing K-
frequency quasi-periodic motion is said to define a K-dimensional torus (“K-torus”) i.e. a K-
dimensional subspace in which it is possible to specify uniquely any point by the values of K
independent angle variables. Moreover, by sampling at a fixed interval equal to the period of

one of the fundamental frequencies, the return points s(z,) define a torus of reduced

dimension K —1. Since one of the fundamental frequencies is normally the excitation

frequency Q =2x/T, 2-frequency quasi-periodic motion manifests itself as a closed curve
on a Poincaré map sampled at fixed intervals ¢, =t,+47, k=0,1,.... However, K-

frequency quasi-periodic motion with K > 3 is hard to identify using this method.
Combination frequencies are now discussed. The frequency spectrum of the quasi-
periodic response of a non-linear system is characterised by linear combinations of its
fundamental frequencies, as in eq. (3.30). The simple form of quasi-periodic motion in eq.
(3.29) does not contain combination frequencies in its frequency spectrum. When inputs of
this form are fed into a linear system, the steady-state output (response) will be of the same
form. However, when inputs of the simple form in (3.29) are fed into a non-linear system,
the steady-state output may be of the form in (3.30). This is illustrated schematically in

Figure 3.6 for a 2-frequency input of the simple form (3.29) with one harmonic of each
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fundamental frequency: y,(z)= A, sin(Q,z+ B, )+ A, sin(Q,7 + ¥,) where ¥,, ¥, are phase
angles. In Chapter 2, two examples were quoted from the literature where the phenomenon
illustrated in Figure 3.6(b) was observed experimentally: (a) Holmes and Dede [31], in which
0, and £2, were the rotational speeds of two unbalanced rotors coupled non-linearly
through a SFD (the input y, (t) being the sum of the two unbalance forces); (b) Ehrich [39],
in which the input vy, () was a displacement with one frequency, £2,, synchronous with the
rotor rotation (attributed to the unbalance) and the other, £2,, asynchronous, attributed to
some non-linear effect. Both frequencies were estimated by Ehrich from the frequency
spectrum of the measured output. The non-linear operator applied by Ehrich to y, (r) was a

truncation function due to the rotor operating eccentrically in the bearing clearance:

Y (l‘), Vi (Z)—>~ Ymin
t)= (3.35)
yO() {ymin’ yl(t)<ymin

where y_. is the truncation level. The application of this non-linear operator yielded
frequency spikes at k,.Q, +k,82,, k,, k, integers, as observed experimentally. Note that
Ehrich took £2,/0Q, =15/17 i.e. the two frequencies were commensurate. Hence, both input
and output motions were actually periodic and the combination frequencies generated by the

truncation reduced to integer multiples of £2,/17 .

3.5 CHAOS

Chaotic motion is an aperiodic steady-state motion that is not quasi-periodic. The motion on
a chaotic attractor displays exponentially sensitive dependence on initial conditions: this
means that any two trajectories starting from nearby points on the attractor diverge
exponentially in one or more directions while still remaining on the attractor, which is
bounded. From geometric considerations, the described motion of adjacent trajectories can
only be possible if they are free to roam in a state space of dimension of at least three [34].
Hence, if n is the size of s, for the forced system, eq. (3.1), n+123 = n =2, whereas for
the unforced system, eq. (3.2), n>3. The exponential divergence of nearby trajectories on
an attractor is measured by Lyaponov exponents [50]. If the spectrum of Lyaponov

exponents of an attractor contains at least one that is positive, then the attractor is defined as
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chaotic. Chaotic attractors are strange attractors [35, 50]. A strange attractor is a fractal i.e.
an object of fractional dimension. On the other hand, K-frequency quasi-periodic attractors
define K-tori and hence have an integer dimension of K. This latter statement is also true for
K =1,0°. The return points on the Poincaré map of a chaotic attractor exhibit the fractal
quality of “self-similarity” [16]. This means that a cluster of points tends to repeat itself on
finer and finer scales upon increasing magnification. However, distinguishing chaotic
motion from K-frequency quasi-periodic motion with K >3 is not so straightforward using
the Poincaré map. An alternative method to identify chaotic motion is to examine the
frequency spectrum [35, 38]. Chaotic motion is characterised by a continuous component in
the frequency spectrum with off-lifting spikes at the dominant frequencies. For experimental
data, this continuum is well above the noise level [35]. However, as observed in [38], for
systems having many degrees of freedom, the spectrum sometimes appears continuous
because so many frequencies are involved in the response. The leakage effect from
frequency spikes at close proximity results in a fake continuum in the spectrum. Indeed, this
may also be a problem with quasi-periodic motion, which should otherwise have a discrete
frequency spectrum. The only definite way of proving chaos is by computing the Lyapunov
exponents. This can be done by two alternative methods [50]: (a) direct from the differential

equations of motion (3.1) or (3.2); (b) from a time history of one dynamical variable s, (t) of

s. Method (a) is highly impractical. Method (b) requires large amounts of very accurate
data, and the state space must be of low dimension. This method is the subject of intensive
research, as evidenced by various alternative methods, each claiming to introduce further
improvements [51]. For this reason, the computation of Lyaponov exponents is outside the
scope of this thesis. In the author’s opinion, the formal proof of chaotic motion is a highly
academic issue. Moreover, as shall be seen in the following discussion, K-frequency quasi-
periodic motion is unlikely to be stable for K > 3, anyway.

Routes to chaos are now discussed. Various routes to chaos are known to non-linear
dynamicists [16, 34, 38] e.g. via successive period-doubling bifurcations, via quasi-
periodicity. The results presented in this thesis indicate that, for the cases studied, it is the
latter route that is relevant. It should be emphasised that quasi-periodicity is a potential route
to chaos and does not necessarily lead to it. 2-frequency quasi-periodicity can lead to chaos

in two possible ways: (a) bifurcation of the 2-torus [16], (b) frequency-locking [34]. The

* A 1-torus defines periodic motion (i.e. a cycle in state space) and a O-torus defines a static equilibrium state of
an unforced system (i.e. a point in state space).
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scenarios (a) and (b) are likely to lead to chaos, but not necessarily so [34]. Route (a) is
called the Newhouse-Ruelle-Takens route. [16] states that this theory is supported by both
theoretical and experimental results and this theory is also credited in [34, 38]. According to
this theory, should a system parameter be changed such that a tertiary Hopf bifurcation
occurs (i.e. the addition of a third fundamental frequency to the existing two), the resulting 3-
torus is most likely to be unstable: a small perturbation of the motion is likely to destroy the
motion on the torus and lead to chaos and a strange attractor. Hence, in practice, only two
fundamental frequencies are apparent before chaos sets in: when the third fundamental
frequency is about to appear, chaos is more likely than bifurcation into a 3-torus. However,
Ott [35] disputes the generality of this scenario and cites the results of some numerical
experiments in which, below a critical level of non-linearity, 3-frequency quasi-periodic
motion can be stable. Route (b) is based on the “sine-circle map” [34], which models the
interaction between two non-linear voltage oscillators. According to this theory, given 2-

frequency quasi-periodic motion with frequencies €2, and (2, in a non-linear system of fixed
non-linearity, regions of quasi-periodicity (£2,/£2, irrational) alternate with regions of
frequency-locking (£2,/€2, rational) over the operating range of the excitation frequency
£,. As the level of non-linearity is increased, the range of the control parameter (2, over
which the ratio £2,/€Q, is locked into any given rational number gets wider and, above some

critical level of non-linearity, chaos becomes likely. In the numerical simulations presented
in this thesis, once the destruction of the 2-torus is evident from the Poincaré map, no attempt
is made to formally investigate the resulting motion for chaos. Consequently, the results are

not formally analysed for routes (a) or (b).

3.6 NOTE ON THE DYNAMICS OF NUMERICS

When egs. (3.1) or (3.2) are solved by time-marching, a numerical integration technique is
used. In general, this technique is a “7 -step method” which means that the approximation

s, for s(t,) is obtained from the approximations s, ;...s,_, for s(¢) at 7 previous times

t .t,_, e.g. for the commonly used 1-step methods, which are self-starting for given

k-n **

initial conditions ¢, s, :

s, =F{At,t, .8, } (3.36)
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where Ar=1, -1, is the step size and F an operator, depending on the type of 1l-step

integration technique chosen (e.g. 4™ order Runge-Kutta, trapezoidal integration, .... etc.).

Hence, numerical integration involves the approximation of the original continuous-time

system, eq. (3.1) or (3.2), by a discrete-time system (or “map”), like eq. (3.36). In general,

the map in eq. (3.36) will have its own peculiar dynamics, and in particular, its own stability

characteristics, which are dependent on both the step size Ar and the type of operator F [52].

The stability of steady-state solutions to the map in eq. (3.36) is referred to as “numerical

stability”. Of course, a good integration scheme should ensure that the map in eq. (3.36)

faithfully reproduces the dynamics of the original continuous-time system in egs. (3.1) or

(3.2) and not introduce numerical artefacts into the results (e.g. spurious bifurcations).

Hence, the following standard precautions are taken in this thesis:

(1) Automatic step size adjustment in each step to ensure that the computed estimate of the
approximation error over the step (“local integration error”) is within a specified
tolerance.

(2) Appropriate choice of integration technique, based on the type of equations to be
integrated (e.g. as mentioned in Chapter 2, Runge-Kutta methods are not suitable for stiff
systems of equations).

The study of the stability characteristics of numerical integration techniques is referred to as

the “dynamics of numerics” in [52] and is the province of mathematicians rather than

engineering researchers. The precautions (1) and (2) above ensure that numerical stability is
not an issue in this thesis and the term “stability” is taken exclusively to mean the stability of

equilibrium solutions of the physical, continuous-time system.

3.7 CONCLUSION

In this chapter, the general concepts of non-linear dynamics, relevant to the subject of this
thesis, have been elucidated. Special emphasis was placed on the stability and bifurcation of
equilibrium periodic oscillations of forced systems, based on Floquet theory. Quasi-
periodicity and the generation of combination frequencies were discussed in some detail.
Chaos was briefly discussed. Additionally, short notes on the stability of the static equilibria

of unforced systems and the numerical stability of time-marching techniques were given.
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Figure 3.5: 2-torus representation of 2-frequency quasi-periodic motion
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Figure 3.6: Contrast between linear and non-linear systems for a 2-frequency input
(one harmonic of each fundamental in input)
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4 SQUEEZE FILM DAMPER MODEL

4.1 INTRODUCTION

This chapter gives an outline of the model used for the estimation of the forces exerted by the
non-linear element of the rotor-dynamic system i.e. the squeeze film damper (SFD). This
damper is a non-linear element since its forces are non-linear functions of the relative
displacements and velocities across it. In this introduction, the basic modelling assumptions
are stated and the fundamental expressions presented. The short unsealed damper is then
considered. The SFD modelling is illustrated for the simple case of a symmetrical rigid rotor
on identical unsupported SEFDs in rigidly mounted housings. In this thesis, unless otherwise
stated, all pressures are gauge pressures. Moreover, in line with standard SFD design, the
rolling-element bearing of the SFD journal assembly (Figure 1.1) is taken to be radially rigid
with respect to the oil film.

Schematics of the cross-section of a SFD in the axial (xz oryz) plane are shown in
Figures 4.1(a,b). In each case, the SFD is supplied by oil through holes symmetrically placed
around a central circumferential groove. The one in Figure 4.1(a) is unsealed at its ends, and
the one in Figure 4.1(b) is provided with end-plates, as in Figure 1.1. These end-plates can
provide a degree of sealing by partially restricting the oil flow. This sealing is used to
increase the damping, and the degree of sealing is controlled by the end-plate gap d,,,. In
cases where the end-plates are required to prevent the journal from rotating (as in Figure 1.1),
and for axial location of the journal (Chapter 8), the unsealed condition of Figure 4.1(a) is
achieved by shimming the end-plates of Figure 4.1(b) such that the end-plate gap d,,, is at
least of the order of the radial clearance ¢ [53]. In this thesis, the SFD is modelled as
comprising two independent lands supplied by oil at constant pressure p, from a deep

groove of depth d This “two-land model” is claimed to be valid provided [54]

groove *

Je>9 4.1)

d groove
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This condition is satisfied for the SFDs used in this thesis. It is further assumed that the lands
are of equal length L, as in Figure 4.1. Figure 4.2 shows the transverse cross-section of the
SFD. The analysis of the pressure distribution within a dynamically loaded SFD is identical
to that of dynamically loaded circular bore hydrodynamic journal bearings [48] except that in
the latter case the journal rotates integrally with the shaft. Hence, with reference to Figures
4.1 and 4.2, the Reynolds laminar lubrication equation for each land of the SFD, wherein the

journal is prevented from rotating, is given by [53]

1 0|, 50p| J [, s0p . .
— === =12 .
FE &9{ 99}+3z{ c?z} ne(é cos6 +eyrsin) (4.2)
where h=c(l+¢&cos0) (4.3)

is the oil film thickness. € =e/c is the non-dimensional eccentricity of the journal centre J
from the bearing housing centre B and y is the attitude angle. R is the bearing housing bore

radius. Among other things [48, 55], the Reynolds equation (4.2) assumes no fluid inertia, an

incompressible fluid (i.e. density independent of pressure) and constant viscosity 77. Eq.
(4.2) can be solved for given boundary conditions to obtain the pressure distribution p(6,z)

at any instant in time. This solution depends on whether the damper is unsealed or sealed.

The instantaneous radial and tangential squeeze film forces Q., O, respectively, acting on
the journal (Figure 4.2), are obtained by integrating the pressure distribution p(6,z) after

truncating it below a minimum pressure at which the oil film is assumed to cavitate (i.e.

rupture due to the formation of bubbles):

Lj2 p2r
f 'f p,(6,z)cos6 d8 dz O, ——ZRJ‘L/ZJ D, (6,z)sin@ d dz  (4.4ab)

L/2J0

where the factor 2 accounts for the two lands and the truncated pressure distribution p, (6, Z)

1s defined as

(9,Z>: p(Q,Z) ] p(@,Z)> pc (45)
p. . pl6.2)<p,
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The film cavitation can be either vaporous or gaseous [55]. The former involves oil
vaporisation together with the release of dissolved gases. The latter involves ambient air
entering the oil film.

Since fluid inertia is neglected, the Reynolds equation (4.2) still applies when B is
moving (Figure 4.2). The SFD forces are thus (non-linear) functions of the relative
displacements and velocities across the damper. Let (X,,Y,) and (X,,Y,) be absolute
Cartesian displacements of J and B respectively (i.e. the positions of J and B are measured
from some fixed point in the xy plane of the SFD). Referring to Figure 4.2, the squeeze film

forces ., O, in the x, y directions respectively on the journal are given by resolving the

radial and tangential forces Q,, O, :

Qx = Qx ( rel ? Yrel > Xrel ? Yre! ): __{QR (S’S’W)Siny/ + QT (e’é’l[/)cosw} (463)
Qy = Qy (erel ’ Yrel ’ Xrel ? Yrel ): QR (S,S,W)COSI// - QT (g’é’ W)Slnl// (46b>

where X, =X,-X,, Y, =Y,-Y,, X, =X,-X,, szY,—YB are the Cartesian

relative displacements and velocities across the damper and the conversion to the relative

polar coordinates and their time derivatives is achieved through the relations:

e=AX2 +Y2), e=e/c, &= —;C-(X,X, +Y,7,,) (4.7a,b,c)

re,

Sinl)(/: Xre[/e’ COSW:_Yrel/e’ W:J{(Xrely ! _Yreerel) (4'7d’e’f)
e

Additionally, since fluid inertia is neglected, the forces on the bearing housing are —Q,,

_Qy_
Expressions for the (untruncated) pressure distribution p(6,z) (e.g. that given in the

following section for the short unsealed SFD, eq. (4.8)) show that the SFD forces are zero

when there is no relative vibration across the damper ie. &, ¥ =0, or equivalently,

Xrel :Y

rel

=0. This situation is in contrast to hydrodynamic journal bearings [48], in which
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the fluid forces are of the form Qm (X s Yo X ,Y,e,,Q) where 2 is the rotational speed,

Y,,0,0,2)#0 unless 2 =0.

rel ?

and Qm (X

4.2 SHORT UNSEALED DAMPER

If the damper is unsealed and axially short (L/ (2R)£ 0.25 [56)]), the short bearing
approximation of the Reynolds equation applies. In this approximation, it is assumed that the
pressure gradient in the circumferential (6 ) direction is negligible relative to that in the axial
(z) direction (i.e. dp/dz >>dp/d0) so that the first term on the left hand side of eq. (4.2) can
be neglected. Integration of the resulting equation with respect to z and application of the
boundary conditions p=0 at z=—L/2, p=p; at z=L/2 (see Figure 4.1(a)) yields the

short bearing solution for the unsealed damper as

67 {el/'lsin9+écose}( ) Lz] (Z 1)
0,z)=— F—— |+ Dl —+— (4.8)
pl6.2)= Mrecoso) 4 )7 P2\172

Three theories regarding the value of the cavitation pressure p, in eq. (4.5), that lead to

different expressions for the radial and tangential SFD forces in egs. (4.4), are considered.

The “27z film” (or “full film”) theory assumes that no cavitation occurs. Hence, in eq.

(4.5), p, =—ec and, regardless of the value of the supply pressure p,, egs. (4.4) reduce to

the closed form expressions [57]:

_2nRE (1+2¢7 )
5

QR,ZTL‘ - Cz QT,Z?Z = 5 3 el/j (4.9a,b)

(1-e2) (1-g2)

The “z film” (or “half film”) theory assumes that (a) p, =0, (b) cavitation occurs at
atmospheric pressure (i.e. p, =0 in eq. (4.5)). From eq. (4.8) it can be deduced that

@, Z1py=o =20 from 6 =0, to 8 =0, =6, +x, where 6, is located by the equations

£ v (4.10a,b)

sinf, = —————— and cosf, = —————
C Jew) e L Jew) e
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Hence the use of the term “7z film” (or “half film”). With the two assumptions (a) and (b),

eqs. (4.4) then reduce to the closed form expressions [57]:

2nRC . . 2nRL’ . .
Orz :7*{8181//+g28} Or.= ncz {g381//+g18} (4.11a,b)

where
. 26c0s° 6, 2 . £Sin91{3:~(2——532)0052 291}+ (1+2825) Y i
(1-€cos’6,) (1-€%)"(1- & cos? 6,) (1-£%)
; _ 2 2 2
.. zesmel{l 22cos 0, +¢ cozs 81}+ 1 g (4.126.)
(lne )(1——82c05261) (1_82)5
where o= —7£+ arctan —8—%—19—11 (4.12e)
(1-¢%)

The full film and half film theories are classical extremes and in reality cavitation occurs

at some subatmospheric pressure p, <0 [57]. Moreover, the zero supply pressure

assumption of the half film theory is unrealistic. Hence, the numerical evaluation of the

double integrals of egs. (4.4) cannot be avoided. However, for the present case of the short

unsealed damper, where p(6,z) is given by eq. (4.8), it is possible to derive the following
simpler expressions from egs. (4.4), as follows. Since p, <0 and p(@, z)=0 from 6 =6, to
6=0,=0 +r,eq.(4.4a) for O, can be written as:

/2

QR = "ZRJ-

-1/2

6> Lj2 pOo+7
Ll p6,z)cosO d dz—ZRL/ZLi p,(0,z)cos® dO dz  (4.13)

Substituting eq. (4.8) for p(6,z) in the first integral of eq. (4.13), the expression for O

becomes:
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. L2 pB,+7
Or = 0O +2RpsLsing, —ZRJ_L/ZL p,(6,z)cos8 dé dz (4.142)

.. L2 (0,47
Similarly, Or =0y, —2Rp;Lcos6, - 2R o [ p.6.2)sin6 db dz (4.14b)

In eqgs. (4.14) Ok ., O, are the half film forces given by eqs. (4.11) and 6, =6, +7 with 6,
determined by eqs. (4.10). In this thesis, use of eqs. (4.14) instead of egs. (4.4) was found to

cut the computation time by almost half.
The general cavitation model of eq. (4.5) allows for the possibility of different values of

the cavitation pressure p,., depending on the operating conditions (e.g. unbalance force

magnitude, supply pressure, .... etc.). Hence, the cavitation model of eq. (4.5) can be referred

to as the “variable film extent” model. The value of p, under particular operating conditions

can be estimated experimentally from pressure probe recordings, as in [8, 58]. In the absence

of experimental values, a fixed value for p, equal to —101.325x10° Pa (absolute zero

pressure) is taken. This is reasonable since, in most cases, this value of pressure is very close
to the vapour pressure of the oil (i.e. the pressure at which it will spontaneously change phase
from liquid to gas). Feng and Hahn [59], working on a simple rigid rotor rig with a

centralised SFD found that better agreement between measurements and theoretical

predictions was achieved when p, was taken as —101.325x10° Pa rather than 0 (i.e.

atmospheric pressure).

4.3 NOTE ON SEALED DAMPERS

In the case of a sealed damper, d,,, <c in Figure 4.1(b), so that the axial flow is partially

restricted by the end-plates. An expression for the pressure distribution p(6,z) of such a

two-land sealed damper was proposed in [53]. This is not presented in this thesis since it was
not used the research applications presented, but it can be found in [54]. For sealed dampers,

the SFD forces are computed by numerical integration from egs. (4.4) with p_ in eq. (4.5)

taken as —101.325x 10> Pa, in the absence of experimentally determined values.
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4.4 OTHER CONSIDERATIONS

In this section, factors not taken into account in the above theory are discussed. These factors

are (a) tensile stresses in the oil film; (b) compressibility of the fluid; (c) fluid inertia.
The use of p, =—101.325x10° Pa (zero absolute) in the cavitation model of eq. (4.5)

excludes the possibility of tensile stresses in the oil film. Feng and Hahn [55] cite some
published works where liquid was found to be able to withstand tensile stresses in dynamic
tests under controlled laboratory conditions. However, these authors also cite various
conditions which reduce the likelihood of this phenomenon, including (i) badly finished solid
surfaces; (ii) suspended solid particles in the liquid; (iii) large amounts of gas dissolved in the
liquid; (iv) low viscosity of the liquid. Experimental recordings from a pressure probe
located at the bottom of an unsupported SFD in [8, 58] revealed a tension spike immediately
followed by recovery to absolute zero pressure. It was concluded that the oil film at this
location momentarily supported tension prior to rupturing. In these two works, predictions
were obtained by using a value of p, in eq. (4.5) below —101.325x10° Pa that was an
average taking into account the tension spike. However, in [58], it is stated that the area of

the spike is so small that the value of p, might as well be taken as —101.325% 10> Pa.

The cavitation model of eq. (4.5), assumes that the oil film fully reconstitutes itself at a

given location where it is ruptured when the instantaneous untruncated pressure p6,z) at
that location is restored to a value above p,. Feng and Hahn [56, 59] referred to such a SFD

model as an “incompressible model”. In that work, they stated that experimental
observations on unpressurised squeeze film dampers indicate that cavitation bubbles, once
formed, do not completely redissolve upon restoration of the super-cavitation pressure.
Instead, one is left with a spongy compressible fluid. In [56], they assumed this fluid to be a
homogeneous gas-liquid mixture and proceeded to solve the compressible form of the
Reynolds equation in which density and viscosity were a function of pressure. This solution
procedure is too involved to incorporate in practical rotor-dynamic solution techniques.
However, in [56], theoretical results for a simple rigid rotor with a centralised SFD showed

that the compressible model results gave very good agreement with the incompressible model

results when p, was taken as —101.325x10° Pa in the latter model. Moreover, these

findings were confirmed by experiments in [59], as previously mentioned.
Fluid inertia effects are neglected in the SFD model used in this thesis. These effects

were investigated by San Andres and Vance [60] for the simple case of a centralised SFD in a
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fixed bearing housing. The uncavitated case was considered in [60] since inertia effects were
considered to be less in a cavitated SFD. That work showed that for small amplitude
oscillations, the fluid inertia effect of a short unsealed SFD was equivalent to the following

mass addition to the journal:
M 4 =2C,pR(/c) (4.15)

where the factor 2 accounts for the two lands, p is the oil density and the constant C, is

determined from graphs in [60], according to the regime of the gap Reynolds number Re i.e.
Re small (<<1), Remoderate, Relarge (>>1). Re indicates the relative magnitudes of the

inertia and viscous forces and is calculated from the formula [60]:
Re = pQc? n (4.16)

where (2 rad/s is the rotational speed of the shaft. No fluid inertia compensation is attempted
in this thesis and eqgs. (4.15), (4.16) are used merely to monitor fluid inertia effects, in order

to ascertain that they are negligible.

4.5 SFD FORCE COMPUTATION

In order to compute the squeeze film forces Q,, O, in egs. (4.4a,b) by the general cavitation
model of eq. (4.5), a function was written in MATLAB®. For a given value of p,_, this
function generates a 2x#7 matrix of radial (row 1) and tangential (row 2) forces for time
histories £, €, ¥ of length 7 points. This means that a total of 277 double integrations are
performed. The double integration is performed using Simpson’s rule by an array scheme
outlined in [61]. For the short unsealed damper this function computes the double integrals
in egs. (4.14) and adds them to the values computed from the analytical expressions in these
equations to give Q,, @, . For the sealed damper the function computes the forces using the
full d:)uble integration formulae in egs. (4.4). With A@=2n/52 and Az=L/12, force
matrices with up to 100 columns could be generated in a fraction of a second to a sufficiently

high accuracy on a 333 MHz Pentium II personal computer.
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4.6 ILLUSTRATION AND DISCUSSION

In this section, the short unsealed SFD model is illustrated by considering a simple two

degree of freedom system such as the rigid rotor systems in Figures 4.3(a,b). The aim is to
demonstrate the validity of the cavitation model of eq. (4.5) with p, =-101.325x10°Pa

(“absolute zero cavitation model”). The configuration in Figure 4.3(a) was considered in
[57] and is symmetrical, with identical unsupported SFDs in rigid housings. The
configuration in Figure 4.3(b) was considered in [8] and is pivoted at the left hand end by a
self-aligning bearing and supported at the other end by a rigidly housed, unsupported SFD.

Both systems are described by the following equations of motion

M., X,=0.+U
MY, =0, -U

Wﬂz sin (2 (4.17a)
Q%cosQr-W (4.17b)

eq,J

where X ,,Y, are the displacements of the journal centre J from the fixed bearing housing
centre, £2rad/s is the rotational speed, M., is the effective rotor mass at J, W is the
equivalent static load at J and U, , is the equivalent unbalance at J, which can be expressed

as:

Uqu =MR,Ju (418)

Egs. (4.17) can be non-dimensionalised by defining the non-dimensional time ¢ = £ and

dividing both sides by M, ,cQ?,

X7 =0 +Using (4.192)
?,”zéy—ljcosg—w (4.19b)

where () denotes differentiation with respect to ¢, X, = X, /c, Y, =Y, /¢ are the non-

dimensional displacements of J and @, , are the non-dimensional squeeze film forces:

0., =0.,(%,.7,.%,9,)(M,,c0*)=0, (cX,,c7,,cQ% | ,cQP] )M, ,cQ>) (420)
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where Q  are computed from egs. (4.6). Three non-dimensional groups are defined [8, 571:

. 2mR (LY w 5
s__2n (_] W= p- (4.21a,b,c)
c M c

and are referred to as the non-dimensional viscosity, static load and dynamic load parameters
respectively. It can be shown that when the SFD forces are estimated using the full film
model, or half film model, or some combination of these two models (as the “b factor model”
discussed shortly), the response for given initial conditions is determined exclusively by the

above three non-dimensional groups, egs. (4.21) [57]. However, when p, #-e or
Ps» P. # 0 in the general cavitation model of eq. (4.5), the cavitation pressure p,, the supply
pressure p,, and the SFD geometry become additional control parameters. The parameters

used here are those of Humes and Holmes [57] (Figure 4.3(a)) and are: M, ,=18kg,

W =176.58 N, ¢ =0.2082x10" m, R=63.5x10"m, L=10.9%107m, p, =13.8x10’Pa.

Equations (4.19) were expressed as a set of 4 first order differential equations, as in eq.

(3.1) with s=[)2 , Y X I;,']T ¢ replacing 7, and were solved for given operating
parameters and initial conditions using the 4™ order Runge-Kutta-Merson method with
automatic step control [54, 61]. This Runge-Kutta method was adequate in this case since
the number of degrees of freedom was very low and the oil viscosity was very high, ensuring
no problem of (numerical) stiffness in the differential equations.

The low value of the supply pressure was found to have negligible effect on the orbital
predictions obtained with the general cavitation model of eq. (4.5) and thus allowed a fair

comparison of the accuracy of half film model predictions (which assume p; =0) versus
alternative predictions. As a preliminary test, the load carrying capabilities of the 7 and 27

film models were contrasted for the same control parameters B = 0.61, W =0.90, U=226.
The transient journal orbits for the same initial conditions are shown in Figures 4.4(a) (27
film) and 4.4(b) (7 film), each covering 10 shaft revolutions. In this thesis, all journal orbits
relative to the housing are presented with respect to the clearance circle, to which the relative
motion of the journal is confined. It can be seen that the full film gives no static load
carrying capacity: the shaft simply spirals down to the bottom of the clearance circle. On the

other hand, the half film result shows a definite load-carrying ability through the
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development a steady-state orbit. The inability of an uncavitated film to support a static load
is a well-known fact [57]. The experimental orbit, reproduced from [57] in Figure 4.4(c), is
however both smaller in size and positioned at a lower level than that in Figure 4.4(b). This

indicates that the cavitation pressure p, lies somewhere between the extremes of 0 (half film)

and —oo (full film). In fact, for given p., the lower the value of D, , the smaller the orbit

and the lower is its mean position in the clearance. In order to avoid the numerical
integration of the squeeze film forces, eqs. (4.4), Humes and Holmes [57] determined the
SFD forces by combining the full and half film theories using an empirical weighting factor &
thus:

O =00k +(1=0)0s . Or =00y ,, +(1-b)0;, (4.222,b)

Comparison of predicted and experimental orbits taken from the rig used in [57] showed that
b=045 gave reliable predictions of the orbits. Unfortunately however, there is not a
general value of b which may be representative over a wide range of operating parameters.

In the present research, the steady-state orbit shapes computed by both the half film
model and the absolute zero cavitation model for the control parameters in Table 4.1 were
compared with measurements (reproduced from [57]). The relevant figure numbers of the

results obtained are included in this table.

60 .Q/(ZTE) n é w [j locus 7T film p, = experimental
(rpm) (x10° ne- -101325 Pa
Nsm?)

3100 33 0.10 {045 0.74 1 | Figure4.5(a) | Figure 4.5(b) | Figure 4.5(c)
3100 33 0.10 045 | 1.06 | 2 | Figure4.5(a) | Figure 4.5(b) | Figure 4.5(c)
3100 33 0.10]045| 1.47 | 3 | Figure4.5(a) | Figure 4.5(b) | Figure 4.5(c)
2520 31 0.12 1 0.68 | 0.73 1 Figure 4.6(a) | Figure 4.6(b) | Figure 4.6(c)
2520 31 0.12 | 0.68 | 1.38 | 2 | Figure4.6(a) | Figure 4.6(b) | Figure 4.6(c)
2520 31 0.1210.68 | 2.10 3 Figure 4.6(a) | Figure 4.6(b) | Figure 4.6(c)
2520 31 0.12 1 0.68 | 0.73 1 | Figure4.7(a) | Figure 4.7(b) | Figure 4.7(c)
3250 50 0.15041| 073 | 2 | Figure4.7(a) | Figure 4.7(b) | Figure 4.7(c)
2100 33 0.10]0.45| 0.73 | 3 | Figure4.7(a) | Figure 4.7(b) | Figure 4.7(c)

Table 4.1: Operating parameters for orbits in Figures 4.5 - 4.7
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Figures 4.5-4.7 show that the absolute zero cavitation predictions are invariably superior
to the half film predictions (particularly evident in Figure 4.7). The intermediate orbits
labelled *“2” in Figures 4.5(b) and 4.6(b) still over-predicted the corresponding measured
vibration in Figures 4.5(c) and 4.6(c). In these two cases, it was found that improved
correlation was achieved when p, =-Cx101.325x10°Pa where C was somewhere in the
range 1< C <2 [54]. In fact, tensile stresses were apparent in the pressure recordings of [57]
and may have been the result of the very high viscosity of the oil used. The main model
applications of Chapters 7 and 8 use much thinner oils, suitable for gas turbine applications.
Nonetheless, the results presented in this section provide further evidence that the absolute
zero cavitation model is the best available predictive tool. This model will be used

throughout this thesis, unless otherwise stated.

4.7 SFDs AND SELF-EXCITED VIBRATION

The unforced SFD problem (i.e. without unbalance force) is now briefly considered. It
has already been mentioned that a SFD cannot exert a force when there is no relative
vibration across the damper. Hence, the SFD does not influence the static equilibrium state
of a dynamical system, if there is one. The dynamical system of egs. (4.17), having an

unsupported SFD, does not have a static equilibrium state (U, , being set to zero). This can

be easily seen by noticing that, for this case, in eq. (3.26),
(p(s): [Xf YJ QX/MR,J <Q> “W)/MR,J]T (4-23)

where s = [X , Y X, YJ]T. It is clear that the equation @(s)=0 has no solution since
the satisfaction of the first two equations, X,,¥, =0 implies that Q,, =0 and hence, the

fourth equation cannot be satisfied. In practice, this simply means that the journal rests at the
bottom of the clearance in the static condition, regardless of the rotational speed . If a
parallel retainer spring is included, the resulting dynamical system will have a static
equilibrium state, determined by the spring stiffness and the static load W . In this case, upon

linearising about this position, the SFD introduces the terms 0@, /oX,, 0Q,, /oY, ,

90, , /BXJ ; an/aY] into the matrix A of eq. (3.27). Since Q,, =0, (X,,Y,,X,,Y, ),

these partial derivative expressions do not contain any term in £2. Moreover, these
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expressions are evaluated at the static equilibrium condition X, =X, Y, =Y.,

X J,YJ =0, which is also independent of (2. Hence, the SFD cannot destabilise the

unforced system. On the other hand, if the unsupported SFD of the dynamical system of egs.
(4.17) were replaced by a hydrodynamic journal bearing, then the system will have a static
equilibrium state dependent on the rotational speed. Moreover, upon linearising about this

position, since the hydrodynamic journal bearing forces are of the form

0,,=0,, (X YL X J,Y ,,Q), the corresponding partial derivative expressions will be

explicit functions of £2 even before their evaluation at the equilibrium condition. Hence,
with the hydrodynamic journal bearing, the stability of the matrix A of eq. (3.27) is
dependent on the rotational speed and this does result in instability beyond a certain speed

[48].

4.8 CONCLUSION

This chapter has presented the existing model for the non-linear element of the class of rotor-
dynamic systems analysed in this thesis. The model was illustrated with a simple example.
The results provide confidence in a model of the SFD that assumes an incompressible oil film
cavitating at absolute zero pressure. It has also been established that the SFD cannot
introduce self-excited vibration, thereby justifying the focus on unbalanced SFD systems.
Having established the non-linear element in this chapter and the relevant background theory
of non-linear dynamical systems in the previous chapter, it is now possible to present the

integrated non-linear model for a general squeeze film damped rotor-dynamic system.

52



: housing . l* {c 1
NAKFRERRRRRERMNN 77277 ANNANANANNR ANNNAN

7

Jjournal

L groove d s

L L L
2

(a) unsealed (b) end-plated

Figure 4.1: Schematic of axial cross-section through a squeeze film damper
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Figure 4.2: Schematic of transverse cross-section through a squeeze film damper
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Figure 4.4: Comparison of load carrying ability of full film and half film models
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Figure 4.5: Comparison of half film and absolute zero cavitation models

(rows 1-3 of Table 4.1)
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5 GENERAL INTEGRATED NON-LINEAR MODEL

5.1 INTRODUCTION

In this chapter, the general integrated non-linear model is developed. The representative
model of the general unbalanced squeeze film damped rotor-dynamic system is first
described and the fundamental assumptions stated. The receptance harmonic balance (RHB)
method for the determination of forced periodic oscillations is then described. The time
domain differential equations of motion in modal form are then presented, followed by the
Floquet stability analysis of the periodic solutions computed by the RHB method. The
application of time-marching of the modal equations to confirm the RHB and Floquet
stability results, and to compute aperiodic attractors is then considered. An algorithm for the
integration of the three modelling blocks (i.e. RHB, stability, and time-marching) is
presented. The chapter concludes with a brief discussion of the advantages of the integrated

model over current models.

5.2 REPRESENTATIVE MODEL DESCRIPTION

The representative model of the general unbalanced squeeze film damped rotor-dynamic

system is shown in Figure 5.1(a). ngy, squeeze film dampers (SFDs) are fitted between
positions J; and B;, i=1...ngy,, on the rotor and support structure respectively. In the

physical system, J; refers to the journal centre and B; to the bearing housing centre at SFD no.
i . The bearing housings form an integral part of the support structure. For an aero-engine,
the support structure is the casing, and is also referred to as the “engine carcass”. It is
generally non-rigid, exhibiting dynamic behaviour. A retainer spring can be optionally
placed between J; and B;. The rotor and support structure may be linearly connected at other
locations. However, these other linear connections are not shown in Figure 5.1(a). The
model can additionally accommodate concentrated linear damping forces but material
(hysteretic) damping is neglected. The latter restriction can be partially relaxed in the case of

the RHB method only, as explained in section 5.8. The unbalance forces are assumed to be
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concentrated at discs located at points Uy, k =1...n;, along the rotor and are given by

(Figure 5.1(b)):

P, =UQ2%sin(Qt+7y,), P, =-U, Q% cos(x +7,) (5.1a,b)

where P, P, are the unbalance forces at Uy in the x, y directions respectively. £2 (rad/s) is

the rotational speed (invariant with time), and U, = M, 1, is the unbalance at Uy (M, , 1,

being the unbalance mass and unbalance radius respectively). To avoid confusion, Q2 is

always taken to be positive. In Figure 5.1(a), the squeeze film forces on J;, i =1...n4y, in

the x and y directions are Q,;, O, , and are calculated from equations (4.6a,b):
Qxi,yi = Qx,y (X rel; ? Yrel,» ? X rel; ® Yreli ) (Sza’b)

where X, =X, -X,, Y, =Y, -Y,, X, =X,-X,, Y,=Y -Y, aec the

7

Cartesian relative displacements and velocities at SFD no. i, and (X e ),(X P ) are the

absolute Cartesian displacements of J; and B, respectively, both positions measured from the

same fixed point in the xy plane of SFD no i. The SFD forces on B, are —Q,;, —0,,, since

the inertia of the fluid film is neglected.

The linear subsystem is defined as the linear part of the system in Figure 5.1(a) i.e. the
system in Figure 5.1(a) minus the non-linear elements (i.e. the SFDs). Let u and f be
respectively the corresponding P X1 vectors of the instantaneous degrees of freedom and
instantaneous external forces/moments. In general, u contains displacements in the x and y
directions and rotations in the xz and yz planes, and f contains forces and moments in the
corresponding directions. In general, there are 4 “non-linear” degrees of freedom associated

with a SFD location: X, ,Y, ,X, .Y, . However, if the support structure is rigid at a certain
SFD location (i.e. X, ,Y, =0) this number is reduced to two. In this thesis, if the support

structure is flexible (rigid) at a given SFD location, then the corresponding bearing housing is
said to be flexibly (rigidly) mounted, or simply, flexible (rigid). It should be noted that,

while P is arbitrarily large, the vector f will be sparse, containing only a finite number of

57



non-zero elements, depending on the number of forces/moments that are taken to be external

to the linear subsystem. This force vector is divided into two component vectors as follows:

f= FN (“3’ U )} +f (2) (5.3)

where fy is the P, X1 vector of motion-dependent forces/moments and uy the P, X1 vector

of the associated degrees of freedom. The P X1 vector f, contains the unbalance forces and
static loads (if taken into account) at the appropriate rows, and zeros elsewhere. This vector

is periodic in #, period T =27/ . The vector u is ordered and partitioned in accordance

with the first vector on the right hand side of equation (5.3):

u= [uNJ (5.4)
uy

where u; 1sa P, X1 vector.

5.3 RECEPTANCE HARMONIC BALANCE (RHB) ANALYSIS

In the RHB approach, the vector fy comprises the non-linear (i.e. SFD) forces only. Hence,
in this analysis, Py =4nge, if the support structure is flexible at all SFD locations, while
Py = 2nggp, if the support structure is rigid. The dynamics of the rotating linear subsystem at

a general vibration frequency @ (rad/s) are modelled by a P P receptance matrix R(a),Q)

of frequency response functions, given by
i=R(o,Q)f (5.5)

i and f are the complex amplitude vectors of w and f i.e. for harmonic vibration at

frequency @, u and f are given by:

u= Re{ﬁej“" }: uccoswrt+ugsingt, f= Re{fej“" }: f. cosar + £ sin ar (5.6a,b)
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In general, R includes gyroscopic and linear damping terms and hence it is complex, non-
symmetric, and dependent on the rotational speed 2 as well as the vibration frequency .
By manipulating equations (5.5), (5.6a,b), the complex numbers can be eliminated from eq.

(5.5), resulting in the following pair of equations:
u. =R¥(0.Q¥. +R' (@, Q);, ug=-R' (0,2 ). +R* (0,2, (5.7a,b)

In (5.7a,b) the superscripts X, respectively denote the real and imaginary parts of R.
For the complete non-linear system, periodic solutions of fundamental frequency @ and

period I" are sought where
@ =Q/N, I =2r/w = NT (5.8a,b)

where N is a positive integer and T = 27/Q (period of unbalance excitation), as discussed in
Chapter 3, section 3.1. From eq. (5.3), if u is periodic, period I" = NT , then so is f. Hence,

both u and f can be expressed as Fourier series:

u=u+ Z (ug) cos s@t +uf sin sCUr), f=f+ Z (fé“') cos st +£{) sin saﬁ‘) (5.9a,b)
s=1

m
s=1

where

f=(/r)] tar (5.10a)

fg):(Z/F)ercosswtdt, £ (2/r)jor f sin st dt (5.10b,c)

For computational reasons, only a finite number of harmonics m of the fundamental
frequency @ can be considered, so the solutions are, strictly speaking, approximate.

Normally, this is not a problem, as discussed in Chapter 2, section 2.2. Static loads need not

be considered in f if the elements in vectors uy and uy in equation (5.4) are measured from

the static condition:
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uy=h-h,, u =g (5.11a,b)

where h is the P, X1 vector of the “non-linear” degrees of freedom at the SFD locations:

X, v, | (5.12)

1 nSFD nSFD

where each degree of freedom in (5.12) is measured from the static position of the

corresponding bearing housing centre. h, is the static value of h and contains zeros for the
degrees of freedom of the bearing housings. The remaining rows in h, contain the static

eccentricities of the journals in their respective housings. Bearing housings that are rigidly

mounted have their degrees of freedom deleted (omitted) from h and h,. The P, X1 vector

g (eq. (5.11b)) contains the dynamic values of the remaining P, degrees of freedom. The

receptance matrix R is partitioned in a similar manner to u in equation (5.4):
S
R :{ J (5.13)

where the matrices S and T are of dimension P, XP and P, X P respectively. Equations

(5.7a,b) can now be applied in partitioned form to each of the Fourier coefficient vectors of

the degrees of freedom uy =h-h,, u, =g:

h-h, =S f (5.14a)
h) =S* (sw, QYY) +8' (sw0, QXY s=1...m (5.14b)
he) = -S'(sw, QXY +8* (sw, Q%) s=1...m (5.14c)
=T, (5.15a)
g¥) =T (5o, QY + T (500, QYL), s=1...m (5.15b)
g¥) =T (5@, QXY + T (s, 2 %), s=1...m (5.15¢)
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In equations (5.14), (5.15), h, h%), h{) are the Fourier coefficients of h and g, g’, g’ are

those of g:
h :—H+Z(h(c‘“)cos s@t +h$) sin sﬁjt), g -—-'g’+2(g(c“')cos stor +g$ sin sCUt) (5.16a,b)
s=1 s=1

Also, S,, T, contain the zero frequency receptances and are real and independent of

rotational speed.

Equations (5.14) define a set of P, (2m+1) non-linear algebraic equations in an equal
number of unknowns contained in h, hg), hg‘). These unknowns are grouped into one

P, (2m+ 1)><1 vector v:

v=|hp™ (5.17)

p(¥.2)=0 (5.18)

where p is a P, (2m+1)x1 non-linear vector function of ¥ =v/c and Q = Q/w, , that is

obtained by bringing all terms of egs. (5.14) to one side:
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I S,f—-(h-h,)
S, Q%Y +8' (@, 2% Y

p(ié)z S® (mw, Q¥ + S (mo, Q% (5.20)
-S'@, Q¥ +$* @, ¥ -nl

—S' mw, QY +S* (mw, QY -h

c is the radial clearance of any one of the dampers and @, is some arbitrarily chosen known
reference frequency of the system. In this thesis, @, is taken as the lowest natural frequency
of the undamped non-rotating system with the SFDs “locked” by shimming the radial
clearances. For a fixed value of N, p(\“z,.é) can be computed for an assumed v at any given
rotational speed € (since @ =£2/N). This enables a solution of eq. (5.18) for ¥V by

iteration. The only receptance terms in S (eq. (5.13)) that need computation are those linking

the non-linear degrees of freedom with the non-zero elements in f. In the determination of
the Fourier coefficient vectors f, fg ), fs(“') (egs. (5.10)), it is clear from eq. (5.3) that only the
SFD force vector fy needs to be Fourier analysed at each stage of the iteration, since the

unbalance forces are already harmonic at frequency 2 = No . The Fourier coefficients of
the SFD forces at each stage of the iteration are determined as follows. For the current value
of v (eq. (5.17)), the time histories of the non-linear degrees of freedom h (eq. (5.12)) and

their time derivatives are established from eq. (5.16a) and its time derivative. This enables

the determination of the time histories of the SFD forces in f by computation of the non-

linear SFD force expressions, eqs. (5.2), (4.6) at a suitable number of points n over one

period I =27/ . Fourier analyses of these time histories are then performed:

fo=(/T)f tydi (5.21a)

£ =@/T)[ fycossmrdr, £{=(/T)[ fysinsards (5.21b,c)

From section 4.5, the establishment of the 7 -point time history of the SFD force vector fy at
each stage of the iteration requires 27 double integrations for each of the ngg, dampers if

the general cavitation model is used. Hence, a judicious choice of 7 is necessary to ensure
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both efficiency and accuracy. From the Nyquist criterion [47], in order to avoid error in the

Fourier coefficients of fy due to aliasing, the SFD forces should be sampled at a rate

exceeding twice the highest frequency i.e. 71/I" > Z(m/F ). Hence
n>2m (5.22)

In this thesis, the number of significant harmonics does not exceed 20 and thus, a SFD force
time history of 50 points is more than adequate for Fourier analysis (i.e. 100 double
integrations per SFD per iteration). The single integrals in eq. (5.21) are evaluated by
Simpson’s rule [61].

Equation (5.18) can be solved using a predictor-corrector iterative procedure to trace out

a speed response curve of N7-periodic solutions, where N is of fixed value. For a given value
Q. of the control parameter £ , an initial approximation fffo) for the solution v, is provided
by a linear polynomial (predictor) based on the solution(s) at one or two previous speeds,
V.. V., [16]. The Newton-Raphson iterative method (corrector) is then used to converge

¥ into ¥, [16]. However, use of £ as the control parameter to advance the solution

procedure along the speed response curve results in failure when more than one solution ¥ is
possible for a given rotational speed (as in bistable regions, see Figure 2.1). Arc-length

continuation is used to overcome this problem [16]. The control parameter is changed from

Q to an “arc-length” ¢ . The rotational speed becomes an unknown, £ = Q(c), and an

extra equation needs to be added to the system in (5.18). Suppose that ¥ and Q are required
for o =0, ie. V,, .Qi are required. Suppose that V,_, QH, corresponding to 0 =0, are

known. The extra equation to be added defines ¢ in the interval o, ; £0 <0;:
g(fr,_é,o'): if’ - Q':’—1'2 + ( 2 —Qi—l)z - (U —0iy )2 =0 (5.23)

a{z =a; +...+a, . The system of equations to be

where, for a vector a = [a, anu]r,

solved for each given value of &, 0;, is
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A , A — 0
{ A (5.24)
g c
The vector of unknowns is now augmented to

(5.25)

b=
il
—
b) <>
|

The solution procedure now “climbs” along the speed response curve, so that a given value of
o will correspond to just one solution W, thus eliminating the problem of multiple solutions.

From eq. (5.23), in order to initiate the arc-length continuation procedure, one solution ¥,,
QI on the speed response curve is required. This is obtained by solving the original system
of equations (5.18) for ¥ at Q= Q.. The initial approximation to v, (e {,1(0)) is either a
guessed approximation or is determined from the Fourier coefficients of a time-marching
solution. For a non-degenerate rotor (see below), if N =1 and .Q] is low, a reasonable guess

is

h,/c
@ =0 5.26
\& { 0 :l ( )

since the system vibrates at small amplitude about the static condition. In degenerate rotors,

namely, rotors with unsupported SFDs, guessed approximations usually result in failure in

the corrector step, especially with a large number of unknowns. In such a case, 950) is

determined from the Fourier coefficients of the SFD response(s) at Q= Ql obtained by a
time-marching solution. In eq. (5.23), o, is arbitrarily set to 0. The algorithm for the
solution of egs. (5.24) by the predictor-corrector iterative procedure is presented in Appendix

Al.

Upon solution of (5.18) for v over a range of values of £ and determination of the
associated values of £, £&), £§), the response in any of the remaining P, degrees of freedom

is readily available from equations (5.15). The only receptance terms in T that need

computation are those linking the chosen degree of freedom with the non-zero elements in f.
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In equations (5.14a), (5.15a), it has been implicitly assumed that all zero frequency terms
in §,, T, exist. This condition holds when, in the linear subsystem (i.e. the system in Figure
5.1(a) minus the non-linear elements), the rotor is supported at not less than two positions.
When, in the linear subsystem, the rotor is not connected to the support structure or has only
one connection that offers no flexural resistance (i.e. a simple support), the rotor is said to be
degenerate and is capable of free rigid body motion. In such a situation some or all of the

terms in S, and T, will be undefined (— +e). In such a case, equations (5.14a) are

modified as follows:
- The static load of the rotor is included in f, concentrated at one or more of the degrees
of freedom in the y direction.

- h, is omitted and the displacements in h are measured from the static positions of the

bearing housings without the rotor load acting. Similarly, the remaining degrees of
freedom g are measured from the static condition without the rotor weight applied.

- In equation (5.14a), those k rows in S, for which the receptances are undefined are
replaced by the corresponding rows in the zero frequency value A, of the

accelerance matrix A where

A =-0*S (5.27)

The terms in A, will be defined. The corresponding k terms on the left hand side of

(5.14a) will be replaced by the corresponding zero frequency (mean) acceleration
terms in the Fourier expansion of ii, and hence will be all zero (by differentiation of
(5.9a) twice).
The resulting modified k equations in (5.14a) are a statement of the fact that, at zero
frequency, the degenerate rotor will be in a state of static equilibrium under those elements in
the vector f that act on it and the forces from the single linear connection (if there is one)
with the support structure. These equations are solved along with the remaining

P,(2m+1)—k equations in (5.14) as previously described. At zero frequency, the

degenerate rotor can be maintained in static equilibriumn by a minimum of two linear or non-
linear connections with the support structure. If the degenerate rotor has no linear connection
with the support structure, k =4 (i.e. two unsupported SFDs) is the maximum number of
modified equations that are independent. If the single linear connection is present, then

k=2 (i.e. one unsupported SFD) is the maximum number of independent modified
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equations. When k>4 or 2, as the case may be, a statically indeterminate equilibrium
problem at zero frequency needs to be solved within equations (5.14). A typical case is a
rotor that is supported by squeeze film dampers only, without retainer springs, where the
number of dampers ng,, 2 3. In such a case, the rotor is equivalent to a continuous beam' in
each plane xz and yz, for which the additional independent static equilibrium equations at
zero frequency can be obtained from standard texts on mechanics of materials e.g. [62]. Such

cases are not considered in the model applications of Chapters 6-8.

5.4 DIFFERENTIAL EQUATIONS OF MOTION

The RHB method works exclusively in the frequency domain. However, in order to test the
stability of the equilibrium solutions computed by RHB (and of course, for time-marching
purposes), the time domain differential equations of motion of the non-linear system are
required. A modal approach is adopted to derive these equations. In this analysis, in contrast
to RHB, the vector fy comprises all the damping forces, linear, as well as non-linear, and
any gyroscopic moments (if significant). By considering all these forces/moments as
external, it is possible to work with the modal parameters (i.e. natural frequencies and mode
shapes) of the undamped non-rotating linear subsystem, which will be real and independent
of rotational speed. The modal parameters can be obtained using any convenient linear
modelling technique. As shall be illustrated in Chapters 7 and 8, receptance functions can be
used to determine both the modal parameters and the number of modes required. In practice,
only a limited number of modes, H, will make a significant contribution to the response.

Hence

u~Hq (5.28)

where q is the H x1 vector of modal coordinates:

a=lg;, - qyxl’ (5.29)

and H isthe Px H modal matrix:

! A continuous beam is one supported at three or more locations.
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H=[p® ... o] (5.30)

where q)(”), h=1...H, are the mass-normalised mode shapes [47]. The corresponding

natural frequencies are contained in the diagonal matrix D, given by
D =diaglo? - 2] (5.31)

The modal equations of motion [23] are hence given by:

qg+Dq=H"f (5.32)

where f is given by eq. (5.3). By partitioning H in a manner similar to u in eq. (5.4):

H
o 5.33

where Hy and H, are of dimension P, xH and P, X H respectively, uy in egs. (5.4) and

(5.3) can be expressed as

uy =Hyq (5.34)

In accordance with the definition of fy for modal analysis, the vector of associated degrees
of freedom u, has a more general meaning here than in the RHB approach. Notice that the

modal equations are not uncoupled since f on the right hand side of eq. (5.32) includes the
motion dependent forces/moments in fy .

In all the stability and time-marching analysis, it is assumed that a sufficient number of
modes H is taken to consider the transformation in eq. (5.28) to be “exact” i.e. the

approximate equality sign “=" in eq. (5.28) is replaced by the equality sign “=".

5.5 STABILITY OF PERIODIC SOLUTIONS AND BIFURCATION

In this section, the coefficient matrix W(r) of the perturbation equations (3.12) is derived.

As discussed in Chapter 3, this matrix is required for the stability analysis of an RHB-
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computed periodic solution ug of fundamental frequency @ . Defining 7 =@t and ( ) as

differentiation with respect to 7, the modal equations (5.32) are rewritten as:

f .
q//+a712 Dq:‘é‘HT{[N(uN’uN)}‘f‘fL(f)}

0

where equation (5.3) has been used to substitute for f. Now, from equation (5.28)
up = Hqyg

u, is periodic in 7 with period 27 and so is gy, which satisfies equation (5.35):

, 1 1 f (u,,u

o o 0

where, from equation (5.34):

uyg = Hygg

Defining

2=q—qg
and subtracting equation (5.37) from equation (5.35)

of of .
s, 1 1 N (ay g )+ =0y 1y )
z +E‘DZ :F[ ; HE auN N NE . auN N NE

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)

(5.40)

where equation (5.33) has been used to substitute for H and fy (uy,i ) has been expanded

in a Taylor series about uy =u,;, Uy =1, and only linear terms in (g —uyg ) and

(iy —Uyg ) tetained. In eq. (5.40): iy —liy, =@ (u} —uly ) and ofy /3, =(ofy /ouy )/@ .
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Therefore (9fy /9y Ny —11y; )= (Of  /ouy Yuly —ulg). Also, from egs. (5.34), (5.38) and

(5.39), uy —uyg = Hyz. Hence, eq. (5.40) becomes

| 1 ¢ ofy 1 .. of ,
z +—Dz=—H,—H.,z+—H. —2H 5.41
o> o’ Nouy, " @’ " oul Nz (541
Letting
z
x{ } (5.42)
zZ
eq. (5.41) can be written in the form (3.12):
x =Wk (5.43)
where
( ) OHXH IH (5 44)
Wit)= 1 .
Ul)-—D V(r)
1 of 1 of
Ult)=—H.-—"H,, V)=—H —2H (5.45a,b)
( ) wz N auN N ( ) a)_z N au; N

In egs. (5.44), 0., is an HxH matrix of zeros and I, an H X H diagonal matrix with
ones on the leading diagonal. Since the partial derivatives in the H X H matrices U(T) and
V(z) are evaluated at the equilibrium conditions uy =uyg, U} =Uyg, they are periodic in
7 with period 27 and hence, so is the 2H X2H matrix W(z). The monodromy matrix G

of equation (5.43) is then computed either from equation (3.20) (“slow” method) or from
equation (3.22) (“fast” method). The latter method is used in this thesis. The former method
is used only once, in Chapter 6, for verification purposes. In this thesis, the matrix
exponentials in the product of eq. (3.22) are computed using the MATLAB® functions expm®

or expm3® [25]. The stability of the equilibrium solution uy is governed by the leading

eigenvalue, 4,, of G, as explained in section 3.2.3.
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It is worth mentioning that, strictly speaking, the monodromy matrix G of equation
(5.43) governs the stability characteristics of q,. However, since the modal coordinates q
are related to the degrees of freedom u by the simple linear transformation (5.28), the
stability characteristics of g are identical to those of u.

The above analysis shows that, to determine the stability of a RHB solution ug, it is only

necessary to compute the RHB response at the P, degrees of freedom contained in the vector

u,; . The vector uy is determined by differentiation of the relevant rows of eq. (5.9a).

5.6 TIME-MARCHING

For time-marching purposes, the system of equations (5.32) is expressed as 2H first order

A MY 049
q -D 0,4 Hf

and integrated numerically from given initial conditions q(t = 0), (I( = 0) using an integrator

differential equations

suitable for stiff differential equations. In [54], a numerical integration technique based on
trapezoidal integration was adapted from the work by Craven and Holmes [2] for the solution
of differential equations with SFD forces. It was subsequently discovered that MATLAB®
(version 5 and later) has a whole suite of similar functions dedicated to stiff systems. The
trapezoidal integration method is hence only used in Chapter 6. Chapters 7 and 8 employ the
MATLAB® function ode23s® [25].

The result of the Floquet stability test for an equilibrium solution ug can be confirmed
by time-marching from equilibrium initial conditions qg (t= 0), 4t = 0). As explained in
Chapter 3, if ug is unstable, the time-marching trajectory will diverge from the equilibrium
one. On the other hand, for ug stable, both trajectories remain closely matched. This
method serves to positively identify the attractor on which the disturbed trajectory will settle
down, in the case of up being unstable. The initial conditions qE( =0), qE( =0) are
found by performing a modal decomposition of the RHB solution ug as follows. The

responses in H degrees of freedom, arbitrarily chosen, are computed with RHB. These are
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contained in the HXx1 vector ug,(¢). The corresponding velocity vector Wy (t) is then

formed (by differentiation of the relevant rows of eq. (5.9a)). From eq. (5.36):

qp(t=0)=Hzuy (r=0), 4 =0)=Hgu,{=0) (5.47a,b)

where the H X H matrix Hy comprises H rows of H, respectively corresponding to the

chosen H degrees of freedom in tgg .

5.7 INTEGRATED MODEL ALGORITHM

This section presents an algorithm for integrating the three modelling blocks (RHB, stability
analysis, time-marching). One such algorithm is summarised below:

(1) The operating conditions (the unbalances U, , the rotational speed range, and, if
applicable, the static eccentricities h,, ) are specified.

(2) A speed response curve of approximate 7-periodic solutions (i.e. N =1) is traced out
using RHB with a suitable number of harmonics m.
(3) The resulting RHB solution set is then tested for stability using the Floquet test. Any

unstable sections of the speed response curve are then classified according to the

position of the leading Floquet multiplier 4, on the complex plane.

(4) An unstable equilibrium cycle along each such section is considered. Time-marching
from initial conditions on the cycle locates an attractor. If the resulting attractor is
NT-periodic, then the section is reanalysed using RHB with the appropriate value for
N, and steps (3)-(4) repeated. If the attractor is aperiodic then the whole branch has to
be reanalysed by time-marching.

While steps (1)-(3) are obligatory, step (4) can be altered as required. For example, a
speed response curve of time-marching solutions can be generated, starting from the speed at
which instability of T-periodic motion was first detected in step (3). Moreover, the initial
conditions for the time-marching solution at one speed can be the final conditions from the
time-marching solution of the previous speed rather than the equilibrium initial conditions on
the RHB solution.

Frequency spectra and Poincaré maps are used to analyse the time-marching solutions.
Since the data generated by the time-marching solution process is unevenly spaced (due to

automatic step adjustment for error control), linear interpolation is used to generate evenly
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spaced data prior to frequency and Poincaré map analysis. The frequency spectra presented
in this thesis give the modulus of the discrete Fourier transform (DFT) and are computed
using the fast Fourier transform (FFT) algorithm [25]. The aim of the frequency analysis is to
identify the salient frequency components of the response. Hence, the absolute level of the
vertical axis of the frequency plot is of no importance: it varies with the sampling rate, data
length and type of data window used. The Poincaré maps show a stroboscopic picture of

the y versus x vibration trajectory (orbit) at a given location on the system at intervals of 7.,

5.8 ADVANTAGES OF THE INTEGRATED MODEL

The use of a combination of periodic solution technique/stability analysis/time-marching for
a full solution to the unbalance response problem is not new, as discussed in Chapter 2. The
contribution of the integrated model presented in this chapter lies in the individual modelling
blocks, which have been devised in order to overcome the shortcomings of current techniques
when applied to real systems with many degrees of freedom. These problems were
highlighted on pages 9 and 10 of Chapter 2.

With RHB, harmonic balance principles are applied to the receptance model of the
rotating linear part. The required non-linear algebraic equations are easily extracted in the

frequency domain, without any need to condense the full number of unknowns (equal to

P(2m+1) where P is the total number of degrees of freedom and m is the number of
harmonics) to those pertaining to the non-linear degrees of freedom (totalling P, (2m+1)
where P, is the number of non-linear degrees of freedom), as had been done in previous

harmonic balance methods (that were based on the finite element (FE) equations of motion).
Hence, it results in a compact and efficient model. Moreover, the receptance functions can
be computed using any convenient linear rotor-dynamic modelling technique. In particular,
the designer is free to use any of the various frequency-based modelling techniques that have
been proposed as efficient alternatives to FE analysis for the computation of the harmonic
response of linear rotating systems [19]: transfer matrices (TM); mechanical impedance (MI,
or analogously, dynamic stiffness); hybrids like TM/FE, MI/FE; and hybrids involving both
analytically and experimentally determined frequency response functions. The receptance
formulation does not restrict the designer to the exclusive use of TM as in [18], making the
proposed technique effective at including the dynamics of the rotor support structure. The

receptance functions can be approximated by a truncated modal series [47]. Hence, for
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highly complex systems, the receptance functions can be determined from a FE-based
computation of the modal parameters of the linear part.

As regards stability analysis, Hahn and Chen [15] used an approach based on the FE
equations of motion. Moreover, they used the “slow” method (eq. (3.20)) to compute the
monodromy matrix G since they claimed that the advantages of faster methods are dubious.
Zhao et al. [13] used the “fast” method (eq. (3.22)) to compute G. However, since their
approach was still based on the FE equations of motion, it was still impractical since the
order of the matrices in the exponents of the matrix product in eq. (3.22) is 2P X 2P with the
FE-based approach. In this thesis, the “fast” method is used for the computation of G, and
the modal technique is used to reduce the size of the matrices in the exponents of eq. (3.22) to
2H x2H where H << P, hence making stability analysis feasible for systems with many
degrees of freedom. Moreover, with both methods used in [13, 15], the matrix G is of size
2Px2P and, as mentioned by Hahn and Chen [15]: “the computation of the eigenvalues of
G for large systems to a sufficient degree of accuracy may itself prove problematic.” They
continued by adding: “unfortunately, no simple alternative to this is known to the authors”.
The modal method used in this thesis to compute G results in a reduction of its size to
2H x2H . Hence, this should facilitate the eigenvalue computation and make the results
more reliable for systems with many degrees of freedom.

The RHB and the modal time-marching blocks are complementary in two peculiar
aspects. The first aspect relates to the accuracy of the results. The RHB method essentially
assumes a finite number of harmonics in the response. However, it does not require modal
truncation. Exact (frequency-based) methods (which assume no modal truncation) can be
used to compute the receptances. Even if the receptances are computed from a truncated

modal series, any number of modes can be taken without affecting the number of RHB

equations to be solved, which is fixed at Py (2m+1). On the other hand, the time domain

differential equations of motion essentially assume modal truncation since the number of
second order differential equations (5.32) has to be limited to H. However, the solution
process places no restriction on the number of harmonics. Hence, if “exact” receptances are
used in the RHB method, the RHB and time-marching results are “inter-checking” with
respect to the respective assumptions of the number of harmonics m and the number of
modes H. Notice that the reliability of the Floquet stability result depends on both m and H.
The second aspect relates to computational efficiency. The RHB method becomes unwieldy

when the number of non-linear elements is large, since the number of unknmowns is
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proportional to P, . On the other hand, the modal time-marching method is immune to this

problem since the number of second order differential equations is always equal to the
number of modes H.

In section 5.2 it was stated that material (hysteretic) damping is neglected. The reason for
this is that this kind of damping can only be used when the vibration is harmonic (i.e. of
single frequency) [20]. In the RHB method, the motion is resolved into its component
harmonics. Hence, in principle, the loss factor can be used in the evaluation of the required
receptance functions (which are those of the linear subsystem); for the (non-rotating) support
structure, this can be done by using a complex Young’s modulus [20]. However, for the
rotor, the incorporation of the loss factor is complicated since it deforms with respect to a
rotating frame of reference [48]. For this reason, and to ensure parity with the time domain
modal approach, the loss factor is completely neglected in this thesis. This is a reasonable
assumption since this damping is likely to be minimal with respect to other sources of
damping, as evidenced by the fact that none of the research works cited in Chapter 2 have
taken it into account. In the model presented, distributed linear (i.e. viscous) damping can be

concentrated at various locations. If the distributed viscous damping is “proportional” [20], a
term Dq can be added to the left hand side of eq. (5.32) where D =diag[2d,0,...2d,0,] .
d, (h=1...H) being the modal damping ratios, and the matrices of egs. (5.44), (5.46)
amended accordingly. However, in this case, in order to retain parity between the RHB and

modal approaches, one has to consider how to include these modal damping terms into the

receptances used in the RHB equations. This might prove problematic.

5.9 CONCLUSION

In this chapter, the integrated non-linear model was developed for a general unbalanced
squeeze film damped rotor-dynamic system. The model comprised the receptance harmonic
balance method for determination of periodic solutions, a modal method for the Floquet
stability analysis of the periodic solutions, and numerical integration of the modal equations
when necessary. The advantages of the model, as well as its limitations were discussed. In

the following chapters the model is applied to rotor-dynamic configurations of increasing

complexity.
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Figure 5.1: Schematic of squeeze film damped rotor dynamic system
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6 MODEL APPLICATION A:
RIGID ROTOR IN ONE FLEXIBLY HOUSED
UNSUPPORTED SFD

6.1 INTRODUCTION

In this chapter, the integrated modelling approach developed in Chapter 5 is applied to a
simple example taken from the literature [8, 63] and illustrated in Figure 6.1. In this
configuration, a rigid rotor is supported at one end H by a rigidly mounted self-aligning
bearing. The other end runs in an unsupported squeeze film damper (SFD) in which the
housing is flexibly mounted. Hence, the SFD is effectively in series with the bearing housing
flexibility. Unbalance excitation is applied at U. A test rig for this configuration is described
in [8, 63]. The rationale of this configuration is also explained in [8, 63], where it is claimed
that in many gas turbine applications the bearing pedestals are quite flexible and so, the first
two rotor-support structure critical speeds essentially define “bounce modes”. In these
modes the rotor does not bend to any significant degree while the housings show appreciable
dynamic deflection. In such systems, an oil film (SFD) is interposed between one or more of
the rolling-element bearings and their housings to enable safe passage through the bounce
critical speeds. In the aforementioned bounce modes, the rotor vibration is approximately
symmetrical (“symmetric” bounce mode) and anti-symmetrical (“anti-symmetric” bounce
mode) respectively. The configuration in Figure 6.1 is used to represent the vibration of a
small gas turbine near the anti-symmetric bounce mode, the pivot (self-aligning bearing) at H
representing the node of this mode. This configuration had been analysed for a limited
number of rotational speeds by a time-marching method in [8]. The aims of the present
analysis are three-fold:
(a) As a simple illustration of the receptance harmonic balance (RHB) technique for the
determination of periodic solutions. The assumption of the rigidity of the rotor does not
detract from the generality of the non-linear RHB problem since the rigid body

assumption only affects the value of the receptance functions.
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(b) To demonstrate the efficiency and accuracy of Hsu’s fast method for the computation of
the monodromy matrix G (i.e. the “fast” method of eq. (3.22)), in view of Hahn and
Chen’s claim in [15] that the advantages of such methods over the conventional method
(i.e. the “slow” method of eq. (3.20)) are dubious.

(c) As a preliminary integrated analysis of non-linear effects in flexibly housed unsupported
SFDs. The need for such an analysis is felt since, while periodic solution and stability
analysis has been previously performed on rigid rotors in unsupported SFDs e.g. [12], the

SFD housing was rigidly mounted in such studies.

6.2 MODEL APPLICATION

The linear subsystem of configuration A (Figure 6.1) consists of two uncoupled sub-
subsystems: (a) the rigid rotor pivoted at H and free at J, and (b) the support structure at B.
In Figure 6.1, J is the centre of the SFD journal and B that of the bearing housing. The SFD
is assumed to be the only source of damping and gyroscopic effects are neglected, as in [8,

63]. Hence, the P, x1 vector fy (eq. (5.3)) is identical for both frequency domain

(receptance harmonic balance (RHB)) and time domain (modal analysis) approaches:

o=lo, 0, -0, -oT ©6.1)

where Py =4. Q , O are the SFD forces on J and - @, — Q, are those on B. The SFD

forces are calculated from equations (4.6a,b). Since the pinned-free rotor is degenerate (as

described in Chapter 5, end of section 5.3) its static load needs to be taken into account. The

vector u, of degrees of freedom associated with fy is then given by eq. (5.12):
u,=h=[x, v, x, v,[ (6.2)

where each displacement is measured from the static position of B without the rotor weight
applied. As in egs. (4.17) (Chapter 4), the rigid rotor is dynamically equivalent to an

effective mass M, ,, acted upon by equivalent unbalance forces P,, P,. These unbalance

forces are given by (Figure 5.1(b)):
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P.=U,,,Q2%sinQ, P ,=-U, 2°cos (6.3a,b)

where U,, , is the equivalent unbalance at J. The support structure at B is modelled by an
effective mass M, and stiffness K, for both the xz and yz planes, with no cross-coupling

between the two planes.

In the RHB approach

X, =X, +2(a}(§'} coss@t +b%) sin sa)’t), Y, =7, +E(af,j) cos st + by sin sCUt) (6.4a,b)
=1

(aggB) cos st + b)(jg sin SCUI), Y,=Y, + Z (af/;) cos s@t +b%) sin SCD‘I) (6.4c,d)

X, =Xg+

n
s=1

and
0,=0, +Z( (X)cossait—{—qf)sin SCD’Z), Q,= Q_y +Z( Ef')cos swz+q§:")sin sCUt) (6.5a,b)

x
s=1

=1

where
o) (s) (s)
g" :—1—Jr 2, dr, p?) :—Z—jr Q. cos st dt, q?) =~2~jr Q. sin s@t dt
o, I'*Q p,’| T Q, g, I'* |9,
(6.6a-c)
In the above equations, I = 27/ = NT (eq. (5.8b)). Hence, defining
0 s=N
Oy, = 6.7
Ns {1 s=N ( )

the RHB equations can be written as
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0.=0, 0,-W=0 (6.821,a2)

ag]) =0y (Sﬁj)pﬁs)

al) =B, o)p -6,U,,2), s=1..m (6.8b1,62)
by =0, (s@hg® +6,U,,,2°}

by =B, (s@)g", s=1...m (6.8¢1,c2)
Xy =~050)0,, ¥, =B, 0)0, (6.8d1,d2)
ag) =05 (sw)pY), afy) =P (s@)pl, s=1...m (6.8¢1,€2)
b =05 (s, by =By (sw)gl), s=1.m (6.8f1,£2)

In egs. (6.8al,a2), W is the equivalent static load at J. This pair of equations was obtained by
taking moments about H and is an expression of the fact that the zero frequency components
of the forces acting on the vibrating rotor are in a state of static equilibrium, as discussed in
Chapter 5 (end of section 5.3). In egs. (6.8), o, (w) and B, (@) are the point receptance
functions of the rotor at J at frequency @ rad/s, relating the forces at J in the x and y
directions respectively with the displacement responses there in the corresponding directions.
Similarly, ¢,, (@) and B, (@) are the point receptances of the support structure at B in the x

and y directions respectively. The receptances are given by:

1

&y (w): B (0)): - M. o? (6.9)
1

= S — 6.10

Oy (@)= By () T (6.10)

For solution, egs. (6.8) are expressed in the form p(ff,Q): 0 of eq. (5.18) by bringing all the
terms to one side of the equality signs. ¥ =v/c where v is the 4(2m+1)x1 vector of the
unknown Fourier coefficients of the SFD displacements X, a§;‘}, by, Y,, al), b,(,‘}'), Xs,

()

all, bl 7,, al), bY) for s=1..m. Q =0Q/w, where @, rad/s is taken as the rotor-

support structure critical speed with the SFD locked (i.e. the bounce critical speed), given by:
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wO:\/KB/(MR,J+MB) (6.11)

The resulting system is then solved using the arc-length continuation method (section 5.3,
pages 63-64), using the iterative algorithm in Appendix A1 to trace out a speed response
curve of NT - periodic solutions, where N is of fixed value.

For stability and bifurcation analysis of the RHB-computed periodic response, the
matrices D, Hy, of/duy, ofy/duy in the expression for the perturbation matrix W(zt),
egs. (5.44), (5.45) are required. The system of Figure 6.1 has a total H =4 modes: (a) one
mode of the rigid pinned-free rotor in each plane xz, yz; (b) one mode of the support structure
alone in each plane xz, yz. For (a), the natural frequencies in each plane are equal to zero,

since they define pure rotation of the rigid rotor about H. For (b), the natural frequencies in

each plane are w, =./K, /M, rad/s. Hence, the diagonal matrix D of eq. (5.31) is given by:
D=diagl0 0 K,/M, K,/M,]| (6.12)

The reduced modal matrix H of eq. (5.33) is given by the 4 x4 matrix:

(&)
J 02)(’)
Hy=|| 0 (R) 2 (6.13)
0, diag[ éSX) ¢£Sy)]
0, . is defined as a zero matrix of size ixj. ¢, ¢®) are the mass-normalised mode

ixj
shapes of the pinned-free rigid rotor, evaluated at J in the x and y directions. és"), és" ) are
the mass-normalised mode shapes of the support structure at B in the x and y directions. The

first two columns of H pertain to the modes of the rotor, alternately in the xz and yz planes.
The last two rows of these columns correspond to the values of the non-linear degrees of
freedom at B in these modes and so are all zero. The remaining two columns of Hy pertain
to the modes of the support structure at B, alternately in the xz and yz planes. The first two
rows of these columns correspond to the values of the non-linear degrees of freedom at J in

these modes and so are all zero. By comparing the receptance expressions of egs. (6.9),

(6.10) to the modal series expansion of the receptance function in eq. (A3.1) (Appendix A3):
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(&) — g (R) I/J_RJ— () = o) _1// (6.14a,b)

From egs. (6.1) and (6.2):

(90, 90, 90, 90,
X, 9Y, 09X, 0Y,
00, 00, 00, 00,
of X, dY, 93X, Y,
du,, BQ 90, 00, 90,
T0X, 9Y, X, ov,
00, 90, 00, 00,

X, oY, X, o, |

Y X .Y ) where X,, =X, -X,, .... etc. Hence,

rel >t rel > rel > rel

an \/aX = any/aXrel ’an>/aY - any/a rel ’an,y/aXB :_an,y/aXrel ?
00, /0¥, =-00, , /Y, . A similar process applies for of /ouy, . Hence,

From egs. (4.6a,b), Q. =0, (X

of g :li Jo —Jo of _ :Q ——VjQ 61500
auN - JQ JQ ’ a“;: - JQ JQ
where
00, 90, 90, 90,
X, dY,| v _|ox., or.
Jo = aQ; aQ: > Jo = ale BQ; (6.16a,b)
0X, oY ox’, oY,

rel rel rel rel

and () is d( )dt, T=wmt (@ rad/s being the fundamental frequency of the periodic
solution). The partial derivatives in eqs. (6.16) are evaluated numerically at the RHB-

computed periodic solution from the expressions for Q in egs. (4.6a,b). The above
expressions for D, Hy, ofy/duy, ofy/du} determine the expression for W(z) in egs.

(5.44), (5.45). The monodromy matrix G of the periodic solution is computed from W(’L’ )

using either eq. (3.20) (“slow” method) or eq. (3.22) (“fast” method).
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For the time domain solution (numerical integration), the equations used are an extension

of egs. (4.19) (Chapter 4):

)ff:QAx+(jsing (6.172)
¥7=0, ~Ucosg-W (6.17b)

A M o w :

X7 = &1 =2 X 6.17

B [MB %x [Q] B ( c)
M w. Y

Y= Rl |87 6.17d

() =

where () now denotes differentiation with respect to ¢ (=€), X, =X,/c., ¥, =Y, /c,

A

X,=X,/c, I;B =Y, /c are the non-dimensional displacements of J and B respectively and

O, , are the non-dimensional squeeze film forces:

QAx,y = Qx,y (XreZ’Yrel’Xrel’Yrel )/(MR,JCQZ) (618)

The non-dimensional dynamic load parameter U and the non-dimensional static load

parameter W were defined in egs. (4.21b,c). In this chapter, the integration of egs. (6.17)
was performed using a trapezoidal integration method [54], suitable for a system of stiff

differential equations.

6.3 RESULTS OF SIMULATIONS AND DISCUSSION

The system parameters used here are taken from [8, 63]. M, =24.5 kg, M, =3.5 kg,

K, =6.21x10° N/m, W =294 N. Hence the bounce critical speed is 75 rev/s. The SFD is

short and unsealed, with two lands, as shown in Figure 4.1(a), with c=0.216x10"m,

R=68.216x10"m, L=9x10"m. The oil viscosity 77 =0.021 Nsm? and the supply
pressure p, =34.5x10° Pa. In the simulations, the cavitation pressure p, is fixed at
—101.325x10° Pa (absolute zero). As in [8], all results refer to a non-dimensional dynamic

load parameter of U = 0.229.
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Figure 6.2 shows the speed response curves of T-periodic solutions computed by RHB
(N =1) with m =35 harmonics. Figures 6.2(a,b) refer to the amplitudes of the motion of the
SFD journal J relative to the housing B in the x and y directions respectively, whereas Figures
6.2(c,d) refer to the amplitudes of the absolute motion of the housing B in the x and y
directions respectively. The amplitudes are defined as half the peak-to-peak fluctuation in
the displacement time history and are normalised with respect to the radial clearance ¢. The

state of stability of each solution, according to the value of the leading eigenvalue A4,

(leading Floquet multiplier) of the monodromy matrix G is indicated according to the legend
in the figure caption. In these figures, the matrix G is computed by the fast method of eq.
(3.22) with K =200 subdivisions over one period of the RHB solution. Figures 6.3(a-c)

compare the values of the leading Floquet multiplier A, obtained from this method for the

computation of G with those obtained from the “slow” method for the computation of G.
The slow method used the 4™ order Runge-Kutta method for the solution of the perturbation
equation (3.12). In the solution of eq. (3.12), the use of the trapezoidal integration method
instead of the Runge-Kutta method was found to result in negligible reduction of
computation time. It is evident from Figure 6.3 that the results obtained by the fast and slow
methods are virtually identical. The use of the fast method cut the computation time for the
full set of results shown in Figure 6.3 from several hours to a few minutes (on a 333 MHz
Pentium II computer). Additionally, the number of subdivisions K in the fast method could
be doubled for an accuracy check, while still retaining a reasonable computation time.
Hence, the fast method for the computation of G, with K = 200, is used throughout this
thesis.

Attention is now focussed on the speed response curves of Figure 6.2, with particular
interest in the motion of the journal J relative to the housing B. In this part of the discussion,
reference is made to Figure 6.2(b) (without loss of generality, since all the graphs in Figure
6.2 express the same information regarding the stability of the 7T-periodic solutions).
Multiple T -periodic solutions exist in the region 0 =0.671 to £ =0.752 and the T-periodic
solutions form a spring-softening characteristic for the y amplitude (i.e. jump-up in y
amplitude on run-up in speed). This contrasts with the spring-hardening characteristic (i.e.
jump-down in amplitude on run-up in speed) reported in “parallel” SFD configurations (in
which the SFD is in parallel with the retainer spring or equivalent flexibility) [24, 30]. The
stable solutions form three sections. The middle one, centred at G (Q =0.985) is very short.

Figures 6.4(a,b,c) show the T-periodic orbits at points B, G and L (on Figure 6.2(b)) which
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lie close to bifurcation points. The stability of these orbits was confirmed by time-marching
from equilibrium initial conditions (i.e. initial conditions on these orbits). The stable branch
AB is characterised by distorted “figure-of-eight” orbits (Figure 6.4(a)).

Referring back to Figure 6.2(b), and moving along the curve, a bifurcation occurs beyond
point B where 4, escapes the unit circle in the complex plane along the positive real axis.
This indicates that the T-periodic solutions become unstable and any disturbance causes the

trajectory to jump to a periodic orbit of the same period (Chapter 3, section 3.2.3). As shown
in Figure 6.5, which refers to point D (on Figure 6.2(b)), 0 =0.684, time-marching from
initial conditions on the unstable orbit causes the trajectory to collapse to a stable “figure-of-
eight” T-periodic orbit residing along the lower branch AB of Figure 6.2(b).

Returning to Figure 6.2(b), as Q is decreased from the value at G (0.985), a period-
doubling bifurcation occurs where A, escapes the unit circle in the complex plane along the
negative real axis. A branch of 27-periodic solutions was traced out by RHB (N =2) from
0 =0.951 down to Q2 =0.685. Figures 6.6(a,b) show that two stable 27-periodic solutions
are possible for £ =0.951, corresponding to point F on Figure 6.2(b). Figure 6.6(c) shows
an unstable 27-periodic orbit at £2 =0.685. This should be compared to the unstable 7-
periodic orbit obtained for around the same value of Q in Figure 6.5(a). The 2T-periodic
solutions lose their stability for Q<072 (approximately). This corresponds to point E” in
Figure 6.2(b). In fact, despite A, being real and negative along section E’E, the unstable 7-
periodic orbits along this short branch behaved as those along CD when disturbed (i.e.
collapsed to stable 7-periodic attractors along AB).

When Q is increased from the value at G (see Figure 6.2(b)), a secondary Hopf
bifurcation occurs, where a pair of complex-conjugate eigenvalues A,, A; cross the unit
circle simultaneously. This indicates the birth of stable 2-frequency quasi-periodic motion.
This was verified in the Poincaré map of Figure 6.7 which refers to point H on Figure 6.2(b).
Time-marching from unstable equilibrium initial conditions (on the T-periodic solution)
caused the return points to spiral out from the first one (which lies on the unstable T-periodic
orbit and is labelled “E” in Figure 6.7), successive points hopping from one spiral branch to
the other. In the steady-state, the return points drift around a fixed closed curve, no point
ever quite coinciding with another. This ring is the result of an additional fundamental

frequency f, that is irrationally related to the original synchronous fundamental f,. As
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discussed in Chapter 3, section 3.2.3, the presence of two spiral branches in the transient

phase of the map indicates that f is approximately related to f, by the relation f, = (E / 2) )

where k is some positive integer and the ratio l;/ 2 is reduced to its lowest terms. The 2-
frequency quasi-periodic attractor is shown in Figure 6.8(a). Unlike the 27-periodic orbits of
Figure 6.6(a,b), consecutive pairs of “butterfly wings” do not coincide. Figure 6.8(b) shows
the frequency spectrum of the y component of the motion in Figure 6.8(a). The horizontal
axis in Figure 6.8(b) is the frequency normalised by the synchronous frequency component.
The spectrum is seen to have two strong sub-synchronous frequency components offset on
either side of f/f, =0.5. The frequency components are combinations k,f, +k, f, where
ko, and k, are integers. This result applies with f, being taken as either one of the pair
straddling f / J1 =0.5 (in Figure 6.8(b) it was taken as the lower frequency of the pair). If
IEO (“engine order”) is the synchronous component ( f;), it is seen that those salient
combination frequencies that are not equal to integers multiples of 1EO occur in pairs that are
symmetrically disposed about 1EQ/2, 3EQ/2, 5EQ/2, TEQ/2, .... etc., respectively.
Referring back to Figure 6.2(b), the quasi-periodic motion persists over a short regime.
Along the branch J-K the stable motion has reverted back to 27-periodic motion, as seen in
Figure 6.9. Shortly before point L is reached (Figure 6.2(b)), the two loops of the stable 27-
periodic orbital motion coalesce into one and 7-periodic motion finally becomes stable again.
Limited experimental results for the motion of the journal relative to the housing [8] are
reproduced in Figures 6.10(al-d1). These orbits are seen to evolve roughly as predicted:
distorted “figure-of-eight” orbits, followed by an apparent jump-up in amplitude on run-up in
speed, and period-doubling (evident by the double-looping in the orbits of Figures
6.10(c1,d1)). In the measurements, the period-doubling occurs somewhat later than predicted
and is less pronounced. In fact, in Figure 6.10(b2), the predicted unstable 7-periodic orbit is
closer to the measurement than the stable (27-periodic) one. This is attributed to additional
damping provided by the SFD that is not taken into account in the SFD model used. In fact,
the computational work in [8, 63] employed the same SFD model used here except that the
value of the film rupture pressure p, used at each speed was based on the corresponding
measurements of the dynamic pressure in the oil-film, and this value was mostly below
absolute zero to allow for the presence of a “tension spike” (as discussed in Chapter 4,
section 4.4). For the present purposes of predicting overall trends in vibration, a fixed

cavitation pressure of absolute zero is the best available option, as was shown in Chapter 4.
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The occurrence of quasi-periodic motion was not reported in [8, 63]. However, this type of
motion has been predicted here only for narrow range of speeds. Moreover, the investigation
in [8, 63] was only carried out for the four speeds shown in Figures 6.10(al-d1). 2-frequency
quasi-periodic spectra similar to the one in Figure 6.8(b) are verified in experimental work in
Chapter 8.

It is seen from Figure 6.2 that the unsupported SFD is particularly effective at providing a
safe passage through the bounce critical speed. The relative motion results in Figure 6.2(a,b)

indicate that for speeds well removed from the bounce critical speed, particularly for the y

direction outside the region 0.6 < Q <18, the damper practically acts as arigid link. In fact,
as seen in Figure 6.11, which refers to the mean y component of the T-periodic solutions for

the displacement of the journal J relative to the housing B, there is very little lift of the

journal from the base of the clearance outside the region 0.6 < (2 <1.8. However, Figure

6.2(d) shows that there is a sub-critical resonance of the T-periodic absolute housing

vibration in the y direction at Q=05. Figures 6.12(a,b) respectively show the variation of
the amplitude of the IEO and 2EO harmonic components of the 7-periodic solutions for the
absolute housing vibration in the y direction. It is seen from Figure 6.12(b) that the sub-
critical resonance in the y amplitude of the absolute housing motion in Figure 6.2(d) is due to
a resonance in its 2EO harmonic component. Hence, this phenomenon is referred to as sub-
critical super-harmonic resonance. This term was used by Ehrich [41], who obtained a
similar effect with the contacting rotor-stator system in Figure 2.2 (Chapter 2). As discussed
in Chapter 2, Ehrich cited a SFD journal bottomed in its clearance as an example, and
modelled the rotor-stator interaction by a non-linear, but piecewise-linear, spring, ignoring
the SFD forces. In the present case, a similar effect was obtained with an unsupported SFD,
in which the housing and the bottomed journal interact through the oil film. To the author’s
knowledge, this is the first time that the sub-critical super-harmonic resonance phenomenon
has been directly related to SFDs, without recourse to piecewise-linear spring models. From
Figures 6.2, 6.11 and 6.12 it is seen that, for an unsupported SFD in this condition: (a) the
SFD journal J lies at the base of the clearance circle (of centre B); (b) there is only a slight
relative vibration between J and B; and (c¢) the absolute vibration of B (or J) in the y direction
has a significant 2EO frequency component where 2EO is approximately equal to the bounce

critical speed (i.e. the undamped critical speed with the SFD locked). Figure 6.13 shows the

absolute orbital motion of the SFD housing at £2 = 0.500, computed by both RHB (N =1,

m =5) and numerical integration. It is noted that, since X,, ¥, = X,, Y, in this condition,
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the problem is ill conditioned, particularly with respect to the computation of the SFD forces.
Hence, very fine arc-length resolution had to be used in the RHB procedure. Similarly, fine
tolerances for the numerical integration error had to be used for time-marching solutions in
this region. It is noted that the absolute motion of the housing B in Figure 6.1 is directly
proportional to the force transmitted to the foundation (engine frame). Hence, sub-critical
super-harmonic resonance results in a sudden surge in the force transmitted to the engine
frame in the vertical direction. This regime of operation was not investigated in [8, 63].
However, ample experimental evidence of sub-critical super-harmonic resonance in
unsupported SFDs is provided in the subsequent chapters.

Like Ehrich’s case [41], it was found that the above statements concerning sub-critical
super-harmonic resonance could be generalised to resonance in the kEO frequency
component, where k is a positive integer, when the rotational speed is approximately 1/k
times the bounce critical speed. However, for the case of the unsupported SFD, super-
harmonic resonances for k =3 were found to insignificant and required very fine resolution
to be located, even with the arc-length continuation procedure. Ehrich’s bilinear oscillator
model also exhibited a mirror-image effect i.e. the generation of super-critical sub-harmonic
resonance in the 1EO/k frequency component when the rotational speed was close to k times
the natural frequency. For the present case of the unsupported SFD, it is seen from Figure

6.3 that, in the region of £ =2, the imaginary part of the leading Floquet multiplier A, of

the T-periodic solutions plunges towards zero, and the real part is negative (i.e. 4, tends to be

real and negative in the immediate vicinity of Q =2). Moreover, the absolute value of 1, in
this region is close to 1. Hence, a tendency towards period-doubling exists in the region of
Q =2. However, by repeating the analysis in this region with finer arc-length increments, it
was verified that, for the case studied, the modulus of 4, does not become greater than 1 in
the vicinity of £ =2 i.e.no period-doubling bifurcation occurs. This is likely to be due to
the fact that the lift of the journal from the clearance circle base (Figure 6.11) is still

sufficient at around Q2 =2 to prevent bilinear oscillator effects. However, the possibility of

super-critical sub-harmonic resonance in unsupported SFDs with bottomed journals is noted.
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6.4 CONCLUSIONS

In this chapter, the integrated modelling approach developed in Chapter 5 was applied to a

simple example taken from the literature, consisting of a rigid rotor running in an

unsupported, flexibly housed squeeze film damper. This configuration represented, to a

limited extent, the essential features of the vibration of a small gas turbine near its anti-

symmetric bounce mode. The conclusions are summarised as follows:

- The advantages of using Hsu’s fast approximate method for the computation of the
monodromy matrix G were clearly demonstrated. This method is hence used in the
subsequent chapters, where, in combination with the modal approach introduced in

Chapter 5 for the reduction in size of the matrix W(z), it is used to efficiently evaluate

the stability of periodic motion in more complex systems.

- The dynamics were found to be particularly rich around the bounce critical speed, with a
spring-softening characteristic for the 7-periodic solutions, period-doubling, and 2-
frequency quasi-periodicity. However, the attenuation in amplitude provided by the
unsupported damper allowed a safe transition through the bounce critical speed.

- For regimes well removed from the critical speed region, the SFD virtually acted like a
rigid link, but with one important difference — the generation of sub-critical super-
harmonic resonance in the 2EO frequency component of the y component of the absolute
housing (and journal) motion when the rotational speed was approximately equal to half
the bounce critical speed. The sub-critical super-harmonic resonance resulted in a sudden
surge in the vertical force transmitted to the foundation. This effect was associated with

piecewise-linear (bilinear) oscillator effects reported elsewhere in the literature.
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Figure 6.1: Schematic diagram of configuration A
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Figure 6.11: Mean y component of T-periodic solution for the displacement of the journal

relative to the bearing housing (U =0.229). RHB N =1, m=5: “0” stable, “+” unstable
(A, real, positive), “00" unstable (A4 , real, negative), “*”” unstable (A, complex)
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7 MODEL APPLICATION B:
FLEXIBLE ROTOR IN ONE RIGIDLY HOUSED SFD

7.1 INTRODUCTION

In this chapter, the integrated model developed in Chapter 5 is used to analyse a flexible rotor
with one rigidly housed squeeze film damper (SFD). Two variations of configuration B are
considered. In one configuration (B1) the SFD is sprung and statically offset in its housing,
and in the other configuration (B2) the retainer spring is removed so that the SFD is
unsupported. The primary objectives of this work are three-fold: (a) the verification of the
correlation between the three modelling blocks (i.e. receptance harmonic balance, modal
Floquet stability analysis, and modal numerical integration) under conditions of multi-modal
vibration of the rotor; (b) to predict and explain experimentally observed non-linear
phenomena from a test rig; and, to a limited extent, (c) to provide additional validation to the
model used for the computation of the SFD forces (discussed in Chapter 4). As discussed in
Chapter 2, the simplified 3-mass model used for configuration B in [21] did not allow an
adequate analysis of non-linear phenomena. The analytical and experimental information
gained in this chapter enables, for the first time, a relatively accurate assessment of the non-
linear performance of both sprung and unsupported SFDs when used in a bearing of a
statically determinate flexible rotor system. A brief description of the test facility is given in
the following section. The non-linear model equations are then presented. This is followed
by a brief account of the experimental procedure. The analytical and experimental results are

then presented and discussed, and conclusions drawn.

7.2 DESCRIPTION OF THE TEST FACILITY

Figure 7.1 shows a schematic diagram of the test rig. This flexible rotor-rigid pedestal
(bearing housing) system is typical of a small centrifugal pump. Photographs of this rig are
found in Appendix A5, section A5.4 (page 246). With reference to Figure 7.1, the mild steel
stepped shaft (4) runs in self-aligning ball bearings (3) and (6) at H and J respectively. The
ball bearing at H is rigidly supported. The ball bearing (6) has a ring fixed to its outer race
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and is free to orbit in the oil-filled annular clearance within the bearing housing (7), forming
the SFD (8). In Figure 7.1, J refers to the centre of the SFD journal (the “journal” being the
ring fixed to the outer race of (6)), and B refers to the centre of the bearing housing (7). In
configuration B1, four flexible bars (labelled (5) in Figure 7.1), forming a retainer spring,
connect the damper journal to the frame. This arrangement is elucidated in Figure 7.2. If the
pedestals E and F in Figure 7.1 are considered rigid and the bearing housing (7) is rigidly
bolted to F, then the retainer spring formed by the flexible bars is effectively in parallel with
the SFD. The retainer spring has equal stiffness values of 123.4 kN/m in both the x and y
directions. The static eccentricity of J from B can be varied by adjusting the position of the
housing (7). In configuration B2, the retainer spring is removed and the journal rests on the
bottom of the annular clearance in the static condition. In this configuration, anti-rotation
bolts are used to prevent the journal from rotating relative to the shaft axis, while allowing
sufficient clearance for the movement of J in the x and y directions. This arrangement is
elucidated in Figure 7.3. Referring back to Figure 7.1, unbalance masses are attached to the
overhung disc (9) at U. The vibration is monitored at three locations J, U and M along the
shaft. The point M is referred to here as the “mid-shaft” position, although the distance HM
is actually 0.4 times the span HJ. The vibration in the x and y directions at each location is
measured by a pair of orthogonal displacement transducers (“probes™). Those at J are aimed
at projections on the damper journal (as shown in Figures 7.2, 7.3) while those at M and U
are aimed directly at the shaft and disc respectively. The frame ((10) in Figure 7.1) is
extremely rigid relative to the shaft and the bedplate is bolted down to a massive, isolated
concrete block. The first two undamped modes of the rig with the retainer spring fitted and
no oil in the damper clearance were calculated by the mechanical impedance (MI) technique
[19] to occur at 13.7 Hz and 40.4 Hz (the MI model of the rig is described in the next
section). The corresponding calculated mode shapes are shown in Figure 7.4. The natural
frequencies compare favourably with the experimentally determined values in [21] (14 Hz,
41 Hz). The undamped natural frequencies of the rig with the SFD locked by inserting shims
into the annular clearance are also of interest. These were calculated at 31.2 Hz and 91.1 Hz
by the MI technique and the corresponding mode shapes (i.e. pin-pin modes) are shown in
Figure 7.5. The pin-pin frequencies compare favourably with experimentally determined
values in [21] (31.2 Hz, 88 Hz). The discrepancy in the latter frequency is attributed in part

to the neglect of the flexibility of the ball bearings in the calculation. In fact, if stiffness
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values of 10° N/m are assumed for both ball bearings at H and J, the first pin-pin resonance
frequency remains virtually unaltered at 31.2 Hz, while the second one decreases to 89.8 Hz.
The SFD is unsealed, as shown schematically in Figure 7.6 and has a central
circumferential groove. The oil groove depth is 5.25 mm. For configuration B2, some
experimental results are quoted from [64] for which the groove depth is 2.00 mm. In both

cases, the ratio d / ¢ is considered sufficiently large for the two-land model of the SFD to

groove
be applicable. Oil is supplied through 3 holes, spaced at 120° around the groove. The outlet
oil temperature is monitored by a thermometer located below the SFD in the oil-collecting
tray. The oils used are Shell calibration fluid C (viscosity of 0.0045 Nsm™ at an average
operating temperature of 34° C) and Shell Tellus R10 (viscosity of 0.0115 Nsm™ at an
average operating temperature of 32° C). Since the rig is run up to a top speed of 100 rev/s,
the maximum gap Reynolds number (eq. (4.16)) for the thinner oil is 2 (taking the density to

be 841 kg/m3 ). Using eq. (4.15) with C, = 0.287 (for moderate Re) [60], an upper limit for
the fluid inertia effect for both oils is estimated as M ,,,, =0.17 kg. This amounts to just 13

% of the combined mass of the ball bearing, damper journal and the equivalent retainer

spring mass, justifying the neglect of fluid inertia in the simulations.

7.3 MODEL APPLICATION

7.3.1 Introduction

In this section, the equations of Chapter 5 are applied to configuration B. In Figure 7.1, the
frame (10), bearing housing (7) and the self-aligning ball bearings are taken to be rigid, so
that the linear subsystem will be the shaft pinned at H and either sprung or unsprung (i.e.
free) at J (i.e. configurations B1 and B2 respectively). The polar moment of inertia of the
disc is sufficiently small for gyroscopic effects to be negligible over the operational range of
the rotational speed. Hence, in the linear subsystem the xz and yz planes are uncoupled. The
SFD is assumed to be the only source of damping. As a result of the latter two simplifying

assumptions, the P, x1 vector fy ((eq. (5.3)) is identical for both the frequency domain

(receptance harmonic balance (RHB)) and the time domain (modal analysis) equations.

Since the bearing housing 1s rigid, Py =2 and

f, :[g} (7.1)



o,, Qy are the SFD forces on J, calculated from egs. (4.6a,b) with X iV =X, Y, where
X;, Y, are the displacements of J from the (fixed) centre B of the rigid bearing housing.
The unbalance forces P,, P, at U are given by egs. (5.1a,b) with 7, =0 and the subscript k

removed.

7.3.2 Configuration B1 (retainer spring fitted)

In this case, the linear subsystem is the rotor pinned at H and sprung at J and u, is given by

_| X cer 7.2
uN—YJ -—eoy (7.2)

where ¢, , e, are the static eccentricities of J from the housing centre B in the x and y

eq. (5.11a):

directions respectively. In the RHB approach:

=X, +Z(axj cos swt+b§;, sin sait) Y, =7, +Z(a£j) cos sait+b§j) sin s(D‘t) (7.3a,b)

s=1

and

0, = Qx + Z (pf) cos st + qis) sin swt), 0, = Q—y + 2 (pgf') cos st + q@ sin s(D‘t) (7.4a,b)
s=1

s=1

where
o) (s) () )
gx :ijr 2. dt, p?) zijr 9, cos st dt, q’(‘) :-gr 2. sin st dt
0, Thlo ™ |p9]"Th|o ¢ |"Th |0,
(7.5a-c)
In the above equations, I = 27/@ = NT (eq. (5.8b)). Hence, defining
0 s#N
Oy, = (7.6)
Ns {1 s=N

the complete set of RHB equations (5.14) can be written as:
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P

s~ e =0, (0)0,

Y, —¢,, =B, 000, (7.7a1,a2)
al) =a, (so)p?

a$) = B, (sw)p") =8, B,, BYR?, s=1..m (7.7b1,b2)
by =a,, (sw)g® + 8,0, (sw W

by =B, (@), s=1...m (7.7¢1,62)

In the above equations, ¢, (@) and B PO (@) are the receptance functions at frequency

rad/s of the linear subsystem, relating the forces at position Q in the x and y directions
respectively with the displacement responses in the corresponding directions at position P.
All receptance functions are real and independent of rotational speed due to the neglect of

linear damping and gyroscopic effects. Also, o, (@)=p PO (w) (rotor isotropic). The rotor

receptances are evaluated using the mechanical impendance (MI) technique [19] and the MI
model used for the rotor is described in Appendix A2, section A2.2. An overview of the MI
method 1s given in section A2.1. It suffices to say here that only the attachments to the shaft
(e.g. the disc at U, the ball bearing and damper journal at J, ... etc.) were considered as
lumped inertias. The impedance matrices of the shaft elements for each plane xz, yz were
based on the exact solution of the plane harmonic bending wave equation of a uniform
section beam of distributed inertia. Hence, these matrices were exact, irrespective of element

length, and only 8 such elements needed to be used in the MI model of the rotor. For
solution, egs. (7.7) are expressed in the form p(@,ﬁ):(} of eq. (5.18) by bringing all the
terms to one side of the equality signs. ¥ =v/c where v is the 2(2m+1)x1 vector of the
unknown Fourier coefficients of the SFD displacements X 7 a§§',) b}((“']) , 17, , a,(f), b,fj) for
s=l.m. Q=Q [, , where @, (rad/s) is arbitrarily chosen as the first pin-pin critical

speed, 2w x31.2 The resulting system is then solved using the arc-length continuation
method (section 5.3, pages 63-64), using the iterative algorithm in Appendix Al to trace out a
speed response curve of NT - periodic solutions, where N is of fixed value. For each such
solution, the Fourier coefficients of the SFD forces are known. The Fourier coefficients of

the response at an arbitrary position P on the rotor:
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=X, + i( cos s@t + b sin szaz) Y, =Y, + 2 (ayp cos st + bl sin swz) (7.8a,b)

s=1

are determined from egs. (7.7) by omitting the terms ¢,_, e, , replacing the subscript J by P

in the displacement Fourier coefficients on the left hand side of egs. (7.7) and replacing the
first subscript J by P in the receptance terms on the right hand side of eqgs. (7.7). The right
hand sides of the modified equations can then be evaluated to yield the Fourier coefficients in
egs. (7.8).

For the time domain equations of motion, 4 modes of vibration of the undamped pinned-
sprung rotor in each of the xz and yz planes are considered, giving a total of H =8 modes.

Hence, the modal coordinate vector ¢ (eq. (5.29)) and matrix D (eq. (5.31)) are written as
q= [q,d 94y " G qer (7.9)
D:—diag[ouj1 0} - 0, o’ | (7.10)
The modal equations (5.32) hence reduce to

G, tolq, =90 +¢iP, (7.11a)

G, +wlq, =070, +¢SP,, where r=1...4 (7.11b)

In the above equations, @,,, @,,, ¥ =1...4 are the natural frequencies in the xz and yz planes

xr?

respectively and ¢(" , f,y’) are the corresponding mass-normalised mode shapes, evaluated
at position P in the x and y directions respectively. Note that @, =®,, and ¢; () = </>(y’). The

first two mode shapes in each plane have already been illustrated in Figure 7.4. For the

computation of the instantaneous SFD forces Q,, Qy, the instantaneous non-linear degrees
of freedom, measured from the housing centre B (i.e. X, Y, in eq. (7.2)) are required. The
vector u, of eq. (7.2) is expressed in terms of the modal coordinate vector q of eq. (7.9) by
the reduced transformation uy = Hyq (eq. (5.34)). The reduced modal matrix Hy (eq.

(5.33)) is given by the 2X8 matrix:
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(XI) O e (X4) O
Hy =" ! 7.12
N [ 0 ¢j(y1) 0 ,(WJ ( )

where the columns define the modes of the rotor, alternately in the xz and yz planes.

The evaluation of the modal parameters of the rotor is described in Appendix A3,
sections A3.1, A3.2. The natural frequencies are determined from the mechanical impedance
frequency response functions. The required mode shapes are then determined by fitting 4

modes to the exact receptance function o, (a)) (computed by MI) using a truncated modal
series expansion for o, (@) [47]. In Figure 7.7 the exact receptances ¢, (@), o, (@),

computed by MI, are compared with approximate ones, reconstructed from the first 4 modal
terms in their series expansions. It is evident that excellent agreement prevails over a
frequency range of 0-500 Hz, covering 5 harmonics of the top rotational speed of the rig (100
rev/s).

Equations (7.11) are ready for numerical integration from given initial conditions for the
time domain response. Prior to integration, these equations are non-dimensionalised and
expressed as a set of first order differential equations, as illustrated in Appendix A4, section
A4.1. The instantaneous x and y response at an arbitrary position P on the rotor is given in
terms of the modal coordinates by the appropriate pair of rows of the full transformation
u = Hq (eq. (5.28)), and thus necessitates the computation of ¢ f.’”), o f,y’) ,r=1...4.

For stability and bifurcation analysis of the RHB response, the matrices ofy/ouy ,

ofy /duy in the expression for W(’l‘) (egs. (5.44), (5.45)) are required. From egs. (7.1) and

(7.2) these are given by

90, 40, a0, d0,
oy |0X, Y, | ofy |oX, dy,
duy |99, 90,1 3uy |92, 92,

(7.13a,b)

where () is d( )/dt, T=ot (@ rad/s being the fundamental frequency of the periodic
solution). The partial derivatives in egs. (7.13) are evaluated numerically at the RHB-

computed periodic solution from the expressions for Q,  ~ in egs. (4.6ab). The above

expressions, along with the expressions for Hy (eq. (7.12)) and D (eq. (7.10)) determine the
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expression for W(’L’) in egs. (5.44), (5.45), from which the monodromy matrix G of the

periodic solution is computed, using eq. (3.22).
The equations presented in this section are processed as discussed in section 5.7 of

Chapter 5.

7.3.3 Configuration B2 (no retainer spring)

In this case, the linear subsystem is the rotor pinned at H and free at J. The pinned-free rotor
is degenerate, having in each plane xz, yz, one mode defining (non-oscillatory) pure rigid
body rotation about the pivot H. In this situation, the static load of the rotor needs to be taken
into account. The zero frequency components of the forces on the vibrating rotor are in a
state of static equilibrium, as explained in Chapter 5 (end of section 5.3). Since this zero
frequency equilibrium problem is statically determinate, the distributed rotor weight can be

replaced by an equivalent concentrated load at J, equal to W, where
W =Wl /Ly (7.14)

where W, is the total rotor weight, [, is the distance of the rotor mass centre G from the
pivot H, and /,,, is the distance between H and J. Accordingly, the equations in the previous
section 7.3.2 are modified as follows:
- The vector [eOX eoy]T is omitted.

- The zero frequency RHB equations (7.7al,a2) are replaced by the following static

equilibrium equations at zero frequency (obtained by taking moments about H):
0,=0, Q,-W=0 (7.1521,22)

- If required, the zero frequency Fourier coefficients in egs. (7.8) can be found by
considering the straight line joining the pivot H to the mean position of J, X ,, Y,. The
reason for this is that, with the equivalent static load system, the only zero frequency
forces acting on the rotor are concentrated at H and J, producing no deformation. To
obtain the precise zero frequency shape of the rotor in the yz plane, one needs to
superimpose (on this undeformed straight line) the static deflection curve of the rotor

supported at H and at the mean position of J, due to the distributed weight. However, this
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refinement is unnecessary since it has no effect on the mean position of J, which is the

only zero frequency component of vibration that is of interest.
- An additional term, equal to —¢ "W , is added to the right hand side of eq. (7.11b) to

account for the static load.

For the time domain equations of motion, 4 modes of the pinned-free rotor are taken in

each of the xz and yz planes. This number includes the rigid body mode ie. @, ®, =0.

The modal parameters are given in Appendix A3, section A3.2. Figures 7.8(a,b) compare the

exact receptances o, (), a U (@), computed by MI, with approximate ones, reconstructed

from the first 4 modal terms in their series expansions. As for configuration B1, excellent
agreement prevails over a frequency range of 0-500 Hz, covering 5 harmonics of the top

rotational speed of the rig (100 rev/s).

7.4 EXPERIMENTAL WORK

For configuration B1 (retainer spring fitted), the static eccentricity &,, = ¢,,/c, €y, =€, / c,

of the journal centre J from the bearing housing centre B was set by loosening the screws
bolting the housing (7) (Figure 7.1) to the frame. A small clearance in the screw holes of the
housing allowed its position to be adjusted prior to retightening. The static eccentricity
adjustment was complicated by a static run-out of the shaft. By rotating the shaft slowly by
hand and using a micrometer dial indicator with its stem pressed to the shaft at M, and at
locations as close as possible to J and U, it was found that the amplitude of the fluctuation in
the reading was 0.015, 0.022 and 0.05 mm respectively, for the y direction. The run-out in
the x direction was considerably less. The run-out at J was confirmed by the readings of the
displacement transducers (see Figure 7.2). This meant that the run-out was not due to lack of
roundness of the shaft surface since the displacement transducers at J were aimed at
projections on the journal rather than at the shaft. This also meant that the static eccentricity
of J was different for different angular positions of the shaft. At first this appeared unusual
since the shaft was pivoted at H and, regardless of whether the shaft was distorted (due to the
machining process, gravity, and temperature), the restoring force from the retainer spring
should have maintained I at a fixed position within the clearance. The most likely
explanation is that the distortion of the shaft resulted in angular misalignment of the hubs at
the flexible drive coupling, resulting in a slight restraining torque that varied with the angular

position of the shaft. This slight restraint was thought to affect the position of J, considering
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the low stiffness of the retainer spring (123.4 kN/m). In view of this problem, the
eccentricity was adjusted in the vertical and horizontal directions for each of four angular
positions (0°, 90°, 180°, 270°) of the shaft. For each direction x, y, the average eccentricity
over the four angular positions was brought as close as possible to the desired eccentricity in
that direction. The static eccentricity was rechecked after each experiment, when the rig was
hot. Details of the static eccentricity adjustment are found in Appendix A5, section A5.2. In
the investigations carried out, the static eccentricity was entirely in the y direction.

In the experiments for configuration B2, the retainer spring was removed and the
arrangement in Figure 7.3 was used.

The displacement transducers at J, U and M were connected through voltage amplifiers to
a PC-operated Hewlett Packard HP 35650° spectrum analyser, which was set to acquire data
in the form of a time history. The vibration data in the x and y directions were obtained for a
given unbalance at U and fixed oil supply pressure over a range of speeds (10-100 rev/s) in
steps of 2 rev/s. The rotor speed was measured using an optical sensor and the observed
fluctuation in speed over each acquisition was within + 0.5 rev/s. Instrumentation details are
found in Appendix AS5, section A5.1. For the SFD location (J), the mean component of the
displacement response relative to the static position was of interest. In view of the variable
nature of the static position in configuration B1, the method described in Appendix A5,
section AS5.3, was used. The time capture length of the vibration data was usually 0.5 s, but
was increased to 2 s as required. The data were converted from standard format to MATLAB®

format for time and frequency domain analysis.

7.5 RESULTS AND DISCUSSION

In this section, theoretical and experimental results are presented and discussed. In the
theoretical treatment no attempt is made to compensate for the small residual unbalance left
after the rig was balanced when first commissioned. The residual unbalance response was

investigated experimentally in [64] and found to be adequately small. In the theoretical

treatment, unless otherwise stated, the cavitation pressure p, = —101.325x10°> Pa.
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7.5.1 Configuration B1 (retainer spring fitted)

The oil used in this configuration is the thinner oil (Shell calibration fluid C) and the supply
pressure is fixed at 1 bar. As mentioned in the previous section, the static eccentricity is
entirely in the y direction.

The choice of the number of harmonics m to use in the T-periodic RHB solution (i.e.
N =1 in eq. (5.8b)) is first considered. Figure 7.9 shows an example of how the RHB
solution converges to the time-marching (modal numerical integration) result as m is
increased from 1 to 5. It is seen that the inclusion of further harmonics in the RHB solution
is unnecessary. It is worth mentioning that the RHB solution uses exact receptances (no
modal truncation). Hence, the agreement between the RHB and modal numerical integration
results is also a check on the adequacy of the number of modes used in the latter method.
The example in Figure 7.9 illustrates the varying influence of the harmonics (which in this
case are integer EOs, where 1EO (“engine order”) represents the synchronous frequency
component) on the orbital distortion at the three locations J, U and M. It is seen that, while
the presence of these integer EOs is a symptom of the non-linearity of the system, the orbital
distortion they produce does not necessarily manifest itself significantly at the actual source
of the non-linearity (i.e. at J). In the example shown, the transfer receptance function linking
M to J amplifies the responses at M to the individual harmonic components of the SFD forces
at J. The high degree of correlation between the T-periodic RHB solutions with m =35 and

the numerical integration results over the entire operating speed range is illustrated in the

speed response curves of Figure 7.10 for &, =-0.8 and U =5.1x10"kgm. The vertical

axes show the displacement amplitude normalised with respect to the radial clearance ¢. In
this thesis, the displacement amplitudes in the x and y directions are invariably defined as half
the peak-to-peak fluctuation in the respective displacement time history. The state of
stability of each RHB solution, computed by Floquet analysis, is indicated according to the
legend in the figure caption. Arc-length continuation is used to trace out the RHB solution
curve, so the rotational speed corresponding to each solution is not pre-selected, but comes
out as part of the solution process. On the other hand, the time-marching results are
performed at discrete pre-selected speeds, in steps of 2 rev/s, and the corresponding solution
points are not joined in Figure 7.10 for emphasis. For each speed, the initial conditions for
the time-marching solution were equilibrium conditions on the corresponding 7-periodic
solution, obtained by modal decomposition of the RHB N =1, m =35 solution at that speed

(see eqs. (5.47a,b)). The time domain solution was then continued well into the steady-state
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phase. In Figure 7.10 it is seen that excellent agreement is achieved between the stable RHB
solutions and the time-marching results. According to the Floquet analysis results, in the
range 32-35 rev/s, the T-periodic RHB solutions are unstable as a result of a secondary Hopf
bifurcation, so the (stable) time-marching result at 34 rev/s does not agree with the (unstable)
RHB N =1 result at this speed. Figure 7.11 shows the evolution of the time-marching
solution at 30 rev/s, for which the RHB 7-periodic solution is stable. The slight initial
perturbations in Figures 7.11(al-a3) are attributed to slight errors in the initial conditions.
These perturbations rapidly die down and the time-marching trajectory remains closely
matched with the T-periodic RHB solution, verifying that it is indeed an attractor. Figure
7.12 considers the evolution of the time-marching solution at 34 rev/s, where the T-periodic
RHB solution is unstable. As can be seen, the time-marching result evolves into quasi-
periodic motion, confirming the Floquet stability result. Figure 7.13 shows the Poincaré map
of the time-marching solution at the SFD. It is seen that, in the transient phase, the return
points (in red) spiral out from the first one (the unstable equilibrium point E), consecutive
points hopping from one spiral branch to the next. In the steady-state, the return points (in
blue) drift around a fixed closed curve, no point ever quite coinciding with another. This
indicates 2-frequency quasi-periodic motion. From the discussion in Chapter 3 (section
3.2.3), the presence of 4 spiral branches in the transient phase indicates that the non-

synchronous fundamental f, is related to the original (synchronous) fundamental f, (=

IEO) by the relation f, = (£/4)f, where k is some positive integer and the ratio k/4 is
reduced to its lowest terms. In fact, as shown in the frequency spectra of the steady-state
quasi-periodic motion of J at 34 rev/s (Figure 7.14), f, =9Hz (i.e. f, = f,/4). Itis also
seen from these spectra that all frequency components can be expressed as combinations
k,f, +k, f, where k,, k, are integers.

Figure 7.15 shows the variation of the modulus of the leading Floquet multiplier for the
T-periodic RHB solution for the static eccentricity and unbalance conditions considered in
this discussion. It is evident that, as static eccentricity and/or unbalance is increased, there is
a tendency for the T-periodic response to develop a region of instability. As shown in Figure
7.16, this instability is the result of a secondary Hopf bifurcation (4, complex). The region

of instability of the T-periodic solutions lies between the first pin-pin critical speed (~31

rev/s) and the second undamped critical speed of the test rig (SFD unlocked, ~40 rev/s), and
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is closer to the former speed than the latter. This region is also particularly sensitive in that it
is the zone of maximum amplitude, as shall be seen later in the amplitude-speed plots.
In view of the results of Figure 7.15, the measured orbital motions (over 0.5 s) are

investigated for the range 26-38 rev/s and compared with the T-periodic predictions. Figure

7.17 refers to g,, =—0.6 and U =2.59% 10~ kgm and it can be seen that the measured orbits

are periodic throughout the speed range under these conditions. Notice that, since the
displacement probes at U were aimed at the disc rim, slight machining irregularities of the
rim profile resulted in slight glitches in the elliptical orbit measured at U. In Figure 7.18,

which refers to the same static eccentricity value ( €y, =—0.6) but twice the previous

unbalance, aperiodic motion was measured for 32 and 34 rev/s. This is contrary to the
stability prediction (Figure 7.15(b)) but is understandable, given the proximity of the peak in
Figure 7.15(b) to the instability threshold and, more importantly, the difficulty in obtaining
precise static eccentricity conditions due to the static run-out. As expected, the measured

aperiodic motion becomes more widespread as the static eccentricity is increased to

€,, =—0.8 at the same unbalance level (see Figure 7.19). The aperiodicity appears at around

30 rev/s and stability of T-periodic motion is not restored until 38 rev/s. The region of
instability is somewhat wider than predicted (32-35 rev/s). It is noted from the periodic
orbits in Figure 7.18 at 26 and 30 rev/s, and those in Figure 7.19 at 26 and 28 rev/s, that the
varying influence of the harmonics on the orbital distortion at the three locations J, U and M,
predicted earlier in Figure 7.9, was indeed verified in the measurements. The outlines of the
highly distorted measured orbits at M in Figure 7.18 for 30 rev/s and Figure 7.19 for 28 rev/s
were correctly predicted with m =5 harmonics in the RHB N =1 solution. Moreover, the
RHB N =1 solution still gives a good prediction of the peak-to-peak displacement at those
speeds for which the measured motion was aperiodic.

The frequency content of the measured aperiodic motion for &,, =-0.8 is next studied.

For this purpose, the data length is increased from 0.5 s to 2 s. Figure 7.20 shows the orbital
motion at J, U and M over 2 s for two speeds, 30 and 34 rev/s. The ones for 34 rev/s are
comparable to the time-marching prediction for the same speed (Figures 7.12(b1-b3)). The
frequency spectra of the y component of the measured SFD motion at 30 and 34 rev/s are
shown in Figure 7.21. In these spectra, the Hanning window [47] is used to mitigate the
leakage effect from adjacent frequency spikes. It is found that the salient peaks in the spectra

of Figure 7.21 occur at combinations k,f, +k, f, where k,, k, are integers. For 30 rev/s
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(Figure 7.21(a)), f, =11Hz and f, =30Hz (synchronous). For 34 rev/s (Figure 7.21(b)),
fo=12.5Hz and f, =34Hz (synchronous). The 9 Hz frequency component predicted in
Figure 7.14 appears in the measured spectrum of Figure 7.21(b) as f, —2f, rather than f,.
In fact, with reference to Figure 7.21(b): 9= f, ~2f,, 12.5= f,, 21.5=f, - f,, 25=2f,,
34=f, 43=2(f, - f,), 46 = f, + f,, 50=4f,, 68=2f,, 102=3f,. The lobe at ~17 Hz
(= f,/2) is actually composed of a double peak, where each peak is a combination
frequency. A double-peaked lobe centred at the 1IEQ/2 location is also evident in Figure

7.21(a) (30 rev/s) and in the predicted spectrum of Figure 7.14(b) (34 rev/s). In fact, due to
the sum and difference nature of the frequencies, the sub-synchronous frequencies are

symmetrically arranged around the 1EQ/2 location (i.e. the mean of f, and f, — f, is f,/2,

and so is the mean of f,—2f, and 2f,). The measured spectra of Figure 7.21 provide

evidence that the measured 7-periodic motion for &,, =—-0.8, U = 5.1x107 kgm underwent

a secondary Hopf bifurcation at some speed between 28 and 30 rev/s.
Attention is now focussed on the predicted and measured amplitudes in the x and y

directions. The static eccentricity and unbalance conditions considered are those indicated in
Figure 7.15. For the condition &, =-0.8, U =5.1x107 kgm, the maximum change in
amplitude, as a result of the instability of the 7-periodic RHB solutions in the range 32-35
rev/s, is at 34 rev/s, and, as seen in Figure 7.10, this change is not that great. Hence, for the
purposes of this part of the discussion, the issue of stability is ignored and the RHB N =1

predictions are used throughout.

The predicted and measured amplitude-speed plots are shown in Figures 7.22-7.25. In

addition to the lower pressure limit of p, = —101.325x10° Pa, another set of 7-periodic
RHB solutions was generated by taking p, =—oo (no lower pressure limit imposed i.e. a full

film at the SFD under all conditions). The predictions obtained with p, =-101.325x10’Pa

are referred to here as the “absolute zero cavitation” results, while those obtained with

p, =—oo are referred to as the “full film” results. Those regimes of operation for which

cavitation occurs are identified by those regimes for which divergence occurs between the

speed response curves obtained by the two different values of p,. The reason for this is that

the divergence would be the result of the minimum oil film pressure in the full film model

going below absolute zero. In this way, one can study the influence of static eccentricity and
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unbalance on cavitation within the SFD at a fixed supply pressure (1 bar) and observe how
the cavitation affects the predicted vibration levels.

Figures 7.22(a,b) show the vibration levels at the SFD for the static eccentricity of

€y, =—0.6 and the lower unbalance (U = 2.59%10™ kgm). It is clear that both the absolute

zero pressure cavitation model and the full film model yield virtually identical results,
indicating that negligible cavitation is predicted under such conditions. The predictions for
the vibration levels at the other locations of the rotor are consequently very close for both
models (Figures 7.22(c-f)), with maximum divergence being registered at the disc position
(U) in the y direction (Figure 7.22(d)). Note that in Figures 7.22(a,c), which refer to the x
direction (for which the SFD is centralised), two maxima are observed in both measurement
and prediction. The lower predicted maximum is less defined, especially for the SFD x
vibration, Figure 7.22(a). These maxima may be related to the undamped natural frequencies
of the test rig (14, 40 rev/s). In the y direction (for which the SFD is offset), Figures
7.22(b,d.f), the first maximum is entirely absent from the prediction, while the second one is
predicted at a lower speed (around 32 rev/s). Hence, the predicted behavior in the y direction
is more akin to the pin-pin configuration of the test rig (i.e. with SFD locked, where the first

critical speed is 31 rev/s). Figure 7.23 shows the effect of doubling the previous unbalance to

U =5.1x10"kgm for the same static eccentricity condition of &, =—0.6. Large

discrepancies emerge between the cavitated and uncavitated model predictions within the
range 28-36 rev/s. As previously discussed, this means that within this speed range, in the
full film model, the oil film supports a region below absolute zero pressure (i.e. absolute
tension) and hence cavitation occurs in the absolute zero cavitation model. Within the zone
of maximum amplitude, 30-34 rev/s, the full film model predicts extremely high vibration in
the y direction at positions other than the SFD (i.e. at U and M), which were not verified in
the measurement. In the x direction, the uncavitated predictions for the vibration at U and M
are extremely large in the immediate vicinity of 31 rev/s. Figure 7.24 shows the vibration

levels for the higher static eccentricity of &, =-0.8 and the lower unbalance

(U =2.59x107 kgm). This figure is included for completeness. Of more interest is Figure

7.25, which shows the effect of employing a static offset of &, =-0.8 at the higher

unbalance (U =5.1x107 kgm). Large differences between the two SFD models now emerge
not just in the 27-37 rev/s zone, but for the y direction especially, above 70 rev/s (Figures

7.25(b,d,f)). This implies an additional predicted cavitation regime.
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From the full film unbalance response predictions in Figures 7.23-7.25, it is evident that
as the static eccentricity and/or unbalance is increased, an uncavitated SFD (i.e. a full film)
would cause the rotor to behave in certain speed ranges as though it were pinned at the SFD
journal J. This tendency is especially strong in the y direction at the higher offset of

€,, =—0.8: the critical speeds tend to 31 rev/s for €, =-0.6, and 31 rev/s and 91 rev/s for
£,, =—0.8. However, cavitation in the SFD around these speeds mitigates this effect and

maintains the predicted vibration within acceptable limits at all positions along the rotor. In

the case of the offset condition &, =-0.8, cavitation completely attenuates the predicted

peak at the second pin-pin critical speed of 91 rev/s (Figure 7.25(f)), which agrees more
closely with measurement. The reason for this striking difference in vibration amplitudes
predicted by the two SFD models is a direct consequence of the centralising effect cavitation
has on the SFD journal. A direct consequence of cavitation in an eccentric damper is the
steady component of displacement it produces counter to the direction of the static offset.
The example of Figure 4.4 (Chapter 4) indicates that an uncavitated squeeze film that is
unsupported by a parallel retainer spring cannot produce a sustained lift to counter the gravity
load. In the present case, the full film model does not produce any lift (of the mean position
of vibration) from the statically offset position of J. Hence, as the static eccentricity and/or
unbalance are increased, the vibration is limited by the clearance circle (i.e. there is less room
for vibration) and the SFD forces become very large, especially in the y direction (the
direction of the offset), but also at the limits of the x vibration. These large SFD forces
would render the SFD ineffective, and the resulting effect at the other locations M and U
would approach that obtained by locking the SFD. However, in the present case, this adverse
effect is prevented by the centralising effect of cavitation. Figure 7.26 shows the variation of
the mean y displacement at the SFD (i.e. Y, / ¢ in eq. (7.3b)) with rotational speed for four
different conditions. It is clear that, under all conditions, the full film model produces no lift
from the static position. On the other hand, the cavitation regimes are clearly defined by
those speed ranges where the absolute zero pressure cavitation prediction rises from the static
position. The measurements in Figure 7.26 follow the trend predicted by the absolute zero
pressure cavitation model.  In fact, approximately over the cavitation regimes predicted in
Figure 7.26, pinhole bubbles were observed within the oil flowing out of the damper,
indicating cavitation, and these observations tend to agree with those made in a previous

investigation [64].
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It is noted that Figures 7.23(a,b), 7.24(a,b), and Figure 7.25(a) indicate that the amplitude
at the SFD in the immediate vicinity of 31 rev/s (first pin-pin critical speed) is greater with
the full film than with the cavitated film. This may at first appear to contradict previous
studies [11]. However, it is important to note that studies like [11] were restricted to rigid
rotors. To the author’s knowledge, this is the first time that comparisons have been made
between cavitated and uncavitated SFDs interacting non-linearly with a flexible rotor.
However, it is noted that this effect is restricted to an extremely narrow speed range centred
at 31 rev/s. In fact, a similar effect would be obtained if the SFD and retainer spring were
replaced by a very large but still finite stiffness: since the stiffness is finite, the node will not
be located exactly at J and, in the absence of any other damping in the system, a spike at 31
Hz would appear in the transfer receptance function linking J to U. It is also worth
mentioning here that all the full film RHB N =1 results shown in Figures 7.22-7.26 tested
positive for stability (with the Floquet test). However, it is noted that those solutions at the
very tip of the spikes at 31 rev/s in Figures 7.23(a,b)-7.25(a,b) were on the verge of
instability.

In Figures 7.22-7.25, the very low level in the SFD vibration at 50-52 rev/s corresponds

to the anti-resonance at 52 Hz in the calculated transfer receptance function between J and U

for the linear subsystem (i.e. &,, (@) in Figure 7.7(b)). At 50-52 rev/s, the measured orbit at

J is practically a “dot” of amplitude that is much less than the static run-out there. This
indicates that the run-out at J has little or no effect on the alternating part of the displacement
i.e. the run-out is a purely static or, at worst, a low frequency (quasi-static) phenomenon.
The position of this dot within the clearance circle corresponds to the static eccentricity
setting (which was averaged over four angular positions of the shaft in cold and hot
conditions), as seen in Figure 7.26.

The results in Figures 7.22-7.26 show that, overall, the assumption of film rupture at
absolute zero pressure gives satisfactory predictions for the vibration levels. Unfortunately,
the limitations of the test facility did not allow the tests to be repeated at higher supply
pressures. However, the present theoretical study highlights the beneficial effect of
cavitation in maintaining the critical vibration amplitudes at U and M at a safe level for a
supply pressure of 1 bar under conditions of high static eccentricity and unbalance. Hence, it
is not advisable to increase the supply pressure and consequently, suppress cavitation, under

such conditions.
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7.5.2 Configuration B2 (no retainer spring)

In the first part of this section, the same oil used in configuration B1 (i.e. Shell calibration
fluid C) is used. The experimental results are obtained from [64] and the supply pressure is
slightly higher (1.2 bar).

Figure 7.27 shows the amplitude-speed plots obtained with the higher unbalance

(U =5.1x107" kgm), upon removing the retainer spring. The predictions are RHB N =1,

m =5 . The state of stability of each such T-periodic solution, evaluated by Floquet analysis,

is indicated in the figure caption. Beyond ~82 rev/s, the T-periodic solutions become

unstable as a result of a secondary Hopf bifurcation. Hence, the steady-state time-marching
solutions for 82-100 rev/s are also included in blue in Figure 7.27, for discrete speeds, in
steps of 2 rev/s. The initial conditions for each time-marching solution were obtained from
the final ones of the solution at the previous speed and the integration was continued well
into the steady-state phase. The following observations can be made of the results in Figure

7.27:

(a) At the SFD, in the y direction especially, there is hardly any vibration except in the
regions around 31 and 90 rev/s. These speeds correspond to the first two undamped pin-
pin critical speeds. The measured values for the half peak-to-peak displacement at J in
the y direction around both pin-pin critical speeds, and in the x direction, around the first,
are actually greater than the radial clearance. In [64], this was attributed to the anti-
rotation mechanism for the journal not functioning properly. In fact, only one of the two
anti-rotation bolts shown in Figure 7.3 had been used in [64]. Figure 7.28 shows that the
mean position of the T-periodic solutions only lifts off from the base of the clearance in
the vicinity of the pin-pin critical speeds. The lift-off at the first critical speed is sudden.
The lift-off of the T-periodic solutions around the second critical speed is more restrained.
However, it should be noted that beyond ~82 rev/s these T-periodic solutions are
unstable. The stable motion in this region is discussed later. The amplitude
measurements in Figure 7.27 indicate that the actual lift at the SFD was as predicted.
However, the mean (“dc”) component of the SFD vibration was not acquired in [64].

(b) Around the first pin-pin critical speed (31 rev/s), the predicted speed response curve of 7-
periodic solutions is very complicated, with a multiplicity of solutions, some of which are
stable, some unstable. This is also seen in Figure 7.29(a), which shows the corresponding
variation of the modulus of the leading Floquet multiplier with rotational speed. In

Figure 7.30, a T-periodic RHB solution at 31 rev/s that was found to be stable by Floquet
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analysis is checked by time-marching from initial conditions on it. For accuracy, the
number of harmonics m of the RHB solution is increased to 8. In Figure 7.30(a) it is seen
that considerable initial perturbations are obtained. However, these are not attributed to
instability of the orbit, but to errors in the initial conditions, that were obtained by modal
decomposition of the RHB solution (egs. (5.47a,b)). In fact, these perturbations
disappear in Figures 7.30(b1-b3).

(c) The RHB-computed T-periodic solutions outside the critical speed regions are marked as
stable in Figure 7.27. Actually however, they are mainly on the verge of instability, as

seen in Figure 7.29(a), and, as seen in Figure 7.29(c), A, is complex in these regions.

The reason for this is that the SFD journal J is at the bottom of the clearance in these
regimes and so, the damper is ineffective. Since the SFD is the only source of damping
in the model, any perturbation of the 7-periodic solutions would lead to a practically non-
decaying transient at one or more of the pin-pin natural frequencies, which combines with
the 7-periodic motion to form quasi-periodic motion.

(d) The overall trend in the measured amplitude-speed plots of Figure 7.27 is correctly
predicted. However, speed-for-speed agreement in amplitude is unattainable for the SFD,
and, beyond 82 rev/s, for all locations J, U, and M. This is due to the uncertainty in the
oil film conditions that is inherent in unsupported dampers, especially when no dynamic
oil film pressure measurements are made. Nonetheless, in the following discussion it is
seen that the predicted stable motion beyond 82 rev/s has an orbital structure and
frequency content that is similar to the measurement
As mentioned earlier, the 7-periodic RHB solutions become unstable at some speed

between 82 and 84 rev/s as a result of a complex-conjugate pair of leading Floquet

multipliers A,, A, escaping the unit circle simultaneously (Figure 7.29). However, beyond

this bifurcation point, there exists a small segment of unstable T-periodic solutions in the
range 85-87 rev/s (segment AB in Figure 7.27(b)) for which A, is real and negative, as seen
in Figures 7.29(b,c). In Figure 7.31, by time-marching from initial conditions on the unstable
T-periodic solution at 86 rev/s, it is verified that there is no error in the associated value of
A,. In the initial stages of the time-marching solution (Figure 7.31(a)), the transient
trajectory does indeed show a tendency to period-double, as can be seen from the
corresponding Poincaré map of Figure 7.31(b) where successive return points diverge from
the first one E (E lies on the unstable T-periodic orbit) by flipping on either side of it,

approximately along a straight line (as in Figure 3.2(b) of Chapter 3). However, this
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behaviour is only local to the vicinity of the unstable T-periodic orbit and no stable 27-
periodic orbit develops in the steady state (Figure 7.31(c)).

The predicted transition from 7-periodic to aperiodic motion over the sensitive range 82-
84 rev/s is quite sudden, as can be seen in Figure 7.32(a), which shows the steady-state time-
marching solution at the SFD at 84 rev/s. The measured orbit, Figure 7.32(b), is remarkably
similar in structure. This similarity also extends to the frequency spectra in Figure 7.33.
These spectra show combination frequencies k, f, + &, f; where k,, k, are integers, f, is the
1EO frequency component and f, is approximately the first (pin-pin) critical speed (31.2
rev/s). The predicted value of f, agrees with the measured value to within the frequency
resolution of the spectrum (2 Hz). Figures 7.34(a,b) show the Poincaré maps of the steady-
state predicted SFD orbit at 84 rev/s over consecutive intervals of 80 and 160 shaft
revolutions. It is seen that the general form of the map is repeatable, but it is not the usual
simple closed curve one expects from a 2-frequency quasi-periodic solution. The question of
whether the predicted motion at 84 rev/s (Figure 7.32(a)) is indeed pure 2-frequency quasi-
periodic motion or has already descended into a mild form of chaos is purely academic. In

the spectra of Figure 7.33, the frequency components f,, f;—f,. fi+fo, and 2f,— f,
loosely approximate to 1EO/3, 2EO/3, 4EO/3, and 5EOQ/3 respectively. These frequency

components give the Poincaré maps of Figure 7.34 the approximate triangular shape. At 86
rev/s, the predicted orbital motion locks into 37-periodic motion, as shown in Figure 7.35.
Also included in this figure is the 3T-periodic RHB solution. It is seen that satisfactory
correlation is maintained between the RHB and modal numerical integration results. In
Figure 7.36, the Poincaré map of the predicted SFD orbital motion at 86 rev/s is seen to have
degenerated into three points, situated approximately at the vertices of the Poincaré map at 84
rev/s (Figure 7.34(b)).

Figure 7.37 shows predicted and measured waterfall diagrams of the frequency spectra of
the x and y vibrations at the three locations J, U, and M. The predicted diagrams were
constructed entirely from steady-state time-marching solutions. No solutions were performed
below a speed of 24 rev/s due to the insufficient lift at the damper. It is seen that overall
correlation with experiment is good. In particular, frequency components that either equal or

approximate to integer multiples of 1EO/3 are prominent in both measured and predicted

spectra of the y component of the motion at J (Figures 7.37(b1,b2)). From Figure 7.29(a) it is
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predicted that stability of 7T-periodic motion is restored at some speed beyond 100 rev/s.
However the study was only performed up to 100 rev/s.

It is evident from the above that the performance of the unsupported SFD when used in
this flexible rotor system is much worse than that of a badly centralised sprung SFD. In the
following part of the discussion, the performance of the unsupported SFD with a thicker
lubricant is investigated for the same unbalance U =5.1x10""kgm. The lubricant (Shell
Tellus R10) has an average viscosity of around 2.6 times that of the previous oil. The supply
pressure remains approximately the same at 1 bar. The aims of this investigation are to note
any improvements in performance, and to confirm any of the interesting non-linear features
previously observed with the thinner oil that recur with the thicker oil. The time record
length of the experimental data acquisition is increased from 0.5 s to 2 s for a more in-depth
analysis. An improved anti-rotation device is used for the journal, with two anti-rotation
bolts instead of one (Figure 7.3).

Figure 7.38 shows the predicted and measured speed response curves for the amplitudes
at the SFD (J) and mid-shaft (M). As before, the time-marching solutions for 82-100 rev/s
are included (in blue). No measurements were performed at the disc position to avoid
potential damage to the transducers. It is seen that the overall performance is still essentially
the same, although the performance at the SFD around the pin-pin critical speeds is
marginally improved. In the first pin-pin critical speed region, the multiplicity of 7-periodic
RHB solutions obtained with the thinner oil has been totally eliminated and the only region
of instability there is a narrow quasi-periodic zone. Figure 7.39 shows the orbital motion at
the sensitive speed of 32 rev/s: it is seen that the predicted (numerical integration, steady-
state) and measured orbits are similar. Referring back to Figure 7.38, it is seen that, in the
second pin-pin critical speed region, the secondary Hopf bifurcation of the T-periodic
solutions still occurs between 82 and 84 rev/s, but the stability of T-periodic motion is
predicted to be restored by 100 rev/s. This is illustrated in Figure 7.40, which shows
predicted (stable) and measured orbits in the sensitive range 76—100 rev/s over an interval of
2 s. The predicted orbits show that the transition from 7-periodic to 2-frequency quasi-
periodic motion between 82 and 84 rev/s is smoother with the thicker oil than with the
thinner oil (compare the predicted SFD orbit at 84 rev/s in Figure 7.40 to the one in Figure
7.32(2)). In Figure 7.40 it is seen that the predicted motion still locks into 37-periodic
motion at 86 rev/s and remains so locked until some speed between 92 and 94 rev/s. The

predicted orbits at 94 rev/s appear to be chaotic. Stable T-periodic motion is predicted to be
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restored by 100 rev/s. The measured orbits evolve in a similar manner. However, the
bifurcation of the 7-periodic motion into quasi-periodic motion occurs somewhat earlier
(between 76 and 78 rev/s). In Figure 7.40, the measured orbits for 90-94 rev/s are locked into
3T-periodic motion over most of the acquisition time. The 3T-periodicity is evident by the
triple-looping of the measured orbits at M. Particularly at the SFD, the measured motion at
these speeds unlocks from the 37-periodic orbit for short parts of the acquisition time. This
is likely to be the result of slight jolts from the anti-rotation bolts (Figure 7.3). The “periodic
part” of the measured orbits at the SFD for 90-94 rev/s is similar to the predicted 37-periodic
SFD orbits at 86 and 90 rev/s. As predicted, the measured orbits at 100 rev/s are seen to be
approximately 7-periodic.

Figure 7.41 shows the evolution of the Poincaré maps of the predicted stable SFD orbits.
The map in Figure 7.41(d) shows that the predicted orbits at 94 rev/s are indeed chaotic.
Figure 7.41 indicates that this type of motion was arrived at through the quasi-periodic
frequency-locking route. That the secondary Hopf bifurcation (between 82 and 84 rev/s) is
smoother with the thicker oil is highlighted in Figures 7.41(a,b): the single dot at 82 rev/s
evolves into the simple triangular closed curve at 84 rev/s. The map in Figure 7.41(b)
contrasts with that in Figure 7.34(b). Despite the difference in Poincaré maps, the structure
of the frequency spectrum of the predicted stable SFD orbital motion at 84 rev/s is essentially
the same for both oils, as can be seen by comparing Figure 7.42(al) with Figure 7.33(b1).
The same can be said of the frequency spectrum of the measured SFD orbital motion in
Figure 7.42(a2) (which is similar to that in Figure 7.33(b2)). In Figures 7.42(al,a2) it is

again seen that f, is close to the first pin-pin critical speed and the difference in the

predicted and measured value of f, is within the frequency resolution (0.5 Hz). Frequency-

locking into 37-periodic motion is clearly evident in the predicted and measured spectra of
Figure 7.42(b1,b2) (for 90 rev/s).

Figure 7.43 shows predicted and measured waterfall diagrams for the x and y vibration at
J and M. The predicted diagrams were efficiently constructed from the RHB N =1, m=35
solutions for those speed regimes for which T-periodic motion was predicted to be stable, and
from the steady-state time-marching solutions for the remaining speed regimes. The
correlation with measurement is good and frequency components that either equal or

approximate to integer multiples of 1EO/3 are evident in the region of the second pin-pin

critical speed. As can be seen in Figure 7.44, the non-integer EOs are mostly eliminated
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upon halving the unbalance (note that the predictions in Figures 7.44(al,bl) are only
performed for 84 to 100 rev/s). This feature was also observed with the thinner oil [64].

In the measured waterfall diagram of Figure 7.43(d2), it is noted that there exists a strong
2EO frequency component in the y vibration at M at a speed of 44 rev/s. This 2EO
component corresponds to the second pin-pin critical speed, measured at 88 rev/s [21].
Hence a sub-critical super-harmonic resonance occurs at 44 rev/s. This resonance is absent
from the corresponding prediction, Figure 7.43(d1). The phenomenon of sub-critical super-
harmonic resonance in an unsupported SFD was introduced in the preceding chapter, where
the phenomenon was associated with bilinear oscillator effects in a contacting rotor-stator
system, studied by Ehrich [40, 41] using a piecewise-linear spring model. In Chapter 6, it
was shown that, for the case of an unsupported SFD in this condition: (a) the SFD journal J
lies at the base of the clearance circle (centre B); (b) there is a slight relative vibration
between J and B; and (c) the absolute vibration of B (or J) in the y direction has a significant
kEO frequency component, where k is a positive integer and kEO is approximately equal to
the undamped critical speed with the SFD locked. For the present study, £ =2 and it was
postulated that slight absolute vibration of the bearing housing B (and J, since the relative
vibration between J and B is minimal at 44 rev/s, especially in the y direction) with a
significant 2EO frequency component was inducing a strong component of vibration of the
shaft in the second pin-pin mode (i.e. slight excitation of the pinned support at J in Figure
7.5(b) at around the second pin-pin frequency). Since the model used so far in this chapter
assumes a rigid bearing housing, this effect could not be predicted in the waterfall diagram of
Figure 7.43(d1). This hypothesis was tested by repeating the RHB N =1 calculations for the
range 40-50 rev/s, taking into account an assumed flexibility of the bearing housing. This
involved the addition of the following extra set of equations to the existing set (which is

defined by eqs. (7.15al,a2), (7.7b1,b2), (7.7¢1,c2)):

Xy =05 0)0,. ¥ ==B5 00, (7.16al,22)
a$) =0, (s0)pY, al) =By (@)Y, s=1..m (7.16b1,b2)
b)((je) =—Qp (Sai)qi‘”'), b}(';) :“ﬁBB (Sw)qgs), s=1...m (7.16¢1,c2)

The above equations are taken from Chapter 6 (eqs. (6.8d1,d2-f1,f2)). In these equations

X,, aﬁgB) , .... etc. are the Fourier coefficients of the absolute displacements of B, X,, ¥ .
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As in Chapter 6, the SFD forces (which, under such conditions, very nearly reduce to contact

forces) were calculated from eqgs. (4.6a,b) with X , =X, —-X,, Y,

o =Y, =Y,. Since the
significant harmonics involved in the RHB solution were well below the first natural

frequency of the support structure, the support structure receptances at B, &, (®),
B @)=1/K ,, /K , respectively, where K ;, K ; are the equivalent stiffness values at

the bearing housing in the x and y directions respectively. It was assumed that

Ky=K;= 10° N/m. This stiffness value was sufficiently low to avoid aggravating the ill

conditioned nature of this problem (since X,,Y, = X,,Y, in this problem). It was also

sufficiently high to have little effect on the second pin-pin mode. In fact, the predicted
second pin-pin frequency changed to 90.1 Hz (from 91.1 Hz) and there was practically no
change in the mode shape of Figure 7.5(b) (other than the slight repositioning of the right
hand nodes). Figure 7.45 shows the RHB N =1, m=5 speed response curves for the y

amplitude. It should be noted that, since X,,Y, = X,,Y,, very small arc-length increments
had to be used to avoid failure in the iteration (the arc-length increment used in this case was

typically 107, as opposed to the normal value of 10™). The effect of the inclusion of the
flexibility of B is the appearance of spikes at 45 rev/s in Figures 7.45(a-c). It is seen that
resonant amplitude in the y direction at B of less than 1 % of the radial clearance induces a
corresponding peak in the y displacement at M but not at U. In fact, in the measurements of
Figure 7.38(d), the peak in the y amplitude at M at 44 rev/s is observed, and in Figure 7.27
this peak is again observed at M (Figure 7.27(f)) but not at U (Figure 7.27(d)). The most
likely reason for this is that, in the second pin-pin mode, the vibration at M is twice that at U
(Figure 7.5(b)). The predicted and measured orbits at M at the super-harmonic resonance are
remarkably similar (Figures 7.46(b1,b2)) and have a shape that is similar to (though less
“sharp” than) the sub-critical super-harmonic resonance orbit shown in Figure 6.13 (Chapter
6). In Figures 7.47(a,b), the frequency spectra of the y components of the predicted and
measured orbital motions at M reveal that, at super-harmonic resonance, the 2EO frequency
component is practically of the same strength as the 1EO component.

A feature that is also observed in the following chapter is that a sub-critical super-
harmonic resonance in an unsupported SFD becomes more prominent at lower levels of
unbalance, standing out as a distinctive peak from the otherwise low level of the amplitude-
speed curve. Indeed, as long as the lift of the journal from the base of the clearance is

minimal and provided the unbalance excitation can still maintain a slight wobble of the
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journal relative to the housing, the piecewise-linear spring-like behaviour of the SFD appears
to be independent of the unbalance level. The measurements of Figure 7.48 show the effect
of halving the unbalance. It is seen that a distinctive spike at 44 rev/s is obtained in the y
amplitude at M (Figure 7.48(a)). Again, no corresponding spike is observed at U (Figure
7.48(b)). The results in Figure 7.48 provide additional validation to the results in Figure
7.45(c,d). Note that the results in Figure 7.48 are for the thinner oil. However, the value of

the oil viscosity is most likely to be immaterial in this regime of operation.

7.6 CONCLUSIONS

In this chapter, the integrated model developed in Chapter 5 was applied to a test rig having a

flexible rotor and one rigidly housed squeeze film damper (SFD). Two variations of the rig

were considered. In one configuration (B1) the SFD had a parallel retainer spring and the
journal was statically offset in the housing, and in the other configuration (B2) the SFD was

unsupported. In either case, the correlation between the three modelling blocks (i.e.

receptance harmonic balance, modal Floquet stability analysis, and modal numerical

integration) under conditions of multi-modal rotor vibration was found to be highly
satisfactory. The integrated modelling approach was also generally successful in predicting
and explaining the observed highly non-linear performance of the experimental rig.

With reference to configuration B1 (retainer spring fitted):

- Under conditions of high static eccentricity and unbalance, the T-periodic motion was
found to become unstable for a range of speeds between the first pin-pin critical speed
and the second undamped critical speed of the rig (with retainer spring). The frequency
spectrum of the resulting stable motion was composed of combinations of two
fundamental frequencies: one synchronous, and the other sub-synchronous.

- For a fixed supply pressure, cavitation was promoted by increased static eccentricity
and/or unbalance. For the configuration studied, the centralising effect of cavitation was
seen to be beneficial in that it prevented excessive vibration along the shaft. Hence, for a
statically determinate flexible rotor-rigid pedestal system with a SFD in one of its
bearings it is not recommended to suppress cavitation by increasing supply pressure or
removing dissolved air in the sump, under conditions of high static eccentricity and
unbalance

With reference to configuration B2 (retainer spring removed):

- Lift-off at the damper was only achieved around the pin-pin critical speeds.
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The 7-periodic motion around the second pin-pin critical speed became unstable as a
result of the emergence of a second fundamental frequency that approximates to the first
pin-pin critical speed. Since the rotational speed approached three times this frequency,
the salient frequency components approximated to integer multiples of 1EO/3 and
frequency-locking into 37-periodic motion occurred over a range of speeds. The
likelihood that frequency-locking lead to the mild chaotic motion that was predicted at
certain speeds was not formally investigated.

The lack of lift at the SFD results in sub-critical super-harmonic resonance of the flexible
rotor induced by slight vibration of the bearing housing. In such a condition, if the
rotational speed is approximately equal to 1/k times a pin-pin critical speed (k being a
positive integer) a relatively strong kEO frequency component develops in the slight
vibration of the housing. This slight vibration then induces kEO frequency components at
locations P along the rotor, the strength of which depends on the amplitude at P in the
excited pin-pin mode shape. In this work, this phenomenon has been verified for the case
k =2 and the second pin-pin critical speed.

The main effect of increasing the oil viscosity by a factor of 2.6 on the predicted vibration
was to eliminate the complicated behaviour around the first critical speed. The thicker oil
also smoothed the secondary Hopf bifurcation in the second critical speed region and
restored the stability of 7-periodic motion at an earlier speed. However, the performance
was still much worse than that of the badly centralised sprung SFD with the thinner oil.

It is therefore not recommended to use an unsupported SFD in a bearing of a statically
determinate flexible rotor-rigid pedestal system. In a statically indeterminate system
(with three bearings), an unsprung SFD in one of these bearings would perform much
better since it would be off-loaded by the other two bearings i.e. would not need to
generate lift to support the static load in order to function. In such a case, with the
terminology used in this thesis, the SFD would still be “unsprung” (i.e. has no parallel

retainer spring) although it would not be “unsupported”.

120



MW ESE =
N TR TR S
N | N 254mm N—(10)
N (1) N 2) N ~ HD
s, W
(1) Motor driven pulley (2) Flexible coupling
(3) Self-aligning ball bearing (4) Shaft
(5) Flexible bar x 4 (retainer spring) (6) Self-aligning ball bearing and damper journal (centre J)
(7) Bearing housing (centre B) (8) Oil annulus (SFD)
(9) Unbalance disc (10) Frame and bedplate
Figure 7.1: Test rig for configuration B
y probe bracket
! flexible bar (x4)
X 74
o —— ¢ targets for probes
(SFD) /
[ [m
/ probe bracket
/
bearing
housing
displacement probe
damper journal ball bearing
shaft

Figure 7.2: Damper arrangement for configuration B1 (retainer spring fitted)
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Figure 7.3: Damper arrangement for configuration B2 (no retainer spring)
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Figure 7.9: Convergence of RHB N =1 as the number of harmonics m is increased
m=1( ), m=2 ( ), m=5 ( ); modal numerical integration ( )
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Figure 7.10: Correlation between RHB and time-marching predictions for amplitude
(half peak-to-peak displacement divided by c) (continues on next page)
RHB N =1, m=5 — red: “0” stable, “*” unstable (4, complex);
numerical integration — blue
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Figure 7.10 (continued): Correlation between RHB and time-marching predictions for
amplitude (half peak-to-peak displacement divided by c)
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Figure 7.11: Verification of Floquet stability result for T-periodic RHB solution at 30 rev/s
by time-marching from initial conditions on the T-periodic cycle (al)-(a3) first 30 shaft
revs.; (b1)-(b3) further 30 revs. RHB N =1, m =5 (- — —); numerical integration ( )
Conf. B1, £p,=—0.8, U=5.1x 107 kgm, 7 =0.0045 Nsm‘z, Ps> p. =100,-101.3 kPa
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Figure 7.12: Verification of Floquet stability result for T-periodic RHB solution at 34 rev/s
by time-marching from initial conditions on the T-periodic cycle
(al)-(a3) RHB N =1, m=5 (- —-); numerical integration, first 80 shaft revs. (
(b1)-(b3) numerical integration solution over further 80 revs. (steady-state)
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Figure 7.13: Poincaré map of numerical integration solution at J in Figures 7.12(al,bl)
(£, =k2r). First 80 shaft revs. (i.e. Figure 7.12(al)) — red; further 80 revs. (i.e. Figure

7.12(b1)) — blue; first point E (on unstable equilibrium solution) indicated by “*”
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Figure 7.22: Unbalance response for €, =—0.6, U =2.59% 10~* kgm. All predictions are

RHB N =1, m=5. Vertical axes show ratio of half peak-to-peak displacement to c.
Conf. B1, 7 =0.0045 Nsm?, p, =100 kPa
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Figure 7.23: Unbalance response for €, =—-0.6, U =5.1x 10~ kgm. All predictions are

RHB N =1, m=5. Vertical axes show ratio of half peak-to-peak displacement to c.
Conf. B1, 1=0.0045 Nsm>, p, =100 kPa
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Figure 7.24: Unbalance response for €,,=—0.8, U =2.59% 10~ kgm. All predictions are

RHB N =1, m=35. Vertical axes show ratio of half peak-to-peak displacement to c.
Conf. B1, 7=0.0045 Nsm?, p; =100 kPa
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Figure 7.25: Unbalance response for £, =—-0.8, U =5.1X 10~ kgm. All predictions are

RHB N =1, m=35. Vertical axes show ratio of half peak-to-peak displacement to c.
Conf. B1, 1 =0.0045 Nsm?, p, =100 kPa
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Figure 7.27: Response of conf. B2 (no retainer spring) for U = 5.1x10* kgm, 1 =0.0045
Nsm?™, p s =120 kPa. Vertical axes show ratio of half peak-to-peak displacement to c.
RHB N =1, m=5—red: “0” stable, “+” unstable (A, real, positive), “O0" unstable ( A, real,
negative), “*” unstable (A, complex); numerical integration — blue; measured [64] — black.
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Figure 7.28: Variation with rotational speed of the mean y component of the T-periodic
solution for the displacement of J relative to housing centre (RHB N=1, m=35)
“0” stable, “+” unstable (4, real, positive), “O" unstable (A, real, negative),
“¥” unstable (A, complex). Conf. B2, U =5.1x10"kgm,  =0.0045 Nsm?, ps =120 kPa
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Figure 7.29: Variation of leading Floguet multiplier of T-periodic solution (RHB N =1,
m =5) with rotational speed
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Figure 7.33: Predicted and measured frequency spectra of displacement of J for 84 rev/s
(data length 0.5 s). Conf. B2, U =5.1x10" kgm, 11 =0.0045 Nsm?, ps =120 kPa
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Figure 7.34: Poincaré maps of predicted orbital motion at J for 84 rev/s (£, =k2r)

Conf. B2, U =5.1x10™ kgm, 17 =0.0045 Nsm, p, =120 kPa
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(Figure continues on the following page)
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Figure 7.37 (continued): Waterfall diagrams of the frequency spectra of the displacement
response for conf. B2, U =5.1x10™ kgm, n =0.0045 Nsm™, pg =120 kPa
(data length 0.5 s)
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Figure 7.38: Response of conf. B2 (no retainer spring) for U =5.1x107* kgm, =0.0115
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I, 32 rev/s (pred.) M, 32 rev/s (pred.) J, 32 rev/s (meas.) M, 32 rev/s (meas.)
Figure 7.39: Predicted (stable) and measured orbits (over 2 s) at the first pin-pin critical
speed
Conf. B2, U =5.1x10 kgm, 7 =0.0115 Nsm™, p, =100 kPa
J, 76 revis (pred.) M, 76 rev/s (pred.) J, 76 rev/s (meas.) M, 76 rev/s (meas.)

J, 78 rev/s (pred.) M, 78 rev/s (pred.)
J, 82 rev/s (pred.) M, 82 rev/s (pred.)
J, 84 rev/s (pred.) M, 84 rev/s (pred.) I, 84 rev/s (meas.) M, 84 rev/s (meas.)

Figure 7.40: Predicted (stable) and measured orbits (over 2 s) in the region of the second
pin-pin critical speed
Conf. B2, U =5.1x10™*kgm, 1 =0.0115 Nsm?, p, =100 kPa
(Figure continues on the following page)
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(Figure continues on the following page)
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response for conf. B2, U =5.1x107" kgm, n =0.0115 Nsm™, ps =100 kPa
(data length 2 s)
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8 MODEL APPLICATION C:
FLEXIBLE ROTOR IN TWO FLEXIBLY HOUSED
UNSUPPORTED SFDs

8.1 INTRODUCTION

The rigid rotor-flexible housing configuration of Chapter 6 and the flexible rotor-rigid
housing configuration of Chapter 7 are idealisations. In this chapter the integrated model is
used to analyse a more realistic system in which both rotor and support structure are
considered flexible. Moreover, practical systems have more than one squeeze film damper
(SFD). Hence, the use of two SFDs in configuration C. In configuration C, both
“symmetric” and “anti-symmetric” bounce modes are present, unlike the simplified system in
Chapter 6. It will be seen in this chapter that, despite the first two rotor-support structure
critical speeds with the SFDs locked (i.e. their radial clearances shimmed) still being
essentially “bounce modes” (i.e. the rotor showing much less deflection than the housings),
the presence of harmonics of the rotational speed in the non-linear response of the
unbalanced squeeze film damped system necessitates the consideration of the flexibility of
the rotor. A description of the test facility is given in the following section, together with a
description of impact tests on the support structure alone, and on the complete non-rotating
rig with the SFDs locked. The non-linear model equations are then presented. This is
followed by an account of the experimental procedure for vibration acquisition for the
rotating rig. The correlation between the predicted results from the three modelling blocks
(i.e. receptance harmonic balance, modal Floquet stability analysis, and modal numerical
integration) is then assessed and the results compared with measurements. The aim of the
latter comparison is limited to the assessment of the ability to predict and explain observed

non-linear phenomena.

8.2 DESCRIPTION OF THE TEST FACILITY

The test rig for configuration C is illustrated in Figure 8.1. Photographs of the rig are found
in Appendix A6, section A6.6 (page 259). This rig was originally built in 1984 under a
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research contract with Rolls-Royce plc to represent, to a limited extent, the essential features
of the RB401 aero-engine. Since then, it has been modified to include two SFDs and
recommissioned in 2001, as part of this Ph.D. project, in the rotor dynamics laboratory of the
Institute of Sound and Vibration Research (ISVR), University of Southampton. In its most
general form, the test rig has two independently driven shafts, labelled (7) and (14) in Figure
8.1, which respectively represent the low pressure (LP) and high pressure (HP) rotors of an
aero-engine. In one modification, described in [31], a bell housing (not shown in Figure 8.1)
connects the bearing housing (5) at the right hand end of the LP shaft (7) to the left hand
bearing housing of the HP shaft (14) (the latter bearing housing is also not shown in Figure
8.1). In this thesis, the LP and HP assemblies are disengaged, as shown in Figure 8.1, and
attention is placed entirely on the LP assembly. The HP shaft (14) is kept fixed and non-
rotating.

The mild steel shaft (7) runs in two roller bearings (3) at its ends J;, J,. Oil is pumped
into the annular clearance between each bearing housing (5) and the ring (4) fixed to the
outer race of each roller bearing, forming the SFD (6). Each SFD journal (4) is prevented
from rotating relative to the shaft axis by dogs on the outer end-plate of the bearing housing,
which engage with dogs projecting from the outer end of the journal. Each of the bearing
housings B, B, is flexibly mounted on the engine frame (10) by four mild steel bars (8). The
frame is bolted down to a cast iron bedplate (11) that is bonded by a thin layer of adhesive to
a massive concrete block mounted on isolators. Torque is transmitted to the shaft at (2) via
two pins covered in nitrile that contact opposite faces of a rectangular steel bar bolted to the
left hand end of the shaft. This ensures torque transmission with no flexural restraint in
either plane xz, yz. The drive shaft (1) is belt-driven by an electric motor (belt drive and
motor not shown). The motor is bolted to the ground rather than the bedplate and concrete
block to avoid spurious vibration transmission to the rig. Axial location of the shaft (7) is
maintained by zeflon (PTFE) buttons at its ends: one at the centre of the driven bar at (2) and
the other at the end of the HP shaft (14). Impact tests on the non-rotating rig with the SFDs
locked by inserting shims into their radial clearances indicate that the first two rotor-support
structure critical speeds are around 66 rev/s and 100 rev/s, corresponding respectively to the
symmetric and anti-symmetric bounce modes. With the dampers operational, the rig is
driven up to a maximum speed of 110 rev/s.

The SFDs are end-plated, of the type shown in Figure 4.1(b). Both left hand and right
hand SFDs (SFD 1, SFD 2 respectively) are nominally identical, with the dimensions shown
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in Figure 82. The radial clearance ¢=0.11x10"m and the groove depth

d =2.03x107 m, satisfying the two-land criterion, eq. (4.1). The lengths of the two

groove
lands of each SFD are slightly unequal and the value in Figure 8.2 (L =6.26x107 m) is an
average. The axial location of the journal within the housing is maintained by small and
smooth fufnol spacers 0.5 mm thick (see Figure 8.2), three such spacers being glued to each
end-plate at positions spaced by 120°.  This ensures a fixed end-plate gap of

d,, = 0.50x10™>m, which is over four times the radial clearance c¢. Hence, the SFDs are

short unsealed dampers. Note that there is a lower limit to the circumferential extent of the
glued tufnol spacers in order to ensure adequate bonding. Hence, the outlet flow is blocked
over portions of the circumference in Figure 8.2. However, the total circumferential extent of
the three spacers at each outlet should be around 10% and so, this sealing effect is considered
negligible. Oil is supplied to each SFD through three holes, spaced at 120° around the
groove. The oil used is Shell Morlina 10 (formerly known as Shell Tellus R10) with a
viscosity of 15x107 Nsm™ and density 866.8 kg/m® at 25°C. The oil pressure supply to
both dampers is monitored by a single common pressure gauge (not shown in Figure 8.1).
The oil exit temperature from each SFD is measured by a thermocouple located underneath
each housing. The oil from both dampers collects in a tray fixed to the bedplate (not shown
in Figure 8.1) and is recirculated into the hydraulic system. Since the oil also acts as a
coolant for the roller bearings, its equilibrium temperature increases with speed. However,
this temperature never exceeds 44°C. At this temperature, the oil has a viscosity of
8.84x107° Nsm™ and density 854.4 kg/m’. Since the top speed is 110 rev/s, the maximum
value of the gap Reynolds number (eq. (4.16)) is 0.8. Using eq. (4.15) with C, = 0.287 (for

moderate Re) [60], an upper limit for the fluid inertia effect is estimated as

M 4 =76.4x107kg. This amounts to merely 6% of the combined mass of the roller

bearing and damper journal. Considering also that the total rotor mass is 55.4 kg, it is
ascertained that the fluid inertia effects are negligible.

Referring back to Figure 8.1, unbalance masses m,, , m; can be attached to the rotor at

axial positions Uy, U, respectively and can be either in anti-phase (180° out of phase) or in
phase. The displacement response to rotating out-of-balance is measured by four transducers
(proximity probes) at each SFD location: one pair of orthogonal probes, with brackets
marked (13), measure the x, y displacements of the bearing housing relative to the engine

frame (10), and the other pair, with brackets marked (12), measure the x, y displacements of
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the rotor relative to the housing. As shown in Figure 8.1, the rotor vibration measurements
are taken at positions Jim, Jom, as close as practically possible to the respective SFD positions
Ji, Jo.  Hence, these measurements are compared with the corresponding theoretical
predictions for the rotor vibration at J;p, Jom rather than J;, Jo. The displacement response of
each housing relative to the frame is directly proportional to the corresponding force
transmitted to the frame. Impact tests on the support structure, discussed in the following
subsection, indicate that the absolute vibration of the frame is normally negligible when
compared to the absolute vibration of the bearing housings B;, B,. Hence, measured
responses relative to the frame can be regarded as “absolute”, allowing them to be compared
with the theoretical predictions for the absolute response.

The following two subsections respectively describe impact tests on the support structure
alone (to determine its modal parameters) and on the complete non-rotating rig with the SFDs

locked (to estimate the bounce resonance frequencies i.e. the bounce critical speeds).

8.2.1 Impact Tests on Support Structure

In these tests, the oil supply was disconnected and the end-plates of the housings (5) (see
Figure 8.1) were removed. The roller bearings (3) were then removed and the rotor was
suspended from an overhead girder, well clear from the inner surface of each housing. The
proximity probe brackets were also removed. Preliminary impact tests verified that there was
virtually no dynamic cross-coupling between the xz and yz planes so that the dynamics in
each plane could be studied separately as follows. For each housing B; (i=1,2) in turn, an
impact was applied in the y direction with an instrumented hammer' connected through a

voltage amplifier to a Hewlett Packard 35650° multi-channel spectrum analyser operated by
a personal computer (PC). The following accelerance frequency response functions B Po (a)),

(w 1s the frequency in rad/s, see eq. (5.27)) relating the applied force at position Q in the y

direction to the acceleration response in the same direction at position P, were then measured:

the point accelerance E »p at B;; the transfer accelerance B 5,5, between the other housing B;

and B; ; and the transfer accelerance E -5 between F; and B;, where F; corresponds to the

axial position on the frame where the bracket (13) for the probe measuring the unbalance
response of B; in the y direction is fixed (see Figure 8.1). For this set of measurements,

piezoelectric accelerometers were attached at B;, F; and B; with their axes in the y direction

!i.e. a hammer with a force gauge at its tip.
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and connected through charge amplifiers to the spectrum analyser. The process was repeated

in the x direction for the accelerances &y, , &5, O, . The instrumentation details are
{5? i*i iPi

given in Appendix A6 (section A6.1). The results are shown in Figures 8.3(a,b,c,d) which

refer respectively to the magnitudes of the accelerance measurements of the four impact tests:

(053131 » Upp > Crp ), (0‘8232 » Opg > Cpp ), (ﬁBlBl ; ﬁBzB, 5 Bmx1 )s (ﬁBsz > ﬁBle > ﬁFsz ). Since
piezoelectric accelerometers were used, the low frequency data were susceptible to noise

contamination. However, this was not important for the purposes of these tests since they

focused on the resonance region. It is evident that the (absolute) vibration transmitted to F;,
indicated by the magnitudes of dﬁ 5 B rp, » Was, in the main, negligible with respect to the
vibration at B;, indicated by the magnitudes of &y, , B 55 - Lhe dynamic cross-coupling
between B; and B,, indicated by the magnitudes of & 55 > B 5,5 » Was only significant in the

immediate vicinity of resonance.
In order to facilitate the experimental modal analysis, the cross-coupling between B; and

B, was neglected and so, the required modal parameters of the support structure were

determined by fitting a single mode to each point receptance function ¢, (a)), B B, (60),

=~y [0, = Byy J07) [47]:

Afy) AL
U ()= 22—, Oy (0)~— 282 (8.1a,b)
Wy =7 + JN 5Dy a)SxZ o® +j 773x2w5x2
(sy1) (sy2)
B, (@)= h% B, (@)= — Baby 8.1c,d)
wSyl -0’ + Jnm Syl s)z -0 + JnSy2w3y7

In egs. (8.1), w,,, w,, (r=12) are the undamped natural frequencies of the support

Syr
structure in the xz and yz planes respectively and A}f;’ , Agﬁj) are the corresponding modal

constants of the receptance functions o, (), B B, (w) respectively, where:

Aé-?;f) — (&) (er)’ A(S)r) = ¢(Syr)¢ (syr) (8.2a,b)

B,
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f}f’”) , gy’) being the undamped mass-normalised mode shapes of the support structure in
the xz and yz planes respectively, evaluated at position B; in the x and y directions
respectively. 7, , 7, are the modal loss factors for the structural (hysteretic) damping.
The approximations of egs. (8.1) mean that in the first mode of the support structure in the xz

plane (natural frequency @y, ), B; vibrates and B, is stationary (Ag’;? =0), and in the second
mode of the support structure (natural frequency @), B, vibrates and B; is stationary
(Aéf;? =0). The same applies for the yz plane. The modal fitting procedure is described in

Appendix A6, section A6.1. The technique used the Nyquist plot [47] to determine the
natural frequencies and loss factors, and the dynamic stiffness method [47] to determine the
modal constants. The computed modal parameters @y, @, , Aéf;i’) , A,gfg:), Nswr> Moy
(i=12 and r=1,2) are given in Table 8.1. As it turns out from Table 8.1, with the notation

used, in either plane xz, yz, the first mode is at a higher frequency than the second. In view of
the fact that modal analysis does not actually require that the modes be ordered according to

the relative magnitudes of the corresponding natural frequencies, the notation for the modal

parameters is left unaltered.

xz plane yz plane

mode no. r 1 2 mode no. r 1 2

g, /2n) (Hz) |209.125[201375| a,, /(27) (Hz) |210.875 | 202.625

A5 (<107 kg | 27619 0 AP (x10" kg | 2.8304 0

AED (<107 kg 0 2.8196 | ALY (x10™ kg™) 0 2.7715

N (%) 048 | 087 Alg,r (%) 1.66 | 0.49

Table 8.1: Computed modal parameters of support structure

The quality of fit is shown in Figures 8.4(al-d1) and 8.4(a2-d2) which respectively compare
the magnitudes and phases of the measured point receptances with those of the receptances
reconstructed from one mode (i.e. the right hand sides of egs. (8.1a-d)). It is evident that the

correlation is satisfactory over the entire measurement frequency range.
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In view of the single mode approximations of egs. (8.1), one can compute the “effective

masses” M , , M, and the “effective stiffnesses” K, , K, atB;(i=1,2) in the x and y

directions respectively, from the modal parameters of Table 8.1 by using the relations:

Mg =AY, M, =VASD, M, =YARD, M, =1/A5) (8.3a-d)

— 2 - 2 - 2 _ 2
KxB, - a)leMxBI ? Kx82 - a)SxZM xB, * ‘K'yB1 - a)SylMyBl > K B, — a)Sy?.MyBZ (8‘4a—d)

¥

The values of these parameters are given in Table 8.2.

Housing 1 Housing 2
M (kg) 3.6207 M, (kg) 3.5466
K 5 (x10°N/m) 6.25 K5 (x10°N/m) 5.68
Mg, =Msa (%) 0.48 N5, =2 (%) 0.87
M, (kg) 3.5331 M ;. (kg) 3.6081
K 5 (x10°N/m) 6.20 K 5, (x10°N/m) 5.85
N5 =5 (%) 1.66 M5, =50 (%) 0.49

Table 8.2: Alternative expression of support structure parameters

It should be noted from Tables 8.1 and 8.2 that the estimated loss factors were not that
insignificant since they ranged from 0.48 % to 1.66 %. These values correspond to
equivalent viscous damping ratios of 0.24 % to 0.83 % at the corresponding resonance
frequencies, which are comparable to the equivalent ratio of 1.35 % measured by Dogan [63]
for the rig of Chapter 6. As in [63], this damping is deemed negligible when analysing the

complete rig with the SFDs operational (section 8.3).

8.2.2 Impact Tests on Non-Rotating Rig with SFDs Locked

The aim of these tests was to estimate the bounce resonance frequencies, which are the first
two resonance frequencies in each plane xz, yz. For these tests, the rotor was remounted on
the support structure with the roller bearings (3) in their housings (5), as in Figure 8.1. Shims
were inserted in the radial clearances (6) of the dampers. The point accelerances at the

bearing housings and the transfer accelerances between them were then measured in each of
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the xz and yz planes, using the same impact test technique as in section 8.2.1. The results are
shown in Figures 8.5(al,bl,cl), (a2,b2,c2) where the former refer to the xz plane and the
latter to the yz plane. Each set respectively shows the measured point accelerance at B;, point
accelerance at B, and the transfer accelerance between B; and B,. Overlaid on the same axes
are the predictions using the mechanical impedance (MI) model. The model made use of the
support structure parameters in Table 8.2 (see Appendix A6, section A6.2 for details). The
structural damping had virtually no effect on the predicted values of the first two resonance
frequencies. In Table 8.3, these frequencies are compared with the measured ones, as well as

the predicted resonances with the rotor assumed to be rigid.

xz plane yz plane

mode no. 1 2 mode no. 1 2

measured (Hz) 64.0* | 100.7 measured (Hz) 66.0 99.7

predicted — flex. rotor (Hz) | 66.2 98.5 predicted — flex. rotor (Hz) | 66.6 99.0

predicted — rigid rotor (Hz) | 68.7 98.8 predicted — rigid rotor (Hz) | 69.1 99.3

Table 8.3: The first two rotor-support structure resonance frequencies with SFDs locked

(* average of resonance frequencies of the two peaks in Figures 8.4(al,bl,c1)

The undamped mass-normalised mode shapes of the first two rotor-support structure modes
were predicted for each plane from the MI model by the modal method illustrated in
Appendix A3, section A3.1. Figure 8.6(a) shows the predicted mode shapes for the vertical
plane (which were similar to the ones in the horizontal plane). As can be seen, the modes
were essentially bounce modes and there was virtually no flexure of the rotor in the anti-
symmetric bounce mode (this latter effect was also reflected by the corresponding resonance
values of Table 8.3). It is also seen that the rig is approximately symmetrical in construction.

It is noticed from Figure 8.5 that: (a) the measured symmetric bounce resonance
frequency in the horizontal plane (xz) was not well defined, consisting of two peaks (Figures
8.5(al,bl,c1)); in fact, the measured estimate for this frequency quoted in Table 8.3 was the
average of the frequencies at the two peaks; (b) in both the xz and yz planes the value of the
third resonance frequency was under-predicted and the corresponding amplitude peak was
over-estimated. The fact that effect (a) was not observed in the vertical (yz) plane led to the

conclusion that it was the result of slight “play”: either between the inner and outer races of
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the roller bearings, or between the damper journal and the housing, the latter play being due
to imperfect shimming. In the yz plane, this effect must have been eliminated by the dead
weight of the rotor. In the horizontal plane there is no static load to counter the play, so the
micro relative movement adds an extra degree of freedom to the symmetric bounce mode,
splitting the otherwise single peak into two. The effect in (b) was most probably due to the
fact that the roller bearings were not self-aligning, thus resulting in flexural restraint from the
suspension bars being transmitted to the rotor. This effect was not considered in the
prediction. Moreover, since the third mode predominantly involved the flexural vibration of
the rotor, the associated amplitude peak was overestimated due to the neglect of structural
damping in the rotor. It is important to observe that these two effects (a), (b) are either
insignificant, or not relevant at all when the SFDs are operational since the linear subsystem

then consists of the free-free rotor and the uncoupled support structure.

8.3 MODEL APPLICATION

In this section, the equations of Chapter 5 are applied to configuration C with the SFDs
operational. In this case, the linear subsystem consists of two uncoupled sub-subsystems: the
free-free rotor and the support structure. In this rig, the polar moment of inertia of the rotor is
sufficiently small for gyroscopic effects to be negligible over the operational range of the
rotational speed. Hence, in the linear subsystem, the xz and yz planes are uncoupled for the

rotor, as well as the support structure. The SFDs are assumed to be the only sources of

damping. As a result of the above simplifying assumptions, the P, X1 vector fy (eq. (5.3))

is identical for both the frequency domain (receptance harmonic balance (RHB)) and the time

domain (modal analysis) approaches:
fy :[ x1 ny 0., QyZ -0, -le -0, '—Qyz]T (8.5)

where P, =8. @, are the SFD forces onJ; and Q,, , are those on Jo. -0, ,;» — Q22

are the SFD forces on B; and B, respectively. The SFD forces are calculated from equations

(5.2a,b). The unbalance forces P, , and P, at U, and Uj are given by egs. (5.1a,b) with

v, set to zero. The true sense of the rig rotation is shown in the upper left hand corner of

Figure 8.1, and is opposite to that in Figure 5.1(b). Since the rotational speed £2 is always

taken as positive, the x component of the final results for the computed vibration is reversed,
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in accordance to the frame of reference in Figure 8.1. The free-free rotor is degenerate,
having in each plane xz, yz two modes defining non-oscillatory rigid body motion: pure
translation at the speed of the mass centre G and pure rotation about G (see Figure 8.6(b)).

Hence, the static load of the rotor needs to be taken into account. The vector u, of degrees

of freedom associated with f is then given by eq. (5.12).

u,=h=[x, v, X, ¥, X, ¥, X, ¥v,[ (8.6)

where each displacement is measured from the static position of the corresponding housing

centre without the rotor weight applied. The distributed rotor load can be replaced by two

loads W, and W, concentrated at J; and J, where:
W, =Welg,, /ZN2 , W, =Welg,, /ZM2 (8.7a,b)

W, is the total rotor weight, [;, and [, are the distances of the mass centre G from J; and
J respectively, and [, ; is the distance between J; and J,. The zero frequency components

of the forces on the vibrating rotor are in a state of static equilibrium, as explained in Chapter
5 (end of section 5.3). Since this zero frequency equilibrium problem is statically
determinate, the equivalent load system of egs. (8.7) is exact. However, with this load
system, the resulting zero frequency shape of the vibrating rotor will be a straight
(undeformed) line joining the mean positions of J; and J, for the yz plane, as well as the xz
plane, since the zero frequency forces are all concentrated at J; and J,. The superposition on
this line of the static deflection curve of the rotor supported at the mean positions of J; and Jo,
due to the distributed weight, yields the precise zero frequency shape for the yz plane.
However, this refinement is unnecessary since it has no effect on the mean positions of J; and
J», which are the only zero frequency components of rotor vibration that are of interest.

In the RHB approach

= YJ + ( ' cos sajt—;—bxj sin saft) ‘ -—-}7]' +2(ayj cos swt+bl(,ji) sin saft) (8.8a,b)

s=1

( Ay COS SOt + bXB sin sca‘t) Y, = 17;5 + Z (aﬁg cos st + b}(,;? sin sm‘r) (8.8¢c,d)

s=1 s=1

Ms

B +

i
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and

0,=0,+ Z (pif) cos STt + q)(cf) sin sﬁit), 0, = Q_y,. + 2 (pﬁf) cos st + qi‘,‘f) sin sﬁft) (8.9a,b)
s=1

s=1

where

0. » ) . (s) A
gx’ :l—fr[Q’“} dr, p’(‘;) :ijr[QﬂJcosswt dt, q’(‘;) :—Z—J‘F Qs sin st dt
Qyi I Qyi Dy I Q.\'i 9y I Qyi
(8.10a-c)

In the above equations, I =27/& = NT (eq. (5.8b)) and i =1,2 . For the degenerate rotor, 4

zero frequency static equilibrium equations can be written (Chapter 5, end of section 5.3):

0= 071111 (O)Q—xl + &JIJZ (OExz . 0= ﬁ]ljl (O)(le -W, )+ ﬁvlljz (O)(Qz - Wz) (8.11a,b)

0= aszJl (O)éxl + 07/212 (O)Qﬁ , 0= Blzh (O)(Eyl -W )+ B/zjz (OX_Q_yZ -W, ) (8.11c,d)

where &, J, )= B 5, (0) are the zero frequency values of the accelerance functions of the

linear subsystem, relating the forces at J; (j =1,2) in the x and y directions respectively with

the acceleration response in the corresponding directions at J; (i =1,2). Since the inverse of

a,, ) d,,©)
a,,0) a,,0

g,-W =0, _Q—y2 —W, =0. Hence, defining

the matrix [ } exists, egs. (8.11) are seen to reduce to .Q-xl =0, sz =0,

0 s#N
Sy = 8.12)
N {1 s=N (

the complete set of RHB equations (5.14) can be written as:
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Qxl :07 Q}I W 0 sz _0 Qyz —0

X-Bl =—Upp (O)Q_n > }731 = "/83131 (O)Q-yl s Ysz —CQpp, (O)sz s ﬁB B, (O)QyZ
(8.13al-a8)

ay) =a,, (so)pl +o,, (s@)pl) +8a,,, (swl,2*siny,

afy) = B, (5@ + B, (s)p') =8\, By, 5BV, Q7 = 8,, B, (0,2 cosy,
al) =a,, (s@)pY +a,, (@)pl) +8a,, (s@l,Q siny,

ag)) = 1,5, (s@)pS + B, (5B)p) =8By, SOV, 2% =85, B, (sw U, 2% cosy,
a$) =—a, (s@)pl. aly) =—PB,, (s@)pl),

agz =~0pp \S ( )p}(:;)’ aYB —“ﬁ&g (Sm)py'7

where s =1...m (8.13b1-b8)

by, =0, (@) v, (s@)al) + 8,0, (sOW, Q% + 68,0, (s, 2% cosy,
by) = By, (s@)a') + B, (50)a + 6, By, (5B, 27 siny,

byt =0y, (s@)a ) + oy, (508 + 6,00, (5B, Q7 + 8,01, (s, Q7 cosy,
b = B, (5@l + By, (s@)a D + 6, By, (s@W, Q7 siny,

bl =04 (s@)g, B =Py (@),

b)(;s =—Opp, (Sw)qxz > 19152 :—ﬁ3232 (s@)qi;)

where s=1...m (8.13c1-c8)

In the above equations, o, (), B PO (w) are the receptance functions at frequency @ rad/s

of the linear subsystem, relating the forces at position Q in the x and y directions respectively
with the displacement responses in the corresponding directions at position P. Note that for
points P and Q situated on the rotor and support structure respectively or vice versa,
0o (@) Brp(@)=0. Also, egs. (8.13a5-a8), (8.13b5-b8), (8.13c5-c8) neglect the cross-
coupling between B; and B; i.e. Cpgp, (a)), ‘8353,. (w):O for i# j (i,j=1,2). All receptance
functions are real and independent of rotational speed due to the neglect of linear damping

and gyroscopic effects. Also, for points P, Qr on the rotor, Opo (co): B PeOs (a)) (rotor

isotropic). From egs. (8.1), (8.3) and (8.4), the (undamped) support receptances are given by:
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055 (©)=1/(Ky ~M 5 0%). By @)=1(K,, ~M , o) (8.14a,b)

The values of M, , M , used in eqs. (8.14) are higher than those quoted in Table 8.2 due to

the additional mass of the housing end-plates, rotor probe brackets (marked (12) in Figure
8.1), and their probes (the revised values of the masses are found in Appendix A6, section
A6.3). The rotor receptances are evaluated using the mechanical impedance (MI) technique

[19], and the MI model for the rotor is described in Appendix A2, section A2.3. For solution,
egs. (8.13) are expressed in the form p(\?,.é):() of eq. (5.18) by bringing all the terms to

one side of the equality signs. ¥ = v/c where v is the 8(2m +1)x1 vector of the unknown

Fourier coefficients of the SFD displacements X, , aX, , b}g , 17] ) aYJ , b}(,j , X B > agﬂg ,
b}(m), 173 aé‘;?, bﬁjﬁ,i) fori=1,2 and s=1..m. Q= Q/w, where w, is arbitrarily chosen as

the symmetric bounce mode frequency, 27 X66 rad/s. The resulting system is then solved
using the arc-length continuation method (section 5.3, pages 63-64), using the iterative
algorithm in Appendix Al to trace out a speed response curve of NT - periodic solutions,
where N is of fixed value. For each such solution, the Fourier coefficients of the SFD forces

are known. The Fourier coefficients of the response at an arbitrary position Pk on the rotor

( cos st + by sin swt), Y, = Y, + i ( &) cos st +b;) sin sot)

5=

—

g
'MS

i

(8.15a,b)

can be determined as follows:
(a) In each of egs. (8.13b1,b2) and (8.13c1,c2) replace the subscript J; by Pr on the left
hand side and replace the first subscript J; by Pg in the receptance terms of the right
hand side. The right hand sides of the modified equations can then be evaluated to

yield the dynamic Fourier coefficients in egs. (8.15).

(b) The mean terms X, , ¥, in egs. (8.15) can be found by considering the straight line

joining the mean positions (f 11 ,I—;Jl ), (}? 7 ,}7]2 ) at the SFDs, as explained previously:

_ - (X,-X _ _ (¥, -7
X, =X, +| -2, ¥, =¥, +|2—21,, (8.16a,b)
ljljz l-’lfz
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where [, ; is the displacement of Pg from J; in the positive z direction.

For this application, Pr corresponds to Jim, or Joy, (Figure 8.1), and the mean terms there are
calculated since, for measurement purposes, these locations are substitutes for the actual SFD
positions.

For the time domain equations of motion, a total of H =10 modes of the undamped non-
rotating linear subsystem are considered. These comprise:

(a) 3 modes of the free-free rotor in each of the xz and yz planes with natural frequencies

Wpyr Opyys 7=1...3. ¢, 6{®7) are the corresponding mass-normalised mode

Ryr ®
shapes evaluated at position Py in the x and y directions respectively. Since the rotor

is isotropic, Mg, =0, and qb = ,(,fy’). As explained previously, for each plane,

the first two modes define non-oscillatory rigid body motion, so that @,,,,®@;, =0,

r=1,2. The third mode is the first bending mode of the rotor (see Figure 8.6(b)).
(b) 2 modes of the support structure alone in each of the xz and yz planes, with natural

frequencies @y, , @y, , r=1,2, where, for each plane, the vibration of one housing is

Sxr 2
uncoupled from that of the other housing, as explained in section 8.2.1.

Hence, the modal coordinate vector q (eq. (5.29)) and the matrix D (eq. (5.31)) are written as

q:[%m 9ry 92 9ry2 9rRs 49rys 9sa 9sy 9sxe2 qsyz]I (8.17)
D=dinglol, ), 0, 0}, 0l 0}, 0, o), o, o]  ©19

The modal equations are then given by:

Qer +a)12bcquxr = ¢.§1er)Qx1 + ¢§fxr)Qx2 + ¢U r)P ¢)(er x

qRyr + a);yquyr = ¢J(1Ryr)(le - w/l )+ ¢J(fyr)(Qy2 - WZ )+ ¢l(/}:yr)P ¢ R)")P

where r=1...3 (8.19a,b)
Gon + 0350 =050, (8.19c)
o + 035, = ¢(S”)Qy] (8.19d)
G + 032850 =950, (8.19¢)
Gopr + 03005, =050, (8.19f)
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For the computation of the instantaneous SFD forces O, Q, (i=1,2) from egs. 5.2(a,b),

the instantaneous non-linear degrees of freedom u, (eq. (8.6)) are required. These are

expressed in terms of the modal coordinate vector g of eq. (8.17) by the reduced

transformation uy =Hyq (eq. (5.34)) where the reduced modal matrix Hy (eq. (5.33) is

given by the 8x10 matrix:

— Q)J('RXI) 0 ¢1(sz) 0 ¢J(Rx3) 0
0 W 0 e 0 gb 0
HN = ¢§fxl) 0 ¢j(fx2) 0 ¢j(fx3) 0 it
0 5‘?1) 0 yjyz) 0 q)j(fﬂ)
- P diaglo™ o i 0”]
(8.20)

where 0, is defined as a zero matrix of size ix j. The first six columns of Hy pertain to

the modes of the rotor, alternately in the xz and yz planes. The last four rows of these
columns correspond to the values of the non-linear degrees of freedom at the two housings in

these modes and so are all zero. The remaining four columns of Hy pertain to the modes of

the support structure, alternately in the xz and yz planes. The first four rows of these columns
correspond to the values of the non-linear degrees of freedom at the two journals in these
modes and so are all zero.

The evaluation of the modal parameters of the rotor is described in Appendix A3,

sections A3.1, A3.3. The non-zero natural frequency @, is determined from the

mechanical impedance frequency response functions. The required mode shapes are then

determined by fitting 3 modes to the exact receptance functions o, (@) (computed by MI)

[47]. A typical example of the quality of fit is given in Figures 8.7(a,b), which respectively

compare the exact receptances o ;. (@), « 7y (w) with the approximate ones reconstructed

from 3 modes. It is seen that satisfactory agreement prevails over a frequency range of 0 Hz
to 500 Hz, covering nearly 5 harmonics of the top rotational speed. It is also evident that the
flexure mode introduces an anti-resonance at the relatively low frequency of 280 Hz. The
omission of this mode would result in serious error to the third and higher harmonics of the
rotational speed around the anti-symmetric bounce critical speed of the complete rig (around

100 rev/s), despite the fact that the rotor has virtually no deformation in the anti-symmetric
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bounce mode (Figure 8.6(a)). More illustrations on the quality of fit are given in Appendix
A3, Figure A3.1. These illustrations, together with those of Figure 8.7, cover all the rotor
receptance functions used in the RHB approach of equations (8.13).

The modal parameters used for the support structure are slightly different from those in
Table 8.1 due to additional mass added to the housings. The final values of these parameters
are found in Appendix A6, section A6.3.

Equations (8.19) are ready for numerical integration from given initial conditions for the
time domain response. Prior to integration, these equations are non-dimensionalised and
expressed as a set of first order differential equations, as illustrated in Appendix A4, section
A4.2. The instantaneous x and y response at an arbitrary position Pgr on the rotor is given in

terms of the modal coordinates by the appropriate pair of rows of the transformation of eq.

(5.28), u = Hq, and thus necessitates the knowledge of ¢1§fx’) , }(,f)”) , r=1..3.

For stability and bifurcation analysis of the RHB response, the matrices ofy/duy ,
of \ /ouy in the expression for W(T) (egs. (5.44), (5.45)) are required. From egs. (8.5) and
(8.6):

i anl anl anl anI anI anl anl anl 1
oX, oY, oXx, Y, oX, oY, X, Y,

afN : : : . : : : .
auN _ aQy?. _ aQyZ _ aQy2 _ aQy?. _ aQyZ _ aQyZ _ aQyZ _ aQy2
oX, oY, oX, oY, 09X, oYy 0X, 0¥,

Now 90, /0X, ,00, /0¥, .00, [0X 5 ,00, /0¥, =0 when i=j. Also, from egs.
(5.2ab), 0, , =0, , (X,e,[_ ,Yreli,Xre,i ,le'_ ), where X, =X, — X, ,....etc. Hence,

00, /0X, =00, /X, , 00, /0¥, =00, . [0Y,, ., 00, ,/0X, ==00, ,/0X . ,
00, /0¥, =00, ,/dY,, . A similar process applies for ofy /ouy . Hence,

-~

JQI 02><2 - JQl 02><2 JQI 02><2 - le O2><2
afN _ 02><2 JQZ 02><2 _qu afN _ 02x2 JQ2 Ozxz _JQZ (8.21)
auN - JQI 02><2 JQI 02)(2 , au; - JQI 02x2 JQI 0.,

02><2 _JQZ 02><2 JQZ OZX?_ *jQz 02><2 jQ?.

167



where

00, 00, 00, 90,
JQi = aQyi aQyi , JQ{- = aQyi’ aQyi ,i=12 (8.22a,b)
X . oY ox’ oY’

rel; rel; rel; rel;

and ( ), is d( )/dr, 1=ot (@ rad/s being the fundamental frequency of the periodic
solution). The partial derivatives in eqs. (8.22) are evaluated numerically at the RHB-
computed periodic solution from the expressions for O, ; in egs. (5.2) and (4.6). The above
expressions, along with the expressions for Hy (eq. 8.20) and D (eq. (8.18)) determine the
expression for W(’L‘) in egs. (5.44), (5.45), from which the monodromy matrix G of the
periodic solution is computed, using eq. (3.22).

The equations presented in this section are processed as discussed in section 5.7 of

Chapter 5.

8.4 EXPERIMENTAL WORK

For this work, the shims were removed from the radial clearances of the dampers and their oil
supply restored. The rig was run under unbalance conditions in the speed range 20 rev/s to

110 rev/s and vibration data acquired at each speed in steps of 2 rev/s. The oil supply

pressure p; to both dampers was kept constant at 34.5X 10° Pa. This pressure was sufficient

to fill both clearances. Preliminary experiments were conducted without unbalance masses
attached, in order to examine the influence of the small residual unbalance left after the rotor
was balanced in the first commissioning period. Experiments were then conducted with
unbalance masses attached at U, only (see Figure 8.1) and then with symmetrically disposed
equal masses attached at both U; and U,. In this thesis, emphasis is placed on the former case
since this represents a general unbalance condition in which both symmetric and anti-
symmetric bounce modes are excited. A summary of the experiments discussed in this thesis

is given in Table 8.4.
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EXp;Irémem U, U, Y. | Temp, I Temp, B,
' (x10* kgm) | (x10™* kgm) ©C) x10° | (o) | 107
Nsm'z) Nsm"Z)
1 0 7.065975 0 36 9.85 35 10.17
2 0 10.735900 0 37 9.53 34 10.57
3 0 13.146000 0 36 9.85 33 10.98
4 10.735900 10.735900 0 36 9.85 34 10.57

Table 8.4: Summary of unbalance response experiments for test rig C

With reference to this table:

- Temp, and [, (i=1,2) are, respectively, the average oil temperature and the oil viscosity
at that temperature for SFD no. i . The viscosity values I, were used in the analytical

treatment.

- The resultant unbalance mass attached at position Uy (k =1,2) is given by U, /r, where
the unbalance radius 7, = 54.775x107 m.

- v, is the phase angle of unbalance U, relative to U, as described in Figure 5.1(b).

- The acquisitions were conducted both on run-up and run-down in rig speed.

Vibration in the x and y directions was measured by displacement probe pairs at Jim, B1,
Jom and B, (Figure 8.1). As explained in section 8.2, the probes at Jin and Jon measured
displacements relative to B; and B, respectively, whereas those at B and B, measured
displacements relative to the machine frame, which were taken as absolute for the purpose of
comparison with theory. The probes were connected through voltage amplifiers to a PC-
operated Hewlett Packard HP 35650° spectrum analyser, which was set to acquire data in the
form of a time history. The speed was measured using an optical sensor connected to a
tachometer. The sensor was targeted at a section of the rotor close to F; (Figure 8.1), which
was painted black all round except for two diametrically opposed white strips aligned with
the unbalance. Hence, the output of the tachometer was two rectangular pulses per shaft
revolution. This signal was fed to a digital frequency meter, its reading being divided by 2 to
give the speed. The speed fluctuation was within + 0.5 rev/s. Since the time capture length
of the vibration was 2 s, the fluctuation was within the resolution of the frequency spectrum
of the acquisition (i.e. 0.5 Hz). The tachometer pulse was also fed to the spectrum analyser

for acquisition, in order to obtain knowledge of the phase of the vibration time histories
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relative to the unbalance. Since the HP 35650° analyser had a maximum of 8 channels and 9
signals needed to be acquired, two such analysers, each with its own PC, had to be used. The
analysers were linked together by a common input from an instrumented hammer. This is
illustrated in the instrumentation diagram of Figure A6.3 in Appendix A6, section A6.4. At
each speed, data were acquired by both analysers simultaneously upon being triggered by a
light tap from the hammer applied by the experimenter to the desk. The frequency range was
0-1.6 kHz and the sampling rate of the analysers was thus 2.56x1.6 = 4096 samples/s, to
avoid aliassing in subsequent spectral analysis. Further details of the instrumentation are
given in Appendix A6, section A6.4. The data were converted from standard format to
MATLAB® format and processed for frequency spectra, vibration orbits, and peak-to-peak
displacements. Poincaré maps could also be constructed from the time records through the
knowledge of the tachometer pulse signals. Since the time record length was 2 s, the number
of samples in the map at a given speed S rev/s was limited to 25 = 1.

The rotor probes at Ji, and Jo, (Figure 8.1) revealed a run-out when the shaft was rotated
at very low speed. This was due to the non-uniformity of the shaft radius (“lack of
roundness”) and so, was termed “geometric run-out”. The run-out was significant for the
position Joy, as can be seen from Figure 8.8(a). This figure shows the alternating (“ac™)
component of the y versus x “orbit” recorded by the probes at J,, over 2 s at a speed of 3
rev/s. This “orbit” did not define vibration, but actually defined the fluctuation in the shaft
profile at Jom,. The “ac” x and y signals are shown in Figure 8.8(b) with the tachometer pulse
signal superimposed, the distance between the tachometer pulse edges UU, VV defining one
shaft revolution. The x and y signals were periodic at the period of rotation and practically
identical except for an offset of a quarter period (allowing for the sign convention used for
the x and y fluctuations). From Figure 8.8(a), it is seen that the peak fluctuation in shaft
radius at Jon (taken as half the peak-to-peak fluctuation) amounted to 16 % of the radial
clearance or 0.0007", which was comparable to the machining tolerance for the shaft.
Knowing the x and y geometric run-outs at J;, and Jo,, at a reference speed (~3 rev/s), as well
as the associated tachometer pulse signal, the x and y geometric run-outs at any speed S rev/s
could be constructed from the tachometer pulse signal at S rev/s. This enabled a correction to
be made to the vibration recordings at J;, and Joy, at S rev/s. For each location Ji, and Jom, 2
“reference” profile for the x run-out was formed by taking a portion of the profile of the
corresponding x run-out at 3 rev/s between an arbitrarily chosen pair of tachometer pulse
edges UU, VV, covering one shaft revolution (Figure 8.8(b)). This profile was then

uniformly shrunk along its time base to fit the space between each consecutive pair of similar
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edges UU, VV in the tachometer pulse signal at S rev/s, thus constructing the x run-out at this
speed (see Figure 8.9 where S =60rev/s). Any remaining gaps at the beginning and end of
the time history were filled by continuing the constructed periodic waveform backward and
forward respectively. A similar process was followed for the y run-out. The x (y) run-outs at
S rev/s at Jim, Jom were then subtracted from the corresponding x (y) displacement probe
readings to obtain the true vibration signatures at Ji, and Jpn. The method described in
Figure 8.9 did not depend on the knowledge of the values of the speed S and the reference
speed (~3 rev/s) and thus avoided cumulative errors in phase that would otherwise occur due
to inevitable uncertainty in the precise values of the speeds. Moreover, minor fluctuations in
speed, which resulted in variations in 7 (Figure 8.9) from one pair of pulse edges UU, VV to
the other, were accommodated by the method since the reference profile was “custom” fitted
to each pair of pulse edges in turn. The method merely assumed that the speed was uniform
over the short time interval separating each pair of edges UU, VV. Since the run-out at speed

S was periodic with period 1/S, the correction should affect the synchronous frequency

component of the vibration and its super-harmonics, without affecting the other frequency
components or introducing spurious frequencies. This is verified in the waterfall diagrams of
Figure 8.10, which refer to the frequency spectra of the y vibration of J,p, relative to B, for
the unbalance condition in the first row of Table 8.4. It is also clear that the corrected
diagram is much more realistic than the uncorrected one, showing activity in the synchronous
frequency component around the bounce critical speeds of ~66, ~100 rev/s, especially the
latter mode (as is expected from the unbalance distribution). Also, a resonance in the second
harmonic of the rotational speed appears in the corrected diagram at 32 rev/s, which is around
half the first (i.e. symmetric) bounce critical speed. This sub-critical super-harmonic

resonance cannot be identified from the uncorrected diagram.

8.5 RESULTS AND DISCUSSION

The first part of this section focuses exclusively on the quality of the correlation between the
three modelling blocks i.e. RHB, modal Floquet stability analysis, and modal numerical
integration (time-marching). The second part of this section deals with the ability of the

model to predict observed non-linear phenomena. All simulations presented use the absolute

zero cavitation model for the SFDs i.e. p, =-101.325x10° Pa.
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8.5.1 Correlation Between Modelling Blocks

For the purposes of the discussion in this section, one can focus on the response at a
particular position without loss of generality, since the nature of the vibration (i.e. whether it
is periodic, quasi-periodic, ... etc.) is the same for all locations. Figures 8.11(a-f) present
predicted speed response curves for the displacement amplitude of J, relative to B, for the

three different unbalance conditions in the first three rows of Table 8.4 (for which U =0).

The vertical axis shows the half peak-to-peak displacement (normalised with respect to ¢) in
the x or y directions. The RHB predictions (red curve) are for T-periodic motion (N =1)
with m =10 harmonics taken. These solutions are classified according to their state of
stability, computed by the Floquet analysis block (see figure caption). The steady-state time-
marching predictions (in blue) are in steps of 2 rev/s and are performed for the two speed
regions, I and II, that contain regions of instability of 7-periodic motion. The initial
conditions for the first time-marching solution in each range were obtained from the RHB
prediction at that speed and the initial conditions for the solution at a subsequent speed were
obtained from the final conditions of the solution at the preceding speed. For each speed, the
integration was carried out over at least 200 shaft revolutions and only the last 1 s analysed.
The very good correlation between the three modelling blocks is illustrated by the fact that
the time-marching solution curves part company from the RHB curves only in the regions of
instability of T-periodic motion. Elsewhere, both methods give the same stable 7-periodic
motion, as seen in Figure 8.12. This correlation between the RHB and time-marching
predictions for stable 7-periodic motion was not always that good, as seen in Figure 8.13.
The reason for this was an insufficient number of rotor modes in the time-marching solution
rather than insufficiency in the number of harmonics in the RHB solution (which, at m =10,
was more than adequate). In fact, as seen in this figure, agreement was restored when the
RHB solution was performed using rotor receptances reconstructed from the 3 modes
considered in the time-marching solution (using eq. A3.9 of section A3.3, Appendix A3)
rather than the exact ones (computed by MI). This example illustrates the “inter-checking”
properties of the RHB and modal time-marching methods when “exact” receptances are used
in the former method. Despite the occasional inadequacy in the number of rotor modes
taken, the stability analysis block gave a consistent result every time. According to the
Floquet test, the instability in speed range I is the result of a secondary Hopf bifurcation.

This is consistent with the Poincaré map of the time-marching result at 60 rev/s for

U, = 7.07x10" kgm (Figure 8.14(a)). For the highest and lowest values of U,, the onset of
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instability in speed range II, as the speed is increased, is also the result of a secondary Hopf

bifurcation (points H on Figures 8.11(a,b,e,f)). This is consistent with the Poincaré map of
the time-marching result at 88 rev/s for U, = 7.07x10 *kgm (Figure 8.14(b)) and at 84 rev/s
for U, =13.15x10"kgm (Figure 8.14(c)). Notice that for the highest unbalance, a narrow
region of instability of 7-periodic solutions, the onset of which is marked by a period-
doubling bifurcation, is also evident in Figures 8.11(e.f) for the range ~72 rev/s to ~74 rev/s.
However, the resulting sub-harmonic motion is weak and stable T-periodic motion is restored
by 74 rev/s. For the intermediate unbalance, U, =10.74x10™ kgm (Figures 8.11(c,d)), the
onset of instability in the speed range II, as the speed is increased, is marked by a period-
doubling bifurcation (point F in Figures 8.11(c,d)). This is confirmed by the time-marching
solution of Figure 8.15 for 84 rev/s, which shows double-looping. The (stable) 27-periodic
RHB solution ( N = 2) with m =15 harmonics taken is overlaid on the same axes. It is seen
that correlation between both solutions is very good. Notice that, in Figures 8.11(c,d), the

unstable T-periodic solution (close to F) marked “0” (where A, =—1.0442) is followed by an

apparently stable one marked “0”. However, this subsequent solution is actually at the

threshold of instability (4, =—0.9885) and, given its isolation, stable T-periodic motion is

not restored, the motion remaining locked in 27-periodic motion. For the lowest unbalance
only (Figures 8.11(a,b)) stability of T-periodic motion is restored by 110 rev/s, where the
time-marching and RHB curves rejoin. Moreover, at this unbalance, as the speed is
decreased from 110 rev/s, a period-doubling bifurcation is predicted (point F, Figures
8.11(a,b)). This is confirmed by the time-marching solution in Figure 8.16 for 106 rev/s.
Overlaid on the same axes is the (stable) 27-periodic RHB solution (i.e. N =2) with m =15
harmonics taken. It is seen that correlation between both solutions is very good.

Note that the restriction to just one flexural rotor mode in each plane was done to cut
down on computing time in generating the time-marching response. The stability analysis
block was found to accommodate an extra flexural rotor mode (in each plane) in the matrices

H, (eq. (8.20)) and D (eq. (8.18)) with negligible effect on computation time. However, as

illustrated in this section, this was not necessary.
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8.5.2 Correlation With Experiment

The residual unbalance is first discussed, since this is an inevitable source of error. Figure
8.17 shows the measured residual unbalance response of the rig (i.e. with no unbalance
masses attached). The relative responses across the dampers in the x and y directions, as well
as the housing vibration in the x direction, are minimal. However, the housing vibration in
the y direction shows peaks at 32, 48, 64, and 95 rev/s (Figures 8.17(f,h)). This latter effect is
to be expected since the level of relative vibration across the dampers is low and
consequently, there is little lift of the mean position of the journal vibration from the base of
the clearance under the gravity load, over the entire speed range. The latter two peaks in
Figures 8.17(f,h) correspond approximately to the first (i.e. symmetric) and second (i.e. anti-
symmetric) bounce modes respectively. It should be noted that if one takes into account the
extra mass added to the housings due to the attached rotor displacement probes and their
brackets, the predicted bounce critical speeds in the yz plane quoted in Table 8.3 reduce to
66.4 rev/s and 98.3 rev/s. Hence, it can be assumed that the measured value of the second
bounce critical speed (99.7 rev/s) goes down, at most, to 99 rev/s. Still, the latter two peaks
in Figures 8.17(f,h) occur at around 2-4 rev/s less than the bounce speeds. This difference
from the condition with the SFDs locked is not unusual since there is some relative
movement across the dampers in the y direction (Figures 8.17(b,d)), especially around the
bounce speeds. The first pair of peaks in Figures 8.17(f,h) occur at speeds roughly equal to
half the bounce critical speeds and are sub-critical super-harmonic resonances, introduced in
Chapter 6. These correspond to the state where the SFDs are reduced to piecewise-linear
springs in the y direction. The strength of these peaks is not indicative of the magnitude of
the unbalance, since the 2EO frequency component is the main contributor to the vibration
(as explained in Chapter 2, 1EO (“engine order”) refers to the synchronous frequency
component of the vibration). In fact, as will be seen in later results, the amplitude at these
peaks is practically independent of the unbalance level while the lift at the dampers is
negligible. The 1EO frequency component is the major contributor to the peaks at 64 rev/s
and 95 rev/s in Figures 8.17(f,h). The amplitudes at these peaks are not insignificant when
compared to the housing vibration in the y direction with unbalance masses attached to the
rotor (to be shown later). However, the relatively high amplitudes at the bounce critical
speeds in the residual unbalance response of the housings in the y direction are more likely to
be the result of inadequate damping provided by the SFDs due to the small relative vibration

across the dampers, rather than a significant residual unbalance.
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Figures 8.18-8.21 compare predictions and measurements for the vibration of J1, relative

to By, Jom relative to By, and the absolute vibrations of B; and B, for the three levels of

unbalance in the first three rows of Table 8.4 (page 169). The theoretical results (RHB

N =1, m=10 and numerical integration) are presented in a similar fashion to those in

Figure 8.11. The following observations can be made.

Fair correlation of the measurements with the relative vibration predictions at the SFDs
(Figures 8.18, 8.19) is evident, although it is noted, particularly in the y direction, that the
mismatch around the first bounce speed (60-70 rev/s) increases with unbalance level.
The orbital motion at the dampers in this region for U, =0, U, =10.74x10 " kgm is
shown in Figure 8.22. Although speed-for-speed agreement is generally unattainable, the
predicted and measured orbits evolve in a similar manner. It is outside the scope of the
work in this chapter to investigate how oil film conditions affect the orbital motion,
especially in the absence of measurements of the dynamic pressure within the oil film.
The sub-critical super-harmonic resonances are clearly defined in the absolute
displacements of B; and B, in the y direction, at around 32 and 48 rev/s, Figures
8.20(b,d,f)-8.21(b,d.f). The first super-harmonic resonance is practically independent of
unbalance, whereas the second one tends to become less prominent with increasing
unbalance due to the increased lift at the dampers causing them to behave less like
piecewise-linear springs. The absolute response at B, in the y direction is characterised
by a pronounced trough in the range 68 rev/s to 78 rev/s, unlike the absolute y response at
B,. This is probably due to the unbalance being concentrated at U, only: the trough in the
absolute y response at B, loosely corresponding to the anti-resonance between the bounce
mode resonances of the measured point accelerance at B, (which is close to Uy) for the
system with SFDs locked (Figure 8.5(b2)). The absence of such a pronounced trough in
the absolute y response at By can be associated with the absence of an anti-resonance in
the measured transfer accelerance between B; and B, (and hence U,) for the system with
SFDs locked (Figure 8.5(c2)). The absolute responses of B and B; in the x direction do
not exhibit such a relation to the case with the SFDs locked since the absence of a static
load in that direction promotes relative motion across the dampers.

The experimental results presented are for run-up in rig speed. Similar orbital motion

was reproduced on run-down. The only exception was for the highest value of U, at 86

rev/s, where an unexpected jump-up in the x component of the motions of B; and B,

relative to the engine frame was observed as the speed was increased from 86 rev/s to 88
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rev/s as shown in Figures 8.20(¢e), 8.21(e). On run-down in speed, the amplitude jumped
back down as the speed was decreased from 86 rev/s to 84 rev/s. This unique behaviour
in the x component of the motion relative to the frame could not be predicted.

- The (stable) numerical integration result in regions of predicted instability of T-periodic
motion generally results in an improvement in prediction for vibration amplitude. This is
not always the case, as shown in Figure 8.23, where the predicted 27-periodic relative
orbits at the SFDs overestimate the vibration amplitude. Nonetheless, the occurrence of
2T-periodic motion is correctly predicted. That the measured motion in Figure 8.23 is
indeed almost pure 27-periodic motion is not just evident from the double-looping of the
absolute housing orbits (Figures 8.23(c1,c2)), but also from the measured Poincaré map

of the relative motion at each damper (Figure 8.24). The sampling times 7, of the map
are given by Qf, =3mw/4+k2n, k=0,1,..., where £, =37m/4 corresponds to the

angular position of the speed probe, according to the convention of Figure 5.1(b). It is

seen that the return points of both measured orbital motions (in red) congregate roughly at

two locations within the clearance, in a similar manner to the predicted return points (in
blue).

Non-synchronous frequency components are clearly evident in the waterfall diagrams of
the frequency spectra of the relative and absolute responses at the dampers and housings
respectively in the y direction, Figures 8.25-8.28. The corresponding diagrams for the x
direction are found in Figures A6.4-A6.7 in Appendix A6, section A6.5. The frequency
resolution is 1 Hz for the predictions and 2 Hz for the measurements. The prediction
diagrams were efficiently constructed from the RHB N =1, m =10 predictions for those
ranges of rotational speed for which the predicted 7-periodic motion is stable and from
numerical integration solutions at the other speeds. The sub-critical super-harmonic
resonance speeds at ~32 rev/s and ~48 rev/s are clearly evident by the strong 2EO frequency
components in both measurements and predictions of the housing response in the y direction,
Figures 8.27, 8.28. The predicted super-harmonic resonances occur at speeds exactly equal
to one half the predicted bounce speeds (66 rev/s and 98 rev/s). The measured bearing
housing spectra also reveal a sub-critical super-harmonic resonance at a speed of 22 rev/s

= 66/3 rev/s, evident by the 3EO frequency component at this speed (Figures 8.27(b,d,f),
8.28(b,d,f)). This frequency component is hardly visible in the predictions, but slight peaks

at 22 rev/s are evident in the predicted absolute housing vibration amplitude-speed plots (y

direction) of Figures 8.20(d,f)-8.21(d,f), as in the measurements. It is also interesting to note
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that for the lower speeds, the frequency spectra of the measured housing y vibration show a
slight frequency component at 100 Hz, approximately equal to the second bounce resonance
frequency, possibly due to the very low damping when the SFD journals are bottomed in
their clearances. This was not obtained with the prediction since RHB was used for the low
speeds. However, it is noted that the RHB solutions in the region of the sub-critical
resonances are on the threshold of instability due to the ineffectiveness of the SFDs and the
lack of other sources of damping in the model — moderate disturbances from the T-periodic
motion would result in a practically non-decaying natural motion superposed on the 7-
periodic motion.

The frequency spectra at the higher speeds are now discussed. At the lowest unbalance,
Figures 8.25(a,b)-8.28(a,b), sub-synchronous activity starts in earnest at speeds approaching
the second (i.e. anti-symmetric) bounce critical speed. In the measurements (Figures 8.25(b)-
8.28(b)), the sub-synchronous motion starts with the appearance of non-integer EO frequency
components of the form (2k —I)EO/ 2, where £ is a positive integer, mostly equal to 1 or 2.
For later speeds the non-integer EO frequencies “fan out”: they are each replaced by pairs of
frequencies that are centred on the respective (2k—1)EQ/2 frequency locations. The
spacing of each pair increases with speed, but each pair remains centred on the corresponding
(2k ——1)EO/ 2 location. The corresponding predictions for this unbalance (Figures 8.25(a)-
8.28(a)) show a reverse forking effect: pairs of frequencies centred on the (2k—1)EO/2
locations first appear and are then replaced by (2k—1)EQ/2 components. For both
measurements and predictions, the non-integer EOs disappear by 110 rev/s, which is
consistent with the restoration of stability of 7-periodic motion predicted in Figures
8.18(a,b)-8.21(a,b). For the next higher unbalance, Figures 8.25(c,d)-8.28(c,d), the non-
integer EOs develop at an earlier speed in both measurements and predictions. The observed
forking effect of the non-integer EOs is not evident in the prediction until 104 rev/s.
However, for the highest unbalance, Figures 8.25(e,f)-8.28(e,f), the experimentally observed
development of non-integer EOs in the region of the second bounce speed is evident in the
predictions. Two sections of the predicted and measured waterfall diagrams in Figures
8.25(e.f)-8.28(e,f) are taken at speeds of 94 rev/s and 104 rev/s, straddling the second bounce
critical speed, and are compared in Figures 8.29 and 8.30. It is seen that the salient frequency

components in these figures occur at combinations &k, f, +k;,f, of two fundamental

frequencies f, and f, where k, and k, are integers, f, is the synchronous component and
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Jo 1s either one of the pair of frequencies straddling the 1EQ/2 Jocation on the frequency
axis (in Figures 8.29, 8.30 f, was chosen as the lower frequency of the pair). For both
speeds 94 rev/s and 104 rev/s, the predicted value of f; is very close to the measured value
(practically equal for 104 rev/s). It is seen that the mean of f, and f,—f, is f,/2
(=1EO/2) and that of f, + f, and 2f, — f, is 3f,/2 (=3EO/2). Spectra of the type shown

in Figures 8.29, 8.30 were predicted for the simple system of Chapter 6 (Figure 6.8(b)). It
would appear that the motions in the region of the second bounce speed are 2-frequency
quasi-periodic. Figure 8.31 shows the predicted and measured steady-state orbital motion at
94 rev/s over 2 s. For the prediction, the first 350 shaft revolutions were discarded to ensure

steady-state conditions. The Poincaré maps of the orbital motions in Figure 8.31 are shown

in Figure 8.32. These are sampled at two different phases: €2¢, =37/4 (Figures 8.32(al,bl)
and (X, =3m/4+m (Figures 8.32(a2,b2)). It is seen that the predicted and measured maps

show remarkable similarity with regard to position, orientation within the clearance, and
overall shape, particularly the curvature of the maps in Figure 8.32(b2). The predicted maps
approximate 1o closed curves, albeit much more complicated ones than that in Figure 8.14(c),
for 84 rev/s, which is close to the secondary Hopf bifurcation point H in Figures 8.11(e,f).
The measured maps do not reveal the detailed structure of some complex closed curve or
other form, and it appears unlikely that increasing the relatively small number of samples
would yield any additional information. However, the measured orbits in Figure 8.31 are
actually more ordered than the predicted ones. Figure 8.33 shows the predicted and
measured orbital motion at 104 rev/s over 2 s. The predicted motion appears to be
approximately locked into NT-periodic motion, where N is very high. The predicted and
measured Poincaré maps are shown in Figure 8.34. It is again seen that good agreement
exists between predicted and measured maps with regard to position and orientation within
the clearance. By counting the number of distinct points on the predicted maps it is estimated
that N =33. In fact, as the speed is increased, the predicted motion in the region of the
second bounce critical speed alternates between motion of the type of Figures 8.31(al,bl)
and approximately NT-periodic motion of high N as in Figures 8.33(al,bl). This, coupled
with the fact that only two fundamental frequencies are evident in the predicted (and
measured) spectra of Figures 8.29, 8.30, seems to suggest that the predicted 2-frequency
quasi-periodic motion is following the frequency-locking quasi-periodic route to chaos (end

of section 3.5). As mentioned in section 3.5, the question of whether the predicted motion in
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Figures 8.31(al,bl) is really quasi-periodic or actually mildly chaotic is purely academic.
Moreover, this question could only be answered by a reliable estimate of the Lyapunov
exponent, which, for complicated dynamical systems like the one under consideration, is still
unavailable.

Attention is now focused on the case of symmetrically applied unbalance, as in the last
row of Table 8.4 (page 169). The waterfall diagrams of the frequency spectra of the y
displacement are shown in Figure 8.35. Those for the x displacement are in Figure A6.8 of
Appendix A6, section A6.5. The results in Figures 8.35 and A6.8 are for run-up in rig speed.
It is noted that only the first sub-critical super-harmonic resonance (i.e. the strong 2EO
frequency at 32-33 rev/s) is present in the absolute housing y displacement spectra. The
reason for this is that sufficient lift has been generated by 48 rev/s to eliminate the piecewise-
linear spring behaviour of the SFDs. It is also evident from the diagrams in Figure 8.35 that
non-integer EO activity (and the subsequent forking effect described above) around the

second bounce critical speed is absent. Instead, (2k—1)EO/2 (k integer) activity 1is

concentrated in the vicinity of the first bounce critical speed. This activity starts at a lower
speed for the measurements than for the predictions. The absence of sub-synchronous
activity around the second bounce critical speed is consistent with fact that the rig is nearly
symmetrical in construction, the unbalance symmetrically applied, and the SFDs nominally
identical except for a slight inequality in viscosity (see Table 8.4). However, the predicted
relative motion spectra, Figures 8.35(a,c), show unusual, highly asymmetric behaviour of the
1EO frequency component. Firstly, a jump-up on run-up in the 1EO frequency component is
predicted at ~51 rev/s and the jump is much more pronounced for SFD 1 than SFD 2. This
effect is not that obvious in the corresponding measurements, Figures 8.35(b,d), but can be
seen in the measured displacement amplitude (half peak-to-peak) response of Figure 8.36.
The asymmetry of the predicted results for the SFD relative motion is explained in Figure
8.37 using RHB N =1, m =10 and the Floquet stability test. In this figure one can identify
two bistable regimes. The first one is between 47.2 rev/s and 50.6 rev/s, and is typical of a
spring-softening characteristic (i.e. jump-up in amplitude on run-up in speed). Prior to the
jump-up speed, the stable motion is practically the same for both SFDs (“symmetrical”
motion, Figure 8.38(a)). Beyond the jump-up speed (i.e. upon exiting the first bistable
region), in the region ~51 rev/s to ~78 rev/s, a closed curve of T-periodic solutions exists, in
addition to the main (“open”) curve (see Figure 8.37). This results in a second bistable

region in which the stable motions at the two SFDs are highly dissimilar (“asymmetrical”
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motion). In fact, in the region ~51 rev/s to ~65 rev/s, one can choose a stable solution on the
main (open) curves of SFDs 1 and 2 of Figures 8.37(a,b), giving stable asymmetrical motion
like that in Figure 8.38(b). Alternatively, in the region ~51 rev/s to ~65 rev/s, one can choose
a stable solution on the closed curves of Figure 8.37. Such a solution will reside on the upper
part of the loop for SFD1 (Figure 8.37(a)) and on the lower part of the loop for SFD 2 (Figure
8.37(b)). This results in stable asymmetrical motion like that of Figure 8.38(c). The unstable
solutions marked “+” along the lower part of the loop for SFD 1 (Figure 8.37(a)) and along
the upper part of the loop for SFD 2 (Figure 8.37(b)) define the unstable “symmetrical” 7-
periodic motion like that in Figure 8.38(d). It should be remembered that the rig model is not
perfectly symmetrical. Hence, in the present context, the pair of orbits in Figure 8.38(d) is
regarded as defining “symmetrical” motion when compared to those in Figures 8.38(b,c),
especially with respect to orbit size and mean position within the clearance. The RHB-
computed stable 7-periodic orbits in Figures 8.38(b,c) were also obtained by time-marching,
in which case the choice of initial conditions determined which orientation was assumed by
the rotor in the steady-state (i.e. either Figure 8.38(b) or Figure 8.38(c)).

Stable, highly asymmetrical motion of the type in Figures 8.38(b,c) was still obtained
when the rig model was slightly altered to make it perfectly symmetrical in all its parameters
(including those of the SFDs, like the oil viscosity). In such a case, the unstable motions in
Figure 8.38(d) became identical to each other (i.e. perfectly symmetrical motion) and the
stable asymmetrical motion was perfectly interchangeable between the SFDs (i.e. the orbits
of Figure 8.38(c) could be obtained by interchanging the orbits of Figure 8.38(b), and vice-
versa). Hence, for a symmetrical unbalanced rotor running in (identical) unsupported SFDs
at each end it is generally incorrect to reduce the number of degrees of freedom by half by
assuming kinematic symmetry about the rotor midpoint, as in Figure 4.3(a) (Chapter 4). This
assumption is tantamount to excluding the rigid rotation mode of the free-free rotor (mode 2
in Figure 8.6(b)). Such an assumption has frequently been made in the theoretical analysis of
symmetrical unbalanced rotors running in unsupported SFDs in the literature e.g. [12, 15],
without due consideration being given to the possibility that symmetric periodic motion can
become unstable under certain operating conditions, such that the slightest disturbance of the
state variables would cause the rotor to assume a conical mode of vibration in the steady-
state. To the author’s knowledge this the first time that such a possibility has been reported.

The orbits in Figures 8.38(b-d) show that, in the range ~51 rev/s to ~65 rev/s, each SFD
has three different mean positions of vibration about which the static load transmitted by the

respective journal is balanced. Two of these mean positions can be regarded as stable
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(Figures 8.38(b,c)), while the other (Figure 8.38(d)) is unstable. Hence, just like the jump
phenomenon of the first bistable region, the asymmetric vibration phenomenon in the second
bistable region owes its existence to the non-linear spring-like characteristic of an
unsupported damper.

Turning back to the first bistable region (47.2 to 50.6 rev/s), it is noted from Figure 8.37
that a hysterisis (i.e. a difference between the “jump-up on run-up” speed and the “jump-
down on run-down” speed) of around 3 rev/s exists. Hysterisis was not evident in the
corresponding measurement. Likewise, the predicted asymmetry beyond the jump speed was
not evident in the measurement. However, when the unbalance level was increased by about
22 %, a hysterisis of 1 rev/s was observed in the measurement, as illustrated in Figure 8.39.

It should be noted that, as in Chapter 6, the hysterisis effect was predicted using a uniform

value of cavitation pressure throughout ( p, =~101.325x10° Pa in this work). Hence, while

it is likely that, in practice, air entrainment following a jump-up causes a change in cavitation
pressure [28], a change in cavitation pressure is not necessary to produce a hysterisis effect as
was implied in [28]. The striking difference in orbit size between the two SFDs (Figures
8.39(b,c)) appears to lend experimental validity to the predicted asymmetrical operation
beyond the jump-up speed. However, it is noted that the predicted interchangeability of
orbits between the SFDs (as in Figures 8.38(b,c)) was not observed.

The jump-up on run-up in SFD relative displacement amplitude (spring-softening) and
period doubling (i.e. (Zk - 1)EO/ 2 frequency components) were also predicted by the simple
4 degree of freedom system in Chapter 6. Notice that if the rig of this chapter was taken as
perfectly symmetrical in all respects and, additionally, modes 2 and 3 in Figure 8.6(b) were
not considered (i.e. kinematic symmetry about the rotor midpoint is assumed and rotor
flexibility is neglected), then the resulting dynamical system would have the same equations
as that of Chapter 6.

A source of error that may have degraded correlation between experiments and
predictions must have been the assumption of free conditions at the left hand (LH) end of the
rotor. Figure 8.40 shows a schematic of the drive coupling at the LH end of the rotor. While
it is true that there is no bending moment at the LH end in either plane xz and yz, the
component of rotor velocity at the LH end normal to the drive bar causes an inequality in
contact force, resulting in a net opposing force. This restraining force is thought to be

influential at high amplitudes of absolute rotor vibration at the LH end.
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The development of the sub-critical super-harmonic resonances is now discussed in more
detail. Figure 8.41 shows the predicted and measured development of the first super-
harmonic resonance. It is seen that the predicted results evolve in a similar manner to the
measured ones but on a very much smaller bandwidth of speed. = Moreover, when the
measured loss factors in Table 8.1 were used in the (RHB) computation, the super-harmonic
resonances were totally attenuated. While it is probable that the loss factors were
overestimated, this is not likely to be the cause of the disappearance of the super-harmonic
resonances, especially since attenuation of the predicted super-harmonic resonances was still
severe even when the estimated loss factors were reduced by an order of magnitude. A more
plausible explanation for this effect and the contrast in bandwidths in Figure 8.41 would be
the unsuitability of the SFD model under such extreme conditions. The generation of the
large amplitude of absolute bearing housing (and rotor) vibration in the y direction at the
super-harmonic resonance depends on the existence of a large non-linear force at the
interface between the housing and the journal. The journal is bottomed in the clearance and
vibrating with minute amplitude relative to the housing. In the real system, the oil is likely to
be squeezed out of the interface between the journal and the housing so that the interface
force would be a pure contact force. However, the model always takes into consideration the
oil film at the interface and the force transmission characteristics of the oil film under these
extreme conditions are difficult to predict using the conventional SFD model. Figure 8.42(a)
shows the typical predicted variation of lift in the damper in the region of a sub-critical super-
harmonic resonance, with support structural damping excluded. It is clear from this figure
that the SFD force comes close to a contact force only at the resonance. Elsewhere, in the
region of resonance, the SFD force is an attenuated version of the contact force. Hence, it
appears justifiable to exclude structural damping, even in the super-harmonic resonance
region, in order to compensate for the attenuation in contact force. For the drop in lift
(Figure 8.42(a)) to be possible, the amplitude of the relative vibration at the SFDs must dip as
in Figure 8.42(b). This allows the gravity load to pull J, (and J;) further to the bottom of the
clearance. From the oil pressure equation (4.8), although €, W — 0, the eccentricity
& — —1, so the SFD force (= contact force) is maintained. Paradoxically, the relative
displacement amplitude at the SFDs can never be exactly zero since this would mean a
perfectly rigid connection (resulting in a linear system) and hence there would be no 2EO
frequency component and no super-harmonic resonance. It is interesting to note that, while

the predicted amplitudes of the y displacements of J, and J; relative to B, and B respectively
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dip at the super-harmonic resonances (Figure 8.42(b)), the predicted amplitudes of the y
displacements of Jop, and Jiy relative to B, and B; respectively actually peak at the
resonances, as shown in Figure 8.42(c). This is consistent with the y relative displacement
amplitude measurements in Figures 8.18(b,d,f)-8.19(b,d,f), which show small peaks at the

super-harmonic resonances.

8.6 CONCLUSIONS

This chapter formed the final part of the validation of the general model developed in

Chapter 5. In Chapters 6 and 7, the integrated model was tested on a rigid rotor-flexible

housing assembly and a flexible rotor-rigid housing assembly respectively, both with a single

SFD. In this chapter, the model was applied to a test rig that, to a limited extent, captured the

essential features of the low pressure rotor assembly of a practical aero-engine in which the

flexibilities of both the rotor and the support structure are relevant, and in which more than
one SFD is used. The model was first “internally” validated by testing the correlation
between the three modelling blocks (i.e. RHB, modal Floquet stability analysis, and modal
numerical integration). The model was then used to predict and explain experimentally
observed non-linear phenomena from the rig.

The following conclusions and comments can be made regarding the theoretical part of
the work in this chapter:

- In general, no problems of computational efficiency were encountered when
implementing the model on a 333 MHz Pentium II computer.

- The correlation between the three modelling blocks was highly satisfactory, validating the
soundness and applicability of the model.

- The influence of the flexural modes of the rotor should not be disregarded simply because
the rotor-support structure modes with the SFDs locked are very nearly “bounce” modes
in which the housings show much more deflection than the rotor.

- Among other things, the RHB method was particularly useful in identifying sub-critical
super-harmonic resonances and the complicated operation of the symmetrically
unbalanced rig, where stable asymmetric motion at the SFDS was found to be
theoretically possible.

- For a perfectly symmetrical unbalanced rotor running in identical unsupported SFDs at

each end, it is generally incorrect to reduce the number of degrees of freedom by half by
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pre-assuming kinematic symmetry, due to the non-linear spring-like characteristics of the

SEDs.

As regards correlation with experimental observations, the following conclusions and

comments can be made:

Overall, correlation between measured and predicted displacement amplitude responses
was acceptable, although speed-for-speed agreement was generally unattainable.
Under conditions of general (asymmetrical) unbalance (at U, only), odd number multiples

of 1EO/2 around the second bounce critical speed were found to fork out into

combination frequencies composed of two fundamentals, one of which being the 1EO
component. Predicted and measured Poincaré maps of the resulting 2-frequency motion
showed good correlation. It was concluded that the motion was either quasi-periodic, or
at worst, mildly chaotic. As in Chapter 7, frequency-locking of the 2-frequency quasi-
periodic motion was identified as a potential route to chaos, although no formal
investigations were carried out.

For the symmetrically unbalanced rotor, odd number multiples of 1EO/2 were obtained
in the vicinity of the first bounce critical speed and no such activity was observed in the
region of the second bounce critical speed. A jump-up on run-up in SFD relative
displacement amplitude (spring-softening), with hysterisis, was correctly predicted.

In modelling the sub-critical super-harmonic resonance regime of operation, the
attenuating effect of the oil film on the transmitted contact force between journal and
housing justified the exclusion of structural damping for the purpose of predicting the
super-harmonic resonances.

Despite the highly non-linear performance, the unsupported SFDs fulfilled their intended
function in this application i.e. to provide a safe transition through the bounce critical

speeds (by attenuating the vibration amplitude).
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(1) Drive shaft

(5) Bearing housing

(9) Unbalance mass

(13) Housing probe bracket

(2) Drive coupling (3) Roller bearing
(6) Oil annulus (SFD) (7) Shaft (“LP rotor”)
(10) Frame (11) Bedplate

(14) Shaft (“HP rotor™)

Figure 8.1: Test rig for configuration C
(probe brackets for left hand SFD not shown in above figure)
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Figure 8.17: Residual unbalance response
(half peak-to-peak displacement normalised with respect to ¢)
(Figure continues on the following page)

193



B1: normalised absolute x displacement amplitude (half peak—peak) B1; normalised absolute y displacement amplitude (half peak-peak)
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Figure 8.17 (continued): Residual unbalance response
(half peak-to-peak displacement normalised with respect to ¢)

194



J1m relative to B1: normalised x displacement amplitude (half peak-peak) J1im relative to B1: normalised y displacement amplitude (half peak—peak)
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Figure 8.18: Response of I, relative to By for three states of unbalance (first three rows of
Table 8.4: (a), (b) row 1; (c), (d) row 2; (e), (f) row 3). Measurements — black. RHB N =1,
m =10— red: “0” stable, “+” unstable (A, real, positive), “TT” unstable (4, real, negative),
“x” unstable (A, complex); numerical integration — blue. Vertical axes show ratio of half
peak-to-peak displacement to c.
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Figure 8.19: Response of Iy relative to B, for three states of unbalance (first three rows of
Table 8.4: (a), (b) row 1; (¢c), (d) row 2; (e), (f) row 3). Measurements — black. RHB N =1,
m =10— red: “0” stable, “+” unstable (A, real, positive), ‘TT" unstable (A, real, negative),
“¢” unstable (1, complex); numerical integration — blue. Vertical axes show ratio of half

peak-to-peak displacement to c.
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B1: normalised absolute x displacement amplitude (half peak—peak) B1: normalised absolute y displacement amplitude (half peak-peak)
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Figure 8.20: Response of By for three states of unbalance (first three rows of Table 8.4: (a),
(b) row 1; (¢), (d) row 2; (e), (f) row 3). Measurements — black. RHB N =1, m =10—red:
“0” stable, “+” unstable (4, real, positive), “00” unstable (4, real, negative), “*” unstable ( 4,
complex); numerical integration — blue. Vertical axes show ratio of half peak-to-peak
displacement to c.
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B2: normalised absolute x displacement amplitude (half peak-peak) B2: normalised absolute y displacement amplitude (half peak-peak)
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Figure 8.21: Response of B, for three states of unbalance (first three rows of Table 8.4: (a),
(b) row 1; (¢), (d) row 2; (e), (f) row 3). Measurements — black. RHB N =1, m =10—red:
“0” stable, “+” unstable (4, real, positive), “07” unstable (4, real, negative), “*” unstable (4,
complex); numerical integration — blue. Vertical axes show ratio of half peak-to-peak
displacement to c.
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Figure 8.22: Predicted and measured orbits (over 2 s) of Iim relative to By and Jom relative to
B, around the first bounce critical speed (unbalance as in row 2 of Table 8.4)
(Figure continues on the following page)
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frequency (Hz)

Waterfall diagrams of the frequency spectra of the y displacement response of
Iom relative to B, for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1;

(¢), (d) row 2; (e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement.
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Figure 8.27: Waterfall diagrams of the frequency spectra of the y displacement response of
B\ for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (c), (d) row 2;
(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement.
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Figure 8.28: Waterfall diagrams of the frequency spectra of the y displacement response of
B, for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (c), (d) row 2;
(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement.
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Figure 8.29: Frequency spectra of the y displacement response at 94 rev/s (unbalance as in row 3 of Table 8.4)
Data length: 1 s for predictions, 2 s for measurement.
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Figure 8.30: Frequency spectra of the y displacement response at 104 rev/s (unbalance as in row 3 of Table 8.4)
Data length: 1 s for predictions, 2 s for measurement.
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9 CONCLUSIONS AND PROPOSALS FOR FUTURE
RESEARCH

9.1 CONCLUSIONS

In this thesis an efficient integrated modelling technique has been presented for the full

solution of the non-linear response of an unbalanced squeeze film damped rotor-dynamic

system. The method was composed of three complementary modelling blocks, each of which

is tractable to practical systems that have many degrees of freedom:

(1) receptance harmonic balance for the determination of periodic solutions;

(2) modal Floquet stability analysis of these solutions;

(3) numerical integration of a limited number of the modal equations, where deemed
necessary according to the stability analysis results.

The advantages of the individual modelling blocks were discussed in Chapter 5, section 5.8.

It suffices to reiterate here that such an approach can be easily interfaced with the current

linear state-of-the-art in the rotor-dynamics industry. Linear rotor-dynamic methods can be

used to analyse the linear subsystem for receptance functions and modal parameters. These

two sets of data can then be used in a detailed non-linear analysis of the whole system that

can be implemented using standard mathematical software.

The integrated model was applied to three configurations, of increasing complexity.
These configurations were chosen to capture, to a limited extent, the essential features of
practical squeeze film damped rotor-dynamic systems, particularly with respect to aero-
engine applications:

(A)rigid rotor-flexible support structure;

(B) flexible rotor-rigid support structure;

(C) both rotor and support structure considered flexible.

In each case, the correlation between the three modelling blocks was found to be excellent
and no computational difficulties were encountered when implementing the model on a 333
MHz, Pentium II computer, thereby verifying the feasibility of the model. In each case it was
found that the best approach was to apply steps (1) and (2) for T-periodic solutions (where T

is the period of rotation), using an initial approximation from step (3) at some convenient
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speed to start off the arc-length continuation process. Regimes of instability of T-periodic

motion were then analysed by step (3).

Experimental work showed that the integrated model was generally successful in
predicting and explaining the highly non-linear performance, and reference is made to the
specific conclusions of Chapters 6-8 for details. Such a study has bridged the gap that
existed between advanced theoretical non-linear studies that lacked experimental validation
and more experimentally oriented studies. The important non-linear phenomena encountered
in the study are summarised below:

- 2-frequency quasi-periodic motion, wherein the frequency spectrum was composed of
combinations of two fundamental frequencies, one being synchronous with the rotational
speed, and the other being sub-synchronous. The simulations revealed the possibility of
such motion leading to chaotic motion through a frequency-locking route, although this
was not formally investigated.

- Sub-harmonic motions i.e. NT-periodic motions where N is an integer greater 1 (N =2 in
Chapters 6 and 8, and N =3 in Chapter 7).

- Amplitude jump (of the spring-softening type) with a hysterisis effect; the asymmetric
behaviour of a symmetrical unbalanced rotor was conclusively proven theoretically but
not experimentally.

- The unusual generation of sub-critical super-harmonic resonance in the absolute motion
under conditions where the unsupported squeeze film damper (SFD) ostensibly behaved
as arigid link (i.e. there was very little relative vibration across it).

The above phenomena were obtained with unsupported SFDs, although 2-frequency quasi-

periodicity was also observed and predicted with a sprung SFD under conditions of high

static offset and unbalance.

To a limited extent, the good correlation with experiment also served to provide
additional validation to the model used to compute the SFD forces, which was based on a
short incompressible film that cavitated at absolute zero pressure. This was particularly so
for the sprung SFD used in configuration (B). The inherent uncertainty in oil film conditions
in unsupported SFDs probably degraded speed-for-speed correlation between measurements
and prediction. However, even in this case, the measured vibration still evolved largely as
predicted over the operating speed range, particularly with respect to its orbital structure and
its highly peculiar frequency content.

As shown here and elsewhere in the literature, despite being an economical design,

unsupported SFDs can be quite fickle in their performance since this is totally dependent on
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their ability to generate a sustained lift to support the static load. Hence, the performance of
an unsupported SFD is strongly dependent on the nature of the structure with which it
interacts. It was outside the scope of this thesis to provide design recommendations for the
use of unsupported SFDs since these would be specific to the configurations studied.
However, it is worth mentioning that the analysis conducted showed that such a SFD design
provided safe passage through the critical speeds (by attenuating the vibration amplitude)
when such speeds corresponded to bounce modes, in which the rotor exhibited much less
deflection than the housings (Chapters 6 and 8). For the case where the critical speeds
corresponded to flexural modes of the rotor (Chapter 7), the unsupported SFD was found to
be highly unsatisfactory as regards vibration attenuation. In fact, it was inferior in all aspects
to a badly centralised sprung SFD, even when the oil viscosity was nearly trebled. In the
design stage, careful consideration should be given as to whether it would be more
economical in the long term to statically off-load the damper either with a parallel retainer
spring or leaving it unsprung but off-loading it with some flexible element (support) at a
different location. It is believed that the modelling approach developed in this thesis would
provide designers with an effective tool in reaching such decisions.

It should be added that the integrated model can be easily adapted to cover other types of
motion-dependent non-linearities in rotor-dynamic systems by using the appropriate non-

linear forcing functions.

9.2 PROPOSALS FOR FUTURE RESEARCH

It is proposed that the next stage of this project be the application of the modelling technique
to a “real” problem, using the receptance functions of a real aero-engine rotor and support
structure. Such an assembly might also be statically indeterminate.

Following this, it is proposed to consider the application of a similar modelling approach
to dual rotor systems wherein two unbalanced rotors operate at different speeds. Such twin
rotor configurations are typical of medium-sized jet engines. As mentioned in Chapter 8, the
test rig for configuration C (Figure 8.1) has the facility to couple two independently driven
rotors through the housing of the right hand squeeze film damper. With the single rotor
configurations considered in this thesis, the nominal motion (i.e. the motion prior to the
bifurcations) was T-periodic, for which the frequency spectrum was composed of frequencies

k, f,, where k, is an integer and f, is the synchronous frequency component (=1/7). A

secondary Hopf bifurcation resulted in 2-frequency quasi-periodic motion with frequency
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spectra composed of frequencies of the form k,f, +k, f; where k, is an integer and £, a

sub-synchronous fundamental frequency that could only be determined from the time-

marching solution. The value of f;, was generally dependent on the value of the

independently controlled synchronous frequency f,. Although frequency-locking was
identified as a potential route to chaotic motion, such motion either did not develop or was
mild. With the dual shaft version, it is the nominal motion that has a frequency spectrum
composed of the form k, f, +k, f,, where k, and k, are integers, and the fundamentals f,
and f, are both known and independent of each other, being equal to (and hence
synchronous with) the respective speeds of the two shafts. Since the numerical values of f,
and f, are generally rationally independent, the nominal motion is quasi-periodic. The
nominal motion is now subject to a tertiary Hopf bifurcation, which ostensibly results in 3-
frequency quasi-periodicity with a frequency spectrum composed of frequencies of the form

kyfo +k fi+k,f, where k, is an integer and f, the non-synchronous fundamental

frequency that is dependent on both synchronous frequencies f, and f,. As discussed in
Chapter 3 (end of section 3.5), 3-frequency quasi-periodicity is thought to be highly unstable
and it is highly probable that the motion immediately descends to chaos. Hence, unlike the
single shaft version, it is highly likely that the emergence of the non-synchronous

fundamental f,, would mark the onset of chaos.

Since the nominal motion (i.e. the motion prior to the bifurcation) in a dual rotor system
is quasi-periodic rather than periodic, the question arises as to what to do with the first two
modelling blocks of the integrated model (i.e. periodic solution and stability analysis). Three
options are available:

i. Ignore the first two modelling blocks and use the time-marching block only. However,
apart from the computational burden, this will exclude unstable equilibrium solution
possibilities and hence results in a restricted understanding of the non-linear dynamics
involved.

ii. Approximate the nominal motion by an NT-periodic motion where T is chosen as either
1/f, or 1/f,. The value of N is determined from the frequency spectrum of a time-
marching solution at some speed where the motion is likely to be nominal. From this
spectrum one can also establish which of the harmonics of the approximate common

fundamental 1/NT are relevant to the problem. The Fourier coefficients of this

approximate periodic motion are then used to initiate the arc-length continuation
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1i1.

procedure, which will then trace out a curve of NT-periodic solutions over a range of
values of f, say, while keeping f, fixed, and vice-versa. These solutions approximate to
the nominal quasi-periodic motion. During this solution process, those RHB equations
corresponding to harmonics of 1/NT that were initially deemed irrelevant to the problem
are simply omitted. The Floquet stability analysis block can then be used on these
periodic solutions. In such a case, it is hoped that a secondary Hopf bifurcation of these
NT-periodic solutions would correspond to a tertiary Hopf bifurcation of the actual quasi-

periodic solutions that they substitute.

Develop a 2-frequency quasi-periodic solution technique with two fundamental
frequencies rather than just the one fundamental taken in periodic solution techniques.
Such a method would be based on the compound Fourier series of eq. (3.30) (with K =2
fundamental frequencies). Since Floquet theory applies only to the stability of a periodic
solution, the stability analysis block would need to be generalised to cover the stability of

the 2-torus defined by a 2-frequency quasi-periodic solution [43].

With method (iii), it is envisaged that difficulties will be encountered in the computation of
the coefficients of the compound Fourier series expansion for the SFD forces. Moreover, to
the author’s knowledge, the theory of the stability of a 2-torus has not been developed.

Hence, it appears that method (ii) provides the best compromise.

For such a dual rotor project it would also be desirable (though not essential) to devise a

reliable method for the estimation of the Lyapunov exponent for use in such applications.

Another interesting project would be the investigation of the role of a squeeze film

damper in controlling effects that are due to other sources of non-linearity e.g. rotor-stator

rub and spline couplings.
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Al ITERATIVE SCHEME FOR RHB

This appendix presents an algorithm that traces out a speed response curve of NT -periodic
solutions (N is a fixed positive integer) of the receptance harmonic balance equations, using
. . . . - A Q'i

the arc-length continuation method i.e. it computes the solutions W, = b of the system of

i

egs. (5.24)

L’p(e’ A(z_ﬂ:o (AL.1)

at points i, for which o =0,. The system (Al.1) is solved using an iterative predictor-

corrector scheme adapted from the theory in [16, 65]. The algorithm is presented with

respect to the general system of equations
r(y”u):() (A1.2)

where the vector of unknowns is y, r is a non-linear vector function of y, and it the control

parameter. This general form is chosen since, as explained in section 5.3, page 64, the
determination of the first point on the speed response curve requires the solution of the

original system of equations (5.18):
p(#,8)=0 (A1.3)

For the determination of the first point on the speed response, eq. (Al.2) represents eq.

(Al.3) i.e. y is ¥, the control parameter yu is £ and r(y,u)zp(“f,fz). For subsequent

O @

points, eq. (A1.2) represents eq. (Al.1)i.e.yis W :[ A}, the control parameter y is ¢ and
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Al.1 ALGORITHM

The following algorithm finds the solutions W; = [{}’ :lat c=o0,,i=1.n,,,  where o, is
i

arbitrarily set to 0. Let y =y, be the unknown solution of eq. (A1.2) for u=y;: vy is the

k" iterate for y,.

FOR i=1...n,,, DOSTEPS A,B,C
A. SPECIFY EQUATION AND CURRENT VALUE OF CONTROL PARAMETER
Ifi=1
Eq. (A1.2) represents eq. (A1.3)
Choose non-dimensional starting speed £,
Ifi>1
Eq. (Al1.2) represents eq. (Al.1)

Choose arc length interval Ao

H, =H + Au
B. PREDICTOR STEP
Fori=1:

In the case of a non-degenerate rotor, if N =1 and Ql is low, from eq. (5.26):

g | /e
: 0

otherwise,
f’fo) is determined by performing the time-marching solution at Q= QI and
computing the Fourier coefficients of the SFD response(s).
Fori=2:
y§°> determined from a tangent predictor [16]:

y(20) =y, t+ (Auz — K XdY/d/uL:M
The evaluation of the tangent vector (dy/ d,u}ﬂw is explained in section Al.2.

Fori>2:

yfo) determined from a secant predictor [16]:
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H,— U
y,(‘O) =Yt (”’“—"L}qu_y[az)
H 2

i-1 7 Mi-

C. CORRECTOR STEP

Cl.

C2.

C3.
C4.

Cs.

Ce.
C7.

Compute the Jacobian matrix of r(y,,u) with respecttoy at y = y,.(o), u=mnH:
JO = ar/a}’lyzyl«w,#:ui

k=0

Apply the damped Newton-Raphson method [65]:

i <y gH O

where: r'*) = r(yﬁ"'),,ui ) HY = (Jfk))_l , 0< y <1 is the damping factor
Increase k by 1

While (yf“ —y §’~'-”{ < tol do steps C4.1-C4.3:

C4.1. Update HE"') using Broyden’s method [65]:

E b —a)aTHED
a"H*Vp

H® =H& -

where: a=y® —y& p=rE kN

C4.2. Compute y** using damped Newton ~Raphson method, step C2

C4.3. Increase k by 1

While {y )~y < eps) or (] < eps) do steps C5.1-C5.3:

C5.1. Update H® using step C4.1

C5.2. Compute y*) using undamped Newton-Raphson method: step C2 with

x =1

C5.3. Increase k by 1

y =yl

If i=1 (i.e. solved eq. (A1.2) is eq. (A1.3))
v, =y, and Q, =y,
W, :B} and o, =0

I
If i>1 (ie. solvedeq. (Al1.2) iseq. (Al.1))

W, =y, and 0, =q,
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In step C1 the Jacobian matrix is defined as follows:

It yz[yl }’n).]rand r(y,li)z[’](yl,o'-:yn},aﬂ) i’,,y(yl,...,yn‘y,/,t)]r, then the

Jacobian of r with respect to y is

a3y, - nfdy,

Yolon fay e o o,

The Jacobian was evaluated using the MATLAB® function numjac® [25]. The “or” in step C5
is a Boolean operator. In the damped Newton-Raphson method, y =1 corresponds to the
undamped condition, whereas y =0 corresponds to the fully damped condition, wherein the
iteration is stalled. For steps C2 and C4.2, the damping factor used in the model applications
of Chapters 6-8 was in the range 0.02 < ¥ <0.05 for i =1, and in the range 0.05< ¥ <0.2
for i >1. For steps C4.1-C4.3 tol =10". In step C5, eps = 2x107'®, the smallest number

registered by the computer. The absolute value of the arc-length increment Ao used in step
A was around 0.1. Occasionally, this value had to be reduced for certain regions of the speed

response curve. Notice that the sign of Ao determines the sense in which the speed response

curve is traced out from the first point W, ; hence, after generating (n,,,,, —1) points with
Ao >0, the speed response curve can be extended “backwards” from W, by repeating the

calculations with Ao < 0.

Al1.2 COMPUTATION OF THE TANGENT VECTOR
This section explains the determination of the tangent vector (dy/ d,u)“:#I used in the tangent

predictor of step B, case i =2, of the algorithm of section Al.1. In this case, the system

being solved is eq. (Al.1), hence, dy/du = dw/do . Now

ai_ (Aw)_ [A\?v (ALS)
40 4o\ A0 )i |Aw|
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since, from eq. (5.23), AG:IAWI (Ao taken as positive). From eq. (Al.1), for small

. AV
AW = ~ |

Fg op J{ Aﬁ}:o (AL.6)
ov ooy 002 gog, || AL

The number of unknowns in the above system (A1.6) is one more than the number of

equations. Dividing both sides of (A1.6) by AQ and adding an extra trivial equation:

9p/0%],., /O {M/ Aﬂ:m (ALT)
Q0 eeeeenn 0 1 1 1

Now Aw = AQ[AV/ AQ} =AQd where d :[Av/l AQ} Hence, from the relations in eq.

1
(AL1.5):
dy| _dw _d (A1.8)
d'u =g do G=0] }dl
where, from eq. (A1.7):
A L _1 0
d — ap/aviwzw‘vl ap/ag =i, [ } (Alg)
O <veeeeees 0 1 1
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A2 MECHANICAL IMEDANCE MODEL OF
LINEAR PART

A2.1 OVERVIEW

The mechanical impedance (MI) method is used to compute the receptance functions relating
points on the rotor part of the linear subsystem. This method is analogous to the dynamic
stiffness method, but works with impedance rather than dynamic stiffness frequency response
functions. The method is described in [19] where the MI model of a rotor that is linearly
connected to a flexible support structure is described. The MI model used for the linear
subsystem of rigs B and C is a simplified version of that in [19] since:

(a) The support structure is not considered — it is either rigid (configuration B), or is
uncoupled from the rotor (configuration C). Hence, the impedance model is applied
either to a point supported rotor (configuration B) or one that is fully unrestrained
(configuration C).

(b) Gyroscopic effects are neglected.

The shaft is divided into beam-like elements that rotate about their longitudinal axis and bend
harmonically at frequency @ rad/s in the xz and yz planes. Due to the simplification (b), the
vibrations in the two planes can be treated separately and the frequency response functions
are independent of rotational speed. For each such plane (see Figure A2.1), the impedance

matrix Z, () of a shaft element no. k is given by

ro~ ~
S Vi
M, a.
K I (A2.1)
-fk(i+l) ‘im
M k(i+1) | Q.

where the instantaneous forces and moments acting on element no. k at terminal no. i are
given respectively by f,(t)= Re(fkiej“” ), M, (t)::Re(M kiej“”), and the instantaneous
velocities and angular rotation rates (in the plane) at terminal no. i are given by

v, (t)= Re(fz',.ej‘”’ ), Q@)= Re(ﬁiej“” )
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Figure A2.1: Shaft element notation

The matrix Z, (@) can be obtained from [19]. It is based on the exact dynamic deflection

curve of a uniform section beam element of distributed inertia. Hence, the impedance matrix
of one such element is exact, irrespective of length. The assembly procedure for the shaft
elemental matrices is the similar to that in the finite element (FE) technique [19, 48]. Inertia
components attached to the shaft are concentrated at the terminals, as are the stiffness of any
point supports, and the impedance matrices of these inclusions are inserted at the appropriate
areas of the assembled global impedance matrix, as in FE. The global impedance matrix is of

size 2n, X2n,_ (where n__ is the total number of terminals). However, for both rigs B

term term term

and C, no external moments are applied at the terminals and the rotations there are not

required. Hence (as for the FE method in [48]), the global impedance matrix can be deflated

tosize n,__ Xn,

term term
fred = {Zij (a))}vred (A23)
where {z,.j (a))} is the reduced global impedance matrix, fmd = [~1 fn’m]r contains the
complex amplitudes of the external forces at the terminals, V 4 = [\71 x7nm]r contains

the terminal velocity complex amplitudes. The reduced global receptance matrix %XU (a))} is

given by:
=, () (A2.4)

where i, contains the displacement complex amplitudes. Since ¥V 4 = jOU, g, (where

j= V-1, {ocu (cu)} is given by

231



o, (@)}= M (A2.5)

j@

A terminal is normally a location where there is a change in cross-section of the shaft, or an
attached inertia and/or point support. If a receptance relating positions P and Q is required
where one or both positions do not coincide with the above-specified types of locations, then
P and/or Q are introduced in the model as additional terminals.

The following sections describe the MI model for rigs B and C. In both rigs, since polar
moments of inertia are neglected, the diametral moments of inertia per unit length of the
beam elements, and the diametral moments of inertia of the attached components, are also
neglected. The impedance matrices of the beam elements include the effect of shear
deformation, in addition to bending. Hence, the beam elements are Timoshenko beams with

diametral moment of inertia per unit length set to zero [19].

A22 RIG B

8 Timoshenko beam elements (see last paragraph of section A2.1) are used to model the
linear part of rig B. In configuration B1 (retainer spring fitted), the linear subsystem is the
shaft pinned at H and sprung at J (see Figure 7.1). The corresponding MI model is shown in
Table A2.1 where:

- The flexible drive coupling is assumed to exert no force and bending moment on the
shaft.

- Por the shaft elements, Young’s Modulus E =200x10° N/m” and the density
p =7860kg/m’.

- The point supports at terminal 3 (H) and terminal 6 (J) exert no restraining moments
since self-aligning ball bearings are used. The ball bearing stiffness values are taken
to be infinitely large. The stiffness value at terminal 6 is that of the retainer spring
and was obtained from [21].

- The attached mass at terminal 6 was determined experimentally in [21] and is the
combined mass of the ball bearing, damper journal and the effective mass of the
retainer spring.

- The mass of the coupling hub at the left hand end of the shaft (Figure 7.1) is shared
between terminals 1 and 2 such that its centre of mass coincides with the resultant

mass centre of the two lumped masses.
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- The disc is lumped at terminal 8.
For configuration B2 (no retainer spring), the linear subsystem is the shaft pinned at H
and free at J (see Figure 7.1), so the support stiffness at terminal 6 is omitted from Table

A2.1. The attached inertia at this terminal is left unaltered since the aluminium retainer

spring has negligible mass.

A23RIG C

9 Timoshenko beam elements (see last paragraph of section A2.1) are used to model the free-

free rotor of the linear subsystem of configuration C (Figure 8.1), as shown in Table A2.2.
With reference to this table:
- For the shaft elements, Young’s Modulus E =200x10° N/m® and the density
p =7860kg/m”.
- The redundant terminals 7 and 8 are included to allow the computation of the
receptances o, , 0, 0, 0y -
- The attached mass at each terminal 4 and 9 is the combined mass of the

corresponding roller bearing and damper journal.
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terminal no. 1 2 3 4 5 6 7 8 9
(H) @) (U)
attached mass (kg) 0.1518 | 0.0692 1.3567 6.4039
support stiffness (kIN/m) oo 123.4
shaft element 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9
length (mm) 20.0 29.0 44.0 715.0 262.0 13.0 209.3 12.7
diameter (mm) 16.000 | 25.405 | 25.405 | 50.000 | 25.405 | 25.405 | 25.385 | 25.385
Table A2.1: Mechanical impedance model for rig B with retainer spring
terminal no. 1 2 3 4 5 6 7 9 10
Jy Uy (Uz) (J2)
attached mass (kg) 0.0577 | 0.2618 1.2950 1.2925
element 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
length (mm) 14.17 9.83 24.00 23.50 0.50 78.00 | 746.00 { 102,00 24
diameter (mm) 50 50 92 92 50 92 92 92 92

Table A2.2: Mechanical impedance model for rig C
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A3 COMPUTATION OF MODAL PARAMETERS OF
ROTOR

A3.1 OVERVIEW

This appendix considers the analytical determination of the undamped, non-rotational modal
parameters of the linear subsystem of rig B and those of the rotor part of the linear subsystem
of rig C. In either case, the vibrations in the xz and yz planes are uncoupled. Moreover, the
system considered is isotropic, so the modal parameters are identical in either plane. This
work shall concentrate on the xz plane. The modal parameters are computed from the
receptance frequency response functions. These functions are contained in the receptance

matrix of eq. (A2.4), which is computed from the mechanical impedance matrix by eq.

(A2.5). Each term in the matrix {OCU (a))} can be approximated by a modal series, truncated

beyond g modes [47]:
o, (@)=Y —"— (A3.1)

where @, r=1...q, is the undamped natural frequency of the subsystem in mode r and

xr?

(x‘)‘) . - . . . . .
A, is the corresponding modal constant, which is given by [47]:

AL =l () (A3.2)

q>f""') is the mass-normalised mode shape of mode r in the xz plane, evaluated at position i in

the x direction.

The natural frequencies @, are found by locating the first g zeros of the determinant of

the impedance matrix i.e. the roots of the equation

[z, @)} =0 (A3.3)
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This is done using Muller’s iterative algorithm [66]. The input approximations for the roots

are obtained from the resonance locations of the frequency response of any typical term

o, (w) in {ocu (a))} Once the natural frequencies have been found, the values of the
corresponding mode shapes at selected locations i and j can be found by performing two
modal fits from eq. (A3.1) - first for a; (w), yielding Aéi‘” = ¢l,("’)¢;("’), r=1...q, and then

for o (@), yielding AL =69t r=1...q. Then

617 = AT, gt = Al [ [aT) (A34)

Each fit is performed as follows. Compute ¢ () at p selected frequencies o, .k=1l.p,

within the chosen frequency range and solve the equations:

[E— 1. EUES e Sy .as --————————-1

a[j (a.)m 1) a)lz —.a)sel 1 a)qz "'.(UM 1 _AiE»XI)
o= f : (A3.5)
- : sen : A(xq)

p (co, , ) Lt
sel p 2 )
__a)l sel p a)q - sel p |
which can be expressed as
r=Ea

where r and a are px1 and gx1 vectors respectively and E is a pxg matrix. Now p=2gq.

If p=gq i.e. as many points are taken as unknowns, then

a=E’'r (A3.6)

If p > g i.e. more points are taken than the number of unknown modal constants

a—= EJ'I' (A3.7)

where E* is the pseudo- inverse of E, given by [47]:
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1

E'=(E"E)'E’ (A3.8)
A32RIG B

In this case, the linear subsystem was the shaft pinned at H and either sprung or unsprung at J
(Figure 7.1), corresponding to configurations B1 and B2 respectively. In each case g =4

modes were taken in each plane. The fitting frequency range was 0 Hz to 300 Hz and p =4

was adjusted to 27 x0.1 from O to

equally spaced frequency points @ ,  were taken. @

1k I 1

avoid Ia"i (a)m 1]—>oo for configuration B2. The natural frequencies, and the modal

constants obtained by fitting o, (w), «,, (@) are given in Table A3.1 for configuration B1,

and Table A3.2 for configuration B2. The values in these tables are refinements on those

quoted in [42] (that had been obtained by fitting over the range 0 Hz to 500 Hz with g =5

modes and p =5 equally spaced points).

mode | @, /(2%) | A7) =9l | Afy) =gl
no. r (Hz) (x107kg™) (x107kg™)
1 13.74 54.220 77.796
2 40.40 38.495 -34.148
3 173.86 251.269 -38.753
4 334.68 106.073 -13.540

Table A3.1: Undamped modal parameters for configuration Bl in one plane of vibration

mode | @, /Cx) | A5 =0{0)| Ay =670}
no. r (Hz) (x107°kg™) (x107kg™)
1 0 66.771 81.309
2 39.00 31.652 -36.859
3 171.60 248.170 -39.748
4 334.20 103.543 -13.349

Table A3.2: Undamped modal parameters for configuration B2 in one plane of vibration

For the evaluation of the time domain response at point M (Figure 7.1), the mode shapes at

this location are required and these are found by fitting «,, (a)).
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A33RIG C

In this case, the modal parameters of the rotor were required. ¢ =3 modes were taken in
each plane, where the first two were rigid body modes. Since w,, =@, =0, the first two

terms of the series in eq. (A3.1) merged into one:
o, ()=-——2+—L— (A3.9)

where
A, =AY 4+ A2 (A3.10)

Since r =1 defined the pure translation mode,

— M, (A3.11)

where M, is the total mass of the rotor. Hence, upon determining A, and A" by
applying the modal fit to eq. (A3.9), the constants A", A were found from egs.

(A3.10) and (A3.11). It was found necessary to use p =41 equally spaced frequency points

over a range 0 Hz to 600 Hz, with @  adjusted to 27x0.1 from O to avoid
Ia.. 11 — oo The natural frequencies, and the modal constants obtained by fitting ¢, , ,

Oy, Gy s O,y are given in Table A3.3. In Figure A3.1 the exact receptances (computed

by MI) are compared with those reconstructed from the corresponding computed modal

parameters.
mode | g, /(2m) AFY =g pR)| AR = gRlpRn) | glRer) — g RGN AfRr) = g (g
no.r | (Hz) (x107°kg™) (x107°kg™h (x107°kg™) (x107°kg™)

1 0 18.048 18.048 18.048 18.048

2 0 43.199 -44.349 33.799 -34.949

3 374.95 41.724 44 580 17.352 20.093

Table A3.3: Undamped modal parameters for configuration C in one plane of vibration
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For the time domain response at points J

im?

locations are required, and these are found by fitting e, , (@), a,, ().

magnitude (m/N)

J,. (Figure 8.1), the mode shapes at these

magnitude {m/N)

50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
frequency (Hz) frequency (Hz)
@ a,, (b) a,y,
107 : : 107 - : :
10 1
g z
= Eyo 1
8 2
= =
= S
j=2 o
g £
107 :
107 107% 1
0 50 100 150 200 250 300 350 400 450 500 o 50 100 150 200 250 300 350 400 450 S00
{requency (Hz) frequency (Hz)
(N1 1, (d) O,
107 . ; : .

magnitude (m/N)

150 200 250 300
{frequency (Hz)

o,

0 50 100

350 400 450 500

Figure A3.1: Comparison of exact rotor receptances computed by MI (——) with
approximations reconstructed from the 3 modes in Figure 8.6(b) (——-)
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A4 TIME-MARCHING SOLUTION

This appendix explains how the coordinates in the modal equations (7.11) and (8.19) are non-
dimensionalised prior to integration. The non-dimensionalisation of these coordinates
facilitates the choice of a suitable tolerance for the accuracy of the numerical integration

solver.

A4.1 RIG B
In egs. (7.11), non-dimensional modal coordinates §. =¢%)g_ [e, 4, —q}(")qw [c are
defined, as well as a non-dimensional time ¢ = £, where (2 is the rotational speed. Eqgs.

(7.11) then become:

” w ’ ~ xr xr
ém( Q] G, =—=[A70, + ASP,] (Ad.12)
. Y 1
g5 +( [3 ) g, = o [Afj")Qy +A§fj)Py], where r=1...4 (A4.1b)

In the above equations, ( ), denotes differentiation with respect to ¢, the modal constants
Afo’), A,(;‘é’ ) connecting positions P and Q are defined in Appendix A3, eq. (A3.2), and
A,(,’g) = A}(,{z’ ). For configuration B2 (no retainer spring), Q, in eq. (A4.1b) is replaced by
Q, —W. Eqgs. (A4.1) are expressed as a set of 8 first order differential equations, as in eq.

(3.1), with ¢ replacing ¢, and solved using the MATLAB® function ode23s°.

A42 RIG C

We define non-dimensional modal coordinates §g,, —¢(R"’) Grer [€> Aryr —¢>(Ryr) dr, /¢ in
egs. (8.19a,b). In egs. (8.19¢c-f) we define non-dimensional coordinates X qﬁ(s"l)qs)(1 /e,

R, =05Pqg/c, ¥y =08V qy, fc, P, =0P gy, /c. From egs. (5.34), (8.6) and
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(820), X, =X, /c, X, =X, [c, ¥, =Y, [c, ¥, =¥, Jc. Defining also a non-

dimensional time ¢ = £, where £2 is the rotational speed, eqgs. (8.19) become:

34 @ T —’\ 1 T r r r
qur+( g quxr CQ [A.gR;, )Qxl+ARX)Qx2+A§RLf )P1+A.§§/x2)Px2]

T +(w—] Qe =5 A0 - W)+ A0, - W )+ AR, + 40P,

Q

where r =1...3 (A4.2a,b)

Xy + (@5, /Q) X, =—4500, [(c2?) | (Ad.2c)
7+ (o, /2F YB, A& [(c2?) (A4.2d)

}2;2 +(@0,/Q) R, =-ASD0,, [(cQ?) (A4.2€)

Py + (g /2 Y, =-A800,, /(c0?) (A4.20)

The modal constants on the right hand side of the above equations are defined in Appendix
A3, eq. (A3.2) and in egs. (8.2). For egs. (A4.2a,b) only, the modal constants are the same
for both planes. Eqgs. (A4.2) are expressed as a set of 20 first order differential equations, as

in eq. (3.1), with ¢ replacing ¢, and solved using the MATLAB® function ode23s°.
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AS ADDITIONAL DATA FOR RIG B

AS5.1 INSTRUMENTATION DATA

With reference to Figure 7.1, the calibration of the displacement transducers (probes) at the
disc (U) and mid-shaft (M) was checked on a workbench using a micrometer screw gauge
calibrator and a digital voltmeter. The squeeze film damper (SFD) probes (at J) were
calibrated in situ (i.e. when in position on the rig), using a digital voltmeter and a micrometer
dial indicator at the shaft, situated as close as possible to J. The reason for this was that the
lateral clearance of the SFD probes from the bearing housing face, and other surfaces, was
within the limits of tolerance recommended by the manufacturer [67]. The calibration curves
and sensitivities are given in Figures AS5.1(a,b)-A5.3(a,b). A least squares linear fit was used
to determine the sensitivities.

In the subsequent experiments, vibration data were acquired from the displacement
probes in the form of time histories using a Hewletr Packard 35650® spectral analyser (serial

number 2911A02485).

Bently Nevada 3300 XL 8mm, Serial No. Jul F456250 Bently Nevada 3300 XL 8mm, Serial No. Jul F456253

-3.8 -2.4
-3.9 -2.5
e -2.6
~2.7
41 .
z sensitivity: ~8.012 V/mm .28
o-4.2 % sensitivity: ~8.139 V/mm
3 =-2.9
Q ]
%43 <
-3
-4.4 Y
—4.5 32
-4.6 : . : - -3.3 . ;
0 0.01 002 003 0.04 0.05 0.06 007 008 0.09 0.1 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.08 0.1
incremental gap (mm) incremental gap (mm)
(a) x probe (b) y probe

Figure AS5.1: Calibration of displacement transducers at SFD (J)
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Bently Nevada 3300 XL 8mm, Serial No. Jul F456249 Bently Nevada 3300 XL 8mm, Serial No. Jul F456252

-2k -2t
—4r ~4F
—6F -5F
s s sensitivity: ~8.002 V/mm s o sensitivity: ~8.009 V/mm
& .
s s
5101 5107
—12F -12r
~14f ~14}
~16f -16}
-18 : . - : . . -18 - : : : - - - -
0 025 05 075 1 125 15 175 2 225 25 0 025 05 075 1 125 15 175 2 225 25
incremental gap {mm) incremental gap (mm)
(a) x probe (b) y probe
Figure AS5.2: Calibration of displacement transducers at disc (U)
Hypertone NO1 Hypertone NO4
2 . . . 2 - .
1.85 1.8+
1.6} 1.6+
1.4+ 141
1.2 <12t
é ] sensitivity: 2.020 V/mm g ; sensitivity: 2.083 V/imm
Sos Sost
0.6+ 0.6
0.4 0.4r
0.2 02r
% 01 0z 038 04 05 08 07 05 09 1 % 01 0z 03 04 05 06 07 08 08 |
incremental gap (mm) incremental gap (mm)
(a) x probe (b) y probe

Figure AS.3: Calibration of displacement transducers at mid-shaft (M)

AS5.2 STATIC ECCENTRICITY SETTINGS FOR CONF. B1

The SFD static eccentricity adjustment was made at room temperature and checked at the
beginning and end of each experiment. The oil temperature at the start of each experiment
was at least 25 °C. This temperature was reached after the rig was run for about 30 minutes.
Tables AS5.1 and A5.2 show static offset conditions at the start and end of two different
experiments in which the maximum variation of oil temperature was observed (8 °C). The
eccentricity values in these tables were determined by pushing the journal J from the static
position until the clearance limits were reached. With reference to Figure 7.2, the journal

was pushed up and down for &,,, and pushed either way laterally for &,,. The

corresponding travels of J were measured using the displacement probes and a digital

voltmeter.
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0 €ox 0 €oy
® )
0 0.04 0 -041
90 0.05 90 -0.60
180 -0.01 180 -0.72
270 -0.02 270 -0.55
€, 0.02 Eo, -0.57
(al) x direction, 25 °C (a2) y direction, 25 °C
6 Eox e Eoy
&) 69)
0 0.08 0 -0.39
90 0.10 90 -0.66
180 0.06 180 -0.79
270 0.01 270 -0.60
Eox 0.06 €oy -0.61
(b1) x direction, 33°C (b2) y direction, 33°C

Table AS.1: Static eccentricity conditions for €, = 0.0, g,, =—0.6

6 Eox 6 Eoy
® &)
0 -0.03 0 -0.63
90 0.03 90 -0.84
180 -0.03 180 -0.96
270 -0.07 270 -0.77
Eox -0.03 €, -0.80
(al) x direction, 25 °C (a2) y direction, 25 °C
6 Eo, 6 Eoy
¢ 69
0 0.02 0 -0.66
90 0.05 90 -0.91
180 0.07 180 -1.00
270 -0.05 270 -0.86
Eox 0.02 €o, -0.86
(b1) x direction, 33 °C (b2) y direction, 33 °C

Table AS.2: Static eccentricity conditions for £,, = 0.0, €,, =-0.8
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In Table AS5.1, the grand means, to one decimal place, are &, =00, Eoy = ~0.6. In Table
A5.2, the grand means, to one decimal place, are €, =0.0, £, = —0.8. These values were

used in the simulations.

A5.3 MEASUREMENT OF “DC” COMPONENT OF VIBRATION FOR
CONF. B1

A data acquisition with the analyser was performed on the stationary rig at the start of each

experiment. With the rig stationary, the voltages V.V, ,, at the locations J, U and M

respectively were acquired for the four angular positions of the shaft 8 = 0°, 90°, 180°,
270°. This allowed for the static run-out at J. The average static dc voltages in the x and y

directions at locations J, U and M were then obtained as:

v .+V .+V .+V .
VOxJO° +V0xJ9O° +V0)a1180° +VOxJZ7O° V.o = 0yJO 0y/90 0yJ180 0y/270

V., = )
0xJ 1 0yJ 1

(AS.1a,b)

Let V, (). Vi () be the x, y voltage measurements at J, acquired at any given speed, and let

Y.»Y, be the sensitivities of the x, y probes at J. The non-dimensional displacements of J

from the housing centre B were then given by:

.7 v, (t)-V,
__J_:SOX+VXJ (f) Vou ’ XJ_=80V+ y]() 0ys (A5.2a.b)
c Y€ c ’ Y€

The above displacements were directly comparable to the predictions. For added precision
the static voltage acquisition was repeated at the end of each experiment with the rig hot.

The static voltages used in equations (A5.2a,b) where in fact the averages of the cold and hot

values.

A5.4 PHOTOGRAPHS OF TEST RIG B

Photographs of the test rig for configuration B are shown in Figure A5.4.
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(a) general view

(b) view of SFD (retainer spring removed and anti-rotation bolts in place)

Figure AS5.4: Photographs of test rig B
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A6 ADDITIONAL DATA FOR RIG C

A6.1 EXPERIMENTAL MODAL ANALYSIS OF SUPPORT
STRUCTURE

The instrumentation details are given in Table A6.1. In the experiments, the frequency range

was 0 Hz to 800 Hz, with a resolution of 0.25 Hz.

instrument make serial number

impulse hammer PCB Piezotronics Inc. Model No. 086C03 12302
voltage amplifier PCB Piezotronics Inc. Model No. 480EQ9 23265

accelerometer 1 Bruel & Kjaer, type 4383 1230366
charge amplifier 1 Bruel & Kjaer, type 2635 1690255

accelerometer 2 Bruel & Kjaer, type 4383 1230368
charge amplifier 2 Bruel & Kjaer, type 2635 1690271
spectrum analyser Hewlett Packard 35650 2911A02485

Table A6.1: Instrumentation details for modal analysis of support structure
The modal fitting technique is explained with respect to the receptance &, , (@) (eq. (8.1a)):

A (Sx1)

o, (@)= Bh (A6.1)
e a)é%xl - a)z + Jnle a).Sz'xI

If “LHS” denotes the left hand side of eq. (A6.1), then the Nyquist plot of LHS (i.e. the plot

of Im(LHS) (on y axis) versus Re(LHS) (on x axis)) must be a circle passing through the

origin with diameter inclined to the —y axis by an angle arg(Agg)) (anti-clockwise

positive), where arg( ) is the phase of ( ) [47]. Figure A6.1(a) shows the Nyquist plot of the

measurement &, , (w) over the range 100 Hz to 400 Hz, where the frequency increases in the
(sx1)

clockwise sense. It is seen that eq. (A6.1) is approximately satisfied and that A’ can be

taken to be real. According to [47], the undamped resonance frequency @, is equal to the

frequency for which the relative angular spacing of the measured data points on the Nyquist
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plot is a maximum. Hence, in Figure A6.1(a), the undamped resonance is taken to be the

average of the frequencies at the two points marked “*”. The loss factor 7, is determined

from the formula
ﬁSx! = (wz -, )/a)sn (A6.2)

where @, and w, are the half power point frequencies [47], displaced by 90° around the
circle from the resonance point, on either side of it. In Figure A6.1(a), the data points
marked with a circle and square are those closest to the positions of @, and @, respectively.

By repeating the calculation with the circled point replaced by the preceding point as the first
half power point, it is ascertained that the accuracy of the estimate for the loss factor is not

significantly affected by the relatively course frequency resolution. The real modal constant

A is determined from a graph of Re(l/aBI 5 (@)) versus @*. From eq. (A6.1), this should
yield a straight line of slope —1/A{’ and this is seen from Figure A6.1(b), where the

frequency range is 100 Hz to 400 Hz. A straight line through the data points in Figure

A6.1(b) is fitted by the least squares criterion using the MATLAB® function polyﬁt©. The

modal parameters of &, , (@), B 83, (), B 8,5, (w) are found in a similar fashion.

%107 xz plane: point receptance at B1: 100Hz to 400Hz %10’ X2 plane: point dynamic stiffness at B1: 100Hz to 400Hz
[ T T T 1 T T T T v u
g %+
+ +4
+ +
-0.5F * +
+ + 0.5-
—1F *

= £
< ~1.5¢ * S
g = 0.5
g . g
£ -2r w
j=2) @
< b4
£ @ -1

-2.5F

-3k * -1.5r
*
35 . : L L : .2 . L ; . . :
-2 -1 o] 1 2 [¢] 1 2 3 4 5 6 7
real part (m/N) x10°° frequency squared (rad®/s?) x10°
(@) (b)

Figure A6.1: Experimental modal analysis: (a) Nyquist plot of measured receptance
O (@); (b) plot of real part of measured dynamic stiffness 1/ Ogp (@) versus »*
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A6.2 MI MODEL OF RIG WITH SFDs LOCKED

With the SFDs locked, for each plane xz, yz, the rig reduces to a beam that is point supported
at By and B>. The MI model used for the predictions in Figure 8.5 is given in Table A6.2,
where the first pair of rows refers to the xz plane and the second pair to the yz plane. In this

table:
- The point supports at terminals 4 and 7 are assumed to exert no restraining couple.
This is an approximation since the roller bearings are not self-aligning. The stiffness

values are taken from Table 8.2. The loss factors in Table 8.2 were also included in

the MI model by inputting complex support stiffness values lgxgl_ =k, (1 + M. ) and

i

—~

ko, =k, (141, ).

- The shaft elements were Timoshenko beam elements (Appendix A2, section A2.1)
with diametral moment of inertia ignored. The diametral moments of inertia of the
mass attachments were also ignored.

- The mass at each terminal 4 and 7 is the combined mass of the corresponding roller
bearing and damper journal (marked (3), (4) in Figure 8.1), effective housing mass
(Table 8.2) and housing end-plates.

- For the shaft elements, Young’s Modulus E = 200x10° N/m? and the density
p =7860kg/m’>. The predicted rigid rotor resonances in the third row of Table 8.3

can be arrived at by setting E to a very large number in the MI model (E — o).

terminal no. 1 2 3 4 5 6 7 8
(By) B»)

attached mass (kg) 0.0577 | 0.2618 5.5577 5.4616

support stiffness (kN/m) 6250 5680

attached mass (kg) 0.0577 | 0.2618 5.4701 5.5231

support stiffness (kIN/m) 6200 5850

shaft element 1-2 2-3 34 4.5 5-6 6-7 7-8

length (mm) 14.17 | 9.83 24.00 | 23.50 0.50 | 926.00 24.00

diameter (mm) 50 50 92 92 50 92 92

Table A6.2: Mechanical impedance model in xz and yz planes with SFDs locked
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A6.3 FINAL PARAMETERS OF SUPPORT STRUCTURE
For the non-linear analysis (SFDs operational), the effective mass terms in Table 8.2 need to
be increased to cover for the housing end-plates, rotor probe brackets (marked (12) in Figure

8.1) and their probes. The revised effective masses are shown in Table A6.3.

Housing 1 Housing 2
M 5 (kg) 4.5094 M, (kg 4.4158
M, (kg) 4.4219 M, (kg) 4.4773

Table A6.3: Revised effective masses at housings

The natural frequencies and non-zero modal constants in Table 8.1 are then revised by

working backwards from egs. (8.3) and (8.4):

sx1
Al(;lgl) = I/A/angl 3 e etc., W, = KxB, /MxBl s eeenennas etc.

A6.4 INSTRUMENTATION DATA FOR ROTATION TESTS

The displacement transducers used were Bently Nevada 3300 XL 8mm Proximitor® probes.
Their calibration was checked using a micrometer screw gauge calibrator and a digital
voltmeter, as illustrated in [67], and was found to be within the manufacturer’s specifications.
Figures A6.2(a,b) show typical calibration diagrams. A least-squares linear fit was used to
determine the sensitivities. Table A6.4 shows the sensitivities of the probes in volts per mm

increment in gap.

Bently Nevada 3300 XL 8mm, Serial No. May G443123 Bently Nevada 3300 XL 8mm, Serial No. May G443122

sensitivity = ~7.7533 V/mm ] sensitivity = -7.7587 V/mm

voltage (dc)
voltage (dc)

i
-
N

T

-12r

1
—
'S

T

-~161

- et — g ‘
% 025 05 075 1 125 15 175 2 225 25 0 025 05 075 1 125 15 175 2 225 25

incremental gap (mm) incremental gap (mm)

() (b)

Figure A6.2: Typical calibration diagrams for displacement transducers of rig C
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measurement serial no. serial no. sensitivity

location (probe) (amplifier) (V/imm)
Jimrel. to By (x) May G443123 FEBG 105272 -7.7533
Jimrel. to B1 () May G443122 FEBG 105244 -7.71587
Jomrel. to Ba (x) May G443124 FEBG 105251 -7.8300
Jom rel. to Bo (v) May G443121 FEBG 105267 -7.7600
B: (x) Jul F456250 MAREF 114392 -7.6970

B:i (v) Jul F456253 APRF 118471 -7.6870

B, (x) Jul F456252 APRF 118593 =7.7750

B> () Jul F456249 APRF 118497 -7.7613

Table A6.4: Table of displacement transducer sensitivities for rig C

Figure A6.3 shows a schematic of the data acquisition system. The rotor displacement
probes (measuring displacements of J1, and Jop, relative to B and B, respectively) were set to
acquire the mean component of the vibration, in addition to the alternating component. The
housing displacement probes were set to acquire the alternating component of the vibration
only (mean component excluded). The spectral analysers 1 and 2 (Figure A6.3) used to
capture the vibration time histories were Hewlett Packard 35650% with serial numbers

2911A02485, 2911A01033 respectively.
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Figure A6.3: Schematic of data acquisition system for test rig C
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A6.5 WATERFALL DIAGRAMS (x direction)
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Figure A6.4: Waterfall diagrams of the frequency spectra of the x displacement response
Jim relative to By for three states of unbalance (first three rows of Table 8.4: (a), (b) row
(¢), (d) row 2; (e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement.
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Waterfall diagrams of the frequency spectra of the x displacement response of

Jom relative to B, for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1;

(¢), (d) row 2; (e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement.

Figure A6.5
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Figure A6.6: Waterfall diagrams of the frequency spectra of the x displacement response of
B, for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (c), (d) row 2;
(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement.
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Figure A6.7: Waterfall diagrams of the frequency spectra of the x displacement response of
B, for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (¢), (d) row 2;
(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement.
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Figure A6.8: Waterfall diagrams of the frequency spectra of the x displacement response for
symmetrical unbalance (last row of Table 8.4). Data length: 1 s for predictions, 2 s for
measurement. (Figure continues on the following page)
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Figure A6.8 (continued): Waterfall diagrams of the frequency spectra of the x displacement
response for symmetrical unbalance (last row of Table 8.4). Data length: 1 s for predictions,
2 s for measurement.

A6.6 PHOTOGRAPHS OF TEST RIG C

Figure A6.9 (following page) shows photographs of the test rig for configuration C.

258



g g Rl , g
P A T ad % N 2 A

(b) view of the SFD at the right hand end in Figure 8.1

Figure A6.9: Photographs of test rig C
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