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THE NON-LINEAR MODELLING OF SQUEEZE FILM I)yiA/[PI%) ROTOR-
DYNAMIC SYSTEMS: AN EFFICIENT INTEGRATED APPROACH 

by Philip Bonello 

Squeeze film dampers (SFDs) are non-linear elements used in rotor assemblies such as aero-
engines to attenuate vibrations and transmitted forces, and to improve stability. However, 
undesirable non-linear side effects under rotating unbalance excitation necessitate an 
effective predictive tool for the resulting dynamics. The main contribution of this thesis is 
the development of an efficient integrated non-linear modelling technique for the solution of 
the unbalance response problem. It consists of the following three complementary blocks, 
each of which is tractable to practical systems with many degrees of freedom: 
(1) A Receptance Harmonic Balance method for the determination of periodic solutions. In 
this method, the receptance functions of the rotating linear part of the system are used in the 
non-linear analysis of the complete system. 

(2) Stability analysis of these periodic solutions. This is done by applying Floquet theory to 
a limited number of the perturbed modal equations of the system. 

(3) Numerical integration of the modal equations, when necessary. 
With such an approach, linear rotor-dynamic software packages used in industry can be used 
to analyse the linear subsystem for receptance functions and modal parameters. The latter 
quantities can then be used in a detailed non-linear analysis of the whole system that can be 
implemented using standard mathematical software. The integrated model is tested on three 
squeeze film damped rotor-dynamic systems, of increasing complexity. The SED forces are 
obtained from an extant model for the SFD that assumes a short incompressible film that 
cavitates at absolute zero pressure. In each case studied, excellent correlation between the 
results from the above mentioned modelling blocks is achieved. Depending on the operating 
conditions, the systems considered are shown to exhibit undesirable non-linear phenomena 
such as: amplitude jumps; periodic motion containing sub-harmonics and their integer 
multiples; quasi-periodic motion containing combination frequencies; motion that appears to 
be chaotic; and sub-critical super-harmonic resonance. The overall correlation with 
experiment is also good. The validated integrated model is thus shown to be a valuable tool 
in both the study and the design of squeeze film damped rotating systems. 
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Attractor 

Bifurcation 

Dynamical system 

Equilibrium solution 

Forced system 

Journal 

^-frequency quasi-

periodic motion 

Linear subsystem 

Non-linear degrees of 

freedom 

Receptance 

Sprung SFD 

Squeeze film damper 

(SFD) 

Stability 

A bounded region in state space to which regions of initial 

conditions shrink as time progresses. 

A qualitative change in the dynamics that occurs as a system control 

parameter is changed. 

A continuous-time dynamical system is a physical system whose 

dynamics can be modelled by a set of first order differential 

equations. 

Solutions to the dynamical system equations that are non-transient 

i.e. exhibit long-term steady-state behaviour. 

Dynamical system subjected to external time-varying excitation. 

Ring fixed to the outer race of a rolling-element bearing and 

mechanically prevented from rotating relative to the shaft axis. 

Forms inner surface of SFD. 

Motion that is composed of a mixture of K periodic motions that 

have irrationally related fundamental frequencies. 

Linear part of system, specifically, the system minus the squeeze 

film dampers. 

Those degrees of freedom of the linear subsystem that are 

associated with the non-linear forces. 

Frequency response function that, for a given frequency, relates the 

force/moment applied in the direction of one degree of freedom 

with the consequent response of another degree of freedom. 

SFD with parallel retainer spring. 

Annulus of oil filling the clearance between the journal and the 

inner surface of the bearing housing. 

An equilibrium solution is said to be stable if small linearised 

perturbations from it decay to zero as time progresses. 
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system) the associated value of the independent variable (i.e. time). 
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DFT Discrete Fourier transform, computed by the fast Fourier transform 
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ŝyr uudampcd natural frequencies of support structure (Chapter 8) in 

mode r in xz and yz planes (rad/s) 

a arc length parameter 

Q rotor rotational speed (rad/s) 

XV 



^ non-dimensional speed parameter ( = ^2/0)0) 

r period of equilibrium periodic solution (= NT) (s) 

Oy . zx_/ matrix of zeros 

diag[ ] diagonal matrix with vector [ ] on the leading diagonal 

Re( ), Im( ) real and imaginary parts of ( ) 

complex conjugate of ( ) 

y applied to a matrix: real and imaginary parts of ( ) respectively 

applied to a matrix or a vector ( ): transpose of ( ) 

)/6(Tor g 

XVI 



IJRS]()IfIfIGrLnRlCS 

Figure 1.1 

Figure 2.1 

Figure 2.2 

Figure 3.1 

Figure 3.2 

Figure 3.3 

Figure 3.4 

Figure 3.5 

Figure 3.6 

Figure 4.1 

Figure 4.2 

Figure 4.3 

Figure 4.4 

Figure 4.5 

Figure 4.6 

Figure 4.7 

Figure 5.1 

Figure 6.1 

Figure 6.2 

Figure 6.3 

Figure 6.4 

Figure 6.5 

Schematic of a squeeze film damper (SFD) assembly 

Non-linear spring characteristics of a SFD 

Piecewise-linear spring characteristic of a rotor operating eccentrically in a 

bearing clearance and in local contact with the stator 

Possible escape routes for the leading Floquet multiplier 

Behaviour of return points for A, real, |A;| > 1 

Behaviour of return points for A, complex, | > 1 

Behaviour of return points for A, complex, |Ay| > 1: frequency-locking case 

2-torus representation of 2-frequency quasi-periodic motion 

Contrast between linear and non-linear systems for a 2-frequency input 

Schematic of axial cross-section through a squeeze film damper 

Schematic of transverse cross-section through a squeeze film damper 

Two degree of freedom rotor-bearing models 

Comparison of load carrying ability of full film and half film models 

Comparison of half film and absolute zero cavitation models 

Comparison of half film and absolute zero cavitation models 

Comparison of half film and absolute zero cavitation models 

Schematic of squeeze film damped rotor dynamic system 

Schematic diagram of configuration A 

Variation of amplitude of T-periodic solution with non-dimensional speed 

Variation of leading Floquet multiplier of ^-periodic solution with Q : 

comparison of "fast" and "slow" methods for the computation of G 

Stable T-periodic orbital motion of journal J relative to the housing centre B 

at points B, G and L in Figure 6.2(b) 

Numerical integration from initial conditions on unstable T-periodic orbit at 

2̂ = 0.684 

xvii 



Figure 6.6 

Figure 6.7 

Figure 6.8 

Figure 6.9 

Figure 6.10 

Figure 6.11 

Figure 6.12 

Figure 6.13 

Figure 7.1 

Figure 7.2 

Figure 7.3 

Figure 7.4 

Figure 7.5 

Figure 7.6 

Figure 7.7 

Figure 7.8 

Figure 7.9 

Figure 7.10 

Figure 7.11 

2r-periodic orbits of journal relative to housing 

Poincare map of numerical integration solution for orbital motion of the 

journal relative to the housing at 2̂ =1.035, starting firom conditions on the 

unstable T-periodic orbit 

Steady-state quasi-periodic motion of journal relative to housing at 

A =1.035 over 80 shaft revolutions and frequency spectrum of its 

component 

Stable 2r-periodic orbit of journal relative to housing for Q = 1.145 

Evolution of measured and predicted orbits of journal relative to housing 

Mean j component of T-periodic solution for the displacement of the journal 

relative to the bearing housing 

Variation with non-dimensional speed of the amplitude of the lEO and 

2E0 harmonic components of the Z-periodic solution for the absolute 

housing vibration in the y direction 

Absolute orbital motion of bearing housing at sub-critical super-harmonic 

resonance of 2E0 harmonic component, 12 = 0.500 

Test rig for configuration B 

Damper arrangement for configuration B1 (retainer spring fitted) 

Damper arrangement for configuration B2 (no retainer spring) 

First two calculated undamped modes for rig with retainer spring 

First two calculated undamped modes for rig with SFD locked (pin-pin 

modes) 

SFD dimensions for configuration B 

Comparison of exact rotor receptance functions computed by MI with 

approximations reconstructed from 4 modes for linear subsystem of conf. B1 

Comparison of exact rotor receptance functions computed by MI with 

approximations reconstructed from 4 modes for linear subsystem of conf. B2 

Convergence of RHB # = 1 as the number of harmonics m is increased 

Correlation between RHB and time-marching predictions for amplitude 

Verification of Floquet stability result for T-periodic RHB solution at 30 

rev/s by time-marching from initial conditions on the ^-periodic cycle 

xviii 



Figure 7.12 Verification of Floquet stability result for ^-periodic RHB solution at 34 

rev/s by time-marching from initial conditions on the T-periodic cycle. 

Figure 7.13 Poincare map of numerical integration solution at J in Figures 7.12(al,bl) 

Figure 7.14 Frequency spectra of quasi-periodic solution at J at 34 rev/s 

Figure 7.15 Variation of modulus of leading Floquet multiplier for T-periodic solutions 

(RHB vV = 1, m = 5) with rotational speed for various static offset and 

unbalance conditions 

Figure 7.16 Variation of imaginary part of leading Floquet multiplier for ^-periodic 

solutions (RHB # = 1, m = 5) with rotational speed for 6(,^=-0.8, 

(/=5.1x10"" kgm 

Figure 7.17 Orbital motion for eQy=-0.6, = 2.59xl0^kgm 

Figure 7.18 Orbital motion for 60̂ = - 0.6, [/ =5.1x10"^ kgm 

Figure 7.19 Orbital motion for £5^=-0.8, U =5.1x10"^ kgm 

Figure 7.20 Measured aperiodic orbital motion over 2 s for £ Q̂ = - 0 . 8 , U = 5.1x10"^ 

kgm 

Figure 7.21 Frequency spectra of j component of measured aperiodic motion at SFD (J) 

for6o^=-0.8,[/=5.1xl0"^kgm 

Figure 7.22 Unbalance response for £o^=-0.6, U = 2.59x10"^kgm 

Figure 7.23 Unbalance response for £^̂ ,= - 0 . 6 , U = 5.1x10"^ kgm 

Figure 7.24 Unbalance response for £,,^=-0.8, U = 2.59x10"^kgm 

Figure 7.25 Unbalance response for £ 0̂ = - 0.8 , U =5.1x10"^ kgm 

Figure 7.26 Variation of normalised mean y displacement of J relative to housing centre 

with rotational speed 

Figure 7.27 Response of conf. B2 (no retainer spring) for U =5.1x10"^ kgm, 77 =0.0045 

Nsm'^, Ps =120 kPa. 

Figure 7.28 Variation with rotational speed of the mean y component of the T-periodic 

solution for the displacement of J relative to housing centre 

Figure 7.29 Variation of leading Floquet multiplier of ^-periodic solution (RHB N = 1, 

m = 5) with rotational speed 

XIX 



Figure 7.30 Stability verification for ^-periodic RHB solution at 31 rev/s by time-

marching from initial conditions on the T-periodic cycle 

Figure 7.31 Verification of Floquet stability result for ^-periodic RHB solution at 

86 rev/s by time-marching from initial conditions on the T-periodic cycle 

Figure 7.32 Predicted (numerical integration) and measured orbits at SFD (J) for 

84 rev/s 

Figure 7.33 Predicted and measured frequency spectra of displacement of J for 

84 rev/s 

Figure 7.34 Poincare maps of predicted orbital motion at J for 84 rev/s 

Figure 7.35 Predicted frequency-locking into SZ-periodic motion at 86 rev/s 

Figure 7.36 Poincare map of predicted orbital motion at J for 86 rev/s 

Figure 7.37 Waterfall diagrams of the frequency spectra of the displacement response for 

configuration B2 (no retainer spring) for U =5.1xlO"^kgm, 77=0.0045 

Nsm ^ = 120 kPa. 

Figure 7.38 Response of conf. B2 (no retainer spring) for U = 5.1x10"^ kgm, 77 = 0.0115 

Nsm"^ =100 kPa. 

Figure 7.39 Predicted (stable) and measured orbits (over 2 s) at the first pin-pin critical 

speed 

Figure 7.40 Predicted (stable) and measured orbits (over 2 s) in the region of the second 

pin-pin critical speed 

Figure 7.41 Predicted Poincare maps of motion of J around second pin-pin critical speed 

Figure 7.42 Predicted and measured frequency spectra of y displacement of J 

Figure 7.43 Waterfall diagrams of the frequency spectra of the displacement response for 

configuration B2 (no retainer spring), U = 5.1x10"^kgm, 77 =0.0115 Nsm" ,̂ 

=100 kPa 

Figure 7.44 Waterfall diagrams of the frequency spectra of the displacement of J for conf. 

B2, (y=2 .59xWkgm, 77 =0.0115 Nsm'̂ , =100 kPa 

Figure 7.45 Predicted response in y direction around super-harmonic resonance, taking 

into account the SFD bearing housing flexibility 

Figure 7.46 Orbital motion (over 2 s) at mid-shaft (M) around super-harmonic resonance, 

44-45 rev/s 

XX 



Figure 7.47 Frequency spectra of component of predicted and measured orbital motion 

at M in Figures 7.46(bl,b2) respectively 

Figure 7.48 Measured normalised half peak-to-peak displacement for conf. B2, 

= 2.59xlO-^kgm, r? =0.0045 Nsm'^ = 120 kPa 

Figure 8.1 Test rig for configuration C 

Figure 8.2 SFD dimensions for configuration C and axial location of journal 

Figure 8.3 Accelerance measurements on support structure 

Figure 8.4 Comparison of measured receptance with modal approximation 

Figure 8.5 Comparison of measurements with MI predictions for non-rotating rig with 

SFDs locked 

Figure 8.6 Mode shapes in one plane for (a) rotor-support structure combination (SFDs 

locked) and (b) free-free rotor of linear subsystem 

Figure 8.7 Comparison of exact rotor receptances computed by MI with approximations 

reconstructed from 3 modes in Figure 8.6(b) 

Figure 8.8 Geometric run-out at Jim 

Figure 8.9 Construction of geometric run-out profile at Jom in x direction at 60 rev/s 

Figure 8.10 Waterfall diagram of the frequency spectra of the measured j displacement of 

Jam relative to B; 

Figure 8.11 Predicted response of J2 relative to Bi for three states of unbalance 

Figure 8.12 Predicted orbits at SFD 2 at 60 rev/s for C/, = 0 , = 10.74x10"^ kgm 

Figure 8.13 Predicted orbits at SFD 2 at 78 rev/s for [/, = 0 , — 10.74x 10"̂  kgm 

Figure 8.14 Predicted Poincare maps of the orbit of J2 relative to B2 for = 0 and (a) 

[/z =7.07x W k g m , 60 rev/s; (b) =7.07x W k g m , 88 rev/s; (c) [/% = 

13.15xl0^kgm, 84rev/s 

Figure 8.15 Predicted 2r-periodic orbits at SFD 2 at 84 rev/s for C/, = 0, U2 = 10.74 x 

10^ kgm 

Figure 8.16 Predicted 27'-periodic orbits at SFD 2 at 106 rev/s for £/, = 0, [/; = 7.07x 

10^ kgm 

Figure 8.17 Residual unbalance response 

Figure 8.18 Response of Jim relative to Bi for three states of unbalance 

Figure 8.19 Response of Jam relative to B2 for three states of unbalance 

XXI 



Figure 8.20 Response of Bi for three states of unbalance 

Figure 8.21 Response of Ba for three states of unbalance 

Figure 8.22 Predicted and measured orbits of Jim relative to B; and Jzm relative to Bi 

around the first bounce critical speed 

Figure 8.23 2r-periodic motion at 84 rev/s for C/,= 0, = 10.74x10"^ kgm 

Figure 8.24 Poincare maps of orbital motion in Figure 8.23 

Figure 8.25 Waterfall diagrams of the frequency spectra of the y displacement response 

of Jin, relative to B; for three states of unbalance 

Figure 8.26 Waterfall diagrams of the frequency spectra of the y displacement response 

of Jam relative to B? for three states of unbalance 

Figure 8.27 Waterfall diagrams of the frequency spectra of the j displacement response 

of B] for three states of unbalance 

Figure 8.28 Waterfall diagrams of the frequency spectra of the j displacement response 

of B2 for three states of unbalance 

Figure 8.29 Frequency spectra of the j displacement response at 94 rev/s 

Figure 8.30 Frequency spectra of the y displacement response at 104 rev/s 

Figure 8.31 Orbital motion at 94 rev/s over 2 s 

Figure 8.32 Poincare maps of orbital motion in Figure 8.31 for different phases; (al), 

(bl) =3;r/4 + ^2^; (a2), (b2) Qt^ =lK/A + k2K 

Figure 8.33 Orbital motion at 104 rev/s over 2 s 

Figure 8.34 Poincare maps of orbital motion in Figure 8.33 for different phases: (al), 

(bl) Qt^ =3;r/4 + ^2;r ; (a2), (b2) Qti, = lTc/A + k27i 

Figure 8.35 Waterfall diagrams of the frequency spectra of the y displacement response 

for symmetrical unbalance 

Figure 8.36 Measured response at SFDs in y direction for symmetrical unbalance 

Figure 8.37 Predicted T-periodic response at SFDs in y direction for symmetrical 

unbalance 

Figure 8.38 Predicted ^-periodic orbits of symmetrically unbalanced rig 

Figure 8.39 Hysterisis in measured orbital motion at SFDs for a symmetrical unbalance 

of =13.15xlO-^kgm 

Figure 8.40 Forces on driven bar of coupling at left hand (LH) end of the shaft 

Figure 8.41 Contrast in bandwidth of predicted and measured super-harmonic resonances 

XXII 



Figure 8.42 Predicted behaviour at SFD in the region of first super-harmonic resonance 

using RHB iV = 1, m = 10 

Figure A2.1 Shaft element notation 

Figure A3.1 Comparison of exact rotor receptances computed by MI with approximations 

reconstructed from the 3 modes in Figure 8.6(b) 

Figure A5.1 Calibration of displacement transducers at SFD (J) 

Figure A5.2 Calibration of displacement transducers at disc (U) 

Figure A5.3 Calibration of displacement transducers at mid-shaft (M) 

Figure A5.4 Photographs of test rig B 

Figure A6.1 Experimental modal analysis: (a) Nyquist plot of measured receptance 

(b) plot of real part of measured dynamic stiffness 

versus cô  
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1 INTRODUCTION 

Squeeze film dampers are non-linear elements used in rotor assemblies, particularly aero-

engines, to attenuate vibrations and transmitted forces, and to improve stability. Figure 1.1 

shows a schematic of a squeeze 51m damper (SFD) assembly. The inner surface of the 

damper is formed by the "journal" which is a ring fixed to the outer race of a rolling-element 

bearing. The journal is prevented from rotating relative to the shaft axis, but is A-ee to orbit in 

the oil-filled annular clearance in the bearing housing, forming the SFD. A retainer spring, 

usually in the form of a squirrel cage (not shown in Figure 1.1) is optionally placed in parallel 

with the SFD. This design is referred to here as the "sprung SFD". The spring might be 

inserted to tune the system natural frequencies. However, the primary function of the spring 

is to support the static load on the journal (normally the gravity load). It also serves to 

prevent the journal from rotating. Preloading of the spring is used in an effort to centralise 

the journal in the housing, thus obtaining circular and concentric journal orbits, synchronous 

with the rotational speed. However, in practice, there will be some degree of static 

eccentricity of the journal within the bearing housing due to preloading error, omission of the 

preloading mechanism for constructional simplicity, or, in extreme cases, partial failure of 

the retainer spring in service. This offset results in non-circular orbits, with increased 

likelihood of non-synchronous frequency components. In some engine designs, the retainer 

spring is dispensed with altogether, as in Figure 1.1. This design is referred to here as the 

"unsprung SFD". In this design, the journal is prevented from rotating by anti-rotation pins 

or dogs (in the schematic of Figure 1.1, dogs projecting from the right hand end of the journal 

engage with similar ones on the right hand end-plate with sufficient clearance so as not to 

obstruct relative movement in the x-y plane). The resulting simpler mechanical design avoids 

problems of fatigue in the retainer spring and reduces manufacturing costs. If, in the static 

condition, the journal of an unsprung SFD is fully eccentric under the static load of the rotor, 

then the SFD is referred to as "unsupported". When in operation, the unsupported SFD is 

effectively in series with the bearing pedestal flexibility and performs the additional function 

of a bearing (i.e. supports the static load). Paradoxically however, this is not possible if there 

is no relative vibration between the journal and the housing since, in such a case, the two 

would remain in contact. Hence, to operate, an unsupported SFD makes use of the ever-



present residual unbalance in the rotating system. An unsupported SFD is inherently non-

linear. Moreover, as will be shown later in this thesis, despite the unbalance excitation, the 

journal can still "bottom" within the clearance under the gravity load over certain operating 

regimes due to minimal relative vibration across the damper. Apart &om wear problems, 

such a condition introduces additional non-linear effects as a result of the ineffective SFD 

behaving like a piecewise-linear (bilinear) spring wherein the journal experiences different 

linear stiffnesses along the - and + axes. 

The undesirable non-linear side effects introduced by SFDs are jump phenomena, non-

synchronous vibrations, and, indirectly, bilinear oscillator effects. A jump phenomenon is a 

sudden jump-up or jump-down in amplitude upon increasing or decreasing the speed and is 

associated with the non-linear spring-like characteristic of a SFD. In this thesis, "non-

synchronous vibration" is taken to mean any vibration that contains frequency components 

that are not equal to (and hence not synchronous with) the excitation frequency, which, for 

unbalance excitation is the rotational speed. This vibration therefore includes: (a) periodic 

vibration containing super-harmonics (of the excitation frequency) or sub-harmonics (of the 

excitation frequency) and their integer multiples; (b) quasi-periodic vibration containing 

combination (sum and difference) frequency components; and (c) chaotic motion, with its 

continuous frequency spectrum. Sub-synchronous flexural vibrations are undesirable in 

rotors since they give rise to cyclic stresses, aggravating fatigue problems. It will also be 

seen later that when an unsupported SFD degenerates into a bilinear oscillator, sub-critical 

super-harmonic resonances and super-critical sub-harmonic resonances result. This myriad 

of non-linear phenomena necessitates an effective predictive tool for the dynamics of 

unbalanced squeeze film damped rotating systems. It is only the forced response problem 

that is of interest since a SFD cannot introduce instability of the type that results in self-

excited vibration, unlike hydrodynamic journal bearings. It is in this respect that SFDs are 

said to offer improved stability. Jump and sub-synchronous vibration phenomena in a system 

with SFDs are the result of the instability of pre-existing, externally forced periodic 

oscillations. Rotor unbalance is the major source of the external excitation. Moreover, the 

state of balance can degrade progressively during service and change sharply as a result of 

minor damage. 

SFDs introduce non-linear motion-dependent forces into an otherwise linear rotor-

dynamic system. The techniques used for the determination of the unbalance response of 

such systems can be broadly divided into two categories: periodic solution techniques and 



time-marching methods. Periodic solution techniques are used to determine equilibrium 

solutions (i.e. steady-state, non-transient solutions) of the periodic type, usually of assumed 

period. These periodic solutions can be either (asymptotically) stable (forming periodic 

attractors in state space) or unstable. Oscillations of the latter variety are not observed in 

practice. Time-marching methods involve numerical integration of the system equations 

from given initial conditions over sufficiently long integration times for transients to die out 

and a stable equilibrium solution (attractor in state space) to be reached which need not 

necessarily be periodic. While periodic solution techniques are essentially much faster than 

time-marching methods, the solutions obtained need to be tested for stability and time-

marching becomes the only method of solution when no periodic attractor exists. 

The main contribution of this thesis is the development of an efficient integrated non-

linear modelling technique for the solution of the unbalance response problem. The 

integrated model consists of the following three complementary blocks, each of which is 

tractable to systems with many degrees of freedom: 

(1) The determination of the periodic solutions: a receptance harmonic balance (RHB) 

method is proposed for such a purpose. In this method, the receptance functions of the 

rotating linear part of the system are used in the non-linear analysis of the complete 

system. 

(2) Stability analysis of these periodic solutions. This is done by applying Floquet theory to a 

limited number of the perturbed modal equations of the system. 

(3) Numerical integration of the modal equations, when necessary. 

During the course of this project, discussions with engineers in the UK aircraft industry 

revealed that little or no non-linear analysis of squeeze film damped aero-engine systems is 

performed. Instead, the SFDs are modelled as linear elements that can be incorporated into 

industrial linear rotor-dynamic software packages. With the integrated model presented in 

this thesis, these software packages can be used to analyse the linear subsystem for 

receptance functions and modal parameters. These two sets of data can then be used in a 

detailed non-linear analysis of the complete system that can be implemented using standard 

mathematical software. 

The integrated model is tested on three rotor-dynamic systems, of increasing complexity: 

(A) Rigid rotor with one unsupported SFD in flexible housing. 

(B) Flexible rotor with one rigidly housed SFD, with and without retainer spring. 

(C) Flexible rotor with two unsupported SFDs in flexible housings. 



The SFD forces are obtained from an extant model for the SFD suitable for the short, 

unsealed dampers considered. This SFD model assumes a short incompressible Rim that 

cavitates (ruptures) at absolute zero pressure. The fundamental objectives of each test are 

two-fold. The first objective is to demonstrate the correlation between the simulation results 

from the three complementary modelling blocks (i.e. RHB, stability analysis, time-

marching). The second objective is to assess the ability of the modelling technique to predict 

and explain observed non-linear phenomena. Hence, where available, evidence from 

experimental rigs for configurations (A), (B), and (C) is presented to validate the study. 

Configurations (A) and (C) are based on aero-engine designs. Configuration (B) is typical of 

a small centrifugal pump. With the exception of (C), these configurations had been analysed 

analytically and experimentally in the literature. However, the lack of a comprehensive non-

linear model did not allow an adequate study of the non-linear effects highlighted above. 

Hence, the analytical and experimental findings should shed new light on the non-linear 

behaviour of squeeze film damped rotating systems. Moreover, the study should provide 

useful additional validation of the model used to compute the SFD forces, since, despite 

being generally considered the best available from a physical and practical viewpoint, this 

SFD model is not definitive. 

This chapter concludes in the next section (1.1) with a summary of the thesis objectives 

and contributions. A critical review of previous research is given in Chapter 2. Chapter 3 

outlines basic concepts in non-linear dynamics, with emphasis on stability and bifurcation of 

periodic oscillations. In Chapter 4, the non-linear force expressions for a SFD, based on 

existing theory, are presented. These expressions are illustrated by simulations for a simple 

rotor system. The integrated model is developed in Chapter 5 for a general squeeze film 

damped rotor-dynamic system and the advantages of this model over current models are 

explained. The model is applied to configurations (A), (B), and (C) in Chapters 6 to 8 

respectively. The general conclusions are drawn in Chapter 9, along with recommendations 

for future research. 

1.1 THESIS OBJECTIVES AND CONTRIBUTIONS 

The thesis objectives were: 

The development of an efficient integrated modelling technique for the solution of the 

unbalance response problem of rotor-dynamic systems with squeeze film dampers. 



- Validation of the integrated model in simulation for three squeeze film damped rotor-

dynamic configurations (A), (B), and (C). 

To assess the ability of the model to predict and explain non-linear performance. To 

achieve this aim, experimental work is performed on test rigs for (B) and (C). 

Limited experimental results from a test rig for (A) are reproduced from the literature. 

The thesis contributions are: 

- An integrated non-linear modelling technique that provides a comprehensive solution 

to the unbalance response problem of squeeze film damped rotor-dynamic systems 

over a wide range of operating conditions, that is efficient for systems with many 

degrees of freedom, and that can be interfaced with linear rotor-dynamic modelling 

techniques used in industry. 

Extension of research in the area of non-linear rotor-dynamics by applying the 

modelling technique to predict and explain experimentally observed undesirable non-

linear phenomena in squeeze film damped systems. 

- To a limited extent, as an outcome of the previously listed contribution, the provision 

of additional experimental validation for the existing oil film model used to compute 

the squeeze film damper forces. 

It should be noted that the integrated model can be easily adapted to cover other types of 

non-linearities in rotor-dynamic systems by using the appropriate non-linear forcing 

functions. 
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Figure 1.1: Schematic of a squeeze film damper (SFD) assembly 



2 REVIEW OF PREVIOUS RESEARCH 

2.1 INTRODUCTION 

In this chapter a critical review of previous research relating to squeeze Aim damped rotor-

dynamic systems is presented. The first part of this review deals with solution techniques for 

the unbalance response. The second part deals with reported studies on the non-linear 

phenomena in such systems. Existing research into the models used for squeeze film damper 

(SFD) force estimation is outlined in Chapter 4. 

2.2 SOLUTION TECHNIQUES FOR THE UNBALANCE RESPONSE 

Ever since Cooper [1] first patented a squeeze film damper bearing in 1964, efforts have been 

made to develop efficient modelling techniques for the unbalance response of rotor-dynamic 

systems fitted with such non-linear components. Time-marching (i.e. the numerical 

integration of the differential equations of motion from given initial conditions) has been 

applied to simple rigid rotors on non-linear supports for many years e.g. Craven and Holmes 

[2] in 1972, Gunter et al. [3] in 1977, Cookson and Kossa [4] in 1979. However, the need for 

faster solutions resulted in the development of non-linear rotor-dynamic periodic solution 

techniques. The theoretical analysis of centrally preloaded dampers with circular, concentric, 

and synchronous rotor motion is well documented [5-7]. The example considered by 

McLean and Hahn [6], was a symmetric flexible rotor mounted on identical sprung SFDs and 

the solution procedure was reduced to the solution of a single non-linear algebraic equation. 

The stability problem for such computed orbits was considered by McLean and Hahn [7]. 

This was done by considering small linearised perturbations from the equilibrium orbit. By 

virtue of the circular and synchronous nature of the orbit, the stability problem was reduced 

to a simple eigenvalue problem by writing the perturbed time domain equations of motion 

with respect to a rotating frame of reference, thus obtaining a system of linear differential 

equations with constant coefficients. As evidenced by the unexpected instabilities discovered 

by McLean and Hahn in this simplest of rotor configurations, the stability analysis of 

periodic solutions is an essential requirement. 



As discussed in the Introduction, some offset of varying degree will exist in sprung SFDs, 

and unsupported SFDs are also used. For such situations, attempts have been made to obtain 

periodic solutions by equivalent linearisation of the damper forces by Holmes and Dogan [8], 

Hahn [9], Chen and Liu [10], and El-Shafei and Eranki [11]. These methods enable the 

equivalent damping, stiffness and/or inertia coefficients to be used in conjunction with 

existing linear rotor-dynamic modelling techniques. However, such solutions assume 

synchronous motion and make no allowance for the possibility of sub-harmonic and super-

harmonic frequency components. More recently, it has been shown that reasonably accurate 

periodic solutions with non-synchronous frequency components can be obtained by the 

harmonic balance (HB) method [12] or the analogous trigonometric collocation (TC) method 

[13, 14]. In particular, Chen et al. [12] successfully analysed a symmetric rigid rotor with a 

rigidly housed unsupported SFD at either end using harmonic balance for periodic solutions 

with sub-harmonic fundamental frequencies. While HB and TC are different in the detail, 

they are fundamentally similar in that both approximate the periodic motion with a truncated 

Fourier series with m harmonics of an assumed fundamental frequency tJ5 — Q/N where 

Q rad/s is the rotational speed and # is a positive integer. Both methods ultimately result in 

a system of non-linear algebraic equations with the unknowns being the Fourier coefficients 

of the degrees of freedom at the non-linear elements. Hence, these unknowns total 

Pfji2m + \) where is the number of non-linear degrees of freedom of the system. In 

either case, the system of equations is soluble (by iteration) so long as a solution of 

fundamental frequency C7 exists. For computational reasons, only a finite number of 

harmonics m can be considered, so the periodic solution will be, strictly speaking, 

approximate. However, in most practical problems, where N is small, the solution always 

converges after a manageable number of harmonics m [12, 15]. However, Chen et al. [12] 

found that convergence was difficult to achieve for oscillations with large N, since many 

harmonics needed to be taken. In such situations it was considered more economical to use 

time-marching. Moreover, the work in [12] showed that time-marching could be used with 

HB to help locate different stable equilibrium solution possibilities. Zhao et al. [13] used 

arc-length continuation [16] with TC to negotiate regions of the unbalance response curve 

where more than one solution was possible for a given rotational speed (as in bistable 

regions). The stability analysis of non-circular periodic orbits with non-synchronous 

frequency components was considered in [12, 13, 15]. The perturbed time domain equations 



of motion were written in terms of a frame, resulting in a system of linear 

differential equations with pericxjfc coefficients, which was then analysed by Floquet theory. 

The extension of accurate periodic solution techniques employing TC or HB to practical 

systems with many degrees of freedom has been studied in [14, 15, 17, 18]. The common 

strategy was to regard the forces from the non-linear elements as external, acting on the 

rotating linear part. Hahn and Chen [15] modelled the linear part by the finite element (FE) 

method and the HB method was applied to the FE time domain equations of motion of the 

system (which are of the general form Mil + Cu + Ku = f , where M, C, and K are the mass, 

damping/gyroscopic and stiffness matrices respectively and u and f are the vectors of the 

degrees of freedom and the external forces/moments respectively). This resulted in a very 

large set of non-linear algebraic equations with f (im +1) unknowns where f was the total 

number of degrees of freedom of the system. This number was then reduced to (2m +1) 

(where = number of non-linear degrees of freedom) by applying a condensation 

technique involving the inversion of potentially large FE matrices (of the order PxP). The 

stability of the solution was tested by applying Floquet theory to the perturbed FE equations 

of motion, again resulting in potentially large matrices. The work by Shiao and Jean [17] 

was similar to that in [15], except that complex notation was used and no stability analysis 

was performed. Such FE-based periodic solution and stability techniques are clearly not 

useful for practical systems with many degrees of freedom. Nataraj and Nelson [14], adopted 

a component mode synthesis approach. The TC method was applied to the modal equations 

of the system, making the technique tractable to large order systems. This required the 

solution of the eigen-problem of the rotating linear part and modal truncation. However, as 

observed by Shiao and Jean [17], this needs to be done at each rotational speed if gyroscopic 

effects are significant. More recently, Liew et al. [18] obtained the HB equations of non-

linear rotor-bearing systems by applying the transfer matrix (TM) method. While this 

method is efficient, it is limited by its exclusive use of the TM method, which, as discussed 

by Bonello and Brennan [19], is not effective at including the dynamics of the support 

structure. 

With time-marching methods, as with periodic solution techniques, the SFD forces are 

included in the external force vector f. However, the integration of the FE equations of 

motion is clearly impractical for large order systems. This is mostly due to the fact that the 

step size required by the integration scheme to maintain the local error within a prescribed 

tolerance is determined by the shortest period of the system, which corresponds to the highest 



frequency mode. Hence, the step size decreases with increasing numbers of degrees of 

freedom [20]. It may be considered to simplify the physical model by lumping mass in order 

to reduce the number of degrees of freedom. However, this can seriously limit the range of 

reliability of the results. For example, in order to overcome computing limitations, Chu and 

Holmes [21] modelled a squeeze film damped flexible rotor rig (rig (B) described in the 

Introduction and considered in Chapter 7) as a lumped parameter system with three masses. 

Upon fixing the locations of two of the masses, the location of the third was chosen such that 

the Orst two undamped critical speeds of the equivalent system matched those of the actual 

continuous system, which had been previously estimated by the transfer matrix method. The 

static influence coefficients of the simplified system were determined experimentally from 

the rig. Despite this arduous simplification, the results obtained from such a model were 

considered reliable only within a frequency range of 0-50 Hz. This not only restricted the 

operating speed of the rig, which could otherwise be driven up to 100 rev/s, but must have 

affected the super-synchronous frequency content of the predictions within the speed range 

considered (0-50 rev/s). The only viable and accurate time-marching approach for large 

systems (i.e. systems with many degrees of freedom) is the numerical integration of an 

adequate number of the modal equations [20]. Becker and Steinhardt [22], and Armentrout 

and Gunter [23] demonstrated how the transient response of a squeeze film damped rotating 

system can be computed by numerically integrating the modal equations. However, apart 

from these two demonstrations, to the author's knowledge no modal time-marching studies of 

such systems have yet been reported. 

In the time marching approach, the differential equations of motion (whether in modal or 

FE form) can be integrated using any convenient numerical integration scheme. SFD 

researchers have tended to use the 4*̂  order Runge-Kutta (RK) method [8, 12, 24]. However, 

the RK method is not suitable in situations where the system of equations is "stiff (i.e. the 

highest natural frequency is very high). In this situation, the step size required by the RK 

method to maintain the local error within the prescribed tolerance is exceedingly small, 

resulting in a very time consuming process that will most likely crash due to overload of the 

computer memory. In [2], a method based on the trapezoidal integration mle was presented 

in order to overcome this problem. This integration scheme was used in [21]. Moreover, 

MA7ZAB® (version 5 and later) [25] has a whole suite of functions dedicated to the solution 

of stiH" systems. 
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2.3 

The benefits of a squeeze film damper in attenuating vibrations in ± e critical speed regions 

are illustrated in the work by Holmes and Dogan [8]. Chu and Holmes [26] used a simple 

numerical example to show how a SFD, by virtue of the extra damping provided by its non-

linearity, can control instability introduced by components such as seals by limiting the 

amplitude of the self-excited vibration. However, it is understandable that most research has 

concentrated on the negative side effects introduced by the non-linearity of the SFD on the 

unbalance response. These non-linear phenomena were listed in Chapter 1 as jump 

phenomena, non-synchronous vibration, and, indirectly, bilinear oscillator effects. 

Jump phenomena, resulting from non-linear spring characteristics of cavitated squeeze 

film dampers have been reported by many researchers. Spring-hardening characteristics (i.e. 

jump-down in amplitude on run-up in speed. Figure 2.1(a)) were reported by many 

researchers in both theoretical and experimental work [6, 7, 13, 24, 27, 28-30]. In all these 

works, this spring hardening characteristic was associated with the parallel combination of a 

SFD and some flexibility. This flexibility was the retainer spring in [6, 7, 13, 24, 27]. In 

[28-30] it was the engine carcass (i.e. support structure) flexibility. In [28, 29] the carcass 

flexibility was located at a different bearing but was still effectively in parallel with the SFD. 

Stability analysis for sprung dampers in [7, 13, 27] showed that, when three solutions existed 

at one rotor speed, the middle solution was unstable while the upper and lower ones were 

stable (hence the bistable regions in Figure 2.1). Spring-softening characteristics (i.e. jump-

up in amplitude on run-up in speed. Figure 2.1(b)) were reported in [8, 31], both with 

horizontal rotor rigs involving rigidly housed unsupported SFDs carrying appreciable rotor 

weight. A similar effect was obtained in [28, 32] with unsupported SFDs in flexibly mounted 

housings. 

Many researchers have observed super-harmonics and sub-harmonics (with integer 

multiples) in the vibration signals from squeeze film damped rotating systems. Nikolajsen 

and Holmes [33] reported sub-harmonics down to one quarter of the rotational speed (i.e. 

lEO/4, where lEO refers to the synchronous frequency component - "EO" standing for 

"engine order") from a flexible rotor rig. Sykes and Holmes [28] demonstrated the existence 

of severe sub-harmonics equal to lEO/2 as well as strong super-harmonics, under various 

conditions of static offset. A theoretical study on the sub-harmonic motion of a simple rigid 

rotor in unsprung SFDs was done by Chen et al. [12]. Among other things it was concluded 

that a resultant static load on the journal appeared necessary for sub-harmonic motion. This 
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analysis was limited since it did not include the effect of the bearing pedestal flexibility (i.e. 

the dynamic deflection of the bearing housing), which is often significant for practical gas 

turbines [8] and was shown in various works [8, 28, 31, 32] to be highly influential in the 

dynamics of unsupported SFDs. Using elementary analysis. Holmes and Box [30] showed 

that, for a rigid rotor with an unsupported SFD that is in series with the pedestal flexibility, a 

lEO/2 sub-harmonic was expected to be excited when the speed was close to the undamped 

natural frequency. On the other hand, for a rigid rotor with a rigidly housed SFD in parallel 

with a spring (or equivalent flexibility), the lEO/2 sub-harmonic was expected when the 

rotational speed was just around twice the undamped natural frequency. These results have 

been confirmed in [8, 31] for the unsupported SFD and in [30] for the sprung SFD. 

The bifurcation of periodic motion in a general non-linear system into quasi-periodic 

motion is described in standard non-linear dynamics text books, for example [16, 34, 35]. As 

shown in Chapter 3, a quasi-periodic signal is an aperiodic signal composed of two (or more) 

periodic signals having irrationally related fundamental frequencies, one of which is normally 

the excitation frequency. This motion is hard to distinguish from periodic motion with very 

many sub-harmonics [34]. In 1976, Botman [36] observed what looked like quasi-periodic 

motion on a high-speed oil film damper rig run by Pratt and Whitney of Canada Ltd. In that 

very early research, this motion was given the general term "non-synchronous". Reference to 

Botman's observations was made in the work by Li and Taylor [37], which was the first to 

analyse numerically quasi-periodic motions in SFDs. This work considered a simple rigid 

rotor with sprung SFDs and the same term as Botman was used to describe quasi -periodicity 

(i.e. "non-synchronous"). When the computed quasi-periodic response was sampled at 

intervals equal to the period of excitation and the samples plotted \ a closed curve resulted. 

This agrees with standard non-linear dynamics theory and is the hall-mark of quasi-periodic 

motion with two fundamental frequencies [34, 38]. Li and Taylor concluded that the quasi-

periodic motion could be changed or suppressed into a periodic motion of period NT (where 

T is the period of rotation and N a positive integer) by the introduction of a unidirectional 

static force onto the otherwise centrally preloaded rotor. They also made the important 

observation that the sub-synchronous phenomena in a system with SFDs are not self-excited 

since their existence directly relates to the external excitation (unbalance force). The term 

"quasi-periodic" was first used in the context of SFDs by Zhao et al. [13, 24, 27], who used 

Poincare maps and frequency spectra to analyse the aperiodic motion. In [13] they examined 

' A plot of such samples is referred to as a Poincare map [13, 24, 27, 34, 38]. 
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theoretically a symmetric flexible rotor in identical centrally preloaded SFDs. Well beyond 

the jump phenomenon described earlier, they discovered that the synchronous periodic 

motion bifurcated into quasi-periodic motion that persisted over a limited speed range beyond 

twice the pin-pin critical speed of the shaft. The effect of introducing a static offset in the 

SFDs was to introduce a period-doubling bifurcation soon after the first pin-pin critical speed 

such that there was stable periodic motion of period 27 (where 7 is the period of rotation) 

over a short speed range. Additional theoretical work on quasi-periodic and sub-harmonic 

motion was done by Zhao et al. in [24, 27] on a symmetric rigid rotor in identical eccentric 

sprung SFDs. In [24], chaotic motions were also found to occur and were identified by the 

fractal nature of the Poincare Map. To the author's knowledge, the work in [24] is the only 

work related directly to SFDs where chaotic motion was investigated numerically. 

The quasi-periodic motion in [13, 24, 27] was found to contain combination (or "sum and 

difference") frequency components of the general form n,/, +^2/2 where n, and are 

integers (positive, negative or zero) and / , and / j ^re the two irrationally related 

fundamental frequencies of the motion. This feature of quasi-periodic motion is described in 

the text-book by Ott [35]. Ehrich [39] observed combination frequencies in a General 

Electric gas turbine engine. It was noted that two fundamental frequencies were involved -

one synchronous with the rotor rotation, associated with the unbalance, and an asynchronous 

frequency that was attributed to fluid trapped in the rotor. It was concluded by Ehrich that 

the source of the combination frequencies was the truncation of vibration, probably due to the 

rotor being located eccentrically in a bearing clearance. Combination frequencies were also 

observed experimentally by Holmes and Dede [31] in a twin rotor configuration coupled 

through a SFD. This time however, the two fundamental frequencies were both due to 

unbalance excitations, one on each rotor, and the generation of the combination frequencies 

was attributed to the non-linearity of the coupling between the rotors. 

Before leaving the subject of the SFD proper, two important issues are discussed; (a) the 

correlation between experiment and theory, and (b) the practical significance of the SFD 

systems studied in the literature. Of course, the correlation between experiment and theory 

will be influenced by the actual model used to compute the SFD forces. As shall be seen in 

Chapter 4, a major source of uncertainty is the modelling of the cavitation effect within the 

SFD. The idealised ";r film" model applies for an externally unpressurised, short, and 

unsealed damper in which the oil film is assumed to cavitate (rupture) at atmospheric 

pressure. This leads to closed form expressions for the SFD forces, which are easy to use. A 
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more realistic model called the "variable film" model allows for the supply pressure and 

assumes cavitation at some sub-atmospheric pressure, usually absolute zero pressure. 

However, the instantaneous SFD forces need to be computed numerically by double 

integration. Most work reviewed in this section, pertaining to the non-linear dynamics of 

SFD systems, can be divided into two contrasting categories. The first includes the works by 

Zhao et al. [13, 24, 27], Chen et al. [12], and McLean and Hahn [6, 7], which apply all the 

non-linear dynamics tools available (i.e. periodic solution computation, stability and 

bifurcation analysis, time-marching, Poincare maps, and frequency spectra) to analyse 

theoretical models of both rigid rotor and flexible rotor systems. These works used a 

film" model for the SFD and no experimental verification was undertaken. The second 

category involves the work done by Holmes with various co-researchers [8, 28, 31, 32] which 

was restricted to the time-marching of the differential equations of motion of rigid rotor 

models and the examination of the orbital motion, amplitude-speed plots, and frequency 

spectra from the results obtained. However, these works used the variable film model and 

were backed up by experimental work. Moreover, unlike the workers in the first category, 

the rigid rotor systems considered by Holmes et al. included those with flexible pedestals 

(housings). According to Holmes and Box [20], practical squeeze film damped rotating 

assemblies can be classified into one of two types of simple configurations, as a rough first 

approximation: (i) rigid rotor-flexible housing systems, such as military aero-engines and 

turbo-chargers, and (ii) flexible rotor-rigid housing systems like civil aero-engines and air 

compressors. What appears to be lacking in the literature is an advanced non-linear study, on 

a par with those performed by researchers in the first category mentioned above, on systems 

of type (i) and (ii), that is backed by experimental evidence. 

Bilinear oscillator effects, which are not exclusive to SFDs, are now discussed. Ehrich 

[40, 41] did considerable research on unbalanced rotors operating eccentrically within a 

clearance and in local contact with the stator. The rotor-stator interaction was modelled by a 

piecewise-linear spring that was softer for the vertical motion of the rotor from its rest 

position into the clearance and harder for the vertical motion from the rest position into the 

direction of contact. This is illustrated in Figure 2.2. In [40], Ehrich cited a rotor just 

bottomed in the squeeze film damper/bearing clearance as a typical example. Hence, the 

non-linear SFD force expressions were replaced by the piecewise-linear spring characteristic. 

The resulting oscillator was said to behave as a bilinear oscillator [41]. Simulations on a 

simple unbalanced Jeffcott rotor [40, 41] showed that, for the direction of the non-linearity 
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(i.e. vertical direction), super-critical sub-harmonic resonance at exactly l/n of the excitation 

frequency (n is a positive integer) occurred whenever the excitation A-equency (the rotational 

speed) was in the region of n times the natural frequency. Similarly, sub-critical super-

harmonic resonance at exactly n times the excitation frequency occurred whenever the 

excitation was in the region of 1/n times the natural frequency. It was also found that there 

was a zone of characteristically chaotic behaviour located midway of each transition zone 

between successive resonances. The results from the numerical simulation were used to 

explain data collected from an aircraft gas turbine engine. 

It appears from the literature that a direct correlation between SFDs and bilinear oscillator 

effects has yet to be made i.e. the prediction of such effects using the SFD force expressions, 

without recourse to piecewise-linear spring models. This is important since, by neglecting 

the SFD forces, Ehrich [40, 41] assumed that the piecewise-linear spring model was 

applicable over the entire operating range of the rotational speed. However, in a real system, 

it is reasonable to expect that over part(s) of the operating range the SFD forces will create 

sufficient sustained lift to counter the rotor offset within the clearance, thus rendering the 

piecewise-linear spring model invalid. 

2.4 CONCLUSION 

The previous research into the analysis of the dynamics of unbalanced squeeze film damped 

rotating systems has been reviewed in this chapter. The first part of this review (section 2.2) 

dealt with solution techniques for the unbalance response. The second part (section 2.3) dealt 

with reported studies on the non-linear phenomena in such systems. An integrated model has 

been recently developed by the author [42] to overcome the shortcomings highlighted in 

section 2.2. This forms the basis of this thesis. This model will be used to extend the 

existing research into the non-linear phenomena presented in section 2.3. 
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3.1 INTRODUCTION 

This chapter describes the background non-linear dynamics theory relevant to this thesis. 

Emphasis is placed on the stability and bifurcation of periodic oscillations of forced 

dynaniical systems. A description of quasi-periodic motion is given and the occurrence of 

combination frequencies explained. This is followed by a brief discussion of chaos. A short 

note on unforced systems is also given in this chapter. While this is not relevant to the 

squeeze Aim damper (SFD) problem, it helps to explain the benefit of using a device like the 

SFD over other fluid film devices. The chapter concludes with a note on the issue of 

"numerical stability" i.e. the "stability" of numerical integration methods. 

A dynamical system can be either a continuous-time system or a discrete-time system. 

This thesis is concerned with the former. A continuous-time dynamical system can be 

modelled as a set of n first order differential equations. For a non-autonomous system, the 

independent time variable t appears explicitly in the dynamical equations, so these are of the 

form: 

s = (p(s,f) (3.1) 

For an autonomous system, the independent time variable t does not appear explicitly in the 

dynamical equations and so, these are of the form: 

s = (p(s) (3.2) 

cp is an n x 1 vector function of the dependent variable s = [i'j • • • J and (for a non-

autonomous system) the independent variable t: 
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The dynamical system (and its governing system of equations) is said to be "non-linear" if (p 

is a non-linear function of the dependent variable s i.e. the element functions of (p are non-

linear in the elements of s. 

In the present context of stmctural dynamics, eqs. (3.1) or (3.2) are the equations of 

motion: eq. (3.1) corresponds to the forced case (i.e. a system subjected to time-varying 

external excitation, for example the rotor unbalance force in a rotor-dynamic system) and eq. 

(3.2) to the unforced case (i.e. a system not subjected to time-varying external excitation). 

Except for the short notes on unforced non-linear systems in section 3.3 of this chapter and in 

section 4.7 of Chapter 4, this thesis is confined to the study of non-linear systems with time-

varying external excitation that is harmonic with frequency Q rad/s and period T = litjQ . 

For an unbalanced rotor-dynamic system ^ is the rotational speed and the amplitude of the 

unbalance forces is proportional to ^ for a given state of unbalance, s is an » x 1 vector of 

generalised coordinates and their time derivatives. Depending upon whether the original 

second order differential equations of motion are cast in finite element (FE) or modal form: 

J (FEform), or (modal form) (3.5) 

where u is the vector of degrees of freedom (as in the FE equations of page 9) and q is the 

vector of modal coordinates (see Chapter 5, section 5.4). The first n/2 equations of (3.1) or 

(3.2) are hence [y, .. remaining equations are then the 

(originally second order) differential equations of motion. For the unforced system in eq. 

(3.2), the n x l vector s is referred to as the state vector. The specification of the state of the 

forced system requires knowledge of both s and t (or Qt). Hence, in this case, the state 

vector is defined as the augmented vector 

aug s 
(3.6) 
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The elements of the state vector are the state variables and the associated n or (n + l)-

dimensional space is the state space. For the forced system, when visualising plots of 

tr^ectories of s(f) from given initial conditions s(fQ) in the state space, the independent state 

variable is an coordinate [16, 34]. In this way, a periodic solution to equation 

(3.1) of period ATT, where N is a positive integer i.e. s(f)= s(f + ATT) will appear as a 

loop in the state space since (= ) will then represent the same angle as 

A Poincare map is obtained by sampling the trajectory of s(r) in state space at discrete 

times t^, & =0,1,2, . . . , according to certain rules which are different for forced and unforced 

systems [38]. The sampled points s(f^) are called the "return points". For a periodically 

driven system, the map is a stroboscopic picture of the tr^ectory i.e. the tr^ectory is sampled 

at fixed intervals, usually equal to the period 7 of the excitation, hence where fg 

is some arbitrarily chosen sampling start time. Hence, motion of period NT ("iVT-periodic 

motion") appears as N discrete points on the map when the sampling interval is T. A two-

dimensional Poincare map is obtained by plotting two elements of the sampled vector s(r^). 

Dissipative systems are characterised by attractors. An attractor is a bounded set of 

points in state space which the tr^ectory of s(f) reaches after the transients due to the initial 

conditions sit^) die out. Regions of initial conditions in state space shrink asymptotically on 

to the attractor as time progresses. For a periodically driven system, an attractor may be one 

of the following: 

(a) Periodic attractor, where s(r)= s(? +-T), F being the period and G7 = 2;r/F rad/s the 

fundamental frequency of the oscillation. Since the frequency components of this 

periodic motion are integer multiples of CJ and the excitation frequency Q is assumed to 

be one of these, CJ must be equal to Q/N where TV is a positive integer, and so, the 

motion is ATT-periodic. 

(b) Quasi-periodic attractor - motion with two (or more) fundamental frequencies. 

(c) Strange attractor - chaotic motion. 

An attractor can be located by integrating eq. (3.1) from arbitrarily chosen initial conditions 

s = s(fo) at ? = ?o and allowing sufficient time for the initial transients to die out. This 

process is referred to as "solving the initial value problem" or "time-marching" and is done 

using a convenient step-by-step numerical integration scheme (e.g. Runge-Kutta, etc.). 
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Solutions to eqs. (3.1) or (3.2) that are non-transient i.e. that exhibit steady-

state behaviour ("steady-state" solutions) are referred to as equilibrium solutions [43] and are 

denoted by SE(r). Attractors describe equilibrium solutions. The converse is not necessarily 

true however. Consider (equilibrium) periodic solutions to the forced equation (3.1). As 

discussed above, these are AT-periodic, such that SE(f) = SE(f + ATT), and form closed loops 

or cycles in state space. Like the static equilibria of unforced systems (section 3.3), these 

periodic oscillations can be either stable or unstable. A periodic oscillation is said to be 

asymptotically stable (or simply, stable) if trajectories starting from nearby initial conditions 

converge towards the cycle. A stable periodic oscillation is a periodic attractor. Conversely, 

an unstable periodic oscillation will repel trajectories from nearby initial conditions. Note 

that, since this unstable periodic oscillation is a solution of equation (3.1), a trajectory 

starting gxacfZy at a point on the cycle will never leave it provided there is not the slightest 

fluctuation in operating conditions. Such an oscillation clearly cannot be realised in practice; 

even in the highly improbable case of getting conditions exactly on the cycle, the oscillation 

cannot be maintained due to inevitable minor fluctuations in operating conditions. Likewise, 

unstable periodic solutions cannot be calculated by time-marching, even in the highly 

improbable cases of starting with initial conditions exactly on the cycle or getting there 

through a stable manifold^ The reason for this is that the inevitable local integration error in 

each time step introduces minute perturbations into the computed trajectory of s{t), thus 

invariably driving it towards an attractor, which, by definition, is stable to minute 

perturbations. As discussed in Chapters 1 and 2, periodic solution techniques using 

analytical methods like harmonic balance (HB) or trigonometric collocation (TC) pre-assume 

periodic solutions of given period. Hence, the resulting solutions need to be tested to 

determine whether they represent stable or unstable periodic motion. It is noted in passing 

that an alternative periodic solution technique not mentioned in Chapter 2 is to solve eq. (3.1) 

as a two-point boundary value problem [16] rather than as an initial value problem. 

However, the resulting periodic solutions still need to be tested for stability [16]. It is 

customary to generate a batch of periodic solutions over a range of values of a system control 

parameter and plot some property of the solutions (e.g. amplitude) versus the control 

parameter to form a response curve of periodic solutions e.g. in rotating systems the control 

parameter would be the rotational speed and the resulting plot called the speed response 

' A stable manifold, if it exists, defines a certain set of initial conditions from which a point on an unstable cycle 
can be reached [35]. 
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curve of periodic solutions. The stability of each periodic solution on the response curve is 

then analysed. 

The following section deals with the issue of stability and bifurcation of periodic 

solutions. A bifurcation is a qualitative change in the dynamics that occurs as a system 

control parameter is changed. For example, in the following section it is shown that the onset 

of instability of a periodic motion results in the three possible kinds of bifurcations. 

3.2 STABILITY AND BIFURCATION OF PERIODIC SOLUTIONS 

In this section the stability of a periodic solution of the forced system in eq. (3.1) with period 

r and fundamental frequency QJ = Itc/F rad/s is analysed. It is more convenient to work 

with non-dimensional time T deGned as T = Q*. The dynamical equations of the forced 

system are then rewritten in the form 

s' = (p (s.-r) (3.7) 

where ( ) denotes differentiation with respect to T , 

^J = U 

U ' 
(FE form), or 

q 

q' (modal form) (3.8) 

and (3.9) 

It should be noted that the elements of the vectors s and cp in eqs. (3.8), (3.9) are generally 

different from those of s and (p in eqs. (3.3), (3.5). However, to economise on the use of 

symbols, the same symbols s = [sj • • • and (p = • • • (p„Y have been retained. 

With this transformation of the independent variable, the (equilibrium) periodic solution of 

period itcjus in t now has a period of 2;r in t , regardless of w i.e. Sg (t) = Sg (t + 2k) and; 

4 = 9 K , - : ) (3.10) 

To test the stability of , the evolution of a small perturbation x from Sg is considered: 

21 



X(T) = S(IR)-SE(T) (3.11) 

Subtracting eq. (3.10) from eq. (3.7), expanding (p (s,?) into a Taylor series about 8 = 8̂  and 

retaining only terms that are linear in X = S-SE, the following linearised perturbation 

equation is obtained: 

x' = W('r)x (3.12) 

where, 

1 

9(p 
9s 

S=SE 
9.9; 

E(T) 

(3.13) 

The theory developed from eq. (3.12) is called the linear stability theory [43]. Note that, 

although the independent variable T disappears explicitly from the partial derivative 

expressions of the nxn Jacobian matrix 9(p/9s, these expressions are evaluated at 

s = SE(t), which is itself a periodic function of T . Hence, W(t) must be periodic in T, 

period 2;r. Hence, eq. (3.12) is a system of ordinary linear homogeneous differential 

equations with periodically varying coefficients. The study of the stability of the equilibrium 

solution SJ.(T) has thus been reduced to the study of the stability of such a system of 

equations, which can be conveniently done using Floquet theory [43, 44]. The coefficient 

matrix W(T) for the general squeeze film damped rotor-dynamic model is derived in Chapter 

5. In the following three sections the fundamentals of Floquet theory, the computation of the 

Floquet transition matrix (governing stability), and the implications of instability (i.e. 

bifurcations) are discussed. 

3.2.1 Fundamentals of Floquet Theory [43, 44] 

The system of equations (3.12) will have n linearly independent solutions X J ( T ) , 

These can be collected into ayuw ẑmgrnfaZ maf/tc X(ir): 

X ( T ) = [ X ; ( 4 ... X N W (3.14) 
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If, in addition, 0 " 1 " O f , , Xn(o)=IP " 0 i f , 

then X(T) is referred to as ± e pn/zczpaZ Xp(T), which is unique. The 

solution to eq. (3.12) ±at satisfies the initial conditions x(o)= x,, is thus [44]: 

X(T) = Xp (T)xo (3.15) 

In general neither X(T) nor Xp (?) is periodic. The monoJro/M); G is defined as 

G = Xp(2;r) (3.16) 

E we define = x(A;2;r), ^ = 0,1,2,..., then it follows from eqs. (3.15), (3.16) and the fact 

that W('r) is periodic with period 2;F that 

Xt+i=Gx^,^ = 0,1,2,... (3.17) 

For this reason, the monodromy matrix G is also referred to as the growth matrix [45, 46] or 

the Floquet transition matrix [13]. Hence, the linear continuous-time system of eq. (3.12) 

has been transformed to the linear discrete-time system of eq. (3.17). By substituting into eq. 

(3.17) a trial solution of the form x^ = A*e it is readily seen that X must be an eigenvalue of 

G and e is an associated eigenvector. Hence, the solution to eq. (3.17) (which is the discrete 

solution to eq. (3.12)) is of the general form 

= A: = 0,1,2,... (318) 
1=1 

where A, (/ = 1...«) are the eigenvalues of G (also known as the Floquet multipliers), the e. 

are corresponding eigenvectors and are arbitrary scalar constants. Hence, for the 

asymptotic stability of the periodic solution 82(7) to eq. (3.1): 

|A;|<l,forf = l...M (3.19) 
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3.2.2 Computation of the Monodromy Matrix 

From the previous section, it can be seen that the stability test of a given periodic solution to 

the dynamical equations (3.1) requires the knowledge of the associated monodromy matrix. 

This section deals with the computation of G from the coefficient matrix W(T) of the 

perturbation equation (3.12). Two methods are available for the computation of G, which 

are referred to here as the "slow" and "fast" methods respectively. 

The "slow" method is based on the definition of G given in the previous section, eq. 

(3.16). Hence, this involves solving the perturbation equation (3.12) by a numerical 

integration scheme (e.g. Runge-Kutta, etc.) over the interval T = 0 to T = 2;r for » initial 

conditions Xi(0)=[l 0 -- Of , X2(0)=[0 1 .. Of, , x .(0)=[0 -- 0 i f , in 

turn. The monodromy matrix G is then formed from the values of the resulting M solutions 

at T = 2;:: 

G = [x,(2;r) ... x,(2;r)] (3.20) 

This method is extremely time consuming, which makes it impractical to test the stability of a 

whole set of periodic solutions forming a response curve. This method was used by Chen et 

al. [12] and Hahn and Chen [15]. 

Hsu [45, 46] developed a very fast approximate method for computing the monodromy 

matrix, based on impulsive parametric excitation theory. This "fast" method was used by 

Zhao et al. [13]. In this technique, the periodic interval [o, 2;r] of the periodic matrix 

function W(T) is divided into K equal segments AT . Let TJ., k — the value of T at 

the midpoint each segment. W(T) is replaced over [O, 1k\ by a series of impulses of strength 

W .̂Ai where 

W * = W ( T j (3.21) 

It can be shown that G can be approximated by a product of matrix exponentials [45]: 

G = (3.22) 
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The above product converges to the exact matrix G as AT oo. However, in all the 

simulations presented in this thesis, ^ = 200 gave highly accurate results. 

3.2.3 Bifurcation of Periodic Solutions 

From eq. (3.19), for the (equilibrium) periodic solution SE(^) to stable, all the eigenvalues 

of the associated monodromy matrix G must lie within a unit circle in the complex plane 

centred at the origin. The stability is hence controlled by the eigenvalue of largest absolute 

value (magnitude), known as the leading eigenvalue or leading Floquet multiplier, A;. This 

eigenvalue is either real or one of a complex conjugate pair (A,, A* )̂ . If, as a system control 

parameter is changed (e.g. the rotational speed ), the leading eigenvalue A; escapes from 

the circle, then SJ.(T) becomes unstable and a bifurcation occurs. As shown in Figure 3.1, the 

leading eigenvalue has three possible escape routes and hence three kinds of bifurcation are 

possible: (a) tangent bifurcation (escape along the positive real axis); (b) period-doubling 

bifurcation (escape along the negative real axis); (c) secondary Hopf bifurcation 

(simultaneous escape of two complex conjugate leading eigenvalues). These bifurcations are 

explained in the following paragraphs with the aid of the Poincare map. In what follows, the 

sampling interval of the map is taken as the period of the equilibrium periodic solution 

(period Injw = NT in the f-domain and period In in the T -domain) rather than that of the 

driving force (7 in the f-domain), so that the cycle always appears as a single point on the 

map, regardless of N. The evolution of the return points of the trajectory for an initial small 

disturbance from an unstable equilibrium cycle is given by eq. (3.18) and if =x(^2;r) is 

plotted rather than sikln), the point (0,0) on the two-dimensional Poincare map will 

correspond to the fixed point on the unstable equilibrium cycle. 

Case (a): A, real and positive and |Aj > 1: 

From eq. (3.18) 

(3.23) 

From eq. (3.23), since A, is real, consecutive return points on a Poincare map will lie 

approximately on a straight line of direction determined by the eigenvector e, . Since A, > 0 , 

• Since G is a real matrix, any complex eigenvalues must occur in conjugate pairs. 
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they will lie on the side of the unstable equilibrium point (0,0) (at increasing distances 

from it, since |A;| >1). This illustrated in Figure 3.2(a), which plots the two elements of 

against each other for A, = 1.1, = [0.2 0.4]^. Hence, the perturbed tr^ectory tends to a 

periodic motion of the same period as the unstable equilibrium cycle. If such a periodic 

attractor exists in the vicinity, the return points eventually congregate at a single fixed point 

at one end of the line as the tr^ectory settles down on the attractor. The onset of this type of 

instability as one progresses along the response curve, marked by the escape of from the 

unit circle along the positive real axis, is called a saddle-node bifurcation, tangent bifurcation, 

or turning point bifurcation. This instability is normally associated with bistable regions of 

the response curve (see Figure 2.1). 

Case (b): A, real and negative, |A;| > 1: 

Eq. (3.23) still applies and consecutive sampled points on a Poincare map will approximately 

lie on a straight line of direction determined by e,. However, since the leading multiplier 

A; < 0, consecutive return points flip on either side of the unstable equilibrium point (0,0) (at 

increasing distances from it, since >1). This illustrated in Figure 3.2(b) for A; =-1 .1 , 

= [0.2 0.47 (consecutive return points are indicated by crosses and circles). Hence, 

the perturbed trajectory tends to a periodic motion of twice the period of the unstable 

equilibrium cycle. If such a periodic attractor, having a fundamental frequency S7/2 rad/s, 

exists in the vicinity, the return points eventually congregate at two fixed points, on either 

side of the unstable equilibrium point. The onset of this type of instability as one progresses 

along the response curve, marked by the escape of A, from the unit circle along the negative 

real axis, is called a period-doubling bifurcation or a flip bifurcation. 

Case (c): A; complex, = jA'j > 1: 

From eq. (3.18) 

(3.24) 

Now A; hence, =|A;| =|A;| -{coŝ %)4-jsinA î9}. Just as for ordinary linear 

homogeneous differential equations with constant coefficients [44], it can be shown that 

can be expressed as = cf; Re{̂ y e, }-t- Im{R,*e,} where , (f; denote arbitrary scalar 
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constants and Re{ } Im { } denote the real and imaginary parts of { } respectively. Hence 

is of the form 

X k |iy-{d,cos^%) + d2sin&:?)} (3.25) 

where d,, are real vectors and is the phase angle of A, (0<?)<2;r) . Eq. (3.25) 

means that the return points will spiral out of the unstable equilibritmi point (0,0). As an 

example, ± e two elements of are plotted against each other for |Aj = l . l , 

dj = [0.2 0.47, d ; = [0.4 0.2p in Figures 3.3(a-d). It is seen that, as the return points 

spiral out around the origin, consecutive points hop from one spiral branch to the next, and 

that the number of branches is equal to where 7) = )2;F, ^ b e i n g non-negative 

integers with having no common factor. Consecutive points are indicated by 

crosses and circles in Figure 3.3(b), by crosses, circles and squares in Figure 3.3(c), and by 

crosses, circles, squares and diamonds in Figure 3.3(d). This indicates that the perturbed 

trajectory tends to a motion that contains two fundamental frequencies: the original one at W 

rad/s and a new one that is apiproxfrnargZ); (kg rad/s where is some positive integer 

that has no factor in common with . If such a 1-frequency quasi-periodic attractor exists in 

the vicinity, the return points stop diverging and settle down, densely filling a closed curve 

around the origin. The reason for this curve or "drift ring" is that the two fundamental 

frequencies are in general incommensurate (i.e. their ratio is an irrational number) and hence 

the steady motion is aperiodic (more specifically, "quasi-periodic"), with the return points 

never quite coinciding with each other. The onset of this type of instability as one progresses 

along the response curve, marked by the simultaneous escape from the unit circle of two 

complex conjugate leading eigenvalues, is called a secondary Hopf bifurcation. The reason 

for this is that the birth of the 2-frequency quasi-periodic attractor from the periodic motion is 

analogous to the birth of a periodic attractor from the static equilibrium point of an unforced 

system (primary Hopf bifurcation). Note that, in the exceptional case that t? is exactly equal 

to (fej /K , the second fundamental frequency is exactly (fej )u and hence 

commensurate with the first. In this case (see Figures 3.4(a,b)), the k-̂  spiral branches 

straighten out and when steady conditions are reached, the return points congregate at k̂  
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fixed points around the origin. In this exceptional case, the generally quasi-periodic 2-

frequency motion is said to be into periodic motion of fundamental Arequency ( n / . 

This "frequency-locking" is explained in more detail in section 3.4. Notice that the cases 

when is exactly equal to (0/l)2;r and (l/2)2;r correspond to the previous cases (a) and (b) 

respectively (Figures 3.2(a,b)). 

From the above, the three types of bifurcation points on the response curve of periodic 

solutions are defined at the onset of instability and classified according to the escape route of 

the leading Floquet multiplier from the unit circle. However, for a general unstable periodic 

solution, the position of the corresponding A, on the complex plane is nof by itself a deGnite 

indicator of the type of attractor on which a disturbance from it will settle down, especially if 

the unstable solution is well past the bifurcation point. The reason for this is that Floquet 

theory applies for small linearised perturbations about Sg: hence, apart from definitely 

indicating that Sg is unstable, eq. (3.18) can only indicate the type of motion that the 

disturbed tr^ectory to in the initial stages of the perturbation when is small, and 

gives no assurance that it will ultimately settle down to that motion. The attractor can only 

be positively identified by time-marching from unstable equilibrium initial conditions. 

3.3 NOTE ON UNFORCED SYSTEMS 

Unforced systems were defined in section 3.1 as systems that are not subjected to time-

varying external excitation. One feature that distinguishes the unforced problem in eq. (3.2) 

from the forced problem of eq. (3.1) is that an additional type of equilibrium solution (i.e. 

steady-state solution) is possible - that describing static equilibrium. The static equilibrium 

states are defined by time-independent solutions to eq. (3.2), obtained by setting the right 

hand side of eq. (3.2) to zero and solving the resulting algebraic equation 

(p(s)=0 (3.26) 

Each solution s = Sgs to eq. (3.26) corresponds to a state of static equilibrium in the 

"Newtonian" sense (i.e. zero velocities and accelerations). The stability of each solution Sgg 

is tested by considering the evolution of small perturbations Xg = s - S g g , and as in section 

3.2, this results in an equation of the form 
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BO 
Xs = - ^ Xg = A x s (3.27) 

where A = 9(p/9s| . However, the partial derivatives in this nxn Jacobian matrix are 

I S - S £ S 

now evaluated at 8 = 5^5, hence A will be constant with respect to time. Hence, eq. (3.27) is 

a system of ordinary linear homogeneous differential equations with constant coefficients, the 

stability of which being governed directly by the eigenvalues of A. Sgg is unstable when the 

real part of one or more eigenvalues is positive [35]. The perturbation equations (3.27) 

define the motion of the unforced system for small linearised displacements about ±e static 

equilibrium position (i.e. the usual unforced "linear system" considered in texts on linear 

dynamics e.g. [47, 48]). For oscillatory motion, the eigenvalues of A will all be complex, 

occurring in conjugate pairs ±jD,, ; = l...M/2, where the u / s are the damped natural 

frequencies [47, 48]. Hence, as a system parameter is changed (e.g. the rotational speed 2̂ ), 

the onset of instability is marked by a pair of purely imaginary conjugate eigenvalues, which 

defines a primary Hopf bifurcation [16]. This bifurcation marks the birth of limit cycle 

behaviour - "self-excited vibration". Once such periodic attractors have developed, the 

unforced system can proceed to bifurcate in one of the three ways described in section 3.2 

(i.e. tangent, flip, or secondary Hopf bifiircation). In rotor-dynamics, journal bearings are 

known to induce self-excited vibration [48]. Since some degree of unbalance will always be 

present in practical rotating systems, the self-excited limit cycle will combine with the T-

periodic response from the unbalance force to form (in general) quasi-periodic motion. 

Hence, under low levels of unbalance excitation, a primary Hopf bifurcation of the unforced 

system at some value of the system control parameter /i manifests itself as a secondary Hopf 

bifurcation of forced ^-periodic oscillations at ± e same value of / / . It is shown in Chapter 

4, section 4.7, that squeeze film dampers (SFDs) cannot introduce self-excited vibration and 

so, the unforced problem need not be considered in such applications. For SFDs therefore, 

the existence of instability of forced T-periodic solutions relates directly to the external 

excitation (unbalance force), as observed by Li and Taylor [37]. Certain rotor-dynamicists, 

unaware of the general concept of stability in non-linear dynamics, have tended to associate 

the concept of stability exclusively to eq. (3.27) [49]. 

29 



3.4 QUASI-PERIODICITY 

^-frequency motion is a mixture of periodic motions with respective periods 7]., r = 1... 

and corresponding fundamental frequencies = 2;F/7} . The motion is said to be "AT-

frequency quasi-periodic" if its ^ fundamental frequencies are "incommensurate" or 

"rationally independent". This means that none of the frequencies can be expressed as a 

linear combination of the others using coefOcients that are rational numbers i.e. the relation 

+... + =0 (3.28) 

does not hold for aMy set of integers except for the trivial solution = ... = = 0 . 

A simple form of AT-frequency quasi-periodic motion would be the sum of the AT periodic 

motions, where each element of s(f) = [y, (f) - - would be expressed as: 

W = Z +. . .+ % Iqej^" (3.29) 

Each periodic motion in (3.29) has been expressed as a complex Fourier series [35]. On 

taking the Fourier transform of (3.29), it is seen that the frequency spectrum consists of 

discrete spikes at for k integer. However, in general, the mixture of the K 

periodic motions goes beyond mere addition and in the general form of /^-frequency quasi-

periodic motion, each element of s(f)= •5'„(z')r can be expressed as a Z-tupIe 

complex Fourier series [35]: 

^ , « = (3,30) 

The special case of eq. (3.29) can be obtained from the general form in (3.30) by retaining 

only the coefficients o g, and setting the rest to zero. The 

Fourier transform of (3.30) reveals that the frequency spectrum consists of discrete spikes at 

combination ("sum and difference") frequencies + . . . + A:^I2^| where k^...kf. are 
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integers (positive, negative, or zero). Of course, each of these spikes is modulated by the 

corresponding amplitude, , - Consider the case of 2-frequency quasi-periodic motion 

(3.31) 

Hence, ± e spectrum consists of spikes at E 2̂; and become 

commensurate (i.e. rationally related), Aen =^2/^, where and 2̂ positive 

integers with no common factor. Then ± e frequency spikes will occur at +^2^2 

and hence become integer multiples of i2j /^, . Hence, the 2-frequency motion is said to be 

locked into periodic motion of fundamental frequency i], /^; . Th ^cf, /MofzoM 

mgrgZ); a jpgc/oZ cofg f/zg TMOfzon 6); eg. (3.30) fAaf occwrj' wAg» fAg 

GGMGRAZZ); MCOM/MGM'WRAFG JRGGMGMCFGJ ^GCOMG AZZ CO/MMG»̂ MRAFG WZFA GACA 

other. Notice, that for both cases ^2,, Q2 incommensurate and D, , commensurate, the 

A-equency spectrum is ^ifcrgfg. In eq. (3.31), by writing = ^2/ , r = 1,2: 

'<(')= (3.32) 

In eq. (3.32), 5, (r) is periodic in each of 0j and 62 with period 271. Hence, regardless of the 

size M of s(f), each of its elements is fully specified by two a»gZg variables 6,, 62 -

Specification of two angles can be regarded geometrically as specifying a point on a two-

dimensional toroidal surface ("2-torus"), as in Figure 3.5. In full state space, ± e attractor 

defined by eq. (3.32) is equivalent to a 2-torus (i.e. a distorted version of Figure 3.5) [35]. 

Since and i2, are incommensurate, as t progresses, the trajectory of s{t) never closes in 

on itself and will eventually cover the whole surface of the 2-torus i.e. cover every possible 

value of 0;, 02 • The reason for this type of aperiodic motion is explained as follows. If s(?) 

is sampled at the period of <0, i.e. 4- ^7 ,̂ ^ = 0,1, . . . , then 8;̂  = + ^2;̂  -

Hence, the times tf, are the instances when the trajectory s(f) passes the cross-section of the 

2-torus in Figure 3.5 at 6, = . Substituting for into eq. (3.32): 
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1̂ " 

where = i ] / , , + A;2;r(jQ2/i2,), A: = 0,1,... (3.34) 

As ^ progresses, ±e sampled vector ) will Aen trace a closed curve, densely Riled wi± 

drifting return points since covers all geometrically distinct angle values of 9̂  if the 

ratio Q^jQ^ in eq. (3.34) is irrational. In the special case where 12, and 12, are 

commensurate, =^2/^1 previously explained) and eq. (3.34) reduces to 

='^2^0 Hence, as A; progresses, 0̂ ^ covers only geometrically distinct 

angle values of 0; and the drift ring of s(r^) degenerates into ^ distinct points. In this case, 

the trajectory of s(f) can still be considered to ride on the 2-torus but it does not cover its 

entire surface. Instead, it closes in on itself (forms a cycle) since it is locked into 

periodic motion (fundamental frequency Q^/K^). In general, an attractor describing K-

frequency quasi-periodic motion is said to define a .^-dimensional torus ("AT-torus") i.e. a 

dimensional subspace in which it is possible to specify uniquely any point by the values of K 

independent angle variables. Moreover, by sampling at a fixed interval equal to the period of 

one of the fundamental frequencies, the return points s(f^) define a torus of reduced 

dimension K-\. Since one of the fundamental frequencies is normally the excitation 

frequency Q = 2k/T , 2-frequency quasi-periodic motion manifests itself as a closed curve 

on a Poincare map sampled at fixed intervals =fo 4-^:7, ^=0,1 , . . . . However, 

frequency quasi-periodic motion with AT > 3 is hard to identify using this method. 

Combination frequencies are now discussed. The frequency spectrum of the quasi-

periodic response of a non-linear system is characterised by linear combinations of its 

fundamental frequencies, as in eq. (3.30). The simple form of quasi-periodic motion in eq. 

(3.29) does not contain combination frequencies in its frequency spectrum. When inputs of 

this form are fed into a Zmear system, the steady-state output (response) will be of the same 

form. However, when inputs of the simple form in (3.29) are fed into a non-linear system, 

the steady-state output may be of the form in (3.30). This is illustrated schematically in 

Figure 3.6 for a 2-frequency input of the simple form (3.29) with one harmonic of each 
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fundamental frequency: + + where >̂2 are phase 

angles. In Chapter 2, two examples were quoted from ±e literature where the phenomenon 

illustrated in Figure 3.6(b) was observed experimentally: (a) Holmes and Dede [31], in which 

and A; were ±e rotational speeds of two unbalanced rotors coupled non-linearly 

through a SFD (the input (f) being the sum of the two unbalance forces); (b) Ehrich [39], 

in which the input (f) was a displacement with one frequency, , synchronous with the 

rotor rotation (attributed to the unbalance) and the other, , asynchronous, attributed to 

some non-linear effect. Both frequencies were estimated by Ehrich from the frequency 

spectrum of the measured output. The non-linear operator applied by Ehrich to (f) was a 

truncation function due to the rotor operating eccentrically in the bearing clearance: 

where is the truncation level. The application of this non-linear operator yielded 

frequency spikes at ^,^2, integers, as observed experimentally. Note that 

Ehrich took = 15/17 i.e. the two frequencies were conmiensurate. Hence, both input 

and output motions were actually periodic and the combination frequencies generated by the 

truncation reduced to integer multiples of Q j l l . 

3.5 CHAOS 

Chaotic motion is an aperiodic steady-state motion that is not quasi-periodic. The motion on 

a chaotic attractor displays exponentially sensitive dependence on initial conditions: this 

means that any two trajectories starting from nearby points on the attractor diverge 

exponentially in one or more directions while still remaining on the attractor, which is 

bounded. From geometric considerations, the described motion of adjacent trajectories can 

only be possible if they are free to roam in a state space of dimension of at least three [34]. 

Hence, if » is the size of s, for the forced system, eq. (3.1), » 4-1 > 3 => » > 2, whereas for 

the unforced system, eq. (3.2), n>3. The exponential divergence of nearby trajectories on 

an attractor is measured by Lyaponov exponents [50]. If the spectrum of Lyaponov 

exponents of an attractor contains at least one that is positive, then the attractor is defined as 
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chaotic. Chaotic attractors are strange attractors [35, 50]. A strange attractor is a fractal i.e. 

an object of fractional dimension. On the other hand, AT-frequency quasi-periodic attractors 

define AT-tori and hence have an integer dimension of This latter statement is also true for 

^ = 1,0^. The return points on the Poincare map of a chaotic attractor exhibit the fractal 

quality of "self-similarity" [16]. This means that a cluster of points tends to repeat itself on 

finer and finer scales upon increasing magnification. However, distinguishing chaotic 

motion from AT-frequency quasi-periodic motion with AT > 3 is not so straightforward using 

the Poincare map. An alternative method to identify chaotic motion is to examine the 

frequency spectrum [35, 38]. Chaotic motion is characterised by a continuous component in 

the frequency spectrum with off-lifting spikes at the dominant frequencies. For experimental 

data, this continuum is well above the noise level [35]. However, as observed in [38], for 

systems having many degrees of freedom, the spectrum sometimes appears continuous 

because so many frequencies are involved in the response. The leakage effect from 

frequency spikes at close proximity results in a fake continuum in the spectrum. Indeed, this 

may also be a problem with quasi-periodic motion, which should otherwise have a discrete 

frequency spectrum. The only definite way of proving chaos is by computing the Lyapunov 

exponents. This can be done by two alternative methods [50]: (a) direct from the differential 

equations of motion (3.1) or (3.2); (b) from a time history of one dynamical variable (f) of 

s. Method (a) is highly impractical. Method (b) requires large amounts of very accurate 

data, and the state space must be of low dimension. This method is the subject of intensive 

research, as evidenced by various alternative methods, each claiming to introduce further 

improvements [51]. For this reason, the computation of Lyaponov exponents is outside the 

scope of this thesis. In the author's opinion, the formal proof of chaotic motion is a highly 

academic issue. Moreover, as shall be seen in the following discussion, AT-frequency quasi-

periodic motion is unlikely to be stable for K >3, anyway. 

Routes to chaos are now discussed. Various routes to chaos are known to non-linear 

dynamicists [16, 34, 38] e.g. via successive period-doubling bifurcations, via quasi-

periodicity. The results presented in this thesis indicate that, for the cases studied, it is the 

latter route that is relevant. It should be emphasised that quasi-periodicity is a potential route 

to chaos and does not necessarily lead to it. 2-frequency quasi-periodicity can lead to chaos 

in two possible ways: (a) bifurcation of the 2-torus [16], (b) frequency-locking [34]. The 

^ A 1-torus defines periodic motion (i.e. a cycle in state space) and a 0-torus defines a static equilibrium state of 
an unforced system (i.e. a point in state space). 
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scenarios (a) and (b) are likely to lead to chaos, but not necessarily so [34]. Route (a) is 

called the Newhouse-Ruelle-Takens route. [16] states that this theory is supported by both 

theoretical and experimental results and this theory is also credited in [34, 38]. According to 

this theory, should a system parameter be changed such that a tertiary Hopf bifurcation 

occurs (i.e. the addition of a third fundamental frequency to the existing two), the resulting 3-

torus is most to be unstable: a small perturbation of the motion is likely to destroy the 

motion on the torus and lead to chaos and a strange attractor. Hence, in practice, only two 

fundamental frequencies are apparent before chaos sets in: when the third fundamental 

frequency is about to appear, chaos is more likely than bifurcation into a 3-torus. However, 

Ott [35] disputes the generality of this scenario and cites the results of some numerical 

experiments in which, below a critical level of non-linearity, 3-frequency quasi-periodic 

motion can be stable. Route (b) is based on the "sine-circle map" [34], which models the 

interaction between two non-linear voltage oscillators. According to this theory, given 2-

frequency quasi-periodic motion with frequencies 2̂, and in a non-linear system of fixed 

non-linearity, regions of quasi-periodicity irrational) alternate with regions of 

frequency-locking rational) over the operating range of the excitation frequency 

. As the level of non-linearity is increased, the range of the control parameter 12, over 

which the ratio is locked into any given rational number gets wider and, above some 

critical level of non-linearity, chaos becomes likely. In the numerical simulations presented 

in this thesis, once the destruction of the 2-toms is evident from the Poincare map, no attempt 

is made to formally investigate the resulting motion for chaos. Consequently, the results are 

not formally analysed for routes (a) or (b). 

3.6 NOTE ON THE DYNAjVOCS OF NimERICS 

When eqs. (3.1) or (3.2) are solved by time-marching, a numerical integration technique is 

used. In general, this technique is a " n -step method" which means that the approximation 

. f o r sitf.) is obtained from the approximations for s(r) at n previous times 

e.g. for the commonly used 1-step methods, which are self-starting for given 

initial conditions fg, s,,: 

s, (3.36) 
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where = is the step size and F an operator, depending on the type of 1-step 

integration technique chosen (e.g. 4^ order Runge-Kutta, trapezoidal integration, .... etc.). 

Hence, numerical integration involves the approximation of the original continuous-time 

system, eg. (3.1) or (3.2), by a discrete-time system (or "map"), like eq. (3.36). In general, 

the map in eg. (3.36) will have its own peculiar dynamics, and in particular, its own stability 

characteristics, which are dependent on both the step size Af and the type of operator F [52]. 

The stability of steady-state solutions to the map in eg. (3.36) is referred to as "numerical 

stability". Of course, a good integration scheme should ensure that the map in eg. (3.36) 

faithfully reproduces the dynamics of the original continuous-time system in eqs. (3.1) or 

(3.2) and not introduce numerical artefacts into the results (e.g. spurious bifurcations). 

Hence, the following standard precautions are taken in this thesis: 

(1) Automatic step size ai^ustment in each step to ensure that the computed estimate of the 

approximation error over the step ("local integration error") is within a specified 

tolerance. 

(2) Appropriate choice of integration technique, based on the type of equations to be 

integrated (e.g. as mentioned in Chapter 2, Runge-Kutta methods are not suitable for stiff 

systems of equations). 

The study of the stability characteristics of numerical integration techniques is referred to as 

the "dynamics of numerics" in [52] and is the province of mathematicians rather than 

engineering researchers. The precautions (1) and (2) above ensure that numerical stability is 

not an issue in this thesis and the term "stability" is taken exclusively to mean the stability of 

equilibrium solutions of the physical, continuous-time system. 

3.7 CONCLUSION 

In this chapter, the general concepts of non-linear dynamics, relevant to the subject of this 

thesis, have been elucidated. Special emphasis was placed on the stability and bifurcation of 

equilibrium periodic oscillations of forced systems, based on Roquet theory. Quasi-

periodicity and the generation of combination frequencies were discussed in some detail. 

Chaos was briefly discussed. Additionally, short notes on the stability of the static equilibria 

of unforced systems and the numerical stability of time-marching techniques were given. 
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(a) tangent bifurcation (b) flip bifurcation (c) secondary Hopf bifucation 

Figure 3.1: Possible escape routes for the leading Floquet multiplier A, 
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Figure 3.2: Behaviour of return points for real, A, >1 
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Figure 3.6: Contrast between linear and non-linear systems for a 2-frequency input 
(one harmonic of each fundamental in input) 
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4 SQUEEZE FILM DAMPER MODEL 

4.1 INTRODUCTION 

This chapter gives an outline of the model used for the estimation of the forces exerted by the 

non-linear element of the rotor-dynamic system i.e. the squeeze film damper (SFD). This 

damper is a non-linear element since its forces are non-linear functions of the relative 

displacements and velocities across it. In this introduction, the basic modelling assumptions 

are stated and the fundamental expressions presented. The short unsealed damper is then 

considered. The SFD modelling is illustrated for the simple case of a symmetrical rigid rotor 

on identical unsupported SFDs in rigidly mounted housings. In this thesis, 

a/Z prgj'fwrg.y org prg.yj'wrg.y. Moreover, in line with standard SFD design, the 

rolling-element bearing of the SFD journal assembly (Figure 1.1) is taken to be radially rigid 

with respect to the oil film. 

Schematics of the cross-section of a SFD in the axial (xz oryz) plane are shown in 

Figures 4.1(a,b). In each case, the SFD is supplied by oil through holes symmetrically placed 

around a central circumferential groove. The one in Figure 4.1 (a) is unsealed at its ends, and 

the one in Figure 4.1(b) is provided with end-plates, as in Figure 1.1. These end-plates can 

provide a degree of sealing by partially restricting the oil flow. This sealing is used to 

increase the damping, and the degree of sealing is controlled by the end-plate gap . In 

cases where the end-plates are required to prevent the journal from rotating (as in Figure 1.1), 

and for axial location of the journal (Chapter 8), the unsealed condition of Figure 4.1(a) is 

achieved by shimming the end-plates of Figure 4.1(b) such that the end-plate gap is at 

least of the order of the radial clearance c [53]. In this thesis, the SFD is modelled as 

comprising two independent lands supplied by oil at constant pressure p ̂  from a deep 

groove of depth • This "two-land model" is claimed to be valid provided [54] 
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This condition is satisOed for the SFDs used in this thesis. It is further assumed that the lands 

are of equal length Z,, as in Figure 4.1. Figure 4.2 shows the transverse cross-section of the 

SFD. The analysis of the pressure distribution within a dynamically loaded SFD is identical 

to that of dynamically loaded circular bore hydrodynamic journal bearings [48] except that in 

the latter case the journal rotates integrally with the shaft. Hence, with reference to Figures 

4.1 and 4.2, the Reynolds laminar lubrication equation for each land of the SFD, wherein the 

journal is prevented from rotating, is given by [53] 

where A = c(l + 6 cos 0) (4.3) 

is the oil film thickness, e = g/c is the non-dimensional eccentricity of the journal centre J 

from the bearing housing centre B and y/ is the attitude angle. R is the bearing housing bore 

radius. Among other things [48, 55], the Reynolds equation (4.2) assumes no fluid inertia, an 

incompressible fluid (i.e. density independent of pressure) and constant viscosity 77. Eq. 

(4.2) can be solved for given boundary conditions to obtain the pressure distribution p(6, z) 

at any instant in time. This solution depends on whether the damper is unsealed or sealed. 

The instantaneous radial and tangential squeeze film forces , Qj. respectively, acting on 

the journal (Figure 4.2), are obtained by integrating the pressure distribution p(0,z) after 

truncating it below a minimum pressure at which the oil film is assumed to cavitate (i.e. 

rapture due to the formation of bubbles): 

^X'^'Z)sin0 6 (6& (4.4a,b) 

where the factor 2 accounts for the two lands and the truncated pressure distribution Pj{d,z) 

is deHned as 

f ( 4 . 5 ) 

41 



The film cavitation can be either vaporous or gaseous [55]. The former involves oil 

vaporisation together with the release of dissolved gases. The latter involves ambient air 

entering the oil film. 

Since fluid inertia is neglected, the Reynolds equation (4.2) still applies when B is 

moving (Figure 4.2). The SFD forces are thus (non-linear) functions of the relative 

displacements and velocities across the damper. Let and (Xg.Tg) be 

Cartesian displacements of J and B respectively (i.e. the positions of J and B are measured 

from some fixed point in the plane of the SFD). Referring to Figure 4.2, the squeeze film 

forces <2̂ , <2̂  in the x, directions respectively on the journal are given by resolving the 

radial and tangential forces , <2̂ .: 

& + (4.6a) 

where Z,,, = Zy - Xg, Y,,, = F; - 7 ^ , - Xg, 7,̂ , = F; - Fg are the Cartesian 

relative displacements and velocities across the damper and the conversion to the relative 

polar coordinates and their time derivatives is achieved through the relations: 

e = 4 [ x l , + Y ; „ ) , e = e l c , £ = ^ X „ , X „ , + Y j „ , ) (4.7a.b,c) 
GC 

sml// = X„,/e, c o w = - y , J e , W = ~ K „ x J (4.7d,e.f) 
e 

Additionally, since fluid inertia is neglected, the forces on the bearing housing are - , 

Expressions for the (untruncated) pressure distribution p(6,z) (e.g. that given in the 

following section for the short unsealed SFD, eq. (4.8)) show that the SFD forces are zero 

when there is no relative vibration across the damper i.e. e, \jf = 0, or equivalently, 

^rei - r̂ei " 0 • TMs situatiou is in contrast to hydrodynamic journal bearings [48], in which 
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the fluid forces are of the form G;,,) where i ] is ± e rotational speed, 

and 0 unless ^ =0 . 

4.2 SHORT UNSEALED DAMPER 

E the damper is unsealed and axially short (1/(2^) <0.25 [56]), the j'Ao/f 

approzf/MaAoM of ±e Reynolds equation applies. In this approximation, it is assumed that the 

pressure gradient in ±e circumferential (0) direction is negligible relative to that in the axial 

(z) direction (i.e. ) so that the first term on the left hand side of eq. (4.2) can 

be neglected. Integration of the resulting equation with respect to z and application of the 

boundary conditions p = 0 at z = -Zy2, = at z = Z/2 (see Figure 4.1(a)) yields the 

short bearing solution for the unsealed damper as 

67̂  sin 6 + 6 cos 6} 

c {l + gcos9} \ 4 I L 2 

Three theories regarding the value of the cavitation pressure in eq. (4.5), that lead to 

different expressions for the radial and tangential SFD forces in eqs. (4.4), are considered. 

The "2k film" (or "full film") theory assumes that no cavitation occurs. Hence, in eq. 

(4.5), Pg = -00 and, regardless of the value of the supply pressure , eqs. (4.4) reduce to 

the closed form expressions [57]: 

(4.9a.b) 
" ( I - £ = ) 5 ( L - E = > 

The ";r film" (or "half film") theory assumes that (a) ~ 0 , (b) cavitation occurs at 

atmospheric pressure (i.e. p^=0 in eq. (4.5)). From eq. (4.8) it can be deduced that 

p(0, >0 from 6 = 6^ to 6 = 62 =6^ +7t, where 0, is located by the equations 

sin0j — , ^ = and cos0j = — , = (4.10a,b) 
V W + e ' ^{ewT+i' 
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Hence the use of the term film" (or "half film"). With the two assumptions (a) and (b), 

eqs. (4.4) then reduce to the closed form expressions [57]: 

+ + (4.11a,b) 

where 

GI 
2ECOS^ 6 ; 

( 1 - 6 ^ COS^ 

5 S I N E , ( 3 + ( 2 - 5 G ^ ) C O S ^ E J + 

& 2 = ^ ^ + - R « ( 4 . 1 2 A , B ) 

( L - E ' ) ' ( L - E ' C O S ' 8 , ) ' 

E S M 8 , ( L - 2 C O S ^ E ; + 6 ^ C O S ^ 0 I } 1 
— ; ^ + 

( L - E ^ ) ( L - E ^ COS^ 

A (4.12c,d) 

where C( = —I- arctan 
E S I N O , 

(4.12e) 

The full film and half film theories are classical extremes and in reality cavitation occurs 

at some subatmospheric pressure ^ 0 [57]. Moreover, the zero supply pressure 

assumption of the half film theory is unrealistic. Hence, the numerical evaluation of the 

double integrals of eqs. (4.4) cannot be avoided. However, for the present case of the short 

unsealed damper, where p{0,z) is given by eq. (4.8), it is possible to derive the following 

simplerexpressionsfromeqs. (4.4), as follows. Since < 0 and ^(0,z)>O from 0 = 6i to 

0 = 0 , = 01 +7r , eq. (4.4a) for can be written as; 

<2̂  = z)cos0 ^0 - 2 ; ; z ) c o s 0 ^0 & (4.i3) 

Substituting eq. (4.8) for ;)(0,z) in ±e first integral of eq. (4.13), the expression for Gy, 

becomes: 
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[" f;(^,z)cos8^0(6: (4.14a) 
»—ZY2 #'62 

Similarly, [ ' P,('^,z)sin8(f0 6k (4.14b) 
J-IYZ 

In eqs. (4.14) are ±e half film forces given by eqs. (4.11) and 6̂  = 1̂ + wi± 9̂  

determined by eqs. (4.10). In Ais thesis, use of eqs. (4.14) instead of eqs. (4.4) was found to 

cut the computation time by almost half. 

The general cavitation model of eq. (4.5) allows for the possibility of different values of 

the cavitation pressure depending on the operating conditions (e.g. unbalance force 

magnitude, supply pressure,.... etc.). Hence, the cavitation model of eq. (4.5) can be referred 

to as ±e "variable film extent" model. The value of under particular operating conditions 

can be estimated experimentally from pressure probe recordings, as in [8, 58]. In the absence 

of experimental values, a fixed value for equal to —101.325x10^ Pa (absolute zero 

pressure) is taken. This is reasonable since, in most cases, this value of pressure is very close 

to the vapour pressure of the oil (i.e. the pressure at which it will spontaneously change phase 

from liquid to gas). Feng and Hahn [59], working on a simple rigid rotor rig with a 

centralised SFD found that better agreement between measurements and theoretical 

predictions was achieved when was taken as -101.325x10^ Pa rather than 0 (i.e. 

atmospheric pressure). 

4.3 NOTE ON SEALED DA]\iPERS 

In the case of a sealed damper, < c in Figure 4.1(b), so that the axial flow is partially 

restricted by the end-plates. An expression for the pressure distribution p(d,z) of such a 

two-land sealed damper was proposed in [53]. This is not presented in this thesis since it was 

not used the research applications presented, but it can be found in [54]. For sealed dampers, 

the SFD forces are computed by numerical integration from eqs. (4.4) with in eq. (4.5) 

taken as - 101.325x10^ Pa, in the absence of experimentally determined values. 
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J U I C X R E Q O R C C H V S I D E I L & L L C M N S 

In ±is section, factors not taken into account in the above theory are discussed. These factors 

are (a) tensile stresses in the oil film; (b) compressibility of the fluid; (c) fluid inertia. 

The use of =-101.325x10^ Pa (zero absolute) in the cavitation model of eq. (4.5) 

excludes the possibility of tensile stresses in the oil film. Feng and Hahn [55] cite some 

published works where liquid was found to be able to withstand tensile stresses in dynamic 

tests under controlled laboratory conditions. However, these authors also cite various 

conditions which reduce the likelihood of this phenomenon, including (i) badly finished solid 

surfaces; (ii) suspended solid particles in the liquid; (iii) large amounts of gas dissolved in the 

liquid; (iv) low viscosity of the liquid. Experimental recordings firom a pressure probe 

located at the bottom of an unsupported SFD in [8, 58] revealed a tension spike immediately 

followed by recovery to absolute zero pressure. It was concluded that the oil film at this 

location momentarily supported tension prior to rupturing. In these two works, predictions 

were obtained by using a value of in eq. (4.5) below -101.325x10^ Pa that was an 

average taking into account the tension spike. However, in [58], it is stated that the area of 

the spike is so small that the value of might as well be taken as -101.325 x 10̂  Pa. 

The cavitation model of eq. (4.5), assumes that the oil film fully reconstitutes itself at a 

given location where it is ruptured when the instantaneous untruncated pressure p{6, z) at 

that location is restored to a value above . Feng and Hahn [56, 59] referred to such a SFD 

model as an "incompressible model". In that work, they stated that experimental 

observations on unpressurised squeeze film dampers indicate that cavitation bubbles, once 

formed, do not completely redissolve upon restoration of the super-cavitation pressure. 

Instead, one is left with a spongy compressible fluid. In [56], they assumed this fluid to be a 

homogeneous gas-liquid mixture and proceeded to solve the compressible form of the 

Reynolds equation in which density and viscosity were a function of pressure. This solution 

procedure is too involved to incorporate in practical rotor-dynamic solution techniques. 

However, in [56], theoretical results for a simple rigid rotor with a centralised SFD showed 

that the compressible model results gave very good agreement with the incompressible model 

results when p^ was taken as -101.325x10^ Pa in the latter model. Moreover, these 

findings were confirmed by experiments in [59], as previously mentioned. 

Fluid inertia effects are neglected in the SFD model used in this thesis. These effects 

were investigated by San Andres and Vance [60] for the simple case of a centralised SFD in a 
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Axed bearing housing. The uncavitated case was considered in [60] since inertia effects were 

considered to be less in a cavitated SFD. That work showed that for small amplitude 

oscillations, the fluid inertia effect of a short unsealed SFD was equivalent to the following 

mass addition to the journal; 

(4.15) 

where the factor 2 accounts for the two lands, p is the oil density and the constant Cy is 

determined from graphs in [60], according to the regime of the gap Reynolds number i.e. 

small ( « 1 ) , moderate, large ( » 1 ) . indicates the relative magnitudes of the 

inertia and viscous forces and is calculated from the formula [60]: 

= (4.16) 

where rad/s is the rotational speed of the shaft. No fluid inertia compensation is attempted 

in this thesis and eqs. (4.15), (4.16) are used merely to monitor fluid inertia effects, in order 

to ascertain that they are negligible. 

4.5 SFD FORCE COMPUTATION 

In order to compute the squeeze film forces , Qj in eqs. (4.4a,b) by the general cavitation 

model of eq. (4.5), a function was written in MA7ZAB®. For a given value of this 

function generates a 2xn matrix of radial (row 1) and tangential (row 2) forces for time 

histories £, £ , y/ of length n points. This means that a total of 2n double integrations are 

performed. The double integration is performed using Simpson's rule by an array scheme 

outlined in [61]. For the short unsealed damper this function computes the double integrals 

in eqs. (4.14) and adds them to the values computed from the analytical expressions in these 

equations to give . For the sealed damper the function computes the forces using the 

full double integration formulae in eqs. (4.4). With AO = iTtjSl and Az = L/12, force 

matrices with up to 100 columns could be generated in a fraction of a second to a sufficiently 

high accuracy on a 333 MHz Pentium II personal computer. 
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4.6 ILLUSTRATION AND DISCUSSION 

In this section, the short unsealed SFD model is illustrated by considering a simple two 

degree of freedom system such as the rigid rotor systems in Figures 4.3(a,b). The aim is to 

demonstrate the validity of the cavitation model of eq. (4.5) with =-101.325x10^ Pa 

("absolute zero cavitation model")- The configuration in Figure 4.3(a) was considered in 

[57] and is symmetrical, with identical unsupported SFDs in rigid housings. The 

configuration in Figure 4.3(b) was considered in [8] and is pivoted at the left hand end by a 

self-aligning bearing and supported at the other end by a rigidly housed, unsupported SFD. 

Both systems are described by the following equations of motion 

=(2,+(y,^y^3'sinnf (4.17a) 

=G, - C / . , _ , i 2 ' c o s ^ - W (4.17b) 

where ZY, are the displacements of the journal centre J from the fixed bearing housing 

centre, Q rad/s is the rotational speed, ^ is the effective rotor mass at J, W is the 

equivalent static load at J and j is the equivalent unbalance at J, which can be expressed 

as: 

U.,,=M,,u (4.18) 

Eqs. (4.17) can be non-dimensionalised by defining the non-dimensional time g = Qt and 

dividing both sides by , 

( 4 . 1 9 A ) 

f = - f / c o s g - W (4.19b) 

where ( ) denotes differentiation with respect to g, X j = X j /c, Yj =Yj/c are the non-

dimensional displacements of J and ^ are the non-dimensional squeeze film forces: 

A , , = ( 4 . 2 0 ) 
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where are computed from eqs. (4.6). Three non-dimensional groups are defined [8, 57]: 

B-
W - M 

W = - [ / = - (4.21a,b,c) 

and are refeired to as the non-dimensional viscosity, static load and dynamic load parameters 

respectively. It can be shown that when the SFD forces are estimated using the full film 

model, or half Glm model, or some combination of these two models (as the "6 factor model" 

discussed shortly), the response for given initial conditions is determined exclusively by the 

above three non-dimensional groups, eqs. (4.21) [57]. However, when z?,. or 

0 in the general cavitation model of eq. (4.5), the cavitation pressure , the supply 

pressure , and the SFD geometry become additional control parameters. The parameters 

used here are those of Humes and Holmes [57] (Figure 4.3(a)) and are: M,^y=18kg, 

W = 176.58N, c = 0.2082xl0-^m, ;; = 63.5xlO-^m, 1 = 10.9x10"^m, p^=13.8xlO^Pa. 

Equations (4.19) were expressed as a set of 4 first order differential equations, as in eq. 

(3.1) with s = [Yy Xy g replacing f, and were solved for given operating 

parameters and initial conditions using the 4* order Runge-Kutta-Merson method with 

automatic step control [54, 61]. This Runge-Kutta method was adequate in this case since 

the number of degrees of freedom was very low and the oil viscosity was very high, ensuring 

no problem of (numerical) stiffness in the differential equations. 

The low value of the supply pressure was found to have negligible effect on the orbital 

predictions obtained with the general cavitation model of eq. (4.5) and thus allowed a fair 

comparison of the accuracy of half film model predictions (which assume = 0 ) versus 

alternative predictions. As a preliminary test, the load carrying capabilities of the tt and Itt 

film models were contrasted for the same control parameters B = 0.61, W = 0.90, U = 2.26 . 

The transient journal orbits for the same initial conditions are shown in Figures 4.4(a) (27r 

film) and 4.4(b) (TT film), each covering 10 shaft revolutions. In this thesis, all journal orbits 

relative to the housing are presented with respect to the clearance circle, to which the relative 

motion of the journal is confined. It can be seen that the full film gives no static load 

carrying capacity: the shaft simply spirals down to the bottom of the clearance circle. On the 

other hand, the half film result shows a definite load-carrying ability through the 
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development a steady-state orbit. The inability of an uncavitated film to support a static load 

is a well-known fact [57]. The experimental orbit, reproduced from [57] in Figure 4.4(c), is 

however both smaller in size and positioned at a lower level than that in Figure 4.4(b). This 

indicates that the cavitation pressure lies somewhere between the extremes of 0 (half film) 

and - oo (full film). In fact, for given , the lower the value of the smaller the orbit 

and the lower is its mean position in the clearance. In order to avoid the numerical 

integration of the squeeze film forces, eqs. (4.4), Humes and Holmes [57] determined the 

SFD forces by combining the full and half film theories using an empirical weighting factor 6 

thus; 

GV; = + (L - , GR = (4.22a,b) 

Comparison of predicted and experimental orbits taken from the rig used in [57] showed that 

b = 0.45 gave reliable predictions of the orbits. Unfortunately however, there is not a 

general value of b which may be representative over a wide range of operating parameters. 

In the present research, the steady-state orbit shapes computed by both the half film 

model and the absolute zero cavitation model for the control parameters in Table 4.1 were 

compared with measurements (reproduced from [57]). The relevant figure numbers of the 

results obtained are included in this table. 

60i2/(2;r) 
(rpm) 

ri 
(xlO' 
Nsm') 

B U locus 
no. 

tz f i l m f c = 

-101325 Pa 

experimental 

3100 33 0.10 0.45 0.74 1 Figure 4.5(a) Figure 4.5(b) Figure 4.5(c) 

3100 33 0.10 0.45 1.06 2 Figure 4.5(a) Figure 4.5(b) Figure 4.5(c) 

3100 33 0.10 0.45 1.47 3 Figure 4.5(a) Figure 4.5(b) Figure 4.5(c) 

2520 31 0.12 0.68 0.73 1 Figure 4.6(a) Figure 4.6(b) Figure 4.6(c) 

2520 31 0.12 0.68 1.38 2 Figure 4.6(a) Figure 4.6(b) Figure 4.6(c) 

2520 3 1 0.12 0.68 2.10 3 Figure 4.6(a) Figure 4.6(b) Figure 4.6(c) 

2520 3 1 0.12 0.68 0.73 1 Figure 4.7(a) Figure 4.7(b) Figure 4.7(c) 

3250 50 0.15 0.41 0.73 2 Figure 4.7(a) Figure 4.7(b) Figure 4.7(c) 

2100 33 0.10 0.45 0.73 3 Figure 4.7(a) Figure 4.7(b) Figure 4.7(c) 

Table 4.1: Operating parameters for orbits in Figures 4.5 -4.7 
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Figures 4.5-4.7 show that the absolute zero cavitation predictions are invariably superior 

to the half film predictions (particularly evident in Figure 4.7). The intermediate orbits 

labelled "2" in Figures 4.5(b) and 4.6(b) still over-predicted the corresponding measured 

vibration in Figures 4.5(c) and 4.6(c). In these two cases, it was found that improved 

correlation was achieved when =-Cxl01.325xl0^Pa where C was somewhere in the 

range 1 < C < 2 [54]. In fact, tensile stresses were apparent in the pressure recordings of [57] 

and may have been the result of the very high viscosity of the oil used. The main model 

applications of Chapters 7 and 8 use much thinner oils, suitable for gas turbine applications. 

Nonetheless, the results presented in this section provide further evidence that the absolute 

zero cavitation model is the best available predictive tool. This model will be used 

throughout this thesis, unless otherwise stated. 

4.7 SFDs AND SELF-EXCITED VIBRATION 

The unforced SFD problem (i.e. without unbalance force) is now briefly considered. It 

has already been mentioned that a SFD cannot exert a force when there is no relative 

vibration across the damper. Hence, the SFD does not influence the static equilibrium state 

of a dynamical system, if there is one. The dynamical system of eqs. (4.17), having an 

unsupported SFD, does not have a static equilibrium state ( b e i n g set to zero). This can 

be easily seen by noticing that, for this case, in eq. (3.26), 

<p(s)=[x, Y, [ Q , - W ] I M , J (4.23) 

where s = Yj X j It is clear that the equation (p(s) = 0 has no solution since 

the satisfaction of the first two equations, Xj ,Yj = 0 implies that = 0 and hence, the 

fourth equation cannot be satisfied. In practice, this simply means that the journal rests at the 

bottom of the clearance in the static condition, regardless of the rotational speed Q . If a 

parallel retainer spring is included, the resulting dynamical system will have a static 

equilibrium state, determined by the spring stiffness and the static load W. In this case, upon 

linearising about this position, the SFD introduces the terms 9(2^^/9Zy , , 

, 96^^/97; into the matrix A of eq. (3.27). Since 

these partial derivative expressions do not contain any term in ^2 . Moreover, these 
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expressions are evaluated at the static equilibrium condition Xy = Zyg,, Ty = , 

Xj,Yj = 0 , which is also independent of Q . Hence, the SFD cannot destabilise the 

unforced system. On the other hand, if the unsupported SFD of the dynamical system of eqs. 

(4.17) were replaced by a hydrodynamic journal bearing, then the system will have a static 

equilibrium state dependent on the rotational speed. Moreover, upon linearising about this 

position, since the hydrodynamic journal bearing forces are of the form 

<2̂ .̂ =<2^y(^y,yy,Zy,}^,A), thc corTespouding partial derivative expressions will be 

explicit functions of even before their evaluation at the equilibrium condition. Hence, 

with the hydrodynamic journal bearing, the stability of the matrix A of eq. (3.27) is 

dependent on the rotational speed and this does result in instability beyond a certain speed 

[48]. 

4.8 CONCLUSION 

This chapter has presented the existing model for the non-linear element of the class of rotor-

dynamic systems analysed in this thesis. The model was illustrated with a simple example. 

The results provide confidence in a model of the SFD that assumes an incompressible oil film 

cavitating at absolute zero pressure. It has also been established that the SFD cannot 

introduce self-excited vibration, thereby justifying the focus on unbalanced SFD systems. 

Having established the non-linear element in this chapter and the relevant background theory 

of non-linear dynamical systems in the previous chapter, it is now possible to present the 

integrated non-linear model for a general squeeze film damped rotor-dynamic system. 
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Figure 4.2: Schematic of transverse cross-section through a squeeze film damper 
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Figure 4.3: Two degree of freedom rotor-bearing models (unbalance applied at U) 
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Figure 4.4: Comparison of load carrying ability of full film and half film models 
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Figure 4.5: Comparison of half film and absolute zero cavitation models 

(rows 1-3 of Table 4.1) 
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Figure 4.7: Comparison of half film and absolute zero cavitation models 

(rows 7-8 of Table 4.1) 
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5 GENERAL INTEGRATED NON-LINEAR MODEL 

5.1 INTRODUCTION 

In this chapter, the general integrated non-linear model is developed. The representative 

model of the general unbalanced squeeze film damped rotor-dynamic system is first 

described and the fundamental assumptions stated. The receptance harmonic balance (RHB) 

method for the determination of forced periodic oscillations is then described. The time 

domain differential equations of motion in modal form are then presented, followed by the 

Floquet stability analysis of the periodic solutions computed by the RHB method. The 

application of time-marching of the modal equations to confirm the RHB and Floquet 

stability results, and to compute aperiodic attractors is then considered. An algorithm for the 

integration of the three modelling blocks (i.e. RHB, stability, and time-marching) is 

presented. The chapter concludes with a brief discussion of the advantages of the integrated 

model over current models. 

5.2 REPRESENTATIVE MODEL DESCRIPTION 

The representative model of the general unbalanced squeeze film damped rotor-dynamic 

system is shown in Figure 5.1(a). squeeze film dampers (SFDs) are fitted between 

positions J/ and B,, ; = 1... , on the rotor and support structure respectively. In the 

physical system, J, refers to the journal centre and B, to the bearing housing centre at SFD no. 

i . The bearing housings form an integral part of the support structure. For an aero-engine, 

the support structure is the casing, and is also referred to as the "engine carcass". It is 

generally non-rigid, exhibiting dynamic behaviour. A retainer spring can be optionally 

placed between J, and B,. The rotor and support structure may be linearly connected at other 

locations. However, these other linear connections are not shown in Figure 5.1(a). The 

model can additionally accommodate concentrated linear damping forces but material 

(hysteretic) damping is neglected. The latter restriction can be partially relaxed in the case of 

the RHB method only, as explained in section 5.8. The unbalance forces are assumed to be 
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concentrated at discs located at points Ut, A: = !...»(/, along the rotor and are given by 

(Figure 5.1(b)): 

^ sin(i2f + y J , f,,, = ^ cos(i]f + ) (5.1 a,b) 

where ± e unbalance forces at in ± e %, y directions respectively, (rad/s) is 

the rotational speed (invariant with time), and is the unbalance at U* (M /̂̂ , 

being the unbalance mass and unbalance radius respectively). To avoid confusion, 12 is 

always taken to be positive. In Figure 5.1(a), ± e squeeze film forces on J„ ; = l...M ĵ72)' 

the % and y directions are , and are calculated from equations (4.6a,b): 

Gfi,),. — ) (5.2a,b) 

where ^. ,=^, , -^2, , , are the 

Cartesian relative displacements and velocities at SFD no. ;, and ,7;J,(Zg ,yg ) are the 

absolute Cartesian displacements of J, and By respectively, both positions measured from the 

same fixed point in the jty plane of SFD no i. The SFD forces on B, are - Q^., - Qy,, since 

the inertia of the fluid film is neglected. 

The linear subsystem is defined as the linear part of the system in Figure 5.1(a) i.e. the 

system in Figure 5.1(a) minus the non-linear elements (i.e. the SFDs). Let u and f be 

respectively the corresponding P x 1 vectors of the instantaneous degrees of freedom and 

instantaneous external forces/moments. In general, u contains displacements in the z and y 

directions and rotations in the and yz planes, and f contains forces and moments in the 

corresponding directions. In general, there are 4 "non-linear" degrees of freedom associated 

with a SFD location: , 7} , Xg , Fg . However, if the support structure is rigid at a certain 

SFD location (i.e. Xg_ ,7^ = 0 ) this number is reduced to two. In this thesis, if the support 

structure is flexible (rigid) at a given SFD location, then the corresponding bearing housing is 

said to be flexibly (rigidly) mounted, or simply, flexible (rigid). It should be noted that, 

while P is arbitrarily large, the vector f will be sparse, containing only a finite number of 
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non-zero elements, depending on the number of forces/moments that are taken to be external 

to the linear subsystem. This force vector is divided into two component vectors as follows: 

0 
(5.3) 

where is the 7^ x 1 vector of motion-dependent forces/moments and the x 1 vector 

of the associated degrees of freedom. The f x l vector contains die unbalance forces and 

static loads (if taken into account) at the appropriate rows, and zeros elsewhere. This vector 

is periodic in f, period 7 = 2;:/^. The vector u is ordered and partitioned in accordance 

with the first vector on the right hand side of equation (5.3): 

U = 

U , 
(5.4) 

where is a 7^ x 1 vector. 

5.3 RECEPTANCE HARMONIC BALANCE (RHB) ANALYSIS 

In the RHB approach, the vector comprises the non-linear (i.e. SFD) forces only. Hence, 

in this analysis, if the support structure is flexible at all SFD locations, while 

Pĵ  = if the support structure is rigid. The dynamics of the rotating linear subsystem at 

a general vibration frequency (o (rad/s) are modelled by a P x P receptance matrix R(<i),i2) 

of frequency response functions, given by 

(5.5) 

u and f are the complex amplitude vectors of u and f i.e. for harmonic vibration at 

frequency 6), u and f are given by: 

u = Re{ue"^ }= "c cos cot + Ug sin cot, f = Rejfe^"* }= f ̂  cos ax + fg sin cot (5.6a,b) 
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In general, R includes gyroscopic and linear damping terms and hence it is complex, non-

symmetric, and dependent on the rotational speed as well as the vibration frequency o . 

By manipulating equations (5.5), (5.6a,b), the complex numbers can be eliminated from eq. 

(5.5), resulting in the following pair of equations: 

Uc =R''(G),i2Xc+R'(6),^Xs, Us =-R'(m,^Xc +R'"(0,^Xs (5.7a,b) 

In (5.7a,b) the superscripts ^ respectively denote the real and imaginary parts of R. 

For the complete non-linear system, periodic solutions of fundamental frequency (H and 

period f are sought where 

07 = , r = 2;r/QT = jVT (5.8a,b) 

where is a positive integer and T = InjO. (period of unbalance excitation), as discussed in 

Chapter 3, section 3.1. From eq. (5.3), if u is periodic, pehod 7" = NT, then so is f. Hence, 

both u and f can be expressed as Fourier series: 

u = u + ̂  cos ̂ 0% + sin ̂ C%), f = f 4- ̂  cos + f s i n 0̂%) (5.9a,b) 
J=1 J=1 

where 

f = (]/r)j^ (5.10a) 

= (2/r)j^ f c o s f O T f = (2/r)j^ f sin̂ QTWf (5.10b,c) 

For computational reasons, only a finite number of harmonics m of the fundamental 

frequency 07 can be considered, so the solutions are, strictly speaking, approximate. 

Normally, this is not a problem, as discussed in Chapter 2, section 2.2. Static loads need not 

be considered in f if the elements in vectors and in equation (5.4) are measured from 

the static condition: 
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"N = h - h ^ , "L = g (5.11a,b) 

where h is the x 1 vector of the "non-linear" degrees of freedom at the SFD locations: 

h = k y . - y., - Y , _ J (5.12) 

where each degree of freedom in (5.12) is measured from the static position of the 

corresponding bearing housing centre. h„ is the static value of h and contains zeros for the 

degrees of freedom of the bearing housings. The remaining rows in contain the static 

eccentricities of the journals in their respective housings. Bearing housings that are rigidly 

mounted have their degrees of freedom deleted (omitted) from h and hg. The 7^ x l vector 

g (eq. (5.11b)) contains the dynamic values of the remaining 7^ degrees of freedom. The 

receptance matrix R is partitioned in a similar manner to u in equation (5.4): 

R = (5.13) 

where the matrices S and T are of dimension x f and P ^ x P respectively. Equations 

(5.7a,b) can now be applied in partitioned form to each of the Fourier coefficient vectors of 

the degrees of freedom = h - h g , = g : 

h - h g =S , f (5.14a) 

^ = (5.14b) 

= ^ = (5.14c) 

g = Tof (5.15a) 

^ = (5.15b) 

g^) ^ = l . . .m (5.15c) 
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In equations (5.14), (5.15), h , are the Fourier coefficients of h and g, ĝ ') are 

those of g: 

h = h + ^ cos f OR + sin f 0%), g = g + % (gĉ  cos f QTf + g(') sin ̂  0%) (5.16a,b) 
F=I J=I 

Also, Sg, Tg contain the zero frequency receptances and are real and independent of 

rotational speed. 

Equations (5.14) define a set of f^(2m + l) non-linear algebraic equations in an equal 

number of unknowns contained in h, These unknowns are grouped into one 

(2/M + l)x 1 vector v: 

V = H " 

.(M) 

(5.17) 

For the purpose of solution, the system of eqs. (5.14) is expressed as 

) ( V , ^ 2 ) = 0 (5.18) 

where p is a P^(2m + l)xl non-linear vector function of v = v/c and Q = QI(OQ , that is 

obtained by bringing all terms of eqs. (5.14) to one side: 
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p v,i2 

S „ f - ( h - h J 

S ̂  (mOT, Xc"̂  + S' - h 
- S ' XC ^ + S " ^ XS'^ - HI') 

-S%MC7,i2XW + S'' (MOT.R)Xs"^ - H ^ 

(5.20) 

c is the radial clearance of any one of the dampers and Og is some arbitrarily chosen known 

reference frequency of the system. In this thesis, a),, is taken as ± e lowest natural frequency 

of ± e undamped non-rotating system with ±e SFDs "locked" by shimming ±e radial 

clearances. For a fixed value of N, p(v,i^) can be computed for an assimied v at any given 

rotational speed Q (since OJ = Q/N). This enables a solution of eq. (5.18) for v by 

iteration. The only receptance terms in S (eq. (5.13)) that need computation are those linking 

the non-linear degrees of freedom with the non-zero elements in f. In the determination of 

the Fourier coefficient vectors f , \ (eqs. (5.10)), it is clear &om eq. (5.3) that only the 

SFD force vector needs to be Fourier analysed at each stage of the iteration, since the 

unbalance forces are already harmonic at frequency Q - NtD. The Fourier coefficients of 

the SFD forces at each stage of the iteration are determined as follows. For the current value 

of V (eq. (5.17)), the time histories of the non-linear degrees of freedom h (eq. (5.12)) and 

their time derivatives are established from eq. (5.16a) and its time derivative. This enables 

the determination of the time histories of the SFD forces in by computation of the non-

linear SFD force expressions, eqs. (5.2), (4.6) at a suitable number of points n over one 

period F = . Fourier analyses of these time histories are then performed: 

F^C = ( Z / F FN COS = (2/R F^ sin fOR (Zf 

(5.21a) 

(5.21b,c) 

From section 4.5, the establishment of the n-point time history of the SFD force vector at 

each stage of the iteration requires 2n double integrations for each of the dampers if 

the general cavitation model is used. Hence, a judicious choice of n is necessary to ensure 
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both efficiency and accuracy. From the Nyquist criterion [47], in order to avoid error in the 

Fourier coefficients of due to aliasing, the SFD forces should be sampled at a rate 

exceeding twice the highest frequency i.e. n / r > 2(m/r). Hence 

M > 2/M (5.22) 

In this thesis, the number of significant harmonics does not exceed 20 and thus, a SFD force 

time history of 50 points is more than adequate for Fourier analysis (i.e. 100 double 

integrations per SFD per iteration). The single integrals in eg. (5.21) are evaluated by 

Simpson's rule [61]. 

Equation (5.18) can be solved using a predictor-corrector iterative procedure to trace out 

a speed response curve of NT-periodic solutions, where TV is of Axed value. For a given value 

of the control parameter 2̂ , an initial approximation for the solution v, is provided 

by a linear polynomial (predictor) based on the solution(s) at one or two previous speeds, 

v,_2 [16]. The Newton-Raphson iterative method (corrector) is then used to con verge 

into V; [16]. However, use of Q as the control parameter to advance the solution 

procedure along the speed response curve results in failure when more than one solution v is 

possible for a given rotational speed (as in bistable regions, see Figure 2.1). Arc-length 

continuation is used to overcome this problem [16]. The control parameter is changed from 

Q to an "arc-length" <7. The rotational speed becomes an unknown, Q=Q{o), and an 

extra equation needs to be added to the system in (5.18). Suppose that v and Q are required 

for (7 = (7; i.e. V;, Q- are required. Suppose that v,._,, , corresponding to a = C7j_j are 

known. The extra equation to be added defines <J in the interval (7,_J < (7 < (T,: 

+ = 0 (5.23) 

where, for a vector a = [a, - - , |a{̂  = +... + . The system of equations to be 

solved for each given value of <7, 0"̂ , is 
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j p(v ,^)=0 

( G ( V , ^ , ( T ) = 0 

The vector of unknowns is now augmented to 

(5.24) 

w 
v 

(5.25) 

The solution procedure now "climbs" along the speed response curve, so that a given value of 

(T will correspond to just one solution w, thus eliminating the problem of multiple solutions. 

From eg. (5.23), in order to initiate the arc-length continuation procedure, one solution v,, 

2̂, on the speed response curve is required. This is obtained by solving the original system 

of equations (5.18) for v at ^2=^2,. The initial approximation to (i.e. v|°^) is either a 

guessed approximation or is determined from the Fourier coefficients of a time-marching 

solution. For a non-degenerate rotor (see below), if N = 1 and is low, a reasonable guess 

is 

H G / C 

0 
(5.26) 

since the system vibrates at small amplitude about the static condition. In degenerate rotors, 

namely, rotors with unsupported SFDs, guessed approximations usually result in failure in 

the corrector step, especially with a large number of unknowns. In such a case, vj°̂  is 

determined from the Fourier coefficients of the SFD response(s) at Q = obtained by a 

time-marching solution. In eq. (5.23), <7, is arbitrarily set to 0. The algorithm for the 

solution of eqs. (5.24) by the predictor-corrector iterative procedure is presented in Appendix 

Al. 

Upon solution of (5.18) for v over a range of values of Q and determination of the 

associated values of f , ,̂ f , the response in any of the remaining degrees of freedom 

is readily available from equations (5.15). The only receptance terms in T that need 

computation are those linking the chosen degree of freedom with the non-zero elements in f. 
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In equations (5.14a), (5.15a), it has been implicitly assumed that all zero frequency terms 

in Sg, Tg exist. This condition holds when, in the (i.e. ±e system in Figure 

5.1(a) minus the non-linear elements), the rotor is supported at not less than two positions. 

When, in the linear subsystem, the rotor is not coimected to the support structure or has only 

one coimection that offers no flexural resistance (i.e. a simple support), the rotor is said to be 

degenerate and is capable of free rigid body motion. In such a situation some or all of the 

terms in S,, and will be undeGned (—>+oo). In such a case, equations (5.14a) are 

modified as follows: 

The static load of the rotor is included in f, concentrated at one or more of the degrees 

of freedom in the direction. 

h{, is omitted and the displacements in h are measured from the static positions of the 

bearing housings without the rotor load acting. Similarly, the remaining degrees of 

freedom g are measured from the static condition without the rotor weight applied. 

In equation (5.14a), those k rows in S, for which the receptances are undefined are 

replaced by the corresponding rows in the zero frequency value A,, of the 

accg/granca matrix A where 

A=-0)"S (5.27) 

The terms in Ag will be defined. The corresponding k terms on the left hand side of 

(5.14a) will be replaced by the corresponding zero frequency (mean) acceleration 

terms in the Fourier expansion of ii, and hence will be all zero (by differentiation of 

(5.9a) twice). 

The resulting modified k equations in (5.14a) are a statement of the fact that, at zero 

frequency, the degenerate rotor will be in a state of static equilibrium under those elements in 

the vector f that act on it and the forces from the single linear connection (if there is one) 

with the support structure. These equations are solved along with the remaining 

P^{2m + \)—k equations in (5.14) as previously described. At zero frequency, the 

degenerate rotor can be maintained in static equilibrium by a minimum of two linear or non-

linear connections with the support structure. If the degenerate rotor has no linear connection 

with the support structure, k - 4 (i.e. two unsupported SFDs) is the maximum number of 

modified equations that are independent. If the single linear connection is present, then 

k -2 (i.e. one unsupported SFD) is the maximum number of independent modified 
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equations. When ^ > 4 or 2, as ±e case may be, a statically indeterminate equilibrium 

problem at zero frequency needs to be solved widiin equations (5.14). A typical case is a 

rotor that is supported by squeeze Aim dampers only, without retainer springs, where the 

number of dampers ^ 3. In such a case, the rotor is equivalent to a continuous beam^ in 

each plane and yz, for which the additional independent static equilibrium equations at 

zero frequency can be obtained from standard texts on mechanics of materials e.g. [62]. Such 

cases are not considered in the model applications of Chapters 6-8. 

5.4 DIFFERENTIAL EQUATIONS OF MOTION 

The RHB method works exclusively in the frequency domain. However, in order to test the 

stability of the equilibrium solutions computed by RHB (and of course, for time-marching 

purposes), the time domain differential equations of motion of the non-linear system are 

required. A modal approach is adopted to derive these equations. In this analysis, in contrast 

to RHB, the vector comprises all the damping forces, linear, as well as non-linear, and 

any gyroscopic moments (if significant). By considering all these forces/moments as 

external, it is possible to work with the modal parameters (i.e. natural frequencies and mode 

shapes) of the undamped non-rotating linear subsystem, which will be real and independent 

of rotational speed. The modal parameters can be obtained using any convenient linear 

modelling technique. As shall be illustrated in Chapters 7 and 8, receptance functions can be 

used to determine both the modal parameters and the number of modes required. In practice, 

only a limited number of modes, ff, will make a significant contribution to the response. 

Hence 

u = Hq (5.28) 

where q is the f f x l vector of modal coordinates: 

Q = B I " ( 5 - ^ 9 ) 

and H is the PxH modal matrix; 

' A continuous beam is one supported at three or more locations. 
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H = ... (&(")] (5.30) 

where (|)̂ ''\ A = l . . . ^ , are ±e mass-normalised mode shapes [47]. The corresponding 

natural frequencies are contained in the diagonal matrix D, given by 

D = diag^,^ ... (5.31) 

The modal equations of motion [23] are hence given by: 

q + Dq = H^f (5.32) 

where f is given by eq. (5.3). By partitioning H in a manner similar to u in eq. (5.4): 

H (5.33) 

where and are of dimension x H respectively, in eqs. (5.4) and 

(5.3) can be expressed as 

URF ( 5 . 3 4 ) 

In accordance with the definition of for modal analysis, the vector of associated degrees 

of freedom has a more general meaning here than in the RHB approach. Notice that the 

modal equations are not uncoupled since f on the right hand side of eq. ( 5 . 3 2 ) includes the 

motion dependent forces/moments in . 

In all the stability and time-marching analysis, it is assumed that a sufficient number of 

modes is taken to consider the transformation in eq. (5.28) to be "exact" i.e. the 

approximate equality sign " = " in eq. ( 5 . 2 8 ) is replaced by the equality sign " = 

5.5 STABILITY OF PERIODIC SOLUTIONS ATW BIFURCATION 

In this section, the coefficient matrix W ( t ) of the perturbation equations ( 3 . 1 2 ) is derived. 

As discussed in Chapter 3, this matrix is required for the stability analysis of an RHB-
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computed periodic solution Ug of fundamental frequency 07 . Defining 7=0% and ( ) as 

differentiation with respect to T, the modal equations (5.32) are rewritten as: 

1 _ 1 
q' + — D q 

( ^ N \ ) 
0 

+ F L ( F ) (5.35) 

where equation (5.3) has been used to substitute for f. Now, from equation (5.28) 

" E = (5.36) 

Ug is periodic in T with period In and so is q^, which satisfies equation (5.35): 

NE - " NK ) 

0 
+ F L ( R ) (5.37) 

where, from equation (5.34): 

^ N E — (5.38) 

Defining 

z - q - Q E (5.39) 

and subtracting equation (5.37) from equation (5.35) 

Z ' + ^ D Z = J ^ | H ; H 
07 07 

BFW / \ BFW / . \ 

9 U 9 6 , 

0 
(5.40) 

where equation (5.33) has been used to substitute for H and f^(u^,uj^) has been expanded 

in a Taylor series about =«NE ' =^NE .̂nd only linear terms in ( U N - ^ N E ) 

(u^ - u ^ ) retained. In eq. (5.40): - u ^ =OT(uM - u ^ ) and B f , , = ( ^ N / ^ N ) / ^ -
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Therefore - ^ L ) - Also, from eqs. (5.34), (5.38) and 

(5.39), Up, - U ; ^ = H;^z. Hence, eq. (5.40) becomes 

Z ' + - 4 D Z = - 4 H L 
0 7 ' 0 7 ' " A U ^ " QT' 

(5.41) 

Letting 

x = (5.42) 

eq. (5.41) can be written in the form (3.12): 

x' = W(r)x (5.43) 

where 

W(T) = 
0 

U ( r ) - ^ D V(T) 
07 

(5.44) 

H 
A U ' 

H , (5.45a,b) 

In eqs. (5.44), is an HxH matrix of zeros and an HxH diagonal matrix with 

ones on the leading diagonal. Since the partial derivatives in the HxH matrices U(T) and 

V(r) are evaluated at the equilibrium conditions = ujiig, they are periodic in 

T with period 2;r and hence, so is the 2;8'x2ff matrix W(r). The monodromy matrix G 

of equation (5.43) is then computed either from equation (3.20) ("slow" method) or from 

equation (3.22) ("fast" method). The latter method is used in this thesis. The former method 

is used only once, in Chapter 6, for verification purposes. In this thesis, the matrix 

exponentials in the product of eq. (3.22) are computed using the MA7ZAB® functions 

or expmS® [25]. The stability of the equilibrium solution Ug is governed by the leading 

eigenvalue, A,, of G, as explained in section 3.2.3. 
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It is worth mentioning that, strictly speaking, the monodromy matrix G of equation 

(5.43) governs the stability characteristics of . However, since the modal coordinates q 

are related to the degrees of freedom u by the simple linear transformation (5.28), the 

stability characteristics of q^ are identical to those of . 

The above analysis shows that, to determine the stability of a RHB solution Ug, it is only 

necessary to compute the RHB response at the degrees of A-eedom contained in the vector 

- The vector is determined by differentiation of the relevant rows of eq. (5.9a). 

5.6 TIME-MARCHING 

For time-marching purposes, the system of equations (5.32) is expressed as 2/f first order 

differential equations 

q q 
-h 

0 
-h _q_ _ -D _q_ 

(5.46) 

and integrated numerically from given initial conditions q{t = O), q(f = O) using an integrator 

suitable for stiff differential equations. In [54], a numerical integration technique based on 

trapezoidal integration was adapted from the work by Craven and Holmes [2] for the solution 

of differential equations with SFD forces. It was subsequently discovered that MATLAB® 

(version 5 and later) has a whole suite of similar functions dedicated to stiff systems. The 

trapezoidal integration method is hence only used in Chapter 6. Chapters 7 and 8 employ the 

MA7ZAB® function [25]. 

The result of the Floquet stability test for an equilibrium solution Ug can be confirmed 

by time-marching from equilibrium initial conditions (f = O), q^ (f = O). As explained in 

Chapter 3, if Ug is unstable, the time-marching trajectory will diverge from the equilibrium 

one. On the other hand, for Ug stable, both trajectories remain closely matched. This 

method serves to positively identify the attractor on which the disturbed trajectory will settle 

down, in the case of Ug being unstable. The initial conditions qE(^ = 0), qE(f = 0) ^6 

found by performing a modal decomposition of the RHB solution Ug as follows. The 

responses in H degrees of freedom, arbitrarily chosen, are computed with RHB. These are 
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contained in the ^ x l vector UHE(r). The corresponding velocity vector UgEW is then 

formed (by differentiation of the relevant rows of eq. (5.9a)). From eq. (5.36): 

(f = 0)= HjjUjjg (f = O), q£(f = 0)= HjjUijjg (f = o) (5.47a,b) 

where the xj f matrix comprises rows of H, respectively corresponding to the 

chosen 77 degrees of freedom in Ugg. 

5.7 INTEGRATED MODEL ALGORITHM 

This section presents an algorithm for integrating the three modelling blocks (RHB, stability 

analysis, time-marching). One such algorithm is summarised below: 

(1) The operating conditions (the unbalances the rotational speed range, and, if 

applicable, the static eccentricities ) are specified. 

(2) A speed response curve of approximate ^-periodic solutions (i.e. # = 1) is traced out 

using RHB with a suitable number of harmonics m. 

(3) The resulting RHB solution set is then tested for stability using the Floquet test. Any 

unstable sections of the speed response curve are then classified according to the 

position of the leading Floquet multiplier on the complex plane. 

(4) An unstable equilibrium cycle along each such section is considered. Time-marching 

from initial conditions on the cycle locates an attractor. If the resulting attractor is 

NT-periodic, then the section is reanalysed using RHB with the appropriate value for 

N, and steps (3)-(4) repeated. If the attractor is aperiodic then the whole branch has to 

be reanalysed by time-marching. 

While steps (l)-(3) are obligatory, step (4) can be altered as required. For example, a 

speed response curve of time-marching solutions can be generated, starting from the speed at 

which instability of T-periodic motion was first detected in step (3). Moreover, the initial 

conditions for the time-marching solution at one speed can be the final conditions from the 

time-marching solution of the previous speed rather than the equilibrium initial conditions on 

the RHB solution. 

Frequency spectra and Poincare maps are used to analyse the time-marching solutions. 

Since the data generated by the time-marching solution process is unevenly spaced (due to 

automatic step adjustment for error control), linear interpolation is used to generate evenly 
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spaced data prior to frequency and Poincare map analysis. The frequency spectra presented 

in this thesis give the modulus of the discrete Fourier transform (DFT) and are computed 

using the fast Fourier transform (FFT) algorithm [25]. The aim of the frequency analysis is to 

identify the salient frequency components of the response. Hence, the absolute level of the 

vertical axis of the frequency plot is of no importance: it varies with the sampling rate, data 

length and type of data window used. The Poincare maps show a stroboscopic picture of 

the versus x vibration tr^ectory (orbit) at a given location on the system at intervals of 7. 

5.8 ADVANTAGES OF THE INTEGRATED IVEODEL 

The use of a combination of periodic solution technique/stability analysis/time-marching for 

a full solution to the unbalance response problem is not new, as discussed in Chapter 2. The 

contribution of the integrated model presented in this chapter lies in the individual modelling 

blocks, which have been devised in order to overcome the shortcomings of current techniques 

when applied to real systems with many degrees of freedom. These problems were 

highlighted on pages 9 and 10 of Chapter 2. 

With RHB, harmonic balance principles are applied to the receptance model of the 

rotating linear part. The required non-linear algebraic equations are easily extracted in the 

frequency domain, without any need to condense the full number of unknowns (equal to 

P(2m + l) where P is the total number of degrees of freedom and m is the number of 

harmonics) to those pertaining to the non-linear degrees of freedom (totalling P^(2m + l) 

where is the number of non-linear degrees of freedom), as had been done in previous 

harmonic balance methods (that were based on the finite element (FE) equations of motion). 

Hence, it results in a compact and efficient model. Moreover, the receptance functions can 

be computed using any convenient linear rotor-dynamic modelling technique. In particular, 

the designer is free to use any of the various frequency-based modelling techniques that have 

been proposed as efficient alternatives to FE analysis for the computation of the harmonic 

response of linear rotating systems [19]: transfer matrices (TM); mechanical impedance (MI, 

or analogously, dynamic stiffness); hybrids like TM/FE, MI/FE; and hybrids involving both 

analytically and experimentally determined frequency response functions. The receptance 

formulation does not restrict the designer to the exclusive use of TM as in [18], making the 

proposed technique effective at including the dynamics of the rotor support structure. The 

receptance functions can be approximated by a truncated modal series [47]. Hence, for 
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highly complex systems, the receptance functions can be determined from a FE-based 

computation of the modal parameters of the linear part. 

As regards stability analysis, Hahn and Chen [15] used an approach based on the FE 

equations of motion. Moreover, they used the "slow" method (eq. (3.20)) to compute the 

monodromy matrix G since they claimed that the advantages of faster methods are dubious. 

Zhao gr aZ. [13] used the "fast" method (eq. (3.22)) to compute G. However, since their 

approach was still based on the FE equations of motion, it was still impractical since the 

order of the matrices in the exponents of the matrix product in eq. (3.22) is 2 f x 2 f with the 

FE-based approach. In this thesis, the "fast" method is used for the computation of G, and 

the modal technique is used to reduce the size of the matrices in the exponents of eq. (3.22) to 

27if x 277 where Tif « f , hence making stability analysis feasible for systems with many 

degrees of freedom. Moreover, with both methods used in [13, 15], the matrix G is of size 

2 f x 2 f and, as mentioned by Hahn and Chen [15]: "the computation of the eigenvalues of 

G for large systems to a sufficient degree of accuracy may itself prove problematic." They 

continued by adding: "unfortunately, no simple alternative to this is known to the authors". 

The modal method used in this thesis to compute G results in a reduction of its size to 

2H X 2H . Hence, this should facilitate the eigenvalue computation and make the results 

more reliable for systems with many degrees of freedom. 

The RHB and the modal time-marching blocks are complementary in two peculiar 

aspects. The first aspect relates to the accuracy of the results. The RHB method essentially 

assumes a finite number of harmonics in the response. However, it does not require modal 

truncation. Exact (frequency-based) methods (which assume no modal truncation) can be 

used to compute the receptances. Even if the receptances are computed from a truncated 

modal series, any number of modes can be taken without affecting the number of RHB 

equations to be solved, which is fixed at P^(2m-l-l). On the other hand, the time domain 

differential equations of motion essentially assume modal truncation since the number of 

second order differential equations (5.32) has to be limited to H. However, the solution 

process places no restriction on the number of harmonics. Hence, if "exact" receptances are 

used in the RHB method, the RHB and time-marching results are "inter-checking" with 

respect to the respective assumptions of the number of harmonics m and the number of 

modes H. Notice that the reliability of the Floquet stability result depends on both m and H. 

The second aspect relates to computational efficiency. The RHB method becomes unwieldy 

when the number of non-linear elements is large, since the number of unknowns is 
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proportional to . On the other hand, the modal time-marching method is immune to this 

problem since the number of second order differential equations is always equal to the 

number of modes Zf. 

In section 5.2 it was stated that material (hysteretic) damping is neglected. The reason for 

this is that this kind of damping can only be used when the vibration is harmonic (i.e. of 

single frequency) [20]. In the RHB method, Ae motion is resolved into its component 

harmonics. Hence, in principle, the loss factor can be used in the evaluation of the required 

receptance functions (which are those of the linear subsystem); for the (non-rotating) support 

structure, this can be done by using a complex Young's modulus [20]. However, for the 

rotor, the incorporation of the loss factor is complicated since it deforms with respect to a 

rotating frame of reference [48]. For this reason, and to ensure parity with the time domain 

modal approach, the loss factor is completely neglected in this thesis. This is a reasonable 

assumption since this damping is likely to be minimal with respect to other sources of 

damping, as evidenced by the fact that none of the research works cited in Chapter 2 have 

taken it into account. In the model presented, distributed linear (i.e. viscous) damping can be 

concentrated at various locations. If the distributed viscous damping is "proportional" [20], a 

term Dq can be added to the left hand side of eq. (5.32) where D = diag[2(iiG)i ...2<^^0^] , 

cf,, (A = l. . . .ff) being the modal damping ratios, and the matrices of eqs. (5.44), (5.46) 

amended accordingly. However, in this case, in order to retain parity between the RHB and 

modal approaches, one has to consider how to include these modal damping terms into the 

receptances used in the RHB equations. This might prove problematic. 

5.9 CONCLUSION 

In this chapter, the integrated non-linear model was developed for a general unbalanced 

squeeze film damped rotor-dynamic system. The model comprised the receptance harmonic 

balance method for determination of periodic solutions, a modal method for the Floquet 

stability analysis of the periodic solutions, and numerical integration of the modal equations 

when necessary. The advantages of the model, as well as its limitations were discussed. In 

the following chapters the model is applied to rotor-dynamic configurations of increasing 

complexity. 
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6 A D B C M D W E I . 

UNSUPPORTED SFD 

6.1 INTRODUCTION 

In this chapter, ±e integrated modelling approach developed in Chapter 5 is applied to a 

simple example taken from the literature [8, 63] and illustrated in Figure 6.1. In this 

configuration, a rigid rotor is supported at one end H by a rigidly mounted self-aligning 

bearing. The other end runs in an unsupported squeeze Rim damper (SFD) in which the 

housing is flexibly mounted. Hence, the SFD is effectively in series with the bearing housing 

flexibility. Unbalance excitation is applied at U. A test rig for this configuration is described 

in [8, 63]. The rationale of this configuration is also explained in [8, 63], where it is claimed 

that in many gas turbine applications the bearing pedestals are quite flexible and so, the first 

two rotor-support structure critical speeds essentially define "bounce modes". In these 

modes the rotor does not bend to any significant degree while the housings show appreciable 

dynamic deflection. In such systems, an oil film (SFD) is interposed between one or more of 

the rolling-element bearings and their housings to enable safe passage through the bounce 

critical speeds. In the aforementioned bounce modes, the rotor vibration is approximately 

symmetrical ("symmetric" bounce mode) and anti-symmetrical ("anti-symmetric" bounce 

mode) respectively. The configuration in Figure 6.1 is used to represent the vibration of a 

small gas turbine near the anti-symmetric bounce mode, the pivot (self-aligning bearing) at H 

representing the node of this mode. This configuration had been analysed for a limited 

number of rotational speeds by a time-marching method in [8]. The aims of the present 

analysis are three-fold: 

(a) As a simple illustration of the receptance harmonic balance (RHB) technique for the 

determination of periodic solutions. The assumption of the rigidity of the rotor does not 

detract from the generality of the non-linear RHB problem since the rigid body 

assumption only affects the value of the receptance functions. 
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(b) To demonstrate the efficiency and accuracy of Hsu's fast method for the computation of 

the monodromy matrix G (i.e. the "fast" method of eq. (3.22)), in view of Hahn and 

Chen's claim in [15] that the advantages of such methods over the conventional method 

(i.e. the "slow" method of eq. (3.20)) are dubious. 

(c) As a preliminary integrated analysis of non-linear effects in flexibly housed unsupported 

SFDs. The need for such an analysis is felt since, while periodic solution and stability 

analysis has been previously performed on rigid rotors in unsupported SFDs e.g. [12], the 

SFD housing was rigidly mounted in such studies. 

6.2 MODEL APPLICATION 

The linear subsystem of configuration A (Figure 6.1) consists of two uncoupled sub-

subsystems: (a) the rigid rotor pivoted at H and free at J, and (b) the support structure at B. 

In Figure 6.1, J is the centre of the SFD journal and B that of the bearing housing. The SFD 

is assumed to be the only source of damping and gyroscopic effects are neglected, as in [8, 

63]. Hence, the f%xl vector (eq. (5.3)) is identical for both frequency domain 

(receptance harmonic balance (RHB)) and time domain (modal analysis) approaches: 

F N = [ A Q , - Q , - Q J ( 6 . 1 ) 

where = 4 . Q^, are the SFD forces on J and -Q^ , —Qy are those on B. The SFD 

forces are calculated from equations (4.6a,b). Since the pinned-free rotor is degenerate (as 

described in Chapter 5, end of section 5.3) its static load needs to be taken into account. The 

vector Up, of degrees of freedom associated with is then given by eq. (5.12): 

U ^ = H = [ ] R , Y , Y J ( 6 . 2 ) 

where each displacement is measured from the static position of B without the rotor weight 

applied. As in eqs. (4.17) (Chapter 4), the rigid rotor is dynamically equivalent to an 

effective mass ^, acted upon by equivalent unbalance forces P^, P^. These unbalance 

forces are given by (Figure 5.1(b)): 
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)' «?,Y" (6.3a,b) 

where y is the equivalent unbalance at J. The support structure at B is modelled by an 

effective mass Mg and stiffness for bo± the %z and yz planes, with no cross-coupling 

between the two planes. 

In the RHB approach 

. m . . 

Zy =%y +^(a^cosfQ7f + 6^sin^QRj, 7; =1^ +]^(a^^cos^QR + 6^ ŝin^Q%) (6.4a,b) 

J=I J=1 

m , . m . . 
Zg = ^ cos f0% + 6 ^ sin fQTf), Tg = ^ % (<3̂ ^ cos jQR + 6̂ ^ sin j'QRj (6.4c,d) 

I'=I 

and 

=<2;, +]^(p('^cos^QR + <;('̂ sini'Q;f), =6^ +]^(p^^)cos j'QTf + (̂,̂ )sin^Q7f) (6.5a,b) 
.¥=1 

where 

J=1 

<2/ 1 r 2 r 
coŝ yO* 

2 F 0 / 

E , . Y ! " J _ E > -
coŝ yO* 

A _ 
P Jo E , . Y ! " J 

p Jo 
_ E > -

coŝ yO* r Jo 
sin f 0% dt 

In the above equations, F = Injw = NT (eq. (5.8b)). Hence, defining 

(6.6a-c) 

Ns 

| 0 ^ 9̂ ^ N 

1 F = 
(6.7) 

the RHB equations can be written as 
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& = 0 , = 0 (6.8al,a2) 

^=l . . .m (6.8bl,b2) 

= (%;/ (^07 ) ^ ( ' ) + ' } 

Wf=)8yy(fQTX'\ f = l . . . m (6.8cl,c2) 

(0)G ,̂ ^ (0)2^ (6.8dl ,d2) 

<3̂  = )Px ^ = -jGgg ( . y Q ; f = 1... m (6.8el ,e2) 

( ' ^ 0 ^ = -)8gg f = 1... m (6.8f 1 ,f2) 

In egs. (6.8al,a2), Wis ±e equivalent static load at J. This pair of equations was obtained by 

taking moments about H and is an expression of ±e fact that the zero frequency components 

of ±e forces acting on the vibrating rotor are in a state of static equilibrium, as discussed in 

Chapter 5 (end of section 5.3). In eqs. (6.8), CK̂y (0) and (co) are ±e point receptance 

functions of the rotor at J at frequency co rad/s, relating the forces at J in the % and y 

directions respectively with the displacement responses there in the corresponding directions. 

Similarly, (%gg (m) and (o) are the point receptances of the support structure at B in the x 

and } directions respectively. The receptances are given by: 

(())) = ( ( 5 ) = - 7 T - — T ( ^ - 9 ) 

« G G M = ^ G A M = — — [ - — R 

- M G A ) 

For solution, eqs. (6.8) are expressed in the form p(v,i3)=0 of eq. (5.18) by bringing all the 

terms to one side of the equality signs, v = v/c where v is the 4(2OT + 1)x1 vector of the 

unknown Fourier coefficients of the SFD displacements Xy, Yy, 

for :y = 1...7M. where A),, rad/s is taken as the rotor-

support structure critical speed with the SFD locked (i.e. the bounce critical speed), given by: 
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R.J + ) (6.11) 

The resulting system is then solved using the arc-length continuation method (section 5.3, 

pages 63-64), using the iterative algorithm in Appendix A1 to trace out a speed response 

curve of AT - periodic solutions, where is of fixed value. 

For stability and bifurcation analysis of the RHB-computed periodic response, the 

matrices D, , 9f^/8u^ , in the expression for the perturbation matrix W(r), 

eqs. (5.44), (5.45) are required. The system of Figure 6.1 has a total = 4 modes: (a) one 

mode of the rigid pinned-free rotor in each plane xz, yz; (b) one mode of the support structure 

alone in each plane For (a), the natural frequencies in each plane are equal to zero, 

since they define pure rotation of the rigid rotor about H. For (b), the natural frequencies in 

each plane are rad/s. Hence, the diagonal matrix D of eq. (5.31) is given by: 

D = diag[0 0 (6.12) 

The reduced modal matrix of eq. (5.33) is given by the 4 x 4 matrix: 

( I F 

0 2x2 

'2X2 

D I A G K » ^ ) 

(6.13) 

is deRned as a zero matrix of size i x j . are the mass-normalised mode 

shapes of the pinned-free rigid rotor, evaluated at J in the % and y directions. are 

the mass-normalised mode shapes of the support structure at B in the x and y directions. The 

first two columns of pertain to the modes of the rotor, alternately in the xz and yz planes. 

The last two rows of these columns correspond to the values of the non-linear degrees of 

freedom at B in these modes and so are all zero. The remaining two columns of pertain 

to the modes of the support structure at B, alternately in the xz and yz planes. The first two 

rows of these columns correspond to the values of the non-linear degrees of freedom at J in 

these modes and so are all zero. By comparing the receptance expressions of eqs. (6.9), 

(6.10) to the modal series expansion of the receptance function in eq. (A3.1) (Appendix A3): 
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) = \ I ^ W Z . F = 0 ? ' = I / V S ^ (6.14a,b) 

From eqs. (6.1) and (6.2): 

36 . 
a x . 37, a z . ay. 

a z . 37, a z . a?g 

% 3 6 . 
a z , ay, a z . ay. 

3 6 , 

azy ay. a z . ay^ 

From egs. (4.6a,b), where .... etc. Hence, 

9 6 , , , / A ; ^ , , % . . y / A Y Y = A < 2 z . , / A F . / , 

- A similar process applies for . Hence, 

AF^ _ J q - J q 3FN _ J q - J q 

3 U N — J Q J Q A U ; - J q J q 
(6.15a,b) 

where 

J n = 

r 36. 3 6 / [ 3 6 . 36 .1 
3F ,̂ 

T 3ZL 3 C 
36, 36, , Jq — 36, 36, 

3C/J 

(6.16a,b) 

and ( ) is d{)/dt, T=tnt (GJ rad/s being the fundamental frequency of the periodic 

solution). The partial derivatives in eqs. (6.16) are evaluated numerically at the RHB-

computed periodic solution from the expressions for ^ in eqs. (4.6a,b). The above 

expressions for D, Hp,, 8f^/9u,y,, /9u^ determine the expression for W(T) in eqs. 

( 5 . 4 4 ) , ( 5 . 4 5 ) . The monodromy matrix G of the periodic solution is computed from W ( T ) 

using either eq. (3.20) ("slow" method) or eq. (3.22) ("fast" meAod). 
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For the time domain solution (numerical integration), the equations used are an extension 

of eqs. (4.19) (Chapter 4): 

X ; = G , + C / S I N G 

F ; = G , - ( / C O S ; - W 

Y ; = 

M 
G . -

Y 

M P . -
Y 

(6.17a) 

(6.17b) 

(6.17c) 

(6.17d) 

where ( ) now denotes differentiation with respect to g ( = ^ ) , = Z y / c , fy =yy /c , 

Xg = X gjc , Fg = /c are the non-dimensional displacements of J and B respectively and 

<2̂  are the non-dimensional squeeze film forces: 

Q,., = Q,., )/(M,jca') (6.18) 

The non-dimensional dynamic load parameter U and the non-dimensional static load 

parameter W were defined in eqs. (4.21b,c). In this chapter, the integration of eqs. (6.17) 

was performed using a trapezoidal integration method [54], suitable for a system of stiff 

differential equations. 

6.3 RESULTS OF SIMULATIONS AND DISCUSSION 

The system parameters used here are taken from [8, 63]. y =24.5 kg, =3.5 kg, 

ifg =6.21x10*' N/m, W = 294 N. Hence the bounce critical speed is 75 rev/s. The SFD is 

short and unsealed, with two lands, as shown in Figure 4.1(a), with c = 0.216x10"^m, 

i? = 68.216xl0~^m, L = 9xlO~^m. The oil viscosity 77 = 0.021 Nsm"^ and the supply 

pressure =34.5x10" Pa. In the simulations, the cavitation pressure is fixed at 

-101.325x10^ Pa (absolute zero). As in [8], all results refer to a non-dimensional dynamic 

load parameter of (7 = 0.229. 
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Figure 6.2 shows the speed response curves of r-periodic solutions computed by RHB 

(N = 1) with m = 5 harmonics. Figures 6.2(a,b) refer to the amplitudes of the motion of the 

SFD journal J relative to the housing B in the z and y directions respectively, whereas Figures 

6.2(c,d) refer to the amplitudes of the absolute motion of the housing B in the x and y 

directions respectively. The amplitudes are defined as half the peak-to-peak fluctuation in 

the displacement time history and are normalised with respect to the radial clearance c. The 

state of stability of each solution, according to the value of the leading eigenvalue A, 

(leading Floquet multiplier) of the monodromy matrix. G is indicated according to the legend 

in the figure caption. In these figures, the matrix G is computed by the fast method of eq. 

(3.22) with K = 200 subdivisions over one period of the RHB solution. Figures 6.3(a-c) 

compare the values of the leading Floquet multiplier A, obtained from this method for the 

computation of G with those obtained from the "slow" method for the computation of G. 

The slow method used the 4"̂  order Runge-Kutta method for the solution of the perturbation 

equation (3.12). In the solution of eq. (3.12), the use of the trapezoidal integration method 

instead of the Runge-Kutta method was found to result in negligible reduction of 

computation time. It is evident from Figure 6.3 that the results obtained by the fast and slow 

methods are virtually identical. The use of the fast method cut the computation time for the 

full set of results shown in Figure 6.3 from several hours to a few minutes (on a 333 MHz 

Pentium II computer). Additionally, the number of subdivisions K in the fast method could 

be doubled for an accuracy check, while still retaining a reasonable computation time. 

Hence, the fast method for the computation of G. with K = 200, is used throughout this 

thesis. 

Attention is now focussed on the speed response curves of Figure 6.2, with particular 

interest in the motion of the journal J relative to the housing B. In this part of the discussion, 

reference is made to Figure 6.2(b) (without loss of generality, since all the graphs in Figure 

6.2 express the same information regarding the stability of the T-periodic solutions). 

Multiple r-periodic solutions exist in the region Q = 0.671 to Q = 0.752 and the T-periodic 

solutions form a spring-softening characteristic for the y amplitude (i.e. jump-up in y 

amplitude on run-up in speed). This contrasts with the spring-hardening characteristic (i.e. 

jump-down in amplitude on run-up in speed) reported in "parallel" SFD configurations (in 

which the SFD is in parallel with the retainer spring or equivalent flexibility) [24, 30]. The 

stable solutions form three sections. The middle one, centred at G ( = 0.985) is very short. 

Figures 6.4(a,b,c) show the T-periodic orbits at points B, G and L (on Figure 6.2(b)) which 
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lie close to bifurcation points. The stability of these orbits was confirmed by time-marching 

from equilibrium initial conditions (i.e. initial conditions on these orbits). The stable branch 

AB is characterised by distorted "figure-of-eight" orbits (Figure 6.4(a)). 

Referring back to Figure 6.2(b), and moving along the curve, a bifiircation occurs beyond 

point B where A, escapes the unit circle in the complex plane along the positive real axis. 

This indicates that the 7-periodic solutions become unstable and any disturbance causes the 

tr^ectory to jump to a periodic orbit of the same period (Chapter 3, section 3.2.3). As shown 

in Figure 6.5, which refers to point D (on Figure 6.2(b)), = 0.684, time-marching from 

initial conditions on the unstable orbit causes the trajectory to collapse to a stable "figure-of-

eight" T-periodic orbit residing along the lower branch AB of Figure 6.2(b). 

Returning to Figure 6.2(b), as is decreased from the value at G (0.985), a period-

doubling bifurcation occurs where A, escapes the unit circle in the complex plane along the 

negative real axis. A branch of 2r-periodic solutions was traced out by RHB (N = 2) from 

O = 0.951 down to = 0.685. Figures 6.6(a,b) show that two stable 2r-periodic solutions 

are possible for 12 = 0.951, corresponding to point F on Figure 6.2(b). Figure 6.6(c) shows 

an unstable 2r-periodic orbit at 13 = 0.685. This should be compared to the unstable T-

periodic orbit obtained for around the same value of 12 in Figure 6.5(a). The 2r-penodic 

solutions lose their stability for 12 < 0.72 (approximately). This corresponds to point E' in 

Figure 6.2(b). In fact, despite X, being real and negative along section E'E, the unstable T-

periodic orbits along this short branch behaved as those along CD when disturbed (i.e. 

collapsed to stable T-periodic attractors along AB). 

When 12 is increased from the value at G (see Figure 6.2(b)), a secondary Hopf 

bifurcation occurs, where a pair of complex-conjugate eigenvalues A,, A* cross the unit 

circle simultaneously. This indicates the birth of stable 2-frequency quasi-periodic motion. 

This was verified in the Poincare map of Figure 6.7 which refers to point H on Figure 6.2(b). 

Time-marching from unstable equilibrium initial conditions (on the T-periodic solution) 

caused the return points to spiral out from the first one (which lies on the unstable T-periodic 

orbit and is labelled "E" in Figure 6.7), successive points hopping from one spiral branch to 

the other. In the steady-state, the return points drift around a fixed closed curve, no point 

ever quite coinciding with another. This ring is the result of an additional fundamental 

frequency /Q that is irrationally related to the original synchronous fundamental / , . As 
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discussed in Chapter 3, section 3.2.3, the presence of two spiral branches in the transient 

phase of the map indicates that /g is approximately related to by the relation 

where ^ is some positive integer and the ratio ^/2 is reduced to its lowest terms. The 2-

frequency quasi-periodic attractor is shown in Figure 6.8(a). Unlike the 2R-periodic orbits of 

Figure 6.6(a,b), consecutive pairs of "butterfly wings" do not coincide. Figure 6.8(b) shows 

the frequency spectrum of the component of the motion in Figure 6.8(a). The horizontal 

axis in Figure 6.8(b) is the frequency normalised by the synchronous frequency component. 

The spectrum is seen to have two strong sub-synchronous frequency components offset on 

either side of / / / , =0.5. The frequency components are combinations +^1/, where 

and A:, are integers. This result applies with being taken as either one of the pair 

straddling / / / ^ = 0.5 (in Figure 6.8(b) it was taken as the lower frequency of the pair). If 

lEO ("engine order") is the synchronous component ( / j ) , it is seen that those salient 

combination frequencies that are not equal to integers multiples of lEO occur in pairs that are 

symmetrically disposed about lEO/2, 3EO/2, 5E0/2, 7EO/2, .... etc., respectively. 

Referring back to Figure 6.2(b), the quasi-periodic motion persists over a short regime. 

Along the branch J-K the stable motion has reverted back to ZT-periodic motion, as seen in 

Figure 6.9. Shortly before point L is reached (Figure 6.2(b)), the two loops of the stable 27-

periodic orbital motion coalesce into one and T-periodic motion finally becomes stable again. 

Limited experimental results for the motion of the journal relative to the housing [8] are 

reproduced in Figures 6.10(al-dl). These orbits are seen to evolve roughly as predicted: 

distorted "figure-of-eight" orbits, followed by an apparent jump-up in amplitude on run-up in 

speed, and period-doubling (evident by the double-looping in the orbits of Figures 

6.10(cl,dl)). In the measurements, the period-doubling occurs somewhat later than predicted 

and is less pronounced. In fact, in Figure 6.10(b2), the predicted unstable ^-periodic orbit is 

closer to the measurement than the stable (2r-periodic) one. This is attributed to additional 

damping provided by the SFD that is not taken into account in the SFD model used. In fact, 

the computational work in [8, 63] employed the same SFD model used here except that the 

value of the film rupture pressure used at each speed was based on the corresponding 

measurements of the dynamic pressure in the oil-film, and this value was mostly below 

absolute zero to allow for the presence of a "tension spike" (as discussed in Chapter 4, 

section 4.4). For the present purposes of predicting overall trends in vibration, a fixed 

cavitation pressure of absolute zero is the best available option, as was shown in Chapter 4. 
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The occurrence of quasi-periodic motion was not reported in [8, 63]. However, this type of 

motion has been predicted here only for narrow range of speeds. Moreover, the investigation 

in [8, 63] was only carried out for the four speeds shown in Figures 6.10(al-dl). 2-frequency 

quasi-periodic spectra similar to the one in Figure 6.8(b) are verified in experimental work in 

Chapter 8. 

It is seen from Figure 6.2 that the unsupported SFD is particularly effective at providing a 

safe passage through the bounce critical speed. The relative motion results in Figure 6.2(a,b) 

indicate that for speeds well removed from the bounce critical speed, particularly for the 

direction outside the region 0.6 < < 1.8, the damper practically acts as a rigid link. In fact, 

as seen in Figure 6.11, which refers to the mean y component of the T-periodic solutions for 

the displacement of the journal J relative to the housing B, there is very little lift of the 

journal Arom the base of the clearance outside the region 0.6 < 2̂ < 1.8. However, Figure 

6.2(d) shows that there is a sub-critical resonance of the T-periodic absolute housing 

vibration in the y direction at jQ = 0.5. Figures 6.12(a,b) respectively show the variation of 

the amplitude of the lEO and 2E0 harmonic components of the T-periodic solutions for the 

absolute housing vibration in the y direction. It is seen from Figure 6.12(b) that the sub-

critical resonance in the y amplitude of the absolute housing motion in Figure 6.2(d) is due to 

a resonance in its 2EO harmonic component. Hence, this phenomenon is referred to as suh-

critical super-harmonic resonance. This term was used by Ehrich [41], who obtained a 

similar effect with the contacting rotor-stator system in Figure 2.2 (Chapter 2). As discussed 

in Chapter 2, Ehrich cited a SFD journal bottomed in its clearance as an example, and 

modelled the rotor-stator interaction by a non-linear, but piece wise-linear, spring, ignoring 

the SFD forces. In the present case, a similar effect was obtained with an unsupported SFD, 

in which the housing and the bottomed journal interact through the oil film. To the author's 

knowledge, this is the first time that the sub-critical super-harmonic resonance phenomenon 

has been directly related to SFDs, without recourse to piecewise-linear spring models. From 

Figures 6.2, 6.11 and 6.12 it is seen that, for an unsupported SFD in this condition: (a) the 

SFD journal J lies at the base of the clearance circle (of centre B); (b) there is only a slight 

relative vibration between J and B; and (c) the absolute vibration of B (or J) in the y direction 

has a significant 2EO frequency component where 2E0 is approximately equal to the bounce 

critical speed (i.e. the undamped critical speed with the SFD locked). Figure 6.13 shows the 

absolute orbital motion of the SFD housing at = 0.500, computed by both RHB (N = 1, 

m = 5) and numerical integration. It is noted that, since Xg, 7^ = % ,̂ Y; in this condition. 
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the problem is ill conditioned, particularly with respect to the computation of the SFD forces. 

Hence, very Hne arc-length resolution had to be used in the RHB procedure. Similarly, fine 

tolerances for the numerical integration error had to be used for time-marching solutions in 

this region. It is noted that the absolute motion of the housing B in Figure 6.1 is directly 

proportional to the force transmitted to the foundation (engine frame). Hence, sub-critical 

super-harmonic resonance results in a sudden surge in the force transmitted to the engine 

frame in the vertical direction. This regime of operation was not investigated in [8, 63]. 

However, ample experimental evidence of sub-critical super-harmonic resonance in 

unsupported SFDs is provided in the subsequent chapters. 

Like Ehrich's case [41], it was found that the above statements concerning sub-critical 

super-harmonic resonance could be generalised to resonance in the AEO frequency 

component, where A; is a positive integer, when the rotational speed is approximately 1/A: 

times the bounce critical speed. However, for the case of the unsupported SFD, super-

harmonic resonances for k>3 were found to insignificant and required very fine resolution 

to be located, even with the arc-length continuation procedure. Ehrich's bilinear oscillator 

mode] also exhibited a mirror-image effect i.e. the generation of fwpgr-cnficaZ 

resonance in the VEO/k frequency component when the rotational speed was close to k times 

the natural frequency. For the present case of the unsupported SFD, it is seen from Figure 

6.3 that, in the region of = 2, the imaginary part of the leading Floquet multiplier 1, of 

the r-periodic solutions plunges towards zero, and the real part is negative (i.e. A, tends to be 

real and negative in the immediate vicinity of Q = 1). Moreover, the absolute value of 1, in 

this region is close to 1. Hence, a tendency towards period-doubling exists in the region of 

Q = 2. However, by repeating the analysis in this region with finer arc-length increments, it 

was verified that, for the case studied, the modulus of A, does not become greater than 1 in 

the vicinity of Q = 2 i.e. no period-doubling bifurcation occurs. This is likely to be due to 

the fact that the lift of the journal from the clearance circle base (Figure 6.11) is still 

sufficient at around Q = 2 to prevent bilinear oscillator effects. However, the possibility of 

super-critical sub-harmonic resonance in unsupported SFDs with bottomed journals is noted. 
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6.4 CONCLUSIONS 

In this chapter, the integrated modelling approach developed in Chapter 5 was applied to a 

simple example taken from the literature, consisting of a rigid rotor running in an 

unsupported, flexibly housed squeeze film damper. This configuration represented, to a 

limited extent, the essential features of the vibration of a small gas turbine near its anti-

symmetric bounce mode. The conclusions are summarised as follows: 

- The advantages of using Hsu's fast approximate method for the computation of the 

monodromy matrix G were clearly demonstrated. This method is hence used in the 

subsequent chapters, where, in combination with the modal approach introduced in 

Chapter 5 for the reduction in size of the matrix W(r), it is used to efficiently evaluate 

the stability of periodic motion in more complex systems. 

The dynamics were found to be particularly rich around the bounce critical speed, with a 

spring-softening characteristic for the T-periodic solutions, period-doubling, and 2-

frequency quasi-periodicity. However, the attenuation in amplitude provided by the 

unsupported damper allowed a safe transition through the bounce critical speed. 

For regimes well removed from the critical speed region, the SFD virtually acted like a 

rigid link, but with one important difference - the generation of sub-critical super-

harmonic resonance in the 2E0 frequency component of the j component of the absolute 

housing (and journal) motion when the rotational speed was approximately equal to half 

the bounce critical speed. The sub-critical super-harmonic resonance resulted in a sudden 

surge in the vertical force transmitted to the foundation. This effect was associated with 

piecewise-linear (bilinear) oscillator effects reported elsewhere in the literature. 
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Figure 6.1: Schematic diagram of configuration A 
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(a) J relative to B, % direction 

B: normalised x displacement amplitude (half peak-peak) 
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rotational speed / bounce critical speed 

(b) J relative to B, j direction 

B: n o r m a l i s e d y (Bsp lacement ampGtude (ha l f p e a k - p e a k ) 
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(c) B (absolute), x direction 

0 0.2 0.4 0.6 0.8 1 1,2 1.4 1.6 1.8 2 2.2 2.4 
rotational speed / bounce critical speed 

(d) B (absolute), y direction 

Figure 6.2: Variation of amplitude ofT-periodic solution with non-dimensional speed Q 
(U = 0.229, vertical axes show half peak-to-peak displacement divided by c) 

RHB # = 1, m = 5: "o" stable, "+" unstable (A, real, positive), unstable (A, real, 

negative), unstable (A,, complex) 
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(b) real part of A, 
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(c) imaginary part of A, 

Figure 6.3: Variation of leading Floquet multiplier of T-periodic solution (RHB # = 1, 

m = 5 ) with Q : comparison of "fast" (—©—) and "slow" ( *—) methods for the 

([7=0.229) 

clearance c earance 

(a) B, A = 0.752 (b) G, 12 = 0.985 (c) L, = 1.326 

Figure 6.4: Stable T-periodic orbital motion of journal J relative to the housing centre B at 
points B, G and L in Figure 6.2(b) 

((7=0.229) 
RHB N = \, m = 5 ( ), numerical integration ( ) 
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Figure 6.5: Numerical integration from initial conditions on unstable T-periodic orbit at 

= 0.684 ((7 = 0.229) 
(a) RHB = 1, m = 5 ( ); numerical integration, first 10 shaft revs. ( ) 

(b) numerical integration, further 5 shaft revs. ( ) 

Clearance 

^ 0 M 1 
XT 

(a) = 0.951 (stable) (b) = 0.951 (stable) (c) = 0.685 (unstable) 

Figure 6.6: IT-periodic orbits of journal relative to housing (RHB N = \, w = 10) 

( # = &229) 

O-0.4 
5:-0.5 

X(tk)/c 

Figure 6.7: Poincare map of numerical integration solution for orbital motion of the journal 

relative to the housing at O = 1.035, starting from conditions on the unstable T-periodic 

orbit {U = 0.229) 
= k i n ; first 80 shaft revs. - red; further 485 revs. - blue; 

first point E (on unstable equilibrium solution) indicated by 
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Figure 6.8: Steady-state quasi-periodic motion of journal relative to housing at Q = 1.035 
ovgr 80 fAq/f ((a)) jpgcrrwrn y compoMgnf ((b)) 

((7=0.229) 

clearance 

Figure 6.9: Stable 2T-periodic orbit of journal relative to housing for Q = 1.145 
((7=0.229) 

(steady-state numerical integration solution) 
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(al) Q = 0.778 (bl) n = 0.844 (cl) Q = 0.933 (dl) 12 =1.000 

(a2) Q = 0.752 
(stable) 

(b2) n = 0.832 
(stable) 

(c2) 12 =0.951 
(stable) 

clearance 

(d2) n = 0.985 
(stable) 

(b2) = 0.832 
(unstable) 

Figure 6.10: Evolution of measured ((al)-(dl)) and predicted ((a2)-(d2)) orbits of journal 

relative to housing (U = 0.229, measurements reproduced from [8]) 

J relative to B: normalised mean y displacement 

c -0 .75 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 
rotational speed / bounce critical speed 

Figure 6.11: Mean y component ofT-periodic solution for the displacement of the journal 
relative to the bearing housing (U = 0.229). RHB # = 1, m = 5 : "o" stable, "+" unstable 

(A, real, positive), unstable (A, real, negative), unstable (A, complex) 
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B: normaWsed amplitude of 1EO component of y displacement B: nonnalised amplitude of 2EO component of y displacement 
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rotational speed / bounce cntical speed 

(a) lEO harmonic component 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 
rotational speed / bounce critical speed 

(b) 2EO harmonic component 

Figure 6.12: Variation with non-dimensional speed Q of the amplitude of the lEO and 2E0 

AARMOMIC OYRAG FOZWRZOMYBR FAG O^FOZF/FG M F/ZG Y 

ẑrgcfzoM ((/ = 0.229, vertical axes show amplitude divided by c) 
RHB # = 1, m = 5: "o" stable, unstable (A, real, positive), "O" unstable (A, real, 

negative), unstable (A, complex) 

Figure 6.13: Absolute orbital motion of bearing housing at sub-critical super-harmonic 

resonance oflEO harmonic component, Q = 0.500 {U = 0.229) 
RHB N — I, m = 5 ( ), 

steady-state numerical integration solution over 50 shaft revs. ( ) 
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7.1 INTRODUCTION 

In Ais chapter, the integrated model developed in Chapter 5 is used to analyse a flexible rotor 

wi± one rigidly housed squeeze Glm damper (SFD). Two variations of configuration B are 

considered. In one configuration (Bl) the SFD is sprung and statically offset in its housing, 

and in the other configuration (B2) the retainer spring is removed so that the SFD is 

unsupported. The primary objectives of this work are three-fold: (a) the veriRcation of the 

correlation between the three modelling blocks (i.e. receptance harmonic balance, modal 

Floquet stability analysis, and modal numerical integration) under conditions of multi-modal 

vibration of the rotor; (b) to predict and explain experimentally observed non-linear 

phenomena from a test rig; and, to a limited extent, (c) to provide additional validation to the 

model used for the computation of the SFD forces (discussed in Chapter 4). As discussed in 

Chapter 2, the simplified 3-mass model used for configuration B in [21] did not allow an 

adequate analysis of non-linear phenomena. The analytical and experimental information 

gained in this chapter enables, for the first time, a relatively accurate assessment of the non-

linear performance of both sprung and unsupported SFDs when used in a bearing of a 

statically determinate flexible rotor system. A brief description of the test facility is given in 

the following section. The non-linear model equations are then presented. This is followed 

by a brief account of the experimental procedure. The analytical and experimental results are 

then presented and discussed, and conclusions drawn. 

7.2 DESCRIPTION OF THE TEST FACILITY 

Figure 7.1 shows a schematic diagram of the test rig. This flexible rotor-rigid pedestal 

(bearing housing) system is typical of a small centrifugal pump. Photographs of this rig are 

found in Appendix A5, section A5.4 (page 246). With reference to Figure 7.1, the mild steel 

stepped shaft (4) runs in self-aligning ball bearings (3) and (6) at H and J respectively. The 

ball bearing at H is rigidly supported. The ball bearing (6) has a ring fixed to its outer race 
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and is free to orbit in the oil-Glled annular clearance within the bearing housing (7), forming 

the SFD (8). In Figure 7.1, J refers to the centre of the SFD journal (the "journal" being the 

ring fixed to the outer race of (6)), and B refers to the centre of the bearing housing (7). In 

configuration Bl, four flexible bars (labelled (5) in Figure 7.1), forming a retainer spring, 

connect the damper journal to the frame. This arrangement is elucidated in Figure 7.2. If the 

pedestals E and F in Figure 7.1 are considered rigid and the bearing housing (7) is rigidly 

bolted to F, then the retainer spring formed by the flexible bars is effectively in parallel with 

the SFD. The retainer spring has equal stiffness values of 123.4 kN/m in both the z and y 

directions. The static eccentricity of J from B can be varied by adjusting the position of the 

housing (7). In configuration B2, the retainer spring is removed and the journal rests on the 

bottom of the annular clearance in the static condition. In this configuration, anti-rotation 

bolts are used to prevent the journal from rotating relative to the shaft axis, while allowing 

sufficient clearance for the movement of J in the z and y directions. This arrangement is 

elucidated in Figure 7.3. Referring back to Figure 7.1, unbalance masses are attached to the 

overhung disc (9) at U. The vibration is monitored at three locations J, U and M along the 

shaft. The point M is referred to here as the "mid-shaft" position, although the distance HM 

is actually 0.4 times the span HJ. The vibration in the x and directions at each location is 

measured by a pair of orthogonal displacement transducers ("probes"). Those at J are aimed 

at projections on the damper journal (as shown in Figures 7.2, 7.3) while those at M and U 

are aimed directly at the shaft and disc respectively. The frame ((10) in Figure 7.1) is 

extremely rigid relative to the shaft and the bedplate is bolted down to a massive, isolated 

concrete block. The first two undamped modes of the rig with the retainer spring fitted and 

no oil in the damper clearance were calculated by the mechanical impedance (MI) technique 

[19] to occur at 13.7 Hz and 40.4 Hz (the MI model of the rig is described in the next 

section). The corresponding calculated mode shapes are shown in Figure 7.4. The natural 

frequencies compare favourably with the experimentally determined values in [21] (14 Hz, 

41 Hz). The undamped natural frequencies of the rig with the SFD locked by inserting shims 

into the annular clearance are also of interest. These were calculated at 31.2 Hz and 91.1 Hz 

by the MI technique and the corresponding mode shapes (i.e. pin-pin modes) are shown in 

Figure 7.5. The pin-pin frequencies compare favourably with experimentally determined 

values in [21] (31.2 Hz, 88 Hz). The discrepancy in the latter frequency is attributed in part 

to the neglect of the flexibility of the ball bearings in the calculation. In fact, if stiffness 
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values of 10̂  N/m are assumed for bo± ball bearings at H and J, the first pin-pin resonance 

frequency remains virtually unaltered at 31.2 Hz, while the second one decreases to 89.8 Hz. 

The SFD is unsealed, as shown schematically in Figure 7.6 and has a central 

circumferential groove. The oil groove depth is 5.25 mm. For configuration B2, some 

experimental results are quoted from [64] for which the groove depth is 2.00 mm. In both 

cases, the ratio grooveis considered sufficiently large for the two-land model of the SFD to 

be applicable. Oil is supplied through 3 holes, spaced at 120° around the groove. The outlet 

oil temperature is monitored by a thermometer located below the SFD in the oil-collecting 

tray. The oils used are C (viscosity of 0.0045 Nsm'̂  at an average 

operating temperature of 34° C) and .FAgfZ Tg/ZMf ^10 (viscosity of 0.0115 Nsm'̂  at an 

average operating temperature of 32° C). Since the rig is run up to a top speed of 100 rev/s, 

the maximum gap Reynolds number (eq. (4.16)) for the thinner oil is 2 (taking the density to 

be 841 kg/m^). Using eq. (4.15) with C/ = 0.287 (for moderate /(g) [60], an upper limit for 

the fluid inertia effect for both oils is estimated as = 0.17 kg. This amounts to just 13 

% of the combined mass of the ball bearing, damper journal and the equivalent retainer 

spring mass, justifying the neglect of fluid inertia in the simulations. 

7.3 JVIODEL APPLICATION 

73.1 Introduction 

In this section, the equations of Chapter 5 are applied to configuration B. In Figure 7.1, the 

frame (10), bearing housing (7) and the self-aligning ball bearings are taken to be rigid, so 

that the linear subsystem will be the shaft pinned at H and either sprung or unsprung (i.e. 

free) at J (i.e. configurations B1 and B2 respectively). The polar moment of inertia of the 

disc is sufficiently small for gyroscopic effects to be negligible over the operational range of 

the rotational speed. Hence, in the linear subsystem the xz and yz planes are uncoupled. The 

SFD is assumed to be the only source of damping. As a result of the latter two simplifying 

assumptions, the 7^x1 vector ((eq. (5.3)) is identical for both the frequency domain 

(receptance harmonic balance (RHB)) and the time domain (modal analysis) equations. 

Since the bearing housing is rigid, 7^ = 2 and 

F N — 
A 

QV 

(7.1) 
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, Gy are ± e SFD forces on J, calculated from eqs. (4.6a,b) with = %,, Ty where 

Zy, Yy are the displacements of J from the (fixed) centre B of the rigid bearing housing. 

The unbalance forces 7^ at U are given by eqs. (5.1a,b) with y* = 0 and the subscript A; 

removed. 

7.3.2 Configuration B1 (retainer spring fitted) 

In this case, the linear subsystem is the rotor pinned at H and sprung at J and is given by 

eq. (5.11a): 

(7.2) 

where are the static eccentricities of J from the housing centre B in the x and y 

directions respectively. In the RHB approach: 

Z Y = Z Y C O S + 6^)sin^CTrj, TY = YY (â Y ĉosj'QTf + 6^^sin^0%) (7.3a,b) 
.T=l .?=! 

and 

= Qx + % ^ cos sin = G), + ^ cos f0* + sin fOR) (7.4a,b) 
f = l J=1 

where 

_ l r 1 2 / \p';r 2 2 / 
COSfOJf = A r 

'<2/ 

e>J / y \ " F 'o 
A . 

COSfOJf p Jo G,_ 
sin^GJ? dt 

(7.5a-c) 

In the above equations, F = 2k/W = NT (eq. (5.8b)). Hence, defining 

^Ns ~ 
I'D 

ll ^ = 
(7.6) 

the complete set of RHB equations (5.14) can be written as: 



-^0;R = « Y , ( 0 ) < 2 ; 

Y , - FO, ==/3YY(P)(2), (V IRALUALZ) 

a (̂ •) 
XJ 

^YJ g = ^ = l . . .m (7.7bl,b2) 

6 ^ ) = « ; Y ( ^ O R M ' 

^ = L..m (7.7cl,c2) 

In ± e above equations, a^g (m) and )8pg (o)) are ± e receptance ftinctions at frequency o 

rad/s of ± e linear subsystem, relating ± e forces at position Q in ± e % and directions 

respectively with the displacement responses in the corresponding directions at position P. 

All receptance functions are real and independent of rotational speed due to the neglect of 

linear damping and gyroscopic effects. Also, (a))= jSpg (m) (rotor isotropic). The rotor 

receptances are evaluated using the mechanical impendance (MI) technique [19] and the MI 

model used for the rotor is described in Appendix A2, section A2.2. An overview of the MI 

method is given in section A2.1. It suffices to say here that only the attachments to the shaft 

(e.g. the disc at U, the ball bearing and damper journal at J, ... etc.) were considered as 

lumped inertias. The impedance matrices of the shaft elements for each plane yz were 

based on the exact solution of the plane harmonic bending wave equation of a uniform 

section beam of distributed inertia. Hence, these matrices were exact, irrespective of element 

length, and only 8 such elements needed to be used in the MI model of the rotor. For 

solution, eqs. (7.7) are expressed in the form p(v,i2)=0 of eq. (5.18) by bringing all the 

terms to one side of the equality signs, v = v/c where v is the 2(2m + l )x l vector of the 

unknown Fourier coefficients of the SFD displacements Zy, 6 ^ , Yy, 6̂ ^ for 

s = l...m. Q = njoiQ, where cOq (rad/s) is arbitrarily chosen as the first pin-pin critical 

speed, 2;rx31.2 The resulting system is then solved using the arc-length continuation 

method (section 5.3, pages 63-64), using the iterative algorithm in Appendix A1 to trace out a 

speed response curve of NT - periodic solutions, where N is of fixed value. For each such 

solution, the Fourier coefficients of the SFD forces are known. The Fourier coefficients of 

the response at an arbitrary position P on the rotor: 

99 



Zp = Xp + ^ COS j'QTf + 6 ^ sin fQTf), = Ff + % cos +!?(;) sin fOTf) (7.8a,b) 
.V=:l i-=l 

are determined from eqs. (7.7) by omitting the terms , replacing the subscript J by P 

in the displacement Fourier coefficients on the left hand side of eqs. (7.7) and replacing the 

first subscript J by P in the receptance terms on the right hand side of eqs. (7.7). The right 

hand sides of the modified equations can then be evaluated to yield the Fourier coefficients in 

eqs. (7.8). 

For the time domain equations of motion, 4 modes of vibration of the undamped pinned-

sprung rotor in each of the and yz planes are considered, giving a total of = 8 modes. 

Hence, the modal coordinate vector q (eq. (5.29)) and matrix D (eq. (5.31)) are written as 

Q = L I ( 7 . 9 ) 

D = d i a g k 6)̂ , o f , (7.10) 

The modal equations (5.32) hence reduce to 

= &^Q, + (7.11a) 

wherer = 1...4 (7.11b) 

In the above equations, , r = 1...4 are the natural frequencies in the xz and yz planes 

respectively and are the corresponding mass-normalised mode shapes, evaluated 

at position P in the x and y directions respectively. Note that and The 

first two mode shapes in each plane have already been illustrated in Figure 7.4. For the 

computation of the instantaneous SFD forces Q^, Q , the instantaneous non-linear degrees 

of freedom, measured from the housing centre B (i.e. X j , Yj in eq. (7.2)) are required. The 

vector of eq. (7.2) is expressed in terms of the modal coordinate vector q of eq. (7.9) by 

the reduced transformation = Hp,q (eq. (5.34)). The reduced modal matrix (eq. 

(5.33)) is given by the 2x8 matrix: 
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H, 
0 

I ) 

,(>1) 

0 
(7.12) 

where ± e columns define the modes of ± e rotor, alternately in the and yz planes. 

The evaluation of the modal parameters of the rotor is described in Appendix A3, 

sections A3.1, A3.2. The natural frequencies are determined from the mechanical impedance 

frequency response functions. The required mode shapes are then determined by Otting 4 

modes to the exact receptance function (computed by MI) using a truncated modal 

series expansion for [47]. In Figure 7.7 the exact receptances CKyy(G)), 

computed by MI, are compared with approximate ones, reconstructed from the first 4 modal 

terms in their series expansions. It is evident that excellent agreement prevails over a 

frequency range of 0-500 Hz, covering 5 harmonics of the top rotational speed of the rig (100 

rev/s). 

Equations (7.11) are ready for numerical integration from given initial conditions for the 

time domain response. Prior to integration, these equations are non-dimensionalised and 

expressed as a set of Hrst order differential equations, as illustrated in Appendix A4, section 

A4.1. The instantaneous x and y response at an arbitrary position P on the rotor is given in 

terms of the modal coordinates by the appropriate pair of rows of the full transformation 

u = Hq (eq. (5.28)), and thus necessitates the computation of , r = 1.. .4. 

For stability and bifurcation analysis of the RHB response, the matrices df^/du^ , 

in the expression for W(r) (eqs. (5.44), (5.45)) are required. From eqs. (7.1) and 

(7.2) these are given by 

A S / 

A X . A Z ; A Y ; 

9 ( 2 , ' A U N A S . 

[ A X ; A Y ; J 

(7.13a,b) 

where ( ) is T =QTf (07 rad/s being the fundamental frequency of the periodic 

solution). The partial derivatives in eqs. (7.13) are evaluated numerically at the RHB-

computed periodic solution from the expressions for in eqs. (4.6a,b). The above 

expressions, along with the expressions for (eq. (7.12)) and D (eq. (7.10)) determine the 
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expression for W(r) in eqs. (5.44), (5.45), from which the monodromy matrix G of the 

periodic solution is computed, using eq. (3.22). 

The equations presented in this section are processed as discussed in section 5.7 of 

Chapter 5. 

7.3.3 Configuration B2 (no retainer spring) 

In this case, the linear subsystem is the rotor pinned at H and free at J. The piimed-free rotor 

is degenerate, having in each plane jcz, yz, one mode defining (non-oscillatory) pure rigid 

body rotation about the pivot H. In this situation, the static load of the rotor needs to be taken 

into account. The zero frequency components of the forces on the vibrating rotor are in a 

state of static equilibrium, as explained in Chapter 5 (end of section 5.3). Since this zero 

frequency equilibrium problem is statically determinate, the distributed rotor weight can be 

replaced by an equivalent concentrated load at J, equal to W, where 

(7.14) 

where is the total rotor weight, is the distance of the rotor mass centre G from the 

pivot H, and is the distance between H and J. Accordingly, the equations in the previous 

section 7.3.2 are modified as follows: 

- The vector is omitted. 

- The zero frequency RHB equations (7.7al,a2) are replaced by the following static 

equilibrium equations at zero frequency (obtained by taking moments about H): 

6 ^ = 0 , <2,-W = 0 (7.15al,a2) 

If required, the zero frequency Fourier coefficients in eqs. (7.8) can be found by 

considering the straight line joining the pivot H to the mean position of J, X j , Yj. The 

reason for this is that, with the equivalent static load system, the only zero frequency 

forces acting on the rotor are concentrated at H and J, producing no deformation. To 

obtain the precise zero frequency shape of the rotor in the yz plane, one needs to 

superimpose (on this undeformed straight line) the static deflection curve of the rotor 

supported at H and at the mean position of J, due to the distributed weight. However, this 
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refinement is unnecessary since it has no effect on the mean position of J, which is the 

only zero frequency component of vibration that is of interest. 

- An additional term, equal to , is added to the right hand side of eq. (7.11b) to 

account for the static load. 

For the time domain equations of motion, 4 modes of the pinned-free rotor are taken in 

each of the zz and planes. This number includes the rigid body mode i.e. 6), = 0 . 

The modal parameters are given in Appendix A3, section A3.2. Figures 7.8(a,b) compare the 

exact receptances computed by MI, with approximate ones, reconstructed 

from the Arst 4 modal terms in their series expansions. As for conAguration Bl, excellent 

agreement prevails over a A-equency range of 0-500 Hz, covering 5 harmonics of the top 

rotational speed of the rig (100 rev/s). 

7.4 EXPERIMENTAL WORK 

For configuration Bl (retainer spring fitted), the static eccentricity » 

of the journal centre J from the bearing housing centre B was set by loosening the screws 

bolting the housing (7) (Figure 7.1) to the frame. A small clearance in the screw holes of the 

housing allowed its position to be adjusted prior to retightening. The static eccentricity 

adjustment was complicated by a static run-out of the shaft. By rotating the shaft slowly by 

hand and using a micrometer dial indicator with its stem pressed to the shaft at M, and at 

locations as close as possible to J and U, it was found that the amplitude of the fluctuation in 

the reading was 0.015, 0.022 and 0.05 mm respectively, for the y direction. The run-out in 

the X direction was considerably less. The run-out at J was confirmed by the readings of the 

displacement transducers (see Figure 7.2). This meant that the run-out was not due to lack of 

roundness of the shaft surface since the displacement transducers at J were aimed at 

projections on the journal rather than at the shaft. This also meant that the static eccentricity 

of J was different for different angular positions of the shaft. At first this appeared unusual 

since the shaft was pivoted at H and, regardless of whether the shaft was distorted (due to the 

machining process, gravity, and temperature), the restoring force from the retainer spring 

should have maintained J at a fixed position within the clearance. The most likely 

explanation is that the distortion of the shaft resulted in angular misalignment of the hubs at 

the flexible drive coupling, resulting in a slight restraining torque that varied with the angular 

position of the shaft. This slight restraint was thought to affect the position of J, considering 
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the low stillness of the retainer spring (123.4 kN/m). In view of this problem, the 

eccentricity was adjusted in the vertical and horizontal directions for each of four angular 

positions (0°, 90°, 180°, 270°) of the shaft. For each direction %, y, the average eccentricity 

over the four angular positions was brought as close as possible to the desired eccentricity in 

that direction. The static eccentricity was rechecked after each experiment, when the rig was 

hot. Details of the static eccentricity adjustment are found in Appendix A5, section A5.2. In 

the investigations carried out, the static eccentricity was entirely in the y direction. 

In the experiments for conAguration B2, the retainer spring was removed and the 

arrangement in Figure 7.3 was used. 

The displacement transducers at J, U and M were connected through voltage amplifiers to 

a PC-operated f .HP 35650'̂  spectrum analyser, which was set to acquire data 

in the form of a time history. The vibration data in the x and ); directions were obtained for a 

given unbalance at U and fixed oil supply pressure over a range of speeds (10-100 rev/s) in 

steps of 2 rev/s. The rotor speed was measured using an optical sensor and the observed 

fluctuation in speed over each acquisition was within ± 0.5 rev/s. Instrumentation details are 

found in Appendix A5, section A5.1. For the SFD location (J), the mean component of the 

displacement response relative to the static position was of interest. In view of the variable 

nature of the static position in configuration Bl, the method described in Appendix A5, 

section A5.3, was used. The time capture length of the vibration data was usually 0.5 s, but 

was increased to 2 s as required. The data were converted from standard format to MATLAB® 

format for time and frequency domain analysis. 

7.5 RESULTS AND DISCUSSION 

In this section, theoretical and experimental results are presented and discussed. In the 

theoretical treatment no attempt is made to compensate for the small residual unbalance left 

after the rig was balanced when first commissioned. The residual unbalance response was 

investigated experimentally in [64] and found to be adequately small. In the theoretical 

treatment, unless otherwise stated, the cavitation pressure = —101.325x10^ Pa. 
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7.5.1 ConjRguration B1 (retainer spring Gtted) 

The oil used in this conGguration is the thinner oil C) and the supply 

pressure is fixed at 1 bar. As mentioned in ±e previous section, the static eccentricity is 

entirely in ±e direction. 

The choice of the number of harmonics m to use in the T-periodic RHB solution (i.e. 

# = 1 in eg. (5.8b)) is first considered. Figure 7.9 shows an example of how the RHB 

solution converges to the time-marching (modal numerical integration) result as m is 

increased from 1 to 5. It is seen that the inclusion of further harmonics in the RHB solution 

is unnecessary. It is worth mentioning that the RHB solution uses exact receptances (no 

modal truncation). Hence, the agreement between the RHB and modal numerical integration 

results is also a check on the adequacy of the number of modes used in the latter method. 

The example in Figure 7.9 illustrates the varying influence of the harmonics (which in this 

case are integer EOs, where lEO ("engine order") represents the synchronous frequency 

component) on the orbital distortion at the three locations J, U and M. It is seen that, while 

the presence of these integer EOs is a symptom of the non-linearity of the system, the orbital 

distortion they produce does not necessarily manifest itself significantly at the actual source 

of the non-linearity (i.e. at J). In the example shown, the transfer receptance function linking 

M to J amplifies the responses at M to the individual harmonic components of the SFD forces 

at J. The high degree of correlation between the T-periodic RHB solutions with m - 5 and 

the numerical integration results over the entire operating speed range is illustrated in the 

speed response curves of Figure 7.10 for =-0.8 and U = S.lxlO'^kgm. The vertical 

axes show the displacement amplitude normalised with respect to the radial clearance c. In 

this thesis, the displacement amplitudes in the JC and Y directions are invariably defined as half 

the peak-to-peak fluctuation in the respective displacement time history. The state of 

stability of each RHB solution, computed by Floquet analysis, is indicated according to the 

legend in the figure caption. Arc-length continuation is used to trace out the RHB solution 

curve, so the rotational speed corresponding to each solution is not pre-selected, but comes 

out as part of the solution process. On the other hand, the time-marching results are 

performed at discrete pre-selected speeds, in steps of 2 rev/s, and the corresponding solution 

points are not joined in Figure 7.10 for emphasis. For each speed, the initial conditions for 

the time-marching solution were equilibrium conditions on the corresponding T-periodic 

solution, obtained by modal decomposition of the RHB # = 1, m — 5 solution at that speed 

(see eqs. (5.47a,b)). The time domain solution was then continued well into the steady-state 
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phase. In Figure 7.10 it is seen that excellent agreement is achieved between the stable RHB 

solutions and the time-marching results. According to the Floquet analysis results, in the 

range 32-35 rev/s, the 7-periodic RHB solutions are unstable as a result of a secondary Hopf 

bifurcation, so the (stable) time-marching result at 34 rev/s does not agree with the (unstable) 

RHB # = 1 result at this speed. Figure 7.11 shows the evolution of the time-marching 

solution at 30 rev/s, for which the RHB ^-periodic solution is stable. The slight initial 

perturbations in Figures 7.11(al-a3) are attributed to slight errors in the initial conditions. 

These perturbations rapidly die down and the time-marching trajectory remains closely 

matched with the T-periodic RHB solution, verifying that it is indeed an attractor. Figure 

7.12 considers the evolution of the time-marching solution at 34 rev/s, where the T-periodic 

RHB solution is unstable. As can be seen, the time-marching result evolves into quasi-

periodic motion, confirming the Floquet stability result. Figure 7.13 shows the Poincare map 

of the time-marching solution at the SFD. It is seen that, in the transient phase, the return 

points (in red) spiral out from the first one (the unstable equilibrium point E), consecutive 

points hopping from one spiral branch to the next. In the steady-state, the return points (in 

blue) drift around a fixed closed curve, no point ever quite coinciding with another. This 

indicates 2-frequency quasi-periodic motion. From the discussion in Chapter 3 (section 

3.2.3), the presence of 4 spiral branches in the transient phase indicates that the non-

synchronous fundamental is related to the original (synchronous) fundamental (= 

lEO) by the relation /g =(^/4)/, where k is some positive integer and the ratio k/A is 

reduced to its lowest terms. In fact, as shown in the frequency spectra of the steady-state 

quasi-periodic motion of J at 34 rev/s (Figure 7.14), /g = 9 H z (i.e. /p « f j A ) . It is also 

seen from these spectra that all frequency components can be expressed as combinations 

^o/o +^i/i where A:;,, A:, are integers. 

Figure 7.15 shows the variation of the modulus of the leading Floquet multiplier for the 

T-periodic RHB solution for the static eccentricity and unbalance conditions considered in 

this discussion. It is evident that, as static eccentricity and/or unbalance is increased, there is 

a tendency for the T-periodic response to develop a region of instability. As shown in Figure 

7.16, this instability is the result of a secondary Hopf bifurcation (A, complex). The region 

of instability of the T-periodic solutions lies between the first pin-pin critical speed (-31 

rev/s) and the second undamped critical speed of the test rig (SFD unlocked, -40 rev/s), and 
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is closer to the former speed than the latter. This region is also particularly sensitive in that it 

is the zone of maximum amplitude, as shall be seen later in the amplitude-speed plots. 

In view of the results of Figure 7.15, the measured orbital motions (over 0.5 s) are 

investigated for the range 26-38 rev/s and compared with the T-periodic predictions. Figure 

7.17 refers to = -0.6 and U = 2.59xl0'^kgm and it can be seen that the measured orbits 

are periodic throughout the speed range under these conditions. Notice that, since the 

displacement probes at U were aimed at the disc rim, slight machining irregularities of the 

rim proRle resulted in slight glitches in the elliptical orbit measured at U. In Figure 7.18, 

which refers to the same static eccentricity value = —0.6) but twice the previous 

unbalance, aperiodic motion was measured for 32 and 34 rev/s. This is contrary to the 

stability prediction (Figure 7.15(b)) but is understandable, given the proximity of the peak in 

Figure 7.15(b) to the instability threshold and, more importantly, the difficulty in obtaining 

precise static eccentricity conditions due to the static run-out. As expected, the measured 

aperiodic motion becomes more widespread as the static eccentricity is increased to 

So,. = -0.8 at the same unbalance level (see Figure 7.19). The aperiodicity appears at around 

30 rev/s and stability of T-periodic motion is not restored until 38 rev/s. The region of 

instability is somewhat wider than predicted (32-35 rev/s). It is noted from the periodic 

orbits in Figure 7.18 at 26 and 30 rev/s, and those in Figure 7.19 at 26 and 28 rev/s, that the 

varying influence of the harmonics on the orbital distortion at the three locations J, U and M, 

predicted earlier in Figure 7.9, was indeed verified in the measurements. The outlines of the 

highly distorted measured orbits at M in Figure 7.18 for 30 rev/s and Figure 7.19 for 28 rev/s 

were correctly predicted with m = 5 harmonics in the RHB = 1 solution. Moreover, the 

RHB /V = 1 solution still gives a good prediction of the peak-to-peak displacement at those 

speeds for which the measured motion was aperiodic. 

The frequency content of the measured aperiodic motion for £o>. = - 0 8 is next studied. 

For this purpose, the data length is increased from 0.5 s to 2 s. Figure 7.20 shows the orbital 

motion at J, U and M over 2 s for two speeds, 30 and 34 rev/s. The ones for 34 rev/s are 

comparable to the time-marching prediction for the same speed (Figures 7.12(bl-b3)). The 

frequency spectra of the j component of the measured SFD motion at 30 and 34 rev/s are 

shown in Figure 7.21. In these spectra, the Manning window [47] is used to mitigate the 

leakage effect from adjacent frequency spikes. It is found that the salient peaks in the spectra 

of Figure 7.21 occur at combinations where Ar,,, are integers. For 30 rev/s 
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(Figure 7.21(a)), /g = l l H z and =30Hz (synchronous). For 34 rev/s (Figure 7.21(b)), 

/g =12.5 Hz and =34 Hz (synchronous). The 9 Hz frequency component predicted in 

Figure 7.14 appears in the measured spectrum of Figure 7.21(b) as - 2 / ^ rather than /(,. 

In fact, with reference to Figure 7.21(b): 9 = /̂  -2/1,, 12.5 = 21.5 = /i - / o ' 25 = 2/1,, 

34 = /;, 43 = 2 ( y ; - / J , 46 = y;+/o , 50 = 4/0, 68 = 2/1, 102 = 3/;. Thelobeat-17Hz 

( = / , / 2 ) is actually composed of a double peak, where each peak is a combination 

frequency. A double-peaked lobe centred at the lEO/2 location is also evident in Figure 

7.21(a) (30 rev/s) and in the predicted spectrum of Figure 7.14(b) (34 rev/s). In fact, due to 

the sum and difference nature of the frequencies, the sub-synchronous frequencies are 

symmetrically arranged around the lEO/2 location (i.e. the mean of and / - /o / ] / 2 , 

and so is the mean of / - 2 / 0 and 2/ ,) . The measured spectra of Figure 7.21 provide 

evidence that the measured Z-periodic motion for =-0 .8 , [/ =5.1xlO'^kgm underwent 

a secondary Hopf bifurcation at some speed between 28 and 30 rev/s. 

Attention is now focussed on the predicted and measured amplitudes in the x and y 

directions. The static eccentricity and unbalance conditions considered are those indicated in 

Figure 7.15. For the condition =-0 .8 , (/ =5.1xl0^kgm, the maximum change in 

amplitude, as a result of the instability of the ^-periodic RHB solutions in the range 32-35 

rev/s, is at 34 rev/s, and, as seen in Figure 7.10, this change is not that great. Hence, for the 

purposes of this part of the discussion, the issue of stability is ignored and the RHB = 1 

predictions are used throughout. 

The predicted and measured amplitude-speed plots are shown in Figures 7.22-7.25. In 

addition to the lower pressure limit of = -101.325x10^ Pa, another set of T-periodic 

RHB solutions was generated by taking = —00 (no lower pressure limit imposed i.e. a full 

film at the SFD under all conditions). The predictions obtained with p^ = -101.325x10^ Pa 

are referred to here as the "absolute zero cavitation" results, while those obtained with 

p^ = are referred to as the "full film" results. Those regimes of operation for which 

cavitation occurs are identified by those regimes for which divergence occurs between the 

speed response curves obtained by the two different values of p^. The reason for this is that 

the divergence would be the result of the minimum oil film pressure in the full film model 

going below absolute zero. In this way, one can study the influence of static eccentricity and 
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unbalance on cavitation within the SFD at a fixed supply pressure (1 bar) and observe how 

the cavitation affects the predicted vibration levels. 

Figures 7.22(a,b) show the vibration levels at the SFD for the static eccentricity of 

= -0.6 and the lower unbalance ([/ = 2.59x10"^kgm). It is clear that both the absolute 

zero pressure cavitation model and the full film model yield virtually identical results, 

indicating that negligible cavitation is predicted under such conditions. The predictions for 

the vibration levels at the other locations of the rotor are consequently very close for both 

models (Figures 7.22(c-f)), with maximum divergence being registered at the disc position 

(U) in the y direction (Figure 7.22(d)). Note that in Figures 7.22(a,c), which refer to the % 

direction (for which the SFD is centralised), two maxima are observed in both measurement 

and prediction. The lower predicted maximum is less defined, especially for the SFD % 

vibration. Figure 7.22(a). These maxima may be related to the undamped natural frequencies 

of the test rig (14, 40 rev/s). In the direction (for which the SFD is offset), Figures 

7.22(b,d,f), the first maximum is entirely absent from the prediction, while the second one is 

predicted at a lower speed (around 32 rev/s). Hence, the predicted behavior in the y direction 

is more akin to the pin-pin configuration of the test rig (i.e. with SFD locked, where the first 

critical speed is 31 rev/s). Figure 7.23 shows the effect of doubling the previous unbalance to 

[/=5.1xlO'^kgm for the same static eccentricity condition of eoy=-0.6. Large 

discrepancies emerge between the cavitated and uncavitated model predictions within the 

range 28-36 rev/s. As previously discussed, this means that within this speed range, in the 

full film model, the oil film supports a region below absolute zero pressure (i.e. absolute 

tension) and hence cavitation occurs in the absolute zero cavitation model. Within the zone 

of maximum amplitude, 30-34 rev/s, the full film model predicts extremely high vibration in 

the y direction at positions other than the SFD (i.e. at U and M), which were not verified in 

the measurement. In the x direction, the uncavitated predictions for the vibration at U and M 

are extremely large in the immediate vicinity of 31 rev/s. Figure 7.24 shows the vibration 

levels for the higher static eccentricity of gg =-0 .8 and the lower unbalance 

(U = 2.59xl0^kgm). This figure is included for completeness. Of more interest is Figure 

7.25, which shows the effect of employing a static offset of = -0.8 at the higher 

unbalance {U = 5.1x10^kgm). Large differences between the two SFD models now emerge 

not just in the 27-37 rev/s zone, but for the y direction especially, above 70 rev/s (Figures 

7.25(b,d,f)). This implies an additional predicted cavitation regime. 
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From the full film unbalance response predictions in Figures 7.23-7.25, it is evident that 

as the static eccentricity and/or unbalance is increased, an uncavitated SFD (i.e. a full film) 

would cause the rotor to behave in certain speed ranges as though it were pinned at the SFD 

journal J. This tendency is especially strong in the y direction at the higher offset of 

= -0.8 : the critical speeds tend to 31 rev/s for = -0 .6 , and 31 rev/s and 91 rev/s for 

= -0.8. However, cavitation in the SFD around these speeds mitigates this effect and 

maintains the predicted vibration within acceptable limits at all positions along the rotor. In 

the case of the offset condition = -0.8, cavitation completely attenuates the predicted 

peak at the second pin-pin critical speed of 91 rev/s (Figure 7.25(f)), which agrees more 

closely with measurement. The reason for this striking difference in vibration amplitudes 

predicted by the two SFD models is a direct consequence of the centralising effect cavitation 

has on the SFD journal. A direct consequence of cavitation in an eccentric damper is the 

steady component of displacement it produces counter to the direction of the static offset. 

The example of Figure 4.4 (Chapter 4) indicates that an uncavitated squeeze film that is 

unsupported by a parallel retainer spring cannot produce a sustained lift to counter the gravity 

load. In the present case, the full film model does not produce any lift (of the mean position 

of vibration) from the statically offset position of J. Hence, as the static eccentricity and/or 

unbalance are increased, the vibration is limited by the clearance circle (i.e. there is less room 

for vibration) and the SFD forces become very large, especially in the y direction (the 

direction of the offset), but also at the limits of the x vibration. These large SFD forces 

would render the SFD ineffective, and the resulting effect at the other locations M and U 

would approach that obtained by locking the SFD. However, in the present case, this adverse 

effect is prevented by the centralising effect of cavitation. Figure 7.26 shows the variation of 

the mean j displacement at the SFD (i.e. Yj jc in eq. (7.3b)) with rotational speed for four 

different conditions. It is clear that, under all conditions, the full film model produces no lift 

from the static position. On the other hand, the cavitation regimes are clearly defined by 

those speed ranges where the absolute zero pressure cavitation prediction rises from the static 

position. The measurements in Figure 7.26 follow the trend predicted by the absolute zero 

pressure cavitation model. In fact, approximately over the cavitation regimes predicted in 

Figure 7.26, pinhole bubbles were observed within the oil flowing out of the damper, 

indicating cavitation, and these observations tend to agree with those made in a previous 

investigation [64]. 
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It is noted that Figures 7.23(a,b), 7.24(a,b), and Figure 7.25(a) indicate that the amplitude 

at the SFD in the immediate vicinity of 31 rev/s (first pin-pin critical speed) is greater with 

the full film than with the cavitated film. This may at first appear to contradict previous 

studies [11]. However, it is important to note that studies like [11] were restricted to rigid 

rotors. To the author's knowledge, this is the first time that comparisons have been made 

between cavitated and uncavitated SFDs interacting non-linearly with a flexible rotor. 

However, it is noted that this effect is restricted to an extremely narrow speed range centred 

at 31 rev/s. In fact, a similar effect would be obtained if the SFD and retainer spring were 

replaced by a very large but still finite sti%iess: since the stiffness is Anite, the node will not 

be located exactly at J and, in the absence of any other damping in the system, a spike at 31 

Hz would appear in the transfer receptance function linking J to U. It is also worth 

mentioning here that all the full film RHB N = 1 results shown in Figures 7.22-7.26 tested 

positive for stability (with the Floquet test). However, it is noted that those solutions at the 

very tip of the spikes at 31 rev/s in Figures 7.23(a,b)-7.25(a,b) were on the verge of 

instability. 

In Figures 7.22-7.25, the very low level in the SFD vibration at 50-52 rev/s corresponds 

to the anti-resonance at 52 Hz in the calculated transfer receptance function between J and U 

for the linear subsystem (i.e. a j^ (co) in Figure 7.7(b)). At 50-52 rev/s, the measured orbit at 

J is practically a "dot" of amplitude that is much less than the static run-out there. This 

indicates that the run-out at J has little or no effect on the alternating part of the displacement 

i.e. the run-out is a purely static or, at worst, a low frequency (quasi-static) phenomenon. 

The position of this dot within the clearance circle corresponds to the static eccentricity 

setting (which was averaged over four angular positions of the shaft in cold and hot 

conditions), as seen in Figure 7.26. 

The results in Figures 7.22-7.26 show that, overall, the assumption of film rupture at 

absolute zero pressure gives satisfactory predictions for the vibration levels. Unfortunately, 

the limitations of the test facility did not allow the tests to be repeated at higher supply 

pressures. However, the present theoretical study highlights the beneficial effect of 

cavitation in maintaining the critical vibration amplitudes at U and M at a safe level for a 

supply pressure of 1 bar under conditions of high static eccentricity and unbalance. Hence, it 

is not advisable to increase the supply pressure and consequently, suppress cavitation, under 

such conditions. 
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7.5.2 Configuration B2 (no retainer spring) 

In the first part of this section, the same oil used In configuration B1 (i.e. 

yZwfcf Q is used. The experimental results are obtained from [64] and the supply pressure is 

slightly higher (1.2 bar). 

Figure 7.27 shows the amplitude-speed plots obtained with the higher unbalance 

([/ = 5.1x10^kgm), upon removing the retainer spring. The predictions are RHB N = l, 

m = 5 . The state of stability of each such T-periodic solution, evaluated by Roquet analysis, 

is indicated in the figure caption. Beyond -82 rev/s, the T-periodic solutions become 

unstable as a result of a secondary Hopf bifurcation. Hence, the steady-state time-marching 

solutions for 82-100 rev/s are also included in blue in Figure 7.27, for discrete speeds, in 

steps of 2 rev/s. The initial conditions for each time-marching solution were obtained from 

the final ones of the solution at the previous speed and the integration was continued well 

into the steady-state phase. The following observations can be made of the results in Figure 

7.27: 

(a) At the SFD, in the j direction especially, there is hardly any vibration except in the 

regions around 31 and 90 rev/s. These speeds correspond to the first two undamped pin-

pin critical speeds. The measured values for the half peak-to-peak displacement at J in 

the J direction around both pin-pin critical speeds, and in the % direction, around the first, 

are actually greater than the radial clearance. In [64], this was attributed to the anti-

rotation mechanism for the journal not functioning properly. In fact, only one of the two 

anti-rotation bolts shown in Figure 7.3 had been used in [64]. Figure 7.28 shows that the 

mean position of the T-periodic solutions only lifts off from the base of the clearance in 

the vicinity of the pin-pin critical speeds. The lift-off at the first critical speed is sudden. 

The lift-off of the T-periodic solutions around the second critical speed is more restrained. 

However, it should be noted that beyond -82 rev/s these ^-periodic solutions are 

unstable. The stable motion in this region is discussed later. The amplitude 

measurements in Figure 7.27 indicate that the actual lift at the SFD was as predicted. 

However, the mean ("dc") component of the SFD vibration was not acquired in [64]. 

(b) Around the first pin-pin critical speed (31 rev/s), the predicted speed response curve of T-

periodic solutions is very complicated, with a multiplicity of solutions, some of which are 

stable, some unstable. This is also seen in Figure 7.29(a), which shows the corresponding 

variation of the modulus of the leading Floquet multiplier with rotational speed. In 

Figure 7.30, a ^-periodic RHB solution at 31 rev/s that was found to be stable by Floquet 
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analysis is checked by time-marching from initial conditions on it. For accuracy, the 

number of harmonics m of the RHB solution is increased to 8. In Figure 7.30(a) it is seen 

that considerable initial perturbations are obtained. However, these are not attributed to 

instability of the orbit, but to errors in the initial conditions, that were obtained by modal 

decomposition of the RHB solution (eqs. (5.47a,b)). In fact, these perturbations 

disappear in Figures 7.30(bl-b3). 

(c) The RHB-computed T-periodic solutions outside the critical speed regions are marked as 

stable in Figure 7.27. Actually however, they are mainly on the verge of instability, as 

seen in Figure 7.29(a), and, as seen in Figure 7.29(c), is complex in these regions. 

The reason for this is that the SFD journal J is at the bottom of the clearance in these 

regimes and so, the damper is ineffective. Since the SFD is the only source of damping 

in the model, any perturbation of the T-periodic solutions would lead to a practically non-

decaying transient at one or more of the pin-pin natural frequencies, which combines with 

the r-periodic motion to form quasi-periodic motion. 

(d) The overall trend in the measured amplitude-speed plots of Figure 7.27 is correctly 

predicted. However, speed-for-speed agreement in amplitude is unattainable for the SFD, 

and, beyond 82 rev/s, for all locations J, U, and M. This is due to the uncertainty in the 

oil film conditions that is inherent in unsupported dampers, especially when no dynamic 

oil film pressure measurements are made. Nonetheless, in the following discussion it is 

seen that the predicted stable motion beyond 82 rev/s has an orbital structure and 

frequency content that is similar to the measurement 

As mentioned earlier, the ^-periodic RHB solutions become unstable at some speed 

between 82 and 84 rev/s as a result of a complex-conjugate pair of leading Floquet 

multipliers A,, A' escaping the unit circle simultaneously (Figure 7.29). However, beyond 

this bifurcation point, there exists a small segment of unstable ^-periodic solutions in the 

range 85-87 rev/s (segment AB in Figure 7.27(b)) for which is real and negative, as seen 

in Figures 7.29(b,c). In Figure 7.31, by time-marching from initial conditions on the unstable 

T-periodic solution at 86 rev/s, it is verified that there is no error in the associated value of 

Xf. In the initial stages of the time-marching solution (Figure 7.31(a)), the transient 

trajectory does indeed show a tendency to period-double, as can be seen from the 

corresponding Poincare map of Figure 7.31(b) where successive return points diverge from 

the first one E (E lies on the unstable T-periodic orbit) by flipping on either side of it, 

approximately along a straight line (as in Figure 3.2(b) of Chapter 3). However, this 
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behaviour is only local to the vicinity of the unstable T-periodic orbit and no stable 27-

periodic orbit develops in the steady state (Figure 7.31(c)). 

The predicted transition from T-periodic to aperiodic motion over the sensitive range 82-

84 rev/s is quite sudden, as can be seen in Figure 7.32(a), which shows the steady-state time-

marching solution at the SFD at 84 rev/s. The measured orbit. Figure 7.32(b), is remarkably 

similar in structure. This similarity also extends to the frequency spectra in Figure 7.33. 

These spectra show combination frequencies +^1/, where A:;,, are integers, is the 

lEO frequency component and /o is approximately the first (pin-pin) critical speed (31.2 

rev/s). The predicted value of agrees with the measured value to within the frequency 

resolution of the spectrum (2 Hz). Figures 7.34(a,b) show the Poincare maps of the steady-

state predicted SFD orbit at 84 rev/s over consecutive intervals of 80 and 160 shaft 

revolutions. It is seen that the general form of the map is repeatable, but it is not the usual 

simple closed curve one expects from a 2-frequency quasi-periodic solution. The question of 

whether the predicted motion at 84 rev/s (Figure 7.32(a)) is indeed pure 2-frequency quasi-

periodic motion or has already descended into a mild form of chaos is purely academic. In 

the spectra of Figure 7.33, the frequency components y,,, - / o , / , + /o , and 2/^ - / o 

loosely approximate to lEO/3, 2EO/3, 4E0/3, and 5EO/3 respectively. These frequency 

components give the Poincare maps of Figure 7.34 the approximate triangular shape. At 86 

rev/s, the predicted orbital motion locks into 3r-periodic motion, as shown in Figure 7.35. 

Also included in this figure is the SJ-periodic RHB solution. It is seen that satisfactory 

correlation is maintained between the RHB and modal numerical integration results. In 

Figure 7.36, the Poincare map of the predicted SFD orbital motion at 86 rev/s is seen to have 

degenerated into three points, situated approximately at the vertices of the Poincare map at 84 

rev/s (Figure 7.34(b)). 

Figure 7.37 shows predicted and measured waterfall diagrams of the frequency spectra of 

the X and } vibrations at the three locations J, U, and M. The predicted diagrams were 

constructed entirely from steady-state time-marching solutions. No solutions were performed 

below a speed of 24 rev/s due to the insufficient lift at the damper. It is seen that overall 

correlation with experiment is good. In particular, frequency components that either equal or 

approximate to integer multiples of lEO/3 are prominent in both measured and predicted 

spectra of the ); component of the motion at J (Figures 7.37(bl,b2)). From Figure 7.29(a) it is 
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predicted that stability of T-periodic motion is restored at some speed beyond 100 rev/s. 

However the study was only performed up to 100 rev/s. 

It is evident from the above that the performance of the unsupported SFD when used in 

this flexible rotor system is much worse than that of a badly centralised sprung SFD. In the 

following part of the discussion, the performance of the unsupported SFD with a thicker 

lubricant is investigated for the same unbalance = 5.1xl0^kgm. The lubricant (5'AgZZ 

/(lO) has an average viscosity of around 2.6 times that of the previous oil. The supply 

pressure remains approximately the same at 1 bar. The aims of this investigation are to note 

any improvements in performance, and to confirm any of the interesting non-linear features 

previously observed with the thinner oil that recur with the thicker oil. The time record 

length of the experimental data acquisition is increased from 0.5 s to 2 s for a more in-depth 

analysis. An improved anti-rotation device is used for the journal, with two anti-rotation 

bolts instead of one (Figure 7.3). 

Figure 7.38 shows the predicted and measured speed response curves for the amplitudes 

at the SFD (J) and mid-shaft (M). As before, the time-marching solutions for 82-100 rev/s 

are included (in blue). No measurements were performed at the disc position to avoid 

potential damage to the transducers. It is seen that the overall performance is still essentially 

the same, although the performance at the SFD around the pin-pin critical speeds is 

marginally improved. In the first pin-pin critical speed region, the multiplicity of ^-periodic 

RHB solutions obtained with the thinner oil has been totally eliminated and the only region 

of instability there is a narrow quasi-periodic zone. Figure 7.39 shows the orbital motion at 

the sensitive speed of 32 rev/s; it is seen that the predicted (numerical integration, steady-

state) and measured orbits are similar. Referring back to Figure 7.38, it is seen that, in the 

second pin-pin critical speed region, the secondary Hopf bifurcation of the T-periodic 

solutions still occurs between 82 and 84 rev/s, but the stability of T-periodic motion is 

predicted to be restored by 100 rev/s. This is illustrated in Figure 7.40, which shows 

predicted (stable) and measured orbits in the sensitive range 76-100 rev/s over an interval of 

2 s. The predicted orbits show that the transition from ^-periodic to 2-frequency quasi-

periodic motion between 82 and 84 rev/s is smoother with the thicker oil than with the 

thinner oil (compare the predicted SFD orbit at 84 rev/s in Figure 7.40 to the one in Figure 

7.32(a)). In Figure 7.40 it is seen that the predicted motion still locks into ST-periodic 

motion at 86 rev/s and remains so locked until some speed between 92 and 94 rev/s. The 

predicted orbits at 94 rev/s appear to be chaotic. Stable ^-periodic motion is predicted to be 
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restored by 100 rev/s. The measured orbits evolve in a similar manner. However, the 

bifurcation of the T-periodic motion into quasi-periodic motion occurs somewhat earlier 

(between 76 and 78 rev/s). In Figure 7.40, the measured orbits for 90-94 rev/s are locked into 

37-periodic motion over most of the acquisition time. The 37-periodicity is evident by the 

triple-looping of the measured orbits at M. Particularly at the SFD, the measured motion at 

these speeds unlocks from the BT-periodic orbit for short parts of the acquisition time. This 

is likely to be the result of slight jolts from the anti-rotation bolts (Figure 7.3). The "periodic 

part" of the measured orbits at the SFD for 90-94 rev/s is similar to the predicted 3r-periodic 

SFD orbits at 86 and 90 rev/s. As predicted, the measured orbits at 100 rev/s are seen to be 

approximately T-periodic. 

Figure 7.41 shows the evolution of the Poincare maps of the predicted stable SFD orbits. 

The map in Figure 7.41(d) shows that the predicted orbits at 94 rev/s are indeed chaotic. 

Figure 7.41 indicates that this type of motion was arrived at through the quasi-periodic 

frequency-locking route. That the secondary Hopf bifurcation (between 82 and 84 rev/s) is 

smoother with the thicker oil is highlighted in Figures 7.41 (a,b): the single dot at 82 rev/s 

evolves into the simple triangular closed curve at 84 rev/s. The map in Figiure 7.41(b) 

contrasts with that in Figure 7.34(b). Despite the difference in Poincare maps, the structure 

of the frequency spectrum of the predicted stable SFD orbital motion at 84 rev/s is essentially 

the same for both oils, as can be seen by comparing Figure 7.42(al) with Figure 7.33(bl). 

The same can be said of the frequency spectrum of the measured SFD orbital motion in 

Figure 7.42(a2) (which is similar to that in Figure 7.33(b2)). In Figures 7.42(al,a2) it is 

again seen that is close to the first pin-pin critical speed and the difference in the 

predicted and measured value of /g is within the frequency resolution (0.5 Hz). Frequency-

locking into 3r-periodic motion is clearly evident in the predicted and measured spectra of 

Figure 7.42(bl,b2) (for 90 rev/s). 

Figure 7.43 shows predicted and measured waterfall diagrams for the % and y vibration at 

J and M. The predicted diagrams were efficiently constructed from the RHB N - I , m = 5 

solutions for those speed regimes for which T-periodic motion was predicted to be stable, and 

from the steady-state time-marching solutions for the remaining speed regimes. The 

correlation with measurement is good and frequency components that either equal or 

approximate to integer multiples of lEO/3 are evident in the region of the second pin-pin 

critical speed. As can be seen in Figure 7.44, the non-integer EOs are mostly eliminated 
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upon halving the unbalance (note that the predictions in Figures 7.44(al,bl) are only 

performed for 84 to 100 rev/s). This feature was also observed with the thinner oil [64]. 

In the measured waterfall diagram of Figure 7.43(d2), it is noted that there exists a strong 

2EO frequency component in the y vibration at M at a speed of 44 rev/s. This 2E0 

component corresponds to the second pin-pin critical speed, measured at 88 rev/s [21]. 

Hence a sub-critical super-harmonic resonance occurs at 44 rev/s. This resonance is absent 

from the corresponding prediction, Figure 7.43(dl). The phenomenon of sub-critical super-

harmonic resonance in an unsupported SFD was introduced in the preceding chapter, where 

the phenomenon was associated with bilinear oscillator effects in a contacting rotor-stator 

system, studied by Ehrich [40, 41] using a piecewise-linear spring model. In Chapter 6, it 

was shown that, for the case of an unsupported SFD in this condition: (a) the SFD journal J 

lies at the base of the clearance circle (centre B); (b) there is a slight relative vibration 

between J and B; and (c) the absolute vibration of B (or J) in the direction has a significant 

A:EO frequency component, where ^ is a positive integer and A:EO is approximately equal to 

the undamped critical speed with the SFD locked. For the present study, k-2 and it was 

postulated that slight absolute vibration of the bearing housing B (and J, since the relative 

vibration between J and B is minimal at 44 rev/s, especially in the j direction) with a 

significant 2EO frequency component was inducing a strong component of vibration of the 

shaft in the second pin-pin mode (i.e. slight excitation of the piimed support at J in Figure 

7.5(b) at around the second pin-pin frequency). Since the model used so far in this chapter 

assumes a rigid bearing housing, this effect could not be predicted in the waterfall diagram of 

Figure 7.43(dl). This hypothesis was tested by repeating the RHB N = l calculations for the 

range 40-50 rev/s, taking into account an assumed flexibility of the bearing housing. This 

involved the addition of the following extra set of equations to the existing set (which is 

defined by eqs. (7.15al,a2), (7.7bl,b2), (7.7cl,c2)): 

(7.16al,a2) 

J = !.../» (7.16bl,b2) 

^ = (7.16cl,c2) 

The above equations are taken from Chapter 6 (eqs. (6.8dl,d2-fl,f2)). In these equations 

Xg, <2^, .... etc. are the Fourier coeHicients of the absolute displacements of B, Xg, Yg . 
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As in Chapter 6, the SFD forces (which, under such conditions, very nearly reduce to contact 

forces) were calculated &om eqs. (4.6a,b) with = Xy - - Fg. Since the 

significant harmonics involved in the RHB solution were well below the first natural 

frequency of the support structure, the support structure receptances at B, 

respectively, where are the equivalent stiffness values at 

the bearing housing in the jc and y directions respectively. It was assumed that 

=10^ N/m. This stiffness value was su^ciently low to avoid aggravating the ill 

conditioned nature of this problem (since = Zg, Tg in this problem). It was also 

sufficiently high to have little effect on the second pin-pin mode. In fact, the predicted 

second pin-pin frequency changed to 90.1 Hz (from 91.1 Hz) and there was practically no 

change in the mode shape of Figure 7.5(b) (other than the slight repositioning of the right 

hand nodes). Figure 7.45 shows the RHB = 1, m = 5 speed response curves for the y 

amplitude. It should be noted that, since Xj,Yj ~ X^,Yg, very small arc-length increments 

had to be used to avoid failure in the iteration (the arc-length increment used in this case was 

typically 10^, as opposed to the normal value of 10"'). The effect of the inclusion of the 

flexibility of B is the appearance of spikes at 45 rev/s in Figures 7.45(a-c). It is seen that 

resonant amplitude in the direction at B of less than 1 % of the radial clearance induces a 

corresponding peak in the y displacement at M but not at U. In fact, in the measurements of 

Figure 7.38(d), the peak in the y amplitude at M at 44 rev/s is observed, and in Figure 7.27 

this peak is again observed at M (Figure 7.27(f)) but not at U (Figure 7.27(d)). The most 

likely reason for this is that, in the second pin-pin mode, the vibration at M is twice that at U 

(Figure 7.5(b)). The predicted and measured orbits at M at the super-harmonic resonance are 

remarkably similar (Figures 7.46(bl,b2)) and have a shape that is similar to (though less 

"sharp" than) the sub-critical super-harmonic resonance orbit shown in Figure 6.13 (Chapter 

6). In Figures 7.47(a,b), the frequency spectra of the y components of the predicted and 

measured orbital motions at M reveal that, at super-harmonic resonance, the 2E0 frequency 

component is practically of the same strength as the lEO component. 

A feature that is also observed in the following chapter is that a sub-critical super-

harmonic resonance in an unsupported SFD becomes more prominent at lower levels of 

unbalance, standing out as a distinctive peak from the otherwise low level of the amplitude-

speed curve. Indeed, as long as the lift of the journal from the base of the clearance is 

minimal and provided the unbalance excitation can still maintain a slight wobble of the 
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journal relative to the housing, the piecewise-linear spring-like behaviour of the SFD appears 

to be independent of the unbalance level. The measurements of Figure 7.48 show the effect 

of halving the unbalance. It is seen that a distinctive spike at 44 rev/s is obtained in the 

amplitude at M (Figure 7.48(a)). Again, no corresponding spike is observed at U (Figure 

7.48(b)). The results in Figure 7.48 provide additional validation to the results in Figure 

7.45(c,d). Note that the results in Figure 7.48 are for the thinner oil. However, the value of 

the oil viscosity is most likely to be immaterial in this regime of operation. 

7.6 CONCLUSIONS 

In this chapter, the integrated model developed in Chapter 5 was applied to a test rig having a 

flexible rotor and one rigidly housed squeeze film damper (SFD). Two variations of the rig 

were considered. In one configuration (Bl) the SFD had a parallel retainer spring and the 

journal was statically offset in the housing, and in the other configuration (B2) the SFD was 

unsupported. In either case, the correlation between the three modelling blocks (i.e. 

receptance harmonic balance, modal Floquet stability analysis, and modal numerical 

integration) under conditions of multi-modal rotor vibration was found to be highly 

satisfactory. The integrated modelling approach was also generally successful in predicting 

and explaining the observed highly non-linear performance of the experimental rig. 

With reference to configuration B1 (retainer spring fitted): 

- Under conditions of high static eccentricity and unbalance, the T-periodic motion was 

found to become unstable for a range of speeds between the first pin-pin critical speed 

and the second undamped critical speed of the rig (with retainer spring). The frequency 

spectrum of the resulting stable motion was composed of combinations of two 

fundamental frequencies: one synchronous, and the other sub-synchronous. 

- For a fixed supply pressure, cavitation was promoted by increased static eccentricity 

and/or unbalance. For the configuration studied, the centralising effect of cavitation was 

seen to be beneficial in that it prevented excessive vibration along the shaft. Hence, for a 

statically determinate flexible rotor-rigid pedestal system with a SFD in one of its 

bearings it is not recommended to suppress cavitation by increasing supply pressure or 

removing dissolved air in the sump, under conditions of high static eccentricity and 

unbalance 

With reference to configuration B2 (retainer spring removed): 

- Lift-off at the damper was only achieved around the pin-pin critical speeds. 
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The T-periodic motion around the second pin-pin critical speed became unstable as a 

result of the emergence of a second fundamental frequency that approximates to the first 

pin-pin critical speed. Since the rotational speed approached three times this frequency, 

the salient frequency components approximated to integer multiples of lEO/3 and 

frequency-locking into ST-periodic motion occurred over a range of speeds. The 

likelihood that frequency-locking lead to the mild chaotic motion that was predicted at 

certain speeds was not formally investigated. 

The lack of lift at the SFD results in sub-critical super-harmonic resonance of the flexible 

rotor induced by slight vibration of the bearing housing. In such a condition, if the 

rotational speed is approximately equal to 1/A; times a pin-pin critical speed (A: being a 

positive integer) a relatively strong AEO frequency component develops in the slight 

vibration of the housing. This slight vibration then induces ^EO frequency components at 

locations P along the rotor, the strength of which depends on the amplitude at P in the 

excited pin-pin mode shape. In this work, this phenomenon has been verified for the case 

k = 2 and the second pin-pin critical speed. 

The main effect of increasing the oil viscosity by a factor of 2.6 on the predicted vibration 

was to eliminate the complicated behaviour around the first critical speed. The thicker oil 

also smoothed the secondary Hopf bifurcation in the second critical speed region and 

restored the stability of T-periodic motion at an earlier speed. However, the performance 

was still much worse than that of the badly centralised sprung SFD with the thinner oil. 

It is therefore not recommended to use an unsupported SFD in a bearing of a statically 

determinate flexible rotor-rigid pedestal system. In a statically indeterminate system 

(with three bearings), an unsprung SFD in one of these bearings would perform much 

better since it would be off-loaded by the other two bearings i.e. would not need to 

generate lift to support the static load in order to function. In such a case, with the 

terminology used in this thesis, the SFD would still be "unsprung" (i.e. has no parallel 

retainer spring) although it would not be "unsupported". 
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(1) Motor driven pulley (2) Flexible coupling 
(3) Self-aligning ball bearing (4) Shaft 
(5) Flexible bar x 4 (retainer spring) (6) Self-aligning ball bearing and damper journal (centre J) 
(7) Bearing housing (centre B) (8) Oil annulus (SFD) 
(9) Unbalance disc (10) Frame and bedplate 

Figure 7.1: Test rig for configuration B 
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Figure 7.2: Damper arrangement for configuration B1 {retainer spring fitted) 
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Figure 7.3: Damper arrangement for configuration B2 {no retainer spring) 
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Figure 7.4: First two calculated undamped modes for rig with retainer spring 
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Figure 7.5: First two calculated undamped modes for rig with SFD locked {pin-pin modes) 
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Figure 7.6: SFD dimensions for configuration B 
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Figure 7.7: Comparison of exact rotor receptance functions computed by MI ( ) with 
approximations reconstructed from 4 modes ( ) for linear subsystem ofconf El 

(pinned-sprung shaft) 
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Figure 7.8: Comparison of exact rotor receptance functions computed by MI ( ) with 
approximations reconstructed from 4 modes ( ) for linear subsystem ofconf B2 

(pinned-free shaft) 
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response at SFD position, 28 rev/s 

cearance circle 

r##pon## W (##c, 28 rmA response at stiaft, 28 rev/s 

(a) SFD (J), 28 rev/s (b) disc (U), 28 rev/s (c) mid-shaft (M), 28 rev/s 

Figure 7.9: Convergence of RHB N = \ as the number of harmonics m is increased 

m = 1 ( ), m = 2 ( ), m = 5 ( ); modal numerical integration ( ) 
Conf.Bl, F O ^ = - 0 . 8 , t / = 5.1xlO-'kgm, 77 = 0.0045 Nsm'^ p^, = 1 0 0 , - 1 0 1 . 3 kPa 

SFD (J): normaWsed x displacement amplitude (half peek-peak) SFD (J): normalised y displacement amplitude (lialf peak-peak) 
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(a) SFD (J), X direction 

disc (U): normalised x displacement amplitude (half peak-peak) 

90 100 10 20 30 40 50 60 70 80 90 100 
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(b) SFD (J), y direction 

disc (U): normalised y displacement amplitude (half peak-peak) 
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rotational speed (rev/s) rotational speed (rev/s) 

(c) disc (U), X direction (d) disc (U), y direction 

Figure 7.10: Correlation between RHB and time-marching predictions for amplitude 
(half peak-to-peak displacement divided by c) (continues on next page) 

RHB vV = 1, m = 5 - red: "o" stable, unstable {X, complex); 

numerical integration - blue 
Conf.Bl, go^=-0.8, [/ = 5.1xlO"'kgm, 77 = 0.0045Nsm'^ =100,-101.3 kPa 
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mid-shaft (M): normalised x displacement amplitude (half peak-peak) mid-shaft (M); normalised y displacement amplitude (half peak-peak) 
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(e) mid-shaft (M), x direction 
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rotational speed (rev/s) 
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Figure 7.10 (continued): Correlation between RHB and time-marching predictions for 
amplitude (half peak-to-peak displacement divided by c) 

RHB jV = 1, m = 5 - red: "o" stable, unstable (2; complex); 

numerical integration - blue 
Conf. Bl, £o^=-0.8, U = 5.1x10"'^kgm, 7 =0.0045 Nsm"^, p^, p^ =100,-101.3 kPa 
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Figure 7.11: Verification of Floquet stability result for T-periodic RHB solution at 30 rev/s 
by time-marching from initial conditions on the T-periodic cycle (al)-(a3) first 30 shaft 

revs.; (bl)-(b3) ftirther 30 revs. RHB N = \, m-5{ ); numerical integration ( ) 
Conf. Bl , Sg =-0.8, U = 5.1x10 ''kgm, 7 = 0.0045 Nsm'^, Pg, p^ =100,-101.3 kPa 
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(a3) mid-shaft (M) 
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Figure 7.12: Verification of Floquet stability result for T-periodic RHB solution at 34 rev/s 
by time-marching from initial conditions on the T-periodic cycle 

(al)-(a3) RHB N = \, m = 5 ( ); numerical integration, first 80 shaft revs. ( ); 
(bl)-(b3) numerical integration solution over further 80 revs, (steady-state) 

Conf.Bl, ^(,^=-0.8, U = S-lxlO'^^kgrn, ?/= 0.0045 Nsm"^, Pg, p^ =100,-101.3 kPa 

Figure 7.13: Poincare map of numerical integration solution at J in Figures 7.12(al,bl) 
{Qt^. = kin:). First 80 shaft revs. (i.e. Figure 7.12(al)) - red; further 80 revs. (i.e. Figure 

7.12(bl)) - blue; first point E (on unstable equilibrium solution) indicated by 
Conf.Bl, ^ o = - 0 . 8 , t/ = 5.1xlO"'kgm, 7 = 0.0045 Nsm"^ Ps , P, =100,-101.3 kPa 
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Figure 7.14: jpgcfra joZwfzon af J af 34 revA (data length 2 s) 
Conf.Bl, gô ,= - 0 . 8 , U = 5.1x10"^kgm, 77 =0.0045 N s m \ =100,-101.3 kPa 
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Figure 7.15: Variation of modulus of leading Floquet multiplier for T-periodic solutions 
(RHB = 1, m = 5 ) with rotational speed for various static offset and unbalance conditions 

Conf.Bl, 77 = 0.0045 Nsm"^ p^, p^ =100,-101.3 kPa 
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Figure 7.16: Viznafzon q/'fmagmary parf o/'/gaKfrng FZogwef 7»wZf;pZzgr_/br T-pgno^ f̂c 
solutions (RHB N = \, m = 5) with rotational speed for gg = - 0 . 8 , U = 5.1x10^ kgm 

Conf.Bl, 77 =0.0045 Nsm'^ p, =100,-101.3 kPa 

J. 26 rev/s U, 26 rev/s M, 26 rev/s 

J. 30 rev/s U, 30 rev/s M, 30 rev/s 

J, 34 rev/s U, 34 rev/s M, 34 rev/s 

J, 38 rev/s U, 38 rev/s M, 38 rev/s 
Figure 7.17: Orbital motion for - 0 . 6 , U = 2.59x10"* kgm 

Measured, over 0.5 s ( ); RHB N = 1, m = 5 ( ) with = — 101.3 kPa 

Conf. Bl, 77 =0.0045 Nsm ^ = 100 kPa 
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J, 26 rev/s U, 26 rev/s M, 26 rev/s 

J, 30 rev/s U, 30 rev/s M, 30 rev/s 

J, 32 rev/s U. 32 rev/s M. 32 rev/s 

J, 34 rev/s U. 34 rev/s M, 34 rev/s 

M, 36 rev/s J. 36 rev/s U, 36 rev/s 

J, 38 rev/s U, 38 rev/s M, 38 rev/s 
Figure 7.18: Orbital motion for 8^= — 0.6, U = 5.1 x 10^ kgm 

Measured, over0.5 s ( ); RHB Â  = l , m-5( ) with =-101.3 kPa 

Conf. Bl, n =0.0045 N s m = 100 kPa 
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J, 26 rev/s U. 26 rev/s M, 26 rev/s 

J, 28 rev/s U. 28 rev/s M, 28 rev/s 

J, 30 rev/s U, 30 rev/s M, 30 rev/s 

J, 32 rev/s U, 32 rev/s M, 32 rev/s 

J, 34 rev/s U, 34 rev/s M, 34 rev/s 

J, 38 rev/s U, 38 rev/s M, 38 rev/s 
Figure 7.19: Orbital motion for £^^= — 0.% , U =5.1x10 kgm 

Measured, over 0.5 s ( ); RHB /V = 1, m = 5 ( ) with =-101.3 kPa 

Conf. Bl, ?7 =0.0045 Nsm'̂ , = 100 kPa 
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(bl) SFD (J), 34 rev/s (b2) disc (U), 34 rev/s (b3) mid-shaft (M), 34 rev/s 

Figure 7.20: mofzoM ovgr 2 Eg = - 0 . 8 , [/ = 5.1x10"^ 

Conf. Bl, 77 =0.0045 Nsm ^ = 100 kPa 
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Figure 7.21: Frequency spectra ofy component of measured aperiodic motion at SFD (J)/or 
gQy=—0.8 , U =5.1xlO"^%m (datalength 2 s). Conf. B1, 77 = 0.0045 Nsm'^, p^ =100 kPa 
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Figure 7.22: Unbalance response for = -0.6 , U = 2.59xlO"*%m. All predictions are 

RHB N = \, m = 5 . Vertical axes show ratio of half peak-to-peak displacement to c. 

Conf. Bl, 7? =0.0045 N s m = 100 kPa 
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Î R 

30.75 

MMSURMNENT 

V pc = ~:101.325kPa 

! pc = ^ infmity 

measurement 

c = -:i01.325kPa 

c = - infinity 

»0.75 

30 40 50 60 70 
rotational speed (rev/s) 

(e) mid-shaft (M), x direction 

10 20 30 40 50 60 70 80 90 100 
rotatkxial speed (rev/s) 

(f) mid-shaft (M), y direction 

Figure 7.23: Unbalance response for s.Qy= - 0.6, U = 5.1x10"^ kgm. All predictions are 

RHB = 1, m = 5 . Vertical axes show ratio of half peak-to-peak displacement to c. 
Conf. Bl, 77 =0.0045 Nsm"^, =100 kPa 
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^response m SFD: normalised x displacement amplitude (half peak to peak) response at SFD: normaaed y displacement ampKude (half peak to peak) 
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Figure 7.24: 6ô ,= —0.8, = 2.59xlO"*A:gm. All predictions are 

RHB TV — 1, m — 5. Vertical axes show ratio of half peak-to-peak displacement to c. 
Conf. Bl, 77 =0.0045 Nsm'^, =100 kPa 
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Figure 7.25: Unbalance response for 8^^= - 0.8 , = 5.1x 10"^ kgm. All predictions are 

RHB # = 1, m = 5. Vertical axes show ratio of half peak-to-peak displacement to c. 

Conf.Bl, 77 =0.0045 Nsm'\ =100 kPa 
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response at SFD: normajised mean y displacement response at SFD: rwrmaKsed mean y cSsplacement 
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SFD (J): normalised x displacement ampOtude (half pwk-peal^ SFD (J): normalised y displacement amplitude (half peak-peak) 
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Figure 7.27: Response of conf. B2 (no retainer spring) for U = 5.1x10"'* kgm, 77 = 0.0045 
Nsm'^, p^ =120 kPa. Vertical axes show ratio of half peak-to-peak displacement to c. 

RHB N = \, m = 5-red: "o" stable, "+" unstable (A, real, positive), unstable (A, real, 
negative), unstable (A, complex); numerical integration — blue; measured [64] - black. 
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SFD (J): normaKsed mean y displacement 
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1=" unstable (A, complex). Conf. B2, [/ =5.1xl0^kgm, 7;=0.(X)45Nsm'^, =120 kPa 
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Figure 7,29: Variation of leading Floquet multiplier ofT-periodic solution (RHB N = 1, 
m = 5) with rotational speed 

Conf. B2, [/ =5.1xlO"'kgm, 77 =0.0045 Nsm'^ =120 kPa 
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(a) SFD (J) 

cl##fanco 

(bl) SFD (J) (b2) disc (U) (b3) mid-shaft (M) 

Figure 7.30: Stability verification for T-periodic RHB solution at 31 rev/s by time-marching 
from initial conditions on the T-periodic cycle (a) first 20 shaft revs.; (bl)-(b3) further 5 revs. 

RHB N = \, m = 8 ( ); numerical integration ( ) 
Conf. B2, U = 5.1x10"'* kgm, 7 = 0.0045 Nsm"^, Pg =120 kPa 

clearance 

XOKVC 
(a) SFD (J) (b) SFD (J) (c) SFD (J) 

Figure 7.31: Verification of Floquet stability result for T-periodic RHB solution at 86 rev/s 
by time-marching from initial conditions on the T-periodic cycle (a) RHB N - \ , m-5 — 
red; numerical integration, first 20 shaft revs. - black; (b) Poincare map of transient orbit in 

(a) with = kin, consecutive return points in blue and red and first point E (unstable 
equilibrium) indicated by (c) numerical integration solution over further 80 shaft revs. 

Conf. B2, U = 5.1x 10~^kgm, 7 = 0.0045 Nsm'^, p^ =120 kPa 
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(a) predicted (b) measured [64] ("ac" component only) 

Figure 7.32: Predicted (numerical integration) and measured orbits at SFD (J) for 84 rev/s 
Conf.B2, [/ =5.1xlO-^kgm, 77 =0.0045 Nsm-\ =120 kPa 
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Figure 7.33: Predicted and measured frequency spectra of displacement of 1 for 84 rev/s 
(data length 0.5 s). Conf. B2, U = 5.1xl0"^kgm, t] =0.0045 Nsm"^, p^ = 120 kPa 
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Figure 7.34: Poincare maps of predicted orbital motion at 1 for 84 rev/s (Qt^. = kin) 

Conf.B2, =5.1x10"^kgm, 77 =0.0045 Nsm \ =120 kPa 

(a) SFD (J) (b) disc (U) (c) mid-shaft (M) 

Figure 7.35: Predicted frequency-locking into 3T-periodic motion at 86 rev/s 
numerical integration, steady-state ( ); RHB N = 3, m = 20 ( ) 

Conf.Bl, ( / = 5.1x10-^kgm, 77 =0.0045 Nsm'\ =120 kPa 

0.6 -0.4 -0.2 0.2 0.4 0.6 

Figure 7.36: Poincare map of predicted orbital motion at i for 86 rev/s (Qt^ = klK) 

Conf. B2, =5.1x10"'kgm, 77 =0.0045 Nsm'^ = 120 kPa 
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Figure 7.37: Waterfall diagrams of the frequency spectra of the displacement response for 
conf B2 (no retainer spring), U = 5.1x10"^ kgm, 77 = 0.0045 Nsm'^, p^ =120 kPa 

(data length 0.5 s) 
(Figure continues on the following page) 
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Figure 7.37 (continued): Waterfall diagrams of the frequency spectra of the displacement 
response for conf B2, U -5.1x10'^ kgm, vj =0.QQA5 Nsm'^, p^ - 120 kPa 

(data length 0.5 s) 
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SFD (J): normalised x displacement amplitude (half peak-peak) SFD (J): normalmed y displacement ampHtude (half peak-peak) 
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Figure 7.38: Response of conf. B2 (no retainer spring) for U = 5.1 x 10"'' kgm, 77 = 0.0115 
Nsm'^, p^ =100 kPa. Vertical axes show ratio of half peak-to-peak displacement to c. 

RHB N = 1, m = 5-red: "o" stable, "+"unstable (2, real, positive), unstable (A, real, 
negative), unstable (A, complex); numerical integration - blue; measured - black. 
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Figure 7.39: f aW /neafwrgj (over 2 s) af cnffcaZ 

Conf.B2, [ / = 5.1x10""kgm, 77 =0.0115 Nsm-\ =100 kPa 
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Figure 7.40: Predicted {stable) and measured orbits (over 2 s) in the region of the second 
pin-pin critical speed 

Conf.B2, [/=5.1xlO"'kgm, 77 =0.0115 Nsm'^ =100 kPa 
(Figure continues on the following page) 
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Figure 7.40 (continued): Predicted {stable) and measured orbits (over 2 s) in the region of 
the second pin-pin critical speed 

Conf.BZ, C/=5.1xlO-^kgm, 77 =0.0115 Nsm-\ =100 kPa 
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(a) 82 rev/s, 101 samples (b) 84 rev/s, 201 samples (c) 86 rev/s, 101 samples 

(d) 94 rev/s, 281 samples (e) 100 rev/s, 101 samples 

Figure 7.41: Predicted Poincare maps of motion o/J around second pin-pin critical speed 
=A:2;r). Conf. B2, = 5.1x10^kgm, 7] =0.0115 Nsm'^, =100 kPa 
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Figure 7.42: f jpgcfra jp/acgmg/zf qf J 
(data length 2 s). Conf. B2, [/ = 5.1x10^kgm, 77 =0.0115 Nsm'^, = 100 kPa 
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Figure 7.43: Waterfall diagrams of the frequency spectra of the displacement response for 
con /52 (no retainer spring), U = 5.1x10"'* Agm, 77 =0.0115 Pg =100 kPa 

(data length 2 s) 
(Figure continues on the following page) 
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Figure 7.43 (continued): Waterfall diagrams of the frequency spectra of the displacement 
response for conf B2, U = 5.\x\0~^ kgm, ?] = Q.0115 Nsm'^, Pg =100 kPa 

(data length 2 s) 
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Figure 7.44: Waterfall diagrams of the frequency spectra of the displacement of] for conf. 
B2, = 2.59x10^kgm, 77 = 0.0115 Nsm'^, p^ = 100 kPa (data length 2 s) 
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Figure 7.45: f rgjpoTWg m y fwpgr-Aarmonzc rejoMaMcg, 
into account the SFD bearing housing flexibility 

RHB N = 1, m = 5. Vertical axes show ratio of half peak-to-peak displacement to c. 
Conf.B2, [/=5.1x10-^kgm, 7? =0.0115Nsm^ =100 kPa - 2 
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Figure 7,46: Orbital motion (over 2 s) at mid-shaft (M) around super-harmonic resonance, 
44-45 rev/s (predictions take into account the flexibility of the SFD bearing housing) 

Conf.B2, [ /=5.1xl0^kgm, 77 =0.0115Nsm'^ =100 kPa 
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Figure 7.47: q/"); /MOfzoM of 
M m (data length 2 s) 

Conf. B2, U =5.1xl0'^kgm, 77 =0.0115 Nsm'"̂ , =100 kPa -2 
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Figure 7.48: Measured normalised half peak-to-peak displacement for conf. B2, 
[/ = 2.59xlO-^%m, 77 =0.0045 = 120 Afo [64] -2 

151 



8 A / [ 0 ] [ M E I . 

]FI E:X][BI.E: It()TrC>fl i f f TriAfC> inLJE]C]]Bi;5f IIOIJSIED 

UNSUPPORTED SFDs 

8.1 INTRODUCTION 

The rigid rotor-flexible housing configuration of Chapter 6 and the flexible rotor-rigid 

housing configuration of Chapter 7 are idealisations. In this chapter the integrated model is 

used to analyse a more realistic system in which both rotor and support structure are 

considered flexible. Moreover, practical systems have more than one squeeze film damper 

(SFD). Hence, the use of two SFDs in configuration C. In configuration C, both 

"symmetric" and "anti-symmetric" bounce modes are present, unlike the simplified system in 

Chapter 6. It will be seen in this chapter that, despite the first two rotor-support structure 

critical speeds with the SFDs locked (i.e. their radial clearances shimmed) still being 

essentially "bounce modes" (i.e. the rotor showing much less deflection than the housings), 

the presence of harmonics of the rotational speed in the non-linear response of the 

unbalanced squeeze film damped system necessitates the consideration of the flexibility of 

the rotor. A description of the test facility is given in the following section, together with a 

description of impact tests on the support structure alone, and on the complete non-rotating 

rig with the SFDs locked. The non-linear model equations are then presented. This is 

followed by an account of the experimental procedure for vibration acquisition for the 

rotating rig. The correlation between the predicted results from the three modelling blocks 

(i.e. receptance harmonic balance, modal Floquet stability analysis, and modal numerical 

integration) is then assessed and the results compared with measurements. The aim of the 

latter comparison is limited to the assessment of the ability to predict and explain observed 

non-linear phenomena. 

8.2 DESCRIPTION OF THE TEST FACILITY 

The test rig for configuration C is illustrated in Figure 8.1. Photographs of the rig are found 

in Appendix A6, section A6.6 (page 259). This rig was originally built in 1984 under a 
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research contract with jpZc to represent, to a limited extent, ± e essential features 

of the RB401 aero-engine. Since then, it has been modified to include two SFDs and 

recommissioned in 2001, as part of this Ph.D. project, in the rotor dynamics laboratory of the 

Institute of Sound and Vibration Research (ISVR), University of Southampton. In its most 

general form, the test rig has two independently driven shafts, labelled (7) and (14) in Figure 

8.1, which respectively represent the low pressure (LP) and high pressure (HP) rotors of an 

aero-engine. In one modiAcation, described in [31], a bell housing (not shown in Figure 8.1) 

connects the bearing housing (5) at the right hand end of the LP shaft (7) to the left hand 

bearing housing of the HP shaft (14) (the latter bearing housing is also not shown in Figure 

8.1). In this thesis, the LP and HP assemblies are disengaged, as shown in Figure 8.1, and 

attention is placed entirely on the LP assembly. The HP shaft (14) is kept fixed and non-

rotating. 

The mild steel shaft (7) runs in two roller bearings (3) at its ends J], J2. Oil is pumped 

into the annular clearance between each bearing housing (5) and the ring (4) Axed to the 

outer race of each roller bearing, forming the SFD (6). Each SFD journal (4) is prevented 

from rotating relative to the shaft axis by dogs on the outer end-plate of the bearing housing, 

which engage with dogs projecting from the outer end of the journal. Each of the bearing 

housings Bi, B2 is flexibly mounted on the engine frame (10) by four mild steel bars (8). The 

frame is bolted down to a cast iron bedplate (11) that is bonded by a thin layer of adhesive to 

a massive concrete block mounted on isolators. Torque is transmitted to the shaft at (2) via 

two pins covered in nitrile that contact opposite faces of a rectangular steel bar bolted to the 

left hand end of the shaft. This ensures torque transmission with no flexural restraint in 

either plane xz, yz. The drive shaft (1) is belt-driven by an electric motor (belt drive and 

motor not shown). The motor is bolted to the ground rather than the bedplate and concrete 

block to avoid spurious vibration transmission to the rig. Axial location of the shaft (7) is 

maintained by teflon (PTFE) buttons at its ends: one at the centre of the driven bar at (2) and 

the other at the end of the HP shaft (14). Impact tests on the non-rotating rig with the SFDs 

locked by inserting shims into their radial clearances indicate that the first two rotor-support 

structure critical speeds are around 66 rev/s and 100 rev/s, corresponding respectively to the 

symmetric and anti-symmetric bounce modes. With the dampers operational, the rig is 

driven up to a maximum speed of 110 rev/s. 

The SFDs are end-plated, of the type shown in Figure 4.1(b). Both left hand and right 

hand SFDs (SFD 1, SFD 2 respectively) are nominally identical, with the dimensions shown 
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in Figure 8.2. The radial clearance c = 0.11x10 and ±e groove depth 

= 2.03x10"^ m, satisfying the two-land criterion, eq. (4.1). The lengths of the two 

lands of each SFD are slightly unequal and the value in Figure 8.2 (L = 6.26 x 10"̂  m) is an 

average. The axial location of the journal within the housing is maintained by small and 

smooth spacers 0.5 mm thick (see Figure 8.2), three such spacers being glued to each 

end-plate at positions spaced by 120°. This ensures a fixed end-plate gap of 

= 0.50xl0"^m, which is over four times the radial clearance c. Hence, the SFDs are 

short unsealed dampers. Note that there is a lower limit to the circumferential extent of the 

glued spacers in order to ensure adequate bonding. Hence, the outlet flow is blocked 

over portions of the circumference in Figure 8.2. However, the total circumferential extent of 

the three spacers at each outlet should be around 10% and so, this sealing effect is considered 

negligible. Oil is supplied to each SFD through three holes, spaced at 120° around the 

groove. The oil used is 5'AgZ/ MorZiMa 10 (formerly known as 5'AgZZ TgZ/wf ;R10) with a 

viscosity of 15x10"^ Nsm'̂  and density 866.8 kg/m^ at 25°C. The oil pressure supply to 

both dampers is monitored by a single common pressure gauge (not shown in Figure 8.1). 

The oil exit temperature from each SFD is measured by a thermocouple located underneath 

each housing. The oil from both dampers collects in a tray fixed to the bedplate (not shown 

in Figure 8.1) and is recirculated into the hydraulic system. Since the oil also acts as a 

coolant for the roller bearings, its equilibrium temperature increases with speed. However, 

this temperature never exceeds 44°C. At this temperature, the oil has a viscosity of 

8.84x10"^ Nsm"̂  and density 854.4 kg/m .̂ Since the top speed is 110 rev/s, the maximum 

value of the gap Reynolds number (eq. (4.16)) is 0.8. Using eq. (4.15) with Cy = 0.287 (for 

moderate Re) [60], an upper limit for the fluid inertia effect is estimated as 

^fluid = 76.4x10"^ kg. This amounts to merely 6% of the combined mass of the roller 

bearing and damper journal. Considering also that the total rotor mass is 55.4 kg, it is 

ascertained that the fluid inertia effects are negligible. 

Referring back to Figure 8.1, unbalance masses can be attached to the rotor at 

axial positions Ui, 17% respectively and can be either in anti-phase (180° out of phase) or in 

phase. The displacement response to rotating out-of-balance is measured by four transducers 

(proximity probes) at each SFD location: one pair of orthogonal probes, with brackets 

marked (13), measure the x, j displacements of the bearing housing relative to the engine 

frame (10), and the other pair, with brackets marked (12), measure the x, y displacements of 
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the rotor relative to the housing. As shown in Figure 8.1, the rotor vibration measurements 

are taken at positions Jim, Jim, as close as practically possible to the respective 8FD positions 

Ji, J2. Hence, these measurements are compared with the corresponding theoretical 

predictions for the rotor vibration at Jim, Jim rather than Ji, J2. The displacement response of 

each housing relative to the frame is directly proportional to the corresponding force 

transmitted to the frame. Impact tests on the support structure, discussed in the following 

subsection, indicate that the absolute vibration of the frame is normally negligible when 

compared to the absolute vibration of the bearing housings Bi, Bi- Hence, measured 

responses relative to the frame can be regarded as "absolute", allowing them to be compared 

with the theoretical predictions for the absolute response. 

The following two subsections respectively describe impact tests on the support structure 

alone (to determine its modal parameters) and on the complete non-rotating rig with the SFDs 

locked (to estimate the bounce resonance firequencies i.e. the bounce critical speeds). 

8.2.1 Impact Tests on Support Structure 

In these tests, the oil supply was disconnected and the end-plates of the housings (5) (see 

Figure 8.1) were removed. The roller bearings (3) were then removed and the rotor was 

suspended from an overhead girder, well clear from the inner surface of each housing. The 

proximity probe brackets were also removed. Preliminary impact tests verified that there was 

virtually no dynamic cross-coupling between the and yz planes so that the dynamics in 

each plane could be studied separately as follows. For each housing B, (i = 1,2) in turn, an 

impact was applied in the y direction with an instrumented hammer^ connected through a 

voltage amplifier to a Hewlett Packard 35650® multi-channel spectrum analyser operated by 

a personal computer (PC). The following accelerance frequency response functions PPQ{co), 

(ft) is the frequency in rad/s, see eq. (5.27)) relating the applied force at position Q in the y 

direction to the acceleration response in the same direction at position P, were then measured: 

the point accelerance g at B,; the transfer accelerance ^ between the other housing By 

and B; ; and the transfer accelerance between F, and B,-, where F, corresponds to the 

axial position on the frame where the bracket (13) for the probe measuring the unbalance 

response of B, in the y direction is fixed (see Figure 8.1). For this set of measurements, 

piezoelectric accelerometers were attached at By, F/ and B; with their axes in the y direction 

i.e. a hammer with a force gauge at its tip. 
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and connected through charge ampliAers to the spectrum analyser. The process was repeated 

in the x direction for the accelerances g , . The instrumentation details are 

given in Appendix A6 (section A6.1). The results are shown in Figures 8.3(a,b,c,d) which 

refer respectively to the magnitudes of the accelerance measurements of the four impact tests: 

piezoelectric accelerometers were used, the low frequency data were susceptible to noise 

contamination. However, this was not important for the purposes of these tests since they 

focused on the resonance region. It is evident that the (absolute) vibration transmitted to F/, 

indicated by the magnitudes of , j8̂ g , was, in ± e main, negligible with respect to the 

vibration at B/, indicated by the magnitudes of (%gg , )9gg . The dynamic cross-coupling 

between Bi and Bg, indicated by the magnitudes of &g g , g , was only significant in the 

immediate vicinity of resonance. 

In order to facilitate the experimental modal analysis, the cross-coupling between Bi and 

B? was neglected and so, the required modal parameters of the support structure were 

determined by Atting a single mode to each point receptance function (%gg, ((o), ĵ gg (m), 

( = - A G , G _ / A ) \ - ^ G ^ G . / ( D ' ) [ 4 7 ] : 

In eqs. (8.1), 0)^ ,̂ (r = l ,2) are the undamped natural frequencies of the support 

structure in the xz and yz planes respectively and are the corresponding modal 

constants of the receptance functions CKg g (<»), g (ffl) respectively, where: 

4 ; : ' = 0 F ' V F ' ' . ( 8 . 2 A . B ) 
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being the undamped mass-normalised mode shapes of the support structure in 

the zz and yz planes respectively, evaluated at position B, in the x and y directions 

respectively. 7?̂ ^̂  are the modal loss factors for the structural (hysteretic) damping. 

The approximations of eqs. (8.1) mean that in the Arst mode of the support structure in the xz 

plane (natural frequency 0)̂ ,̂), B; vibrates and Bz is stationary ( =0) , and in the second 

mode of the support structure (natural frequency Bz vibrates and Bi is stationary 

(A, (AZ) 
a, a 0). The same applies for the yz plane. The modal Atting procedure is described in 

Appendix A6, section A6.1. The technique used the Nyquist plot [47] to determine the 

natural frequencies and loss factors, and the dynamic stiffness method [47] to determine the 

modal constants. The computed modal parameters 

(f = 1,2 and r = 1,2) are given in Table 8.1. As it turns out from Table 8.1, with the notation 

used, in either plane %z, yz, the first mode is at a higher frequency than the second. In view of 

the fact that modal analysis does not actually require that the modes be ordered according to 

the relative magnitudes of the corresponding natural frequencies, the notation for the modal 

parameters is left unaltered. 

%z plane yz plane 

mode no. r I 2 mode no. r 1 2 

(Hz) 209.125 201.375 (Hz) 210.875 202.625 

(xlO-'kg-') 2.7619 0 (xlO-' kg-') 2.8304 0 

A g (xlO-'kgb 0 2.8196 A g (xlO-' kg-') 0 2.7715 

(%) 0.48 0.87 % (%) 1.66 0.49 

Table 8.1: Computed modal parameters of support structure 

The quality of fit is shown in Figures 8.4(al-dl) and 8.4(a2-d2) which respectively compare 

the magnitudes and phases of the measured point receptances with those of the receptances 

reconstructed from one mode (i.e. the right hand sides of eqs. (8.1a-d)). It is evident that the 

correlation is satisfactory over the entire measurement frequency range. 
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In view of the single mode approximations of eqs. (8.1), one can compute the "effective 

masses" , M ĝ and the "effective stif&iesses" , JSTyg at B, (; = 1,2) in the % and y 

directions respectively, from the modal parameters of Table 8.1 by using the relations: 

The values of these parameters are given in Table 8.2. 

(8.3a-d) 

(8.4a-d) 

Housing 1 Housing 2 

(kg) 3.6207 (kg) 3.5466 

(xlO^N/m) 6.25 (xio^ N/m) 5.68 

=n&i (%) 0.48 (%) 0.87 

(kg) 3.5331 (kg) 3.6081 

(xlO"N/m) 6.20 (xlO^N/m) 5.85 

=%,! (%) 1.66 =^^2 (%) 0.49 

Table 8.2: Alternative expression of support structure parameters 

It should be noted from Tables 8.1 and 8.2 Aat ± e estimated loss factors were not that 

insignificant since they ranged from 0.48 % to 1.66 %. These values correspond to 

equivalent viscous damping ratios of 0.24 % to 0.83 % at the corresponding resonance 

frequencies, which are comparable to the equivalent ratio of 1.35 % measured by Dogan [63] 

for the rig of Chapter 6. As in [63], this damping is deemed negligible when analysing the 

complete rig with the SFDs operational (section 8.3). 

8.2.2 Impact Tests on Non-Rotating Rig with SFDs Locked 

The aim of these tests was to estimate the bounce resonance frequencies, which are the first 

two resonance frequencies in each plane xz, yz. For these tests, the rotor was remounted on 

the support structure with the roller bearings (3) in their housings (5), as in Figure 8.1. Shims 

were inserted in the radial clearances (6) of the dampers. The point accelerances at the 

bearing housings and the transfer accelerances between them were then measured in each of 
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the zz and yz planes, using the same impact test technique as in section 8.2.1. The results are 

shown in Figures 8.5(al,bl,cl), (a2,b2,c2) where the former refer to the plane and the 

latter to the yz plane. Each set respectively shows the measured point accelerance at Bi, point 

accelerance at Bz and the transfer accelerance between Bi and B2. Overlaid on the same axes 

are the predictions using the mechanical impedance (MI) model. The model made use of the 

support structure parameters in Table 8.2 (see Appendix A6, section A6.2 for details). The 

structural damping had virtually no effect on the predicted values of the first two resonance 

frequencies. In Table 8.3, these frequencies are compared with the measured ones, as well as 

the predicted resonances with the rotor assumed to be rigid. 

xz plane yz plane 

mode no. 1 2 mode no. 1 2 

measured (Hz) 64.0* 100.7 measured (Hz) 66.0 99.7 

predicted - flex, rotor (Hz) 66.2 98.5 predicted — flex, rotor (Hz) 66.6 99.0 

predicted - rigid rotor (Hz) 68.7 98.8 predicted - rigid rotor (Hz) 69.1 99.3 

Table 8.3: The first two rotor-support structure resonance frequencies with SFDs locked 

(* average of resonance frequencies of the two peaks in Figures 8.4(al,bl,cl) 

The undamped mass-normalised mode shapes of the first two rotor-support structure modes 

were predicted for each plane from the MI model by the modal method illustrated in 

Appendix A3, section A3.1. Figure 8.6(a) shows the predicted mode shapes for the vertical 

plane (which were similar to the ones in the horizontal plane). As can be seen, the modes 

were essentially bounce modes and there was virtually no flexure of the rotor in the anti-

symmetric bounce mode (this latter effect was also reflected by the corresponding resonance 

values of Table 8.3). It is also seen that the rig is approximately symmetrical in construction. 

It is noticed from Figure 8.5 that: (a) the measured symmetric bounce resonance 

frequency in the horizontal plane (xz) was not well defined, consisting of two peaks (Figures 

8.5(al,bl,cl)); in fact, the measured estimate for this frequency quoted in Table 8.3 was the 

average of the frequencies at the two peaks; (b) in both the xz and yz planes the value of the 

third resonance frequency was under-predicted and the corresponding amplitude peak was 

over-estimated. The fact that effect (a) was not observed in the vertical (yz) plane led to the 

conclusion that it was the result of slight "play": either between the inner and outer races of 
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the roller bearings, or between the damper journal and the housing, the latter play being due 

to imperfect shimming. In the yz plane, this effect must have been eliminated by the dead 

weight of the rotor. In the horizontal plane there is no static load to counter the play, so the 

micro relative movement adds an extra degree of freedom to the symmetric bounce mode, 

splitting the otherwise single peak into two. The effect in (b) was most probably due to the 

fact that the roller bearings were not self-aligning, thus resulting in flexural restraint from the 

suspension bars being transmitted to the rotor. This effect was not considered in the 

prediction. Moreover, since the third mode predominantly involved the flexural vibration of 

the rotor, the associated amplitude peak was overestimated due to the neglect of structural 

damping in the rotor. It is important to observe that these two effects (a), (b) are either 

insignificant, or not relevant at all when the SFDs are operational since the linear subsystem 

then consists of theyrgg^/reg rotor and the support structm-e. 

8.3 MODEL APPLICATION 

In this section, the equations of Chapter 5 are applied to configuration C with the SFDs 

operational. In this case, the linear subsystem consists of two uncoupled sub-subsystems: the 

free-free rotor and the support structure. In this rig, the polar moment of inertia of the rotor is 

sufficiently small for gyroscopic effects to be negligible over the operational range of the 

rotational speed. Hence, in the linear subsystem, the xz and yz planes are uncoupled for the 

rotor, as well as the support structure. The SFDs are assumed to be the only sources of 

damping. As a result of the above simplifying assumptions, the x 1 vector (̂ 9- (5.3)) 

is identical for both the frequency domain (receptance harmonic balance (RHB)) and the time 

domain (modal analysis) approaches: 

G),L GYZ - { 2 ; C 2 ( ^ ' 5 ) 

where = 8. are the SFD forces on J; and ,̂2 are those on Jz. - , - <2;(2.),2 

are the SFD forces on Bi and Bz respectively. The SFD forces are calculated from equations 

(5.2a,b). The unbalance forces and ^ and U2 are given by eqs. (5.1a,b) with 

7i set to zero. The true sense of the rig rotation is shown in the upper left hand comer of 

Figure 8.1, and is opposite to that in Figure 5.1(b). Since the rotational speed is always 

taken as positive, the x component of the final results for the computed vibration is reversed. 
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in accordance to the frame of reference in Figure 8.1. The free-free rotor is degenerate, 

having in each plane yz two modes defining non-oscillatory rigid body motion: pure 

translation at the speed of the mass centre G and pure rotation about G (see Figure 8.6(b)). 

Hence, the static load of the rotor needs to be taken into account. The vector of degrees 

of freedom associated with is then given by eg. (5.12). 

" N H = [ X , , Y,, X , . J-. , x,^ Y., YJ ( 8 . 6 ) 

where each displacement is measured from the static position of the corresponding housing 

centre without the rotor weight applied. The distributed rotor load can be replaced by two 

loads and Wz concentrated at Ji and J2 where: 

w, = / ' v , . Wz = (8.7a,b) 

is the total rotor weight, Zgy and are the distances of the mass centre G from Ji and 

J2 respectively, and Zy ^ is the distance between Ji and J2. The zero frequency components 

of the forces on the vibrating rotor are in a state of static equilibrium, as explained in Chapter 

5 (end of section 5.3). Since this zero frequency equilibrium problem is statically 

determinate, the equivalent load system of eqs. (8.7) is exact. However, with this load 

system, the resulting zero frequency shape of the vibrating rotor will be a straight 

(undeformed) line joining the mean positions of Ji and J2 for the yz plane, as well as the xz 

plane, since the zero frequency forces are all concentrated at Ji and J2. The superposition on 

this line of the static deflection curve of the rotor supported at the mean positions of J] and J2, 

due to the distributed weight, yields the precise zero frequency shape for the yz plane. 

However, this refinement is unnecessary since it has no effect on the mean positions of Ji and 

J2, which are the only zero frequency components of rotor vibration that are of interest. 

In the RHB approach 

cos^m + 6 ^ sin^mr), cosfQ%4-6^)sinjmr) (8.8a,b) 

cosfQR + 6 ^ sin.yQ%f), 008^0% +6^1 sinfQ%) (8.8c,d) 
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and 

= G. + Z cos fQTf + sin forr), = G,, + % cos ̂ QTf + sin ̂ QTf) (8.9a,b) 

where 

6 / _ 1 r R < 2 / _ 2 r 
coŝ QR 

2 rr G Z , ' 
coŝ QR r Jo p Jo coŝ QR 

J" Jo Qyi _ 

sin dt 

(8.10a-c) 

In ± e above equations, T = 2;r/Q7 = AT (eq. (5.8b)) and i = 1,2 . For the degenerate rotor, 4 

zero frequency static equilibrium equations can be written (Chapter 5, end of section 5.3): 

0 = a,,,, (on,, + . 0 = A,,,(oXe„ - w , ) + A, , . (oXe, , ~W,) (8.1 ia,b) 

0 = a.,,, (0&, + a,.,. (Og., . 0 = (oXe„ - w,)+ ;8„. ( o 0 „ - w j (8.i ic,d) 

where ( o ) = ( o ) are the zero frequency values of the accelerance functions of the 

linear subsystem, relating the forces at J, (y = 1,2) in the x and y directions respectively with 

the acceleration response in the corresponding directions at J/ ( i = 1,2). Since the inverse of 

(0) <Sv.(o)' 
the matrix 

(2̂ 1 -W] = 0 , 6^2 -iVg = 0. Hence, deAning 

exists, eqs. (8.11) are seen to reduce to = 0 , = 0 , 

Ns 

10 s ^ N 

1 ^ = 
(8.12) 

the complete set of RHB equations (5.14) can be written as; 
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Qx\ — 0 , Qy\ W, — 0 , — 0 , <2),2 — — 0 

(8.13al-a8) 

(;YQTX/2'^^ S I N Y ^ 

= ^Y,Y, ( F Q T ) P G COSY^ 

^5, = 0̂ y,y, ('̂ OT)p(;) + (^QT)pg + (^QTX/;^ ̂  siny^ 

(^orX/̂ ^]" cosy^ 

^ 5 , = ('^AY)P(^), A(;J = ( ^ 0 % ) ; ; ^ , 

where j' = l...m (8.13bl-b8) 

6&! = ( ^ o ; + (%Y,Y, (̂ QTX/,̂ 2' + ( f ' COS/̂  

4 ; ! = + ^Y.Y, ( ^ 0 7 K ^ Z + " S I N / Z 

^1% ~ ^J^J^ ^liJi i^^yiil + ^Ns^J2Uj {stSyj-^Q + 5 { s ^ y j 2 ^ COS72 

= /̂ ŷ y, ('^0^ky + ^y,;, (-̂ 0̂ )9̂ 2 + X̂ 2'G ̂  sin/^ 

(^A^KL2 

where ĵ  = 1...7M (8.13cl-c8) 

In the above equations, CK̂g (o), )9pg (m) are ± e receptance functions at frequency 60 rad/s 

of the linear subsystem, relating the forces at position Q in the % and j directions respectively 

with the displacement responses in the corresponding directions at position P. Note that for 

points P and Q situated on the rotor and support structure respectively or vice versa, 

«pg(m), j3pQ{a))=0. Also, eqs. (8.13a5-a8), (8.13b5-b8), (8.13c5-c8) neglect the cross-

coupling between Bi and B2 i.e. CKgg (co), jSgg (co) = 0 for j (i, _/ = l ,2). All receptance 

functions are real and independent of rotational speed due to the neglect of linear damping 

and gyroscopic effects. Also, for points PR, Qa on the rotor, CK;:̂ ĝ (6o)= j8^g (̂G)) (rotor 

isotropic). From eqs. (8.1), (8.3) and (8.4), the (undamped) support receptances are given by: 
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= H = (8.14a,b) 

The values of M^., M ĝ, used in eqs. (8.14) are higher ±an those quoted in Table 8.2 due to 

± e additional mass of ± e housing end-plates, rotor probe brackets (marked (12) in Figure 

8.1), and Aeir probes (±e revised values of the masses are found in Appendix A6, section 

A6.3). The rotor receptances are evaluated using the mechanical impedance (MI) technique 

[19], and the MI model for the rotor is described in Appendix A2, section A2.3. For solution, 

eqs. (8.13) are expressed in the form p(v ,^)=0 of eq. (5.18) by bringing all the terms to 

one side of the equality signs, v = v/c where v is the 8(2m4-l)xl vector of the unknown 

Fourier coefficients of the SFD displacements Zy , , Fy , , 

for f = 1,2 and ^ = 1... /». where is arbitrarily chosen as 

the symmetric bounce mode frequency, 2;r x 66 rad/s. The resulting system is ±en solved 

using the arc-length continuation method (section 5.3, pages 63-64), using the iterative 

algorithm in Appendix A1 to trace out a speed response curve of NT - periodic solutions, 

where N is of fixed value. For each such solution, the Fourier coefficients of the SFD forces 

are known. The Fourier coefficients of the response at an arbitrary position PR on the rotor 

cos.yQR + 6 ^ sinfOTf), cos.yQ7f + 6 ^ sin.yQTf) 
J=] Y=I 

(8 .15a,b) 

can be determined as follows: 

(a) In each of eqs. (8.13bl,b2) and (8.13cl,c2) replace the subscript Ji by PR on the left 

hand side and replace the first subscript Ji by PR in the receptance terms of the right 

hand side. The right hand sides of the modified equations can then be evaluated to 

yield the dynamic Fourier coefficients in eqs. (8.15). 

(b) The mean terms in eqs. (8.15) can be found by considering the straight line 

joining the mean positions {Xj ,Yj ), ,Yj^) at the SFDs, as explained previously: 

y = F + py (8.16a,b) 
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where is the displacement of PR from Ji in ± e positive z direction. 

For this application, PR corresponds to Jim or Jim (Figure 8.1), and the mean terms there are 

calculated since, for measurement purposes, these locations are substitutes for the actual SFD 

positions. 

For the time domain equations of motion, a total of H = IQ modes of the undamped non-

rotating linear subsystem are considered. These comprise: 

(a) 3 modes of the free-free rotor in each of the xz and };z planes with natural frequencies 

6)^^, r = 1...3. are the corresponding mass-normalised mode 

shapes evaluated at position PR in the X and Y directions respectively. Since the rotor 

is isotropic, and . As explained previously, for each plane, 

the first two modes define non-oscillatory rigid body motion, so that = 0 , 

r = 1,2. The third mode is the first bending mode of the rotor (see Figure 8.6(b)). 

(b) 2 modes of the support structure alone in each of the %z and yz planes, with natural 

frequencies 0)̂ ,̂ , r = 1,2, where, for each plane, the vibration of one housing is 

uncoupled from that of the other housing, as explained in section 8.2.1. 

Hence, the modal coordinate vector q (eq. (5.29)) and the matrix D (eq. (5.31)) are written as 

^ ~ 'JRy\ ^Rx2 ^Ryl ^Rx3 ^Ry3 ^Sxl Isyl ^Sx2 (8.17) 

D = diag|pL (0^2 (0^2 (oL 6)^3 0)1 G)̂ 2 (o lz? (8 18) 

The modal equations are then given by: 

+'t>t'Q„ +'Pt^p„ 

9.,, + - W,)+ )+ + <i>tj7%^ • 

where r = 1...3 (8.19a,b) 

(8.19c) 

(8.19d) 

9^X2 + G ) I 2 9 ^ 2 = 

9̂ )2 + (5^2^ )̂2 = (8.19f) 
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For the computation of the instantaneous SFD forces (z = 1,2) from eqs. 5.2(a,b), 

the instantaneous non-linear degrees of freedom (eq. (8.6)) are required. These are 

expressed in terms of the modal coordinate vector q of eq. (8.17) by the reduced 

transformation = H^q (eq. (5.34)) where the reduced modal matrix (eq. (5.33) is 

given by the 8x10 matrix: 

H . 

0 0 0 

0 f'r' 0 ( C F " 0 

0 0 0 

0 0 0 ' p f 

'4X6 DIAGL^ 
(&I) 

' 4 x 4 

,te,) 

(8.20) 

where 0,̂ ^ is defined as a zero matrix of size fXy. The first six columns of pertain to 

the modes of the rotor, alternately in the and yz planes. The last four rows of these 

columns correspond to the values of the non-linear degrees of freedom at the two housings in 

these modes and so are all zero. The remaining four columns of pertain to the modes of 

the support structure, alternately in the and yz planes. The first four rows of these columns 

correspond to the values of the non-linear degrees of freedom at the two journals in these 

modes and so are all zero. 

The evaluation of the modal parameters of the rotor is described in Appendix A3, 

sections A3.1, A3.3. The non-zero natural frequency is determined from the 

mechanical impedance frequency response functions. The required mode shapes are then 

determined by Atting 3 modes to the exact receptance functions (o)) (computed by MI) 

[47]. A typical example of the quality of fit is given in Figures 8.7(a,b), which respectively 

compare the exact receptances CKy y (o)), (co) with the approximate ones reconstructed 

from 3 modes. It is seen that satisfactory agreement prevails over a frequency range of 0 Hz 

to 500 Hz, covering nearly 5 harmonics of the top rotational speed. It is also evident that the 

flexure mode introduces an anti-resonance at the relatively low frequency of 280 Hz. The 

omission of this mode would result in serious error to the third and higher harmonics of the 

rotational speed around the anti-symmetric bounce critical speed of the complete rig (around 

100 rev/s), despite the fact that the rotor has virtually no deformation in the anti-symmetric 
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bounce mode (Figure 8.6(a)). More illustrations on the quality of At are given in Appendix 

A3, Figure A3.1. These illustrations, together with those of Figure 8.7, cover all the rotor 

receptance functions used in the RHB approach of equations (8.13). 

The modal parameters used for the support structure are slightly different from those in 

Table 8.1 due to additional mass added to the housings. The final values of these parameters 

are found in Appendix A6, section A6.3. 

Equations (8.19) are ready for numerical integration from given initial conditions for the 

time domain response. Prior to integration, these equations are non-dimensionalised and 

expressed as a set of Arst order differential equations, as illustrated in Appendix A4, section 

A4.2. The instantaneous x and response at an arbitrary position PR on the rotor is given in 

terms of the modal coordinates by the appropriate pair of rows of the transformation of eq. 

(5.28), u = Hq, and thus necessitates the knowledge of ^ (AN-) ^ 1...3. 

For stability and bifurcation analysis of the RHB response, the matrices , 

in the expression for W(T) (eqs. (5.44), (5.45)) are required. From eqs. (8.5) and 

(8.6): 

9 U , 

A X , , 
^2 

Now when Also,from eqs. 

(5.2a,b), Qa yi ~ 2x,y ' ^ r d , ' ) ' ^ h e r e ~-^7, Heuce, 

. A similar process applies for . Hence, 

J Q I ^2X2 - JQI ^2X2 J Q , ^2X2 - J Q I ^2X2 

_ ^2X2 ^ Q 2 (̂ 2X2 - J Q 2 A F , _ (̂ 2X2 J Q 2 (^2X2 - J Q 2 

- J Q I (̂ 2X2 J Q I ^2X2 ' A U ; - J Q I (^2X2 J Q , ^2X2 

^2X2 " ^ 0 2 (̂ 2X2 ^ 0 2 (̂ 2X2 ^ J Q 2 ^2X2 J Q 2 

(8.21) 
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where 

'Q' 

A X ay. 
re/, 

BG. BGv 
A Z _ , A Y RE/: 

' J O F -

31%,, 

BQv, 36, 
a c 

, ; = 1, 2 ;.22a,b) 

and ( ) is d{ )/dT, t=OJt (UJ rad/s being the fundamental frequency of the periodic 

solution). The partial derivatives in eqs. (8.22) are evaluated numerically at ±e RHB-

computed periodic solution from the expressions for <2̂ . in eqs. (5.2) and (4.6). The above 

expressions, along with ± e expressions for (eq. 8.20) and D (eq. (8.18)) determine the 

expression for W(T) in eqs. (5.44), (5.45), Arom which the monodromy matrix G of the 

periodic solution is computed, using eq. (3.22). 

The equations presented in this section are processed as discussed in section 5.7 of 

Chapter 5. 

8.4 EXPERIMENTAL WORK 

For this work, the shims were removed from the radial clearances of the dampers and their oil 

supply restored. The rig was run under unbalance conditions in the speed range 20 rev/s to 

110 rev/s and vibration data acquired at each speed in steps of 2 rev/s. The oil supply 

pressure to both dampers was kept constant at 34.5x10^ Pa. This pressure was sufficient 

to fill both clearances. Preliminary experiments were conducted without unbalance masses 

attached, in order to examine the influence of the small residual unbalance left after the rotor 

was balanced in the first commissioning period. Experiments were then conducted with 

unbalance masses attached at U? only (see Figure 8.1) and then with symmetrically disposed 

equal masses attached at both Ui and U2. In this thesis, emphasis is placed on the former case 

since this represents a general unbalance condition in which both symmetric and anti-

symmetric bounce modes are excited. A summary of the experiments discussed in this thesis 

is given in Table 8.4. 
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Experiment 
No. 

u, 
(xlO"^ kgm) 

U2 
(xlO"^ kgm) 

7 2 

C C) (xlO'^ 
Nsm'^) 

Temp 2 

(° (:) 

fi, 

Nsm'̂ ) 
1 0 7 .065975 0 36 9 .85 35 10.17 

2 0 10 .735900 0 37 9.53 34 10.57 

3 0 13 .146000 0 36 9 .85 33 10.98 

4 10 .735900 10 .735900 0 36 9 .85 34 10.57 

Table 8.4: Summary of unbalance response experiments for test rig C 

With reference to this table: 

- Tgwp, and ( / = 1,2) are, respectively, the average oil temperature and the oil viscosity 

at that temperature for SFD no. ; . The viscosity values were used in the analytical 

treatment. 

- The resultant unbalance mass attached at position Ut (A: = 1, 2 ) is given by U .̂/r^ where 

the unbalance radius = 54.775 x 10"̂  m. 

- 72 is the phase angle of unbalance relative to as described in Figure 5.1(b). 

- The acquisitions were conducted both on run-up and run-down in rig speed. 

Vibration in the % and y directions was measured by displacement probe pairs at Jim, Bj, 

J2m and B? (Figure 8.1). As explained in section 8.2, the probes at Jim and Jzm measured 

displacements relative to Bi and Bz respectively, whereas those at Bj and B2 measured 

displacements relative to the machine frame, which were taken as absolute for the purpose of 

comparison with theory. The probes were connected through voltage amplifiers to a PC-

operated /fgw/gff f HP 35650* spectrum analyser, which was set to acquire data in the 

form of a time history. The speed was measured using an optical sensor connected to a 

tachometer. The sensor was targeted at a section of the rotor close to Fi (Figure 8.1), which 

was painted black all round except for two diametrically opposed white strips aligned with 

the unbalance. Hence, the output of the tachometer was two rectangular pulses per shaft 

revolution. This signal was fed to a digital frequency meter, its reading being divided by 2 to 

give the speed. The speed fluctuation was within ± 0.5 rev/s. Since the time capture length 

of the vibration was 2 s, the fluctuation was within the resolution of the frequency spectrum 

of the acquisition (i.e. 0.5 Hz). The tachometer pulse was also fed to the spectrum analyser 

for acquisition, in order to obtain knowledge of the phase of the vibration time histories 
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relative to the unbalance. Since the HP 35650® analyser had a maximum of 8 channels and 9 

signals needed to be acquired, two such analysers, each with its own PC, had to be used. The 

analysers were linked together by a conmion input &om an instrumented hammer. This is 

illustrated in the instrumentation diagram of Figure A6.3 in Appendix A6, section A6.4. At 

each speed, data were acquired by both analysers simultaneously upon being triggered by a 

light tap from the hammer applied by the experimenter to the desk. The frequency range was 

0-1.6 kHz and the sampling rate of the analysers was thus 2.56x1.6 = 4096 samples/s, to 

avoid aliassing in subsequent spectral analysis. Further details of the instrumentation are 

given in Appendix A6, section A6.4. The data were converted from standard format to 

MA7ZAB* format and processed for frequency spectra, vibration orbits, and peak-to-peak 

displacements. Poincare maps could also be constructed A-om the time records through the 

knowledge of the tachometer pulse signals. Since the time record length was 2 s, the number 

of samples in the map at a given speed 5' rev/s was limited to 25" ± 1. 

The rotor probes at Jim and Jim (Figure 8.1) revealed a run-out when the shaft was rotated 

at very low speed. This was due to the non-uniformity of the shaft radius ("lack of 

roundness") and so, was termed "geometric run-out". The run-out was significant for the 

position Jzm, as can be seen from Figure 8.8(a). This figure shows the alternating ("ac") 

component of the versus % "orbit" recorded by the probes at Jim over 2 s at a speed of 3 

rev/s. This "orbit" did not define vibration, but actually defined the fluctuation in the shaft 

profile at Jzm- The "ac" % and ); signals are shown in Figure 8.8(b) with the tachometer pulse 

signal superimposed, the distance between the tachometer pulse edges UU, VV defining one 

shaft revolution. The x and y signals were periodic at the period of rotation and practically 

identical except for an offset of a quarter period (allowing for the sign convention used for 

the X and y fluctuations). From Figure 8.8(a), it is seen that the peak fluctuation in shaft 

radius at Jim (taken as half the peak-to-peak fluctuation) amounted to 16 % of the radial 

clearance or 0.0007", which was comparable to the machining tolerance for the shaft. 

Knowing the x and y geometric run-outs at Jim and Jzm at a reference speed (~3 rev/s), as well 

as the associated tachometer pulse signal, the x and y geometric run-outs at any speed S rev/s 

could be constructed from the tachometer pulse signal at S rev/s. This enabled a correction to 

be made to the vibration recordings at Jim and Jam at S rev/s. For each location Jim and Jim, a 

"reference" profile for the x run-out was formed by taking a portion of the profile of the 

corresponding x run-out at 3 rev/s between an arbitrarily chosen pair of tachometer pulse 

edges UU, VV, covering one shaft revolution (Figure 8.8(b)). This profile was then 

uniformly shrunk along its time base to fit the space between each consecutive pair of similar 
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edges UU, VV in the tachometer pulse signal at 5' rev/s, thus constructing the z run-out at this 

speed (see Figure 8.9 where 5' = 60 rev/s). Any remaining gaps at the beginning and end of 

the time history were filled by continuing the constructed periodic waveform backward and 

forward respectively. A similar process was followed for the run-out. The jc (y) run-outs at 

6" rev/s at Jim, Jim were then subtracted from the corresponding z (y) displacement probe 

readings to obtain the true vibration signatures at Jim and Jim. The method described in 

Figure 8.9 did not depend on the knowledge of the values of the speed 5" and the reference 

speed (-3 rev/s) and thus avoided cumulative errors in phase that would otherwise occur due 

to inevitable uncertainty in the precise values of the speeds. Moreover, minor fluctuations in 

speed, which resulted in variations in T (Figure 8.9) from one pair of pulse edges UU, VV to 

the other, were accommodated by the method since the reference profile was "custom" fitted 

to each pair of pulse edges in turn. The method merely assumed that the speed was uniform 

over the short time interval separating each pair of edges UU, W . Since the run-out at speed 

S was periodic with period 1/5", the correction should affect the synchronous frequency 

component of the vibration and its super-harmonics, without affecting the other frequency 

components or introducing spurious frequencies. This is verified in the waterfall diagrams of 

Figure 8.10, which refer to the frequency spectra of the y vibration of Jim relative to Bz for 

the unbalance condition in the first row of Table 8.4. It is also clear that the corrected 

diagram is much more realistic than the uncorrected one, showing activity in the synchronous 

frequency component around the bounce critical speeds of -66, -100 rev/s, especially the 

latter mode (as is expected from the unbalance distribution). Also, a resonance in the second 

harmonic of the rotational speed appears in the corrected diagram at 32 rev/s, which is around 

half the first (i.e. symmetric) bounce critical speed. This sub-critical super-harmonic 

resonance cannot be identified from the uncorrected diagram. 

8.5 RESULTS AND DISCUSSION 

The first part of this section focuses exclusively on the quality of the correlation between the 

three modelling blocks i.e. RHB, modal Floquet stability analysis, and modal numerical 

integration (time-marching). The second part of this section deals with the ability of the 

model to predict observed non-linear phenomena. All simulations presented use the absolute 

zero cavitation model for the SFDs i.e. — -101.325x10^ Pa. 
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8.5.1 Correlation Between Modelling Blocks 

For the purposes of the discussion in this section, one can focus on the response at a 

particular position without loss of generality, since the nature of the vibration (i.e. whether it 

is periodic, quasi-periodic, ... etc.) is the same for all locations. Figures 8.11(a-f) present 

predicted speed response curves for the displacement amplitude of J2 relative to B2 for the 

three different unbalance conditions in the first three rows of Table 8.4 (for which !7;=0). 

The vertical axis shows the half peak-to-peak displacement (normalised with respect to c) in 

the X or 3̂  directions. The RHB predictions (red curve) are for ^-periodic motion (N = 1) 

with /M = 10 harmonics taken. These solutions are classified according to their state of 

stability, computed by the Floquet analysis block (see figure caption). The steady-state time-

marching predictions (in blue) are in steps of 2 rev/s and are performed for the two speed 

regions, I and II, that contain regions of instability of r-periodic motion. The initial 

conditions for the first time-marching solution in each range were obtained from the RHB 

prediction at that speed and the initial conditions for the solution at a subsequent speed were 

obtained from the final conditions of the solution at the preceding speed. For each speed, the 

integration was carried out over at least 200 shaft revolutions and only the last 1 s analysed. 

The very good correlation between the three modelling blocks is illustrated by the fact that 

the time-marching solution curves part company from the RHB curves only in the regions of 

instability of ^-periodic motion. Elsewhere, both methods give the same stable T-periodic 

motion, as seen in Figure 8.12. This correlation between the RHB and time-marching 

predictions for stable r-periodic motion was not always that good, as seen in Figure 8.13. 

The reason for this was an insufficient number of rotor modes in the time-marching solution 

rather than insufficiency in the number of harmonics in the RHB solution (which, at m = 10, 

was more than adequate). In fact, as seen in this figure, agreement was restored when the 

RHB solution was performed using rotor receptances reconstructed from the 3 modes 

considered in the time-marching solution (using eq. A3.9 of section A3.3, Appendix A3) 

rather than the exact ones (computed by MI). This example illustrates the "inter-checking" 

properties of the RHB and modal time-marching methods when "exact" receptances are used 

in the former method. Despite the occasional inadequacy in the number of rotor modes 

taken, the stability analysis block gave a consistent result every time. According to the 

Floquet test, the instability in speed range I is the result of a secondary Hopf bifurcation. 

This is consistent with the Poincare map of the time-marching result at 60 rev/s for 

= 7 07 X10"^ kgm (Figure 8.14(a)). For the highest and lowest values of , the onset of 
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instability in speed range E, as the speed is increased, is also the result of a secondary Hopf 

bifurcation (points H on Figures 8.11(a,b,e,f)). This is consistent with the Poincar6 map of 

the time-marching result at 88 rev/s for C/g = 7.07x10"^kgm (Figure 8.14(b)) and at 84 rev/s 

for [/g =13.15xl0^kgm (Figure 8.14(c)). Notice that for the highest unbalance, a narrow 

region of instability of T-periodic solutions, the onset of which is marked by a period-

doubling bifurcation, is also evident in Figures 8.1 l(e,f) for the range -72 rev/s to -74 rev/s. 

However, the resulting sub-harmonic motion is weak and stable ^-periodic motion is restored 

by 74 rev/s. For the intermediate unbalance, =10.74xl0"^kgm (Figures 8.11(c,d)), the 

onset of instability in the speed range II, as the speed is increased, is marked by a period-

doubling bifurcation (point F in Figures 8.11(c,d)). This is confirmed by the time-marching 

solution of Figure 8.15 for 84 rev/s, which shows double-looping. The (stable) ZT-periodic 

RHB solution (N = 2) with m = 15 harmonics taken is overlaid on the same axes. It is seen 

that correlation between both solutions is very good. Notice that, in Figures 8.11(c,d), the 

unstable 7-periodic solution (close to F) marked "o" (where A, = —1.0442) is followed by an 

apparently stable one marked "o". However, this subsequent solution is actually at the 

threshold of instability (X, =-0.9885) and, given its isolation, stable ^-periodic motion is 

not restored, the motion remaining locked in 27-periodic motion. For the lowest unbalance 

only (Figures 8.1 l(a,b)) stability of T-periodic motion is restored by 110 rev/s, where the 

time-marching and RHB curves rejoin. Moreover, at this unbalance, as the speed is 

decreased from 110 rev/s, a period-doubling bifurcation is predicted (point F, Figures 

8.11(a,b)). This is confirmed by the time-marching solution in Figure 8.16 for 106 rev/s. 

Overlaid on the same axes is the (stable) 2Z'-periodic RHB solution (i.e. N = 2) with m = 15 

harmonics taken. It is seen that correlation between both solutions is very good. 

Note that the restriction to just one flexural rotor mode in each plane was done to cut 

down on computing time in generating the time-marching response. The stability analysis 

block was found to accommodate an extra flexural rotor mode (in each plane) in the matrices 

Hp̂  (eg. (8.20)) and D (eq. (8.18)) with negligible effect on computation time. However, as 

illustrated in this section, this was not necessary. 
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8.5.2 Correlation With Experiment 

The residua] unbalance is Hrst discussed, since this is an inevitable source of error. Figure 

8.17 shows the measured residual unbalance response of the rig (i.e. with no unbalance 

masses attached). The relative responses across the dampers in the % and y directions, as well 

as the housing vibration in the % direction, are minimal. However, the housing vibration in 

the ); direction shows peaks at 32, 48, 64, and 95 rev/s (Figures 8.17(f,h)). This latter e^ect is 

to be expected since the level of relative vibration across the dampers is low and 

consequently, there is little lift of the mean position of the journal vibration from the base of 

the clearance under the gravity load, over the entire speed range. The latter two peaks in 

Figures 8.17(f,h) correspond approximately to the first (i.e. symmetric) and second (i.e. anti-

symmetric) bounce modes respectively. It should be noted that if one takes into account the 

extra mass added to the housings due to the attached rotor displacement probes and their 

brackets, the predicted bounce critical speeds in the plane quoted in Table 8.3 reduce to 

66.4 rev/s and 98.3 rev/s. Hence, it can be assumed that the measured value of the second 

bounce critical speed (99.7 rev/s) goes down, at most, to 99 rev/s. Still, the latter two peaks 

in Figures 8.17(f,h) occur at around 2-4 rev/s less than the bounce speeds. This difference 

from the condition with the SFDs locked is not unusual since there is some relative 

movement across the dampers in the y direction (Figures 8.17(b,d)), especially around the 

bounce speeds. The first pair of peaks in Figures 8.17(f,h) occur at speeds roughly equal to 

half the bounce critical speeds and are sub-critical super-harmonic resonances, introduced in 

Chapter 6. These correspond to the state where the SFDs are reduced to piecewise-linear 

springs in the j direction. The strength of these peaks is not indicative of the magnitude of 

the unbalance, since the 2E0 frequency component is the main contributor to the vibration 

(as explained in Chapter 2, lEO ("engine order") refers to the synchronous frequency 

component of the vibration). In fact, as will be seen in later results, the amplitude at these 

peaks is practically independent of the unbalance level while the lift at the dampers is 

negligible. The lEO frequency component is the major contributor to the peaks at 64 rev/s 

and 95 rev/s in Figures 8.17(f,h). The amplitudes at these peaks are not insignificant when 

compared to the housing vibration in the y direction with unbalance masses attached to the 

rotor (to be shown later). However, the relatively high amplitudes at the bounce critical 

speeds in the residual unbalance response of the housings in the y direction are more likely to 

be the result of inadequate damping provided by the SFDs due to the small relative vibration 

across the dampers, rather than a significant residual unbalance. 
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Figures 8.18-8.21 compare predictions and measurements for the vibration of Jim relative 

to Bi, Jzm relative to Bz, and the absolute vibrations of Bi and Bi for the three levels of 

unbalance in the Grst three rows of Table 8.4 (page 169). The theoretical results (RHB 

# = 1, m = 10 and numerical integration) are presented in a similar fashion to those in 

Figure 8.11. The following observations can be made. 

- Fair correlation of the measurements with the relative vibration predictions at the SFDs 

(Figures 8.18, 8.19) is evident, although it is noted, particularly in the y direction, that the 

mismatch around the first bounce speed (60-70 rev/s) increases with unbalance level. 

The orbital motion at the dampers in this region for = 0 , =10.74xl0'^kgm is 

shown in Figure 8.22. Although speed-for-speed agreement is generally unattainable, the 

predicted and measured orbits evolve in a similar manner. It is outside the scope of the 

work in this chapter to investigate how oil film conditions affect the orbital motion, 

especially in the absence of measurements of the dynamic pressure within the oil film. 

The sub-critical super-harmonic resonances are clearly defined in the absolute 

displacements of Bi and 6% in the y direction, at around 32 and 48 rev/s. Figures 

8.20(b,d,f)-8.21(b,d,f). The first super-harmonic resonance is practically independent of 

unbalance, whereas the second one tends to become less prominent with increasing 

unbalance due to the increased lift at the dampers causing them to behave less like 

piecewise-linear springs. The absolute response at Bz in the y direction is characterised 

by a pronounced trough in the range 68 rev/s to 78 rev/s, unlike the absolute j response at 

Bi. This is probably due to the unbalance being concentrated at U2 only: the trough in the 

absolute y response at B2 loosely corresponding to the anti-resonance between the bounce 

mode resonances of the measured point accelerance at B2 (which is close to U2) for the 

system with SFDs locked (Figure 8.5(b2)). The absence of such a pronounced trough in 

the absolute y response at Bi can be associated with the absence of an anti-resonance in 

the measured transfer accelerance between Bi and B2 (and hence U2) for the system with 

SFDs locked (Figure 8.5(c2)). The absolute responses of Bi and B2 in the x direction do 

not exhibit such a relation to the case with the SFDs locked since the absence of a static 

load in that direction promotes relative motion across the dampers. 

The experimental results presented are for run-up in rig speed. Similar orbital motion 

was reproduced on run-down. The only exception was for the highest value of [/^ at 86 

rev/s, where an unexpected jump-up in the % component of the motions of Bi and B2 

relative to the engine frame was observed as the speed was increased from 86 rev/s to 88 
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rev/s as shown in Figures 8.20(e), 8.21(e). On run-down in speed, the amplitude jumped 

back down as the speed was decreased A-om 86 rev/s to 84 rev/s. This unique behaviour 

in the % component of the motion relative to the frame could not be predicted. 

- The (stable) numerical integration result in regions of predicted instability of T-periodic 

motion generally results in an improvement in prediction for vibration amplitude. This is 

not always the case, as shown in Figure 8.23, where the predicted 2r-periodic relative 

orbits at the SFDs overestimate the vibration amplitude. Nonetheless, the occurrence of 

2r-periodic motion is correctly predicted. That the measured motion in Figure 8.23 is 

indeed almost pure 2r-periodic motion is not just evident from the double-looping of the 

absolute housing orbits (Figures 8.23(cl,c2)), but also from the measured Poincare map 

of the relative motion at each damper (Figure 8.24). The sampling times of the map 

are given by i2f^=37r/4 + X:2;:, A: = 0 ,1,. . . , where i]|fQ=3;F/4 corresponds to the 

angular position of the speed probe, according to the convention of Figure 5.1(b). It is 

seen that the return points of both measured orbital motions (in red) congregate roughly at 

two locations within the clearance, in a similar manner to the predicted return points (in 

blue). 

Non-synchronous frequency components are clearly evident in the waterfall diagrams of 

the frequency spectra of the relative and absolute responses at the dampers and housings 

respectively in the y direction. Figures 8.25-8.28. The corresponding diagrams for the x 

direction are found in Figures A6.4-A6.7 in Appendix A6, section A6.5. The frequency 

resolution is 1 Hz for the predictions and 2 Hz for the measurements. The prediction 

diagrams were efficiently constructed from the RHB N = 1, m = 10 predictions for those 

ranges of rotational speed for which the predicted T-periodic motion is stable and from 

numerical integration solutions at the other speeds. The sub-critical super-harmonic 

resonance speeds at -32 rev/s and -48 rev/s are clearly evident by the strong 2E0 frequency 

components in both measurements and predictions of the housing response in the y direction. 

Figures 8.27, 8.28. The predicted super-harmonic resonances occur at speeds exactly equal 

to one half the predicted bounce speeds (66 rev/s and 98 rev/s). The measured bearing 

housing spectra also reveal a sub-critical super-harmonic resonance at a speed of 22 rev/s 

= 66/3 rev/s, evident by the 3EO frequency component at this speed (Figures 8.27(b,d,f), 

8.28(b,d,f)). This frequency component is hardly visible in the predictions, but slight peaks 

at 22 rev/s are evident in the predicted absolute housing vibration amplitude-speed plots (y 

direction) of Figures 8.20(d,f)-8.21(d,f), as in the measurements. It is also interesting to note 
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that for the lower speeds, the frequency spectra of the measured housing y vibration show a 

slight frequency component at 100 Hz, approximately equal to the second bounce resonance 

frequency, possibly due to the very low damping when the SFD journals are bottomed in 

their clearances. This was not obtained with the prediction since RHB was used for the low 

speeds. However, it is noted that the RHB solutions in the region of the sub-critical 

resonances are on the threshold of instability due to the ineffectiveness of the SFDs and the 

lack of other sources of damping in the model - moderate disturbances from the T-periodic 

motion would result in a practically non-decaying natural motion superposed on the 7-

periodic motion. 

The frequency spectra at the higher speeds are now discussed. At the lowest unbalance, 

Figures 8.25(a,b)-8.28(a,b), sub-synchronous activity starts in earnest at speeds approaching 

the second (i.e. anti-symmetric) bounce critical speed. In the measurements (Figures 8.25(b)-

8.28(b)), the sub-synchronous motion starts with the appearance of non-integer EO frequency 

components of the form (2^ - l )E0/2, where A: is a positive integer, mostly equal to 1 or 2. 

For later speeds the non-integer EO frequencies "fan out": they are each replaced by pairs of 

frequencies that are centred on the respective (2/:-l)EO/2 A-equency locations. The 

spacing of each pair increases with speed, but each pair remains centred on the corresponding 

(2^-1)E0/2 location. The corresponding predictions for this unbalance (Figures 8.25(a)-

8.28(a)) show a reverse forking effect; pairs of frequencies centred on the (2A-l)EO/2 

locations first appear and are then replaced by (2^-1)E0/2 components. For both 

measurements and predictions, the non-integer EOs disappear by 110 rev/s, which is 

consistent with the restoration of stability of ^-periodic motion predicted in Figures 

8.18(a,b)-8.21(a,b). For the next higher unbalance. Figures 8.25(c,d)-8.28(c,d), the non-

integer EOs develop at an earlier speed in both measurements and predictions. The observed 

forking effect of the non-integer EOs is not evident in the prediction until 104 rev/s. 

However, for the highest unbalance. Figures 8.25(e,f)-8.28(e,f), the experimentally observed 

development of non-integer EOs in the region of the second bounce speed is evident in the 

predictions. Two sections of the predicted and measured waterfall diagrams in Figures 

8.25(e,f)-8.28(e,f) are taken at speeds of 94 rev/s and 104 rev/s, straddling the second bounce 

critical speed, and are compared in Figures 8.29 and 8.30. It is seen that the salient frequency 

components in these figures occur at combinations ^o/o+^i/ i of two fundamental 

frequencies and where and are integers, is the synchronous component and 

177 



is either one of ± e pair of frequencies straddling the lEO/2 location on ±e frequency 

axis (in Figures 8.29, 8.30 /q was chosen as the lower frequency of the pair). For both 

speeds 94 rev/s and 104 rev/s, the predicted value of is very close to the measured value 

(practically equal for 104 rev/s). It is seen that the mean of and / i / ^ 

(= lEO/2) and that of + /g and 2/; - /g is 3/, /2 (= 3EO/2). Spectra of the type shovm 

in Figures 8.29, 8.30 were predicted for the simple system of Chapter 6 (Figure 6.8(b)). It 

would appear that the motions in the region of the second bounce speed are 2-frequency 

quasi-periodic. Figure 8.31 shows the predicted and measured steady-state orbital motion at 

94 rev/s over 2 s. For the prediction, the first 350 shaft revolutions were discarded to ensure 

steady-state conditions. The Poincare maps of the orbital motions in Figure 8.31 are shown 

in Figure 8.32. These are sampled at two different phases: Qt^ - 3;r/4 (Figures 8.32(al,bl) 

and Dfg = 3;r/4 + ;r (Figures 8.32(a2,b2)). It is seen that the predicted and measured maps 

show remarkable similarity with regard to position, orientation within the clearance, and 

overall shape, particularly the curvature of the maps in Figure 8.32(b2). The predicted maps 

approximate to closed curves, albeit much more complicated ones than that in Figure 8.14(c), 

for 84 rev/s, which is close to the secondary Hopf bifurcation point H in Figures 8.11(e,f). 

The measured maps do not reveal the detailed structure of some complex closed curve or 

other form, and it appears unlikely that increasing the relatively small number of samples 

would yield any additional information. However, the measured orbits in Figure 8.31 are 

actually more ordered than the predicted ones. Figure 8.33 shows the predicted and 

measured orbital motion at 104 rev/s over 2 s. The predicted motion appears to be 

approximately locked into NT-periodic motion, where N is very high. The predicted and 

measured Poincare maps are shown in Figure 8.34. It is again seen that good agreement 

exists between predicted and measured maps with regard to position and orientation within 

the clearance. By counting the number of distinct points on the predicted maps it is estimated 

that N -33. In fact, as the speed is increased, the predicted motion in the region of the 

second bounce critical speed alternates between motion of the type of Figures 8.31(al,bl) 

and approximately NT-periodic motion of high N as in Figures 8.33(al,bl). This, coupled 

with the fact that only two fundamental frequencies are evident in the predicted (and 

measured) spectra of Figures 8.29, 8.30, seems to suggest that the predicted 2-frequency 

quasi-periodic motion is following the frequency-locking quasi-periodic route to chaos (end 

of section 3.5). As mentioned in section 3.5, the question of whether the predicted motion in 
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Figures 8.31(al,bl) is really quasi-periodic or actually mildly chaotic is purely academic. 

Moreover, this question could only be answered by a reliable estimate of the Lyapunov 

exponent, which, for complicated dynamical systems like the one under consideration, is stiU 

unavailable. 

Attention is now focused on the case of symmetrically applied unbalance, as in the last 

row of Table 8.4 (page 169). The waterfall diagrams of the frequency spectra of the y 

displacement are shown in Figure 8.35. Those for the % displacement are in Figure A6.8 of 

Appendix A6, section A6.5. The results in Figures 8.35 and A6.8 are for run-up in rig speed. 

It is noted that only the first sub-critical super-harmonic resonance (i.e. the strong 2E0 

frequency at 32-33 rev/s) is present in the absolute housing y displacement spectra. The 

reason for this is that sufficient lift has been generated by 48 rev/s to eliminate the piecewise-

linear spring behaviour of the SFDs. It is also evident from the diagrams in Figure 8.35 that 

non-integer EO activity (and the subsequent forking effect described above) around the 

second bounce critical speed is absent. Instead, (2/: —l)E0/2 (^ integer) activity is 

concentrated in the vicinity of the first bounce critical speed. This activity starts at a lower 

speed for the measurements than for the predictions. The absence of sub-synchronous 

activity around the second bounce critical speed is consistent with fact that the rig is nearly 

symmetrical in construction, the unbalance symmetrically applied, and the SFDs nominally 

identical except for a slight inequality in viscosity (see Table 8.4). However, the predicted 

relative motion spectra. Figures 8.35(a,c), show unusual, highly asymmetric behaviour of the 

lEO frequency component. Firstly, a jump-up on run-up in the lEO frequency component is 

predicted at -51 rev/s and the jump is much more pronounced for SFD 1 than SFD 2. This 

effect is not that obvious in the corresponding measurements. Figures 8.35(b,d), but can be 

seen in the measured displacement amplitude (half peak-to-peak) response of Figure 8.36. 

The asymmetry of the predicted results for the SFD relative motion is explained in Figure 

8.37 using RHB = 1, m = 10 and the Floquet stability test. In this figure one can identify 

two bistable regimes. The first one is between 47.2 rev/s and 50.6 rev/s, and is typical of a 

spring-softening characteristic (i.e. jump-up in amplitude on run-up in speed). Prior to the 

jump-up speed, the stable motion is practically the same for both SFDs ("symmetrical" 

motion. Figure 8.38(a)). Beyond the jump-up speed (i.e. upon exiting the first bistable 

region), in the region -51 rev/s to -78 rev/s, a closed curve of ^-periodic solutions exists, in 

addition to the main ("open") curve (see Figure 8.37). This results in a second bistable 

region in which the stable motions at the two SFDs are highly dissimilar ("asymmetrical" 
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motion) . I n fact, in the region - 5 1 rev/s to - 6 5 rev/s, one can choose a stable solution on the 

main (open) curves of SFDs 1 and 2 of Figures 8.37(a,b), giving stable asymmetrical motion 

l ike that in F igure 8 .38(b) . Alternat ively, in the region - 5 1 rev /s to - 6 5 rev/s, one can choose 

a stable solution on the closed curves of Figure 8.37. Such a solution w i l l reside on the upper 

part of the loop for SFDl (Figure 8.37(a)) and on the lower part of the loop for SFD 2 (Figure 

8.37(b) ) . This results in stable asymmetrical mot ion l ike that o f F igure 8 .38(c) . The unstable 

solutions marked along the lower part of the loop for S F D 1 (Figure 8 .37(a) ) and along 

the upper part o f the loop for S F D 2 (Figure 8 .37(b) ) def ine the unstable "symmetrical" 7 -

periodic mot ion l ike that in Figure 8.38(d) . I t should be r e m e m b e r e d that the r ig model is not 

perfectly symmetrical . Hence, in the present context, the p a i r o f orbits in Figure 8.38(d) is 

regarded as def ining "symmetr ical" mot ion when compared to those in Figures 8.38(b,c) , 

especially w i th respect to orbit size and mean position w i t h i n the clearance. The R H B -

computed stable T-periodic orbits in Figures 8.38(b,c) were also obtained b y t ime-marching, 

in which case the choice o f init ial conditions determined w h i c h orientation was assumed by 

the rotor in the steady-state (i.e. either Figure 8 .38(b) or F igure 8 .38(c ) ) . 

Stable, highly asymmetrical motion of the type in Figures 8 .38(b,c) was still obtained 

when the r ig mode l was slightly altered to make it jy/zwigrncaZ m aZZ zff pammgfgr j ' 

(including those of the SFDs, like the oil viscosity). In such a case, the unstable motions in 

Figure 8.38(d) became identical to each other (i.e. perfectly symmetrical motion) and the 

stable asymmetrical motion was perfectly interchangeable between the SFDs (i.e. the orbits 

of Figure 8.38(c) could be obtained by interchanging the orbits of Figure 8.38(b), and v ice-

versa). Hence, for a symmetrical unbalanced rotor running in (identical) unsupported SFDs 

at each end it is generally incorrect to reduce the number of degrees of freedom by half by 

assuming kinematic symmetry about the rotor midpoint, as in Figure 4.3(a) (Chapter 4). This 

assumption is tantamount to excluding the rigid rotation mode of the free-free rotor (mode 2 

in Figure 8.6(b)). Such an assumption has frequently been made in the theoretical analysis of 

symmetrical unbalanced rotors running in unsupported SFDs in the literature e.g. [12, 15], 

without due consideration being given to the possibility that symmetric periodic motion can 

become unstable under certain operating conditions, such that the slightest disturbance of the 

state variables would cause the rotor to assume a conical mode of vibration in the steady-

state. To the author's knowledge this the first time that such a possibility has been reported. 

The orbits in Figures 8.38(b-d) show that, in the range ~51 rev/s to -65 rev/s, each SFD 

has three different mean positions of vibration about which the static load transmitted by the 

respective journal is balanced. Two of these mean positions can be regarded as stable 
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(Figures 8 .38(b,c) ) , wh i le the other (Figure 8 .38(d) ) is unstable. Hence, just l ike the j u m p 

phenomenon of the first bistable region, the asymmetric v ibra t ion phenomenon in the second 

bistable region owes its existence to the non-linear spr ing- l ike characteristic o f an 

unsupported damper. 

Turn ing back to the first bistable region (47 .2 to 50 .6 rev /s ) , it is noted f r o m Figure 8 . 3 7 

that a hysterisis (i.e. a difference between the " jump-up o n run -up" speed and the " j u m p -

down on run-down" speed) of around 3 rev/s exists. Hyster is is was not evident in the 

corresponding measurement. L ikewise , the predicted asymmetry beyond the jump speed was 

not evident in the measurement. However , when the unbalance leve l was increased by about 

2 2 % , a hysterisis of 1 rev/s was observed in the measurement, as illustrated in Figure 8 .39 . 

I t should be noted that, as in Chapter 6, the hysterisis e ^ e c t w a s predicted using a u n i f o r m 

value of cavitation pressure throughout ( = - 1 0 1 . 3 2 5 x 1 0 ^ P a i n this work ) . Hence, w h i l e 

it is likely that, in practice, air entrainment following a jump-up causes a change in cavitation 

pressure [28], a change in cavitation pressure is not necessary to produce a hysterisis effect as 

was implied in [28]. The striking difference in orbit size between the two SFDs (Figures 

8.39(b,c) ) appears to lend experimental val idity to the pred ic ted asymmetrical operation 

beyond the j u m p - u p speed. However, it is noted that the predicted interchangeability of 

orbits between the SFDs (as in Figures 8 .38(b,c) ) was not observed. 

The j u m p - u p on run-up in SFD relative displacement amplitude (spring-softening) and 

period doubl ing (i.e. (2^ -1 )E0/2 frequency components) were also predicted by the simple 

4 degree of freedom system in Chapter 6. Notice that if the rig of this chapter was taken as 

perfectly symmetrical in all respects and, additionally, modes 2 and 3 in Figure 8.6(b) were 

not considered (i.e. kinematic symmetry about the rotor midpoint is assumed and rotor 

f lexibi l i ty is neglected), then the resulting dynamical system would have the same equations 

as that o f Chapter 6. 

A source of error that may have degraded correlation between experiments and 

predictions must have been the assumption of free conditions at the left hand (LH) end of the 

rotor. Figure 8.40 shows a schematic of the drive coupling at the LH end of the rotor. While 

it is true that there is no bending moment at the LH end in either plane xz and yz, the 

component of rotor velocity at the LH end normal to the drive bar causes an inequality in 

contact force, resulting in a net opposing force. This restraining force is thought to be 

influential at high amplitudes of absolute rotor vibration at the LH end. 
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The development of the sub-critical super-harmonic resonances is now discussed in m o r e 

detail. Figure 8.41 shows the predicted and measured development of the first super-

harmonic resonance. I t is seen that the predicted results e v o l v e in a similar manner to the 

measured ones but on a very m u c h smaller bandwidth o f speed. Moreover , when the 

measured loss factors in Tab le 8.1 were used in the ( R H B ) computat ion, the super-harmornc 

resonances were totally attenuated. W h i l e it is probable that the loss factors w e r e 

overestimated, this is not l ikely to be the cause of the disappearance of the super-harmonic 

resonances, especially since attenuation of the predicted super-harmonic resonances was sti l l 

severe even when the estimated loss factors were reduced b y a n order o f magnitude. A m o r e 

plausible explanation for this effect and the contrast in bandwidths in Figure 8.41 would be 

the unsuitabil i ty of the S F D model under such extreme condit ions. T h e generation of the 

large ampli tude o f absolute bearing housing (and rotor) v ib ra t ion in the direction at the 

super-harmonic resonance depends on the existence of a large non-l inear force at the 

interface between the housing and the journal . T h e journal is bo t tomed in the clearance and 

vibrating with minute amplitude relative to the housing. In the real system, the oil is likely to 

be squeezed out of the interface between the journal and the housing so that the interface 

force would be a pure contact force. However, the model always takes into consideration the 

oil film at the interface and the force transmission characteristics of the oil film under these 

extreme conditions are difficult to predict using the conventional SFD model. Figure 8.42(a) 

shows the typical predicted variat ion o f l i f t in the damper in t h e region o f a sub-critical super-

harmonic resonance, with support structural damping excluded. It is clear from this figure 

that the SFD force comes close to a contact force only at the resonance. Elsewhere, in the 

region of resonance, the SFD force is an attenuated version of the contact force. Hence, it 

appears justifiable to exclude structural damping, even in the super-harmonic resonance 

region, in order to compensate for the attenuation in contact force. For the drop in lift 

(Figure 8.42(a)) to be possible, the amplitude of the relative vibration at the SFDs must dip as 

in Figure 8.42(b). This allows the gravity load to pull J2 (and Ji) further to the bottom of the 

clearance. From the oil pressure equation (4.8), although £ , y - » 0 , the eccentricity 

e—>-1, so the SFD force (= contact force) is maintained. Paradoxically, the relative 

displacement amplitude at the SFDs can never be exactly zero since this would mean a 

perfectly rigid connection (resulting in a linear system) and hence there would be no 2EO 

frequency component and no super-harmonic resonance. It is interesting to note that, while 

the predicted amplitudes of the y displacements of J2 and Ji relative to B2 and Bi respectively 

182 



dip at the super-harmonic resonances (Figure 8 .42(b) ) , the predicted amplitudes of the 

displacements o f Jzm and J]m relative to B i and B i respect ively actually peak at the 

resonances, as shown in Figure 8 .42(c) . This is consistent w i t h the y relative displacement 

ampli tude measurements in Figures 8 .18(b,d, f ) -8 .19(b,d, f ) , w h i c h show small peaks at the 

super-harmonic resonances. 

8.6 CONCLUSIONS 

This chapter formed the final part of the val idation of the general model developed in 

Chapter 5. I n Chapters 6 and 7, the integrated mode l was tested on a r igid rotor-f lexible 

housing assembly and a flexible rotor-rigid housing assembly respectively, both with a single 

SFD. In this chapter, the model was applied to a test rig that, to a limited extent, captured the 

essential features of the low pressure rotor assembly of a practical aero-engine in which the 

f lexibi l i t ies of both the rotor and the support structure are relevant, and in which more than 

one SFD is used. The model was first "internally" validated by testing the correlation 

between the three modelling blocks (i.e. RHB, modal Floquet stability analysis, and modal 

numerical integration). The mode l was then used to predict and explain experimental ly 

observed non-linear phenomena from the rig. 

The following conclusions and comments can be made regarding the theoretical part of 

the work in this chapter: 

In general, no problems of computational efficiency were encountered when 

implementing the model on a 333 MHz Pentium n computer. 

The correlation between the three modelling blocks was highly satisfactory, validating the 

soundness and applicability of the model. 

The inf luence of the flexural modes of the rotor should not be disregarded simply because 

the rotor-support structure modes with the SFDs locked are very nearly "bounce" modes 

in which the housings show much more deflection than the rotor. 

A m o n g other things, the RHB method was particularly useful in identifying sub-critical 

super-harmonic resonances and the complicated operation of the symmetrically 

unbalanced rig, where stable asymmetric motion at the SFDs was found to be 

theoretically possible. 

For a perfectly symmetrical unbalanced rotor running in identical unsupported SFDs at 

each end, it is generally incorrect to reduce the number of degrees of freedom by half by 
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pre-assuming kinematic symmetry, due to the non-l inear spr ing- l ike characteristics o f the 

SFDs. 

A s regards correlation wi th experimental observations, the fo l lowing conclusions and 

comments can be made: 

Overall, correlation between measured and predicted displacement amplitude responses 

was acceptable, although speed-for-speed agreement was general ly unattainable. 

- U n d e r conditions o f general (asymmetrical) unbalance (at U z only) , odd number mult iples 

o f l E O / 2 around the second bounce critical speed were found to fork out into 

combinat ion frequencies composed o f two fundamentals, one o f wh ich being the l E O 

component. Predicted and measured Poincare maps of the resulting 2-frequency motion 

showed good correlation. It was concluded that the motion was either quasi-periodic, or 

at worst, mi ld ly chaotic. A s in Chapter 7, f requency- locking o f the 2-frequency quasi-

periodic mot ion was identi f ied as a potential route to chaos, although no fo rma l 

investigations were carried out. 

For the symmetrically unbalanced rotor, odd number multiples of lEO/2 were obtained 

in the v ic ini ty of the first bounce critical speed and no such activity was observed in the 

region of the second bounce critical speed. A jump-up on run-up in SFD relative 

displacement amplitude (spring-softening), w i th hysterisis, was correctly predicted. 

In modelling the sub-critical super-harmonic resonance regime of operation, the 

attenuating effect of the oil film on the transmitted contact force between journal and 

housing justified the exclusion of structural damping for the purpose of predicting the 

super-harmonic resonances. 

Despite the highly non-linear performance, the unsupported SFDs fulfilled their intended 

function in this application i.e. to provide a safe transition through the bounce critical 

speeds (by attenuating the vibrat ion amplitude). 
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(c) /9â %(T3hie), Onsd), /?4f,(l)lack) (d) /5^^^(bliie), (red), (blade) 

F i g u r e 8 .3 : Accelerance measurements on support structure 

186 



0 100 2 0 0 3 0 0 4 0 0 500 6 0 0 7 0 0 800 0 100 2 0 0 3 0 0 4 0 0 500 600 700 
frequefxv (Hz) frequency (Hz) 

(al) « a,a, (bl) 

0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 7 0 0 8 0 0 0 100 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0 700 8 0 0 
frequency (Hz) frequency (Hz) 

(cl) /3, WD 0.,,. 

so 50 

pLi— 
1 

^ 1 0 0 

1 
"^-150 

J 
°:.150 

W . _ ^ 

-200 

-250 

200 

- % 0 

0 100 200 300 400 500 600 700 800 
(requmney (Hz) (a2) a . 0 100 200 3 0 0 400 500 GOO 700 800 

Iraqumney (Hz) (b2) (Xĝ^ 
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F i g u r e 8 .9 : Construction of geometric run-out profile at Jam in x direction at 60 rev/s 
run-out ( ); tachometer pulse ( ) (mean component of signals removed) 
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Jam relative to B2 (unbalance as in first row of Table 8.4, data length 2 s) 

J2 relative to B2: normalised x displacement amplitude (half peak-peak) J2 relative to B2: normalised y displac«nent amplitude (half peak-peaW 

&0.5 
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rotational speed (rev/s) 

50 60 70 80 
rotadonal speed (rev/s) 

(a) X direction (b) y direction 

F i g u r e 8 .11 : Predicted response ofli relative to ^2 for three states of unbalance (first three 
rows of Table 8.4: (a), (b) row 1; (c), (d) row 2; (e), (f) row 3). RHB N = 1, m = \0- red: 
"o" stable, "+" unstable {A, real, positive), unstable (A, real, negative), unstable {A, 
complex); numerical integration - blue. Vertical axes show ratio of half peak-to-peak 
displacement to c. 
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J2 relative to B2: normajised x displacement amplitude (half p%k-peak) J2 relative to 82: normalised y displacement amplitude (half peak-peak) 
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rotational speed (rev/s) 

(c) X direction 

J2 relative to B2: normalised x displacement amplitude (half peak-peal^ 
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rotational speed (rev/s) 

(f) y direction 

stable, "+" unstable (A, real. F i g u r e 8 . 1 1 (continued): RHB N = l, m = lO- red: ' 
positive), unstable (A, real, negative), unstable (A, complex); numerical integration 
- blue. Vertical axes show ratio of half peak-to-peak displacement to c. 

c lea rance 

(a) h relative to Bj ( b ) B2 

F i g u r e 8 .12 : Predicted orbits at SFD 2 at 60 rev/sfor = 0, = 10.74 x 10"̂  kgm 

RHB N = 1, m = 10( ); numerical integration ( ) 
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(a ) J2 relative to B ; 

i .2 - 1 - 0 . 8 - 0 . 6 - 0 . 4 - 0 . 2 0 0.2 0.4 0.6 0.6 1 

(b)B2 

Figure 8.13: Predicted orbits at SFD 2 at IS rev/s for U^ = 0, = 1 0 . 7 4 x 1 0 kgm. R H B 

# = 1, m = 10 with exact receptances ( ) and with receptances computed from modal 
approximation ( ); numerical integration ( ) 
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Figure 8.14: Predicted Poincare maps of the orbit 0/J2 relative to Bifor t/, = 0 and (a) 

[ /g = 7 . 0 7 x l 0 " * A : g m , 6 0 (b ) = 7 . 0 7 x 1 0 " ^ % / ^ , 88 rgiV!;; (c) - 13.15xlO"^A;g7M, 

84 rev/s. (£2t^ — 371J2 + k27t) 

(a) J2 relative to Bj ( b ) Bz 

Figure 8.15: Predicted 2T-periodic orbits at SFD 2 at 84 rev/sfor [/, = 0 , 

= 1 0 . 7 4 x l 0 ^ ^ g m . R H B = 2 , m = 15 ( ) ; numer ica l integrat ion ( ) 
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(a) J2 relative to B] (b)B2 

Figure 8.16: Predicted 2T-periodic orbits at SFD 2 at 106 rev/sfor t/, = 0 , 

=7.07xl0-^j;:gm. RHB N = 2, m 15 ( ); numerical integration ( ) 
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(c) Jim relative to B2, % direction (d ) Jim relat ive to B2, )' direction 

Figure 8.17: Residual unbalance response 
(half peak-to-peak displacement normalised with respect to c) 

(Figure continues on the following page) 
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B1: normalised absolute x displacement ampKtude (half peak-peak) B1: nomiaBsed absolute y c6$;̂ acement ampWude (half peak-peak) 

# M M M M M 1M no 
rotational speed (rev/s) 

(e) Bi, X direction 
82: nomialbed absolute x cBsplacement amplitude (half peak-peak) 

20 30 40 50 60 70 80 
fotatkMial speed (rev/s) 

M 1W no 

( f ) B i , y direction 

B2: normaBsed absolute y cBsplacemmit ampBWe (half peak-peak) 

M M M ^ M 1W n o 
rotatwn^ speed (rev/s) 

M % W M W ^ M 1W ^ 0 
rotatwnal speed (rev/s) 

(g) Bz, ;c direction ( h ) B2, y direct ion 

Figure 8.17 (continued): Residual unbalance response 
(half peak-to-peak displacement normalised with respect to c) 
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J1 m relative to B1; normalised x displacement amplitude (half peak-peal<) J1 m relative to B1: normalised y displacement amplitude (half peak-peal<) 
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rotational speed (rev/s) 

(a) X direction 

J1 m relative to 81: normalised x displacement amplitude (half peak-peak) 
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rotational speed (rev/s) 

(b) y direction 

Jim relative to 81: nonnalised y displacement amplitude (half peak-peak) 
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rotational speed (rev/s) 

(c) X direction 

Jim relative to B1: nofmaDaed x displacement amplitude (half peak-peak) 
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Jim relative to B1: normalised y displacement amplitude (half peak-peak) 
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110 

F i g u r e 8 .18 : Response ofhm relative to ^\for three states of unbalance (first three rows of 
Table 8.4; (a), (b) row 1; (c), (d) row 2; (e), (f) row 3). Measurements - black. RHB iV = 1, 
w = 10- red: "o" stable, "+" unstable (A, real, positive), unstable (A, real, negative), 

unstable (A, complex); numerical integration - blue. Vertical axes show ratio of half 
peak-to-peak displacement to c. 
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J2m relative to B2: normalised % displacement amplitude (half peak-peak) J2m relative to 82: normalised y displacement ampMude (half peak-peak) 

1W 110 50 60 70 80 
rotatkwial speed (rev/s) 

(a) X direction 

J2m relative to B2: normailsed x displacement amplitude peak-peak) 
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rotational speed (rev/s) 
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(b) y direction 

J2m relabve to B2: normalised y displacement ampWtude (haK peak-peak) 
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(c) X direction 

J2m relative to 82: normalised x dbplacement amplitude (half peak-peak) 
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rc 

(d) y direction 

J2m relative to 82: normalised y displacement amplitude (half peak-peak) 

&0.5 

50 60 70 80 
rotational speed (rev/s) 

(e) X direction 

50 60 70 
rotatknal speed (rev/s) 

(f) y direction 

100 110 

F i g u r e 8 .19 : Response of ^2m relative to ^2 for three states of unbalance (first three rows of 
Table 8.4: (a), (b) row 1; (c), (d) row 2; (e), (f) row 3). Measurements - black. RHB N = \, 
m = 10- red: "o" stable, "+" unstable real, positive), unstable (2 , real, negative), 

unstable complex); numerical integration - blue. Vertical axes show ratio of half 
peak-to-peak displacement to c. 
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B1: normaliBed absolute x displacement amplitude (ha* peak-peal^ B1: nomWsed absolute y dispiacement amplitude (half peak-peak) 
1.5, 1 1 1 1 1 1 1 , 1 1.5r 
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B1: normalised absolute x displacement amplitude (half peak-peak) B1: normalised absolute y displacement amplitude (half peak-peak) 
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(c) % direction (d) y direction 

B1: normalised absolute x displacement amplitude (half peak-peak) B1: normalised absolute y displacement amplitude (half peak-peak) 

^ 0 . 7 5 %.0.75 

20 30 40 50 60 70 60 90 100 110 20 30 40 50 60 70 80 90 100 110 
rotational speed (rev/s) rotatkxial speed (re)^) 

(e) X direction (f) y direction 

F i g u r e 8 .20 : Response o/Bj for three states of unbalance (first three rows of Table 8.4: ( a ) , 

(b) row 1; (c), (d) row 2; (e), (f) row 3). Measurements - black. RHB jV = l , m = 10 - red: 
"o" stable, "+" unstable {A,, real, positive), unstable (A, real, negative), unstable {X, 
complex); numerical integration - blue. Vertical axes show ratio of half peak-to-peak 
displacement to c. 
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B2: normalised absolute x displacement amplitude (ha* peak-peak) B2: nomialised absolute y (Asplacement amplitude (half peak-peak) 

>"0.75 

20 30 40 50 60 70 80 
rotatk)nal speed (rev/s) 

(a) X direction 
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(b) y direction 

B2: nonnalised absolute x displacement amplitude (half peak-peak) 82: nomialised absolute y displacement amplitude (half peak-peak) 
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B2: nomialised absolute x displacement amplitude (half peak-peak) B2: nomialised absolute y displacement amplitude (half peak-peak) 
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(e) X direction (f) y direction 

F i g u r e 8 .21 : Response of ^2 for three states of unbalance (first three rows of Table 8.4: (a ) , 

(b) row 1; (c), (d) row 2; (e), (f) row 3). Measurements - black. RHB # = 1, m = 10- red: 
"o" stable, "+" unstable (2, real, positive), unstable (1, real, negative), unstable (A, 
complex); numerical integration - blue. Vertical axes show ratio of half peak-to-peak 
displacement to c. 
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SFD 1 54 rev/s (pred.) SFD 2 54 rev/s (pred.) SFD 1 54 rev/s (meas.) SFD 2 54 rev/s (meas.) 

SFD ] 56 rev/s (pred.) SFD 2 56 rev/s (pred.) SFD 1 56 rev/s (meas.) SFD 2 56 rev/s (meas.) 

SFD 1 58 rev/s (pred.) SFD 2 58 rev/s (pred.) SFD 1 58 rev/s (meas.) SFD 2 58 rev/s (meas.) 

SFD 1 60 rev/s (pred.) SFD 2 60 rev/s (pred.) SFD 1 60 rev/s (meas.) SFD 2 60 rev/s (meas.) 

SFD 1 64 rev/s (pred.) SFD 2 64 rev/s (pred.) SFD 1 64 rev/s (meas.) SFD 2 64 rev/s (meas.) 

SFD 1 66 rev/s (pred.) SFD 2 66 rev/s (pred.) SFD 1 66 rev/s (meas.) SFD 2 66 rev/s (meas.) 

Figure 8.22: (over 2 s) c^Jim B i a W Jim rg/afzve fo 
B2 a r o w W crzfzcaZ ( imbalance as i n r o w 2 o f Tab le 8 .4 ) 

(Figure continues on the fo l low ing p a g e ) 
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SFD 1 68 rev/s (pred.) SFD 2 68 rev/s (pred.) SFD 1 68 rev/s (meas.) SFD 2 68 rev/s (meas.) 

F i g u r e 8 .22 (continued): Predicted and measured orbits (over 2 s) o / J i m relative to B i and 
Jam relative to B2 around the first bounce critical speed (unbalance as in row 2 of Table 8.4) 

( a l ) Jim rel. to Bi 
(measured) 

( b l ) Jim rel. to Bi 
(predicted) 

( c l ) B , 

(measured) 
(dl)Bi 

(predicted) 

(a2 ) J2m rel. to B2 
(measured) 

( b 2 ) Jim rel. to B2 
(predicted) 

(c2)B2 
(measured) 

( d 2 ) B2 

(predicted) 

F i g u r e 8 .23 : 2T-periodic motion at 84 rev/s for t/j = 0, t/j — 10.74x10 kgm (i.e. second 
row of Table 8.4) 
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(b) J2m relative to B] 

F i g u r e 8 .24 : Poincare maps of orbital motion in Figure 8.23 ( 4 + kl/r) 

measured - red (168 ± 1 samples); predicted - blue (100 samples) 
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F i g u r e 8 .25 : Waterfall diagrams of the frequency spectra of the y displacement response of 

Jim relative to ^\for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; 
(c), (d) row 2; (e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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F i g u r e 8 .26 : Waterfall diagrams of the frequency spectra of the y displacement response of 
Jam relative to ^ifor three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; 
(c), (d) row 2; (e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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F i g u r e 8 .27 : Waterfall diagrams of the frequency spectra of the y displacement response of 
Bxfor three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (c), (d) row 2; 
(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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F i g u r e 8 .28 : Waterfall diagrams of the frequency spectra of the y displacement response of 
three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (c), (d) row 2; 

(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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Figure 8.29: Frequency spectra of the y displacement response at 94 rev/s (unbalance as in row 3 of Table 8.4) 
Data length: 1 s for predictions, 2 s for measurement. 

205 



(0.44 

J j U Jj... 
0 20 40 60 80 100 120 140 160 180 200 220 240 lfequancy(Hz) 

11.104 

ai-#o 

II-zm 

0 M m W1M1M1W1M1M2W2M2W lfequ#ncy(Hz) 

I 1 
—JL-A. I L. 

giooo 
t 

(al) predicted, Jim relative to B| (bl) predicted, Ĵ m relative to 
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Figure 8.30: Frequency spectra of the y displacement response at 104 rev/s (unbalance as in row 3 of Table 8.4) 
Data length: 1 s for predictions, 2 s for measurement. 
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(a2) Jim relative to Bi, measured 

(bl) Jim relative to B2, predicted 

(b2) Jzm relative to Ba, measured 

F i g u r e 8 .31 : Orbital motion at 94 rev/s over 2 s (unbalance as in row 3 of Table 8.4) 
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.32: Poincare maps of orbital motion in Figure 8.31 for different phases: (al), (bl) 
: 3;r/4 + kin:; (a2), (b2) Qt^ = 7;r/4 + kin. Measured - red (188 ± 1 samples); 

predicted - blue (300 samples) 
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F i g u r e 8 .33 : Orbital motion at 104 rev/s over 2 s (unbalance as in rov̂  3 of Table 8.4) 
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Figure 8.35: Waterfall diagrams of the frequency spectra of they displacement response for 
symmetrical unbalance (last row of Table 8.4). Data length: 1 s for predictions, 2 s for 
measurement. (Figure continues on the following page) 
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Figure 8.35 (continued): Waterfall diagrams of the frequency spectra of the y displacement 
response for symmetrical unbalance (last row of Table 8.4). Data length: 1 s for predictions, 
2 s for measurement. 
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Figure 8.36: Measured response at SFDs in y direction for symmetrical unbalance (last row 
of Table 8.4). Vertical axes show the ratio of half the peak-to-peak displacement to c. 
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Figure 8.37: rgjpoMfg af m y (izrgcrzoM /or aymmgfncaZ 
wnWancg (last row of Table 8.4). RHB = 1, m = 10: "O" stable, unstable (A, real, 
positive), "a" unstable (A, real, negative), unstable (A^ complex). Vertical axes show 
ratio of half peak-to-peak displacement to c. 
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Figure 8.38: Predicted T-periodic orbits of symmetrically unbalanced rig 
([/,= [/2 = 10.74x10-^ kgm) 
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Figure 8.40: Forces on driven bar of coupling at left hand (LH) end of the shaft 
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RESEARCH 

9.1 CONCLUSIONS 

In this Aesis an efficient integrated modelling technique has been presented for the full 

solution of the non-linear response of an unbalanced squeeze film damped rotor-dynamic 

system. The method was composed of three complementary modelling blocks, each of which 

is tractable to practical systems that have many degrees of freedom: 

(1) receptance harmonic balance for the determination of periodic solutions; 

(2) modal Floquet stability analysis of these solutions; 

(3) numerical integration of a limited number of the modal equations, where deemed 

necessary according to the stability analysis results. 

The advantages of the individual modelling blocks were discussed in Chapter 5, section 5.8. 

It suffices to reiterate here that such an approach can be easily interfaced with the current 

linear state-of-the-art in the rotor-dynamics industry. Linear rotor-dynamic methods can be 

used to analyse the linear subsystem for receptance functions and modal parameters. These 

two sets of data can then be used in a detailed non-linear analysis of the whole system that 

can be implemented using standard mathematical software. 

The integrated model was applied to three configurations, of increasing complexity. 

These configurations were chosen to capture, to a limited extent, the essential features of 

practical squeeze film damped rotor-dynamic systems, particularly with respect to aero-

engine applications: 

(A) rigid rotor-flexible support structure; 

(B) flexible rotor-rigid support structure; 

(C) both rotor and support structure considered flexible. 

In each case, the correlation between the three modelling blocks was found to be excellent 

and no computational difficulties were encountered when implementing the model on a 333 

MHz, Pentium n computer, thereby verifying the feasibility of the model. In each case it was 

found that the best approach was to apply steps (1) and (2) for ^-periodic solutions (where T 

is the period of rotation), using an initial approximation from step (3) at some convenient 
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speed to start off the arc-length continuation process. Regimes of instability of T-periodic 

motion were then analysed by step (3). 

Experimental work showed that the integrated model was generally successful in 

predicting and explaining the highly non-linear performance, and reference is made to the 

specific conclusions of Chapters 6-8 for details. Such a study has bridged the gap that 

existed between advanced theoretical non-linear studies that lacked experimental validation 

and more experimentally oriented studies. The important non-linear phenomena encountered 

in the study are summarised below: 

- l-frequency quasi-periodic motion, wherein the firequency spectrum was composed of 

combinations of two fundamental frequencies, one being synchronous with the rotational 

speed, and the other being sub-synchronous. The simulations revealed the possibility of 

such motion leading to chaotic motion through a frequency-locking route, although this 

was not formally investigated. 

Sub-harmonic motions i.e. A^-periodic motions where is an integer greater 1 ( = 2 in 

Chapters 6 and 8, and # = 3 in Chapter 7). 

- Amplitude jump (of the spring-softening type) with a hysterisis effect; the asymmetric 

behaviour of a symmetrical unbalanced rotor was conclusively proven theoretically but 

not experimentally. 

- The unusual generation of sub-critical super-harmonic resonance in the absolute motion 

under conditions where the unsupported squeeze film damper (SFD) ostensibly behaved 

as a rigid link (i.e. there was very little relative vibration across it). 

The above phenomena were obtained with unsupported SFDs, although 2-frequency quasi-

periodicity was also observed and predicted with a sprung SFD under conditions of high 

static offset and unbalance. 

To a limited extent, the good correlation with experiment also served to provide 

additional validation to the model used to compute the SFD forces, which was based on a 

short incompressible film that cavitated at absolute zero pressure. This was particularly so 

for the sprung SFD used in configuration (B). The inherent uncertainty in oil film conditions 

in unsupported SFDs probably degraded speed-for-speed correlation between measurements 

and prediction. However, even in this case, the measured vibration still evolved largely as 

predicted over the operating speed range, particularly with respect to its orbital structure and 

its highly peculiar frequency content. 

As shown here and elsewhere in the literature, despite being an economical design, 

unsupported SFDs can be quite fickle in their performance since this is totally dependent on 
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their ability to generate a sustained lift to support the static load. Hence, the performance of 

an unsupported SFD is strongly dependent on the nature of the structure wi± which it 

interacts. It was outside the scope of this thesis to provide design recommendations for the 

use of unsupported SFDs since these would be specific to the conAgurations studied. 

However, it is worth mentioning that the analysis conducted showed that such a SFD design 

provided safe passage through the critical speeds (by attenuating the vibration amplitude) 

when such speeds corresponded to bounce modes, in which the rotor exhibited much less 

deflection than the housings (Chapters 6 and 8). For the case where the critical speeds 

corresponded to flexural modes of the rotor (Chapter 7), the unsupported SFD was found to 

be highly unsatisfactory as regards vibration attenuation. In fact, it was inferior in all aspects 

to a badly centralised sprung SFD, even when the oil viscosity was nearly trebled. In the 

design stage, careful consideration should be given as to whether it would be more 

economical in the long term to statically off-load the damper either with a parallel retainer 

spring or leaving it unsprung but off-loading it with some flexible element (support) at a 

different location. It is believed that the modelling approach developed in this thesis would 

provide designers with an effective tool in reaching such decisions. 

It should be added that the integrated model can be easily adapted to cover other types of 

motion-dependent non-linearities in rotor-dynamic systems by using the appropriate non-

linear forcing functions. 

9.2 PROPOSALS FOR FUTURE RESEARCH 

It is proposed that the next stage of this project be the application of the modelling technique 

to a "real" problem, using the receptance functions of a real aero-engine rotor and support 

structure. Such an assembly might also be statically indeterminate. 

Following this, it is proposed to consider the application of a similar modelling approach 

to dual rotor systems wherein two unbalanced rotors operate at different speeds. Such twin 

rotor configurations are typical of medium-sized jet engines. As mentioned in Chapter 8, the 

test rig for configuration C (Figure 8.1) has the facility to couple two independently driven 

rotors through the housing of the right hand squeeze film damper. With the single rotor 

configurations considered in this thesis, the nominal motion (i.e. the motion prior to the 

bifurcations) was ^-periodic, for which the frequency spectrum was composed of frequencies 

^j/j, where is an integer and / , is the synchronous frequency component ( = l / r ) . A 

secondary Hopf bifurcation resulted in 2-frequency quasi-periodic motion with frequency 
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spectra composed of frequencies of the form ^o/o +^1/1 where /kg is an integer and a 

sub-synchronous fundamental frequency that could only be determined from the time-

marching solution. The value of was generally dependent on the value of the 

independently controlled synchronous frequency / j . Although frequency-locking was 

identified as a potential route to chaotic motion, such motion either did not develop or was 

mild. With the dual shaft version, it is the nominal motion that has a frequency spectrum 

composed of the form /C]/; +/:2/2, where and are integers, and the fundamentals 

and both known and independent of each other, being equal to (and hence 

synchronous with) the respective speeds of the two shafts. Since the numerical values of / , 

and generally rationally independent, die nominal motion is quasi-periodic. The 

nominal motion is now subject to a tertiary Hopf bifurcation, which ostensibly results in 3-

frequency quasi-periodicity with a frequency spectrum composed of frequencies of the form 

^0/0+^1/1+^2/2 where A;,, is an integer and the non-synchronous fundamental 

frequency that is dependent on both synchronous frequencies y, and . As discussed in 

Chapter 3 (end of section 3.5), 3-frequency quasi-periodicity is thought to be highly unstable 

and it is highly probable that the motion immediately descends to chaos. Hence, unlike the 

single shaft version, it is highly likely that the emergence of the non-synchronous 

fundamental would mark the onset of chaos. 

Since the nominal motion (i.e. the motion prior to the bifurcation) in a dual rotor system 

is quasi-periodic rather than periodic, the question arises as to what to do with the first two 

modelling blocks of the integrated model (i.e. periodic solution and stability analysis). Three 

options are available: 

i. Ignore the first two modelling blocks and use the time-marching block only. However, 

apart from the computational burden, this will exclude unstable equilibrium solution 

possibilities and hence results in a restricted understanding of the non-linear dynamics 

involved. 

ii. Approximate the nominal motion by an MT-periodic motion where T is chosen as either 

l / / j or I//2 . The value of N is determined from the frequency spectrum of a time-

marching solution at some speed where the motion is likely to be nominal. From this 

spectrum one can also establish which of the harmonics of the approximate common 

fundamental l/NT are relevant to the problem. The Fourier coefficients of this 

approximate periodic motion are then used to initiate the arc-length continuation 

217 



procedure, which will then trace out a curve of //7-periodic solutions over a range of 

values of say, while keeping fixed, and vice-versa. These solutions approximate to 

the nominal quasi-periodic motion. During this solution process, those RHB equations 

corresponding to harmonics of l/ATT that were initially deemed irrelevant to the problem 

are simply omitted. The Floquet stability analysis block can then be used on these 

periodic solutions. In such a case, it is hoped that a secondary Hopf bifurcation of these 

AT-periodic solutions would correspond to a tertiary Hopf bifurcation of the actual quasi-

periodic solutions that they substitute. 

iii. Develop a 2-frequency quasi-periodic solution technique with two fundamental 

frequencies rather than just the one fundamental taken in periodic solution techniques. 

Such a method would be based on the compound Fourier series of eq. (3.30) (with ^ = 2 

fundamental frequencies). Since Floquet theory applies only to the stability of a periodic 

solution, the stability analysis block would need to be generalised to cover the stabihty of 

the 2-torus defined by a 2-frequency quasi-periodic solution [43]. 

With method (iii), it is envisaged that difficulties will be encountered in the computation of 

the coefficients of the compound Fourier series expansion for the SFD forces. Moreover, to 

the author's knowledge, the theory of the stability of a 2-torus has not been developed. 

Hence, it appears that method (ii) provides the best compromise. 

For such a dual rotor project it would also be desirable (though not essential) to devise a 

reliable method for the estimation of the Lyapunov exponent for use in such applications. 

Another interesting project would be the investigation of the role of a squeeze film 

damper in controlling effects that are due to other sources of non-linearity e.g. rotor-stator 

rub and spline couplings. 
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This appendix presents an algorithm ±at traces out a speed response curve of AT -periodic 

solutions (N is a fixed positive integer) of the receptance harmonic balance equations, using 

the arc-length continuation method i.e. it computes the solutions = 

eqs. C^24) 

12 . 
of the system of 

= 0 ( A L L ) 

at points z, for which o' = (7;. The system (Al. l) is solved using an iterative predictor-

corrector scheme adapted from the theory in [16, 65]. The algorithm is presented with 

respect to the general system of equations 

R(Y,JU) = 0 (A 1.2) 

where the vector of unknowns is y, r is a non-linear vector function of y, and jj. the control 

parameter. This general form is chosen since, as explained in section 5.3, page 64, the 

determination of the first point on the speed response curve requires the solution of the 

original system of equations (5.18): 

, ( V , I 2 ) = 0 (A1.3) 

For the determination of the first point on the speed response, eq. (A 1.2) represents eq. 

(A1.3) i.e. y is v, the control parameter is Q and r(y,^) = p(v,i2). For subsequent 

points, eq. (A1.2) represents eq. (Al. l) i.e. y is w 
v 

, the control parameter ji is <J and 
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Al.l ALGORITHM 

The following algorithm finds the solutions w. = 
V/ 

42 . 
at cr ==(7., f = l...n,wako, cr, is 

arbitrarily set to 0. Let y = y, be the unknown solution of eq. (A 1.2) for = /z,: y i s the 

iterate for y,. 

]3C)R ; = 1 I X ] 8 1 1 3 1 ) 8 / L , 1 3 , C: 

E(;)1LL4LTI(D]% VIND (:iJRRE%rr T/j4JLUi; CIIF (ZCZMSrritOI. PV̂ JRjAJVriiTTEit 

E z = l 

Eq. (A1.2) represents eq. (A1.3) 

Choose non-dimensional starting speed 42; 

E z > l 

Eq. (A 1.2) represents eq. (Al.l) 

Choose arc length interval ACT 

B. PREDICTOR STEP 

For / = 1: 

In the case of a non-degenerate rotor, if TV = 1 and i2, is low, from eq. (5.26): 

H O / C -

0 

otherwise, 

y f is determined by performing the time-marching solution at 42 = 42, and 

computing the Fourier coefficients of the SFD response(s). 

For i = 2: 

y^^ determined from a tangent predictor [16]: 

YZ ^ = YI + 

The evaluation of the tangent vector is explained in section A1.2. 

For i>2: 

yf^ determined from a secant predictor [16]; 

yi°' = 
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= Y H + 

^ - /^,-2 ^ 

C. CORRECTOR STEP 

CI. Compute the Jacobian matrix of r(y,^) with respect to y at y = y|°\ = jU,: 

J ! ° ' = AR/AYL, 

A; = 0 

C2. Apply the damped Newton-Raphson method [65]: 

where: = r(y|''\//J, \ 0 < % < 1 is the damping factor 

C3. Increased by 1 

C4. While |yI") - y|"-')| < foZ do steps C4.1 -C4.3: 

C4.1. Update HM using Broyden's method [65]: 

where: a - yM - yl''"'), b = 

C4.2. Compute using damped Newton -Raphson method, step C2 

C4.3. Increase ^ by 1 

C5. While (|yM - yp"'̂ | < or < gpj) do steps C5.1-C5.3: 

C5.1. Update using step C4.1 

C5.2. Compute using undamped Newton-Raphson method: step C2 with 

Z = 1 

C5.3. Increase ^ by 1 

C6. y , = y ^ ) 

C7. E / = 1 (i.e. solved eq. (A 1.2) is eq. (A 1.3)) 

V| =y; and 

V, 
w, 

^2, 
and o"; = 0 

If i > 1 (i.e. solved eq. (A1.2) is eq. (Al.l)) 

W; = y,. and cr,. = 
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In step CI the Jacobian matrix is defined as follows: 

If y = [)'i - r(y,/i)=|r,(),, then the 

Jacobian of r with respect to y is 

9R 

8y 
(A 1.4) 

The Jacobian was evaluated using the MATLAB® function numjac® [25]. The "or" in step C5 

is a Boolean operator. In the damped Newton-Raphson method, % = 1 corresponds to the 

undamped condition, whereas % = 0 corresponds to the fully damped condition, wherein the 

iteration is stalled. For steps C2 and C4.2, the damping factor used in the model applications 

of Chapters 6-8 was in the range 0.02 ^ ^ 0.05 for z = 1, and in the range 0.05 < % < 0.2 

for r > 1. For steps C4.1-C4.3 to/ = 10~®. In step C5, eps = 2x10"^®, the smallest number 

registered by the computer. The absolute value of the arc-length increment ACT used in step 

A was around 0.1. Occasionally, this value had to be reduced for certain regions of the speed 

response curve. Notice that the sign of ACT determines the sense in which the speed response 

curve is traced out from the first point w,; hence, after generating " 0 points with 

ACT > 0 , the speed response curve can be extended "backwards" from W, by repeating the 

calculations with ACT < 0. 

A1.2 COMPUTATION OF THE TANGENT VECTOR 

This section explains the determination of the tangent vector used in the tangent 

predictor of step B, case ; = 2, of the algorithm of section ALL In this case, the system 

being solved is eq. (Al.l), hence, dy/dfj. = dw/da. Now 

d-w 

d(J Act-40 ACT 

^ Aw ^ 

|Aw|--40 
.W 

(AL5) 
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since, from eq. (5.23), A(7=|Aw| (Acr taken as positive). From eq. (Al.l), for small 

Aw = 
A O 

9p 9p Av 

8v w=vv| 3 . ^ 2 A 2̂ 
0 ^ V L 6 ) 

The number of unknowns in the above system (A 1.6) is one more than the number of 

equations. Dividing both sides of (A 1.6) by AO and adding an extra trivial equation: 

" A v / A i ] " 0' 

0 0 1 1 1 
O T L 7 ) 

Now Aw = AQ 

(A1.5): 

A V / A I ] 

1 
: AOd where d = 

Av/AA 

1 
Hence, from the relations in eq. 

A . 
6ZW 

Idl 
(A1.8) 

where, from eq. (A1.7): 

d = 

- 1 

0' 

0 0 1 1 
(A1.9) 
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A I L S C I H L A J S N C A L L L A J J C E L S J S X Z E A D X C H C H E I C D L F 

A2.1 OVERVIEW 

The mechanical impedance (MI) method is used to compute the receptance functions relating 

points on the rotor part of the linear subsystem. This method is analogous to the dynamic 

stiffness method, but works with impedance rather than dynamic stiffness frequency response 

functions. The method is described in [19] where the MI model of a rotor that is linearly 

connected to a flexible support structure is described. The MI model used for the linear 

subsystem of rigs B and C is a simplified version of that in [19] since: 

(a) The support structure is not considered - it is either rigid (configuration B), or is 

uncoupled from the rotor (configuration C). Hence, the impedance model is applied 

either to a point supported rotor (configuration B) or one that is fully unrestrained 

(configuration C). 

(b) Gyroscopic effects are neglected. 

The shaft is divided into beam-like elements that rotate about their longitudinal axis and bend 

harmonically at frequency co rad/s in the xz and yz planes. Due to the simplification (b), the 

vibrations in the two planes can be treated separately and the frequency response functions 

are independent of rotational speed. For each such plane (see Figure A2.1), the impedance 

matrix (co) of a shaft element no. k is given by 

A 

M A (,'+!) 

= Z * (O)) 

V,-

a F+I 

(A2.1) 

where the instantaneous forces and moments acting on element no. k at terminal no. i are 

given respectively by /h(^)= Re^^e^"^), Re(M^;e-''*), and the instantaneous 

velocities and angular rotation rates (in the plane) at terminal no. z are given by 

V, (F) = R E ( V , E J ' ' ) , (F) = R E ( ^ , . E J ' ^ ) . 
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^ A /FC(I+I)' ^/+I 

, 12; — ^ k(i + \) ' ^i+1 

Figure A2.1: Shaft element notation 

The matrix Ẑ (̂G)) can be obtained from [19]. It is based on the exact dynamic deflection 

curve of a uniform section beam element of distributed inertia. Hence, the impedance matrix 

of one such element is exact, irrespective of length. The assembly procedure for the shaft 

elemental matrices is the similar to that in the finite element (FE) technique [19, 48]. Inertia 

components attached to the shaft are concentrated at the terminals, as are the stiffness of any 

point supports, and the impedance matrices of these inclusions are inserted at the appropriate 

areas of the assembled global impedance matrix, as in FE. The global impedance matrix is of 

size (where is the total number of terminals). However, for both rigs B 

and C, no external moments are applied at the terminals and the rotations there are not 

required. Hence (as for the FE method in [48]), the global impedance matrix can be deflated 

to size : 

( A 2 . 3 ) 

where (m)} is the reduced global impedance matrix, = (^ " contains the 

complex amplitudes of the external forces at the terminals, = [v, contains 

the terminal velocity complex amplitudes. The reduced global receptance matrix (o)} is 

given by: 

"RED - R-O 
( A 2 . 4 ) 

where contains the displacement complex amplitudes. Since = j^^red» (where 

j = vn^), ky(G))} is given by 
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(#)}== (V\:2.5) 

A terminal is normally a location where there is a change in cross-section of the shaft, or an 

attached inertia and/or point support. If a receptance relating positions P and Q is required 

where one or both positions do not coincide with the above-specified types of locations, then 

P and/or Q are introduced in the model as additional terminals. 

The following sections describe the MI model for rigs B and C. In both rigs, since polar 

moments of inertia are neglected, the diametral moments of inertia per unit length of the 

beam elements, and the diametral moments of inertia of the attached components, are also 

neglected. The impedance matrices of the beam elements include the effect of shear 

deformation, in addition to bending. Hence, the beam elements are Timoshenko beams with 

diametral moment of inertia per unit length set to zero [19]. 

A2.2 RIG B 

8 Timoshenko beam elements (see last paragraph of section A2.1) are used to model the 

linear part of rig B. In configuration B1 (retainer spring fitted), the linear subsystem is the 

shaft pinned at H and sprung at J (see Figure 7.1). The corresponding MI model is shown in 

Table A2.1 where: 

The flexible drive coupling is assumed to exert no force and bending moment on the 

S H D ^ 

For the shaft elements, Young's Modulus £ = 200x10® N/m^ and the density 

p = 7860 kg/m^. 

- The point supports at terminal 3 (H) and terminal 6 (J) exert no restraining moments 

since self-aligning ball bearings are used. The ball bearing stiffness values are taken 

to be infinitely large. The stiffness value at terminal 6 is that of the retainer spring 

and was obtained from [21]. 

The attached mass at terminal 6 was determined experimentally in [21] and is the 

combined mass of the ball bearing, damper journal and the effective mass of the 

retainer spring. 

The mass of the coupling hub at the left hand end of the shaft (Figure 7.1) is shared 

between terminals 1 and 2 such that its centre of mass coincides with the resultant 

mass centre of the two lumped masses. 
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The disc is lumped at terminal 8. 

For configuration B2 (no retainer spring), the linear subsystem is the shaft pinned at H 

and free at J (see Figure 7.1), so the support stiffness at terminal 6 is omitted from Table 

A2.1. The attached inertia at this terminal is left unaltered since the aluminium retainer 

spring has negligible mass. 

A2.3 RIG C 

9 Timoshenko beam elements (see last paragraph of section A2.1) are used to model the free-

free rotor of the linear subsystem of configuration C (Figure 8.1), as shown in Table A2.2. 

With reference to this table: 

For the shaft elements, Young's Modulus £ = 200x10'N/m" and the density 

p = 7860 kg/m'̂ . 

The redundant terminals 7 and 8 are included to allow the computation of the 

receptances . 

The attached mass at each terminal 4 and 9 is the combined mass of the 

corresponding roller bearing and damper journal. 
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terminal no. 1 2 3 
(H) 

4 5 6 
(J) 

7 8 
(U) 

9 

attached mass (kg) 0.1518 0.0692 1.3567 6.4039 
support stiffness (kN/m) 123.4 

shaft element 1-2 2-3 3-4 4 5 5 6 6-7 7-8 8-9 
length (mm) 20.0 29.0 44.0 715.0 262.0 13.0 209.3 12.7 

diameter (mm) 16.000 25.405 25.405 50.000 25.405 25.405 25.385 25.385 

Table A2.1; moc/g/ybr ng B wzfA rgfamer jpn»g 

terminal no. 1 2 3 4 
(J,) 

5 6 7 
(U,) 

8 
(Uz) 

9 
(Jz) 

10 1 

attached mass (kg) 0.0577 0.2618 1.2950 1.2925 
element 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 

length (mm) 14.17 9.83 24.00 23.50 0.50 78.00 746.00 102.00 24 
1 diameter (mm) 50 50 92 92 50 92 92 92 92 

Table A2.2: Mgc/za/ifcoZ (mpg f̂ancg mo(/gZ/or rig C 
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ROTOR 

A3.1 OVERVIEW 

This appendix considers the analytical determination of the undamped, non-rotational modal 

parameters of the linear subsystem of rig B and those of the rotor part of the linear subsystem 

of rig C. In either case, the vibrations in the xz and planes are uncoupled. Moreover, the 

system considered is isotropic, so the modal parameters are identical in either plane. This 

work shall concentrate on the plane. The modal parameters are computed from the 

receptance frequency response functions. These functions are contained in the receptance 

matrix of eq. (A2.4), which is computed from the mechanical impedance matrix by eq. 

(A2.5). Each term in the matrix can be approximated by a modal series, truncated 

beyond modes [47]: 

— r (A3.1) 

where 6)̂ ,̂ r = l...<^, is the undamped natural frequency of the subsystem in mode r and 

is the corresponding modal constant, which is given by [47]: 

(A3.2) 

is the mass-normalised mode shape of mode r in the xz plane, evaluated at position / in 

the X direction. 

The natural frequencies are found by locating the first zeros of the determinant of 

the impedance matrix i.e. the roots of the equation 

|'{z,y(G))j = 0 (A3.3) 
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This is done using Muller's iterative algorithm [66]. The input approximations for the roots 

are obtained from the resonance locations of the frequency response of any typical term 

cXij{co) in . Once the natural frequencies have been found, the values of the 

corresponding mode shapes at selected locations i and j can be found by performing two 

modal fits A-om eq. (A3.1) - first for yielding r = l...<g, and then 

for ((o), yielding , r = 1... g. Then 

, # , / " > = 7 A F , = A ' - ' / T A F (A3.4) 

Each fit is performed as follows. Compute (ffl) atp selected frequencies G) ,̂ k = 1... p , 

W thin thp. chosen frequency range and solve the equations: 

S K . , , ) 

CK (/ P ) 

4 ' 

A : 
W ) 

(A3.5) 

which can be expressed as 

r = Ea 

where r and a are pxl and gxl vectors respectively and E is a pxq matrix. Now p'^q. 

If p = q i.e. as many points are taken as unknowns, then 

a = E ' r (A3.6) 

If p> q i.e. more points are taken than the number of unknown modal constants 

a = E^r (A3.7) 

where E"̂  is the pseudo- inverse of E, given by [47]: 
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(A3.8) 

A3.2 RIG B 

In ±is case, the linear subsystem was the shaft pinned at H and either sprung or unsprung at J 

(Figure 7.1), corresponding to configurations B1 and B2 respectively. In each case ^ = 4 

modes were taken in each plane. The fitting frequency range was 0 Hz to 300 Hz and p = 4 

equally spaced frequency points 0)̂ ^̂  ^ were taken, ^ was adjusted to 2;: xO.l from 0 to 

avoid \pc-j J —> for configuration B2. The natural frequencies, and the modal 

constants obtained by fitting (ii)), are given in Table A3.1 for configuration Bl, 

and Table A3.2 for configuration B2. The values in these tables are refinements on those 

quoted in [42] (that had been obtained by fitting over the range 0 Hz to 500 Hz with q=5 

modes and p = 5 equally spaced points). 

mode m^/(2;F) 
no. r (Hz) (xlO-'kg-') (xlO-'kg') 

1 13.74 54.220 77.796 
2 40.40 38.495 -34.148 
3 173.86 251.269 -38.753 
4 334.68 106.073 -13.540 

Table A3.1: Undamped modal parameters for configuration Bl in one plane of vibration 

mode 
no. r (Hz) (xlO-'kg-') (xlO-'kg-^) 

1 0 66.771 81.309 
2 39.00 31.652 -36.859 
3 171.60 248.170 -39.748 
4 334.20 103.543 -13.349 

Table A3.2: Undamped modal parameters for configuration B2 in one plane of vibration 

For the evaluation of the time domain response at point M (Figure 7.1), the mode shapes at 

this location are required and these are found by fitting (o)). 
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A3.3 RIG C 

In this case, the modal parameters of the rotor were required. ^ = 3 modes were taken in 

each plane, where the first two were rigid body modes. Since = 0, the first two 

terms of the series in eq. (A3.1) merged into one: 

A " ( U L - G ) ' 
(A3.9) 

where 

(A3.10) 

Since r = 1 defined the pure translation mode, 

A 
( A r l ) 

1 / M , (A3.11) 

where is the total mass of the rotor. Hence, upon determining and by 

applying the modal fit to eq. (A3.9), the constants Â ^̂ ^ were found from eqs. 

(A3.10) and (A3.11). It was found necessary to use p = 41 equally spaced frequency points 

over a range 0 Hz to 600 Hz, with 0 ^ adjusted to 2;rx0.1 from 0 to avoid 

cCy I ] • The natural frequencies, and the modal constants obtained by fitting , 

^re given in Table A3.3. In Figure A3.1 the exact receptances (computed 

by MI) are compared with those reconstructed from the corresponding computed modal 

parameters. 

mode 

no. r 

1 

(Hz) 

0 

(xlQ-'kg-') 

18.048 

(xlO-'kg-^) 

^y,£/, r y, 

(xlO-'kg-') (xlO-'kg-^) 

mode 

no. r 

1 

(Hz) 

0 

(xlQ-'kg-') 

18.048 18.048 18.048 18.048 

2 0 43.199 -44.349 33.799 -34.949 

3 374.95 41.724 44.580 17.352 20.093 

Table A3.3: Undamped modal parameters for configuration C in one plane of vibration 
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For the time domain response at points (Figure 8.1), the mode shapes at these 

locations are required, and these are found by fitting (co), (co). 

0 5 0 100 150 200 250 300 350 400 450 500 0 5 0 100 1 5 0 200 2 5 0 300 350 400 450 500 
frequency (Hz) f requency (Hz) 

(a) « "/I-ZI (b) « 

1 0 " 

0 5 0 100 150 200 250 300 350 400 450 500 0 50 100 1 5 0 2 0 0 250 300 350 400 450 5 0 0 
frequency (Hz) frequency (Hz) 

(C) (d) CK 

0 5 0 100 150 200 250 300 350 4 0 0 4 5 0 5 0 0 
f requency (Hz) 

(e) 

Figure A3.1: Comparison of exact rotor receptances computed by MI ( ) with 

approximations reconstructed from the 3 modes in Figure 8.6(b) ( ) 
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This appendix explains how the coordinates in the modal equations (7.11) and (8.19) are non-

dimensionalised prior to integration. The non-dimensionalisation of these coordinates 

facilitates the choice of a suitable tolerance for the accuracy of the numerical integration 

solver. 

A4.1 RIG B 

In eqs. (7.11), non-dimensional modal coordinates 

defined, as well as a non-dimensional time g = Qt, where £2 is the rotational speed. Eqs. 

(7.11) then become: 

9XR + 
Y . 1 

9YR + 

/ 

\ 
^2 

(A4.1a) 
Ci2 

gyr = ], where r = 1... 4 (A4. lb) 

In the above equations, ( ) denotes differentiation with respect to g , the modal constants 

A^PQ\ connecting positions P and Q are defined in Appendix A3, eq. (A3.2), and 

For configuration B2 (no retainer spring), in eq. (A4.1b) is replaced by 

2,. - W . Eqs. (A4.1) are expressed as a set of 8 first order differential equations, as in eq. 

(3.1), with g replacing t, and solved using the MATLAB® function ode23s®. 

A4.2 RIG C 

We define non-dimensional modal coordinates 

eqs. (8.19a,b). In eqs. (8.19c-f) we define non-dimensional coordinates » 

From eqs. (5.34), (8.6) and 
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(8.20), yg^=yg^/c. Defining also a non-

dimensional time g = Qt, where Q is the rotational speed, eqs. (8.19) become: 

+ 

4AR + 

V ^ Y 

9 ^ , = ^ K : ' A , + < : ' E , = + A 5 : ' P , J 

i.,r - W , ) + A % : I ( G , , - W J + 

where r = 1... 3 (A4.2a,b) 

K = - 4 S ' A . / ( C F L O 

K + K , , / F L = - 4 S " E „ / ( C I 2 = ) 

% + K : / A ) ' Y . , = - A G I F E „ / ( C X 2 ' ) 

(A4.2c) 

(A4.2d) 

(A4.2e) 

(A4.2f) 

The modal constants on the right hand side of the above equations are defined in Appendix 

A3, eq. (A3.2) and in eqs. (8.2). For eqs. (A4.2a,b) only, ± e modal constants are ± e same 

for both planes. Eqs. (A4.2) are expressed as a set of 20 first order differential equations, as 

in eq. (3.1), with g replacing t, and solved using the MATLAB® function ode23s®. 
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AS ADDITIONAL DATA FOR RIG B 

AS.l INSTRUMENTATION DATA 

With reference to Figure 7.1, the calibration of the displacement transducers (probes) at the 

disc (U) and mid-shaft (M) was checked on a workbench using a micrometer screw gauge 

calibrator and a digital voltmeter. The squeeze film damper (SFD) probes (at J) were 

calibrated m (i.e. when in position on the rig), using a digital voltmeter and a micrometer 

dial indicator at the shaft, situated as close as possible to J. The reason for this was that the 

lateral clearance of the SFD probes from the bearing housing face, and other surfaces, was 

within the limits of tolerance recommended by the manufacturer [67]. The calibration curves 

and sensitivities are given in Figures A5.1(a,b)-A5.3(a,b). A least squares linear fit was used 

to determine the sensitivities. 

In the subsequent experiments, vibration data were acquired from the displacement 

probes in the form of time histories using a Tifgwfgff f acAarcf 35650® spectral analyser (serial 

number 2911A02485). 

Bent ly N e v a d a 3300 X L 8 m m , Serial No. J id F456250 

sensit iv i ty: - 8 . 0 1 2 V / m m 

q)-4.2 

Bently N e v a d a 3 3 0 0 X L 8 m m , Ser ia l No. .Jul F 4 5 % 5 3 

0.01 0.02 0 .03 0 .04 0.05 0.06 0 .07 0.08 0.09 0.1 
incremental gap (mm) 

sensi t iv i ty: - 8 . 1 3 9 V / m m 

0.01 0 . 0 2 0 .03 0 .04 0 .05 0.06 0 . 0 7 0.08 0 .09 0.1 
inc rementa l g a p (mm) 

(a) % probe (b) probe 

Figure AS.l: Calibration of displacement transducers at SFD (J) 
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BenOy Nevada 3300 X L 8mm, Serial No. J id F456249 

sens i tv i i y : - 8 . 0 0 2 V / m m 

Bendy N e v a d a 3300 X L 8 m m . Serial No. Ju l F456252 

0 0 2 5 O a 1 1 2 5 1 ^ 2 2 2 5 2 ^ 
incrementa l gap (mm) 

sensit ivi ty: - 8 . 0 0 9 V / m m 

0 0 # & 5 1 1 2 5 i a 2 2 2 5 2 ^ 
m c r e m w t a i gap (mm) 

(a) X probe (b)); probe 

Figure A5.2: Calibration of displacement transducers at disc (U) 

Hyper tone N01 Hyper tone N04 

sensit ivAy: 2 .020 V / m m swis idv i ty : 2 .093 VAnm 

0 0.1 0 2 0 .3 0 .4 0.5 0 .6 0 .7 0 .8 0 .9 1 
incrementa l g a p (mm) 

0 &1 02 OA &4 &5 OA OJ &8 M 1 
i n c r » n e n t a l g a p (mm) 

(a) X probe (b) y probe 

Figure A5.3: Calibration of displacement transducers at mid-shaft (M) 

A5.2 STATIC ECCENTRICITY SETTINGS FOR CONE. B1 

The SFD static eccentricity adjustment was made at room temperature and checked at the 

beginning and end of each experiment. The oil temperature at the start of each experiment 

was at least 25 °C. This temperature was reached after the rig was run for about 30 minutes. 

Tables A5.1 and A5.2 show static offset conditions at the start and end of two different 

experiments in which the maximum variation of oil temperature was observed (8 °C). The 

eccentricity values in these tables were determined by pushing the journal J from the static 

position until the clearance limits were reached. With reference to Figure 7.2, the journal 

was pushed up and down for and pushed either way laterally for £Q .̂ The 

corresponding travels of J were measured using the displacement probes and a digital 

voltmeter. 
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e 

n 
^Ox e 

n 
0 0.04 0 -0.41 

90 0.05 90 -0.60 
180 -0.01 180 -0.72 
270 -0.02 270 -0.55 

0.02 ^0), -0.57 

(al) % direction, 25 °C (a2) y direction, 25 °C 

e 

n 
e 

n 
0̂)' 

0 0.08 0 -0.39 

90 0.10 90 -0.66 

180 0.06 180 -0.79 

270 0.01 270 -0.60 

4 . 0.06 go. -0.61 

(bl) z direction, 33°C (b2) y direction, 33°C 

Table A5.1: Static eccentricity conditions for = 0 . 0 , 8̂ ^ = - 0 . 6 

e 

n 
G 

n 
Ôv 

0 -0.03 0 -0.63 

90 0.03 90 -0.84 

180 -0.03 180 -0.96 

270 -0.07 270 -0.77 

^0. -0.03 £o. -0.80 

(al) z direction, 25 °C (a2) direction, 25 °C 

d 

n 
9 
(°) 

0 0.02 0 -0.66 

90 0.05 90 -0.91 

180 0.07 180 -1.00 

270 -0.05 270 -0.86 

0.02 Go,. -0.86 

(bl) direction, 33 °C (b2) direction, 33 °C 

Table A5.2: Static eccentricity conditions for = 0.0 , £q,, = -0 .8 
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In Table A5.1, the grand means, to one decimal place, are = 0 . 0 , gg = - 0 . 6 . In Table 

A5.2, the grand means, to one decimal place, are = 0.0, = -0 .8 . These values were 

used in the simulations. 

A5.3 MEASUREMENT OF "DC" COMPONENT OF VIBRATION FOR 

CONF. B1 

A data acquisition with the analyser was performed on the stationary rig at the start of each 

experiment. With the rig stationary, the voltages the locations J, U and M 

respectively were acquired for the four angular positions of the shaft 6 = 0°, 90°, 180°, 

270°. This allowed for the static run-out at J. The average static dc voltages in the % and } 

directions at locations J, U and M were then obtained as; 

V +V 4-V +V V +V +V +V 
tT — 0x/0° 0xJ90° Ox/ISO- 0x7270° fT _ OyJO° 0y/90° OyJlSO' 0yj210° 

(A5.1a,b) 

Let it), Vyj (t) be the x, y voltage measurements at J, acquired at any given speed, and let 

Txj' Yxj be the sensitivities of the x, y probes at J. The non-dimensional displacements of J 

from the housing centre B were then given by: 

& = (A5.2a,b, 
C C / Y Y C 

The above displacements were directly comparable to the predictions. For added precision 

the static voltage acquisition was repeated at the end of each experiment with the rig hot. 

The static voltages used in equations (A5.2a,b) where in fact the averages of the cold and hot 

values. 

A5.4 PHOTOGRAPHS OF TEST RIG B 

Photographs of the test rig for configuration B are shown in Figure A5.4. 
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(a) general view 

(b) view of SFD (retainer spring removed and anti-rotation bolts in place) 

Figure A5.4: Photographs of test rig B 
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A6.1 EXPERIMENTAL MODAL ANALYSIS OF SUPPORT 

STRUCTURE 

The instrumentation details are given in Table A6.1. Di the experiments, the A-equency range 

was 0 Hz to 800 Hz, with a resolution of 0.25 Hz. 

instrument make serial number 

impulse hammer PCB Piezotronics Inc. Model No. 086C03 12302 

voltage amplifier PCS Piezotronics Inc. Model No. 480E09 23265 

accelerometer 1 Bruel & Kjaer, type 4383 1230366 

charge amplifier 1 Brael & Kjaer, type 2635 1690255 

accelerometer 2 Bruel & Kjaer, type 4383 1230368 

charge ampliGer 2 Bmel & Kjaer, type 2635 1690271 

spectrum analyser Hewlett Packard 35650 2911A02485 

Table A6,l: Instrumentation details for modal analysis of support structure 

The modal fitting technique is explained with respect to the receptance (m) (eq. (8.1a)): 

(A6.1) 

If "LHS" denotes the left hand side of eq. (A6.1), then the Nyquist plot of LHS (i.e. the plot 

of Im(LHS) (on y axis) versus Re(LHS) (on % axis)) must be a circle passing through the 

origin with diameter inclined to the — y axis by an angle arg(A^^^) (anti-clockwise 

positive), where arg( ) is the phase of ( ) [47]. Figure A6.1(a) shows the Nyquist plot of the 

measurement g (co) over the range 100 Hz to 400 Hz, where the frequency increases in the 

clockwise sense. It is seen that eq. (A6.1) is approximately satisfied and that can be 

taken to be real. According to [47], the undamped resonance frequency is equal to the 

frequency for which the relative angular spacing of the measured data points on the Nyquist 
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plot is a maximum. Hence, in Figure A6.1(a), the undamped resonance is taken to be the 

average of the frequencies at the two points marked The loss factor 77̂ ;̂ is determined 

from the formula 

(A6.2) 

where 6), and are the half power point frequencies [47], displaced by 90° around the 

circle from the resonance point, on either side of it. In Figure A6.1(a), the data points 

marked with a circle and square are those closest to the positions of G), and cô  respectively. 

By repeating the calculation with the circled point replaced by the preceding point as the Arst 

half power point, it is ascertained that the accuracy of the estimate for the loss factor is not 

significantly affected by the relatively course frequency resolution. The real modal constant 

is determined from a graph of Re(]ycKg ĝ  (o)) versus . From eq. (A6.1), this should 

yield a straight line of slope and this is seen from Figure A6.1(b), where the 

frequency range is 100 Hz to 400 Hz. A straight line through the data points in Figure 

A6.1(b) is fitted by the least squares criterion using the MATLAB® function polyfit®. The 

modal parameters of (m), (o)), (co) are found in a similar fashion. 

xz plane: point receptance at B1:100Hz to 400Hz 

g. 
£ • 

s - 2 

- 3 

+ 

a 

•f 

* 

@ 

* 

^ q7 XZ plane: point dynamic stiffness at B1:10OHz to 400Hz 

- 2 
real part (m/N) 

(a) 

2 
XLO"® 

2 3 4 5 

f w p j e n c y s q u a r e d ( r a t f / s ^ ) 

( B ) 

X 10 

Figure A6.1: Experimental modal analysis: (a) Nyquist plot of measured receptance 

(®)' (b) plot of real part of measured dynamic stiffness ico) versus CO^ 
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A6.2 MI MODEL OF RIG WITH SFDs LOCKED 

With the SFDs locked, for each plane zz, the rig reduces to a beam that is point supported 

at Bi and B2. The MI model used for the predictions in Figure 8.5 is given in Table A6.2, 

where die Rrst pair of rows refers to the xz plane and the second pair to the yz plane. In ± i s 

table; 

The point supports at terminals 4 and 7 are assumed to exert no restraining couple. 

This is an approximation since the roller bearings are not self-aligning. The stiffness 

values are taken from Table 8.2. The loss factors in Table 8.2 were also included in 

the MI model by inputting complex support stif&iess values 

- The shaft elements were Timoshenko beam elements (Appendix A2, section A2.1) 

with diametral moment of inertia ignored. The diametral moments of inertia of the 

mass attachments were also ignored. 

The mass at each terminal 4 and 7 is the combined mass of the corresponding roller 

bearing and damper journal (marked (3), (4) in Figure 8.1), effective housing mass 

(Table 8.2) and housing end-plates. 

- For the shaft elements. Young's Modulus E = 200xlO^N/m^ and the density 

p = 7860 kg/m^. The predicted rigid rotor resonances in the third row of Table 8.3 

can be arrived at by setting £ to a very large number in the MI model ( E —> = ). 

terminal no. 1 2 3 4 
(Bi) 

5 6 7 
(B2) 

8 

attached mass (kg) 0.0577 0.2618 5.5577 5.4616 
support stiffness (kN/m) 6250 5680 

attached mass (kg) 0.0577 0.2618 5.4701 5.5231 
support stiffness (kN/m) 6200 5850 

shaft element 1-2 2-3 3-4 4.5 5-6 6-7 7-8 
length (mm) 14^7 24.00 23.50 OjO 926.00 24.00 

diameter (mm) 50 50 92 92 50 92 92 

Table A6.2: Mechanical impedance model in xz and yz planes with SFDs locked 
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ÛGJIinOSUlLFVlItAJVn&TnEItS OF SUPPORT STRUCTURE 

For the non-linear analysis (SFDs operational), the effective mass terms in Table 8.2 need to 

be increased to cover for the housing end-plates, rotor probe brackets (marked (12) in Figure 

8.1) and their probes. The revised effective masses are shown in Table A6.3. 

Housing 1 Housing 2 
(kg) 4.5094 (kg) 4.4158 

(kg) 4.4219 (kg) 4.4773 

Table A6.3: Revised ejfective masses at housings 

The natural frequencies and non-zero modal constants in Table 8.1 are then revised by 

working backwards from eqs. (8.3) and (8.4): 

~ ' etc., ®SxI — xB^ ' GtC. 

A6.4 INSTRUMENTATION DATA FOR ROTATION TESTS 

The displacement transducers used were Bently Nevada 3300 XL Smm Proximitor® probes. 

Their calibration was checked using a micrometer screw gauge calibrator and a digital 

voltmeter, as illustrated in [67], and was found to be within the manufacturer's specifications. 

Figures A6.2(a,b) show typical calibration diagrams. A least-squares linear fit was used to 

determine the sensitivities. Table A6.4 shows the sensitivities of the probes in volts per mm 

increment in gap. 

Bent ly Nevada 3 3 0 0 X L Bmm, Ser ia l No. M a y G443123 

sensAvAy » - 7 . 7 5 3 3 v / m m 

Bent ly N e v a c ^ 3 3 0 0 X L & n m , Serial No. M a y G 4 4 3 1 2 2 

sensibvity = - 7 . 7 5 8 7 v / m m 

0 0 2 5 0.5 0 .75 1 1 2 5 1.5 1.75 2 2 2 5 2.5 
incrementa l g a p (mm) 

(a) 

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 
incremental gap (mm) 

(b) 

Figure A6.2: Typical calibration diagrams for displacement transducers of rig C 
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measurement 

location 

serial no. 

(probe) 

serial no. 

(amplifier) 

sensitivity 

(V/mm) 

Jim rel. to Bi (x) MayG443123 FEBG 105272 -7.7533 

Jim rel. to Bi (y) MayG443122 FEBG 105244 -7.7587 

J2mrel. toB2(%) May G443124 FEBG 105251 -7.8300 

Jim rel. to Bz (y) MayG443121 FEBG 105267 -7.7600 

Bi(z) Jul F456250 MARF 114392 -7.6970 

Bi (y) Jul F456253 APRF 118471 -7.6870 

B2(X) Jul F456252 APRF 118593 -7.7750 

B2(y) Jul F456249 APRF 118497 -7.7613 

Table A6.4: jpZocgmgnf fraM ĉfwcgr j'gMjzf%v;fzĝ _/br ng C 

Figure A6.3 shows a schematic of the data acquisition system. The rotor displacement 

probes (measuring displacements of Jim and Jzm relative to Bi and Bz respectively) were set to 

acquire the mean component of the vibration, in addition to the alternating component. The 

housing displacement probes were set to acquire the alternating component of the vibration 

only (mean component excluded). The spectral analysers 1 and 2 (Figure A6.3) used to 

capture the vibration time histories were Hewlett Packard 35650® with serial numbers 

2911A02485, 2911A01033 respectively. 
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triggering hammer 

amplifiers amplifiers 

speed probe 

rotor housing 

PC 2 

PCI 

digital 
frequency 

meter 

amplifier & power 
supply 

analyser 2 

analyser 1 

power supply 
panel 

displacement displacement 
probes probes 

Figure A6.3: q/'cfafo /or rig C 
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A6.5 WATERFALL DIAGRAMS (x direction) 
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frequency (Hz) 

1 — I — I — I — I I I r 
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frequency (Hz) 

(f) measured (e) predicted 

Figure A6.4: Waterfall diagrams of the frequency spectra of the x displacement response of 

Jim relative to ^\for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; 

(c), (d) row 2; (e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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Figure A6.5: Waterfall diagrams of the frequency spectra of the x displacement response of 

hm relative to ^2 for three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; 

(c), (d) row 2; (e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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Figure A6.6: Waterfall diagrams of the frequency spectra of the x displacement response of 

three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (c), (d) row 2; 

(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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Figure A6.7: Waterfall diagrams of the frequency spectra of the x displacement response of 

three states of unbalance (first three rows of Table 8.4: (a), (b) row 1; (c), (d) row 2; 

(e), (f) row 3). Data length: 1 s for predictions, 2 s for measurement. 
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Figure A6.8: Waterfall diagrams of the frequency spectra of the x displacement response for 

symmetrical unbalance (last row of Table 8.4). Data length; 1 s for predictions, 2 s for 

measurement. (Figure continues on the following page) 
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Figure A6.8 (continued): Waterfall diagrams of the frequency spectra of the x displacement 

response for symmetrical unbalance (last row of Table 8.4). Data length: 1 s for predictions, 
2 s for measurement. 

A6.6 PHOTOGRAPHS OF TEST RIG C 

Figure A6.9 (following page) shows photographs of the test rig for configuration C. 
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(a) general view (non-rotating "HP" rotor at near end) 

(b) view of the SFD at the right hand end in Figure 8.1 

Figure A6.9: Photographs of test rig C 

259 


