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Statistical Energy Analysis (SEA) is widely used for the high frequency analysis of 

vibro-acoustics problems whereas conventional deterministic methods, e.g. Finite Element 

Method and Boundary Element Method, are applied to lower frequency problems. 

Between low and high frequencies, however, there exists a mid frequency range where 

neither deterministic methods nor SEA can be used reliably. In this frequency range, the 

wavelengths are short so that deterministic methods require excessive computation, while 

the SEA predictions are unreliable due to large uncertainty in the results. 

With in SEA, the Coupling Loss Factor (CLF) is a statistical quantity defined in terms of 

the average behaviour of an ensemble of similar systems. The 'effective' CLF for a given 

realisation differs from the ensemble average. Significant fluctuations with frequency are 

observed in the low frequency region. Accordingly, the CLF is the main parameter 

expected to determine the confidence intervals in the SEA prediction. 

In this research, the sources of variability in SEA coupling are systematically investigated 

and appropriate parameters are established to determine the variability of the effective 

CLF in the mid to high frequency range. Finally the effect of the variability in the CLF on 

the resulting response is investigated and the confidence intervals of the SEA predictions 

are discussed. 



A system consisting of two rectangular plates is considered and the exact dynamic 

response of the system is investigated by using the dynamic stiffness method (DSM). The 

effective CLF for a particular realisation of the system is evaluated by a 'numerical 

experiment' using the SEA power balance equations and compared with the CLFs 

obtained from various methods. 

The influence of the modal behaviour of the source or the receiver subsystem or both on 

the energy transmission between the two subsystems is investigated by considering 

various analytical models, which include an infinite source plate coupled to a finite 

receiver plate or v/cg For these models, the transmission efficiency or the effective 

CLF are evaluated using the wave approach and/or the DSM. 

The variability of the effective CLF is investigated by a series of systematic parameter 

variations in the DSM model. An empirical model is derived for the confidence interval of 

the effective CLF, in terms of the modal overlap factor and the number of modes in a 

frequency band. The model for the variability of the CLF has then been validated using an 

experimental study. The reliability and accuracy of this empirical model is discussed in 

comparison with previously published models. The sensitivity of the resulting SEA 

prediction due to the variation of the CLF is subsequently investigated by Monte Carlo 

simulation. 

11 
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Chapter 1. Introduction 

CHAPTER 1 

INTRODUCTION 

1.1 General introduction 

Noise and vibration present m^or challenges that must be overcome in order to promote 

the welfare of human beings in most industries, such as transportation, construction and 

home appliances. As modern science and technology are developing, mechanisms are 

getting more and more complex and manufacturers are endeavouring to meet customers' 

various demands. Recent trends in the automotive industry, for example, are towards 

making vehicles more comfortable and also lighter, due to environmental and economic 

considerations. By minimising the weight of a car, the fuel economy can be improved and 

the production cost can be reduced. Simultaneously, a good design should produce a quiet 

and comfortable environment as well as satisfying the various performance requirements. 

Unfortunately, these two objectives, economy and low noise and vibration, are often 

conflicting. 

Reducing the noise and vibration levels on existing designs is often very difficult, if not 

impossible, and will often involve high expenditure and an increase in weight. It is 

therefore necessary, during the design process, to be able to predict the dynamic response 

of a structure due to several broadband sources of noise and vibration so that potential 

problems, such as excessive vibration levels, resonances, failure due to acoustic and 

dynamic fatigue and noise, can be avoided. 

There are a number of methods available for determining the dynamic response of 

structures. These range from analytical and numerical methods to experimental methods. 

Different methods are more suited to the low frequency or the high frequency region. The 

characteristic of the dynamic response depends upon the frequency of the excitation which 

can be categorized generally as (i) low frequency, (ii) mid frequency and (iii) high 

frequency. The actual frequency range associated with each of these categories is 

dependent on the structure itself. 
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At low frequencies the dynamic behaviour of the structure is mainly dominated by its 

lower order modes of vibration. The resonance frequencies and mode shapes of these low 

order modes are generally less sensitive to small changes in the geometric and physical 

properties than those of higher order modes. 

For a specific set for values of the structural properties, the Finite Element Method (FEM) 

and Boundary Element Method (BEM) can give a deterministic solution in this frequency 

range. The former is specifically applicable to both structural and acoustical analyses 

whist the latter is primarily used for acoustic analysis. These are very useful methods to 

predict the dynamic response of the structure if a real structure is not available, especially 

in the early design stage. These methods have been applied, for example, to the prediction 

of the low frequency booming noise (below 200Hz) of a passenger car through coupled 

structure-fluid analysis of the vehicle structure and compartment cavity [1-3]. 

In addition, the experimental modal analysis technique is usually used at low frequencies 

to investigate the dynamic characteristics of existing structures, e.g. natural frequency, 

damping and mode shape, and to validate or update a numerical model. 

At high frequencies the higher modes of vibration of the structure are excited and the 

characteristic wavelength of the structural deformation is much smaller than the overall 

dimensions of the structure. Under the assumption of a constant loss factor, for example, 

the vibrational modes of the structure have a wider bandwidth as frequency increases. 

Consequently the resonant peaks overlap each other and the resulting dynamic response is 

much smoother than that at low frequencies. The dynamic response at any frequency is no 

longer dominated by a single mode. Using conventional methods, e.g. FEM and BEM, 

large computational effort may be required to obtain good accuracy. Moreover, there are 

difficulties in using such a model to represent real structures, because the results are 

sensitive to small changes in parameters. The model represents merely one member of an 

ensemble and the results are valid for that model only. These methods are inefficient at 

high frequencies due to the excessive number of degrees of freedom of the model. They 

are also unreliable due to statistical uncertainties in structural properties or in defining 

boundary conditions at the coupling between different parts of the structure. Thus simple 

methods giving qualitative characteristics are required. 
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Such an alternative approach is to use Statistical Energy Analysis (SEA) (or the Power 

Flow method) which has been developed over the past 40 years. SEA is based on simple 

power balance equations for the system. Using SEA it is possible to predict the spatially 

and frequency-averaged energy or power of the system. Since the SEA equations are 

relatively simple and energy and power outputs can provide great insight to the dynamic 

system, SEA can provide useful guidance for noise and vibration control at high 

frequencies. Currently SEA is widely used for the high frequency analysis of vibro-

acoustics problems where FEM and BEM cannot be applied, e.g. ships [4], building 

acoustics [5] and automotive vehicles [6, 7]. Analytical SEA has been applied to the 

prediction of structure-borne sound transmission in large welded ship structures [4] and 

for vibration transmission in a small passenger car [6]. 

Between low and high frequencies, however, there exists a mid frequency range where 

neither deterministic methods, e.g. FEM and BEM, nor SEA can be used reliably. In this 

frequency range, short wavelength vibration occurs so that deterministic methods require 

excessive computation, while the SEA predictions are unreliable due to large uncertainty 

in the results. 

During last two decades, other energy-based methods have been developed to overcome 

some of the difficulties and limitations of the SEA method in the mid and high frequency 

regions. These include Energy Flow Analysis (EEA) [8-13], Power Flow Finite Element 

Analysis (PFFEA) [14] or Energy Finite Element Analysis (EFEA) [15] and a hybrid 

Finite Element Analysis (FEA) method [16, 17]. However, these methods are not yet 

widely used for practical applications because the exact energy equations for real 

structures are quite complex. 

More recently Wave Intensity Analysis (WIA) [18, 19], Advanced SEA (ASEA) [20] and 

Statistical Modal Energy Distribution Analysis (SMEDA) [21, 22] have been developed to 

overcome some of the drawbacks of SEA. Other theoretical and experimental techniques 

and applications have been introduced [23, 24] and more recent research and applications 

of SEA have been reported by the SEANET thematic network [25, 26]. These developments 

will be discussed further in Section 1.2.2. 

One method that can be used to predict the dynamic response of a particular structure 

irrespective of frequency is the so-called 'Dynamic Stiffness Method' (DSM) [27-30]. It 
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can be used for high frequency analysis, to which the conventional FEM cannot be 

applied, as well as low frequency analysis. However, this method also has some limitations 

on the geometry and boundary conditions of the structure. 

Since each method has its specific advantages, disadvantages and limitations, an 

appropriate analysis technique should be chosen for the frequency range to be considered. 

An ESDU report [31] provides a good set of guidelines on how to choose an appropriate 

method for prediction of the dynamic response of a structure subjected to particular kinds 

of excitation. Some methods for the mid to high frequency analysis are discussed in more 

detail in the following section which includes a description of the assumptions, 

developments and limitations. 

The motivation of this project is to assist in providing a particular methodology to predict 

the interior noise and vibration of a passenger car in the mid to high frequency range 

where conventional FEM and BEM cannot be applied. Although they are widely used in 

the automotive industry, these methods have especially been applied to the prediction of 

low frequency noise and vibration problems. In practice, they are not applicable to high 

frequency where the wavelengths are short. Instead SEA is increasingly used for the high 

frequency analysis of cars. A number of commercial computer programmes, e.g. AutoSEA 

(www.vasci.com), SEAM (www.seam.com), SEADS (www.lms.be), have been developed 

for the SEA application and are widely used in the industry. There are, however, many 

uncertainties and potential errors in the low to mid frequency range that unwary users have 

to contemplate. The objective of this project is therefore to quantify these uncertainties in 

particular cases and to develop a model that can be used to estimate confidence intervals 

for SEA predictions. 

1.2 Literature review on mid to high frequency analysis techniques 

1.2.1 Statistical Energy Analysis 

SEA was initiated in the early 1960s for predicting the high frequency response of 

aerospace vehicles. Lyon and Maidanik [32] published the earliest paper in this field on 

power flow between linearly coupled oscillators. The basic theory of SEA and procedures 

for engineering applications are presented in the textbook by Lyon and DeJong [33]. 

http://www.vasci.com
http://www.seam.com
http://www.lms.be
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Before discussing further references, some description of SEA terminology is useful. 

'Statistical' in SEA denotes that a system to be analysed is assumed to be drawn from a 

population of an e n s e m b l e o f similar systems distributed randomly. 'Energy' refers to 

the quantity that is used to describe the dynamic response of the system. The energy of the 

system can be transformed into other physical quantities, e.g. displacement, pressure, etc. 

'Analysis' accentuates that SEA is a framework rather than a rigidly-defined method. 

The SEA procedure is performed by three steps [33]; (i) define the system model, (ii) 

evaluate the model parameters and (iii) evaluate the response variables. The system model 

contains a group of subsystems'^. Subsystems are coupled by physical connections 

between the components. The SEA solution consists of a single value of the average 

energy for each subsystem and each frequency band, because lumped parameters are used 

to represent a continuous system. The parameters needed for each subsystem are the 

modal density or the number of modes in a frequency band, the damping loss factor (DLF), 

and the input power. The modal overlap factor is also an important parameter. This is a 

measure of the degree to which resonant behaviour dominates the response. It can be 

obtained from the modal density and the DLF. The coupling between connected 

subsystems is specified by the coupling loss factor (CLF), which relates the power flow 

between connected subsystems to the stored energy in the transmitting subsystem. A 

general introduction to SEA is given in numerous references [33-39] which include 

discussion on the background theories, assumptions and applications of SEA. 

an 'ensemble' is defined as a collection of notionally similar structures or systems, the 

properties of which have a certain probability distribution; e.g. the dynamic properties 

of cars produced in the same production line are not same due to manufacturing 

tolerances and fabrication imperfections. 

"2 a 'subsystem' in SEA is different from an element in an FEM model which represents 

a small physical part of the system. A subsystem can be defined as a collection of 

similar modes within a physical component of the system; e.g. only the bending modes 

or only the in-plane modes in a plate. The physical size of the subsystems may be 

different for different mode (or wave) types; e.g. for in-plane modes several plates may 

be combined into a single subsystem. 
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Woodhouse [34] argued that SEA, as a statistical approach, can be identified with a 

thermal analogy; modal density corresponds to thermal capacity of the element, damping 

of the vibration modes corresponds to radiative loss and a measure of the strength of the 

mechanical coupling of the subsystems corresponds to conductivity or loss by coupling. It 

was demonstrated [34] that three assumptions are made in standard SEA modelling; (i) the 

rate of energy dissipation by a subsystem is proportional to the energy of that subsystem, 

(ii) the rate of power flow from one subsystem to another is proportional to the difference 

in their average modal energies and (iii) the driving forces on the different subsystems are 

statistically independent so that one can add the energy responses of a given subsystem 

produced by these different driving forces to obtain the total mean modal energy of that 

subsystem. 

Burroughs et al. [35] reviewed the basic principles behind SEA and the development of 

SEA, presented examples of the application of SEA and discussed input parameters. It was 

summarised that in order to obtain accurate predictions using SEA the models must (i) be 

capable of predicting the input power, (ii) represent all important mode types which occur 

within the subsystems in the frequency range of interest, (iii) have valid CLFs for all mode 

types which interact at junctions of subsystems and (iv) provide the output energies or 

derived vibration levels for those modes of interest. 

Fahy [36] gave a brief account of the origins, rationale, principles and some applications 

of SEA and presented a brief survey of recent research objectives. In another paper [37], 

he reviewed the origins of SEA and limitations of deterministic methods and accounted 

for the validity of the use of probabilistic energetic models for high frequency vibration 

prediction. He also discussed the general advantages and weaknesses of SEA, investigated 

the current state of development of SEA and pointed out areas for future research. 

A more general introduction covering the basic concepts and the application of SEA, 

rather than a specific discussion of its theoretical background, was provided by ESDU [38]. 

A guide for potential SEA users has been produced by SEANET [40]. 

1.2.1.1 Assumptions in SEA 

According to references [33, 35, 38], the underlying assumptions to be considered in the 

development of SEA models are usually outlined as follows. 

6 
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» The subsystems are weakly coupled. The modal energy of the source subsystem is 

therefore significantly greater than that of any other subsystem . 

» Each mode of a given subsystem within a particular frequency band contributes 

equally to the energy of the subsystem, ;.e. equipartition of vibrational energy 

between the modes of a subsystem. 

® For a particular frequency band each subsystem generally contains a minimum 

number of modes between three and seven. 

« The DLF is equal for each mode within a subsystem and frequency band. This 

assumption is not necessary but it simplifies the formalism and tends to be nearly 

true for reasonably complex subsystems. 

e The input forces are independent of frequency within a frequency band, i.e. 

broadband excitation. 

« Energy is not generated or dissipated in the couplings between subsystems, f.g. 

conservative coupling. 

® The coupling power is proportional to the difference in average modal energy. 

The first three assumptions were presented in terms of a modal approach. These are 

equivalent to the following descriptions in terms of a wave approach. These two approaches 

describing the structural motion are equivalent to each other, which is referred to as 

'wave-mode duality'. 

» The transmission efficiency is small at the boundary between subsystems or the 

damping is sufficiently high so that most of energy input is dissipated within the 

source subsystem. 

« The wavefleld in a subsystem is diffuse so that waves propagate equally in all 

directions. 

» The structural and acoustic wavelengths are significantly less than the dimensions of 

the subsystem. 

Although stated in [33, 35, 38] as a usual condition, this is not a necessary condition for 

the application of SEA [41]. 
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1.2.1.2 Advantages and disadvantages of SEA 

Some advantages and disadvantages of SEA, that have been found by the previous 

investigators [31, 33, 42], are summarised as follows. 

The advantages of SEA: 

« It can allow a response prediction to be made at high frequencies for which FEM 

and BEM, etc., cannot be used. 

® Complex systems are represented in terms of a small number of gross parameters. 

This allows estimates to be made at an early stage of the design. 

» The method involves relatively few degrees of freedom in the model compared with 

deterministic models so it is possible to perform parameter studies with little 

computational effort. 

® The resulting expressions for stored energy are explicit and easily interpreted in 

physical terms. 

The disadvantages of SEA: 

o The accuracy of the predicted result for the average energy is not guaranteed. Also 

there can be considerable scatter around the average value in both a frequency and 

an ensemble sense. 

» It is not possible to predict the degree to which variations in physical features are 

likely to cause the behaviour of individual physical systems to deviate significantly 

from that of the idealized model. 

» It does not account for the variation in the energy density within subsystems. 

8 SEA is not capable of modelling local behaviour. 

« The difficult part of an SEA procedure lies in the specification of the CLE that 

determines how much energy is transmitted from one subsystem to another. 

1.2.1.3 Uncertainties in SEA predictions 

Since statistical approaches give statistical answers, they are always subject to some 

uncertainty. The degree of uncertainty in the SEA prediction will depend on many 



Chapter 1. Introduction 

parameters such as the geometry and material properties, the fabrication tolerances, the 

number of modes of the subsystem, the DLF and CLF, and the modal densities. As 

discussed by Fahy [37] there is no generally applicable procedure for making estimates of 

confidence intervals in the SEA prediction. Many uncertainties and potential errors in 

using SEA have been reviewed previously [33, 41-47], 

A useful discussion on the uncertainty of SEA predictions is given by Lyon and DeJong 

[33]. They developed estimates of variance in the mean square response and presented 

methods for calculating the variance and confidence levels of the response variables. As 

an example, a modal analysis for a beam-plate system was used to calculate variance and 

confidence intervals. The variations due to the input power, the calculated energy 

distribution in the SEA model and the modal response in each subsystem were presented 

and these factors were assumed statistically independent. However, these results are rather 

delicate to apply to a complex system because they contain a certain amount of speculation 

and implicitness. 

The uncertainty of the predictions due to subsystem geometry was studied by Fahy and 

Mohammed [42,43], They presented the results of an attempt to evaluate the effects of 

random geometric perturbation for coupled beams and plates. The results showed that the 

modal overlap factors of the uncoupled subsystems and the number of coupled modes of 

the total system are the two main parameters which control the variability of power flow 

and the associated CLF. 

The potential errors in the SEA prediction at low frequencies were also investigated by 

Craik et al. [44], It was shown that the vibration level difference between two coupled 

building structures, such as walls and floor, fluctuates considerably since building 

structures have few modes at low frequencies. They observed that the fluctuations in the 

point mobility of the receiving subsystem, relative to that for an infinite structure, are 

reflected in fluctuations in the CLF. Upper and lower bounds for the CLF were derived in 

terms of maxima and minima of the point mobility. They also asserted that for the power 

flow between plates the confidence interval is affected only by the properties of the 

receiving subsystem. The confidence limits for SEA predictions derived by Lyon [33] 

were shown to overestimate the actual error considerably, at least for building structures. 
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Mace investigated the ensemble average power flow and the statistics of the power flows 

between two continuous one-dimensional subsystems [45, 46], the power flow between 

two coupled beams [47], and the SEA of two continuous one-dimensional subsystems [41] 

by using a wave approach. Uncertainties due to the subsystems, the coupling, and the 

excitations, were considered by assuming that these parameters are drawn from ensembles. 

The properties of the ensemble were specified by a joint probability density function 

which defines the probability of occurrence of a combination of parameters. The ensemble 

power flow statistics were discussed in a number of cases and applications [45-47]. The 

variation of the ensemble mean, maximum and minimum power flows, normalized by unit 

incident power, was investigated at various coupling strengths. It was shown that in the 

general case the ensemble mean power flow may be less than or greater than that expected 

from a normal SEA approach, due to the strength of coupling. These results were extended 

to the SEA of two continuous one-dimensional subsystems in reference [41]. The strength 

of coupling and the features of the ensemble average coupling power and the ensemble 

average CLF were investigated. 

1.2.1.4 Coupling Loss Factor (CLF) 

The use of SEA to predict the response of vibro-acoustic systems relies on good estimates 

of the DLFs of subsystems and the CLFs between them. Damping is usually estimated 

from measurement data. The CLFs are normally the main parameters that are difficult to 

evaluate either experimentally or numerically. 

There are many methods, numerical, analytical or experimental, to evaluate the CLF. 

Conventionally, the CLF between two structures, such as two plates, is obtained by 

analysing the wave transmission between semi-infinite structures [33, 48, 49] or by a 

modal approach [33]. For two infinite subsystems coupled along a line or at a surface, the 

wave transmission efficiency, T, is defined as the ratio of the transmitted power to the 

incident power. By integrating over all possible angles of incidence, the diffuse incidence 

transmission efficiency can be determined. The CLF estimates determined from these 

transmission efficiencies, for infinite subsystems, are taken as representative of ensemble 

averages of finite subsystems. 

10 
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An ensemble average CLF for two edge-coupled rectangular plates was investigated using 

a wave approach by Wester and Mace [50]. This ensemble average CLF, which is exact 

for all strengths of coupling, was compared widi the traditional estimate of CLF from 

semi-infinite plates. It was shown that the ensemble average CLF and the semi-infinite 

results are identical if the plates are weakly coupled whilst the former is generally very 

much less than the latter if the coupling is strong. This is quantified by Wester and Mace 

using a parameter referred to as the reflectance which describes the attenuation of waves 

within a subsystem. 

FEM has also been used to study the CLF or 'effective' CLF for specific finite systems at 

low modal overlap by several authors [51-53]. The term 'effective' CLF is used in this 

thesis when a deterministic approach is used and to distinguish it from the ensemble CLF 

used in SEA. Thus the effective CLF refers to a single member of the ensemble. 

Simmons [51] presented the numerical calculation of the spatially averaged vibrational 

energies of plates forming L and H shaped structures at discrete frequencies between 10 

and 2000 Hz. The energy ratio between two plates was obtained from an FEM model and 

was compared with experimental results. It was suggested that the CLF can be calculated 

from the FEM results using the energy ratio between two plates and an estimate of the 

ratio of their modal densities. However, it was concluded that an ensemble average 

estimate of the CLF with respect to the different boundary conditions was not satisfactory 

and required further study. 

Steel and Craik [52] investigated the vibration transmission between walls in a building by 

using FEM. The effective CLF was obtained from the energy ratio of two walls, averaged 

over 20 excitation points. The effective CLF was compared with the CLF obtained from 

semi-infinite plates and with the effective CLF predicted using an empirical relationship. 

At low frequencies the results from the FE model showed large fluctuations compared 

with the other estimates. 

Similarly Fredo [53] applied FEM to the evaluation of the effective CLF, which he 

referred to as the Energy Flow Coefficient (EFC), between two rectangular plates coupled 

in an L shape. The effective CLF was influenced by the subsystems' shapes and boundary 

conditions. 'Rain-on-the-roof excitation was approximated in the finite element model by 

uncorrelated forces acting at every node in the respective subsystems. 

11 
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Using FEM to calculate the CLF is time consuming and Maxit and Guyader [54] 

developed a new approach, which allows a rapid CLF calculation without solving the 

equations of motion. A general expression for the CLF was derived using the basic SEA 

power flow and generalizing a dual modal formulation suggested by Kamopp [55]. The 

dual modal formulation is a similar approach to that used to study the coupling between 

structures and acoustic cavities. The structure is subdivided into an uncoupled-blocked 

subsystem of displacement field and an uncoupled-free subsystem of stress field. The 

eigenvalue problems for the two independent fields are solved by using the equations of 

motion, constitutive law and boundary conditions. The CLF is obtained from the FEM 

results for each uncoupled subsystem, i.e. the natural frequencies, the generalized mass 

and the mode shapes. In a companion paper [56], this approach was applied to estimate the 

CLF for two numerical examples of coupled beams and coupled plates. The CLF results 

for two beams showed a good agreement with other FEM results and some differences less 

than 5 dB were identified for an extreme case with two identical beams. The CLF 

estimates were investigated for two coupled plates in an L shape where the thinner plate 

was regarded as the uncoupled-blocked subsystem and the thicker plate as the uncoupled-

free subsystem. The results for two coupled plates of different dimensions also showed a 

good agreement with other results. However it was stated that this approach could not be 

used for two plates of the same thickness; the method proposed by Wester and Mace [50] 

is therefore more appropriate. 

The above method [54] can reduce the computing time required to obtain the CLF. 

Although the approach could be used to consider the uncertainty in the coupling by using 

an ensemble average of the coupling factors, it is subject to the common limitation of 

FEM. FEM is amenable to model any arbitrary geometry and boundary conditions but the 

CLF results evaluated strictly apply only to the single case considered unless an ensemble 

average estimate is considered. In these studies, although differences between the effective 

CLF and the ensemble average are observed, these have not been quantified consistently. 

For the experimental evaluation of the CLF, Bies and Hamid [57] considered the 

vibrational energy distribution between two coupled plates. Inversion of the power balance 

equations was used to determine the DLF of each plate and the CLFs in situ. The input 

power was measured sequentially at five randomly chosen points to ensure effective 

statistical independence of modes. The response of both plates was measured at ten points 

chosen at random and mean values obtained. This method, which is usually referred to as 

12 
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Power Injection Method (PIM), is widely used in experimental SEA but a considerable 

amount of time is required to obtain the necessary measurements. Bhaij gf aZ. [7], in a 

recent paper, proposed a new method for calculating CLFs directly from vibration or 

sound pressure measurements. Although the CLF calculated from a single point 

measurement in each subsystem showed up to 10 dB difference with that based on an 

average of 10 points, the errors in the interior sound pressure level of an automotive cabin 

were less than 3 dB. 

At low modal overlap, which usually corresponds to low frequency, the actual energy 

transfer between subsystems can differ considerably from that predicted using the CLF 

estimates determined from the power transmission efficiencies for semi-infinite structures. 

These fluctuations are in part due to the particular realisation of the subsystems within the 

notional ensemble. Underlying the fluctuations are the modal properties of the subsystems. 

Their damping also plays a role in determining the extent of the fluctuations. 

Yap and Woodhouse [58] investigated the effects of damping on energy sharing in 

coupled structures. They used FEM and a matrix inversion approach [33] to investigate the 

CLFs. It was shown that damping is an important factor, affecting the statistical variations 

of the SEA parameters such as mean power flows, mean energies, CLFs, etc. In particular 

the values of the CLFs are strongly dependent on damping and the wave method tends to 

overestimate the CLFs, except when it is sufficiently high, as shown by Fahy and 

Mohammed [42] and Steel and Craik [52]. It was inferred by Yap and Woodhouse [58] 

that the SEA predictions of the CLFs for an ensemble of lightly damped systems will be 

subject to a high variance about the mean value at low modal overlap. 

A useful estimate of the degree of variability of the CLF, in terms of upper and lower 

bounds for the CLF, is proposed by Craik et al. [44]. These were based on an empirical 

expression (that the fluctuations in the CLF are very similar to the fluctuations in the real 

part of the spatially averaged point mobility) and the bounds for the mobility given by 

Skudrzyk [59]. These upper and lower bounds will be discussed in more detail in 

Chapter 3. 

13 



Chapter 1. Introduction 

1.2.2 Alternative methods including SEA variants 

A number of approaches have been investigated to develop an alternative method or a 

combined method (normally referred to as a hybrid method) in order to overcome the 

limitations of the existing energy based methods in the mid and high frequency ranges. 

1.2.2.1 Wave Intensity Analysis (WIA) 

One alternative method to improve the applicability of SEA, which is referred to as Wave 

Intensity Analysis (WIA), has been developed by Langley [18]. This yields good estimates 

in situations where the SEA assumption that the vibrational wavefield is diffuse does not 

hold. The wave energies are expressed in the form of a Fourier series over angle of 

incidence. If each wave field is diffuse and a single Fourier component is used, the method 

reduces to the standard SEA formulation. In addition, this method considers the non-direct 

coupling terms, i.e. where two subsystems can be coupled even though they are not 

physically connected, by partitioning the energy expression. In reference [19] this method 

was applied to two example structures, a chain of fifteen plates and a flat row of six plates. 

By comparison with the exact results obtained using the DSM [28], the WIA approach 

showed a better estimate of the response than conventional SEA. The SEA predictions 

tended to underestimate the response and this was explained by the wave filtering effect at 

junctions [19]; waves that are nearly normal to the junctions tend to have a high 

transmission coefficient in comparison with other wave headings and thus the wavefield 

becomes less and less diffuse as the vibration travels down the structure. In both the WIA 

and SEA predictions in [19] the junction transmission coefficients calculated for semi-

infinite plates by Langley and Heron [60] were adopted. 

An attempt to improve the WIA prediction has been investigated by Nishino and 

Ohlrich [61]. The original WIA approach [19] was applied for simplified plate models of 

ship-type structures, which consist of stiffened plates and line junctions between plates. 

The results of WIA predictions showed good agreement with the exact results determined 

from the DSM in most frequency bands, especially in the high frequency range where the 

modal overlap factor exceeds a value of one. The standard SEA results, however, tended 

to overestimate the results. Moreover the WIA predictions were slightly larger than the 

DSM results at mid frequencies. A modified transmission coefficient was introduced in 
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order to improve the WIA results in the low modal overlap region. The influence of the 

DLF and the reflection of waves for a finite receiving plate were considered using a DSM 

model of a semi-infinite source plate coupled to a finite receiver plate. For a model of two 

coupled rectangular plates, the modified transmission coefficient was incorporated in the 

WIA approach and, from the results of the energy ratio, it was observed that the 

predictions had been improved in the low modal overlap region, especially for a low value 

of damping. 

1.2.2.2 Advanced Statistical Energy Analysis (ASEA) 

In some SEA applications consisting of complex systems, the subsystems are indirectly 

coupled and the SEA predictions may exhibit errors if this is ignored. Heron [20] 

discussed this and referred to it as 'tunnelling'. A high-frequency theory to account for 

these effects, referred to as Advanced Statistical Energy Analysis (ASEA), was developed 

by Heron [20]. The new theory is based on the fundamental assumption that the total 

energy of an SEA subsystem can be separated into two parts, ' f ree energy' that is available 

for transport to other subsystems and 'fixed energy' that is not available for transport to 

other subsystems. The standard SEA power balance equations were extended to two 

matrix equations by including the above two energies. A procedure was demonstrated to 

calculate the elements of the matrices for a beam network and a plate network. The theory 

was interpreted as a series of mathematical models, the first model is identical to 

conventional SEA and subsequent higher order models converge to an exact result. The 

convergence of the higher order models was shown for an example model of an in-line rod 

assembly consisting of six rods. 

1.2.2.3 Statistical Modal Energy Distribution Analysis (SMEDA) 

The equipartition of modal energy is a key assumption of SEA. However, it is unrealistic 

in some cases, for example the assumption does not hold for low damping where SEA 

overestimates the power flow exchange. In order to overcome this assumption in SEA, 

Maxit and Guyader [21] investigated a modified SEA method, referred to as Statistical 

Modal Energy Distribution Analysis (SMEDA). This method was expressed by the 

classical power flow equations incorporating a less restrictive assumption in which the 
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modal energy distribution of each subsystem is decomposed in terms of a set of shape 

factors. If the degree of freedom (d.o.f.) thus attributed to each subsystem mode is set to a 

single value, this reverts to the assumption of modal energy equipartition. A numerical 

study was performed for a system consisting of two beams coupled by a rotational spring 

[21]. Two different types of excitation, a 'rain-on-the-roof excitation (which is necessary 

for classical SEA to respect the equipartition assumption) and a localised excitation, were 

investigated. The energy ratio predicted from SEA was overestimated for the lower value 

of the DLF, whilst that from SMEDA showed a good agreement with the exact result. In a 

companion paper [22], another numerical example was studied consisting of four coupled 

plates with the two end plates having high modal density and the two intermediate plates 

having low modal density. The results obtained from the SMEDA approach, for which the 

modal energy equipartition was not assumed, tended to coincide with exact results. In fact, 

this method can be used as an extension of SEA, as it is capable of being used for 

localised excitation and at low frequency as well as for low modal density. 

1.2.2.4 Energy Flow Analysis (EFA) / Energy Finite Element Analysis (EFEA) 

SEA does not account for the local behaviour within subsystems, which is one of its 

disadvantages. EFA, based on a wave approach, allows the spatial variation of the 

frequency-averaged energy density and energy flow to be predicted. Thus it may give 

improved predictions of the dynamic behaviour of a system in the high frequencies. 

Wohlever and Bemhard [8] and Bouthier and Bemhard [9, 10] derived the governing 

equations for beams, membranes and plates by an energy balance, a damping model and a 

simplified energy transmission relationship. The energy balance equation was derived 

from continuum mechanics, the damping relationship from the loss factor model of energy 

dissipation and the energy transmission equation from energy density and intensity 

simplified by a smoothing operation. The energy transmission relationship, where the flux 

of energy is assumed to be proportional to the spatial derivative of the energy density, is 

analogous to the heat conduction equation in thermal problems. The application of EFA 

was presented for simple structures, e.g. rods and beams [8], membranes [9] and 

plates [10]. The broadband response was obtained using a plane wave model for a 

membrane [9] and the approximate energy distributions, although smoothed, compared 

well with the exact modal analysis results. For a plate [10], the governing equation for 
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energy was derived using a plane wave approximation in the far Held region only 

(neglecting the near-field region) and the predictions were performed for a distributed 

pressure excitation at a single frequency. The approach was applied to the EFA of beams 

and plates for discrete random excitations and random distributed loading by Han 

gf aZ. [12, 13]. The EFA results were shown to be a good approximation of the exact 

solutions except near boundaries, because EFA does not consider the near-field wave. 

Carcaterra and Sestieri [11] have also considered the 'thermal' energy flow approach to 

represent the possibility of modelling the spatial distribution of energy density at high 

frequencies. However, they assert that the thermal analogy is questionable for a general 

structure. They derived the exact power balance in a general elastic medium using 

Navier's equation and showed that the thermal analogy does not hold and the exact power 

balance equation differs from the expression considered in reference [8], The energy 

density and power flow equations in beams and plates were determined and these 

equations did not represent any thermal behaviour. 

A further investigation on the energy transmission in vibrating structures was presented by 

Carcaterra and Adamo in two companion papers [62, 63]. The constitutive relationships 

for the energy transmission in beams and plates were derived theoretically [62] and a 

particular non-dimensional parameter, 'the ratio of the characteristic finite size to the 

characteristic wavelength', was introduced to explain the energy transmission. Two types 

of wave energy, 'the coincident wave energy' (generated by waves proceeding in the same 

direction) and 'the incident wave energy' (produced by the intersection of travelling waves 

propagating along different directions), was used to indicate whether the mechanical 

energy transmission has a thermal form. The vibrational conductivity was found to be 

valid for one-dimensional systems (beams) but not for two-dimensional systems (plates). 

The experimental validation for a beam and a plate was performed using a scanning laser 

vibrometer and was presented in reference [63]. The experimental results showed that the 

energy behaviour of the beam and the plate are significantly different from each other. For 

the beam an error that is related to the power flow transmitted by the non-thermal 

component of the transmission potential, rapidly reached an asymptotic limit, whilst the 

error for the plate did not reach such a limit even when the non-dimensional parameter is 

considerably high. 
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A similar investigation into the 'vibrational conductivity approach', was performed by 

Langley [64] for two-dimensional structures such as plates, where the approach is more 

difficult to justify. The vibrational conductivity equation, which is a generalization of the 

SEA techniques, was derived. A further assumption that the intensity is the same at each 

wave heading was introduced and the boundary conditions are expressed by the CLF. A 

critical assessment was given of the underlying assumptions and it was pointed out that the 

usefulness of the vibrational conductivity equation is open to doubt. The results for a 

single plate and two coupled plates were presented to assess the performance of the 

method. The vibrational conductivity method yielded a good estimate of the averaged 

energy density of the plate, although for heavily damped, point loaded structures it 

overpredicted the energy density near the plate boundary. The energy ratios obtained from 

the vibrational conductivity method were compared with the previous WIA results [18] for 

two coupled plates. The vibrational conductivity approach produced identical results to 

SEA, whereas the WIA results, allowing for the wave directionality and junction filtering 

effects, gave results that were closer to the exact result. It was also noted that the scatter in 

the results over the different load positions was not predicted by the vibrational 

conductivity method as it effectively averages over the phase of the response, like most 

energy flow-based methods. 

Since EFA can only be applied to simple structures, EFA itself is difficult to apply to a 

complex system. EFA can be implemented using a finite element (FE) model and the 

resulting EFEA allows high frequency predictions using FE models developed for low 

frequency structural predictions. As an example, Vlahopoulos and Zhao [15] investigated 

the application of EFEA to power transfer coefficients (reflection and transmission 

coefficients) for spot-welded joints. They discussed the mathematical formulation of the 

EFEA equations based on the EFA energy equations, the finite element formulation, and 

the derivation of the energy transferred and EFEA power transfer coefficients. The EFEA 

power transfer coefficients for three pairs of plates were predicted and compared with test 

results. 

Although EFA and EFEA are alternative approaches to SEA, these methods are not yet 

widely used and implementation appears difficult. 
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1.2.2.5 Hybrid method 

In the mid-frequency range, since EFEA or SEA cannot capture the resonance effects of a 

system, a hybrid FEA method was demonstrated by Zhao and Vlahopoulos [16] for three 

co-linear beams (long-short-long beams). They formulated three sets of equations: FEA 

model to consider energy information for a short member, a relationship between power 

input from short to long members and the corresponding energy density at the joint, and 

compatibility equations at the interfaces. The results obtained by this hybrid FEA method 

showed good agreement with analytical results and captured the energy and resonant 

effects of the short members as well as the overall response of the system. In addition, the 

hybrid FEA results showed a significant improvement compared with the EFEA results at 

high frequencies. 

A hybrid method based on SEA, the theory of structural fuzzy [65] and the Belyaev 

smooth function, has been presented for the dynamic analysis of complex systems by 

Langley and Bremner[66]. They found it to yield good results for two coupled rods 

although the application to more complex systems is still required. 

1.2.2.6 DSM and Spectral FEM 

For certain continuous elements it is possible to derive the dynamic properties of a 

structural component exactly in the form of a dynamic stiffness matrix. The dynamic 

stiffness matrix is a function of frequency and contains not only stiffness information but 

also mass and damping information. The equations of motion, relating nodal 

displacements to the forces, can be solved to yield the dynamic response of the structure in 

any selected frequency range. For example, Langley [28-30] examined the free and forced 

vibration of a row of rectangular panels, the power flow in beams and frameworks and the 

vibration analysis of stiffened shell structures. The DSM can be viewed as providing an 

exact solution for the response of an idealised structure, whereas the main restriction for 

this method is that, for plate structures, each system must be simply supported on two 

parallel opposite edges. This restriction is necessary to be able to formulate the response 

of the plate analytically by separation of variables. 
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The Spectral FEM (SFEM) presented by Finnveden gf aZ. [67-69] is a combination of the 

direct DSM and the FEM. The SFEM uses an exponential function as a basis function 

along the length of the structure as in the DSM, and the spectral elements of the cross-

section are formulated and assembled as in the standard FEM. The spectral element size is 

limited by geometrical boundaries and the number of d.o.f. can be reduced while accuracy 

is increased. Thus the applicability of the DSM may be increased using the SFEM 

incorporated with the standard FEM. Another investigation for the SFEM was studied by 

Ahmida and Arruda [70]. They reviewed a Timoshenko beam spectral element and 

predicted the structural intensity in beams. The SFEM was shown to be a more suitable 

method than the FEM to model higher frequency propagation problems. 

1.3 Aims and scope of thesis 

Although there are many alternatives and variants, SEA remains the most commonly used 

method for high frequency analysis. SEA is based upon the power balance equation for a 

system which is made up of subsystems. Once the subsystems have been defined and the 

respective CLFs are correctly obtained, then SEA is very straightforward. Typically these 

subsystems are drawn from populations of similar members for which the ensemble 

average is predicted by the SEA model. Variations from the ensemble are expected for any 

particular realisation taken from the whole population. However SEA does not provide a 

standard means of estimating confidence intervals. Rather, an estimate is made of the 

mean value of the response. 

It should be realised that the CLF is a statistical quantity and is defined in terms of the 

average behaviour of an ensemble of similar systems. The 'actual' CLF is defined in terms 

of an ensemble average and as such it is not uncertain once this ensemble of systems is 

defined. However the power balance equations also hold for individual realisations, in 

which case the CLFs are replaced by 'effective' CLFs (to distinguish them from the 

ensemble average CLFs). The effective CLF for a given realisation differs from the 

statistical average. Usually theoretical estimates of the CLF, based on the wave 

transmission between infinite subsystems, are used. The CLF obtained from the wave 

approach generally overestimates the actual value at low frequencies (low modal overlap) 

[42-44, 50, 58], Significant fluctuations with frequency are also observed in this low 
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frequency region. Accordingly, the CLF is the main parameter expected to determine the 

confidence intervals in the SEA prediction. 

The main aims of the thesis are therefore 

» To investigate systematically the sources of variability in the coupling between two 

subsystems. 

« To establish appropriate parameters to determine the variability of the effective CLF. 

« To investigate the effect of the variability in the effective CLF on the resulting response 

for two subsystems and to quantify the confidence intervals of the SEA predictions. 

These are achieved by considering extensive parameter variations using a DSM model of 

two rectangular plates as an example, for which exact dynamic characteristics of the 

system can be investigated using the DSM. 

The effects of varying damping, thicknesses and areas of two plates coupled in an L shape, 

as well as the effects of the type and position of the excitation, were considered by 

Boisson et al. [71]. However they did not evaluate the CLF but the energy ratio between 

the two plates. Their theoretical results, based on modal analysis, showed only the minima 

and maxima of the energy ratio as a quantitative description of the frequency dependence 

and compared these with experimental results. A number of other studies of a two plate 

system have previously been performed, although most of them have been limited to 

plates of the same thickness [42,43, 53]. The present study considers a wide range of 

parameter variations including the ratio of the plate thicknesses. 

The chapters of this thesis are arranged as follows. 

Chapter 2 presents the equations of motion governing the flexural and in-plane vibrations 

for a plate, the theory of the DSM and the dynamic stiffness matrices for a uniform plate 

and two coupled plates. The dynamic response to a point force is obtained and calculation 

methods for the strain energy and power are described. Numerical simulations for a single 

plate and two coupled plates are performed and the analytical models are validated with 

particular emphasis on the power balance between the input power and the dissipated 

power. The analysis procedure is subsequently used in the parametric study to evaluate the 

SEA parameters in Chapters 5 and 6. 
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Chapter 3 introduces the power flow between two subsystems and the SEA framework. 

Various methods to evaluate the effective CLP, the ensemble average CLF and the CLP 

derived from semi-infinite plates, are discussed. Theoretical upper and lower bounds for 

the CLF from [44] are presented, which are compared in Chapter 5 with the variability of 

the effective CLF. 

Chapter 4 deals with analytical models for the coupled behaviour of two plates. The 

various analytical models considered are: (i) two finite plates coupled along a line, (ii) two 

semi-infinite plates of finite width, (ill) an infinite source plate coupled to a finite receiver, 

and (iv) a finite source plate coupled to an infinite receiver. These models are considered 

in order to investigate the influence of the modal behaviour of the source or the receiver 

plate or both. For the first model the sensitivity is studied to the number and location of 

forcing points, when a rain-on-the-roof excitation is applied, and the effective CLFs 

obtained from a 'numerical experiment' are evaluated using diA'erent methods. The energy 

transmission between two subsystems and the effect of the modal characteristics are 

examined. For the other three analytical models, the transmission efficiency or the 

effective CLF is investigated using the wave approach and/or the DSM. The influence of 

the modal behaviour and the effect of the damping of the finite source or the finite receiver 

plate are discussed. 

Chapter 5 presents an initial parametric study for the effective CLF obtained by varying 

the following parameters: the plate thickness ratio, the length ratio, the length-to-width 

ratio of the two plates and the DLFs. The effective CLFs for finite plates are investigated 

for these parameter variations and compared with the semi-infinite plate results. The ratio 

between these two results is compared with the upper and lower bounds introduced in 

Chapter 3 and the variability of the effective CLF in terms of the appropriate value of the 

modal overlap factor is discussed. 

Chapter 6 discusses the variability of the effective CLF, quantified by means of a 

systematic parameter study in which the modal overlap factor and the frequency 

bandwidth are varied independently. These results are used to derive an empirical formula 

for the confidence interval of the effective CLF in terms of the modal overlap factor and 

the number of modes in a frequency band. This empirical model is compared with the 

previously published models of Mohammed [43] and Lyon and DeJong [33], and the 

previous parameter variations obtained in Chapter 5. In order to test the form of the 
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statistical distribution of the effective CLF, some statistical investigations (a Chi-square 

test, skewness and kurtosis) are carried out. The inter-dependence of the CLF from 

subsystem 1 to subsystem 2 and that from subsystem 2 to subsystem 1 is discussed and the 

correlation coefficients examined to determine whether they are independent each other. 

Chapter? describes an experimental validation of the empirical model obtained in 

Chapter 6. The experimental investigations were carried out on two coplanar plates joined 

by bolts with all outer edges having free boundary conditions. This arrangement was used 

for simplicity in the experiments instead of the two rectangular plates coupled at right 

angles with opposite edges simply supported, as used in the development of the empirical 

model. Consequently, although the experiments do not provide a validation of the DSM 

modelling (this is considered unnecessary), they provide validation of the effectiveness of 

the empirical model in a different situation. An analytical study of the coplanar bolted 

joint is also presented, in which the DSM is again used to predict the effective CLF. In the 

experimental study, the vibration of the source and receiver plates is measured when a 

point force is applied, first to one plate and then to the other. The measured vibrations are 

averaged over ten forcing points and ten response points on each plate. The DLF for the 

two uncoupled plates is obtained using the decay rate method. The experimental and 

analytical CLFs are investigated and are discussed in relation to the empirical model for 

CLF variability developed in Chapter 6. 

Chapter 8 discusses the consequences for SEA predictions of the variation in the effective 

CLF. In order to investigate the sensitivity of the resulting SEA prediction, a Monte Carlo 

simulation is applied. The energy ratio between the receiver plate and the source plate 

obtained by the SEA prediction is compared with the exact analytical DSM results. 

The most important results and conclusions drawn from the work are summarised in 

Chapter 9. Some areas for future research are also identified and discussed. 
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CHAPTER 2 

DYNAMIC STIFFNESS METHOD 

2.1 Introduction 

This chapter describes theoretical predictions of the dynamic response of a uniform plate 

and two coupled plates to an applied harmonic point force, using the dynamic stiffness 

method (DSM). Computer simulations, using MATLAB [72, 73], are included to illustrate 

the method and to validate the analytical models. The power balance between the input 

power and the dissipated power for these models is also investigated as a check on the 

consistency of the model. 

2.2 Single plate investigations using DSM 

2.2.1 Equations of motion 

2.2.1.1 Flexure 

For a uniform plate lying in the x-y plane, the equations of motion consist of partial 

differential equations in two space dimensions and time. The differential equation 

governing the flexural vibrations may be written as [28, 74] 

where w is the out-of-plane deflection, D is the flexural rigidity ( D = , E is 

the Young's modulus, h is the thickness of the panel and // is the Poisson's ratio), ph is 

the mass per unit area [kg/m^], and represents a distributed pressure load. In 

equation (2.1), is the bi-harmonic operator of fourth order. 
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where is the two-dimensional Laplace operator, 

- + -

a-

9%" ay' 
(2.3) 

Consider a rectangular plate of length L and width b. The plate is considered to be simply 

supported along two opposite longitudinal edges (y = 0 and )? = 6), as shown in Figure 2.1. 

This means that the displacements and bending moment are zero along these edges; f.g. 

u-w = 0 and M,, = = 0. The deflection of the plate may therefore be expressed in 
ax' 

the form 

y, 0 = % K (;c, 0 sin 
/1=1 

(2.4) 

where W}, is the component of the out-of-plane displacement and » is the number of 

half-sine waves along the transverse edge. 

Z, M/ 

Figure 2.1. Single plate 

From equation (2.4), 

- t v : 
3' w 

a" 

sin 

w 

a/By' 
= - l K 

V ^ y 

y 

d' w 

Sin 

V ^ y 

w 

n=l 

s m 

\ ^ y 

sm 
V ^ V 

w h e r e a n d denote the second and fourth derivatives with respect to %. 
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Substituting equations (2.5) into equation (2.1), then 

f:=I 
D r - 2 D 

h 

2 

1 

h 

4 

sin 
Z_ 

= p(x,}',f). (2.6) 

I ^ J V ^ y 1 ^ V 

Writing multiplying by sin(m;F); / 6 ) , and integrating over gives 

DW:r-2Dk;w:+Dky^ +phW, =^\lp(x.y.tym(k,y)dy. (2.7) 

since, on the left-hand side, the integral of sin(/wr);/6)sin(»;r)' /6) is zero for m and 

6/2 for m = n. Assuming harmonic time dependence equation (2.7) may be rewritten 

as follows, if there is no excitation, 

D W r - 2DA:,X'+ = 0 , (2.8) 

where (x) represents a complex amplitude. Solutions are sought of the form 

= (2.9) 

for some wavenumber Substituting this into equation (2.8), ±ere are four possible 

solutions for knr- Hence the general solution to equation (2.8) is of the form 

(2.10) 
/ = ! 

where are four unknown constants of integration, which can be found by ensuring that 

the solution satisAes the boundary conditions at the transverse edges, A: = 0 and % = Z,, and 

k„r are the four complex roots of the following equation; 

D C - + ( m / - /) W ) = 0 , 

.̂1, «2 = , n̂3, «4 = and A:" = p W / D. 

(2.11) 

(2.12) 

Here k is the plate flexural wavenumber. The first two terms of equation (2.10) have real 

values of and represent non-propagating waves which decay exponentially in space. 

These waves do not usually transmit energy and they may be called 'near field waves'. On 

the other hand, if k> k„, the last two terms represent true flexural waves which have a 

sinusoidal distribution in space and propagate from left to right or from right to left. These 

waves transmit energy and they may be called 'far-field waves' [75]. 
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The solution to equation (2.1) thus includes all four different terms in the following 

form 

4 

M=I /=! 
E E 4 , e ' - " s i n ( * . y ) e ' - ' . (2.13) 

2.2.1.2 In-plane motion 

The differential equations for free in-plane vibrations of a plate are given by [74, 76] 

+ = (2.14) 
dx dy dxdy 

+ = (2.15) 
dy d% 

where 5 = £"/2(1+//), 7= (1+//) / (l-/z), p is the material density [kg / m^], u is the 

longitudinal deflection, and v is the transverse deflection, as shown in Figure 2.1. These 

equations are uncoupled from the flexural deflection. 

If the boundary conditions are simple supports along the longitudinal edges, the in-plane 

deflections, u and v, may be expressed as [77] 

w (%, y, f ) = Y [/,(%, f ) sin (A, y ), (2.16) 
n=l 

v(%,y,r)=2%,(%,()cos(^,y), (2.17) 

where as before. Assuming a harmonic response, solutions are sought for and 

Vn of the form 

= (2.18) 

0 = (2.19) 

Using equations (2.16) and (2.17), the differential equations (2.14) and (2.15) can be 

rewritten as 
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B{l + r)U:-B-yk,V:-Bklu, -pU,=0. (2.20) 

Bv:+ BrKv: - s ( 1 + r ) k X - p K = o . (2.21) 

Substituting equations (2.18) and (2.19) into the di^erential equations (2.20) and (2.21) 

5 ( i + r ) / i X o - f i r M . , K . - ® X o + p f f l ' u . o = o , (2,22) 

Bil v.„+BYk,x,u.„-B(i+r)kfy,.,+=0. 

which can be solved for The four roots of for a given », are 

«2 = and , 

(2.23) 

(2.24) 

where = p G / ( l - / / ^ ) / E and ^ = 2/)6)^(l+^)/E. and are the in-plane longitudinal 

and transverse shear wavenumbers of the plate. 

The general solutions for the in-plane displacements may be written as 

^2^ 

4iv 
2̂̂  

r' 

c , 

sin(A^y)g 

.cos(A;^)')e /a* 

(2.25) 

(2.26) 

where Cm- are four unknown constants of integration which can be found by ensuring that 

the solution satisfies the boundary conditions at the ends of the plate. 

2.2.2 Dynamic sti%iess matrix 

2.2.2.1 Flexure 

Equation (2.10) may be used to derive a relationship between the displacements and forces 

at the ends of the plate, ;c = 0 and A: = Z,, and thus to obtain the dynamic stiffness matrix of 

the plate for flexural vibrations with transverse modeshape sin(tMy) for each ». 

Upon introducing the flexural displacement vector for order n 
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^ (2.27) 

then from equation (2.10) 

^ ( 0 ) = Al +A,2+^n3+Ai4 

^ ( 0 ) = A , + ^.2^,2 + n̂3 4,3 + ^«44,4 
(1) = (2.28) 

or in matrix form 

"«/ - Pi« A (2.29) 

whereA[={4, Az As 44} and 

'In 

Ki K2 «̂3 ^.4 
g*.2Z. (2.30) 

The components of vertical shear force 6';,(%) and bending moment Mn(%) along the free 

edges for order » may be written as [28, 74] 

The restoring force vector F;,/̂ is now introduced 

F ^ = M » ( o ) M ^ o ) - K M } , 

(2.31) 

(2.32) 

where A ( o ) = ^ Z - (2 - // j 2 ^".4, 

(0 ) = - Z ) 

^XZ,) = - D 

L /"=! r=] 

I Z K M y - ' - ( 2 - m ; 
^ ^ J I r=I 

(2.33) 

(2.34) 

(2.35) 

(2.36) 
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K / - ' ' - mK'ZK 
7=1 

(2.37) 

Equations (2.34 - 37) can be written in matrix form 

where 

(2.38) 

-^1 + / ^ 

-^^6;+(2-//)^^,g, -^%+(2-//)A^A^^ 

Kii ^ 

(2.39) 

and g = g " 

Combining (2.38) w i ± (2.29) it is possible to eliminate 

Fn, = P2.A, = P2,P;;|U^ = , (2.40) 

where K»/ is ± e dynamic stiffness matrix for flexural vibrations of order »: 

- PinPj ' (2.41) 

2.2.2.2 In-plane motion 

Equations (2.16) and (2.17) may similarly be used to derive a relationship between the in-

plane displacements and forces at the ends of the plate, and thus the dynamic stiffness 

matrix of the plate for in-plane vibrations of order n. 

Upon introducing the in-plane displacement vector 

u . = K ( 0 ) %,(0) c/xz,) %,(!,)}, (2.42) 

then from equations (2.25) and (2.26), 
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(0) -

%, (0) = + ̂ ^^2 + ^ 3̂̂ ,3 + ^4^4 

/i4 

M4 

or in matrix form 

Urn =r,»C,, 

where C[={Q Q Q Q j and 

r, = 

4 , A . K K 

K K As '&,4 

(2.43) 

(2.44) 

(2.45) 

The in-plane longitudinal force N(x) and transverse force T(x) which correspond to the 

deflections, (/^(z) and %,(%), may be written as [74, 76] 

# = A^(1 + / ) 
9w 9v 

ox dy 

r = AB 
Bw 9v 

^ 9z 

(2.46) 

(2.47) 

Then, introducing the restoring force vector 

F l = M ( 0 ) - r ( 0 ) N(L) T(L)}, 

;.g. ±en 

where 

Fm 

(2.48) 

(2.49) 

- 0 + y ) ( 4 - / ^ ) - ( i+x)^A4(i- /^) 

0+y)(i-/^)<A3g'^'^ (i+/)(i-//)^A4g'^''' 

(li +&)' 

(2.50) 
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Combining equation (2.44) with equation (2.49), the coefficients can be eliminated, 

giving 

Fm = , (2.51) 

where K ,̂ is the dynamic stiffness matrix for in-plane vibrations of order n: 

(2.52) 

2.2.2.3 Dynamic stiKness matrix for a single thin plate 

Along each edge x = 0, x = L it is assumed that the plate has four degrees of freedom, 

three translational degrees of freedom (w, v, vy) and one rotational degree of freedom (^), 

for each value of n. As the plate is thin, then the in-plane rotation is not significant. The 

dynamic stiffness matrices for flexure and in-plane motion may be combined in an 8x8 

matrix 

K_ = 
0 

0 K. . 
(2.53) 

where K /̂ is the dynamic stiffness matrix for flexure and Kn, is the dynamic stiffness 

matrix for in-plane motion as given by equations (2.41) and (2.52). This represents the 

dynamic properties of a single plate. The components of Kn, can also be reordered so that 

all deflections at% = 0 appear first, followed by all deflections atx = L. 

2.2.2.4 The removal of a near-singularity from the matrix 

If the length of the plate Z, is large compared with the wavelength, the matrices , P;,, 

*•)„ or r2„ may be nearly singular due to numerical rounding errors. This is caused by large 

differences in the relative values of the elements of the matrix. It can be overcome by 

multiplying by a diagonal scaling matrix H. 

For flexural vibration, write 

P,nH^ =pL, Pz^Hy = p ; , , (2.54) 
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K. = p,. p,".' = (p;.h;" ) ( p : , h ; ' y = ( p ; , h ; ' ) ( h , p;,-'). 

K/ / —I 
- Pin Pin ' 

where H. is a diagonal scaling matrix. This is chosen to be 

H , = 

where Re(A;^,)>0 and Re(^^J>0. 

Similarly for in-plane vibration, 

0 

0 

0 

0 

1 

0 

0 

0 0 

0 0 1 

=r; , , 

K„ =r„r,;' =(r;H,-')(r;.H,--y' =(r;H,- ' ) (H, C ) , 

K , . = r ; 

(2.55) 

(2.56) 

(2.57) 

(2.58) 

(2.59) 

(2.60) 

where H, = 

0 0 0 

0 1 0 0 

0 0 0 

0 0 0 1 

is a different scaling matrix. 

This effectively changes the coefficients to scaled coefficients in the description of the 

wave amplitudes in the plate. 

2.2.3 Inclusion of damping 

For an elastic structure the stress and the strain ^ in the longitudinal direction are 

related by Hooke's law, i.e. when Gy = cr̂  = 0, 

o (2.61) 
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For hysteretic damping, the stress-strain relationship of a viscoelastic material excited 

harmonically is given by [27] 

+ 
CO dt 

(2.62) 

in which 77 is the loss factor, or hysteretic damping constant, and a; is the excitation 

frequency. For the steady-state response to harmonic excitation, all physical quantities can 

be represented in complex notation with a time dependence Thus 

and (T̂  = E ( l +^77)5^ (2.63), (2.64) 

Similar expressions can be used for other types of motion. The loss factor rj may be 

introduced to represent the material damping. In the dynamic stiffness matrices, the 

Young's modulus E and the flexural rigidity D are replaced by E(l+/7;) and D(l+/;/). 

Table 2.1 summarises the application to material properties and wavenumbers for a 

hysteretically damped system, from [27]. 

Table 2.1. Assumed relationships applying for hysteretic damping models. 

Property Undamped Damped 
Lightly damped 
Approximation 

Young's modulus E Edt/';?) E(l+/77) 

Shear modulus G Gdt/'T?) Gdt/T?) 

Flexural wavenumber k 4 (It/;?)"''' ^^(1^77/4) 

Longitudinal wavenumber 

Transverse wavenumber kj kTil-jTjH) 

2.2.4 Point force 

Previously the equation of motion of the plate has been solved by expanding the response 

into a series of half-sine orders across the plate width. If the excitation is a point force at 

position y,,, this needs to be expressed as a Fourier representation in the various orders. If 
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a force is defined by F(y) = f;, and assumed odd and periodic in (-6, 6), then 

F(jy) can be expressed by a half-range Fourier series expansion [78], that is 

. nTty 

/ n=I I ^ ^ 
(2.65) 

where Og =0, =0, 6̂  =—T f ( y ) s i n = - ^ ^ s i n f o r n = 1, 2, 3, ... 
6 6 6 6 

Hence, the force can be represented spatially by the series 

F(y) = ^ y s i n ^ s i n Z ^ (2.66) 

E the point force is applied at the mid-point of the edge, );o = 6/2, then 

s m — ^ 
n=l 

(2.67) 

or 

^ n = l 

n+i . (2» - l);r)' 
' sm — (2.68) 

Figure 2.2 shows a reconstruction of a point force at );o = 6/2 using Fourier components up 

to » = 5, 11 and 21. As more Fourier components are included, the force representation is 

closer to a point force of increasing amplitude as it converges to a Dirac delta function. 

2.2.5 Energies and power 

2.2.5.1 Strain energy for flexure and in-plane motion 

The strain energy for flexural vibration is given by [27] 

p -R. f'' 
" 2 -"o -'0 

w 
+ 

w 
+2// 

ay' 
+2(1-//) . (2.69) 
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z 
u. 

Figure 2.2. A point force at the middle of an edge of a plate represented by the Fourier 

components, n = 1-5, 1-11 and 1-21 (n odd). ; n = 1-5; —, n = 1-11; —, M = 1-21. 

The strain energy for in-plane vibration is given by [27] 

_ Eh r" r 

' ' " 2 ( 1 - / / " ) Jo J: 

'/j ri 

0 
+ 

J 

+ 2 / / + - — + — 
^ 2 I 9% 

(Wy. (2.70) 

2.2.5.2 Kinetic energy for flexure and in-plane motion 

The kinetic energy for flexural and in-plane vibrations is also given by [27] 

+ 
dt 

+ 

V " y 
(2.71) 

In practice, the integration of equations (2 .69-71) may be performed numerically by 

summing over the step lengths Ax and A j along the length and width of the plate. The 

discrete summation is an approximation to the continuous integral. It can also be integrated 

analytically to give an accurate measure of its energy (see Appendix A for the analytical 

integration of strain energy). Throughout this study the latter approach has been adopted. 
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2.2.5.3 Power 

The time-averaged power input produced by a harmonic force is given by [39] 

= ^ R e ( y ) | f I' = ^ ^ 6 ( 2 ) |v|' = ^ R e ( f ' v ) [Watt (W) or Nm/s] (2.72) 

where Y is the input mobility, Z is the input impedance, v is the velocity amplitude at the 

excitation point and is the complex conjugate of the applied force amplitude F. 

The power balance equation for an isolated subsystem is given by [33, 79], 

(2.73) 

where, Pm is the input power, is the dissipated power, and E^tiam is the maximum 

strain energy in a cycle of the dynamic response in the subsystem at frequency / (Hz). If 

the kinetic energy is used in this calculation, the 'dissipated power' does not agree well 

with the input power. This point will be discussed further in the simulation results section 

below. Thus the dissipated power can be calculated using the total strain energy of the 

system obtained from equations (2.69) and (2.70). 

2.2.6 Simulations for a single plate 

2.2.6.1 Model 

A model was selected to compare the results with previously published data [80]. It is 

shown in Figure 2.3 and comprises of a square aluminium plate, simply supported along 

two edges, free along the other edges. For this model, only the flexural vibration is 

considered. 

2.2.6.2 Natural frequencies 

For free vibration problems F„ is zero and the natural frequencies for flexural vibration are 

determined from the equation 

det (K,J = 0 (2.74) 
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where Knf is the dynamic stiffness matrix for flexure, reduced as appropriate according to 

the boundary conditions at :% = 0 and x = 1. Equivalently the resonances correspond to 

peaks in ^det (K^ )) . 

S Simply Supported 

Free 

Figure 2.3. A single plate: width h = 254 mm, length L = 254 mm, thickness A = 3.18 mm. 

material: aluminium (Young's modulus £" = 7.24x10^° N/m^, Poisson's ratio // = 0.333, 

material density = 2.794x10^ kg/m^). 

The natural frequencies of a single plate were obtained by a formula [80], as listed in 

Table 2.2. Figure 2.4 shows the flexura] 'frequency functions', that is ^det , for a 

single plate according to the number of half-sine waves along the y-direction, n. The 

natural frequencies for the first mode of each n, extracted from the frequency functions in 

Figure 2.4, agree well with previously published data [80], as listed in Table 2.3. The 

results obtained from the dynamic stiffness method are exact but the natural frequencies in 

Table 2.3 are subject to digitisation errors in reading values f rom the frequency functions. 
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Table 2.2. The natural frequencies in Hz for a single plate obtained from published data 

[80]. 

A' j D 
/ ( 6 - 2 5 4 m m , Z, = 254mm, = 3.18mm) 

m 
n 

1 2 3 4 m 
n / ( H z ) / ( H z ) / ( H z ) / ( H z ) 

1 9.568 115.9 15.88 192.4 36.42 441.2 133.5 908.8 

2 38.79 469.9 46.33 561.2 70.16 849.9 168.9 1337 

3 87.74 1063 95.48 1157 121.3 1469 223.8 1984 

4 156.4 1895 164.1 1988 191.0 2314 296.9 2849 

B 200 

10 
Frequency (Hz) 

(a) M = 1 

g 200 

m 0 
-200 

• r 
L T L O m m r 

10 
Frequency (Hz) 

(b) n = 2 

g) 200 

(D 0 
J 
S - 2 0 0 

10'̂  

10 

10 
10 

Frequency (Hz) 

(c)» = 3 

10 

g 200 
5 m 0 
ra 
g-200 

10' 

10 

/ 

10 

1 0 ' 
10 

Frequency (Hz) 

(d) M = 4 

10 

Figure 2.4. The flexural 'frequency functions' (i.e. ^det (K,,, ) for a single plate for 4 

different half-sine wave orders. T] = 0.01. 
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Table 2.3. Comparison of the natural frequencies in Hz for the first mode (m = 1) of each n. 

n Gorman [80] Dynamic Stiffness Method Difference 

1 115.9 115.9 0.0 

2 469.9 470.1 0.2 

3 1063 1063 0.0 

4 1895 1895 0.0 

2.2.6.3 Dispersion relationships for flexural vibration in a rectangular plate, 

simply supported on two parallel sides 

Figure 2.5 shows the dispersion curves, the relationship between wavenumber and 

frequency, and also the wavespeed, for a single plate for the first half-sine order across the 

plate {n = 1). These show the wavenumbers and wavespeeds in the % direction. 

There are four complex roots from equation (2.11) for each M. For two roots, and ^̂ 2, 

the real parts of the wavenumbers, that is the evanescent components, are greater than the 

imaginary parts and these waves are not propagating but decaying along the plate. For the 

other two roots, ^̂ 3 and on the other hand, the imaginary parts are greater than the real 

parts when The frequency at which ^ is referred to as the 'cut-on' frequency 

and is given by 

y =— 
•J cut-on 2 

1/2 

(2.75) 

For » = I this is 120.5 Hz in the present example, or (Wcut-on = 756.7 rad/s. 

These two waves are propagating in the negative and positive directions, respectively, and 

each of them transmits energy along the plate. The wavespeed of a propagating wave K j 

changes rapidly around the cut-on frequency, which corresponds to the first mode of an 

infinitely long plate and converges to the free flexural wavespeed as frequency increases. 

In the absence of damping the wavespeed would tend to infinity at the cut-on frequency. 
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10 
CO [rad/s] 

10 
(0 [rad/s] 

E 10 

10 
0) [rad/s] 

Figure 2.5. The dispersion curves and wavespeeds for the rectangular plate of Figure 2.3 

(n = 1, 77 = 0.01); (a) real wavenumber components of k against co, (b) imaginary 

wavenumber components of A: against 6); , ^2; —, —, n̂4, and (c) 

wavespeed a)/Im(A:) against 6); —, free flexural wavespeed; —, propagating wavespeed of 

2.2.6.4 Validation of the input power calculation for a Gnite plate 

The input power, when a point force is applied at the mid-point of the left-hand edge, i.e. 

x = 0, y = bH, was calculated by equation (2.72) and compared with that for a semi-

infinite plate excited on its edge. For a harmonic force of amplitude F, the time-averaged 

input power for the semi-infinite plate is given by 
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(2.76) 

where Re denotes the real part and is the impedance of the semi-infinite plate [48, 81], 

corrected by [82] 

Z_=2.165^/)AD. (2.77) 

Note that , and hence f oo, is independent of frequency. The calculated input power for 

the single plate converges, as expected [59], to that for the semi-infinite plate at high 

frequencies, as shown in Figure 2.6. 

S 10 

f = 0.005 

10 10 
Frequency [Hz] 

Figure 2.6. Comparison between the input power for the single plate of Figure 2.3 (DLF 

77 = 0.1, Umax = 29) and that for the semi-infinite plate when a point force is applied at the 

mid-point of the left-hand edge. —, finite plate; —, semi-infinite plate. 

2.2.6.5 The number of Fourier components 

Since the point force excites components of vibration with different values of n, a study 

has been performed to establish how many components should be included to achieve 

convergence of the solution. The force acts at the mid-point of the edge so only odd values 

of n need to be included. The total input power has been calculated using n = I to 11 and 
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these powers were evaluated at frequencies spaced equally on a logarithmic scale such that 

the frequency spacing J / is smaller than a half of the half-power bandwidth, The 

results are then converted to one-third octave bands. The same calculation has been 

performed for a truncated series using n = 1 to Mmajc for different values of These 

results have then been normalised by the result for = 11 in each band. Figure 2.7 

shows these normalised input powers. As frequency increases the number of components 

that must be included, Mmax, increases. Thus below 800 Hz MnKtc = 1 is sufGcient whereas at 

10 kHz = 9 is required. These results are also listed in Table 2.4. 

125 250 500 1000 2000 4000 

1/3 Octave Band Centre Frequency [Hz] 

8000 

$ n<= 1 

- * — n < = 3 

-A—n<=5 

-^0—n <= 7 

-X—n<=9 

# n<= n 

Figure 2.7. The convergence of the input power according to the number of Fourier 

components for the plate of Figure 2.3. 

The choice of should ideally be made beforehand, for example from a knowledge of 

the cut-on frequency, equation (2.75), for each n. Below the appropriate cut-on frequency 

the contribution of a given n is likely to be small. In the table, the shaded values 

correspond to n,nax based on including only components with cut-on frequencies below the 

upper frequency of the current one-third octave band. This results in some inaccuracy 

especially in the 630 Hz band which corresponds to an anti-resonance, see Figure 2.6. 

However, for all higher orders of n, selecting Umax to include only those orders which have 

cut on in the frequency band of interest gives good results. 
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Table 2.4. The input power normalised with respect to the maximum input power of each 

1/3 octave frequency band for each Mmox, for the plate of Figure 2.3. 

Note. n,nax = the maximum number of Fourier component 

fc = one-third octave band centre frequency 

Aut-on = cut-on frequency 

/cut-on 

fc 

1 3 5 7 9 1 1 

/cut-on 

fc 
120.5 1084 3012 5903 9758 14580 

125 1.000 1.000 1.000 1.000 1.000 1.000 
160 0.992 0.998 0.999 1.000 1.000 1.000 
200 1.000 1.000 1.000 1.000 1.000 1.000 
250 0.963 0.991 0.997 0.999 0.999 1.000 
315 0.923 0.981 0.993 0.997 0.999 1.000 
400 0.999 1.000 1.000 1.000 1.000 1.000 
500 0.995 0.999 1.000 1.000 1.000 1.000 
630 0.739 0.955 0.983 0.993 0.997 1.000 
800 0.901 0.989 0.996 0.998 0.999 1.000 
1000 0.692 0.999 1.000 1.000 1.000 1.000 
1250 0.015 0.998 0.999 1.000 1.000 1.000 
1600 0.557 0.998 0.999 1.000 1.000 1.000 
2000 0.025 0.992 ! 0.998 0.999 1.000 1.000 
2500 0.515 0.984 0.999 0.999 1.000 1.000 
3150 0.017 0.056 0.998 0.999 1.000 1.000 

4000 0.354 0.697 0.996 0.999 1.000 1.000 

5000 0.335 0.672 0.981 0.998 0.999 1.000 
6300 0.148 0.303 0.566 0.998 1.000 1.000 
8000 0.194 0.415 0.639 0.991 0.999 1.000 

10000 0.155 0.298 0.441 0.583 0.998 1.000 

2.2.6.6 Estimates of dissipated power based on strain and kinetic energy 

If losses are from material damping, the maximum strain energy in a cycle should be used 

in evaluating the dissipated power described in equation (2.73), from the definition of the 

loss factor given by [48] 

77 = 
energy lost per cycle P 

lit (reversible mechanical energy) 
(2.78) 
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Often, especially in experimental SEA, the maximum kinetic energy in a cycle is used to 

estimate the dissipated power, 

(2.79) 

as it is a quantity more amenable to measurement. This relies on the equality [39] 

Elm = Estrain = E (2.80) 

where E is the time-averaged total energy. This is satisfied in a broad-band sense, but not 

necessarily at single frequencies except at the natural frequencies. 

In a steady state, the power balance between the predicted input power and the predicted 

dissipated power should be satisfied. To investigate whether this is the case, the single 

plate (Figure 2.3) was considered with a point force applied at the mid-point of the left-

hand edge. Figure 2.8 compares the input power with the dissipated power. The right-hand 

figures show the error in each case, and are plotted against frequency. The dissipated 

power was calculated from either the strain or kinetic energy, integrated analytically. This 

shows that if the kinetic energy is used to calculate the dissipated power, the error in 

regions of low frequency is very large, whilst the error decreases as the frequency 

increases. On the other hand, the error produced when using the strain energy is extremely 

small and these powers coincide very well. The integration of energy was performed 

numerically in reference [86] by summing over the step lengths along the length and width 

of the plate. A step size was chosen between sampled points equal to 1/6 of the bending 

wavelength at the maximum frequency. It is noted that the result of the numerical 

integration [86] is subject to greater errors than the analytical result used here. 

Thus, it is clear that the strain energy and the analytical integration should be used when 

the dissipated power is evaluated in the low and mid frequency range, whereas the kinetic 

energy is widely used in practice because of simplicity, both experimentally and analytically. 

It should be noted that the current simulations use a damping model in which losses are 

introduced by making the Young's modulus complex. In practical structures other 

damping mechanisms may be present, such as friction at joints, which may be more 

related to kinetic energy rather than strain energy. 
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Frequency [Hz] Frequency [Hz] 

(a) Power obtained from kinetic energy and its error 

a> - 6 0 

0.05 

0 

10 ^ ir 
Frequency [Hz] 

-0 .05 

m m 10 
Frequency [Hz] 

(b) Power obtained from strain energy and its error 

Figure 2.8. Comparison of the predicted input power with the dissipated power and the 

corresponding error calculated from (a) kinetic energy and (b) strain energy for a single 

plate model (DLF rj = 0.01, n,„ax = 29). —, the input power; —, the dissipated power. 
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2.3 Coupled plate investigations using DSM 

2.3.1 Dynamic sti%iess matrix 

Assuming a harmonic point force is applied at a transverse edge, a coupled plate system 

may be analysed by the assembled dynamic stiffness matrix for the system, as shown in 

Figure 2.9. The plates are assumed to have a common width, to be simply supported along 

opposite edges and connected along the other edges. The dynamic stiffness matrix of a 

coupled plate system is derived by assembling the dynamic stiffness matrix of each plate 

and applying the compatibility and equilibrium conditions at the joint. As for the single 

plate, the system is analysed for each half-sine order and each frequency separately. 

The dynamic stiffness matrix of a coupled plate system, joined at an arbitrary angle, is 

given by (Appendix B.l), 

(2.81) 

where is a 12 x 12 matrix for the coupled plate system, is a 16 x 16 

assembled matrix for the two plates, pi and p2, and is a transformation matrix for 

plates defined in Appendix B.2, which allows for any angle between the plates and relates 

the displacements at edge 3 to those at edge 2 (see Figure 2.9). 

The forced response is determined by premultiplying K to the equation F = K u , 

givmg 

(2.82) 

where the force vector: =1^^ ̂ pi+p2) 

F / ^4, - ^ 4 , ^4, (2.83) 

and the displacement vector: U(,„+;,2) 

u / Ml, V], "2' 2̂' ^4' (̂ 4' ^4, ^4}' (2.84) 

The subscript, 1, 2, 3, or 4, corresponds to the transverse edges of the system, as shown in 

Figure 2.9. 
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2.3.2 Simulations for two coplanar plates with f lexural vibration only 

2.3.2.1 Model 

The system studied in this section consists of two plates joined at 0 degrees as shown in 

Figure 2.9. The model is selected to compare the natural frequencies and forced response 

between a single plate system and a coupled plate system, which have the same width and 

overall length. For this model, only the flexural vibration is considered. 

Plate 2 

Figure 2.9. Two coplanar plates: width b= 1.0 m, length L = 0.5 m, thickness h = 2 mm, 

material: aluminium (Young's modulus E = 7.24x10^° N/m^, Poisson's ratio // = 0.333, 

material density p = 2.794x10^ kg/m^), DLF rj = 0.01. 

2.3.2.2 Natural frequencies 

The flexural 'frequency functions' (that is ^det ) for a coupled plate system of 

total length 3Z, = 1.5 m and a single plate which has the same dimension, are shown in 

Figure 2.10. These have been compared to check the accuracy of the analysis and the 

numerical implementation. In the plot, n presents the number of half-sine waves, from 

y = Oioy = b,m the direction across the plate. 

In Figure 2.10 the natural frequencies of a coupled plate system of total length 3L show 

good agreement with those of a single plate of the same overall length, although the 

magnitudes and shapes of the frequency functions are quite different. The resonances are 

easier to identify for the single plate system. 
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(c) Two plates (n = 2) (d) Single plate (n = 2) 

Figure 2.10 (a)-(d). The frequency functions (z.e. ^det^K^ ) of a coupled plate system 

and a single plate of identical overall dimensions. 
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(g) Two plates (/% = 4) 
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(h) Single plate (n = 4) 

Figure 2.10 (e)-(h). The frequency functions (i.e. ^det ) of a coupled plate system 

and a single plate of identical overall dimensions. 

2.3.2.3 Forced response 

Figure 2.11 shows the forced response at the left-hand end, x = 0, when a unit amplitude 

distributed force with a half-sine wave spatial variation is applied at the right-hand edge, 

X = 3L. As expected, the result shows exact agreement between a single plate and a 

coupled plate system. 
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10 
Frequency [Hz] 

10 
Frequency [Hz] 

(a) Vertical displacement for two plates (b) Vertical displacement for a single plate 

10 
Frequency [Hz] 

10 
Frequency [Hz] 

(c) Rotational displacement for two plates (d) Rotational displacement for a single plate 

Figure 2.11. Forced response at the left-hand free edge due to a unit amplitude distributed 

force {n = 1) applied at the right-hand free edge: comparison of two coupled plates and a 

single plate of the same overall length. 

The forced response for a coupled plate system has also been calculated when a unit 

amplitude force in each half-sine order is applied at the intermediate edge, ;.g. % = Z,, 

where plate 1 is connected with plate 2. The vertical displacement is presented in Figure 

2.12 and the rotational displacement in Figure 2.13. In this case it is not possible to predict 

the result using the single plate model. 
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Figure 2.12. The vertical displacement for a coupled plate system at the left-hand edge due 

to a unit amplitude distributed force applied at the intermediate edge. 
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Figure 2.13. The rotational displacement for a coupled plate system at the left-hand edge 

due to a unit amplitude distributed force applied at the intermediate edge. 

2 .3 .3 S i m u l a t i o n s f o r t w o p e r p e n d i c u l a r p lates c o n s i d e r i n g i n - p l a n e 

v ibra t ions 

2.3.3.1 Model 

The system studied in this section consists of two perpendicular plates, as shown in Figure 

2.14, which allow both flexural and in-plane vibrations. It is assumed that the two opposite 

edges along the longitudinal direction, j = 0 and y = b, are simply supported and the other 
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edges are free. The model is used to compare the input power due to the excitation with 

the total dissipated power for the two plates. A point force of amplitude F was applied first 

at the mid-point of the free edge of plate 1, %] = 0 and } = 6/2, and then at the mid-point of 

the free edge of plate 2, = ^2 and ); = 6/2, in each case perpendicular to the plate surface. 

Plate 2 

Figure 2.14. Two perpendicular plates: width 6 = 200 mm, length Z,, = 100 mm, 

L2 = 200 mm, thickness 1̂ = 2̂ = 3.0 mm, DLF 77 = 0.01, material; aluminium (Young's 

modulus £" = 7.24xl0'°N/m^, Poisson's ratio // = 0.333, material density p = 2.794x10'' 

kg/m^). 

2.3.3.2 The dissipated power for the receiver plate and the coupling power 

The power transmitted from the source plate to the receiver plate, Pi2, is obtained using 

modal orthogonality directly from, 

P̂ 2 = —Re % j ( ) ' ) + ( ) ' ) + ( y X (y)+7].' 
" 0 

(2.85) 

where F*, M*, N'l and are the complex conjugates of the internal force or moment 

amplitudes at the interface extracted from the elements of the dynamic stiffness matrix and 

Wn, (t>n' w,! and v„ are the displacement amplitudes at the interface, calculated for each 
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Fourier component» which includes sin(A»);) or cos(^n)')- The products are integrated along 

the interface length, and then summed. This coupling power should be equal to the power 

dissipated in the receiver plate, as the coupling is conservative. The predicted power 

dissipated by the receiver plate and the coupling power are presented in Figure 2.15. The 

coupling power for each location of the applied force, on plate 1 or on plate 2, coincides 

well with the power dissipated by the respective receiver plate. As in Section 2.2.6.6, the 

error is very small in the range considered. 
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0. 
I 

-0.005 

-0.01 
10' 10 10 

1/3 Octave Band Centre Frequency [Hz] 

10' 10 10 
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(a) The dissipated power for plate 2 for excitation on plate 1; —, f ai, and the coupling 

power; -o-, P n , and the error between them. 

0.01 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

-0 .005 

1 0 ' 10" 10 
1/3 Octave Band Centre Frequency [Hz] 

(b) The dissipated power for plate 1 for excitation on plate 2; , Pdi, and the coupling 

power; -o-, P21, and the error between them. 

Figure 2.15. The dissipated power for the receiver plate and the coupling power between 

two plates. 
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2.3.3.3 The effect of in-plane vibration 

This section describes the results obtained when in-plane motion is included in the full 

formulation of the dynamic stiffness matrix. For the two perpendicular plates (Figure 

2.14), a harmonic force was again applied at the mid-point of the left-hand edge of plate 1 

or the right-hand edge of plate 2, in each case in a direction perpendicular to the plate 

surface. Figure 2.16 shows the ratio of the time-averaged strain energies in the two plates, 

with and without in-plane motion. From this it can be seen that the inclusion of in-plane 

motion has only a small effect for the present case. In fact, it is negligible up to the cut-on 

frequencies of the shear wave propagation for both plates, which are found to be 1970 Hz 

for plate 1 and 3410 Hz for plate 2 (see equation (2.24); when ^ 3 and ,^4 

correspond to propagating waves). Above these frequencies, a small amount of flexural 

energy from the source plate is transmitted into in-plane energy in the receiver plate, 

through their common edge. Although the effect of in-plane vibrations on the two coupled 

plates considered here is small, it may be important for large structures or multi-plate 

structures, as investigated by Lyon [83] and Bercin [84]. 

s 
m 

Uj 

10 
Frequency [Hz] 

10 
Frequency [Hz] 

( a ) -£ 'plate2 / •fi'platel ( b ) -Cp la te l / -E 'pla te l 

Figure 2.16. The effect of in-plane motion on the time-averaged strain energy ratio for the 

perpendicular plates when a harmonic force is applied (a) at the mid-point of the left-hand 

edge, = 0, of plate 1 and (b) at the mid-point of the right-hand edge, xz = I2, of plate 2; 

—, flexure only; —; with in-plane. 
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2.4 Discussion 

The dynamic stiffness method provides a means of determining exactly the high frequency 

behaviour of idealised plate structures. In this chapter, the dynamic stiffness matrices of 

plates have been derived including flexural and in-plane motion and examples have been 

presented of single and coupled plates. Natural frequencies have been predicted and 

compared with analytical results to provide validation of the results of the simulation. 

Comparisons have been made in terms of natural frequencies and the forced responses 

between a system comprising a single element and the same system divided into two 

elements, as validation of the analysis and numerical implementation for the coupled case. 

The objective in using the method in this research is to study the power flow in a system 

of plates. The input power due to excitation by a force has been obtained and the 

dissipated power has been determined using the strain energy. This provides the tools for a 

study of coupling between plates in terms of their coupling loss factors which is the next 

stage of the research. It has been found that significant errors occur in the dissipated power 

calculation if kinetic energy is used instead of strain energy, particularly at low 

frequencies. 
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CHAPTER 3 

StTTjdLiriSTri(:%AL]L, t 

3.1 Introductkwi 

This chapter describes the SEA framework and some of the methods used to obtain the 

CLP. The power flow between two subsystems is discussed and the concept of an 

'effective' CLF for a particular realisation of the system is introduced. The effective CLP 

for a two-plate system is compared with the CLF derived from two semi-infinite plates 

and the ensemble average result [50]. The influence of damping on the ensemble average 

CLF is discussed. A theoretical upper and lower bound is presented for the effective CLF 

from [44], that can be used to evaluate the variability of the CLF. 

3.2 Power flow between subsystems 

In the SEA approach, a system is modelled in terms of the power which is input, 

dissipated and transmitted between subsystems. The power balance equations for two 

conservatively coupled subsystems 1 and 2, excited one at a time, as illustrated in 

Figure 3.1, can be expressed by [33] 

(3.1) 

+ =a>(n,E'^+n\ ,E[-4,El) , (3.2) 

PL = K...+Pi = +r>i,Ei-n;,Ef), p . s ) 

0 = + Pn = +'itiE!-rilM ), (3.4) 

where Pin and Pjiss are the time-averaged input and dissipated powers, Pn ( = -Pix) is the 

net power transmitted from subsystem 1 to 2, 771 and % are the DLFs, E\ and Ej are the 

total time-averaged energies, and 7712 and are the coupling loss factors. The superscript, 

1 or 2, means the excitation is applied to subsystem 1 or 2 and ' " ' denotes an ensemble-

averaged quantity. The 'actual' CLFs are defined in terms of this ensemble average. The 
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equations (3.1)-(3.4) also hold for individual realisations, however, in which case the 

CLFs are replaced by , the 'effective' CLF. 

I, in 

V pi 
1, diss 

I 
2, diss Y 

1, diss 

2. m 

1, tot 

p i - _ p ' 
4 2 ~ ^ 2 1 

^ 2 . tot tot 1, tot ^ 2 . tot tot 

V P, 2 2, diss 

(a) Power input to subsystem 1 (b) Power input to subsystem 2 

Figure 3.1. Two subsystem model. 

Equations (3.1)-(3.2) and (3.3)-(3.4) can be rearranged to give, 

1. in 1, diss 2, diss • 

= p 2 p2 
2, in 1, diss 2, diss 

(3.5) 

(3.6) 

Whereas equations (3.1)-(3.4) assume that power flow between subsystems is proportional 

to the difference in average modal energy, equations (3.5) and (3.6) are always correct and 

do not assume any relationships between the transmitted power and the average subsystem 

energies. Accordingly, the input power for each subsystem is equal to the sum of the 

dissipated powers for the two subsystems. As power is input to only one subsystem at a 

time, the net coupling powers are equal to the dissipated powers of the receiver 

subsystems. 

P — P 
12 ~ ^ 2 . diss ' 

p/ _ p2 
2̂1 — ' 

(3.7) 

(3.8) 

Equations (3.1)-(3.4) can be used to obtain the CLFs if the input powers and subsystem 

energies are known. In general . It might be expected that the four equations would 

allow solution for these four unknowns (if 7]i and % are known). However equations (3.1)-
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(3.4) are not linearly independent in 7;,̂ . It has therefore been necessary to make the usual 

SEA assumption that 77,| = T/J. Moreover it is usually assumed that the CLFs are related to 

one another by the consistency relation 

(3.9) 

where and M2 are the asymptotic modal densities of the subsystems. This is derived from 

a fundamental assumption in SEA, that the coupling power is proportional to the difference 

in average modal energy, z.g. 7̂ ^ -^2/^2)»th^ constant of proportionality being 

M] 77,2 [8^]' However, in the present work equation (3.9) will not usually be assumed to 

hold. 

3.3 The effective CLF 

If the time-averaged input power, the time-averaged energy and the DLF for both 

subsystems are known for a particular realisation, the 'effective' CLF may be evaluated 

by using the power balance equations (3.1) and (3.3) (assuming if - f j l ) 

1̂ 712 

1%. 

2 
6) 

(3.10) 

From equations (3.5)-(3.8), the right-hand terms of equation (3.10) are equivalent to 

7̂ ' - 6)77,̂ ,' = = 4 = ( 3 . 1 1 ) 

and 

<^2^2 - -̂ .diss - . 2 7)2 (3.12) 

Therefore the 'effective' CLF for a particular realisation of the system is given by 

In 

(D 

|6)772& 2 
2 

(3.13) 

This is the same concept as performing 'experimental' SEA based on the power injection 

method [57]. Alternatively, exciting only one subsystem and using the consistency relation 

(3.9), the CLF can be obtained from 
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^12" r ^ Y '̂2 - r ^ - — r (3.14), (3.15) 

+ - H +'-s4 
where N| and Ni are the actual numbers of modes in a given frequency band and Mi (a?) 

and »2(G)) are the asymptotic modal densities. For example, the modal density of a simply 

supported uniform isotropic plate can be approximated as [48] 

»(<))) = (3.16) 

where S is the area of plate, p is the material density, h is the thickness of plate and 

D{= Eh?/\2(l-fi^)^ is the flexural rigidity. It can be expected that equations (3.13)-

(3.15) will give different estimates of . Equation (3.13) is the more general but involves 

a greater amount of calculation. This is considered in Chapter 4, where numerical 

simulations are presented. 

3.4 Analytical CLF estimates from semi-infinite structures 

The CLF in SEA is traditionally obtained by the travelling wave approach from semi-

infinite structures. It is assumed that the source subsystem is reverberant, the transmission 

efficiency is much smaller than unity, and the incident fields are diffuse. For two-

dimensional subsystems coupled along a line, the CLF can be estimated from analytical 

results for the transmission efficiency, or power transmission coefficient, which is the 

ratio of transmitted power to incident power at the boundary [48] 

(3.17) 

where ĉ ,, is the group velocity of the source subsystem i, h is the junction length, and 5, is 

the surface area of the source subsystem. If the incident wave is a bending wave on a 

homogeneous thin plate then the group velocity = 2c6, where ct is the phase velocity of 

the bending wave. Equation (3.17) can be derived from the definition of the transmitted 

power and the power flow between two semi-infinite plates [86]. This CLF may be 

corrected by multiplying it by a factor of 2/(2-t), as investigated in [86, 87]. This is to 

allow for the difference between the incident and reflected amplitudes on a semi-infinite 
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plate when 7" is large. An example is presented in Section 4.2.4. It was discussed in [87] 

that there are a number of different expressions for the relationship between the 

transmission efficiency and the CLF, and the relation remains uncertain. 

The transmission efficiency in equation (3.17) is the angular averaged value. In SEA 

it is usually assumed that a diffuse field is present in each subsystem, so the energy is 

equally likely to be incident on the boundary at any angle. Then the incident power is 

given by 

;r/2 
^ = j cos = 7̂ ^ (^) j cos (^) (3.18) 

where Pmcid) is the power incident from angle 6, which is a constant independent of 6. 

Similarly the transmitted power is given by 

/̂2 ;F/2 
(3.19) 

where T (^) is the transmission efficiency for angle Hence 

/̂2 
(3.20) 

where 6 is the angle of incidence. The transmission efficiency T (^) for two plates joined 

at right angles, neglecting in-plane motion, is given by [48] 

(3.21) 

where 5 = sin 0 and, if the plates have identical material properties, X - 4 K I K ^nd 

= Numerical integration of this expression yields 7̂ , j. Reference [49] gives an 

approximate formula for the angular averaged transmission efficiency Tij, d expressed in 

terms of the transmission loss, = -101og,Q(T,^ ^): 

- 20 log 10 

/ I— I—A 

V 

+ c , + ^ + q i o g , , 
X 

for % > 1 (3.22a) 
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i?2i — 20 log 10 + C,+Q;{r + QIog ,o(l + y ) f o r ; r ^ l (3.22b) 

where Ci=—2.0053, C2 = 0.2535 and C3=1.56. For ;|^<1 , the angular averaged 

transmission efficiency f i2 , j is obtained from equation (3.22b) and T,; [^6]. 

According to [49], the approximate transmission efficiency agrees with the integral (3.20) 

of equation (3.21) to within 0.03 dB for 0.01 < - 1 0 0 -

3.5 Ensemble average CLF 

The CLF estimates determined from the transmission efficiency for semi-infinite 

subsystems, are usually taken as representative of ensemble averages of the CLF for finite 

subsystems. However, this is only valid where the subsystems are weakly coupled and 

exhibit a diffuse field. It has been shown that, when the average modal overlap is smaller 

than unity, the predicted CLFs fall below the semi-infinite results [42]. The modal overlap 

factor, a parameter generally used in SEA, is given by 

M (3.23) 

where »(6)) is the modal density of the subsystem. The modal overlap factor is sometimes 

used as a measure of whether the response may be considered diffuse. The 'coupling 

strength', on the other hand, is normally defined by the ratio of the CLF to the DLF of the 

source subsystem [88]. 

The ensemble average CLF can be obtained from the traditional SEA formulations in 

equation (3.15), as the coupling power and energies are defined in terms of the ensemble 

average quantities. The ensemble average coupling and input powers for a system 

comprising two simply supported, rectangular, edge-coupled plates, was expressed by 

Wester and Mace by using the wave approach [50]. The analysis results of energy flow 

using the wave approach can be exact, except for the neglect of the nearfield effects. The 

total response of the plates was expressed as the sum of wave components, for which the 

system may be regarded as a dynamically 'one-dimensional' system [45]. The following 

assumptions were made concerning the ensemble [50]; (i) variations over the ensemble in 

the properties of the plates, the coupling and the excitation are taken to be statistically 

independent, (ii) the energies and powers of interest are taken to be constant over the 
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ensemble, and (iii) the lengths of the plates are large compared with the bending 

wavelengths. 

By this analysis Wester and Mace [50] derived a more general expression for the ensemble 

average CLF of two connected rectangular plates, 

n, = 77 
f/, gns 

1 ^mm(k,,kj) 
(3.24) 

where and ^ are the free wavenumbers of plates ; andy, ^ ̂  

are the limiting subsystem 'reflectances' for small trace wavenumber ^(A,) corresponds 

to %;y(0 in equation (3.21) for sin^ = A;yA:,. Two coupling parameters, / and (f, are 

defined in [50] 

r 
%-(A:̂ )cosh (̂/Z )̂ 

sinh(//Jsinh(// ) 
and 

T(/:Jsinh^(//J 

sinh(//Jsiiih(//^) 
(3.25) 

where //, /.Jl-(A:/A:^)^ and = (//, - / / , ) / 2 . 

The ensemble average CLF was obtained from equation (3.24), irrespective of the 

coupling strength. The qualitative features of the strength of coupling were examined by 

evaluating equation (3.24) for the weak and strong coupling limits of the CLF. For weakly 

coupled plates ( / < ^ 1 and ^<^1), equation (3.24) approximates to 

/7v.«s 1+ 
A:,// 

Y 

/O yj 

(3.26) 

In the weak coupling limit, ^ ^ approach zero, so that % en., = R was shown using 

a numerical example, comprising plates of nominally identical material and thickness, that 

% e,n = for large reflectances for which the plates are weakly coupled. For smaller 

reflectances it was shown that, The subsystem base reflectance //g, was 

suggested [50] as a more relevant parameter for describing coupling strength and 

indicating the accuracy of the CLF estimate riy^, rather than the modal overlap factor, for 

plate systems assumed to be wide. 
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As an example, a two-plate system is considered here with thicknesses = 3 mm and 

/i2 = 2 mm, lengths Li = 0.5 m and L2 = 1 m, width b = l m, damping 771 = 772 = 0.1 and 

material properties of aluminium. The ensemble average CLF % the CLF for two 

semi-infinite plates and the effective CLF calculated using DSM for this two-plate 

system, which is presented in Chapter 4, are compared in Figure 3.2. Two arrows in 

Figure 3.2 indicate frequencies at which the modal overlap factors of the two individual 

plates equal 1. 

At low frequencies, the ensemble average CLFs are lower than the semi-infinite results 

since the coupling is strong [41]. The effective CLFs fluctuate considerably relative to 

the ensemble average CLF % en.,. These CLFs all coincide closely at high frequencies, 

where the modal overlap is high. 

Â=1 Af.=1 

10' 

10 

(b) 

Mg=1 M =1 
i , i 

10" 10' 10' lO"' 
1/3 Octave Band Centre Frequency [Hzj 

10 ' 10' 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 3.2. Various estimates of CLF, (a) 7712 and (b) %i, for a two-plate system 

(/z] = 3 mm, = 0.5 m, /z2 = 2 mm, I2 = 1 m, 6 = 1 m, = % = 0.1, material: aluminium). 

—, from equation (3.17) for semi-infinite plates ensemble average % , 

'effective' CLF . Two arrows indicate frequencies at which the modal overlap factors 

of the two plates equal 1. 
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Figure 3.3 shows the influence of damping on the ensemble average CLF. Here the 

damping of the source plate, the receiver or both plates is varied. The values considered 

for the DLFs are 0.001, 0.01 and 0.1. As the damping of the source plate or the receiver 

increases, the ensemble average CLF increases in the low frequency region. The spread of 

results at low frequency indicates that approximately 7/,̂  oc , and 7;,̂  

. A change by a factor of 100 in the individual loss factors leads to a factor of 

about 10 in 7;,y_ Comparing the upper and middle graphs of Figure 3.3 it can be seen that 

has slightly more effect than 7/,̂ ,,,̂ .̂ When both DLFs are changed simultaneously, this 

causes a proportional change in 7;,̂  at low frequency, as shown in the lower figures. 

3.6 Previously published upper and lower limits for CLF 

As seen above, for a Anite structure, 7;,̂  will differ from 7; and, for a particular realisation 

of a structure, will differ from 77,̂ , particularly at low modal overlap. Craik et al. [44] 

observed that the fluctuations with frequency at low modal overlap in the energy level 

difference, which is related to the CLF, closely match the fluctuations in the spatially-

averaged point mobility relative to the predicted mobility for an infinite subsystem. An 

empirical expression for the fluctuations in the CLF at any frequency is given in [44] 

without derivation as 

1̂2 _ R6%) 3̂ 27) 
77,2. 

where 77j2„ is the CLF derived from semi-infinite structures, Y2 is the spatially-averaged 

point mobility of the receiver subsystem and is the point mobility of the equivalent 

infinite system. 

The modal density can be expressed by [33] 

M(6)) = 2/MRe(y^)/;r (3.28) 

where m is the total mass. The consistency relationship (3.9) can thus be written as 

77,2Re(]^.)7M,=772,Re(}^_)m2. (3.29) 
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Frequency [Hz] 10' 10" 10 
Frequency [Hz] 

10 10 
Frequency [Hz] 

M 10 

10 10 
Frequency [Hz] 

(b) 

10 10 
Frequency [Hz] 

(C) 

10 ' 10 
Frequency [Hz] 

Figure 3.3. The influence of damping on the ensemble average CLF for the two-

plate system described in Figure 3.2: (a) %oun:e is fixed as 0.01 and /̂receiver is varied (—, 

0.001; 0.01; , 0.1), (b) /̂receiver IS Oxed as 0.01 and Source is varied (—,0.001; 0.01; 

, 0.1) and (c) Source = T̂ Kceiver Varied (—, 0.001; 0.01; , 0.1); , semi-infinite 

plate result . 
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The real part of the spatially-averaged point mobility can be found by summing the 

contribution from all modes given as [33, 48] 

Re(y(ffl)) = X 1 + 
6) 

6) 
O. 77-

(3.30) 

where is the resonance frequency of the ith mode and use is made of the fact that the 

modal masses for a plate are all equal. If the response is dominated by a single mode, the 

peak mobility f , where 6) equals A),, is given by 

Y 
1 

A),77m 
(3.31) 

which is a real quantity. 

Thus the ratio of the peak mobility for a finite system 7 to the real part of the mobility for 

the equivalent infinite system is obtained from equations (3.28) and (3.31) 

Y 

Re(}^) mw,;7»((o) 
(3.32) 

where M is the modal overlap factor as defined in equation (3.23). This expression gives 

the height of the resonance maxima above the characteristic mobility (defined as the 

geometric mean between the resonance peaks and the anti-resonance minima) as given 

by [59, 89]. 

For a frequency band, the maximum value of the frequency averaged mobility <Y> can 

be approximated by [48] 

y ) = 
mAco 

•tan" (3.33) 

where Aft> is the width of the frequency band. When Aa> / rm is very small (high 

damping, low frequency, or a narrow frequency band for the analysis), then < F > / Re( F.) 

is the same as equation (3.32). However, if is large (such as for a one-third 

octave band containing many modes), tan'̂ ( Aa)/ 776),) is approximately ;r/2, and then 
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1 1 

where is the number of modes in a specific frequency band. 

(3.34) 

The minimum value for the mobility has been given by [39,59], considering the 

contributions of all mode pairs, 

y 1 
(3.35) 

R6(}i) yg 

where 

^ = = (3.36) 

If we consider a two-mode approximation, this anti-resonance mobility becomes 

y = . (3.37) 
°° ;r 

From equations (3.27), (3.34) and (3.37), therefore, Craik et al. [44] estimate the upper 

and lower limits for the ratio of the actual CLF to the semi-infinite result as 

_ I 
(3.38) 

and 

These estimates for the upper and lower limits are compared in Chapter 5 with the 

effective CLFs for simulations on a two-plate system. In Chapter 6 two previously 

published models by Mohammed [43] and Lyon and DeJong [33], as described in 

Section 1.2.1.3, are also compared with the variability of the effective CLFs obtained from 

simulations for the two rectangular plates. 
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CHAPTER 4 

TWO PLATES 

4.1 Introduction 

In the previous chapters, the dynamic response of a single plate and two coupled plates 

were theoretically predicted using the DSM, and various methods to evaluate the CLF, 

which is used in SEA to define the transmission of energy f r o m one subsystem to another, 

were described. 

The use of SEA to predict the response of vibro-acoustic systems relies on good estimates 

of the DLFs of subsystems and the CLFs between them. Damping is usually estimated 

from measurement data, whilst the CLFs are normally the parameters that are difficult to 

evaluate either analytically, numerically or experimentally. T h e 'actual ' CLF is defined in 

terms of an ensemble average and as such it is not uncertain once this ensemble of systems 

is defined. Usually theoretical estimates of the CLP, based on the wave transmission 

between infinite subsystems, are used (see Section 3.4). T h e CLF estimates determined 

f rom the wave transmission are taken as representative of ensemble averages of finite 

subsystems. However, the CLF obtained f rom the wave approach generally overestimates 

the actual transmission of energy at low frequencies or low modal overlap (see Figure 

3.2). Significant fluctuations with frequency are also observed in this low frequency 

region. These fluctuations are in part due to the particular realisation of the subsystems 

within the notional ensemble. Underlying the fluctuations are the modal properties of the 

subsystems, which can be described in terms of both modal density and modal overlap. 

This chapter describes the use of various analytical models to evaluate the CLFs and to 

investigate the influence of the modal behaviour of the source or receiver plate or both. 

The models considered are (i) two finite rectangular plates coupled along a line, (ii) a 

semi-infinite source plate coupled to a finite receiver, and (iii) a finite source plate coupled 

to a semi-infinite receiver. The effect of damping on the fluctuations of the effective CLFs 

is also examined. A model of two semi-infinite plates of f inite width is also introduced to 
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investigate the effect of the finite width compared with the results for coupled semi-

infinite plates of infinite width. 

4.2 Coupling between two finite plates of the same width 

Two finite rectangular plates of the same width coupled along a common edge can be 

modelled using the D S M as discussed in Chapter 2. To mode l a harmonic point force 

applied inside one plate, the source plate is separated into two parts at the longitudinal 

position of the applied force, as shown in Figure 4.1. Actually one considers this system as 

consisting of three plates, two directly excited plates and one receiver plate. 

Figure 4.1. Two perpendicular plates with a point force F applied inside one plate: width 

^ = 1.0 m, length = 0.5 m, = 1.0 m, thickness = 3 . 0 mm, /12 = 2.0 mm, DLF 

Tlx = % = 0.1, material; aluminium (Young's modulus E = 7.24x10^° N/m^, Poisson 's ratio 

jl = 0.333, material density p = 2794 kg/m^). 

The global dynamic stiffness matrix of this system can be assembled as described in 

Chapter 2. This model has been used to evaluate the effect ive CLF and the confidence 

intervals and to perform various parameter studies. In these calculat ions the point force is 

located at a range of different positions to simulate 'rain-on-the-roof excitation. For each 
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forcing point the source plate has to be subdivided at the corresponding lengthwise x 

coordinate. 

4.2.1 The sensitivity to number and location of forcing points 

In SEA it is usually assumed that the forcing of each subsystem is of the 'rain-on-the-roof 

or 'delta-correlated' form. To simulate this, a total of 400 point forces have been used, 

applied individually first on plate I, then on plate 2. For numerical convenience, these 

were chosen at 20 random y co-ordinates, the same for each of 20 random % co-ordinate 

positions. All points are chosen to exclude an area at the edge of the plate within 1/4 of the 

smallest bending wavelength, in order to avoid nearfield effects, although these are 

inevitable at low frequencies. These forces are all uncorrelated, and are assumed to have 

an identical broad-band spectrum. 

An investigation has been performed into the variability in the results obtained for 

different numbers of forcing points. As the number increases, the solution should 

converge. This investigation was performed for the two plate system of Figure 4.1. Results 

were obtained, for 400 forcing points as shown in Figure 4.2. 

i 

g 
o 
g 
(D 
E 
7 
c 
o 

0.8 

0 .6 -

0.4 

0 . 2 -

4 - + + + + + + + + + + + 
+ + + + + ++ + + + + + 
+ ++ + + ++ + + + + + 
+ ++ 4-T ++ +++ + + 

0.2 0.4 0.6 0.8 
Non-dimensional length 

Figure 4.2. Forcing points applied in plate 1. 

These were then grouped into sets of different sizes and the CLFs were determined from 

equation (3.13) using the energies and the dissipated powers due to each set of forcing 

points. For example, using 50 sets of 8 forcing points gave 50 estimates of CLF which 
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were each calculated from the results for 8 forcing points, randomly selected from the 4 0 0 

available. These CLF estimates were then used to determine confidence intervals. In order 

to avoid bias in the results, no overlapping sets were taken. Results were calculated for 

400 sets of 1 forcing point, 100 sets of 4 forcing points, 50 sets of 8 forcing points, 20 sets 

of 20 forcing points, 10 sets of 40 forcing points and 8 sets of 5 0 forcing points. 

The confidence intervals were examined for these 6 different sized sets of forcing points. 

Figure 4.3 shows the mean values and 90% confidence intervals for these different sets. 

The 90% confidence intervals are determined by taking the values of each set between 5% 

and 95%, z.g. 90% of data is between the limits. Since the numbers of results for 10 sets of 

40 forcing points and 8 sets of 50 forcing points are not enough to get the numbers for the 

5% and 95% limits, the confidence interval is approximated by interpolation. It can be 

seen that the confidence intervals are large for small numbers of forcing points and reduce 

as more points are taken. They are not strongly dependent on frequency. It should be noted 

that the first natural frequencies of the two uncoupled p la tes are 6 and 12 Hz. For 

frequencies below about 12 Hz, therefore, it is inappropriate to apply SEA due to the lack 

of modes. 

Figure 4.4 shows the logarithmic ratio of the 95% and 67% confidence limits to the 5% 

and 33% confidence limits, 101og,o((77,%^^/(#„%^) and for 

three particular frequency bands (100, 500 Hz and 1 kHz). Th i s shows, for example, that 

using a single excitation point (set size of 1) can be expected to introduce an uncertainty of 

up to 10 dB (i.e. ± 5 dB) in the CLF. As the number of forc ing points increases, the CLF 

estimates become more reliable, so that for a 90% confidence interval of 3 dB (± 1.5 dB) at 

least 10 points should be taken. For 400 forcing points by extrapolation it can be expected 

that the 90% confidence interval will be reduced to ±0.25 dB. The approximate 90% 

confidence intervals are listed for the number of forcing points (1, 3, 10, 100 and 400) in 

Table 4.1. 

Figure 4.5 shows the variation of the mean values of the effective CLFs for these 6 

different set sizes. The mean value of the effective CLF for 4 0 0 sets of 1 is systematically 

higher at low frequencies, but the differences become small as the set size increases and as 

frequency increases. 
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10 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

(a) 

10 10 10 
1/3 Oc tave Band Centre Frequency [Hz] 

10 ' 10 ' 10 
1/3 Oc tave Band Centre Frequency [Hz] 

(b) 

« 10 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

(C) 

^ 10 

10 ' 10 ' 10 
1/3 Oc tave Band Centre Frequency [Hz] 

10 10 10 
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Figure 4.3. The mean values and 90% confidence intervals for the effective CLFs; (a) 400 

sets of 1, (b) 100 sets of 4, (c) 50 sets of 8, (d) 20 sets of 20, (e) 10 sets of 40 and (f) 8 sets 

of 50. —, mean CLP; +, 90% confidence interval. 
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set size 

10' r 

(b) 

! 10 

10 
10 10 

set size 
10 

Figure 4.4. The logarithmic ratio of the 95% and 67% conf idence limits to the 5% and 

33% confidence limits, (a) 101og,o((y7,)^^^/(^J^^) and (b) 101og,o((7),%^^/(77,%^J, 

for different numbers of forcing points, 400 sets of 1, 100 sets of 4, 50 sets of 8, 20 sets 

20, 10 sets of 40 and 8 sets of 50 at three different frequencies. — , Z),; at 100 Hz; —, ^,2 

at 500 Hz; 1 kHz; -o - , 100 Hz; - x - , at 500 Hz; -A-, y);] 1 kHz. 

Table 4.1. The approximate 90% confidence intervals for the number of forcing points. 

Forcing points 1 3 10 100 400 

90% Confidence Interval ± 5 d B ±3.0 dB ±1.5 dB ±0.45 dB ±0.25 dB 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

10' 10' 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 4.5. The mean values of the CLF estimates, (a) 77,2 mean 0^) 2̂1. mean * for 

different numbers of forcing points. , 400 sets of 1; —, 100 sets of 4; 50 sets of 8; 

—, 20 sets 20; -A-, 10 sets of 40; -o-, 8 sets of 50. 
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4.2.2 The evaluation of CLFs using different methods 

As described in Section 3.3, there are a number of methods that can be used to evaluate 

the CLF; these are compared here. By exciting one plate and taking into account the actual 

number of modes in each frequency band, or using the asymptotic modal densities of the 

plates, the CLF can be calculated by using equation (3.14) or (3.15) respectively. 

The actual number of modes in each frequency band has been obtained by plotting the 

determinant of the inverse of the dynamic stiffness matrix of each individual uncoupled 

plate for the various Fourier components n. A simply supported boundary condition is 

imposed at the edge usually joined to the other plate. The number of modes in each 1/3 

octave band for the two uncoupled plates is presented in Figure 4.6. These are also listed 

in Tables 4.2 and 4.3. It can be seen that the number of modes corresponds to that 

evaluated from the asymptotic modal density at high frequencies but that at low 

frequencies there are large differences with some bands containing no modes at all. 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 4.6. The number of modes in each 1/3 octave band f o r two uncoupled plates; (a) 

plate 1 and (b) plate 2. —, the number of modes counted f r o m the 'frequency function' 

{i.e. det (K) = 0); —, asymptotic value obtained from modal density given by equation 

(3.16). 
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Table 4.2. The number of modes in each 1/3 octave frequency band for plate 1 

(L\ = 0.5 m, = 3 mm, b = 1.0 m) with 3 simply supported edges and one free edge f rom 

M = 1 to 12, where » is the widthwise mode order, ^ = lower frequency, /= = centre 

frequency, /u = upper frequency of band. 

S : simply supported edge 

F : free edge 

/ l fc / u 1 2 3 4 5 6 7 8 9 10 11 12 sum 

5.62 6.3 7.08 

7.08 8 8.91 

8.91 10 11.2 

11.2 12.5 14.1 1 1 

14.1 16 17.8 

17.8 20 22.4 

22.4 25 28.2 

28.2 31.5 35.5 1 1 

35.5 40 44.7 

44.7 50 56.2 1 1 

56.2 63 70.8 

70.8 80 89.1 1 1 2 

89.1 100 112 

112 125 141 1 1 2 

141 160 178 1 1 2 

178 200 224 1 1 1 3 

224 250 282 1 1 1 3 

282 315 355 1 1 1 1 4 

355 400 447 1 1 1 2 5 

447 500 562 1 1 1 1 2 6 

562 630 708 1 1 1 1 1 2 7 

708 800 891 1 1 1 1 1 1 1 2 1 10 

891 1000 1120 1 1 1 1 1 1 2 2 2 12 
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Table 4.3. The number of modes in each 1/3 octave frequency band for plate 2 

(1,2 = 1.0 m, ^2 = 2 mm, 6 = 1.0 m) with 3 simply supported edges and one free edge from 

M = 1 to 15, where » is the widthwise mode order, _̂  = lower frequency, _̂  = centre 

frequency,,^ = upper frequency of band. 

S : simply supported edge 

F : free edge 

fl / c / i . 1 2 3 4 5 6 7 8 9 10 11 12 1 3 1 4 1 5 sum 

4.47 5 5.62 

5.62 6.3 7.08 1 1 

7.08 8 8.91 

8.91 1 0 11.2 

11.2 12.5 14.1 1 1 

14.1 16 17.8 

17.8 20 22.4 1 1 

22.4 25 28.2 

28.2 31.5 35.5 1 I 2 

35.5 40 44.7 1 1 

44.7 50 56.2 1 1 2 

56.2 63 70.8 1 1 

70.8 80 89.1 1 1 2 4 

89.1 100 112 1 1 1 1 4 

112 125 1 4 1 1 1 1 2 5 

141 160 178 1 1 2 1 5 

178 200 224 1 1 1 1 1 2 7 

224 250 282 1 1 1 1 1 2 3 1 0 

282 315 355 1 1 1 1 1 1 2 3 11 

355 400 447 1 1 1 1 1 2 2 2 3 14 

447 500 562 1 1 2 1 2 1 1 2 3 4 18 

562 630 708 1 1 1 2 1 2 2 2 2 3 4 1 22 

708 800 891 2 2 1 1 2 1 2 2 2 2 3 5 4 29 

891 100 1120 1 1 2 2 2 2 2 2 2 2 3 3 4 6 2 36 
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Alternatively, the CLF can be directly evaluated by using equation (3.13), in which case 

each plate has to be excited in turn. The strain energies have been calculated for each of 

4(X) randomly selected forcing points on each plate, vyhich was explained in Section 4.2.1. 

The power input by the force, the power transmitted to the receiver plate, and the power 

dissipated in each plate were also calculated. Results were calculated at discrete 

frequencies (three per 1/3 octave band) and averaged into 1/3 octave bands before 

applying equations (3.13) - (3.15). The results of these three methods are compared in 

Figure 4.7 with the conventional CLF estimate obtained f rom the wave transmission 

approach based on semi-infinite plates, given by equation (3.17). 

10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 
1/3 Oc tave Band Centre Frequency [Hz] 

Figure 4.7. Comparison of CLFs (a) 77,2 (b) obtained f r o m several methods, x, f rom 

equation (3.14) using mode count: —, from equation (3.15) using modal density; , 

'numerical experiment ' (equation (3.13)); semi-infinite plates (equation (3.17)). 

The calculated CLFs agree well with the semi-infinite result in the high frequency 

region. At low frequencies, the predicted CLFs fluctuate considerably relative to %«. The 

results based on the mode count and the modal density coincide closely, although there are 

some negative or non-available values omitted f rom the graph. These occur due to 

numerical problems in some frequency bands where no resonant modes of either plate 

exist (see Figure 4.6). Negative CLFs, mentioned and investigated by Fredo [53], and Bies 

and Hamid [57], may be attributed to the non-resonant response. This means that the 

energy of the receiver plate, at a particular frequency, can be greater than that of the 

source plate so that E2/E1 rises above OdB. Accordingly, the 'numerical experiment' 
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result, from equation (3.13), turns out to be a more reliable method than the others and 

does not usually produce negative values. The remaining results in this thesis are based on 

this latter method. 

4.2.3 The CLF and its relationship to the energy ratio and the modal 
characteristics of plates 

This section illustrates the relationships between the effective CLF and the energy ratio of 

two subsystems and the effect of the modal characteristics of the receiver plate, which, 

according to Craik et al. [44], is the reason for the occurrence of fluctuations in the 

coupling of two subsystems. The energy in each plate and the ratio between the energy of 

the receiver plate and that of the source plate are shown in Figure 4.8. The left-hand 

figures show results when plate 1 is excited while the right-hand figures correspond to 

excitation of plate 2. In each case the average from 4CK) forcing points is used. Over nearly 

all 1/3 octave bands, the receiver plate has a lower energy level than the source plate, see 

Figures 4.8 (a) and (b). 

The energy results are related to the modal characteristics of the receiver plate, especially 

the peaks in the energy ratio occurring at low frequencies (see Figure 4.8 (c) and (d)). 

When the source plate is excited by a harmonic force with a particular frequency, which 

corresponds to a resonant mode of the receiver plate but not that of the source plate, the 

propagating wave produced by that force is partly transmitted to the receiver plate at the 

joint and the remainder is dissipated in the source plate by its damping. The transmitted 

wave excites a resonant mode of the receiver plate at that frequency and the energy of the 

receiver plate becomes large. If the energy of the receiver plate is greater than that of the 

source, or not much less, then a peak is found in the respective energy ratio. In particular 

the first and second peaks in Figure 4.8 (c) and the first peak in Figure 4.8 (d) can be seen 

to correspond to peaks in the corresponding effective CLF in Figure 4.7. 

Conversely, when a harmonic force excites a resonant mode of the source plate at a 

particular frequency, the energy of the source plate is larger than that of the receiver plate 

(see for example the first peak in Figure 4.8 (b)). Since there is no resonant mode in the 

receiver plate, the energy of the receiver plate remains relatively small although the 

propagating wave produced by that force is partly transmitted to the receiver plate at the 
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joint. Most of the energy is dissipated in the source plate by its damping. In this case, the 

ratio between the energy of the receiver plate and that of the source is small and there are 

no peaks in the energy ratio, although peaks occur in the energy results of both plates (see 

the peaks at 12 Hz in Figure 4.8 (a) and at 6 Hz in Figure 4.8 (b)). 

10" 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 4.8. The energy of each plate, (a) and (b): —, the energy of the source plate; —, the 

energy of the receiver plate, and the ratio between the energy of the receiver plate and that 

of the source plate, (c) and (d). (a) and (c); plate 1 is the source plate and plate 2 is the 

receiver plate, (b) and (d); plate 2 is the source plate and plate 1 is the receiver plate. 

Figure 4.9 shows the flexural frequency functions (that is ^det (K , ) plotted against 

frequency, (a) for the two-plate system and (b and c) the uncoupled plates with each plate 

simply supported at the joint. In each case results are shown for motion with » = 1. In 

Figure 4.9 (a), the first and third peaks at approximately 6 H z and 14 Hz correspond to 
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peaks in the energy ratio when plate 1 is excited (see Figure 4.8 (c)) and also to peaks in 

^,2 (see Figure 4.7 (a)). These peaks correspond to the first two resonances of the 

uncoupled plate 2 (see Figure 4.9 (c)). The second peak in Figure 4.9 (a), at approximately 

12 Hz, corresponds to a peak in the energy ratio when plate 2 is excited (see 

Figure 4.8 (d)) and to a peak in (see Figure 4.7 (b)). This 12 Hz peak corresponds to 

the first resonance of plate 1 (see Figure 4.9 (b)). Thus the peaks in the effective CLP 

estimates at low frequencies, which correspond to the first f e w modes, can be attributed to 

the uncoupled modes of the receiver plate. It is also possible that resonances of the source 

plate may affect the effective CLF. This is investigated further in Sections 4.4.3 and 4.5.4. 

(a) 
g 2 0 0 

a 
m 0 
s 
S - 2 0 0 

1 0 ' " 
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lio-^ 

lO'' 

1 0 ' ' 1 0 
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F r e q u e n c y (Hz) 

10 

e 200 

Frequency (Hz) 
10 

Frequency (Hz) 

Figure 4.9. Frequency functions (that is (z.g. ^det^K^)^ ) plotted against frequency, for 

the two plate system (a) and the uncoupled plate with 3 simply supported edges and one 

free edge ((b) plate 1 and (c) plate 2), for the Fourier component n= I. Peaks correspond 

to modes. 
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4.2.4 Effect of plate thickness on high frequency asymptotic behaviour 

In Section 4.2.2 the results obtained for two finite plates were compared with equivalent 

results obtained for two semi-infinite plates, and it was shown that the results converged at 

high frequencies (see Figure 4.7). Nevertheless some discrepancies remained. In this 

section the results are compared at high frequencies for a range of plate thicknesses. 

Plate 1 is Axed at = 3 mm and plate 2 is varied between /z2 = 0.949 and Ai = 9.49 mm. 

The DLFs of the two plates are equal and 0.1, r]i = % = 0.1. 

In order to compare these results for finite and infinite plates more readily it is more 

convenient to express them in terms of a transmission efficiency rather than a coupling 

loss factor %. The reason for this choice is that 7;̂  is independent of frequency and also of 

plate dimensions (other than thickness). The equivalence between the two parameters is 

given by equation (3.17) for the infinite plate case. Here equation (3.17) is used in reverse 

to infer an equivalent transmission efficiency T for the finite plates. The finite plate results 

are expressed as the average over the frequency range 400 - 4000 Hz, to give an 

approximation to the high frequency asymptotic behaviour. The finite plate simulations 

are based on two square plates with width 6 = 1 m and length L = 1 m, joined at right 

angles. In-plane motion is not included in this section in order to facilitate comparison 

with the semi-infinite results. The infinite plate results are the angular averaged 

transmission efficiency for a right angle joint from equations (3.20) and (3.21) (see [48, 

86]). Figure 4.10 compares the results. Although good agreement is found for dissimilar 

thicknesses, there is a discrepancy when = A2. 

If the angular averaged transmission efficiency for the infinite plate, r, is corrected by a 

factor of 2/(2-T) (see [86, 87]), it coincides well with that obtained for the finite plates, as 

presented in Figure 4.11. This correction is one which needs to be applied to the 

transmission efficiency for infinite plates in determining coupling loss factors. It allows 

for the fact that, when T is large, the average energy of the source plate depends on r as a 

large proportion of the power incident on the boundary is transmitted, whereas if T is 

small the reflected and incident energies are approximately equal. 
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The remaining discrepancy seen previously in Figure 4 .7 (and later for parametric 

variations in Chapter 5) can be attributed to the influence of in-plane motion in the Rnite 

plate results and its neglect in This is discussed further in Chapter 5. 

infinite plates infinite plates 

Figure 4.10. Comparison of the transmission efUciencies for finite plates with the angular 

averaged transmission efficiency defined by equation (3.20). —, angular averaged 

transmission efficiency; +, transmission efficiency obtained f o r finite plates averaged over 

400 - 4000 Hz. 

infinite plates infinite plates 

Figure 4.11. Comparison of the transmission efficiencies for finite plates with the 

corrected angular averaged transmission efficiency [86, 87]. —, corrected angular 

averaged transmission efficiency 2 t / ( 2 - t ) ; +, transmission eff ic iency obtained for finite 

plates averaged over 400 - 4000 Hz. 
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4.2.5 Consistency relationship 

The consistency relationship, described in equation (3.9), is not assumed in the 'numerical 

experiment' method of equation (3.13). The difference between ^^21 has been 

examined for the two plates of Figure 4.1 and the result is presented in Figure 4.12. The 

ratio M2̂ 2i / for the two coupled finite plates fluctuates at low frequencies and 

converges approximately to 1, as expected, as frequency increases. 

F 
C " 

10' 10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 4.12. (a) Comparison of the for two coupled plates obtained from 

numerical experiment with those for semi-infinite plates. — , —» ^^2M » 

and n\ and M2 are the asymptotic modal densities of plate 1 and plate 2 obtained 

f rom equation (3.16). (b) Ratio • 

4.3 Two semi-infmite plates of finite width 

In this section, the restriction imposed by a finite width is studied. Consider two semi-

infinite plates, which are simply supported along the longitudinal edges, y = 0 and y = b, 

and joined at the interface x = 0, as shown in Figure 4.13. A t x = 0 a simple support is 
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assumed, which could also represent a right-angled joint in the absence of in-plane 

motion. In this model, it is assumed that there is no damping in the two semi-infinite 

plates. 

y 
A 

An 

A,-

^nt >• 

At 

X = X = 0 X = + 0 0 

Figure 4.13. Two semi-infinite aluminium plates of finite width 6 joined at a line. 

Allowable wave solutions have a trace wavenumber in the y direction for integer 

values of Considering only flexural waves, the motion of plate 1 of order » has the form 

+ sinCA:̂ );) to, \ (4.1) 

where A,„, A,- and Am- are the complex amplitudes of the propagating incident and reflected 

and non-propagating nearfield waves at the interface, and and 2̂1 are the respective 

propagating and nearfield wavenumbers of plate 1. These wavenumbers are the roots 

obtained from the wave equation for plate 1, i.e. 

(4.2) 

(4.3) 

where kfi {={p\h\o}lD\)^''^) is the free bending wavenumber of plate 1. 

The effective angle of incidence 6 at the interface x = 0 can be obtained from 

6 = tan (4.4) 

where ^ = 0 corresponds to normal incidence. 
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Similarly for plate 2, 

sin(X:^y) (4.5) 

where Af and are ± e complex amplitudes of the propagating transmitted and 

non-propagating nearfield waves at the interface, and ti2 and jkiz are the respective 

wavenumbers of plate 2. These wavenumbers are the roots obtained from the wave 

equation for plate 2, 

(4.6) 

(4.7) 

where (=(/)2A26f/D2)'^'^) is the free bending wavenumber of plate 2. 

Constraining the displacement along the joint, only rotational motion is allowed. Applying 

the equilibrium and continuity conditions at the joint, one can determine the amplitude of 

each wave: i.e. 

(1) displacements at the joint 

w,(0, )') = 0 (4.8) 

(4.9) 

(2) rotations at the joint 

8w/,(0, y) 9^2(0,);) 

(3) bending moments at the joint 

(4.10) 

= =Af„2{0,) . ) = A (4.11) 

Substituting equations (4.1) and (4.5) into these boundary conditions (4 .8)-(4 .11) , the 

four unknown amplitudes can be determined in terms of the amplitude of the incident 

wave Am, as follows; 

A + 4 , + 4 n = 0 , (4.12) 

A + A ^ = 0 , (4.13) 
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and 

+^2lA»- - - ^ 2 ^ -^224, 

A 1̂  A + 2̂l" ) - A (^12^4 + ^22^4,/ )-

(4.14) 

(4.15) 

Equations (4.12) - (4.15) can be written in matrix form, 

B,A, =C, 

where 

1 1 0 0 

0 0 1 1 

2̂1 1̂2 2̂2 

(4.16) 

(4.17) 

and 

A A» 
A,„ 

A A, 

An A, 

C , = [ - 1 0 i „ -At , ' , ]" . 

(4.18) 

(4.19) 

Above the cut-on frequency for order n, power is transmitted by the propagating waves. 

The near-field waves do not transmit energy at any frequency. In general, the transmitted 

powers are proportional to the propagating wave amplitude squared, but also depend on 

the plate properties. The incident and reflected waves exist in the same plate so the 

transmission efficiency T can be obtained most easily from 

1-
A . 

A« 
(4.20) 

Figure 4.14 shows example results for a source plate of thickness 3 mm and a receiver 

plate of thickness 2 mm, both of aluminium with no damping. The transmission e^ciency 

only exists above the cut-on frequency for any particular value of » of plate 1. Below the 

cut-on frequency of plate 1, no propagating incident wave will occur and it is meaningless 

to calculate the transmission efficiency. When the cut-on frequency in the source plate is 

lower than that in the receiver plate, no energy will be transmitted into pure propagating 
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waves in the receiver plate below its cut-on frequency and the transmission efficiency is 

zero. Thus the transmission efficiencies are zero up to the higher of the two cut-on 

frequencies, which in this case is for plate 1. Then they rise gradually and at high 

frequencies they tend to the result for normal incidence for semi-infinite plates. This can 

be explained by consideration of the angle of incidence, equation (4.4). At cut-on, K = kf 

and wave propagation occurs in a direction parallel to the joint, z.g. /rn = 0 , whereas at 

high frequencies i —> 0 and ^ > 0. Note that the cut-on frequency for transverse 

order » is n ŷcut-on. i; z e. ^ut-on,2 = 4_̂ ut-on. i, .A:ut-on,3 = 9^ut-on, i, etc., as expressed in 

equation (2.75). 
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Figure 4.14. Transmission efficiencies and the angle of incidence predicted for two semi-

infinite aluminium plates of width 6 = Im, thickness of the source plate h\ = 3mm, and the 

thickness of the receiver plate /i2 = 2mm. Four curves represent the results for different 

transverse orders, n: —, n=l; —, it = 2; » = 3; , n = 4. The x-axis is a non-

dimensional frequency,///cut-on, i, w h e r e i is the cut-on frequency of the source plate 

for M = 1 (̂ ut-on, 1 = 7.34 Hz). 

For two semi-infinite plates, the transmission efficiency f o r oblique incidence is also 

obtained from equation (3.21). For the case of grazing incidence ±;r/2, f i2 is zero [86]. 
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As the frequency increases, the direction of propagation gradually approaches normal, 

^ ^ 0 and Ti2, for a given tends to T)2(0) = 0.39. As more orders across the plate width, 

», cut on and are included in the incident field, this approximates more closely to a diffuse 

field, with the incident energy not primarily being at a single angle of incidence. Thus the 

sum over all such » will tend to the diffuse field value of ^ found for infinite plates. 

The CLF is only defined for finite plates. The transmission efficiency, T, for two semi-

infinite plates can be used to estimate the CLF of an equivalent finite plate by using 

equation (3.17). The CLF results, using these semi-infinite p la te transmission efficiencies 

for particular transverse orders, are shown in Figure 4.15 for a source plate of area 0.5 m^. 

Individual CLFs for particular orders converge to the normal incidence result, which are 

individually greater than the infinite plate diffuse result 77,2. -

CM 

10 10 10 
Frequency [Hz] 

Figure 4.15. Coupling loss factors derived f rom models of t w o infinite plates and of two 

semi-infinite plates of finite width; —, 7,,^ ; —, n = 1; n = 2; ' n = 3; -+-, n = 4. 
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4.4 Semi-infinite source plate of finite width coupled to a finite 
receiver plate 

4.4.1 Model 

In this section, a model is considered in which a semi-infinite source plate is connected to 

a finite receiver plate of length as shown in Figure 4.16. The right-hand edge of plate 2 

% = Z<z is assumed to be free and at the interface % = 0 a simple support is assumed. This 

model is used to investigate the influence of the modal behaviour of the receiver plate on 

the energy transmission. An incident wave A,„ is introduced in the semi-infinite source 

plate, as in the previous section. The transmission efficiencies are evaluated for different 

thickness ratios of the source plate to the receiver plate and the results are then considered 

in terms of the modal behaviour of the finite receiver plate. 

y 
A 

! 

Ant Anrl 

\ < > < 

} 1 2 

A,- At Ar2 

X = -oo % = 0 

Figure 4.16. Semi-infinite (source) plate of finite width 6 connected to a finite (receiver) 

plate. 

The out-of-plane displacement of plate 2, given in equation (4.5), must be extended to 

include a second reflected wave and a second nearfield wave. 

t i l I ) sin(t,}') (4.21) 

where A,-2 and A„,.2 are the complex amplitudes of the propagating reflected and non-

propagating nearfield waves at the right-hand edge of plate 2. Applying the equilibrium 

and continuity conditions at the joint and boundary conditions at the right-hand free edge 

of plate 2 to this equation and equation (4.1), the six unknown amplitudes can be solved in 

terms of A,),. Equations (4.13)-(4.15) can be modified to 

91 



Chapter 4. Analytical Models for Coupling between Two Plates 

A +A,, + A 2 + A , 2 - 0 (4.22) 

+ 2̂1 An - " ^22-̂ 1 + ^2^2 + ^22^ 22'̂  2 (4.23) 

(^1 A +^21 A , A n ) - ^ 2 (̂ 12 A +^22 Af "*"̂ ]2 A 2 "*"̂ 22 A , 2)' (4.24) 

In addition to equations (4.8)-(4.10), two further boundary conditions at the right-hand 

free edge of plate 2 are included. 

(1) bending moment at the right-hand edge of plate 2; 

0. 

4 

(4.25) 

(2) shear force at the right-hand edge of plate 2: 

ax' ckc 
0. (4.26) 

Substituting equation (4.21) into equations (4.25) and (4.26), then 

( 4 - # n ) g ' " ' ' A 2 + ( 4 = 0 ' 
(4.27) 

1̂2 {-^12 + (2 - A + (2 - A,* + 

^ 1 2 ( 4 - ( 2 - / / 2 ) ^ f K " ' " A 2 + ^ 2 2 ( 4 - ( 2 - / / 2 ) ^ « K " ' " A » 2 = 0 . 
(4.28) 

Equations (4.12), (4.22)-(4.24) and (4.27)-(4.28) can be written in matrix form, 

B i A , = C , , (4.29) 

where 

B = 

1 

0 

1 

0 

Ml "-21 

0 

0 

0 

0 

21 

0 

1 

1̂2 

- A ^ 2 

1̂2̂ 12 

1̂2̂ 2 

0 

1 

2̂2 

"^2^22 

2̂2̂ 22 

0 

1̂2̂ 2 

0 

1 

-^22 

"^2^22 
h 
2̂2̂ 22 

"̂ 22̂ 22 

(4.30) 
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+ ( 2 - / / , gj = , (4.31) 

Ag A A,, A Af A2 A /» 2 
A. A. A. A. A. A. 

(4.32) 

and 

€ ^ = [ - 1 0 0 0 ] \ (4.33) 

The reflection efficiency r and the transmission efficiency r of the joint between the two 

plates can be obtained from 

2 

A, 
(4.34) 

A. 

and 

f = 1 - r . (4.35) 

Figure 4.17 (a) shows results for an example case, a semi-infinite source plate (thickness 

3 mm, finite width 1 m) coupled to a finite receiver plate (thickness 2 mm, length 1 m) for 

n = 1. At low frequencies, the transmission efficiency oscillates considerably around that 

for two semi-infinite plates, whereas it converges to that fo r two semi-infinite plates 

(T12 = 0.42) as frequency increases. It is noted that the transmission efficiency for two 

semi-infinite plates differs slightly from that shown in Figure 4.14, Tj2(0) = 0.39. In this 

model, it is assumed that there is no damping in the semi-infinite source plate (771 = 0), as 

before, whereas the receiver plate is damped with a loss factor (% = 0.1). This loss factor 

makes the bending wavenumber complex and affects the transmission efficiency. Since 

the finite receiver plate is damped with a loss factor the transmitted wave at the joint is 

propagated to the far edge of the receiver plate and then reflected back towards the joint. 

The influence of damping of the receiver plate is investigated in the following section. The 

peaks and troughs in the transmission efficiency for the finite receiver plate are related to 

the modal behaviour of the receiver plate. This issue is discussed further in Section 4.4.3. 

Figure 4.17 (b) shows the CLF results for a transverse order n = \ estimated by equations 

(4.35) and (3.17), and the infinite plate diffuse result , when the length of the source 

plate is taken as 0.5 m. The CLF for the finite receiver plate for n = 1 converges to the 
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norma] incidence result as frequency increases and these CLFs are greater than the infinite 

plate diffuse result 77,2- - When the transmission efGciencies are averaged for all possible 

transverse orders n, the CLP for the finite receiver plate converges to 77,2-» ^ shown in 

Figure 4.17 (c). 
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Figure 4.17. Transmission efficiency and CLFs for a semi-infinite plate (Ai = 3 mm, 

771 = 0) of finite width (6 = 1 m) coupled to a Hnite plate (A2 = 2 mm, Z,2 = 1 m, % = 0.1); 

(a) transmission efficiency ^2 for » = 1: —, semi-infinite to finite plates; —, two semi-

infinite plates of finite width, (b) CLFs obtained from 1̂2 for source plate of length 0.5 m 

for M = 1, and (c) CLF obtained from Xn averaged for all possible transverse orders n: , 

semi-infinite to finite plates; —, two semi-infinite plates of finite width; two semi-

infinite plates (diffuse incidence). 
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4.4.2 The influence of damping of the receiver plate 
The influence of damping of the receiver plate was investigated by performing calculations 

for three damping values, 772 = 0.03, 0.1 and 0.3. The transmission efficiencies are shown 

in Figure 4.18. As the damping of the receiver plate increases, more energy is absorbed by 

the receiver plate and less energy is reflected back towards the joint. As a result of this, the 

transmission efficiency ^2 oscillates less and converges more quickly to that for two semi-

infinite plates with the receiver damping. At high frequencies the transmission efficiency 

for the damped semi-infinite receiver plate is greater than that for the undamped semi-

infinite receiver plate, T]2 = 0.39, as described in the previous section. The transmission 

efficiencies converge to that for the undamped semi-infinite receiver plate, as the damping 

of the receiver plate decreases, i.e. Ti2 = 0.48, 0.42 and 0 .40 for % = 0.3, 0.1 and 0.03 

respectively. 

10 

10 
- 1 

10 
- 2 

I I I ' iMi i I, 

iil''ti|,'* 

I, |i I' 1 

10 10 10" 10" 
Frequency [Hz] 

10 

Figure 4.18. The influence of receiver damping on the transmission efficiency for a semi-

infinite plate (thickness hi = 3 mm) of finite width (b= I m) coupled to a finite plate 

(thickness A2 = 2 mm, length Z/2 = 1 m) for » = 1: —, 7/2 = 0.3; — , % = 0.1; % = 0.03. 

Thick lines present the results for the two-semi infinite plates w i th the receiver damping. 
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4.4.3 The influence of the modal behaviour of the finite receiver plate 

The transmission efficiencies vary with the ratio of the thicknesses of the source and 

receiver plates. First, the thickness of the source plate is varied between 3 and 1/3 times 

the thickness of the finite receiver plate, which is fixed as 2 mm. Next, the thickness of the 

receiver plate is varied in the same range relative to the thickness of the semi-infinite 

source plate, which is fixed as 3 mm. There is no damping in the source plate and the 

receiver plate is damped with % = 0.1. 

Figure 4.19 shows the transmission efficiencies for these thickness ratios. The high 

frequency asymptote of the transmission efficiency has a maximum value when the 

thicknesses of the two plates are equal and this asymptote reduces when the ratio is large 

or small. At high frequencies, the transmission efficiency for this model (the semi-inRnite 

plate coupled to the finite plate) converges to that for t w o semi-infinite plates with 

damping in the receiver plate % = 0.1, as seen in Figure 4.17 (a). The finite receiver plates 

are damped and hence the transmission efficiencies are greater than the normal incidence 

results, as discussed in Section 4.4.2. 

The frequencies of the peaks in Figure 4.19 (a) (varying the thicknesses of the infinite 

source plate) remain essentially invariant as the thickness ratio varies, whereas the peaks 

in Figure 4.19 (b) (varying the thicknesses of the finite receiver plate) are shifted according 

to the modal behaviour of the receiver plate. In order to compare these results with the 

modal behaviour, the natural frequencies of the uncoupled receiver plate are summarised 

in Table 4.4. Results are given for two sets of boundary conditions on the edge that is 

usually coupled to the inHnite plate (simply supported or clamped). 

The peaks in the transmission efficiency are found to occur between the natural 

frequencies of the uncoupled receiver finite plate with either simply supported or clamped 

boundary condition at the interface, (.g. F-S-S-S or F-S-C-S, as shown in Figure 4.20. At 

resonances of the finite plate, the wave impedance of the receiver plate is low, producing a 

maximum in the transmitted energy, and hence in the power dissipated in the receiver 

plate. At anti-resonances of the receiver plate, the transmission efficiency has a minimum. 
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(a) 

10 10 
Frequency [Hz] 
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Figure 4.19. Transmission efficiencies for a semi-infinite source plate connected to a finite 

plate (width h=\m, length L2 = 1 m, DLF % = 0.1) for different values of A1/A2 (a) ht 

fixed as 2 mm and (b) Ai is fixed as 3 mm: —, A1/A2 = 3; —, Ai/Ai = 2; —, A1/A2 = 1 ; 

/zi//i2 = 1/2; h\lh2 = 1/3. Also shown are the corresponding results for two semi-infinite 

plates of finite width, which are the asymptotes for the former results. 
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Table 4.4. The natural frequencies of the uncoupled receiver plate (width b = I m, length 

Z/2 = 1 m, M = 1) with 3 simply supported edges and one free edge [F-S-S-S] and with 2 

simply supported edges, one clamped edge and one free edge [F-S-C-S]. 

Thickness A2 (mm) F-S-S-S (Hz) F-S-C-S (Hz) 

2 5.74, 13.7, 30.4, 57.0, 93.5 6.20, 16.3, 35.6, 65.3, 104 

1 2.87, 6.83, 15.2, 28.6,47.0 3.11,8.17, 17.8,32.5,51.8 

1 . 5 4.28,10.3, 22.8,42.8, 69.8 4.66, 12.2, 26.7, 48.7, 78.1 

3 8.64, 20.4,45.8, 85.4, 140 9.32, 24.4, 53.3, 97.8, 155 

6 17.2,41.2,91.4, 171,281 18.7,48.7, 107, 195, 311 

9 25.8,61.3, 137, 257,421 28.1,73.0, 160, 291, 469 

10 
Frequency [Hz] 

Figure 4.20. The transmission efHciency for an infinite source plate (width 6 = 1 m, 

hi = 3 mm) coupled to a finite receiver plate (width 6 = 1 m, = 1 m, Az = 2 mm) and two 

semi-infinite plates for « = 1; —, semi-infinite to finite; —, semi-infinite to semi-infinite; 

natural frequencies of finite plate; *, F-S-S-S; A, F-S-C-S. 
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Figure 4.21 shows the results for various thicknesses of infinite source with the thickness 

of the finite receiver plate fixed as Ai = 2 mm. These are again compared with the plate 

natural frequencies. When the thickness ratio A1/A2 is large, the infinite plate constrains the 

Anite plate and the peaks tend towards the natural frequencies for a clamped edge [F-S-C-

S]; when the ratio A1/A2 is small, the peaks tend towards those for a simply supported edge 

[F-S-S-S]. 

l : l 

Frequency [Hz] 

Figure 4.21. The transmission efficiencies for an infinite source plate coupled to a finite 

receiver plate with /? = 1 m, L2 = 1 m, n = 1, /z2 = 2 mm, for different values of h\lh2\ —, 

h\/h2 = 3; —, hi/h2 = 2; —, hi/h2 = 1 ; , h\fh2 = 1/2; -+-, hi/h2 = 1/3; natural frequencies of 

finite plate; =•, F-S-S-S; A, F-S-C-S. The vertical dotted lines correspond to the natural 

frequency of each mode. 

4.5 Finite source plate coupled to a semi-inHnite receiver plate of 
finite width 

4.5.1 Model 

In order to evaluate the influence of the modal behaviour of the source plate on the 

coupling loss factor, one can consider a finite source plate connected to a semi-infinite 
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receiver plate, as shown in Figure 4.22. At the interface z = Z,i, a simple support is 

assumed. 

y 
A 

X = 0 x = Li X = +00 

Figure 4.22. Finite (source) plate connected to a semi-infinite (receiver) plate of finite 

width b. 

For this system, it is more appropriate to simulate a 'rain-on-the-roof type excitation 

rather than a propagating source wave as in the previous sections. In the investigation of 

two finite plates in Section 4.2, it has been shown that if 400 excitation points are used in 

the finite source plate, reliable results are obtained, independent of the forcing points. 

Single point excitation is therefore applied here at 400 randomly chosen points, avoiding 

edges. For each point force, this excites vibration in many different transverse orders, n, 

across the plate width. For a given frequency, all such components have been included 

whose cut-on frequency is below the frequency under consideration. 

The equations of motion are solved using a dynamic stiffness approach, as described in 

Chapter 2. A harmonic point force is applied inside one plate. Thus the source plate is 

separated into two dynamic stiffness elements at the longitudinal position of the applied 

force. The dynamic stiffness matrices for the source plate, Ki and K2, are as given in 

Chapter 2. For the semi-infinite receiver plate, a dynamic stiffness matrix (see 

Appendix C) can be defined in terms of the positive-going propagating and nearfield 

waves at the interface. The global dynamic stiffness matrix of the total system can be 

derived by assembling the dynamic stiffness matrices of the two finite plates and the semi-

infinite plate and applying the continuity and equilibrium conditions at the interface 
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including the simple support. This global dynamic stiffness matrix Ktot can be reduced 

using a transformation matrix as before. The reduced dynamic stiffness mathx K, for 

flexural motion only, is a 5 x 5 frequency-dependent matrix (the 5 dof are the displacement 

and rotation at % = 0, the displacement and rotation at the forcing point and the rotation at 

% = Z,i). The response can be obtained from K'^F for each frequency, where F is the 

applied force vector. 

4.5.2 CLF 

The CLF can be determined from the power balance equation (3.1) in this case for a 

particular plate. As in the previous sections, no damping is included in the semi-infinite 

plate. Due to the infinite nature of plate 2, energy is only transmitted away from the joint 

and the term representing power transmitted from plate 2 back to plate 1, is zero. 

Since ^ =6)7;,^/ , the effective CLF for a particular finite source plate is obtained 

from 

^ 1 2 = - ^ = ; ? : - ^ (4.36) 

where the superscript 1 is omitted for clarity. 

To evaluate the effective CLF, one needs to calculate the strain energy of the source plate 

El and the power transmitted at the joint f 12. The response of the source plate is integrated 

analytically to give an accurate measure of its strain energy (see Appendix A). The power 

transmitted at the interface P12 is obtained directly from equation (2.86). In the present 

case, since the in-plane motion is not considered (w» = 0 and = 0) and the interface is 

assumed to be a simple support (yŷ  = 0), so only the moment at the interface transmits 

power. These are calculated for each transverse order n, integrated along the interface 

length 6 analytically, and then summed. 

The power dissipated and power transmitted for this system fluctuate as functions of 

frequency due to the modal behaviour of the finite source plate, as shown in Figure 4.23. 

However the peaks in the two curves tend to coincide. The power transmitted becomes 

significantly lower than the power dissipated as frequency increases. 
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Figure 4.23. The power dissipated and power transmitted f i 2 for a Gnite source 

plate (Ai = 3 mm, L i = 0 . 5 m , 771 =0.1) coupled to a semi-infinite receiver plate 

(A2 = 2 mm, 7/2 = 0) of Onite width (2; = 1 m): —, f 1 , f ,2-

The effective CLF for a finite plate coupled to a semi-infinite plate of finite width 

(6 = 1 m), obtained from equation (4.36), is plotted in Figure 4.24 (a) for transverse orders 

H = 1 up to 4. In each case these are based on the averages over 400 forcing points. Also 

shown is the result for n=\ to «max, which includes all 46 transverse orders for all 

frequencies. This result is shown again in Figure 4.24(b) in one-third octave bands. At low 

frequencies, the effective CLF fluctuates relative to that obtained from two semi-infinite 

plates. As the number of transverse orders n increases and the sum over Mmax is taken, the 

effective CLF converges to the CLF for two semi-infinite plates. However, it may be 

observed that the effective CLF for a given n is relatively smooth compared to the 

fluctuations in the CLF for a semi-infinite source plate coupled to a finite receiver plate 

(see Figure 4.17 (b)). 
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10 10 10 
Frequency [Hz] 

10 10 10 
1 /3 Octave Band Centre Frequency [Hz] 

Figure 4.24. Effective CLP for finite source plate (Ai = 3 m m , Z,i = 0 .5m, 7;i=0.1) 

coupled to a semi-infinite receiver plate (Ai = 2 mm, % = 0) of finite width ( 6 = 1 m); (a) 

;y,2 versus frequency and (b) ;;i2 versus 1/3 octave frequency band: —, « = 1; , » = 1+2; 

M = 1+2+3; -0-, » = 1+2+3+4; —, » = 1 up to 46; —, 7/,2- -
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4.5.3 The influence of damping of the finite source plate 

As the damping of the source plate increases, the level of the peaks in the energy and 

the power transmitted f 12 decreases, as shown in Figure 4.25. However damping has only 

a small effect on the effective CLF, as shown in Figure 4.26, as similar proportional 

reductions occur in both the energy in the source plate and the transmitted power. 

Uj 
* I 

10 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

10 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 4.25. The influence of damping of the source plate on: (a) the strain energy of the 

source plate for different DLFs and (b) the transmitted power , 7/1 =0 .1; —, 

//i = 0.03; 7/1 = 0.01. The dimensions of the source and receiver plates are the same as 

in Figure 4.24. 
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10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 4.26. The influence of damping on the effective CLP for a finite source plate 

(hi = 3 mm, Li = 0.5 m, 771 = 0.1) coupled to a semi-infinite receiver plate (Ai = 2 mm, 

772 = 0) of finite width {b = 1 m); —, 771 = 0.1; —, rji = 0.03; j]i = 0.01. 

4.5.4 The influence of the modal behaviour of the finite source plate 

This section investigates the influence of the modal behaviour of the finite source plate on 

the energy transmission in terms of the effective CLF. A parameter study is performed in 

which the ratio of the thicknesses of the two plates is varied and the modal behaviour of 

the finite source plate is examined. 

First, the thickness of the finite source plate is varied between 3 and 1/3 times the 

thickness of the semi-infinite receiver plate, which is fixed as 2 mm. The influence of the 

thickness of the source plate is shown in Figure 4.27 (a). The peaks and troughs can be 

related to the modal behaviour of the source plate. The natural frequencies for the 

uncoupled source plate are summarised in Table 4.5. This will be considered in more 

detail below. Energy transmission starts at the cut-on frequency of the receiver plate the 

thickness of which is kept the same, as indicated above, even if the cut-on frequency for 

the source plate is greater. The maximum energy transmission occurs when the two plates 

have the same thicknesses (see also Figure 4.11 and Figure 4.19). 
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Figure 4.27. The effective CLFs for transmission from a finite source plate (width b=l m, 

length Li = 0.5 m) to an infinite receiver plate for different values of A1/A2; (a) A2 is fixed 

as 2 mm and (b) is fixed as 3 mm: —, Ai/A2 = 3; —, Ai/A2 = 2; Ai/A2=l; , 

h\lh2 = 1/2; hilhi = 1/3. 

To investigate the influence of the modal behaviour of the semi-infinite receiver plate, 

next the thickness of the receiver plate is varied in the same range relative to the thickness 

of the finite source plate, which is fixed as 3 mm: the thickness of the semi-infinite 
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receiver plate is varied between 1/3 and 3 times the thickness of the finite source plate. 

The effective CLFs are shown in Figure 4.27 (b). 

As before the energy transmission starts at the cut-on frequency of the semi-infinite 

receiver plate. The energy transmission varies, as the thickness of the receiver plate is 

changed. The effective CLF fluctuates at low frequencies and converges to the result of 

the corresponding infinite plate as shown in Figure 4.24. The peaks and troughs occur at 

similar frequencies as the thickness of the semi-inBnite receiver plate varies. These peaks 

can therefore be seen to depend on the modal behaviour of the finite source plate, as the 

thickness of that plate is fixed. Table 4.6 presents the natural frequencies of an uncoupled 

source plate for different transverse orders, » and two different boundary conditions along 

the edge usually joined to plate 2. 

Table 4.5. The natural frequencies of the uncoupled source plate (width 6 = 1 m, length 

= 0.5 m, » = 1) with 3 simply supported edges and one free edge [F-S-S-S] and with 2 

simply supported edges, one clamped edge and one free edge [F-S-C-S]. 

Thickness hi (mm) F-S-S-S (Hz) F-S-C-S (Hz) 

6 23.6, 111,314, 636, 1070 33.4, 148, 381,728, 1200 

4 15.8,74.3,210, 423,714 22.3, 98.3, 254,490, 799 

2 7.88, 37.1, 105,211,358 11.1,49.0, 127,243,399 

1 3.95, 18.6, 39.5, 186, 524 5.58,24.6, 63.6, 122,200 

0.7 2.61, 12.3,35.0, 70.4, 119 3.72, 16.4, 42.5, 81.2, 134 

3 11.8, 55.8, 157,318,536 16.8,73.8, 191,367, 602 

Table 4.6. The natural frequencies of the uncoupled source plate (thickness hi = 3.0 mm, 

length Li = 0.5 m, width 6 = 1 m) with 3 simply supported edges and one free edge [F-S-

S-S] and with 2 simply supported edges, one clamped edge and one free edge [F-S-C-S]. 

n F-S-S-S (Hz) F-S-C-S (Hz) 

1 11.8, 55.8, 157,318, 536,812 16.8,73.8, 191,367, 602, 894 

2 34.6, 82.2, 182, 342, 561, 840 37.3, 97.5, 215, 390, 624, 917 

3 71.2, 122, 224, 384, 600, 876 72.8, 135 ,253 ,428 ,662 , 953 

4 122, 175, 279, 439, 658, 930 123, 187, 306, 482,716 

5 188, 242, 348, 510, 730 189, 252, 372, 548, 783 

6 267, 323 ,431,597,812 269, 332, 453 ,631 ,864 
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Figure 4.28 compares these natural frequencies for the two different boundary conditions 

with the ratio between the effective CLFs for a finite source plate (Ai = 3 nun, length 

L\ = 0.5 m) coupled to a semi-infinite plate of finite width (6 = 1 m) and the semi-infinite 

results, - These natural frequencies are shown for each value of M. When Ai ^ Ai, 

the semi-infinite receiver plate constrains the finite source plate and the peaks tend 

towards the natural frequencies for a clamped edge [F-S-C-S]; when Az Ai, the peaks 

tend towards those for a simply supported edge [F-S-S-S] as described in Section 4.4.3. 

However, it is also found that the first resonance corresponds to a peak in the effective 

CLP, the second to a dip, the third to a peak and so on. 

In Figure 4.29, the effective CLF for a finite source plate and semi-infinite receiver plate 

is compared with the CLF for two semi-infinite plates, for a diffuse field and for 4 

transverse orders. Two sets of results are given corresponding to A] = 3 mm, = 0.5 m, 

6 = 1.0 m, ^2 = 2 mm and = 2 mm, Z,] = 1.0 m, 6 = 1.0 m, A2 = 3 mm. Corresponding 

modes of the uncoupled source plate are shown, in the Hrst case for F-S-S-S and in the 

second case for F-S-C-S. The troughs in the effective CLF correspond to the first 

resonance for a given n (> 1) which in turn correspond approximately to the cut-on 

frequency of the source plate for n> I. 

These results can be understood as follows. At a resonance of the finite plate, the effective 

angle of incidence is dominated by that corresponding to the mode. Consequently the 

effective CLF follows closely that for the semi-infinite plates with the corresponding order 

n. The fluctuations in the effective CLF in this case are therefore due to the predominance 

of particular angles of incidence, not due to the direct influence of the modal behaviour of 

the source plate. This explains, also, the relatively small influence of the source plate DLF 

(Figure 4.25). 
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Figure 4.28. The ratio between the effective CLFs for a finite plate (Li = 0.5 m, h\-3 

mm) coupled to a semi-infinite plate of Unite width (6 = 1 m) and the semi-infinite results, 

VnlVn^ : — , h 2 = \ mm; —, h2= 1.5 mm; Az = 3 mm; , /z2 = 6 mm; h2 = 9 mm. 

The symbols denote natural frequencies of finite source plate for different boundary 

conditions along the edge, (a) F-S-S-S and (b) F-S-C-S, and different transverse orders »: 

* , » = ! ; o, M = 2; a, » = 3; o, » = 4; x, » = 5. The vertical dotted lines show the natural 

frequency of each mode. 
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Figure 4.29. Comparison of the CLFs for a finite plate coupled to a semi-infinite plate of 

finite width, (a) A] = 3 mm, Az = 2 mm, L\ = 0.5 m, and (b) hi =2 mm, Az = 3 mm, 

Li = 1.0 m; the CLP for two semi-infinite plates; —, the effective CLF for a finite plate 

coupled to a semi-infinite plate of finite width ( 6 = 1 m); —, the effective CLFs obtained 

from equation (3.17) for two semi-infinite plates of finite width {n=l, 2, 3 and 4). The 

symbols denote natural frequencies of finite source plate for different boundary conditions 

along the edge, (a) F-S-S-S and (b) F-S-C-S, and different transverse orders n: *, » = 1; o, 

» = 2; A, » = 3; o , M = 4. 
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4.6 Discussion 

From the results of a two-plate system, some of the uncertainties in CLF estimates have 

been examined and quantified. The variability due to modal behaviour in the effective 

CLF or transmission efficiency has been examined using a systematic investigation 

involving finite width semi-infinite plates and finite plates. 

The effective CLF for a finite two-plate system has been directly evaluated using the 

DSM. The effective CLF for finite plates fluctuates at low frequencies (low modal overlap) 

and converges to that for semi-infinite plates at high frequencies, as expected. It has been 

shown that the consistency relationship is satisfied by the predicted CLF at high 

frequencies, although at low frequencies considerable variation is found. 

The spatial location and the number of forcing points used also affect the confidence 

intervals of the effective CLF. As the number of forcing points increases, the effective 

CLF estimates become more reliable. For 400 forcing points it can be expected that the 

uncertainty will be reduced to ±0.25 dB. In order to obtain a 90% confidence interval of 

±1.5 dB at least 10 forcing points should be taken. 

Examination of the effective CLF has shown that its fluctuations can be related to the ratio 

between the energy of the source plate and that of the receiver plate, and the modal 

behaviour of the source or receiver plate or both. At low frequencies, in the region of the 

first few modes, the effective CLF estimates and the energy ratio contain peaks which 

correspond to the uncoupled modes of the receiver plate. If the energy of the source plate 

is much larger than that of the receiver plate, the energy ratio is small and there are no 

peaks in the energy ratio, although peaks occur in the energy results. 

The variability in the effective coupling loss factor, or the transmission efficiency, due to 

the modal behaviour of the finite coupled subsystems, has been examined using a systematic 

investigation involving both Hnite width semi-infinite and finite plates. 

It was shown that the modal behaviour of both the source and receiver plates affects the 

energy transmission between two subsystems. Large variability in the energy transmission 

was found to be due to the modal behaviour of the receiver plate, with peaks occurring in 

the transmission efficiency at resonances of the receiver. The damping of the receiver 

plate controls the magnitude of these variations. However, variations in the energy 
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transmission can also be attributed to the source subsystem characteristics, as seen for the 

finite source plate coupled to a semi-infinite receiver plate. This variation is due to the 

predominance of particular angles of incidence at a given frequency. Both peaks and 

troughs in the effective CLF correspond to natural frequencies of the uncoupled source 

plate. The damping of the source plate has only a small influence. Figure 4.30 summarises 

these trends by comparing the CLFs found for a finite receiver or a finite source plate, 

taken from Figures 4.17 (b) and 4.24 (a). 

The next two chapters aim to quantify the limits of the variability in the effective CLF 

using a wide range of parameter investigations which will incorporate both variations in 

modal density and modal overlap, either together or separately, in Unite plate simulations. 

112 



Chapter 4. Analytical Models for Coupling between Two Plates 

10 10" 10" 
Frequency [Hz] 

10 
Frequency [Hz] 

Figure 4.30. Comparison of the CLFs predicted using two different models (/zi = 3 mm, 

/i2 = 2mm, L i = 0 . 5 m , L2=1.0m, 6 = 1 m); (a) semi-infinite source plate (77i=0) 

coupled to a finite receiver plate (n = 1, % = 0.1), and (b) finite source plate {rjx - 0.1) 

coupled to a semi-infinite receiver plate (n = 1 up to 46, % = 0): —, the effective CLF for 

model (a) or (b); the CLF for two semi-infinite plates; —, the effective CLF obtained 

from equation (3.17) for two semi-infinite plates of finite width (« = 1). 
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CHAPTER 5 

INITIAL PARAMETRIC INVESTIGATION 

5.1 Introduction 

This chapter describes an initial parametric investigation into the variability of the 

effective CLF. One objective is to identify the most appropriate parameter, e.g. modal 

overlap, against which to plot the results and the other is to evaluate Craik's bounds [44] 

described in Section 3.6. 

A sensitivity analysis has been performed using the DSM model for two Hnite plates 

described in Chapter 4 to evaluate the influence of the following parameters; (i) the plate 

thickness ratio, A1/A2, (ii) the length ratio, l i / l z , (iii) the length-to-width ratio of the two 

plates LJb and (iv) the DLFs which are assumed equal, r]i = %. The two plates are both 

simply supported along two opposite edges, connected at right angles and free at their 

outer edges. In-plane vibration is included in the model as well as flexure. The widths of 

the two plates are the same, 61 = 63 for all cases, as required by the DSM. As in previous 

chapters the material properties of aluminium are used. 

In the calculations for the parameter variations of (i) and (ii), the dimensions of plate I 

(Li = 0.5 m, 6 = 1.0 m, /zi = 3 mm) are kept fixed and the relevant dimensions of plate 2 

are given by II logarithmically spaced values between 0.316 and 3.16 times that for 

plate 1. For (iii), the widths of the two plates are given by 11 logarithmically spaced 

values between 0.316 L\ and 3.16 Li. The DLFs considered for (iv) are 771 = % = 0.03, 0.1 

and 0.3. In all the other cases, the same values of the DLF are used, 771 = 772 = 0.1. 

The effective CLFs 7/ for the finite plates and the corresponding semi-infinite plate 

results riij„ are determined for these parameter variations. The results are plotted in terms 

of the CLF ratio in dB between the effective CLFs for the finite plates and the semi-

infinite results, I01og,o in each case as a function of frequency. The results are 

also plotted against the modal overlap factor given by equation (3.23), which depends on 

the modal density, damping and frequency. 
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Craik ef oZ. [44] proposed that the fluctuations in the couphng are related to the fluctuations 

in the point mobility of the receiving subsystems. However, it was found in Chapter 4 that 

the modal behaviour of both the source and receiver subsystems affects the energy 

transmission for two subsystems. In order to investigate which parameter is most 

appropriate to represent the variability of the CLFs, the results are plotted against the 

modal overlap factor for the source plate Mi, that for the receiver plate Mi, and the 

geometric mean modal overlap factor M]2 as used by Mohammed [43], M12 = (MiMi)'^. 

Also shown, at low modal overlap, are estimates of the upper and lower bounds, equations 

(3.38) and (3.39), as given by [44]. These are based on the appropriate value of modal 

overlap factor. Mi, M2 or Mu. 

5.2 Thickness ratio 

The thickness of plate 1 (/zi = 3 mm) was kept fixed and the thicknesses of plate 2 were 

given by 11 logarithmically spaced values between 3.16 and 0.316 times that for plate 1. 

The parameters used in this set of calculations are summarised in Table 5.1. The damping 

values of the two plates were constant at all frequencies, ;;i = 7/2 = 0.1 so that, as a result, 

modal overlap factors obtained from equation (3.23) increase with frequency (the modal 

density of each plate n{(jo) is constant from equation (3.16), 77 is constant s o M o c co). The 

cut-on frequency, where wave propagation begins, was calculated by using equation (2.76) 

and is listed in Table 5.1. 

The effective CLFs were evaluated using the DSM and the semi-infinite plate results were 

obtained from equation (3.17). The ratio (in dB) between the effective CLF and the semi-

inAnite result, lOlog^o )̂̂ ^ /?;^^,), obtained for different values of the thickness ratio is 

plotted against frequency in Figure 5.1. The results below the lower of the first cut-on 

frequencies have been excluded, as SEA assumptions would not be valid and it is 

inappropriate to use an SEA approach. At low frequencies, the variability of the effective 

CLFs is particularly large, while it generally reduces as frequency increases. The case of 

^2 = 9.49 mm, however, shows large variation at high frequencies due to the influence of 

in-plane motion (see Figure 5.2). 
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Table 5.1. Variants studied to show the effect of varying the plate thickness ratio A1/A2. 

A]/A2 
(mm) 

h2 
(mm) 

L i 

(m) 
L2 
(m) 

b 
(m) »2(G>) / c u t - o n , 1 ^cu t -on , 2 

0.316 3.00 9.49 0.50 1.00 1.00 0.0085 0.0054 7.34 23.2 

0.398 3.00 7.54 0.50 1.00 1.00 0.0085 0.0068 7.34 18.5 

0.501 3.00 5.99 0.50 1.00 1.00 0.0085 0.0085 7.34 14.7 

0.631 3.00 4.75 0.50 1.00 1.00 0.0085 0.011 7.34 11.6 

0.793 3.00 3.78 0.50 1.00 1.00 0.0085 0.014 7.34 9.25 

1.00 3.00 3.00 0.50 1.00 1.00 0.0085 0.017 7.34 7.34 

1.26 3.00 2.38 0.50 1.00 1.00 0.0085 0.022 7.34 5.83 

1.58 3.00 1.89 0.50 1.00 1.00 0.0085 0.027 7.34 4.63 

2.00 3.00 1.50 0.50 1.00 1.00 0.0085 0.034 7.34 3.67 

2.51 3.00 1.19 0.50 1.00 1.00 0.0085 0.043 7.34 2.91 

3.16 3.00 0.949 0.50 1.00 1.00 0.0085 0.054 7.34 2.32 

The first resonances for the two uncoupled plates, with either simply supported (F-S-S-S) 

or clamped boundary condition (F-S-C-S) at the interface for the 11 variants (for 

transverse order » = 1) were obtained from the frequency functions (i.g. (det(K)) ) of 

the DSM models. The first resonance frequencies for the two uncoupled plates and the 

first peak frequencies in ^ 6 listed in Table 5.2. 

The first peaks in the CLF ratio correspond to the resonances of either the uncoupled 

receiver or source plate, as discussed in Chapter 4. The first peaks of lOlog,,, (/7i2 /TZn-) 

correspond to the first resonances of the uncoupled receiver plate (plate 2) with either 

simply supported (F-S-S-S) or clamped boundary condition (F-S-C-S) at the interface, 

listed in Table 5.2. Thus the first peaks apparently move to the left as the thickness of 

plate 2 decreases, as seen in Figure 5.1 (a). The first peaks of lOlog,,, (̂ 21 /^21-) found 

to occur between the first cut-on frequency of the receiver plate (plate 1), 7.34 Hz, and the 

first resonance frequencies of the receiver plate with either F-S-S-S or F-S-C-S, listed in 

Table 5.2. 
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Figure 5.1. CLF ratio, (a) lOlog,,, (^,2/77,2-) (b) 1 0 1 o g , o ( % i / % . ) ' for different 

values of the thickness ratio (A/Az) plotted against frequency; the thickness of plate I is 

fixed (3 mm) and the thickness of plate 2 (in millimetres) varies from 9.49 to 0.949: —, 

9.49; —, 7.54; , 5.99; -o-, 4.75; -A-, 3.78; -o-, 3.00; — 2.38; -x-, 1.89; -0-, 1.50; -v-,1.19; 

0.949. 
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Figure 5.2. The effective CLF, (a) (b) 2̂1» for Ai/A2 = 0.316 (the thickness of 

plate 1 is 3 mm and the thickness of plate 2 is 9.49mm) plotted against frequency: —, 

flexural motion only; —, inclusion of in-plane motion. 

Table 5.2. The first resonance frequencies obtained from the frequency functions {i.e. 

(det (K) ) ), for the two uncoupled plates of the 11 variants of A1/A2 (for transverse order 

M = 1) and the first peak frequencies in ,̂2 /^12. -

Plate 1 Plate 2 
^i2/;7i2. 

F-S-S-S F-S-C-S F-S-S-S F-S-C-S 
^i2/;7i2. 

0.316 11.8 16.8 27.2 29.6 25 16 

0.398 11.8 16.8 21.7 23.6 20 16 

0.501 11.8 16.8 17.2 18.6 16 16 

0.631 11.8 16.8 13.7 14.9 12.5 16 

0.793 11.8 16.8 10.9 11.7 10 16 

1.00 11.8 16.8 8.62 9.35 8.8 14 

1.26 11.8 16.8 6.85 7.42 8.0 12.5 

1.58 11.8 16.8 5.44 5.89 6.3 12.5 

2.00 11.8 16.8 4.32 4.68 5.0 12.5 

2.51 11.8 16.8 3.42 3.71 4.0 10 

3.16 11.8 16.8 2.73 2.96 3.15 8.0 
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Figure 5.3 shows the same results as Figure 5.1, but plotted now against three different 

modal overlap factors. Also shown are estimates of the upper and lower bounds as given 

by Craik ef of. [44]. These bounds are only shown for low modal overlap (M < 0.4), where 

the upper bound is positive and the lower is negative. 

The upper plots show the results plotted against the modal overlap factor of the source 

plate. As the thickness of plate 2 decreases, the first resonance frequencies of the 

uncoupled receiver plate decrease, and the first peak moves to the left when plotted 

against M, (see Table 5.2 and Figure 5.3 (a) 101og;Q(/)^2/77i2_)). For lOlog,0(7)21/%-), 

the first peak moves to the right, since the modal density of the source plate (^2(6))) is 

inversely proportional to the thickness of this plate whereas the first resonance of plate 1 is 

kept Rxed (see Table 5.2 and Figure 5.3 (a) lOlog,,, /%]..))- Conversely, when plotted 

against the modal overlap factor for the receiver plate, the peeiks stay roughly fixed even 

though the thickness of plate 2 varies (see Figure 5.3 (b)). This can also be identified from 

the cut-on frequency ( / c u t - o n ) of the receiver plate and its modal density, i.e. / c u t - o n h and 

M(m) oc I//1; thus the cut-on frequency corresponds to a value of M that is independent of 

h. The lower plots show the results plotted against the geometric average Mu. 

At low modal overlap the CLF ratio, lOlog^g (7;̂  fluctuates considerably and most 

results are seen to fall between estimates of the upper and lower bounds. The percentage 

of values of 101og,Q /T?,,..) falling between estimates of the upper and lower bounds 

are discussed in the last section of this chapter. 

Figure 5.4 shows the results in the form of the ratio (in dB) between the effective CLF and 

the average result , lOlog^Q (7),, )- These results are shifted up at low 

frequencies compared to the previous results since the ensemble average CLFs are smaller 

than the semi-infinite results, as shown in Figure 3.2. 
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0 

- - 1 0 

e 10 

(a) CLF ratio plotted against the modal overlap factor for the source plate. 

O 
O 

(b) CLF ratio plotted against the modal overlap factor for the receiver plate. 

e 10 

- 2 0 

(c) CLF ratio plotted against the geometric mean modal overlap factor [Mi2]. 

Figure 5.3. CLF ratio lOlogjg ( 7 7 ^ f o r different values of the thickness ratio {hilhz) 

plotted against the source, receiver and mean modal overlap factor; the thickness of plate 1 

is fixed (3 mm) and the thickness of plate 2 (in millimetres) varies from 9.49 to 0.949: —, 

9.49; —, 7.54; , 5.99; -o-, 4.75; -A-, 3.78; -o-, 3.00; — 2.38; -x-, 1.89; -0-, L50; -v-,L19; 

0.949; —, estimates of the upper and lower bounds from equations (3.38) and (3.39). 
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S 

o - 1 0 

(a) CLF ratio plotted against the modal overlap factor for the source plate. 

? - 1 0 

M 0 

- 2 0 

(b) CLF ratio plotted against the modal overlap factor for the receiver plate. 

(c) CLF ratio plotted against the geometric mean modal overlap factor [Mi2]. 

Figure 5.4. CLF ratio lOlog^Q ) for different values of the thickness ratio (Ai/Ai) 

plotted against the source, receiver and mean modal overlap factor; the thickness of plate 1 

is fixed (3 mm) and the thickness of plate 2 (in millimetres) varies from 9.49 to 0.949: —, 

9.49; —, 7.54; , 5.99; -o-, 4.75; -A-, 3.78; -n-, 3.00; 2.38; -x-, 1.89; -0-, 1.50; -v-,L19; 

0.949; —, estimates of the upper and lower bounds from equations (3.38) and (3.39). 
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5.3 Length ratio 

The influence of the plate length ratio l i / l i on the effective CLF was investigated by 

keeping the length of plate 1 fixed and giving the length of plate 2 each of 11 

logarithmically spaced values between 3.16 and 0.316 times that for plate 1, as hsted in 

Table 5.3. The damping values of the two plates were constant at all frequencies 

7?! = % = 0.1. As the thicknesses of the plates do not vary, the cut-on frequency for each 

case is the same, since it is independent of the length of the plate. 

Table 5.3. Variants studied to show the effect of varying the plate length ratio L1/L2 

hi 
(mm) 

h2 
(mm) 

Lx 
(m) 

Li 
(m) 

b 
(m) 

Ml(6)) "2(6;) /cut-on, 1 /cut -on, 2 

0.316 3.00 2.00 0.50 1.58 1.00 0.0085 0.040 7.34 4.90 

0.398 3.00 2.00 0.50 1.26 1.00 0.0085 0.032 7.34 4.90 

0.501 3.00 2.00 0.50 1.00 1.00 0.0085 0.026 7.34 4.90 

0.631 3.00 2.00 0.50 0.79 1.00 0.0085 0.020 7.34 4.90 

0.793 3.00 2.00 0.50 0.63 1.00 0.0085 0.016 7.34 4.90 

1.00 3.00 2.00 0.50 0.50 1.00 0.0085 0.013 7.34 4.90 

1.26 3.00 2.00 0.50 0.40 1.00 0.0085 0.010 7.34 4.90 

1.58 3.00 2.00 0.50 0.32 1.00 0.0085 0.0081 7.34 4.90 

2.00 3.00 2.00 0.50 0.25 1.00 0.0085 0.0064 7.34 4.90 

2.51 3.00 2.00 0.50 0.20 1.00 0.0085 0.0051 7.34 4.90 

3.16 3.00 2.00 0.50 0.158 1.00 0.0085 0.0040 7.34 4.90 

The ratio (in dB) between the effective CLF and the semi-infinite result, 101og,o (??,, / ?7y„ ) , 

is plotted against frequency in Figure 5.5 for these variants. The results are only shown for 

frequencies above the lower of the first cut-on frequencies, as described in Section 5.2. At 

low frequencies, the variability of the effective CLFs is again large and then it gradually 

reduces as frequency increases. 

The first resonance frequencies for the two uncoupled plates of the 11 variants (for 

transverse order » = 1) were obtained from the frequency functions (;.e. (det (K)) ) of 
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the DSM models, as in the previous section. These resonance frequencies and the first 

peak frequencies in are also listed in Table 5.4. 

10 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

m 
"O 

FT 

oT 
o 
o 

10' 10" 10" 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 5.5. CLF ratio, (a) 101og]g(^i2/^i2-) (b) 101og,o(^2]/;72i-), foi" different 

values of the length ratio (L1/L2) plotted against frequency; the length of plate 1 is fixed 

(0.5 m) and the length of plate 2 (in metres) varies from 1.58 to 0.158: —, 1.58; 1.26; 

—, 1.0; , 0.79; -o-, 0.63; -A-, 0.50; -o-, 0.40; -x-, 0.32; -0-, 0.25; -v-,0.20; 0.158. 
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The first peaks in the CLF ratio correspond to the first resonances of the two uncoupled 

plates with either simply supported (F-S-S-S) or clamped boundary condition (F-S-C-S) at 

the interface, as listed in Table 5.4. The first resonance of the uncoupled receiver plate 

(plate 2) increases as the length of plate 2 decreases, whereas that of the source plate does 

not vary since the dimensions of plate 1 are kept fixed. The first peak in 

lOlog,0(^,2/^12-) (Figure 5.5 (a)) moves to the right as the length of plate 2 decreases 

while the resonance frequency of the receiver plate is less than that of the source plate. 

However, for the last three cases in Table 5.4, the resonance frequency of the receiver 

plate is greater than that of the source plate, and it is the latter which determines the peak. 

For the result of 101og,Q (%, / in Figure 5.5 (b) the first peaks are roughly fixed at 

12.5 Hz even though the length of plate 2 varies. When the length of plate 2 is much 

smaller than that of plate 1, the first peak frequencies in 101og]o(7)]2/77;2.) 

101og]Q (7)21 /%!«,) are the same (see the italic values in Table 5.4). 

Table 5.4. The first resonance frequencies obtained from the frequency functions {i.e. 

(det (K)) ^), for the two uncoupled plates of the 11 variants of L\IL2 (for transverse order 

M = 1) and the Orst peak frequencies in ^,2/7712- 2̂1 -

Plate 1 Plate 2 

F-S-S-S F-S-C-S F-S-S-S F-S-C-S 

0.316 11.8 16.8 5.25 5.36 5.0 12.5 

0.398 11.8 16.8 5.42 5.67 5.6 12.5 

0.501 11.8 16.8 5.75 6.23 6.3 12.5 

0.631 11.8 16.8 6.23 7.18 7.1 12.5 

0.793 11.8 16.8 6.92 8.68 8.0 12.5 

1.00 11.8 16.8 7.88 11.2 10 10 

1.26 11.8 16.8 9.18 15.0 16 16 

1.58 11.8 16.8 10.9 21.1 72.J 72.5 

2.00 11.8 16.8 13.4 31.9 72.5 72.5 

2.51 11.8 16.8 16.3 47.6 72.5 72.5 

3.16 11.8 16.8 20.3 73.9 72.5 72.5 
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The CLF ratio in dB is plotted in Figure 5.6 against the three different modal overlap 

factors, Ml, M2 and Estimates of the upper and lower bounds are again shown for low 

modal overlap (M<0.4) . The CLF ratios plotted against Mi, 101og]o (77,2/77,2-) in 

Figure 5.6 (a) and 101og,g(/^2|/%i-) in Figure 5.6(b), are similar to the results plotted 

against frequency in Figure 5.5 since the modal density of plate 1 is kept constant and the 

frequency axis in Figure 5.5 is only replaced by M\. The first peaks of the results plotted 

against Mz, lOlog^Q (7)21/%!..) plotted in Figure 5.6 (a) and lOlog,,, (^12/^12.) i" 

Figure 5.6 (b), move to the left as the length of plate 2 is decreased since the modal 

density of plate 2 is proportional to the length of plate 2. The lower plots show the results 

plotted against the geometric average M12. 

Note that the results of three of the 11 cases are outside bounds at the first or the second 

peak by up to 10 dB. These are two cases where the lengths of plate 2 (L2 = 0.63 m and 

L2 = 0.50 m) are similar to that of plate 1 (Li = 0.50 m) and the other case where the 

lengths are dissimilar (Iz = 1.26 m and I,i = 0.50 m). It was found that the first resonance 

frequencies of the two uncoupled plates are close to each other when the lengths of two 

plates are similar (see the shaded values in Table 5.4) and the peaks in both 

lOlog^Q (77,2 //7]2-) lOlogio (7721 /772]_) are large at the same frequency (see A and o in 

Figure 5.5). 

5.4 Length-to-width ratio 

The influence of the plate length-to-width ratio Z,i/6 on the effective CLF was investigated 

by keeping the length of both plates fixed and giving the widths of both plates each of 11 

logarithmically spaced values between 3.16 and 0.316 times the length of plate 1. The 

damping values of the two plates were again constant at all frequencies 771 = 772 = 0.1. 

Table 5.5 below summarises the configurations investigated. The cut-on frequencies for 

the two plates varied, aŝ cut-on is proportional to 1/6 .̂ 
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p- 0 

- 1 0 

(a) CLF ratio plotted against the modal overlap factor for the source plate. 

(b) CLF ratio plotted against the modal overlap factor for the receiver plate. 

- - 1 0 

(c) CLF ratio plotted against the geometric mean modal overlap factor [M12]. 

Figure 5.6. CLF ratio for different values of the length ratio (2,1/62) plotted against the 

modal overlap factor; the length of plate 1 is fixed (0.5 m) and the length of plate 2 (in 

metres) varies from 1.58 to 0.158: —, 1.58; - - 1.26; —, 1.0; , 0.79; -o-, 0.63; -A-, 0.50; 

-0-, 0.40; -X-, 0.32; -0-, 0.25; -v-,0.20; 0.158; —, estimates of the upper and lower 

bounds from equations (3.38) and (3.39). 
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Table 5.5. Variants studied to show the effect of the plate length-to-width ratio Z,]/6. 

hi 
(mm) 

hi 
(mm) 

u 
(m) 

L2 
(m) 

b 
(m) 

Mi(Ay) M2(6>) / c u t - o n , 1 .Aut-on, 2 

0.316 3.00 2.00 0.50 1.00 1.58 0.013 0.040 2.94 1.96 

0.398 3.00 2.00 0.50 1.00 1.26 0.011 0.032 4.63 3.08 

0.501 3.00 2.00 0.50 1.00 1.00 0.0085 0.026 7.34 4.90 

0.631 3.00 2.00 0.50 1.00 0.79 0.0067 0.020 11.7 7.81 

0.793 3.00 2.00 0.50 1.00 0.63 0.0054 0.016 18.5 12.3 

1.00 3.00 2.00 0.50 1.00 0.50 0.0043 0.013 29.4 19.6 

1.26 3.00 2.00 0.50 1.00 0.40 0.0034 0.010 4 6 . 6 31.1 

1.58 3.00 2.00 0.50 1.00 0.32 0.0027 0.0081 73.6 49.0 

2.00 3.00 2.00 0.50 1.00 0.25 0.0021 0.0064 117 77.7 

2.51 3.00 2.00 0.50 1.00 0.20 0.0017 0.0051 185 124 

3.16 3.00 2.00 0.50 1.00 0.158 0.0013 0.0040 294 196 

Figures 5.7 and 5.8 show, respectively, the results plotted against frequency and against 

the various modal overlap factors, as in the previous sections. Estimates of the upper and 

lower bounds determined from equations (3.38) and (3.39) are shown for low modal 

overlap (M < 0.4). 

As the width of the plate is varied, it affects the modal density, n S {= Lb), as well as 

the cut-on frequency, /cut-on 1/6^, of the source and receiver plate. Thus the peaks move 

to the right for every case in Figures 5.7 and 5.8 as the width of the plate b is reduced. 

The first resonance frequencies for the two uncoupled plates of the 11 variants of L\lh (for 

transverse order » = 1) were obtained from the frequency functions (Ag. (det(K)) ) of 

the DSM models. The first resonance frequencies for the two uncoupled plates and the 

first peak frequencies in /^12- 2̂1 listed in Table 5.6. 
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Figure 5.7. CLF ratio, (a) lOlog,;, (^,2 (b) lOlog,,, /%!..) , for different values 

of the length-to-width ratio (Z,i/6) plotted against frequency; the length of plate 1 is fixed 

(0.5 m) also plate 2 (1.0 m) and the width of the two plates (in metres) varies from 1.58 to 

0.158: —, 1.58; 1.26; , 1.0; , 0.79; -o-, 0.63; -A-, 0.50; -o-, 0.40; 0.32; -0-, 0.25; 

-v-,0.20; 0.158. 
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(a) CLF ratio plotted against the modal overlap factor for the source plate 

- - 1 0 

(b) CLF ratio plotted against the modal overlap factor for the receiver plate 

(c) CLF ratio plotted against the geometric mean modal overlap factor [Mi 2] 

Figure 5.8. CLF ratio for different values of the length-to-width ratio {L\lb) plotted against 

the modal overlap factor; the length of plate 1 is fixed (0.5 m) also plate 2 (1.0 m) and the 

width of the two plates (in metres) varies from 1.58 to 0.158: —, 1.58; 1.26; , 1.0; 

, 0.79; -0-, 0.63; -A-, 0.50; -o-, 0.40; -x-, 0.32; -0-, 0.25; -v-,0.20; 0.16; —, estimates 

of the upper and lower bounds from equations (3.38) and (3.39). 
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Table 5.6. The first resonance frequencies obtained from the frequency functions (;.g. 

(del (K) ) ), for the two uncoupled plates of the 11 variants of LJb (for transverse order 

M = 1) and the first peak frequencies in ,̂2 and -

Plate 1 Plate 2 
1̂2 

F-S-S-S F-S-C-S F-S-S-S F-S-C-S 
1̂2 

0.316 6.59 12.9 2.76 3.46 3.15 3.15 

0.398 8.69 14.3 3.92 4.51 4.0 4.0 

0.501 11.8 16.8 5.75 6.23 6.3 12.5 

0.631 16.5 20.7 8.69 9.06 8.0 16 

0.793 23.5 27.1 13.1 13.5 12.5 25 

1.00 34.5 37.3 20.4 20.6 20 31.5 

1.26 51.0 53.3 31.3 31.5 40 50 

1.58 76.7 78.6 48.4 48.5 50 80 

2.00 123 123 78.8 79.0 100 160 

2.51 188 189 122 123 125 250 

3.16 298 299 196 196 200 315 

5.5 Damping Loss Factor (DLF) 

In the previous configurations only geometric factors were varied and so, to conclude, the 

effect of damping is considered. The dimensions of the two plates (/ii = 3 mm, Li = 0.5 m, 

A2 = 2 mm, 2,2 = 1.0 m, 6 = 1.0 m) are kept fixed and three different levels of the DLFs, 

771 = ^ = 0.03, 0.1 and 0.3 are considered here. 

The ratio (in dB) between the effective CLF and the semi-infinite result, 101og,g (7),̂  / ) , 

is plotted against frequency in Figure 5.9 for these three different levels of the DLFs. As 

the DLFs of both plates increase, the variation in the effective CLF becomes small. 

Figure 5.10 shows the CLF ratios, (a) lOlog,,) (^,2 / ) and (b) lOlog^o (%i / ) » plotted 

against the geometric mean modal overlap factor, for the different DLFs. Estimates of the 

upper and lower bounds are obtained from equations (3.38) and (3.39) and are shown by 

thick solid lines. Since the modal overlap factor is proportional to the DLF, the lower 

bounds increase and the upper bounds are moved to the right as the DLFs increase. 
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10 10 10 
1/3 Octave Band Centre Frequency [Hz] 
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1/3 Octave Band Centre Frequency [Hz] 

Figure 5.9. CLF ratio, (a) and (b) 101ogio(772]/;72i-)' ploMed against 

frequency for three different levels of the DLFs: —, r] = 0.03; —, 77 = 0.1; rj = 0.3. The 

damping is the same in both plates. 

Figure 5.10. CLF ratio, (a) 101og;o(/),2/^i2.) and (b) lOlogio (^21/7/21.), for different 

DLFs plotted against the geometric mean modal overlap factor M12: —, 77 = 0.03; , 

77 = 0.1; 77 = 0.3; —, estimates of the upper and lower bounds from equations (3.38) 

and (3.39). The damping is the same in both plates. 
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5.6 Discussion 

In general, for modal overlap greater than 1, the variation in the effective CLF is small, 

although the effective CLF does not always converge to that for the semi-inRnite plate, as 

the latter does not take into account the in-plane vibrations. At low modal overlap 

(M < 0.4) the results fluctuate considerably and most are found to fall within the bounds 

described in Section 3.6. Results at high modal overlap M > 0.4 are not covered by the 

bounds proposed by Craik gf aZ. The results show that some fluctuations remain in this 

region also. 

The percentage of the values falling within these bounds in Figures 5.3, 5.6, and 5.8 has 

been investigated for M < 0.4. The results below the first cut-on frequency of either plate 

have been discounted, as SEA assumptions would not be valid. The results are given in 

Table 5.7. When the CLF ratio is plotted against the geometric mean modal overlap factor 

Mi2, this shows more consistent results (lower standard deviation) than when it is plotted 

against the modal overlap factor for the source or receiver plate. Virtually all of the results 

fall within the slightly wider range zymm / 3 < < 3;7max (estimates of the upper and lower 

bounds ± 5 dB), as listed in Table 5.8. 

Table 5.7. The percentage of values of lOlog,,, {f]̂ ^ falling between estimates of the 

upper and lower bounds of equations (3.38) and (3.39) when plotted against the modal 

overlap factor for the source plate Ms, that for the receiver plate Mr and the geometric 

mean value (Ms Mr) 1/2 

Parameter Ms Mr (MsMr)''" 

10 l o g , 2 / 7 7 1 2 . ) 

Thickness ratio 78 57 70 

10 l o g , 2 / 7 7 1 2 . ) Length ratio 76 81 77 10 l o g , 2 / 7 7 1 2 . ) 

Length-to-width ratio 75 38 52 

101ogio(%/772|.) 

Thickness ratio 49 70 60 

101ogio(%/772|.) Length ratio 65 78 74 101ogio(%/772|.) 

Length-to-width ratio 32 68 52 

Average 62.5 65.3 64.2 

Standard deviation 18.4 15.8 11.0 

(Unit: %) 
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Table 5.8. The percentage of values of lOlog,,, falling between estimates of the 

upper and lower bounds of equations (3.38) and (3.39) ± 5 dB when plotted against the 

modal overlap factor for the source plate Mg, that for the receiver plate Mr and the 

geometric mean value 

Parameter Mr (MsMr)'/" 

Thickness ratio 98 98 98 

Length ratio 97 97 97 

Length-to-width ratio 93 71 74 

lOlog.o (%,/772i.) 

Thickness ratio 88 97 95 

lOlog.o (%,/772i.) Length ratio 92 97 96 lOlog.o (%,/772i.) 

Length-to-width ratio 62 95 84 

Average 88.3 92.5 90.7 

Standard deviation 13.4 10.6 9.63 

(Unit: %) 

There are two things under investigation here; one is the validity of Craik's upper and 

lower bounds and the other is to determine whether the variability in the CLF depends on 

the modal properties of the source subsystem, the receiver subsystem, or both the source 

and receiver subsystems. It appears from the results presented that Craik's upper and lower 

bounds are a useful indication of the variability in the CLF, although the most consistent 

agreement occurs when the modal overlap of both subsystems is taken into account rather 

than that of the receiver as proposed by Craik. 

Since the ensemble average CLFs are lower than the semi-infinite results at low 

frequencies, as shown in Figure 3.2, using the former instead of the latter may be more 

appropriate for investigating the variability of the CLF. In the next chapter, the ratio 

between the effective CLFs and the ensemble average results is examined in a further 

study of the variability of the CLF, from which a new empirical model will be obtained to 

quantify this variability. 
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5.7 Conclusions 

The results of extensive DSM simulations allow confidence intervals, as well as the mean 

CLF, to be investigated. For modal overlap greater than 1, the variation in the effective 

CLF is small, whereas at low modal overlap most of the results fluctuate considerably. 

Craik's upper and lower bounds are shown to be useful indications of the degree of 

variability, although better agreement occurs when the combined modal overlap of the two 

subsystems is taken into account, rather than that of the receiver as originally proposed by 

Craik. However these bounds did not account for remaining variability when the modal 

overlap is greater than about 0.4. 

The variability in the effective CLF was found to depend not only on the modal properties 

of the receiver subsystems but also on those of the source subsystem, as discussed in 

Chapter 4. 

The results of this chapter are dominated by variability caused by a very few low 

frequency modes. Moreover, the parameter variations introduced also affect the modal 

densities and modal overlap factors. In the next chapter therefore a modified strategy for 

parameter variations is introduced the aim of which is to separate the various effects as 

much as possible. 
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CHAPTER 6 

DEVELOPMENT OF AN EMPIRICAL MODEL FOR THE 

VARIABILITY OF THE CLF 

6.1 Introduction 

The variability of the effective CLF was investigated in Chapter 5 by a preliminary set of 

parameter variations for a two-plate system. The properties of both the source and receiver 

plates were varied, but in each case, although the modal density was constant with 

frequency, the modal overlap factor increased with increasing frequency. Moreover, the 

use of one-third octave bands meant that the number of modes in a band also increased as 

frequency increased. 

The effective CLF was found to depend not only on the geometric and material properties 

of the subsystems, such as thickness, length, width and damping, but also on frequency as 

the modal overlap factor increased with frequency. However, the frequency, the 

bandwidth, and the modal overlap factor were not varied independently. The results of 

Chapter 5 showed the degree of the variability in the CLF but were not sufficient to 

quantify this variability due to the complexities of those parameters. 

In this chapter, the variability of the effective CLF is quantified by means of an in-depth 

systematic parameter study. Two parameters which affect the variability of the CLF, the 

average number of modes in a frequency band N and modal overlap factor M, are 

considered as independent control parameters. In this, the effects of frequency and modal 

overlap are separated by using frequency averages for a series of constant bandwidths 

rather than 1/3 octave band averages. 

In order to provide a more consistent basis for comparisons, independent of frequency, the 

true ensemble average CLF 7]̂^ discussed in Section 3.5, is introduced [50]. The effective 

CLF results are presented relative to this rather than the CLF derived from semi-infinite 

plates, 7;.^, which is biased for strongly coupled subsystems. 
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These results are used to derive an empirical formula for the confidence interval of the 

effective CLF in terms of the modal overlap factor and the number of modes in a 

frequency band. This should subsequently allow confidence intervals in the SEA 

predictions to be determined in an improved manner compared to the previously published 

estimates (Mohammed [43] and Lyon and DeJong [33]). 

Finally, statistical investigations are performed in order to review the statistical distribution 

of the logarithmic ratio of the effective CLF to the ensemble average CLF and the 

interdependence of 7712 and 7721-

6.2 Results for a baseline model 

6.2.1 Constant loss factor 

A model of two coupled aluminium plates (thickness h\ = 3 mm and Az = 2 mm, length 

Li = 0.5 m and = 1.0 m, and width 6 = LO m) was considered in the previous chapters 

as a baseline model. This model has a modal density that is constant with frequency but 

the modal overlap factor depended on frequency as the DLFs were kept constant (771 = 

The effective CLF 7),̂  derived using DSM, the ensemble average CLF 77,), gru [50] and the 

CLF obtained using semi-infinite plates for this baseline model, have been shown in 

Figure 3.2. These results were based on 1/3 octave frequency bands. The effective CLFs 

fluctuated considerably relative to % ens or rj^-^ at low frequencies and the various results 

all coincided more closely as frequency, consequently modal overlap, increased. 

6.2.2 Constant modal overlap factor and frequency average CLF 

In order to simulate a system with a constant modal density n(CL>) and constant modal 

overlap factor M= Tj 0)n{Q)), for all frequencies, the DLF was chosen to be inversely 

proportional to frequency, /71 = 772 1/6). In the baseline model, the DLF is characterised 
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by l ^ w i t h / t h e frequency. This gives = 0.01 at 100 Hz and 0.001 at 1 kHz. Below 

3 Hz the DLF was limited to 0.3 to avoid it becoming too large. Above 3 Hz the 

corresponding modal overlap factors have the constant values. Mi = 0.053 and Mz = 0.16, 

for the baseline model. Other values of damping will be considered later. 

The response of a dynamic system becomes much smoother when a frequency band 

average is taken. A one-third octave band average is typically used in acoustic analyses. In 

this section, the frequency averaging effects for different frequency bandwidths have been 

investigated. Firstly, narrow-band energies and powers were calculated for the two-plate 

system discussed above using a DSM model with 1 Hz spacing up to 1 kHz. In this model 

at least one frequency point lies within the half-power bandwidth T]f of each mode. The 

plate energies were then averaged in overlapping bands with constant frequency 

bandwidths (20, 40, 60, 100, 200 and 400 Hz) to provide a continuously varying curve. 

The effective CLFs relating to these frequency bands were obtained from these 

energies by a numerical experiment as defined in equation (3.13). < > denotes a &equency 

averaged quantity. Rather than the semi-infinite plate results , used as a reference in 

Chapter 5, the ensemble average CLF [50] is used as a basis for comparison of the 

effective CLFs obtained. 

Figure 6.1 shows the effective CLFs calculated at 1 Hz spacing up to 1 kHz and the 

ensemble average CLF. Also shown, are estimates of the upper and lower bounds', 

2! TtM and rcM 12 . These are obtained from the maxima and minima of the mobility 

(equations (3.32) and (3.35)) given by Skudrzyk [59], as used in the formulae (equations 

(3.38) and (3.39)) for CLF bounds given by Craik gf aZ. [44, 52]. The bounds in Figure 6.1 

were based on using the modal overlap factor for the source plate Ms, the receiver plate 

Ml, or the geometric mean values ^M, M, . It can be seen that the variation in the CLF is 

considerably greater than that estimated from the bounds shown in this case. The 

consistency relationship, = ^ 2 ^ 2 1 » s a t i s f i e d as also found in Section 4.2.5. 

* [NB] These bounds are wider than Craik's 

(a) at the peaks because they are based on single modes 

(b) at the troughs because the full expression is used rather than the two-mode 

approximation. 
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Figure 6.1. The effective CLFs , the ensemble average CLF , and estimates of the 

upper and lower bounds, for the baseline model (77 = min(0.3, l / f ) , M\ = 0.053, M2 =0.16). 

—, the effective CLF; the ensemble average CLF; —, upper and lower bounds 

estimated from Skudrzyk's bounds for mobility [59]: (a) Ms, (b) and (c)^M^M^ . 
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Next, the ratio of the frequency averaged effective CLF to the ensemble average CLP, 

determined. This is shown in decibel (dB) form in Figures 6.2 and 6.3 for 

77)2 and respectively. The mean over all centre frequencies, along with a range of ±2 

standard deviations (cr) calculated in terms of the dB values, is also shown in each case. 

Clearly, as the bandwidth increases the range ±2(7 reduces, whereas the mean is close to 

0 dB throughout. As the bandwidth increases, the average number of modes in a frequency 

band, N\ or % also increases. This can be obtained from the modal density n{co) (equation 

(3.16)) multiplied by the bandwidth Aco. Figure 6.4 shows the values of 2(7 from 

Figures 6.2 and 6.3 plotted against Ni, Nz, and N12 (as used by Mohammed [43]), where 

^12 - geometric mean value of and Â 2. The results of 2(7 for 7;]2 and 

for 7/21 show similar levels for a given frequency bandwidth and are shifted horizontally 

by plotting against Ni, Â 2 or W12. The combined measure JV12 therefore seems more 

appropriate as it accounts for both plates. This is further discussed in Section 6.5.1. 

In the remainder of the results in this chapter, constant bandwidth frequency averaging is 

used and the frequency dependent DLF is used to make the modal overlap factor 

independent of frequency. The subsequent results of 2(7 for 7712 and for 7721 are plotted 

against by the geometric mean value A î2. 

6.3 Parameter variation using DSM model 

In this chapter a wide range of parameter variations is considered. This section summarises 

the reasons for the cases considered. The parameters used in this chapter are summarised 

in Table 6.1. Some of the values of plate thickness or length are listed below the table. The 

values of the various parameters will be given in more detail in the following sections 

along with the results. The revised baseline considered in Section 6.2.2 corresponds to the 

case identified as 'light damping' in Table 6.1. 
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Figure 6.2. Bandwidth effect on the mean and ± two standard deviations (2<J) of the 

logarithmic ratio of the frequency averaged effective CLF (^12) to the ensemble average 

CLF 77.2,,., (;7 = min(0.3, 1^ , M, =0.053, ^2=0 .16) . — , 

lOlogio ((/7n>/;7i2,«» , mean +20" of 10 log,^ ) - W 20 Hz bandwidth, (b) 

40 Hz bandwidth, (c) 60 Hz bandwidth, (d) 100 Hz bandwidth and, (e) 200 Hz bandwidth, 

and (f) 400 Hz bandwidth. 
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Figure 6.3. Bandwidth effect on the mean and ± two standard deviations (2(7) of the 

logarithmic ratio of the frequency averaged effective CLF (^21) to the ensemble average 

CLF 772, ,^ (77 = min(0.3, 1 ^ , Mi = 0.053, M2 = 0.16). —, 1 0 1 o g , o ( ( y ) 2 , ) / 7 7 2 i , , 

—, mean ±2o-ofl01ogio((/)2,)/%!,,«.,). W ^OHz bandwidth, 

(b) 40 Hz bandwidth, (c) 60 Hz bandwidth, (d) 100 Hz bandwidth and, (e) 200 Hz 

bandwidth, and (f) 400 Hz bandwidth. 
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Figure 6.4. Two standard deviations (2cr) of for different frequency 

bandwidths plotted against (a) # i , (b) #2, (c) A î2, the geometric mean of and N2 

{h{ = 3 mm, A2 = 2 mm, rj Mco iji- min(0.3, Mf), M\ = 0.053, M2 = 0.16): , 2a for 

7712; —, 2crfor 7721. 
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Table 6.1. Summary of parameter variations for L-shaped coupled plates. 

Parameter Fixed Varied Ml M2 

Baseline 
(/ii=3mm, 
A2=2inm) 

Li,Lyi,h\,h2,b,TI\,Tl2, 
Mi(a;), 02(6)) 

- - 1.0 

High damping L\,L2,h\,h2,b - 7%=%°= 1/6) 0.53 1.6 1.0 

Medium damping l-'\,L2,h\,h2,b - 77, =ri^^\lco 0.16 0.48 1.0 

Light damping Li,L2,hi,h2,b " 7% =% =1/6) 0.053 0.16 1.0 

;%>% I,i,Zc,Ai,A2,6 - 0.53 0.48 0.30 

;%>% L\,L2,hi,h2jb - 7% l/O) 0.16 0.16 0.33 

Z,],A],6 0.53 1.6 1.0 

L\,h\,h2,b Z/2 7% =7̂ 2 "x 1/6) 0.53 2.5-0.32 1.0 

/l],A2 0.53 1.6 1.0 

(*1) Ai//22: the thickness of plate 1 (3 mm) is fixed and the thickness of plate 2 is varied 

from 9.49 mm to 0.949 mm (9.49, 7.54, 5.99, 4.75, 3.78, 3.00, 2.38, 1.89, 1.50, 

1.19, 0.949 mm). The length is varied simultaneously to ensure constant A/;. 

(*2) Z,i/Zv2: the length of plate 1 (0.5 m) is fixed and the length of plate 2 is varied from 

1.58 m to 0.20 m (1.58, 1.26, 1.00,0.79, 0.63,0.50, 0.40,0.32,0.25, 0.20 m). 

(*3) Z,]/6: the widths of the two plates are varied from 1.58 m to 0.20 m (1.58, 1.26, 1.00, 

0.79, 0.63, 0.50, 0.40, 0.32, 0.25, 0.20 m). The lengths of the plates are varied 

simultaneously to maintain the same areas and hence constant values of Ni and 

Â 2-

The variation of T]i and % subsequently produces constant values of Mi and Mi-

The modal density and modal overlap factor are related to the geometric and material 

properties. The modal density of a simply supported uniform isotropic plate is approximated 

as in equation (3.16). If the material properties are assumed to be constant, the modal 

densi ty is propor t iona l to the area {length x width) / thickness of the p la te and it is 

independent of frequency. Thus the modal overlap factor rj con^co) is in general dependent 

on frequency as well as the geometric and material properties. 

In the present chapter, in order to keep the modal overlap factors Mi and M2 constant for 

all frequencies, the DLF is chosen to vary with frequency i.e. T] ^ It CO. In most cases 
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considered the DLFs of the two plates are assumed to be equal, and three different levels 

of DLF (high damping r] = 10//, medium damping ri = 3 / /and light damping ri = 1//) are 

considered to investigate the effect of damping. In this case, as = ;^, 7/2 = 10. From 

the deOnition of M, the modal overlap factor, and N, the number of modes in a frequency 

band, T/z/T/i is the same as M2W] /M, These results are intended to show the effective 

CLF and its variability due to frequency bandwidth and different levels of damping. 

To investigate the effect of different damping levels for the two plates, whilst keeping the 

modal overlap factors constant, calculations are also performed with the two plates chosen 

to have different levels of damping whilst retaining r\oc\lco. These were from high to 

medium damping (772/771 =0.3) and from medium to low (772/771 =0.33). The CLF 7721 

corresponds to the opposite cases, so these are not considered separately. 

Next, a series of systematic numerical simulations are performed covering extensive 

parameter variations similar to those described in Chapter 5. The influence of these 

parameters on the variability of the CLF is investigated by keeping the dimensions of 

plate 1 fixed and giving the appropriate dimensions of plate 2 logarithmically spaced 

values. However, when the thickness is varied, the length is also varied in order to 

retain the same value of modal density. Similarly when the width is varied, the length is 

adjusted to retain a constant area and hence constant modal density. The damping values 

of the two plates are frequency dependent 7 7 l / a ; , in order to keep the modal overlap 

factors constant, as before. The other parameters are the same as the baseline model. 

6.4 Variability of the effective CLF 

6.4.1 Two plates with same loss factors 

Three levels of damping (characterised by 77= 10//, 3/ /and 1 / / 'w i th / t he frequency) were 

considered to investigate the influence of the modal overlap factor on the CLF. Since 

771 = 772, the ratio Mi Ni / Mi N2, was fixed as 1 for the three levels of damping. The 

maximum damping was again limited to 0.3 at low frequencies as described in Section 

6.2.2. 
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Energies were calculated using the DSM model at IHz spacing. The effective CLFs were 

determined using these energies averaged over frequency bands with bandwidths of 2, 4, 

6, 10, 20, 40, 60, 100, 200 and 400 Hz in overlapping bands, as described in Section 6.2. 

Then the logarithmic ratio of the effective CLF to the ensemble average, 101og,o , 

was determined as already shown in Figures 6.2 and 6.3. 

The range of two standard deviations (2cr) was obtained over the whole frequency region 

to express the variability of the effective CLF compared to the ensemble average, as 

shown in Figures 6.2 and 6.3 for one level of damping. Figure 6.5 shows the values of 2cr 

for the three levels of damping, plotted against N\2. The uncertainty (2cr) increases as the 

average number of modes in a frequency band reduces to about 1. Below this it reaches a 

value that is independent of any further change in the frequency bandwidth or the number 

of modes in a band. The value of 2(7 at low values of Nn increases as the damping 

reduces (i.e. as Mi and Mz reduce). Interestingly, the results for 7712 and are similar, 

despite the values of M differing by a factor of 3. This justifies the use of the average 

modal overlap M n considered below. 

/7^=3mm, =2mm, L =0.5m, L =1m, 6=1 m 

D OJ 

Figure 6.5. Variability of the CLF (2*7) for three levels of damping = 7/2) as & function 

of Ni2 as bandwidth is altered. —, high damping (Mi =0 .53 , M2 = 1.6); —, medium 

damping (Mi = 0.16, M2 = 0.48); light damping (Mi = 0.05, M2 = 0.16). Circles denote 

results for %i, other results are for 7712. 
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6.4.2 Two plates with different loss factors 

Using different damping values for the two plates whilst keeping the modal overlap 

factors constant with frequency, the ratio M2N1 / Mi takes values other than 1. Three 

damping values (high damping = 10/;̂  medium damping 77 = 3//" and low damping 

rj- l / f ) , were used in combination to give different damping values for the two plates; 

high to medium and medium to low. Figure 6.6 shows the variability (2(f) of 

101og,Q ^ ^ function of #12 for these cases. Similar trends are found to those 

in Figure 6.5. Again the results for 7712 and are similar in each case despite differences 

in the damping of the two plates. 

h^=3mm, h^=2mm, L̂ =0.5m, 1̂ =1 m, 6=11 

m 
"O 

Figure 6.6. Variability of the CLF (2(7) as a function of N n as bandwidth is altered. Modal 

overlap factor constant for all frequencies, —, 77i = 10/^ % = —, 771 = 3//! 

772 = 1//. Circles denote results for 7721, other results are for 7712. 

6.4.3 Variation of thickness ratio (Ai/%2) without varying modal density 

To investigate the influence of the plate thickness ratio /ii/A2 on the variability of the CLF, 

the thickness of plate 1 was kept Axed and the thickness of plate 2 weis given 11 
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logarithmically spaced values 3.16 between and 0.316 times that for plate 1, as listed in 

Table 6.2. In order to maintain the same value for the modal density of plate 2, its length 

was varied to compensate for the thickness, see equation (3.16). The damping values of 

the two plates were varied with frequency in order to give constant values of the modal 

overlap factor, as before. The highest of the three levels of damping was used here. The 

other parameters were the same as for the baseline model. 

The effective CLP and the ensemble average CLF for the 11 cases were calculated and 

their logarithmic ratio, 101og]g(^,^/;;,^ ^^J, in dB is shown in Figure 6.7 derived from 

results at 1 Hz spacing up to 1 kHz. The results below 1.25 times the lower of the cut-on 

frequencies of the two plates were excluded, as SEA assumptions would not be valid and 

it is inappropriate to use an SEA approach. All of the results fall within +10 dB. 

Table 6.2. Parameter values used for 11 variants with different values of the plate 

thickness ratio Ai/Ai-

/Zl/A2 
hi 

(mm) 
hi 

(mm) 
U 
(m) (m) 

h 
(m) 

»l(A^ »2(A)) M l Mz 

0.316 3.00 9.49 0.50 4.74 1.00 0.0085 0.026 0.53 1.60 

0.398 3.00 7.54 0.50 3.77 1.00 0.0085 0.026 0.53 1.60 

0.501 3.00 5.99 0.50 2.99 1.00 0.0085 0.026 0.53 1.60 

0.631 3.00 4.75 0.50 2.37 1.00 0.0085 0.026 0.53 1.60 

0.793 3.00 3.78 0.50 1.89 1.00 0.0085 0.026 0.53 1.60 

1.00 3.00 3.00 0.50 1.50 1.00 0.0085 0.026 0.53 1.60 

1.26 3.00 2.38 0.50 1.19 1.00 0.0085 0.026 0.53 1.60 

1.58 3.00 1.89 0.50 0.944 1.00 0.0085 0.026 0.53 1.60 

2.00 3.00 1.50 0.50 0.749 1.00 0.0085 0.026 0.53 1.60 

2.51 3.00 1.19 0.50 0.594 1.00 0.0085 0.026 0.53 1.60 

3.16 3.00 0.949 0.50 0.474 1.00 0.0085 0.026 0.53 1.60 
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(e) h2 = 3.78 mm, L2 = 1.89 m 

100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

(f) 2̂ = 3.00 mm, I2 = L50 m 

Figure 6.7 (a)-(f). The logarithmic CLF ratio lOloĝ Q̂ /̂ ŷ/zŷ y g^) for different values of 

A|/A2 with constant modal overlap factors. Mi = 0.53 and M2 = 1 . 6 (A2 and Z/2 are varied, 

77 depends on frequency). —, lOlog,,, (^ ,2 /77 ,2 , i ' lOlogio (^2i/%i, ) -
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(k) h2 = 0.95 mm, L2 = 0.47 m 

Figure 6.7 (g)-(k). The logarithmic CLF ratio 101og]o(^^ / 7 / ^ ^ ) for different values of 

A1/A2 with constant modal overlap factors. Mi = 0.53 and M2 = 1.6 (A2 and are varied, 

77 depends on frequency). —, 101og,o , lOlog,,, ) -
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The results were also determined using energies averaged over frequency bands (2, 4, 6, 

10, 20, 40, 60, 100, 200, and 400 Hz) in overlapping bands. The two standard deviation 

range (2(7) of lOloĝ Q was calculated in each case and a graph of 2(7 against 

#12 is shown in Figure 6.8. The variability of the effective C L F is affected slightly by the 

plate thickness ratio A1/A2 but much more by the frequency bandwidth. The dependence on 

the average number of modes in the band has a similar form to those shown in 

Figures 6.5 and 6.6. The results seem to be highest for either large or small values of the 

thickness ratio Ai/Ai; the results are lowest for Ai//i2 s 1. 

Figure 6.8. Variability of the CLF (2cr), (a) for 7712 and (b) for %], for different values of 

Ai//z2 with constant modal overlap factors, M] = 0.53 and M2 = 1.6 (A2 and Z<2 are varied, 

depends on frequency). —, 9.49; —, 7.54; 5.99; 4.75; -o-, 3.78; -x-, 3.00; 2.38; 

1.89; 1.50; -0-,1.19; -A-, 0.95 (A2 in millimetres). 

6.4.4 Variation of length ratio with varying modal overlap factor 
ratio 

The influence of the plate length ratio L1/L2 on the variability of the CLF was investigated 

by keeping the length of plate 1 fixed and giving the length of plate 2 each of 10 

logarithmically spaced values between 3.16 and 0.4 times that for plate 1, as listed in 

Table 6.3. The damping was again chosen to be inversely proportional to frequency so that 

the modal overlap factor for each plate was constant. Again the highest damping value 
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was used. The modal overlap factor for plate 2 was constant for each calculation, but was 

proportional to its length. The other parameters were the same as the baseline model. 

Table 6.3. Parameter values used for 10 variants with different values of the plate length 

ratio Z,i/Z/2. 

L 1 / L 2 
hi 

(mm) 
h2 

(mm) 
Li 
(m) 

L2 
(m) 

b 
(m) »i(6;i) Ml M2 

0.316 3.00 2.00 0.50 1.58 1.00 0.0085 0.040 0.53 2.53 

0.398 3.00 2.00 0.50 1.26 1.00 0.0085 0.032 0.53 2.02 

0.501 3.00 2.00 0.50 1.00 1.00 0.0085 0.026 0.53 1.60 

0.631 3.00 2.00 0.50 0.79 1.00 0.0085 0.020 0.53 1.26 

0.793 3.00 2.00 0.50 0.63 1.00 0.0085 0.016 0.53 1.01 

1.00 3.00 2.00 0.50 0.50 1.00 0.0085 0.013 0.53 0.80 

1.26 3.00 2.00 0.50 0.40 1.00 0.0085 0.010 0.53 0.64 

1.58 3.00 2.00 0.50 0.32 1.00 0.0085 0.0081 0.53 0.51 

2.00 3.00 2.00 0.50 0.25 1.00 0.0085 0.0064 0.53 0.40 

2.51 3.00 2.00 0.50 0.20 1.00 0.0085 0.0051 0.53 0.32 

The effective CLF and the ensemble average CLF for the 10 cases were calculated and 

their logarithmic ratio in dB is shown in Figure 6.9, for results 

calculated at IHz spacing up to IkHz. The results below 1.25 times the lower of the first 

cut-on frequencies of the two plates were excluded, as in the previous section. All of the 

results fall within ±10 dB except for = 0.4 m where a single peak of 30 dB is seen. 

The results were next determined using energies averaged over frequency bands (2, 4, 6, 

10, 20, 40, 60, 100, 200, and 400 Hz) in overlapping bands. The two standard deviation 

range (2(7) of was calculated and is shown plotted against #12 in 

Figure 6.10. These results show that the variability of the effective CLFs depends 

somewhat on the ratio of Mi to M2, introduced here by varying the plate length ratio Z,i/Z/2-

The constant value of 2(7 for low N12 is greatest when M]/M2 = 1 in Figure 6.10) and 

lowest when Mi and M2 are most dissimilar. The result for = 0.4 m does not show up as 

unusual when averaged over the whole frequency range. 
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Figure 6.9 (a)-(f). The logarithmic CLF ratio lOlogjQ (77^ /77 ;^ . fo r different values of 

L1/L2. The modal overlap factor ratio M1/M2 varies between 0.21 and L66 

(Ml = 0.53 is fixed, Z/2 and M2 ( = 2.53 - 0.32) varying). — , lOlog,,, (^,2/^12.«»); —» 

101og,o(^2i/%,««.). 
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Frequency [Hz] 

(g) 2,2 = 0.40 m, M1/M2 = 0.83 

100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

(h) L2 = 0.32 m, M1/M2 = 1.04 

100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

(1)1/2 = 0.25 m,Mi /M2= 1.33 

100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

(j) I2 = 0.20 m, M1/M2 = 1.67 

Figure 6.9 (g)-(j)- The logarithmic CLF ratio lOlogig^^^y/;;,̂  for different values of 

L\ILi. The modal overlap factor ratio M1/M2 varies between 0.21 and 1.66 

(Ml =0 .53 is fixed, and M2( = 2.53 - 0 . 3 2 ) varying). — , 101ogio(/),2/^,2. » 

lOlog.o 
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Figure 6.10. Variability of CLF (2(7), (a) for r}\2 and (b) for 7/21, for various values of La. 

, 1.58; —, 1.26; 1.00; , 0.79; - o - , 0.63; - x - , 0.50; 0.40; 0.32; - o - , 0.25; - 0 - , 

0.20 (Z/2 in metres). 

6.4.5 Variation of length-to-width ratio (Z,i/6) without varying modal 
density 

The influence of the plate length-to-width ratio Lilb on the variability of the CLF was 

investigated by setting the widths of the two plates to 10 logarithmically spaced values 

between 3.16 and 0.4 times the baseline length of plate 1 (L; = 0.5 m), see Table 5.5. The 

lengths of the plates are varied simultaneously to maintain the same areas, = 0 . 5 m^ and 

'̂2 = 1.0 m ,̂ and hence constant values of jVi and The parameter values used for 10 

variants are listed in Table 6.4. 

The modal densities for the two plates were kept constant, by varying their lengths in 

order to keep the area and hence the modal density fixed. The damping values of the two 

plates were also made frequency dependent as before, in order to give constant modal 

overlap factors. Again the highest damping value was used. The other parameters were the 

same as the baseline model. 

The effective CLF and the ensemble average CLF for these 10 cases were calculated and 

their logarithmic ratio, lOlog^Q , in dB is shown in Figure 6.11, for results 

calculated at 1 Hz spacing up to 1 kHz. The results below 1.25 times the lower of the first 
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cut-on frequencies of the two plates were also excluded, as before. Most of the CLF ratios 

fluctuated within ±10 dB. 

Table 6.4. Parameter values for 10 variants with different values of the plate length-to-

width ratio LJb. 

hi 
(mm) 

hi 
(mm) 

L\ 
(m) 

Lz 
(m) 

b 
(m) 

»l(A>) "2(6^ Ml Mz 

0.203 3.00 2.00 0.32 0.63 1.58 0.0085 0.026 0.53 1.60 

0.318 3.00 2.00 0.40 0.79 1.26 0.0085 0.026 0.53 1.60 

0.500 3.00 2.00 0.50 1.00 1.00 0.0085 0.026 0.53 1.60 

0.798 3.00 2.00 0.63 1.27 0.79 0.0085 0.026 0.53 1.60 

1.25 3.00 2.00 0.79 1.59 0.63 0.0085 0.026 0.53 1.60 

2.00 3.00 2.00 1.00 2.00 0.50 0.0085 0.026 0.53 1.60 

3.13 3.00 2.00 1.25 2.50 0.40 0.0085 0.026 0.53 1.60 

4.88 3.00 2.00 1.56 3.13 0.32 0.0085 0.026 0.53 1.60 

8.00 3.00 2.00 2.00 4.00 0.25 0.0085 0.026 0.53 1.60 

12.5 3.00 2.00 2.50 5.00 0.20 0.0085 0.026 0.53 1.60 

The results were again determined using energies averaged over frequency bands (2, 4, 6, 

10, 20, 40, 60, 100, 200, and 400 Hz) in overlapping bands. The two standard deviation 

range (2<T) of 101og;ô 7̂7,,̂ y7;,̂  ^ was calculated in each case and 2(7 is shown plotted 

against in Figure 6.12. These results show that while the results are largely independent 

of width b at low values of Nn, as the bandwidth is increased considerable variations 

occur. Especially, if the plates are narrow and long (•, 0 in Figure 6.12), the variability of 

the CLF is signiHcant even for large values of This can be seen in Figure 6.11 (i) and 

(j) as systematic variations in the CLF ratio, especially below the second cut-on frequency 

of plate 1 (470 Hz and 734 Hz). 
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Frequency [Hz] 
100 200 300 400 500 600 700 BOOBOO 1000 

Frequency [Hz] 

(a) b= 1.58 m (b) 6 = 1.26 m 

200 300 400 500 600 700 800 900 1000 

Frequency [Hz] 
100 200 3 0 0 400 500 600 700 800 900 1000 

Frequency [Hz] 

ic)b = \ .00 m (d) b = 0.79 m 

100 200 300 400 500 GOO 700 800 900 1000 

Frequency [Hz] 
100 200 3 0 0 400 500 600 700 800 9 0 0 1000 

Frequency [Hz] 

(e) b = 0.63 m (f) 6 = 0.50 m 

Figure 6.11 (a)-(f). The logarithmic CLF ratio lOlog^Q ) for various values of b, 

and Z/z (area (5"! = 0.5 m ,̂ .$'2 = 1.0 Mi ( = 0.53) and M2 ( = 1.6) are kept constant). 

— 101ogio(^,2/77,2.lOlogio(7)21/7721, 
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100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

(g) 6 = 0.40 m (h) 6 = 0.32 m 

100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

100 200 300 400 500 600 700 800 900 1000 
Frequency [Hz] 

(i) 6 = 0.25 m {]) b = 0.20 m 

Figure 6.11 (g)-(j). The logarithmic CLF ratio 101og;o(/),y/7;^^^) for various values of 6, 

L\ and Li (area (Si = 0.5 m^, 5*2 = 1.0 m^), M\ ( = 0.53) and Mz ( = 1.6) are kept constant). 

—, lOlOg.o , lOlOg.o an. ) ' 
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Figure 6.12. Variability of the effective CLF (2(7), (a) for 7/12 and (b) for 7721, for different 

values of 6 keeping plate areas and modal overlap factor constant. —, 1.58; —, 1.26; 

1.00; , 0.79; -o-, 0.63; -x-, 0.50; -+-, 0.40; 0.32; -o-, 0.25; -0-,O.2O (6 in metres). 

6.5 An empirical model for the variability of the effective CLF 

6.5.1 The variability of the effective CLF for Gnite plates 

All of the previous results covering the extensive parameter variations are next considered 

together to establish appropriate parameters to describe the variability of the CLF and to 

quantify its confidence interval. Although the results up to now have been given in terms 

of 2 a, it is helpful at this point to work in terms of the variance, cP'. Firstly the results for 

(7̂  of the logarithmic ratio of the frequency averaged effective CLF to the ensemble 

average CLF are plotted against the number of modes per band for the source plate A/somce 

or the receiver plate A/receiver, as shown in Figure 6.13 (a). The results with no frequency 

averaging are plotted against the modal overlap factor for the source plate Mgource or the 

receiver plate Mreceiver, as shown in Figure 6.13 (b). No clear trend can be seen from these 

results, although tends to fall with increasing or M. 

Next the results for are plotted against M2 = (the geometric mean number of 

modes per band), as shown in Figure 6.14 (a). These results are slightly less scattered than 

in the previous plot. Figure 6.13 (a). This result shows that the variability of the CLF 

has a nonlinear relationship with on log-log axes. The results for are shown for the 

cases with no frequency averaging in Figure 6.14(b). These are plotted against 
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Mi2 = (the geometric mean modal overlap factor). These non-frequency averaged 

results show a linear relationship with M u on log-log axes; from the slope of this 

relationship it is found that cP' is inversely proportional to M\2. 

The values of (7̂  for low N n are independent of (see also Figures 6.5, 6.6, 6.8, 6.10 

and 6.12) and are thus similar to those for no frequency averaging. By multiplying all data 

points in Figure 6.14 (a) by Miz, the results collapse to a similar level at low values of 

However it is found necessary also to shift the curves horizontally by a factor of 

to collapse them to a single data set. 

10 

5 10° 

10 

10 

1 % 
O O 

1 ' l i s jl 

lo S °c5oa 

u r 

10 1 0 ' 10 ^ 10 
source 

10 

10 

10 

10 

1 0 ' 

1 0 ' 
10 10 ' 

(a) 

10 10 w 0̂ 
recewef 

10' 

(b) 

Figure 6.13. <7̂  of 101og,g^ /̂;,jy7y^ ,̂ ^ for all sets of data plotted against (a) a:id 

Â eceiver when the effective CLFs are averaged over frequency bands (2, 4, 6, 10, 20, 40, 

60, 100, 200, and 400 Hz) and (b) Msource and Mreceiver when no frequency averaging is 

performed. Crosses denote results for 7712 and circles denote those for %i. 
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CO 

Figure 6.14. of lOlogig for all sets of data plotted against (a) N n when the 

effective CLFs are averaged over frequency bands (2, 4, 6, 10, 20, 40, 60, 100, 200, and 

400 Hz) and (b) M\2 when no frequency averaging is performed. Crosses denote results for 

and circles denote those for T/zi-
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The result is shown in Figure 6.15 in which is plotted against . A formula 

has been established to At three curves to the data in Figure 6.15: = 

where a and 6 are constants for the three curves. Dividing through by these can be 

expressed in the form 

cr- (6.1) 

The first and third curves are fitted approximately as the minima and maxima of the 

ordinate value ^ a function of N^2 /^n while the second curve corresponds to a 

line roughly through the centre of the data. The values of a and b are listed in Table 6.5. 

m 
"D 

2! 10 

Curve 3 

Curve 2 

Curve 1 

10° 10^ 

Figure 6.15. plotted against and three curves produced to quantify the 

variability of the CLF. 

Using each of these curves rather than the original data points, a predicted confidence 

interval (±2(7) for 101og,Q ) is determined for each pair of plates represented. In 
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each case by comparing the DSM predictions with this predicted confidence interval, the 

percentage of frequency points falling inside this interval has been determined. Taking the 

average over all plates considered, it was found what confidence level each of the 

formulae represented. These are listed in Table 6.5. Of these, the second curve represents a 

97.2% confidence interval for all sets of data and appears a suitable model. 

Table 6.5. Percentage of points falling within ±2<tlimits defined by <7 r 

all sets of data. 

for 

Curve a 6 Confidence interval (%) 

1 4 1/6 82.3 

2 9 1/16 97.2 

3 16 1/36 99.7 

6.5.2 New parameters to include cases of coupled finite and inGnite 
plates 

In order to apply the above concepts to the results for an infinite plate coupled to a finite 

plate (see Section 4.4) or a finite plate coupled to an infinite plate (see Section 4.5), the 

two parameters, M n and Nn, cannot be used since the number of modes and modal 

densities for an infinite plate tend to infinity. The CLF ratio for a model with an infinite 

receiver plate and upper and lower bounds (±2o) obtained from equation (6.1) (with 

constants, a = 9 and 6 = 1/16) but using 2Mi and 2jVi instead of Miz and are shown in 

Figure 6.16 (a). Figure 6.16 (b) shows the results of an infinite source plate coupled to a 

finite receiver plate for » = 1 along with bounds obtained f rom 2N2 and 2M2. The CLF 

results for the two semi-infinite plates with finite width is used as a reference. In both 

cases these give reasonable upper and lower bounds for the CLF for those models. 

Therefore, instead of Mi2 and N12, new parameters are sought which tend to 2M] when 

—> 00, 2M2 when M, —> 00 but are close to Mi 2 for M, = . 
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10 

Figure 6.16. The effective CLFs and upper and lower bounds (±2o) for (a) a finite plate 

coupled to an infinite plate and (b) an infinite plate coupled to a finite plate for » = 1. —, 

101og,o(^;2/^]2.)' —, upper and lower bounds obtained Arom equation (6.1) with a = 9 

and 6 = 1/16 using 2Mi and 2Â i or 2M2 and 2̂ % instead of M n and JV12. 

A new 'combined' modal overlap factor is therefore proposed, given by 

2M,M, 
^comb — 

• r " 2 

M, 
(6.2) 

It may be noted that this satisfies for M, = , Mcomb = for , 

and Mcomb = 2M2 for M, 00. 

Similarly a new 'combined' number of modes in a band is proposed, given by 

2#,Ar, 
= • 

comb N,+N, 
(6.3) 

which satisfies comb ^ 1 2 //,2 for M , ĉomb = 2Â i for and Â comb = 2Â 2 for 

—> 00 . Equations (6.2) and (6.3) are equivalent to the following relationships: 

1 

M 

1 1 
- + -

M, M, 
and 

1 

N. comb V 

1 1 

AT, 
, and thus reflect the fact that the smaller 

of the two values of N or M dominates the variability of the CLF. 

Figure 6.17 shows Â omb/Â i and Â comb/Â z plotted against N2/A^i. These are compared with 

A î2/Wi and This plot shows that two values Ncomb and Â ]2 are close when 
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- TV; . The same plots also apply to Mcomb, etc. The values of A/2///] and Mz/Mi 

considered in the parameter variations in Section 6.4 are limited to the range 0.6 to 4.74. 

Figure 6.17. Ncomb/^ and Ni2/A^ plotted against N2/N1. (a) 

(b) —, Ncomb/%; —, #12/%. 

//comb/A î; —, N12/7V1 and 

6.5.3 Derivation of empirical model 

Using the same method as Section 6.5.1, a similar result is shown in Figure 6.18 in which 

plotted against A^̂ mb/̂ comb - Similarly, a formula has been established to fit 

where c and are three curves to the data in Figure 6.18: cr ^ 
1 + c o m b / - ^ c o m b 

constants for the three curves. Dividing through by these can be expressed in the 

form 

= • 

ĉomb +^^comb 
(6.4) 

As above, the confidence intervals represented by each of these curves have been 

determined from the whole set of DSM results and from the results excluded the last two 

cases (the long narrow cases) in Table 6.4. These are listed in Table 6.6. If the long narrow 

cases are removed from the calculation, the percentage goes up slightly. Of these, the 

second curve is adopted as the 'empirical model' for the variability of the CLF: 

6 

^comb +-^comb/l6 
(6.5) 
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This represents a 95.7% confidence interval for all sets of data which are considered. It 

should be noted that this set covers the range of aspect ratios of 0.2 - 12.5 for one plate 

and 0.2 ~ 25 for the other plate. This model can be generally used to evaluate the 

uncertainty of the CLF of a two-coupled plate system at least within these limits. It is a 

refinement of the model in the previous section, that can now also be used to cover 

situations where one plate is infinite in length. However, it may be expected to fail if the 

plates become infinitely wide. 

% 
E 10 

Curve 3 

Curve 2 

Curve 1 

10° 10̂  
comb comb 

Figure 6.18. ploKed against three curves produced to quantify 

the variability of the CLF. 

Table 6.6. Percentage of points falling within ±(7 and ±2(T limits defined by 

c 
G 

'̂ comb +^^comb 
for all sets of DSM results and for the results excluded the last two 

cases (the long narrow cases) in Table 6.4. 

Curve c d 
All sets of data Excluding the long narrow cases 

Curve c d 
±(7 ±2cr ±cr ±2o-

1 3 1/6 50.9 80.1 51.4 80.6 

2 6 1/16 73.4 95.7 74 .0 96.1 

3 12 1/36 90.1 99.6 90.6 99.7 
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6.5.4 Comparison with previously published models 

A similar investigation for two coupled plates, in which only the plate length ratio L1/L2 

was varied, was performed by Mohammed [43]. He suggested a semi-empirical formula. 

<7 
log,o c +1.3 ]og,o +1.251og,o (6.6) 

where <j^ is the variance of the CLF, is the mean value of the CLF and c is a 

constant which was determined by plotting the different sets of data and performing best 

straight line fits on log-log axes. 

The current results, displayed in Figure 6.18, have been converted into the form used in 

Mohammed's model and are plotted in Figure 6.19. This graph shows that the current 

results cannot be represented by a straight line as suggested by Mohammed. Also the 

present data set far exceeds the number of configurations previously used [43]. The 

present model therefore seems more appropriate. 

o 
'o Q) O 
c 
§ 

"O 
0) 

O) 
o 

X 

* * 

cr 
Figure 6.19. The normalised variance ^ plotted against (Mj , ) ' ^ based on the 

Mohammed's formula [43]. 
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A general formula for the normalised variance in the CLFs is given by Lyon and DeJong 

[33], 

% 

1 {v') { y ' ) 
(6.7) 

where zlfu is the frequency spacing and and the mode shapes of subsystem 1 

and subsystem 2. If the data is taken in 1/3 octave bands and each plate is assumed to be 

simply supported, equation (6.7) is approximated by 

81 

6a)r;r{;7i7%, (A))}+0.23l{M] (A))+»2 (6))} 
(6.8) 

The logarithmic CLF ratio lOlogiQ^/^i^/^n.rmj) obtained from the DSM for the baseline 

model used in Chapter 4 was compared with the upper and lower bounds obtained from 

±2(7 estimates based on the empirical model of equation (6.5) and based on equation (6.8) 

and these results are plotted in Figure 6.20. 

m 
"O 

O 
o 

10 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 6.20. Comparisons of the logarithmic CLF ratio 101og,(,()7;2/^i2.«nf) 

baseline model obtained from the DSM with the upper and lower bounds based on the 

empirical model and equation (6.8). —, DSM result; —, ±2(j estimate obtained from 

equation (6.5); - lOlog^^ (l + 2(7y(7;,2)) estimate obtained from equation (6.8). 
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This shows that the DSM result calculated in 1/3 octave bands falls within the upper and 

lower bounds obtained from the empirical model proposed in this chapter over the whole 

frequency range. The result from equation (6.8) represents a good upper bound, whereas 

the lower bound is very low and it is not applicable at lovy frequencies because values 

inside the logarithm, become negative below 200Hz. Strictly the distribution 

considered by Lyon and DeJong is not normal so that the 95% confidence interval is not 

simply ±2cr. However this has not been pursued further here. 

6.5.5 Comparison with previous calculations 

The results of the effective CLF found in the previous parameter variations, as described 

in Chapter 5, have been compared to the estimates of the confidence intervals based on 

equation (6.5). These results were in 1/3 octave bands and covered variations in thickness 

ratio, length ratio, and length-to-width ratio. The logarithmic ratio of the effective CLF to 

the ensemble average 101og;o(/^^/7;^y^^) was determined and these results are shown in 

Figure 6.21. 

These ±2cr estimates give better upper and lower bounds for the effective CLF than 

Craik's model considered in Chapter 5. The deviations at high frequencies in 

Figure 6.21 (a) are due to in-plane motion included in the DSM model but not in the 

ensemble average, as discussed in Section 5.2 (see Figure 5.2). The results for three cases 

(L2 = L26, 0.5, 0.4m) exceed the upper bound at low modal overlap as shown in 

Figure 6.21 (b). These peaks correspond to the first resonance of the receiver plate 

investigated in Table 5.4. However, they exceed the present bounds by less than they 

exceeded Craik's bounds in Figure 5.6, even though the present figure is based on the 

ensemble average which will tend to increase the CLF ratio at low frequencies. 
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5, 

^ fWk A 

Figure 6.21. Logarithmic CLF ratio obtained from Chapters and 

plotted against results in 1/3 octave bands, (a) varying thickness ratio, (b) varying 

length ratio, and (c) varying length-to-width ratio. —, 101og]o(7);2/^]2,f«^) ^ 

101og,o (^2i/%i. enj): —' estimate based on equation (6.5). 
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6.6 Statistical investigation of CLF 

6.6.1 Tests for normal distribution 

If a population of data is normally distributed, the probability distribution function is a 

bell-shaped curve which is symmetric with respect to the mean and the cumulative 

frequency function is an S-shaped curve. The Chi-square test, often called goodness of 

fit test, can also be used to check whether data is normally distributed. An alternative test 

often used as a supplement to the test is to study the skewness, which is a relative 

measure of the symmetry of the distribution function. The kurtosis, a higher order 

statistical moment, is another measure of the shape of a distribution. This is a measure of 

flatness or peakedness of the distribution. For a normal distribution one expects the 

skewness to be 0 and the kurtosis to be equal to 3. 

In this section these various tests are applied to the logarithmic ratio of the frequency 

averaged effective CLF to the ensemble average CLF. If this is normally distributed, the 

distribution of the CLF is said to be log-normal. The probability distribution function is 

investigated for two cases. These correspond to averaging over 20 Hz and 200 Hz 

bandwidths for the baseline model, as shown in Figure 6.1. Figure 6.22 shows the 

probability distribution function and cumulative frequency function for the former case. 

m 0 08 

10log_(<Ti >/n 

I 

Figure 6.22. The probability distribution of the logarithmic CLF ratio 101og,Q ms) 

averaged over 20 Hz frequency bands: (a) relative frequency and (b) cumulative relative 

frequency. 
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These functions resemble those for a normal distribution, but this needs to be determined 

by a test of normality. Similarly Figure 6.23 shows the results for the 200 Hz averaging. 

0.3 

-1.5 0 
iok)ĝg(<n̂g>/n̂ 2̂ )̂ 

(a) 

* &5 

Figure 6.23. The probability distribution of the logarithmic CLF ratio 101og,o ) 

averaged over 200 Hz frequency band: (a) relative frequency and (b) cumulative relative 

frequency. 

A Chi-square test for the hypothesis that the population for the 20 Hz bandwidth results is 

normal is shown in Table 6.7. In the table, xj is the dB interval of the sample, O are the 

values of the distribution function obtained from a statistical table [90], pj is the probability 

of a sample occurring in the interval, hj is the number of sample values in the interval, ej is 

the theoretically expected number in the interval if the distribution was normal, and 

2 / ^ 
(Zo) ^ =(6 , - g y ) / g , . The overall value is given by ^ . c is the value of the 

Chi-square distribution obtained from a table [90] with the given values of the distribution 

function and number of degrees of freedom J^-1, where is the number of intervals. As 

Xô  > c , the hypothesis is rejected. 

A Chi-square test for the 200 Hz frequency band results is shown in Table 6.8 and the 

result also rejects the hypothesis that the population is normal. 
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Table 6.7. A Chi-square test for the logarithmic CLF ratio 101og,o^^^^y77,, averaged 

over 20 Hz frequency bands. Mean // = 0.82, standard deviation cr=3.84, number of 

samples » = 973, and degrees of freedom = 8. 

<7 1 J 

b, (%o)' 

-00 ... -6 -00 ... -1.77 0.0000 ... 0.0384 37.36 50 4.27 

-6 ... -4 -1.77 ... -1.25 0.0384 ... 0.1056 65.39 52 2.74 

-4 ... -2 -1.25 ... -0.73 0.1056 ... 0.2327 123.67 145 3.68 

-2 ... 0 -0.73 ... -0.21 0.2327 ... 0.4168 179.13 168 0.69 

0 ... 2 -0.21 ... 0.31 0.4168 ... 0.6217 199.37 183 1.34 

2 ... 4 0.31 ... 0.83 0.6217 ... 0.7967 170.28 155 1.37 

4 ... 6 0.83 ... 1.35 0.7967 ... 0.9115 111.70 117 0.25 

6 ... 8 1.35 ... 1.87 0.9115 ... 0.9693 56.24 77 7.66 

8 ... 00 1.87.. . 00 0.9693 ... 1.0000 29.87 26 0.50 

Xo I = 22.5, c= 15.51 as the solution of P{%^ <c^-95% . 

Table 6.8. A Chi-square test for the logarithmic CLF ratio lOlog^o averaged 

over 200 Hz frequency bands. Mean // = -0.21, standard deviation cr= 0.62, number of 

samples n = 793, and degrees of freedom = 6. 

Xj - / I 

(7 I J 
(%oX 

-00 ... -1.5 ... -2.08 0.0000 ... 0.0188 14.91 13 0.24 

-1.5 ... -1.0 -2.08 ... -1.27 0.0188 ... 0.1020 65.98 85 5.48 

-1.0 ... -0.5 -1.27 ... -0.47 0.1020 ... 0.3192 172.24 159 1.02 

-0.5 ... 0 -0 .47. . . 0.34 0.3192 ... 0.6331 248.92 238 0.48 

0 . . . 0.5 0 .34 . . . 1.15 0.6331 ... 0.8749 191.75 190 0.02 

0.5 ... 1.0 1.15 ... 1.95 0.8749 ... 0.9744 78.90 99 5.12 

1.0 ... 00 1.95. . . 0.9744 ... 1.0000 20.30 9 6.29 

= 18.65, c = 12.59 as the solution of f < c ) = 95% . 
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As a result of the Chi-sguare test for the logarithmic CLP ratio 

averaged over the 20 Hz or 200 Hz frequency bands, the probability distributions for the 

two cases appear not to be a normal distribution. 

As a supplement to the Chi-square test, the skewness and kurtosis are considered. A 

measure of the amount of the skewness in a population is given by Snedecor and Cochran 

[91] 

^3 (6.9) 

where is the sample value, // is the sample mean, is the number of samples, and cris 

the standard deviation. The term in the numerator of equation (6.9) is called the 

third moment about the mean. For a normal distribution, the skewness Y\ is zero. If ji is 

positive, the distribution has extreme values in the upper half of the frequency distribution 

curve and the distribution is positively skewed or skewed to the right [92]. 

The kurtosis is given by [91] 

^ . (6.10) 
a ' 

The term (̂ x. - jUj in the numerator of equation (6.10) is called the fourth moment about 

the mean. For a normal distribution, the kurtosis yiz is 3, i - 3 = 0. If /2 is greater than 

3, the distribution is peaked. If 72 is less than 3, the distribution function has a flatter top 

than the normal. 

Figure 6.24 shows the skewness and kurtosis for the logarithmic CLF ratio, 

lOlogio or lOlogio ((7)21)/%,,_). This is plotted against the bandwidth used 

in frequency averaging (from 10 Hz to 400 Hz) for all datasets of parameter variations as 

described in Section 6.4. All results of the skewness lie between - 2 and +2. The mean 

value of the skewness for the logarithmic CLF ratio is -0.11 for both lOlog,,, 

and lOlogjQ )- This means that the distribution of the data is slightly negatively 
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skewed from their mean value. The standard deviations of the skewness are greater than 

the expected value for a normal distribution as given by [91], =0.15 where 

(= 252) is the number of samples. 

-0 .5 

Averaging bandwidth [Hz] 

minrn "k/n 

(a) skewness 

= 0.71 

Averaging bandwidth [Hz; 

(b) kurtosis 

= -0.11 

0] -0.5 

Averaging bandwidth [Hz] 

10 
Awr«8»igbmnd#idBi|H2] 

10" 

Figure 6.24. Skewness and kurtosis for the logarithmic CLF ratio, 101og,Q ((^i2)/77]2, 

lOlogio ((^2i)/%i.»i;)' plotted against frequency bandwidth f rom 10 Hz to 400 Hz for all 

datasets of parameter variations: (a) skewness and (b) kurtosis. 
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The mean values of ^2-3 for the logarithmic CLF ratio, 101og]o(())]2)/^i2.,nj) 

101og,o^(%i)/%],«n^)' -0 .32 and -0.38. This means that the distribution of the data 

has a slightly flatter top compared to the normal. The standard deviations of )i2-3 are 

greater than the expected value for a normal distribution as given by [91], ^ 2 4 / = 0 . 3 1 . 

As a result of the Chi-square test, skewness and kurtosis, the CLF ratios in dB, either 

or 101og,o((7^2i)/%i.,«), are unlikely to be normally distributed. 

Nevertheless, they are not greatly different from normal and for simplicity normal 

distributions will continue to be assumed. 

6.6.2 Test for interdependence of CLFs 

In the empirical model above, the variability of rjn and has been considered without 

regard to their interdependence. In this section the degree to which the two variables, 7712 

and %i, are linearly related is investigated. For this purpose, a normalised variance ratio is 

defined by cr^/(cr]2(^2i) ' where <7̂  is the variance of the difference between 

101og,o((%J/%i,»») 101ogio((7)i2)//7i2,«u ) <̂ 12 and (Zn are the standard deviations 

of the two logarithmic CLF ratios respectively. 

Figure 6.25 shows the variance ratio, crj ) , for the four groups of results obtained 

from the parameter variations described in Section 6.4: (a) results for three different levels 

of damping (771 = %) and for two sets of unequal damping (771 9̂  %), (b) results for 11 

different thickness ratios (Ai/Az), (c) results for 10 different length ratios (Z/i/Z^) and (d) 

results for 10 different length-to-width ratios (Z,i/6). In each case (T^/((T,2(T2i) is plotted 

against the 'combined' number of modes in a band Â comb, as defined in equation (6.3). If 

they are dependent on each other the variance ratios should lie well below 1 but in some 

cases in Figure 6.25 (d) they are greater than 1. The variance ratio for all datasets is shown 

again in Figure 6.26 (a). 
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Figure 6.25. Variance ratio crj/((^12(^21) groups of results from the parameter 

variations: (a) results for three different levels of damping (/71 = %) and for two sets of 

unequal damping (t/i ^ %), (b) results for 11 different thickness ratios {hxlhi), (c) results 

for 10 different length ratios (L1/L2) and (d) results for 10 different length-to-width ratios 

(Li/6), plotted against the combined number of modes Ncomb-

Another parameter that can be used is the correlation coefficient given by [91] 

P 
cov. 

1̂2*̂ 21 
(6.9) 

The numerator of the correlation coefficient is the population covariance of the two 

variables, given by [91] 

cov. = 
^ ( X ] 2 /̂ I2 )(-^21 /̂ 21 ) 

N 
(6.10) 
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whereZizandZzi are the two variables, 101ogio((y),2)/;7i2.^) and 101og,o(())2,)/%,_), 

and //]2 and //21 are their sample means. The covariance of the two variables is zero when 

they are independent of each other. The correlation coefficient is a non-dimensional 

number that lies between - 1 and +1. It is shown in Figure 6.26 (b). 
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Figure 6.26. (a) The variance ratio c r j / ) for all cases of parameter variations 

plotted against JVcomb and (b) correlation coefficient, covariance/((T]2(32i), plotted against 

•̂ comb-
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If the absolute value of the correlation coefRcient is close to unity, the two variables will 

show a straight line or an ellipse in a scatter diagram in which one variable is plotted 

against the other. Conversely there will be no clear relationship between them if the 

absolute value of p is less than about 0.5 [91]. 

Most of the correlation coefficients in Figure 6.26 (b) are positive and close to unity 

indicating that in these situations 7712 and 7721 are well correlated. Cases 1-4, marked as 

circles in Figure 6.26, were identified as being extreme values in the correlation coefficient 

as well as in the normalised variance given in Figure 6.26 (a). Cases 1 and 3 correspond to 

low variance in the difference, while the corresponding correlation coefficients show a 

high level of correlation, fairly close to unity. Conversely cases 2 and 4 correspond to high 

variance in the difference, with case 2 showing apparently poor positive correlation whilst 

case 4 shows slight negative correlation; large values of one variable are associated with 

small values of the other variable. These are better understood by inspection of the 

corresponding values of the coupling loss factor, plotted against each other and separately 

against frequency, as shown in Figures 6.27-6.30. 

Figure 6.27 shows the CLF ratios in dB, 101og,q((7),J/% and 101og,Q((7)2,)/%i,««) 

for case 1 (A] = 3 mm, Az = 2 mm, Z,] = 0.32 m, Z,2 = 0.63 m, 6 = 1.58 m, no frequency 

averaging). These are plotted against each other (a) and against frequency, (b) and (c). The 

results appear reasonably correlated when 7712 is plotted against 7721, i.e. the results lie 

mostly on a diagonal line. When plotted against frequency they appear to have some 

similar fluctuations, although with detail differences. 

Figure 6.28 shows the results for case 2 (Ai = 3 mm, A2 = 2 mm, = 2.5 m, = 5.0 m, 

6 = 0.2 m, no frequency averaging). These are also plotted against each other (a) and 

against frequency, (b) and (c). These appear uncorrelated when 7712 is plotted against 7721. 

The CLF ratio versus frequency appears correlated above approximately 734 Hz. This is 

the cut-on frequency of plate 1 for transverse order n = 2. Below that frequency there are 

systematic differences. It may be noted that these plates are very narrow and are 

effectively one-dimensional at low frequencies. Here the results T/gn., are not reliable. 
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Figure 6.27. Logarithmic CLF ratio for case 1 (Ai = 3 mm, Ai = 2 mm, L\ = 0.32 m, 

1,2 = 0.63 m, 6 = 1.58 m, no frequency averaging), plotted (a) lOloĝ Q against 

101ogio((^2)/;A2.^), (b) against frequency, and (c) 101og,o((/)2j/772i,_) 

against frequency. 
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Figure 6.28. Logarithmic CLF ratio for case 2 (Ai = 3 mm, A2 = 2 mm, = 2.5 m, 

1,2 = 5.0 m, 6 = 0.2 m, no frequency averaging), plotted (a) 101og;Q((/)2i)/%,»») against 

101og,o((^i2>/%^), (b) 101og,o((^,2)/% _ ) against frequency, and (c) 101og,o((/)2j/%i__) 

against frequency. 
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Figure 6.29. Logarithmic CLF ratio for case 3 {h\ = 3 mm, /i2 = 2 mm, L\ = 0.5 m, 

Z,2 = 0.79 m, 6 = 1.0 m, 100Hz bands averaging), plotted (a) 101og,Q((/)2,)/%i^J against 

101ogio((^2)/%,«.), (b) 101ogio((^2)/%,«.) against frequency, and (c) 101ogio((%)/%^) 

against frequency. 
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Figure 6.30. Logarithmic CLF ratio for case 4 (/ii = 3 mm, Az = 2 mm, L\ = 2.5 m, 

Z,2 = 5.0m, 6 = 0.2 m, 100Hz bands averaging), plotted (a) 101og;o((/)2i)/%,gm) &g^nst 

(b) 101og]o((^2)/^2.»») against frequency, and (c) 101og,o((^2,)/%,».) 

against frequency. 
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Figure 6.29 shows the results for case 3 (Ai = 3 mm, = 2 mm, Z,i = 0.5 m, = 0.79 m, 

6 = 1.0 m, 100 Hz bands averaging), plotted against each other (a) and against frequency, 

(b) and (c). The result of 7712 versus 7721 shows very good correlation with most points on a 

diagonal within a narrow band. 7712 and plotted against frequency are very similar 

curves. 

Figure 6.30 shows the results for case 4 (Ai = 3 mm, A2 = 2 mm, Z,] = 2.5 m, 1,2 = 5.0 m, 

b = 0.2 m, 100 Hz bands averaging), plotted against each other (a) and against frequency, 

(b) and (c). The result of 7712 versus 7/21 shows 'intermediate' (not poor or good) 

correlation. 7712 and 7721 plotted against frequency show some similarity with case 2 but the 

frequency averaging has removed much of the fluctuation. Again this system has very 

narrow plates, leading to a breakdown in the approximations used in determining T/gn.,. 

In summary, in 89.1% of all cases considered the absolute value of the correlation 

coefficient is greater than and equal to 0.5, i.e. | /? |>0.5. The cases with poor correlation 

(\p\ < 0.5) are mostly long narrow plates for which this indicates a problem with the 

ensemble average CLF rjens rather than the independence of 7712 and 7721. 

6.7 Conclusions 

In this chapter, the variability of the coupling loss factor (CLF) for a system of two 

coupled rectangular plates has been examined and quantified using a systematic parameter 

variation. The ensemble average CLF given by Wester and Mace [50] was used to 

improve the estimate of the average CLF for all cases, providing a good basis for studying 

the variability. An empirical model for the variability of the CLF has been developed 

using these results. 

Firstly, narrow band energies and powers were calculated for a large number of 

configurations using the dynamic stiffness method. The modal overlap factor was kept 

constant versus frequency by using a loss factor inversely proportional to frequency. The 

effective CLFs 7̂7.̂  ̂  were obtained from these energies averaged over frequency bands. 

The effects of frequency and modal overlap were separated by using frequency averages at 

a series of constant bandwidths rather than 1/3 octave averages. 
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Secondly, the logarithmic ratio of the effective CLF to the ensemble average, 

was determined and the variance was obtained over the whole 

frequency region for each case to express the variability of the effective CLF compared to 

the ensemble average. An empirical model was developed to express the dependence of 

the variance on the modal overlap factors and numbers of modes in a frequency band. 

This is given by 

(7^=. ^ 
^comb+^combA^ 

It has been established that this represents a 95.7% confidence interval for all sets of data 

which are considered. These covered a range of aspect ratios of 0.2 - 12.5 for one plate 

and of 0.2 ~ 25 for the other plate. This model has been developed for a system of two 

coupled rectangular plates and can be used to evaluate the uncertainty of the CLF of that 

system. However, it is not known whether other types of system can be represented by the 

same model. This should be the subject of further research. 

Thirdly, these results have been compared with the previously published models suggested 

by Mohammed [43] and Lyon and DeJong [33]. The present data set far exceeds the 

number of configurations previously used by Mohammed and shows that the variability 

depends on the modal overlap factor M at low values of the number of modes in a 

frequency band N and on TV at high values. Moreover, the two parameters, Mcomb and 

JVcomb, are more appropriate than the geometric mean values. My and Ny used by 

Mohammed, as the former are applicable in the limit of a semi-infinite source or receiver 

plate as well as for two finite plates. From the comparison of the logarithmic CLF ratio 

obtained from the DSM results in dB, lOlogiQ^^/^i^Y^n.m.), with the upper and lower 

bounds based on the current model and Lyon and DeJong's formula [33], the bounds from 

the empirical model performed better than those from the latter formula. The present 

model therefore seems more reliable. 
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Finally, a statistical investigation has been carried out into the distribution of 

lOlogio or lOlogio in order to test whether they are normally 

distributed and are independent each other. As a result of the study, it is found that they 

are unlikely to be normally distributed. Nevertheless a normal distribution remains a 

reasonable approximation (this means that the CLF is log-normally distributed). The 

logarithmic CLF ratio from subsystem 1 to subsystem 2 and that from subsystem 2 to 

subsystem 1 are found not generally to be independent of each other, although the degree 

of correlation varies from one case to another. 
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CHAPTER 7 

EXPERIMENTAL VALIDATION USING TWO PLATES 

JOINED BY BOLTS 

7.1 Introduction 

Experiments have been performed in order to validate the empirical model of variability of 

the CLF for a two-plate system obtained in Chapter 6, in a different practical situation. It 

is not the intention to validate the DSM calculations as such, as this is a generally accepted 

technique. 

This chapter describes these experimental studies. The system studied consists of two 

coplanar plates joined by bolts. All outer edges of the plates have free boundary conditions 

for simplicity. Although this differs from the two rectangular plates coupled at right angles 

with opposite edges simply supported that were considered in the development of the 

empirical model, the experimental study provides a validation of the effectiveness of the 

empirical model, hideed its use in a slightly different situation gives additional benefit to 

this validation. Although experimental studies on simply supported plates are possible [93] 

they involve greater practical difficulties than the use of free edges. 

Initially an investigation was performed on an existing two-plate system [94] with equal 

thicknesses (Ai = A2 = 2.93 mm) joined at right angles by a thicker bracket (8 mm). The 

experimental CLFs for this system were not in good agreement with the analytical results. 

It was identified that this was due to the thicker bracket constraining the joint, particularly 

in the corresponding analytical model with simple supports at its ends. Moreover, the two 

plates with equal thicknesses have similar modal energy. These results are not presented 

here. Instead, another two-plate system was considered in which two plates are directly 

joined by bolts in the same plane. These two plates have different thicknesses (A, = 2.93 mm, 

/z2 = 0.90 mm) and damping patches were attached in an attempt to avoid a situation of 

strong coupling. 

A point force was applied to positions on one plate and then on the other plate. The 

vibration of the source plate and the receiver plate was measured to give an estimate of the 

186 



Chapter 7. Experimental Validation Using Two Plates Joined by Bolts 

mean kinetic energy for each plate. Ten forcing points and ten response points on each 

plate were used in the experiment. From the confidence interval for the effective CLF 

investigated in Chapter 4, it is known that this will introduce a moderate uncertainty, 

which is quantified in Section 7.3.2.2 below. The DLF for the two uncoupled plates was 

obtained using the decay rate method. The CLFs were subsequently evaluated from the 

experiments using the SEA power balance equations and the total kinetic energy measured. 

An analytical model of this system is also developed for comparison, as it differs from 

those considered earlier. The effective CLF of this system was investigated by using the 

DSM, in the same way as described in Section 4.2 and these analytical results were 

compared with experimental results. Finally, the variability of the experimental CLF as a 

function of frequency has been investigated and compared to results from the empirical 

model described in Chapter 6. 

7.2 Description of the plates 

7.2.1 Experimental model 

The system on which measurements were performed consisted of two large aluminium 

plates, joined by eight bolts, as shown in Figure 7.1. The experimental configuration of the 

measurement is shown in the photograph in Figure 7.2 (a). Figure 7.2 (b) shows the 

connection area of the plates. The other holes are present to allow a different experimental 

configuration in which two plates are connected at right angles by a thicker bracket. 

< — 750 — y 
20 

< — 750 — y 

9 
9 

Plate 1 9 
9 Plate 2 

A, =2.93 9 /z2 = 0.90 

9 
4 60 

500 

700 

Figure 7.1. Two coplanar aluminium plates coupled by eight bolts (bolt spacing 

d = 60 mm). All dimensions are in millimetres. 

187 



Chapter 7. Experimental Validation Using Two Plates Joined by Bolts 
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(a) Test structure of two plates joined by bolts 

(b) Bolts connection area 

Figure 7.2. Experimental structure of two-plate system joined by single line of bolts. 
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This stmcture was suspended using three elastic ropes to approximate free-free boundary 

conditions. The dimensions and properties of the plates are listed in Table 7.1. 

Table 7.1. Dimensions and properties of the plates. 

Parameter Plate 1 Plate 2 

Length Z, (mm) 750 700 

Width 6 (mm) 500 500 

Thickness A (mm) 2.93 0.90 

Modal density M(A;) 0.0064 0.019 

Average modal spacing A (Hz) 25.0 8.25 

Young's modulus E (N/m^) 7.24x10^° 7.24x10'° 

Poisson's ratio // 0.333 0.333 

Material density /? (kg/m^) 2.794x10^ 2.794x10^ 

If the DLF is very low, equipartition of modal energy [33] may occur between two 

subsystems. This may also result in an inaccurate result for the CLF due to strong coupling. 

Since the bare aluminium plate has low damping, unconstrained layer damping patches 

were attached on both sides of the plates as shown in Figure 7.2 (a) and (b) in order to 

increase the DLF. 

7.2.2 Analytical model 

This system was modelled using the DSM, as shown in Figure 7.3. The bolts, including 

nuts and washers, were considered at the joint in the model as a distributed mass (total 

0.173 kg) and a moment of inertia (1.296x10"^ kg-m^). In the model two opposite 

longitudinal edges are simply supported, as required for application of the DSM. This 

model is used to obtain a calculated effective CLF for comparison with the experimental 

results. 
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Plate 2 Plate 1 

Figure 7.3. Analytical model of the two plates. This system is divided into two subsystems 

ignoring the overlapping parts from the joint. All dimensions are in millimetres. Circles 

denote the distributed mass (My = 0.346 kg/m) of the bolts. 

7.3 Experimental determination of the CLF 

The DLF and the vibrational kinetic energy were measured for the coupled plate 

configuration. These are all the values necessary in order to obtain the experimental CLFs 

using equation (3.13). The DLFs for the two uncoupled plates were obtained by using the 

decay rate method. The DLF results for four different response points were arithmetically 

averaged. The accelerations of the source plate and the receiver plate were measured, 

when a point force was applied to one plate and then the other plate in turn. These were 

used to give the spatially averaged mean kinetic energy for each plate. Ten forcing points 

and ten response points for each plate were randomly selected and used in the experiment. 

The uncertainty introduced by using ten forcing and response points is further discussed in 

Section 7.3.2.2. 

7.3.1 Damping Loss Factor (DLF) 

The measurement of the DLF was conducted on the two uncoupled plates. In this 

measurement the decay rate method, which is based on the transient response of a resonant 

mode with linear damping, was used. This method can be applied to the measurement of 

the average damping of a group of resonant modes in a frequency band [33]. 
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7.3,1.1 Instrumentation 

The instrumentation used in the measurement of the DLF consisted of an impact hammer, 

an accelerometer, a charge amplifier, a band pass filter, and a signal analyser as listed in 

Table 7.2. Figure 7.4 shows the schematic diagram of the test instrumentation and the 

numbers in the figure represent the equipment listed in Table 7.2. The experimental 

configuration of the measurement is shown in the photograph in Figure 7.5. After the 

excitation due to the impact hammer was applied, the response signals of the 

accelerometers were conditioned by the charge amplifiers, band pass filtered and then 

acquired by the signal analyser. The band pass filter was set to a selection of 1/3 octave 

bands, centred on the frequencies 63, 125, 250, 500, 1000, 2000, 4000 and 8000 Hz. 

Table 7.2. Equipment used for the measurement of DLFs. 

Equipment Maker/Model Serial Number 

1 Impact Hammer B & K Type 8202 1271063 

2 Accelerometer B & K Type 4375 1239001 

3 Charge Amplifier B & K Type 2635 1827830 

4 Band Pass Filter Kemo Type VBF8 2209541 

5 Signal Analyser HP 3566A 2911A00263 

7.3.1.2 DLF measurements 

The transient acceleration response due to the impact was recorded in the time domain and 

stored in the personal computer for further processing. For the purpose of obtaining better 

estimates of the decay slope, the original acceleration signals were Hilbert transformed 

[95] in MATLAB. A plot of a typical example of the transformed data is shown in 

Figure 7.6. 
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PC 

Figure 7.4. Instrumentation used for the measurement of the DLF. (Numbers refer to items 

in Table 7.2). 

I % 

Figure 7.5. Experimental configuration for the measurement of DLF. 
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0.3 
Time [sec] 

Figure 7.6. Example of the decay slope in a 1/3 octave band centred on 500 Hz processed 

from time history data. 

The DLF is given by [33] 

77: 
2.2 

7 ^ 
(7.1) 

where ̂  is the centre frequency of a frequency band and Tgo is defined as the time taken 

for the response amplitude to decay by 60 dB after initial excitation. The value of Teo is 

extrapolated from the initial decay slope when the response signal is plotted as log-rms 

amplitude vs. linear time. The DLFs for four response points were examined in the selected 

1/3 octave frequency bands and then the results for the four points were arithmetically 

averaged. The decay time of the bandpass Alter was checked ((T'6o)]25Hz = 0 08 and 

(76o)]kHz = 0.01) and found to be much shorter than the higher damped plate ((76o)i25Hz = 

0.54 and (76o)ikHz = 0.05), so that the decay of the response signal was not due to the filter. 

Table 7.3 shows the centre frequencies used in the experiment and the averaged DLFs for 

the two uncoupled plates. Figure 7.7 shows a graphical plot of the DLFs. 
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Table 7.3. The average DLFs obtained for the two uncoupled plates. 

1/3 Octave Band 
m % Centre Frequency (Hz) m % 

63 0.014 0.036 

125 0.013 0.033 

250 0.012 0.030 

500 0.010 0.038 

1000 0.011 0.041 

2000 0.012 0.030 

4000 0.018 0.032 

8000 0.018 0.026 

Mean 0.014 0.033 

Centre Frequency [Hz] Centre Frequency [Hz] 

Figure 7.7. The DLFs measured (a) for the thicker plate (Ai = 2.93 mm) and (b) for the 

thinner plate (A2 = 0.9 mm). +, the DLF at each response point; —, the averaged DLF. 

7.3.2 Vibrational energy 

7.3.2.1 Instrumentation 

The instrumentation used in the measurement of the vibration energy consisted of an 

instrumented force impact hammer with steel tip which should give usable results in the 

0 - 7 kHz range, accelerometers, charge amplifiers and a signal analyser as listed in 

Table 7.4. Figure 7.8 shows a schematic diagram of the test instrumentation; the numbers 
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represent the equipment listed in Table 7.4. The experimental configuration of the 

measurement is shown in the photograph in Figure 7.9. 

Table 7.4. Equipment used for measurement of energy. 

Equipment Make/Model Serial Number 

1 Impact Hammer B & K Type 8202 1271063 

2 Accelerometer 1 B & K Type 4375 1239001 

3 Accel erometer 2 B & K Type 4375 0987160 

4 Accelerometer 3 B & K Type 4374 2209540 

5 Accelerometer 4 B & K Type 4374 2209541 

6 Charge Amplifier 1 B & K Type 2635 1827830 

7 Charge Amplifier 2 B & K Type 2635 777627 

8 Charge Amplifier 3 B & K Type 2635 1318160 

9 Charge Amplifier 4 B & K Type 2635 814962 

10 Charge Amplifier 5 B & K Type 2635 777629 

11 
Signal Analyser 
(Hewlett Packard) 

HP 3566A 2911A00263 

10 PC 

11 

Figure 7.8. Instrumentation used for the measurement of vibrational energy and input 

force. (Numbers refer to items in Table 7.4). 
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Figure 7.9. Experimental configuration for the measurement of vibrational energy and 

input force. 

The applied force was measured by the force transducer in the impact hammer. This was 

passed to the signal analyser through a charge amplifier, which can amplify the signal. The 

response signals of the accelerometers were also passed to the analyser via charge 

amplifiers. The built-in lower and upper frequency limits of the charge amplifiers were set 

to 2 Hz and 10 kHz. Additionally, anti-aliasing filters are incorporated in the acquisition 

hardware of the Hewlett Packard signal analyser. 

It is noted that the measurement error due to the transducer mass must be checked 

beforehand. The measurement error is given by 

error = 20 log,. (7.2) 

where Zp (=SyjphD from [48]) is the impedance of the plate, Za i=ja>M^) is the 

impedance of the accelerometer and is the mass of the accelerometer. In order to 

estimate the measurement error, the impedances of the two plates (approximated as 

infinite plates) and two accelerometers were compared and are shown in Figure 7.10. This 

figure shows that the thicker plate is not significantly affected by transducer mass below 
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10 kHz, but that an error of around 3 dB on the thinner plate can be expected at 7 kHz, 

where the impedances of the thinner plate and the lighter accelerometer are equal. If the 

heavier accelerometer were used on the lighter plate this frequency would be lowered to 

1.7kHz. Therefore two accelerometers of B & K Type 4375 (2.6 g) were used for 

vibration measurement of the thicker plate (A] = 2.93 mm) and two accelerometers of 

B & K Type 4374 (0.65 g) were used for the thinner plate (/z2 = 0.9 mm). 

(0 10 

10 
Frequency [Hz] 

Figure 7.10. hnpedance of infinite plates and transducers. plate 1 (Ai = 2.93mm); , 

plate 2 (^2 = 0.9mm); —, B & K Type 4375 accelerometer (2.6g); —, B & K Type 4374 

accelerometer (0.65g). 

Based on this information, the experimental data were measured up to 6.4 kHz. However, 

the input power spectral density was found to drop by around 20 dB from its maximum 

value by 2 kHz and consequently the coherence of the signals also falls at high frequencies, 

as shown in Figure 7.11. Therefore, the data analyses were limited to the range up to 

2 kHz. At this frequency the measurement error introduced by the mass loading from the 

accelerometers is limited to about 0.4 dB. 

The frequency resolution was chosen to ensure that several points lay within the half-

power bandwidth (;;/) of the plate modes. A typical value of the DLF is = 0.01 for the 
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thicker plate and % = 0.03 for the thinner plate. Therefore, two sets of experiments were 

performed, one in the low frequency range (0 to 400 Hz), with 0.125 Hz resolution, and 

another in the high frequency range (0 to 6.4 kHz), with 2 Hz resolution. The experimental 

data were analysed separately in the two frequency ranges, 25-400 Hz and 400-2000 Hz. 

The lower limit was chosen based on the theoretical first cut-on frequency of the thicker 

plate (29 Hz). The final results were combined to cover the frequency range from 25 to 

2000 Hz. 
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-20̂  

^ -30h 
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0.2 

10 10' 

(b) 

10̂  10 
Frequency (Hz) 

10 

Figure 7.1 

coherence 

1. Examples of data; (a) input power spectral density for plate 1 and (b) the 

of the signals. 

7.3.2.2 Measurements 

An impact point force, perpendicular to the surface of the plate, was applied to the source 

plate. The frequency response functions of acceleration due to the point force were 

measured at 2 response points for the source plate and at 2 points for the receiver plate 

simultaneously. A total of ten forcing points, randomly chosen for each plate, were 

sequentially excited and the vibration was measured using the four accelerometers. Then 

the accelerometers were moved and measurements were repeated until ten response points 

on each plate had been measured. For each forcing point on the thicker plate (plate 1) the 

response at each position on both plates was measured using a single impact. For 

excitation on the thinner plate (plate 2) an average of 3 impacts was used as the results 

were found to be less stable. 
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The uncertainty in the CLF estimate introduced by the number of forcing points and 

response points used was discussed in Chapter 4. For 10 forcing points the 90% 

confidence interval was found to be about ±1.5 dB. This corresponds to ±1.645 for a 

normal distribution [90] where 0"̂  is the standard deviation due to the number of forcing 

points. Hence the variance due to the forcing points, , is 0.83. The uncertainty of the 

experimental CLF introduced by using ten forcing points and ten response points is 

estimated by + where is the variance due to the number of response 

points. It is assumed that CTy" =(%/ by reciprocity. This gives cr= 1.3 dB, z.g. the 95% 

confidence interval due to the number of forcing and response points is ±2.6 dB. 

JO 1 

7.3.2.3 Spatially averaged kinetic energy 

The temporally and spatially averaged mean square velocity for a unit force was obtained 

from the frequency response functions of acceleration for a unit force, 

(7.3) 

where f is the plate number which is excited, y is that for which vibration is measured, is 

the number of response point on plate j and n is the number of excitation point on plate i. 

In order to compare the experimental data with the analytical results, the normalised data 

were used in the calculation of vibrational energy. 

For a uniform plate the maximum spatially averaged kinetic energy in a cycle normalised 

by the mean square force is given by [39] 

(7.4) 

where my is the mass of plate y and is the spatially averaged mean square 

velocity of plate y normalised by the mean square force. It is assumed that the mean total 

199 



Chapter 7. Experimental Validation Using Two Plates Joined by Bolts 

energy is equal to the maximum kinetic energy over a cycle, which will be the case where 

sufficient modes are present in a frequency band. Figure 7.12 shows the spatially averaged 

kinetic energy normalised by the mean square force for excitation on plate 1 and plate 2 

respectively. Finally, these results were averaged over 1/3 octave frequency bands to yield 

the 1/3 octave band energies and these were used in equation (3.13) to give the 

experimental CLFs. 

10 

m 
l5 10"̂  

10 

10 

(a) 

10 10 10 
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10 
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I 
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1 (b) -

- J: 
Ifc, 

-

-

-

10 10' 10 
Frequency [Hz] 

10 

Figure 7.12. Spatially averaged maximum kinetic energy normalised by mean square force 

when excitation was applied to (a) plate 1 and (b) plate 2 respectively: , 

normalised kinetic energy for the source plate; —, normalised kinetic energy for the 

receiver plate. 
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7.3.3 Experimental results for CLF 

The experimental CLF was obtained by substituting the spatially averaged kinetic energies 

and the measured DLFs into equation (3.13). In order to get the effective CLF using all ten 

forcing points, all sets of kinetic energies were averaged over the number of forcing points 

and then were averaged over the number of response points as in equation (7.3) before the 

calculation of the CLF. Results are shown in Figure 7.13. 

10 

10" 

F 10"̂  

10 

10 
10 10 10 

1/3 Octave Band Centre Frequency [Hz] 
10 

Figure 7.13. The experimental CLFs for the two-plate system. The damping values 

obtained from the experimental data as shown in Table 7.3 are used in calculating the CLF. 

, 1̂21 , 2̂1-

The sensitivity of the results to the DLF values used was investigated, as also shown in 

Figure 7.14. For this comparison, nominal damping values (zyi = 0.01 and % = 0.03) were 

used in calculating the CLF from the experimental data and these were adjusted by 

doubling the values for plate 1, by doubling the values for plate 2 and by doubling both 

values. It is observed that the damping value of the receiver plate has more effect than that 

of the source plate. These results show the same trend as the damping effect on the 

ensemble average CLF results described in Chapter 3 (see Figure 3.3). 
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10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

i r 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 7.14. The effect of the DLF on the experimental CLFs for the two-plate system. 

The damping values used in calculating the CLF from the experimental data were adjusted 

by doubling the values for plate 1, by doubling the values for plate 2 and by doubling both 

values. —, 771 = 0.01, 772 = 0.03; —, 7;i = 0.02, 7̂2 = 0.03; 7;i=0.01, 7/2 = 0.06; 

77i = 0.02, 7/2 = 0.06. 
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7.4 Analytical CLF determination 

7.4.1 Empirical model 

The analytical CLF obtained from two semi-infinite plates, described in Section 3.4, 

cannot be used for the two coplanar plates, since the transmission efficiency in equation 

(3.21) is based on a right-angled or simply supported joint. Similarly in equation 

(3.24) is based on a simply supported joint. 

The CLFs for bolt connected plate structures of similar material are given by [96], 

3/2̂  3/2 

S, 

Ac 

.V ® y 
for ,^ > cf (Z,me co/zngcrzoM) 

4A^ Ac, A/A/ ^ ^ 

V3my, 

(7.5) 

(7.6) 

where ĉ  (= ) is the longitudinal wavespeed, is the smaller bending 

wavelength of two plates, 6 is the length of the connection, is the number of bolts, and 

is the bolt spacing, assumed constant. 

An approximate result for the CLF of two plates joined in the same plane can be obtained 

by using equation (3.17) and the transmission efficiency at normal incidence given by 

Cremer and Heckl [48] 

^2 (()) - (7.7) 

where % = and for joints where the two plates have the same material 

properties but different thicknesses. The result for the normal incidence was regarded by 

Craik [49] as a good approximation to within 1 dB of the angular averaged values for 

Figure 7.15 shows a comparison of the CLFs for the two coplanar plates obtained from 

equations (3.17) and (7.7), the results obtained from equations (7.5) and (7.6), and the 

semi-infinite results for a right-angled connection. The CLFs for the semi-infinite plates 
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joined at right angles are much smaller than other two results: the CLFs results for the two 

coplanar plates obtained from equation (7.7) by 10 dB for ;yi2 and 7721, and those results 

obtained from equations (7.5) and (7.6) by 7 dB for and 9 dB for 7721, respectively. It 

will be noted that equation (7.5) does not satisfy the consistency relation (equation (3.9)). 

For the simply supported joint, since only the bending moment at the joint is able to 

transmit energy, the energy transmission for the right-angled plates can be smaller than 

that for the coplanar plates for which both the bending moment and the internal force at 

the joint can transmit energy. 

10' 10 10' 
1/3 Octave Band Centre Frequency [Hz] 

10' 10" 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 7.15. The CLFs (a) (b) —, the CLFs for the two coplanar plates obtained 

from equations (3.17) and (7.7); —, the CLFs for the two coplanar plates obtained from 

equations (7.5) and (7.6); the CLFs for the semi-infinite plates joined at right angles. 

According to equations (7.5) and (7.6), the connection between the two plates may change 

from a line connection to a point connection when the smaller bending wavelength of two 

plates equals the bolt spacing, = (f. These frequencies for the two plates are 7970 Hz for 

plate 1 (thick plate) and 2450 Hz for plate 2 (thin plate) respectively. In both figures the 

curves obtained from equations (7.5) and (7.6) drop at about 2500 Hz which the bending 

wavelength of the thinner plate is equal to the bolt spacing. Note that the mass of bolts is 

not included in equations (7.5) and (7.6). 

The transmission efficiencies for the above three cases shown in Figure 7.15 were calculated 

as a function of thickness ratio where all the plates have the same material properties. These 
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are shown in Figure 7.16. The corresponding transmission efOciency for the CLFs obtained 

from equations (7.5) and (7.6) is extracted from equation (3.17). This result is symmetrical 

as shown in that figure, whereas other two results are non-symmetrical. Also note that the 

transmission efficiency for the two plates joined in the same plane has a maximum value of 

1 when the thicknesses of the two plates are equal. 

Figure 7.16. The angular averaged transmission efficiency: —, the approximate result 

obtained from equation (7.7); —, f n extracted from the CLF equation (7.5); d for 

the two semi-infinite plates joined at right angles. 

7.4.2 DSM model 

The dynamic response of this system can be obtained by the DSM. In Chapters 2 and 4, 

models for a two-plate system have been developed and used to estimate the 'effective' 

CLF. Using the same method, the equations of motion of this system can be solved to 

yield the dynamic response of the structure, from which the effective CLF can be found. 

In a previous investigation on two finite plates in Chapter 4, it has been shown that if 400 

excitation points are used in the source plate to simulate a 'rain-on-the-roof type excitation 

the effect of the number of forcing points is limited to ±0.1 dB. A harmonic point 
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excitation is therefore applied at 400 randomly chosen points, avoiding edges. For each 

forcing point, the source plate is separated into two parts at the longitudinal position of the 

applied force. Each point force excites vibration in many different transverse orders, 

across the plate width. For a given frequency, all such components whose cut-on 

frequency is below the frequency under consideration have been included. 

First, to make an analytical model, the dynamic stiffness matrix for each plate was 

produced, and then assembled for the whole system. The two-plate system is shown in 

Figure 7.17. Plate 1 is separated into two sub-plates, la and ly, when a point force F is 

applied to plate 1 at an intermediate position. 

Subsystem 1 Subsystem 2 

Figure 7.17. Two-subsystem model. Plate 1 is separated into two sub-plates, la and ly, at 

the position of the point force F. 

The dynamic stiffness matrix for a single plate was given in Chapter 2. The global 

dynamic stiffness matrix, Kto[, of the total system can be derived by assembling the 

dynamic stiffness matrices of the three plates. An equally distributed mass (0.346 kg/m) 

and moment of inertia (2.59x10'^ kg-m^/m) due to the bolts are included in the global 

matrix in the appropriate elements of the matrix at the common edge. The reduced 

dynamic stiffness matrix, Kr, for flexuraJ motion of transverse order », is an 8x8 

frequency-dependent matrix. The response can be obtained from K/^F, where F is an 

applied force vector, for every frequency. The response of the subsystems was integrated 

analytically over the length and width of the plate for each transverse order n to give an 

accurate measure of its strain energy and summed over n at each frequency. In the 

calculation of the CLF, the bending strain energy was calculated for each sub-plate and 

then summed for each subsystem. This process was repeated for each excitation point on 

plate 1 and then for excitation points on plate 2. 
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7.4.3 Results from DSM model 

As in the previous chapters the term 'effective' CLF 7/,̂  is used for the individual 

realisation to distinguish it from the ensemble average CLF 7/,̂ . The effective CLF can be 

evaluated using equation (3.13). In equation (3.13) the consistency relation of the CLFs, 

M, 7/,2 = , is not assumed. If and 7/2 are known then the only unknowns are ,̂2 

2̂1 - In principle, one only needs excitation applied to one subsystem, but for numerical 

accuracy excitation is applied separately to both subsystems. The DLFs obtained from the 

experiment, which were described in Section 7.3.1, were used in the calculation of the 

dissipated power. 

The effective CLFs obtained from equation (3.13) for the DSM model are shown in 

Figure 7.18 and these results are compared with the analytical results based on equation 

(7.7) and the results obtained from equations (7.5) and (7.6). The influence of the mass of 

the bolts at the joint was investigated and is also shown in Figure 7.18. 
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Figure 7.18. The influence of the bolts on the effective CLFs, (a) 77,2 (from thick to thin) 

and (b) (from thin to thick) for the two-plate system. —, the effective CLFs when the 

bolts are considered in the model; —, the effective CLFs when the bolts are not 

considered; the results based on equation (7.7); , the results from equations (7.5) and 

(7.6). 
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When the influence of the bolts are considered in the DSM model, the effective CLF 

(from thick to thin plate) tends toward the result obtained from equations (7.5) and (7.6) 

above the first cut-on frequency of the thicker plate, = 29 Hz. However the result for 

^2, (from thin to thick plate) shows that the effective CLF is generally somewhat lower 

than the result from the formulae below 2 kHz. 

If the bolts are not considered in the model, the effective CLFs fluctuate against the result 

obtained from equations (7.5) and (7.6) below 300 Hz, whereas the predicted results are 

greater than the result based on equation (7.7) above 300 Hz. 

Since the two plates are coupled in-line by bolts, no in-plane motion is introduced by the 

out-of-plane excitation. The results for the effective CLFs are identical whether or not in-

plane terms are included in the DSM model. 

7.4.4 Comparison between measured and predicted CLFs 

The experimental CLFs obtained in Section 7.3.3 were compared with the analytical results 

predicted using strain and kinetic energies and are shown in Figure 7.19. Discrepancies 

between the experimental CLFs and the analytical results are quite likely to have been 

caused by the different boundary conditions between experiment and analysis. Also the 

use of kinetic energy in the experiment will cause errors at low frequencies, as discussed 

in Chapter 2. However, when the estimated uncertainty of ±2.6 dB in the experimental 

CLFs due to the limited number of force and response positions is considered (see 

Section 7.3.2.2), the experimental CLFs coincide reasonably well with the analytical 

results apart from around 50 Hz and above 800 Hz. There are no modes in the analytical 

model in the 50 Hz band. The remaining error may be occurred by the energy dissipation 

in the joint as the two plates are joined by bolts. 

Since ensuring agreement between analysis and experiment was not the main aim of this 

study, the level of agreement found in Figure 7.19 is considered acceptable. The main aim 

is, rather, to study the variability of the CLF, quantitatively as well as qualitatively, using 

the empirical model (equation (6.5)) developed in Chapter 6. 
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Figure 7.19. Comparison of the experimental CLFs with the analytical results: (a) 

(b) 7̂ 21 - —, analytical CLF predicted using strain energy; analytical CLF predicted 

using kinetic energy; —, experimental CLF. 

7.5 The variability of the experimental CLF 

In order to investigate the variability in the experimental CLF, the original experimental 

data were averaged over various different frequency bandwidths: i.e. 20, 40, 60, 100, 200 

and 400 Hz, rather than 1/3 octave bands. The expected variability 2(7 (in dB) for these 
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frequency bandwidths was obtained from equation (6.5) and is shown in Figure 7.20 using 

analytical estimates of Mcomb and #comb- The values of 2cr are frequency dependent as 

Mcomb dominates the variability for low frequency bandwidth and varies with frequency. 

The variability decreases as the frequency bandwidth increases and that of the 400 Hz 

frequency average result is shown to be less than 1 dB. Since there was no reliable 

theoretical curve to use as a reference point, the 400 Hz frequency average result was used 

as a reference to obtain a normalised CLF from the experimental data. 

CO T3 
D 
CM 

10 10 
Frequency [Hz] 

Figure 7.20. The expected variability 2(7 (in dB) of the effective CLF for various different 

frequency bandwidths. —, 20 Hz; —, 40 Hz; - - 60 Hz; , 100 Hz; —, 200 Hz; , 

400 Hz using the empirical model. 

The measured CLF ratio, based on / I / = 20, 40, 60, 100 and 200 Hz frequency bandwidths, 

1 0 I o g , o 4 0 0 H z obtained. This is compared in Figure 7.21 with the =1:2(7 

estimates obtained from equation (6.5). Note that the frequency range is limited by the use 

of the 400 Hz average as a reference. The percentage of the frequency points falling within 

these bounds was determined and is listed in Table 7.5. In each case the =l=2cr bands are 

shown to be good upper and lower limits for the experimental CLF ratio. 
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Figure 7.21 (a)-(c) . The measured CLF ratio averaged for frequency bandwidth of 

(a) 20 Hz, (b) 40 Hz, and (c) 60 Hz, and the predicted ±2cr bands obtained from 

equation (6.5). — lOlogiQ (< >); —, ±2(7. 
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Figure 7.21 (d) - (e). The measured CLF ratio averaged for frequency bandwidth of 

(d) 100 Hz and (e) 200 Hz, and the predicted ±2cr bands obtained from equation (6.5). , 

lOlogio (< > / <77. 400% >); ± 2 a. 

Table 7.5. Percentage of points falling within ±<7 and =l:2cr bands for the experimental 

CLF ratio. 

Band lOlOgjQ f}i2 > / < 1̂2.400Hz lOlOgjQ (< 7)21 > / < 7)21 4ooHz 

±(7 85.2 % 73.2% 

i 2 ( 7 98.9% 96.0% 

Values falling within ± a and ±2cr for a normal distribution are 68.3 % and 

95.4 % respectively. 
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7.6 Conclusions 

From the results of experimental and analytical work for two coplanar plates joined by 

bolts, described in this chapter, the following conclusions can be drawn: 

(a) Considering the estimated uncertainty of the experimental CLFs, the experimental 

CLF estimates agreed reasonably well with the analytical results above 30 Hz, 

although the results around 50 Hz and above 800 Hz were not so good. Some 

discrepancies may be caused by the different boundary conditions between 

experiment and analysis and the use of kinetic energy in the experiment. 

(b) Since the main aim is to study the variability of the CLF, quantitatively as well as 

qualitatively, using the empirical model developed in Chapter 6, the level of 

agreement found is considered acceptable. This conclusion supports the argument that 

the analytical results obtained in the previous chapters are also acceptable. 

(c) Over 95% of the experimental CLF values fell within the ±2(7 bounds predicted by 

the empirical model developed in Chapter 6. This conclusion suggests that the 

empirical model obtained from two plates joined at right angles may be applicable to 

other geometries. 
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CHAPTER 8 

CONSEQUENCES FOR SEA MODELS 

8.1 Introduction 

In Chapter 3 the SEA framework was introduced and some of the methods to evaluate the 

CLF were discussed. In the remaining chapters the behaviour of two coupled rectangular 

plates has been investigated using the DSM. The effective CLF for a particular realisation 

of two coupled rectangular plates has been evaluated and shown to fluctuate signiOcantly 

at low modal overlap, relative to the ensemble average CLF or the semi-infinite result. An 

empirical model for the confidence interval of the effective CLF, in terms of the modal 

overlap factor and the number of modes in a frequency band, has been derived and finally 

shown to agree with results from an experimental study. 

However, SEA predictions give results in terms of average response energies in the 

subsystems. These results will depend on the input power values, the modal densities, and 

the DLFs as well as the CLFs. This chapter discusses briefly the consequences of the 

variation in the CLF for the subsequent SEA predictions. The variation of the CLF is 

obtained from the empirical model developed in Chapter 6. In order to investigate the 

sensitivity of the resulting SEA prediction, a Monte Carlo simulation is used. The ratio 

between the energy of the receiver plate and that of the source plate, obtained from the 

SEA equations, is compared with results directly obtained f rom the DSM model of the 

system. 

As the variability of the CLF has only been considered for two directly coupled 

rectangular plates, the present work is also limited to a two-plate system. Other systems 

could be considered in a similar manner. 
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8.2 Monte Carlo simulation 

8.2.1 Method 

In order to investigate the effect of variations in the CLP on the results of an SEA 

prediction, consider an SEA model of the baseline two-plate structure used in Chapter 4 

(/*! = 3 mm, 1,1 = 0.5 m, A2 = 2 mm, = 1.0 m, 6 = 1.0 m and = 0.1: see Figure 

4.1). Calculations are performed initially in 1/3 octave bands. The results will be 

considered in terms of the ratio of the energy of the receiver E.eceiver to that of the source 

plate -Esoiirce-

When power is injected to plate 1 in a frequency band centred at (O, the energies of the two 

plates determined by the power balance equations, (3.1) and (3.2), are given by 

E,'! 

'E' A) "2, 

^i+;7i2 

, %+^21 

1 
' " L (8T) 
0 

where rj[^ and are the CLFs. In the present case these are considered to be perturbed 

relative to the ensemble average result of Section 3.5. These CLFs are determined by 

using the estimated standard deviation O" of the logarithmic CLF ratio, lOlog,,, 

in dB. The estimated cr is obtained from the empirical model given by equation (6.5) and 

is shown in Figure 8.1 for this baseline situation. The CLFs 7/̂  are given by 

(8.2) 

and i;;, (8.3) 

where the perturbation of the CLF with respect to the relevant ensemble value, , is 

obtained according to a Monte Carlo simulation. This is an empirical method that uses 

computer-generated random numbers to obtain large numbers of samples from any 

specified distribution. In the present work, the normally distributed random numbers for 

1000 samples were obtained using a MATLAB built-in function, 'randn' with zero mean 

and standard deviation <7. Two extreme cases were considered for the perturbation of the 

CLF: one is where the variations At;;, and A ^ i are totally dependent and the other where 

they are considered to be independent. The former requires the same relative variation, 
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A77,2 = A7/2] , whilst in the latter case A77,2 ^ i" which each one is normally 

distributed and randomly chosen independently. 

Finally the energies for the two plates are calculated by solving equation (8.1) for each of 

the 1000 sets of 77,', and the distribution of Efeceiver / ŝouice is obtained. 

CO 
T3 

10 10 10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 8.1. The estimated standard deviation (T of lOlog,,, obtained from the 

empirical model for the variability of the effective CLP in equation (6.5) for the parameters 

of the baseline model of two plates. 

8.2.2 Results in 1/3 octave bands 

For the case where A77,2 and AT/̂ , are dependent, the result is shown in Figure 8.2. This 

shows the mean value of the perturbed SEA simulations, the prediction obtained using the 

ensemble average CLF 7/,;, ens and the energy ratio calculated by the DSM. Also shown is a 

range of ±5', where is the standard deviation of the energy ratio in dB obtained from the 

perturbed SEA simulations. The DSM result is approximately bounded by the range of 

the mean SEA simulations across the whole frequency range. The mean value of the 

simulations and the result obtained using the ensemble average CLF differ slightly 

at the lower frequencies. This may be caused by non-linear components which occur in the 
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inversion of the loss factor matrix in the process of solving equation (8.1); consequently 

the results of the energy ratio are not normally distributed although A;/ are normally 

distributed. The difference between the mean SEA simulations and the prediction using 

the ensemble average CLF reduces as frequency increases. In practice this difference is 

only significant when is greater than about ±5dB. Where is greater than this it is 

probably inappropriate to use SEA as the results are too unreliable for practical 

application. 

% 
Uj 
Uj" 
CD 
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10 10" 10" 10 
1/3 Octave Band Centre Frequency [Hz] 

21 Figure 8.2. The energy ratio in dB, lOlog^q for two plates when At/jj and A//, 

are dependent. —, DSM; prediction using ens', , mean value of perturbed SEA 

simulations; —, from perturbed SEA simulations. 

The skewness and kurtosis of the Monte Carlo results for lOlogjo were investigated 

and are shown in Figure 8.3. The distribution of the logarithmic energy ratio is negatively 

skewed below 250Hz, with respect to a normal distribution. The value of (kurtosis-3) is 

close to zero for most of the frequency range but below 12.5Hz the distribution is peaked. 

As frequency increases, the skewness and (kurtosis-3) are small and close to their 

expected standard deviation for a normal distribution, as given by Snedecor and Cochran 

[91]. 
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Figure 8.3. (a) skewness and (b) (kurtosis-3) for lOlogioCEi/Ei) from Monte Carlo 

simulations when A?/,; and are dependent. The expected standard deviation (S.D.) 

of each quantity for a normal distribution is given by Snedecor and Cochran [91]. 

When and A%] are assumed to be independent, the mean values and the standard 

deviation of the energy ratio in dB are as shown in Figure 8.4. Again the result obtained 

from the DSM is shown for comparison. 

00 "O 

.2 o 
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1/3 Octave Band Centre Frequency [Hz] 

Figure 8.4. The energy ratio in dB, lOlog^g ), for two plates when A;/,2 and A%, 

are independent. —, DSM; prediction using ens; , mean value of perturbed SEA 

simulations; —, from perturbed SEA simulations. 
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The DSM energy ratio again falls approximately within i y of the simulation over the 

whole frequency range, but the bounds at low frequency are wider than the previous result 

in Figure 8.2. At the lower frequencies the skewness and (kurtosis-3) are smaller than the 

previous results, as shown in Figure 8.5. 
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Figure 8.5. (a) skewness and (b) (kurtosis-3) for 101ogio(E2/E]) from Monte Carlo 

simulations when A/7,2 and A/y î are independent. The expected standard deviation (S.D.) 

of each quantity for a normal distribution is given by Snedecor and Cochran [91]. 

It is found in the present case that the estimated standard deviation a obtained from the 

empirical model for the variability of the effective CLF is similar to the standard deviation 

j' of the energy ratio in dB when AT;,̂  and A/y ,̂ are independent. This is shown in 

Figure 8.6. When A;;,2 and A%, are treated as dependent the resulting standard deviation 

5 of the energy ratio is somewhat lower than a . The standard deviations all decrease as 

frequency (or modal overlap) increases. 

8.2.3 Results for constant modal overlap factor 

Since the damping values of the two plates in the above calculations were kept constant as 

771 = % = 0 1, the modal overlap factors for the two plates varied with frequency. 

219 



Chapter 8. Consequences for SEA Models 

CD 
•Q. 

C 

0 
"cC 1 "O 
"E 
CO •D 
C 

I 

10 10 10 
1/3 Octave Band Centre Frequency [Hz] 

Figure 8.6. Standard deviations in dB obtained from the empirical model (Figures 8.1) and 

Monte Carlo simulations (Figures 8.2 and 8.4). —, a obtained from empirical model; .y 

when A77j2 A772, are dependent; —, s when A;;,2 and are independent. 

Three different levels of frequency-dependent DLF (low damping = 1//", medium 

damping = 3^, and high damping = as used in Section 6.4.1.2, were next considered 

in order to give a constant modal overlap factor. The bounds of the SEA simulation 

were obtained by Monte Carlo simulation with At/jj and A ^ , dependent or independent, 

as before. The energies for the two plates were evaluated by the DSM and were averaged 

over overlapping frequency bands. In this section 20 Hz and 200 Hz bands are considered 

as examples. 

The results of the energy ratio averaged over 20 Hz and 200 Hz bands are shown in 

Figures 8.7 - 8.10. Figures 8.7 and 8.8 show the results obtained when it is assumed that 

A77j2 and A%, are dependent. Results are plotted of the energy ratio in dB, lOlog,,, 

for the two plates. Results are given for the three different levels of DLF: (a) low damping 

(Mcomb = 0.08), (b) medium damping (Mcomb = 0.24) and (c) high damping (Mcomb = 0.80), 

where Mcomb is the combined modal overlap factor given by equation (6.2). 
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Figure 8.7. The energy ratio averaged over 20 Hz bands in dB, lOlog^g when 

A 7/,2 are considered dependent: (a) low damping (Mcomb = 0.08), (b) medium 

damping (Mconib = 0.24) and (c) high damping (Mcomb = 0.80). —, DSM; prediction 

using % , mean value of simulation; —, of simulation. 
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Figure 8.8. The energy ratio averaged over 200 Hz bands in dB, 101og;Q(^/^) , when 

and Azŷ i are considered dependent: (a) low damping (Mcomb = 0.08), (b) medium 

damping (Mcomb = 0.24) and (c) high damping (Mcomb = 0.80). —, DSM; prediction 

using 77;;, , mean value of simulation; —, ±y of simulation. 
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As the modal overlap factor increases, the bounds ty of the SEA simulation decrease. 

When A;/;, are assumed independent, ± e bounds of the SEA simulation are 

larger than those obtained when A;;,̂  are assumed dependent, as shown in 

Figures 8.9 and 8.10. It is noted that for a 20 Hz bandwidth M is important in determining 

the bounds, whilst for a 200 Hz bandwidth N is important, rather than M. 

The percentage of the values of the energy ratio obtained from the DSM falling within the 

range dB of the SEA simulation was investigated and is listed in Table 8.1. In most 

cases the number of points is similar to the expected 68 % for a normal distribution for the 

dependent case, slightly more points falling in the range for the independent assumption. 

Table 8.1. The percentage of the values of the exact energy ratio obtained from the DSM 

falling between the upper and lower bounds ±5 dB of the perturbed SEA simulations. 

Model 
Baseline 

model 
Low damping 

model 
Medium damping 

model 
High damping 

model Model 

1/3 octave 
bands 

20 Hz 200 Hz 20 Hz 200 Hz 20 Hz 200 Hz 

Dependent 64 73.1 61.2 73.3 63.3 72.5 81.2 

Independent 68 81.4 72.8 82.6 75.0 79.2 86.1 

Table 8.2 compares the various standard deviations. <J is the expected standard deviation 

of the CLP ratio from the model of Chapter 6, 5 is the standard deviation of the perturbed 

SEA results. By subtracting the mean of the perturbed SEA results from the DSM results, 

these may be averaged over frequency, yielding the standard deviation ^ C These results 

are given for the three levels of damping and two frequency bandwidths considered. The 

values of 5 for the perturbed SEA simulations are similar to those for CT, the estimated 

standard deviation for the CLP. The difference (s -s^) for the 20 Hz bandwidth decreases 

as the DLF increases, whereas for the 200 Hz bandwidth it increases with increasing the 

DLF; nevertheless, the standard deviation of the perturbed SEA results ^ is very small. 
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Figure 8.9. The energy ratio averaged over 20 Hz bands in dB, lOlog^g when 

A;/,2 are considered independent: (a) low damping (Mcomb = 0.08), (b) medium 

damping (Mcomb = 0.24) and (c) high damping (Mcomb = 0.80). —, DSM; prediction 

using ens', , mean value of simulation; —, ±s of simulation. 
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Figure 8.10. The energy ratio averaged over 200 Hz bands in dB, 101og;Q(^/^) , when 

considered independent: (a) low damping (Mcomb = 0.08), (b) medium 

damping (Mcomb = 0.24) and (c) high damping (Mcomb = 0.80). —, DSM; prediction 

using % ens', , mean value of simulation; —, of simulation. 
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Table 8.2. The standard deviations (cr of the CLF obtained from the empirical model for 

the variability of the effective CLF, ^ of the perturbed SEA simulations and j'^of DSM 

results) for three different damping models. 

Frequency 
band A;7i2, A;72i damping (7 5- ^ 

20 Hz 

Dependent 

low 4.99 4.02 3.52 0.50 

20 Hz 

Dependent medium 3.87 3.29 2.84 0.45 

20 Hz 

Dependent 

high 2.50 2.19 1.96 0.23 
20 Hz 

Independent 

low 4.99 5.23 3.52 1.71 
20 Hz 

Independent medium 3.87 3.92 2.84 1.08 

20 Hz 

Independent 

high 2.50 2.60 1.96 0.64 

200 Hz 

Dependent 

low 0.61 0.51 0.52 -0.01 

200 Hz 

Dependent medium 0.61 0.51 0.50 0.01 

200 Hz 

Dependent 

high 0.60 0.52 0.36 0.16 
200 Hz 

Independent 

low 0.61 0.62 0.52 0.10 
200 Hz 

Independent medium 0.61 0.64 0.50 0.14 

200 Hz 

Independent 

high 0.60 0.61 0.36 0.25 

8.2.4 Investigation of coupling strength 

The ratio of the effective CLF fj-̂  to the DLF for the source plate rji is an indication of the 

coupling strength [88]; i.e. if the ratio is greater than 1, then the subsystems may be 

considered 'strongly coupled'. These ratios were investigated and are shown in Figures 

8.11 and 8.12. The models considered are the baseline model in 1/3 octave bands as well 

as results averaged over 20 Hz and 200 Hz frequency bands for the three levels of 

damping. For the 1/3 octave model (Figure 8.11), which has a constant loss factor 77, the 

two plates are only strongly coupled at low frequencies. For the three cases of the different 

damping values averaged over 20 Hz frequency bands (Figure 8.12 (a), (c) and (e)), the 

two plates are strongly coupled at some frequencies. The results for 200 Hz bands (for 

which 77 is frequency dependent) seem relatively insensitive to the damping values 

(Figure 8.12 (b), (d) and (f)) and lie below 1; the two plates may be considered weakly 

coupled. 
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Another indication of the coupling strength is the coupling parameter defined by 

Wester and Mace [50]: when the gamma value is positive and much less than unity, the 

subsystems can be considered weakly coupled, otherwise they can be considered not 

weakly coupled. Determining the coupling parameter for normal incidence, using 

equation (3.25), it was found to be below unity f o r / > 175 Hz for the baseline model. For 

the three cases for which the damping is frequency dependent, the gamma values were 

above unity for the low and medium damping cases and below unity only when the 

frequency is between 20 and 60 Hz for the high damping case. Since these gamma values 

are based on the ensemble average [50], the corresponding gamma values in the realisations 

and the frequency averaged investigations; e.g. 1/3 octave, 20 Hz and 200 Hz bands, in 

Figures 8.11 and 8.12, cannot be directly compared. 

From these two measures of coupling strength it is seen that the cases considered include 

both weak and strong coupling. It may therefore be concluded that the bounds obtained 

from the perturbed SEA simulations give a good approximation to the actual variations 

±s^, irrespective of the coupling strength (see Figures 8.7 and 8.9). 

10 10" 10" 
1/3 Octave Band Centre Frequency [Hz] 

Figure 8.11. The ratio of the effective CLF fj-j to the DLF fo r the source plate rji for the 

baseline model in 1/3 octave bands. —, ^ 1 2 — » ^2/^2-
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Figure 8.12. The ratio of the effective CLF to the DLF for the source plate 77,: low 

damping model ((a) 20 Hz bands, (b) 200 Hz bands ); medium damping model ((c) 20 Hz 

bands, (d) 200 Hz bands); high damping model ((e) 20 Hz bands, (f) 200 Hz bands). , 

^,2/771; 
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8.3 Concluding remarks 

SEA predictions for a two-plate system were obtained by perturbing the CLF according to 

the previously developed empirical model. The following conclusions can be drawn from 

these results. 

The standard deviation (±0") of the CLF results corresponds approximately to the standard 

deviation (±y) of the consequent energy ratios. Both standard deviations depend on the 

modal overlap factor and frequency average bandwidth. If the frequency average is carried 

out over a large bandwidth, the effect of the modal overlap factor on the standard 

deviation becomes small. 

The bounds ±9 obtained from the perturbed SEA simulations give a good approximation to 

the actual variations in the DSM results even in the case of strong coupling. 

The mean value of the SEA simulations deviates from the result obtained using the 

ensemble average CLF below a frequency where the standard deviation (±y) of the energy 

ratio is greater than about ±5 dB. This frequency could in any case be seen as a lower limit 

for application of SEA, below which the results are unreliable. 

It is noted that the empirical model developed in this research was obtained from the 

limited cases of two coupled rectangular plates. The empirical model can be used to find 

the variability of the effective CLFs for a system of two coupled subsystems or to estimate 

the resulting variability of the SEA prediction for that system. However, it is not known 

how to apply the empirical model to a multi-subsystem model. In particular, the CLFs for 

the multi-subsystem model will not be independent, as some modal behaviour affects % 

for a given receiver subsystem y for all other subsystems A 
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CHAPTER 9 

CONCLUSIONS 

9.1 Introduction 

This research was undertaken to investigate variability in the CLF using two coupled 

rectangular plates as an example and to develop an empirical model to quantify the 

uncertainties in the CLF. The DSM was used in order to obtain the exact dynamic 

response for the particular structures across a wide frequency range. Extensive parameter 

studies have been performed to determine the variability of the CLF. An empirical model 

describing the variability of the CLF was developed and validated. The subsequent 

confidence intervals for SEA predictions using this variability were investigated using 

Monte Carlo simulation. Results and conclusions drawn from this research are 

summarised here, followed by recommendations for future work. 

9.2 Summary of results and conclusions 

9.2.1 Background research and theory 

A number of relevant research studies and complementary approaches applicable to the 

solution of dynamic problems in the mid to high frequency range have been reviewed and 

were presented in Chapter 1. This highlighted the difficulties and, in particular, the 

uncertainties which are present in SEA due to variability in the coupling loss factors. 

In Chapter 2 the theoretical predictions of the dynamic response of a uniform plate to an 

applied harmonic point force were described and the DSM models were developed. This 

was extended to two coupled plates, with a line connection at the joint. 

It was demonstrated that for reliable results, all half-sine orders with a cut-on frequency 

below the frequency of analysis should be included. 
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The input power for a point force has been compared with the dissipated power. It was 

clariHed that the strain energy should be used, at least in the low and medium frequency 

range, since significant errors occur in the dissipated power calculation if kinetic energy is 

used when hysteretic losses are introduced. 

In-plane motion has also been considered for two coupled plates in an L shape configuration. 

Although the in-plane motion has only a small effect in the examples considered, it may 

be important for large structures or multi-plate structures. 

The theoretical background of the SEA framework was presented in Chapter 3. Various 

methods to evaluate the effective CLF, the ensemble average CLF and the CLF based on 

semi-infinite plates, were discussed. Previously published theoretical upper and lower 

bounds were reviewed for comparison with the variability of the CLF to be evaluated in 

the following chapters. 

9.2.2 Analytical CLF determination and the modal behaviour of the two 

plates 

Various analytical models were presented in Chapter 4 in order to evaluate the effective 

CLFs and to investigate the influence of the modal behaviour of the source or receiver 

plate or both. In order to isolate the effects on the variability of the way in which the 

systems are excited, a sensitivity investigation was performed. Confidence intervals were 

obtained for six different sized sets of forcing points. It was seen that the confidence 

intervals are large for small numbers of forcing points and reduce as more points are 

taken. They are not strongly dependent on frequency. As the number of forcing points 

increases, the effective CLF estimates become more reliable, so that for a 90% confidence 

interval of ±1.5 dB at least ten points should be taken. For 400 forcing points it can be 

expected that the uncertainty will be reduced to ±0.25 dB. By reciprocity the same is 

expected to apply to the number of response positions used. 

The effective CLFs, for finite plate realisations, were calculated using three different 

methods, ;.g. based on the actual mode count, the asymptotic modal density and matrix-

inversion from a 'numerical experiment'. Of these, the latter was found to be more 

reliable. These results were compared with the CLF obtained from semi-infinite plates. 
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The effective CLF for finite plates fluctuated considerably relative to the CLF based on 

semi-infinite plates at low frequencies and agreed well with the semi-infinite plate results 

at high frequencies. It was also shown that the consistency relationship (MiT/n = M2%i) is 

satisfied by the predicted CLF at high frequencies, although at low frequencies 

considerable variation is found. 

Although the effective CLF results converged to those of an infinite plate at high 

frequencies, some discrepancies remained. The effect of the plate thickness on the high 

frequency asymptotic behaviour was investigated in terms of the transmission efficiency T. 

Good agreement was found for dissimilar thicknesses, but for similar thicknesses it was 

found necessary to introduce a correction to the infinite plate by a factor of 2/(2-t). The 

remaining discrepancy between the effective CLF and the semi-infinite result was attributed 

to the influence of in-plane motion in the finite plate results and its neglect in the semi-

infinite plate results. 

The relationship was investigated between peaks and troughs in the effective CLF and in 

the ratio between the energy of the receiver plate and that of the source plate, and these 

were related to the modal behaviour of the plates. The effective CLF estimates and the 

energy ratio at low frequencies, in the region of the first few modes, contain peaks which 

correspond to the uncoupled modes of the receiver plate. Such peaks do not appear at 

resonances of the source plate. 

The variability in the effective CLF, or the transmission efficiency, due to the modal 

behaviour of both the source and receiver plates has been examined using a systematic 

investigation involving both finite-width semi-infinite and finite plates. 

The transmission efficiencies were evaluated between a semi-infinite source plate and a 

Unite receiver plate with di%rent thickness ratios. At low frequencies, the transmission 

efficiency oscillates considerably around that for two semi-inHnite plates, converging as 

frequency increases. The peaks and troughs in the transmission efficiency correspond to 

the modal behaviour of the receiver plate. The uncoupled finite plate could be approximated 

using either simply supported or clamped boundary condition at the interface, which 

represent two extremes between which the coupled plate may be considered to lie. 

A finite source plate coupled to a semi-infinite receiver plate was considered to investigate 

the influence of the modal behaviour of the source plate. At low frequencies, the effective 
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CLF fluctuates around the CLF for two semi-infinite plates, but it is relatively smooth 

compared to the fluctuations for a semi-infinite source plate coupled to a finite receiver 

plate. These fluctuations in the effective CLF are found to be due to the predominance of 

particular angles of incidence corresponding to the source plate modes, rather than due to 

the direct influence of the modal behaviour of the source plate. 

Therefore it was found that the modal behaviour of both the source and receiver plates 

affects the energy transmission between two subsystems, rather than only that of the 

receiver plate as asserted by Craik et al. [44]. Nevertheless, the results were found to be 

more sensitive to the DLF of the receiver plate than that of the source plate. 

9.2.3 Variability of the CLF 

In order to quantify the variability of the effective CLF, a wide range of parameter 

investigations was performed using finite plate simulations which incorporate variations in 

both modal density and modal overlap, either together or separately. 

Chapter 5 presented an initial parametric investigation on the variability of the effective 

CLF, performed using DSM. The parameters varied were: (i) the plate thickness latio, 

(ii) the length ratio, (iii) the length-to-width ratio of the two plates and (iv) the damping 

loss factors. In each case, the modal density and the DLF were constant with frequency, 

whilst the modal overlap factor increased with increasing frequency. Results were presented 

in one-third octave bands. The ratio of the effective CLFs for finite plates to the CLF 

based on semi-infinite plates was determined and compared with Craik's upper and lower 

bounds. 

At low modal overlap the effective CLFs fluctuated considerably, whereas the variability 

generally reduced as frequency increased. The results fall within a slightly wider range 

than Craik's upper and lower bounds, although these bounds are shown to be useful 

indications of the variability in the CLF. However, they do not account for remaining 

variability when the modal overlap is greater than about 0.4. Better agreement occurs 

when the modal overlap of both subsystems is taken into account, rather than that of the 

receiver alone, as originally proposed by Craik. 
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A further parametric investigation was performed in Chapter 6. Two parameters, the 

average number of modes in a frequency band JV and the modal overlap factor M, were 

considered as independent control parameters. The ensemble average CLF discussed in 

Section 3.5, instead of the CLF based on semi-infinite plates, was used to provide a more 

consistent basis for comparisons. Results were determined in overlapping frequency bands 

of constant bandwidth. The ratio of the frequency averaged effective CLF to the ensemble 

average CLF expressed in dB was obtained and the mean over all centre frequencies and 

the standard deviation a were determined. The mean was found to be close to 0 dB, whilst 

the range of ±2(7 reduces as the bandwidth increases. 

The variance of each case was investigated to find the variability of the effective CLF 

in terms of two new parameters, the 'combined' modal overlap factor 

and the 'combined' number of modes = 2/(N;"'+A^"'). The two parameters as proposed 

are also applicable for the limiting cases of an infinite plate coupled to a finite plate. An 

empirical formula for the variance of the effective CLF in dB was derived in terms of 

A/coinb and comb -

^ c o m b + ^ c o m b / l 6 

It was shown that the empirical model provides improved confidence intervals of the CLF 

compared to the previously published estimates [33, 43]. The estimates of confidence 

intervals based on the empirical model were also compared with the results of the effective 

CLF for various parameter variations obtained from Chapter 5. These estimates gave 

better upper and lower bounds for the effective CLF than Craik's model discussed in 

Chapter 5. 

Statistical investigations were carried out to review the distribution of the effective CLF 

and the interdependence of 7712 and 7721. As a result of the Chi-square test and a study of 

the skewness and kurtosis, the probability distributions for the logarithmic CLF ratio are 

unlikely to be strictly normally distributed. Nevertheless, for simplicity a normal 

distribution remains a reasonable approximation. It was found that 7712 and 7721 are not 

independent of each other, although the degree of correlation varies from one case to 

another. 
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9.2.4 Validation of the CLF variability and SEA consequences 

Experimental validation of the empirical model on two coplanar plates joined by bolts was 

presented in Chapter 7. In the experimental study, the measured vibrations were averaged 

over ten forcing points and ten response points. The experimental and analytical CLFs 

were investigated and were discussed in relation to the empirical model for the variability 

of the effective CLF developed in Chapter 6. 

The experimental CLF estimates agreed reasonably well with the analytical results above 

30 Hz, although the results around 50 Hz and above 800 Hz were not so good. Some 

discrepancies may be caused by the different boundary conditions between experiment 

and analysis and the use of kinetic energy in the experiment. Since the main aim is to 

study the variability of the CLF, quantitatively as well as qualitatively, the level of 

agreement found was considered acceptable. 

It was shown that over 95% of the experimental CLF values fell within the ±2cr bounds 

based on the empirical model developed in Chapter 6. This suggests that the empirical 

model obtained from two plates joined at right angles may be applicable to other 

geometries. 

The consequences for SEA predictions of the variation in the CLF were presented in 

Chapter 8. The variation in the CLF was obtained from the estimated standard deviation <J 

based on the empirical model for the variability of the effective CLF developed in 

Chapter 6. A Monte Carlo simulation was used to investigate the effect of perturbing of 

the CLF with respect to the relevant ensemble value. The energy ratio between the 

receiver plate and the source plate obtained from the SEA equations was compared with 

the exact analytical DSM results. 

From the results in 1/3 octave bands, it was found that about 65% of the exact energy ratio 

results falls within ± one standard deviation (5) of the perturbed SEA simulations. The 

mean value of the SEA simulations diverges from the result obtained using the ensemble 

average CLFs at low frequencies. This occurs at frequencies where the standard deviation 

of the energy ratio is greater than about ±5dB. This frequency could be seen, in any case, 

as a lower limit for application of SEA, below which the results are too unreliable. 
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From the results for 20 Hz and 200 Hz bandwidths and constant modal overlap factors, are 

greater percentage of the values of the exact energy ratio fall within the range ±5 from the 

perturbed SEA simulations, particularly when the modal overlap factor and frequency 

bandwidth are large. As the modal overlap factor increases, the bounds of the SEA 

simulation decrease slightly. It was shown that the SEA predictions are more reliable 

when the modal overlap factor (or the DLF) and frequency bandwidth are large. This 

corresponds to a fundamental hypothesis of the application of SEA. For a small bandwidth 

the effect of the modal overlap factor on the bounds is large, whereas for a large bandwidth 

the number of modes in a frequency band is important, not the modal overlap factor. 

The variability (±cj) of the effective CLP is similar to the variability (±s) of the 

subsequent energy ratios (both expressed in dB). When the CLFs are assumed to be 

independent of each other, the bounds ±s obtained from the SEA simulation are slightly 

larger than those obtained when they are assumed to be dependent. The bounds obtained 

from the perturbed SEA simulations give a good approximation to the actual variations 

even in the case of strong coupling. 

9.3 Recommendations for future research 

This project has investigated the variability of the effective CLF for two rectangular 

plates. An empirical formula for the variability of the CLF, to assist in quantifying the 

uncertainty of the SEA predictions, has been derived. It is not possible without further 

investigation to generalise this result to structures consisting of different geometry or 

made up of multiple subsystems. Generally, real built-up structures such as an automotive 

vehicle have arbitrary geometry and complicated connections between subsystems. SEA is 

a useful method to predict the structural vibration and sound in those complex structures at 

mid to high frequencies, although other variant methods can also be used to obtain the 

dynamic response of complex structures. It would be possible to evaluate the variability of 

the CLF and to quantify the uncertainty of the SEA predictions using the same methodology 

as in this research. Some suggestions of particular relevance to an automotive vehicle are 

as follows. 

An automotive vehicle consists of hundreds of panels, beam-like structures and pre-

assembled substructures. Especially body panels are pressed into the required geometry 
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from thin and flat rolled plates. Corrugations and stiffeners are usually added into panels 

to improve the rigidity of thin plates and these panels are assembled by spot welding or 

bolted connections. Most of the panels form a curved and complex geometry rather than a 

flat and rectangular shape. There are a number of junction areas, z.g. roof to windshield 

joint, centre pillar to floor panel joint and floor to bulkhead joint, etc., with various 

connection types from point coupling to line coupling. Most of these connections are 

formed by more than three subsystems of beams and plates. Accordingly, it is necessary to 

consider the confidence interval for curved and multi-subsystem structures of these 

various types. 

SEA can be used to evaluate not only structural vibration but also interior noise inside 

vehicles at mid to high frequencies. In order to quantify the reliability of results from the 

SEA predictions, an investigation of the confidence interval of the coupling between the 

structure and the acoustic cavity is also required. Since an SEA model for automotive 

vehicles is typically constructed using hundreds of subsystems, it should be considered to 

what extent the confidence interval for each substructure affects that for the total system. 

An enclosed box structure with an acoustic cavity would be a good example case 

extending the work to consider the influence of individual CLF variability as well as 

multiple CLF variabilities on the sensitivity in the response in the final SEA prediction. 

Moreover, since the CLFs for multiple subsystem models will not be independent, effect 

on the SEA prediction requires attention. 
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APPENDIX A. 
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In calculating ± e energy of each plate, an analytical integration has been performed to 

give good accuracy. The displacements and their derivatives are obtained from the dynamic 

stiffness approach. 

A.l. The strain energy for flexural vibration 

The strain energy for flexural vibration is given by [27] 

2 Jo Jo 
+ 

a / 
+ 2// 

ay ' 
+ 2(1- / / ) dWy (A.l) 

where D is the flexural rigidity ( = Eh^/l2{l-ju^), E is the Young's modulus, h is the 

thickness of the plate, // is the Poisson's ratio, respectively), 6 is the width of the plate, Z, is 

the length of the plate and w is the out-of-plane deflection amplitude which is a real value 

dependent on time f. Equation (A.l) represents the instantaneous strain energy in a cycle. 

The time averaged strain energy is given by 

./ (0^^- (A.2) 

Each term in the strain energy oscillates at frequency 2co f rom 0 to maximum at each 

location. Different locations may have their maximum value at different times, but the 

time integral ^dt can be taken inside the ^^dxdy. Then the four terms can be evaluated 

separately, e.g. for the first term 
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where W}, is the out-of-plane displacement amplitude. For a rectangular plate which is 

simply supported along two opposite edges (see Figure 2.1), W,, may be taken to be of the 

form 

}) = E E s W . y ) (A.4) 
M=l m=I 

where the complex terms are four unknown constants of integration, which can be 

found by ensuring that the solution satisfies the boundary conditions at the ends. The 

terms are the four complex trace wavenumbers in the x direction, kn i=nny/h) is the trace 

wavenumber in the j direction and n is the number of half-sine waves along the transverse 

edge. 

The first term of the integral in equation (A.l) can be rewritten in the form 
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where 
d X 
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(A.6) 

and * denotes the complex conjugate. 

Substituting equation (A.6) into equation (A.5), 
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The second term of the integral in equation (A.l) can be rewritten as 
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Substituting equation (A.9) into equation (A.8), 
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The third term of the integral in equation (A.l) can be rewritten as 

r6 [-L 
4 1 

V 

dWy. (A. 11) 

Substituting equations (A.6) and (A.9) into equation (A. 11), 
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The last term of ± e integral in equation (A.l) can be rewritten as 
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where i X 
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(A. 14) 

Substituting equation (A. 14) into equation (A. 13), 
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The time averaged strain energy for flexural vibration can be obtained analytically from 

equations (A.7), (A.IO), (A.12) and (A.15). Therefore, the maximum strain energy 

(̂ sMM,/)max which is twice the time averaged strain energy, is given by 
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A.2. The strain energy for in-plane vibration 

The instantaneous strain energy for in-plane vibration is given by [27] 
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where w and v are the longitudinal and transverse deflection, respectively, which are real 

valued functions of f. 

E the boundary conditions are simply-supported along the longitudinal edges, the in-plane 

deflections, the longitudinal deflection U and the transverse deflection V, may be written 

as [76] 
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where the complex C„r terms are four unknown constants of integration. The An,- terms are 

determined by 
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where ^^=pA;^( l - / /^) /E and ^ = 2/76)^(l + / / ) / E . 
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The four terms in equation (A. 17) can be evaluated separately by taking the time average, 

as described in Section A. 1. 

The first term of the integral in equation (A. 17) can be rewritten as 

2 Jo Jo 8^: 
dWy: 

1 rLf dU„ 

Z-'o-'o & 
(A.21) 

where jE-
9% 

2 k . u ^9 + k K] 
c.Ay-' 

c.Ai' 4̂% 
'Sin(A:^y) (A.22) 

and * denotes the complex conjugate. 

Substituting equation (A.22) into equation (A.21), 

1 

2 

4 
S | c , 

21. |4 e 
nil nl 

2Re(,l.,)l_1 _ ^^2Re(;i.2X._2 

2 f e ( 4 , ) 
-+IC.2I l^i l 

2Re(l„) 

2Re(A.,) 

+<: ; | c . . r |A . | 

+ 

- + 

2Re - 1 — ] ^ + -
'^1 '4:2 

2Re(/l,„) 

• + 

+ Q2C4&:3/ :» 
+ ^ 4 & 2 + ^ 3 

+ 

A.', + A 
^ ^ + Q3CA3^:4^f % 

A.O + A *)i2 ^4 n3 n4 

where sin(^^)') sin(&:̂ ,)') d-y = — if n = n'. 

The second term of the integral in equation (A. 17) can be rewritten as 

(A.23) 

i r r 
2 Jo Jo 9 Jo J( 

av. 1 rb rL / 3T7 3T/ ^ 

2 Jo Jo 

A.5 

(A.24) 



where 
8} M=1 

+ [^3 ^ 4 ] 
C«3g 

4̂-̂  
'sm(^n)') (A.25) 

Substituting equation (A.25) into equation (A.24), 

1 

2 
I'Jo < { s +^.0../""+^,^^+c.A,'^*'-)j 

^ ( K - c y * + C , ^ / : " " ) j « W V ) : W W 

2 R e ( l . , ) 

2 I „ i2 e 

+ iQzl 

iQsl K3I -4-

2 R e ( l . , ) 

2 I , |2 e 

• + 

2Re 

2Re(A,J 
\cJ-M + 

2Re(/lj,4)L 

2 R e ^ 

+&!2 
+ A : . c c ; i : 

+&I3 

A:.C^CLr 
•1 

+&i4 
+ A : C . , C ' r 

(;i.2+/i;,)z. . 
C — 1 

' ^ , 2+^3 
• + 

(42+'̂ 4X_1 

^ ^ ^ 2 % + Q 3 C W 4 -
A2 "^"^4 '^n3+A,4 

(A.26) 

The third term of the integral in equation (A. 17) can be rewritten as 

nL 
Rc 

V a i / ^ 

\ y 

(A.27) 

Substituting equations (A.22) and (A.25) into equation (A.27), 

A.6 



4 1 | Z ( c , + K C . , A , / ' " + A , c . x , . / ' ) | 

+ t . .c ; ,e«= '+c: ,4 ; , ,e« ' ' 

|c.,f { A ^ - ^ + | c . , | ' 
2Re(^,) 2Re( l . , ) 

K m c 

2Re(;.i)L 
1 I ^ |21 1 |2 , G 

2Rc(\,) 

('41+'̂ 2)̂  

+|c . . | | t l K 
2Re(;i.4)L 

• + 

^ 1 + ^ 2 

Q.C^A4-
^ 1 + ^ 4 

2 R e ( ^ J 

_ i 

-+Q,C3% g + 
Ai As 

1 k2+/C,X_1 
- + Q 2 C , 4 ^ . ; + 

Ao+A 

(42+^lX_1 g 

Q 2 c : 3 % - — i z - + Q 2 C 4 & : 4 -

"̂2 Ml 
(;i.2+ 4̂)/' 

&,2+'^4 
- + 

• + c . , c ; , 4 , t ; ^ 
('4l+'̂ 2X 

- 1 

A l + ' ^ 2 
- + 

(̂'44+'̂ lX' 

Q 3 C A 3 ^ 4 ^ . , . + Q 4 C A 4 ^ : 
& 3 + ^ 4 &4+ '^ l 

+ 

('44+'̂ 2X 1 (^4+'^lX_1 

Q4C2&4^f ^ 
A4+&,2 ''n4 n3 n4 nS n &,4+&!̂ 3 

The last term of the integral in equation (A. 17) can be rewritten as 

(A.28) 

0 - / ^ ) 
4 JO Jo f f Jo Jo 

3C„ +3%, 

^ 9x 4 JO Jo I 9^ 9% 

\r 

/ V 
^ 9z 

dkdy (A.29) 

where 
By 

E K k A.] 
n=I 

^9 ̂  + k ^n] 
^ 3 ^ 

^ 4 ^ 
-cos(^^)') (A.30) 

and 

9% 

'*puX I 

n=1 ("n2^ 
+ 1 &̂ 4 

^n3^ 

^ 4 ^ 
'COs(A:̂ }'). (A.31) 
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Substituting equations (A.30) and (A.31) into equation (A.29), 

l - f i rh rL 

r r +a.QV+cjk; + & ' * + 4 k " " ) | 

) L , ( W o o ^ W 

(l - / / )6 ,2,. 
« , ; Q.I 

2|/, lie 

2Re(A,) 
+ < | Q | l A j 

C, 

2RG 

26 

2Re(;L) 
+ 

2Re(/^) 
^^>4 n« ' "̂ j4| 

26 

2teW„) 

'KC„C,AA: 

A,c,f,AM+V.) 

4,1 

&i+&^4 

k,+;CiX_i 

A]"^A3 

- + % ( ; : 3 4 K + ^ ) - + 

^,c.AAM+Vf Z — + 4 ^ 4 ) -'I -/U M4\ 7% ?%j/\ M 114/ n 
Az A4 As "̂ ^̂ 4 

(A.32) 

The maximum strain energy for in-plane vibration can be obtained analytically from 

equations (A.23), (A.26), (A.28) and (A.32). 
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APPENDIX B. 

COUPLING TWO PLATES USING DSM 

B.l Dynamic StiHness Matrix for a coupled plate system 

Â i ^ Plate 1 Plate 2 

For the flexural vibration for plate 1 and plate 2, F^j = K^j u^ j and 

where 

F , ; = { - 5 , Af, S, - M j , 

F , / = { - S , M, 5, -M,}, 

u 

u 
/2 

:{W, (Z), ^2 

= {Ŵ3 A 1̂ 4 A } 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

and the dynamic stiffness matrix for flexure, K ,, and , is defined in equation (2.41) 
V2 • 

For the in-plane vibration for plate 1 and plate 2, F,, = K , u,, and F,̂  = u,2 

where 

F / = { - ' v , -T, r j , 

-T, N, T j , 

t i ,r ={«j V, u, vj} , 

u :{»3 3̂ "4 ^4} 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

B. l 



and the dynamic stiffness matrix for in-plane motion, K,, and K,;, is deOned in equation 

(2.52). 

Assembling the dynamic stiffness matrices for flexure and in-plane motion and multiplying 

the transformation matrix given in Appendix B.2, the force-displacement relationship for a 

coupled plate system can be obtained from 

Up 

where 

"F/," 

, = T / Û 2 
p F„ 

_F._ .",2. 

and K ^ = T / 

K / , 0 0 0 

0 K/2 0 0 

0 0 K , 0 

0 0 0 K,2 

(B.9) 

B.2 Transformation Matrix T. for a coupled plate system 

The continuity conditions at the joint x = L, 

vwg = cos sin 

Wg = sin -I- ft, cos 

2̂ ^ -

(B.IO) 

(B . l l ) 

(B.12) 

(B.13) 

Take as the independent displacements, 

{^1 ' ^1' ^2' ^2' ^4' ^4' ^1' ^1' ^2' ^2' ^4' ^4}' 

B.2 

(B.14) 



Then the transformation matrix T,, is given by, 

1 

1 

COS(̂  

which gives 

-sin (J 

where = { 

4 r4 

^(fl+p2) 

sin^ 

1 

cos J 

W] V] Wg ^2 "4 

w, 

<k 

^2 

(P2 

«1 

(B.15) 

(B.16) 

u 
(̂ ]+;;2) :{Wi W2 ^ ^ ^ W; W; ^2 "3 ^3 "4 ^4}^' 

Similarly, the forces at the interface x = L are related by 

^2 = ^2 - S, cos d + N^ sin 5 (B.17) 

7/2=^^2" "̂1 ^ - Â 3 cos ^ (B.18) 

M2 = M 2 - M ^ (B.19) 

where ^2» ^2 ^ 2 ± e externally applied forces. The external forces thus 

satisfy F = T / F , 
P f (fl+p2)' 
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APPENDIX C. 

][)Tf]\)v4 P v [ i c iviLALTr]Ri]*[ i r ( : ) R vdL s; iG]vii-]] \ r ; f][Pfi i:Ec 

PLATE 

An undamped semi-infinite plate, as shown in Figure C. 1, is assumed to be simply 

supported along two opposite edges {y = 0 and y = b). 

y 
A 

Anl 

A n2 

X = 0 JC = +00 

Figure C.l. A semi-inOnite plate of finite width, 6. 

The deflection for flexural vibration may be taken to be of the form 

. (C.l) 
r=] 

where the A,j,. terms are two unknown constants of integration which can be found by 

ensuring that the solution satisfies the boundary conditions at the left-hand edge of the 

plate and the terms are the positive-going nearfleld and propagating waves 

( « 2 = ^ / D ) and ). 

Upon introducing the flexural displacement vector for longitudinal direction 

< ={W.(0) w : m } . (C.2) 

c . l 



then 

or in matrix form 

^ ( 0 ) = A,i+A,2 

u 
'!/ 

1 1 | A 

A : ^»2 . lA Vi2, 

"»/ = P l n A , 

P l n = 

1 1 

^.2. 

(C.3) 

(C.4) 

(C.5) 

(C.6) 

Equation (C.l) may be used to derive a relationship between the displacements and forces 

at the left-hand end of the plate, and thus the dynamic stiffness matrix of the plate for 

flexural vibrations with transverse modeshape sin (&„);) for each n. The longitudinal 

shear force and bending moment Mn(%) along the free edges may be written as [74] 

^ = - D (C.7) 

(C.8) 

where D is the flexural rigidity { = Eh?jlliX-il^) )and // is the Poisson's ratio. 

Upon introducing the restoring force vector 

F,; K (0)}, (C.9) 

where 
r=l . /"=! 

(C.IO) 

and (0) = - D 
r=l 

(C. l l ) 

this allows F., to be written in terms of A. 

C.2 



(C.12) 

where 

(^«|) (^nz) - ( 2 - / / ) ^ ^ / : , 
(C.13) 

and K,nf is the dynamic stiffness matrix of the semi-infinite plate for flexural vibrations. 

From equation (C.5), A,, = pjju,,., equation (C.9) can be rewritten in matrix form, 

Hence 

=P2«A, =P2«p;;!u^ =K,n/U«/. (C.14) 

K , . =P2»P7n (C.15) 
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