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This thesis explores barriers to using formal specification for software development in industry. 

Empirical assessment techniques are used initially in an exploratory stage and subsequently in 

testing a hypothesis arising from the first stage. A second hypothesis is investigated by 

construction of a method and tool with subjective assessment of its effect. The first stage 

consists of a survey of experienced industrial formal methods users via a questionnaire-based 

interview. The interviews explore the practicalities of using formal methods in an industrial 

setting. From the many findings in this stage, two hypotheses are selected for further 

investigation. The first hypothesis is that formal specifications are no more difficult to 

understand than code. This is tested by formal experiment. The subject's ability to understand 

the functionality of a formal specification is compared with their ability to understand its 

implementation in program code. The second hypothesis is derived from observations, during 

the survey stage, that formal specifications are difficult to write. In particular, choosing 

appropriate abstractions is difficult. We consider what might make formal specification difficult 

and compare the process with that of programming. The second hypothesis is that a tool 

supported, graphical modelling notation would be of benefit in the process of writing a formal 

specification. Such a notation is devised by adapting the UML and augmenting it with a formal 

text notation. A tool that converts this graphical formal specification into the formal notation, B 

is described and examples of its use are analysed. 
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Chapter 1 

Introduction 

Formal methods have long held the promise of providing a much-needed solid engineering 

foundation for the 'art' of programming computers. Proponents have countered popular myths 

that dubious practitioners raised to dismiss them (Hall, 1990; Bowen and Hinchey, 1995). 

Experiential reports of their use have invariably been favourable and yet still the adoption of 

formal methods has been limited. Academic interest in formal methods has been lively with 

many active research groups throughout the world and plenty of conferences dedicated to their 

discussion. Despite this interest, uptake within industry has mainly been limited to safety critical 

applications (some due to mandate by regulatory authorities) and experimentation by a few 

pioneering market leaders. It seems that practitioners, in their constant search for an edge in 

productivity and quality are keeping an eye on formal methods but judge them to be 

insufficiently beneficial to outweigh pragmatic problems. Formal specification is the first step to 

using formal methods and is, in itself, a useful activity even if the formal specifications are not 

subsequently used in a full formal development. However, even this first step is not being 

adopted to any great degree within the industry. Perhaps academia is not prioritising the 

problems it researches to the greatest effect. Targeting the pragmatic problems that practitioners 

initially face would lead to increased interest and funding from industry, and a more widespread 

take-up of formal specification would later lead to faster development of subsequent research in 

academically appealing areas of formal methods. 

Since formal specification is the first step to using formal methods it is also the first barrier that 

must be overcome if the benefits of full formal methods including refinement and verification is 

to be achieved. To limit the area of research and make it more manageable, this thesis 

concentrates on the barriers to formal specification. 

1.1 Aims of Research 

This thesis explores some of the barriers to the widespread use of formal specification in 

industry. While we cannot hope to explain all such barriers, the aim is to make some progress in 

understanding what some of the barriers are and to evaluate them. A further aim is to suggest 



possible ways to overcome the identified barriers and to demonstrate that the suggested methods 

are effective in this respect. 

Formal specification bears many similarities with program design. It is convenient and useful 

when thinking about barriers to formal specification, to think about whether similar barriers 

exist in programming; and if so, how they have been overcome. The comparison with 

programming is useful because programming is a more developed and researched area. It is also 

the main activity and primary goal of the people that we would like to help overcome the 

barriers to formal specification. These people have a good intuitive 'feel' for attributes of 

programming, making comparisons meaningful in a practical sense. A parallel, or more 

concrete, aim therefore is to compare the activity of formal specification with that of 

programming. 

1.2 Outline of Research 

Initially the research is wide and exploratory in nature. The thesis explores the main issues in 

using formal methods as perceived by experienced practitioners. The practitioners were 

interviewed using a questionnaire as a basis for the discussions. The interviewees were 

encouraged and prompted to expand on topics of interest in keeping with the exploratory nature 

of this stage of the research. 

From the many findings of this first stage, two topics that are relevant to the aims of the thesis 

were selected for more detailed investigation. The first topic, comprehension of formal 

specifications, was selected because it might be thought to be a barrier to formal specification. 

The interviewees' opinion, however, was that comprehension is not a barrier to software 

designers and programmers. Anthony Hall, the interviewee from Praxis Critical Systems, made 

this point most directly. The other interviewees generally indicated that they didn't see 

comprehension as a problem. The second stage of the research focuses on this issue. A formal 

experiment was conducted to investigate the hypothesis that formal specifications are no more 

difficult to understand than code. The subjects' ability to understand the functionality of a 

formal specification is compared with their ability to understand its implementation in program 

code. The experimental results support the hypothesis indicating that comprehension of formal 

specifications by programmers is not a barrier to their use. 

The second topic that was selected for further investigation, that writing formal specifications is 

difficult, was selected because there was a consensus amongst the interviewees that this is a 

significant problem. In order to explore this topic the thesis compares the activity of writing a 

formal specification with that of designing software. This leads to the hypothesis that a tool 



supported, graphical modelling notation similar to those used in program design would be of 

benefit in the process of writing a formal specification. In order to explore this hypothesis, such 

a notation is devised by adapting the UML and augmenting it with a formal textual notation. A 

tool that converts this graphical formal specification into the formal notation, B, is described 

and examples of its use are analysed. The examples illustrate the effectiveness of using a semi-

graphical formal notation with tool support for the exploratory design activities involved in 

formal specification. Hence, this may be a route to overcoming a major barrier to the use of 

formal specifications. 

1.3 Structure (dmuMNs 

The rest of the thesis is structured as follows: 

Chapter 2 provides a background to the thesis. It summarises the empirical assessment 

techniques used in the thesis giving examples of their use elsewhere. It introduces the notations 

discussed in the thesis and the concept of integrating formal and semi-formal notations. 

Chapter 3 describes a survey of practitioners using formal methods leading to the selection of 

two issues for further investigation. This chapter is based on Snook and Harrison (2001a). 

Chapter 4 describes an experiment comparing the comprehensibility of a formal specification 

with its implementation. The chapter investigates the first of the two issues selected in Chapter 

3. This chapter is based on Snook and Harrison (2001b). 

Chapter 5 discusses the nature of formal specifications and the process of writing them. The 

similarities between the process of writing a formal specification and that of designing a 

program are discussed. The difficulties of writing a formal specification are analysed and 

contrasted with the situation in program design. The chapter provides a theoretical under-

pinning for the adaptation of a program design notation and tool to formal specification. 

Chapter 6 describes B-UML and U2B. B-UML is an adaptation of UML class diagrams and 

statecharts with annotations in a B like textual format. B-UML is a semi-graphical formal 

specification notation based on UML. U2B is a program that converts B-UML specifications 

into B. This chapter is based on Snook and Butler (2001) 

Chapter 7 describes examples of specifications written in B-UML. The examples demonstrate 

the use of B-UML and illustrate some problems with the current version. The first two examples 

are from Snook and Butler (2000) and Snook and Butler (2001) respectively. The third example 



was written jointly with M. Satpathy of Reading University and is a simplified version of a case 

study (Satpathy, Harrison, Snook and Butler, 2001) based on a real application. 

Chapter 8 describes related work on integrating formal and semi-formal notations comparing it 

with B-UML and U2B. 

Chapter 9 draws conclusions from the thesis and describes further work that we hope to carry 

out. 



Chapter 2 

Background and Techniques 

This chapter explains the importance of empirical evaluation in research and introduces the 

forms of evaluation and the techniques involved. A method that we use for assessing the 

cognitive aspects of a notation is introduced. The chapter introduces the formal methods and 

notations that are the subject of this investigation. 

2.1 Empirical Assessment 

The general lack of empirical validation of software engineering theories is described by Fenton 

(1993) and Glass (1994). Glass comments on the way research in software has become insular 

and 'academic', losing touch with practitioners and not validating theory with real scale 

evaluation. In response practitioners have lost faith in research results. This situation Glass says, 

has arisen from the, mathematical, university background of computer science that tends to view 

practical application issues with disdain and values pure theoretical research. This has been 

exacerbated by the practical difficulties of scale and expense in realistic evaluation and the 

industry's thirst for ideas (without waiting for evaluation) in the early years of computing. The 

mistrust between researchers and practitioners has been confounded by the researchers' habit of 

exaggerating the problems of software production as a 'software crisis'. Glass puts forward the 

Software Engineering Laboratory, SEL (which is a collaboration between academia, industry 

and government) as a model of how research should be organised. Research and development 

should go hand in hand so that research ideas are transferred into practice via an established 

process and bad ideas, which cannot be put into practice, are not kept alive purely by research 

advocates. Formal methods are cited as an example of an idea being kept alive purely by 

research. Glass ends by saying that we often make more progress out of our failures than our 

successes and suggests that the 'research crises' will in the end lead to the ideal co-operative of 

research organisations that he describes. Similarly, Fenton warns the research community that 

they should not be exasperated by the poor industrial acceptance of new methods when they 

lack empirical validation. Fenton discusses the lack of evidence to support formal methods, 

even for safety critical applications but recognises the difficulties inherent in measuring 

processes involving humans. 



Zelkowitz and Wallace (1998) describe a classification of the possible types of validation 

methods for software engineering research theories. They point out the limitations of some 

(such as assertion, where the researcher has control over an example and can bias it) and the 

practical problems of more convincing methods (such as replicated experiments, which are 

expensive in most cases). They present the results of a review of past papers, showing the 

percentage of types of validation methods used. This shows that about a third had no validation, 

a third used assertion and the rest were distributed over the remaining types but favouring 

lessons learned, case study and simulation. In their more recent figures there appears to be a 

trend towards improvement with a fall in 'no validation' (assertion) papers and an increase in 

lessons learned, case studies and replicated experiments. Despite the improvements the current 

situation regarding validation of research is still poor. 

2.1.1 Measurement 

Any form of empirical assessment must be based on sound measurement and Fenton's book 

"Software Metrics" (1996) provides a theoretical basis to selecting measures and the types of, 

and relationships between, attributes as well as covering the prediction and measurement of 

specific external product attributes. Curtis (1980) provides an earlier description of many of 

these measurement issues and also covers issues in the design of experiments. Kitchenham, 

Pfleeger and Fenton (1995) define a structure model of measurement. This is followed up with 

models for the components of the structure model. The requirements for validating a 

measurement are then described in terms of these models. The structure model consists of 

entities, attributes, values, units, scales and measurement instruments. The concept of unit is 

extended from the classical meaning (applicable only to interval and ratio scales) to cover 

nominal and ordinal scales as well. Scales are associated with units not attributes, i.e. several 

different units, which could have different scale types could be used for a particular attribute, 

but the particular unit type is based on one scale type. For example, the attribute, temperature, 

can be measured using a ratio scale such as degrees Kelvin or an interval scale, such as 

Centigrade, or an ordinal scale such as cold-lukewarm-warm-hot. Indirect measures and 

compound units are discussed. The problems with creating a scalar value from a set of direct 

measures without having a valid underlying model of the relationships between these attributes 

are covered. It is suggested that in these cases it is preferable to leave the measure as a vector. 

Pfleeger, Jeffery, Curtis, and Kitchenham (1997) report on how practitioners are a long way 

behind the (measurement) theory and are making mistakes. Some views on what the research 

community needs to do to rectify things are suggested. Some of the areas in which practitioners 

are going wrong are; not keeping the goals in mind; relying on empirical evidence without 

regard to theoretical validity; not considering model validity; not distinguishing prediction from 



assessment; unwillingness to commit resource to process measurements; use of published model 

parameters that are only relevant to a particular case. Researchers need to "fashion results into 

tools and techniques that practitioners can easily understand and apply" and focus on the areas 

that practitioners and customers desire most (early measures - requirements, costs). Pfleeger, 

Jeffery, Curtis, and Kitchenham end with a warning from a statistician not to become like the 

statistics community, which is segregated from the people using the methods. Software Metrics 

research must produce methods that are useful to and useable by the software engineering 

practitioners. 

2.1.2 Types of Empirical Assessment 

Most authors of general empirical assessment literature classify assessments into three general 

forms. These are Surveys (systematic post-hoc data collection from a known population). 

Formal Experiments (controlled and replicated treatments on a number of subjects) and Case 

studies (intensive interpretation of a small sample). For example Wynekoop and Russo (1997) 

classify published assessments of software development methods into these (and other) 

categories. (Their other empirical assessment categories could all be considered sub categories 

of case studies under a looser definition). Kitchenham (1996) attempts to identify a method for 

selection of validation techniques for evaluating software engineering methods and tools. She 

starts by defining a classification of validation methods and this is based on surveys, formal 

experiments and case studies. As part of the same, DESMET, project Kitchenham, Linkman and 

Law (1994) provide a critical review of past quantitative assessments and base this around a 

classification into surveys, formal experiments and case studies. They recommend case studies 

as being particularly effective from an industry point of view. Daly (1996) points out the value 

of using all three forms of empirical assessment to support each other in establishing an 

hypothesis. The Survey contributes to the formulation of the hypothesis and increases the 

likelihood that it is relevant, the formal experiments establish that a relationship exists and the 

case study demonstrates that the results can be generalised to real life situations. 

Surveys 

Surveys rely on individual's memories of their experiences. Because of this, they can be limited 

in accuracy. Pannell and Pannell (1999) give an informative discussion on the problems of 

extracting the truth via surveys and how to maximise the chances of getting valid answers. 

Some of the problems include incorrect answers (an estimated 5-17% of answers are incorrect), 

misinformation, changing opinions, wording of questions, misinterpretation and ordering of 

questions. Nevertheless, surveys provide a powerful method to get an initial indication of the 



properties of a topic from a wide subject base. Survey data can lead to the formulation of 

relevant, and widely held, hypotheses. 

A survey based on a distributed questionnaire relies on the questions asked and the way they are 

phrased. This implies that a prior knowledge of the interesting issues and a possible outcome. A 

structured interview consists of an interview based around a predefined set of questions. The 

questions provide a consistent structure for the interviews but the interviewer can discover 

knowledge by seeking confirmatory evidence as necessary. The interviewer can also explore the 

experience and language of the interviewee to put answers in context. Thus many of the 

shortcomings of an independent survey are overcome. Structured interviews are limited to a 

small selected set of experienced subjects but enable a wider exploration of the subject to be 

performed and a higher level of confidence in the answers. However, the results will be a 

reflection of the opinions and prejudices of a small set of subjects. The selection of these 

subjects may ensure that they are the best-placed individuals to give an accurate opinion. On the 

other hand other empirical assessment techniques should be used to test the results of the 

structured interviews. Our structured interview is reported in Chapter 3 of this thesis. 

A survey of formal methods usage in industry and academia was carried out by Austin and 

Parkin (1993) of the National Physical Laboratory. The industrial survey was performed by 

sending out questionnaires to both formal methods users and non-users. (The author participated 

in this survey as a non-user). The most popular benefits of formal methods were their clear and 

unambiguous specifications, their early detection of errors. The ability to prove properties, build 

the software and prove its correctness and the ability to demonstrate the specification to clients 

were less popular but also strongly represented. The main limitations were that clients cannot 

understand them and that some aspects of modelling are difficult or even impossible (e.g. 

timing, maintainability etc.). Other limitations that were strongly supported were, the lack of 

experienced staff, the high costs of performing proofs and the possibility that the formal 

specification may contain mistakes. The main barriers to the use of formal specifications were 

considered to be, the lack of tool support and the high costs. Other barriers that were identified 

were, the need for training, the fact that they are difficult to use, the lack of objective evidence 

of the benefits and a perception that they are not mature enough. Interestingly, the results 

indicated a general agreement between formal methods users and non-users, dispelling to some 

extent the notion that there is a false prejudice against formal methods. The results of this 

survey do not contradict the results of our survey and in some areas, such as 'early detection of 

problems', our findings are in agreement. However, they do not support our findings very 

strongly either, hi particular, the NPL survey makes little reference to the hypotheses we 

selected for further investigation, which were strongly suggested from our interviews with 



practitioners. We suggest that this may be because of the remote, questionnaire method. Despite 

the authors' stated attempts to "not lead people to answer the questions in a particular way", we 

believe the written style of the communication and its lack of interaction with the subjects 

means that emphasis or underlying causes are often missed. For example the 'lack of tools', 

'training' and 'difficult to use' barriers may well be related to our survey finding and hypothesis 

that formal specifications are difficult to write and would benefit from tools similar to those 

used for program design. Similarly the lack of any mention of comprehensibility problems as 

barriers to use could be interpreted as a strong indication that comprehension is not a problem. 

(A small number of respondents mentioned the need for mathematics as a barrier but this was 

mostly non-users and did not distinguish between creation and comprehension). 

Formal Experiments 

The purpose of a formal experiment is to test a relationship in a particular system. The effect of 

confounding factors must be minimised so that we are able to attribute changes in the dependent 

variable to changes in the independent variable. Ideally the experiment should be performed in a 

realistic setting, however, it is usually impossible to control confounding factors adequately in a 

realistic setting. The priority in a formal experiment is to isolate and demonstrate the 

relationship under test. Once the relationship has been established as likely to exist we may then 

consider to what degree it is relevant to real life scenarios. 

Tichy (1998) makes a case for performing formally controlled experiments and refutes the 

'fallacies' that are often held up as reasons for not performing experiments in computer science. 

Brooks (1980) gives a useful description of things that must be considered in formal 

experiments, covering subjects, materials and measures. When many possible relationships can 

be envisaged, there is a temptation to gather one set of data and then try many different 

relationships in a search for a correlation. However, when we analyse experimental results we 

are considering the probability of the measured data with respect to a possible distribution. The 

more relationships are sought, therefore, the higher the probability that one will be detected 

incorrectly. Courtney and Gustafson (1993) warn of this danger. A well thought out and often-

cited experiment is described by Scanlon (1989). Care was taken over the design and 

implementation of the experiment with a high level of training in the experimental method and 

automation of measuring methods. Experiments to determine the effect of commenting, 

meaningful names and structure on the comprehensibility of formal specifications have been 

carried out by Finney, Rennolls, and Fedorec (1998) and Finney, Fenton, and Fedorec (1999). It 

was found that good commenting and naming improves comprehensibility. It was also found 

that there is an optimal level of structuring. The notation used was Z and the specification was 

broken down to various degrees with schemas. Too many small schemas are detrimental to 



comprehensibility, as is a monolithic specification lacking any schema structuring. Experiments 

have also been performed by Vinter (1998) to investigate the propensity for people to 

misinterpret various forms of logic statements. 

To be of use to practitioners and researchers empirical assessments must meet certain criteria 

and must be reported effectively. Sufficient information must be provided so that practitioners 

can judge to what extent the results are likely to apply to their environment. Other researchers 

need information about the experimental methods and tools in order to be able to assess and 

replicate the results. Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, El-Emam, and Rosenborg 

(2001) provide comprehensive guidelines for performing and reporting software engineering 

research experiments. 

Case Studies 

Case studies lack the level of control that formal experiments have. The behaviour of interest is 

observed in a real life example. The many other environmental parameters are uncontrolled and 

may influence the dependent variable being observed. To alleviate this to some extent a typical 

baseline is used for comparison. However, a case study cannot be considered as rigorous an 

empirical investigation as a formal experiment. Nevertheless, case studies have an important 

role because they test whether a relationship is observed in real situations. This can support 

formal experiment results, either as an investigatory stage (establishing a hypothesis to test) or 

as a follow up stage (establishing the generality of experimental results). 

An interesting retrospective case study in the use of formal methods is described by Pfleeger 

and Hatton (1997). This case study was hampered by the fact that it was not planned in advance. 

Hence the authors found limitations in the data that had been collected for the investigation they 

were performing and could make little in the way of firm conclusions. The authors also seem to 

use a dubious surrogate measure of reliability by measuring the number of changes made. A 

pre-planned case study was performed by Marconi (Draper, Trehame, Boyce and Ormsby, 

1996) in the use of the B-method on a parallel project. The study found that errors were detected 

earlier in the lifecycle and that the project costs were similar to the parallel, real project using 

their conventional design methods. Another parallel projects case study (Brookes, Fitzgerald, 

and Larsen, 1996), which found similar results, was performed by British Aerospace. 

2.13 Statistical Analysis 

Statistical analysis techniques assess the likelihood of the recorded sample against a known or 

assumed population distribution. The more powerful parametric methods assume that the 

10 



underlying population is normal. They provide the most definitive results because they use all 

the available information in the data. If the normality of the parameter's distribution is in doubt 

then more robust methods should be used. One such class of methods are non-parametric 

methods that reduce the data to an ordinal scale and make use of ranking properties. Rank 

statistics obey a normal distribution even when the parameter itself does not, however, because 

information has been discarded, the results are usually less powerful than parametric methods. 

A comparatively modem technique is 'bootstrapping' or 'resampling' (Efron and Tibshirani, 

1993). This technique uses computer processing to take many samples from the original sample 

and calculate the statistic of interest for each of these resamples. If the original sample is 

representative of the overall population, then each resample, and hence each value of the 

statistic calculated from the resample, is just as valid as if it was sampled from the population. 

Hence a distribution for the statistic of interest can be generated. Bootstrap techniques do not 

make assumptions about the distribution of the underlying population distribution, but can be 

just as powerful as traditional parametric analysis techniques. More details of the statistical 

techniques used will be presented in Chapter 4. 

When performing comparative experiments we are usually interested in detecting a difference in 

some attribute under two treatments. Following the classical null hypothesis statistical testing 

process (NHSTP) we would construct a null hypothesis stating that there is no difference and 

attempt to reject this on the basis of the sample data being unlikely if it were so, leaving an 

alternative hypothesis that there is a difference. In our experiment in Chapter 4, our substantive 

hypothesis is that there will be no significant (in the practical sense) difference. Unfortunately 

not rejecting a null hypothesis is a much weaker result; all we may say is that this sample didn't 

cause us to reject the null hypothesis. It does not give us any basis for saying that the null 

hypothesis is likely to be true or any evaluation of its probability. One way round this problem 

would be to take the approach that a null hypothesis is a hypothesis that we wish to nullify 

(rather than one of no difference). Then we could formulate the null hypothesis that there is a 

significant difference and see if we can reject it. However this would require us to arbitrarily 

define what we mean by a difference (Rozeboom 1960). Note that it would invalidate the 

NHSTP method if we were to choose this definition in the light of our sample data. 

Traditionally, when we reject a null hypothesis the meaning of 'different' is not discussed 

because it 'falls out' of the statistical analysis. A 'difference' is that magnitude such that a sample 

of differences greater than this magnitude would be unlikely to occur by chance if the 'no 

difference' hypothesis were true. Hence when we talk about statistically significant differences 

we are referring to the reliability of the evidence that there is a difference and not to the 

importance of the magnitude of the difference. Chow (1996) gives a good overview of 

criticisms of NHSTP (as well as making a case in its favour) in his book 'Statistical 
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Significance'. Further criticism of the misuse of NHSTP is given by Bakan (1960) and 

Rozeboom (1960). Many statistical authors (e.g. Wonnacott and Wonnacott 1985) recommend 

using confidence intervals to explain the results of experiments rather than NHSTP, and we take 

this approach partly due to our problem with the null hypothesis but also because it is more 

informative and less reliant on arbitrary choices of criteria. 

2.2 Formal Methods 

Formal specifications are descriptions of behaviour expressed in a mathematical notation that 

has a well-defined syntax and semantics. Formal methods are processes of specification, 

refinement and verification based on formal specifications. We introduce two formal methods, Z 

and B, that are used in subsequent chapters. 

2.2.1 The Z notation 

The Z language (Spivey, 1988) is a state based, formal specification language that is based on 

Zermelo Frankel axiomatic set theory and first order predicate logic. Schemas are used to 

structure Z specifications. Schemas associate state variables with predicates based upon them. 

Schemas can be used within other schemas as state declarations, types, or in predicates. To 

build a Z specification firstly state variables and invariants that hold on them are defined. Then 

schemas that define events that alter the state are added. Events are defined in terms of 

precondition predicates and postcondition predicates. Event schemas can be combined by 

conjunction and disjunction to compose more complex changes. Once defined, invariants can be 

relied upon to hold throughout the specification. That is, in event schemas, it is not necessary to 

define state changes to maintain the invariant, these can be assumed. However, apart from 

variables controlled by the invariant, it is necessary to fully specify the postcondition over the 

complete state space referenced in the schema. It is necessary to define what has not changed as 

well as what has. 

Z has a powerful, but rather unapproachable, facility called promotion. Promotion allows 

hierarchical structuring of a specification. The event schemas for a defined type (i.e. local sub-

state space) that are used by a higher-level parent object (by defining instances of the type) can 

be promoted for use in the parent's operation schemas. Considering the importance of a 

hierarchical class structuring mechanism in coping with the scale of large systems it is 

unfortunate that promotion is so difficult to grasp initially and consequently off-putting to 

students. 
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Z is popular to the extent that it is probably the most commonly used formal specification 

language. Craigen, Gerhart & Ralston (1995) put this down to the close interaction between the 

developers and industrial users and to a substantial pedagogical literature. There are a good 

number of tools to support the use of Z although many are not industrial strength, supported 

products and there is little integration of tools. 

The following example is a Z specification for a telephone book. 

NAME, NUMB 

PB 
Pbook; NAME NUMB 

V n1 ,n2 e dom(pbook) | n 1 # n 2 • pbook(nl) # pbook(n2) 

Init 
PB 
pbook = 0 

lookup 
SPB 
name? :NAME 
numb! :NUMB 
name? e dom (pbook) 

numbi = pbook(name?) 

add 
ARB 
name? :NAME 
numb? :NUMB 
name? g dom (pbook) 

pbook' = pbook u {name? numb?} 

remove 
A PB 
name? :NAME 
name? e dom (pbook) 

pbook' = {name?} < pbook 

The schema, PB, defines the state variable, pbook, which models the phonebook and an 

invariant that ensures that numbers must be unique. (This is not the most succinct form, but we 

wish to illustrate the methods that would be used in a bigger example). The schema, Init, defines 

the initial value of pbook. The schema, lookup, returns the number corresponding to a given 

name (the use of ? and I in local variable names is a convention to indicate inputs and outputs, 

respectively, of an operation). The schema includes the state schema PB so that pbook can be 

accessed. The symbol, S, includes two copies (one copy is decorated, indicating post operation 
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state) of all the variables in the schema and a predicate to ensure that the post operation value is 

equal to the pre-operation value. This ensures that pbook is unchanged by lookup. The 

remaining schemas, add and remove, define events that alter pbook. The symbol, A, includes 

two copies of PB. Again, one is decorated to indicate post operation state, but this time there is 

no equality predicate. Note that, in the add operation, a precondition to ensure that numb? does 

not already belong to ran(pbook) is not necessary because the invariant already ensures this. 

2.2.2 The B method and notation 

The B language (Abrial, 1996) is a state model-based, formal specification notation that has 

strong structuring mechanisms and good tool support. There are 2 commercial tools for B, 

Atelier-B (ClearSy) and the B-Toolkit (B-Core, 1996). We have used the B-Toolkit for our 

translation and animation work, and Atelier-B for performing proofs. B is designed to support 

formally verified development from specification through to implementation. To do this it 

provides tool support for generating and proving proof obligations at each stage of refinement. 

The B-Toolkit also provides animation facilities so that the validity of the specification can be 

investigated prior to development. To make large-scale development feasible, B provides 

structuring mechanisms to decompose the specification and its subsequent refinements. These 

are machines, refinements and implementations. We are mainly concerned with specification 

and therefore machines. Machines allow an abstract state to be partitioned so that parts of the 

state can be encapsulated and segregated, thus making them easier to comprehend, reason about 

and manipulate. One machine may include ('INCLUDES') another machine. If machine A 

includes machine B, the state of B is visible to A and alterable via B's operations. Another form 

of machine inclusion is 'EXTENDS'. This is the same as INCLUDES but makes the included 

machines operations accessible as if they were operations of the including machine. A weaker 

form of interfacing between machines is provided by 'USES'. The using machine has only read 

access to the used machines variables and cannot invoke its operations. A machine may be used 

by any number of other machines but may only be included (or extended) by one other machine. 

It is worth noting that, unlike Z, in B the invariant is a verification property which operations 

are expected to achieve. The invariant is an abstract state specification that is used for checking 

the correctness of the behavioural specification. 

The following example is the same telephone book as above, but this time expressed as a B 

machine. 

MACHINE phonebook 
SETS NAME; NUMB 
VARIABLES pbook 
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INVARIANT pbook : (NAME +-> NUMB) & 
!(nl,n2).((nl:ran(pbook) & n2:ran(pbook) & 

nl/=n2) => (pbook(nl) /= pbook(n2)) 
) 

INITIALISATION pbook := {} 
OPERATIONS 
numb <-- lookup(name) = 

PRE name:dom(pbook) 
THEN numb:=pbook(name) 
END; 

add(name,numb) = 
PRE name:NAME & numb;NUMB & 

name/:dom{pbook) & 
numb/;ran(pbook) 

THEN pbook:=pbook\/{name I->numb} 
END; 

remove(name) = 
PRE name:dom(pbook) 
THEN pbook:={name}<<Ipbook 
END 

update(name,numb) = 
PRE name:NAME & numb:NUMB & 

name:dom(pbook) 
THEN pbook(name) := numb 
END; 

END 

In the B notation, invariants define the type of a variable. In this case, a variable represents the 

phone book and its type is a partial function from names to numbers. An invariant ensures that 

numbers in the phonebook are unique. Initially, pbook is empty. In the machine's operations, 

preconditions define the type of any arguments. Additional preconditions may be specified on 

the arguments or on the state variables. For example, in the add operation, name must not be a 

member of the domain of the partial function, pbook, and numb must not belong to its range. 

(We cannot rely on the invariant for the latter, as we did in the Z example). Operation 

postconditions are defined via 'substitutions' that show how the final state of machine variables 

depends on their initial state and the arguments. (Any state variables not defined in an operation 

body are not altered by it). Operations may return values. The identifier(s) representing the 

return value(s) are defined at the beginning of the operation signature (e.g. numb in operation 

lookup). Other symbols used in the example are: union \ / , maplet | -> and domain subtraction 

2.3 Semi-Formal Notations 

Semi-formal notations are notations that provide a set of symbols to represent specific roles in 

the description of a system, but have a loosely defined semantics. The use of a syntactically 

consistent notation generally brings a more formal feel to descriptions of systems than an 
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English language description would. This can be misleading as the lack of a precise semantics 

leaves the description open to different interpretations. 

23.1 TheUML 

The Unified Modelling Language (Rumbaugh, Jacobson & Booch, 1998) emerged as a 

standardisation of the leading object-oriented analysis and design methods that were competing 

for favour in the late 1980s and early 1990s. This unification was brought about by three of the 

methods advocates joining forces at a major software tools company, Rational Software. 

Responsibility for the standardisation was subsequently taken over by an independent 

consortium, the Object Management Group (OMG). Several software tool manufacturers market 

tools to support the use of the UML. We use Rational Software's 'Rose' tool. 

The UML is a notation for use in modelling object-orientedobject-oriented designs. A unified 

process, Rational Unified Process (RUP), exists, but is not necessary to use the UML. The UML 

consists of the following parts: 

Use Case diagrams are a means of organising requirements descriptions into event sequence 

scenarios. A scenario is triggered by an actor (an external object such as a person interacting 

with the system) and parts of the system's responsive actions are then packaged and represented 

by named symbols. The meaning of a particular symbol is defined textually, usually in natural 

language. 

Class Diagrams are used to model the static structure of a problem or system. Entity types are 

represented by classes and the relationships between them are shown as associations and 

generalisations. Classes represent sets of like instances and are given attributes that represent 

state variables and values associated with each instance of the class. Classes also have 

operations that define how an instance's attributes and associations alter in response to events. 

Collaboration Diagrams and Sequence Diagrams are equivalent to each other. They both show 

dynamic behaviour as objects (of the classes introduced in the class diagram) interacting, by 

passing messages or calling each other's operations, to perform a particular behaviour or task 

scenario. Sequence diagrams show the interaction as a time ordered sequence of messages 

passed between objects. Collaboration Diagrams show the same sequence of messages but 

overlaid on a network of connected objects rather than a time sequence. 

State Diagrams and Activity Diagrams - Statechart/Activity models, constructed and viewed via 

state diagrams and/or activity diagrams, show behaviour in terms of a set of states and 

transitions between them. Each transition can be annotated with the event that causes it to occur. 
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any guards, which must be true before it can occur, and actions that are performed when it 

occurs. Activity diagrams are a development from state diagrams that also allow 'forks' to 

activate more than one state simultaneously and synchronisations that require more than one 

state to be active before a transition can occur. (When drawing activity diagrams, states are 

called activities). Statechart/Activity models can be used at several levels. For example, they 

can be attached to the logical model, to use cases or to classes 

In Chapter 6, we use class diagrams to build the basic structure of a formal model and 

statecharts to assist in the definition of the class' dynamic behaviour. 

2.4 Integrating Formal and Semi-Formal Notations 

Semi-Formal Notations such as UML are gaining widespread popularity in industry but lack 

precision for describing detailed behaviour unambiguously. Conversely, formal notations have 

not gained widespread use in industry despite their recognised benefits. An integration of semi 

formal and formal notations may address the deficiencies of the semi formal notations while 

making the formal notation more approachable. Craigen, Gerhart and Ralston (1995) found that 

better integration of formal methods with existing software assurance techniques and design 

processes was commonly seen as a major goal. They concluded, "Successful integration is 

important to the long term success of formal methods". Fraser, Kumar and Vaishnavi (1994) 

discuss some of the reasons why this may be true and go on to describe a framework for 

classifying current formal specification processes according to the degree of transitional 

semiformal stages. The categories are direct (no transitional stages), sequential transitional 

(transitional stages developed prior to the formal specification), and parallel successive 

refinement (formal specification derived in parallel with semiformal specification through 

iterative process). Paige (1997) analyses the composition of compatible notations and derives a 

meta-method for formal method (and semi-formal method) integration. Jackson (2000) has 

developed a formal notation. Alloy and associated tool Alcoa. The Alloy notation has a partial 

graphical equivalent notation in which state can be expressed. This can then be converted into 

the textual version of the notation where operations can be added and analyses performed. 

Without tools to investigate the implications of different structures however, the graphical 

format is limited to illustration of structure. The work of several research groups that have 

developed integration between graphical object-oriented notations, including the UML, and 

formal notations such as B and Z are described in Chapter 8. The precise UML group' is a 

collaborative effort to precisely define UML semantics via formalisation. The object constraint 

' ("http://www.cs.vork.ac.uk/puml/maindetails.html'). 
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language, OCL, (Warmer and Kleppe, 1999) is a formal notation that is part of the UML. It can 

be used to attach formal constraint statements to elements of UML models to constrain their 

values. For example the behaviour of an operation can be precisely defined by attaching OCL 

statements for the pre and post conditions of the operation. A more detailed comparison of work 

combining semi-formal and formal notation will be given in Chapter 8. 

2.5 Cognitive Dimensions 

In Chapter 5 we are interested in the comparative merits of the formal notation, B, versus the 

semi-formal UML for specification design. It would be useful to be able to discuss the various 

attributes of these notations in order to formulate theories and to explain results. Green (1989) 

presents a framework and vocabulary for discussing cognitive artefacts. Cognitive Dimensions 

provide a broad-brush qualitative tool for reasoning about the relative merits of information 

systems with respect to particular types of tasks. The cognitive dimensions framework consists 

of 14 terms that describe generalised facilities of information systems, notations or artefacts. For 

example 'viscosity' is the degree of difficulty in making structural changes to descriptions 

expressed within the system. The 14 dimensions are listed below. For an introductory tutorial 

see Green and Blackwell (1998). 

Abstraction Gradient - How the notation copes with abstractions. Some notations don't allow 

abstractions, for some they are optional and others are hungry for them. Abstractions 

are good for clarity but difficult to get right. 

Closeness of Mapping - How well constructs map on to problem domain entities. 

Consistency - If a notation does something one way in one situation then it should do it 

similarly for all similar variant situations. 

Diffuseness/Terseness - How terse the notation is. Terseness and diffuseness can both cause 

comprehension problems, a compromise is best. 

Error-Proneness - How much the notation leads one to make mistakes or slips. 

Hard Mental Operations - Does the notation itself induce 'brain-teasers'. (If it cannot be 

expressed more clearly in another notation it may be an inherently difficult semantics) 

Hidden Dependencies - Links to other information elsewhere that are not visible at the place 

they affect. 

18 



Premature Commitment - How much thought needs to go into future actions when a decision is 

made 

Progressive Evaluation - Whether facilities exist to check what has been achieved so far. 

Role-expressiveness - How easy is it to tell what this bit is for. 

Secondary Notation - facilities for expressing extra information outside the formal syntax (e.g. 

indentation, grouping, comments) 

Viscosity - How difficult it is to make structural changes to what has been achieved so far. 

Visibility - How much of the whole can be viewed and juxtaposed. 

A number of types of activity that might be performed on an information system are identified. 

One of these activities, exploratory design, consists of the identification and evaluation of 

possible architectures and is applicable for our purposes in Chapter 5. Applicability profiles of 

the Cognitive Dimensions can be identified for each activity type. For example viscosity is 

inconsequential for transcription but critical for exploratory design. In chapter 5 we use 

cognitive dimensions to assess the suitability of the B notation with respect to exploratory 

design. 
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Chapter 3 

Practitioners Views on the Use of Formal 

Methods 

This chapter reports on a series of structured interviews, which have been conducted with 

formal methods practitioners. In Chapter 2, the need for empirical assessment, especially in 

formal methods, was introduced. The types of empirical assessment were described and the 

contribution each makes to the establishment and investigation of a hypothesis was discussed. 

This provides a context for the report on the conduct and findings of the series of structured 

interviews that form our survey. The chapter concludes by describing how subsequent work 

arose from the results of the interviews, including the formulation of two hypotheses. 

The survey covered a broad range of topics associated with the effects that using formal 

methods might have on a company and its products. The survey was conducted by structured 

interviews based on a questionnaire (see Appendix A.l). 

3.1 Purpose of Survey 

The aim of the survey was to explore the experiences of practitioners directly. There are many 

popular theories about formal methods that have questionable validity and it is often unclear 

whether they are based on actual experience. Hall (1990) discusses some of these myths, as do 

Bowen and Hinchy (1995). Therefore it was seen as important to investigate the effects of using 

formal methods directly with individuals who had first hand experience. Of course, the results 

still depend on the subjective opinions of these individuals and the environments in which their 

experiences were obtained. This must be borne in mind when the results are interpreted and the 

results should be viewed as provisional until further empirical assessment has been carried out 

to corroborate them. 

We wanted to discover the main issues involved in the use of formal methods. In particular, 

issues surrounding comprehensibility and the difficulty of creating and using formal 

specifications. It was hoped that significant points would be raised that would warrant further 

empirical assessment. In this way the survey was seen as the first stage of a 'Multi-method' 

programme of research as described by Daly (1996). The purpose of this first stage was to raise 
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interesting and relevant provisional findings for further research rather than firm conclusions, 

which would be suspect, based on such a small survey. 

3.2 Conduct of Survey 

The companies were initially contacted by email with a brief outline of our aims and the 

questions that would be asked. Meetings were set up at the company's premises where the 

representatives were interviewed. The interviews were structured around a questionnaire but the 

interviewees were encouraged to digress and elaborate on topics as much as they felt necessary. 

The questions were used to trigger discussion and as a checklist, but, in an effort to explore the 

subject widely, the discussions were conducted in an open, free form without constraining the 

topic to the initial question. The interviewees related answers to their experiences to provide 

justification and in the process the context of the interviewees' answers and their understanding 

of key phrases were discovered. This happened mostly as a natural part of the discussions 

without conscious effort. The final question asked the interviewee if there were any important 

issues that had not been covered. In most cases the interviewee recapped some of the more 

important issues at this point but did not raise any new issues. This indicates that the 

questionnaire covers the main points of interest with respect to formal methods. Each interview 

lasted approximately 2 hours. The author conducted all the interviews. The interviews were 

tape-recorded. It was felt that recording the interviews avoided the interviewer from being 

distracted by note taking. It also meant that the interviewees' opinions could be summarised and 

distilled with greater consideration and care than would have been possible if taking notes 'on 

the fly'. The tapes were analysed in detail and comments categorised and matched with like 

comments from other interviewees. From this process a table (Appendix A.2) of summary notes 

was built up with rows representing each point made by the interviewees and each column 

representing the summaries of a particular interviewees responses. The text of this report was 

written from the summary table. Despite the careful analysis of the actual conversation on the 

tapes it is still possible that the authors might misinterpret responses or inappropriately 

emphasise a point. To guard against this the report was circulated to the interviewees for review. 

A few adjustments arose from this review stage, but on the whole the interviewees agreed that 

the report was an accurate representation of their views. 

All of the interviewees had at least some experience of using formal specifications on full-scale 

products. Some had also performed refinement, model checking and verification proofs. For 

various reasons only one company was using formal methods to the same extent as previously 

but all retained a capability or interest. Market sector varied greatly, including commercial 

computing systems, safety critical embedded systems and high street consumer products. Table 
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3.1 lists the companies and Table 3.2 gives an outline of their background and experience. 

Company IdentiOcation in this report 
(wishes to remain anonymous) Interviewee A 
IBM United Kingdom Laboratories, 
Hursley Park, Winchester, Hants 

I B M 

Marconi Electronic Systems. Avionics Systems, 
Airport Works, Rochester, Kent 

Marconi 

Philips Research Laboratories 
Crossoak Lane, Redhill, Surrey 

Philips 

Praxis Critical Systems, 
Manvers Street, Bath 

Praxis 

Table 3.1 - Participating Companies 

Company Market 
Sector 

Notations 
Used 

Extent of Use Approx. 
Size of 
Systems 

Current Level 
of Use 

Interviewee 
A 

Contractor 
with personal 
experience 

z, 
VDM(some), 
CSP (some) 

Experience with 
large and small 
applications 

Introducing 
formal methods 
into a company 

I B M Commercial 
computer 
systems 

z, 
B 

Mainly 
specification 

50 Kloc Isolated usage -
at option of 
project 
manager 

Marconi Military 
Embedded 
Systems (some 
safety critical) 

B Full 
development 
incl. refinement 
proofs etc. 

3K loc Completed case 
study - bidding 
for contracts 

Philips Consumer 
Products 

set theory 
and first 
order logic 

Mainly 
specification 

10+Kloc Isolated usage -
investigating 
applicability 

Praxis Safety Critical 
systems 

z, 
V D M , 
CSP (some) 
CCS (some) 

Some full 
developments, 
others 
specification 
only 

lOKloc -
100+Kloc 

Continuing full 
scale use 

Table 3.2 - Main characteristics of contributors 

At this stage of investigation the wide spread of market sector backgrounds is an advantage to 

the broad information gathering process. In subsequent stages less variability will be needed as 

we focus more narrowly on selected issues. The companies are, in most cases, the market leader 

in their sector and the interviewees are the technical experts within those companies. In several 

cases the interviewees have published in the area of formal methods. It is reasonable therefore to 

claim that the interviewees are knowledgeable and experienced in the use of formal methods. It 

might be argued that the interviewees are all proponents of formal methods and the results 

might therefore be a biased view. We believe that the commercial pressures upon the 

interviewees would not allow them to maintain an unrealistic stance. It was apparent however 

that market sector has a bearing on the stance taken, with the safety critical areas having much 
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more compelling reasons for supporting the use of formal methods, and the others having a 

more guarded response. 

Each interviewee was asked to define a formal method. Most answers indicated that a 

mathematical notation or underlying theory was needed (one interviewee required a precise 

syntax and semantics). Some required there to be methods for manipulation and refinement, 

others recognised these as possible extensions but did not require them. It was thought that 

some companies might have a looser definition of formal methods. To test this the interviewees 

were asked if they would include modelling languages such as UML. All would not, although 

several interviewees suggested that some parts of UML (e.g. statecharts) are close to being a 

formal notation. Some added that UML did not contain facilities to express the semantic details 

of the behaviour of systems. 

The formal methods that had been used by the interviewees are as follows: Z and B, which were 

introduced in Chapter 2. VDM (Jones, 1986) (The Vienna Development Method) is a notation 

and set of techniques for modelling computing systems, analysing those models and progressing 

to detailed design and coding. VDM has its origins in the work of the IBM Vienna Laboratory 

in the mid-1970s. CSP (Hoare, 1985) (Communicating Sequential Processes) is a notation for 

concurrency based on synchronous message passing and selective communications designed by 

Hoare in 1978. CCS (Milner, 1985) (Calculus of Communicating Systems) is a mathematical 

model for describing processes, used in the study of parallelism. It was developed by Milner. 

3.3 Itesidts 

3.3.1 The Customer's Viewpoint 

The companies interviewed had very different market sectors and this led to large variations in 

answers to questions about customer views on their use of formal methods. 

Marconi, being a UK defence contractor, often bids for contracts with Def-Stan 00-55 as a 

mandatory standard (Ministry of Defence 1997). Hence Marconi's use of formal methods is 

imposed by its main customer (or at least by the regulatory authorities that its customer has to 

satisfy). Marconi also supplies outside of the UK, e.g. USA, and for these customers it is 

expected that persuasion would be needed to convince them to accept formal proof in place of 

other verification methods such as testing and reviewing. 

Note that there is an implication here that formal verification is seen as a partial replacement for 

other verification methods rather than an additional activity. Formal proof provides an absolute 
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guarantee of the properties it proves and hence verification of those properties by other means 

becomes redundant. We have found this to be true from other sources. For example, when 

software was developed, using the B method, for the Paris underground, unit and integration 

level testing was not performed. (Boehm, Benoir, Faivre and Meynadier, 1999) 

Praxis also supply to the UK MoD and to other authorities that are very safety conscious such as 

aviation authorities. It also supplies to other markets and finds that some of these customers 

resist the use of formal methods because of the barrier it creates between supplier and customer. 

Typically, the customer will need to train some of its employees if it wants to be involved in 

verification and validation activities during the software development. 

The remaining interviewees felt that their customers (which for IBM and Philips were internal) 

were usually impressed by the use of formal methods, and assumed they would lead to high 

quality products. Where the formal specifications were used as interfaces to customers, the 

customer's technical staff (who sometimes needed special training) usually found formality 

helpful because they knew the precise behaviour of the specified system. It was recognised that 

the audience may be restricted by formality but this is the case for any technical specification. 

Both IBM and Praxis commented that one of the main barriers to the widespread use of formal 

methods is the general acceptance that software is error prone. One interviewee said "if you 

want highly reliable software then formal methods are the most cost effective way to produce it, 

but if the customer will accept unreliable software then it is cheaper not to use formal methods". 

From the suppliers point of view, any subsequent re-work is either covered in the initial price or 

is paid for by the customer as a maintenance contract. IBM went on to say that some customers 

do not want to be tied down to what they require, but would rather have a vague specification of 

requirements and hope the supplier produces something over and above it, than to be forced to 

address compromises in order to precisely specify their requirements and then take 

responsibility for the systems validity. 

33.2 Impact on Company 

Quality Assurance 

Opinion on how formal methods affect quality assurance issues was uniform. All (except one 

company that, independent of the method used, had dispensed with its quality assurance 

function) agreed that the quality assurance function is not changed. The auditors may need to 

have some appreciation of the records that they will be examining, but this is true of any new 

method. They did not feel that quality assurance personnel would need a full understanding of 
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the formal specification notation. They only need to satisfy themselves that the record has been 

produced and that the right sort of people have verified and authorised it. 

Consultancy and Skills 

Several companies had employed external consultants during the initial projects that introduced 

formal methods to the company. This was seen as necessary. Training was given to all staff 

involved in formal methods. Generally two weeks of training was found sufficient for staff to 

assist in formal methods projects. However, it was not thought feasible to train existing staff to 

a degree that they could successfully use formal methods without expert guidance on hand until 

they had built up some experience and practice. Not many experienced modellers are required 

as the majority of the project staff need to be able to comprehend specifications and write 

detailed sections as directed, but do not need to be able to create the overall structure of the 

specification. 

One interviewee felt that external consultants, who are typically extremely intelligent, would 

make any project successful, no matter what method they used. This could give a biased view in 

favour of formal methods. Similarly, companies that use formal methods only recruit personnel 

who demonstrate the ability to use formal methods, thereby increasing the quality of their staff 

Evidence of this was provided by another interviewee who reported that his company tended to 

recruit from research areas to fill vacancies involving formal specification. This filtering effect 

inherent in the adoption of formal methods could be seen as a beneficial effect on culture. 

However, there can be detrimental effects if, having altered the company's methods and culture, 

none of the permanent staff are sufficiently skilled to take over when consultants leave. 

3 3 3 Impact on Product 

Reliability 

Only IBM and Praxis had any evidence of product improvement. IBM had found (based on 

informally collected data) a 40% reduction in post-delivery failures compared to their own 

average product performance. (This data is reported in previous publications by Phillips (1989) 

Collins, Nicholls and Sorenson (1991) and Houston and King (1991)). Praxis referred to 

published data, (Pfleeger and Hatton, 1997) which compares a Praxis software product 

favourably with industry average data. As with most case studies, the cause of this improvement 

cannot be identified with certainty to the use of formal methods, since other factors such as 

culture may be atypical, but it does provide a positive empirical indication of the possible 

benefits of formal methods. Of the other interviewees, Marconi's experience was based on a 
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study that did not go into service, and Philips and Interviewee A did not have personal 

knowledge of the relevant product service histories. 

There was, however, an implicit assumption from the interviewees that the product would be 

more reliable. This was indicated by comments such as, "if you want software that works, then 

the only cost effective way to do it is with formal methods". This implies that formal methods 

produce a level of reliability that may only be achieved at significantly greater cost using 

conventional methods. This may be a subjective view but it is the view of those who have used 

both formal and conventional methods in software development. 

Efficiency 

Praxis had noted that the code produced from a formal specification was more efficient than 

conventionally specified software. The precise and accurate nature of the specification makes 

the coding task straightforward and the coder is less likely to build in redundant code. Note that 

this observation is supported in the findings of a comparative study by Brookes, Fitzgerald and 

Larson (1996). 

Functionality Growth 

Praxis also noted that the effort that is needed in formal specification tends to deter the 

functionality growth that afflicts many software systems. 

Traceability and Maintenance 

The interviewees were asked if the structure of the specifications is reflected in the code. 

Generally, the answer was affirmative and this was thought to be beneficial in aiding 

traceability between the specification and code. Some noted that this structuring of the code 

might not be the most efficient implementation but that the traceability benefit outweighed this. 

Philips questioned whether the specification should influence the structure of the code or not. 

One view is that the specification should not if it is at the right level of abstraction to be a 

requirements document. Another is that it would be beneficial if the specification could impose 

structuring requirements, for example, to improve reuse. 

Two interviewees. Praxis and Philips, felt that the formal specification helped a maintainer to 

understand what changes were needed and therefore to get them right. Marconi felt that the 

specifications had little impact on maintenance but that the B-Toolkit helped a lot in 

automatically detecting affected components and re-checking them. IBM said that they do not 

normally use the documentation for maintenance, although, in one case, when they did and it 
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was a formal specification, the project leader estimated a 50% reduction in the cost of the 

maintenance. 

The interviewees were asked if they thought that formal specifications help prevent degradation 

of code structure through maintenance and also whether the specification itself degrades through 

maintenance. IBM did not use or maintain the specifications after delivery and therefore could 

not answer. Interviewee A had not been involved in the product maintenance stages. Marconi 

felt that the B-Toolkit was largely responsible for preventing code degradation since it 

maintains the traceability from the specification. Philips thought that the formal specification 

would help prevent code degradation if traceability could be maintained but that this had been a 

problem (see comments under Lifecycle). Praxis thought that the formal specification prevented 

code degradation by supporting good practice (i.e. changing the specification first when 

implementing changes). 

3.3.4 Impact on Development 

Development Lifecycle 

All agreed that there is no change to the sequence of activities performed during the software 

development lifecycle, but the effort involved in some of the stages is dramatically altered. The 

specification stages take a lot longer. However everyone agreed that generally the resolution of 

specification problems discovered during this stage was well worth the effort because these 

problems would otherwise have arisen later during the development with increased re-work 

consequences. Similarly, interviewee A believed the primary benefit of formal specifications to 

be the improved analysis of the problem domain that results from the process of writing them. 

This leads to a better understanding of the requirements prior to starting a design, which may be 

another reason for the reduction in problems occurring later in the lifecycle. Verification stages, 

particularly testing, were much reduced since far fewer errors remain to be discovered. The net 

effect was that the overall timescales were usually very similar or possibly better for the 

development that started with a formal specification. 

However, Philips found that formal specification did not fit easily with the iterative lifecycle 

used for some products. Since Philips does not normally have an end-customer performing the 

requirements specification role, they have to develop the requirements themselves. Also, they 

typically have very short timescales to develop new products and often refine the requirements 

as the product is being developed. The time consuming first phase of formally specifying to 

resolve requirements issues does not fit into this type of lifecycle easily. In fact Philips had 

examples where the product was finished before they could complete the specification. To 
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address this, the company are looking at different levels of specification formality appropriate to 

different product lifecycles. 

Formal specification was also found to aid the verification testing process. Marconi, Philips and 

Praxis all reported that testing was more efficient and more effective when a formal 

specification was available. This was the primary driving force for improving specification 

techniques, as far as Philips was concerned. From the formal specification, it is easy to derive 

test cases and some companies had gone as far as automating this process. Marconi had used B 

specifications to generate expected results automatically and Philips had generated test cases 

from statecharts automatically. 

3.3.5 Size of system 

A guide to the size of the systems developed using formal methods is shown in Table 3.2. The 

figures should be taken as a rough guide only due to possible variations in the measurement of a 

line of code and the programming languages used. However, they indicate that formal methods 

were used on systems typically in the region of 10s of Kloc. The interviewees were asked if 

large systems were a problem when using formal methods (compared with any other method). 

Answers varied somewhat but generally, the impression was that size is not a major obstacle 

any more than other methods. Marconi and Praxis indicated that proving becomes problematic 

with large systems and that the proof checkers and, to a lesser extent, model checkers may not 

scale up very well. For formal specification, though, IBM said that large systems are dealt with 

by breaking the system down into 'encapsulated' sub-components that could be dealt with 

separately. Marconi, using the B-Toolkit, felt that the system specification was difficult to cope 

with due to the fact that it could not be subdivided, but that as soon as the design was refined, 

the system naturally was divided into encapsulated sub-components. It appears that the concept 

of breaking down the system via encapsulation is crucial in dealing with industrial scale 

problems. 

33.6 Comprehensibility 

The interviewees did not feel that there were any significant understanding problems with 

formal notations (although some commented that this may be because they recruit people who 

will understand them). The notations were not seen as being a problem in this respect. In fact 

Praxis felt that formal specifications should be easier to understand than code. 

Several interviewees said that it is essential to comment Z with English text to explain the 

structure of the model. This is not so necessary with B as it is more structured. Most companies 
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impose some styling (e.g. lexical) rules on top of the formal notation in order to improve the 

consistency of style throughout the organisation, although the general impression was that this 

was not a major factor in comprehensibility. Interviewee A had used a 'friendly' style of Z (a 

reduced subset avoiding the less intuitive constructs and annotation in a light style to enhance 

the friendly feel of the document) and felt that it had been beneficial to understanding for 

unpractised readers. 

Only one specific feature that affects understanding was mentioned. Praxis had found that over-

reliance on invariants can be confusing. It is sometimes better to explicitly state things that 

change during an operation rather than rely on implicit changes as a result of satisfying a state 

invariant, even if this is, strictly speaking, redundant. 

The area that the interviewees did think was difficult was in creating the formal specifications. 

IBM and Praxis had both employed expert consultants to facilitate this stage. Marconi said that 

the most highly skilled or experienced people were needed to do the initial or higher level 

structuring, although others could then cope with adding in the detail. IBM said that the ability 

to create the right (i.e. useful) model requires the most skill and experience. It is too easy to 

create a model that is consistent but does not contain the abstractions that are useful in 

describing the problem. 

3.3.7 Tools and Notations 

The interviewees were not questioned specifically about tools but during the course of these 

discussions the B-Toolkit stood out as the only tool that had been used to any extent. IBM had 

started with Z but switched to B so that the B-Toolkit could be used. Marconi's entire 

experience was based around the B-Toolkit and they were very pleased with it in most respects. 

They relied on it heavily and found that it helped in tracing, proving and maintenance work. 

Praxis said that there are few industrial strength tools but agreed that the B-Toolkit is an 

exception. A Praxis interviewee thought that B was not as suitable as Z for the system level 

specification. However, Marconi has used B for all levels of specification. 

Philips thought that tool availability has a big impact on the decision to use certain specification 

techniques. In particular, tool support to maintain traceability between specifications, 

implementation and test cases is an area of concern. 

Interviewee A was in the process of installing the UML as a company wide documentation 

language. They were anticipating using formal specification in conjunction with the UML. 

Philips was also adopting the UML in some sectors of the company. 
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3.4 Conclusions 

As this is a first stage, opinion gathering, exercise we are wary of drawing any firm conclusions. 

The results described above are considered indicators for further investigations. However, we 

summarise some of the main opinions recorded. Formal methods are worthwhile in terms of 

improved quality of software with little or no additional lifecycle costs, but only when 

compared to a rigorous development lifecycle where the cost of software errors is high. If the 

market does not demand high quality software then it is more difficult to justify their use. The 

introduction of formal methods affects a company's workforce, processes and culture through 

effects such as skills filtering and consultancy syndrome. It may also impact on the relationships 

with a customer through kudos, and communication implications. Overall the effects are usually 

beneficial but there can be some problems to overcome. There is no real problem with 

understanding specifications: given suitable training they are no more difficult to understand 

than programs. The difficult part is creating the specification as appropriate modelling requires 

practice and skill. Encapsulation is important within the context of large systems. There is a lack 

of industrial scale tools, the B-Toolkit being the only suitable tool. 

Many interesting points have arisen from the structured interviews. We select two hypotheses 

for further investigation. The first is a comparatively straightforward hypothesis that is suitable 

for formal experimentation in a laboratory setting. The second is a more complicated issue and 

will require ingenuity in order to facilitate further empirical investigation. 

3.4.1 Comprehensibility 

One area that was expected to be rich with discussion was that of comprehensibility. It is often 

said that one of the problems with formal notations is that they are difficult to understand and 

that highly trained mathematicians are needed to read them. However, the interviewees did not 

support this view. This is significant because it conflicts with popular opinion: all the 

experienced interviewees agreed that typical software engineers have no real difficulties with 

understanding formal notations. As one interviewee put it, formal specifications are no more 

difficult to understand than code. In Chapter 4, we design and conduct an experiment to test 

this, by writing a specification using Z and implementing it in a programming language. 

3.4.2 Modelling 

The interviewees thought that the difficulties with using formal specifications were in finding 

the useful abstractions from which to create models. This is surprising, because the same 

engineers are practised at creating models of problems and solutions using less formal notations 
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as a transitory step in programming. The criteria for selecting a model on which to base a formal 

specification, may differ from that of less formal design, nevertheless one would expect similar 

skills to be applicable. One is led to suspect that there may be something lacking in the available 

notations and methods compared to informal program design methods. 

Comparing the available formal specification methods with informal program design methods 

we find that program design methods concentrate on structure. Their aim is to provide the 

engineer with mechanisms for visualising the structure of problems from different viewpoints. 

Engineers are encouraged to explore the relationships between the entities in their models in 

order to try different abstractions before committing to them. The tools supporting program 

design methods are designed to enable them to build up an outline model of the problem in their 

mind. In contrast, if we look at formal methods, they concentrate on detailed behaviour rather 

than problem structure. This is what formal notations are designed to tackle, accurate precise 

detail. Tool support for formal methods has concentrated on verification rather than creation. 

Consequently, tool support for the initial process of exploratory design leading to the creation of 

a specification may be lacking compared with those available for informal notations. The 

engineer attempting a formal specification is faced with the need to make difficult and critical 

choices of model structure but has little support for such work. In chapter 5 we discuss these 

issues in more detail and compare the process of formal specification with that of program 

design. 

Our hypothesis is that formal specification would be easier if an informal or semi-formal 

transitory modelling stage were performed, as is done in program design. Fraser, Kumar and 

Vaishnavi (1994) have described such transitory modelling stages and Bruel and France (1998) 

have investigated the use of UML as an aid to producing formal specifications. In Chapter 6 we 

present a formal notation that is based on a combination of UML and B, along with a prototype 

tool for converting the notation into the equivalent B specification so that verification and 

animation may be performed using the B-Toolkit. We assess the benefits that this method may 

bring to formal specification. 

3.5 Summary 

We have carried out a survey of the opinions of practitioners who use formal methods for 

software specification and development. The size of the sample is small (5 companies were 

visited) but covers a range of different market sectors including commercial computing systems, 

defence and avionics systems and consumer products. The interviewees are experienced experts 

in the use of formal methods in real systems. The results cover a wide range of issues including 

the impact on the company, its products and development processes as well as pragmatics such 
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as scalability, comprehensibility and tools. The survey is the first stage of an empirical 

assessment of the comprehension and creation of formal specifications. The remainder of this 

thesis focuses more narrowly on the two hypotheses that we have selected from the survey 

results: 

• Hypothesis 1 - formal specifications are no more difficult to understand than code. 

• Hypothesis 2 - a tool supported, graphical modelling notation would be of benefit in 

the process of writing a formal specification. 
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Chapter 4 

Comprehensibility of Formal 

Specifications 

It is a common perception that one of the problems with formal notations is that they are 

difficult to understand and that highly trained mathematicians are needed to read them. In 

Chapter 3 we surveyed the opinions of industrial experts and found that experienced formal 

methods users thought that typical software engineers have no real difficulties with 

understanding formal notations. As one interviewee put it, formal specifications are no more 

difficult to understand than code. This chapter describes the design and conduct of an 

experiment to test this by comparing subjects' comprehension of a Z specification with its 

implementation in Java. A close correspondence is maintained between the specification and the 

implementation, both in functionality and in structure. Subjects were given either the formal 

specification or the code and their understanding was tested using questionnaires. The results 

indicate that there is little if any difference in comprehensibility between the two. 

4.1 Description of Experiment 

The objective of the experiment was to investigate the theory that formal specifications are no 

more difficult to understand than code. Since comprehensibility is a complex attribute for which 

we have no absolute measures we need to test this theory by measuring comprehension between 

two examples that are comparable in some sense. Many attributes could affect this comparison 

such as size, structure and inherent problem complexity. In order to make the link as tangible as 

possible we chose to compare a Z specification with its implementation. We do not expect to 

use this result to conclude whether formal specifications should be used. There are many other 

factors requiring empirical assessment before a conclusion can be reached. However the 

comparison with implementation is attractive because the community of potential formal 

specification users is likely to have extensive experience of code maintenance and hence a 'good 

feel' for comprehension of code. Having a comparative measure for a specification couched in 

terms of the comprehensibility of its implementation will transfer this 'good feel' to the realm of 

formal specification. Therefore the theory can be re-phrased as "a Z specification is (at least) as 

understandable as its implementation". To investigate this a Z specification of an example 

33 



system was constructed. This was then implemented in the Java programming language. 

Subjects were asked to describe either the functionality represented by the specification or by 

the code. The mean level of understanding of each group (specification or code) was compared. 

4.2 I)es:g?i()f]Ebqp€KTiiK%at 

The Experiment was a one-way unrelated between-subjects design. This means that the 

treatments were applied to different sets of subjects and only one set of data (pertaining to one 

example treatment) was recorded. The Subjects were split into 2 equal sized groups by random 

distribution of the experimental materials. A two-way experiment (where 2 examples are used 

so that each subject attempts each of the treatment types) would have provided more statistical 

power but it was felt that doubling the effort involved would deter many of the volunteers. 

Another difficulty with 2 way experiments is that a second example is needed which is closely 

equivalent to the first but is also different enough to avoid significant learning effects. The 

subjects were given as much time as they required and were asked to record the time they had 

taken. (There was a 50 minute timetable slot, but all completed within this limit). They were 

then free to leave the room. It is hoped that this induced the subjects to work as efficiently as 

possible. The data are analysed below taking into account the time taken by each subject so that 

the effect of differing work rates can be accounted for. 

4L3 Attributes 

The preparation of the materials used in the experiment may affect the experiment results. 

Hence, the author's experience and training is relevant when considering the influencing 

attributes described below. The author had been trained at postgraduate level in computer 

science including several courses on programming and programming languages. Postgraduate 

training included a small amount on formal specification. This was supplemented by a one-

week course on formal specification using Z. The author had extensive experience (approx. 20 

years) of programming in industry but virtually no experience of formal specification. 

Comprehensibility is affected by structure (Finney, Fenton and Fedorec, 1999). The same 

system could be modelled in Z in many ways. Different specification structures could be 

adopted without changing the meaning of the model. Similarly the implementation could be 

structured in many ways and this might affect the comprehensibility of the implementation. To 

avoid the introduction of un-quantifiable influences on comprehensibility due to differing 

choices of structure, the specification and code were written with the same structure. There is a 

close correspondence between the schema and data entities in the Z specification and the 
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component modules in the Java code. This may mean that to some readers the Z specification, 

or Java code appears to be unnaturally structured.. Experienced formal methods academics and 

practitioners have commented that the Z is unusual and appears to be derived from the code. In 

fact the Z was written first and the Java was written to match its structure. The style of the Z 

may be influenced by the author's limited experience with writing formal specifications and 

considerable experience in writing programs. The question pertinent to this experiment is, how 

does the style of the Z specification affect the experiment results? It is possible that if the Z 

specification had been written differently understandability would be increased. In this case the 

experiment results would support the hypothesis even more strongly. On the other hand, if 

writing the Z specification differently decreases understandability then the experiment has been 

performed with a better style of Z specification. The effect of structure on the comprehensibility 

of Z specifications and Java code would be an interesting topic for subsequent work. 

Similarly no commenting has been used in the Z specification or in the Java code. This is 

unnatural in both cases; one would not normally be expected to understand specification or code 

without a natural language explanation. However, if natural language commentary were 

provided in the experimental materials, the measure would no longer be of the 

comprehensibility of the notations. It would be severely and un-quantifiably influenced by the 

natural language descriptions. 

4.4 Subjects 

The 36 subjects were 2"̂  year computer science students who had been taught a course on 

formal methods and a similar length course on the Java programming language. The subjects 

were therefore familiar with the notations used, but were not very experienced. The experiment 

was voluntary, so there may be some self-selection effects, but since the allocation of either the 

Z specification or Java code was random and unknown to the subjects this should have no bias 

effect on the experiment. 

One threat to validity may be that although the subjects have been taught to equivalent levels in 

these particular notations, they are likely to be more familiar with reading code in general than 

reading formal notations. This would bias the results in favour of understanding the Java code. 

Similarly the subjects' lecturers made several comments to the effect that the subjects did not 

like using formal methods. There may be a self-fulfilling lack of confidence in the subjects' 

abilities to read the Z specification leading to another bias towards the Java code. 
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4.5 Experimental Materials 

A short specification was written in Z (Appendix B.l) to describe a road layout with vehicles 

moving along the roads and across the junctions. The specification was then implemented in 

Java (Appendix B.2). The Z specification was structured according to an abstract data type 

paradigm so that it was possible to maintain a close correspondence in terms of structure and 

allocation of functionality with the Java implementation. The Z specification and Java 

implementation are shown in the appendices. 

4.6 Conduct 

The subjects were allocated to one of the descriptions (Z or Java) at random. This was done by 

randomly distributing a set of envelopes (equal in number to that of the subjects) half containing 

Z specifications , the other half Java code. In order to ensure that the person marking the answer 

sheets did not introduce any bias, they were marked blind so that the marker was unaware to 

which representation (Z or Java) they related. 

4.7 Data Collection Procedures 

The subjects were given a questionnaire (Appendix B.3) to test their comprehension of the 

description they had been given. The questions asked were very open. The subjects were asked 

to describe the real-world objects and behaviour represented by the complete description and 

then asked what a particular named section of the description represented in real-world terms. 

The openness of the questions has the disadvantage that it allows a wider scope for 

interpretation by the subjects of what the required answer is. However, it was found to be 

impossible to construct more specific questions that would reflect comprehension without 

strongly suggesting the answer within the question. Additional background questions were 

asked in case such qualitative information might aid understanding of anomalous results. In the 

event, it was not necessary to use this additional information. Since the results consisted of an 

English language description of the system, we were concerned to ensure that the interpretation 

of the answers did not introduce experimental error. A marking sheet (Appendix B.4) was 

prepared which listed all the points that a subject might mention in describing the functionality 

of the system. A subject gained one mark for each point that was mentioned at some point in 

their answers. The marking sheet thus made the interpretation of answers as objective as 

possible. A summary of the marks awarded to each subject, along with a summary of their 

answers to the qualitative questions, is shown in Appendix B.5. 
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4.8 jALiii&ljfSHb; of IKleswilts 

In this section we examine the experimental data set in order to see whether, and to what extent, 

it supports the hypothesis. An initial examination reveals that the data recorded for the Z 

specification closely matches that for the Java. In particular the means and medians of the data 

sets are very similar, however further statistical analysis is necessary in order make quantified 

statements of probability. First we look at the distribution of the data. This indicates that its 

adherence to a normal distribution is questionable. We therefore select a bootstrap analysis that 

is powerful but robust. (That is, it doesn't make any assumptions about the distribution of the 

data). Using the bootstrap analysis we obtain an outer limit for the difference in 

comprehensibility at a specific confidence level. 

4.8.1 Variables 

The independent variable is the notation (Z specification or Java code) used for the description. 

Two dependent variables are analysed. Firstly, the score which is an integer value ranging from 

0 to 22 representing the number of marks gained as a measure of comprehension. Secondly the 

rate of scoring was found by dividing the score by the time taken. This was used as an 

alternative measure of comprehension. 

4.8.2 Method of Analysis 

Since our hypothesis is that there is no significant difference between the comprehensibility of a 

Z specification and that of its Java implementation, standard null hypothesis testing techniques 

are not suitable. Instead, we construct confidence intervals to quantify the mean difference for 

various confidence levels. Initially we constructed confidence intervals using parametric 

methods, which assume that the population distribution is a normal distribution. Examination of 

the sample data for score revealed that it is not obviously skewed, and roughly approximates a 

normal distribution, but this does not guarantee that the population distribution is normal. In fact 

the data is fundamentally non-normal because it is truncated at 0. We should therefore treat the 

parametric analysis with some mistrust. For the sample data for rate the distribution appears 

even less normal. Therefore, we construct confidence intervals based on non-parametric 

bootstrap methods, which make no assumptions about the underlying population distribution 

other than the sample data is representative of it. 
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Z Java (Z.J)/J 
(marks) (marks) (%) 

s mean 8^3 -6% 
c 
0 

median 7^0 8.(X) -6% 

R std.dev 337 3.90 -14% 
E 
R mean oja 0.46 6% 
A 
T 

median 0 J 7 0.44 -15% 

E std.dev 0 J 2 0.22 44% 

Table 4.1 - Summary of Results 

4.83 Examination of Data 

The size of the data samples for the Z specification and the Java program were both 18. Each 

sample consisted of a score out of a maximum 22 marks and the time taken by the subject in 

minutes. A measure of the rate of scoring was obtained by dividing the score by the time taken. 

An initial look at the medians, means and standard deviations (Table 4.1) of the data indicates 

that the Z and Java results appear to be very similar in both score, and rate of scoring. The most 

significant difference between the Z and Java results is in the standard deviation of the rate of 

scoring, which shows that the rate of scoring varies significantly more between subjects when 

reading a Z specification than when reading code. This is despite the fact that, when time is not 

taken into account, score varies less when reading a Z specification than when reading code. 

We also examined histograms (using SPSS) showing the actual data and a superimposed normal 

distribution curve (Figs. 4.3 & 4.4). This showed a fairly good fit but with a slightly high 

proportion of readings around the mean, indicating a low standard error. For the rate of scoring 

data the histograms (Figs. 4.5 & 4.6) appear to be skewed towards the lower end indicating that 

this data is not a very good approximation to a normal distribution. 
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Fig. 4.3 - Histogram of Java scores 
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Fig. 4.4 - Histogram of Z scores 
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Fig. 4.5 - Histogram of Java rate of scoring 
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Fig. 4.6 - Histogram of Z rate of scoring 

4.8.4 Bootstrap Confidence Intervals 

We used the robust bootstrap analysis (Efron and Tibshirani, 1993) to construct confidence 

intervals. This uses the minimum possible assumption in any analysis based on a sample: that 

the data sample is representative of the real population. It does not make any assumptions about 

the nature (e.g. normality) of the real population distribution. Samples of the same size as the 

original sample are taken repeatedly from the sample data (it is permitted to select the same data 

point more than once within a sample). The statistic of interest is calculated for each sample and 

plotted to give a distribution that approximates its distribution in the real population. From this 

distribution a confidence interval can be deduced for any confidence level. We used MathSoft's 

S-PLUS 2000 (Professional Release 2) statistics package to perform the bootstrap calculations. 

Despite the robust nature of the bootstrap analysis, the confidence interval gives a 'better' (i.e. 

tighter margin at the same confidence level) answer than the traditional parametric confidence 

interval. 

Score. The bootstrap results data output by S-PLUS is shown in Fig. 4.7. The bootstrap 

calculation for mean(java score)-mean(Z score) gives a difference in means of 2.22 at the 95% 
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confidence level (25% expressed as a percentage of the mean for the Java sample). Hence we 

have a 95% confidence that the overall population would have a mean Z score no worse than 

75% of the Java score. 

*** Bootstrap Results *** 
Call: 
bootstrap(data = just.the.data, 

statistic = mean(jscore) - mean(zscore), 
B = 20000, trace = F, assign.framel = F, save.indices = F) 
Number of Replications: 20000 
Summary Statistics: 

Observed Bias Mean SE 
Param 0.5556 -0.006478 0.5491 1.053 
Empirical Percentiles: 

2.5% 5% 95% 97.5% 
Param -1.5 -1.166667 2.277778 2.611111 
BCa Percentiles: 

2.5% 5% 95% 97.5% 
Param -1.555556 -1.222222 2.222222 2.611111 

Fig. 4.7 Bootstrap Analysis Results from SPLUS for Score 

The bootstrap density distribution of mean Java score - mean Z score for the 20,000 bootstrap 

resamples was obtained from Splus (Fig. 4.8). 

l l lkl lh^ 
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Fig. 4.8 Distribution of means of Java score - Z score for 20,000 resamples 

Rate. The bootstrap results data output by S-PLUS is shown in Fig. 4.9. The bootstrap 

calculation for mean(java rate)-mean(Z rate) gives a difference in means of 0.082 at the 95% 

confidence level (18% expressed as a percentage of the mean for the Java sample). Hence we 

have a 95% confidence that the overall population would have a mean Z rate of score no worse 

than 82% of the Java rate of score. 
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*** Bootstrap Results *** 
Call: 
bootstrap(data = just.the.data, 

statistic = mean(jrate) - mean(zrate), 
B = 20000, trace = F, assign.framel = F, 
save.indices = F) 

Number of Replications: 20000 
Summary Statistics: 

Observed Bias Mean SE 
Param -0.02692 0.0003885 -0.02653 0.07046 
Empirical Percentiles: 

2.5% 5% 95% 97.5% 
Param -0.1668326 -0.1430569 0.08754796 0.109355 
BCa Percentiles: 

2.5% 5% 95% 97.5% 
Param -0.1744356 -0.1489462 0.08211454 0.102708 

Fig. 4.9 Bootstrap Analysis Results from SPLUS fo r Rate of Score 

The bootstrap density distribution of mean Java rate of score — mean Z rate of score for the 

20,000 bootstrap resamples was obtained from Splus (fig. 4.10). 
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Fig. 4.10 Distribution of means of Java rate - Z rate fo r 20,000 resamples 

In Summary, we have quantified the results in terms of confidence intervals for the usual 95% 

confidence level and found that we need to allow approximately a 25% margin, for score, and 

18% margin for rate of scoring, to achieve this confidence (i.e. Z is within 25% as 

understandable as Java). Note that this does not mean that the data indicates that there is a 25% 

difference. (In fact, the data indicates that there is very little difference in comprehensibility). 

4.8.5 Analysis of Qualitative Data 

The questionnaire included some questions to collect some subjective, qualitative data. (See 

questions 3 to 7 of Appendix B.3). (One subject in the Z group did not complete these 

41 



questions). We are careful not to draw firm conclusions from this data due to inevitable 

variations in interpretation of both the questions and the answers. The following summarises the 

responses to these questions. 

In question 3 the subjects were asked how difficult they thought the specification or program 

was to understand compared to an English language equivalent. The answers were almost all 

positive (i.e. harder to understand than English) and there was very little difference between the 

answers for the Z spec and for the Java program. The means of the answers (interpreting the 

answers on a scale from -5 to +5) were +2.35 (Z) and +2.39 (Java). 

In question 4 the subjects were asked how difficult they found mathematical subjects (i.e. to 

judge their mathematical abilities compared to their peers). Here there was more of a tendency 

towards 'easy' indicating that most subjects thought they had an aptitude towards mathematics. 

This was slightly more so in the Z group than the Java group (-1.65 versus -0.31), which may 

indicate a mathematical bias in favour of the Z group. 

In question 5 the subjects were asked for their mathematical qualifications. All but 5 of the 

subjects had mathematics A-level. Three of the five without A-level mathematics were in the 

Java group, 2 in the Z group. This indicates a uniform mathematical ability throughout the two 

groups. 

In question 6 the subjects were asked how much experience they had with the notation or 

language used in the specification or program. The form of the answers varied slightly, some 

referring to length of time in months and others referring to course modules or semesters. 

However, all the answers apart from two in the Java group indicate that they only have 

experience of the notation/language from a course module in the previous year. Two answers 

from the Java group indicated a frequent use of Java leading to more of a familiarity. 

In question 7, subjects were asked for any other comments. Many left this blank but of those 

that offered comments seven (all from the Z group) said that Z or formal specification is 

difficult or more difficult than code, whereas only 3 (from the Java group) said that Java or code 

is hard to understand. In fact 4 (again from the Java group) said that programs are easy to 

understand. Hence there appears to be a tendency to believe that formal specifications are more 

difficult to understand than code. This has not been borne out by the results of this experiment 

but may be a bias towards understanding the Java. 
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4.9 Threats to Validity 

The degree of credibility of any study depends on its validity. We have already discussed 

'Conclusion Validity', the validity of the statistical analysis. In this section we consider other 

threats to the validity of the experiment and its conclusions (Basili, Shull and Lanubile, 1999). 

4.9.1 Internal Validity 

Internal Validity defines the degree of confidence in a cause-effect relationship. Thus under this 

heading we must consider whether the subjects understanding of the specification and program 

could have been influenced by any factors other than the independent variable. There are 2 

categories of factors that could be a threat here. The first category is attributes of the subject that 

might influence their understanding, such as ability or degree of training in relevant subjects. 

This was minimised by selecting the subjects from the same cohort of a course. There will still 

be differences in background and ability but the random allocation to groups should distribute 

such factors between the 2 groups. As with any sample method there is, however, always the 

chance that an unfortunate allocation has occurred. The second category is attributes of the 

materials other than the notational difference such as style. As discussed above, the structure, 

style, naming and font of the two descriptions were made consistent to eliminate these factors. 

A further threat to the internal validity was discovered after the experiment had been performed. 

The Java program had been tested in order to verify its correctness but the Z specification was 

only verified by inspection. Three errors were left undiscovered in the Z specification when it 

was used for the experiment. The errors are as follows: 

1. The blank predicate part of the schema VehicleType should either contain true, or be 

omitted 

2. The identifier Destination already occupied, used in the definition of Report, should 

contain underscores instead of spaces, 

3. The schema pickRoad is incorrectly used as a function in the schemas moveNewRoado 

and destinationAlreadyOccupied. 

The first two errors are minor and unlikely to cause any misunderstanding or confusion to a 

reader. For these errors it is reasonable to assume that the subjects were able to easily identify 

the correction to the syntax if they noticed the error. The third error is much more significant 

since a correction is not easily identified even if the intended meaning is recognised. If the 

errors made it more difficult for the subjects to understand the Z specification the support for 

our hypothesis is strengthened. However, since the subjects did not comment on the errors, and 
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there does not appear to be a correlation between the errors and an area that was misunderstood, 

we assume that the subjects correctly deduced the intended meaning of the schemas. The limited 

experience of the subjects may have led to them assuming that there was no error, even if they 

did not recognise the syntax, and correctly guessing the meaning. The corrected version of the Z 

specification is shown in Appendix B.6. This version is written in an ASCII form of the Z 

notation, ZSL, and has been checked using the ZTC type checker (Jia, 1998). 

4.92 External Validity 

External Validity defines the extent to which the conclusions from the experimental context can 

be generalised to the context specified in the research hypotheses. Having established the 

experimental hypothesis we must consider how well it supports the substantive hypothesis. 

There are several threats to the inductive process needed to assess the substantive hypothesis. 

Firstly, the notations used in the example are particular whereas the substantive hypothesis is 

general in terms of notations. However, both Z and Java are typical and representative of the 

majority of other notations. We feel that practitioners will accept that if the hypothesis is true 

for these notations then it is, to some extent, generally true. There may be notations that deviate 

one way or the other. For example, Java is an object-oriented language and procedural 

languages may be easier to understand (although, in the experiment, we have not used many 

object-oriented concepts, such as inheritance, that are likely to affect understanding). However, 

similar experiments using alternative notations would clarify the generality in this respect. 

Secondly, we must consider whether using students as subjects poses a threat to the validity of 

the experiment. The subjects were students who had undertaken an equivalent level of training 

in both notations. Lecturers reported that the students generally expressed a dislike of the formal 

notations. This is probably representative of the general population of practitioners in industry. 

We accept that students have less experience to rely on than practitioners. The extra experience 

of practitioners is likely to aid understanding of the program rather than the formal 

specification, but if our results reflect the situation without this bias in experience we view this 

as a desirable attribute. That is our results reflect the situation in the absence of a strong 

experiential bias as might be found in industry and therefore reflect the situation once an 

equivalent experience of formal specification has been obtained. 

Thirdly, we should consider how the small size of the example problem affects the validity of 

the generality. This is a cause for concern, because the example problem is tiny compared with a 

real problem. Unfortunately it is impractical to use representative problems in this kind of 

experiment. We accept that scalability is an issue that could have a significant effect on the 
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results. The experimental results therefore reflect the situation in the absence of scalability 

issues, which require further investigation. 

4.9.3 Construct Validity 

Construct Validity defines the extent to which the variables successfully measure the theoretical 

constructs in the hypotheses. The theoretical construct in the hypothesis is comprehensibility. 

Under construct validity we must therefore consider whether the dependent variable and its 

measure are valid measures of comprehensibility. The measure consists of 2 stages: an analogy 

between comprehensibility and being able to describe the functionality of the represented 

system; and the validity of the scoring system used to measure the described functionality. 

A threat to the first stage is that the subject may not have given a description that portrays their 

understanding. It seems reasonable to assume that the ability to describe something is 

proportional to the subject's understanding of it. This assumption is widespread in education via 

examination methods. The subject's written communication skills will affect their description as 

well as other factors such as their perception of what is relevant to the answer. However, these 

influences will not affect the validity of the results unless they affect one group significantly 

more than the other. We do not foresee any factors that could be influenced by the independent 

variable and hence might affect one group more than the other. (It may be that it is more 

difficult to describe the functionality of a program than a specification because of the difference 

in abstract level. However we consider this to be an essential part of what we are measuring 

rather than a source of bias. By 'comprehensibility' we mean ability to understand the 

functionality). The random assignment of subjects should therefore eliminate the effect of the 

ability-based factors, but as with any sample method there is always the chance that an 

unfortunate allocation (such as a disproportionately high number of more able subjects in one of 

the groups) has occurred. 

The threat to the second stage is the method of scoring the written descriptions. The descriptions 

were marked according to a list of points (objects, properties or behaviour) and given one mark 

for each point mentioned. The answers were marked without knowledge of which group they 

belonged to so that no prejudice of the marker was introduced. Some points were easier to 

obtain than others and this means that the measure is non-linear affecting the scale validity. 

However, we feel that this will not be a significant problem as those who obtained harder marks 

generally obtained the easier marks. We considered weighting the points with differing amounts 

of marks but this would be a subjective judgement and in most cases it is not obvious what the 

weighting should be. 
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4.10 Possible Areas for Replication 

Confidence in experimental results and further knowledge of influencing factors is gained by 

replication of experiments. Basili, Shull and Lanubile (1999) discuss a framework for 

organising related sets of experiments with the aim of building up a complete picture of the 

results over a wide range of contexts. (The term 'replication' is generally taken to include 

variations in the experimental work as well as strict replications). An experiment (or other 

empirical assessment) using practitioners with varying degrees of experience would be useful to 

establish that the results may be generalised to industrial situations. The area of scalability and 

an evaluation of its importance to formal specification compared with program design would 

illustrate its effects on comprehensibility. Further work on the effects of different styles and 

structures on comprehensibility would also be an interesting and valuable area to explore. 

Existing work in this area includes that of Finney, Fenton and Fedorec (1999), who conducted 

an experiment that concluded that the degree of schema structuring in a Z specification affects 

its comprehensibility, schemas of approximately 20 lines being optimal. Vinter (1998) 

conducted experiments that showed that subjects are likely to misinterpret certain forms of 

logical statements including disjunction, conjunction and quantification in the same way that 

people commonly misinterpret equivalent natural language descriptions. This implies that some 

forms will be more susceptible to misinterpretation than others, depending on context. 

4.11 Summary 

We set out with the intention of testing the substantive hypothesis that formal specifications are 

no more difficult to understand than code. Our experimental evidence strongly supports a 

hypothesis that subjects such as the ones we used could understand the Z version of the example 

approximately as well as the Java version of the same example. The data recorded for the Z 

specification closely matches that for the Java. The means for both score and rate of scoring 

were very close. The variance for score was also closely matched but there does appear to be a 

slightly higher variance in the times taken for the Z specification. This may be due to a wider 

variation in mathematical background, familiarity and confidence. 

At the usual 95% confidence level we needed to allow a 25% margin for score and 18% margin 

for rate of scoring (i.e. Z is within 25% as understandable as Java). 

We have chosen to adhere to the commonly used arbitrary confidence level of 95%. To give a 

guide to how the quantitative margin of the results would be improved by a looser choice of 

confidence level, we calculated alternative margins for the bootstrap result at the 80% and 75% 

levels. The corresponding results for scores were Z is within 18% and 14% as understandable as 
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Java respectively. The corresponding results for rate of scoring were Z is within 7% and 4% as 

understandable as Java respectively. 

In the previous section we discussed various threats to the validity of the results and in 

particular, threats to the generalisation of the experiment needed to support the substantive 

hypothesis. There are some areas that would benefit from further investigation, however, subject 

to these reservations, we conclude that formal specifications are no more difficult to understand 

than code. Consequently, industry should expect similar levels of effort in reading and 

understanding formal specifications as they already experience in reading and understanding 

programs provided they allocate similar resources to the task. 

The threats to validity illustrate the difficulties involved in performing empirical assessments 

involving human performance. In particular the consideration of construct validity illustrates 

some of the difficulties of finding suitable and valid measures of complex attributes associated 

with human behaviour such as comprehension. 
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Chapter 5 

Why Writing Formal Specifications is 

Difficult 

Perhaps the most powerful method we use for solving new problems is our ability to recognise 

similarities with, and differences from, our past experiences. We have the ability to recall 

situations, actions that were taken and resultant outcomes from our ever-increasing memory of 

past experiences. We are able to recognise similar instances and from this generalise to find 

desirable actions for classes of scenarios. Furthermore, we are able to recognise differences so 

that we can adapt these general strategies to new experiences. 

Within computer science, as in other disciplines, such techniques are so basic and commonplace 

that they are used as a routine technique. For example new computer based solutions are 

invariably developed based on a collection of techniques learnt from previous projects. 

Experienced software engineers debug software by matching faulty behaviour with that of the 

past to lead them to probable causes. Working by similarity has been used in a more explicit 

manner by Brereton, Budgen and Hamilton (1998) when discussing the maintenance problems 

of hypertext. 

In Chapter 3 we found that formal methods practitioners generally agree that writing formal 

specifications is difficult. In this chapter we make some suggestions as to why this might be so. 

First we outline a general definition of 'specifications' that is widely applicable to items at any 

stage in the programming process. Then we discuss the process of creating a formal 

specification and why it is difficult. We make some comparisons with writing procedural 

programs. Finally we use a cognitive dimensions analysis to assess B with respect to 

exploratory design. During this analysis we consider the design process and tools for formal 

specification in comparison with that of computer programming. From this comparison we 

identify one of the main differences between the two processes as the lack of equivalent design 

visualisation tools for formal specification. 
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5.1 Models, SpeciGcations and Implementations 

A specification is a description. This is a very broad and flexible definition and therefore 

encompasses many things. One kind of specification is a requirements specification where we 

describe things we desire to be true of a system. Another is a functional specification where we 

describe the actual behaviour of a system. It would be difficult to combine these views because 

we would need to maintain the distinction between things that are reported as fact and things 

that are stated as desired. Pamas (1997) defines specification to mean requirements descriptions, 

excluding 'actual' descriptions. Pamas warns that, unless explicitly stated, many descriptions 

could be interpreted as either requirements specifications or actual descriptions leading to 

confusion over an important distinction. 

Different specifications, therefore, describe different viewpoints. Even within one viewpoint, 

specifications are rarely complete. A specification usually concentrates on one aspect such as 

functionality, or materials, or performance. We use many varied notations for specification 

because different notations allow us to express different views or aspects most effectively. 

Nuseibeh and Finkelstein (1992) recognise the importance of different viewpoints in their 

framework for the development of heterogeneous, composite systems. 

One technique for describing things that is often used in specifications is modelling. A model is 

an object that resembles a 'target' object in some ways. A model is a way of describing the target 

object, so a model is a form of specification. According to FOLDOC, the free on-line dictionary 

of computing^, a model is "A description of observed behaviour, simplified by ignoring certain 

details. Models allow complex systems to be understood and their behaviour predicted within 

the scope of the model, but may give incorrect descriptions and predictions for situations 

outside the realm of their intended use". 

A model boat resembles the target object in shape and colour; perhaps also, to some extent, in 

its functionality if it floats, but in many other ways, such as size and materials, it does not. The 

'reader' needs to understand the scope of the model in order to interpret it correctly. That is, the 

reader needs to know which attributes of the model are intended to describe the target and which 

are not. In the model boat example the reader is left to make their own judgement (based on 

common knowledge of the generic class of the object) on which attributes are similar in a real 

boat and which are not. 

' http://foldoc.doc.ic.ac.uk/foliioc/mdex.html 
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Another example of a model is a Z specification. Here the representative attributes are the 

abstract mathematical state and behaviour information. The model may completely specify this 

attribute of the target, but it leaves many implementation options unspecified. The reader 

distinguishes the representative attribute as a convention of the notation. That is, the reader 

knows that with Z specifications, attributes such as the notation and the choice of mathematical 

structures is not representative of the target. 

Wills and D'Souza (1997) are careful to point out that the attributes in their types (part of the 

Catalysis method which utilises the UML as notation) do not imply that the things represented 

by the types have any features with these names. "The only requirement is that the operations.... 

exhibit the behaviour implied by the model". Clearly, they do not feel that this is obvious 

enough from the modelling notation to go unmentioned. 

We can even consider a natural language description to be a model. The representative attribute 

is the semantics within the text. This is a very flexible form of model, which is why natural 

language description is so popular and widespread. 

Given this loose definition, all specifications are models; they are synonymous, interchangeable 

terms. FOLDOC describes a specification as "A document describing how some system should 

work". According to FOLDOC therefore the main difference between models and specifications 

is that models describe observed behaviour while specifications describe required behaviour. 

This distinction might be pertinent when we are modelling the observable behaviour of a system 

(which may or may not already exist) as a systems analysis stage prior to specifying the 

requirements for the implementation of a component of the system. 

Despite this possible distinction, for our purposes, a model of an observable system is a 

specification of its behaviour and the specification of a component is a model of its responses to 

events. The term, model, highlights the concept of representative attributes while the term, 

specification, highlights the descriptive role, but they are names for the same thing and both 

may refer to required or actual behaviour of an observable system or component thereof. 

We tend to treat computer programs as the target object of many of our specifications, but 

programs are not the final product. They are a description, in a notation (the programming 

language), of the operations that a machine will carry out. The program is a specification for the 

behaviour of the concrete machine, the computer. However we could view the computer as an 

imaginary object. If we know what the imaginary computer is like, we can deduce a behaviour 

that is represented in the program. In this sense the program is a model of a possible behaviour 

of the computer and is very similar to behaviour specifications written in formal notations such 

as B or Z. If we use a program to specify from this viewpoint (i.e. the actions of a computer) the 
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scope of the model is well defined but if we shift our viewpoint to required functionality, it 

becomes more difficult to distinguish required functionality from implementation decisions. 

However, similar problems arise in formal specification. There are many ways to write a Z 

specification (e.g. choice of schemas, choice of data structures) all of which are modelling 

details lying outside the attribute representation scope of the specification. We could agree 

similar conventions for distinguishing the scope when we use a program as a specification of 

required functionality. So perhaps, computer programs can be viewed as specifications in 

several senses, of the computers behaviour, but also of the required functionality. 

Often the target of a specification is not a physical object but an abstract property or behaviour, 

which might be attached to a physical object. The level of abstraction away from concrete 

details can be varied providing a means for coping with scale. A highly abstract specification 

can first be produced to specify abstract properties of behaviour, which will be made more 

visible by not being obscured in detail. Further functional detail can be added in stages of 

refinement. Initially these refinements may add purely functional detail and remain 

requirements specification. Later refinements may introduce implementation decisions. 

Generally, as we move from requirements specification to implementation specification we also 

tend to move from declarative to imperative styles. 

In some cases, a physical object is within the scope of the specification. In these cases we could 

consider the object to be the ultimate specification of itself. It is clearly accurate and complete 

but certain properties are not readily visible and may be difficult to measure. A design 

specification might be required in order to perform maintenance for example. So there are 

desirable properties of specifications other than accuracy and completeness. We generate 

specifications (models) because, even though they may be lacking in accuracy and 

completeness, they give us different views of the target object. In fact, in order to achieve this, 

to accentuate a particular view, we often deliberately suppress the accuracy or completeness of a 

specification so that it doesn't obscure the desired view. So the target object is a specification of 

itself but is not necessarily the ideal one, there are different ideal specifications for different 

roles. 

By specification we mean any form of description of an object including the object itself. We 

appreciate that specifications can differ in form, accuracy and scope and different forms will be 

more suitable for different purposes, even if they lack accuracy and completeness. In order to 

avoid any confusion with preconceived ideas of specifications we use the term 'representation' 

to mean a specification in this extended sense. We take model to be an alternative word for 

specification (and hence representation) that has a different emphasis but refers to the same 

concepts. 
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5.2 Writing Formal SpeciGcadons 

The process of computer programming can be viewed as a sequence of two or more 

representations, starting with an undocumented knowledge of a need for a computer to perform 

a task and ending with a program that enables a computer to perform a task that to some degree 

satisfies the initial representation. Hence, programming can be viewed as the generation of an 

alternative representation (the program) to an initial representation (the requirement). As 

described above, these generations may involve many steps of decreasing abstraction. The B 

method embodies this process via its concept of progressive verified refinements from formal 

specification through to program code. In fact the B method relies on making many small 

refinement and decomposition steps starting from a very abstract initial specification. Each 

refinement or decomposition introduces more specification details until a complete specification 

is achieved. Thereafter, further refinements and decompositions make implementation decisions 

until an implementation is reached. We are concerned with the difficulty of creating the first 

formal representations that make up a complete formal specification. 

In their paper, 'Strategies for Incorporating Formal Specifications', Eraser, Kumar and Vaishnavi 

(1994) perform a morphological analysis to derive a framework for classifying strategies for 

using formal methods. Their classification is very simple, whether or not a semiformal, 

intermediate representation is used and whether or not computer assistance is used to generate 

the formal specification. One of the main reasons for analysing these strategies, they say, is 

because formal notations do not encourage exploration of the problem structure and this is 

detrimental to the resulting specification. They conclude that direct specification from an 

informal description into a formal notation without computer assistance is only practical for 

small well-structured or prototypical problems, and that iterative transitional (i.e. using a 

semiformal intermediate representation) strategies are needed for elicitation, problem 

structuring and validation of real-life problems. Further, to cope with the labour intensive 

generation of formal specifications, computer assistance provides most promise in addressing 

the problem of scale. Craigen, Gerhart, and Ralston (1995) carried out a survey of industrial 

applications of formal methods. After analysing the use of formal methods in a dozen industrial 

applications they observed that: "Industry will not abandon its practices, but it is willing to 

augment and enhance its practices." One of their recommendations was that research should 

concentrate on integrating formal techniques with software engineering practices, both in the 

area of assurance and in design methods. 

Our survey of opinions of formal methods experts has led us to similar conclusions. When 

questioned about difficulties in understanding formal notations, these practitioners said that 

there were no fundamental difficulties; software engineers find that formal notations are no 
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more difficult to understand than code. Despite this, highly academic and talented consultants 

were generally employed to write the specifications. It was reported that the processes of 

creating a formal specification are extremely difficult and requires great skill. 

The task of creating a model-based formal specification often starts from an informal, poorly 

structured and incomplete description of the problem. The next step is to choose and create 

abstractions that will be useful in the following step. (Here we use the term 'abstraction' to 

mean a grouping of elements that is to be treated as a single entity. Note, however, that often we 

need to choose abstractions before deciding the details of the elements they represent). The 

following step is to specify the detailed rules that govern the state, structure and behaviour of a 

model that represents a well-structured, complete and consistent specification. However, 

choosing appropriate abstractions is notoriously difficult and it seems that current formal 

notations are not conducive to exploring alternative abstractions before detailed behaviour is 

added. Green and Blackwell (1996) point out the "ironies of abstractions": that the difficulties 

involved in finding appropriate abstractions are similar to the difficulties they remove. Formal 

specification notations such as B and Z are 'abstraction hungry'. That is, they require the user to 

choose abstractions before they can be used. (Green and Blackwell describe abstraction hungry 

systems as those that "can only be used by deploying user-defined abstractions). The primitives 

in the Z notation are such that very little can be said without choosing variables that represent 

relationships between elements of state, operations that collate sets of elemental actions and 

groupings of these variables and operations to form further abstractions. Furthermore, in order 

to specify behaviour succinctly, a coherent collusion of abstractions must be built. This requires 

look-ahead, we need to predict what abstractions will be useful and what their interdependencies 

are. A collection of abstractions provides an ontology and, hence, the choice of abstractions 

changes the basis of reasoning. Therefore changing abstractions later will be difficult because 

the behaviour will need to be re-specified within the context of a different ontology. 

The following example illustrates how the notation affects the choice of abstractions, how it 

determines the ontology and how it affects the visualisation and expression of certain 

relationships. The example models the movement of traffic on a road system using the Z 

notation. 

[VEHICLES] 

Road 
traffic: seq VEHICLES 
dest: P Road 
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traffic is an abstraction that groups a sequence of vehicles, dest is an abstraction that gives a 

particular significance to a set of Roads. Road is an abstraction that captures and collates 

significant attributes of a road. Roads have destinations and associated traffic. 

Unfortunately, this is not a valid Z specification because schemas cannot be self-referencing. 

The chosen abstractions are not suitable for expressing the relationship between a Road and its 

destination Road(s). We need higher-level abstractions to do this; 

layout: Road P Road 

layout is an abstraction that captures the connectivity of the roads in a system, (dest has been 

removed from Road). Note that we prefer the total function from roads to (possibly empty) sets 

of roads, rather than a mapping from roads to roads. This is partly because it seems a more 

natural representation of the real world abstraction and also because we use this form in the 

U2B translator described in chapter 5. We can now add an event of a vehicle moving from one 

road to another, go is an abstraction that represents an event and comprises a precondition and 

some state changes defined by a postcondition. 

80 
from?,from?': Road 
to?, to?': Road 
to? e layout(from?) 

from?'.traffic = tail from?.traffic 
to?'.traffio = to?.traffic"<head from?.traffic> 

Alternatively, since we have had to remove dest from Road, maybe it would be better to elevate 

the abstraction traffic to the level of the road system, Roadsys; 

[VEHICLES,ROADS] 

Roadsys 
layout: ROADS ^ P ROADS 
traffic: ROADS seq VEHICLES 

go 
ARoadsys 
from?, to?: ROADS 
to? 6 iayout(from?) 

layout'=layout 
traffic'(from?) = tail (traffic(from?)) 
traffic'(to?) = traffic(to?)"<head(traffic(from?))> 

In this example. Road is a very simple object and its representation (in the first alternative) as 

an abstract data type schema is not worthwhile. However, generalising to more complex objects, 

which might have other attributes, initially it is not clear whether the encapsulation of traffic 
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within the abstract data type Road is better or worse than modelling traffic at the higher, 

Roadsys level. It is not until we start using these abstractions that we start to find out the effect 

of such decisions. The system has a different ontology; traffic has a different meaning since it 

now refers to all the queues of vehicles in the system, rather than just that on a specific road. 

ROADS is a basic type, whereas before. Road was a complex structure with attributes. 

Moving from one road to another is constrained so that vehicles don't collide at junctions. We 

need some concept of a road being enabled, which is dependant on other roads not being 

enabled. We could add this to Roadsys thus. 

Roadsys 
enabled: P ROADS 
depends: ROADS ^ P ROADS 
layout; ROADS ^ P ROADS 
traffic: ROADS seq VEHICLES 

V rr:Roads| rr e enabled • depends(rr) n enabled = 0 

The invariant ensures that the road cannot be enabled when a road it depends on is already 

enabled 

However, the abstractions do not provide the concept of a junction within the ontology. If we 

need to introduce concepts related to a junction (perhaps closing a junction for maintenance of 

the traffic lights) it is difficult to envisage the effect from the depends abstraction. 

As with any complex construction, formal specification involves the construction of multiple 

layers, as a description is structured into a hierarchy. This entails ordering abstractions, a 

difficult cognitive task. One way to find abstractions is to generalise instances, but this leads to 

a set of abstractions with low coherence (they may be good abstractions but they don't fit 

together well), another look ahead failure. 

We might look to similar tasks with which we can draw parallels. Programming is a task that is 

very similar in nature to writing a formal specification. The Programming language is a formal 

notation. Programming is a similar task in terms of the level of detail and precision required in 

the process. In the early days of computers, a handful of enthusiast and specialist programmers 

hand wrote code, but only for simple well-structured problems. As the problems have grown in 

size and complexity, programming has become a widespread profession practised by well-

trained but average graduates; it is no longer the province of specialist academics. Now, through 

visual interfaces, it is beginning to become available on a widespread level to the general public. 

Winograd (1995) describes these typical stages that new technologies go through; 'technology-

driven' when the technology is used by enthusiasts, 'productivity-driven' when it is used by 

professionals and 'appeal-driven' when it is used by consumers. In order to achieve these 
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conflicting developments programmers have added more and more intermediate transitional 

stages into the design process. First Assemblers, then higher-level languages, then architectural 

design stages. Languages have become more natural for expressing the problem solution and 

program design paradigms have been developed to encourage better structuring of programs. 

Formal specifications have not had the opportunity to develop in this way. Formal specification 

has lagged behind programming and only become of serious, widespread interest when the 

problems we want to solve with them are complex. While problems were simple, formal 

specification was not necessary. Formal specification has been used initially for safety critical 

systems and these have been kept simple for safety as well as practical reasons, but this has led 

to the view that formal specifications are not viable for other domains. Formal specification has 

suffered from a motivational lag. If the motivation to use them had been there in the early days 

of programming, methods to enable their effective use would have developed in pace with the 

scale of problems being solved. 

Formal specification also suffers from its verification role. Structuring mechanisms for design 

purposes are often antagonistic to decomposition for proof purposes. For example Object Z 

usually has to be 'flattened' for manipulation. B contains significant restrictions to enable proof 

composition. For example, only one machine is allowed write access to the data of a shared 

machine. (Buchi and Back (1999) have suggested an amendment to B to allow write-shared 

machines). It is important to consider the purpose of a specification before selecting a notation 

(Hall, 1999). Design structuring mechanisms are important for an industrial scale task because 

they allow the problem to be decomposed into manageable parts and allocated to different teams 

or individuals. The structuring mechanism must allow the problem to be decomposed into 

natural coherent parts and must allow their interfaces and relationships to be understandable and 

manageable. We take the view that the first stage of transferring formal methods to industry is 

formal specification, and it is important not to significantly degrade design structuring for 

mathematical manipulation. A translation to a more suitable form for verification may be a later, 

possibly automated, stage. However, for pragmatic reasons, the techniques and tools we present 

in the next chapter restrict structuring such that both purposes are served. 

Stepwise Refinement (Wirth, 1971) is an established technique for decomposing large systems 

into manageable sub-parts by hierarchical stages. The technique works well in developing a 

formal specification because a more detailed specification can be formally proven to be a 

refinement of a more abstract one. The decomposition at each stage is dependent on structuring 

mechanisms, which may be restricted as discussed above, but the introduction of detail in stages 

is, itself, beneficial. However, contractual requirements may dictate that complete and detailed 

requirements are expressed for customer agreement, and hence the contractual specification may 
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include several stages of refinement. Refinement may also be used to add implementation 

details. Refinements for implementation purposes would need to be kept separate from 

Refinements that are part of specification. 

Formal methods can be used to verify the implementation against the specification and to prove 

properties of the specification such as its internal consistency. Usually, formal methods cannot 

be used to fully validate the specification. This is because validation involves the examination 

of the specified system to determine whether it is useful. The user's requirements for the system 

are usually informal and only partially recorded. Validation is when the user assesses whether 

the system will be useful in practice. This assessment can involve undeclared background 

knowledge, such as working practices, culture etc. Both Hayes and Jones (1989) and Fuchs 

(1992) agree that formal specifications improve validation at the specification stage. This is an 

important benefit because, otherwise, most validation is done on the implemented system, 

where changes are much more costly. Since validation inherently involves users who normally 

have no training in formal specifications, a barrier to validation is communicating the meaning 

of the specification. One method of overcoming this barrier is to translate the specification into 

a form that can be executed so that users can test the specification in specific scenarios. Hayes 

and Jones, argue that many of the techniques used to make a specification clear (such as 

inverses, negation and quantifiers) and non-determinism, which has an important role in 

avoiding over-constraining the implementation, are so hard to implement that doing so 

compromises other roles of the specification. Note that Hayes and Jones distinguish prototyping 

from specification validation. Prototyping is a method of discovering undeclared requirements 

for input into the specification, making validation more successful but not replacing it. Fuchs 

refutes the arguments of Hayes and Jones by demonstrating the translation of the same 

examples used by Hayes and Jones, into a declarative logic language. He succeeds in providing 

an executable version of each example that is similarly structured to the specification, at the 

same level of abstraction and does not introduce additional algorithmic details. For some 

examples limits have to be introduced where otherwise the computation would be infinite. 

Gravell and Henderson (1996) discuss, amongst others, Hayes and Jones and Fuchs work and 

conclude that although clarity, expressiveness and abstraction level must be given priority to 

enable inspection and review, executable translations of specifications are often achievable and 

provide a cost effective means of detecting some kinds of errors. The B-Toolkit includes an 

animation facility that is useful for validating B specifications by execution. However we have 

found that some specification constructs, such as set construction are not successfully handled. 

Leuschel and Butler (2002) have proposed and implemented an alternative animation and 

model-checking facility for B that is based on automatic translation into Prolog. 
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Since Formal specification is a similar kind of task to programming, it is reasonable to assume 

that similar stages will be necessary to create formal specifications for real-life problems using 

average engineering skills. Formal mathematical notations based on set theory have the 

advantage that properties can be expressed extremely simply and succinctly compared to a 

programming language. Even so, methods for organising these expressions and composing them 

into a meaningful and manageable specification are crucial. Already attempts have been made to 

develop more useable formal notations. The Z notation has a simple but effective composition 

mechanism in its notion of schema. However, schemas do not provide full encapsulation. A 

collection of schemas is necessary to cover state, initialisation and operations of a 

subcomponent. Also, promotion and binding mechanisms used for composing schema into 

higher levels, although mathematically simply and powerful, are not intuitive from the system 

designers perspective. Students often find these concepts difficult to grasp. Object-Z and B add 

more sophisticated building mechanisms that improve encapsulation, albeit with disadvantages 

discussed above. As notations develop, some researchers are beginning to investigate the need 

for transitional hierarchical design stages, as noted by Fraser, Kumar and Vaishnavi (1994). 

Other references to such examples include Facon, Laleau & Nguyen (1996), Bruel and France 

(1998) and Meyer & Souquieres (1999). Here, most attempts actually adapt the program design 

methods directly. In Chapter 6 we discuss a translation that we have developed using the UML 

as a transitional stage with computer assistance to generate B specifications. 

While we have been arguing that there are similarities between formal specification and 

programming we recognise that there are significant and fundamental differences. Often, when 

writing a specification our aim is to describe requirements or observable behaviour rather than 

specify an implementation. That is we are describing what happens rather than how it should be 

achieved. This implies different aims, levels of abstraction and techniques. A common 

difference is that most formal specification notations are declarative whereas procedural 

programming notations are imperative. Declarative notations are good for specification because 

they enforce a description of what happens to state when an event occurs without allowing a 

description of how it is achieved. However the removal of the facility to decompose behaviour 

into sequential stages is a descriptive limitation that is unfamiliar to programmers. 

In comparing formal specification and programming we are considering imperative, procedural 

programming languages because they are usually used for implementing systems. Declarative 

languages such as the logic language, Prolog, (Sterling and Shapiro 1986) have more 

similarities with formal specifications. 

The following summarises the main differences between set-based formal specification and 

procedural programming. 
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Purpose - The aim of formal specification is usually to describe something whereas the aim of 

programming is to implement something. This can lead to different aims and priorities. 

Process - Program design has received a lot of attention over years of development. Tools and 

techniques have been developed to a greater extent than those for formal specification. 

Abstractness - Programs are fixed at the concrete implementation level by the machine they are 

instructing, whereas formal specifications can be pitched at any desired level of abstraction. 

Declarative - Formal specifications are usually declarative whereas procedural programs are 

imperative. Programmers are used to decomposing problems into a sequence of steps rather than 

a conjunction of truths. 

Animation - While animation of formal specifications is possible, current tools to support this 

are not entirely satisfactory and hence animation is not widely used. This makes validation 

difficult. In contrast, programs are executable by purpose. 

Mathematical - Formal specifications are mathematically manipulable enabling reasoning and 

formal verification to be carried out. 

5.3 Cognitive Dimensions of B 

In this section we perform a cognitive dimensions analysis of the B notation with respect to 

exploratory design. Exploratory design is the process that is undertaken to create a formal 

specification. The 14 dimensions that were introduced in chapter 2 are ordered according to our 

rough subjective ordering of their importance in exploratory design. We assess the B notation as 

an example of a formal notation and attempt under each verdict to generalise to indicate whether 

the dimension contributes to making the process of formal specification difficult. We also 

consider how each dimension affects program design and how program design tools are used to 

alleviate the problems. We selected the B notation because the analysis will be useful in 

supporting chapter 6. We view the B notation as being one of the more practical formal 

notations because it has good structuring and encapsulation mechanisms and good tool support. 

5.3.1 Abstraction 

FOLDOC defines Abstraction as "Generalisation; ignoring or hiding details to capture some 

kind of commonality between different instances". An abstraction gives a new meaning or role 

to an object or group of objects and allows the group to be referred to by a new name. Formal 

notations are very abstraction hungry. This means that they require you to invent abstractions at 
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an early stage. In B, abstractions are created by naming sets, defining types, variables, 

definitions and abstract machines. You cannot say anything at all in B without choosing 

abstractions. This is to be expected because B is a modelling language and is intended to be 

used to describe things by assigning roles to the mathematical constructs of set theory. For 

Exploratory design, abstraction hunger is a double-edged sword. On the one hand abstractions 

enable you to create a higher-level problem specific language; they determine the ontology of 

the problem domain. Once the abstractions have been made the problem can be expressed very 

clearly and important properties will be made visible. On the other hand choosing appropriate 

abstractions that will fit together in a coherent way is extremely difficult. Abstraction hunger is 

a property of any general purpose modelling language and B is not particularly beneficial or 

deficient in this respect compared to similar notations, however, we identify abstraction hunger 

as one of the main, inherent, difficulties in formal specification. Programming languages 

involve similar levels of abstraction hunger. In most large-scale program design, some form of 

design support is used. This normally includes a guideline or method for choosing abstractions 

and a drawing format for representing their relationships. Often several drawing formats are 

involved, giving different viewpoints of the relationships between abstractions (e.g. data 

dependencies, invocation sequences, functional hierarchy). We will refer to this support as 

'Program design tools', although in some cases the tool consists of nothing more than an 

instruction on how to employ the method. For example, in the 1980's the UK Ministry of 

Defence required suppliers of real-time computer systems to document their software designs 

using the standard, JSP188 (Ministry of Defence, 1980). No, particular drawing tool was 

mandated, but the standard defined a framework for decomposing the software first into 

'facilities', then 'tasks' and finally into 'modules'. It also defined the types of diagrams that 

would provide a visualisation of the relationships amongst these components (functional 

decomposition, component decomposition, data flow, and control flow diagrams). The 

'MASCOT' method for software design (Simpson, 1986) was developed to comply with 

JSP188. Later in the 1980s structured design methods such as that proposed by Ward and 

Mellor (1985) and 'Jackson Systems Development' (JSD) proposed by Jackson (1983) were 

widely advocated. Software packages supporting these methods with drawing tools that 

encompassed and enforced their rules were available. During the 1990's, object-oriented 

programming became popular and introduced more kinds of relationships (and consequently 

views). Tool support became more necessary and tool vendors were more successful than the 

structured design ones. Three main variants of the object-oriented methods emerged and were 

competing for popularity (and tool sales). Eventually, a need for unification of the object-

oriented method variants was recognised. This resulted in the 'Unified Modelling Language' 

(UML), introduced in chapter 2. Unification benefited both the tool vendors and the companies 
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developing software. Each tool vendor had a larger customer base and the software design 

companies no longer had to risk committing to a particular vendors method. 

Program design tools assist in making abstractions by providing a visualisation of them to assist 

the designer in assessing them. In particular this visualisation assists in assessing the coherence 

and coupling of the abstractions by making clear their interactions. Formal methods tools enable 

properties of a completed specification to be analysed and verified. In, comparison, program 

tools provide very little real assistance in analysing the completed model. However it is their 

support for the subjective assessment of the emerging model in the early stages of its creation 

that makes them attractive for this exploratory design stage. 

JPMreEnalbuure (ZkMocumitinweiit 

Premature commitment is when decisions must be made (and committed to) without fully 

knowing how those decisions will affect later work. The very nature of exploratory design 

implies a lack of knowledge about how the later features of the design will turn out. The less 

commitments need to be made the better. With respect to writing formal specifications this 

dimension goes hand in hand with abstraction hunger. The main premature commitment that 

needs to be made is to the abstractions used in the specification and we have already noted that 

formal specification requires these at an early stage. We see the premature commitment to 

abstractions as the main difficulty in writing formal specifications. Again, programming 

involves similar levels of commitment to abstractions such as data structures and modularisation 

before detailed coding, but program design tools have been developed which allow the designer 

to visualise and explore different structures before making that commitment. This process 

allows the designer to make better predictions about which structures are likely to be more 

successful when the detailed code is added. 

5 3 3 Viscosity 

Viscosity is the amount of effort needed to make significant (i.e. structural) changes to a 

completed or partially completed description. This is very important in exploratory design 

because the nature of exploration makes it virtually certain that a significant amount of re-

arrangement will be needed as the true nature of the specification and the best way to express it 

unfold. Formal specifications are highly viscous. The detailed mathematical notation requires a 

significant investment and any structural re-arrangement is likely to require extensive and 

careful revisions. However even more significant than this is the effort to revise the abstractions 

that the notation was so hungry for and made us prematurely commit too. These abstractions 

provide the very ontology of the specification and making revisions will entail revising both 
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structural elements and mathematical details. This is the third side of a vicious triangle of 

dimensions: Abstraction hunger, premature commitment and viscosity. Together they account 

for the main difficulties with writing formal specifications. Yet again programs are similarly 

viscous. To alter data structures or modularisation in any significant way usually involves 

significant effort in receding. Program design tools have been developed which reduce viscosity 

by allowing the designer to change the structure with graphical drawing tools. The aim is to 

obtain a successful architecture before committing to code, but if automatic code generators are 

used the viscosity reduction is extended. Small alterations to a program can often be 

accommodated fairly easily without substantial changes to the architecture, but as the number of 

alterations increases the suitability of the architecture gradually decreases until a 're-factoring' 

is needed in order to create a new architecture that better supports the changed functionality. At 

this point the viscosity of program architecture is a substantial overhead to the required change. 

If a program design tool with automatic code generation is used, effort is saved because the 

infrastructure code associated with the structure is automatically produced. This is a desirable 

route that we would like to adopt in formal specification. A second less desirable outcome often 

occurs when such tools are not used. The structure is not changed because of the viscosity. 

Instead re-factoring is avoided and the detail code is made to work within the unsuitable 

structure. 

53.4 Progressive Evaluation 

During exploratory design it is important for the designer to be able to check and review work 

performed so far at regular intervals. This is part of the feedback required for exploration. The B 

method provides two mechanisms that can be used for progressive evaluation. Abstract 

machines provide an encapsulation mechanism, allowing component parts to be independently 

analysed, animated and proved within the B-Toolkit. This method imposes a certain ordering on 

the evaluation since lower level components need to be checked prior to use in the evaluation of 

higher-level components. The order may be counter to the natural order of exploration. It may 

be beneficial to design a specification at an abstract level, evaluate this, and then add further 

detail in a series of levels. This concept of refinement is central to the B method, where an 

initial abstract specification is written and verified before further detail is added in the form of a 

refinement that is verified to comply with the more abstract version. The specification can be 

built up in levels until the specification becomes the implementation. This is especially obvious 

in the B method but similar concepts apply in other formal notations (less so the component 

encapsulation). We conclude that progressive evaluation is catered for quite well in formal 

specification methods, however we also note that verification proofs are recognised to be 

difficult. Since this is the primary means of evaluation, progressive evaluation may still be a 
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barrier to formal specification. Furthermore, most of the verification is aimed at verifying the 

internal consistency of the specification; there is still the question of whether the specification is 

the right one (validation). Animators test the specification from this point of view. 

Unfortunately, writing successful animation tools is difficult. The animator in the B-Toolkit 

becomes unusable if some kinds of set constructions are used in a specification. In program 

design, the situation is very similar although the methods of verification (such as reviewing) are 

usually not rigorous. Modularisation is achieved according to the design paradigm and program 

design tools are used to achieve layered design stages. Testing by dynamic execution of the 

code (the equivalent of animation) is used for both verification and validation. Although testing 

is rarely exhaustive, if performed incrementally as the program is developed, it normally 

provides good feedback. 

5.3^ Closeness of Mapping 

A close mapping between the elements of the notation and entities in the problem domain 

makes exploratory design much easier because less effort is expended describing the problem 

domain entities allowing more effort to go into describing their behaviour. The B notation is a 

general modelling notation and therefore its elements are more abstract than the problem 

domain. However, if abstractions have been chosen appropriately, a new set of elements is 

created that have a close mapping with the problem domain. Therefore, considering that we 

require a general-purpose (rather than domain-specific) notation, we do not view B as being 

deficient with respect to closeness of mapping. However, from the point of view of discovering 

why formal specification is difficult, the lack of closeness of mapping in our notations causes 

difficulties unless we make abstractions, and, as noted above, finding appropriate abstractions is 

difficult. The situation in program design is, once again, very similar. In some areas domain 

specific languages have been developed (e.g. control algorithm languages used in avionics 

control systems software) which improve closeness of mapping to such an extent that 

programming becomes relatively easy and error free. Where more flexible, general-purpose 

languages are needed a compromise solution is achieved by using the design paradigm of the 

language to create an ontology from abstractions for each sub-domain. For example, in an 

object-oriented paradigm, classes are used to model entities in the problem domain and methods 

represent the behaviour of those entities in response to events. The class's methods are 

equivalent to the constructs in a domain specific language. 
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53.6 Hard Mental Operations 

Hard mental operations affect the designer's ability to express semantics in a specification. In 

general, formal notations (mathematics) have a relatively high incidence of expressions that 

most people find difficult to cope with and this dimension is probably responsible for the 

majority of the prejudices against them. However, in most cases, with practice, these 

expressions become more accessible, indicating that the dimension is a less significant obstacle 

to creation for experienced users. The B notation, although a declarative formal notation based 

on set theory and similar to Z, is expressed in a form that resembles program statements and 

organisation. The post condition is expressed as a set of changes to the state variables accessible 

to the operation. Like a program, but unlike Z, any variables not mentioned are assumed to be 

unchanged and assignment is used to express the changes. There is still no sequential 

composition (at the specification level) but this is made explicit and more accessible by a 

'simultaneous' operator instead of relying on conjunction as Z does. We conclude that this 

dimension may be a moderate obstacle to formal specification but B mitigates this by using a 

form that helps the designer envisage what is being expressed. We think this mitigation will be 

especially important for novices, although there is a danger that they will misinterpret the 

notation as imperative. 

53.7 Visibility and Juxtaposability 

Visibility is the ability to view component parts of a description easily. Juxtaposability is the 

ability to view several components side by side. For example, juxtaposability is important when 

two components are being compared or when information is needed about a component when 

another is being developed or altered. The B-Toolkit allows several abstract machines to be 

displayed on screen in separate windows so that this can be achieved. Initially it might be 

assumed that this is sufficient for a textual notation and that this dimension does not cause a 

problem in writing formal specifications. However, Craigen, Gerhart and Ralston (1995) 

reported that one of the tools that the commercial sector (as opposed to the regulatory-governed 

sector, who are more interested in formal verification) desired most was specification navigation 

tools such as browsers and cross-referencing tools. Visibility issues should not be 

underestimated and in program design perhaps one of the biggest driving factors for using 

graphical design tools is the visibility they provide through multiple views of the emerging 

design. We therefore conclude that formal specification suffers quite badly with respect to 

visibility through a lack of such tools compared with program design and integrated 

development environments (IDEs). 
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53.8 Hidden Dependencies 

A hidden dependency is a dependent relationship between two components where the 

dependency is not clearly visible. Hidden dependencies tend to fall into two categories. In one-

way dependencies, the relationship is only visible from one of the end components of the 

relationship. In local dependencies an overall relationship can only be deduced by traversing 

many local relationships. Hidden dependencies affect exploratory design because they increase 

viscosity (i.e. they are difficult to find when a major change is needed). For example, in Z, 

invariants expressed in the state part are assumed to hold in operations. This means that some 

state changes that take place when an operation occurs might not be stated explicitly in the 

operation schema. Some users avoid this hidden dependency by stating the operation post 

conditions even if they are redundant (see Chapter 3). B does not suffer from this hidden 

dependency. In B, the invariant is a property that must be proven to hold throughout all 

operation events, it is not assumed to hold and 'supplement' the operation semantics. Hence 

operations must explicitly state all changes to state variables including those that are necessary 

to maintain the invariant. While the negative effects of hidden dependencies have been 

identified and addressed within the programming community, most general purpose 

programming languages and practices still allow the programmer to create hidden dependencies 

via global data accesses. Hence depending on discipline, conventions and culture within the 

organisation, programs may be worse than formal specifications with respect to this dimension. 

We conclude that formal notations, and B especially, score highly with respect to this 

dimension. 

SJL9 Error-Proneness 

Error-Proneness is the tendency to make minor slips (rather than errors of design judgement) in 

the notation. This would hamper exploratory design. There may be a tendency, especially in 

novices, to make errors in the mathematical expressions. However, we do not view this as a 

major contributor to problems with formal specification once some practice has been gained. It 

would seem no worse, and perhaps easier, than writing programs. We note that another 

dimension, progressive evaluation, is important in mitigating the effect of Error-Proneness. The 

ability to detect and correct errors at a unit level is of great benefit in developing the overall 

specification. This has similarities in programming where modules are individually compiled 

and tested so that the problem of error detection and correction is manageable. The importance 

of tools for progressive evaluation (and hence in mitigating error-proneness) has been discussed. 
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5.3.10 Consistency 

A notation is consistent if similar semantics are expressed in similar forms. For example, if the 

syntax for expressing conjunction were different in an invariant and an operation, this would be 

inconsistent. Consistency is beneficial for exploratory design because it reduces the number of 

syntactic rules that need to be remembered when writing a specification. We know of no 

inconsistencies in B. Typically formal notations, by their mathematical nature are highly 

consistent. We conclude that this dimension is not a reason for the difficulty in writing formal 

specifications. 

53.11 Diffuseness/Terseness 

Diffuseness is the verbosity of a notation. Terseness is the opposite of diffuseness. Verbose 

notations tend to slow thinking performance. Terseness is beneficial for exploratory design 

because it reduces the time taken to express properties in the notation but can also increase 

error-proneness. The negative effect of terseness on comprehension is not likely to be apparent 

during the design stage since the design team will recall what they have expressed. B, like most 

formal mathematical languages based on set theory, tends to be terse. We conclude that this 

dimension is not a reason for the difficulty in writing formal specifications. 

5.3.12 Role-Expressiveness 

Role-expressiveness is the degree to which it is obvious what each component of the 

specification or program is for. This is more relevant to comprehension than design. The 

designer will generally appreciate the role of each element, being the one who selected it. We 

conclude that this dimension has very little bearing on design. However, we note that the 

genericness of the constructs and notation in B detracts from its role-expressiveness. It is not 

apparent what role each machine, operation or data structure plays in the specification without 

deducing the behaviour of each component. This can be overcome if secondary notation such as 

comments and well-chosen names are provided. 

53.13 Secondary Notation 

Secondary notation (i.e. information conveyed outside of the formal syntax of the notation) can 

convey extra information, such as the grouping and role of related statements. Secondary 

information can be of two types. It may be 'redundant' if it is already present in the formal 

syntax (e.g. indentation of code) or may be additional information provided by an 'escape from 

formalism' (e.g. commenting). It is common practice to add secondary information to programs 
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in the form of comments and indentation. Similarly, it is seen as an essential part of writing 

formal specifications in Z, to intersperse each schema with a paragraph of natural language to 

describe its role and explain how the mathematics models the real problem. The natural 

language description is so integral to a Z specification that the resulting document can be seen 

as a description in two complimentary notations, rather than a formal specification with 

supporting comments. This resembles the literate programming ideas of Knuth (1984). 

Similarly to role-expressiveness and for the same reasons, secondary notations are more 

important for comprehension than for design. We conclude that this dimension has only a minor 

bearing on design, but note that B has facilities for adding secondary information. For example, 

comments can be embedded, B statements can be indented or grouped and capitalisation 

conventions may be employed to aid comprehension. 

5.4 Summary 

In summary we see the main problems in writing a formal specification as being the 

requirement to commit to abstractions at an early stage and the difficulty of subsequently 

altering these abstractions. Abstractions are needed to achieve a suitable closeness of mapping. 

The B notation is typical in this respect. Progressive evaluation is difficult in formal 

specification even though it is generally catered for. Improved animators would address this. 

Visibility is not adequately addressed. Formal specification notations often involve hard mental 

operations, although B is better than many in this respect. Formal notations tend to tackle 

hidden dependencies, error-proneness and consistency fairly well, so that these dimensions are 

not problematic and their terseness is, if anything a benefit during design. Role-expressiveness 

and secondary notation are of little relevance during design. 

Considering that program design suffers from similar problems leads us to the hypothesis that 

the solutions adopted from program design would similarly benefit formal specification. A 

graphical design, transitional, stage would provide better visibility of abstractions and how they 

interact to compose the whole and this would be of value when assessing abstractions thereby 

alleviating premature commitment. The tool would also lower viscosity by automatically 

providing the infrastructure of a formal notation version. Fig. 5.1 represents the relationships 

between the main problematic dimensions for formal specification and illustrates where a 

graphical design tool would alleviate these problems. 
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Chapter 6 

B-UML and U2B: Adapting the UML for 

Formal Specification 

In Chapter 5 we discussed specification and why we think formal specification is so difficult. 

We analysed the process of writing a formal specification using the B notation as an example 

and contrasted it with the process of writing a computer program, which is, itself, a kind of 

formal specification. We established that the difficulties are very similar in computer 

programming but that design tools such as the UML alleviate these difficulties. We believe that 

graphical modelling tools similar to those used for program design would aid the process of 

formal specification. 

With this in mind we have used diagrammatic notations of the UML for formal specification. 

To support this we have developed a prototype tool to convert adapted forms of UML class 

diagrams and statecharts into specifications in the B language. The aim is to use some of the 

features of UML diagrams to make the process of writing formal specifications easier, or at least 

more approachable to average programmers. We view this work as a feasibility investigation 

rather than a final method or product. The translation relies on precise expression of additional 

behavioural constraints in the specification of class diagram components and in statecharts 

attached to the classes. These constraints are described in an adapted form of the B 'abstract 

machine notation'. The type of class diagrams that can be converted is restricted in order to 

comply with constraints of the B-method without making the B unnatural. The resulting UML 

model is a precise formal specification but in a form which is more friendly to average 

programmers, especially if they use the same UML notation for their program design work. The 

diagrammatic notation and tool support brings its benefits to the modelling process for formal 

specification. The translation to textual B specification does not add anything to the 

specification; it merely provides an alternative mathematical, textual form. In this textual form, 

however, the benefits of the B method are obtained. The translation also demonstrates the 

validity of the graphical forms and defines their semantics. We envisage benefits to B users 

(especially novices) from being able to develop models in the UML diagrammatic form and we 

see this as a possible way to overcome some of the psychological barriers that programmers 

have against formal specification. 

69 



The majority of students on computer science courses express an aversion to formal 

specification whereas they are quite comfortable using graphical program design notations such 

as the UML^. We believe that this is largely an unwarranted fear and that formal specification, 

given the same level of tool and language support should be no more difficult than 

programming. Advantages of graphical design aids are more to do with the creation of models 

than with conveying information. Graphical descriptions can be misleading to read, they often 

convey different meanings to different readers and require experience to interpret secondary 

features (Petre, 1995) but to the writer they provide a quick way to express their ideas and to 

assist in visualizing prototype models that must otherwise be built entirely within the mind. 

Textual representations, although often more accurate in conveying precise meanings, are much 

more cumbersome for creating some aspects of these models. Graphical representations are 

good for helping to visualize structures, composition and the relationships between elements. 

Modelling large systems usually requires initially a structural design, which is then populated 

with more precise semantic detail. It is this first modelling stage that benefits from program 

design tools such as UML. Class diagrams allow the types of objects in the problem domain and 

the relationships between them to be modelled, visualized, prototyped and altered quickly. 

Attempts to add the semantic detail to these models may result in deficiencies in the model 

being discovered and lead to refinements to the model. These changes can be made quickly 

because the model is highly visible and easily alterable with the aid of the graphical design 

tools. Readability and ambiguity is not an issue because it is the creators that are using the tools 

for modelling. These features have made graphical design techniques such as UML popular for 

developing programs. We contend that the process of writing formal specifications is in many 

ways similar to programming and involves similar difficulties in abstraction, look-ahead and 

viscosity. Therefore tools that programmers have evolved for writing programs, or ones very 

similar to them, should bring similar benefits when writing formal specifications. In particular 

the UML and associated tools attack viscosity in order to alleviate the difficulty of choosing and 

committing to appropriate abstractions. 

^ This view was based on the comments of several lecturers. In order to test it we asked computer science students at 

The University of Southampton whether they liked using formal methods such as Z and B, and whether they liked 

using graphical design notations such as UML. Of the 118 students that responded, 67% preferred using graphical 

design notations and 15%, formal methods. The data from the poll and further results are shown in Appendix C. 
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6.2 Benefits of Translating UML to B 

As will be seen, the translatable UML model with formal annotations is just as precise and 

complete as the equivalent B specification. This is demonstrated by the fact that it can be 

translated to B automatically. However, there are still benefits to translating into a B 

specification: 

• The textual B specification is a complete mathematical description that may be more 

readable to experienced formal methods users. 

9 The B specification can be manipulated mathematically, enabling reasoning and proof 

to be performed. 

• Tools are available for type analysis, proof assistance and animation. 

e The translation demonstrates the semantics of the UML version. 

A B specification can be animated with the B-Toolkit to explore the dynamic behaviour of the 

modelled system. In UML terms this means that operations of an object can be invoked and the 

B animator will check preconditions, and invariants and display the new state of the system in 

terms of the object's attributes and relationships with other objects. Animation is useful, 

especially to novices, because it provides feedback and debugging of the specification. It is also 

useful for validation, i.e. demonstrating to users that the specification describes a system which 

will be useful. 

A class' dynamic behaviour can be proven to conform to its invariants. In UML terms this 

means that the proof tools will provide assistance in proving that no sequence of invocations of 

an object's operations can produce a resultant state (in terms of the class' attributes and 

associations with other objects) that disobeys the invariant. A safety or business critical property 

of the system could be specified and verified in this way. 

UML models prepared for translation to B contain invariant and method specifications written 

in B notation. The annotated UML diagram is given a precise semantics by the B generated by 

the translator. 
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6.3 The U2B Translator 

The U2B translator converts Rational Rose"* UML Class diagrams (Rational 2000A), including 

attached statecharts, into the B notation. U2B is a script file that runs within Rational Rose and 

converts the currently open model to B. It is written in the Rational Rose scripting language, 

which is an extended version of the Summit BasicScript language (Rational 2000B, Rational 

2000C). U2B is configured as a menu option in Rose. U2B uses the object-oriented libraries of 

the Rose Extensibility Interface to extract information about the classes in the logical diagram of 

the currently open model. The object model representation of the UML diagram means that 

information is easily retrieved and the program structure can be based around the logical 

information in the class rather than a particular textual format. U2B uses Microsoft Word^ to 

generate the B Machine files. The current version of U2B is a prototype for exploring the 

translation rules and the efficacy of the concept. The translator could be improved in efficiency 

and robustness as outlined in Chapter 9. 

6.4 Structure and Static Properties 

The translation of Classes, attributes and operations is derived from proposals for converting 

OMT to B (Meyer & Souquieres 1999). However, since our aims are primarily to assist in the 

creation of a B specification rather than to generate a formal equivalent of a UML specification, 

our translation simplifies that proposed by Meyer and Souquieres. This is achieved by 

restricting the translation to a suitable subset of UML models. 

A separate machine is created for each class and this contains a set of all possible instances of 

the class and a variable that represents the subset of current instances of the class. Attributes and 

(unidirectional) associations are translated into variables whose type is defined as a function 

from the current instances to the attribute type (as defined in the Class diagram) or associated 

class. 

For example consider the following class diagram with classes A and B, where A has an attribute 

X and there is a unidirectional association from A to B with role y and 0..1 multiplicity at the 

target end. A second association, w, has a L.n multiplicity: 

''Rational Rose is a trademark of the Rational Software Corporation 

M̂icrosoft Word97 is a trademark of the Microsoft Corporation 
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+w 

This will result in the following machine representing all instances of A: 

MACHINEA 
EXTENDS 

B 
SETS 

ASET 
VARIABLES 

Ainstances, 
X , 

w. 
y 

INVARIANT 
Ainstances <: ASET & 

X : Ainstances --> X & 
w : Ainstances > POWl(Binstances) & 
y : Ainstances +-> Binstances 

INITIALISATION 
Ainstances := {} | 
X := {} I I 

W : = { } I I 

y := {} 

Note that the multiplicity of the association w is handled as a function from instances of class A 

to sets of instances of class B using the POW (powerset) operator. Multiplicities of associations 

are discussed in more detail later. The machine is initialised with no instances and hence all 

attribute and association functions are empty. A separate machine will be generated for class B. 

In the example above, as well as in the examples that follow, we use the usual B conventions for 

capitalisation of names. That is, type sets, including given or enumerated sets, are named in 

upper case and variables are named in lower case. Hence attributes and association roles are 

named in lower case. Class names are given in upper case since they are used to generate the 

name for the given set of possible instances of the class. This results in the variable representing 

the set of possible instances being part upper and part lower case, however this reflects its main 

role as a type specifier. 
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6.4.1 Instance Creation 

A create operation is automatically provided for each class machine so that new instances can 

be created. This picks any instance that isn't already in use, adds it to the current instances set, 

and adds a maplet to each of the attribute and association relations mapping the new instance to 

the appropriate initial value. Note that, according to our definition (via translation) of class 

diagrams, association means that the source class is able to invoke the methods of the target 

class. The example below is similar to the first example but class A has an additional attribute, 

z, that has an initial value, k. 

z : X = k 

B 

Return < Acreate = 
PRE 

Ainstances /= ASET 
THEN 

ANY new 
WHERE 

new : ASET - Ainstances 
THEN 

Ainstances := Ainstances \/ {new } 1 1 
ANY XX WHERE XX:X THEN 

X(new) :=xx END | | 
z(new):=k || 
ANY XX WHERE xx:POWl(Binstances) THEN 

w(new):=xx END || 
ANY XX WHERE xx:Binstances THEN 

y(new):=xx END || 
Return := new 

END 
END 

Attribute x has no initial value specified and is therefore initialised non-deterministically to any 

value of the type X. Attribute z is initialised to the specified initial value, k. Association w must 

be initialised to a non empty set because its multiplicity may be greater than one but is definitely 

greater than zero. (Currently, we have no means of specifying initial values for associations). It 

is initialised non-deterministically to any non-empty subset of instances of B. The association, y, 

is initialised non-deterministically to any instance of B. (Since its multiplicity is 0 or 1 it could 

have been left undefined. This is discussed further below). 
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6.4.2 Association Multiplicities 

In UML, multiplicity ranges constrain associations. The multiplicities are equivalent to the 

usual mathematical categorisations of functions: partial, total, injective, surjective and their 

combinations. Note that the multiplicity at the target end of the association (class B in the 

example above) specifies the number of instances of B that instances of the source end (class A) 

can map to and vice versa. This can be confusing when thinking in terms of functions because 

the constraint is at the opposite end of the association to the set it is constraining. The 

multiplicity of an association determines its modelling as shown in Table 6.1. We use functions 

to sets of the target class instances (e.g. POW(B)) to avoid non-functions. Note that n is assumed 

unless otherwise specified in the UML class diagram. 

Multiplicity also affects the initialisation of an association that is performed when new instances 

of the source class are created. Currently this has not been adequately addressed in the U2B 

translation. For example, in the first case in Table 6.1 (0..n->0..1), the translator selects any 

existing instance of class B. This is unnecessarily restrictive since creating a new instance of B 

or leaving the association undefined are equally viable options. In the case ( L . l ^ L . l ) the 

translator's action is invalid since the only allowable initialisation is to create a new instance of 

B to map the association to. The (automatically generated) create operation supplies a new 

instance as an output of the operation but this can only be assigned to a local variable or output 

variable. Assignment of an operation output to a global variable would require the use of 

sequential composition, which is not allowed in specifications in B. An alternative 'create' 

operation that accepts a parameter identifying the new instance to be created is required. 

Similarly, for the case 0..n 0..n, because the multiplicity at the target class may be greater 

than 1, it should be possible to initialise the association to a set consisting of any combination of 

existing and newly created instances of B. In the last case in Table 6.1 (l..l->l..n) the 

translator's action is, again, invalid since the only valid action is to create a (non-empty) set of 

new instances of B. To create and assign a set of new instances, an alternative create operation is 

needed that accepts as a parameter the set of new instances. 
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Association Representations in B for Different Multiplicities I 
Ai and Bi are the current instances sets of class A and B respectively (i.e. Ainstances and Binstances) 
and f is a function representing the association (i.e. the role name of the association with respect to the 
source class, A). 
disjoint (f) is defined in B as: 

!(al,a2).{ al:dom(f) & a2:dom(f) & al/=a2 

1 UML association 
multiplicity 

Informal description of B 
representation B invariant 

1 0..n -> ()..! partial function to Bi Ai +-> Bi 

1 0..n 1..1 total function to Bi Ai --> Bi 

j 0..n 0..n total function to subsets of Bi .Ai --> POW(Bi) 

1 0..n l..n 
total function to non-empty subsets 
o f B i 

Ai — > POWl(Bi) 

partial injection to Bi Ai >+> Bi 

0..1 ^ 1..1 total injection to Bi Ai >-> Bi 

1 0..1 0..n 
total function to subsets of Bi 
which don't intersect 

Ai — > POW(Bi) & 
disjoint(f) 

1 0 .1 l..n 
total function to non-empty subsets 
of Bi which don't intersect 

Ai --> POWl(Bi) & 
disjoint(f) 

j l . .n->0..1 partial surjection to Bi Ai +->> Bi 

1 l..n -> 1..1 total surjection to Bi .Ai -->> Bi 

1 l..n -> 0..n 
total function to subsets of Bi 
which cover Bi 

Ai — > POW(Bi) & 
union(ran(f))= Bi 

l..n l..n 
total function to non-empty subsets 
of Bi which cover Bi 

Ai --> POWl(Bi) & 
union(ran(f))= Bi 

1.1 * & . l partial bijection to Bi Ai >+» Bi 

1..1 ^ 1..1 total bijection to Bi Ai >-» Bi 

1..1 0..n 
total function to subsets of Bi 
which cover Bi without intersecting 

Ai --> POW(Bi) & 
union(ran(f) )= Bi & 
disjoint(f) 

1..1 l..n 
total function to non-empty subsets 
of Bi which cover Bi without 
intersecting 

Ai --> POWl(Bi) & 
union(ran(f))= Bi & 
disjoint(f) 

Table 6.1 - How associations are represented in B for each possible multiplicity constraint 

In Fig. 6.1 a mapping represents an association between the classes A and B with multiplicity 

0..n 0..1. The representation in B is a partial function. It is not a total function because the 

element a4 doesn't map to anything in B (as indicated by the 0 at the right hand end of 0..n 

0..1). It is not injective because b2 is mapped to by both a2 and a3 (as indicated by the n at the 

left hand end of 0..n -> 0..1). It is not surjective because b3 is not mapped to by anything in A 

(as indicated by the 0 at the left hand end of 0..n -> 0..1) 
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A B 

Fig 6.1 Mapp ing representing a 0..n -> 0..1 association 

6.4.3 Attribute Types 

Attribute types may be any valid B expression that defines a set. This includes predefined types 

(such as NAT, NATl, BOOL and STRING) functions, sequences, powersets, instances of 

another class (referenced by the class name), and enumerated or deferred sets defined in the 

class specification documentation window. (If translating to B-Core B, the appropriate B library 

machines must be referenced via a SEES clause in the class's specification documentation 

window). If the type involves another class (and there is no unidirectional path of associations 

to that class) the machine for that class will be referenced in a USES clause so that its current 

instances set can be read. If there is a path of unidirectional associations to the class it will be 

extended (EXTENDS) by this machine in order to represent the association and this will 

provide access to the instances set. (Note that only unidirectional associations are interpreted as 

associations. Unspecified or bi-directional associations are ignored and can therefore be used to 

indicate type dependencies diagrammatically if required). Any references to the class in type 

definitions of variables or operation arguments will be changed to the current instances set for 

that class. 

For example, the following shows a class that has an attribute x of type, non-empty finite subset 

of natural numbers. It has an attribute y that is of type, non-empty sequence of booleans. The 

library machine BOO1_TYPE has been referenced via a SEES clause in the class's 

documentation window (this would not be necessary for Atelier-B). It has an attribute z that has 

type, total injection from Y to permutations of z. A 'SETS' clause has been added to the class' 

documentation window that defines Y as a deferred set and z as an enumerated set. 
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A 
FIN1(NAT) 

MIy seql(BOOL) 

l ^ z : Y >-> perm(Z) 

l ^ w : POW(B) 

B 

Q Class Specification For A 

Relations 

General 

Name: p 

Type: 

Components | Nested | Files 

Detail I Operations | Attributes 

Parent: Logical View 

Class ~3 
" 3 Stereotjipe: j 

Export Control 

I * Public C Protected Private C Implementation 

Documentation: 

SEES 
E 

SETS 
BooLTYPE 

V; 

" 3 

Z = {blue, yellow, green, red} 

zl 

OK Cancel App l i i Browse 1 Help 

Note that 'Export Control' settings in the class specification are not used in the U2B translation. 

The corresponding B machine for class A is shown below. 

MACHINEA 
SEES 

Bool_TYPE 
USES 

B 
SETS 

ASET ; 
Y ; 
Z = {blue, yellow. green, red} 

VARIABLES 
Ainstances, 
X , 

y , 
z. 
w 

INVARIANT 
Ainstances <: ASET & 

X : Ainstances --> FINl(NAT) & 
y : Ainstances --> seql(BOOL) & 
z : Ainstances --> Y >-> perm(Z) & 
w : Ainstances --> POW(Binstances) 

6.4.4 Global Definitions 

It is often useful to define types as enumerated or deferred sets for use in many machines. We 

use 'class utilities' for this. In UML, a class utility is a class that doesn't have any instances, only 

static (class-wide) operations and attributes. The U2B translator creates a machine for each class 

utility and copies any text in the specification documentation window of its class specification 

into the machine. Hence definitions, sets and constants can be described in B clauses in the 
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documentation window. Any machines that reference things defined in this way must have an 

association to the class utility. (This association will not be interpreted as an association to an 

ordinary class). In the following example a class utility, DEFS, is used to define a set x that is 

used as a type by 2 other classes. 

A B 

H i x ; X i i z : X 

I Class Specification for DEFS JjJM 

Relations 

General 

DEFS Name: 

Dpe: jciassUtility 

Components | Nested | Files 

Detail | Operations | Attributes 

Parent: Logical View 

" 3 
-3 Stereotype: | 

•£xport Control 

f* Public C Protected ^ Private C Implementation 

Documentation: 

SETS 

zJ 

OK Cancel Apply Browse • Help 

The corresponding machine for class utility DEFS is: 

MACHINEGLOBALS 

The machines for classes A and B will reference DEFS via a 'SEES clause: 

SEES 
DEFS 

6.4.5 Local Definitions 

As we have seen in a previous example, such sets can also be defined locally to a class in the 

class' specification documentation window, hi fact, any valid B clause can be added in this 

window. For example, we use this method to specify invariants for the class. Each clause must 

be headed by its B clause name in capitals and starting at the beginning of a line, the text that 

follows that clause, up until the next clause title (if any) will be added to the appropriate clause 

in the machine. Any text before the first clause is treated as comment and added as such at the 

top of the machine 
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6.4.6 Singular Classes 

Often, a B machine models a single generic instance of an entity, rather than an explicit set of 

instances (in the same way that a class in UML leaves instance referencing implicit). The 

resulting specification is simpler and clearer for not modelling instances. If the class multiplicity 

(cardinality) is set to 1..1 in the UML class specification, the U2B translator creates a machine 

with no instance modelling. Note that this can only be done at the top level of an association 

hierarchy since at lower levels the instance set is used for referencing by the higher level. Below 

is shown the machine representing class A from the first example above if the class' multiplicity 

is set to 1..1. Note that there is no modelling of instances; the types of attributes are simpler 

because it is no longer necessary to map from instances to the attribute type. There is no 

instance create operation, attributes are initialised in the machine initialisation clause. 

MACHINEA 
EXTENDS 

B 
VARIABLES 

X, 
w. 
y 

INVARIANT 
X X & 
w POWl(Binstances) & 
y Binstances 

INITIALISATION 
X : X 1 1 
W : POWl(Binstances) || 
y = {} 

END 

6.4.7 Restrictions 

The B method imposes some restrictions on the way machines can be composed. These 

restrictions ensure compositionality of proof Their impact is that no write sharing is allowed at 

machine level (i.e. a machine may only be included or extended by one other machine). Also, 

the inclusion mechanism of B is hierarchical. Hence, if Ml includes M2, then M2 cannot, directly 

or transitively, include Ml. We reflect these restrictions in the UML form of the specification, 

which must therefore be tree like in terms of unidirectionally related classes. Non-navigable 

(and bi-directional) associations are ignored but may be used to illustrate the use of another 

class as a type (i.e. read access only). However, multiple, parallel associations between the same 

pair of classes are permitted. 

Although we would like to adhere to the UML class diagram rules as much as possible, since 

our aim is to make B specification more approachable rather than to formalise the UML we are 
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relatively happy to impose restrictions on the diagrams that can be drawn. That is, we only 

define translations for a subset of UML class diagrams. Other authors (Facon, Laleau & 

Nguyen, 1996, Meyer & Souquieres, 1999, Meyer & Santen, 2000, Nagui-Raiss, 1994, Shore, 

1996) have suggested ways of dealing with the translation of more general forms of class 

diagrams. However, the structures of B machines that result from these more general 

translations can be cumbersome. If the specification were written directly in B, it would be 

highly unlikely that the resulting B would have this form. Since we also desire a usable B 

specification we prefer to restrict the types of diagrams that can be drawn. 

6.5 ID îMuiuclBehaviour 

The dynamic behaviour modelled on a class diagram that is converted to B by U2B is embodied 

in the behaviour specification of class operations and invariants. UML does not impose any 

particular notation for these definitions; they could be described in natural language or using 

UML's Object Constraint Language (OCL). However since we wish to end up with a B 

specification it makes sense to use bits of B notation to specify these constraints. The 

constraints are specified in a notation that is close to B notation but needs to observe a few 

conventions in order for it to become valid B within the context of the machine produced by 

U2B. When writing these bits of B the writer shouldn't need to consider how the translation 

would represent the features (associations, attributes and operations) of the classes. Also we felt 

we should follow the object-oriented conventions of implicit self-referencing and the use of the 

dot notation for explicit instance references. This is illustrated in examples below. 

6.5.1 Invariant 

Unfortunately there is no dedicated text box for a class invariant in Rational Rose. One 

suggestion is to put invariant constraints in a note attached to the class (Warmer & Kleppe, 

1999), but notes are treated as an annotation on a particular view (diagram) in Rational Rose 

and not part of the model. This makes them difficult to access from the translation program and 

unreliable should we extend the conversion to look at other views. Therefore we include the 

invariants as a clause in the documentation text box of the class' specification window. 

Invariants are generally of two kinds, instance invariants (describing properties that hold 

between the attributes and relationships within a single instance) and class invariants 

(describing properties that hold between different instances). For instance invariants, in keeping 

with the implicit self-reference style of UML, we chose to allow the explicit reference to 'this 

instance' to be omitted. U2B will add the universal quantification over all instances of the class 

automatically. For class invariants, the quantification over instances is an integral part of the 
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property and must be given explicitly. Hence, U2B will not need to add quantification and 

instance references. 

For example, if bx: NAT is an attribute of class B then the following invariant could be defined 

in the documentation box for class B: 

bx < 100 Sc 

! (bl,b2) . ({bl:B & b2:B & bl/=b2)=> (bl.bx/=b2. bx) 

This would be translated to: 

!(thisB).(thisB:Binstances => 
bx(thisB) < 100 & 
!(bl,b2).{(bl:Binstances & b2rBinstances & bl/=b2) 

=> (bx(bl)/=bx(b2)) 
) 

The translation has added a universal quantification, ! ( t h i s B ) , over all instances of B and this 

is used in the first part of the invariant. It is not used in the second part where the invariant 

already references instances of class B. (Note that currently the translator adds one universal 

quantification for the entire invariant whether or not it is needed). 

6.5.2 Operation Semantics 

Operation preconditions are specified in a textual format attached to the operation within the 

class. Details of operation behaviour are specified either in a textual format attached to the 

operation, or in a statechart attached to the class. Operation behaviour may be specified 

completely by textual annotation, completely by statechart transitions, or by a combination of 

both composed as simultaneous specification. 

Operation textual behaviour specification - In Rational Rose, 'Specifications' are provided for 

operations (as well as many other elements) and these provide text boxes dedicated to writing 

preconditions and semantics for the operation. (A postcondition text box is also provided. 

Initially we used this for the operation body. Reviewers found this strange because operation 

bodies in B do not look like postconditions predicates. In fact they are mathematically 

equivalent, but since our motivation is to achieve a more user-friendly and intuitive form of 

formal specification, we decided to use the semantics box because it suits the pseudo-

operational style of B). 

Operations need to know which instance of the class they are to work on. This is implicit in the 

class diagram. The translation adds a parameter thisCLASS of type CLASSinstances to each 
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operation. This is used as the instance parameter in each reference to an attribute or association 

of the class. 

A % 
B A % g b x : NAT 

• s e t _ y ( i : NAT) : out 
1 

H[b_op(b i : NAT) 

In the above example, s e t _ y might have the following precondition: 

i > y.bx 

and semantics 

y.b_op(i) 1 
IF y.bx <100 
THEN 

out : = FALSE 
ELSE 

out : = TRUE 
END 

which would be translated to 

i > bx(y(thisA) 

and 

t>_op (y (thisA) ) II 
IF bx{y(thisA)) <100 
THEN 

out := FALSE 
ELSE 

out := TRUE 
END 

Operation Return Type - UML operation signatures contain a provision for specifying the 

type for a value returned by the operation. Since B infers this from the body of the operation we 

use it instead to name the identifiers that represent operation return values. The string entered in 

the return type field for the operation will be used as the operation return signature in the B 

machine representing the class. For example, the set_y operation in the above example has its 

return field set to out. The operation signature for set_y in the B machine A will be: 
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out < — set_y {thisA,i) 

Statechart Behavioural Specification - For classes that have a strong concept of state change, 

a statechart representation of behaviour is appropriate. In UML a statechart can be attached to a 

class to describe its behaviour. The underlying model representing the statechart is constructed 

and viewed via a set of one or more state diagrams. A statechart consists of a set of states and a 

set of transitions that represent the changes between states that are allowed. If a statechart is 

attached to a class the U2B translator combines the behaviour it describes with any operation 

semantics described in the operation specification semantics windows. Hence operation 

behaviour can be defined either in the operation semantics window or in a statechart for the 

class or in a combination of both. 

The name of the statechart model is used to define a state variable. (Note that this is not the 

name of a state diagram, several diagrams could be used to draw the statechart of a class). The 

collection of states in the statechart is used to define an enumerated set that is used in the type 

invariant of the state variable. The state variable is equivalent to an attribute of the class and 

may be referenced elsewhere in the class and by other classes. State chart transitions define 

which operation call causes the state variable to change from the source state to the target state, 

i.e., an operation is only allowed when the state variable equals a state from which there is a 

transition associated with that operation. To associate a transition with an operation, the 

transition's name must be given the same name as the operation. Additional guard conditions 

can be attached to a transition to further constrain when it can take place. All transitions cause 

the implicit action of changing the state variable from the source state to the target state. (The 

source and target state may be the same). Additional actions (defined in B) can also be attached 

to transitions. The translator finds all transitions associated with an operation and compiles a 

SELECT substitution of the following form: 

SELECT statevar=sourcestatel & transitionl_guards 
THEN statevar:=targetstatel || transitionl_actions 
WHEN statevar=sourcestate2 & transition2_guards 
THEN statevar:=targetstate2 || transition2_actions 
etc 
END I I 

This is composed with the operation precondition and body (if any) from the textual 

specification in the operation's precondition and semantics windows: 

Let Popw be the precondition in the operation precondition window, Sosw be the operation 

body from the operation semantics window and Gstc the SELECT substitution for this 
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operation composed from the statechart. Then the translator will produce the following 

operation: 

Popw 
THEN 

This can be represented as; Popw | (Gstc || Sosw) 

Hence the pre condition, Popw, has precedence and, if false, the operation will abort. If an event 

B style systems simulation (Abrial 2000) is desired, the specifier should take care not to define 

preconditions that conflict with the transition guards. (For example, if an event only occurs if an 

attribute, bx, is positive, and this is modelled by a guarded transition; adding the precondition 

bx>0 would change the meaning of the model to represent a system where the event 

can occur at any time but aborts if bx is not greater then 0). 

Note that it would be entirely valid (although somewhat obtuse) to write a precondition within 

the operation semantics window; Sosw = Posw | Slosw. However, preconditions take 

precedence in simultaneous substitutions, so 

(Gstc II (Posw I Slosw)) = Posw | (Gstc || Slosw) 

Hence, writing the precondition in the operation semantics window is equivalent to writing it in 

the precondition window. It has the same precedence and possible conflicts with the operation 

guards derived from the statechart. We feel that writing the precondition in the operation 

semantics window should be discouraged because the precedence may not be obvious to readers 

of the specification. 

If the precondition (Popw A POSW) is true, then the guard from Gstc takes precedence over the 

simultaneous substitution, Sosw. This means that the textual operation body from the operation 

semantics window, although defined separately from the statechart and not associated with any 

particular state transition, is only enabled when at least one of the state transitions is enabled. 

That is, if 

Gst:c = (G1 => Tl) O .... O (Gn => Tn) 

then, 

(Gstc II Sosw) = (Gl => (T1 I I Sosw)) • ... • (Gn => (Tn || Sosw)) 

where • represents choice. 
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Actions should be specified on state transitions when the action is specific to that state 

transition. Where the action is the same for all that operation's state transitions, it may be 

specified in the operation semantics window in order to avoid repetition. The following example 

illustrates how a statechart can be used to guard operations and define their actions. It also 

shows how common actions can be defined in the operation semantics window and how a 

precondition could upset the constraints imposed by the statechart. 

inc / bx := bx+1 
inc/bx;=bx+10 

dec[ bx=1 ] 

zero non zero 

dec[bx>1 ] 

The statechart has 2 states, ze ro and non_zero. The implicit state variable, b _ s t a t e (the 

name of the statechart) is treated like an attribute of type B_STATE = {zero, non_zero}. An 

invariant, {b_s ta te=zero) <=> (bx=0), defines the correspondence between the value of 

the attribute bx and the state z e r o . The invariant would be written in the class specification 

window. When an instance is created its b _ s t a t e is initialised to ze ro because there is a 

transition from an 'initial' state to zero. 

MACHINEB 
SETS 

BSET; 
B_STATE={zero,non_zero} 

VARIABLES 
Binstances, 
b_state, 
bx 

INVARIANT 
Binstances <: BSET & 
b_state : Binstances --> B_ .STATE & 
bx : Binstances --> NAT & 
!(thisB).(thisB:Binstances = > 
(b_state(thisB)=zero) <=> 
\ 

(bx(thisB)=0) 
) 

INITIALISATION 
Binstances := { } | | 
b_state := {} || 
bx := {} 
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Bcreate = 

/= BSET 

Binstances 

OPERATIONS 
Return <--

PRE 
Binstances 

THEN 
ANY new 
WHERE 

new : BSET 
THEN 

Binstances := Binstances \/ {new } 
b_state(new) :=zero | | 
ANY XX WHERE xx:NAT THEN 

bx(new):=xx END || 
Return := new 

END 
END 

Operation inc can occur in either state. Its action is different depending on the starting state and 

so actions have been defined on the transitions and are combined with the state change action. 

inc (thisB) 
PRE 

thisB Binstances 
THEN 

SELECT b_state(thisB)=zero 
THEN b_state(thisB):=non_zero || 

bx(thisB):=bx(thisB)+10 
WHEN b_state(thisB)=non_zero 
THEN bx(thisB) := bx{thisB)+l 
END 

END 

Operation dec has two guarded alternatives when in state non_zero but does not occur while 

in state zero. Since the action is the same for both transitions it has been defined in the 

operation's semantics window. 

Operation Specification for dec 

General 
Semantics 

Semantics: 

|bx:=bx-1 

Detail j 

Postconditions 

Preconditions 

I Files 

" 3 
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dec (thisB) 
PRE 

thisB : Binstances 
THEN 

SELECT b_state(thisB)=non_zero & 
bx{thisB)=1 

THEN b_state(thisB):=zero 
WHEN b_state(thisB)=non_zero & 

bx(thisB)>1 
THEN skip 
END 1 1 
bx(thisB):=bx{thisB)-1 

END 
END 

If we had put a precondition in the operation specification precondition window (or even in the 

operation semantics window), the guard would no longer function since the precondition would 

fail resulting in an abort when bx=0. 

: • 3 3 

Semantics Postconditions 1 Files 1 
General j Detail Preconditions 

preconditions; 

bx>0 " 3 

dec (thisB) = 
PRE 

thisB : Binstances & 
bx(thisB)>0 

THEN 
SELECT b_state{thisB)=non_zero & 

bx(thisB)=1 
THEN b_state(thisB):=zero 
WHEN b_state(thisB)=non_zero & 

bx(thisB)>1 
THEN skip 
END I I 
bx(thisB):=bx{thisB)-1 

END 

This could be avoided by repeating the precondition and decrement substitution in the action 

field of each dec transition on the statechart in which case the guard would take precedence. 

6.6 Summary 

In this chapter we have described a method for attaching formal constraints to class diagrams 

drawn in the Rational Rose UML tool. The class diagram becomes a graphical formal 

specification notation, B-UML, which we hope will bring benefits to the process of creating a 



formal specification. We define a translation to the B notation, which ensures a precise 

definition of the semantics of B-UML. The translation also provides a pure textual equivalent in 

a recognised formal notation that has good tool support. 
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Chapter 7 

Examples of B-UML and U2B in Use 

In this chapter we present three examples of B-UML models and show how they translate into 

equivalent B specifications. The first example, a raffle game, demonstrates the features of the 

class diagram translation. The second example, a railway station, introduces the use of 

statecharts to specify operation behaviour within a class. The third example, part of a teletext 

page selection system, is based on a real industrial project. It is a simplified version of a model 

initially developed jointly with M. Satpathy at Reading University. This example illustrates 

some techniques for coping with more complicated statecharts. Although the teletext example is 

suitable for the purposes of illustrating the translation techniques, it is apparent that a statechart 

description is not the most suitable means to describe the problem. This demonstrates the 

importance of having the textual form in the operation semantics windows. The example also 

illustrates some limitations of the current translation methods. 

7.1 RafHe Game 

This example describes a raffle game system. Newly created games must be initialised by 

setting their set of prizes before tickets can be sold. When a ticket is sold a record of the player 

that bought it is kept. A draw of the winning tickets can be attempted at any time but is only 

achieved when enough tickets have been sold to win all the prizes. A ticket can be checked to 

see if it is a winning ticket. A prize can be claimed by submitting a winning ticket and 

identifying the player that bought it correctly. 

Fig. 7.1 shows a class GAME that has typed and initialised attributes, parameterised operations 

(some with return values), three association relationships with a class TICKET and an aggregate 

relationship with another class, PRIZE. The class also uses another class, PLAYER, as a type. 

The associations have role names Prizes, Tickets, winners and Claimed, which are used 

to refer to the instances of the associated class involved in the association. The class GAME has 

an operation setprizes that allows the associated prizes to be defined for a particular instance 

of GAME. When this has been done, operation buy allows players to buy tickets for a game by 

incrementing attribute Sales and non-deterministically selecting an unused instance of class 

TICKET, calling its sell operation (which sets its Owner and Sold attributes) and adding it to 
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the association Tickets. Once a minimum number of tickets have been sold for a game, 

operation draw allows the winning tickets for that game to be selected, one for each prize, and 

added to the association winners. Players can check to see whether their ticket belongs to the 

association winners. If it does, they can use operation claim to obtain one of the prizes, which 

is selected non-deterministically. The ticket, for which a prize has been claimed, is added to the 

association claimed. Attribute Owner, of class TICKET, records which player bought the 

ticket so that this can be checked when a prize is claimed. 

GAME 

SISales : NAT = 0 

Bsetprizes(pp: ROW (PRIZE)) 
B[buy(buyer: PLAYER): ticket 
HdrawQ : success 
Bcheck( t t ; TICKET): won 
N#claim(tt: TICKET, pi : PLAYER): prize 

Oyl 0 .1 o i l o . X ^ 

+Prizes/ 
0 . . n / 

PRIZE 

+Tick( +C/almed 

0..n 

TICKET 

PLAYER 

iName: STRING 

SOwner ; PLAYER 
aiSold : BOOL = FALSE 

•se l l (buyer : PLAYER) 

Qclass Specification for GAME 

Relation* | Components | Nested } Files j MSVC 

General 1 Detail I Operations | Attributes 

i lame: 

l y p e : 

GAME Parent; Logical View 

|Cla*$ 13 
~3 Stereotype: j 

Export Control _ _ _ _ _ _ — 

(* Public n PrjQtected C Private r Implementation 

Documentation: 

A game can be initialised by setting its Prizes attribute. 
thereafter, if t he game has not been drawn tickets can be 
bought. If more tickets have been sold than the number of 
prizes, then the game can be drawn. This selects a subset 
of the bought tickets that has the same cardinality as the set 
of Prizes. After the game has been drawn a particular ticket 
can be c h e c k e d to see if it is in the set of winning tickets 
and not yet claimed. If it is a claim can be made for that 
ticket and a Prize will be returned. That prize is then no 
longer available for claiming. 
SEES 
BooLTYPE 
INVARIANT 
card(Tickets) = Sales & 
WimoM <: Ticket* & 
Claimed <; Winners & 
!(gg>hh). (gg:SAME & hh:GAME & 

g g / = h h => gg.Tickets A hh.Tickets = {}) 

zi 

OK Cancel | 6PP(P Browse • Help 

Fig. 7.1 Class Diagram and Class SpeciRcation for Game 

Alongside the class diagram is shown the Rational Rose specification for the class GAME. 

Following the natural language description in the 'Documentation' box some class invariants are 

given. These express the requirements that the number of sales is equal to the number of tickets 

sold, winning tickets are a subset of the tickets sold and tickets for which a prize has been 

claimed are a subset of the winning tickets. These invariants describe relationships between the 

attributes and associations within a single instance of the class GAME. The last invariant ensures 

that a ticket cannot be sold for two different games and describes a relationship between 

instances of the class. This last invariant was entered before the translator supported 

multiplicities on associations. It is now redundant since the association multiplicity 0..1 at the 

source end expresses this constraint and U2B automatically generates the equivalent predicate 

disjoint (Tickets). Note that the attribute Sales is also redundant and could be removed. 

Apart from requiring extra operations to maintain it, redundant information requires invariants 
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to ensure it is kept consistent and these will generate additional proof obligations. (Both have 

been left in the example purely for illustrative reasons.) The Atelier-B proof tools were used 

(by a colleague) to prove that these invariants were preserved by the operations of the example. 

The proofs uncovered a mistake in the original version of the buy operation that allowed a ticket 

that already belonged to another game to be resold. In the buy operation described below, the 

precondition and selection predicate of the ANY substitution contained tt rTlCKET-Tickets 

(i.e. tt is a ticket that doesn't already belong to this game) instead of tt: TICKET-

UNION (gg) . (gg:GAME I gg.Tickets) (i.e. tt is a ticket that doesn't already belong to any 

game). 

Each operation of the class also has a Rose Specification window with appropriate tabs for the 

definition of the operation. The operation preconditions and body shown in Fig. 7.2 are taken 

from the precondition and semantics tabs of the specification for the buy operation in class 

GAME. The ANY construct is a statement of the B language that selects a value for a variable 

(here tt) satisfying some condition. In this case the condition is tt:TICKET-

UNION (gg) . {gg:GAME I gg.Tickets), i.e. select an unused ticket. The second part of this 

expression is a generalised union of the association Tickets over all instances of the parent 

class, GAME. This is expressed as the union of gg. Tickets for all gg: GAME. Also, note the call 

to operation sell of the Tickets class. The operation is called for the instance tt of TICKET. 

precondition 
Prizes /= {} & 
Winners = {} & 
TICKET-UNION(gg) .(gg:GAME 1gg.Tickets) / = {} 

semantics 
AMY Ct WHERE tt: TICKET - UNION(gg).(gg :GAME1gg.Tickets) 
THEN 

Tickets := Tickets \/ {tt} |1 
tt.sell(buyer) || 
Sales := Sales +1 11 
ticket : = tt 

END 

Fig. 7.2 Precondition and Semantics for operation buy of class GAME 

Below is shown the automatically produced B machine for the class GAME: 
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MACHINEGAME 
/*" A game is initialised by setting its Prizes attribute. "*/ 

SEES 
Bool_TYPE 

EXTENDS 
PRIZE, 
TICKET 

USES 
PLAYER 

SETS 
GAMESET 

VARIABLES 
GAMEinstances, 
Sales, 
Prizes, 
Tickets, 
Winners, 
Claimed 

Machines of associated classes are extended so that their 
operations are accessible to higher level classes. Classes 
used as types only need USES access. 

Current class instances is a variable which is a subset of 
the possible instances, a given set, GAMESET. 

Variables model the attributes and associations of the 
class. 

The types of variables used to model attributes and associations are defined in the 
invariant as functions from the current instances to the attribute/association type. 
Association multiplicities affect these functions and impose constraints on their ranges. 
In this case the functions map to subsets of the target class that don't intersect 

INVARIANT 
GAMEinstances <; GAMESET & 
Sales : GAMEinstances --> NAT & 
Prizes : GAMEinstances — > POW{PRIZEinstances) & 
disjoint(Prizes) 
Tickets : GAMEinstances --> POW(TICKETinstances) & 
disjoint(Tickets) 
Winners : GAMEinstances — > POW{TICKETinstances) & 
disjoint(Winners) 
Claimed : GAMEinstances --> POW(TICKETinstances) & 
disjoint(Claimed) 
!(thisGame).(thisGame:GAMEinstances => 
card(Tickets(thisGame)) = Sales(thisGame) & 

Winners(thisGame) <: Tickets(thisGame) & 
Claimed(thisGame) <: Winners(thisGame) & 
!(gg,hh). (gg:GAMEinstances & hh:GAMEinstances & 

gg/=hh => Tickets(gg) /\ Tickets(hh) {}) ) 

Invariants from the class documentation window are copied into the machine invariant and 
have universal quantification over all current class instances added. Dot notation of explicit 
instance references has been converted to parameterisation. 
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INITIALISATION 
GAMEinstances 
Sales := {} II 

{} 

{} 

= {} 

= {} 

= {} 

GAMEcreate 

Prizes 
Tickets 
Winners 
Claimed 

OPERATIONS 
Return < 

PRE 
GAMEinstances 

THEN 
ANY new 
WHERE 

new : GAMESET 
THEN 

GAMEinstances 

All machine variables are initialised to empty 
sets. An instance creation operation is 
automatically provided. This initialises the 
attribute values for the new instance according 
to the initialisation values specified for the class 
or non-deterministically where no initialisation 
value is given.. The new instance is returned. 

/= GAMESET 

GAMEinstances 

GAMEinstances \/ {new } 
Sales(new):=0 || 
ANY XX WHERE XX: POW{PRIZEinstances-union (ran (Prizes)) ) 
THEN Prizes(new):=xx END || 
ANY XX WHERE XX: POW {TICKETinstances-union (ran (Tickets)) ) 
THEN Tickets(new):=xx END || 
ANY XX WHERE xx: POW (TICKETinstances-union {ran (Winners)) ) 
THEN Winners(new):=xx END | j 
ANY XX WHEFIE xx:POW(TICKETinstances-union(ran(Claiined))) 
THEN Claimed(new):=xx END j | 
Return := new 

END 
END 

/*" Initialise the Prizes attribute with a set of Prizes "*/ 
setprizes (thisGame,pp) = 
PRE 

thisGame : GAMEinstances & 
pp:POW(PRIZEinstances) & 
Prizes(thisGame) = {} 

THEN 
Prizes(thisGame) := pp 

END 

/*" If the game has had its Prizes set and has not been drawn then "*/ 
/*" a ticket is sold to the buyer and added to Tickets and returned"*/ 
ticket <-- buy (thisGame,buyer) = 

PRE 
thisGame : GAMEinstances & 
buyer:PLAYERinstances & 
Prizes(thisGame) /= {} & 
Winners{thisGame) = {} & 
TICKETinstances-UNION(gg) .(gg:GAMEinstancesI Tickets(gg)) /= {} 

THEN 
ANY tt WHERE tt: TICKETinstances -

UNION(gg) . (ggzGAMEinstances [Tickets (gg) ) 
THEN 

Tickets(thisGame) 
sell(tt,buyer) || 
Sales(thisGame) :; 
ticket := tt 

;= Tickets(thisGame) \/ {tt} 

Sales(thisGame) +1 

END 
END 
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/*" If the game has been set up and not been drawn already and "*/ 
/*" enough tickets have been sold to provide a winner for each "*/ 
/*" prize then the game is drawn by selecting a subset of the "*/ 
/*" tickets sold as winners of the prizes and true is returned. "*/ 
/*" If the game has been set up and not been drawn already but "*/ 
/*" not enough tickets have been sold, false is returned "*/ 
success <-- draw (thisGame) = 

PRE 
thisGame ; GAMEinstances & 
Prizes(thisGame) /= {} & 
Winners(thisGame) = {} 

THEN 
IF card (Prizes (thisGame) ) < card (Tickets (thisGame) ) 
THEN 

ANY WW WHERE 
WW : POW (Tickets(thisGame)) & 
card (ww) = card (Prizes(thisGame)) 

THEN 
Winners(thisGame) ;= ww 

END I I 
success := TRUE 

ELSE 
success := FALSE 

END 
END 

/*" If tt is in the set of winners but not in the set of claimed "*/ 
/*" true is returned, otherwise false is returned "*/ 
won <-- check (thisGame,tt) = 

PRE 
thisGame : GAMEinstances & 
tt;TICKETinstances 

THEN 
IF tt : Winners(thisGame) - Claimed(thisGame) 
THEN 

ELSE 

END 
END 

won := TRUE 

won := FALSE 

/*" If tt is in Winners but not in Claimed and pi is the owner of "*/ 
/*" tt one of the prizes in Prizes is returned and is removed from "*/ 
/*" Prizes and the ticket is added to claimed "*/ 
prize <-- claim (thisGame,tt,pi) = 

PRE 
thisGame : GAMEinstances & 
tt:TICKETinstances & 
pi:PLAYERinstances & 
tt : Winners(thisGame) - Claimed(thisGame) & Owner(tt) = pi 

THEN 
ANY pp WHERE pp :Prizes(thisGame) 
THEN 

END 
END 

END 

Claimed(thisGame) := Claimed(thisGame) \/ {tt} 
Prizes(thisGame) := Prizes(thisGame) - {pp} || 
prize := pp 
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This example demonstrates how effective the semi-diagrammatic method is for creating formal 

specifications. In producing the specification, we found the representation of its main elements 

(such as GAME and TICKET) and the organisation of attributes, associations and operations, 

helpful in visualising and deriving the model. Much of the infrastructure of the B machines was 

generated automatically, which left us free to concentrate on adding the operation semantics and 

invariants. The separation of the parts of textual specification by 'hanging' them onto 

diagrammatic entities seemed to help psychologically in making them seem easier to consider. 

The resulting specification closely resembles the familiar UML class diagram making it 

approachable and comprehendible to software engineers. Using the textual B version of the 

model enabled us to detect a mistake in it. 

7.2 Railway Station 

This example is a model of a railway station. It is an extension of the example in Lano (1996). 

A station has a number of platforms and extra platforms can be added. Arriving trains are 

allocated to an available platform if one exists or are queued until a platform becomes available 

or an error occurs. In the latter case a queued train moves to one of the platforms whether or not 

it is available and hence a crash may occur. Platforms may be opened and closed. A platform is 

available when it is open and no train is occupying it. A crash occurs if a train arrives at a closed 

or occupied platform. If a crash occurs at a platform it may be cleared and made available by 

opening it. If a multiple crash occurs (i.e. more than 1 train occupies the platform) opening the 

platform will leave it closed and a subsequent opening is required to make it available. 

The class diagram in Fig. 7.3 consists of a class STATION that has a typed and initialised 

attribute, parameterised operations (one with a return value), and an association with another 

STATION 

'queue : seq(TRAIN) = <> 

PLATFORM 

"train_arrives(tt: TRAIN): outcome 
•train_departs(pp: PLATFORM) 
•next_train(error: BOOL) 
•add_platform(pp: PLATFORM) 

+platforms 
0..n 

|®»tralns: POW(TRAIN) = {}: 

'arrival(tt: TRAIN) 
•departureO 
•closeplatformO 
•openplatformO 

Fig. 7.3 Class Diagram for Example Station 

class PLATFORM. The association has a role name platforms, which is used to refer to 

instances of the associated class. 
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In Fig. 7.4 the Rational Rose specification window for the class PLATFORM is shown. Following 

the natural language description in the documentation box some class invariants are given. The 

first part of the invariant contains three instance invariants that implicitly apply to all platform 

instances. The final part of the invariant is a class invariant that is explicitly quantified for all 

pairs of platforms. Note that some of these invariants refer to a state variable, platfom_state, 

and its possible values that have been obtained from a statechart attached to the class. 

class Specification for STATION _?jxj 

Relations 

General 

Components 

I Detail I 

Nested j Files | MSVC 

Operations | Attributes 

Name: jSTATION 

Iipe: 

Parent: Logical View 

Class ~3 
~zl Stereotiipe: j 

•Export Control 

( • Public C Protected C Private Implementation 

documentation: 

A station can have several platforms. When a train arrives it * 1 
is sent to anv of the available platforms. If no platform is 
available it is queued until a platform is freed by a train 
departing 
SEES 
BooLTYPE 
SETS 
MSG={in_station,waiting} 
INVARIANT 
ran(queue)AUNION(pp).(pp:platformslpp. trains) = {} & 
size(queue)=card(ran(queue)) 

zi 

OK Cancel Apply Browse Help 

E Class Specification for PLATFORM mm 
Relations 

General 

Components | Nested j Files | MSVC 

1 Detai l I Operations I Attributes 

Name: 

Type: 

PLATFORM Parent: Logical View 

Class 3 

~3 Stereotype: || 

r Export Control 

Public Protected Private Implementation 

Documentation: 

A platform is available when it has no trains and occupied 2 ] 
when it has one train. If a second train arrives at a platform 
or if a train arrives a t a closed platform, there is a crash. A 
platform can be c losed if it has no trains at it and then 
opened again. W h e n crashed opening the platform will clear 
any trains from that platform and make it available if it had 1 
train at it, or make it closed if it had more than 1 train. 
SETS 
TRAIN 
INVARIANT 
((platform_state=available or platform_state=closed) <=> 

(trains={})) & 
((platform_state=occupied] => (card[trains)=1)) & 
((platform_state=crashed) => (trainsM})) & 
l(p1,p2).(p1:PLATF0RM 8<p2:PLATFORM & 

(p1/=p2) => (pi.trainsAp2.trains={})) 

d 

OK 1 Cancel Apply Browse Help 

Fig. 7.4 Class specification windows for the classes S T A T I O N and P L A T F O R M 

The multiplicity of the STATION class has been set to 1 by setting the multiplicity field in the 

detail tab of the class's specification box (not shown). This will prevent the U2B translation 

from modelling instances of the class. 

Each operation of the class also has a Rose Specification window with appropriate tabs for the 

definition of the operation. The operation precondition and body, shown in Fig. 7.5, are taken 

from the precondition and semantics tabs of the specification for the train_arrives operation 

in class STATION. The precondition states that tt must not belong to the range of queue and it 

must not belong to the union of the set trains for all platforms associated with this station. 

That is, the arriving train must not be waiting to get into the station or at a platform already. If 

an empty platform exists at this station, the operation sends the train to any such empty platform 

and returns the outcome in_station. Note that the arrival at a platform is handled by calling 
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the arrival operation of class PLATFORM, specifying the selected platform, pp, using the dot 

prefix notation. If no platform is available the train is appended to the queue and an outcome, 

waiting, is returned. 

train_arrives precondition 

tt/: ran(queue) & 
tt/: UNION(pp) . (pp:platforms I pp.trains) 

train_arrives semantics 

IF #(qq).(qq:platforms & qq.platform_state=available) 
THEN 

ANY pp WHERE 
pp:platforms & 
pp .platforin_state=available 

THEN 
pp.arrival(tt) || 
outcome:=in_station 

END 
ELSE 

queue:=queue^[tt] || 
outcome:=waiting 

END 

Fig. 7.5. Precondition and semantics for operation train_arrives of class Station 

• initial 

closeplatform 

openplatform 

openplatform[ card(trains)>1 ] / trairis:={} 
arrval 

arrival 

depaiture openplatform[ card(tiewis)=1 ] / trains:={} 

arrival 

arrival 

closed 

craslied occupied 

available 

Fig. 7.6. State chart attached to class platform 
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Fig. 7.6 shows the statechart attached to class PLATFORM. The statechart describes the states that 

a platform can be in and which transitions between states are possible. Each transition 

corresponds to an operation of the machine and has its event named after an operation. For 

example, when a platform is in the state available, two operations are allowed: 

closeplatform and arrival. Execution of the arrival operation in this state changes the 

control state to occupied, while executing the closeplatform operation changes the control 

state to closed. The transitions associated with the operation openplatform have additional 

guards which determine which of the transitions will be taken when openplatform occurs from 

the state crashed. These transitions also take a different action from the openplatform 

transition that occurs from the state closed. 

Below is shown the B machine for the class PLATFORM. 

MACHINE PLATFORM 
/*" A platform is.. etc. "*/ 

SETS 
PLATFORMSET; 
PLATFORM_STATE= {available, closed, occupied, crashed} ; 
TRAIN 

PLATFORMSET is the Set of all possible instances of PLATFORM. PLATFORM_STATE has been 

generated from the states on the attached statechart. TRAIN has been generated from the SETS 

machine clause in the class specification documentation window. 

VARIABLES 
PLATFORMinstances, 
platform_state, 
trains 

INVARIANT 
PLATFORMinstances <: PLATFORMSET & 
platform_state : PLATFORMinstances --> PLATFORM_STATE & 
trains : PLATFORMinstances --> POW(TRAIN) & 

PLATFORMinstances is a variable subset of PLATFORMSET, representing the current instances 

of PLATFORM. A variable, platform_state represents the state that each 

PLATFORMinstance is in. A variable, trains, represents the subset of TRAIN belonging to 

each instance of PLATFORM. 
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!(thisPlatform).{thisPlatform:PLATFORMinstances => 
( (platforin_state (thisPlatform) =available or 
platforin_state (thisPlatform) =closed) <=> 

(trains(thisPlatform)={})) & 
((platform_state(thisPlatform)=occupied) <=> 

(card{trains(thisPlatform))=1)) & 
((platform_state(thisPlatform)=crashed) <=> 

(trains(thisPlatform)/={})) & 
! (pi, p2). (pi: PLATFORMinstances & p2 : PLATFORMinstances & 

(pl/=p2) => (trains(pi)/Vtrains(p2) ={}) ) 
) 

Further invariants reflect the invariants specified in the specification documentation text box for 

class PLATFORM. Universal quantification over PLATFORMinstances has been added and the 

dot notation of explicit instance references has been converted into parameters. 

INITIALISATION 
PLATFORMinstances := {} || 
platform_state := {} || trains ;= {} 

OPERATIONS 
Return <-- PLATFORMcreate = 
PRE PLATFORMinstances /= PLATFORMSET 
THEN 

ANY new 
WHERE 

new : PLATFORMSET - PLATFORMinstances 
THEN 

PLATFORMinstances := PLATFORMinstances \/ {new} || 
platform_state(new):=available || 
trains(new):={} || 
Return := new 

END 
END ; 

Initially PLATFORMinstances is empty, and hence all variables are empty sets. A create 

operation is provided which non-deterministically picks any unused instance from 

PLATFORMSET and initialises state and attribute variables to the initial values given in the 

statechart and UML class specification respectively 
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arrival (thisPlatform,tt) = 
PRE 

thisPlatform : PLATFORMinstances Sc 

tt:TRAIN & 
tt/:UNION(pp).(pp:PLATFORMinstances 1 trains(pp)) 

THEN 
SELECT platform_state{thisPlatform) =available 
THEN platform_state{thisPlatform) : =occupied 
WHEN platform_state{thisPlatform) =closed 
THEN platform_state{thisPlatform) : =crashed 
WHEN platform_state{thisPlatform) =occupied 
THEN platform_state{thisPlatform) : =crashed 
WHEN platform_state{thisPlatform) ̂crashed 
THEN skip 
END 1 1 
trains{thisPlatform):=trains{thisPlatform) \/ {tt} 

END ; 

openplatform {thisPlatform) = 
PRE 

thisPlatform : PLATFORMinstances 
THEN 

SELECT platform_state{thisPlatform) =closed 
THEN platform_state{thisPlatform) :=available 
WHEN platform_state{thisPlatform) =crashed & 

card{trains{thisPlatform))=1 
THEN platform_state(thisPlatform) :=available || 

trains(thisPlatform):={} 
WHEN platform_state(thisPlatform) ̂crashed & 

card(trains(thisPlatform))>1 
THEN platform_state{thisPlatform) =closed 11 

trains(thisPlatform):={} 
END 

END 
END 

Operations are defined for each operation of the class. (Only two operations are shown). A 

parameter, thisPlatform, has been added to define the instance that the operation is to 

operate on; this is implicit in the UML class diagram version. The type of this and any other 

parameters are defined as operation preconditions. Other preconditions are derived from the 

operation preconditions specification window of the class diagram. The operation body is 

derived from the operation semantics specification window of the class diagram (see Fig. 7.5) 

and from the statechart. The body of operation arrival consists of a 'SELECT' guard, which 

defines the state transitions that take place when this operation (event) occurs, and, in parallel, 

the action specified in the semantics window, which occurs for each state transition. In 

operation openplatform additional conditions determine the final state when the initial state is 

crashed leading to two different SELECT branches for the crashed state. 

The B machine for the class STATION does not model instances (because the class multiplicity 

has been set to one) and therefore variables representing attributes and associations are typed 
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directly rather than as functions. This machine EXTENDS the PLATFORM machine so that it can 

call operations of PLATFORM if required. 

MACHINE STATION 
/*" A Station can have several platforms...etc. "*/ 

SEES 
Bool_TYPE 

EXTENDS 
PLATFORM 

SETS 
MSG={in_station,waiting} 

VARIABLES 
queue, 
platforms 

INVARIANT 
queue : seq(TRAIN) & 
platforms : POW(PLATFORMinstances) & 
ran(queue)/XUNION(pp) .(pp:platforms|trains(pp) ) = { } & 

size(queue)=card(ran(queue)) 
INITIALISATION 

queue:=<> || 
platforms := {} 

A variable, platforms, which is a subset of PLATFORMinstances, is used to model the 

association with class PLATFORM. NO create operation is generated because instances are not 

modelled. Instead, the variables are initialised in the INITIALISATION clause to the values 

specified in the class diagram (in this case both are initialised to empty). The precondition and 

semantics for the train_arrives operation of STATION shown in Fig. 7.5 is as follows: 

outcome <-- train_arrives (tt) = 
PRE 

tt:TRAIN & 
tt/: ran(queue) & 
tt/: UNION(pp).{pp:platform|trains(pp)) 

THEN 
IF #(qg).(gq:platforms & 

platform_state(qg)=available) 
THEN 

ANY pp WHERE 
pp:platforms & 
platform_state(pp)^available 

THEN 
arrival(pp,tt) || outcome:=in_station 

END 
ELSE 

queue: =queue'̂  [ tt] || outcome: =waiting 
END 

END 
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This operation makes various references to components of the PLATFORM class, including 

reading the state variable platform_state and calling its arrival operation. The object-

oriented dot notation of Fig. 7.5 has been changed to standard B notation. 

This example demonstrates how statecharts can be used to specify the behaviour of a class in 

terms of the state changes that occur when its operations are invoked. The example shows how 

common information specified in the operation semantics is composed with the statechart 

defined operation actions when the model is translated to B. One of the benefits of using 

statecharts in this way is that an overall view of the behaviour of a class through its combined 

operations is presented 

7.3 Teletext 

The following example is a simplified version of a teletext page selection system. Pages are 

selected in a two tier hierarchical pair of columns where the selected group determines the 

column of pages available for selection. Selection of items in each column is made by left, right, 

up and down arrow keys. An ok key confirms the selected page. The example illustrates how 

statecharts as well as semantics windows can be used flexibly with suitable machine definitions 

to define class behaviour. The example also uncovers and illustrates some limitations with the 

current translation, which will be the subject of future work. 

The system was modelled as two classes (Fig. 7.7), OVERVIEWTABLE (of which there is only 

one instance) and COLUMN of which there are two distinct instances each being associated with 

the overview table in a different role. The COLUMN class models the scrolling behaviour of a 

column so that all pages are accessible even if the display is too small to show the complete 

column. (Note that in the following, to avoid confusion with up and down arrow keys and 

cursor movements, when we refer to scrolling movements we refer to the movement of the 

displayed portion rather than the column movement behind the display. Hence scroll down 

means that the column moves up relative to the display). The class has operations. Up and Dn, to 

respond to up and down commands. It also has a Reset operation to re-initialise the column 

(for example the page column is reset every time a new group is selected in the group column). 

The class also keeps track of the index of the item currently selected in that column. Note that 

the column does not contain the actual sequence of pages of a column; these belong to the other 

class. The OVERVIEWTABLE class has two attributes, GPS and G2P, that contain the current list 

of groups and a mapping that gives the list of pages corresponding to each group. The type 

PAGE is declared as a deferred set in the class specification. The attributes are initialised via the 

operation init. The operation OK, corresponding to the OK key pressed event, returns the 
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currently selected page. The operation Display returns the information necessary to produce a 

display corresponding to the current selection state. That is, the current list of groups and the 

one that is currently selected, and the current list of pages and the one that is currently selected. 

The remaining operations define responses to the cursor movement (arrow) keys and are defined 

by a statechart described below. 

The remaining symbol, SQUASH, is a parameterised class utility used to define a function 

constant needed for manipulating sequences. 

]TYPE 

SQUASH 

+page 

HReset(newsize: NAT) 
• U p ( ) 
• D n ( ) 

Qcsize: NAT = 0 
HSelected : NAT = 1 
BIScrdI: NAT= 0 

COLUMN 

Bilnit(gps : seq(PAGE), map : PAGE -> seq(PAGE)) 
BRightArrowO 
HUpArrowO 
HjDnArrowO 
HfLeftArrowO 
HOK{) : SelectedPage 
B|Display(): gcol,gsel,pcol,psel 

I|3GPS : seq{PAGE) = <> 
a G 2 P ; PAGE > seq(PAGE) = {} 

OVERVIEWTABLE 

Fig. 7.7 Class Diagram for Example Teletext 

The specification for class COLUMN (Fig. 7.8) contains some definitions that are used in the 

statechart describing its behaviour. The definitions aid readability as well as making the amount 

of text on the diagram more readable and mitigating repetition of expressions on different 

transitions. We found the use of definitions in this way essential to make state diagrams more 

manageable. 

(Note that the translation of dot notations to parameterisation is currently not very robust. For 

example the dots in number ranges can be mistaken for explicit instance references preventing 

the addition of a 'thisClass' type instance reference. To avoid this we have put brackets around 

the upper bound of the number range.) 

The definitions introduce the concept of cursor position on the display. This is an essential 

concept in the display of a column. However, Scroll and Selected (item in list) are even 

more fundamental concepts within the aims of the system, and, as shown in Fig 7.9, cursor 

position can be calculated from them. Since redundant information necessitates invariants to 

ensure consistency, which generate additional proof obligations, it is undesirable to introduce 

Cursor as an attribute. Instead we use a definition, which allows us to write 'Cursor' instead 

of 'Selected-Scroll' to aid readability. Two types of response to a vertical movement are 

defined, a cursor movement when the cursor changes position within the display area to select a 
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new item and a scrolling movement where the information on the display moves up or down 

and the cursor position remains constant and thereby selects a new item. The final definition, a 

boolean expression NrBottom, illustrates the use of definitions to aid readability in transition 

guards. 

E class Specification for COLUMN 

Nested 

General ! Detail 

I Files 

Operations j Attributes 

I MSVC 

Relations I Components 

Name: 

Ivpe : 

COLUMN Parent: Logical View 

I Class ~3 
3 Steteotjjpe: | 

Export Control 

Public Protected C Private C Implementation 

documentation: 

CONSTANTS 
dsize 

PROPERTIES 
dsize = 20 

DEFINITIONS 
Cursor — (Selected • Scroll); 
Curllp — (Selected := Selected • 1 ) ; 
CurDn == (Selected := Selected + 1 ) ; 
ScrollUp — (Scroll := Scroll - 1 II Selected := Selected • 1 ) ; 
ScrollDn == (Scroll := Scroll +1 || Selected := Selected + 1) ; 
NrBottom == (Selected=csize-1) 

INVARIANT 
Selected: 1..(csize) & 
Scroll: 0..(csize-dsize+1) !t 
Cursor: 1 ..dsize & 
((column_slate = Top) <=> (Selected-1)] & 
((column_state = ScrollingUp) <=> (Cursor=2jj & 
([column_stale = CursorMoving) <=> ((Cursor)2) & 

(Cursor<dsize-1 & Selected<Gsize)))! 
((column_state = ScrolllngDown) <=> (Cutsor=dsize-1 & Selected<csize)) & 
((column_state = Bottom) <=> (Seleoted=csize)) 

zl 

OK Cancel Apply Browse Help 

Fig. 7.8 Class Specification for the COLUMN class 
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off-screen 
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Cursor = 5 
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Cursor = 5 
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Display 1 
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Cursor = 5 
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Display 1 
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4 

Cursor = 5 
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10 

Display 1 
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3 
4 

Cursor = 5 
6 
7 
8 

Selected = 11 

Display 1 
2 
3 
4 

Cursor = 5 
6 
7 
8 

12 

Display 1 
2 
3 
4 

Cursor = 5 
6 
7 
8 

13 

Display 1 
2 
3 
4 

Cursor = 5 
6 
7 
8 14 

15 
. . . .161 

displayed 
part of column 

off-screen 
part of column 

Fig 7.9 Relationship between Selected, Scroll and Cursor 
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Up[ Scro l l=0 ] / CurtJp Up[ S c m ^ > 1 1 / S c m n U p 

Dn / CurOn 

Dn / CurDi 

Up[ Cursor=3 l y CurUp 

D n p Cursor<dsize-2 & not(NrBottom) ] / CurDn Up[ Cura) r>3 ] / Cu lUp 

CurUp 
U p / C j rUp 

Dn[ Cursor=dsize-2 & n o t ( N r B o t t ^ ) ] / CurDn 

Dn[ NrBbt tom ] / CurDn 

Dn[ NrBot tom ] / Scro l lDn 

/ S c r o l l D n 

Scro l l ingUp 

CursorMoving 

T o p 

Bo t tom Scro l l i ngDown 

Fig. 7.10 State chart model of semantics of Up and Dn operations of class COLUMN 

The statechart (Fig. 7.10) describes the behaviour of the operations Up and Dn. hiitially the 

coluinn_state is Top. An invariant requires the equivalence of this state to the condition 

where the Selected item is the top of the column. From this state the operation up is not 

available. (For a less abstract model we might wish to allow the Up event to occur and specify 

that nothing happens). A Dn event from Top will move the cursor down one place (i.e. increase 

Selected item by one while leaving Scroll at zero) and change the state to ScrollingUp. 

Since Scroll is zero a subsequent Up event would return the state straight back to Top. In 

general, while Scroll is greater then zero, Up events in the ScrollingUp state result in the 

amount of Scroll and the Selected item both decreasing by one (i.e. Cursor remains at 

position 2 on the display). A Dn event from ScrollingUp moves the cursor down one place 

and changes the state to CursorMoving. M this state further Dn events will keep moving the 

cursor down until it is two places from the bottom of the display. At this point, if the selected 

item is not the one before last in the column the cursor is moved down one position and the state 
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is changed to ScrollingDown. From ScrollingDown further Dn events will cause Scroll 

and Selected to both be increased by one until Selected is one before the last item in the 

column when, in addition, the state will change to Bottom. From the state Bottom, further Dn 

events do not occur but an Up event will move the cursor up one position and change the state 

straight to CursorMoving (we circumnavigate ScrollingDown because we have already 

scrolled past the bottom of the column and ScrollingDown changes to Bottom via another 

ScollDn action). CursorMoving can return straight to Bottom, with an increase cursor 

action, if the cursor is two places from the bottom of the display and Selected is one before 

the last item in the column. 

hi some problems a clear concept of state is involved with a few discrete states that segregate 

the system behaviour cleanly into different conditions, hi these cases a statechart is clearly an 

appropriate means of description. In other cases this is not the case and a textual form of 

description is clearer. The example here tends toward the latter. The example statechart provides 

a visualisation of some of the conditions that the column can exist in, but the behaviour in 

response to an event is often the same for several states. The statechart requires a substantial 

investment of effort in order to understand it and to glean significant information from it. The 

equivalent textual specifications for the two operations are shown below (Fig. 7.11) and can be 

described as follows. Dn: Downward movements can occur while Selected has not reached the 

last item in the column. The cursor is increased to the next item on the display unless it is one 

before the bottom of the display in which case a scroll down is made instead. Up: Upward 

movements can occur while Selected has not reached the first item in the column. The cursor is 

decreased to the previous item on the display unless it is one below the top of the display and 

the display has been scrolled (Scroll>0) in which case a scroll up is made instead. 

Dn 
SELECT Selected<csize THEN 

IF Cursor = dsize-1 THEN 
ScrollDn 

ELSE 
CurDn 

END 
END 

up 
SELECT Selected>l THEN 

IF Cursor = 2 & Scroll>0 THEN 
ScrollUp 

ELSE 
CurUp 

END 
END 

Fig. 7.11 Equivalent textual semantics definitions for operations Up and Dn 
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The specification for the class OVERVIEW?ABLE (Fig. 7.12) contains two definitions used in the 

statechart describing the class's behaviour. These definitions conditionally select the next, or 

previous (respectively), group and reset the column of pages accordingly. 

class SpeciFication for OVERVIEWTABLE 

Relations 

General 

Name: 

Tjipe: 

Components j Nested j Files | MSVC 

Detail I Operations | Attributes 

OVERVIEWTABLE Parent: Logical View 

Class 1 3 

~ 3 stereotype: | 

-Export Control — — — — 

(* Public Protected Private Implementation 

Documentation: 

SEES 
BooLTYPE 

INCLUDES 
SQUASH[PAGE) 

SETS 
PAGE 

DEFINITIONS 
SelPrevGp — 

IF group.Selected > 1 THEN 
group.Up II 
page. R eset(size(G 2P(G PS (group. S elected-1)))) 

END; 
SelNextGp == 

IF group.Selected < group.csize THEN 
group. Dn II 
page. R eset(size(G 2P(GPS (group. S elected+1)))) 

END 

INVARIANT 
ran(GPS)<:dom(G2P) 

" 3 

z j 

OK Cancel Apply Browse Help 

Fig. 7.12 Class Specification for OVERVIEWTABLE 

The definitions illustrate a problem with the relationship structure between classes. When the 

group is changed via the operation call group. Up (i.e. the Up operation, of class COLUMN, with 

instance parameter group) the pages column has to change simultaneously via the operation 

call page.Reset (i.e. the Reset operation of class COLUMN with instance parameter page). 

Since, to ensure consistency, B does not allow the simultaneous invocation of two operations in 

the same machine, the definitions are illegal. The problem is inherent in any association 

between two classes. Systems can only be modelled when each event alters the state of at most 

one instance of each associated class. The class relationship structure shown in the class 

diagram is a special case where instances are known via different association roles. A solution 

to the problem in this case would be to model the two instances as separate classes. Future work 

on inheritance and on parameterisation of classes would mitigate the consequent repetition. In 

the more general case where there is no suitable role distinction between the instances being 
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simultaneously altered, a possible solution might be to allow the illegal form in the UML 

operation semantics (where an instance based reference is beneficial) but detect it during 

translation and convert it to an allowable form (such as a single operation that accepts two 

instance references). 

The invariant ensures that the group's pages that are in the GPS attribute are contained in the 

domain of the groups to pages mapping G2P. 

The statechart (Fig. 7.13) describes the behaviour of the class in response to the four arrow 

keys. Two states are used in the statechart which correspond to which column is the focus for up 

and down arrows. Initially it is the Group state. LeftArrow and RightArrow events switch 

between the Group and Page states. LeftArrow events only occur while in the Page state and 

RightArrow events only occur while in the Group state. While in the Group state, UpArrow 

and DownArrow events result in the actions defined by SelPrevGp and SelNextGp 

respectively. While in the Page state they invoke the Up and Dn operations of the COLUMN class 

upon the instance, page. Note that the guards in the Up and Dn operations of the COLUMN class 

mean that UpArrow and DnArrow events only occur when a new selection can be made. It is 

not necessary to re-specify these guards. Currently the state transition to final state (event, OK) 

has no meaning and is ignored. (We anticipate that its meaning should be that the state model 

will not respond to further events except perhaps an initialisation event to return it to its initial 

state). 

UpArrow / SelPrevGp UpArrow / page. Up 

LeftArrow 

RightArrow 

DnArrow / SelNextGp 
DnArrow / page.Dn 

OK O K 

Group Page 

Fig. 7.13 State chart model for the OVERVIEWTABLE class 

Finally, the operation semantics (from the operation specifications) for the OK and Display 

operations are shown below (Fig. 7.14 and Fig. 7.15). 
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Fig. 7.14 Semantics for operation OK of OVERVIEWTABLE class 

Display 
gcol:= squash(group.Scroll..(group.Scroll+dsize) <| GPS) 
gsel:= group.Selected || 
pcol:= squash(page.Scroll..(page.Scroll+dsize) <| 
G2P(GPS(group.Selected))) || 
psel:= page.Selected 

Fig. 7.15 Semantics for operation Display of OVERVIEWTABLE class 

The operation Di sp lay uses a function, squash, which converts a function whose domain is a 

set of integers into a sequence by replacing the smallest integer in the domain with one, the 

second smallest with two, and so on. This function is not available in B. We defined it as a 

constant in a separate parameterised machine represented by a parameterised class utility (Fig. 

7.7). The parameter defines the type for the range of the sequence and enables us to define the 

squash function generically, rather than specifically for the type, PAGE, that we currently 

require it for. Parameterisation is currently not supported by the U2B translator. For now we 

manually add (TYPE) to the machine header of SQUASH.mch. The content of SQUASH.mch is 

copied from the class utility specification window shown in Fig. 7.16. 

This example explores the practicalities of using statecharts to model the behaviour of classes 

and how this information is composed with textually specified operation semantics. We have 

found that displaying guard and action information in a statechart can become unwieldy but this 

can be solved by using declarations in the class specification. We have found that statecharts are 

not always the most appropriate specification medium. In some cases the textual operation 

specifications are clearer and more succinct and in many cases a combination of the two forms 

will be most appropriate. Currently we have assumed an event-based approach that is more 

appropriate for abstract models of observed systems rather than specifications of 

implementations. 

The example shows that class relationships where more than one instance of an associated class 

is modified simultaneously cannot be translated to valid B by the current translator. Future work 

will include developing the translation rules to solve this problem. 

110 



Q Class SpecifiGation for SQUASH 

Relations | Components j Nested j Files | MSVC ) 

General | Detail | Operations | At t r ibutes | 

Parent: Log ica l V iew Name: jSQUASH 

IJ'P®' I ParameterizedClassU 

Stereotype: |j T | 

Export Control 

f * Public Protected C Private C Implementat ion 

Documentation: 

SEES 

BooLTYPE 

CONSTANTS 

" 3 

sortset, 
squash 

PROPERTIES 
sorted: seq(NAT1)-->B00L & 
(l(sq).(sq:dom(sorted) => ( 

(!(nn,mm).(nn:dom(sq) & mm:dom(sq) & nn>mm => 
sq(nn)>=sq(mm)) & sorted(sq)=TRUE) or 
(#(nn,mm).(nn:dom(sq) & mm:dom(sq) & 

nn>mm & sq(nn)<sq(mm)) & sor ted(sq)=FALSE))) ) & 

sortset: P0W(NAT1)->seq(NAT1) & 
(!(ss).(ss:dom(sortset) => 

sortset(ss): perm(ss) & sorted(sortset(ss))=TRUE)) & 

squash: (NAT1+->TYP£)+->seq(TYPEj & 
(!(ff).(ff:dom(squash)=> (squash(ff)=(sortset(donn(ff));ff)))) 

zl 

OK Cancel Apply Browse *• Help 

Fig. 7.16 Class Specification for SQUASH 

7.4 Summary 

In tiiis ctiapter we have presented example specifications written in B-UML that illustrate its 

use. We have illustrated how a formal specification model can be built up within the UML class 

diagram and statechart notations using the specification windows that Rational Rose provides 

for textual annotation. The examples have also demonstrated the importance of choosing 

appropriate notations for different problems and hence the significance of B-UML's flexible 

combination of statechart and operation semantics for specifying the behaviour of classes. The 

examples have also raised some limitations of the current translator that will be addressed in 

future work. 
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Chapter 8 

Related Work 

In this chapter we summarise related work that is similar to, or relevant to, the U2B translation. 

In summarising each work we point out similarities and differences from U2B. Table 8.1 Lists 

work we consider to be relevant. 

Reference From To Tool 
UML's official,formal notation 

OCL Warmer and Kleppe Constraints in UML N/A n/a 
Tool supported translations of UML 

RoZ Dupuy and du Bousquet U M L CD Z y 
IFAD IFAD U M L CD VDM++ y 

Translations to B 
Nagui-Raiss ERD B n 

CEDRIC-
HE 

Facon, Laleau and Nguyen U M L CD B n CEDRIC-
HE Facon, Laleau and Mammar U M L CD, SD and ID B P 
LORLV 
DEDALE 

Meyer and Souquieres U M L C D . S D B n LORLV 
DEDALE Meyer and Santen Class hierarchies B P 
LORLV 
DEDALE 

DEDALE: Ledang and 
Souquieres 

UML CD and ID B P 

iSTATE Sekerinski and Zurob SD B P 
Translations to other notations 

Kim and Carrington U M L CD O b j Z n 
France Bruel Larrondo-Petrie 
and Shroff 

U M L CD Z n 

DeLoach, Smith and Hartrum CD and SD 0-Slang n 
Borger, Cavarra and 
Riccobene 

SD A S M n 

Bolton and Davies UML AD Z & C S P n 
SOFL Liu & Sun Integrated SM-OO-FM - n/a 

(CD=Class Diagram, SD=Statechart Diagram, ID=Interaction Diagram, AD=Activity Diagram, 
ERD=Entity Relationship Diagram, p = proposed) 

Table 8.1 Related Work 

( ) ( 3 L 

The diagrammatic notations of the UML are not sufficient to express all the information needed 

in a model. Typically, annotations of constraints, invariants and operation semantics are needed 

to complete the information in a specification. The UML therefore contains within its definition, 

a precise textual notation in which these annotations can be expressed. This notation is called 
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the Object Constraint Language (OCL) (Warmer & Kleppe 1998). OCL is a formal declarative 

notation but uses few mathematical symbols. It was conceived with the aim that it should be 

precise but approachable to engineers and programmers without experience in formal notations 

or extensive mathematical training. It also follows an object-oriented style dot notation for 

accessing attributes, associations and operations of an instance. While OCL may have achieved 

its aim of being approachable to typical programmers, a number of problems have been raised 

by Vaziri and Jackson (1999) including: 

a) OCL has an implementation style in that it uses operations in constraints. 

Operations can be undefined (e.g. if an infinite loop is caused) leading to constraints 

being undefined. 

b) OCL expressions are overly verbose due to frequent use of coercions 

(oclIsKindOf). Classes are not treated as sets of objects and hence set operators 

cannot be used. 

c) OCL constraints can be difficult to read due to stacking (via navigation) of 

quantifiers and collection operators, but not of logical operators. 

d) OCL is not a stand-alone language. The notation is intended to apply constraints to 

objects described in the other notations of the UML. Therefore it relies on the 

diagrammatic specifications of entities to which its constraints can be applied. 

We see d) as being the most significant problem with OCL since it is difficult to reason about 

properties when a complete textual description is not available. Even if a complete mathematical 

specification could be obtained, no logic system or tools are available to enable mathematical 

manipulation. Although our main aim is to make formal specifications easier to write we do not 

wish to sacrifice one of the important benefits of formal specification in order to achieve it. A 

UML model with OCL constraints is not a complete formal specification and so does not meet 

our aims even though, at first sight, it appears to provide a similar type of modelling notation. 

8.2 RoZ 

RoZ (Dupuy and du-Bousquet, 2000) translates Rational Rose class diagrams to Z 

specifications. Constraints representing invariants on the attributes and associations of a class 

can be expressed in Z Latex, in the class diagram specification documentation windows. This is 

similar to our approach except that, in RoZ, constraints for a class may be in the specification 

windows for the attributes or associations to which they relate. Upon translation to Z, these 

constraints are collated as the predicate for a schema describing the attributes of an instance of 
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the class. Only class invariants (i.e. constraints between different instances of a class) are 

written in the class specification window. These are used as the predicate in a schema describing 

the set of instances of the class (the attribute schema being used as the element type for the set 

of instances). A minor inconsistency is that a constraint between two attributes of a single 

instance has to be placed in one of the attribute specifications (so that it is translated into the 

attribute's schema). This is because any predicate in the class' specification will be translated 

into the instance's schema. Type definitions for attributes have to be added in a separate text 

file. Our approach was to define them in the specification of the class that used them or, if used 

by several classes, in a class utility. 

Basic operations to modify each attribute and to add and remove an instance of the class are 

generated automatically. The behaviour of the generated operations is defined, using Z Latex 

(Spivey 1990), in the post conditions tab of their specification window. (Currently we do not 

generate basic operations automatically, however this could easily be added. We generate 

operation signatures automatically where they are not present in a class but appear in a 

statechart attached to that class). 

The class operations are translated into Z schemas using the postcondition predicates. Attribute 

modifying operations, which are recognised by a keyword 'intension operation' embedded in 

their semantics field, are translated to a schema that changes the attribute schema. These 

operations are promoted via a general-purpose promotion schema ('promotion operation'). 

Operations that change the set of instances of a class ('extension operation') are translated into 

schemas that alter the instance's schema of the class. Non-basic operations can be added to the 

class manually and these can have the above types as well as 'composed operation' for an 

operation that is composed from other operations. 

Note that for abstract classes (an abstract class in UML is one that doesn't have any instances), 

the instances schema and operation promotions are not generated. This is similar to our singular 

machine (representing a class that has multiplicity 1), which does not model instances explicitly. 

However we have taken the approach that implicitly one instance exists, currently we do not 

support abstract classes. 

Finally, associations are represented by schemas that define the relationship between the classes 

at their ends. The two roles are modelled by functions between the class type (attribute) schemas 

with finite powerset used to represent multiplicities. Predicates reflect any constraints attached 

to the association and a predicate defines the inverse relationship between the 2 roles. (It is not 

clear to us how mutable associations could be accessed from operations). 

The translation also handles inheritance, which we have not tackled as yet. 
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Precondition validation theorems can be automatically generated for proof with the Z-EVES 

theorem prover. This is not needed for our translation to B because the B-Toolkit and Atelier-B 

contain facilities to generate proof obligations. 

The RoZ tool is similar to our approach in its implementation techniques, such as the use of 

Rational Rose scripting language, embedding of invariant text and operation semantics in 

specification windows. RoZ has some features, such as basic operation generation, that we have 

not tackled but lacks the ability to use statecharts to define class semantics that U2B has. RoZ 

does not constrain models to hierarchical structures in the way that U2B does. RoZ appears to 

treat associations as a higher level (above the class layer) rather than a navigable (by operations) 

link to an associated class' attributes and operations. 

8.3 IFAD Rose-VDM++ Link 

IFAD's VDM++ (IFAD 2000a) is an object-oriented extension of VDM. A tool is provided 

which performs syntax and type checking and code generation. IFAD provide an extension to 

the tool (IFAD 2000b) that enables conversion to and from Rational Rose class diagrams. The 

tool is also capable of merging specifications that exist in both formats. Conversion is 

straightforward because the formal notation (VDM++) is object-oriented and therefore, most 

UML concepts have a corresponding feature in VDM++. In some cases, however, features of 

VDM-I-+ are not represented directly in UML and a stereotype is used to make distinctions. For 

example, class values of VDM++ are represented by a UML attribute with stereotype <value>. 

The stereotype distinguishes it from an instance variable. Stereotypes are also used to explicitly 

distinguish between operations and functions. Since UML does not provide a way to define a 

result identifier, the special identifier RESULT is used in pre and post conditions 

However, only class diagrams are converted and operation semantics are not handled in the 

UML representation. Hence, the tool allows the designer to develop a model of a system in 

terms of the classes, associations and operations but doesn't allow the operation behaviour to be 

specified within the visual representation. It is necessary to convert to the VDM++ form in 

order to add behaviour. Similarly, invariants are not represented in the UML form. A link to the 

VDM++ file representation of each class is embedded as an 'external file' for each class. This 

ensures that the behavioural information added to the VDM+4- version remains associated with 

its UML class. The tool provides reverse engineering facilities to update the UML model for 

alterations. 

The method provides most of what is needed to provide a visual formal specification tool, but 

does not treat the UML version as the primary specification medium. UML is seen as an 
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ancillary form and hence the relatively simple step of making it a complete specification has not 

been taken. 

8.4 Translating to B 

Several groups have proposed translations from object-oriented notations to B. As well as those 

discussed below, see earlier work by Nagui-Raiss (1994), Shore (1996) and Lano (1996). The 

suggestions for modelling the static class data structure and relationships are similar to each 

other and are the basis for our own approach. Our approach differs from these because our aim 

is to provide a graphical notation for expressing B specifications rather than a formal 

representation of a UML model. The main difficulties in mapping from classes into machines 

are in representing mutable associations and operation behaviour. This is because of the 

restrictions that B imposes in order to ensure compositionality of proof. Whereas most groups 

attempt to accommodate all valid class structures as far as possible, we allow only those UML 

models that have natural B representations. Hence we impose restrictions on our UML models 

to only allow strictly hierarchical structures with uni-directional navigable associations. 

We look at the major groups that have contributed in the past and are continuing ongoing 

research in the area. The methods differ for modelling the dynamic behaviour represented in 

UML operations. At the time of writing, none of these groups had a translation tool available for 

evaluation, although all have proposed them or claim to be in the process of developing them. 

8.4.1 Work at CEDRIC-IIE Laboratory 

Researchers at the CEDRIC-IIE Laboratory have developed schemes for translating UML class 

diagrams and dynamic behavioural diagrams into B specifications. Facon, Laleau & Nguyen 

(1996) provide a comprehensive mapping of static class diagram features into B and structure 

this into machines. Later work at CEDRIC has concentrated on Information systems and 

database applications (Facon, Laleau, & Mammar, 1999) that are data-centric and generally 

involve simple basic operations. These types of systems involve a high degree of data 

relationships modelling and our approach of restricting the use of UML would probably be 

intolerable. Conversely they require only simple operations and so our use of operation 

behaviour modelling techniques would be largely redundant. The approach taken at CEDRIC 

has been to automatically define basic operations of a class according to class properties such as 

mutability and multiplicity. Class statecharts are then used to define how external (to the class) 

events invoke the basic operations of the class according to state and guard conditions. 

Collaboration diagrams define which class events occur in response to each external (to the 

system) transaction. 
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External, use case, transactions with the system are described with functional sequence 

diagrams (i.e. a sequence diagram involving users and the system). Each step on a functional 

sequence diagram is a transaction message that is further described by a simplified collaboration 

diagram. The collaboration diagram identifies a system level operation and its implementation 

in terms of events at the class statecharts level. (Note that the sequence diagram itself is not 

represented in B since the aim of the translation is to check the consistency of data 

modifications rather than to model functional scenarios). 

Thus, the hierarchy of system behaviour is represented in layers made up of different UML 

modelling notations (collaboration, state and class) rather than by imposing hierarchy in the 

class structure as we do. Functionality is still largely encapsulated within the class behaviour, 

but the statechart describes an additional layer of class behaviour that is not represented by 

operations shown in the class diagram. A third layer describes functionality that involves more 

than one class. The CEDRIC approach is more suited to data intensive systems that fit a 

collaborative class oriented description whereas our approach is more suited to process intensive 

systems where the emphasis is on process/data encapsulation. 

8.4.2 Work at LORIA - Universite Nancy 

Meyer & Souquieres (1999) proposed a method for transforming OMT diagrams (on which 

UML class diagrams are based) including operations and dynamic behaviour expressed in 

statecharts. Similarly to the approach of CEDRIC-IIE, classes have very basic and simple 

operations and the class' statechart provides additional functionality by defining the events and 

state transitions under which these basic operations are used. Unlike CEDRIC-IIE's approach, 

the statechart layer is represented as operations within the class machine. To avoid calling 

operations within the same machine, basic operations are translated to definitions (B's 

equivalent of macros) using a DEFINITIONS clause rather than as B operations. (For different 

reasons, we have also used this technique to define actions that are repeated in several places on 

a statechart). The resulting structure of B machines consists of a top-level system machine, a 

machine for each class (including subclasses and aggregate components) and a machine for each 

unfixed (or attributed) association. (Associations that have no attributes and are fixed for at least 

one class are handled within the class for which they are unfixed). The disadvantage of this is 

that functionality that might be naturally associated within a class is elevated to the top-level 

machine in order to obtain write access over association links. This is probably more significant 

in process control applications, where operation behaviour is more complex, than in information 

systems where the accent is on data maintenance. 
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Meyer & Santen (2000) go on to describe how Atelier-B can be used to verify behavioural 

conformance of inheritance (generalisation/specialisation) relationships in a UML class diagram 

by using the translation proposed by Meyer and Souquieres. Currently we are concentrating on 

issues involved in writing specifications, however, we recognise verification as an important 

benefit of writing formal specifications. In the translations used for presenting this work, non-

basic operations are specified, not in the UML, but by post-translation additions to the B 

machine. It would be a simple step to attach the operation bodies to the UML classes as we have 

done but the example chosen illustrates that combinations of basic operations defined in a 

statechart are not always suitable. 

Further work by Ledang and Souquieres (2001) considers techniques for arranging non-basic 

operations into separate machines to comply with the operation calling restrictions of B. The 

calling sequence defined in a collaboration diagram (which must not contain any cyclic calling 

dependencies) is analysed and allocated into layers so that, 

a) there is no calling-called dependency amongst operations in the same layer; 

b) basic operations (which do not call any other operation) are in the bottom layer; 

c) system operations (which do not have a calling operation) are in the top layer; 

d) operations above the bottom layer only call operations of the next lower layer. 

A structure of B machines is constructed with one machine for each layer except at the bottom 

layer where there is one machine for each class. However, an operation at one level may call 

several operations at the next lower layer. Since this is not allowed in machines and machine 

inclusion, implementations and imports are used to define the operations instead. 

8.4.3 SwdkerhiskiaKMilZtuxd)- Statecharts to B 

Sekerinski (1998) describes how reactive systems can be designed graphically using statecharts 

(Harel, 1987) and how these designs can be converted to B for analysis and refinement to code. 

A full treatment of statecharts is given, including hierarchies, concurrency and various 

equivalents to shortcuts used in statecharts. An example of a conversion to B is then given. 

The treatment differs from ours in that statecharts, although similar to UML state machines, are 

treated as an independent form of design notation rather than as a subnotation to class diagrams. 

On the other hand, hierarchical statecharts (i.e. states may have substates) and concurrency (i.e. 

states may have groups of substates which may progress independently and concurrently) are 

included. These are areas that we would like to tackle as future work and note that Rational 
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Rose state machines are able to express both features. In addition, communication between 

concurrent sub-parts is available via internal events that are generated as part of the action of 

one transition and are referenced as the event triggering another. This is translated to a B 

definition in order to ensure the event is not available externally (this also avoids the fact that 

operations cannot be called from within the same machine). Externally available events are 

modelled as operations, as we have done. However, the approach is to model the 

implementation of a reactive component with operations representing called procedures, rather 

than an action system approach in an event B style with operations representing actions. 

Therefore operations are treated as procedures with conditional substitutions rather than guarded 

actions. 

Sekerinski and Zurob (2001) go on to describe a meta-model of statecharts via a class diagram 

with semantics formally defined in a B like notation. A normalisation of statecharts is formally 

described (to add arrows that may be left out as shortcuts). This is the first stage in translation to 

B. A flawed condition, when states are unreachable, is formally described. This condition is 

translated to B but warnings are given. Finally, illegal statechart conditions (such as transitions 

between two concurrent groups of sub-states), which prevent translation to B, are described. 

8.5 Translations to Other Formal Notations 

We have reported on OCL, two well developed tools that transform UML class diagrams into 

formal notations (not B) and several groups that have proposed translations to B from various 

combinations of the UML notations, class diagrams, statecharts and interaction diagrams. 

Others have proposed translations of UML notations into formal notations other than B. 

France, Bruel, Larondo-Petrie and Shroff (1997) propose a formalisation of UML class 

diagrams in Z. This work focuses on formalising the UML, rather than using UML to assist in 

formal specification, but in the process translation rules are developed and illustrated by 

example. The use of Z, and hence the freedom from the proof composition restrictions of B, 

enables more complex class diagram structures to be catered for. This is developed in France 

(1999) where the equivalent Z specification is used to analyse the semantics of class diagram 

structures. Again the focus is on defining a precise semantics for the UML. For example outline 

proofs are given for various inferences that can be made about incomplete class diagrams 

involving generalisation relationships. 

Kim and Carrington (2000) give a formal definition of UML class diagrams using Object Z. 

They also provide a formalised meta-model of Object Z and hence a formal mapping from class 
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diagrams to Object Z. The object-oriented facilities of ObjectZ make the translation more 

natural and simpler than that for Z. 

Borger, Cavarra and Riccobene (2000 and 2001) have used Abstract State Machines (ASMs) 

(Gurevich, 1995) to rigorously define UML statecharts and activity diagrams. This work is 

strong in its treatment of the UML's integration of statecharts with the object model, including 

the concepts of events, actions and activities. This will be relevant to future work enhancing the 

U2B translation tool to cover these features of UML statecharts and/or activity diagrams. 

Bolton and Davies (2000) present a formal semantics for UML activity diagrams using a 

combination of Z and CSP. They use Z to model the static objects within an (possibly 

hierarchical) activity diagram and parallel CSP processes, one per state, to model its behaviour. 

The synchronisation of the CSP processes, upon their respective alphabets, models the sequence 

of events expressed by the transitions between states. Since a class diagram can also be 

translated into Z, it could be verified for consistency with a requirements specification 

expressed as an activity diagram by translating the activity diagram into Z/CSP. 

DeLoach, Smith and Hartrum (2001) define a translation from UML class diagrams and 

statecharts into 0-SLANG (DeLoach and Hartrum, 2000). O-SLANG is an object-oriented 

extension of Slang; a theory based algebraic specification language. The translations were 

verified by defining a formal semantics for the UML notations and mapping both O-SLANG 

and UML to those semantics. A prototype system has been developed to demonstrate 

automation of the transformation. The motivation is similar to ours, to facilitate the creation of 

formal specifications via semi-formal diagrammatic stages. O-SLANG is not as widely used as 

B but benefits from being specifically designed to describe object-oriented models making 

translation from UML more natural and complete. 

We have reported mostly on translations from existing object-oriented diagrammatic notations 

to existing or new formal notations. For some researchers the primary aim is to formalise the 

existing object-oriented notation so that the descriptions that use it are precisely understood. For 

others the aim is to gain the benefits of an approachable diagrammatic modelling notation while 

creating a specification in their favoured formal notation. Most researchers opt for the pragmatic 

route and use an existing object-oriented diagrammatic notation. However, an alternative 

approach is to propose a new integrated diagrammatic and formal notation, which can then be 

designed with integration in mind. Liu and Sun (1995) have taken this approach with their 

SOFL (Structured Object-Oriented Formal Language). Data Flow diagrams are used to 

decompose the functional requirements into 'condition processes' in a stepwise hierarchical 

manner. Each condition process on a data flow diagram receives and creates data items. Its 
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process is described formally via pre and post conditions and it can either be further 

decomposed via another data flow diagram or can be declared to have an implementation 

module. Implementation modules are described in an executable programming language that 

may be structured using procedures and classes. The use of diagrammatic forms is limited to the 

hierarchical refinement data flow diagrams. Although the diagrams are highly integrated with 

the formal specification this appears to demote their significance to an outline structure viewer 

with most reliance placed on the textual form. Object orientation is used only at the (textual) 

programming level and not represented diagrammatically. 
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Chapter 9 

Conclusions 

This chapter summarises the research and how it meets the aims introduced in Chapter 1. Future 

directions are proposed for development of the B-UML notation and the U2B translator that will 

facilitate further exploration of the adaptation of UML notations for creating B specifications. 

Further evaluations of the use of B-UML in realistic situations are proposed. 

9.1 Meeting the Research Aims 

The overall aim of the research was to explore the barriers to using formal specification 

techniques. This has been achieved through the following steps. 

The first stage of research was an exploratory survey of formal methods practitioners in order to 

identify some of the main barriers to use. The survey was limited to a small set of experienced 

users from a range of market sectors. The purpose of the survey was to identify the most 

relevant issues for further investigation. The survey achieved a broad exploration of the use of 

formal specifications in industry and identified several possible issues related to barriers to their 

use. The survey's strength was that it derived empirical evidence from some of the market 

leading organisations using formal techniques for commercial products. Despite a varied range 

of market sectors, there was a reasonable degree of convergence in the interviewees' responses. 

The survey was presented at the Empirical Assessment of Software Engineering (EASE2000) 

conference (Snook and Harrison, 2000) and published in the journal, Information and Software 

Technology (Snook and Harrison, 2001a). Glass reported the publication in his newsletter 'The 

Software Practitioner' (Glass 2001). Glass recognises the contribution of such surveys, saying; 

"Formal methods have been lauded by academics and ignored by practitioners for over 30 years. 

Both camps are locked into their positions; almost no one on either side does the deeply-needed 

evaluative research which could determine which camp is closer to the truth." In our reply, also 

published in the same newsletter (Glass 2001) we suggested that: "Perhaps academia is not 

prioritising the problems it researches to the greatest effect. Targeting the pragmatic problems 

that practitioners initially face would lead to increased interest and funding from industry, and a 

more widespread take up of formal specification would later lead to faster development of 

subsequent research areas in formal methods. Our research" (in combining UML with B) "has 
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attempted to find ways of making formal specification easier or at least more accessible to 

novices". 

From the survey findings, two issues were selected for further investigation. The first was 

comprehensibility, which was thought not to pose a significant problem for suitably trained 

software engineers. The second was the difficulty in writing formal specifications, which was 

thought to be problematic. 

The second stage of research was a further investigation into whether the comprehension of a 

formal specification could be a barrier to their use. Comprehension depends on the skills and 

training of the reader and so could be a barrier in several different situations such as customer 

approval of the specification, quality assurance processes as well as the software design and 

maintenance processes. In this stage of the research we explored comprehensibility of formal 

specifications by suitably trained software personnel and hence focused on the last of these 

situations. We devised an experiment that tested the hypothesis that formal specifications are no 

more difficult to understand than code. The experiment compared subjects understanding of a Z 

specification with that of its implementation in Java. The experiment was presented at the 

Empirical Assessment of Software Engineering (EASE2001) conference (Snook and Harrison, 

2001b). Subject to the threats to validity discussed in Chapter 4, we found that comprehension is 

not a barrier for software personnel. 

The remainder of the research focused on the second issue selected from the survey. This was 

that formal specifications are difficult to write. This was recognised as a significant barrier by 

those interviewed. We looked at the similarities and differences between formal specification 

and program design and applied the cognitive dimensions framework in order to assess a formal 

specification notation with respect to exploratory design. We reasoned that the processes 

involved in formal specification are similar in many respects to that of program design. Both 

involve the selection of suitable abstractions in an exploratory design phase. We concluded that 

one of the main differences is that, for program design, tools and notations have been developed 

to assist in the difficult process of choosing a coherent set of useful abstractions. Experienced 

formal specifiers may have developed sufficient experience and expertise to be able to form 

these abstractions mentally, but novices find the task insurmountably difficult. This leads to a 

strong deterrent to their increased uptake. In order to test this theory, we adapted two notations 

from the UML (class diagrams and statecharts) so that they could be used to write semi-

diagrammatic formal specifications using one of the leading UML design tools. Rational Rose. 

We call the adapted notation B-UML. Using the extensibility facilities within Rose, we 

provided a translation facility, U2B, so that the verification benefits of an existing, tool 

supported, formal notation (B) could be used to verify the B-UML specifications. The 
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translation also clarified the semantics of B-UML. The notation, B-UML, and its translator, 

U2B, are not fully developed methods or tools. Rather, they are prototypes used to test the 

feasibility of using such techniques and whether they are beneficial. We developed several 

examples that illustrated the approach. One example is a simplified version of an industrial 

application. B-UML and U2B were presented at the UML 2000 workshop 'Dynamic Behaviour 

in UML Models: Semantic Questions' (Snook and Butler, 2000) and at the 13"* Annual 

Workshop of the Psychology of Programming Interest Group (PPIG2001) (Snook and Butler, 

2001). We felt that specifications were easier to write using B-UML than they would have been 

in B. However, we recognise that this is a subjective opinion and further evaluation of the 

technique is required before firm conclusions can be made. This is discussed below. The 

examples also uncovered limitations in the current method and threw up possible routes for 

extending and enhancing B-UML and U2B. Subject to further evaluation and development we 

believe that the research carried out so far supports the hypothesis that modelling notations and 

tools similar to those used in program design would benefit the difficult task of writing formal 

specifications. 

9.2 Lessons Learned Using B-UML 

The use of the UML provides a visual modelling interface that assists in developing a structure 

for the specification. This is likely to be most significant for programmers who are familiar with 

using the UML for software design and unpractised at using formal notations. The automatic 

generation of B machines from the diagrammatic components of a UML model and the isolation 

of formal annotations for class invariants and operation semantics makes the formal 

specification more manageable. It may be more difficult to gain a complete view of the 

specification from the UML model but this is available via the translation to B. State charts can 

be used successfully to model the behaviour of classes and this information can be combined 

with textually specified operation semantics. We have found that displaying guard and action 

information on a statechart can become unwieldy but this can be solved by using B definitions 

in the class specification. We have found that statecharts are not always the most appropriate 

specification medium. In some cases the textual operation specifications are clearer and more 

succinct and in many cases a combination of the two forms will be most appropriate. 

In order to achieve compositionality of proof, B contains restrictions on how machines can 

access the operations of other machines and on simultaneous changes to machine variables. The 

restrictions are as follows: 

1. A machine cannot have more than one other machine that makes calls to its operations. 

This restriction disallows data sharing involving multiple write access. 

124 



2. Operations cannot call other operations within the same machine 

3. Each operation may make, at most, one call to the operations of each other machine. 

4. Each variable of a machine can be altered by at most, one of the simultaneous 

substitutions of an operation 

Note, however, that a machine can promote an operation of a machine it includes. Promotion is 

equivalent to defining an operation of the promoting machine that invokes the operation of the 

included machine. 

The first compositionality restriction of B means that the natural mapping of class operations 

into machine operations (where the machine represents the class) does not permit associations to 

be altered by both the associated classes. In addition, non-hierarchical class relationship 

structures, which imply that a class is alterable by more than one other class, are not permitted. 

Since we were primarily concerned with enhancing the process of creating B specifications, 

restricting the use of UML class diagrams to match these B restrictions was acceptable. We 

therefore restricted our models to hierarchical class structures using uni-directional associations. 

Since these restrictions are equivalent to the restriction in B, we do not expect them to be any 

more problematic than they are in writing B specifications. Our experiences so far have not 

revealed any difficulties arising out of these restrictions. 

The second compositionality restriction is not restrictive since it can always be avoided by 

repeating the substitutions of the 'called' operation within the 'calling' operation in place of the 

call. The disadvantages of repeating blocks of substitutions can be avoided by using B 

definitions (a DEFINITIONS clause in the class specification window). 

The third compositionality restriction is restrictive. Operation semantics where more than one 

instance of an associated class is modified simultaneously cannot be translated to valid B by the 

current version of the translator. This restriction is imposed partly by the object-based nature of 

the modelling. In a normal B specification, the called operation could be designed to modify 

multiple instances. 

Similarly, the fourth compositionality restriction is restrictive if more than one instance of the 

machine requires modification of the same attribute. Again it is the imposition of an object-

based notational style that leads to the problem. In normal B the function representing the 

mapping from instances to attribute values could be altered using set operators so that all 

instances were altered within the same substitution. 

Future work will include developing the translation rules to solve these problems. 
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9.3 Further Work 

In this section we outline further work that could be done. The section is split into the following 

subsections: further evaluation of the effectiveness of B-UML in making formal specification 

easier; further development of B-UML and U2B to solve current deficiencies and extend the 

notation and techniques. Further work to improve confidence and generalizability of the 

experimental conclusions concerning comprehensibility of formal specifications was suggested 

in Chapter 4. 

93.1 Evaluation of B-UML and U2B 

Further evaluation should be carried out to assess the prime motivation for devising a semi-

graphical formal notation, that it will make formal specifications easier to create. We envisage 

two possible forms of evaluation. Firstly, a formal experiment which would involve two groups 

of subjects writing a formal specification of the same example but one using B-UML and the 

other using B. Possible dependant variables which would indicate a difference in suitability of 

the formal notations and supporting tools might be; correctness of the specification, usefulness 

of the specification for various tasks and time taken to produce the specification. The subjective 

qualitative opinions of the subjects would also be of interest. 

The second form of evaluation we envisage is a case study using the techniques. Ideally, this 

would involve an independent organisation using B-UML and U2B to write formal 

specifications that are required for real applications. Some form of comparison with writing 

formal specifications without the technique is desirable. It is unlikely that any organisation will 

be able to replicate the case study, but it may be possible to develop part of the project with, and 

part without, the techniques. The case study should involve some experienced and some novice 

personnel to evaluate whether the techniques benefit one group more than the other. The 

evaluation would rely mostly on qualitative feedback augmented by measurements comparing 

the treated and untreated parts of the project. 

Some progress towards such an evaluation (mostly on the use of statecharts) has been made by 

Abo Akademi as part of a more general case study (Matisse, 2001). The initial feedback is 

favourable but the work is at too early a stage to report in this thesis. 

9.3.2 Development of B-UML and U2B 

The translator could be improved in several areas. Firstly, we intend to improve the way it 

works. Currently it is a prototype that works by building files representing B machines using the 
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text replacement facilities of Microsoft Word. The files are added to, and edited, as the program 

progresses through the UML model. Although this method was quick to implement and 

achieved the aim of providing a prototype for feasibility testing, the translation is not very 

robust. For example, when new examples of operation interactions, association navigations and 

attribute accesses are attempted, there is a high risk that the text replacement commands will not 

have anticipated the new formats. Before embarking on further enhancements, we intend to re-

write the translation so that it builds an internal representation of the B machines before 

generating the text files. This will also allow us to dispense with any reliance on Word, which 

will improve the performance of the translation. 

Once the method of translation has been strengthened, we intend to enhance it in various ways 

to extend the facilities for modelling, provide additional checking of the model before and 

during translation and to facilitate other model based activities such as refinement. 

The UML provides options for different types of association relationships. These imply 

differences in the creation and destruction of instances of the associated class. For example, 

composition implies that instances should be created and destroyed with the parent class 

instance. Currently the U2B translator does not do this automatically. 

In Chapter 6 we discussed the implications of different association multiplicities for 

initialisation of newly created instances. In some cases the current translator is unnecessarily 

restrictive and in a few cases multiplicities are not supported because no valid initialisation is 

possible with the current options available in the translator. We envisage the addition of (or 

possibly the selection of appropriate) creation operations to enable new instances, and new sets 

of instances, to be specified by, and hence used by, a higher-level class. For example the create 

operation of a higher-level class. A, might use the new create operation of class B to initialise 

an association with multiplicities 1..1->1..1 as follows: 

PRE 
Binstances /= BSET 

THEN 
ANY newB 
WHERE 

newB : BBBSET - BBBinstances 
THEN 

Bcreate (newB) || 
Aassoc(newA) := newB 

END 
END 

The same class A would use the createSet operation of class B to initialise an association with 

multiplicities 0..n-)0..n as follows: 
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ANY oldBs,newBs 
WHERE 

oldBs:POW{Binstances) & 
newBs:POW(BSET-Binstances) 

THEN 
BcreateSet(newBs) || 
Aassoc(newA):=oldBs \/ newBs 

END 

Other features of UML class diagrams, such as generalisation, class parameterisation and 

abstract classes have not been considered at present. It may be that these facilities are useful in 

translation to corresponding B facilities. 

Enhancements to tackle the problems described in the previous section concerning simultaneous 

changes to instances of an associated class and simultaneous alteration of the same attribute for 

multiple instances of the class are envisaged. It may be possible to allow apparently illegal B 

forms in the B-UML specification that are converted into a legal B form at translation. 

Enhancements to the use of state machines might include the use of hierarchically structured 

state machines, the use of activity chart constructs such as parallel state transition paths, entry 

and exit actions, event actions. Currently we assume an event style model of a system. It may be 

useful to allow the choice between this and a non-event style model. 

Other notations within the UML have not been considered. Component diagrams may be useful 

as a higher-level structuring mechanism as used by Abo Akademi (Matisse, 2001). It may be 

useful to use interaction diagrams, as do Ledang and Souquieres (2001) for preliminary 

definition of inter-class operation calling structures. 

Enhancements to the facilities provided by the translator may be useful. Currently the translator 

performs no checking of the model prior to translation. The B-Toolkit or Atelier-B is relied 

upon to check that the model represents valid B. The translator could provide, at least basic 

syntax checking. For example, that the class association restrictions discussed earlier in this 

chapter have been obeyed in the B-UML. 

Many of these improvements are currently being worked on as part of the EU projects, 

MATISSE (Snook and Wald6n, 2002) and PUSSEE (PUSSEE, 2002). Current work within the 

PUSSEE project has concentrated on extending U2B to support the B refinement method (rather 

than a single layer of specification). The translation described in this thesis concentrates on the 

abstract machine specification level and de-composition of a large machine into smaller 

machines based on the UML classes and their relationships. However, the primary 

decomposition mechanism in B is not the inclusion of other machines but decomposition by 
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refinement. An abstract machine specification is refined until an implementation specification is 

reached. The implementation imports other abstract machines that encapsulate its variables. A 

hierarchy of modules is constructed, each component consisting of a refinement chain, from 

abstract machine to implementation. Our current work extends U2B so that refinement and 

implementation can be modelled in UML using realisation relationships between classes. 

Furthermore, the UML model can be organised hierarchically using packages so that the B 

project decomposition technique can be employed within a B-UML model. With this extended 

version of the U2B translator we will investigate the use of B-UML on the industrial case 

studies provided by the project partners and contrast it with conventional B project 

developments. 

9.4 Conclusion 

In this thesis we have considered formal methods, a software engineering technique that has 

become very popular as an area for academic research but has only been adopted 'sporadically' 

within industry. It is clear from current literature that there are benefits to the quality of the 

software produced using this technique, but there are also barriers that prevent widespread use. 

Using empirical methods we have investigated what industry believes are the barriers to the use 

of formal methods. We have investigated further, comprehension, an area that might have been 

seen as a barrier, and decided (in agreement with those in industry) that it is not. We have then 

investigated, by constructing an example, a possible technique to assist in the construction of 

formal specifications, which was seen as a barrier by those in industry. We have found this to be 

of benefit when writing formal specifications. Through our close work with industrial partners 

we plan to continue to explore the barriers to formal specification and to investigate ways that 

they can be overcome. 
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Appendix A Survey Materials 

A.1 Questionnaire 

1) How would you define a formal method? 

2) What experience has the company had with formal methods? 

3) Which formal methods have you used most? 

4) How big are the systems that you use formal methods on? 

4a) Does the size of the system affect the practicality of using formal methods? 

5) How do formal methods affect the software life cycle? 

6) How do formal methods affect software quality assurance activities? (records, audits, 
certification etc) 

7) What are the benefits that you have found? 

7a) Are they measurable in terms of quality of software products? 

7b) Are they measurable in terms of software process improvements? 

7c) Has any quantitative data been collected that demonstrate the benefits? 

8) What problems have been encountered? 

8a) How do the problems affect the quality of software products? 

8b) How were they overcome? 

9) Have any understanding difficulties or benefits been found? 

9a) If so, has this affected correctness and verification of resulting code? 

9b) Is there any pattern to the misunderstanding? i.e. particular constructs or styles 

10) Do you use any style rules or codes of practice when writing formal specifications 

10a) How do they affect understanding (if at all)? 

11) Have you found that the structure of the specification model influences the 
implementation? 

11a) Is this good or bad? 

12) How have formal specifications affected maintenance issues? 

12a) Do the formal specifications help determine the correct code change? 

12b) Are the formal specifications difficult to update? Are they kept up to date? 

12c) Do the formal specifications prevent (or worsen) degradation of the code structure 
through maintenance? 

12d) Does the structure of the specifications themselves deteriorate through maintenance? 

13) How do customers view the use of formal methods? 

13a) Are formal documents used as an interface to customers? 

13b) If so, how does this affect understanding of the system by the customer 

13c) Has it affected system validation and acceptance stages? 

14) Is there anything we haven't covered that you would like to talk about? 



A.2 Results Summary Matrix 

Question Interviewee A IBM Marconi Philips Praxis 
How would 
you define a 
formal 
method? 

Unambiguous 
mathematical 
notation in which 
you can express 
system behaviour 
and structure. Has a 
precise syntax and 
semantics. Doesn't 
count things like 
UML as formal 
enough 

Mathematical and 
can prove 
correctness 
Distinguish between 
Spec notations and 
methods (inc. proof) 
(notations such as 
UML can't express 
the important 
relationships) 

Method with 
underlying 
mathematical theory, 
well defined syntax 
and semantics and 
rules for manipulation 
and verification. 

Notation with precise 
syntax & well defined 
semantics, with a method 
for refinement into an 
implementation and 
support for requirements 
elicitation, 
state charts are 
sufficiently formal 
although don't support 
proofs. 
{O-O notations s.a. UML 
also discussed -
comments relating to 
these are shown in 
braces} 

Mathematically based 
notation, specification 
optionally with 
verification proofs 
(UML some aspects 
formal but not very 
expressive) 

What 
experience has 
the company 
had with 
formal 
methods? 

One large project 
which was specified 
in Z. Several small 
projects (electronics 
components) were 
specified formally 
and subcontracted 

Since 1983 but not 
so widespread use 
now 

Full size, parallel case 
study (18 months 
duration) 

COLD developed by 
Philips and used on 1 or 
2 products (but didn't do 
formal refinement). 
Lighter weight version of 
COLD used more 
extensively for 
specification 

Lots, specialise in this 
area 

Which formal 
methods have 
you used 
most? 

Z, CSP, VDM Z and B toolkit B Toolkit COLD (notation in genre 
o f Z . VDMetc) 
{UML has been used on 
a few products esp. use-
case for requirements} 

Z, VDM very 
extensively 
CSP, CCS a bit 

How big are 
the systems 
that you use 
formal 
methods on? 

1 large safety critical 
project (150 s/w 
engineers) 
several small 
projects 

50 KLOC 900 LOC (ADA) with 
full formal spec and 
verification, 2000 LOC 
with partial formal 
specification to 
estabUsh doesn't affect 
critical parts. 

from lOKloc upwards. 
Biggest products have 
been medical systems 
(70 people for 2 years) 
but consumer products 
are becoming quite large 
in terms of software 
systems 

Biggest 2OOKI0C, often 
lOOKloc, lOs Kloc 
Def. Stan. 00-55 

Does the size 
of the system 
affect the 
practicality of 
using formal 
methods? 

No more than any 
other factor/method 

No, as long as you 
break it down into 
encapsulated 
components 
Encapsulation is 
important and formal 
spec defines the 
interfaces between 
components 

Yes, but also affected 
by other factors such 
as degree of formality 
reqd. (proofs etc), 
complexity. 
Also encapsulation 
helps break problem 
down as get into 
design stages - size 
problem mainly at 
reqmts. spec stage. 

Not per se but, rapid 
growth in size of 
software systems has 
meant that recruit 
programmers to cope and 
haven't been able to 
formal specify these 
systems quickly enough 

Mostly the methods 
scale up but model 
checkers not very well 
and proof checkers 
even worse 

How do 
formal 
methods affect 
the software 
life cycle? 

N/A - In large 
project the formal 
spec wasn't used for 
subsequent 
development, in 
small projects the 
development was 
subcontracted 

Don't change its 
structure but major 
shift of effort to up 
front, specification 
stage away from 
debugging and 
testing. 

Same stages but shift 
effort to specification 
stage, reduce rework 
later, assists testing 
and validation later 

Increase effort to get 
spec right, but timescales 
are short so development 
has to proceed in parallel 
and product may 
complete before spec is 
finished. There is a 
difficulty with precise 
specification since 
Ufecycle is often 
iterative, developing the 
requirements as the 
design evolves. 
As formal specification 
aims to sort out 
requirements issues prior 
to starting design it 
doesn't fit with iterative 
development. 
{O-O modelling enables 
the quick animation-

Front loading - spec 
takes longer to get 
right but in the process 
resolve many problems 
and spec makes 
subsequent stages 
much easier (esp. 
coding and testing) 
Same stages 
throughout except 
conventional lifecycle 
often omits the system 
specification and 
works from the 
requirement spec 
instead 



Question Interviewee A IBM Marconi Philips Praxis 
refine-code generation 
iteration methods) 

How do 
formal 
methods affect 
software 
quahty 
assurance 
activities? 
(records, 
audits, 
certification 
etc) 

N/A - as 5 above Not applicable, don't 
do any 

Unchanged really. 
Auditors need to have 
an outline 
understanding of the 
expected outputs of 
processes in order to 
verify that the 
processes are being 
performed. Procedures 
have been written to 
cover formal methods. 

beginning to put in place 
templates and checklists 
to standardise formats to 
improve exchange 
between divisions and 
this will go into 
procedures. 
Quality is the main 
driving force behind 
pushing for more formal 
{mostly in the looser 
sense} methods. 

Doesn't change Q.A. 
role but does make 
quality control checks 
more effective. 
Improves traceability 
which helps Q.A, 

What are the 
benefits that 
you have 
found? 

Makes you think 
through and 
understand the 
problem domain. A 
tool for thinking 
Discover spec 
problems early 
Image - a very good, 
clever organisation 
Expert effect - you 
need clever people 
to use them, clever 
people make quality 
software with any 
method. 

Allows you to see 
the users view of the 
system. 
Uncovers 
specification issues 
early rather than 
discovering them 
late in the day 
Significant 
improvement in 
failure rates 

Get spec, problems 
resolved and discover 
errors early so much 
less rework. Test cases 
can be automatically 
generated which 
enables efficient and 
effective validation 
testing 

Discover problems early 
{e.g. when developing 
state charts} 
Clear about the 
requirements and 
whether they are 
complete and consistent 

Cheaper (if you want a 
system that works) 
High defect removal 
(still get bugs but 
easier to detect with a 
formal spec) 
Coding is much more 
straightforward (know 
exactly what's needed) 
As a consequence 
performance is 
improved 
Complexity deters 
functionality/code 
from growing 
unnecessarily 

Are they 
measurable in 
terms of 
quality of 
software 
products? 

N/A - not measured 40% reduction in 
post delivery failures 
(this is based on 
fault report data for 
the CICS system) 

N/A 
product was not put 
into service but 
expected to be more 
reliable 

N/A Yes, Product is more 
reliable 

Are they 
measurable in 
terms of 
software 
process 
improvements 
? 

N/A - not measured Reduces costs of 
later development 
and testing activities 
due to less problems 

Requirements 
validation process 
much improved. 
Testing process much 
improved by auto 
generation of test cases 
and expected results 

Benefits in providing 
something to test against. 
Knowing what is being 
developed 
Maintenance helped 

Yes, reviewing and 
testing is more 
effective 

Has any 
quantitative 
data been 
collected that 
demonstrates 
the benefits? 

N/A - No (data has 
been collected at 
ACSL but they 
haven't started using 
An yet) 

Some informally 
collected data for 7a 
above 

(see paper) No but plan to collect 
data 

Yes but no baseline for 
comparison (but see 
Pfieeger & Hatton) 
One example where 
data convinced 
customer that a 
formally re-engineered 
version of the existing 
system would be 
worthwhile 

What 
problems have 
been 
encountered? 

Attitude - reluctance 
of ordinary 
engineers to get 
involved. 
Complexity - hard 
work to become 
fluent 

Keeping an expertise 
base together 
Ability to create 
good models with 
useful abstractions 
(difficult to teach) 
Customers don't 
want to be tied down 
early 
Management 
perceive it as a big 
risk 

Structuring and 
resourcing the 
requirements 
specification. 
Size of proof at first 
stages of refinement 
due to lack of 
encapsulation at this 
stage. 
Tools are not formally 
developed and 
validated so any use in 
verification 
compromises validity 

Resourcing to use 
effectively 
Extended timescale of 
spec means it is of 
limited benefit 
Doesn't fit with 
incremental development 
lifecycle 

Customer resistance, 
acceptance of incorrect 
software (see 13) 
Immature tools not 
integrated into the rest 
of the development 
lifecycle 
e.g. can't write in 
standard word 
processors, being 
unable to use normal 
development tools is a 
big turn off 
Proof tools not 
industrial strength 
(except maybe B) 

How do the 
problems 
affect the 
quality of 
software 

They don't get used Reduced use of 
formal methods (loss 
of benefits) 

N/A not covered in 
interview 

N/A Lack of use of formal 
methods - don't 
achieve benefits 
Misunderstanding can 
still exist between 



Question Interviewee A IBM Marconi Philips Praxis 
products? formal spec and 

requirements (i.e. is 
spec valid) 

How were 
they 
overcome? 

They weren't really 
but good teaching 
and team building is 
seen as a solution. 

They weren't 
Oxford Uni. 
provided a lot of 
consultancy on 
modelling 

Specification 
structured by most 
highly skilled people, 
others filled in detail. 
Take small refinement 
steps initially. 

Plan to standardise on 
UML which doesn't 
suffer these problems 
and then use formal 
methods for 
(encapsulated) 
subcomponents within 
the UML model for the 
critical parts 

N/A 

Have any 
understanding 
difficulties or 
benefits been 
found? 

Yes, See 8 Need English 
comments to explain 
Z (not so much in B 
as this is better 
structured) 

Harder to get top level 
requirements reviewed 
but this was solved by 
using the animation 
facility. 

No, but tend to recruit 
from research for these 
roles so limited resources 
so tending to move away 
from formal 
{O-O not so much a 
problem but UML use-
cases and requirement 
elicitation needs (soft) 
skills that hard 
developers don't find 
easy so now recruiting 
specialist requirements 
people} 

(see 13 for customer 
understanding) 
Not too much of a 
problem, employ good 
calibre staff but don't 
think you need special 
people to understand 
formal specs, easier 
than understanding 
code, just need 
practice. 

If so has this 
affected 
correctness 
and 
verification of 
resulting 
code? 

N/A - no examples 
of coding from spec 

No No N o because experts used No significant effect 

Is there any 
pattern to this 
misunderstand 
ing? i.e. 
particular 
constructs or 
styles 

Some constructs are 
difficult e.g. 
functions that return 
functions 

N/A No N o No, not really 

Do you use 
any style rules 
or codes of 
practice when 
writing formal 
specifications? 

Use simpler forms 
even if more verbose 
- reduced subset 
Friendly style with 
explanation 
Teach via metaphors 
to help visualisation 

Had codes of 
practice for 
embedding 
comments in Z, now 
policy is for literate 
programming where 
specification (formal 
and informal) and 
design and code are 
all kept together. 

Naming conventions, 
capitalisation, naming 
correspondence 
through refinement 
levels for traceability 

Yes had documented 
styles and codes of 
practice 
{UML - trying to do the 
same - templates and 
checklists} 

Yes, lexical constraints 
on spelling etc, use of 
delta and sigma, 
common format 

How do they 
affect 
understanding 
(if at all)? 

Easy to understand 
and also less off 
putting 

See 9 N/A (not asked but 
assume aid readability) 

{Needed to migrate high 
end products to other 
divisions as they become 
older} 

Makes 2 peoples specs 
look similar so know 
where to expect things 

Have you 
found that the 
structure of 
the 
specification 
model 
influences the 
implementatio 
n? 

No examples of 
writing code from 
specs but would 
expect the structure 
to follow through 
into the code 

Yes, most people 
structure their design 
similar to their 
specification (but, 
the formality assists 
in maintaining a 
purer external 
requirements view, 
i.e. the spec contains 
less design 
decisions) 

To some extent but 
refinement stages used 
to re-structure for 
design purposes. State 
structure unchanged. 
Code structure reflects 
B notation 

This is a question under 
consideration at PRL -
PK thinks it won't if it is 
at the right abstraction to 
be a requirements 
document but they are 
looking at whether it can 
be done purposefully 

Yes, to a fairly large 
degree but some 
features such as 
atomicity, 
concurrency, timing 
are design stages that 
affect this 
correspondence 

Is this good or 
bad? 

Trade off - helps 
traceability but may 
not be efficient code 

Good, it aids 
traceability 
(although a purist 
might argue that the 
design will lead to 
less efficient code 
the pragmatic view 
is more important) 

Helped in maintaining 
code to B 
correspondence 

It may be good to 
express requirements so 
that they influence the 
structure of the 
implementation to make 
it have reusable 
components 
On the other hand it may 
confuse the requirements 

Good helps traceability 



Question Interviewee A IBM Marconi Philips Praxis 
role of the spec to have 
this in it. 

How have 
formal 
specifications 
affected 
maintenance 
issues? 

N/A - no 
maintenance 
experience 

(answered below) The formal specs 
themselves had no 
effect on maintenance. 
B tool helped a lot in 
automatically detected 
everything that relied 
on a changed 
component and 
assisting in re-
checking these, 

Improve understanding 
of code being changed 
making it easier to get 
the change right 

Spec helps with 
determining correct 
code change and the 
effects on the rest of 
the system 

Do the formal 
specifications 
help determine 
the correct 
code change? 

N/A In one example the 
formal spec was 
used to good effect 
and gave an 
estimated 50% 
reduction in 
maintenance cost. 
However this is an 
isolated case and 
usually the 
specification is not 
used or maintained 
after development. 

No. Yes, provided 
traceability is ok from 
spec to code (but this is 
often not the case due to 
timescales during 
development) 

Yes 

Are the formal 
specifications 
difficult to 
update? Are 
they kept up to 
date? 

N/A Not usually kept up 
to date. 

Were updated, and this 
is not difficult due to 
the help from the B 
toolkit 

Specs are fairly easy to 
update but it is only done 
if traceable to code 

Yes, they are kept up 
to date. This is partly 
culture but also formal 
specs are worth 
keeping up to date 
because they are so 
useful compared to 
natural language specs. 
Usually easier to 
update formal specs 
because you can work 
out what needs 
changing better. 

Do the formal 
specifications 
prevent(or 
worsen) 
degradation of 
the code 
structure 
through 
maintenance? 

N/A Don't affect it either 
way, usually don't 
go back to the spec 
anyway 

Prevent degradation 
because the B tool 
allows you to maintain 
the design structure 
easily and the code is 
kept in-line with this 
structure. 

if traceable prevent code 
degradation since the 
change is made with the 
spec structure in mind. 

Help prevent 
degradation indirectly 
by supporting a good 
process, tend to do 
things in the right 
order starting with the 
spec and this helps 
keep good code 
structure 

Does the 
structure of 
the 
specifications 
themselves 
deteriorate 
through 
maintenance? 

N/A Not much practical 
experience but 
perception that the 
formality will 
increase the 
tendency to avoid 
restructuring leading 
to degradation. 

N/A 
No experience of post-
delivery maintenance. 
(During early spec 
development the 
structure was 
maintained but may be 
different later on) 

Have found that natural 
language specs 
deteriorate quickly with 
changes whereas Formal 
Specs do not. 

Some degradation. 

How do 
customers 
view the use 
of formal 
methods? 

hnpressed, usually 
have someone who 
is keen to learn the 
methods to again 
personal position 

General warm 
feeling that company 
is doing something 
good to look after 
quality 

MoD Customers 
mandate the use of 
formal methods and 
want to sort out any 
spec. 
misunderstandings 
early and tie down the 
requirements. 
US customers may 
need persuasion to 
accept proof instead of 
testing etc. (MoD vice-
versa) 

(usually project manager 
or marketing act as 
customer proxy) 
Tend to want good 
methods to achieve 
quality in general so 
supportive 

Depends on customer, 
some (e.g. MoD) 
mandate due to 
regulatory pressure 
Some resist, may not 
fit in with practices, 
cost of training etc. 
General acceptance 
that software rarely 
works - this takes 
away the incentive to 
use formal methods 
since it is cheaper to 
produce a system that 
doesn't work than to 
make one that does 
using formal methods 

Are formal 
documents 

Were used to place 
subcontracts for 

Internal customers 
only (encapsulated 

Yes Yes project manager 
needs to approve 

Sometimes 



Question Interviewee A IBM Marconi Philips Praxis 
used as an 
interface to 
customers? 

small projects subsections called 
domains are 
developed separately 
so Formal specs will 
be used to define the 
interfaces for the 
domain and this will 
be used by the other 
domain groups) 

requirements spec 

If so, how 
does this 
affect 
understanding 
of the system 
by the 
customer? 

Interviewee was the 
customer and wrote 
the spec, 
subcontractors were 
able to understand 
the friendly, reduced 
subset Z 

Beneficial (but note 
that these 
'customers' are other 
IBM software 
developers) 

Customers have people 
that understand the 
methods, also 
animation of spec is 
used to illustrate its 
meaning. If not 
mandatory there may 
be some understanding 
problems but not 
insurmountable. 

The project manager has 
problems understanding 
formal specs, so working 
towards levels of 
abstraction and to make 
readable so that they can 
understand while still 
being formal as possible 

Technical engineering 
staff understand better 
and can answer 
questions about the 
behaviour of their 
future system, but the 
audience is restricted 

Has it affected 
system 
validation and 
acceptance 
stages? 

Has helped in 
working out test 
cases. 
No auto test output 
generation so far but 
agreed could be 
done 

No, except that there 
are less problems at 
this stage. 

Helps derive test cases 
and also contributes to 
acceptance evidence 
(for the right 
customers) 

Yes, one of the main 
driving forces is to 
improve the final testing 
by having a clear spec of 
what it should do. 

Beneficial because 
traceability of tests to 
spec is clearer, 
customer can see that 
the system does what 
was specified 

Is there 
anything we 
haven't 
covered that 
you would like 
to talk about? 

Would like to see 
improved learning 
techniques. 
Would Not want 
notation to be made 
easier if this 
contaminated the 
mathematical purity 
of the notation 

There is no impetus 
to using formal 
methods because 
customers accept the 
current level of 
quality without FM 
and supplier can 
cover corrective 
work in price. 

Thinking about formal 
methods for non-
functional 
requirements such as 
parallelism, timing and 
also for hardware (def 
Stan 00-54) 

Have strong commercial 
pressures for high quality 
but also timescale 
pressures. So looking at 
UML for re-use 
component based 
approach and will 
formalise the critical bits 

No 

Lack of specification 
precision leads to 
late changes -
people are aware 
that late changes 
happen and therefore 
avoid precision -
vicious circle!! 

Full formal 
development with 
proofs, same as for 
conventionally 
developed high 
integrity software but 
think variance of 
estimates may be 
higher at moment due 
to limited experience, 
limited skills base etc. 
Considering using 
formal specification 
with B tool but less 
proving as this might 
be more efficient than 
conventional 
development. 

Problem with B -
starts late in the 
lifecycle, need a z spec 
to start off then 
translate to B 

Don't use code gen. 
facility of b toolkit 
due to code 
inefficiency 

Did not use B-Tool 
code gen because -
didn't trust it (not 
formally developed) 
and didn't want C 
(unsafe). 

The really rich 
languages like Z are 
only semi-decidable 

timescales are 
similar to 
conventional 
methods 

Structure of 
requirements spec, 
proofs, (refinement is 
ok, much like design) 

Agreed, domain 
specific languages 
probably the way 
forward 

B tool - relied on 
heavily and found it 
helped a lot in tracing, 
proving and 
maintenance rework. 
Some holes - need to 
add rules for proving 
but proofs rely on the 
validity of these rules, 
no ADA translator 



Appendix B Experiment Materials 

B.l Z speciGcadon 

State 

RoadType 
length : 

length > 0 

PositlonType 
road; RoadType 
space: N 

space e 1.. road.length 

VehlcleType 
pes: PositionType 

RoadsysType 
roads: P RoadType 
goesto : RoadType «-> RoadType 

dom goesto = roads 
ran goesto c roads 

Traffic 
roadsys; RoadsysType 
vehicles: P VehicleType 

V v ; vehicles • v.pos.road e roadsys.roads 
V V, w : vehicles | v w • v.pos.road = w.pos.road => 

v.pos.space ^ w.pos.space 

Initialisation 

Trafficlnit 
Traffic' 
vehiclesinit? : P VehicleType 
roadsysinit_roads? : PRoadType 
roadsysinit_goesto? : RoadType RoadType 

vehicles' = vehiclesinit? 
roadsys'. roads = roadsysinit_roads? 
roadsys'.goesto = roadsysinit_goesto? 
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Operations 

Report ::= Okay | Destination already occupied 
Success 

error!: Report 
error! = Okay 

moveSameRoadn 
A Traffic 
pos? : PositionType 
pos?.road e roadsys.roads 
pos?.space < pos?.road.length 
3 V : vehicles • v.pos = pos? 
-.3 w ; vehicles • w.pos.road = pos?.road a w.pos.space = pos?.space+1 

vehicles' = vehicles u {v :VehicleType | v.pos.road^pos?.road A 
v.pos.space=pos?.space+1} 

\ {v : vehicles | v.pos = pos?} 
roadsys' = roadsys 

pickRoad 
roadset?: P RoadType 
road!: RoadType 
roadset? ^ 0 

road! e roadset? 

moveNewRoadn 
A Traffic 
pos? : PositionType 
pos?.road e roadsys.roads 
pos?.space = pos?.road.length 
3 V: vehicles • v.pos = pos? 
-.3 w ; vehicles • w.pos.road = 

pickRoad roadsys.goesto pos?.road A w.pos.space = 1 

vehicles' = vehicles u {v; VehicleType | v.pos.road = 
pickRoad roadsys.goesto pos?.road A v.pos.space = 1} 

\ {v: vehicles | v.pos = pos?} 
roadsys' = roadsys 
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destlnatlonAlreadyOccupied 

S Traffic 

pos?: PositionType 
error!: Report 
pos?.road e roadsys.roads 

3 v: vehicles • v.pos = pos? 

((pos?.space < pos?.road.length A 

3 w: vehicles • w.pos.road = pos?.road A 

w.pos.space = pos?.space+1) 
V 

(pos?.space = pos?.road.length A 

3 w: vehicles • w.pos.road = pickRoad roadsys.goesto pos?.road 

A w.pos.space = 1)) 

error!=Destination already occupied 

move Vehicle = 

((moveSameRoado v moveNewRoado) A Success) 

V destinationAireadyOccupied 

B.2 Java Program 

import Java.lang.Exception; 
class InvariantException extends Exception { 

public InvariantException (String msg) {super(msg);} 
} 

class RoadType { 
int roadlength; 

public RoadType(int inpjength) throws InvariantException { 
if (inpjength < 1) { 

InvariantException e = new InvariantException 
("Invariant: road length must be >= 1"); 

throw e;} 
roadlength=inp_length;} 

} 

class PositionType { 
RoadType road; 
int space; 

public PositionType (RoadType inp_road, int inp_space) throws InvariantException { 
if (inp_space < 11| inp_space > inp_road.roadlength) { 

InvariantException e = new InvariantException 
("Invariant: position must be within road"); 

throw e;} 
road = inpjoad; 
space = inp_space;} 

public boolean sameas (PositionType inp_pos) { 
boolean same = false; 
if (inp_pos.road==road && inp_pos.space==space) same =tru8; 
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return same;} 
} 

class VehicleType { 

PositionType pos; 

public VehicleType(PositionType inp_pos) {pos = inp_pos;} 

public void moveto(PositionType inp_pos) {pos = inp_pos;} 
} 

class RoadsysType { 
RoadTypeO roads; 
RoadType[][] goesto; 

public RoadsysType(RoadType[] init_roads,RoadType[][] init_goesto) throws InvariantException { 
roads = init_roads; 
if (init_goesto.length < roads.length) { 

InvariantException e = new InvariantException 
("Invariant: all roads must go somewhere"); 

throw e;} 
for (int i=0; i<roads.length; i++) { 

if (init_goesto[i]. length == 0) { 
InvariantException e = new InvariantException 

("Invariant: all roads must go somewhere"); 
throw e;} 

for (int j=0; J<init_goesto[i].length; j++) { 
if (!isaroad(init_goesto[i]0])) { 

InvariantException e = new InvariantException 
("Invariant: invalid goesto road"); 

throw e;} }} 
goesto = init_goesto;} 

public boolean isaroad(RoadType inp_road) { 
boolean r=false; 
for (int j=0: j<roads.length; J++) 

if (roadsO] == inp_road) r=true; 
return r;} 

public RoadType[] allgoesto(RoadType inp_road) { 
int 1=0; 
while (roads[i] 1= inpjoad) i++; 
return goesto[i];} 

import java.utii.Random; 
class Pick { 

static Random r=new Random(); 

static public RoadType pickroad (RoadTypeO array) { 
int n=Math.abs(r.nextlnt() % array.length); 
return array[n];} 

} 

class Traffic { 
RoadsysType roadsys; 
VehicleTypeO vehicles; 

public Traffic(RoadType[] init_roads,RoadType[][] init_goesto,VehicleType[] init_vehicles) throws InvariantException { 
roadsys = new RoadsysType(init_roads,init_goesto); 
for (int 1=0; i<init_vehicles.length; i++) { 
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if (!roadsys.isaroad(init_vehicles[i].pos.road)) { 
InvariantException e = new InvariantException 

("Invariant: Vehicle not in valid road"); 
throw e;} 

for (int j=0; J<init_vehicles.length; J++) { 
if (init_vehicles[i].pos.sanfieas(init_vehiclesO].pos) && i!=j) { 
InvariantException e = new InvariantException 

("Invariant: 2 vehicles at same position"); 
throw e;} }} 

vehicles = init_vehicles;} 

public void moveVehicle(PositionType inp_pos) throws Exception { 
PositionType destination; 
if (inp_pos.space < inp_pos.road.roadlength) { 

destination = new PositionType(inp_pos.road,inp_pos.space+1);} 
else{ 

RoadType exit=Pick.pickroad(roadsys.allgoesto(inp_pos.road)); 
destination = new PositionType(exit,1); } 

if (isVehicleAt(destination)) { 
InvariantException e = new InvariantException 

("Invariant:: Destination already occupied"); 
throw e;} 

getVehicleAt(inp_pos).moveto(destination); } 

public boolean isVehicleAt(PositionType inp_pos) { 
boolean found = false; 
if (vehicles 1= null) { 

for (int i=0; i<vehicles.length; i++) { 
if (vehicles[i].pos.sameas(inp_pos)) found=true;}} 

return found; } 

public VehicieType getVehicleAt(PositionType inp_pos) { 
int i=0; 
while (!vehicles[i].pos.sameas(inp_pos)) i++; 
return vehicles[i]; } 

} 
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]&.3 Questionnaire 

Your email address: 

Please record the time taken for each of the first 2 questions including all of the time 

you spend reading the specification/program). 

Ql . Describe the physical objects represented in the system and their behaviour (i.e. the 

functionality of the specification/program) Time taken for Ql.; mins 

Q2. 'PickRoad' represents an indeterministic or random choice. In real-world, 

functional, terms what is it used for? Time taken for Q2.: mins 

Q3. How difficult did you find the specification/program to understand compared to 

how you think you would have found an English language equivalent? 

Easy O O O O O o O O O O O Hard (replace an O with an X) 

Q4. How difficult do you find mathematical subjects? (i.e. what is your subjective 

judgement of your own mathematical abilities compared to your peers) 

Easy O O O O O o O O O O O Hard (replace an O with an X) 

Q5. What training/qualifications do you have in mathematical (and related) subjects 

(e.g. GCSE, A-level Maths/physics etc)? 

Q6. How much experience have you had with the notation/language used in the 

specification/program? 

Q7. Any other comments? (or things that might have affected your answers) 
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B.4 Marking sheet 

Ql. Roads 

Roads are directional 

Roads have a length 

... which is greater than zero 

Roads are modelled as a sequence of discrete positions 

The end of each road is connected... 

....to one or .... 

.. ..more other roads 

Vehicles 

Vehicles exist on a particular road 

...at a particular position on that road 

2 vehicles cannot occupy the same position 

Vehicles can move along roads... 

.. .one position forward at a time 

.. .but only if the destination position is unoccupied 

A vehicle at the end of a road... 

.. .can move to another road... 

.. .that is connected to its road... 

...in fact any of the connected roads... 

.. .the choice is random/undefined 

...but only if the destination is unoccupied 

Q2. it represents the vehicles/drivers choice of . . . 

... which new road to enter. 

Total 

Total time taken: (Q1+Q2 = + ) 

marks per minute 
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B.5 Summary of Results 

Time 03 04 05 06 | 0 7 
(mins) (answers to Q6 and Q7 are summarised) 

z 

1 20 10 2 2 A <1yr 

2 12 8 3 -2 B 1 course dreading z would have preferred J 

3 20 7 -1 -2 A module 

4 9 7 5 -1 C little formal spec more difficult than code 

5 10 15 1 -2 A fair amount in course 

6 29 8 5 -4 A module 

7 25 9 2 0 A semester 

8 27 13 1 2 A semester 

9 13 10 3 0 A course 

10 25 9 0 -3 A course code easier then spec 

11 13 4 - - - - -

12 20 15 3 -3 A module z awkward / symbols 

13 23 6 2 -3 A 2modules 

M 35 5 2 -5 A some last term difficulty ops 

15 33 6 3 -2 A little difficult due lack of knowledge of z 

16 13 3 5 -2 A 12x45min lectures spec totally confusing 

17 1 8 7 1 -1 A 1 module 

76 18 7 3 -2 A 2 modules 

J a v a 

19 22 8 0 -4 A lyr 

a? 22 9 2 3 A 6months 

21 19 4 2 -1 A 6months 

2 2 15 7 3 -3.5 A Bmonths names made it easy 

2 3 14 10 2 -1 A 6months progs easier than z/more natural to write 

24 1 5 3 2 1 A some 

25 14 8 2 -3 A module 

2 6 15 16 3 -2 A lOmonths traffic implies functionality 

2 7 21 1 0 2 0 A 12months in depth 

2 8 22 12 3 -3 A module lack of comments 

2 9 35 7 4 2 A 3 to 4 months lack of comments 

3 0 12 6 3 3 B 1st yr Java confusing 

31 25 7 3 -3 A 6 months 

3 2 25 9 1 1 A module 

33 15 4 3 1 B not much V difficult to understand this prog 

3 4 25 8 3 5 B semester not strong at coding - Java diffciult 

35 23 17 3 -4 A lots of Java not too hard to understand 

36 27 14 2 3 A fair amount - module weird coding style 

key for 05: A=Aleve maths, B=GCSE maths C=maths as part of french baccalaureat 
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B.6 Corrected Z Specification in ZSL 

specification 

RoadType -
I length: N 

length > 0 

-- PositionType 
road: RoadType; 
space: N 

space in 1..road.length 

-- VehicleType 
pos: PositionType 

true 

-- RoadsysType 
roads: P RoadType; 
goesto: RoadType <-> RoadType 

dom goesto = roads; 
ran goesto subseteg roads 

-- Traffic 
roadsys: RoadsysType; 
vehicles; P VehicleType 

forall v:vehicles @ v.pos.road in roadsys.roads; 
forall v,w:vehicles | v/=w @ 

V.pos.road=w.pos.road => v.pos.space/=w.pos. space 

-- Trafficlnit 
Traffic'; 
vehiclesinit?: P VehicleType; 
roadsysinit_roads?: P RoadType; 
roadsysinit_goesto?: RoadType <-> RoadType 

vehicles' = vehiclesinit?; 
roadsys'.roads = roadsysinit_roads?; 
roadsys'.goesto = roadsysinit_goesto? 
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Report ::= Okay | Destination_already_occupied 

Success 
I error!: Report 

I error! = Okay 

-- moveSameRoadO 
Delta Traffic; 
pos?: PositionType 

pos ?.road in roadsys.roads; 
pos?.space < pos?.road.length; 
exists v: vehicles @ v.pos = pos?; 
not{exists w:vehicles @ 

w.pos.road=pos?.road and w.pos.space=pos?.space+1); 

vehicles'= vehicles | | 
{v:VehicleType | v.pos.road=pos?.road and 

v.pos.space=pos?.space+1} \ 
{v:vehicles | v.pos=pos?}; 

roadsys'=roadsys 

-- pickRoad 
roadset?: P RoadType; 
road!: RoadType 

roadset?/={}; 

road! in roadset? 

— moveNewRoadO 
Delta Traffic; 
pos?: PositionType 

pos?.road in roadsys.roads; 
pos?.space = pos?.road.length; 
exists v:vehicles © v.pos = pos?; 

let roadset?=={rr:RoadType | (rr,pos?.road) in roadsys.goesto} @ 
exists road!:RoadType | pickRoad @ 
not(exists w:vehicles @ w.pos.road=road! and w.pos.space=l)=> 

vehicles' = vehicles || 
{v:VehicleType | v.pos.road=road! and v.pos.space=l} \ 
{v:vehicles | v.pos=pos?}; 

roadsys'=roadsys 
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-- destinationAlreadyOccupied 
Xi Traffic; 
pos?: PositionType; 
error!: Report 

pos?.road in roadsys.roads; 
exists v:vehicles @ v.pos = pos?; 
{pos?.space < pos?.road.length and 
(exists w:vehicles @ w.pos.road=pos?.road and 

w.pos.space=pos?.space+1)) 
or 
(pos?.space = pos?.road.length and 
(let roadset?=={rr:RoadType | (rr,pos?.road) in roadsys.goesto} 
not(exists road!:RoadType | pickRoad @ 
not(exists w:vehicles @ w.pos.road=road! and w.pos.space=l) 
) 

) 

) ; 
error!=Destination_already_occupied 

moveVehicle ='̂ = ((moveSameRoadO or moveNewRoadO} and Success) 
or destinationAlreadyOccupied 

end specification 
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Appendix C Results of Student Poll 

C.l Poll Results 

Results - all years ZB 
total responses 118 
useable responses 116 
strong dislike 47% 
dislike 29% 
neutral 12% 
like 8% 
sDmnglMe 3% 
prefer UML 
equal 
prefer ZB 

Results - first years ZB 
total responses 33 
useable responses 33 
strong dislike 30% 
dislike 21% 
neutral 24% 
Hke 15% 
strong like 9% 
prefer UML 
equal 
prefer ZB 

Results - second years ZB 
total responses 50 
useable responses 49 
strong dislike 57% 
dislike 29% 
neutral 6% 
like 
strong like 2% 
prefer UML 
equal 
prefer ZB 

Results - Th i rd years ZB 
total responses 35 
useable responses 34 
strong dislike 50% 
dislike 38% 
neutral 9% 
l&e 3% 
strong like 0% 
prefer UML 
equal 
prefer ZB 

U M L 

116 
12% 
21% 
28% 
35% 
3% 

U M L 

33 
12% 
21% 
36% 
30% 
0% 

U M L 

49 
6% 
29% 
29% 
33% 
4% 

U M L 

34 
21% 
9% 
21% 
44% 
6% 

pref 

115 

67% 
18% 
15% 

pref 

33 

52% 
18% 
30% 

pref 

48 

77% 
17% 
6% 

pref 

34 

68% 
21% 
12% 
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C.2 Poll Data 
-2=strongly dislike, -l=dislike, 0=neutral, l=like, 2=strongly like, dk=don't know 

Cohort ZB UML pref Cohort ZB UML pref 
first year -2 0 2 second year -2 1 3 
first year -2 1 3 second year -1 1 2 
first year -2 1 3 second year -2 1 3 
first year 1 -1 -2 second year -2 0 2 
first year -2 1 3 second year -1 1 2 
first year -2 -1 1 second year 1 1 0 
first year 1 0 -1 second year 0 1 1 
first year -1 0 1 second year 2 -1 -3 
first year 1 1 0 second year -2 1 3 
first year -2 -1 1 second year -2 -1 1 
first year -2 -2 0 second year -2 -1 1 
first year -1 -1 0 second year -1 1 2 
first year -1 -2 -1 second year -2 -1 1 
first year 2 -2 -4 second year -2 0 2 
first year 1 0 -1 second year -2 -2 0 
second year -2 0 2 third year -1 1 2 
second year -2 1 3 third year -1 1 2 
second year 0 1 1 third year -2 1 3 
second year -2 dk third year -1 -2 -1 
second year -2 0 2 third year -2 -2 0 
second year -1 1 2 third year 0 0 0 
second year 1 -1 -2 third year -2 -2 0 
second year -2 0 2 third year -2 -2 0 
second year -2 -1 1 third year -2 -2 0 
second year -2 -1 1 third year -2 1 3 
second year -1 2 3 third year -2 1 3 
second year -2 0 2 third year -2 0 2 
second year -2 -1 1 third year 0 1 1 
second year -1 1 2 third year -2 0 2 
second year -2 -2 0 third year -1 0 1 
second year -1 -1 0 third year -2 1 3 
second year -1 0 1 third year -2 1 3 
second year -2 0 2 third year 1 2 
second year -1 -1 0 third year 1 2 
second year dk 1 third year 1 2 
second year -2 -2 0 third year 1 2 
second year -2 0 2 third year 2 3 
second year -1 0 1 third year -2 0 2 
second year -2 1 3 third year 1 1 0 
second year 1 1 0 third year -2 2 4 
second year -2 -1 1 third year -2 0 2 
second year -2 -1 1 third year -2 1 3 
second year -1 0 1 third year -2 1 3 
second year -2 0 2 third year -1 0 1 
second year -2 0 2 third year -1 -2 -1 
second year -1 0 1 third year 0 -1 -1 
second year -1 1 2 third year -1 -1 0 
second year -2 2 4 third year dk dk 
second year 0 -1 -1 third year -1 -2 -1 
second year -1 -1 0 third year -2 -1 1 
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