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This thesis explores batriers to using formal specification for software development in industry.
Empirical assessment techniques are used initially in an exploratory stage and subsequently in
testing a hypothesis arising from the first stage. A second hypothesis is investigated by
construction of a method and tool with subjective assessment of its effect. The first stage
consists of a survey of experienced industrial formal methods users via a questionnaire-based
interview. The interviews explore the practicalities of using formal methods in an industrial
setting. From the many findings in this stage, two hypotheses are selected for further
investigation. The first hypothesis is that formal specifications are no more difficult to
understand than code. This is tested by formal experiment. The subject’s ability to understand
the functionality of a formal specification is compared with their ability to understand its
implementation in program code. The second hypothesis is derived from observations, during
the survey stage, that formal specifications are difficult to write. In particular, choosing
appropriate abstractions is difficult. We consider what might make formal specification difficult
and compare the process with that of programming. The second hypothesis is that a tool
supported, graphical modelling notation would be of benefit in the process of writing a formal
specification. Such a notation is devised by adapting the UML and augmenting it with a formal
text notation. A tool that converts this graphical formal specification into the formal notation, B

is described and examples of its use are analysed.
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Chapter 1
Introduction

Formal methods have long held the promise of providing a much-needed solid engineering
foundation for the ‘art’ of programming computers. Proponents have countered popular myths
that dubious practitioners raised to dismiss them (Hall, 1990; Bowen and Hinchey, 1995).
Experiential reports of their use have invariably been favourable and yet still the adoption of
formal methods has been limited. Academic interest in formal methods has been lively with
many active research groups throughout the world and plenty of conferences dedicated to their
discussion. Despite this interest, uptake within industry has mainly been limited to safety critical
applications (some due to mandate by regulatory authorities) and experimentation by a few
pioneering market leaders. It seems that practitioners, in their constant search for an edge in
productivity and quality are keeping an eye on formal methods but judge them to be
insufficiently beneficial to outweigh pragmatic problems. Formal specification is the first step to
using formal methods and is, in itself, a useful activity even if the formal specifications are not
subsequently used in a full formal development. However, even this first step is not being
adopted to any great degree within the industry. Perhaps academia is not prioritising the
problems it researches to the greatest effect. Targeting the pragmatic problems that practitioners
initially face would lead to increased interest and funding from industry, and a more widespread
take-up of formal specification would later lead to faster development of subsequent research in

academically appealing areas of formal methods.

Since formal specification is the first step to using formal methods it is also the first barrier that
must be overcome if the benefits of full formal methods inciuding refinement and verification is
to be achieved. To limit the area of research and make it more manageable, this thesis

concentrates on the barriers to formal specification.

1.1  Aims of Research

This thesis explores some of the barriers to the widespread use of formal specification in
industry. While we cannot hope to explain all such barriers, the aim is to make some progress in

understanding what some of the barriers are and to evaluate them. A further aim is to suggest



possible ways to overcome the identified barriers and to demonstrate that the suggested methods

are effective in this respect.

Formal specification bears many similarities with program design. It is convenient and useful
when thinking about barriers to formal specification, to think about whether similar barriers
exist in programming; and if so, how they have been overcome. The comparison with
programming is useful because programming is a more developed and researched area. It is also
the main activity and primary goal of the people that we would like to help overcome the
barriers to formal specification. These people have a good intuitive ‘feel’ for attributes of
programming, making comparisons meaningful in a practical sense. A parallel, or more

concrete, aim therefore is to compare the activity of formal specification with that of

programming.

1.2  Outline of Research

Initially the research is wide and exploratory in nature. The thesis explores the main issues in
using formal methods as perceived by experienced practitioners. The practitioners were
interviewed using a questionnaire as a basis for the discussions. The interviewees were
encouraged and prompted to expand on topics of interest in keeping with the exploratory nature

of this stage of the research.

From the many findings of this first stage, two topics that are relevant to the aims of the thesis
were selected for more detailed investigation. The first topic, comprehension of formal
specifications, was selected because it might be thought to be a barrier to formal specification.
The interviewees’ opinion, however, was that comprehension is not a barrier to software
designers and programmers. Anthony Hall, the interviewee from Praxis Critical Systems, made
this point most directly. The other interviewees generally indicated that they didn’t see
comprehension as a problem. The second stage of the research focuses on this issue. A formal
experiment was conducted to investigate the hypothesis that formal specifications are no more
difficult to understand than code. The subjects’ ability to understand the functionality of a
formal specification is compared with their ability to understand its implementation in program
code. The experimental results support the hypothesis indicating that comprehension of formal

specifications by programmers is not a barrier to their use.

The second topic that was selected for further investigation, that writing formal specifications is
difficult, was selected because there was a consensus amongst the interviewees that this is a
significant problem. In order to explore this topic the thesis compares the activity of writing a

formal specification with that of designing software. This leads to the hypothesis that a tool



supported, graphical modelling notation similar to those used in program design would be of
benefit in the process of writing a formal specification. In order to explore this hypothesis, such
a notation is devised by adapting the UML and augmenting it with a formal textual notation. A
tool that converts this graphical formal specification into the formal notation, B, is described
and examples of its use are analysed. The examples illustrate the effectiveness of using a semi-
graphical formal notation with tool support for the exploratory design activities involved in

formal specification. Hence, this may be a route to overcoming a major barrier to the use of

formal specifications.

1.3  Structure of Thesis

The rest of the thesis is structured as follows:

Chapter 2 provides a background to the thesis. It summarises the empirical assessment
techniques used in the thesis giving examples of their use elsewhere. It introduces the notations

discussed in the thesis and the concept of integrating formal and semi-formal notations.

Chapter 3 describes a survey of practitioners using formal methods leading to the selection of

two issues for further investigation. This chapter is based on Snook and Harrison (2001a).

Chapter 4 describes an experiment comparing the comprehensibility of a formal specification
with its implementation. The chapter investigates the first of the two issues selected in Chapter

3. This chapter is based on Snook and Harrison (2001b).

Chapter 5 discusses the nature of formal specifications and the process of writing them. The
similarities between the process of writing a formal specification and that of designing a
program are discussed. The difficulties of writing a formal specification are analysed and
contrasted with the situation in program design. The chapter provides a theoretical under-

pinning for the adaptation of a program design notation and tool to formal specification.

Chapter 6 describes B-UML and U2B. B-UML is an adaptation of UML class diagrams and
statecharts with annotations in a B like textual format. B-UML is a semi-graphical formal
specification notation based on UML. U2B is a program that converts B-UML specifications

into B. This chapter is based on Snook and Butler (2001)

Chapter 7 describes examples of specifications written in B-UML. The examples demonstrate
the use of B-UML and illustrate some problems with the current version. The first two examples

are from Snook and Butler (2000) and Snook and Butler (2001) respectively. The third example



was written jointly with M. Satpathy of Reading University and is a simplified version of a case

study (Satpathy, Harrison, Snook and Butler, 2001) based on a real application.

Chapter 8 describes related work on integrating formal and semi-formal notations comparing it

with B-UML and U2B.

Chapter 9 draws conclusions from the thesis and describes further work that we hope to carry

out.



Chapter 2
Background and Techniques

This chapter explains the importance of empirical evaluation in research and introduces the
forms of evaluation and the techniques involved. A method that we use for assessing the
cognitive aspects of a notation is introduced. The chapter introduces the formal methods and

notations that are the subject of this investigation.

2.1 Empirical Assessment

The general lack of empirical validation of software engineering theories is described by Fenton
(1993) and Glass (1994). Glass comments on the way research in software has become insular
and ‘academic’, losing touch with practitioners and not validating theory with real scale
evaluation. In response practitioners have lost faith in research results. This situation Glass says,
has arisen from the, mathematical, university background of computer science that tends to view
practical application issues with disdain and values pure theoretical research. This has been
exacerbated by the practical difficulties of scale and expense in realistic evaluation and the
industry's thirst for ideas (without waiting for evaluation) in the early years of computing. The
mistrust between researchers and practitioners has been confounded by the researchers’ habit of
exaggerating the problems of software production as a ‘software crisis’. Glass puts forward the
Software Engineering Laboratory, SEL (which is a collaboration between academia, industry
and government) as a model of how research should be organised. Research and development
should go hand in hand so that research ideas are transferred into practice via an established
process and bad ideas, which cannot be put into practice, are not kept alive purely by research
advocates. Formal methods are cited as an example of an idea being kept alive purely by
research. Glass ends by saying that we often make more progress out of our failures than our
successes and suggests that the ‘research crises’ will in the end lead to the ideal co-operative of
research organisations that he describes. Similarly, Fenton warns the research community that
they should not be exasperated by the poor industrial acceptance of new methods when they
lack empirical validation. Fenton discusses the lack of evidence to support formal methods,

even for safety critical applications but recognises the difficulties inherent in measuring

processes involving humans.



Zelkowitz and Wallace (1998) describe a classification of the possible types of validation
methods for software engineering research theories. They point out the limitations of some
(such as assertion, where the researcher has control over an example and can bias it) and the
practical problems of more convincing methods (such as replicated experiments, which are
expensive in most cases). They present the results of a review of past papers, showing the
percentage of types of validation methods used. This shows that about a third had no validation,
a third used assertion and the rest were distributed over the remaining types but favouring
lessons learned, case study and simulation. In their more recent figures there appears to be a
trend towards improvement with a fall in ‘no validation’ (assertion) papers and an increase in
lessons learned, case studies and replicated experiments. Despite the improvements the current

situation regarding validation of research is still poor.

2.1.1 Measurement

Any form of empirical assessment must be based on sound measurement and Fenton’s book
“Software Metrics” (1996) provides a theoretical basis to selecting measures and the types of,
and relationships between, attributes as well as covering the prediction and measurement of
specific external product attributes. Curtis (1980) provides an earlier description of many of
these measurement issues and also covers issues in the design of experiments. Kitchenham,
Pfleeger and Fenton (1995) define a structure model of measurement. This is followed up with
models for the components of the structure model. The requirements for validating a
measurement are then described in terms of these models. The structure model consists of
entities, attributes, values, units, scales and measurement instruments. The concept of unit is
extended from the classical meaning (applicable only to interval and ratio scales) to cover
nominal and ordinal scales as well. Scales are associated with units not attributes, i.e. several
different units, which could have different scale types could be used for a particular attribute,
but the particular unit type is based on one scale type. For example, the attribute, temperature,
can be measured using a ratio scale such as degrees Kelvin or an interval scale, such as
Centigrade, or an ordinal scale such as cold-lukewarm-warm-hot. Indirect measures and
compound units are discussed. The problems with creating a scalar value from a set of direct
measures without having a valid underlying model of the relationships between these attributes
are covered. It is suggested that in these cases it is preferable to leave the measure as a vector.
Pfleeger, Jeffery, Curtis, and Kitchenham (1997) report on how practitioners are a long way
behind the (measurement) theory and are making mistakes. Some views on what the research
community needs to do to rectify things are suggested. Some of the areas in which practitioners
are going wrong are: not keeping the goals in mind; relying on empirical evidence without

regard to theoretical validity; not considering model validity; not distinguishing prediction from



assessment; unwillingness to commit resource to process measurements; use of published model
parameters that are only relevant to a particular case. Researchers need to “fashion results into
tools and techniques that practitioners can easily understand and apply” and focus on the areas
that practitioners and customers desire most (early measures — requirements, costs). Pfleeger,
Jeffery, Curtis, and Kitchenham end with a warning from a statistician not to become like the
statistics community, which is segregated from the people using the methods. Software Metrics

research must produce methods that are useful to and useable by the software engineering

practitioners.

2.1.2 Types of Empirical Assessment

Most authors of general empirical assessment literature classify assessments into three general
forms. These are Surveys (systematic post-hoc data collection from a known population),
Formal Experiments (controlled and replicated treatments on a number of subjects) and Case
studies (intensive interpretation of a small sample). For example Wynekoop and Russo (1997)
classify published assessments of software development methods into these (and other)
categories. (Their other empirical assessment categories could all be considered sub categories
of case studies under a looser definition). Kitchenham (1996) attempts to identify a method for
selection of validation techniques for evaluating software engineering methods and tools. She
starts by defining a classification of validation methods and this is based on surveys, formal
experiments and case studies. As part of the same, DESMET, project Kitchenham, Linkman and
Law (1994) provide a critical review of past quantitative assessments and base this around a
classification into surveys, formal experiments and case studies. They recommend case studies
as being particularly effective from an industry point of view. Daly (1996) points out the value
of using all three forms of empirical assessment to support each other in establishing an
hypothesis. The Survey contributes to the formulation of the hypothesis and increases the
likelihood that it is relevant, the formal experiments establish that a relationship exists and the

case study demonstrates that the results can be generalised to real life situations.

Surveys

Surveys rely on individual's memories of their experiences. Because of this, they can be limited
in accuracy. Pannell and Pannell (1999) give an informative discussion on the problems of
extracting the truth via surveys and how to maximise the chances of getting valid answers.
Some of the problems include incorrect answers (an estimated 5-17% of answers are incorrect),
misinformation, changing opinions, wording of questions, misinterpretation and ordering of

questions. Nevertheless, surveys provide a powerful method to get an initial indication of the



properties of a topic from a wide subject base. Survey data can lead to the formulation of

relevant, and widely held, hypotheses.

A survey based on a distributed questionnaire relies on the questions asked and the way they are
phrased. This implies that a prior knowledge of the interesting issues and a possible outcome. A
structured interview consists of an interview based around a predefined set of questions. The
questions provide a consistent structure for the interviews but the interviewer can discover
knowledge by seeking confirmatory evidence as necessary. The interviewer can also explore the
experience and language of the interviewee to put answers in context. Thus many of the
shortcomings of an independent survey are overcome. Structured interviews are limited to a
small selected set of experienced subjects but enable a wider exploration of the subject to be
performed and a higher level of confidence in the answers. However, the results will be a
reflection of the opinions and prejudices of a small set of subjects. The selection of these
subjects may ensure that they are the best-placed individuals to give an accurate opinion. On the
other hand other empirical assessment techniques should be used to test the results of the

structured interviews. Our structured interview is reported in Chapter 3 of this thesis.

A survey of formal methods usage in industry and academia was carried out by Austin and
Parkin (1993) of the National Physical Laboratory. The industrial survey was performed by
sending out questionnaires to both formal methods users and non-users. (The author participated
in this survey as a non-user). The most popular benefits of formal methods were their clear and
unambiguous specifications, their early detection of errors. The ability to prove properties, build
the software and prove its correctness and the ability to demonstrate the specification to clients
were less popular but also strongly represented. The main limitations were that clients cannot
understand them and that some aspects of modelling are difficult or even impossible (e.g.
timing, maintainability etc.). Other limitations that were strongly supported were, the lack of
experienced staff, the high costs of performing proofs and the possibility that the formal
specification may contain mistakes. The main barriers to the use of formal specifications were
considered to be, the lack of tool support and the high costs. Other barriers that were identified
were, the need for training, the fact that they are difficult to use, the lack of objective evidence
of the benefits and a perception that they are not mature enough. Interestingly, the results
indicated a general agreement between formal methods users and non-users, dispelling to some
extent the notion that there is a false prejudice against formal methods. The results of this
survey do not contradict the results of our survey and in some areas, such as ‘early detection of
problems’, our findings are in agreement. However, they do not support our findings very
strongly either. In particular, the NPL survey makes little reference to the hypotheses we

selected for further investigation, which were strongly suggested from our interviews with



practitioners. We suggest that this may be because of the remote, questionnaire method. Despite
the authors’ stated attempts to “not lead people to answer the questions in a particular way”, we
believe the written style of the communication and its lack of interaction with the subjects
means that emphasis or underlying causes are often missed. For example the ‘lack of tools’,
‘training’ and ‘difficult to use’ barriers may well be related to our survey finding and hypothesis
that formal specifications are difficult to write and would benefit from tools similar to those
used for program design. Similarly the lack of any mention of comprehensibility problems as
barriers to use could be interpreted as a strong indication that comprehension is not a problem.
(A small number of respondents mentioned the need for mathematics as a barrier but this was

mostly non-users and did not distinguish between creation and comprehension).

Formal Experiments

The purpose of a formal experiment is to test a relationship in a particular system. The effect of
confounding factors must be minimised so that we are able to attribute changes in the dependent
variable to changes in the independent variable. Ideally the experiment should be performed in a
realistic setting, however, it is usually impossible to control confounding factors adequately in a
realistic setting. The priority in a formal experiment is to isolate and demonstrate the
relationship under test. Once the relationship has been established as likely to exist we may then

consider to what degree it is relevant to real life scenarios.

Tichy (1998) makes a case for performing formally controlled experiments and refutes the
‘fallacies’ that are often held up as reasons for not performing experiments in computer science.
Brooks (1980) gives a useful description of things that must be considered in formal
experiments, covering subjects, materials and measures. When many possible relationships can
be envisaged, there is a temptation to gather one set of data and then try many different
relationships in a search for a correlation. However, when we analyse experimental results we
are considering the probability of the measured data with respect to a possible distribution. The
more relationships are sought, therefore, the higher the probability that one will be detected
incorrectly. Courtney and Gustafson (1993) warn of this danger. A well thought out and often-
cited experiment is described by Scanlon (1989). Care was taken over the design and
implementation of the experiment with a high level of training in the experimental method and
automation of measuring methods. Experiments to determine the effect of commenting,
meaningful names and structure on the comprehensibility of formal specifications have been
carried out by Finney, Rennolls, and Fedorec (1998) and Finney, Fenton, and Fedorec (1999). It
was found that good commenting and naming improves comprehensibility. It was also found
that there is an optimal level of structuring. The notation used was Z and the specification was

broken down to various degrees with schemas. Too many small schemas are detrimental to



comprehensibility, as is a monolithic specification lacking any schema structuring. Experiments
have also been performed by Vinter (1998) to investigate the propensity for people to

misinterpret various forms of logic statements.

To be of use to practitioners and researchers empirical assessments must meet certain criteria
and must be reported effectively. Sufficient information must be provided so that practitioners
can judge to what extent the results are likely to apply to their environment. Other researchers
need information about the experimental methods and tools in order to be able to assess and
replicate the results. Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, El-Emam, and Rosenborg
(2001) provide comprehensive guidelines for performing and reporting software engineering

research experiments.

Case Studies

Case studies lack the level of control that formal experiments have. The behaviour of interest is
observed in a real life example. The many other environmental parameters are uncontrolled and
may influence the dependent variable being observed. To alleviate this to some extent a typical
baseline is used for comparison. However, a case study cannot be considered as rigorous an
empirical investigation as a formal experiment. Nevertheless, case studies have an important
role because they test whether a relationship is observed in real situations. This can support
formal experiment results, either as an investigatory stage (establishing a hypothesis to test) or

as a follow up stage (establishing the generality of experimental results).

An interesting retrospective case study in the use of formal methods is described by Pfleeger
and Hatton (1997). This case study was hampered by the fact that it was not planned in advance.
Hence the authors found limitations in the data that had been collected for the investigation they
were performing and could make little in the way of firm conclusions. The authors also seem to
use a dubious surrogate measure of reliability by measuring the number of changes made. A
pre-planned case study was performed by Marconi (Draper, Treharne, Boyce and Ormsby,
1996) in the use of the B-method on a parallel project. The study found that errors were detected
earlier in the lifecycle and that the project costs were similar to the parallel, real project using
their conventional design methods. Another parallel projects case study (Brookes, Fitzgerald,

and Larsen, 1996), which found similar results, was performed by British Aerospace.

2.1.3  Statistical Analysis

Statistical analysis techniques assess the likelihood of the recorded sample against a known or

assumed population distribution. The more powerful parametric methods assume that the
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underlying population is normal. They provide the most definitive results because they use all
the available information in the data. If the normality of the parameter's distribution is in doubt
then more robust methods should be used. One such class of methods are non-parametric
methods that reduce the data to an ordinal scale and make use of ranking properties. Rank
statistics obey a normal distribution even when the parameter itself does not, however, because
information has been discarded, the results are usually less powerful than parametric methods.
A comparatively modern technique is ‘bootstrapping’ or ‘resampling’ (Efron and Tibshirani,
1993). This technique uses computer processing to take many samples from the original sample
and calculate the statistic of interest for each of these resamples. If the original sample is
representative of the overall population, then each resample, and hence each value of the
statistic calculated from the resample, is just as valid as if it was sampled from the population.
Hence a distribution for the statistic of interest can be generated. Bootstrap techniques do not
make assumptions about the distribution of the underlying population distribution, but can be
just as powerful as traditional parametric analysis techniques. More details of the statistical

techniques used will be presented in Chapter 4.

When performing comparative experiments we are usually interested in detecting a difference in
some attribute under two treatments. Following the classical null hypothesis statistical testing
process (NHSTP) we would construct a null hypothesis stating that there is no difference and
attempt to reject this on the basis of the sample data being unlikely if it were so, leaving an
alternative hypothesis that there is a difference. In our experiment in Chapter 4, our substantive
hypothesis is that there will be no significant (in the practical sense) difference. Unfortunately
not rejecting a null hypothesis is a much weaker result; all we may say is that this sample didn't
cause us to reject the null hypothesis. It does not give us any basis for saying that the null
hypothesis is likely to be true or any evaluation of its probability. One way round this problem
would be to take the approach that a null hypothesis is a hypothesis that we wish to nullify
(rather than one of no difference). Then we could formulate the null hypothesis that there is a
significant difference and see if we can reject it. However this would require us to arbitrarily
define what we mean by a difference (Rozeboom 1960). Note that it would invalidate the
NHSTP method if we were to choose this definition in the light of our sample data.
Traditionally, when we reject a null hypothesis the meaning of 'different’ is not discussed
because it 'falls out' of the statistical analysis. A 'difference’ is that magnitude such that a sample
of differences greater than this magnitude would be unlikely to occur by chance if the no
difference' hypothesis were true. Hence when we talk about statistically significant differences
we are referring to the reliability of the evidence that there is a difference and not to the
importance of the magnitude of the difference. Chow (1996) gives a good overview of

criticisms of NHSTP (as well as making a case in its favour) in his book 'Statistical
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Significance'. Further criticism of the misuse of NHSTP is given by Bakan (1960) and
Rozeboom (1960). Many statistical authors (e.g. Wonnacott and Wonnacott 1985) recommend
using confidence intervals to explain the results of experiments rather than NHSTP, and we take
this approach partly due to our problem with the null hypothesis but also because it is more

informative and less reliant on arbitrary choices of criteria.

2.2 Formal Methods

Formal specifications are descriptions of behaviour expressed in a mathematical notation that
has a well-defined syntax and semantics. Formal methods are processes of specification,
refinement and verification based on formal specifications. We introduce two formal methods, Z

and B, that are used in subsequent chapters.

2.2.1 The Z notation

The Z language (Spivey, 1988) is a state based, formal specification language that is based on
Zermelo Frinkel axiomatic set theory and first order predicate logic. Schemas are used to
structure Z specifications. Schemas associate state variables with predicates based upon them.
Schemas can be used within other schemas as state declarations, types, or in predicates. To
build a Z specification firstly state variables and invariants that hold on them are defined. Then
schemas that define events that alter the state are added. Events are defined in terms of
precondition predicates and postcondition predicates. Event schemas can be combined by
conjunction and disjunction to compose more complex changes. Once defined, invariants can be
relied upon to hold throughout the specification. That is, in event schemas, it is not necessary to
define state changes to maintain the invariant, these can be assumed. However, apart from
variables controlled by the invariant, it is necessary to fully specify the postcondition over the
complete state space referenced in the schema. It is necessary to define what has not changed as

well as what has.

Z has a powerful, but rather unapproachable, facility called promotion. Promotion allows
hierarchical structuring of a specification. The event schemas for a defined type (i.e. local sub-
state space) that are used by a higher-level parent object (by defining instances of the type) can
be promoted for use in the parent’s operation schemas. Considering the importance of a
hierarchical class structuring mechanism in coping with the scale of large systems it is
unfortunate that promotion is so difficult to grasp initially and consequently off-putting to

students.
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Z is popular to the extent that it is probably the most commonly used formal specification
language. Craigen, Gerhart & Ralston (1995) put this down to the close interaction between the
developers and industrial users and to a substantial pedagogical literature. There are a good
number of tools to support the use of Z although many are not industrial strength, supported

products and there is little integration of tools.

The following example is a Z specification for a telephone book.

NAME, NUMB

PB

Pbook: NAME -» NUMB

¥ n1,n2 e dom(pbook) | n1 = n2 . pbook(n1) = pbook(n2)

init

PB

pbook = @

lookup

ZPB
name? :NAME
numb! :NUMB

name?  dom(pbook)

numb! = pbook(name?)

add

APB
name? :NAME
numb? :NUMB

name? ¢ dom(pbook)

pbook’ = pbook U {name? ~ numb?}

remove

APB
name? :NAME

name? e dom(pbook)

pbook’ = {name?} « pbook

The schema, PB, defines the state variable, pbook, which models the phonebook and an
invariant that ensures that numbers must be unique. (This is not the most succinct form, but we
wish to illustrate the methods that would be used in a bigger example). The schema, Init, defines
the initial value of pbook. The schema, lookup, returns the number corresponding to a given
name (the use of ? and ! in local variable names is a convention to indicate inputs and outputs,
respectively, of an operation). The schema includes the state schema PB so that pbook can be

accessed. The symbol, E, includes two copies (one copy is decorated, indicating post operation
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state) of all the variables in the schema and a predicate to ensure that the post operation value is
equal to the pre-operation value. This ensures that pbook is unchanged by lookup. The

remaining schemas, add and remove, define events that alter pbook. The symbol, A, includes

two copies of PB. Again, one is decorated to indicate post operation state, but this time there is
no equality predicate. Note that, in the add operation, a precondition to ensure that numb? does

not already belong to ran(pbook) is not necessary because the invariant already ensures this.

2.2.2 The B method and notation

The B language (Abrial, 1996) is a state model-based, formal specification notation that has
strong structuring mechanisms and good tool support. There are 2 commercial tools for B,
Atelier-B (ClearSy) and the B-Toolkit (B-Core, 1996). We have used the B-Toolkit for our
translation and animation work, and Atelier-B for performing proofs. B is designed to support
formally verified development from specification through to implementation. To do this it
provides tool support for generating and proving proof obligations at each stage of refinement.
The B-Toolkit also provides animation facilities so that the validity of the specification can be
investigated prior to development. To make large-scale development feasible, B provides
structuring mechanisms to decompose the specification and its subsequent refinements. These
are machines, refinements and implementations. We are mainly concerned with specification
and therefore machines. Machines allow an abstract state to be partitioned so that parts of the
state can be encapsulated and segregated, thus making them easier to comprehend, reason about
and manipulate. One machine may include ('INCLUDES') another machine. If machine A
includes machine B, the state of B is visible to A and alterable via B's operations. Another form
of machine inclusion is ‘EXTENDS’. This is the same as INCLUDES but makes the included
machines operations accessible as if they were operations of the including machine. A weaker
form of interfacing between machines is provided by 'USES'. The using machine has only read
access to the used machines variables and cannot invoke its operations. A machine may be used

by any number of other machines but may only be included (or extended) by one other machine.

It is worth noting that, unlike Z, in B the invariant is a verification property which operations
are expected to achieve. The invariant is an abstract state specification that is used for checking

the correctness of the behavioural specification.

The following example is the same telephone book as above, but this time expressed as a B

machine.

MACHINE phonebook
SETS NAME; NUMB
VARIABLES pbook
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INVARIANT pbook : (NAME +-> NUMB) &
'(nl,n2).((nl:ran(pboock) & n2:ran(pbook) &
nl/=n2) => (pbook(nl) /= pbook(n2))
)
INITIALISATION pbook := {}
OPERATIONS
numb <-- lookup(name) =
PRE name : dom (pbook)
THEN numb:=pbook (name)
END;
add (name, numb) =
PRE name:NAME & numb:NUMB &
name/ :dom(pbook) &
numb/ : ran (pbook)
THEN pbook:=pbook\/ {name |->numb}
END;
remove (name) =
PRE name : dom (pbook)
THEN pbook: ={name}<<|pbook
END
update (name, numb) =
PRE name:NAME & numb:NUMB &
name : dom {pbook)
THEN pbook(name) := numb
END;
END

In the B notation, invariants define the type of a variable. In this case, a variable represents the
phone book and its type is a partial function from names to numbers. An invariant ensures that
numbers in the phonebook are unique. Initially, pbook is empty. In the machine's operations,
preconditions define the type of any arguments. Additional preconditions may be specified on
the arguments or on the state variables. For example, in the add operation, name must not be a
member of the domain of the partial function, pbook, and numb must not belong to its range.
(We cannot rely on the invariant for the latter, as we did in the Z example). Operation
postconditions are defined via 'substitutions' that show how the final state of machine variables
depends on their initial state and the arguments. (Any state variables not defined in an operation
body are not altered by it). Operations may return values. The identifier(s) representing the
return value(s) are defined at the beginning of the operation signature (e.g. numb in operation

lookup). Other symbols used in the example are: union \/, maplet | -> and domain subtraction

<</,

2.3 Semi-Formal Notations

Semi-formal notations are notations that provide a set of symbols to represent specific roles in
the description of a system, but have a loosely defined semantics. The use of a syntactically

consistent notation generally brings a more formal feel to descriptions of systems than an
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English language description would. This can be misleading as the lack of a precise semantics

leaves the description open to different interpretations.

23.1 The UML

The Unified Modelling Language (Rumbaugh, Jacobson & Booch, 1998) emerged as a
standardisation of the leading object-oriented analysis and design methods that were competing
for favour in the late 1980s and early 1990s. This unification was brought about by three of the
methods advocates joining forces at a major software tools company, Rational Software.
Responsibility for the standardisation was subsequently taken over by an independent
consortium, the Object Management Group (OMG). Several software tool manufacturers market

tools to support the use of the UML. We use Rational Software’s ‘Rose’ tool.

The UML is a notation for use in modelling object-orientedobject-oriented designs. A unified
process, Rational Unified Process (RUP), exists, but is not necessary to use the UML. The UML

consists of the following parts:

Use Case diagrams are a means of organising requirements descriptions into event sequence
scenarios. A scenario is triggered by an actor (an external object such as a person interacting
with the system) and parts of the system's responsive actions are then packaged and represented

by named symbols. The meaning of a particular symbol is defined textually, usually in natural

language.

Class Diagrams are used to model the static structure of a problem or system. Entity types are
represented by classes and the relationships between them are shown as associations and
generalisations. Classes represent sets of like instances and are given attributes that represent
state variables and values associated with each instance of the class. Classes also have

operations that define how an instance's attributes and associations alter in response to events.

Collaboration Diagrams and Sequence Diagrams are equivalent to each other. They both show
dynamic behaviour as objects (of the classes introduced in the class diagram) interacting, by
passing messages or calling each other’s operations, to perform a particular behaviour or task
scenario. Sequence diagrams show the interaction as a time ordered sequence of messages
passed between objects. Collaboration Diagrams show the same sequence of messages but

overlaid on a network of connected objects rather than a time sequence.

State Diagrams and Activity Diagrams — Statechart/Activity models, constructed and viewed via
state diagrams and/or activity diagrams, show behaviour in terms of a set of states and

transitions between them. Each transition can be annotated with the event that causes it to occur,
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any guards, which must be true before it can occur, and actions that are performed when it
occurs. Activity diagrams are a development from state diagrams that also allow ‘forks’ to
activate more than one state simultaneously and synchronisations that require more than one
state to be active before a transition can occur. (When drawing activity diagrams, states are
called activities). Statechart/Activity models can be used at several levels. For example, they

can be attached to the logical model, to use cases or to classes

In Chapter 6, we use class diagrams to build the basic structure of a formal model and

statecharts to assist in the definition of the class’ dynamic behaviour.

2.4 Integrating Formal and Semi-Formal Notations

Semi-Formal Notations such as UML are gaining widespread popularity in industry but lack
precision for describing detailed behaviour unambiguously. Conversely, formal notations have
not gained widespread use in industry despite their recognised benefits. An integration of semi
formal and formal notations may address the deficiencies of the semi formal notations while
making the formal notation more approachable. Craigen, Gerhart and Ralston (1995) found that
better integration of formal methods with existing software assurance techniques and design
processes was commonly seen as a major goal. They concluded, “Successful integration is
important to the long term success of formal methods”. Fraser, Kumar and Vaishnavi (1994)
discuss some of the reasons why this may be true and go on to describe a framework for
classifying current formal specification processes according to the degree of transitional
semiformal stages. The categories are direct (no transitional stages), sequential transitional
(transitional stages developed prior to the formal specification), and parallel successive
refinement (formal specification derived in parallel with semiformal specification through
iterative process). Paige (1997) analyses the composition of compatible notations and derives a
meta-method for formal method (and semi-formal method) integration. Jackson (2000) has
developed a formal notation, Alloy and associated tool Alcoa. The Alloy notation has a partial
graphical equivalent notation in which state can be expressed. This can then be converted into
the textual version of the notation where operations can be added and analyses performed.
Without tools to investigate the implications of different structures however, the graphical
format is limited to illustration of structure. The work of several research groups that have
developed integration between graphical object-oriented notations, including the UML, and
formal notations such as B and Z are described in Chapter 8. The precise UML group' is a

collaborative effort to precisely define UML semantics via formalisation. The object constraint

! (hitp://www.cs.york.ac.uk/puml/maindetails.html).
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language, OCL, (Warmer and Kleppe, 1999) is a formal notation that is part of the UML. It can
be used to attach formal constraint statements to elements of UML models to constrain their
values. For example the behaviour of an operation can be precisely defined by attaching OCL
statements for the pre and post conditions of the operation. A more detailed comparison of work

combining semi-formal and formal notation will be given in Chapter 8.

2.5 Cognitive Dimensions

In Chapter 5 we are interested in the comparative merits of the formal notation, B, versus the
semi-formal UML for specification design. It would be useful to be able to discuss the various
attributes of these notations in order to formulate theories and to explain results. Green (1989)
presents a framework and vocabulary for discussing cognitive artefacts. Cognitive Dimensions
provide a broad-brush qualitative tool for reasoning about the relative merits of information
systems with respect to particular types of tasks. The cognitive dimensions framework consists
of 14 terms that describe generalised facilities of information systems, notations or artefacts. For
example ‘viscosity’ is the degree of difficulty in making structural changes to descriptions
expressed within the system. The 14 dimensions are listed below. For an introductory tutorial

see Green and Blackwell (1998).

Abstraction Gradient — How the notation copes with abstractions. Some notations don’t allow
abstractions, for some they are optional and others are hungry for them. Abstractions

are good for clarity but difficult to get right.
Closeness of Mapping — How well constructs map on to problem domain entities.

Consistency — If a notation does something one way in one situation then it should do it

similarly for all similar variant situations.

Diffuseness/Terseness — How terse the notation is. Terseness and diffuseness can both cause

comprehension problems, a compromise is best.
Error-Proneness — How much the notation leads one to make mistakes or slips.

Hard Mental Operations — Does the notation itself induce ‘brain-teasers’. (If it cannot be

expressed more clearly in another notation it may be an inherently difficult semantics)

Hidden Dependencies — Links to other information elsewhere that are not visible at the place

they affect.
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Premature Commitment — How much thought needs to go into future actions when a decision is

made

Progressive Evaluation — Whether facilities exist to check what has been achieved so far.

Role-expressiveness — How easy is it to tell what this bit is for.

Secondary Notation — facilities for expressing extra information outside the formal syntax (e.g.

indentation, grouping, comments)
Viscosity — How difficult it is to make structural changes to what has been achieved so far.
Visibility — How much of the whole can be viewed and juxtaposed.

A number of types of activity that might be performed on an information system are identified.
One of these activities, exploratory design, consists of the identification and evaluation of
possible architectures and is applicable for our purposes in Chapter 5. Applicability profiles of
the Cognitive Dimensions can be identified for each activity type. For example viscosity is
inconsequential for transcription but critical for exploratory design. In chapter 5 we use

cognitive dimensions to assess the suitability of the B notation with respect to exploratory

design.
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Chapter 3

Practitioners Views on the Use of Formal

Methods

This chapter reports on a series of structured interviews, which have been conducted with
formal methods practitioners. In Chapter 2, the need for empirical assessment, especially in
formal methods, was introduced. The types of empirical assessment were described and the
contribution each makes to the establishment and investigation of a hypothesis was discussed.
This provides a context for the report on the conduct and findings of the series of structured
interviews that form our survey. The chapter concludes by describing how subsequent work

arose from the results of the interviews, including the formulation of two hypotheses.

The survey covered a broad range of topics associated with the effects that using formal
methods might have on a company and its products. The survey was conducted by structured

interviews based on a questionnaire (see Appendix A.1).

3.1 Purpose of Survey

The aim of the survey was to explore the experiences of practitioners directly. There are many
popular theories about formal methods that have questionable validity and it is often unclear
whether they are based on actual experience. Hall (1990) discusses some of these myths, as do
Bowen and Hinchy (1995). Therefore it was seen as important to investigate the effects of using
formal methods directly with individuals who had first hand experience. Of course, the results
still depend on the subjective opinions of these individuals and the environments in which their
experiences were obtained. This must be borne in mind when the results are interpreted and the

results should be viewed as provisional until further empirical assessment has been carried out

to corroborate them.

We wanted to discover the main issues involved in the use of formal methods. In particular,
issues surrounding comprehensibility and the difficulty of creating and using formal
specifications. It was hoped that significant points would be raised that would warrant further
empirical assessment. In this way the survey was seen as the first stage of a ‘Multi-method’

programme of research as described by Daly (1996). The purpose of this first stage was to raise
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interesting and relevant provisional findings for further research rather than firm conclusions,

which would be suspect, based on such a small survey.

3.2 Conduct of Survey

The companies were initially contacted by email with a brief outline of our aims and the
questions that would be asked. Meetings were set up at the company's premises where the
representatives were interviewed. The interviews were structured around a questionnaire but the
interviewees were encouraged to digress and elaborate on topics as much as they felt necessary.
The questions were used to trigger discussion and as a checklist, but, in an effort to explore the
subject widely, the discussions were conducted in an open, free form without constraining the
topic to the initial question. The interviewees related answers to their experiences to provide
justification and in the process the context of the interviewees’ answers and their understanding
of key phrases were discovered. This happened mostly as a natural part of the discussions
without conscious effort. The final question asked the interviewee if there were any important
issues that had not been covered. In most cases the interviewee recapped some of the more
important issues at this point but did not raise any new issues. This indicates that the
questionnaire covers the main points of interest with respect to formal methods. Each interview
lasted approximately 2 hours. The author conducted all the interviews. The interviews were
tape-recorded. It was felt that recording the interviews avoided the interviewer from being
distracted by note taking. It also meant that the interviewees’ opinions could be summarised and
distilled with greater consideration and care than would have been possible if taking notes ‘on
the fly’. The tapes were analysed in detail and comments categorised and matched with like
comments from other interviewees. From this process a table (Appendix A.2) of summary notes
was built up with rows representing each point made by the interviewees and each column
representing the summaries of a particular interviewees responses. The text of this report was
written from the summary table. Despite the careful analysis of the actual conversation on the
tapes it is still possible that the authors might misinterpret responses or inappropriately
emphasise a point. To guard against this the report was circulated to the interviewees for review.
A few adjustments arose from this review stage, but on the whole the interviewees agreed that

the report was an accurate representation of their views.

All of the interviewees had at least some experience of using formal specifications on full-scale
products. Some had also performed refinement, model checking and verification proofs. For
various reasons only one company was using formal methods to the same extent as previously
but all retained a capability or interest. Market sector varied greatly, including commercial

computing systems, safety critical embedded systems and high street consumer products. Table
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3.1 lists the companies and Table 3.2 gives an outline of their background and experience.

Company

Identification in this report

(wishes to remain anonymous)

Interviewee A

IBM United Kingdom Laboratories,
Hursley Park, Winchester, Hants

IBM

Marconi Electronic Systems. Avionics Systems, Marconi
Airport Works, Rochester, Kent

Philips Research Laboratories Philips
Crossoak Lane, Redhill, Surrey
Praxis Critical Systems, Praxis

Manvers Street, Bath

Table 3.1 - Participating Companies

Company | Market Notations Extent of Use Approx. | Current Level
Sector Used Size of of Use
Systems
Interviewee | Contractor Z, Experience with | - Introducing
A with personal | VDM(some), | large and small formal methods
experience CSP (some) | applications into a company
IBM Commercial Z, Mainly 50 Kloc Isolated usage -
computer B specification at option of
systems project
manager
Marconi Military B Full 3 Kloc Completed case
Embedded development study - bidding
Systemns (some incl. refinement for contracts
safety critical) proofs etc.
Philips Consumer set theory Mainly 10+Kloc | Isolated usage -
Products and first specification investigating
order logic applicability
Praxis Safety Critical | Z, Some full 10Kloc - | Continuing full
systems VDM, developments, 100+Kloc | scale use
CSP (some) | others
CCS (some) | specification
only

Table 3.2 - Main characteristics of contributors

At this stage of investigation the wide spread of market sector backgrounds is an advantage to

the broad information gathering process. In subsequent stages less variability will be needed as

we focus more narrowly on selected issues. The companies are, in most cases, the market leader

in their sector and the interviewees are the technical experts within those companies. In several

cases the interviewees have published in the area of formal methods. It is reasonable therefore to

claim that the interviewees are knowledgeable and experienced in the use of formal methods. It

might be argued that the interviewees are all proponents of formal methods and the results

might therefore be a biased view. We believe that the commercial pressures upon the

interviewees would not allow them to maintain an unrealistic stance. It was apparent however

that market sector has a bearing on the stance taken, with the safety critical areas having much
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more compelling reasons for supporting the use of formal methods, and the others having a

more guarded response.

Each interviewee was asked to define a formal method. Most answers indicated that a
mathematical notation or underlying theory was needed (one interviewee required a precise
syntax and semantics). Some required there to be methods for manipulation and refinement,
others recognised these as possible extensions but did not require them. It was thought that
some companies might have a looser definition of formal methods. To test this the interviewees
were asked if they would include modelling languages such as UML. All would not, although
several interviewees suggested that some parts of UML (e.g. statecharts) are close to being a
formal notation. Some added that UML did not contain facilities to express the semantic details

of the behaviour of systems.

The formal methods that had been used by the interviewees are as follows: Z and B, which were
introduced in Chapter 2. VDM (Jones, 1986) (The Vienna Development Method) is a notation
and set of techniques for modelling computing systems, analysing those models and progressing
to detailed design and coding. VDM has its origins in the work of the IBM Vienna Laboratory
in the mid-1970s. CSP (Hoare, 1985) (Communicating Sequential Processes) is a notation for
concurrency based on synchronous message passing and selective communications designed by
Hoare in 1978. CCS (Milner, 1985) (Calculus of Communicating Systems) is a mathematical

model for describing processes, used in the study of parallelism. It was developed by Milner.

3.3 Results

3.3.1 The Customer’s Viewpoint

The companies interviewed had very different market sectors and this led to large variations in

answers to questions about customer views on their use of formal methods.

Marconi, being a UK defence contractor, often bids for contracts with Def-Stan 00-55 as a
mandatory standard (Ministry of Defence 1997). Hence Marconi’s use of formal methods is
imposed by its main customer (or at least by the regulatory authorities that its customer has to
satisfy). Marconi also supplies outside of the UK, e.g. USA, and for these customers it is
expected that persuasion would be needed to convince them to accept formal proof in place of

other verification methods such as testing and reviewing.

Note that there is an implication here that formal verification is seen as a partial replacement for

other verification methods rather than an additional activity. Formal proof provides an absolute
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guarantee of the properties it proves and hence verification of those properties by other means
becomes redundant. We have found this to be true from other sources. For example, when
software was developed, using the B method, for the Paris underground, unit and integration

level testing was not performed. (Boehm, Benoir, Faivre and Meynadier, 1999)

Praxis also supply to the UK MoD and to other authorities that are very safety conscious such as
aviation authorities. It also supplies to other markets and finds that some of these customers
resist the use of formal methods because of the barrier it creates between supplier and customer.
Typically, the customer will need to train some of its employees if it wants to be involved in

verification and validation activities during the software development.

The remaining interviewees felt that their customers (which for IBM and Philips were internal)
were usually impressed by the use of formal methods, and assumed they would lead to high
quality products. Where the formal specifications were used as interfaces to customers, the
customer’s technical staff (who sometimes needed special training) usually found formality
helpful because they knew the precise behaviour of the specified system. It was recognised that

the audience may be restricted by formality but this is the case for any technical specification.

Both IBM and Praxis commented that one of the main barriers to the widespread use of formal
methods is the general acceptance that software is error prone. One interviewee said "if you
want highly reliable software then formal methods are the most cost effective way to produce it,
but if the customer will accept unreliable software then it is cheaper not to use formal methods".
From the suppliers point of view, any subsequent re-work is either covered in the initial price or
is paid for by the customer as a maintenance contract. IBM went on to say that some customers
do not want to be tied down to what they require, but would rather have a vague specification of
requirements and hope the supplier produces something over and above it, than to be forced to
address compromises in order to precisely specify their requirements and then take

responsibility for the systems validity.

3.3.2 Impact on Company

Quality Assurance

Opinion on how formal methods affect quality assurance issues was uniform. All (except one
company that, independent of the method used, had dispensed with its quality assurance
function) agreed that the quality assurance function is not changed. The auditors may need to
have some appreciation of the records that they will be examining, but this is true of any new

method. They did not feel that quality assurance personnel would need a full understanding of
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the formal specification notation. They only need to satisfy themselves that the record has been

produced and that the right sort of people have verified and authorised it.

Consultancy and Skills

Several companies had employed external consultants during the initial projects that introduced
formal methods to the company. This was seen as necessary. Training was given to all staff
involved in formal methods. Generally two weeks of training was found sufficient for staff to
assist in formal methods projects. However, it was not thought feasible to train existing staff to
a degree that they could successfully use formal methods without expert guidance on hand until
they had built up some experience and practice. Not many experienced modellers are required
as the majority of the project staff need to be able to comprehend specifications and write

detailed sections as directed, but do not need to be able to create the overall structure of the

specification.

One interviewee felt that external consultants, who are typically extremely intelligent, would
make any project successful, no matter what method they used. This could give a biased view in
favour of formal methods. Similarly, companies that use formal methods only recruit personnel
who demonstrate the ability to use formal methods, thereby increasing the quality of their staff.
Evidence of this was provided by another interviewee who reported that his company tended to
recruit from research areas to fill vacancies involving formal specification. This filtering effect
inherent in the adoption of formal methods could be seen as a beneficial effect on culture.
However, there can be detrimental effects if, having altered the company's methods and culture,

none of the permanent staff are sufficiently skilled to take over when consultants leave.

3.3.3 Impact on Product

Reliability

Only IBM and Praxis had any evidence of product improvement. IBM had found (based on
informally collected data) a 40% reduction in post-delivery failures compared to their own
average product performance. (This data is reported in previous publications by Phillips (1989)
Collins, Nicholls and Sorenson (1991) and Houston and King (1991)). Praxis referred to
published data, (Pfleeger and Hatton, 1997) which compares a Praxis software product
favourably with industry average data. As with most case studies, the cause of this improvement
cannot be identified with certainty to the use of formal methods, since other factors such as
culture may be atypical, but it does provide a positive empirical indication of the possible

benefits of formal methods. Of the other interviewees, Marconi’s experience was based on a
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study that did not go into service, and Philips and Interviewee A did not have personal

knowledge of the relevant product service histories.

There was, however, an implicit assumption from the interviewees that the product would be
more reliable. This was indicated by comments such as, "if you want software that works, then
the only cost effective way to do it is with formal methods". This implies that formal methods
produce a level of reliability that may only be achieved at significantly greater cost using
conventional methods. This may be a subjective view but it is the view of those who have used

both formal and conventional methods in software development.

Efficiency

Praxis had noted that the code produced from a formal specification was more efficient than
conventionally specified software. The precise and accurate nature of the specification makes
the coding task straightforward and the coder is less likely to build in redundant code. Note that
this observation is supported in the findings of a comparative study by Brookes, Fitzgerald and

Larson (1996).

Functionality Growth

Praxis also noted that the effort that is needed in formal specification tends to deter the

functionality growth that afflicts many software systems.

Traceability and Maintenance

The interviewees were asked if the structure of the specifications is reflected in the code.
Generally, the answer was affirmative and this was thought to be beneficial in aiding
traceability between the specification and code. Some noted that this structuring of the code
might not be the most efficient implementation but that the traceability benefit outweighed this.
Philips questioned whether the specification should influence the structure of the code or not.
One view is that the specification should not if it is at the right level of abstraction to be a
requirements document. Another is that it would be beneficial if the specification could impose

structuring requirements, for example, to improve reuse.

Two interviewees, Praxis and Philips, felt that the formal specification helped a maintainer to
understand what changes were needed and therefore to get them right. Marconi felt that the
specifications had little impact on maintenance but that the B-Toolkit helped a lot in
automatically detecting affected components and re-checking them. IBM said that they do not

normally use the documentation for maintenance, although, in one case, when they did and it
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was a formal specification, the project leader estimated a 50% reduction in the cost of the

maintenance.

The interviewees were asked if they thought that formal specifications help prevent degradation
of code structure through maintenance and also whether the specification itself degrades through
maintenance. IBM did not use or maintain the specifications after delivery and therefore could
not answer. Interviewee A had not been involved in the product maintenance stages. Marconi
felt that the B-Toolkit was largely responsible for preventing code degradation since it
maintains the traceability from the specification. Philips thought that the formal specification
would help prevent code degradation if traceability could be maintained but that this had been a
problem (see comments under Lifecycle). Praxis thought that the formal specification prevented
code degradation by supporting good practice (i.e. changing the specification first when

implementing changes).
3.3.4 Impact on Development

Development Lifecycle

All agreed that there is no change to the sequence of activities performed during the software
development lifecycle, but the effort involved in some of the stages is dramatically altered. The
specification stages take a lot longer. However everyone agreed that generally the resolution of
specification problems discovered during this stage was well worth the effort because these
problems would otherwise have arisen later during the development with increased re-work
consequences. Similarly, interviewee A believed the primary benefit of formal specifications to
be the improved analysis of the problem domain that results from the process of writing them.
This leads to a better understanding of the requirements prior to starting a design, which may be
another reason for the reduction in problems occurring later in the lifecycle. Verification stages,
particularly testing, were much reduced since far fewer errors remain to be discovered. The net
effect was that the overall timescales were usually very similar or possibly better for the

development that started with a formal specification.

However, Philips found that formal specification did not fit easily with the iterative lifecycle
used for some products. Since Philips does not normally have an end-customer performing the
requirements specification role, they have to develop the requirements themselves. Also, they
typically have very short timescales to develop new products and often refine the requirements
as the product is being developed. The time consuming first phase of formally specifying to
resolve requirements issues does not fit into this type of lifecycle easily. In fact Philips had

examples where the product was finished before they could complete the specification. To
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address this, the company are looking at different levels of specification formality appropriate to

different product lifecycles.

Formal specification was also found to aid the verification testing process. Marconi, Philips and
Praxis all reported that testing was more efficient and more effective when a formal
specification was available. This was the primary driving force for improving specification
techniques, as far as Philips was concerned. From the formal specification, it is easy to derive
test cases and some companies had gone as far as automating this process. Marconi had used B

specifications to generate expected results automatically and Philips had generated test cases

from statecharts automatically.

3.3.5 Size of system

A guide to the size of the systems developed using formal methods is shown in Table 3.2. The
figures should be taken as a rough guide only due to possible variations in the measurement of a
line of code and the programming languages used. However, they indicate that formal methods
were used on systems typically in the region of 10s of Kloc. The interviewees were asked if
large systems were a problem when using formal methods (compared with any other method).
Answers varied somewhat but generally, the impression was that size is not a major obstacle
any more than other methods. Marconi and Praxis indicated that proving becomes problematic
with large systems and that the proof checkers and, to a lesser extent, model checkers may not
scale up very well. For formal specification, though, IBM said that large systems are dealt with
by breaking the system down into ‘encapsulated’ sub-components that could be dealt with
separately. Marconi, using the B-Toolkit, felt that the system specification was difficult to cope
with due to the fact that it could not be subdivided, but that as soon as the design was refined,
the system naturally was divided into encapsulated sub-components. It appears that the concept

of breaking down the system via encapsulation is crucial in dealing with industrial scale

problems.

3.3.6 Comprehensibility

The interviewees did not feel that there were any significant understanding problems with
formal notations (although some commented that this may be because they recruit people who
will understand them). The notations were not seen as being a problem in this respect. In fact

Praxis felt that formal specifications should be easier to understand than code.

Several interviewees said that it is essential to comment Z with English text to explain the

structure of the model. This is not so necessary with B as it is more structured. Most companies
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impose some styling (e.g. lexical) rules on top of the formal notation in order to improve the
consistency of style throughout the organisation, although the general impression was that this
was not a major factor in comprehensibility. Interviewee A had used a 'friendly’ style of Z (a
reduced subset avoiding the less intuitive constructs and annotation in a light style to enhance

the friendly feel of the document) and felt that it had been beneficial to understanding for

unpractised readers.

Only one specific feature that affects understanding was mentioned. Praxis had found that over-
reliance on invariants can be confusing. It is sometimes better to explicitly state things that
change during an operation rather than rely on implicit changes as a result of satisfying a state

invariant, even if this is, strictly speaking, redundant.

The area that the interviewees did think was difficult was in creating the formal specifications.
IBM and Praxis had both employed expert consultants to facilitate this stage. Marconi said that
the most highly skilled or experienced people were needed to do the initial or higher level
structuring, although others could then cope with adding in the detail. IBM said that the ability
to create the right (i.e. useful) model requires the most skill and experience. It is too easy to

create a model that is consistent but does not contain the abstractions that are useful in

describing the problem.

3.3.7 Tools and Notations

The interviewees were not questioned specifically about tools but during the course of these
discussions the B-Toolkit stood out as the only tool that had been used to any extent. IBM had
started with Z but switched to B so that the B-Toolkit could be used. Marconi’s entire
experience was based around the B-Toolkit and they were very pleased with it in most respects.
They relied on it heavily and found that it helped in tracing, proving and maintenance work.
Praxis said that there are few industrial strength tools but agreed that the B-Toolkit is an
exception. A Praxis interviewee thought that B was not as suitable as Z for the system level

specification. However, Marconi has used B for all levels of specification.

Philips thought that tool availability has a big impact on the decision to use certain specification
techniques. In particular, tool support to maintain traceability between specifications,

implementation and test cases is an area of concern.

Interviewee A was in the process of installing the UML as a company wide documentation
language. They were anticipating using formal specification in conjunction with the UML.

Philips was also adopting the UML in some sectors of the company.

29



3.4 Conclusions

As this is a first stage, opinion gathering, exercise we are wary of drawing any firm conclusions.
The results described above are considered indicators for further investigations. However, we
summarise some of the main opinions recorded. Formal methods are worthwhile in terms of
improved quality of software with little or no additional lifecycle costs, but only when
compared to a rigorous development lifecycle where the cost of software errors is high. If the
market does not demand high quality software then it is more difficult to justify their use. The
introduction of formal methods affects a company's workforce, processes and culture through
effects such as skills filtering and consultancy syndrome. It may also impact on the relationships
with a customer through kudos, and communication implications. Overall the effects are usually
beneficial but there can be some problems to overcome. There is no real problem with
understanding specifications: given suitable training they are no more difficult to understand
than programs. The difficuit part is creating the specification as appropriate modeiling requires
practice and skill. Encapsulation is important within the context of large systems. There is a lack

of industrial scale tools, the B-Toolkit being the only suitable tool.

Many interesting points have arisen from the structured interviews. We select two hypotheses
for further investigation. The first is a comparatively straightforward hypothesis that is suitable
for formal experimentation in a laboratory setting. The second is a more complicated issue and

will require ingenuity in order to facilitate further empirical investigation.

34.1 Comprehensibility

One area that was expected to be rich with discussion was that of comprehensibility. It is often
said that one of the problems with formal notations is that they are difficult to understand and
that highly trained mathematicians are needed to read them. However, the interviewees did not
support this view. This is significant because it conflicts with popular opinion: all the
experienced interviewees agreed that typical software engineers have no real difficulties with
understanding formal notations. As one interviewee put it, formal specifications are no more
difficult to understand than code. In Chapter 4, we design and conduct an experiment to test

this, by writing a specification using Z and implementing it in a programming language.

34.2 Modelling

The interviewees thought that the difficulties with using formal specifications were in finding
the useful abstractions from which to create models. This is surprising, because the same

engineers are practised at creating models of problems and solutions using less formal notations
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as a transitory step in programming. The criteria for selecting a model on which to base a formal
specification, may differ from that of less formal design, nevertheless one would expect similar
skills to be applicable. One is led to suspect that there may be something lacking in the available

notations and methods compared to informal program design methods.

Comparing the available formal specification methods with informal program design methods
we find that program design methods concentrate on structure. Their aim is to provide the
engineer with mechanisms for visualising the structure of problems from different viewpoints.
Engineers are encouraged to explore the relationships between the entities in their models in
order to try different abstractions before committing to them. The tools supporting program
design methods are designed to enable them to build up an outline model of the problem in their
mind. In contrast, if we look at formal methods, they concentrate on detailed behaviour rather
than problem structure. This is what formal notations are designed to tackle, accurate precise
detail. Tool support for formal methods has concentrated on verification rather than creation.
Consequently, tool support for the initial process of exploratory design leading to the creation of
a specification may be lacking compared with those available for informal notations. The
engineer attempting a formal specification is faced with the need to make difficult and critical
choices of model structure but has little support for such work. In chapter 5 we discuss these

issues in more detail and compare the process of formal specification with that of program

design.

Our hypothesis is that formal specification would be easier if an informal or semi-formal
transitory modelling stage were performed, as is done in program design. Fraser, Kumar and
Vaishnavi (1994) have described such transitory modelling stages and Bruel and France (1998)
have investigated the use of UML as an aid to producing formal specifications. In Chapter 6 we
present a formal notation that is based on a combination of UML and B, along with a prototype
tool for converting the notation into the equivalent B specification so that verification and

animation may be performed using the B-Toolkit. We assess the benefits that this method may

bring to formal specification.

3.5 Summary

We have carried out a survey of the opinions of practitioners who use formal methods for
software specification and development. The size of the sample is small (5 companies were
visited) but covers a range of different market sectors including commercial computing systems,
defence and avionics systems and consumer products. The interviewees are experienced experts
in the use of formal methods in real systems. The results cover a wide range of issues including

the impact on the company, its products and development processes as well as pragmatics such
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as scalability, comprehensibility and tools. The survey is the first stage of an empirical
assessment of the comprehension and creation of formal specifications. The remainder of this

thesis focuses more narrowly on the two hypotheses that we have selected from the survey

results:

= Hypothesis 1 - formal specifications are no more difficult to understand than code.

= Hypothesis 2 - a tool supported, graphical modelling notation would be of benefit in

the process of writing a formal specification.
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Chapter 4
Comprehensibility of Formal

Specifications

It is a common perception that one of the problems with formal notations is that they are
difficult to understand and that highly trained mathematicians are needed to read them. In
Chapter 3 we surveyed the opinions of industrial experts and found that experienced formal
methods users thought that typical software engineers have no real difficulties with
understanding formal notations. As one interviewee put it, formal specifications are no more
difficult to understand than code. This chapter describes the design and conduct of an
experiment to test this by comparing subjects’ comprehension of a Z specification with its
implementation in Java. A close correspondence is maintained between the specification and the
implementation, both in functionality and in structure. Subjects were given either the formal
specification or the code and their understanding was tested using questionnaires. The results

indicate that there is little if any difference in comprehensibility between the two.

4.1 Description of Experiment

The objective of the experiment was to investigate the theory that formal specifications are no
more difficult to understand than code. Since comprehensibility is a complex attribute for which
we have no absolute measures we need to test this theory by measuring comprehension between
two examples that are comparable in some sense. Many attributes could affect this comparison
such as size, structure and inherent problem complexity. In order to make the link as tangible as
possible we chose to compare a Z specification with its implementation. We do not expect to
use this result to conclude whether formal specifications should be used. There are many other
factors requiring empirical assessment before a conclusion can be reached. However the
comparison with implementation is attractive because the community of potential formal
specification users is likely to have extensive experience of code maintenance and hence a 'good
feel' for comprehension of code. Having a comparative measure for a specification couched in
terms of the comprehensibility of its implementation will transfer this 'good feel' to the realm of
formal specification. Therefore the theory can be re-phrased as "a Z specification is (at least) as

understandable as its implementation”. To investigate this a Z specification of an example
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system was constructed. This was then implemented in the Java programming language.
Subjects were asked to describe either the functionality represented by the specification or by

the code. The mean level of understanding of each group (specification or code) was compared.

4.2 Design of Experiment

The Experiment was a one-way unrelated between-subjects design. This means that the
treatments were applied to different sets of subjects and only one set of data (pertaining to one
example treatment) was recorded. The Subjects were split into 2 equal sized groups by random
distribution of the experimental materials. A two-way experiment (where 2 examples are used
so that each subject attempts each of the treatment types) would have provided more statistical
power but it was felt that doubling the effort involved would deter many of the volunteers.
Another difficulty with 2 way experiments is that a second example is needed which is closely
equivalent to the first but is also different enough to avoid significant learning effects. The
subjects were given as much time as they required and were asked to record the time they had
taken. (There was a 50 minute timetable slot, but all completed within this limit). They were
then free to leave the room. It is hoped that this induced the subjects to work as efficiently as
possible. The data are analysed below taking into account the time taken by each subject so that

the effect of differing work rates can be accounted for.

4.3 Consideration of Influencing Attributes

The preparation of the materials used in the experiment may affect the experiment results.
Hence, the author’s experience and training is relevant when considering the influencing
attributes described below. The author had been trained at postgraduate level in computer
science including several courses on programming and programming languages. Postgraduate
training included a small amount on formal specification. This was supplemented by a one-
week course on formal specification using Z. The author had extensive experience (approx. 20

years) of programming in industry but virtually no experience of formal specification.

Comprehensibility is affected by structure (Finney, Fenton and Fedorec, 1999). The same
system could be modelled in Z in many ways. Different specification structures could be
adopted without changing the meaning of the model. Similarly the implementation could be
structured in many ways and this might affect the comprehensibility of the implementation. To
avoid the introduction of un-quantifiable influences on comprehensibility due to differing
choices of structure, the specification and code were written with the same structure. There is a

close correspondence between the schema and data entities in the Z specification and the
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component modules in the Java code. This may mean that to some readers the Z specification,
or Java code appears to be unnaturally structured.. Experienced formal methods academics and
practitioners have commented that the Z is unusual and appears to be derived from the code. In
fact the Z was written first and the Java was written to match its structure. The style of the Z
may be influenced by the author’s limited experience with writing formal specifications and
considerable experience in writing programs. The question pertinent to this experiment is, how
does the style of the Z specification affect the experiment results? It is possible that if the Z
specification had been written differently understandability would be increased. In this case the
experiment results would support the hypothesis even more strongly. On the other hand, if
writing the Z specification differently decreases understandability then the experiment has been
performed with a better style of Z specification. The effect of structure on the comprehensibility

of Z specifications and Java code would be an interesting topic for subsequent work.

Similarly no commenting has been used in the Z specification or in the Java code. This is
unnatural in both cases; one would not normally be expected to understand specification or code
without a natural language explanation. However, if natural language commentary were
provided in the experimental materials, the measure would no longer be of the

comprehensibility of the notations. It would be severely and un-quantifiably influenced by the

natural language descriptions.

4.4 Subjects

The 36 subjects were 2™ year computer science students who had been taught a course on
formal methods and a similar length course on the Java programming language. The subjects
were therefore familiar with the notations used, but were not very experienced. The experiment
was voluntary, so there may be some self-selection effects, but since the allocation of either the

Z specification or Java code was random and unknown to the subjects this should have no bias

effect on the experiment.

One threat to validity may be that although the subjects have been taught to equivalent levels in
these particular notations, they are likely to be more familiar with reading code in general than
reading formal notations. This would bias the results in favour of understanding the Java code.
Similarly the subjects' lecturers made several comments to the effect that the subjects did not
like using formal methods. There may be a self-fulfilling lack of confidence in the subjects’

abilities to read the Z specification leading to another bias towards the Java code.
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4.5 Experimental Materials

A short specification was written in Z (Appendix B.1) to describe a road layout with vehicles
moving along the roads and across the junctions. The specification was then implemented in
Java (Appendix B.2). The Z specification was structured according to an abstract data type
paradigm so that it was possible to maintain a close correspondence in terms of structure and
allocation of functionality with the Java implementation. The Z specification and Java

implementation are shown in the appendices.

4.6 Conduct

The subjects were allocated to one of the descriptions (Z or Java) at random. This was done by
randomly distributing a set of envelopes (equal in number to that of the subjects) half containing
Z specifications , the other half Java code. In order to ensure that the person marking the answer
sheets did not introduce any bias, they were marked blind so that the marker was unaware to

which representation (Z or Java) they related.

4.7 Data Collection Procedures

The subjects were given a questionnaire (Appendix B.3) to test their comprehension of the
description they had been given. The questions asked were very open. The subjects were asked
to describe the real-world objects and behaviour represented by the complete description and
then asked what a particular named section of the description represented in real-world terms.
The openness of the questions has the disadvantage that it allows a wider scope for
interpretation by the subjects of what the required answer is. However, it was found to be
impossible to construct more specific questions that would reflect comprehension without
strongly suggesting the answer within the question. Additional background questions were
asked in case such qualitative information might aid understanding of anomalous results. In the
event, it was not necessary to use this additional information. Since the results consisted of an
English language description of the system, we were concerned to ensure that the interpretation
of the answers did not introduce experimental error. A marking sheet (Appendix B.4) was
prepared which listed all the points that a subject might mention in describing the functionality
of the system. A subject gained one mark for each point that was mentioned at some point in
their answers. The marking sheet thus made the interpretation of answers as objective as
possible. A summary of the marks awarded to each subject, along with a summary of their

answers to the qualitative questions, is shown in Appendix B.5.
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4.8 Analysis of Results

In this section we examine the experimental data set in order to see whether, and to what extent,
it supports the hypothesis. An initial examination reveals that the data recorded for the Z
specification closely matches that for the Java. In particular the means and medians of the data
sets are very similar, however further statistical analysis is necessary in order make quantified
statements of probability. First we look at the distribution of the data. This indicates that its
adherence to a normal distribution is questionable. We therefore select a bootstrap analysis that
is powerful but robust. (That is, it doesn't make any assumptions about the distribution of the
data). Using the bootstrap analysis we obtain an outer limit for the difference in

comprehensibility at a specific confidence level.

4.8.1 Variables

The independent variable is the notation (Z specification or Java code) used for the description.
Two dependent variables are analysed. Firstly, the score which is an integer value ranging from
0 to 22 representing the number of marks gained as a measure of comprehension. Secondly the
rate of scoring was found by dividing the score by the time taken. This was used as an

alternative measure of comprehension.

4.8.2 Method of Analysis

Since our hypothesis is that there is no significant difference between the comprehensibility of a
Z specification and that of its Java implementation, standard null hypothesis testing techniques
are not suitable. Instead, we construct confidence intervals to quantify the mean difference for
various confidence levels. Initially we constructed confidence intervals using parametric
methods, which assume that the population distribution is a normal distribution. Examination of
the sample data for score revealed that it is not obviously skewed, and roughly approximates a
normal distribution, but this does not guarantee that the population distribution is normal. In fact
the data is fundamentally non-normal because it is truncated at 0. We should therefore treat the
parametric analysis with some mistrust. For the sample data for rate the distribution appears
even less normal. Therefore, we construct confidence intervals based on non-parametric
bootstrap methods, which make no assumptions about the underlying population distribution

other than the sample data is representative of it.
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Z Java (Z-D)/]
(marks) (marks) (%)
S mean 8.28 8.83 -6%
(C) median 7.50 8.00 6%
R std.dev 3.37 3.90 -14%
E
R mean 0.48 0.46 6%
t; median 037 0.44 15%
E std.dev 0.32 0.22 44%

Table 4.1 - Summary of Results

4.8.3 Examination of Data

The size of the data samples for the Z specification and the Java program were both 18. Each
sample consisted of a score out of a maximum 22 marks and the time taken by the subject in

minutes. A measure of the rate of scoring was obtained by dividing the score by the time taken.

An initial look at the medians, means and standard deviations (Table 4.1) of the data indicates
that the Z and Java results appear to be very similar in both score, and rate of scoring. The most
significant difference between the Z and Java results is in the standard deviation of the rate of
scoring, which shows that the rate of scoring varies significantly more between subjects when
reading a Z specification than when reading code. This is despite the fact that, when time is not

taken into account, score varies less when reading a Z specification than when reading code.

We also examined histograms (using SPSS) showing the actual data and a superimposed normal
distribution curve (Figs. 4.3 & 4.4). This showed a fairly good fit but with a slightly high
proportion of readings around the mean, indicating a low standard error, For the rate of scoring
data the histograms (Figs. 4.5 & 4.6) appear to be skewed towards the lower end indicating that

this data is not a very good approximation to a normal distribution.
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4.8.4 Bootstrap Confidence Intervals

We used the robust bootstrap analysis (Efron and Tibshirani, 1993) to construct confidence
intervals. This uses the minimum possible assumption in any analysis based on a sample: that
the data sample is representative of the real population. It does not make any assumptions about
the nature (e.g. normality) of the real population distribution. Samples of the same size as the
original sample are taken repeatedly from the sample data (it is permitted to select the same data
point more than once within a sample). The statistic of interest is calculated for each sample and
plotted to give a distribution that approximates its distribution in the real population. From this
distribution a confidence interval can be deduced for any confidence level. We used MathSoft’s
S-PLUS 2000 (Professional Release 2) statistics package to perform the bootstrap calculations.
Despite the robust nature of the bootstrap analysis, the confidence interval gives a ‘better’ (i.e.

tighter margin at the same confidence level) answer than the traditional parametric confidence

interval.

Score. The bootstrap results data output by S-PLUS is shown in Fig. 4.7. The bootstrap

calculation for mean(java score)-mean(Z score) gives a difference in means of 2.22 at the 95%

39



confidence level (25% expressed as a percentage of the mean for the Java sample). Hence we

have a 95% confidence that the overall population would have a mean Z score no worse than

75% of the Java score.

*%* Bootstrap Results ***

Call:
bootstrap(data = just.the.data,
statistic = mean(jscore) - mean(zscore),

B = 20000, trace = F, assign.framel = F, save.indices = F)
Number of Replications: 20000
Summary Statistics:
Observed Bias Mean SE
Param 0.5556 -0.006478 0.5491 1.053

Empirical Percentiles:
2.5% 5% 95% 97.5%

Param -1.5 -1.166667 2.277778 2.611111

BCa Percentiles:
2.5% 5% 95% 97.5%

Param -1.555556 -1.222222 2.222222 2.611111

Fig. 4.7 Bootstrap Analysis Results from SPLUS for Score

The bootstrap density distribution of mean Java score — mean Z score for the 20,000 bootstrap

resamples was obtained from Splus (Fig. 4.8).
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Fig. 4.8 Distribution of means of Java score — Z score for 20,000 resamples

Rate. The bootstrap results data output by S-PLUS is shown in Fig. 4.9. The bootstrap
calculation for mean(java rate)-mean(Z rate) gives a difference in means of 0.082 at the 95%
confidence level (18% expressed as a percentage of the mean for the Java sample). Hence we

have a 95% confidence that the overall population would have a mean Z rate of score no worse

than 82% of the Java rate of score.
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**%* Bootstrap Results ***

Call:
bootstrap(data = just.the.data,
statistic = mean(jrate) - mean(zrate),

B = 20000, trace = F, assign.framel = F,
save.indices = F)
Number of Replications: 20000
Summary Statistics:
Observed Bias Mean SE
Param -0.02692 0.0003885 -0.02653 0.07046
Empirical Percentiles:
2.5% 5% 95% 97.5%
Param -0.1668326 -0.1430569 0.08754796 0.109355
BCa Percentiles:
2.5% 5% 95% 97.5%
Param -0.1744356 -0.1489462 0.08211454 0.102708

Fig. 4.9 Bootstrap Analysis Results from SPLUS for Rate of Score

The bootstrap density distribution of mean Java rate of score — mean Z rate of score for the

20,000 bootstrap resamples was obtained from Splus (fig. 4.10).
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Fig. 4.10 Distribution of means of Java rate — Z rate for 20,000 resamples

In Summary, we have quantified the results in terms of confidence intervals for the usual 95%
confidence level and found that we need to allow approximately a 25% margin, for score, and
18% margin for rate of scoring, to achieve this confidence (i.e. Z is within 25% as
understandable as Java). Note that this does not mean that the data indicates that there is a 25%

difference. (In fact, the data indicates that there is very little difference in comprehensibility).

4.8.5  Analysis of Qualitative Data

The questionnaire included some questions to collect some subjective, qualitative data. (See

questions 3 to 7 of Appendix B.3). (One subject in the Z group did not complete these
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questions). We are careful not to draw firm conclusions from this data due to inevitable

variations in interpretation of both the questions and the answers. The following summarises the

responses to these questions.

In question 3 the subjects were asked how difficult they thought the specification or program
was to understand compared to an English language equivalent. The answers were almost all
positive (i.e. harder to understand than English) and there was very little difference between the
answers for the Z spec and for the Java program. The means of the answers (interpreting the

answers on a scale from -5 to +5) were +2.35 (Z) and +2.39 (Java).

In question 4 the subjects were asked how difficult they found mathematical subjects (i.e. to
judge their mathematical abilities compared to their peers). Here there was more of a tendency
towards 'easy' indicating that most subjects thought they had an aptitude towards mathematics.
This was slightly more so in the Z group than the Java group (-1.65 versus -0.31), which may

indicate a mathematical bias in favour of the Z group.

In question 5 the subjects were asked for their mathematical qualifications. All but 5 of the
subjects had mathematics A-level. Three of the five without A-level mathematics were in the

Java group, 2 in the Z group. This indicates a uniform mathematical ability throughout the two

groups.

In question 6 the subjects were asked how much experience they had with the notation or
language used in the specification or program. The form of the answers varied slightly, some
referring to length of time in months and others referring to course modules or semesters.
However, all the answers apart from two in the Java group indicate that they only have
experience of the notation/language from a course module in the previous year. Two answers

from the Java group indicated a frequent use of Java leading to more of a familiarity.

In question 7, subjects were asked for any other comments. Many left this blank but of those
that offered comments seven (all from the Z group) said that Z or formal specification is
difficult or more difficult than code, whereas only 3 (from the Java group) said that Java or code
is hard to understand. In fact 4 (again from the Java group) said that programs are easy to
understand. Hence there appears to be a tendency to believe that formal specifications are more
difficult to understand than code. This has not been borne out by the results of this experiment

but may be a bias towards understanding the Java.
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4.9 Threats to Validity

The degree of credibility of any study depends on its validity. We have already discussed
‘Conclusion Validity’, the validity of the statistical analysis. In this section we consider other

threats to the validity of the experiment and its conclusions (Basili, Shull and Lanubile, 1999).

4.9.1 Internal Validity

Internal Validity defines the degree of confidence in a cause-effect relationship. Thus under this
heading we must consider whether the subjects understanding of the specification and program
could have been influenced by any factors other than the independent variable. There are 2
categories of factors that could be a threat here. The first category is attributes of the subject that
might influence their understanding, such as ability or degree of training in relevant subjects.
This was minimised by selecting the subjects from the same cohort of a course. There will still
be differences in background and ability but the random allocation to groups should distribute
such factors between the 2 groups. As with any sample method there is, however, always the
chance that an unfortunate allocation has occurred. The second category is attributes of the
materials other than the notational difference such as style. As discussed above, the structure,
style, naming and font of the two descriptions were made consistent to eliminate these factors.
A further threat to the internal validity was discovered after the experiment had been performed.
The Java program had been tested in order to verify its correctness but the Z specification was
only verified by inspection. Three errors were left undiscovered in the Z specification when it

was used for the experiment. The errors are as follows:

1. The blank predicate part of the schema VehicleType should either contain true, or be

omitted

2. The identifier Destination already occupied, used in the definition of Report, should

contain underscores instead of spaces,

3. The schema pickRoad is incorrectly used as a function in the schemas moveNewRoady

and destinationAlreadyOccupied.

The first two errors are minor and unlikely to cause any misunderstanding or confusion to a
reader. For these errors it is reasonable to assume that the subjects were able to easily identify
the correction to the syntax if they noticed the error. The third error is much more significant
since a correction is not easily identified even if the intended meaning is recognised. If the
errors made it more difficult for the subjects to understand the Z specification the support for

our hypothesis is strengthened. However, since the subjects did not comment on the errors, and
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there does not appear to be a correlation between the errors and an area that was misunderstood,
we assume that the subjects correctly deduced the intended meaning of the schemas. The limited
experience of the subjects may have led to them assuming that there was no error, even if they
did not recognise the syntax, and correctly guessing the meaning. The corrected version of the Z
specification is shown in Appendix B.6. This version is written in an ASCII form of the Z

notation, ZSL, and has been checked using the ZTC type checker (Jia, 1998).

4.9.2 External Validity

External Validity defines the extent to which the conclusions from the experimental context can
be generalised to the context specified in the research hypotheses. Having established the
experimental hypothesis we must consider how well it supports the substantive hypothesis.
There are several threats to the inductive process needed to assess the substantive hypothesis.
Firstly, the notations used in the example are particular whereas the substantive hypothesis is
general in terms of notations. However, both Z and Java are typical and representative of the
majority of other notations. We feel that practitioners will accept that if the hypothesis is true
for these notations then it is, to some extent, generally true. There may be notations that deviate
one way or the other. For example, Java is an object-oriented language and procedural
languages may be easier to understand (although, in the experiment, we have not used many
object-oriented concepts, such as inheritance, that are likely to affect understanding). However,

similar experiments using alternative notations would clarify the generality in this respect.

Secondly, we must consider whether using students as subjects poses a threat to the validity of
the experiment. The subjects were students who had undertaken an equivalent level of training
in both notations. Lecturers reported that the students generally expressed a dislike of the formal
notations. This is probably representative of the general population of practitioners in industry.
We accept that students have less experience to rely on than practitioners. The extra experience
of practitioners is likely to aid understanding of the program rather than the formal
specification, but if our results reflect the situation without this bias in experience we view this
as a desirable attribute. That is our results reflect the situation in the absence of a strong
experiential bias as might be found in industry and therefore reflect the situation once an

equivalent experience of formal specification has been obtained.

Thirdly, we should consider how the small size of the example problem affects the validity of
the generality. This is a cause for concern, because the example problem is tiny compared with a
real problem. Unfortunately it is impractical to use representative problems in this kind of

experiment. We accept that scalability is an issue that could have a significant effect on the
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results. The experimental results therefore reflect the situation in the absence of scalability

issues, which require further investigation.

4.9.3 Construct Validity

Construct Validity defines the extent to which the variables successfully measure the theoretical
constructs in the hypotheses. The theoretical construct in the hypothesis is comprehensibility.
Under construct validity we must therefore consider whether the dependent variable and its
measure are valid measures of comprehensibility. The measure consists of 2 stages: an analogy
between comprehensibility and being able to describe the functionality of the represented

system; and the validity of the scoring system used to measure the described functionality.

A threat to the first stage is that the subject may not have given a description that portrays their
understanding. It seems reasonable to assume that the ability to describe something is
proportional to the subject's understanding of it. This assumption is widespread in education via
examination methods. The subject's written communication skills will affect their description as
well as other factors such as their perception of what is relevant to the answer. However, these
influences will not affect the validity of the results unless they affect one group significantly
more than the other. We do not foresee any factors that could be influenced by the independent
variable and hence might affect one group more than the other. (It may be that it is more
difficult to describe the functionality of a program than a specification because of the difference
in abstract level. However we consider this to be an essential part of what we are measuring
rather than a source of bias. By 'comprehensibility’ we mean ability to understand the
functionality). The random assignment of subjects should therefore eliminate the effect of the
ability-based factors, but as with any sample method there is always the chance that an
unfortunate allocation (such as a disproportionately high number of more able subjects in one of

the groups) has occurred.

The threat to the second stage is the method of scoring the written descriptions. The descriptions
were marked according to a list of points (objects, properties or behaviour) and given one mark
for each point mentioned. The answers were marked without knowledge of which group they
belonged to so that no prejudice of the marker was introduced. Some points were easier to
obtain than others and this means that the measure is non-linear affecting the scale validity.
However, we feel that this will not be a significant problem as those who obtained harder marks
generally obtained the easier marks. We considered weighting the points with differing amounts

of marks but this would be a subjective judgement and in most cases it is not obvious what the

weighting should be.
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4.10 Possible Areas for Replication

Confidence in experimental results and further knowledge of influencing factors is gained by
replication of experiments. Basili, Shull and Lanubile (1999) discuss a framework for
organising related sets of experiments with the aim of building up a complete picture of the
results over a wide range of contexts. (The term 'replication’ is generally taken to include
variations in the experimental work as well as strict replications). An experiment (or other
empirical assessment) using practitioners with varying degrees of experience would be useful to
establish that the results may be generalised to industrial situations. The area of scalability and
an evaluation of its importance to formal specification compared with program design would
illustrate its effects on comprehensibility. Further work on the effects of different styles and
structures on comprehensibility would also be an interesting and valuable area to explore.
Existing work in this area includes that of Finney, Fenton and Fedorec (1999), who conducted
an experiment that concluded that the degree of schema structuring in a Z specification affects
its comprehensibility, schemas of approximately 20 lines being optimal. Vinter (1998)
conducted experiments that showed that subjects are likely to misinterpret certain forms of
logical statements including disjunction, conjunction and quantification in the same way that
people commonly misinterpret equivalent natural language descriptions. This implies that some

forms will be more susceptible to misinterpretation than others, depending on context.

4.11 Summary

We set out with the intention of testing the substantive hypothesis that formal specifications are
no more difficult to understand than code. Our experimental evidence strongly supports a
hypothesis that subjects such as the ones we used could understand the Z version of the example
approximately as well as the Java version of the same example. The data recorded for the Z
specification closely matches that for the Java. The means for both score and rate of scoring
were very close. The variance for score was also closely matched but there does appear to be a
slightly higher variance in the times taken for the Z specification. This may be due to a wider

variation in mathematical background, familiarity and confidence.

At the usual 95% confidence level we needed to allow a 25% margin for score and 18% margin

for rate of scoring (i.e. Z is within 25% as understandable as Java).

We have chosen to adhere to the commonly used arbitrary confidence level of 95%. To give a
guide to how the quantitative margin of the results would be improved by a looser choice of
confidence level, we calculated alternative margins for the bootstrap result at the 80% and 75%

levels. The corresponding results for scores were Z is within 18% and 14% as understandable as
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Java respectively. The corresponding results for rate of scoring were Z is within 7% and 4% as

understandable as Java respectively.

In the previous section we discussed various threats to the validity of the results and in
particular, threats to the generalisation of the experiment needed to support the substantive
hypothesis. There are some areas that would benefit from further investigation, however, subject
to these reservations, we conclude that formal specifications are no more difficult to understand
than code. Consequently, industry should expect similar levels of effort in reading and
understanding formal specifications as they already experience in reading and understanding

programs provided they allocate similar resources to the task.

The threats to validity illustrate the difficulties involved in performing empirical assessments
involving human performance. In particular the consideration of construct validity illustrates
some of the difficulties of finding suitable and valid measures of complex attributes associated

with human behaviour such as comprehension.
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Chapter 5
Why Writing Formal Specifications is

Difficult

Perhaps the most powerful method we use for solving new problems is our ability to recognise
similarities with, and differences from, our past experiences. We have the ability to recall
situations, actions that were taken and resultant outcomes from our ever-increasing memory of
past experiences. We are able to recognise similar instances and from this generalise to find
desirable actions for classes of scenarios. Furthermore, we are able to recognise differences so

that we can adapt these general strategies to new experiences.

Within computer science, as in other disciplines, such techniques are so basic and commonplace
that they are used as a routine technique. For example new computer based solutions are
invariably developed based on a collection of techniques learnt from previous projects.
Experienced software engineers debug software by matching faulty behaviour with that of the
past to lead them to probable causes. Working by similarity has been used in a more explicit
manner by Brereton, Budgen and Hamilton (1998) when discussing the maintenance problems

of hypertext.

In Chapter 3 we found that formal methods practitioners generally agree that writing formal
specifications is difficult. In this chapter we make some suggestions as to why this might be so.
First we outline a general definition of 'specifications' that is widely applicable to items at any
stage in the programming process. Then we discuss the process of creating a formal
specification and why it is difficult. We make some comparisons with writing procedural
programs. Finally we use a cognitive dimensions analysis to assess B with respect to
exploratory design. During this analysis we consider the design process and tools for formal
specification in comparison with that of computer programming. From this comparison we
identify one of the main differences between the two processes as the lack of equivalent design

visualisation tools for formal specification.
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5.1 Models, Specifications and Implementations

A specification is a description. This is a very broad and flexible definition and therefore
encompasses many things. One kind of specification is a requirements specification where we
describe things we desire to be true of a system. Another is a functional specification where we
describe the actual behaviour of a system. It would be difficult to combine these views because
we would need to maintain the distinction between things that are reported as fact and things
that are stated as desired. Parnas (1997) defines specification to mean requirements descriptions,
excluding ‘actual’ descriptions. Parnas warns that, unless explicitly stated, many descriptions
could be interpreted as either requirements specifications or actual descriptions leading to

confusion over an important distinction.

Different specifications, therefore, describe different viewpoints. Even within one viewpoint,
specifications are rarely complete. A specification usually concentrates on one aspect such as
functionality, or materials, or performance. We use many varied notations for specification
because different notations allow us to express different views or aspects most effectively.
Nuseibeh and Finkelstein (1992) recognise the importance of different viewpoints in their

framework for the development of heterogeneous, composite systems.

One technique for describing things that is often used in specifications is modelling. A model is
an object that resembles a 'target' object in some ways. A model is a way of describing the target
object, so a model is a form of specification. According to FOLDOC, the free on-line dictionary
of computing’, a model is “A description of observed behaviour, simplified by ignoring certain
details. Models allow complex systems to be understood and their behaviour predicted within
the scope of the model, but may give incorrect descriptions and predictions for situations

outside the realm of their intended use”.

A model boat resembles the target object in shape and colour; perhaps also, to some extent, in
its functionality if it floats, but in many other ways, such as size and materials, it does not. The
'reader’ needs to understand the scope of the model in order to interpret it correctly. That is, the
reader needs to know which attributes of the model are intended to describe the target and which
are not. In the model boat example the reader is left to make their own judgement (based on

common knowledge of the generic class of the object) on which attributes are similar in a real

boat and which are not.

2 hitp://oldoc.doc.ic.ac.uk/oldoc/mdex.html
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Another example of a model is a Z specification. Here the representative attributes are the
abstract mathematical state and behaviour information. The model may completely specify this
attribute of the target, but it leaves many implementation options unspecified. The reader
distinguishes the representative attribute as a convention of the notation. That is, the reader
knows that with Z specifications, attributes such as the notation and the choice of mathematical

structures is not representative of the target.

Wills and D'Souza (1997) are careful to point out that the attributes in their types (part of the
Catalysis method which utilises the UML as notation) do not imply that the things represented
by the types have any features with these names. "The only requirement is that the operations....
exhibit the behaviour implied by the model". Clearly, they do not feel that this is obvious

enough from the modelling notation to go unmentioned.

We can even consider a natural language description to be a model. The representative attribute
is the semantics within the text. This is a very flexible form of model, which is why natural

language description is so popular and widespread.

Given this loose definition, all specifications are models; they are synonymous, interchangeable
terms. FOLDOC describes a specification as “A document describing how some system should
work”. According to FOLDOC therefore the main difference between models and specifications
is that models describe observed behaviour while specifications describe required behaviour.
This distinction might be pertinent when we are modelling the observable behaviour of a system
(which may or may not already exist) as a systems analysis stage prior to specifying the

requirements for the implementation of a component of the system.

Despite this possible distinction, for our purposes, a model of an observable system is a
specification of its behaviour and the specification of a component is a model of its responses to
events. The term, model, highlights the concept of representative attributes while the term,
specification, highlights the descriptive role, but they are names for the same thing and both

may refer to required or actual behaviour of an observable system or component thereof.

We tend to treat computer programs as the target object of many of our specifications, but
programs are not the final product. They are a description, in a notation (the programming
language), of the operations that a machine will carry out. The program is a specification for the
behaviour of the concrete machine, the computer. However we could view the computer as an
imaginary object. If we know what the imaginary computer is like, we can deduce a behaviour
that is represented in the program. In this sense the program is a model of a possible behaviour
of the computer and is very similar to behaviour specifications written in formal notations such

as B or Z. If we use a program to specify from this viewpoint (i.e. the actions of a computer) the
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scope of the model is well defined but if we shift our viewpoint to required functionality, it
becomes more difficult to distinguish required functionality from implementation decisions.
However, similar problems arise in formal specification. There are many ways to write a Z
specification (e.g. choice of schemas, choice of data structures) all of which are modelling
details lying outside the attribute representation scope of the specification. We could agree
similar conventions for distinguishing the scope when we use a program as a specification of
required functionality. So perhaps, computer programs can be viewed as specifications in

several senses, of the computers behaviour, but also of the required functionality.

Often the target of a specification is not a physical object but an abstract property or behaviour,
which might be attached to a physical object. The level of abstraction away from concrete
details can be varied providing a means for coping with scale. A highly abstract specification
can first be produced to specify abstract properties of behaviour, which will be made more
visible by not being obscured in detail. Further functional detail can be added in stages of
refinement. Initially these refinements may add purely functional detail and remain
requirements specification. Later refinements may introduce implementation decisions.
Generally, as we move from requirements specification to implementation specification we also

tend to move from declarative to imperative styles.

In some cases, a physical object is within the scope of the specification. In these cases we could
consider the object to be the ultimate specification of itself. It is clearly accurate and complete
but certain properties are not readily visible and may be difficult to measure. A design
specification might be required in order to perform maintenance for example. So there are
desirable properties of specifications other than accuracy and completeness. We generate
specifications (models) because, even though they may be lacking in accuracy and
completeness, they give us different views of the target object. In fact, in order to achieve this,
to accentuate a particular view, we often deliberately suppress the accuracy or completeness of a
specification so that it doesn't obscure the desired view. So the target object is a specification of

itself but is not necessarily the ideal one, there are different ideal specifications for different

roles.

By specification we mean any form of description of an object including the object itself. We
appreciate that specifications can differ in form, accuracy and scope and different forms will be
more suitable for different purposes, even if they lack accuracy and completeness. In order to
avoid any confusion with preconceived ideas of specifications we use the term 'representation’
to mean a specification in this extended sense. We take model to be an alternative word for

specification (and hence representation) that has a different emphasis but refers to the same

concepts.
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5.2 Writing Formal Specifications

The process of computer programming can be viewed as a sequence of two or more
representations, starting with an undocumented knowledge of a need for a computer to perform
a task and ending with a program that enables a computer to perform a task that to some degree
satisfies the initial representation. Hence, programming can be viewed as the generation of an
alternative representation (the program) to an initial representation (the requirement). As
described above, these generations may involve many steps of decreasing abstraction. The B
method embodies this process via its concept of progressive verified refinements from formal
specification through to program code. In fact the B method relies on making many small
refinement and decomposition steps starting from a very abstract initial specification. Each
refinement or decomposition introduces more specification details until a complete specification
is achieved. Thereafter, further refinements and decompositions make implementation decisions
until an implementation is reached. We are concerned with the difficulty of creating the first

formal representations that make up a complete formal specification.

In their paper, 'Strategies for Incorporating Formal Specifications', Fraser, Kumar and Vaishnavi
(1994) perform a morphological analysis to derive a framework for classifying strategies for
using formal methods. Their classification is very simple, whether or not a semiformal,
intermediate representation is used and whether or not computer assistance is used to generate
the formal specification. One of the main reasons for analysing these strategies, they say, is
because formal notations do not encourage exploration of the problem structure and this is
detrimental to the resulting specification. They conclude that direct specification from an
informal description into a formal notation without computer assistance is only practical for
small well-structured or prototypical problems, and that iterative transitional (i.e. using a
semiformal intermediate representation) strategies are needed for elicitation, problem
structuring and validation of real-life problems. Further, to cope with the labour intensive
generation of formal specifications, computer assistance provides most promise in addressing
the problem of scale. Craigen, Gerhart, and Ralston (1995) carried out a survey of industrial
applications of formal methods. After analysing the use of formal methods in a dozen industrial
applications they observed that: “Industry will not abandon its practices, but it is willing to
augment and enhance its practices.” One of their recommendations was that research should
concentrate on integrating formal techniques with software engineering practices, both in the

area of assurance and in design methods.

Our survey of opinions of formal methods experts has led us to similar conclusions. When
questioned about difficulties in understanding formal notations, these practitioners said that

there were no fundamental difficulties; software engineers find that formal notations are no
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more difficult to understand than code. Despite this, highly academic and talented consultants
were generally employed to write the specifications. It was reported that the processes of

creating a formal specification are extremely difficult and requires great skill.

The task of creating a model-based formal specification often starts from an informal, poorly
structured and incomplete description of the problem. The next step is to choose and create
abstractions that will be useful in the following step. (Here we use the term ‘abstraction’ to
mean a grouping of elements that is to be treated as a single entity. Note, however, that often we
need to choose abstractions before deciding the details of the elements they represent). The
following step is to specify the detailed rules that govern the state, structure and behaviour of a
model that represents a well-structured, complete and consistent specification. However,
choosing appropriate abstractions is notoriously difficult and it seems that current formal
notations are not conducive to exploring alternative abstractions before detailed behaviour is
added. Green and Blackwell (1996) point out the “ironies of abstractions”: that the difficulties
involved in finding appropriate abstractions are similar to the difficulties they remove. Formal
specification notations such as B and Z are ‘abstraction hungry'. That is, they require the user to
choose abstractions before they can be used. (Green and Blackwell describe abstraction hungry
systems as those that “can only be used by deploying user-defined abstractions). The primitives
in the Z notation are such that very little can be said without choosing variables that represent
relationships between elements of state, operations that collate sets of elemental actions and
groupings of these variables and operations to form further abstractions. Furthermore, in order
to specify behaviour succinctly, a coherent collusion of abstractions must be built. This requires
look-ahead, we need to predict what abstractions will be useful and what their interdependencies
are. A collection of abstractions provides an ontology and, hence, the choice of abstractions
changes the basis of reasoning. Therefore changing abstractions later will be difficult because

the behaviour will need to be re-specified within the context of a different ontology.

The following example illustrates how the notation affects the choice of abstractions, how it
determines the ontology and how it affects the visualisation and expression of certain

relationships. The example models the movement of traffic on a road system using the Z

notation.

[VEHICLES]

Road
traffic: seq VEHICLES
dest: P Road
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traffic is an abstraction that groups a sequence of vehicles. dest is an abstraction that gives a
particular significance to a set of Roads. Road is an abstraction that captures and collates

significant attributes of a road. Roads have destinations and associated traffic.

Unfortunately, this is not a valid Z specification because schemas cannot be self-referencing.
The chosen abstractions are not suitable for expressing the relationship between a Road and its

destination Road(s). We need higher-level abstractions to do this:
layout: Road — P Road

fayout is an abstraction that captures the connectivity of the roads in a system. (dest has been
removed from Road). Note that we prefer the total function from roads to (possibly empty) sets
of roads, rather than a mapping from roads to roads. This is partly because it seems a more
natural representation of the real world abstraction and also because we use this form in the
U2B translator described in chapter 5. We can now add an event of a vehicle moving from one
road to another. go is an abstraction that represents an event and comprises a precondition and

some state changes defined by a postcondition.

_go

from?,from?’ : Road
to?, t0?’ : Road

to?  layout(from?)

from?'.traffic = tail from?.traffic
to?'.traffic = to?.traffic"¢head from?.traffic)

Alternatively, since we have had to remove dest from Road, maybe it would be better to elevate

the abstraction traffic to the level of the road system, Roadsys:

[VEHICLES,ROADS]

Roadsys

layout: ROADS — P ROADS
traffic: ROADS — seq VEHICLES

go
ARoadsys
from?, t0?: ROADS
to? e layout(from?)

layout'=layout
traffic'(from?) = tail (traffic(from?) )
traffic'(to?) = traffic(to?) (head(traffic(from?)))

In this example, Road is a very simple object and its representation (in the first alternative) as
an abstract data type schema is not worthwhile. However, generalising to more complex objects,

which might have other attributes, initially it is not clear whether the encapsulation of traffic
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within the abstract data type Road is better or worse than modelling traffic at the higher,
Roadsys level. It is not until we start using these abstractions that we start to find out the effect
of such decisions. The system has a different ontology; traffic has a different meaning since it
now refers to all the queues of vehicles in the system, rather than just that on a specific road.

ROADS is a basic type, whereas before, Road was a complex structure with attributes.

Moving from one road to another is constrained so that vehicles don't collide at junctions. We
need some concept of a road being enabled, which is dependant on other roads not being

enabled. We could add this to Roadsys thus.

Roadsys

enabled: P ROADS

depends: ROADS — P ROADS
layout: ROADS — P ROADS
traffic: ROADS — seq VEHICLES

V rr:Roads]| rr e enabled . depends(rr) n enabled = @

The invariant ensures that the road cannot be enabled when a road it depends on is already

enabled

However, the abstractions do not provide the concept of a junction within the ontology. If we
need to introduce concepts related to a junction (perhaps closing a junction for maintenance of

the traffic lights) it is difficult to envisage the effect from the depends abstraction.

As with any complex construction, formal specification involves the construction of multiple
layers, as a description is structured into a hierarchy. This entails ordering abstractions, a
difficult cognitive task. One way to find abstractions is to generalise instances, but this leads to
a set of abstractions with low coherence (they may be good abstractions but they don’t fit

together well), another look ahead failure.

We might look to similar tasks with which we can draw parallels. Programming is a task that is
very similar in nature to writing a formal specification. The Programming language is a formal
notation. Programming is a similar task in terms of the level of detail and precision required in
the process. In the early days of computers, a handful of enthusiast and specialist programmers
hand wrote code, but only for simple well-structured problems. As the problems have grown in
size and complexity, programming has become a widespread profession practised by well-
trained but average graduates; it is no longer the province of specialist academics. Now, through
visual interfaces, it is beginning to become available on a widespread level to the general public.
Winograd (1995) describes these typical stages that new technologies go through; 'technology-
driven’ when the technology is used by enthusiasts, ‘productivity-driven’ when it is used by

professionals and ‘appeal-driven’ when it is used by consumers. In order to achieve these
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conflicting developments programmers have added more and more intermediate transitional
stages into the design process. First Assemblers, then higher-level languages, then architectural
design stages. Languages have become more natural for expressing the problem solution and

program design paradigms have been developed to encourage better structuring of programs.

Formal specifications have not had the opportunity to develop in this way. Formal specification
has lagged behind programming and only become of serious, widespread interest when the
problems we want to solve with them are complex. While problems were simple, formal
specification was not necessary. Formal specification has been used initially for safety critical
systems and these have been kept simple for safety as well as practical reasons, but this has led
to the view that formal specifications are not viable for other domains. Formal specification has
suffered from a motivational lag. If the motivation to use them had been there in the early days
of programming, methods to enable their effective use would have developed in pace with the

scale of problems being solved.

Formal specification also suffers from its verification role. Structuring mechanisms for design
purposes are often antagonistic to decomposition for proof purposes. For example Object Z
usually has to be ‘flattened’ for manipulation. B contains significant restrictions to enable proof
composition. For example, only one machine is allowed write access to the data of a shared
machine. (Buchi and Back (1999) have suggested an amendment to B to allow write-shared
machines). It is important to consider the purpose of a specification before selecting a notation
(Hall, 1999). Design structuring mechanisms are important for an industrial scale task because
they allow the problem to be decomposed into manageable parts and allocated to different teams
or individuals. The structuring mechanism must allow the problem to be decomposed into
natural coherent parts and must allow their interfaces and relationships to be understandable and
manageable. We take the view that the first stage of transferring formal methods to industry is
formal specification, and it is important not to significantly degrade design structuring for
mathematical manipulation. A translation to a more suitable form for verification may be a later,
possibly automated, stage. However, for pragmatic reasons, the techniques and tools we present

in the next chapter restrict structuring such that both purposes are served.

Stepwise Refinement (Wirth, 1971) is an established technique for decomposing large systems
into manageable sub-parts by hierarchical stages. The technique works well in developing a
formal specification because a more detailed specification can be formally proven to be a
refinement of a more abstract one. The decomposition at each stage is dependent on structuring
mechanisms, which may be restricted as discussed above, but the introduction of detail in stages
is, itself, beneficial. However, contractual requirements may dictate that complete and detailed

requirements are expressed for customer agreement, and hence the contractual specification may
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include several stages of refinement. Refinement may also be used to add implementation
details. Refinements for implementation purposes would need to be kept separate from

Refinements that are part of specification.

Formal methods can be used to verify the implementation against the specification and to prove
properties of the specification such as its internal consistency. Usually, formal methods cannot
be used to fully validate the specification. This is because validation involves the examination
of the specified system to determine whether it is useful. The user’s requirements for the system
are usually informal and only partially recorded. Validation is when the user assesses whether
the system will be useful in practice. This assessment can involve undeclared background
knowledge, such as working practices, culture etc. Both Hayes and Jones (1989) and Fuchs
(1992) agree that formal specifications improve validation at the specification stage. This is an
important benefit because, otherwise, most validation is done on the implemented system,
where changes are much more costly. Since validation inherently involves users who normally
have no training in formal specifications, a barrier to validation is communicating the meaning
of the specification. One method of overcoming this barrier is to translate the specification into
a form that can be executed so that users can test the specification in specific scenarios. Hayes
and Jones, argue that many of the techniques used to make a specification clear (such as
inverses, negation and quantifiers) and non-determinism, which has an important role in
avoiding over-constraining the implementation, are so hard to implement that doing so
compromises other roles of the specification. Note that Hayes and Jones distinguish prototyping
from specification validation. Prototyping is a method of discovering undeclared requirements
for input into the specification, making validation more successful but not replacing it. Fuchs
refutes the arguments of Hayes and Jones by demonstrating the translation of the same
examples used by Hayes and Jones, into a declarative logic language. He succeeds in providing
an executable version of each example that is similarly structured to the specification, at the
same level of abstraction and does not introduce additional algorithmic details. For some
examples limits have to be introduced where otherwise the computation would be infinite.
Gravell and Henderson (1996) discuss, amongst others, Hayes and Jones and Fuchs work and
conclude that although clarity, expressiveness and abstraction level must be given priority to
enable inspection and review, executable translations of specifications are often achievable and
provide a cost effective means of detecting some kinds of errors. The B-Toolkit includes an
animation facility that is useful for validating B specifications by execution. However we have
found that some specification constructs, such as set construction are not successfully handled.
Leuschel and Butler (2002) have proposed and implemented an alternative animation and

model-checking facility for B that is based on automatic translation into Prolog.
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Since Formal specification is a similar kind of task to programming, it is reasonable to assume
that similar stages will be necessary to create formal specifications for real-life problems using
average engineering skills. Formal mathematical notations based on set theory have the
advantage that properties can be expressed extremely simply and succinctly compared to a
programming language. Even so, methods for organising these expressions and composing them
into a meaningful and manageable specification are crucial. Already attempts have been made to
develop more useable formal notations. The Z notation has a simple but effective composition
mechanism in its notion of schema. However, schemas do not provide full encapsulation. A
collection of schemas is necessary to cover state, initialisation and operations of a
subcomponent. Also, promotion and binding mechanisms used for composing schema into
higher levels, although mathematically simply and powerful, are not intuitive from the system
designers perspective. Students often find these concepts difficult to grasp. Object-Z and B add
more sophisticated building mechanisms that improve encapsulation, albeit with disadvantages
discussed above. As notations develop, some researchers are beginning to investigate the need
for transitional hierarchical design stages, as noted by Fraser, Kumar and Vaishnavi (1994).
Other references to such examples include Facon, Laleau & Nguyen (1996), Bruel and France
(1998) and Meyer & Souquieres (1999). Here, most attempts actually adapt the program design
methods directly. In Chapter 6 we discuss a translation that we have developed using the UML

as a transitional stage with computer assistance to generate B specifications.

While we have been arguing that there are similarities between formal specification and
programming we recognise that there are significant and fundamental differences. Often, when
writing a specification our aim is to describe requirements or observable behaviour rather than
specify an implementation. That is we are describing what happens rather than how it should be
achieved. This implies different aims, levels of abstraction and techniques. A common
difference is that most formal specification notations are declarative whereas procedural
programming notations are imperative. Declarative notations are good for specification because
they enforce a description of what happens to state when an event occurs without allowing a
description of how it is achieved. However the removal of the facility to decompose behaviour

into sequential stages is a descriptive limitation that is unfamiliar to programmers.

In comparing formal specification and programming we are considering imperative, procedural
programming languages because they are usually used for implementing systems. Declarative
languages such as the logic language, Prolog, (Sterling and Shapiro 1986) have more

similarities with formal specifications.

The following summarises the main differences between set-based formal specification and

procedural programming.
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Purpose - The aim of formal specification is usually to describe something whereas the aim of

programming is to implement something. This can lead to different aims and priorities.

Process - Program design has received a lot of attention over years of development. Tools and

techniques have been developed to a greater extent than those for formal specification.

Abstractness - Programs are fixed at the concrete implementation level by the machine they are

instructing, whereas formal specifications can be pitched at any desired level of abstraction.

Declarative - Formal specifications are usually declarative whereas procedural programs are

imperative. Programmers are used to decomposing problems into a sequence of steps rather than

a conjunction of truths.

Animation - While animation of formal specifications is possible, current tools to support this
are not entirely satisfactory and hence animation is not widely used. This makes validation

difficult. In contrast, programs are executable by purpose.

Mathematical - Formal specifications are mathematically manipulable enabling reasoning and

formal verification to be carried out.

5.3 Cognitive Dimensions of B

In this section we perform a cognitive dimensions analysis of the B notation with respect to
exploratory design. Exploratory design is the process that is undertaken to create a formal
specification. The 14 dimensions that were introduced in chapter 2 are ordered according to our
rough subjective ordering of their importance in exploratory design. We assess the B notation as
an example of a formal notation and attempt under each verdict to generalise to indicate whether
the dimension contributes to making the process of formal specification difficult. We also
consider how each dimension affects program design and how program design tools are used to
alleviate the problems. We selected the B notation because the analysis will be useful in
supporting chapter 6. We view the B notation as being one of the more practical formal

notations because it has good structuring and encapsulation mechanisms and good tool support.

5.3.1 Abstraction

FOLDOC defines Abstraction as "Generalisation; ignoring or hiding details to capture some
kind of commonality between different instances". An abstraction gives a new meaning or role
to an object or group of objects and allows the group to be referred to by a new name. Formal

notations are very abstraction hungry. This means that they require you to invent abstractions at
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an early stage. In B, abstractions are created by naming sets, defining types, variables,
definitions and abstract machines. You cannot say anything at all in B without choosing
abstractions. This is to be expected because B is a modelling language and is intended to be
used to describe things by assigning roles to the mathematical constructs of set theory. For
Exploratory design, abstraction hunger is a double-edged sword. On the one hand abstractions
enable you to create a higher-level problem specific language; they determine the ontology of
the problem domain. Once the abstractions have been made the problem can be expressed very
clearly and important properties will be made visible. On the other hand choosing appropriate
abstractions that will fit together in a coherent way is extremely difficult. Abstraction hunger is
a property of any general purpose modelling language and B is not particularly beneficial or
deficient in this respect compared to similar notations, however, we identify abstraction hunger
as one of the main, inherent, difficulties in formal specification. Programming languages
involve similar levels of abstraction hunger. In most large-scale program design, some form of
design support is used. This normally includes a guideline or method for choosing abstractions
and a drawing format for representing their relationships. Often several drawing formats are
involved, giving different viewpoints of the relationships between abstractions (e.g. data
dependencies, invocation sequences, functional hierarchy). We will refer to this support as
‘Program design tools’, although in some cases the tool consists of nothing more than an
instruction on how to employ the method. For example, in the 1980’s the UK Ministry of
Defence required suppliers of real-time computer systems to document their software designs
using the standard, JSP188 (Ministry of Defence, 1980). No, particular drawing tool was
mandated, but the standard defined a framework for decomposing the software first into
‘facilities’, then ‘tasks’ and finally into ‘modules’. It also defined the types of diagrams that
would provide a visualisation of the relationships amongst these components (functional
decomposition, component decomposition, data flow, and control flow diagrams). The
‘MASCOT’ method for software design (Simpson, 1986) was developed to comply with
JSP188. Later in the 1980s structured design methods such as that proposed by Ward and
Mellor (1985) and ‘Jackson Systems Development’ (JSD) proposed by Jackson (1983) were
widely advocated. Software packages supporting these methods with drawing tools that
encompassed and enforced their rules were available. During the 1990’s, object-oriented
programming became popular and introduced more kinds of relationships (and consequently
views). Tool support became more necessary and tool vendors were more successful than the
structured design ones. Three main variants of the object-oriented methods emerged and were
competing for popularity (and tool sales). Eventually, a need for unification of the object-
oriented method variants was recognised. This resulted in the ‘Unified Modelling Language’

(UML), introduced in chapter 2. Unification benefited both the tool vendors and the companies
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developing software. Each tool vendor had a larger customer base and the software design

companies no longer had to risk committing to a particular vendors method.

Program design tools assist in making abstractions by providing a visualisation of them to assist
the designer in assessing them. In particular this visualisation assists in assessing the coherence
and coupling of the abstractions by making clear their interactions. Formal methods tools enable
properties of a completed specification to be analysed and verified. In, comparison, program
tools provide very little real assistance in analysing the completed model. However it is their
support for the subjective assessment of the emerging model in the early stages of its creation

that makes them attractive for this exploratory design stage.

5.3.2 Premature Commitment

Premature commitment is when decisions must be made (and committed to) without fully
knowing how those decisions will affect later work. The very nature of exploratory design
implies a lack of knowledge about how the later features of the design will turn out. The less
commitments need to be made the better. With respect to writing formal specifications this
dimension goes hand in hand with abstraction hunger. The main premature commitment that
needs to be made is to the abstractions used in the specification and we have already noted that
formal specification requires these at an early stage. We see the premature commitment to
abstractions as the main difficulty in writing formal specifications. Again, programming
involves similar levels of commitment to abstractions such as data structures and modularisation
before detailed coding, but program design tools have been developed which allow the designer
to visualise and explore different structures before making that commitment. This process
allows the designer to make better predictions about which structures are likely to be more

successful when the detailed code is added.

53.3 Viscosity

Viscosity is the amount of effort needed to make significant (i.e. structural) changes to a
completed or partially completed description. This is very important in exploratory design
because the nature of exploration makes it virtually certain that a significant amount of re-
arrangement will be needed as the true nature of the specification and the best way to express it
unfold. Formal specifications are highly viscous. The detailed mathematical notation requires a
significant investment and any structural re-arrangement is likely to require extensive and
careful revisions. However even more significant than this is the effort to revise the abstractions
that the notation was so hungry for and made us prematurely commit too. These abstractions

provide the very ontology of the specification and making revisions will entail revising both
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structural elements and mathematical details. This is the third side of a vicious triangle of
dimensions: Abstraction hunger, premature commitment and viscosity. Together they account
for the main difficulties with writing formal specifications. Yet again programs are similarly
viscous. To alter data structures or modularisation in any significant way usually involves
significant effort in recoding. Program design tools have been developed which reduce viscosity
by allowing the designer to change the structure with graphical drawing tools. The aim is to
obtain a successful architecture before committing to code, but if automatic code generators are
used the viscosity reduction is extended. Small alterations to a program can often be
accommodated fairly easily without substantial changes to the architecture, but as the number of
alterations increases the suitability of the architecture gradually decreases until a ‘re-factoring’
is needed in order to create a new architecture that better supports the changed functionality. At
this point the viscosity of program architecture is a substantial overhead to the required change.
If a program design tool with automatic code generation is used, effort is saved because the
infrastructure code associated with the structure is automatically produced. This is a desirable
route that we would like to adopt in formal specification. A second less desirable outcome often
occurs when such tools are not used. The structure is not changed because of the viscosity.

Instead re-factoring is avoided and the detail code is made to work within the unsuitable

structure.

5.34  Progressive Evaluation

During exploratory design it is important for the designer to be able to check and review work
performed so far at regular intervals. This is part of the feedback required for exploration. The B
method provides two mechanisms that can be used for progressive evaluation. Abstract
machines provide an encapsulation mechanism, allowing component parts to be independently
analysed, animated and proved within the B-Toolkit. This method imposes a certain ordering on
the evaluation since lower level components need to be checked prior to use in the evaluation of
higher-level components. The order may be counter to the natural order of exploration. It may
be beneficial to design a specification at an abstract level, evaluate this, and then add further
detail in a series of levels. This concept of refinement is central to the B method, where an
initial abstract specification is written and verified before further detail is added in the form of a
refinement that is verified to comply with the more abstract version. The specification can be
built up in levels until the specification becomes the implementation. This is especially obvious
in the B method but similar concepts apply in other formal notations (less so the component
encapsulation). We conclude that progressive evaluation is catered for quite well in formal
specification methods, however we also note that verification proofs are recognised to be

difficult. Since this is the primary means of evaluation, progressive evaluation may still be a
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barrier to formal specification. Furthermore, most of the verification is aimed at verifying the
internal consistency of the specification; there is still the question of whether the specification is
the right one (validation). Animators test the specification from this point of view.
Unfortunately, writing successful animation tools is difficult. The animator in the B-Toolkit
becomes unusable if some kinds of set constructions are used in a specification. In program
design, the situation is very similar although the methods of verification (such as reviewing) are
usually not rigorous. Modularisation is achieved according to the design paradigm and program
design tools are used to achieve layered design stages. Testing by dynamic execution of the
code (the equivalent of animation) is used for both verification and validation. Although testing
is rarely exhaustive, if performed incrementally as the program is developed, it normally

provides good feedback.

5.3.5 Closeness of Mapping

A close mapping between the elements of the notation and entities in the problem domain
makes exploratory design much easier because less effort is expended describing the problem
domain entities allowing more effort to go into describing their behaviour. The B notation is a
general modelling notation and therefore its elements are more abstract than the problem
domain. However, if abstractions have been chosen appropriately, a new set of elements is
created that have a close mapping with the problem domain. Therefore, considering that we
require a general-purpose (rather than domain-specific) notation, we do not view B as being
deficient with respect to closeness of mapping. However, from the point of view of discovering
why formal specification is difficult, the lack of closeness of mapping in our notations causes
difficulties unless we make abstractions, and, as noted above, finding appropriate abstractions is
difficult. The situation in program design is, once again, very similar. In some areas domain
specific languages have been developed (e.g. control algorithm languages used in avionics
control systems software) which improve closeness of mapping to such an extent that
programming becomes relatively easy and error free. Where more flexible, general-purpose
languages are needed a compromise solution is achieved by using the design paradigm of the
language to create an ontology from abstractions for each sub-domain. For example, in an
object-oriented paradigm, classes are used to model entities in the problem domain and methods
represent the behaviour of those entities in response to events. The class's methods are

equivalent to the constructs in a domain specific language.
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5.3.6 Hard Mental Operations

Hard mental operations affect the designer’s ability to express semantics in a specification. In
general, formal notations (mathematics) have a relatively high incidence of expressions that
most people find difficult to cope with and this dimension is probably responsible for the
majority of the prejudices against them. However, in most cases, with practice, these
expressions become more accessible, indicating that the dimension is a less significant obstacle
to creation for experienced users. The B notation, although a declarative formal notation based
on set theory and similar to Z, is expressed in a form that resembles program statements and
organisation. The post condition is expressed as a set of changes to the state variables accessible
to the operation. Like a program, but unlike Z, any variables not mentioned are assumed to be
unchanged and assignment is used to express the changes. There is still no sequential
composition (at the specification level) but this is made explicit and more accessible by a
‘simultaneous’ operator instead of relying on conjunction as Z does. We conclude that this
dimension may be a moderate obstacle to formal specification but B mitigates this by using a
form that helps the designer envisage what is being expressed. We think this mitigation will be
especially important for novices, although there is a danger that they will misinterpret the

notation as imperative.

5.3.7 Visibility and Juxtaposability

Visibility is the ability to view component parts of a description easily. Juxtaposability is the
ability to view several components side by side. For example, juxtaposability is important when
two components are being compared or when information is needed about a component when
another is being developed or altered. The B-Toolkit allows several abstract machines to be
displayed on screen in separate windows so that this can be achieved. Initially it might be
assumed that this is sufficient for a textual notation and that this dimension does not cause a
problem in writing formal specifications. However, Craigen, Gerhart and Ralston (1995)
reported that one of the tools that the commercial sector (as opposed to the regulatory-governed
sector, who are more interested in formal verification) desired most was specification navigation
tools such as browsers and cross-referencing tools. Visibility issues should not be
underestimated and in program design perhaps one of the biggest driving factors for using
graphical design tools is the visibility they provide through multiple views of the emerging
design. We therefore conclude that formal specification suffers quite badly with respect to
visibility through a lack of such tools compared with program design and integrated

development environments (IDEs).
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5.3.8 Hidden Dependencies

A hidden dependency is a dependent relationship between two components where the
dependency is not clearly visible. Hidden dependencies tend to fall into two categories. In one-
way dependencies, the relationship is only visible from one of the end components of the
relationship. In local dependencies an overall relationship can only be deduced by traversing
many local relationships. Hidden dependencies affect exploratory design because they increase
viscosity (i.e. they are difficult to find when a major change is needed). For example, in Z,
invariants expressed in the state part are assumed to hold in operations. This means that some
state changes that take place when an operation occurs might not be stated explicitly in the
operation schema. Some users avoid this hidden dependency by stating the operation post
conditions even if they are redundant (see Chapter 3). B does not suffer from this hidden
dependency. In B, the invariant is a property that must be proven to hold throughout all
operation events, it is not assumed to hold and ‘supplement’ the operation semantics. Hence
operations must explicitly state all changes to state variables including those that are necessary
to maintain the invariant. While the negative effects of hidden dependencies have been
identified and addressed within the programming community, most general purpose
programming languages and practices still allow the programmer to create hidden dependencies
via global data accesses. Hence depending on discipline, conventions and culture within the
organisation, programs may be worse than formal specifications with respect to this dimension.
We conclude that formal notations, and B especially, score highly with respect to this

dimension.

5.39 Error-Proneness

Error-Proneness is the tendency to make minor slips (rather than errors of design judgement) in
the notation. This would hamper exploratory design. There may be a tendency, especially in
novices, to make errors in the mathematical expressions. However, we do not view this as a
major contributor to problems with formal specification once some practice has been gained. It
would seem no worse, and perhaps easier, than writing programs. We note that another
dimension, progressive evaluation, is important in mitigating the effect of Error-Proneness. The
ability to detect and correct errors at a unit level is of great benefit in developing the overall
specification. This has similarities in programming where modules are individually compiled
and tested so that the problem of error detection and correction is manageable. The importance

of tools for progressive evaluation (and hence in mitigating error-proneness) has been discussed.
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5.3.10 Consistency

A notation is consistent if similar semantics are expressed in similar forms. For example, if the
syntax for expressing conjunction were different in an invariant and an operation, this would be
inconsistent. Consistency is beneficial for exploratory design because it reduces the number of
syntactic rules that need to be remembered when writing a specification. We know of no
inconsistencies in B. Typically formal notations, by their mathematical nature are highly

consistent. We conclude that this dimension is not a reason for the difficulty in writing formal

specifications.

5.3.11 Diffuseness/Terseness

Diffuseness is the verbosity of a notation. Terseness is the opposite of diffuseness. Verbose
notations tend to slow thinking performance. Terseness is beneficial for exploratory design
because it reduces the time taken to express properties in the notation but can also increase
error-proneness. The negative effect of terseness on comprehension is not likely to be apparent
during the design stage since the design team will recall what they have expressed. B, like most
formal mathematical languages based on set theory, tends to be terse. We conclude that this

dimension is not a reason for the difficulty in writing formal specifications.

5.3.12 Role-Expressiveness

Role-expressiveness is the degree to which it is obvious what each component of the
specification or program is for. This is more relevant to comprehension than design. The
designer will generally appreciate the role of each element, being the one who selected it. We
conclude that this dimension has very little bearing on design. However, we note that the
genericness of the constructs and notation in B detracts from its role-expressiveness. It is not
apparent what role each machine, operation or data structure plays in the specification without
deducing the behaviour of each component. This can be overcome if secondary notation such as

comments and well-chosen names are provided.

5.3.13 Secondary Notation

Secondary notation (i.e. information conveyed outside of the formal syntax of the notation) can
convey extra information, such as the grouping and role of related statements. Secondary
information can be of two types. It may be ‘redundant’ if it is already present in the formal
syntax (e.g. indentation of code) or may be additional information provided by an ‘escape from

formalism’ (e.g. commenting). It is common practice to add secondary information to programs
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in the form of comments and indentation. Similarly, it is seen as an essential part of writing
formal specifications in Z, to intersperse each schema with a paragraph of natural language to
describe its role and explain how the mathematics models the real problem. The natural
language description is so integral to a Z specification that the resulting document can be seen
as a description in two complimentary notations, rather than a formal specification with

supporting comments. This resembles the literate programming ideas of Knuth (1984).

Similarly to role-expressiveness and for the same reasons, secondary notations are more
important for comprehension than for design. We conclude that this dimension has only a minor
bearing on design, but note that B has facilities for adding secondary information. For example,
comments can be embedded, B statements can be indented or grouped and capitalisation

conventions may be employed to aid comprehension.

5.4 Summary

In summary we see the main problems in writing a formal specification as being the
requirement to commit to abstractions at an early stage and the difficulty of subsequently
altering these abstractions. Abstractions are needed to achieve a suitable closeness of mapping.
The B notation is typical in this respect. Progressive evaluation is difficult in formal
specification even though it is generally catered for. Improved animators would address this.
Visibility is not adequately addressed. Formal specification notations often involve hard mental
operations, although B is better than many in this respect. Formal notations tend to tackle
hidden dependencies, error-proneness and consistency fairly well, so that these dimensions are
not problematic and their terseness is, if anything a benefit during design. Role-expressiveness

and secondary notation are of little relevance during design.

Considering that program design suffers from similar problems leads us to the hypothesis that
the solutions adopted from program design would similarly benefit formal specification. A
graphical design, transitional, stage would provide better visibility of abstractions and how they
interact to compose the whole and this would be of value when assessing abstractions thereby
alleviating premature commitment. The tool would also lower viscosity by automatically
providing the infrastructure of a formal notation version. Fig. 5.1 represents the relationships
between the main problematic dimensions for formal specification and illustrates where a

graphical design tool would alleviate these problems.
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Fig.5.1 relationships between cognitive dimensions that affect formal specification and

how a design visualisation tool would alleviate these problems
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Chapter 6
B-UML and U2B: Adapting the UML for

Formal Specification

In Chapter 5 we discussed specification and why we think formal specification is so difficult.
We analysed the process of writing a formal specification using the B notation as an example
and contrasted it with the process of writing a computer program, which is, itself, a kind of
formal specification. We established that the difficulties are very similar in computer
programming but that design tools such as the UML alleviate these difficulties. We believe that
graphical modelling tools similar to those used for program design would aid the process of

formal specification.

With this in mind we have used diagrammatic notations of the UML for formal specification.
To support this we have developed a prototype tool to convert adapted forms of UML class
diagrams and statecharts into specifications in the B language. The aim is to use some of the
features of UML diagrams to make the process of writing formal specifications easier, or at least
more approachable to average programmers. We view this work as a feasibility investigation
rather than a final method or product. The translation relies on precise expression of additional
behavioural constraints in the specification of class diagram components and in statecharts
attached to the classes. These constraints are described in an adapted form of the B ‘abstract
machine notation’. The type of class diagrams that can be converted is restricted in order to
comply with constraints of the B-method without making the B unnatural. The resulting UML
model is a precise formal specification but in a form which is more friendly to average
programmers, especially if they use the same UML notation for their program design work. The
diagrammatic notation and tool support brings its benefits to the modelling process for formal
specification. The translation to textual B specification does not add anything to the
specification; it merely provides an alternative mathematical, textual form. In this textual form,
however, the benefits of the B method are obtained. The translation also demonstrates the
validity of the graphical forms and defines their semantics. We envisage benefits to B users
(especially novices) from being able to develop models in the UML diagrammatic form and we
see this as a possible way to overcome some of the psychological barriers that programmers

have against formal specification.
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6.1 Benefits of a Diagrammatic Form for Specification

The majority of students on computer science courses express an aversion to formal
specification whereas they are quite comfortable using graphical program design notations such
as the UML’. We believe that this is largely an unwarranted fear and that formal specification,
given the same level of tool and language support should be no more difficult than
programming. Advantages of graphical design aids are more to do with the creation of models
than with conveying information. Graphical descriptions can be misleading to read, they often
convey different meanings to different readers and require experience to interpret secondary
features (Petre, 1995) but to the writer they provide a quick way to express their ideas and to
assist in visualizing prototype models that must otherwise be built entirely within the mind.
Textual representations, although often more accurate in conveying precise meanings, are much
more cumbersome for creating some aspects of these models. Graphical representations are
good for helping to visualize structures, composition and the relationships between elements.
Modelling large systems usually requires initially a structural design, which is then populated
with more precise semantic detail. It is this first modelling stage that benefits from program
design tools such as UML. Class diagrams allow the types of objects in the problem domain and
the relationships between them to be modelled, visualized, prototyped and altered quickly.
Attempts to add the semantic detail to these models may result in deficiencies in the model
being discovered and lead to refinements to the model. These changes can be made quickly
because the model is highly visible and easily alterable with the aid of the graphical design
tools. Readability and ambiguity is not an issue because it is the creators that are using the tools
for modelling. These features have made graphical design techniques such as UML popular for
developing programs. We contend that the process of writing formal specifications is in many
ways similar to programming and involves similar difficulties in abstraction, look-ahead and
viscosity. Therefore tools that programmers have evolved for writing programs, or ones very
similar to them, should bring similar benefits when writing formal specifications. In particular
the UML and associated tools attack viscosity in order to alleviate the difficulty of choosing and

committing to appropriate abstractions.

3 This view was based on the comments of several lecturers. In order to test it we asked computer science students at
The University of Southampton whether they liked using formal methods such as Z and B, and whether they liked
using graphical design notations such as UML. Of the 118 students that responded, 67% preferred using graphical
design notations and 15%, formal methods. The data from the poll and further results are shown in Appendix C.
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6.2 Benefits of Translating UML to B

As will be seen, the translatable UML model with formal annotations is just as precise and
complete as the equivalent B specification. This is demonstrated by the fact that it can be
translated to B automatically. However, there are still benefits to translating into a B

specification:

e The textual B specification is a complete mathematical description that may be more

readable to experienced formal methods users.

e The B specification can be manipulated mathematically, enabling reasoning and proof

to be performed.
e Tools are available for type analysis, proof assistance and animation.
e The translation demonstrates the semantics of the UML version.

A B specification can be animated with the B-Toolkit to explore the dynamic behaviour of the
modelled system. In UML terms this means that operations of an object can be invoked and the
B animator will check preconditions, and invariants and display the new state of the system in
terms of the object's attributes and relationships with other objects. Animation is useful,
especially to novices, because it provides feedback and debugging of the specification. It is also
useful for validation, i.e. demonstrating to users that the specification describes a system which

will be useful.

A class' dynamic behaviour can be proven to conform to its invariants. In UML terms this
means that the proof tools will provide assistance in proving that no sequence of invocations of
an object's operations can produce a resultant state (in terms of the class' attributes and
associations with other objects) that disobeys the invariant. A safety or business critical property

of the system could be specified and verified in this way.

UML models prepared for translation to B contain invariant and method specifications written
in B notation. The annotated UML diagram is given a precise semantics by the B generated by

the translator.
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6.3 The U2B Translator

The U2B translator converts Rational Rose* UML Class diagrams (Rational 2000A), including
attached statecharts, into the B notation. U2B is a script file that runs within Rational Rose and
converts the currently open model to B. It is written in the Rational Rose scripting language,
which is an extended version of the Summit BasicScript language (Rational 2000B, Rational
2000C). U2B is configured as a menu option in Rose. U2B uses the object-oriented libraries of
the Rose Extensibility Interface to extract information about the classes in the logical diagram of
the currently open model. The object model representation of the UML diagram means that
information is easily retrieved and the program structure can be based around the logical
information in the class rather than a particular textual format. U2B uses Microsoft Word® to
generate the B Machine files. The current version of U2B is a prototype for exploring the
translation rules and the efficacy of the concept. The translator could be improved in efficiency

and robustness as outlined in Chapter 9.

6.4 Structure and Static Properties

The translation of Classes, attributes and operations is derived from proposals for converting
OMT to B (Meyer & Souquieres 1999). However, since our aims are primarily to assist in the
creation of a B specification rather than to generate a formal equivalent of a UML specification,
our translation simplifies that proposed by Meyer and Souquieres. This is achieved by

restricting the transiation to a suitable subset of UML models.

A separate machine is created for each class and this contains a set of all possible instances of
the class and a variable that represents the subset of current instances of the class. Attributes and
(unidirectional) associations are translated into variables whose type is defined as a function

from the current instances to the attribute type (as defined in the Class diagram) or associated

class.

For example consider the following class diagram with classes A and B, where A has an attribute
x and there is a unidirectional association from A to B with role y and 0..1 multiplicity at the

target end. A second association, w, has a 1..n multiplicity:

*Rational Rose is a trademark of the Rational Software Corporation

Microsoft Word97 is a trademark of the Microsoft Corporation

72



This will result in the following machine representing all instances of A:

MACHINEA
EXTENDS
B
SETS
ASET
VARIABLES
Ainstances,
X,
w,
Y
INVARIANT
Ainstances <: ASET &
X : Ainstances --> X &
w : Ainstances --> POW1l (Binstances) &
y : Ainstances +-> Binstances
INITIALISATION
Ainstances := {} ||
x = {} ||
wi= () |
y = {}

Il

Note that the multiplicity of the association w is handled as a function from instances of class A
to sets of instances of class B using the POW (powerset) operator. Multiplicities of associations
are discussed in more detail later. The machine is initialised with no instances and hence all

attribute and association functions are empty. A separate machine will be generated for class B.

In the example above, as well as in the examples that follow, we use the usual B conventions for
capitalisation of names. That is, type sets, including given or enumerated sets, are named in
upper case and variables are named in lower case. Hence attributes and association roles are
named in lower case. Class names are given in upper case since they are used to generate the
name for the given set of possible instances of the class. This results in the variable representing

the set of possible instances being part upper and part lower case, however this reflects its main

role as a type specifier.
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6.4.1 Instance Creation

A create operation is automatically provided for each class machine so that new instances can
be created. This picks any instance that isn't already in use, adds it to the current instances set,
and adds a maplet to each of the attribute and association relations mapping the new instance to
the appropriate initial value. Note that, according to our definition (via translation) of class
diagrams, association means that the source class is able to invoke the methods of the target

class. The example below is similar to the first example but class A has an additional attribute,

z, that has an initial value, k.

Return <-- Acreate =

PRE
Ainstances /= ASET
THEN
ANY new
WHERE
new : ASET - Ainstances
THEN
Ainstances := Ainstances \/ {new } ||

ANY xx WHERE xx:X THEN
x (new) :=xx END ||

z (new) :=k ||

ANY xx WHERE xx:POWl (Binstances) THEN
w(new) :=xx END ||

ANY xx WHERE xx:Binstances THEN
y(new) :=xx END ||

Return := new

END
END

Attribute x has no initial value specified and is therefore initialised non-deterministically to any
value of the type X. Attribute z is initialised to the specified initial value, k. Association w must
be initialised to a non empty set because its multiplicity may be greater than one but is definitely
greater than zero. (Currently, we have no means of specifying initial values for associations). It
is initialised non-deterministically to any non-empty subset of instances of B. The association, v,
is initialised non-deterministically to any instance of B. (Since its multiplicity is O or 1 it could

have been left undefined. This is discussed further below).
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6.4.2  Association Multiplicities

In UML, multiplicity ranges constrain associations. The multiplicities are equivalent to the
usual mathematical categorisations of functions: partial, total, imjective, surjective and their
combinations. Note that the multiplicity at the target end of the association (class B in the
example above) specifies the number of instances of B that instances of the source end (class a)
can map to and vice versa. This can be confusing when thinking in terms of functions because
the constraint is at the opposite end of the association to the set it is constraining. The
multiplicity of an association determines its modelling as shown in Table 6.1. We use functions
to sets of the target class instances (e.g. POW(B) ) to avoid non-functions. Note that n is assumed

unless otherwise specified in the UML class diagram.

Multiplicity also affects the initialisation of an association that is performed when new instances
of the source class are created. Currently this has not been adequately addressed in the U2B
translation. For example, in the first case in Table 6.1 (0..n=>0..1), the translator selects any
existing instance of class B. This is unnecessarily restrictive since creating a new instance of B
or leaving the association undefined are equally viable options. In the case (1..1->1..1) the
translator’s action is invalid since the only allowable initialisation is to create a new instance of
B to map the association to. The (automatically generated) create operation supplies a new
instance as an output of the operation but this can only be assigned to a local variable or output
variable. Assignment of an operation output to a global variable would require the use of
sequential composition, which is not allowed in specifications in B. An alternative ‘create’
operation that accepts a parameter identifying the new instance to be created is required.
Similarly, for the case 0..n = 0..n, because the multiplicity at the target class may be greater
than 1, it should be possible to initialise the association to a set consisting of any combination of
existing and newly created instances of B. In the last case in Table 6.1 (1..1->1..n) the
translator’s action is, again, invalid since the only valid action is to create a (non-empty) set of
new instances of B. To create and assign a set of new instances, an alternative create operation is

needed that accepts as a parameter the set of new instances.
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Association Representations in B for Different Multiplicities

Ai and Bi are the current instances sets of class A and B respectively (i.e. Ainstances and Binstances)
and f is a function representing the association (i.e. the role name of the association with respect to the
source class, A).
disjoint (f) isdefined in B as:
1{al,a2).( al:dom(f) & a2:dom(f) & al/=a2 => f(al)/\f(a2)={(} )

UML association Informal description of B B invariant
multiplicity representation Inva
0.n - 0..1 partial function to Bi Ai +-> Bi
0.n->1..1 total function to Bi Ai --> Bi
0.n > 0..n total function to subsets of Bi Ai ~--> POW(Bi)
0.n° 1.n totallfunctlon to non-empty subsets Ai --> POWL(Bi)
of Bi
0.1-0..1 partial injection to Bi Ai >+> Bi
0.1-> 1.1 total injection to Bi Ai >-> Bi
0.1 0.n total function to subsets of Bi Ai --> POW(Bi) &
B B which don’t intersect disjoint (£)
0.15 L total function to non-empty subsets | Ai --> POW1(Bi) &
- h of Bi which don’t intersect disjoint (£f)
1.n > 0..1 partial surjection to Bi Ai +->> Bi
l.n=> 1.1 total surjection to Bi Ai -->> Bi
10> on total function to subsets of Bi Ai --> POW(Bi) &
- " which cover Bi union(ran(f))= Bi
e total function to non-empty subsets | Ai --> POW1l(Bi) &
- " of Bi which cover Bi union(ran(f))= Bi
1..1=0.1 partial bijection to Bi Ai >+>> Bi
1.1=> 1.1 total bijection to Bi Ai >->> Bi
. . Ai --> POW(Bi) &
1.12>0.n to;f.d lf;unctlonBt.o S?isets .OfBl . union(ran(f))= Bi &
which cover Bi without intersecting | 43 «yoint (f)
total function to non-empty subsets | Ai --> POW1(Bi) &
1.1=> l.n of Bi which cover Bi without union(ran(f))= Bi &
intersecting disjoint (£f)

Table 6.1 — How associations are represented in B for each possible multiplicity constraint

In Fig. 6.1 a mapping represents an association between the classes A and B with multiplicity
0..n = 0..1. The representation in B is a partial function. It is not a total function because the
element a4 doesn’t map to anything in B (as indicated by the 0 at the right hand end of 0..n =
0..1). It is not injective because b2 is mapped to by both a2 and a3 (as indicated by the n at the
left hand end of 0..n = 0..1). It is not surjective because b3 is not mapped to by anything in A

(as indicated by the O at the left hand end of 0..n = 0..1)
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Fig 6.1 Mapping representing a 0..n = 0..1 association

6.4.3 Attribute Types

Attribute types may be any valid B expression that defines a set. This includes predefined types
(such as NAT, NATI, BOOL and STRING) functions, sequences, powersets, instances of
another class (referenced by the class name), and enumerated or deferred sets defined in the
class specification documentation window. (If translating to B-Core B, the appropriate B library
machines must be referenced via a SEES clause in the class’s specification documentation
window). If the type involves another class (and there is no unidirectional path of associations
to that class) the machine for that class will be referenced in a USES clause so that its current
instances set can be read. If there is a path of unidirectional associations to the class it will be
extended (EXTENDS) by this machine in order to represent the association and this will
provide access to the instances set. (Note that only unidirectional associations are interpreted as
associations. Unspecified or bi-directional associations are ignored and can therefore be used to
indicate type dependencies diagrammatically if required). Any references to the class in type

definitions of variables or operation arguments will be changed to the current instances set for

that class.

For example, the following shows a class that has an attribute x of type, non-empty finite subset
of natural numbers. It has an attribute vy that is of type, non-empty sequence of booleans. The
library machine Bool_TYPE has been referenced via a SEES clause in the class’s
documentation window (this would not be necessary for Atelier-B). It has an attribute z that has
type, total injection from Y to permutations of z. A ‘SETS’ clause has been added to the class’

documentation window that defines Y as a deferred set and Z as an enumerated set.
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tlass Specification for &

Relalions | Components | Nested | Files

General | Detail I Operations ] Attributes
| A Name: IA Parent:  Logical View
= — Type: v
Bl : FIN1(NAT) c B -
= . Stereotype: I VI
y : seq1 (BOOL) r Expoit Control
z:Y >->perm(Z) @ Public C Puotected " Piivate  |mplementation
W : POW(B) Documentation:
k SEES S|
| Bool_TYPE
,,J SETS

Y
Z = {blue, yellow, green. red}

| B
Eﬁ =
menm 2o l 0K | Cancel I Apply ’ Browsevl Help l

Note that ‘Export Control’ settings in the class specification are not used in the U2B translation.

The corresponding B machine for class A is shown below.

MACHINEA
SEES
Bool_TYPE
USES
B
SETS
ASET ;
Y i
Z = {blue, yellow, green, red}

VARIABLES

Ainstances,

X,

Y.

z,

w
INVARIANT

Ainstances <: ASET &

x : Ainstances --> FIN1(NAT) &
Ainstances --> seql (BOOL) &
Ainstances --> Y >-> perm(Z) &
Ainstances --> POW(Binstances)

N K

6.4.4 Global Definitions

It is often useful to define types as enumerated or deferred sets for use in many machines. We
use 'class utilities' for this. In UML, a class utility is a class that doesn't have any instances, only
static (class-wide) operations and attributes. The U2B translator creates a machine for each class
utility and copies any text in the specification documentation window of its class specification

into the machine. Hence definitions, sets and constants can be described in B clauses in the
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documentation window. Any machines that reference things defined in this way must have an
association to the class utility. (This association will not be interpreted as an association to an
ordinary class). In the following example a class utility, DEFS, is used to define a set X that is

used as a type by 2 other classes.

BYciass specification for DEFS ﬁ}m
DEFS Relations | Components | MNested | Files
General I Detal | Operations | Attibutes

Name: ]D EFS Parent: Logical View
Type: ICIassUlility v]
Stereotype: ] - i

i~ Export Control
" Public (" Prgtected ¢ Private ¢ |mplementation

Documentation;
/ SETS>< Zl
/ |

Blx: X Bz X #l
L ‘ L — k| cacel | apoy | Bowse~| Heb |

The corresponding machine for class utility DEFS is:

MACHINEGLOBALS
SETS

X
END

The machines for classes A and B will reference DEFS via a ‘SEES clause:

SEES
DEFS

6.4.5 Local Definitions

As we have seen in a previous example, such sets can also be defined locally to a class in the
class' specification documentation window. In fact, any valid B clause can be added in this
window. For example, we use this method to specify invariants for the class. Each clause must
be headed by its B clause name in capitals and starting at the beginning of a line, the text that
follows that clause, up until the next clause title (if any) will be added to the appropriate clause
in the machine. Any text before the first clause is treated as comment and added as such at the

top of the machine
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6.4.6 Singular Classes

Often, a B machine models a single generic instance of an entity, rather than an explicit set of
instances (in the same way that a class in UML leaves instance referencing implicit). The
resulting specification is simpler and clearer for not modelling instances. If the class multiplicity
(cardinality) is set to 1..1 in the UML class specification, the U2B translator creates a machine
with no instance modelling. Note that this can only be done at the top level of an association
hierarchy since at lower levels the instance set is used for referencing by the higher level. Below
is shown the machine representing class A from the first example above if the class’ multiplicity
is set to 1..1. Note that there is no modelling of instances; the types of attributes are simpler
because it is no longer necessary to map from instances to the attribute type. There is no

instance create operation, attributes are initialised in the machine initialisation clause.

MACHINEA
EXTENDS
B
VARIABLES
X,
wl
Y
INVARIANT
X : X &
w : POW1l(Binstances) &
y : Binstances

INITIALISATION
X 1+ X ||
w :: POWl(Binstances) ||
y := {}

END

6.4.7 Restrictions

The B method imposes some restrictions on the way machines can be composed. These
restrictions ensure compositionality of proof. Their impact is that no write sharing is allowed at
machine level (i.e. a machine may only be included or extended by one other machine). Also,
the inclusion mechanism of B is hierarchical. Hence, if M1 includes M2, then M2 cannot, directly
or transitively, include M1. We reflect these restrictions in the UML form of the specification,
which must therefore be tree like in terms of unidirectionally related classes. Non-navigable
(and bi-directional) associations are ignored but may be used to illustrate the use of another
class as a type (i.e. read access only). However, multiple, parallel associations between the same

pair of classes are permitted.

Although we would like to adhere to the UML class diagram rules as much as possible, since

our aim is to make B specification more approachable rather than to formalise the UML we are
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relatively happy to impose restrictions on the diagrams that can be drawn. That is, we only
define translations for a subset of UML class diagrams. Other authors (Facon, Laleau &
Nguyen, 1996, Meyer & Souquicres, 1999, Meyer & Santen, 2000, Nagui-Raiss, 1994, Shore,
1996) have suggested ways of dealing with the translation of more general forms of class
diagrams. However, the structures of B machines that result from these more general
translations can be cumbersome. If the specification were written directly in B, it would be
highly unlikely that the resulting B would have this form. Since we also desire a usable B

specification we prefer to restrict the types of diagrams that can be drawn.

6.5 Dynamic Behaviour

The dynamic behaviour modelled on a class diagram that is converted to B by U2B is embodied
in the behaviour specification of class operations and invariants. UML does not impose any
particular notation for these definitions; they could be described in natural language or using
UML's Object Constraint Language (OCL). However since we wish to end up with a B
specification it makes sense to use bits of B notation to specify these constraints. The
constraints are specified in a notation that is close to B notation but needs to observe a few
conventions in order for it to become valid B within the context of the machine produced by
U2B. When writing these bits of B the writer shouldn't need to consider how the translation
would represent the features (associations, attributes and operations) of the classes. Also we felt
we should follow the object-oriented conventions of implicit self-referencing and the use of the

dot notation for explicit instance references. This is illustrated in examples below.

6.5.1 Invariant

Unfortunately there is no dedicated text box for a class invariant in Rational Rose. One
suggestion is to put invariant constraints in a note attached to the class (Warmer & Kleppe,
1999), but notes are treated as an annotation on a particular view (diagram) in Rational Rose
and not part of the model. This makes them difficult to access from the translation program and
unreliable should we extend the conversion to look at other views. Therefore we include the
invariants as a clause in the documentation text box of the class' specification window.
Invariants are generally of two kinds, instance invariants (describing properties that hold
between the attributes and relationships within a single instance) and class invariants
(describing properties that hold between different instances). For instance invariants, in keeping
with the implicit self-reference style of UML, we chose to allow the explicit reference to ‘this
instance’ to be omitted. U2B will add the universal quantification over all instances of the class

automatically. For class invariants, the quantification over instances is an integral part of the
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property and must be given explicitly. Hence, U2B will not need to add quantification and

instance references.

For example, if bx: NAT is an attribute of class B then the following invariant could be defined

in the documentation box for class B:

bx < 100 &
1(bl,b2).((bl:B & b2:B & bl/=b2)=> (bl.bx/=b2.bx)

This would be translated to:

' {thisB) . (thisB:Binstances =>

bx(thisB) < 100 &

1(bl,b2).((bl:Binstances & b2:Binstances & bl/=b2)
=> (bx(bl)/=bx(b2))
)

The translation has added a universal quantification, ! (thisB), over all instances of B and this
is used in the first part of the invariant. It is not used in the second part where the invariant
already references instances of class B. (Note that currently the translator adds one universal

quantification for the entire invariant whether or not it is needed).

6.5.2 Operation Semantics

Operation pi‘econditions are specified in a textual format attached to the operation within the
class. Details of operation behaviour are specified either in a textual format attached to the
operation, or in a statechart attached to the class. Operation behaviour may be specified
completely by textual annotation, completely by statechart transitions, or by a combination of

both composed as simultaneous specification.

Operation textual behaviour specification - In Rational Rose, 'Specifications' are provided for
operations (as well as many other elements) and these provide text boxes dedicated to writing
preconditions and semantics for the operation. (A postcondition text box is also provided.
Initially we used this for the operation body. Reviewers found this strange because operation
bodies in B do not look like postconditions predicates. In fact they are mathematically
equivalent, but since our motivation is to achieve a more user-friendly and intuitive form of
formal specification, we decided to use the semantics box because it suits the pseudo-

operational style of B).

Operations need to know which instance of the class they are to work on. This is implicit in the

class diagram. The translation adds a parameter thisCLASS of type CLASSinstances to each
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operation. This is used as the instance parameter in each reference to an attribute or association

of the class.

A

B¥set_y(i: NAT) out

In the above example, set_y might have the following precondition:

i > y.bx

and semantics

y.b_op(i) ||
IF y.bx <100
THEN

out := FALSE
ELSE

out := TRUE
END

which would be translated to

i > bx(y(thisa))

and

b_op(y(thisa)) ||
IF bx(y(thisA)) <100

THEN

out := FALSE
ELSE

out := TRUE
END

Operation Return Type - UML operation signatures contain a provision for specifying the
type for a value returned by the operation. Since B infers this from the body of the operation we
use it instead to name the identifiers that represent operation return values. The string entered in
the return type field for the operation will be used as the operation return signature in the B
machine representing the class. For example, the set_y operation in the above example has its

return field set to out. The operation signature for set_y in the B machine A will be:
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out <-- set_y (thisaA,i) =

Statechart Behavioural Specification - For classes that have a strong concept of state change,
a statechart representation of behaviour is appropriate. In UML. a statechart can be attached to a
class to describe its behaviour. The underlying model representing the statechart is constructed
and viewed via a set of one or more state diagrams. A statechart consists of a set of states and a
set of transitions that represent the changes between states that are allowed. If a statechart is
attached to a class the U2B translator combines the behaviour it describes with any operation
semantics described in the operation specification semantics windows. Hence operation
behaviour can be defined either in the operation semantics window or in a statechart for the

class or in a combination of both.

The name of the statechart model is used to define a state variable. (Note that this is not the
name of a state diagram, several diagrams could be used to draw the statechart of a class). The
collection of states in the statechart is used to define an enumerated set that is used in the type
invariant of the state variable. The state variable is equivalent to an attribute of the class and
may be referenced elsewhere in the class and by other classes. State chart transitions define
which operation call causes the state variable to change from the source state to the target state,
i.e., an operation is only allowed when the state variable equals a state from which there is a
transition associated with that operation. To associate a transition with an operation, the
transition’s name must be given the same name as the operation. Additional guard conditions
can be attached to a transition to further constrain when it can take place. All transitions cause
the implicit action of changing the state variable from the source state to the target state. (The
source and target state may be the same). Additional actions (defined in B) can also be attached
to transitions. The translator finds all transitions associated with an operation and compiles a

SELECT substitution of the following form:

SELECT statevar=sourcestatel & transitionl_guards

THEN statevar:=targetstatel || transitionl_actions
WHEN statevar=sourcestate2 & transition2_guards
THEN statevar:=targetstate2 || transition2_actions
etc

END | |

This is composed with the operation precondition and body (if any) from the textual

specification in the operation's precondition and semantics windows:

Let Popw be the precondition in the operation precondition window, Sosw be the operation

body from the operation semantics window and Gstc the SELECT substitution for this
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operation composed from the statechart. Then the translator will produce the following

operation:

PRE
Popw
THEN
Gstc ||
Sosw
END

This can be represented as: Popw | (Gstc|| Sosw)

Hence the pre condition, Popw, has precedence and, if false, the operation will abort. If an event
B style systems simulation (Abrial 2000) is desired, the specifier should take care not to define
preconditions that conflict with the transition guards. (For example, if an event only occurs if an
attribute, bx, is positive, and this is modelled by a guarded transition; adding the precondition
bx>0 would change the meaning of the model to represent a system where the event

can occur at any time but aborts if bx is not greater then 0).

Note that it would be entirely valid (although somewhat obtuse) to write a precondition within
the operation semantics window: Sosw = Posw | Slosw. However, preconditions take

precedence in simultaneous substitutions, so

(Gstc || (Posw | Slosw)) = Posw | (Gstc || Slosw)

Hence, writing the precondition in the operation semantics window is equivalent to writing it in
the precondition window. It has the same precedence and possible conflicts with the operation
guards derived from the statechart. We feel that writing the precondition in the operation

semantics window should be discouraged because the precedence may not be obvious to readers

of the specification.

If the precondition (Popw A Posw) is true, then the guard from Gstc takes precedence over the

simultaneous substitution, Sosw. This means that the textual operation body from the operation
semantics window, although defined separately from the statechart and not associated with any

particular state transition, is only enabled when at least one of the state transitions is enabled.

That is, if

Gstc = (Gl = T1) O .. O (Gn = Tn)

then,

(Gstc || Sosw) = (GL = (Tl || Sosw)) O .. O (Gn = (Tn || Sosw))

where [ represents choice.
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Actions should be specified on state transitions when the action is specific to that state
transition. Where the action is the same for all that operation's state transitions, it may be
specified in the operation semantics window in order to avoid repetition. The following example
illustrates how a statechart can be used to guard operations and define their actions. It also
shows how common actions can be defined in the operation semantics window and how a

precondition could upset the constraints imposed by the statechart.

i s 1
inc / bx:=bx+10 mC//bf\ bix

| —
non_zero W

© /{ Zero 1

dec[ bx=1] U

dec[ bx>1]

The statechart has 2 states, zero and non_zero. The implicit state variable, b_state (the
name of the statechart) is treated like an attribute of type B_STATE = {zero,non_zero}. An
invariant, (b_state=zero) <=> (bx=0), defines the correspondence between the value of
the attribute bx and the state zero. The invariant would be written in the class specification
window. When an instance is created its b_state is initialised to zero because there is a

transition from an ‘initial’ state to zero.

MACHINEB
SETS
BSET;
B_STATE={zero,non_zero}
VARIABLES
Binstances,
b_state,
bx
INVARIANT
Binstances <: BSET &
b_state : Binstances --> B_STATE &
bx : Binstances --> NAT &
' (thisB) . (thisB:Binstances =>
(b_state(thisB)=zero) <=> (bx(thisB)=0)
)
INITIALISATION
Binstances :=
b_state := {}
bx 2= {}

Ol
|
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OPERATIONS
Return <-- Bcreate =

PRE
Binstances /= BSET
THEN
ANY new
WHERE
new : BSET - Binstances
THEN
Binstances := Binstances \/ {new } ||

b_state (new) :=zero ||
ANY xx WHERE xx:NAT THEN
bx (new) :=xx END | |
Return := new
END
END

Operation inc can occur in either state. Its action is different depending on the starting state and

so actions have been defined on the transitions and are combined with the state change action.

inc (thisB) =

PRE
thisB : Binstances

THEN
SELECT b_state(thisB)=zero
THEN b_state(thisB):=non_zero ||

bx (thisB) :=bx(thisB)+10

WHEN b_state(thisB)=non_zero
THEN bx (thisB) := bx(thisB)+1
END

END

Operation dec has two guarded alternatives when in state non_zero but does not occur while
in state zero. Since the action is the same for both transitions it has been defined in the

operation’s semantics window.

BYoperation Specification for dec

General I Detail l Preconditions l
Semantics I Postconditions | Files |
Semantics:

bx:=bx-1 il
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dec (thisB) =
PRE
thisB : Binstances
THEN
SELECT b_state(thisB)=non_zero &
bx (thisB) =1
THEN b_state(thisB) :=zero
WHEN b_state(thisB)=non_zero &
bx (thisB)>1
THEN skip
END | |
bx (thisB) :=bx(thisB) -1
END
END

If we had put a precondition in the operation specification precondition window (or even in the
operation semantics window), the guard would no longer function since the precondition would

fail resulting in an abort when bx=0.

Dperation Specification for dec

Semantics I Postconditions l Files |
General I Detail Preconditions
Preconditions:

bx>0 ]

dec (thisB) =
PRE
thisB : Binstances &
bx (thisB) >0
THEN

SELECT b_state(thisB)=non_zero &
bx (thisB)=1

THEN b_state(thisB) :=zero

WHEN b_state(thisB)=non_zero &
bx (thisB)>1

THEN skip

END | |

bx (thisB) :=bx(thisB) -1

END

This could be avoided by repeating the precondition and decrement substitution in the action
field of each dec transition on the statechart in which case the guard would take precedence.
6.6 Summary

In this chapter we have described a method for attaching formal constraints to class diagrams
drawn in the Rational Rose UML tool. The class diagram becomes a graphical formal

specification notation, B-UML, which we hope will bring benefits to the process of creating a
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formal specification. We define a translation to the B notation, which ensures a precise
definition of the semantics of B-UML. The translation also provides a pure textual equivalent in

a recognised formal notation that has good tool support.
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Chapter 7
Examples of B-UML and U2B in Use

In this chapter we present three examples of B-UML models and show how they translate into
equivalent B specifications. The first example, a raffle game, demonstrates the features of the
class diagram translation. The second example, a railway station, introduces the use of
statecharts to specify operation behaviour within a class. The third example, part of a teletext
page selection system, is based on a real industrial project. It is a simplified version of a model
initially developed jointly with M. Satpathy at Reading University. This example illustrates
some techniques for coping with more complicated statecharts. Although the teletext example is
suitable for the purposes of illustrating the translation techniques, it is apparent that a statechart
description is not the most suitable means to describe the problem. This demonstrates the
importance of having the textual form in the operation semantics windows. The example also

illustrates some limitations of the current translation methods.

7.1 Raffle Game

This example describes a raffle game system. Newly created games must be initialised by
setting their set of prizes before tickets can be sold. When a ticket is sold a record of the player
that bought it is kept. A draw of the winning tickets can be attempted at any time but is only
achieved when enough tickets have been sold to win all the prizes. A ticket can be checked to
see if it is a winning ticket. A prize can be claimed by submitting a winning ticket and

identifying the player that bought it correctly.

Fig. 7.1 shows a class GAME that has typed and initialised attributes, parameterised operations
(some with return values), three association relationships with a class TICKET and an aggregate
relationship with another class, PRIZE. The class also uses another class, PLAYER, as a type.
The associations have role names Prizes, Tickets, Winners and Claimed, which are used
to refer to the instances of the associated class involved in the association. The class GAME has
an operation setprizes that allows the associated prizes to be defined for a particular instance
of GaME. When this has been done, operation buy allows players to buy tickets for a game by
incrementing attribute Sales and non-deterministically selecting an unused instance of class

TICKET, calling its sell operation (which sets its Owner and Sold attributes) and adding it to
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the association Tickets. Once a minimum number of tickets have been sold for a game,
operation draw allows the winning tickets for that game to be selected, one for each prize, and
added to the association Winners. Players can check to see whether their ticket belongs to the
association Winners. If it does, they can use operation claim to obtain one of the prizes, which
is selected non-deterministically. The ticket, for which a prize has been claimed, is added to the
association Claimed. Attribute Owner, of class TICKET, records which player bought the

ticket so that this can be checked when a prize is claimed.

Y class specification for GAME e m
r GAME Relations | Components | Mested | Fies | Msve
B¥Sales : NAT=0 General ] Detal | Operations |  Atibutes

Name: IGAME Parent:  Logical View

BEsetprizes(pp : POW(PRIZE))

BEbuy (buyer : PLAYER) : ticket Dpe:  [Class =l

B¥draw() : success Stereotype: | ~]

.Check(tt z TICKET) - won . r~ Export Control

BEclaim(tt : TICKET, pl : PLAYER) : prize & Public ¢ Prgtected (" Piivate " |mplementation

Documentation:

A game can be initialised by setting its Prizes attribute. :_l
thereafter, if the game has not been drawn tickets can be
bought. If more tickets have been sold than the number of
prizes, then the game can be drawn. This selects a subset

+Prizes of the bought tickets that has the same cardinality as the set
of Prizes. After the game has been drawn a particular ticket
0..n can be checked lo see if it is in the set of winning tickets
and not yet claimed. If it is a claim can be made for that
PRIZE ticket and a Prize will be retumed. That prize is then no
longer available for claiming.
SEES
Bool_TYPE
INVARIANT
TICKET card(Tickets) = Sales &
- Winners <: Tickets &
PLAYER GHOwner : PLAYER Elaim <[: Wé'l?ﬁ‘é g hh:GAME &
= # N I(gg.hh). (gg: ;
- E¥iSold : BOOL = FALSE ga/=hh => gg, Tickets /A hh. Tickets = )
Name : STRING |
M¥sell(buyer : PLAYER)

0K ! Cancel ' Lpply ] _Evowsevl Help l

Fig. 7.1 Class Diagram and Class Specification for Game

Alongside the class diagram is shown the Rational Rose specification for the class GAME.
Following the natural language description in the 'Documentation’ box some class invariants are
given. These express the requirements that the number of sales is equal to the number of tickets
sold, winning tickets are a subset of the tickets sold and tickets for which a prize has been
claimed are a subset of the winning tickets. These invariants describe relationships between the
attributes and associations within a single instance of the class GAME. The last invariant ensures
that a ticket cannot be sold for two different games and describes a relationship between
instances of the class. This last invariant was entered before the translator supported
multiplicities on associations. It is now redundant since the association multiplicity 0..1 at the
source end expresses this constraint and U2B automatically generates the equivalent predicate
disjoint (Tickets). Note that the attribute Sales is also redundant and could be removed.

Apart from requiring extra operations to maintain it, redundant information requires invariants
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to ensure it is kept consistent and these will generate additional proof obligations. (Both have
been left in the example purely for illustrative reasons.) The Atelier-B proof tools were used
(by a colleague) to prove that these invariants were preserved by the operations of the example.
The proofs uncovered a mistake in the original version of the buy operation that allowed a ticket
that already belonged to another game to be resold. In the buy operation described below, the
precondition and selection predicate of the ANY substitution contained tt : TICKET-Tickets
(ie. tt is a ticket that doesn’t already belong to this game) instead of tt:TICKET-

UNION (gg) . (gg:GAME|gg.Tickets) (i.e. ttis a ticket that doesn’t already belong to any

game).

Each operation of the class also has a Rose Specification window with appropriate tabs for the
definition of the operation. The operation preconditions and body shown in Fig. 7.2 are taken
from the precondition and semantics tabs of the specification for the buy operation in class
GaME. The ANY construct is a statement of the B language that selects a value for a variable
(here tt) satisfying some condition. In this case the condition is tt:TICKET-
UNION (gg) . (gg:GAME|gg.Tickets), i.e. select an unused ticket. The second part of this
expression is a generalised union of the association Tickets over all instances of the parent
class, GAME. This is expressed as the union of gg.Tickets for all gg:GAME. Also, note the call

to operation sell of the Tickets class. The operation is called for the instance tt of TICKET.

precondition
Prizes /= {} &
Winners = {} &

TICKET-UNION(gg) . (gg:GAME|gg.Tickets) /= {}

semantics
ANY tt WHERE tt: TICKET - UNION(gg).(gg:GAME|gg.Tickets)

THEN

Tickets := Tickets \/ {tt} ||
tt.sell (buyer) ||

Sales := Sales +1 ||

ticket := tt

END

Fig. 7.2 Precondition and Semantics for operation buy of class GAME

Below is shown the automatically produced B machine for the class GAME:

92




MACHINEGAME
/*" A game is initialised by setting its Prizes attribute. "*/

SEES Bool TYPE Machines of associated classes are extended so that their
EXTENDS operations are accessible to higher level classes. Classes
PRIZE, used as types only need USES access.
TICKET
USES
PLAYER
SETS
GAMESET
VARIABLES, Current class instances is a variable which is a subset of
GAMEinstances, the possible instances, a given set, GAMESET.
Sales,
gfzi:ié , Variables model the attributes and associations of the
, class.
Winners,
Claimed
The types of variables used to model attributes and associations are defined in the
invariant as functions from the current instances to the attribute/association type.
Association multiplicities affect these functions and impose constraints on their ranges.
In this case the functions map to subsets of the target class that don’t intersect
INVARIANT

GAMEinstances <: GAMESET &

Sales : GAMEinstances --> NAT &

Prizes : GAMEinstances ~--> POW(PRIZEinstances) &

disjoint(Prizes)

Tickets : GAMEinstances --> POW({(TICKETinstances) &

disjoint (Tickets)

Winners : GAMEinstances --> POW(TICKETinstances) &

disjoint (Winners)

Claimed : GAMEinstances --> POW(TICKETinstances) &

disjoint (Claimed)

! (thisCGame) . (thisGame:GAMEinstances =>
card(Tickets(thisGame)) = Sales(thisGame) &

Winners (thisGame) <: Tickets(thisGame) &

Claimed(thisGame) <: Winners(thisGame) &

! (gg,hh). (gg:GAMEinstances & hh:GAMEinstances &

gg/=hh => Tickets(gg) /\ Tickets(hh) = {})

)

instance references has been converted to parameterisation.

Invariants from the class documentation window are copied into the machine invariant and
have universal quantification over all current class instances added. Dot notation of explicit
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INITIALISATION
GAMEinstances := {} || All machine variables are initialised to empty
sales := {1} || sets. An instance creation operation is
Px?lzes = () | automatically provided. This initialises the
T}ckets = {1 attribute values for the new instance according
winners B S to the initialisation values specified for the class
OPERAC’:I‘]i%i\THSled =0 or non-deterministically where no initialisation
value is given.. The new instance is returned.
Return <-- GAMEcreate =
PRE
GAMEinstances /= GAMESET
THEN
ANY new
WHERE
new : GAMESET - GAMEinstances
THEN
GAMEinstances GAMEinstances \/ {new } ||

Sales(new):=0 ||
ANY xX WHERE xx:POW(PRIZEinstances-union (ran{(Prizes)))
THEN Prizes(new) :=xx END ||
ANY xxX WHERE xx:POW(TICKETinstances-union (ran(Tickets)))
THEN Tickets (new) :=xx END ||
ANY xxX WHERE xx:POW(TICKETinstances-union (ran(Winners)))
THEN Winners (new) :=xx END ||
ANY xxX WHERE xx:POW(TICKETinstances-union{ran{Claimed)))
THEN Claimed(new) :=xx END ||
Return := new
END
END
/*" Initialise the Prizes attribute with a set of Prizes "*/
setprizes {(thisGame,pp) =

PRE
thisGame : GAMEinstances &
pp:POW(PRIZEinstances) &
Prizes(thisGame) = {}

THEN
Prizes (thisGame) := pp

END

/*" If the game has had its Prizes set and has not been drawn then "*/
/*" a ticket is sold to the buyer and added to Tickets and returned"*/

ticket <-- Dbuy (thisGame,buyer) =
PRE
thisGame : GAMEinstances &

buyer:PLAYERinstances &
Prizes (thisGame) /= {} &

Winners (thisGame) = {} &
TICKETinstances-UNION(gg) . (gg:GAMEinstances|Tickets(gg)) /= {}
THEN

ANY tt WHERE tt: TICKETinstances -
UNION(gg) . (gg:GAMEinstances|Tickets (gg))

THEN
Tickets (thisGame) := Tickets(thisGame) \/ {tt} ||
sell(tt,buyer) ||
Sales (thisGame) := Sales(thisGame) +1 ||
ticket := tt
END
END
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/*" If the game has been set up and not been drawn already and "*/
/** enough tickets have been sold to provide a winner for each "*/
/*" prize then the game is drawn by selecting a subset of the "*/
/*" tickets sold as winners of the prizes and true is returned. "*/
/*" If the game has been set up and not been drawn already but "*/
/*'" not enough tickets have been sold, false is returned "*/

success <-- draw (thisGame) =

PRE
thisGame : GAMEinstances &
Prizes{thisGame) /= {} &
Winners (thisGame) = {}

THEN
IF card (Prizes(thisGame)) < card (Tickets (thisGame))
THEN

ANY ww WHERE
ww : POW (Tickets(thisGame)) &

card (ww) = card (Prizes(thisGame))
THEN
Winners{(thisGame) := ww
END ||
success := TRUE
ELSE
success := FALSE
END
END
/*" If tt is in the set of winners but not in the set of claimed "*/
/*"  true is returned, otherwise false is returned "*/
won <-- check (thisGame,tt) =
PRE
thisGame : GAMEinstances &
tt:TICKETinstances
THEN
IF tt : Winners(thisGame) - Claimed(thisGame)
THEN
won := TRUE
ELSE
won := FALSE
END
END

/*" If tt is in Winners but not in Claimed and pl is the owner of "*/
/*" tt one of the prizes in Prizes is returned and is removed from "*/
/*" Prizes and the ticket is added to claimed "*/
prize <-- <c¢laim (thisGame, tt,pl) =
PRE

thisGame : GAMEinstances &

tt:TICKETinstances &

pl:PLAYERinstances &

tt : Winners(thisGame) - Claimed{thisGame) & Owner (tt) = pl
THEN
ANY pp WHERE pp :Prizes(thisGame)
THEN
Claimed(thisGame) := Claimed(thisGame) \/ {tt} |[]
Prizes(thisGame) := Prizes(thisGame) - {pp} ||
prize := pp
END
END

END
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This example demonstrates how effective the semi-diagrammatic method is for creating formal
specifications. In producing the specification, we found the representation of its main elements
(such as GAME and TICKET) and the organisation of attributes, associations and operations,
helpful in visualising and deriving the model. Much of the infrastructure of the B machines was
generated automatically, which left us free to concentrate on adding the operation semantics and
invariants. The separation of the parts of textual specification by ‘hanging’ them onto
diagrammatic entities seemed to help psychologically in making them seem easier to consider.
The resulting specification closely resembles the familiar UML class diagram making it
approachable and comprehendible to software engineers. Using the textual B version of the

model enabled us to detect a mistake in it.

7.2 Railway Station

This example is a model of a railway station. It is an extension of the example in Lano (1996).
A station has a number of platforms and extra platforms can be added. Arriving trains are
allocated to an available platform if one exists or are queued until a platform becomes available
or an error occurs. In the latter case a queued train moves to one of the platforms whether or not
it is available and hence a crash may occur. Platforms may be opened and closed. A platform is
available when it is open and no train is occupying it. A crash occurs if a train arrives at a closed
or occupied platform. If a crash occurs at a platform it may be cleared and made available by
opening it. If a multiple crash occurs (i.e. more than 1 train occupies the platform) opening the

platform will leave it closed and a subsequent opening is required to make it available.

The class diagram in Fig. 7.3 consists of a class STATION that has a typed and initialised

attribute, parameterised operations (one with a return value), and an association with another

_ STATION _ PLATFORM
Bqueue : seq(TRAIN) = <> | Ptrains : POW(TRAN) = {},
®irain_arrives(tt : TRAIN) : outcome e Iagormss.ar rival(tt : TRAIN)
®train_departs(pp : PLATFORM) ~N Mdeparture()
®next_train(error : BOOL) Mcloseplatform()
®3dd_platform(pp : PLATFORM) :'oPenplatform()

Fig. 7.3 Class Diagram for Example Station

class PLATFORM. The association has a role name platforms, which is used to refer to

instances of the associated class.
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In Fig. 7.4 the Rational Rose specification window for the class PLATFORM is shown. Following
the natural language description in the documentation box some class invariants are given. The
first part of the invariant contains three instance invariants that implicitly apply to all platform
instances. The final part of the invariant is a class invariant that is explicitly quantified for all
pairs of platforms. Note that some of these invariants refer to a state variable, platfom_state,

and its possible values that have been obtained from a statechart attached to the class.

BYciass Specification for STATION x| BY class specification for PLATFORM 21 %]
Relations | Components | Mested | Files | MsVC Relations | Components | Nested | Files | MSVC
General ] Detal | Operations | Atibutes General Detal | Operations |  Atibutes

Name: ]STATIUN Parent:  Logical View Name: IPLAT FORM Parent:  Logical View
Type: ’ Class v I Type: i Class _VJ
Stereotype: ’ vi Stereotype: jl Zl

Export Control — Export Control
!75 " Public { Protected ¢ Private " Implementation ¢ Public ¢ Protected ¢ Private (" Implementation
Documentation: Documentation:
A station can have several platforms. When a tiain ariives it = | A platform is available when it has no trains and occupied 4 |
is sent to any of the available platforms. If no platform is when it has one train. If a second train arrives at a platform
available it is queued until a platform is freed by a train or if a train arrives at a closed platform, there is a crash. A
departing platform can be closed if it has no trains at it and then
SEES opened again. When crashed opening the platform will clear
Bool_TYPE any trains from that platform and make it available if it had 1
SETS i = train at it, or make it closed if it had more than 1 train.
MSG={in_station,waiting} SETS
INVARIANT TRAIN
ran(queue)/AUNION (pp). [pp:platformsipp. trains) = {} & INVARIANT
size[queue)=card(ran(queue)) ((platform_state=available or platform_state=closed) <=>
(trains={})) &

((platform_state=occupied) => (card(trains)=1)) &

([platform_state=crashed) => [trains/={})) &

1(p1.p2).(p1:PLATFORM & p2:PLATFORM &

(p1/=p2) => (p1.trains/\p2.trains={}))
= =

0K ] Cancel ] Apply ! Browse v! Help ' 0K I Cancel 1 Lpply ' Browse vl Help ]

Fig. 7.4 Class specification windows for the classes STATION and PLATFORM

The multiplicity of the STATION class has been set to 1 by setting the multiplicity field in the
detail tab of the class’s specification box (not shown). This will prevent the U2B translation

from modelling instances of the class.

Each operation of the class also has a Rose Specification window with appropriate tabs for the
definition of the operation. The operation precondition and body, shown in Fig. 7.5, are taken
from the precondition and semantics tabs of the specification for the train_arrives operation
in class STATION. The precondition states that tt must not belong to the range of queue and it
must not belong to the union of the set trains for all platforms associated with this station.
That is, the arriving train must not be waiting to get into the station or at a platform already. If
an empty platform exists at this station, the operation sends the train to any such empty platform

and returns the outcome in_station. Note that the arrival at a platform is handled by calling
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the arrival operation of class PLATFORM, specifying the selected platform, pp, using the dot

prefix notation. If no platform is available the train is appended to the queue and an outcome,

waiting, is returned.

train arrives precondition

tt/: ran(queue) &
tt/: UNION(pp) . (pp:platforms|pp.trains)

train arrives semantics

IF #(qq) . (gg:platforms & gg.platform state=available)
THEN
ANY pp WHERE
pp:platforms &
pp.platform_state=available
THEN
pp.arrival (tt) ||
outcome:=in_station
END
ELSE
queue:=queue”[tt] ||
outcome:=waiting
END

Fig. 7.5. Precondition and semantics for operation train_arrives of class Station

.’Initial
I closeplatform
) =
( available | openplatform it closed |
/ _J e
openplatform[ card(trains)>1 ]/ trains:={}
arrjval
’L arrival
departure openplatform[ card(trains)=1]/ trains:={}

occupied arrival B

Fig. 7.6. State chart attached to class platform
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Fig. 7.6 shows the statechart attached to class PLATFORM. The statechart describes the states that
a platform can be in and which transitions between states are possible. Each transition
corresponds to an operation of the machine and has its event named after an operation. For
example, when a platform is in the state available, two operations are allowed:
closeplatform and arrival. Execution of the arrival operation in this state changes the
control state to occupied, while executing the closeplatform operation changes the control
state to closed. The transitions associated with the operation openplatform have additional
guards which determine which of the transitions will be taken when openplatform occurs from
the state crashed. These transitions also take a different action from the openplatform

transition that occurs from the state closed.

Below is shown the B machine for the class PLATFORM.

MACHINEPLATFORM

/*" A platform is... etc. "*/

SETS
PLATFORMSET;
PLATFORM_STATE={available,closed, occupied, crashed} ;
TRAIN

PLATFORMSET is the set of all possible instances of PLATFORM. PLATFORM_STATE has been
generated from the states on the attached statechart. TRAIN has been generated from the SETS

machine clause in the class specification documentation window.

VARIABLES
PLATFORMinstances,
platform_state,
trains
INVARIANT
PLATFORMinstances <: PLATFORMSET &
platform_state : PLATFORMinstances --> PLATFORM_STATE &
trains : PLATFORMinstances --> POW(TRAIN) &

PLATFORMinstances is a variable subset of PLATFORMSET, representing the current instances
of PLATFORM. A variable, platform_state represents the state that each

PLATFORMinstance is in. A variable, trains, represents the subset of TRAIN belonging to

each instance of PLATFORM.
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I (thisPlatform). (thisPlatform: PLATFORMinstances =>
((platform_state(thisPlatform)=available or
platform_state(thisPlatform)=closed) <=>
(trains(thisPlatform)={})) &
((platform_state(thisPlatform)=occupied) <=
(card(trains(thisPlatform))=1
((platform_state(thisPlatform)=crashed) <=>
(trains(thisPlatform)/={})) &
1 (pl,p2). (pl:PLATFORMinstances & p2:PLATFORMinstances &
(pl/=p2) => (trains(pl)/\trains(p2)={}))

>
)) &

Further invariants reflect the invariants specified in the specification documentation text box for
class PLATFORM. Universal quantification over PLATFORMinstances has been added and the

dot notation of explicit instance references has been converted into parameters.

INITIALISATION
PLATFORMinstances :=
platform state := {}

OPERATIONS

Return <-- PLATFORMcreate =
PRE PLATFORMinstances /= PLATFORMSET
THEN
ANY new
WHERE
new : PLATFORMSET - PLATFORMinstances
THEN
PLATFORMinstances := PLATFORMinstances \/ {new} ||
platform_state(new) :=available ||
trains(new):={} ||
Return := new
END
END ;

Initially PLATFORMinstances is empty, and hence all variables are empty sets. A create
operation is provided which non-deterministically picks any unused instance from
PLATFORMSET and initialises state and attribute variables to the initial values given in the

statechart and UML class specification respectively
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arrival (thisPlatform,tt) =

PRE
thisPlatform : PLATFORMinstances &
tt:TRAIN &
tt/:UNION(pp) . (pp: PLATFORMinstances|trains (pp))
THEN

SELECT platform _state(thisPlatform)=available
THEN platform state(thisPlatform) :=occupied
WHEN platform_state(thisPlatform)=closed

THEN platform _state(thisPlatform) :=crashed

WHEN platform state(thisPlatform)=occupied

THEN platform state{thisPlatform) :=crashed

WHEN platform_state(thisPlatform)=crashed

THEN skip

END ||

trains(thisPlatform) :=trains{thisPlatform) \/ {tt}

END ;

openplatform (thisPlatform) =
PRE
thisPlatform : PLATFORMinstances
THEN
SELECT platform_state(thisPlatform)=closed
THEN platform_state(thisPlatform) :=available
WHEN platform_state(thisPlatform)=crashed &
card(trains(thisPlatform))=1
THEN platform_state({thisPlatform):=available ||
trains(thisPlatform) :={}
WHEN platform_state(thisPlatform)=crashed &
card(trains(thisPlatform))>1
THEN platform_state(thisPlatform):=closed ||
trains(thisPlatform) :={}
END
END
END

Operations are defined for each operation of the class. (Only two operations are shown). A
parameter, thisPlatform, has been added to define the instance that the operation is to
operate on; this is implicit in the UML class diagram version. The type of this and any other
parameters are defined as operation preconditions. Other preconditions are derived from the
operation preconditions specification window of the class diagram. The operation body is
derived from the operation semantics specification window of the class diagram (see Fig. 7.5)
and from the statechart. The body of operation arrival consists of a ‘SELECT’ guard, which
defines the state transitions that take place when this operation (event) occurs, and, in parallel,
the action specified in the semantics window, which occurs for each state transition. In
operation openplat form additional conditions determine the final state when the initial state is

crashed leading to two different SELECT branches for the crashed state.

The B machine for the class STATTON does not model instances (because the class multiplicity

has been set to one) and therefore variables representing attributes and associations are typed
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directly rather than as functions. This machine EXTENDS the PLATFORM machine so that it can

call operations of PLATFORM if required.

MACHINESTATION
/*" A station can have several platforms..etc. "*/

SEES
Bool_TYPE
EXTENDS
PLATFORM
SETS
MSG={in_station,waiting}
VARIABLES
gueue,
platforms
INVARIANT
queue : seg(TRAIN) &
platforms : POW(PLATFORMinstances) &

ran{queue) /\UNION (pp) . (pp:platforms|trains(pp)) = {} &
size (queue)=card(ran (gueue))
INITIALISATION
queue:=<> ||
platforms := {}

A variable, platforms, which is a subset of PLATFORMinstances, is used to model the
association with class PLATFORM. No create operation is generated because instances are not
modelled. Instead, the variables are initialised in the INITIALISATION clause to the values
specified in the class diagram (in this case both are initialised to empty). The precondition and

semantics for the train_arrives operation of STATION shown in Fig. 7.5 is as follows:

outcome <-- train_arrives (tt) =
PRE
tt:TRAIN &

tt/: ran{gueue) &
tt/: UNION(pp) . (pp:platform|trains (pp))
THEN
IF #(qq) . {(gqg:platforms &
platform_state(gg)=available)
THEN
ANY pp WHERE

pp:platforms &
platform_state(pp)=available

THEN
arrival (pp,tt) || outcome:=in_station
END
ELSE
gueue:=queue”[tt] || outcome:=waiting
END
END
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This operation makes various references to components of the PLATFORM class, including
reading the state variable platform_state and calling its arrival operation. The object-

oriented dot notation of Fig. 7.5 has been changed to standard B notation.

This example demonstrates how statecharts can be used to specify the behaviour of a class in
terms of the state changes that occur when its operations are invoked. The example shows how
common information specified in the operation semantics is composed with the statechart
defined operation actions when the model is translated to B. One of the benefits of using

statecharts in this way is that an overall view of the behaviour of a class through its combined

operations is presented

7.3 Teletext

The following example is a simplified version of a teletext page selection system. Pages are
selected in a two tier hierarchical pair of columns where the selected group determines the
column of pages available for selection. Selection of items in each column is made by left, right,
up and down arrow keys. An ok key confirms the selected page. The example illustrates how
statecharts as well as semantics windows can be used flexibly with suitable machine definitions
to define class behaviour. The example also uncovers and illustrates some limitations with the

current translation, which will be the subject of future work.

The system was modelled as two classes (Fig. 7.7), OVERVIEWTABLE (of which there is only
one instance) and COLUMN of which there are two distinct instances each being associated with
the overview table in a different role. The COLUMN class models the scrolling behaviour of a
column so that all pages are accessible even if the display is too small to show the complete
column. (Note that in the following, to avoid confusion with up and down arrow keys and
cursor movements, when we refer to scrolling movements we refer to the movement of the
displayed portion rather than the column movement behind the display. Hence scroll down
means that the column moves up relative to the display). The class has operations, Up and Dn, to
respond to up and down commands. It also has a Reset operation to re-initialise the column
(for example the page column is reset every time a new group is selected in the group column).
The class also keeps track of the index of the item currently selected in that column. Note that
the column does not contain the actual sequence of pages of a column; these belong to the other
class. The OVERVIEWTABLE class has two attributes, GPS and G2P, that contain the current list
of groups and a mapping that gives the list of pages corresponding to each group. The type
PAGE is declared as a deferred set in the class specification. The attributes are initialised via the

operation Init. The operation OK, corresponding to the OK key pressed event, returns the
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currently selected page. The operation Display returns the information necessary to produce a
display corresponding to the current selection state. That is, the current list of groups and the
one that is currently selected, and the current list of pages and the one that is currently selected.
The remaining operations define responses to the cursor movement (arrow) keys and are defined

by a statechart described below.

The remaining symbol, SQUASH, is a parameterised class utility used to define a function

constant needed for manipulating sequences.

ﬁYPE
SQUASH i
/7
OVERVIEWTABLE :
BIGPS : seq(PAGE) = <> COLUMN

B¥G2P : PAGE > seq(PAGE) = {} /\ Blcsize: NAT=0
+group E¥Selected : NAT = 1

init(gps : seq(PAGE), map : PAGE --> seq(PAGE)) E¥Scrdl : NAT= 0

ERightArrow()

B UpArrow() Reset(newsize : NAT)
B0 Arow() B P BEUp)

BLeftArrow() +page BDn(

BEOK() : SelectedPage
BEDisplay() : gcol,gsel,pcol,psel

Fig. 7.7 Class Diagram for Example Teletext

The specification for class coLuMN (Fig. 7.8) contains some definitions that are used in the
statechart describing its behaviour. The definitions aid readability as well as making the amount
of text on the diagram more readable and mitigating repetition of expressions on different

transitions. We found the use of definitions in this way essential to make state diagrams more

manageable.

(Note that the translation of dot notations to parameterisation is currently not very robust. For
example the dots in number ranges can be mistaken for explicit instance references preventing
the addition of a ‘thisClass’ type instance reference. To avoid this we have put brackets around

the upper bound of the number range.)

The definitions introduce the concept of cursor position on the display. This is an essential
concept in the display of a column. However, Scroll and Selected (item in list) are even
more fundamental concepts within the aims of the system, and, as shown in Fig 7.9, cursor
position can be calculated from them. Since redundant information necessitates invariants to
ensure consistency, which generate additional proof obligations, it is undesirable to introduce
Cursor as an attribute. Instead we use a definition, which allows us to write ‘Cursor’ instead
of ‘Selected-Scroll’ to aid readability. Two types of response to a vertical movement are

defined, a cursor movement when the cursor changes position within the display area to select a
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new item and a scrolling movement where the information on the display moves up or down
and the cursor position remains constant and thereby selects a new item. The final definition, a

boolean expression NrBottom, illustrates the use of definitions to aid readability in transition

guards.
Elass Specification for COLUMN m
Nested | Files | MSVC

General l Detal | Operations | Attibutes | Relations | Components
Name: lCULUMN Parent:  Logical View
Type: ]Class _'_J

Stereotype: ] =]

r— Export Control

(¢ Public  Protected ¢ Private " |mplementation

Documentation:

CONSTANTS -
dsize

PROPERTIES
dsize = 20

DEFINITIONS

Cursor == (Selected - Scroll) ;

CurUp == (Selected := Selected - 1] ;

CurDn == (Selected := Selected + 1) .

ScrollUp == (Scroll := Scroll - 1 || Selected := Selected - 1) ;
ScrollDn == (Scroll := Scroll + 1 || Selected := Selected + 1) ;
NrBottom == (Selected=csize-1)

INVARIANT
Selected: 1..(csize] &
Scroll: 0..(csize-dsize+1) &
Cursor: 1..dsize &
((column_state = Top) <=> (Selected=1)) &
((column_state = ScrolingUp) <=> [Cursor=2)) &
((column_state = CursorMoving) <=> ((Cursor>2) &
[Cursorcdsize-1 & Selected<csize])) &
((column_state = ScrolingDown) <=> [Cursor=dsize-1 & Selected<csize)) & —
((column_state = Bottom) <=> (Selected=csize]) Ll

[ ok | cancel | ook | Browsew| Heb |

Fig. 7.8 Class Specification for the COLUMN class

Column_ __ __

r ]

A 7

i_ ________ 3 i off-screen
e 4 , part of column
rm—— 5_.

1 Scroll= 6

Display

1
2
3
4 10 displayed
Cursor= 5| Selected= 11 part of column
6
7
8

12
13
14
o 15,  off-screen
[ : _______ 16 ; part of column

Fig 7.9 Relationship between Selected, Scroll and Cursor
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’\ Up[ Scroll=0 ] / CurUp Upl SchQS:ScrollUp

( Top Dn / CurDn ScrollingUp

N o/

Up[ Cursor=3 ]/ CurUp

CursorMoving

Up[ Cursor>3] / CuiUp

Up / Clirlp Up / CurUp

Dn[ Cursor=dsize-2 & not(NrBottem) ] / CurDn

Dn[ NrBottom ]/ CurDn

Y

|

Dn[ not(NrBono:!\)]v/SLrolan

Fig. 7.10 State chart model of semantics of Up and Drn operations of class COLUMN

Dn[ NrBottom ] / ScrollDn ( ScrollingDown J

( Bottom

| S

The statechart (Fig. 7.10) describes the behaviour of the operations Up and Dn. Initially the
column_state is Top. An invariant requires the equivalence of this state to the condition
where the Selected item is the top of the column. From this state the operation Up is not
available. (For a less abstract model we might wish to allow the Up event to occur and specify
that nothing happens). A Dn event from Top will move the cursor down one place (i.e. increase
Selected item by one while leaving Scroll at zero) and change the state to ScrollingUp.
Since Scroll is zero a subsequent Up event would return the state straight back to Top. In
general, while Scroll is greater then zero, Up events in the ScrollingUp state result in the
amount of Scroll and the Selected item both decreasing by one (i.e. Cursor remains at
position 2 on the display). A Dn event from ScrollingUp moves the cursor down one place
and changes the state to CursorMoving. In this state further Dn events will keep moving the
cursor down until it is two places from the bottom of the display. At this point, if the selected

item is not the one before last in the column the cursor is moved down one position and the state
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is changed to ScrollingDown. From ScrollingDown further Dn events will cause Scroll
and Selected to both be increased by one until Selected is one before the last item in the
column when, in addition, the state will change to Bottom. From the state Bottom, further Dn
events do not occur but an Up event will move the cursor up one position and change the state
straight to CursorMoving (we circumnavigate ScrollingDown because we have already
scrolled past the bottom of the column and ScrollingDown changes to Bottom via another
ScollDn action). CursorMoving can return straight to Bottom, with an increase cursor
action, if the cursor is two places from the bottom of the display and Selected is one before

the last item in the column.

In some problems a clear concept of state is involved with a few discrete states that segregate
the system behaviour cleanly into different conditions. In these cases a statechart is clearly an
appropriate means of description. In other cases this is not the case and a textual form of
description is clearer. The example here tends toward the latter. The example statechart provides
a visualisation of some of the conditions that the column can exist in, but the behaviour in
response to an event is often the same for several states. The statechart requires a substantial
investment of effort in order to understand it and to glean significant information from it. The
equivalent textual specifications for the two operations are shown below (Fig. 7.11) and can be
described as follows. Dn: Downward movements can occur while Selected has not reached the
last item in the column. The cursor is increased to the next item on the display unless it is one
before the bottom of the display in which case a scroll down is made instead. Up: Upward
movements can occur while Selected has not reached the first item in the column. The cursor is
decreased to the previous item on the display unless it is one below the top of the display and

the display has been scrolled (Scroll>0) in which case a scroll up is made instead.

Dn
SELECT Selected<csize THEN
IF Cursor = dsize-1 THEN
ScrollDn
ELSE
CurDn
END
END

Up
SELECT Selected>1 THEN
IF Cursor = 2 & Scroll>0 THEN
ScrollUp
ELSE
CurUp
END
END

Fig. 7.11 Equivalent textual semantics definitions for operations Up and Dn
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The specification for the class OVERVIEWTABLE (Fig. 7.12) contains two definitions used in the
statechart describing the class’s behaviour. These definitions conditionally select the next, or

previous (respectively), group and reset the column of pages accordingly.

l:lass Specification for OVERVIEWTABLE

Relations | Components 1 Nested ] Files ] MSYC
General ' Detail | Operations ] Attributes

Name: IDVEFIVIE\»\/TABLE Parent:  Logical View
Ivpe:  [Class =l

Stereotype: l :J
r—Esport Control

(¢ Public " Protected ¢ Private ¢ Implementation

Documentation:

SEES
Bool_TYPE
INCLUDES
SQUASH(PAGE)

SETS
PAGE

DEFINITIONS
SelPrevGp ==
IF group.Selected > 1 THEN
group.Up |l
page.Reset(size(G2P(GPS(group. Selected-1))))
END ;
SelNextGp ==
IF group.Selected < group.csize THEN
group.Dn |
EN;E?ge.Heset[size[G 2P(GPS(group.Selected+1))))

INVARIANT
ran(GPS )<:dom(G2P)

< |
0K ] Cancel i Apply ! Browse 71 Help I

Fig. 7.12 Class Specification for OVERVIEWTABLE

The definitions illustrate a problem with the relationship structure between classes. When the
group is changed via the operation call group . Up (i.e. the Up operation, of class COLUMN, with
instance parameter group) the pages column has to change simultaneously via the operation
call page.Reset (i.e. the Reset operation of class COLUMN with instance parameter page).
Since, to ensure consistency, B does not allow the simultaneous invocation of two operations in
the same machine, the definitions are illegal. The problem is inherent in any association
between two classes. Systems can only be modelled when each event alters the state of at most
one instance of each associated class. The class relationship structure shown in the class
diagram is a special case where instances are known via different association roles. A solution
to the problem in this case would be to model the two instances as separate classes. Future work
on inheritance and on parameterisation of classes would mitigate the consequent repetition. In

the more general case where there is no suitable role distinction between the instances being
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simultaneously altered, a possible solution might be to allow the illegal form in the UML
operation semantics (where an instance based reference is beneficial) but detect it during
translation and convert it to an allowable form (such as a single operation that accepts two

instance references).

The invariant ensures that the group’s pages that are in the GPS attribute are contained in the

domain of the groups to pages mapping G2P.

The statechart (Fig. 7.13) describes the behaviour of the class in response to the four arrow
keys. Two states are used in the statechart which correspond to which column is the focus for up
and down arrows. Initially it is the Group state. LeftArrow and RightArrow events switch
between the Group and Page states. LeftArrow events only occur while in the Page state and
RightArrow events only occur while in the Group state. While in the Group state, UpArrow
and DownArrow events result in the actions defined by SelPrevGp and SelNextGp
respectively. While in the Page state they invoke the Up and Dn operations of the COLUMN class
upon the instance, page. Note that the guards in the Up and Dn operations of the COLUMN class
mean that UpArrow and DnArrow events only occur when a new selection can be made. It is
not necessary to re-specify these guards. Currently the state transition to final state (event, OK)
has no meaning and is ignored. (We anticipate that its meaning should be that the state model
will not respond to further events except perhaps an initialisation event to return it to its initial
state).

UpArrow / SelPrevGp UpArrow / page.Up

DnArrow / SelNextGp

LeftArrow

RightArrow

DnArrow / page.Dn

®

Fig. 7.13 State chart model for the OVERVIEWTABLE class

Finally, the operation semantics (from the operation specifications) for the OK and Display

operations are shown below (Fig. 7.14 and Fig. 7.15).
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OK
SelectedPage:= GPS(page.Selected)

Fig. 7.14 Semantics for operation OK of OVERVIEWTABLE class

Display

gcol:= squash(group.Scroll.. (group.Scroll+dsize) <| GPS) ||
gsel:= group.Selected ||

pcol:= squash(page.Scroll.. (page.Scroll+dsize) <|

G2P (GPS (group.Selected))) ||

psel:= page.Selected

Fig. 7.15 Semantics for operation Display of OVERVIEWTABLE class

The operation Display uses a function, squash, which converts a function whose domain is a
set of integers into a sequence by replacing the smallest integer in the domain with one, the
second smallest with two, and so on. This function is not available in B. We defined it as a
constant in a separate parameterised machine represented by a parameterised class utility (Fig.
7.7). The parameter defines the type for the range of the sequence and enables us to define the
squash function generically, rather than specifically for the type, PAGE, that we currently
require it for. Parameterisation is currently not supported by the U2B translator. For now we
manually add (TYPE) to the machine header of SQUASH.mch. The content of SQUASH.mch is

copied from the class utility specification window shown in Fig. 7.16.

This example explores the practicalities of using statecharts to model the behaviour of classes
and how this information is composed with textually specified operation semantics. We have
found that displaying guard and action information in a statechart can become unwieldy but this
can be solved by using declarations in the class specification. We have found that statecharts are
not always the most appropriate specification medium. In some cases the textual operation
specifications are clearer and more succinct and in many cases a combination of the two forms
will be most appropriate. Currently we have assumed an event-based approach that is more

appropriate for abstract models of observed systems rather than specifications of

implementations.

The example shows that class relationships where more than one instance of an associated class
is modified simultaneously cannot be translated to valid B by the current translator. Future work

will include developing the translation rules to solve this problem.
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Class Specification for SQUASH

Relations | Components ] Nested l Files l MSVC

General I Detail | Operations | Attibutes
Name:  [SQUASH Parent:  Logical View
Type: l ParameterizedEIassUa
Stereotype: II ZI
— Export Control

(¢ Public ¢ Protected ¢ Private ¢ |mplementation

Documentation:

SEES af

Bool_TYPE

CONSTANTS
sorted,
sortset,
squash

PROPERTIES
sorted: seq(NAT1)->BOOL &
(I(sq).(sq:dom(sorted) => (

({{nn,mm].(nn:dom(sq) & mm:dom(sq) & nn>mm =>
sq(nhn)>=sq(mm)) & sorted(sq)=TRUE) or
[#(nh,mm).(nnh:dom(sq) & mm:dom(sq) &

nn>mm & sg(nn)<sq(mm)) & sorted(sq)=FALSE)) ) ) &

sortset: POW(NAT1)-->seq(NAT1) &
(/(ss).(ss:dom[sortset] =>
sortset(ss): perm(ss) & sorted(sortset(ss))=TRUE)) &

squash: (NAT1+>TYPE)+->seq(TYPE) &
(1(tf).(ff.dom(squash) => (squashi(ff)=(sortset(dom(ff));ff) )))

i
I 0K ] Cancel | Apply I Browse vl Help ]

Fig. 7.16 Class Specification for SQOUASH

7.4 Summary

In this chapter we have presented example specifications written in B-UML that illustrate its
use. We have illustrated how a formal specification model can be built up within the UML class
diagram and statechart notations using the specification windows that Rational Rose provides
for textual annotation. The examples have also demonstrated the importance of choosing
appropriate notations for different problems and hence the significance of B-UML'’s flexible
combination of statechart and operation semantics for specifying the behaviour of classes. The
examples have also raised some limitations of the current translator that will be addressed in

future work.
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Chapter 8
Related Work

In this chapter we summarise related work that is similar to, or relevant to, the U2B translation.
In summarising each work we point out similarities and differences from U2B. Table 8.1 Lists

work we consider to be relevant.

| Reference | From | To | Tool
UML’s official formal notation
OCL | Warmer and Kleppe | Constraints in UML [ N/A | n/a
Tool supported translations of UML
RoZ Dupuy and du Bousquet UML CD Z y
IFAD IFAD UML CD VDM++ |y
Translations to B
Nagui-Raiss ERD B n
CEDRIC- | Facon, Laleau and Nguyen UML CD B n
HE Facon, Laleau and Mammar UML CD, SD and ID B p
LORIA Meyer and Souquiéres UML CD, SD B n
DEDALE | Meyer and Santen Class hierarchies B p
DEDALE: Ledang and UML CD and ID B p
Souquiéres
iSTATE Sekerinski and Zurob SD B p
Translations to other notations
Kim and Carrington UML CD Obj Z n
France Bruel Larrondo-Petrie | UML CD Z n
and Shroff
DeLoach, Smith and Hartrum | CD and SD O-Slang | n
Boérger, Cavarra and SD ASM n
Riccobene
Bolton and Davies UML AD Z&CSP |n
SOFL Liu & Sun Integrated SM-OO-FM | - n/a

(CD=Class Diagram, SD=Statechart Diagram, ID=Interaction Diagram, AD=Activity Diagram,
ERD=Entity Relationship Diagram, p = proposed)

Table 8.1 Related Work

81 OCL

The diagrammatic notations of the UML are not sufficient to express all the information needed
in a model. Typically, annotations of constraints, invariants and operation semantics are needed
to complete the information in a specification. The UML therefore contains within its definition,

a precise textual notation in which these annotations can be expressed. This notation is called
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the Object Constraint Language (OCL) (Warmer & Kleppe 1998). OCL is a formal declarative
notation but uses few mathematical symbols. It was conceived with the aim that it should be
precise but approachable to engineers and programmers without experience in formal notations
or extensive mathematical training. It also follows an object-oriented style dot notation for
accessing attributes, associations and operations of an instance. While OCL may have achieved
its aim of being approachable to typical programmers, a number of problems have been raised

by Vaziri and Jackson (1999) including:

a) OCL has an implementation style in that it uses operations in constraints.
Operations can be undefined (e.g. if an infinite loop is caused) leading to constraints

being undefined.

b) OCL expressions are overly verbose due to frequent use of coercions
(oclIsKindOf). Classes are not treated as sets of objects and hence set operators

cannot be used.

c¢) OCL constraints can be difficult to read due to stacking (via navigation) of

quantifiers and collection operators, but not of logical operators.

d) OCL is not a stand-alone language. The notation is intended to apply constraints to
objects described in the other notations of the UML. Therefore it relies on the

diagrammatic specifications of entities to which its constraints can be applied.

We see d) as being the most significant problem with OCL since it is difficult to reason about
properties when a complete textual description is not available. Even if a complete mathematical
specification could be obtained, no logic system or tools are available to enable mathematical
manipulation. Although our main aim is to make formal specifications easier to write we do not
wish to sacrifice one of the important benefits of formal specification in order to achieve it. A
UML model with OCL constraints is not a complete formal specification and so does not meet

our aims even though, at first sight, it appears to provide a similar type of modelling notation.

8.2 RoZ

RoZ (Dupuy and du-Bousquet, 2000) translates Rational Rose class diagrams to Z
specifications. Constraints representing invariants on the attributes and associations of a class
can be expressed in Z Latex, in the class diagram specification documentation windows. This is
similar to our approach except that, in RoZ, constraints for a class may be in the specification
windows for the attributes or associations to which they relate. Upon translation to Z, these

constraints are collated as the predicate for a schema describing the attributes of an instance of

113



the class. Only class invariants (i.e. constraints between different instances of a class) are
written in the class specification window. These are used as the predicate in a schema describing
the set of instances of the class (the attribute schema being used as the element type for the set
of instances). A minor inconsistency is that a constraint between two attributes of a single
instance has to be placed in one of the attribute specifications (so that it is translated into the
attribute's schema). This is because any predicate in the class’ specification will be translated
into the instance's schema. Type definitions for attributes have to be added in a separate text
file. Our approach was to define them in the specification of the class that used them or, if used

by several classes, in a class utility.

Basic operations to modify each attribute and to add and remove an instance of the class are
generated automatically. The behaviour of the generated operations is defined, using Z Latex
(Spivey 1990), in the post conditions tab of their specification window. (Currently we do not
generate basic operations automatically, however this could easily be added. We generate
operation signatures automatically where they are not present in a class but appear in a

statechart attached to that class).

The class operations are translated into Z schemas using the postcondition predicates. Attribute
modifying operations, which are recognised by a keyword ‘intension operation’ embedded in
their semantics field, are translated to a schema that changes the attribute schema. These
operations are promoted via a general-purpose promotion schema (‘promotion operation’).
Operations that change the set of instances of a class (‘extension operation’) are translated into
schemas that alter the instance's schema of the class. Non-basic operations can be added to the
class manually and these can have the above types as well as ‘composed operation’ for an

operation that is composed from other operations.

Note that for abstract classes (an abstract class in UML is one that doesn’t have any instances),
the instances schema and operation promotions are not generated. This is similar to our singular
machine (representing a class that has multiplicity 1), which does not model instances explicitly.
However we have taken the approach that implicitly one instance exists, currently we do not

support abstract classes.

Finally, associations are represented by schemas that define the relationship between the classes
at their ends. The two roles are modelled by functions between the class type (attribute) schemas
with finite powerset used to represent multiplicities. Predicates reflect any constraints attached
to the association and a predicate defines the inverse relationship between the 2 roles. (It is not

clear to us how mutable associations could be accessed from operations).

The translation also handles inheritance, which we have not tackled as yet.
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Precondition validation theorems can be automatically generated for proof with the Z-EVES
theorem prover. This is not needed for our translation to B because the B-Toolkit and Atelier-B

contain facilities to generate proof obligations.

The RoZ tool is similar to our approach in its implementation techniques, such as the use of
Rational Rose scripting language, embedding of invariant text and operation semantics in
specification windows. RoZ has some features, such as basic operation generation, that we have
not tackled but lacks the ability to use statecharts to define class semantics that U2B has. RoZ
does not constrain models to hierarchical structures in the way that U2B does. RoZ appears to
treat associations as a higher level (above the class layer) rather than a navigable (by operations)

link to an associated class' attributes and operations.

8.3 IFAD Rose-VDM++ Link

IFAD’s VDM++ (IFAD 2000a) is an object-oriented extension of VDM. A tool is provided
which performs syntax and type checking and code generation. IFAD provide an extension to
the tool (IFAD 2000b) that enables conversion to and from Rational Rose class diagrams. The
tool is also capable of merging specifications that exist in both formats. Conversion is
straightforward because the formal notation (VDM++) is object-oriented and therefore, most
UML concepts have a corresponding feature in VDM++. In some cases, however, features of
VDM-++ are not represented directly in UML and a stereotype is used to make distinctions. For
example, class values of VDM++ are represented by a UML attribute with stereotype <value>.
The stereotype distinguishes it from an instance variable. Stereotypes are also used to explicitly
distinguish between operations and functions. Since UML does not provide a way to define a

result identifier, the special identifier RESULT is used in pre and post conditions

However, only class diagrams are converted and operation semantics are not handled in the
UML representation. Hence, the tool allows the designer to develop a model of a system in
terms of the classes, associations and operations but doesn’t allow the operation behaviour to be
specified within the visual representation. It is necessary to convert to the VDM++ form in
order to add behaviour. Similarly, invariants are not represented in the UML form. A link to the
VDM-++ file representation of each class is embedded as an ‘external file’ for each class. This
ensures that the behavioural information added to the VDM++ version remains associated with

its UML class. The tool provides reverse engineering facilities to update the UML model for

alterations.

The method provides most of what is needed to provide a visual formal specification tool, but

does not treat the UML version as the primary specification medium. UML is seen as an
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ancillary form and hence the relatively simple step of making it a complete specification has not

been taken.

8.4 Other Work on Translating to B

Several groups have proposed translations from object-oriented notations to B. As well as those
discussed below, see earlier work by Nagui-Raiss (1994), Shore (1996) and Lano (1996). The
suggestions for modelling the static class data structure and relationships are similar to each
other and are the basis for our own approach. Our approach differs from these because our aim
is to provide a graphical notation for expressing B specifications rather than a formal
representation of a UML model. The main difficulties in mapping from classes into machines
are in representing mutable associations and operation behaviour. This is because of the
restrictions that B imposes in order to ensure compositionality of proof. Whereas most groups
attempt to accommodate all valid class structures as far as possible, we allow only those UML
models that have natural B representations. Hence we impose restrictions on our UML models

to only allow strictly hierarchical structures with uni-directional navigable associations.

We look at the major groups that have contributed in the past and are continuing ongoing
research in the area. The methods differ for modelling the dynamic behaviour represented in
UML operations. At the time of writing, none of these groups had a translation tool available for

evaluation, although all have proposed them or claim to be in the process of developing them.

84.1 Work at CEDRIC-IIE Laboratory

Researchers at the CEDRIC-IIE Laboratory have developed schemes for translating UML class
diagrams and dynamic behavioural diagrams into B specifications. Facon, Laleau & Nguyen
(1996) provide a comprehensive mapping of static class diagram features into B and structure
this into machines. Later work at CEDRIC has concentrated on Information systems and
database applications (Facon, Laleau, & Mammar, 1999) that are data-centric and generally
involve simple basic operations. These types of systems involve a high degree of data
relationships modelling and our approach of restricting the use of UML would probably be
intolerable. Conversely they require only simple operations and so our use of operation
behaviour modelling techniques would be largely redundant. The approach taken at CEDRIC
has been to automatically define basic operations of a class according to class properties such as
mutability and multiplicity. Class statecharts are then used to define how external (to the class)
events invoke the basic operations of the class according to state and guard conditions.
Collaboration diagrams define which class events occur in response to each external (to the

system) transaction.
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External, use case, transactions with the system are described with functional sequence
diagrams (i.e. a sequence diagram involving users and the system). Each step on a functional
sequence diagram is a transaction message that is further described by a simplified collaboration
diagram. The collaboration diagram identifies a system level operation and its implementation
in terms of events at the class statecharts level. (Note that the sequence diagram itself is not
represented in B since the aim of the translation is to check the consistency of data

modifications rather than to model functional scenarios).

Thus, the hierarchy of system behaviour is represented in layers made up of different UML
modelling notations (collaboration, state and class) rather than by imposing hierarchy in the
class structure as we do. Functionality is still largely encapsulated within the class behaviour,
but the statechart describes an additional layer of class behaviour that is not represented by
operations shown in the class diagram. A third layer describes functionality that involves more
than one class. The CEDRIC approach is more suited to data intensive systems that fit a
collaborative class oriented description whereas our approach is more suited to process intensive

systems where the emphasis is on process/data encapsulation.

8.4.2 Work at LORIA - Universite Nancy

Meyer & Souquiéres (1999) proposed a method for transforming OMT diagrams (on which
UML class diagrams are based) including operations and dynamic behaviour expressed in
statecharts. Similarly to the approach of CEDRIC-IIE, classes have very basic and simple
operations and the class’ statechart provides additional functionality by defining the events and
state transitions under which these basic operations are used. Unlike CEDRIC-IIE’s approach,
the statechart layer is represented as operations within the class machine. To avoid calling
operations within the same machine, basic operations are translated to definitions (B’s
equivalent of macros) using a DEFINITIONS clause rather than as B operations. (For different
reasons, we have also used this technique to define actions that are repeated in several places on
a statechart). The resulting structure of B machines consists of a top-level system machine, a
machine for each class (including subclasses and aggregate components) and a machine for each
unfixed (or attributed) association. (Associations that have no attributes and are fixed for at least
one class are handled within the class for which they are unfixed). The disadvantage of this is
that functionality that might be naturally associated within a class is elevated to the top-level
machine in order to obtain write access over association links. This is probably more significant
in process control applications, where operation behaviour is more complex, than in information

systems where the accent is on data maintenance.
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Meyer & Santen (2000) go on to describe how Atelier-B can be used to verify behavioural
conformance of inheritance (generalisation/specialisation) relationships in a UML class diagram
by using the translation proposed by Meyer and Souquieres. Currently we are concentrating on
issues involved in writing specifications, however, we recognise verification as an important
benefit of writing formal specifications. In the translations used for presenting this work, non-
basic operations are specified, not in the UML, but by post-translation additions to the B
machine. It would be a simple step to attach the operation bodies to the UML classes as we have
done but the example chosen illustrates that combinations of basic operations defined in a

statechart are not always suitable.

Further work by Ledang and Souquieres (2001) considers techniques for arranging non-basic
operations into separate machines to comply with the operation calling restrictions of B. The
calling sequence defined in a collaboration diagram (which must not contain any cyclic calling

dependencies) is analysed and allocated into layers so that,
a) there is no calling-called dependency amongst operations in the same layer;
b) basic operations (which do not call any other operation) are in the bottom layer;
c) system operations (which do not have a calling operation) are in the top layer;
d) operations above the bottom layer only call operations of the next lower layer.

A structure of B machines is constructed with one machine for each layer except at the bottom
layer where there is one machine for each class. However, an operation at one level may call
several operations at the next lower layer. Since this is not allowed in machines and machine

inclusion, implementations and imports are used to define the operations instead.

8.4.3 Sekerinski and Zurob - Statecharts to B

Sekerinski (1998) describes how reactive systems can be designed graphically using statecharts
(Harel, 1987) and how these designs can be converted to B for analysis and refinement to code.
A full treatment of statecharts is given, including hierarchies, concurrency and various

equivalents to shortcuts used in statecharts. An example of a conversion to B is then given.

The treatment differs from ours in that statecharts, although similar to UML state machines, are
treated as an independent form of design notation rather than as a subnotation to class diagrams.
On the other hand, hierarchical statecharts (i.e. states may have substates) and concurrency (i.e.
states may have groups of substates which may progress independently and concurrently) are

included. These are areas that we would like to tackle as future work and note that Rational
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Rose state machines are able to express both features. In addition, communication between
concurrent sub-parts is available via internal events that are generated as part of the action of
one transition and are referenced as the event triggering another. This is translated to a B
definition in order to ensure the event is not available externally (this also avoids the fact that
operations cannot be called from within the same machine). Externally available events are
modelled as operations, as we have done. However, the approach is to model the
implementation of a reactive component with operations representing called procedures, rather
than an action system approach in an event B style with operations representing actions.

Therefore operations are treated as procedures with conditional substitutions rather than guarded

actions.

Sekerinski and Zurob (2001) go on to describe a meta-model of statecharts via a class diagram
with semantics formally defined in a B like notation. A normalisation of statecharts is formally
described (to add arrows that may be left out as shortcuts). This is the first stage in translation to
B. A flawed condition, when states are unreachable, is formally described. This condition is
translated to B but warnings are given. Finally, illegal statechart conditions (such as transitions

between two concurrent groups of sub-states), which prevent translation to B, are described.

8.5 Translations to Other Formal Notations

We have reported on OCL, two well developed tools that transform UML class diagrams into
formal notations (not B) and several groups that have proposed translations to B from various
combinations of the UML notations, class diagrams, statecharts and interaction diagrams.

Others have proposed translations of UML notations into formal notations other than B.

France, Bruel, Larondo-Petrie and Shroff (1997) propose a formalisation of UML class
diagrams in Z. This work focuses on formalising the UML, rather than using UML to assist in
formal specification, but in the process translation rules are developed and illustrated by
example. The use of Z, and hence the freedom from the proof composition restrictions of B,
enables more complex class diagram structures to be catered for. This is developed in France
(1999) where the equivalent Z specification is used to analyse the semantics of class diagram
structures. Again the focus is on defining a precise semantics for the UML. For example outline

proofs are given for various inferences that can be made about incomplete class diagrams

involving generalisation relationships.

Kim and Carrington (2000) give a formal definition of UML class diagrams using Object Z.

They also provide a formalised meta-model of Object Z and hence a formal mapping from class
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diagrams to Object Z. The object-oriented facilities of ObjectZ make the translation more

natural and simpler than that for Z.

Borger, Cavarra and Riccobene (2000 and 2001) have used Abstract State Machines (ASMs)
(Gurevich, 1995) to rigorously define UML statecharts and activity diagrams. This work is
strong in its treatment of the UML's integration of statecharts with the object model, including
the concepts of events, actions and activities. This will be relevant to future work enhancing the

U2B translation tool to cover these features of UML statecharts and/or activity diagrams.

Bolton and Davies (2000) present a formal semantics for UML activity diagrams using a
combination of Z and CSP. They use Z to model the static objects within an (possibly
hierarchical) activity diagram and parallel CSP processes, one per state, to model its behaviour.
The synchronisation of the CSP processes, upon their respective alphabets, models the sequence
of events expressed by the transitions between states. Since a class diagram can also be
translated into Z, it could be verified for consistency with a requirements specification

expressed as an activity diagram by translating the activity diagram into Z/CSP.

DeLoach, Smith and Hartrum (2001) define a translation from UML class diagrams and
statecharts into O-SLANG (DeLoach and Hartrum, 2000). O-SLANG is an object-oriented
extension of Slang; a theory based algebraic specification language. The translations were
verified by defining a formal semantics for the UML notations and mapping both O-SLANG
and UML to those semantics. A prototype system has been developed to demonstrate
automation of the transformation. The motivation is similar to ours, to facilitate the creation of
formal specifications via semi-formal diagrammatic stages. O-SLANG is not as widely used as
B but benefits from being specifically designed to describe object-oriented models making

translation from UML more natural and complete.

We have reported mostly on translations from existing object-oriented diagrammatic notations
to existing or new formal notations. For some researchers the primary aim is to formalise the
existing object-oriented notation so that the descriptions that use it are precisely understood. For
others the aim is to gain the benefits of an approachable diagrammatic modelling notation while
creating a specification in their favoured formal notation. Most researchers opt for the pragmatic
route and use an existing object-oriented diagrammatic notation. However, an alternative
approach is to propose a new integrated diagrammatic and formal notation, which can then be
designed with integration in mind. Liu and Sun (1995) have taken this approach with their
SOFL (Structured Object-Oriented Formal Language). Data Flow diagrams are used to
decompose the functional requirements into 'condition processes' in a stepwise hierarchical

manner. Each condition process on a data flow diagram receives and creates data items. Its
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process is described formally via pre and post conditions and it can either be further
decomposed via another data flow diagram or can be declared to have an implementation
module. Implementation modules are described in an executable programming language that
may be structured using procedures and classes. The use of diagrammatic forms is limited to the
hierarchical refinement data flow diagrams. Although the diagrams are highly integrated with
the formal specification this appears to demote their significance to an outline structure viewer
with most reliance placed on the textual form. Object orientation is used only at the (textual)

programming level and not represented diagrammatically.
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Chapter 9

Conclusions

This chapter summarises the research and how it meets the aims introduced in Chapter 1. Future
directions are proposed for development of the B-UML notation and the U2B translator that will
facilitate further exploration of the adaptation of UML notations for creating B specifications.

Further evaluations of the use of B-UML in realistic situations are proposed.

9.1 Meeting the Research Aims

The overall aim of the research was to explore the barriers to using formal specification

techniques. This has been achieved through the following steps.

The first stage of research was an exploratory survey of formal methods practitioners in order to
identify some of the main barriers to use. The survey was limited to a small set of experienced
users from a range of market sectors. The purpose of the survey was to identify the most
relevant issues for further investigation. The survey achieved a broad exploration of the use of
formal specifications in industry and identified several possible issues related to barriers to their
use. The survey’s strength was that it derived empirical evidence from some of the market
leading organisations using formal techniques for commercial products. Despite a varied range
of market sectors, there was a reasonable degree of convergence in the interviewees’ responses.
The survey was presented at the Empirical Assessment of Software Engineering (EASE2000)
conference (Snook and Harrison, 2000) and published in the journal, Information and Software
Technology (Snook and Harrison, 2001a). Glass reported the publication in his newsletter ‘The
Software Practitioner’ (Glass 2001). Glass recognises the contribution of such surveys, saying:
“Formal methods have been lauded by academics and ignored by practitioners for over 30 years.
Both camps are locked into their positions; almost no one on either side does the deeply-needed
evaluative research which could determine which camp is closer to the truth.” In our reply, also
published in the same newsletter (Glass 2001) we suggested that: “Perhaps academia is not
prioritising the problems it researches to the greatest effect. Targeting the pragmatic problems
that practitioners initially face would lead to increased interest and funding from industry, and a
more widespread take up of formal specification would later lead to faster development of

subsequent research areas in formal methods. Our research” (in combining UML with B) “has
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attempted to find ways of making formal specification easier or at least more accessible to

novices”.

From the survey findings, two issues were selected for further investigation. The first was
comprehensibility, which was thought not to pose a significant problem for suitably trained
software engineers. The second was the difficulty in writing formal specifications, which was

thought to be problematic.

The second stage of research was a further investigation into whether the comprehension of a
formal specification could be a barrier to their use. Comprehension depends on the skills and
training of the reader and so could be a barrier in several different situations such as customer
approval of the specification, quality assurance processes as well as the software design and
maintenance processes. In this stage of the research we explored comprehensibility of formal
specifications by suitably trained software personnel and hence focused on the last of these
situations. We devised an experiment that tested the hypothesis that formal specifications are no
more difficult to understand than code. The experiment compared subjects understanding of a Z
specification with that of its implementation in Java. The experiment was presented at the
Empirical Assessment of Software Engineering (EASE2001) conference (Snook and Harrison,
2001b). Subject to the threats to validity discussed in Chapter 4, we found that comprehension is

not a barrier for software personnel .

The remainder of the research focused on the second issue selected from the survey. This was
that formal specifications are difficult to write. This was recognised as a significant barrier by
those interviewed. We looked at the similarities and differences between formal specification
and program design and applied the cognitive dimensions framework in order to assess a formal
specification notation with respect to exploratory design. We reasoned that the processes
involved in formal specification are similar in many respects to that of program design. Both
involve the selection of suitable abstractions in an exploratory design phase. We concluded that
one of the main differences is that, for program design, tools and notations have been developed
to assist in the difficult process of choosing a coherent set of useful abstractions. Experienced
formal specifiers may have developed sufficient experience and expertise to be able to form
these abstractions mentally, but novices find the task insurmountably difficult. This leads to a
strong deterrent to their increased uptake. In order to test this theory, we adapted two notations
from the UML (class diagrams and statecharts) so that they could be used to write semi-
diagrammatic formal specifications using one of the leading UML design tools, Rational Rose.
We call the adapted notation B-UML. Using the extensibility facilities within Rose, we
provided a translation facility, U2B, so that the verification benefits of an existing, tool

supported, formal notation (B) could be used to verify the B-UML specifications. The
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translation also clarified the semantics of B-UML. The notation, B-UML, and its translator,
U2B, are not fully developed methods or tools. Rather, they are prototypes used to test the
feasibility of using such techniques and whether they are beneficial. We developed several
examples that illustrated the approach. One example is a simplified version of an industrial
application. B-UML and U2B were presented at the UML 2000 workshop ‘Dynamic Behaviour
in UML Models: Semantic Questions’ (Snook and Butler, 2000) and at the 13" Annual
Workshop of the Psychology of Programming Interest Group (PPIG2001) (Snook and Butler,
2001). We felt that specifications were easier to write using B-UML than they would have been
in B. However, we recognise that this is a subjective opinion and further evaluation of the
technique is required before firm conclusions can be made. This is discussed below. The
examples also uncovered limitations in the current method and threw up possible routes for
extending and enhancing B-UML and U2B. Subject to further evaluation and development we
believe that the research carried out so far supports the hypothesis that modelling notations and

tools similar to those used in program design would benefit the difficult task of writing formal

specifications.

9.2 Lessons Learned Using B-UML

The use of the UML provides a visual modelling interface that assists in developing a structure
for the specification. This is likely to be most significant for programmers who are familiar with
using the UML for software design and unpractised at using formal notations. The automatic
generation of B machines from the diagrammatic components of a UML model and the isolation
of formal annotations for class invariants and operation semantics makes the formal
specification more manageable. It may be more difficult to gain a complete view of the
specification from the UML model but this is available via the translation to B. State charts can
be used successfully to model the behaviour of classes and this information can be combined
with textually specified operation semantics. We have found that displaying guard and action
information on a statechart can become unwieldy but this can be solved by using B definitions
in the class specification. We have found that statecharts are not always the most appropriate
specification medium. In some cases the textual operation specifications are clearer and more

succinct and in many cases a combination of the two forms will be most appropriate.

In order to achieve compositionality of proof, B contains restrictions on how machines can
access the operations of other machines and on simultaneous changes to machine variables. The

restrictions are as follows:

1. A machine cannot have more than one other machine that makes calls to its operations.

This restriction disallows data sharing involving multiple write access.
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2. Operations cannot call other operations within the same machine
3. Each operation may make, at most, one call to the operations of each other machine.

4. Each variable of a machine can be altered by at most, one of the simultaneous

substitutions of an operation

Note, however, that a machine can promote an operation of a machine it includes. Promotion is
equivalent to defining an operation of the promoting machine that invokes the operation of the

included machine.

The first compositionality restriction of B means that the natural mapping of class operations
into machine operations (where the machine represents the class) does not permit associations to
be altered by both the associated classes. In addition, non-hierarchical class relationship
structures, which imply that a class is alterable by more than one other class, are not permitted.
Since we were primarily concerned with enhancing the process of creating B specifications,
restricting the use of UML class diagrams to match these B restrictions was acceptable. We
therefore restricted our models to hierarchical class structures using uni-directional associations.
Since these restrictions are equivalent to the restriction in B, we do not expect them to be any
more problematic than they are in writing B specifications. Our experiences so far have not

revealed any difficulties arising out of these restrictions.

The second compositionality restriction is not restrictive since it can always be avoided by
repeating the substitutions of the ‘called’ operation within the ‘calling’ operation in place of the
call. The disadvantages of repeating blocks of substitutions can be avoided by using B

definitions (a DEFINITIONS clause in the class specification window).

The third compositionality restriction is restrictive. Operation semantics where more than one
instance of an associated class is modified simultaneously cannot be translated to valid B by the
current version of the translator. This restriction is imposed partly by the object-based nature of

the modelling. In a normal B specification, the called operation could be designed to modify

multiple instances.

Similarly, the fourth compositionality restriction is restrictive if more than one instance of the
machine requires modification of the same attribute. Again it is the imposition of an object-
based notational style that leads to the problem. In normal B the function representing the
mapping from instances to attribute values could be altered using set operators so that all

instances were altered within the same substitution.

Future work will include developing the translation rules to solve these problems.
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9.3 Further Work

In this section we outline further work that could be done. The section is split into the following
subsections: further evaluation of the effectiveness of B-UML in making formal specification
easier; further development of B-UML and U2B to solve current deficiencies and extend the
notation and techniques. Further work to improve confidence and generalizability of the

experimental conclusions concerning comprehensibility of formal specifications was suggested

in Chapter 4.

9.3.1 Evaluation of B-UML and U2B

Further evaluation should be carried out to assess the prime motivation for devising a semi-
graphical formal notation, that it will make formal specifications easier to create. We envisage
two possible forms of evaluation. Firstly, a formal experiment which would involve two groups
of subjects writing a formal specification of the same example but one using B-UML and the
other using B. Possible dependant variables which would indicate a difference in suitability of
the formal notations and supporting tools might be: correctness of the specification, usefulness
of the specification for various tasks and time taken to produce the specification. The subjective

qualitative opinions of the subjects would also be of interest.

The second form of evaluation we envisage is a case study using the techniques. Ideally, this
would involve an independent organisation using B-UML and U2B to write formal
specifications that are required for real applications. Some form of comparison with writing
formal specifications without the technique is desirable. It is unlikely that any organisation will
be able to replicate the case study, but it may be possible to develop part of the project with, and
part without, the techniques. The case study should involve some experienced and some novice
personnel to evaluate whether the techniques benefit one group more than the other. The

evaluation would rely mostly on qualitative feedback augmented by measurements comparing

the treated and untreated parts of the project.

Some progress towards such an evaluation (mostly on the use of statecharts) has been made by
Abo Akademi as part of a more general case study (Matisse, 2001). The initial feedback is

favourable but the work is at too early a stage to report in this thesis.

9.3.2 Development of B-UML and U2B

The translator could be improved in several areas. Firstly, we intend to improve the way it

works. Currently it is a prototype that works by building files representing B machines using the

126



text replacement facilities of Microsoft Word. The files are added to, and edited, as the program
progresses through the UML model. Although this method was quick to implement and
achieved the aim of providing a prototype for feasibility testing, the translation is not very
robust. For example, when new examples of operation interactions, association navigations and
attribute accesses are attempted, there is a high risk that the text replacement commands will not
have anticipated the new formats. Before embarking on further enhancements, we intend to re-
write the translation so that it builds an internal representation of the B machines before
generating the text files. This will also allow us to dispense with any reliance on Word, which

will improve the performance of the translation.

Once the method of translation has been strengthened, we intend to enhance it in various ways
to extend the facilities for modelling, provide additional checking of the model before and

during translation and to facilitate other model based activities such as refinement.

The UML provides options for different types of association relationships. These imply
differences in the creation and destruction of instances of the associated class. For example,
composition implies that instances should be created and destroyed with the parent class

instance. Currently the U2B translator does not do this automatically.

In Chapter 6 we discussed the implications of different association multiplicities for
initialisation of newly created instances. In some cases the current translator is unnecessarily
restrictive and in a few cases multiplicities are not supported because no valid initialisation is
possible with the current options available in the translator. We envisage the addition of (or
possibly the selection of appropriate) creation operations to enable new instances, and new sets
of instances, to be specified by, and hence used by, a higher-level class. For example the create
operation of a higher-level class, A, might use the new create operation of class B to initialise

an association with multiplicities 1..1->1..1 as follows:

PRE
Binstances /= BSET
THEN
ANY newB
WHERE
newB : BBBSET - BBBinstances
THEN
Bcreate (newB) ||
Aassoc (newA) := newB
END
END

The same class A would use the createSet operation of class B to initialise an association with

multiplicities 0..n=>0..n as follows:

127




ANY o0ldBs, newBs
WHERE
01dBs:POW(Binstances) &
newBs : POW (BSET-Binstances)
THEN
BcreateSet (newBs) ||
Aassoc (newA) :=0ldBs \/ newBs
END

Other features of UML class diagrams, such as generalisation, class parameterisation and
abstract classes have not been considered at present. It may be that these facilities are useful in

translation to corresponding B facilities.

Enhancements to tackle the problems described in the previous section concerning simultaneous
changes to instances of an associated class and simultaneous alteration of the same attribute for
multiple instances of the class are envisaged. It may be possible to allow apparently illegal B

forms in the B-UML specification that are converted into a legal B form at translation.

Enhancements to the use of state machines might include the use of hierarchically structured
state machines, the use of activity chart constructs such as parallel state transition paths, entry
and exit actions, event actions. Currently we assume an event style model of a system. It may be

useful to allow the choice between this and a non-event style model.

Other notations within the UML have not been considered. Component diagrams may be useful
as a higher-level structuring mechanism as used by Abo Akademi (Matisse, 2001). It may be
useful to use interaction diagrams, as do Ledang and Souquiéres (2001) for preliminary

definition of inter-class operation calling structures.

Enhancements to the facilities provided by the translator may be useful. Currently the translator
performs no checking of the model prior to translation. The B-Toolkit or Atelier-B is relied
upon to check that the model represents valid B. The translator could provide, at least basic

syntax checking. For example, that the class association restrictions discussed earlier in this

chapter have been obeyed in the B-UML.

Many of these improvements are currently being worked on as part of the EU projects,
MATISSE (Snook and Waldén, 2002) and PUSSEE (PUSSEE, 2002). Current work within the
PUSSEE project has concentrated on extending U2B to support the B refinement method (rather
than a single layer of specification). The translation described in this thesis concentrates on the
abstract machine specification level and de-composition of a large machine into smaller
machines based on the UML classes and their relationships. However, the primary

decomposition mechanism in B is not the inclusion of other machines but decomposition by
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refinement. An abstract machine specification is refined until an implementation specification is
reached. The implementation imports other abstract machines that encapsulate its variables. A
hierarchy of modules is constructed, each component consisting of a refinement chain, from
abstract machine to implementation. Qur current work extends U2B so that refinement and
implementation can be modelled in UML using realisation relationships between classes.
Furthermore, the UML model can be organised hierarchically using packages so that the B
project decomposition technique can be employed within a B-UML model. With this extended
version of the U2B translator we will investigate the use of B-UML on the industrial case
studies provided by the project partners and contrast it with conventional B project

developments.

9.4 Conclusion

In this thesis we have considered formal methods, a software engineering technique that has
become very popular as an area for academic research but has only been adopted ‘sporadically’
within industry. It is clear from current literature that there are benefits to the quality of the
software produced using this technique, but there are also barriers that prevent widespread use.
Using empirical methods we have investigated what industry believes are the barriers to the use
of formal methods. We have investigated further, comprehension, an area that might have been
seen as a barrier, and decided (in agreement with those in industry) that it is not. We have then
investigated, by constructing an example, a possible technique to assist in the construction of
formal specifications, which was seen as a barrier by those in industry. We have found this to be
of benefit when writing formal specifications. Through our close work with industrial partners
we plan to continue to explore the barriers to formal specification and to investigate ways that

they can be overcome.
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Appendix A Survey Materials

A.l

1)
2)
3)
4)
4a)
5)
6)

7)
7a)
7b)
7c)
8)
8a)
8b)
9)
9a)
9b)
10)
10a)
11)

11a)
12)

12a)
12b)
12¢)

12d)
13)
13a)
13b)
13¢)
14)

Questionnaire

How would you define a formal method?

What experience has the company had with formal methods?

Which formal methods have you used most?

How big are the systems that you use formal methods on?

Does the size of the system affect the practicality of using formal methods?
How do formal methods affect the software life cycle?

How do formal methods affect software quality assurance activities? (records, audits,
certification etc)

What are the benefits that you have found?

Are they measurable in terms of quality of software products?

Are they measurable in terms of software process improvements?

Has any quantitative data been collected that demonstrate the benefits?

What problems have been encountered?

How do the problems affect the quality of software products?

How were they overcome?

Have any understanding difficulties or benefits been found?

If so, has this affected correctness and verification of resulting code?

Is there any pattern to the misunderstanding? i.e. particular constructs or styles

Do you use any style rules or codes of practice when writing formal specifications
How do they affect understanding (if at all)?

Have you found that the structure of the specification model influences the
implementation?

Is this good or bad?

How have formal specifications affected maintenance issues?

Do the formal specifications help determine the correct code change?

Are the formal specifications difficult to update? Are they kept up to date?

Do the formal specifications prevent (or worsen) degradation of the code structure
through maintenance?

Does the structure of the specifications themselves deteriorate through maintenance?
How do customers view the use of formal methods?

Are formal documents used as an interface to customers?

If so, how does this affect understanding of the system by the customer

Has it affected system validation and acceptance stages?

Is there anything we haven’t covered that you would like to talk about?




A.2 Results Summary Matrix

Question _|Interviewee A [IBM Marconi Philips Praxis
How would  [Unambiguous Mathematical and  |Method with Notation with precise Mathematically based
you define a {mathematical can prove underlying syntax & well defined  |notation, specification
formal notation in which  |correctness mathematical theory, [semantics, with a method|optionally with
method? you can express Distinguish between |well defined syntax for refinement intoan  |verification proofs
system behaviour Spec notations and  |and semantics and implementation and (UML some aspects
and structure. Has a {methods (inc. proof) |rules for manipulation |support for requirements |formal but not very
precise syntax and  |(notations such as  |and verification. elicitation. expressive)
semantics. Doesn’t |UML can’t express state charts are
count things like the important sufficiently formal
UML as formal relationships) although don’t support
enough proofs.
{O-0O notations s.a. UML
also discussed -
comments relating to
these are shown in
braces}
What One large project Since 1983 but not [Full size, parallel case |[COLD developed by Lots, specialise in this

experience has

which was specified

so widespread use

study (18 months

Philips and used on 1 or

area

the company |in Z. Several small |now duration) 2 products (but didn’t do
had with projects (electronics formal refinement).
formal components) were Lighter weight version of
methods? specified formally COLD used more
and subcontracted extensively for

specification
Which formal |Z, CSP, VDM Z and B toolkit B Toolkit COLD (notation in genre |Z, VDM very
methods have of Z, VDM etc) extensively
you used {UML has been used on |CSP, CCS a bit
most? a few products esp. use-

case for requirements }
How bigare |1 large safety critical |50 KLOC 900 LOC (ADA) with |from 10Kloc upwards. | Biggest 200Kloc, often
the systems  |project (150 s/w full formal spec and  [Biggest products have  [100Kloc, 10s Kloc
that you use  |engineers) verification, 2000 LOC|been medical systems Def. Stan. 00-55
formal several small with partial formal (70 people for 2 years)
methods on?  [projects specification to but consumer products

establish doesn’t affect
critical parts.

are becoming quite large
in terms of software
systems

Does the size
of the system
affect the
practicality of
using formal
methods?

No more than any
other factor/method

No, as long as you
break it down into
encapsulated
components
Encapsulation is
important and formal
spec defines the
interfaces between
components

Yes, but also affected
by other factors such
as degree of formality
reqd. (proofs etc),
complexity.

Also encapsulation
helps break problem
down as get into
design stages — size
problem mainly at
regmis. spec stage.

Not per se but, rapid
growth in size of
software systems has
meant that recruit
programmers to cope and
haven’t been able to
formal specify these
systems quickly enough

Mostly the methods
scale up but model
checkers not very well
and proof checkers
even worse

How do
formal
methods affect
the software
life cycle?

N/A ~In large
project the formal
spec wasn’t used for
subsequent
development, in
small projects the
development was
subcontracted

Don’t change its
structure but major
shift of effort to up
front, specification
stage away from
debugging and
testing.

Same stages but shift
effort to specification
stage, reduce rework
later, assists testing
and validation later

Increase effort to get
spec right, but timescales
are short so development
has to proceed in parallel
and product may
complete before spec is
finished. There is a
difficulty with precise
specification since
lifecycle is often
iterative, developing the
requirements as the
design evolves.

As formal specification
aims to sort out
requirements issues prior
to starting design it
doesn’t fit with iterative
development.

{0O-0 modelling enables
the quick animation-

Front loading — spec
takes longer to get
right but in the process
resolve many problems
and spec makes
subsequent stages
much easier (esp.
coding and testing)
Same stages
throughout except
conventional lifecycle
often omits the system
specification and
works from the
requirement Spec
instead




want to be tied down
early

Management
perceive it as a big
risk

encapsulation at this
stage.

Tools are not formally
developed and
validated so any use in

lifecycle

Question _{Interviewee A |[IBM Marconi Philips Praxis
refine-code generation
iteration methods}
How do N/A ~as 5 above Not applicable, don’t]Unchanged really. beginning to put in place | Doesn’t change Q.A.
formal do any Auditors need to have |templates and checklists |role but does make
methods affect an outline to standardise formats to |quality control checks
software understanding of the  {improve exchange more effective.
quality expected outputs of  |between divisions and  |Improves traceability
assurance processes in order to  |this will go into which helps Q.A.
activities? verify that the procedures.
(records, processes are being Quality is the main
audits, performed. Procedures |driving force behind
certification have been written to  {pushing for more formal
etc) cover formal methods. |{mostly in the looser
sense} methods.
What are the |Makes you think Allows youtosee  |Get spec. problems Discover problems early [Cheaper (if you want a
benefits that  |through and the users view of the [resolved and discover |{e.g. when developing |system that works)
you have understand the system. errors early so much  [state charts} High defect removal
found? problem domain. A |Uncovers less rework. Test cases |Clear about the (still get bugs but
tool for thinking specification issues |can be automatically |requirements and easier to detect with a
Discover spec early rather than generated which whether they are formal spec)
problems early discovering them  |enables efficient and |complete and consistent {Coding is much more
Image — a very good, |late in the day effective validation straightforward (know
clever organisation [Significant testing exactly what’s needed)
Expert effect — you |improvement in As a consequence
need clever people  [failure rates performance is
to use them, clever improved
people make quality Complexity deters
software with any functionality/code
method. from growing
unnecessarily
Are they N/A - not measured }40% reduction in N/A N/A Yes, Product is more
measurable in post delivery failures {product was not put reliable
terms of (this is based on into service but
quality of fault report data for |expected to be more
software the CICS system)  |reliable
products?
Are they N/A - not measured |Reduces costs of Requirements Benefits in providing Yes, reviewing and
measurable in later development  [validation process something to test against. {testing is more
terms of and testing activities {much improved. Knowing what is being  |effective
software due to less problems |Testing process much |developed
process improved by auto Maintenance helped
improvements generation of test cases
? and expected results
Has any N/A — No (data has |Some informally (see paper) No but plan to collect Yes but no baseline for
quantitative  {been collected at collected data for 7a data comparison (but see
data been ACSL but they above Pfleeger & Hatton)
collected that {haven’t started using One example where
demonstrates |fm yet) data convinced
the benefits? customer that a
formally re-engineered
version of the existing
system would be
worthwhile
What Attitude - reluctance |Keeping an expertise|Structuring and Resourcing to use Customer resistance,
problems have jof ordinary base together resourcing the effectively acceptance of incorrect
been engineers to get Ability to create requirements Extended timescale of  |software (see 13)
encountered? [involved. good models with  |specification. spec means it is of Immature tools not
Complexity — hard |useful abstractions  |Size of proof at first  |limited benefit integrated into the rest
work 1o become (difficult to teach) |stages of refinement  |Doesn’t fit with of the development
fluent Customers don’t due to lack of incremental development |lifecycle

e.g. can’t write in
standard word
processors, being
unable to use normal
development tools is a

verification big turn off

compromises validity Proof tools not
industrial strength
(except maybe B)

How do the
problems
affect the
quality of
software

They don’t get used

Reduced use of
formal methods (loss
of benefits)

N/A not covered in
interview

N/A

Lack of use of formal
methods — don’t
achieve benefits
Misunderstanding can

still exist between




Question |Interviewee A |IBM Marconi Philips Pracxis
products? formal spec and
requirements (i.e. is
spec valid)
How were They weren’t really |They weren’t Specification Plan to standardiseon  {N/A
they but good teaching  [Oxford Uni. structured by most UML which doesn’t
overcome? and team building is |provided a lot of highly skilled people, |suffer these problems
seen as a solution.  |consultancy on others filled in detail. |and then use formal
modelling Take small refinement |methods for
steps initially. (encapsulated)
subcomponents within
the UML model for the
critical parts
Have any Yes, See 8 Need English Harder to get top level |No, but tend to recruit  [(see 13 for customer
understanding comments to explain [requirements reviewed |from research for these |understanding)
but this was solved by |roles so limited resources |Not too much of a

difficuities or
benefits been

Z (not so much in B
as this is better

using the animation

so tending to move away

problem, employ good

found? structured) facility. from formal calibre staff but don’t
{O-O not so much a think you need special
problem but UML use-  |people to understand
cases and requirement  |formal specs, easier
elicitation needs (soft)  |than understanding
skills that hard code, just need
developers don’t find practice.
easy so now recruiting
specialist requirements
people}
If so has this |N/A — no examples |No No No because experts used |No significant effect
affected of coding from spec
correctness
and
verification of
resulting
code?
Is there any  |Some constructs are (N/A No No No, not really
pattern to this |difficult e.g.
misunderstand [functions that return
ing?i.e. functions
particular
constructs or
styles
Doyouuse |Usesimpler forms |Had codes of Naming conventions, |Yes had documented Yes, lexical constraints
any style rules |even if more verbose |practice for capitalisation, naming |styles and codes of on spelling etc, use of
or codes of |- reduced subset embedding correspondence practice delta and sigma,
practice when |Friendly style with jcomments in Z, now |through refinement {UML - trying to do the |common format
writing formal |explanation policy is for literate |levels for traceability |same — templates and
specifications?| Teach via metaphors |programming where checklists }
to help visualisation |specification (formal
and informal) and
design and code are
all kept together.
How do they |Easy to understand |Sec 9 N/A (not asked but {Needed to migrate high {Makes 2 peoples specs
affect and also less off assume aid readability) jend products to other look similar so know
understanding |putting divisions as they become |where to expect things
(if at all)? older}
Have you No examples of Yes, most people To some extent but This is a question under |Yes, to a fairly large
found that the |writing code from  |structure their design|refinement stages used |consideration at PRL ~  |degree but some

structure of

specs but would

similar to their

to re-structure for

PK thinks it won’t if it is

features such as

the expect the structure |specification (but, |design purposes. State |at the right abstraction to [atomicity,
specification [to follow through  |the formality assists |structure unchanged. |be a requirements concurrency, timing
model into the code in maintaining a Code structure reflects |document but they are  |are design stages that
influences the purer external B notation looking at whether it can |affect this
implementatio requirements view, be done purposefully correspondence
n? i.e. the spec contains

less design

decisions)
Is this good or |Trade off - helps Good, it aids Helped in maintaining |It may be good to Good helps traceability
bad? traceability but may |traceability code to B express requirements so

not be efficient code |(although a purist  |correspondence that they influence the
might argue that the structure of the

design will lead to
less efficient code
the pragmatic view
is more important)

implementation to make
it have reusable
components

On the other hand it may

confuse the requirements




documents

subcontracts for

only (encapsulated

Question |Interviewee A |IBM Marconi Philips Praxis
role of the spec to have
this in it.
How have N/A-no (answered below)  |The formal specs Improve understanding  |Spec helps with
formal maintenance themselves had no of code being changed  [determining correct
specifications [experience effect on maintenance. |making it easier to get  [code change and the
affected B tool helped a lot in  {the change right effects on the rest of
maintenance automatically detected the system
issues? everything that relied
on a changed
component and
assisting in re-
checking these,
Do the formal |N/A In one example the {No. Yes, provided Yes
specifications formal spec was traceability is ok from
help determine used to good effect spec to code (but this is
the correct and gave an often not the case due to
code change? estimated 50% timescales during
reduction in development)
maintenance cost.
However this is an
isolated case and
usually the
specification is not
used or maintained
after development.
Are the formal {N/A Not usually kept up |Were updated, and this |Specs are fairly easy to | Yes, they are kept up
specifications to date. is not difficult due to |update but it is only doneto date. This is partly
difficult to the help from the B if traceable to code culture but also formal
update? Are toolkit specs are worth
they kept up to keeping up to date
date? because they are so
useful compared to
natural language specs.
Usually easier to
update formal specs
because you can work
out what needs
changing better.
Do the formal |[N/A Don’t affect it either |Prevent degradation  |if traceable prevent code |Help prevent
specifications way, usually don’t  |because the B tool degradation since the degradation indirectly
prevent (or 20 back to the spec |allows you to maintain [change is made with the |by supporting a good
worsen) anyway the design structure  |spec structure in mind.  |process, tend to do
degradation of easily and the code is things in the right
the code kept in-line with this order starting with the
structure structure. spec and this helps
through keep good code
maintenance? structure
Does the N/A Not much practical {N/A Have found that natural {Some degradation.
structure of experience but No experience of post- (language specs
the perception that the |delivery maintenance. |deteriorate quickly with
specifications formality will (During early spec changes whereas Formal
themselves increase the development the Specs do not.
deteriorate tendency to avoid  [structure was
through restructuring leading |maintained but may be
maintenance? to degradation. different later on)
How do Impressed, usually |General warm MoD Customers (usually project manager |Depends on customer,
customers have someone who |feeling that company|mandate the use of or marketing act as some (e.g. MoD)
view the use [is keen to learn the |is doing something |formal methods and  |customer proxy) mandate due to
of formal methods to again good to look after  |want tosort outany  |{Tend to want good regulatory pressure
methods? personal position quality spec. methods to achieve Some resist, may not
misunderstandings quality in general so fit in with practices,
early and tie down the [supportive cost of training etc.
requirements. General acceptance
US customers may that software rarely
need persuasion to works — this takes
accept proof instead of away the incentive to
testing etc. (MoD vice- use formal methods
versa) since it is cheaper to
produce a system that
doesn’t work than to
make one that does
using formal methods
Are formal Were used to place {Internal customers [Yes Yes project manager Sometimes

needs to approve




Question _|Interviewee A |[IBM Marconi Philips Praxis
used as an small projects subsections called requirements spec
interface to domains are
customers? developed separately
so Formal specs will
be used to define the
interfaces for the
domain and this will
be used by the other
domain groups)
If so, how Interviewee was the |Beneficial (but note {Customers have people|The project manager has |Technical engineering
does this customer and wrote |that these that understand the problems understanding {staff understand better
affect the spec, ‘customers’ are other|methods, also formal specs. so working |and can answer
understanding |subcontractors were |IBM software animation of specis  [towards levels of questions about the
of the system |able to understand  jdevelopers) used to illustrate its ~ |abstraction and to make |behaviour of their
by the the friendly, reduced meaning. If not readable so that they can |future system, but the
customer? subset Z mandatory there may junderstand while still audience is restricted
be some understanding |being formal as possible
problems but not
insurmountable.
Has it affected {Has helped in No, except that there |Helps derive test cases | Yes, one of the main Beneficial because
system working out test are less problems at {and also contributes to [driving forces is to traceability of tests to
validation and |cases. this stage. acceptance evidence |improve the final testing |spec is clearer,
acceptance No auto test output (for the right by having a clear spec of |customer can see that
stages? generation so far but customers) what it should do. the system does what
agreed could be was specified
done
Is there Would like to see | There is no impetus |Thinking about formal {Have strong commercial |No
anything we  |improved learning  [to using formal methods for non- pressures for high quality
haven’t techniques. methods because functional but also timescale
covered that  |Would Not want customers accept the [requirements such as  |pressures. So looking at

you would like
to talk about?

notation to be made
easier if this
contaminated the
mathematical purity
of the notation

current level of
quality without FM
and supplier can
cover corrective
work in price.

parallelism, timing and
also for hardware (def
stan 00-54)

UML for re-use
component based
approach and will

formalise the critical bits

Lack of specification
precision leads to
late changes —
people are aware
that late changes
happen and therefore
avoid precision ~
vicious circle!!

Full formal
development with
proofs, same as for
conventionally
developed high
integrity software but
think variance of
estimates may be
higher at moment due
to limited experience,
limited skills base etc.
Considering using
formal specification
with B tool but less
proving as this might
be more efficient than
conventional
development.

Problem with B -
starts late in the
lifecycle, need a z spec
to start off then
translate to B

Don’t use code gen.

Did not use B-Tool

The really rich

facility of b toolkit |code gen because — languages like Z are
due to code didn’t trust it (not only semi-decidable
inefficiency formally developed)

and didn’t want C

(unsafe).

timescales are

Structure of

Agreed, domain

similar to requirements spec, specific languages
conventional proofs. (refinement is probably the way
methods ok, much like design) forward

B tool - relied on
heavily and found it
helped a lot in tracing,
proving and
maintenance rework.
Some holes — need to
add rules for proving
but proofs rely on the
validity of these rules,
no ADA translator




Appendix B Experiment Materials

B.1 Z specification

State

RoadType

length : N

length > 0

PositlonType

road : RoadType
space : N

space e 1.. road.length

VehlcleType

pos : PositionType

RoadsysType

roads : P RoadType
goesto : RoadType « RoadType

dom goesto = roads
ran goesto ¢ roads

Traffic

roadsys : RoadsysType
vehicles : P VehicleType

V v : vehicles . v.pos.road e roadsys.roads
V v, w: vehicles | v = w . v.pos.road = w.pos.road =
V.pos.space = W.pos.space

Initialisation

Trafficlnit

Traffic’

vehiclesinit? : P VehicleType
roadsysinit_roads? : PRoadType
roadsysinit_goesto? : RoadType < RoadType

vehicles’ = vehiclesinit?
roadsys’.roads = roadsysinit_roads?
roadsys’.goesto = roadsysinit_goesto?
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Operations

Report ::= Okay | Destination already occupied
Success

error! : Report

error! = Okay

moveSameRoad,

A Traffic
pos? : PositionType

pos?.road e roadsys.roads

pos?.space < pos?.road.length

3 v : vehicles - v.pos = pos?

—3 w : vehicles . w.pos.road = pos?.road A w.pos.space = pos?.space+1

vehicles’ = vehicles U {v :VehicleType | v.pos.road=pos?.road »
v.pos.space=pos?.space+1}
\ {v : vehicles | v.pos = pos?}
roadsys’ = roadsys

pickRoad

roadset? : P RoadType
road! : RoadType

roadset? = &

road! e roadset?

moveNewRoad,

A Traffic
pos? : PositionType

pos?.road e roadsys.roads
pos?.space = pos?.road.length
3 v : vehicles - v.pos = pos?
-3 w : vehicles . w.pos.road =
pickRoad roadsys.goesto pos?.road A w.pos.space = 1

vehicles’ = vehicles u {v : VehicleType | v.pos.road =
pickRoad roadsys.goesto pos?.road A v.pos.space = 1}
\ {v : vehicles | v.pos = pos?}
roadsys’ = roadsys
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destinationAlreadyOccupied

E Traffic
pos?: PositionType
error!: Report

pos?.road e roadsys.roads
3 v: vehicles . v.pos = pos?

((pos?.space < pos?.road.length A
3 w: vehicles - w.pos.road = pos?.road A
w.pos.space = pos?.space+1)
\'4
(pos?.space = pos?.road.length A
3 w: vehicles . w.pos.road = pickRoad roadsys.goesto pos?.road
A W.pos.space = 1))

errori=Destination already occupied

moveVehicle =
((moveSameRoad, v moveNewRoad,) A Success)
v destinationAlreadyOccupied

B.2 Java Program

import java.lang.Exception;
class InvariantException extends Exception {

public  InvariantException (String msg) {super{msg});}

}

class RoadType {
int  roadlength;

public RoadType(int inp_length) throws InvariantException {
if (inp_length < 1) {
InvariantException e = new InvariantException
("Invariant: road length must be >=1");
throw e; }
roadlength=inp_length; }
}

class PositionType {
RoadType road;
int space;

public PositionType (RoadType inp_road, int inp_space) throws InvariantException {
if (inp_space < 1 || inp_space > inp_road.roadlength} {
InvariantException e = new InvariantException
("Invariant: position must be within road");
throw e; }
road = inp_road;
space = inp_space; }

public boolean sameas (PositionType inp_pos) {

boolean same = false;
if (inp_pos.road==road && inp_pos.space==space) same =true;
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return same; }

}

class VehicleType {
PositionType pos;

public VehicleType(PositionType inp_pos) {pos = inp_pos;}

public void moveto(PositionType inp_pos) {pos = inp_pos;}

}

class RoadsysType {
RoadType]] roads;
RoadType[][] goesto;

public RoadsysType(RoadType[] init_roads,RoadType[]] init_goesto) throws InvariantException {
roads = init_roads;
if (init_goesto.length < roads.length) {
InvariantException e = new InvariantException
("lnvariant; all roads must go somewhere");
throw e; }
for (int i=0; i<roads.length; i++) {
if (init_goesto]i].length == 0) {
InvariantException e = new InvariantException
("Invariant: alf roads must go somewhere");
throw e; }
for (int j=0; j<init_goestofi].length; j++) {
if (tisaroad(init_goesto[ij[i})) {
InvariantException e = new InvariantException
("Invariant; invalid goesto road");
throwe;} }}
goesto = init_goesto; }

public boolean isaroad(RoadType inp_road) {
boolean r=false;
for {int j=0; j<roads.length; j++)
if (roads[j] == inp_road) r=true;
retunr; }

public RoadType[] allgoesto(RoadType inp_road) {
int i=0;
while (roads{i] != inp_road) i++;
return goesto[il;}

}

import java.utit.Random;
class Pick {
static Random r=new Random();

static public RoadType pickroad (RoadType[] array) {
int n=Math.abs(r.nextint() % array.length);
return array[n];}

}

class Traffic {
RoadsysType roadsys;
VehicleType[] vehicles;

public Traffic(RoadType[] init_roads,RoadType[][] init_goesto,VehicleTypel] init_vehicles) throws InvariantException {
roadsys = new RoadsysType(init_roads,init_goesto);
for (int i=0; i<init_vehicles.length; i++) {
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if ('roadsys.isaroad(init_vehiclesi].pos.road)) {
InvariantException e = new InvariantException
("Invariant: Vehicle not in valid road");
throw e; }
for {int j=0; j<init_vehicles.length; j++} {
if (init_vehicles{i].pos.sameas{init_vehicles[j].pos) && il=j} {
InvariantException e = new InvariantException
(‘Invariant: 2 vehicles at same position”);
throwe;} }
vehicles = init_vehicles; }

public void moveVehicle(PositionType inp_pos) throws Exception {
PositionType destination;
if (inp_pos.space < inp_pos.road.roadlength) {
destination = new PositionType(inp_pos.road,inp_pos.space+1);}
else {
RoadType exit=Pick.pickroad(roadsys.aligoesto(inp_pos.road));
destination = new PositionType(exit,1); }
if (isVehicleAt(destination)) {
InvariantException e = new InvariantException
{"Invariant:: Destination already occupied");
throw e; }
getVehicleAt(inp_pos).moveto(destination); }

public boolean isVehicleAt(PositionType inp_pos) {
boolean found = false;
if (vehicles != null) {
for (int i=0; i<vehicles.length; i++) {
if (vehiclesi].pos.sameas(inp_pos)) found=true;}}
return found; }

public VehicleType getVehicleAt{PositionType inp_pos) {
int i=0;
while (!vehicles]l].pos.sameas({inp_pos)) i++;
return vehicles(i]; }

fe—
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B.3 Questionnaire

Your email address:

Please record the time taken for each of the first 2 questions including all of the time

you spend reading the specification/program).

Q1. Describe the physical objects represented in the system and their behaviour (i.e. the

functionality of the specification/program) Time taken for Q1. mins

Q2. 'PickRoad' represents an indeterministic or random choice. In real-world,

functional, terms what is it used for? Time taken for Q2.: mins

Q3. How difficult did you find the specification/program to understand compared to

how you think you would have found an English language equivalent?
EasyOOOO0 0000O0OO Hard (replace an O with an X)

Q4. How difficult do you find mathematical subjects? (i.e. what is your subjective

judgement of your own mathematical abilities compared to your peers)
EasyOOO0O0000000O0 Hard (replace an O with an X)

Q5. What training/qualifications do you have in mathematical (and related) subjects

(e.g. GCSE, A-level Maths/physics etc)?

Q6. How much experience have you had with the notation/language used in the

specification/program?

Q7. Any other comments? (or things that might have affected your answers)

148



B.4 Marking sheet

Q1. Roads

Roads are directional

Roads have a length

... which is greater than zero

Roads are modelled as a sequence of discrete positions

The end of each road is connected...

....tooneor....

....more other roads

Vehicles

Vehicles exist on a particular road

...at a particular position on that road

2 vehicles cannot occupy the same position

Vehicles can move along roads...

...one position forward at a time

...but only if the destination position is unoccupied

A vehicle at the end of a road...

..can move to another road...

..that is connected to its road...

..in fact any of the connected roads...

..the choice is random/undefined

..but only if the destination is unoccupied

Q2. it represents the vehicles/drivers choice of ...

... which new road to enter.

Total

Total time taken: (Q1+Q2 = + )

marks per minute
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B.5 Summary of Results

Time |Q1+2|Q3 |Q4 | Q5 |Q6 (Q7
n (mins) (answers to Q6 and Q7 are summarised)
Z
1 20 10 2 2 A <iyr
2 12 8 3] -2| B |lcourse dreading z would have preferred J
3 20 7l -1 -2 A |module
4 9 7 5] -1} C |litle formal spec more difficult than code
5 10] 15 1 -2| A |fairamountin course
6 29 8 5| -4f A |module
7 25 9 2 0| A [semester
8 271 18 1 2] A [semester
9 13} 10 3 0| A |course
10 25 9 0] -3] A |course code easier then spec
11 13 4 - -1o- | -
12 20 15 3| -3 A |module z awkward / symbols
13 23 6 2 -3] A |2modules
14 35 5 2l -5 A |somelastterm difficulty ops
15 33 6 3| 2] A Jlittle difficult due lack of knowledge of z
16 13 3 5] -2 A [12x45min lectures spec totally confusing
17 18 7 1 -1 A |1 module
18 18 7 3] -2 A |2modules
Java
19 22 8 0] -4 A [iyr
20 22 9 2 3] A |[6months
21 19 4 2  -11 A [6months
22 15 7 3] -3.5] A [6months names made it easy
23 14| 10 2 -1 A [6months progs easier than z/more natural to write
24 15 3 2 11 A |some
25 14 8 2| -3 A |module
26 15| 16 3] -2 A {[10months traffic implies functionality
27 21 10 2 0| A |12months in depth
28 221 12 3] -3 A |module lack of comments
29 35 7 4 2| A |3todmonths lack of comments
30 12 6 3 3 B |istyr Java confusing
31 25 7 3] -3 A [6months
32 25 9 1 1] A |module
33 15 4 3 1§ B |notmuch v difficult to understand this prog
34 25 8 3 5| B |semester not strong at coding - Java diffciult
35 231 17 3] -4] A |lotsof Java not too hard to understand
36 271 14 2 3| A |fairamount - module weird coding style

key for Q5: A=Alevel maths, B=GCSE maths C=maths as part of french baccalaureat
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B.6 Corrected Z Specification in ZSL

specification

--- PositionType --—--———--re—--m-—-
| road: RoadType;
| space: N

| space in 1..road.length

--~- VehicleType ~----————~ommmmmm
| pos: PositionType

-~~~ RoadsysType --————————~cm—————
| roads: P RoadType;

| goesto: RoadType <-> RoadType

| dom goesto = roads;

| ran goesto subseteq roads

-~- Traffic -—==wc-rmmmmn——
| roadsys: RoadsysType;
| vehicles: P VehicleType

| forall v:vehicles @ v.pos.road in roadsys.roads;
| forall v,w:vehicles | v/=w @
| v.pos.road=w.pos.road => V.pos.space/=w.pos.space

--- TrafficInit ~-------—~oomm-—-

| Traffic';

| vehiclesinit?: P VehicleType;

| roadsysinit_roads?: P RoadType;

| roadsysinit_goesto?: RoadType <-> RoadType
vehicles' = vehiclesinit?;

roadsys'.roads = roadsysinit_roads?;
roadsys'.goesto = roadsysinit_goesto?
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Report ::= Okay | Destination_already_occupied

-—— SUCCESS —-———-m— e
| error!: Report

~-- moveSameRoad( -=-------mmmmm e
| Delta Traffic;
| pos?: PositionType

pos?.road in roadsys.roads;
pos?.space < pos?.road.length;
exists v: vehicles @ v.pos = pos?;
not (exists w:vehicles @
w.pos.road=pos?.road and w.pos.space=pos?.space+l);

vehicles'= vehicles ||
{v:VehicleType | v.pos.road=pos?.road and
V.pos.space=pos?.space+l} \
{v:vehicles | v.pos=pos?};
roadsys'=roadsys

--- pickRoad ------—-rrmmmmm -
| roadset?: P RoadType;
| road!: RoadType

--- moveNewRoad( ----==--o—mmrememmm
| Delta Traffic;
| pos?: PositionType

pos?.road in roadsys.roads;
pos?.space = pos?.road.length;
exists v:vehicles @ v.pos = pos?;

[

|

i

|

| let roadset?=={rr:RoadType | (rr,pos?.road) in roadsys.goesto} @
l exists road!:RoadType | pickRoad @

[ not (exists w:vehicles @ w.pos.road=rocad! and w.pos.space=1l)=>
|
|
1
|

l

vehicles' = vehicles ||
{v:VehicleType | v.pos.road=road! and v.pos.space=1} \
{v:vehicles | v.pos=pos?};
roadsys ' =roadsys
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--- destinationAlreadyOccupied -—-=----mmmmmmeo ..
| Xi Traffic;

| pos?: PositionType;

| error!: Report

| pos?.road in roadsys.roads;

| exists v:vehicles @ v.pos = pos?;

| (pos?.space < pos?.road.length and

| (exists w:vehicles @ w.pos.road=pos?.road and

[ W.pOS.space=pos?.space+1))
| or

| (pos?.space = pos?.road.length and
[ (let roadset?=={rr:RoadType | (rr,pos?.road) in roadsys.goesto} @
I not (exists road!:RoadType | pickRoad @

] not (exists w:vehicles @ w.pos.road=road! and w.pos.space=1)

l )

§ )

| )

| error!=Destination_already_occupied

moveVehicle ="= ((moveSameRoad(0 or moveNewRoad0) and Success)
or destinationAlreadyOccupied

end specification
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Appendix C Results of Student Poll

C.1 Poll Results

Results - all years ZB UML pref
total responses 118

useable responses 116 116 115
strong dislike 47% 12%

dislike 29% 21%

neutral 12% 28%

like 8% 35%

strong like 3% 3%

prefer UML 67%
equal 18%
prefer ZB 15%
Results - first years ZB UML pref
total responses 33

useable responses 33 33 33
strong dislike 30% 12%

dislike 21% 21%

neutral 24% 36%

like 15% 30%

strong like 9% 0%

prefer UML 52%
equal 18%
prefer ZB 30%
Results - second years ZB UML pref
total responses 50

useable responses 49 49 48
strong dislike 57% 6%

dislike 29% 29%

neutral 6% 29%

like 6% 33%

strong like 2% 4%

prefer UML 77%
equal 17%
prefer ZB 6%
Results - Third years ZB UML pref
total responses 35

useable responses 34 34 34
strong dislike 50% 21%

dislike 38% 9%

neutral 9% 21%

like 3% 44%

strong like 0% 6%

prefer UML 68%
equal 21%
prefer ZB 12%
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C.2 Poll Data

-2=strongly dislike, -1=dislike, O=neutral, 1=like, 2=strongly like, dk=don’t know

Cohort
first year
first year
first year
first year
first year
first year
first year
first year
first year
first year
first year
first year
first year
first year
first year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year

7B
-2
2
-2
1
-2
-2
1
-1
1
-2
-2
-1
-1
2
1
-2
-2
0
-2
-2
-1
1
-2
-2
-2
-1
-2
-2
-1
-2
-1
-1
-2
-1
dk
-2
-2
-1
-2
1
-2
-2
-1
-2
-2
-1
-1
2
0
-1

UML

OO = OO0

N~ OOoOOo

-1

pref

ON*—‘OOI\JP—'NM»—»-—[\)['\)NN

PR, O~ =~ OWR=NDO

el
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Cohort
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
second year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year
third year

7B
2
-1
-2
-2
-1
1
0
2
2
2
-2
-1
-2
-2
-2
-1
-1
-2
-1
-2
0
-2
-2
-2
-2
-2
-2
0
2
-1
-2
-2
-1
-1
-1
-1
-1
-2
1
-2
-2
-2
-2
-1
-1
0
-1
dk
-1
-2
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