
EXPLORING THE BARRIERS TO
FORMAL SPECIFICATION

By

Colin Frank Snook

A thesis submitted for the degree of Doctor of Philosophy

Declarative Systems and Software Engineering,

Department of Electronics and Computer Science,

Faculty of Engineering and Applied Sciences,

University of Southampton

United Kingdom.

November 2001

TJisni/iifisiTrTftZMF S(]ijrrH/LN4iy]rcKN

ABSTRACT

FA{%a:rr(IFE^K%%%aaU^Kj/d03/Uq%JED SCIENCES

]gua jTR0^ncs /u^D(%]NPtn%aiscng%CEi iEPART&Q3NT

Doctor of Philosophy

i;)[FqL()Fir>fC} rillilBUSJtltlEWRj) TO I%:HRJV[/LL5)F1jK:iFl(:y\TriCM\f

by Colin Frank Snook

This thesis explores barriers to using formal specification for software development in industry.

Empirical assessment techniques are used initially in an exploratory stage and subsequently in

testing a hypothesis arising from the first stage. A second hypothesis is investigated by

construction of a method and tool with subjective assessment of its effect. The first stage

consists of a survey of experienced industrial formal methods users via a questionnaire-based

interview. The interviews explore the practicalities of using formal methods in an industrial

setting. From the many findings in this stage, two hypotheses are selected for further

investigation. The first hypothesis is that formal specifications are no more difficult to

understand than code. This is tested by formal experiment. The subject's ability to understand

the functionality of a formal specification is compared with their ability to understand its

implementation in program code. The second hypothesis is derived from observations, during

the survey stage, that formal specifications are difficult to write. In particular, choosing

appropriate abstractions is difficult. We consider what might make formal specification difficult

and compare the process with that of programming. The second hypothesis is that a tool

supported, graphical modelling notation would be of benefit in the process of writing a formal

specification. Such a notation is devised by adapting the UML and augmenting it with a formal

text notation. A tool that converts this graphical formal specification into the formal notation, B

is described and examples of its use are analysed.

Acknowledgements

Thanks must go foremost to my two superb supervisors; firstly Rachel Harrison, now at

Reading University, who taught me how to start a PhD and supervised the first part (up to

Chapter 4), and latterly Michael Butler who supervised the second part and taught me how to

finish a PhD. Thanks also to Manoranjan Satpathy and everyone else at Reading University for

their input and encouragement during collaborative work. Thanks to those who contributed to

the survey work in Chapter 3: Paul Krause, John Wordsworth, Anthony Hall, Jonathan Draper

and Interviewee A. Thanks to Gwil Edmunds who helped organize the experiment in Chapter 4

and to all the CS2 students who participated in it. Thanks to all who expressed an interest in

U2B: particularly Marina Walden, at Abo Akademi and Muan Ng here at Southampton. For

help, suggestions, general encouragement or inspiration at various points, thanks to Andy

Graven, Simon Cox, the Social Statistics department, Barbara Kitchenham, Martin Shepperd,

Jim Davies and Christie Bolton. For financial support I would like to thank my funding body,

theEPSRC.

I would also like to thank my main confidants; my sister, Alison, who was always able to

assuage any guilt and Moira for endless dissections of studentship and its supervision. Thanks to

Bean, for making me determined enough to start; my parents, Brenda and Brian, for

engendering a belief in the importance of learning; Grandma Snook, for her unconditional love

and house and my daughters, Louise and Ruth, for an endless supply of grandchildren and

enthusiasm.

CPS

Contents

Chapter 1 Introduction 1
1.1 Aims of Research 1

1.2 Outline of Research 2

1.3 Structure of Thesis 3

Chapter 2 Background and Techniques 5
2.1 Empirical Assessment 5

2.1.1 Measurement 6
2.1.2 Types of Empirical Assessment 7
2.1.3 Statistical Analysis 10

2.2 Formal Methods 12
2.2.1 The Z notation 12
2.2.2 The B method and notation 14

2.3 Semi-Formal Notations 15

2.^.7 [/m, 76

2.4 Integrating Formal and Semi-Formal Notations 17

2.5 Cognitive Dimensions 18

Chapter 3 Practitioners Views on the Use of Formal Methods 20
3.1 Purpose of Survey 20

3.2 Conduct of Survey 21

3.3 Results 23
3.3.1 The Customer's Viewpoint 23
3.3.2 Impact on Company 24
3.3.3 Impact on Product 25
3.3.4 Impact on Development 27
3.3.5 Size of system 28
3.3.6 Comprehensibility 28
3.3.7 Tools and Notations 29

3.4 Conclusions 30
3.4.1 Comprehensibility 30
3.4.2 Modelling 30

3.5 Summary 31

Chapter 4 Comprehensibility of Formal SpeciRcations 33
4.1 Description of Experiment 33

4.2 Design of Experiment 34

4.3 Consideration of Influencing Attributes 34

4.4 Subjects 35

4.5 Experimental Materials 36

4.6 Conduct 36

4.7 Data Collection Procedures 36

111

4.8 Analysis of Results 37
4.8.1 Variables 37
4.8.2 Method of Analysis 37
4.8.3 Examination of Data 38
4.8.4 Bootstrap Confidence Intervals 39
4.8.5 Analysis of Qualitative Data 41

4.9 Threats to Validity 43
4.9.1 Internal Validity 43
4.9.2 External Validity 44
4.9.3 Construct Validity 45

4.10 Possible Areas for Replication 46

4.11 Summary 46

Chapter 5 Why Writing Formal SpeciHcations is DifRcuIt 48
5.1 Models, Specifications and Implementations 49

5.2 Writing Formal Specifications 52

5.3 Cognitive Dimensions of B 59
5.3.1 Abstraction 59
5.3.2 Premature Commitment 61
5.3.3 Viscosity 61
5.3.4 Progressive Evaluation 62
5.3.5 Closeness of Mapping 63
5.3.6 Hard Mental Operations 64
5.3.7 Visibility and Juxtaposability 64
5.3.8 Hidden Dependencies 65
5.3.9 Error-Proneness 65
5.3.10 Consistency 66
5.3.11 Diffuseness/Terseness 66
5.3.12 Role-Expressiveness 66
5.3.13 Secondary Notation 66

5.4 Summary 67

Chapter 6 B-UML and U2B: Adapting the UML for Formal Specification 69
6.1 Benefits of a Diagrammatic Form for Specification 70

6.2 Benefits of Translating UML to B 71

6.3 The U2B Translator 72

6.4 Structure and Static Properties 72
6.4.1 Instance Creation 74
6.4.2 Association Multiplicities 75
6.4.3 Attribute Types 77
6.4.4 Global Definitions 78
6.4.5 Local Definitions 79
6.4.6 Singular Classes 80
6.4.7 Restrictions SO

6.5 Dynamic Behaviour 81
6.5.1 Invariant
6.5.2 Operation Semantics 82

6.6 Summary 88

Chapter 7 Examples of B-UML and U2B in Use 90
7.1 Raffle Game 90

7.2 Railway Station 96

IV

7.3 Teletext 103

7.4 Summary I l l

Chapter 8 Related Work 112
8.1 OCL 112

8.2 RoZ 113

8.3 IFAD Rose-VDM++ Link 115

8.4 Other Work on Translating to B 116
7 Work of CEO^/C-//E Womfofy 7 76

8.4.2 Work at LORIA - Universite Nancy 777
8.4.3 Sekerinski and Zurob - Statecharts to B 118

8.5 Translations to Other Formal Notations 119

Chapter 9 Conclusions 122
9.1 Meeting the Research Aims 122

9.2 Lessons Learned Using B-UML 124

9.3 Further Work 126
9.3.1 Evaluation of B-UML and U2B 126
9.3.2 Development of B-UML and U2B 126

9.4 Conclusion 129

Rekrences 130

Appendix A Survey Materials 137
A.l Questionnaire 137
A.2 Results Summary Matrix 138

Appendix B Experiment Materials 143
B. 1 Z specification 143

B. 2 Java Program 145

B.3 Questionnaire 148

B.4 Marking sheet 149

B.5 Summary of Results 150

B.6 Corrected Z Specification in ZSL 151

Appendix C Results of Student Poll 154
C.l Poll Results 154

C.2 Poll Data 155

Chapter 1

Introduction

Formal methods have long held the promise of providing a much-needed solid engineering

foundation for the 'art' of programming computers. Proponents have countered popular myths

that dubious practitioners raised to dismiss them (Hall, 1990; Bowen and Hinchey, 1995).

Experiential reports of their use have invariably been favourable and yet still the adoption of

formal methods has been limited. Academic interest in formal methods has been lively with

many active research groups throughout the world and plenty of conferences dedicated to their

discussion. Despite this interest, uptake within industry has mainly been limited to safety critical

applications (some due to mandate by regulatory authorities) and experimentation by a few

pioneering market leaders. It seems that practitioners, in their constant search for an edge in

productivity and quality are keeping an eye on formal methods but judge them to be

insufficiently beneficial to outweigh pragmatic problems. Formal specification is the first step to

using formal methods and is, in itself, a useful activity even if the formal specifications are not

subsequently used in a full formal development. However, even this first step is not being

adopted to any great degree within the industry. Perhaps academia is not prioritising the

problems it researches to the greatest effect. Targeting the pragmatic problems that practitioners

initially face would lead to increased interest and funding from industry, and a more widespread

take-up of formal specification would later lead to faster development of subsequent research in

academically appealing areas of formal methods.

Since formal specification is the first step to using formal methods it is also the first barrier that

must be overcome if the benefits of full formal methods including refinement and verification is

to be achieved. To limit the area of research and make it more manageable, this thesis

concentrates on the barriers to formal specification.

1.1 Aims of Research

This thesis explores some of the barriers to the widespread use of formal specification in

industry. While we cannot hope to explain all such barriers, the aim is to make some progress in

understanding what some of the barriers are and to evaluate them. A further aim is to suggest

possible ways to overcome the identified barriers and to demonstrate that the suggested methods

are effective in this respect.

Formal specification bears many similarities with program design. It is convenient and useful

when thinking about barriers to formal specification, to think about whether similar barriers

exist in programming; and if so, how they have been overcome. The comparison with

programming is useful because programming is a more developed and researched area. It is also

the main activity and primary goal of the people that we would like to help overcome the

barriers to formal specification. These people have a good intuitive 'feel' for attributes of

programming, making comparisons meaningful in a practical sense. A parallel, or more

concrete, aim therefore is to compare the activity of formal specification with that of

programming.

1.2 Outline of Research

Initially the research is wide and exploratory in nature. The thesis explores the main issues in

using formal methods as perceived by experienced practitioners. The practitioners were

interviewed using a questionnaire as a basis for the discussions. The interviewees were

encouraged and prompted to expand on topics of interest in keeping with the exploratory nature

of this stage of the research.

From the many findings of this first stage, two topics that are relevant to the aims of the thesis

were selected for more detailed investigation. The first topic, comprehension of formal

specifications, was selected because it might be thought to be a barrier to formal specification.

The interviewees' opinion, however, was that comprehension is not a barrier to software

designers and programmers. Anthony Hall, the interviewee from Praxis Critical Systems, made

this point most directly. The other interviewees generally indicated that they didn't see

comprehension as a problem. The second stage of the research focuses on this issue. A formal

experiment was conducted to investigate the hypothesis that formal specifications are no more

difficult to understand than code. The subjects' ability to understand the functionality of a

formal specification is compared with their ability to understand its implementation in program

code. The experimental results support the hypothesis indicating that comprehension of formal

specifications by programmers is not a barrier to their use.

The second topic that was selected for further investigation, that writing formal specifications is

difficult, was selected because there was a consensus amongst the interviewees that this is a

significant problem. In order to explore this topic the thesis compares the activity of writing a

formal specification with that of designing software. This leads to the hypothesis that a tool

supported, graphical modelling notation similar to those used in program design would be of

benefit in the process of writing a formal specification. In order to explore this hypothesis, such

a notation is devised by adapting the UML and augmenting it with a formal textual notation. A

tool that converts this graphical formal specification into the formal notation, B, is described

and examples of its use are analysed. The examples illustrate the effectiveness of using a semi-

graphical formal notation with tool support for the exploratory design activities involved in

formal specification. Hence, this may be a route to overcoming a major barrier to the use of

formal specifications.

1.3 Structure (dmuMNs

The rest of the thesis is structured as follows:

Chapter 2 provides a background to the thesis. It summarises the empirical assessment

techniques used in the thesis giving examples of their use elsewhere. It introduces the notations

discussed in the thesis and the concept of integrating formal and semi-formal notations.

Chapter 3 describes a survey of practitioners using formal methods leading to the selection of

two issues for further investigation. This chapter is based on Snook and Harrison (2001a).

Chapter 4 describes an experiment comparing the comprehensibility of a formal specification

with its implementation. The chapter investigates the first of the two issues selected in Chapter

3. This chapter is based on Snook and Harrison (2001b).

Chapter 5 discusses the nature of formal specifications and the process of writing them. The

similarities between the process of writing a formal specification and that of designing a

program are discussed. The difficulties of writing a formal specification are analysed and

contrasted with the situation in program design. The chapter provides a theoretical under-

pinning for the adaptation of a program design notation and tool to formal specification.

Chapter 6 describes B-UML and U2B. B-UML is an adaptation of UML class diagrams and

statecharts with annotations in a B like textual format. B-UML is a semi-graphical formal

specification notation based on UML. U2B is a program that converts B-UML specifications

into B. This chapter is based on Snook and Butler (2001)

Chapter 7 describes examples of specifications written in B-UML. The examples demonstrate

the use of B-UML and illustrate some problems with the current version. The first two examples

are from Snook and Butler (2000) and Snook and Butler (2001) respectively. The third example

was written jointly with M. Satpathy of Reading University and is a simplified version of a case

study (Satpathy, Harrison, Snook and Butler, 2001) based on a real application.

Chapter 8 describes related work on integrating formal and semi-formal notations comparing it

with B-UML and U2B.

Chapter 9 draws conclusions from the thesis and describes further work that we hope to carry

out.

Chapter 2

Background and Techniques

This chapter explains the importance of empirical evaluation in research and introduces the

forms of evaluation and the techniques involved. A method that we use for assessing the

cognitive aspects of a notation is introduced. The chapter introduces the formal methods and

notations that are the subject of this investigation.

2.1 Empirical Assessment

The general lack of empirical validation of software engineering theories is described by Fenton

(1993) and Glass (1994). Glass comments on the way research in software has become insular

and 'academic', losing touch with practitioners and not validating theory with real scale

evaluation. In response practitioners have lost faith in research results. This situation Glass says,

has arisen from the, mathematical, university background of computer science that tends to view

practical application issues with disdain and values pure theoretical research. This has been

exacerbated by the practical difficulties of scale and expense in realistic evaluation and the

industry's thirst for ideas (without waiting for evaluation) in the early years of computing. The

mistrust between researchers and practitioners has been confounded by the researchers' habit of

exaggerating the problems of software production as a 'software crisis'. Glass puts forward the

Software Engineering Laboratory, SEL (which is a collaboration between academia, industry

and government) as a model of how research should be organised. Research and development

should go hand in hand so that research ideas are transferred into practice via an established

process and bad ideas, which cannot be put into practice, are not kept alive purely by research

advocates. Formal methods are cited as an example of an idea being kept alive purely by

research. Glass ends by saying that we often make more progress out of our failures than our

successes and suggests that the 'research crises' will in the end lead to the ideal co-operative of

research organisations that he describes. Similarly, Fenton warns the research community that

they should not be exasperated by the poor industrial acceptance of new methods when they

lack empirical validation. Fenton discusses the lack of evidence to support formal methods,

even for safety critical applications but recognises the difficulties inherent in measuring

processes involving humans.

Zelkowitz and Wallace (1998) describe a classification of the possible types of validation

methods for software engineering research theories. They point out the limitations of some

(such as assertion, where the researcher has control over an example and can bias it) and the

practical problems of more convincing methods (such as replicated experiments, which are

expensive in most cases). They present the results of a review of past papers, showing the

percentage of types of validation methods used. This shows that about a third had no validation,

a third used assertion and the rest were distributed over the remaining types but favouring

lessons learned, case study and simulation. In their more recent figures there appears to be a

trend towards improvement with a fall in 'no validation' (assertion) papers and an increase in

lessons learned, case studies and replicated experiments. Despite the improvements the current

situation regarding validation of research is still poor.

2.1.1 Measurement

Any form of empirical assessment must be based on sound measurement and Fenton's book

"Software Metrics" (1996) provides a theoretical basis to selecting measures and the types of,

and relationships between, attributes as well as covering the prediction and measurement of

specific external product attributes. Curtis (1980) provides an earlier description of many of

these measurement issues and also covers issues in the design of experiments. Kitchenham,

Pfleeger and Fenton (1995) define a structure model of measurement. This is followed up with

models for the components of the structure model. The requirements for validating a

measurement are then described in terms of these models. The structure model consists of

entities, attributes, values, units, scales and measurement instruments. The concept of unit is

extended from the classical meaning (applicable only to interval and ratio scales) to cover

nominal and ordinal scales as well. Scales are associated with units not attributes, i.e. several

different units, which could have different scale types could be used for a particular attribute,

but the particular unit type is based on one scale type. For example, the attribute, temperature,

can be measured using a ratio scale such as degrees Kelvin or an interval scale, such as

Centigrade, or an ordinal scale such as cold-lukewarm-warm-hot. Indirect measures and

compound units are discussed. The problems with creating a scalar value from a set of direct

measures without having a valid underlying model of the relationships between these attributes

are covered. It is suggested that in these cases it is preferable to leave the measure as a vector.

Pfleeger, Jeffery, Curtis, and Kitchenham (1997) report on how practitioners are a long way

behind the (measurement) theory and are making mistakes. Some views on what the research

community needs to do to rectify things are suggested. Some of the areas in which practitioners

are going wrong are; not keeping the goals in mind; relying on empirical evidence without

regard to theoretical validity; not considering model validity; not distinguishing prediction from

assessment; unwillingness to commit resource to process measurements; use of published model

parameters that are only relevant to a particular case. Researchers need to "fashion results into

tools and techniques that practitioners can easily understand and apply" and focus on the areas

that practitioners and customers desire most (early measures - requirements, costs). Pfleeger,

Jeffery, Curtis, and Kitchenham end with a warning from a statistician not to become like the

statistics community, which is segregated from the people using the methods. Software Metrics

research must produce methods that are useful to and useable by the software engineering

practitioners.

2.1.2 Types of Empirical Assessment

Most authors of general empirical assessment literature classify assessments into three general

forms. These are Surveys (systematic post-hoc data collection from a known population).

Formal Experiments (controlled and replicated treatments on a number of subjects) and Case

studies (intensive interpretation of a small sample). For example Wynekoop and Russo (1997)

classify published assessments of software development methods into these (and other)

categories. (Their other empirical assessment categories could all be considered sub categories

of case studies under a looser definition). Kitchenham (1996) attempts to identify a method for

selection of validation techniques for evaluating software engineering methods and tools. She

starts by defining a classification of validation methods and this is based on surveys, formal

experiments and case studies. As part of the same, DESMET, project Kitchenham, Linkman and

Law (1994) provide a critical review of past quantitative assessments and base this around a

classification into surveys, formal experiments and case studies. They recommend case studies

as being particularly effective from an industry point of view. Daly (1996) points out the value

of using all three forms of empirical assessment to support each other in establishing an

hypothesis. The Survey contributes to the formulation of the hypothesis and increases the

likelihood that it is relevant, the formal experiments establish that a relationship exists and the

case study demonstrates that the results can be generalised to real life situations.

Surveys

Surveys rely on individual's memories of their experiences. Because of this, they can be limited

in accuracy. Pannell and Pannell (1999) give an informative discussion on the problems of

extracting the truth via surveys and how to maximise the chances of getting valid answers.

Some of the problems include incorrect answers (an estimated 5-17% of answers are incorrect),

misinformation, changing opinions, wording of questions, misinterpretation and ordering of

questions. Nevertheless, surveys provide a powerful method to get an initial indication of the

properties of a topic from a wide subject base. Survey data can lead to the formulation of

relevant, and widely held, hypotheses.

A survey based on a distributed questionnaire relies on the questions asked and the way they are

phrased. This implies that a prior knowledge of the interesting issues and a possible outcome. A

structured interview consists of an interview based around a predefined set of questions. The

questions provide a consistent structure for the interviews but the interviewer can discover

knowledge by seeking confirmatory evidence as necessary. The interviewer can also explore the

experience and language of the interviewee to put answers in context. Thus many of the

shortcomings of an independent survey are overcome. Structured interviews are limited to a

small selected set of experienced subjects but enable a wider exploration of the subject to be

performed and a higher level of confidence in the answers. However, the results will be a

reflection of the opinions and prejudices of a small set of subjects. The selection of these

subjects may ensure that they are the best-placed individuals to give an accurate opinion. On the

other hand other empirical assessment techniques should be used to test the results of the

structured interviews. Our structured interview is reported in Chapter 3 of this thesis.

A survey of formal methods usage in industry and academia was carried out by Austin and

Parkin (1993) of the National Physical Laboratory. The industrial survey was performed by

sending out questionnaires to both formal methods users and non-users. (The author participated

in this survey as a non-user). The most popular benefits of formal methods were their clear and

unambiguous specifications, their early detection of errors. The ability to prove properties, build

the software and prove its correctness and the ability to demonstrate the specification to clients

were less popular but also strongly represented. The main limitations were that clients cannot

understand them and that some aspects of modelling are difficult or even impossible (e.g.

timing, maintainability etc.). Other limitations that were strongly supported were, the lack of

experienced staff, the high costs of performing proofs and the possibility that the formal

specification may contain mistakes. The main barriers to the use of formal specifications were

considered to be, the lack of tool support and the high costs. Other barriers that were identified

were, the need for training, the fact that they are difficult to use, the lack of objective evidence

of the benefits and a perception that they are not mature enough. Interestingly, the results

indicated a general agreement between formal methods users and non-users, dispelling to some

extent the notion that there is a false prejudice against formal methods. The results of this

survey do not contradict the results of our survey and in some areas, such as 'early detection of

problems', our findings are in agreement. However, they do not support our findings very

strongly either, hi particular, the NPL survey makes little reference to the hypotheses we

selected for further investigation, which were strongly suggested from our interviews with

practitioners. We suggest that this may be because of the remote, questionnaire method. Despite

the authors' stated attempts to "not lead people to answer the questions in a particular way", we

believe the written style of the communication and its lack of interaction with the subjects

means that emphasis or underlying causes are often missed. For example the 'lack of tools',

'training' and 'difficult to use' barriers may well be related to our survey finding and hypothesis

that formal specifications are difficult to write and would benefit from tools similar to those

used for program design. Similarly the lack of any mention of comprehensibility problems as

barriers to use could be interpreted as a strong indication that comprehension is not a problem.

(A small number of respondents mentioned the need for mathematics as a barrier but this was

mostly non-users and did not distinguish between creation and comprehension).

Formal Experiments

The purpose of a formal experiment is to test a relationship in a particular system. The effect of

confounding factors must be minimised so that we are able to attribute changes in the dependent

variable to changes in the independent variable. Ideally the experiment should be performed in a

realistic setting, however, it is usually impossible to control confounding factors adequately in a

realistic setting. The priority in a formal experiment is to isolate and demonstrate the

relationship under test. Once the relationship has been established as likely to exist we may then

consider to what degree it is relevant to real life scenarios.

Tichy (1998) makes a case for performing formally controlled experiments and refutes the

'fallacies' that are often held up as reasons for not performing experiments in computer science.

Brooks (1980) gives a useful description of things that must be considered in formal

experiments, covering subjects, materials and measures. When many possible relationships can

be envisaged, there is a temptation to gather one set of data and then try many different

relationships in a search for a correlation. However, when we analyse experimental results we

are considering the probability of the measured data with respect to a possible distribution. The

more relationships are sought, therefore, the higher the probability that one will be detected

incorrectly. Courtney and Gustafson (1993) warn of this danger. A well thought out and often-

cited experiment is described by Scanlon (1989). Care was taken over the design and

implementation of the experiment with a high level of training in the experimental method and

automation of measuring methods. Experiments to determine the effect of commenting,

meaningful names and structure on the comprehensibility of formal specifications have been

carried out by Finney, Rennolls, and Fedorec (1998) and Finney, Fenton, and Fedorec (1999). It

was found that good commenting and naming improves comprehensibility. It was also found

that there is an optimal level of structuring. The notation used was Z and the specification was

broken down to various degrees with schemas. Too many small schemas are detrimental to

comprehensibility, as is a monolithic specification lacking any schema structuring. Experiments

have also been performed by Vinter (1998) to investigate the propensity for people to

misinterpret various forms of logic statements.

To be of use to practitioners and researchers empirical assessments must meet certain criteria

and must be reported effectively. Sufficient information must be provided so that practitioners

can judge to what extent the results are likely to apply to their environment. Other researchers

need information about the experimental methods and tools in order to be able to assess and

replicate the results. Kitchenham, Pfleeger, Pickard, Jones, Hoaglin, El-Emam, and Rosenborg

(2001) provide comprehensive guidelines for performing and reporting software engineering

research experiments.

Case Studies

Case studies lack the level of control that formal experiments have. The behaviour of interest is

observed in a real life example. The many other environmental parameters are uncontrolled and

may influence the dependent variable being observed. To alleviate this to some extent a typical

baseline is used for comparison. However, a case study cannot be considered as rigorous an

empirical investigation as a formal experiment. Nevertheless, case studies have an important

role because they test whether a relationship is observed in real situations. This can support

formal experiment results, either as an investigatory stage (establishing a hypothesis to test) or

as a follow up stage (establishing the generality of experimental results).

An interesting retrospective case study in the use of formal methods is described by Pfleeger

and Hatton (1997). This case study was hampered by the fact that it was not planned in advance.

Hence the authors found limitations in the data that had been collected for the investigation they

were performing and could make little in the way of firm conclusions. The authors also seem to

use a dubious surrogate measure of reliability by measuring the number of changes made. A

pre-planned case study was performed by Marconi (Draper, Trehame, Boyce and Ormsby,

1996) in the use of the B-method on a parallel project. The study found that errors were detected

earlier in the lifecycle and that the project costs were similar to the parallel, real project using

their conventional design methods. Another parallel projects case study (Brookes, Fitzgerald,

and Larsen, 1996), which found similar results, was performed by British Aerospace.

2.13 Statistical Analysis

Statistical analysis techniques assess the likelihood of the recorded sample against a known or

assumed population distribution. The more powerful parametric methods assume that the

10

underlying population is normal. They provide the most definitive results because they use all

the available information in the data. If the normality of the parameter's distribution is in doubt

then more robust methods should be used. One such class of methods are non-parametric

methods that reduce the data to an ordinal scale and make use of ranking properties. Rank

statistics obey a normal distribution even when the parameter itself does not, however, because

information has been discarded, the results are usually less powerful than parametric methods.

A comparatively modem technique is 'bootstrapping' or 'resampling' (Efron and Tibshirani,

1993). This technique uses computer processing to take many samples from the original sample

and calculate the statistic of interest for each of these resamples. If the original sample is

representative of the overall population, then each resample, and hence each value of the

statistic calculated from the resample, is just as valid as if it was sampled from the population.

Hence a distribution for the statistic of interest can be generated. Bootstrap techniques do not

make assumptions about the distribution of the underlying population distribution, but can be

just as powerful as traditional parametric analysis techniques. More details of the statistical

techniques used will be presented in Chapter 4.

When performing comparative experiments we are usually interested in detecting a difference in

some attribute under two treatments. Following the classical null hypothesis statistical testing

process (NHSTP) we would construct a null hypothesis stating that there is no difference and

attempt to reject this on the basis of the sample data being unlikely if it were so, leaving an

alternative hypothesis that there is a difference. In our experiment in Chapter 4, our substantive

hypothesis is that there will be no significant (in the practical sense) difference. Unfortunately

not rejecting a null hypothesis is a much weaker result; all we may say is that this sample didn't

cause us to reject the null hypothesis. It does not give us any basis for saying that the null

hypothesis is likely to be true or any evaluation of its probability. One way round this problem

would be to take the approach that a null hypothesis is a hypothesis that we wish to nullify

(rather than one of no difference). Then we could formulate the null hypothesis that there is a

significant difference and see if we can reject it. However this would require us to arbitrarily

define what we mean by a difference (Rozeboom 1960). Note that it would invalidate the

NHSTP method if we were to choose this definition in the light of our sample data.

Traditionally, when we reject a null hypothesis the meaning of 'different' is not discussed

because it 'falls out' of the statistical analysis. A 'difference' is that magnitude such that a sample

of differences greater than this magnitude would be unlikely to occur by chance if the 'no

difference' hypothesis were true. Hence when we talk about statistically significant differences

we are referring to the reliability of the evidence that there is a difference and not to the

importance of the magnitude of the difference. Chow (1996) gives a good overview of

criticisms of NHSTP (as well as making a case in its favour) in his book 'Statistical

11

Significance'. Further criticism of the misuse of NHSTP is given by Bakan (1960) and

Rozeboom (1960). Many statistical authors (e.g. Wonnacott and Wonnacott 1985) recommend

using confidence intervals to explain the results of experiments rather than NHSTP, and we take

this approach partly due to our problem with the null hypothesis but also because it is more

informative and less reliant on arbitrary choices of criteria.

2.2 Formal Methods

Formal specifications are descriptions of behaviour expressed in a mathematical notation that

has a well-defined syntax and semantics. Formal methods are processes of specification,

refinement and verification based on formal specifications. We introduce two formal methods, Z

and B, that are used in subsequent chapters.

2.2.1 The Z notation

The Z language (Spivey, 1988) is a state based, formal specification language that is based on

Zermelo Frankel axiomatic set theory and first order predicate logic. Schemas are used to

structure Z specifications. Schemas associate state variables with predicates based upon them.

Schemas can be used within other schemas as state declarations, types, or in predicates. To

build a Z specification firstly state variables and invariants that hold on them are defined. Then

schemas that define events that alter the state are added. Events are defined in terms of

precondition predicates and postcondition predicates. Event schemas can be combined by

conjunction and disjunction to compose more complex changes. Once defined, invariants can be

relied upon to hold throughout the specification. That is, in event schemas, it is not necessary to

define state changes to maintain the invariant, these can be assumed. However, apart from

variables controlled by the invariant, it is necessary to fully specify the postcondition over the

complete state space referenced in the schema. It is necessary to define what has not changed as

well as what has.

Z has a powerful, but rather unapproachable, facility called promotion. Promotion allows

hierarchical structuring of a specification. The event schemas for a defined type (i.e. local sub-

state space) that are used by a higher-level parent object (by defining instances of the type) can

be promoted for use in the parent's operation schemas. Considering the importance of a

hierarchical class structuring mechanism in coping with the scale of large systems it is

unfortunate that promotion is so difficult to grasp initially and consequently off-putting to

students.

12

Z is popular to the extent that it is probably the most commonly used formal specification

language. Craigen, Gerhart & Ralston (1995) put this down to the close interaction between the

developers and industrial users and to a substantial pedagogical literature. There are a good

number of tools to support the use of Z although many are not industrial strength, supported

products and there is little integration of tools.

The following example is a Z specification for a telephone book.

NAME, NUMB

PB
Pbook; NAME NUMB

V n1 ,n2 e dom(pbook) | n 1 # n 2 • pbook(nl) # pbook(n2)

Init
PB
pbook = 0

lookup
SPB
name? :NAME
numb! :NUMB
name? e dom (pbook)

numbi = pbook(name?)

add
ARB
name? :NAME
numb? :NUMB
name? g dom (pbook)

pbook' = pbook u {name? numb?}

remove
A PB
name? :NAME
name? e dom (pbook)

pbook' = {name?} < pbook

The schema, PB, defines the state variable, pbook, which models the phonebook and an

invariant that ensures that numbers must be unique. (This is not the most succinct form, but we

wish to illustrate the methods that would be used in a bigger example). The schema, Init, defines

the initial value of pbook. The schema, lookup, returns the number corresponding to a given

name (the use of ? and I in local variable names is a convention to indicate inputs and outputs,

respectively, of an operation). The schema includes the state schema PB so that pbook can be

accessed. The symbol, S, includes two copies (one copy is decorated, indicating post operation

13

state) of all the variables in the schema and a predicate to ensure that the post operation value is

equal to the pre-operation value. This ensures that pbook is unchanged by lookup. The

remaining schemas, add and remove, define events that alter pbook. The symbol, A, includes

two copies of PB. Again, one is decorated to indicate post operation state, but this time there is

no equality predicate. Note that, in the add operation, a precondition to ensure that numb? does

not already belong to ran(pbook) is not necessary because the invariant already ensures this.

2.2.2 The B method and notation

The B language (Abrial, 1996) is a state model-based, formal specification notation that has

strong structuring mechanisms and good tool support. There are 2 commercial tools for B,

Atelier-B (ClearSy) and the B-Toolkit (B-Core, 1996). We have used the B-Toolkit for our

translation and animation work, and Atelier-B for performing proofs. B is designed to support

formally verified development from specification through to implementation. To do this it

provides tool support for generating and proving proof obligations at each stage of refinement.

The B-Toolkit also provides animation facilities so that the validity of the specification can be

investigated prior to development. To make large-scale development feasible, B provides

structuring mechanisms to decompose the specification and its subsequent refinements. These

are machines, refinements and implementations. We are mainly concerned with specification

and therefore machines. Machines allow an abstract state to be partitioned so that parts of the

state can be encapsulated and segregated, thus making them easier to comprehend, reason about

and manipulate. One machine may include ('INCLUDES') another machine. If machine A

includes machine B, the state of B is visible to A and alterable via B's operations. Another form

of machine inclusion is 'EXTENDS'. This is the same as INCLUDES but makes the included

machines operations accessible as if they were operations of the including machine. A weaker

form of interfacing between machines is provided by 'USES'. The using machine has only read

access to the used machines variables and cannot invoke its operations. A machine may be used

by any number of other machines but may only be included (or extended) by one other machine.

It is worth noting that, unlike Z, in B the invariant is a verification property which operations

are expected to achieve. The invariant is an abstract state specification that is used for checking

the correctness of the behavioural specification.

The following example is the same telephone book as above, but this time expressed as a B

machine.

MACHINE phonebook
SETS NAME; NUMB
VARIABLES pbook

14

INVARIANT pbook : (NAME +-> NUMB) &
!(nl,n2).((nl:ran(pbook) & n2:ran(pbook) &

nl/=n2) => (pbook(nl) /= pbook(n2))
)

INITIALISATION pbook := {}
OPERATIONS
numb <-- lookup(name) =

PRE name:dom(pbook)
THEN numb:=pbook(name)
END;

add(name,numb) =
PRE name:NAME & numb;NUMB &

name/:dom{pbook) &
numb/;ran(pbook)

THEN pbook:=pbook\/{name I->numb}
END;

remove(name) =
PRE name:dom(pbook)
THEN pbook:={name}<<Ipbook
END

update(name,numb) =
PRE name:NAME & numb:NUMB &

name:dom(pbook)
THEN pbook(name) := numb
END;

END

In the B notation, invariants define the type of a variable. In this case, a variable represents the

phone book and its type is a partial function from names to numbers. An invariant ensures that

numbers in the phonebook are unique. Initially, pbook is empty. In the machine's operations,

preconditions define the type of any arguments. Additional preconditions may be specified on

the arguments or on the state variables. For example, in the add operation, name must not be a

member of the domain of the partial function, pbook, and numb must not belong to its range.

(We cannot rely on the invariant for the latter, as we did in the Z example). Operation

postconditions are defined via 'substitutions' that show how the final state of machine variables

depends on their initial state and the arguments. (Any state variables not defined in an operation

body are not altered by it). Operations may return values. The identifier(s) representing the

return value(s) are defined at the beginning of the operation signature (e.g. numb in operation

lookup). Other symbols used in the example are: union \ / , maplet | -> and domain subtraction

2.3 Semi-Formal Notations

Semi-formal notations are notations that provide a set of symbols to represent specific roles in

the description of a system, but have a loosely defined semantics. The use of a syntactically

consistent notation generally brings a more formal feel to descriptions of systems than an

15

English language description would. This can be misleading as the lack of a precise semantics

leaves the description open to different interpretations.

23.1 TheUML

The Unified Modelling Language (Rumbaugh, Jacobson & Booch, 1998) emerged as a

standardisation of the leading object-oriented analysis and design methods that were competing

for favour in the late 1980s and early 1990s. This unification was brought about by three of the

methods advocates joining forces at a major software tools company, Rational Software.

Responsibility for the standardisation was subsequently taken over by an independent

consortium, the Object Management Group (OMG). Several software tool manufacturers market

tools to support the use of the UML. We use Rational Software's 'Rose' tool.

The UML is a notation for use in modelling object-orientedobject-oriented designs. A unified

process, Rational Unified Process (RUP), exists, but is not necessary to use the UML. The UML

consists of the following parts:

Use Case diagrams are a means of organising requirements descriptions into event sequence

scenarios. A scenario is triggered by an actor (an external object such as a person interacting

with the system) and parts of the system's responsive actions are then packaged and represented

by named symbols. The meaning of a particular symbol is defined textually, usually in natural

language.

Class Diagrams are used to model the static structure of a problem or system. Entity types are

represented by classes and the relationships between them are shown as associations and

generalisations. Classes represent sets of like instances and are given attributes that represent

state variables and values associated with each instance of the class. Classes also have

operations that define how an instance's attributes and associations alter in response to events.

Collaboration Diagrams and Sequence Diagrams are equivalent to each other. They both show

dynamic behaviour as objects (of the classes introduced in the class diagram) interacting, by

passing messages or calling each other's operations, to perform a particular behaviour or task

scenario. Sequence diagrams show the interaction as a time ordered sequence of messages

passed between objects. Collaboration Diagrams show the same sequence of messages but

overlaid on a network of connected objects rather than a time sequence.

State Diagrams and Activity Diagrams - Statechart/Activity models, constructed and viewed via

state diagrams and/or activity diagrams, show behaviour in terms of a set of states and

transitions between them. Each transition can be annotated with the event that causes it to occur.

16

any guards, which must be true before it can occur, and actions that are performed when it

occurs. Activity diagrams are a development from state diagrams that also allow 'forks' to

activate more than one state simultaneously and synchronisations that require more than one

state to be active before a transition can occur. (When drawing activity diagrams, states are

called activities). Statechart/Activity models can be used at several levels. For example, they

can be attached to the logical model, to use cases or to classes

In Chapter 6, we use class diagrams to build the basic structure of a formal model and

statecharts to assist in the definition of the class' dynamic behaviour.

2.4 Integrating Formal and Semi-Formal Notations

Semi-Formal Notations such as UML are gaining widespread popularity in industry but lack

precision for describing detailed behaviour unambiguously. Conversely, formal notations have

not gained widespread use in industry despite their recognised benefits. An integration of semi

formal and formal notations may address the deficiencies of the semi formal notations while

making the formal notation more approachable. Craigen, Gerhart and Ralston (1995) found that

better integration of formal methods with existing software assurance techniques and design

processes was commonly seen as a major goal. They concluded, "Successful integration is

important to the long term success of formal methods". Fraser, Kumar and Vaishnavi (1994)

discuss some of the reasons why this may be true and go on to describe a framework for

classifying current formal specification processes according to the degree of transitional

semiformal stages. The categories are direct (no transitional stages), sequential transitional

(transitional stages developed prior to the formal specification), and parallel successive

refinement (formal specification derived in parallel with semiformal specification through

iterative process). Paige (1997) analyses the composition of compatible notations and derives a

meta-method for formal method (and semi-formal method) integration. Jackson (2000) has

developed a formal notation. Alloy and associated tool Alcoa. The Alloy notation has a partial

graphical equivalent notation in which state can be expressed. This can then be converted into

the textual version of the notation where operations can be added and analyses performed.

Without tools to investigate the implications of different structures however, the graphical

format is limited to illustration of structure. The work of several research groups that have

developed integration between graphical object-oriented notations, including the UML, and

formal notations such as B and Z are described in Chapter 8. The precise UML group' is a

collaborative effort to precisely define UML semantics via formalisation. The object constraint

' ("http://www.cs.vork.ac.uk/puml/maindetails.html').

17

http://www.cs.vork.ac.uk/puml/maindetails.html'

language, OCL, (Warmer and Kleppe, 1999) is a formal notation that is part of the UML. It can

be used to attach formal constraint statements to elements of UML models to constrain their

values. For example the behaviour of an operation can be precisely defined by attaching OCL

statements for the pre and post conditions of the operation. A more detailed comparison of work

combining semi-formal and formal notation will be given in Chapter 8.

2.5 Cognitive Dimensions

In Chapter 5 we are interested in the comparative merits of the formal notation, B, versus the

semi-formal UML for specification design. It would be useful to be able to discuss the various

attributes of these notations in order to formulate theories and to explain results. Green (1989)

presents a framework and vocabulary for discussing cognitive artefacts. Cognitive Dimensions

provide a broad-brush qualitative tool for reasoning about the relative merits of information

systems with respect to particular types of tasks. The cognitive dimensions framework consists

of 14 terms that describe generalised facilities of information systems, notations or artefacts. For

example 'viscosity' is the degree of difficulty in making structural changes to descriptions

expressed within the system. The 14 dimensions are listed below. For an introductory tutorial

see Green and Blackwell (1998).

Abstraction Gradient - How the notation copes with abstractions. Some notations don't allow

abstractions, for some they are optional and others are hungry for them. Abstractions

are good for clarity but difficult to get right.

Closeness of Mapping - How well constructs map on to problem domain entities.

Consistency - If a notation does something one way in one situation then it should do it

similarly for all similar variant situations.

Diffuseness/Terseness - How terse the notation is. Terseness and diffuseness can both cause

comprehension problems, a compromise is best.

Error-Proneness - How much the notation leads one to make mistakes or slips.

Hard Mental Operations - Does the notation itself induce 'brain-teasers'. (If it cannot be

expressed more clearly in another notation it may be an inherently difficult semantics)

Hidden Dependencies - Links to other information elsewhere that are not visible at the place

they affect.

18

Premature Commitment - How much thought needs to go into future actions when a decision is

made

Progressive Evaluation - Whether facilities exist to check what has been achieved so far.

Role-expressiveness - How easy is it to tell what this bit is for.

Secondary Notation - facilities for expressing extra information outside the formal syntax (e.g.

indentation, grouping, comments)

Viscosity - How difficult it is to make structural changes to what has been achieved so far.

Visibility - How much of the whole can be viewed and juxtaposed.

A number of types of activity that might be performed on an information system are identified.

One of these activities, exploratory design, consists of the identification and evaluation of

possible architectures and is applicable for our purposes in Chapter 5. Applicability profiles of

the Cognitive Dimensions can be identified for each activity type. For example viscosity is

inconsequential for transcription but critical for exploratory design. In chapter 5 we use

cognitive dimensions to assess the suitability of the B notation with respect to exploratory

design.

19

Chapter 3

Practitioners Views on the Use of Formal

Methods

This chapter reports on a series of structured interviews, which have been conducted with

formal methods practitioners. In Chapter 2, the need for empirical assessment, especially in

formal methods, was introduced. The types of empirical assessment were described and the

contribution each makes to the establishment and investigation of a hypothesis was discussed.

This provides a context for the report on the conduct and findings of the series of structured

interviews that form our survey. The chapter concludes by describing how subsequent work

arose from the results of the interviews, including the formulation of two hypotheses.

The survey covered a broad range of topics associated with the effects that using formal

methods might have on a company and its products. The survey was conducted by structured

interviews based on a questionnaire (see Appendix A.l).

3.1 Purpose of Survey

The aim of the survey was to explore the experiences of practitioners directly. There are many

popular theories about formal methods that have questionable validity and it is often unclear

whether they are based on actual experience. Hall (1990) discusses some of these myths, as do

Bowen and Hinchy (1995). Therefore it was seen as important to investigate the effects of using

formal methods directly with individuals who had first hand experience. Of course, the results

still depend on the subjective opinions of these individuals and the environments in which their

experiences were obtained. This must be borne in mind when the results are interpreted and the

results should be viewed as provisional until further empirical assessment has been carried out

to corroborate them.

We wanted to discover the main issues involved in the use of formal methods. In particular,

issues surrounding comprehensibility and the difficulty of creating and using formal

specifications. It was hoped that significant points would be raised that would warrant further

empirical assessment. In this way the survey was seen as the first stage of a 'Multi-method'

programme of research as described by Daly (1996). The purpose of this first stage was to raise

20

interesting and relevant provisional findings for further research rather than firm conclusions,

which would be suspect, based on such a small survey.

3.2 Conduct of Survey

The companies were initially contacted by email with a brief outline of our aims and the

questions that would be asked. Meetings were set up at the company's premises where the

representatives were interviewed. The interviews were structured around a questionnaire but the

interviewees were encouraged to digress and elaborate on topics as much as they felt necessary.

The questions were used to trigger discussion and as a checklist, but, in an effort to explore the

subject widely, the discussions were conducted in an open, free form without constraining the

topic to the initial question. The interviewees related answers to their experiences to provide

justification and in the process the context of the interviewees' answers and their understanding

of key phrases were discovered. This happened mostly as a natural part of the discussions

without conscious effort. The final question asked the interviewee if there were any important

issues that had not been covered. In most cases the interviewee recapped some of the more

important issues at this point but did not raise any new issues. This indicates that the

questionnaire covers the main points of interest with respect to formal methods. Each interview

lasted approximately 2 hours. The author conducted all the interviews. The interviews were

tape-recorded. It was felt that recording the interviews avoided the interviewer from being

distracted by note taking. It also meant that the interviewees' opinions could be summarised and

distilled with greater consideration and care than would have been possible if taking notes 'on

the fly'. The tapes were analysed in detail and comments categorised and matched with like

comments from other interviewees. From this process a table (Appendix A.2) of summary notes

was built up with rows representing each point made by the interviewees and each column

representing the summaries of a particular interviewees responses. The text of this report was

written from the summary table. Despite the careful analysis of the actual conversation on the

tapes it is still possible that the authors might misinterpret responses or inappropriately

emphasise a point. To guard against this the report was circulated to the interviewees for review.

A few adjustments arose from this review stage, but on the whole the interviewees agreed that

the report was an accurate representation of their views.

All of the interviewees had at least some experience of using formal specifications on full-scale

products. Some had also performed refinement, model checking and verification proofs. For

various reasons only one company was using formal methods to the same extent as previously

but all retained a capability or interest. Market sector varied greatly, including commercial

computing systems, safety critical embedded systems and high street consumer products. Table

21

3.1 lists the companies and Table 3.2 gives an outline of their background and experience.

Company IdentiOcation in this report
(wishes to remain anonymous) Interviewee A
IBM United Kingdom Laboratories,
Hursley Park, Winchester, Hants

I B M

Marconi Electronic Systems. Avionics Systems,
Airport Works, Rochester, Kent

Marconi

Philips Research Laboratories
Crossoak Lane, Redhill, Surrey

Philips

Praxis Critical Systems,
Manvers Street, Bath

Praxis

Table 3.1 - Participating Companies

Company Market
Sector

Notations
Used

Extent of Use Approx.
Size of
Systems

Current Level
of Use

Interviewee
A

Contractor
with personal
experience

z,
VDM(some),
CSP (some)

Experience with
large and small
applications

Introducing
formal methods
into a company

I B M Commercial
computer
systems

z,
B

Mainly
specification

50 Kloc Isolated usage -
at option of
project
manager

Marconi Military
Embedded
Systems (some
safety critical)

B Full
development
incl. refinement
proofs etc.

3K loc Completed case
study - bidding
for contracts

Philips Consumer
Products

set theory
and first
order logic

Mainly
specification

10+Kloc Isolated usage -
investigating
applicability

Praxis Safety Critical
systems

z,
V D M ,
CSP (some)
CCS (some)

Some full
developments,
others
specification
only

lOKloc -
100+Kloc

Continuing full
scale use

Table 3.2 - Main characteristics of contributors

At this stage of investigation the wide spread of market sector backgrounds is an advantage to

the broad information gathering process. In subsequent stages less variability will be needed as

we focus more narrowly on selected issues. The companies are, in most cases, the market leader

in their sector and the interviewees are the technical experts within those companies. In several

cases the interviewees have published in the area of formal methods. It is reasonable therefore to

claim that the interviewees are knowledgeable and experienced in the use of formal methods. It

might be argued that the interviewees are all proponents of formal methods and the results

might therefore be a biased view. We believe that the commercial pressures upon the

interviewees would not allow them to maintain an unrealistic stance. It was apparent however

that market sector has a bearing on the stance taken, with the safety critical areas having much

22

more compelling reasons for supporting the use of formal methods, and the others having a

more guarded response.

Each interviewee was asked to define a formal method. Most answers indicated that a

mathematical notation or underlying theory was needed (one interviewee required a precise

syntax and semantics). Some required there to be methods for manipulation and refinement,

others recognised these as possible extensions but did not require them. It was thought that

some companies might have a looser definition of formal methods. To test this the interviewees

were asked if they would include modelling languages such as UML. All would not, although

several interviewees suggested that some parts of UML (e.g. statecharts) are close to being a

formal notation. Some added that UML did not contain facilities to express the semantic details

of the behaviour of systems.

The formal methods that had been used by the interviewees are as follows: Z and B, which were

introduced in Chapter 2. VDM (Jones, 1986) (The Vienna Development Method) is a notation

and set of techniques for modelling computing systems, analysing those models and progressing

to detailed design and coding. VDM has its origins in the work of the IBM Vienna Laboratory

in the mid-1970s. CSP (Hoare, 1985) (Communicating Sequential Processes) is a notation for

concurrency based on synchronous message passing and selective communications designed by

Hoare in 1978. CCS (Milner, 1985) (Calculus of Communicating Systems) is a mathematical

model for describing processes, used in the study of parallelism. It was developed by Milner.

3.3 Itesidts

3.3.1 The Customer's Viewpoint

The companies interviewed had very different market sectors and this led to large variations in

answers to questions about customer views on their use of formal methods.

Marconi, being a UK defence contractor, often bids for contracts with Def-Stan 00-55 as a

mandatory standard (Ministry of Defence 1997). Hence Marconi's use of formal methods is

imposed by its main customer (or at least by the regulatory authorities that its customer has to

satisfy). Marconi also supplies outside of the UK, e.g. USA, and for these customers it is

expected that persuasion would be needed to convince them to accept formal proof in place of

other verification methods such as testing and reviewing.

Note that there is an implication here that formal verification is seen as a partial replacement for

other verification methods rather than an additional activity. Formal proof provides an absolute

23

guarantee of the properties it proves and hence verification of those properties by other means

becomes redundant. We have found this to be true from other sources. For example, when

software was developed, using the B method, for the Paris underground, unit and integration

level testing was not performed. (Boehm, Benoir, Faivre and Meynadier, 1999)

Praxis also supply to the UK MoD and to other authorities that are very safety conscious such as

aviation authorities. It also supplies to other markets and finds that some of these customers

resist the use of formal methods because of the barrier it creates between supplier and customer.

Typically, the customer will need to train some of its employees if it wants to be involved in

verification and validation activities during the software development.

The remaining interviewees felt that their customers (which for IBM and Philips were internal)

were usually impressed by the use of formal methods, and assumed they would lead to high

quality products. Where the formal specifications were used as interfaces to customers, the

customer's technical staff (who sometimes needed special training) usually found formality

helpful because they knew the precise behaviour of the specified system. It was recognised that

the audience may be restricted by formality but this is the case for any technical specification.

Both IBM and Praxis commented that one of the main barriers to the widespread use of formal

methods is the general acceptance that software is error prone. One interviewee said "if you

want highly reliable software then formal methods are the most cost effective way to produce it,

but if the customer will accept unreliable software then it is cheaper not to use formal methods".

From the suppliers point of view, any subsequent re-work is either covered in the initial price or

is paid for by the customer as a maintenance contract. IBM went on to say that some customers

do not want to be tied down to what they require, but would rather have a vague specification of

requirements and hope the supplier produces something over and above it, than to be forced to

address compromises in order to precisely specify their requirements and then take

responsibility for the systems validity.

33.2 Impact on Company

Quality Assurance

Opinion on how formal methods affect quality assurance issues was uniform. All (except one

company that, independent of the method used, had dispensed with its quality assurance

function) agreed that the quality assurance function is not changed. The auditors may need to

have some appreciation of the records that they will be examining, but this is true of any new

method. They did not feel that quality assurance personnel would need a full understanding of

24

the formal specification notation. They only need to satisfy themselves that the record has been

produced and that the right sort of people have verified and authorised it.

Consultancy and Skills

Several companies had employed external consultants during the initial projects that introduced

formal methods to the company. This was seen as necessary. Training was given to all staff

involved in formal methods. Generally two weeks of training was found sufficient for staff to

assist in formal methods projects. However, it was not thought feasible to train existing staff to

a degree that they could successfully use formal methods without expert guidance on hand until

they had built up some experience and practice. Not many experienced modellers are required

as the majority of the project staff need to be able to comprehend specifications and write

detailed sections as directed, but do not need to be able to create the overall structure of the

specification.

One interviewee felt that external consultants, who are typically extremely intelligent, would

make any project successful, no matter what method they used. This could give a biased view in

favour of formal methods. Similarly, companies that use formal methods only recruit personnel

who demonstrate the ability to use formal methods, thereby increasing the quality of their staff

Evidence of this was provided by another interviewee who reported that his company tended to

recruit from research areas to fill vacancies involving formal specification. This filtering effect

inherent in the adoption of formal methods could be seen as a beneficial effect on culture.

However, there can be detrimental effects if, having altered the company's methods and culture,

none of the permanent staff are sufficiently skilled to take over when consultants leave.

3 3 3 Impact on Product

Reliability

Only IBM and Praxis had any evidence of product improvement. IBM had found (based on

informally collected data) a 40% reduction in post-delivery failures compared to their own

average product performance. (This data is reported in previous publications by Phillips (1989)

Collins, Nicholls and Sorenson (1991) and Houston and King (1991)). Praxis referred to

published data, (Pfleeger and Hatton, 1997) which compares a Praxis software product

favourably with industry average data. As with most case studies, the cause of this improvement

cannot be identified with certainty to the use of formal methods, since other factors such as

culture may be atypical, but it does provide a positive empirical indication of the possible

benefits of formal methods. Of the other interviewees, Marconi's experience was based on a

25

study that did not go into service, and Philips and Interviewee A did not have personal

knowledge of the relevant product service histories.

There was, however, an implicit assumption from the interviewees that the product would be

more reliable. This was indicated by comments such as, "if you want software that works, then

the only cost effective way to do it is with formal methods". This implies that formal methods

produce a level of reliability that may only be achieved at significantly greater cost using

conventional methods. This may be a subjective view but it is the view of those who have used

both formal and conventional methods in software development.

Efficiency

Praxis had noted that the code produced from a formal specification was more efficient than

conventionally specified software. The precise and accurate nature of the specification makes

the coding task straightforward and the coder is less likely to build in redundant code. Note that

this observation is supported in the findings of a comparative study by Brookes, Fitzgerald and

Larson (1996).

Functionality Growth

Praxis also noted that the effort that is needed in formal specification tends to deter the

functionality growth that afflicts many software systems.

Traceability and Maintenance

The interviewees were asked if the structure of the specifications is reflected in the code.

Generally, the answer was affirmative and this was thought to be beneficial in aiding

traceability between the specification and code. Some noted that this structuring of the code

might not be the most efficient implementation but that the traceability benefit outweighed this.

Philips questioned whether the specification should influence the structure of the code or not.

One view is that the specification should not if it is at the right level of abstraction to be a

requirements document. Another is that it would be beneficial if the specification could impose

structuring requirements, for example, to improve reuse.

Two interviewees. Praxis and Philips, felt that the formal specification helped a maintainer to

understand what changes were needed and therefore to get them right. Marconi felt that the

specifications had little impact on maintenance but that the B-Toolkit helped a lot in

automatically detecting affected components and re-checking them. IBM said that they do not

normally use the documentation for maintenance, although, in one case, when they did and it

26

was a formal specification, the project leader estimated a 50% reduction in the cost of the

maintenance.

The interviewees were asked if they thought that formal specifications help prevent degradation

of code structure through maintenance and also whether the specification itself degrades through

maintenance. IBM did not use or maintain the specifications after delivery and therefore could

not answer. Interviewee A had not been involved in the product maintenance stages. Marconi

felt that the B-Toolkit was largely responsible for preventing code degradation since it

maintains the traceability from the specification. Philips thought that the formal specification

would help prevent code degradation if traceability could be maintained but that this had been a

problem (see comments under Lifecycle). Praxis thought that the formal specification prevented

code degradation by supporting good practice (i.e. changing the specification first when

implementing changes).

3.3.4 Impact on Development

Development Lifecycle

All agreed that there is no change to the sequence of activities performed during the software

development lifecycle, but the effort involved in some of the stages is dramatically altered. The

specification stages take a lot longer. However everyone agreed that generally the resolution of

specification problems discovered during this stage was well worth the effort because these

problems would otherwise have arisen later during the development with increased re-work

consequences. Similarly, interviewee A believed the primary benefit of formal specifications to

be the improved analysis of the problem domain that results from the process of writing them.

This leads to a better understanding of the requirements prior to starting a design, which may be

another reason for the reduction in problems occurring later in the lifecycle. Verification stages,

particularly testing, were much reduced since far fewer errors remain to be discovered. The net

effect was that the overall timescales were usually very similar or possibly better for the

development that started with a formal specification.

However, Philips found that formal specification did not fit easily with the iterative lifecycle

used for some products. Since Philips does not normally have an end-customer performing the

requirements specification role, they have to develop the requirements themselves. Also, they

typically have very short timescales to develop new products and often refine the requirements

as the product is being developed. The time consuming first phase of formally specifying to

resolve requirements issues does not fit into this type of lifecycle easily. In fact Philips had

examples where the product was finished before they could complete the specification. To

27

address this, the company are looking at different levels of specification formality appropriate to

different product lifecycles.

Formal specification was also found to aid the verification testing process. Marconi, Philips and

Praxis all reported that testing was more efficient and more effective when a formal

specification was available. This was the primary driving force for improving specification

techniques, as far as Philips was concerned. From the formal specification, it is easy to derive

test cases and some companies had gone as far as automating this process. Marconi had used B

specifications to generate expected results automatically and Philips had generated test cases

from statecharts automatically.

3.3.5 Size of system

A guide to the size of the systems developed using formal methods is shown in Table 3.2. The

figures should be taken as a rough guide only due to possible variations in the measurement of a

line of code and the programming languages used. However, they indicate that formal methods

were used on systems typically in the region of 10s of Kloc. The interviewees were asked if

large systems were a problem when using formal methods (compared with any other method).

Answers varied somewhat but generally, the impression was that size is not a major obstacle

any more than other methods. Marconi and Praxis indicated that proving becomes problematic

with large systems and that the proof checkers and, to a lesser extent, model checkers may not

scale up very well. For formal specification, though, IBM said that large systems are dealt with

by breaking the system down into 'encapsulated' sub-components that could be dealt with

separately. Marconi, using the B-Toolkit, felt that the system specification was difficult to cope

with due to the fact that it could not be subdivided, but that as soon as the design was refined,

the system naturally was divided into encapsulated sub-components. It appears that the concept

of breaking down the system via encapsulation is crucial in dealing with industrial scale

problems.

33.6 Comprehensibility

The interviewees did not feel that there were any significant understanding problems with

formal notations (although some commented that this may be because they recruit people who

will understand them). The notations were not seen as being a problem in this respect. In fact

Praxis felt that formal specifications should be easier to understand than code.

Several interviewees said that it is essential to comment Z with English text to explain the

structure of the model. This is not so necessary with B as it is more structured. Most companies

28

impose some styling (e.g. lexical) rules on top of the formal notation in order to improve the

consistency of style throughout the organisation, although the general impression was that this

was not a major factor in comprehensibility. Interviewee A had used a 'friendly' style of Z (a

reduced subset avoiding the less intuitive constructs and annotation in a light style to enhance

the friendly feel of the document) and felt that it had been beneficial to understanding for

unpractised readers.

Only one specific feature that affects understanding was mentioned. Praxis had found that over-

reliance on invariants can be confusing. It is sometimes better to explicitly state things that

change during an operation rather than rely on implicit changes as a result of satisfying a state

invariant, even if this is, strictly speaking, redundant.

The area that the interviewees did think was difficult was in creating the formal specifications.

IBM and Praxis had both employed expert consultants to facilitate this stage. Marconi said that

the most highly skilled or experienced people were needed to do the initial or higher level

structuring, although others could then cope with adding in the detail. IBM said that the ability

to create the right (i.e. useful) model requires the most skill and experience. It is too easy to

create a model that is consistent but does not contain the abstractions that are useful in

describing the problem.

3.3.7 Tools and Notations

The interviewees were not questioned specifically about tools but during the course of these

discussions the B-Toolkit stood out as the only tool that had been used to any extent. IBM had

started with Z but switched to B so that the B-Toolkit could be used. Marconi's entire

experience was based around the B-Toolkit and they were very pleased with it in most respects.

They relied on it heavily and found that it helped in tracing, proving and maintenance work.

Praxis said that there are few industrial strength tools but agreed that the B-Toolkit is an

exception. A Praxis interviewee thought that B was not as suitable as Z for the system level

specification. However, Marconi has used B for all levels of specification.

Philips thought that tool availability has a big impact on the decision to use certain specification

techniques. In particular, tool support to maintain traceability between specifications,

implementation and test cases is an area of concern.

Interviewee A was in the process of installing the UML as a company wide documentation

language. They were anticipating using formal specification in conjunction with the UML.

Philips was also adopting the UML in some sectors of the company.

29

3.4 Conclusions

As this is a first stage, opinion gathering, exercise we are wary of drawing any firm conclusions.

The results described above are considered indicators for further investigations. However, we

summarise some of the main opinions recorded. Formal methods are worthwhile in terms of

improved quality of software with little or no additional lifecycle costs, but only when

compared to a rigorous development lifecycle where the cost of software errors is high. If the

market does not demand high quality software then it is more difficult to justify their use. The

introduction of formal methods affects a company's workforce, processes and culture through

effects such as skills filtering and consultancy syndrome. It may also impact on the relationships

with a customer through kudos, and communication implications. Overall the effects are usually

beneficial but there can be some problems to overcome. There is no real problem with

understanding specifications: given suitable training they are no more difficult to understand

than programs. The difficult part is creating the specification as appropriate modelling requires

practice and skill. Encapsulation is important within the context of large systems. There is a lack

of industrial scale tools, the B-Toolkit being the only suitable tool.

Many interesting points have arisen from the structured interviews. We select two hypotheses

for further investigation. The first is a comparatively straightforward hypothesis that is suitable

for formal experimentation in a laboratory setting. The second is a more complicated issue and

will require ingenuity in order to facilitate further empirical investigation.

3.4.1 Comprehensibility

One area that was expected to be rich with discussion was that of comprehensibility. It is often

said that one of the problems with formal notations is that they are difficult to understand and

that highly trained mathematicians are needed to read them. However, the interviewees did not

support this view. This is significant because it conflicts with popular opinion: all the

experienced interviewees agreed that typical software engineers have no real difficulties with

understanding formal notations. As one interviewee put it, formal specifications are no more

difficult to understand than code. In Chapter 4, we design and conduct an experiment to test

this, by writing a specification using Z and implementing it in a programming language.

3.4.2 Modelling

The interviewees thought that the difficulties with using formal specifications were in finding

the useful abstractions from which to create models. This is surprising, because the same

engineers are practised at creating models of problems and solutions using less formal notations

30

as a transitory step in programming. The criteria for selecting a model on which to base a formal

specification, may differ from that of less formal design, nevertheless one would expect similar

skills to be applicable. One is led to suspect that there may be something lacking in the available

notations and methods compared to informal program design methods.

Comparing the available formal specification methods with informal program design methods

we find that program design methods concentrate on structure. Their aim is to provide the

engineer with mechanisms for visualising the structure of problems from different viewpoints.

Engineers are encouraged to explore the relationships between the entities in their models in

order to try different abstractions before committing to them. The tools supporting program

design methods are designed to enable them to build up an outline model of the problem in their

mind. In contrast, if we look at formal methods, they concentrate on detailed behaviour rather

than problem structure. This is what formal notations are designed to tackle, accurate precise

detail. Tool support for formal methods has concentrated on verification rather than creation.

Consequently, tool support for the initial process of exploratory design leading to the creation of

a specification may be lacking compared with those available for informal notations. The

engineer attempting a formal specification is faced with the need to make difficult and critical

choices of model structure but has little support for such work. In chapter 5 we discuss these

issues in more detail and compare the process of formal specification with that of program

design.

Our hypothesis is that formal specification would be easier if an informal or semi-formal

transitory modelling stage were performed, as is done in program design. Fraser, Kumar and

Vaishnavi (1994) have described such transitory modelling stages and Bruel and France (1998)

have investigated the use of UML as an aid to producing formal specifications. In Chapter 6 we

present a formal notation that is based on a combination of UML and B, along with a prototype

tool for converting the notation into the equivalent B specification so that verification and

animation may be performed using the B-Toolkit. We assess the benefits that this method may

bring to formal specification.

3.5 Summary

We have carried out a survey of the opinions of practitioners who use formal methods for

software specification and development. The size of the sample is small (5 companies were

visited) but covers a range of different market sectors including commercial computing systems,

defence and avionics systems and consumer products. The interviewees are experienced experts

in the use of formal methods in real systems. The results cover a wide range of issues including

the impact on the company, its products and development processes as well as pragmatics such

31

as scalability, comprehensibility and tools. The survey is the first stage of an empirical

assessment of the comprehension and creation of formal specifications. The remainder of this

thesis focuses more narrowly on the two hypotheses that we have selected from the survey

results:

• Hypothesis 1 - formal specifications are no more difficult to understand than code.

• Hypothesis 2 - a tool supported, graphical modelling notation would be of benefit in

the process of writing a formal specification.

32

Chapter 4

Comprehensibility of Formal

Specifications

It is a common perception that one of the problems with formal notations is that they are

difficult to understand and that highly trained mathematicians are needed to read them. In

Chapter 3 we surveyed the opinions of industrial experts and found that experienced formal

methods users thought that typical software engineers have no real difficulties with

understanding formal notations. As one interviewee put it, formal specifications are no more

difficult to understand than code. This chapter describes the design and conduct of an

experiment to test this by comparing subjects' comprehension of a Z specification with its

implementation in Java. A close correspondence is maintained between the specification and the

implementation, both in functionality and in structure. Subjects were given either the formal

specification or the code and their understanding was tested using questionnaires. The results

indicate that there is little if any difference in comprehensibility between the two.

4.1 Description of Experiment

The objective of the experiment was to investigate the theory that formal specifications are no

more difficult to understand than code. Since comprehensibility is a complex attribute for which

we have no absolute measures we need to test this theory by measuring comprehension between

two examples that are comparable in some sense. Many attributes could affect this comparison

such as size, structure and inherent problem complexity. In order to make the link as tangible as

possible we chose to compare a Z specification with its implementation. We do not expect to

use this result to conclude whether formal specifications should be used. There are many other

factors requiring empirical assessment before a conclusion can be reached. However the

comparison with implementation is attractive because the community of potential formal

specification users is likely to have extensive experience of code maintenance and hence a 'good

feel' for comprehension of code. Having a comparative measure for a specification couched in

terms of the comprehensibility of its implementation will transfer this 'good feel' to the realm of

formal specification. Therefore the theory can be re-phrased as "a Z specification is (at least) as

understandable as its implementation". To investigate this a Z specification of an example

33

system was constructed. This was then implemented in the Java programming language.

Subjects were asked to describe either the functionality represented by the specification or by

the code. The mean level of understanding of each group (specification or code) was compared.

4.2 I)es:g?i()f]Ebqp€KTiiK%at

The Experiment was a one-way unrelated between-subjects design. This means that the

treatments were applied to different sets of subjects and only one set of data (pertaining to one

example treatment) was recorded. The Subjects were split into 2 equal sized groups by random

distribution of the experimental materials. A two-way experiment (where 2 examples are used

so that each subject attempts each of the treatment types) would have provided more statistical

power but it was felt that doubling the effort involved would deter many of the volunteers.

Another difficulty with 2 way experiments is that a second example is needed which is closely

equivalent to the first but is also different enough to avoid significant learning effects. The

subjects were given as much time as they required and were asked to record the time they had

taken. (There was a 50 minute timetable slot, but all completed within this limit). They were

then free to leave the room. It is hoped that this induced the subjects to work as efficiently as

possible. The data are analysed below taking into account the time taken by each subject so that

the effect of differing work rates can be accounted for.

4L3 Attributes

The preparation of the materials used in the experiment may affect the experiment results.

Hence, the author's experience and training is relevant when considering the influencing

attributes described below. The author had been trained at postgraduate level in computer

science including several courses on programming and programming languages. Postgraduate

training included a small amount on formal specification. This was supplemented by a one-

week course on formal specification using Z. The author had extensive experience (approx. 20

years) of programming in industry but virtually no experience of formal specification.

Comprehensibility is affected by structure (Finney, Fenton and Fedorec, 1999). The same

system could be modelled in Z in many ways. Different specification structures could be

adopted without changing the meaning of the model. Similarly the implementation could be

structured in many ways and this might affect the comprehensibility of the implementation. To

avoid the introduction of un-quantifiable influences on comprehensibility due to differing

choices of structure, the specification and code were written with the same structure. There is a

close correspondence between the schema and data entities in the Z specification and the

34

component modules in the Java code. This may mean that to some readers the Z specification,

or Java code appears to be unnaturally structured.. Experienced formal methods academics and

practitioners have commented that the Z is unusual and appears to be derived from the code. In

fact the Z was written first and the Java was written to match its structure. The style of the Z

may be influenced by the author's limited experience with writing formal specifications and

considerable experience in writing programs. The question pertinent to this experiment is, how

does the style of the Z specification affect the experiment results? It is possible that if the Z

specification had been written differently understandability would be increased. In this case the

experiment results would support the hypothesis even more strongly. On the other hand, if

writing the Z specification differently decreases understandability then the experiment has been

performed with a better style of Z specification. The effect of structure on the comprehensibility

of Z specifications and Java code would be an interesting topic for subsequent work.

Similarly no commenting has been used in the Z specification or in the Java code. This is

unnatural in both cases; one would not normally be expected to understand specification or code

without a natural language explanation. However, if natural language commentary were

provided in the experimental materials, the measure would no longer be of the

comprehensibility of the notations. It would be severely and un-quantifiably influenced by the

natural language descriptions.

4.4 Subjects

The 36 subjects were 2"̂ year computer science students who had been taught a course on

formal methods and a similar length course on the Java programming language. The subjects

were therefore familiar with the notations used, but were not very experienced. The experiment

was voluntary, so there may be some self-selection effects, but since the allocation of either the

Z specification or Java code was random and unknown to the subjects this should have no bias

effect on the experiment.

One threat to validity may be that although the subjects have been taught to equivalent levels in

these particular notations, they are likely to be more familiar with reading code in general than

reading formal notations. This would bias the results in favour of understanding the Java code.

Similarly the subjects' lecturers made several comments to the effect that the subjects did not

like using formal methods. There may be a self-fulfilling lack of confidence in the subjects'

abilities to read the Z specification leading to another bias towards the Java code.

35

4.5 Experimental Materials

A short specification was written in Z (Appendix B.l) to describe a road layout with vehicles

moving along the roads and across the junctions. The specification was then implemented in

Java (Appendix B.2). The Z specification was structured according to an abstract data type

paradigm so that it was possible to maintain a close correspondence in terms of structure and

allocation of functionality with the Java implementation. The Z specification and Java

implementation are shown in the appendices.

4.6 Conduct

The subjects were allocated to one of the descriptions (Z or Java) at random. This was done by

randomly distributing a set of envelopes (equal in number to that of the subjects) half containing

Z specifications , the other half Java code. In order to ensure that the person marking the answer

sheets did not introduce any bias, they were marked blind so that the marker was unaware to

which representation (Z or Java) they related.

4.7 Data Collection Procedures

The subjects were given a questionnaire (Appendix B.3) to test their comprehension of the

description they had been given. The questions asked were very open. The subjects were asked

to describe the real-world objects and behaviour represented by the complete description and

then asked what a particular named section of the description represented in real-world terms.

The openness of the questions has the disadvantage that it allows a wider scope for

interpretation by the subjects of what the required answer is. However, it was found to be

impossible to construct more specific questions that would reflect comprehension without

strongly suggesting the answer within the question. Additional background questions were

asked in case such qualitative information might aid understanding of anomalous results. In the

event, it was not necessary to use this additional information. Since the results consisted of an

English language description of the system, we were concerned to ensure that the interpretation

of the answers did not introduce experimental error. A marking sheet (Appendix B.4) was

prepared which listed all the points that a subject might mention in describing the functionality

of the system. A subject gained one mark for each point that was mentioned at some point in

their answers. The marking sheet thus made the interpretation of answers as objective as

possible. A summary of the marks awarded to each subject, along with a summary of their

answers to the qualitative questions, is shown in Appendix B.5.

36

4.8 jALiii&ljfSHb; of IKleswilts

In this section we examine the experimental data set in order to see whether, and to what extent,

it supports the hypothesis. An initial examination reveals that the data recorded for the Z

specification closely matches that for the Java. In particular the means and medians of the data

sets are very similar, however further statistical analysis is necessary in order make quantified

statements of probability. First we look at the distribution of the data. This indicates that its

adherence to a normal distribution is questionable. We therefore select a bootstrap analysis that

is powerful but robust. (That is, it doesn't make any assumptions about the distribution of the

data). Using the bootstrap analysis we obtain an outer limit for the difference in

comprehensibility at a specific confidence level.

4.8.1 Variables

The independent variable is the notation (Z specification or Java code) used for the description.

Two dependent variables are analysed. Firstly, the score which is an integer value ranging from

0 to 22 representing the number of marks gained as a measure of comprehension. Secondly the

rate of scoring was found by dividing the score by the time taken. This was used as an

alternative measure of comprehension.

4.8.2 Method of Analysis

Since our hypothesis is that there is no significant difference between the comprehensibility of a

Z specification and that of its Java implementation, standard null hypothesis testing techniques

are not suitable. Instead, we construct confidence intervals to quantify the mean difference for

various confidence levels. Initially we constructed confidence intervals using parametric

methods, which assume that the population distribution is a normal distribution. Examination of

the sample data for score revealed that it is not obviously skewed, and roughly approximates a

normal distribution, but this does not guarantee that the population distribution is normal. In fact

the data is fundamentally non-normal because it is truncated at 0. We should therefore treat the

parametric analysis with some mistrust. For the sample data for rate the distribution appears

even less normal. Therefore, we construct confidence intervals based on non-parametric

bootstrap methods, which make no assumptions about the underlying population distribution

other than the sample data is representative of it.

37

Z Java (Z.J)/J
(marks) (marks) (%)

s mean 8^3 -6%
c
0

median 7^0 8.(X) -6%

R std.dev 337 3.90 -14%
E
R mean oja 0.46 6%
A
T

median 0 J 7 0.44 -15%

E std.dev 0 J 2 0.22 44%

Table 4.1 - Summary of Results

4.83 Examination of Data

The size of the data samples for the Z specification and the Java program were both 18. Each

sample consisted of a score out of a maximum 22 marks and the time taken by the subject in

minutes. A measure of the rate of scoring was obtained by dividing the score by the time taken.

An initial look at the medians, means and standard deviations (Table 4.1) of the data indicates

that the Z and Java results appear to be very similar in both score, and rate of scoring. The most

significant difference between the Z and Java results is in the standard deviation of the rate of

scoring, which shows that the rate of scoring varies significantly more between subjects when

reading a Z specification than when reading code. This is despite the fact that, when time is not

taken into account, score varies less when reading a Z specification than when reading code.

We also examined histograms (using SPSS) showing the actual data and a superimposed normal

distribution curve (Figs. 4.3 & 4.4). This showed a fairly good fit but with a slightly high

proportion of readings around the mean, indicating a low standard error. For the rate of scoring

data the histograms (Figs. 4.5 & 4.6) appear to be skewed towards the lower end indicating that

this data is not a very good approximation to a normal distribution.

38

2.5 5.0 7.5 10.0 12.5 15.0 17.5

Fig. 4.3 - Histogram of Java scores

4.0 6.0 8.0 100 12.0 14.0 16.0

Fig. 4.4 - Histogram of Z scores

\

1U3 1j8
j25 .50 .75 1.00 1.25 1.50

Fig. 4.5 - Histogram of Java rate of scoring

1 # 113 # as a K ^
Fig. 4.6 - Histogram of Z rate of scoring

4.8.4 Bootstrap Confidence Intervals

We used the robust bootstrap analysis (Efron and Tibshirani, 1993) to construct confidence

intervals. This uses the minimum possible assumption in any analysis based on a sample: that

the data sample is representative of the real population. It does not make any assumptions about

the nature (e.g. normality) of the real population distribution. Samples of the same size as the

original sample are taken repeatedly from the sample data (it is permitted to select the same data

point more than once within a sample). The statistic of interest is calculated for each sample and

plotted to give a distribution that approximates its distribution in the real population. From this

distribution a confidence interval can be deduced for any confidence level. We used MathSoft's

S-PLUS 2000 (Professional Release 2) statistics package to perform the bootstrap calculations.

Despite the robust nature of the bootstrap analysis, the confidence interval gives a 'better' (i.e.

tighter margin at the same confidence level) answer than the traditional parametric confidence

interval.

Score. The bootstrap results data output by S-PLUS is shown in Fig. 4.7. The bootstrap

calculation for mean(java score)-mean(Z score) gives a difference in means of 2.22 at the 95%

39

confidence level (25% expressed as a percentage of the mean for the Java sample). Hence we

have a 95% confidence that the overall population would have a mean Z score no worse than

75% of the Java score.

*** Bootstrap Results ***
Call:
bootstrap(data = just.the.data,

statistic = mean(jscore) - mean(zscore),
B = 20000, trace = F, assign.framel = F, save.indices = F)
Number of Replications: 20000
Summary Statistics:

Observed Bias Mean SE
Param 0.5556 -0.006478 0.5491 1.053
Empirical Percentiles:

2.5% 5% 95% 97.5%
Param -1.5 -1.166667 2.277778 2.611111
BCa Percentiles:

2.5% 5% 95% 97.5%
Param -1.555556 -1.222222 2.222222 2.611111

Fig. 4.7 Bootstrap Analysis Results from SPLUS for Score

The bootstrap density distribution of mean Java score - mean Z score for the 20,000 bootstrap

resamples was obtained from Splus (Fig. 4.8).

l l lkl lh^

Value

Fig. 4.8 Distribution of means of Java score - Z score for 20,000 resamples

Rate. The bootstrap results data output by S-PLUS is shown in Fig. 4.9. The bootstrap

calculation for mean(java rate)-mean(Z rate) gives a difference in means of 0.082 at the 95%

confidence level (18% expressed as a percentage of the mean for the Java sample). Hence we

have a 95% confidence that the overall population would have a mean Z rate of score no worse

than 82% of the Java rate of score.

40

*** Bootstrap Results ***
Call:
bootstrap(data = just.the.data,

statistic = mean(jrate) - mean(zrate),
B = 20000, trace = F, assign.framel = F,
save.indices = F)

Number of Replications: 20000
Summary Statistics:

Observed Bias Mean SE
Param -0.02692 0.0003885 -0.02653 0.07046
Empirical Percentiles:

2.5% 5% 95% 97.5%
Param -0.1668326 -0.1430569 0.08754796 0.109355
BCa Percentiles:

2.5% 5% 95% 97.5%
Param -0.1744356 -0.1489462 0.08211454 0.102708

Fig. 4.9 Bootstrap Analysis Results from SPLUS fo r Rate of Score

The bootstrap density distribution of mean Java rate of score — mean Z rate of score for the

20,000 bootstrap resamples was obtained from Splus (fig. 4.10).

"a CO

-0.3 -0.2 -0.1 0.0
I

0.1

Value

Fig. 4.10 Distribution of means of Java rate - Z rate fo r 20,000 resamples

In Summary, we have quantified the results in terms of confidence intervals for the usual 95%

confidence level and found that we need to allow approximately a 25% margin, for score, and

18% margin for rate of scoring, to achieve this confidence (i.e. Z is within 25% as

understandable as Java). Note that this does not mean that the data indicates that there is a 25%

difference. (In fact, the data indicates that there is very little difference in comprehensibility).

4.8.5 Analysis of Qualitative Data

The questionnaire included some questions to collect some subjective, qualitative data. (See

questions 3 to 7 of Appendix B.3). (One subject in the Z group did not complete these

41

questions). We are careful not to draw firm conclusions from this data due to inevitable

variations in interpretation of both the questions and the answers. The following summarises the

responses to these questions.

In question 3 the subjects were asked how difficult they thought the specification or program

was to understand compared to an English language equivalent. The answers were almost all

positive (i.e. harder to understand than English) and there was very little difference between the

answers for the Z spec and for the Java program. The means of the answers (interpreting the

answers on a scale from -5 to +5) were +2.35 (Z) and +2.39 (Java).

In question 4 the subjects were asked how difficult they found mathematical subjects (i.e. to

judge their mathematical abilities compared to their peers). Here there was more of a tendency

towards 'easy' indicating that most subjects thought they had an aptitude towards mathematics.

This was slightly more so in the Z group than the Java group (-1.65 versus -0.31), which may

indicate a mathematical bias in favour of the Z group.

In question 5 the subjects were asked for their mathematical qualifications. All but 5 of the

subjects had mathematics A-level. Three of the five without A-level mathematics were in the

Java group, 2 in the Z group. This indicates a uniform mathematical ability throughout the two

groups.

In question 6 the subjects were asked how much experience they had with the notation or

language used in the specification or program. The form of the answers varied slightly, some

referring to length of time in months and others referring to course modules or semesters.

However, all the answers apart from two in the Java group indicate that they only have

experience of the notation/language from a course module in the previous year. Two answers

from the Java group indicated a frequent use of Java leading to more of a familiarity.

In question 7, subjects were asked for any other comments. Many left this blank but of those

that offered comments seven (all from the Z group) said that Z or formal specification is

difficult or more difficult than code, whereas only 3 (from the Java group) said that Java or code

is hard to understand. In fact 4 (again from the Java group) said that programs are easy to

understand. Hence there appears to be a tendency to believe that formal specifications are more

difficult to understand than code. This has not been borne out by the results of this experiment

but may be a bias towards understanding the Java.

42

4.9 Threats to Validity

The degree of credibility of any study depends on its validity. We have already discussed

'Conclusion Validity', the validity of the statistical analysis. In this section we consider other

threats to the validity of the experiment and its conclusions (Basili, Shull and Lanubile, 1999).

4.9.1 Internal Validity

Internal Validity defines the degree of confidence in a cause-effect relationship. Thus under this

heading we must consider whether the subjects understanding of the specification and program

could have been influenced by any factors other than the independent variable. There are 2

categories of factors that could be a threat here. The first category is attributes of the subject that

might influence their understanding, such as ability or degree of training in relevant subjects.

This was minimised by selecting the subjects from the same cohort of a course. There will still

be differences in background and ability but the random allocation to groups should distribute

such factors between the 2 groups. As with any sample method there is, however, always the

chance that an unfortunate allocation has occurred. The second category is attributes of the

materials other than the notational difference such as style. As discussed above, the structure,

style, naming and font of the two descriptions were made consistent to eliminate these factors.

A further threat to the internal validity was discovered after the experiment had been performed.

The Java program had been tested in order to verify its correctness but the Z specification was

only verified by inspection. Three errors were left undiscovered in the Z specification when it

was used for the experiment. The errors are as follows:

1. The blank predicate part of the schema VehicleType should either contain true, or be

omitted

2. The identifier Destination already occupied, used in the definition of Report, should

contain underscores instead of spaces,

3. The schema pickRoad is incorrectly used as a function in the schemas moveNewRoado

and destinationAlreadyOccupied.

The first two errors are minor and unlikely to cause any misunderstanding or confusion to a

reader. For these errors it is reasonable to assume that the subjects were able to easily identify

the correction to the syntax if they noticed the error. The third error is much more significant

since a correction is not easily identified even if the intended meaning is recognised. If the

errors made it more difficult for the subjects to understand the Z specification the support for

our hypothesis is strengthened. However, since the subjects did not comment on the errors, and

43

there does not appear to be a correlation between the errors and an area that was misunderstood,

we assume that the subjects correctly deduced the intended meaning of the schemas. The limited

experience of the subjects may have led to them assuming that there was no error, even if they

did not recognise the syntax, and correctly guessing the meaning. The corrected version of the Z

specification is shown in Appendix B.6. This version is written in an ASCII form of the Z

notation, ZSL, and has been checked using the ZTC type checker (Jia, 1998).

4.92 External Validity

External Validity defines the extent to which the conclusions from the experimental context can

be generalised to the context specified in the research hypotheses. Having established the

experimental hypothesis we must consider how well it supports the substantive hypothesis.

There are several threats to the inductive process needed to assess the substantive hypothesis.

Firstly, the notations used in the example are particular whereas the substantive hypothesis is

general in terms of notations. However, both Z and Java are typical and representative of the

majority of other notations. We feel that practitioners will accept that if the hypothesis is true

for these notations then it is, to some extent, generally true. There may be notations that deviate

one way or the other. For example, Java is an object-oriented language and procedural

languages may be easier to understand (although, in the experiment, we have not used many

object-oriented concepts, such as inheritance, that are likely to affect understanding). However,

similar experiments using alternative notations would clarify the generality in this respect.

Secondly, we must consider whether using students as subjects poses a threat to the validity of

the experiment. The subjects were students who had undertaken an equivalent level of training

in both notations. Lecturers reported that the students generally expressed a dislike of the formal

notations. This is probably representative of the general population of practitioners in industry.

We accept that students have less experience to rely on than practitioners. The extra experience

of practitioners is likely to aid understanding of the program rather than the formal

specification, but if our results reflect the situation without this bias in experience we view this

as a desirable attribute. That is our results reflect the situation in the absence of a strong

experiential bias as might be found in industry and therefore reflect the situation once an

equivalent experience of formal specification has been obtained.

Thirdly, we should consider how the small size of the example problem affects the validity of

the generality. This is a cause for concern, because the example problem is tiny compared with a

real problem. Unfortunately it is impractical to use representative problems in this kind of

experiment. We accept that scalability is an issue that could have a significant effect on the

44

results. The experimental results therefore reflect the situation in the absence of scalability

issues, which require further investigation.

4.9.3 Construct Validity

Construct Validity defines the extent to which the variables successfully measure the theoretical

constructs in the hypotheses. The theoretical construct in the hypothesis is comprehensibility.

Under construct validity we must therefore consider whether the dependent variable and its

measure are valid measures of comprehensibility. The measure consists of 2 stages: an analogy

between comprehensibility and being able to describe the functionality of the represented

system; and the validity of the scoring system used to measure the described functionality.

A threat to the first stage is that the subject may not have given a description that portrays their

understanding. It seems reasonable to assume that the ability to describe something is

proportional to the subject's understanding of it. This assumption is widespread in education via

examination methods. The subject's written communication skills will affect their description as

well as other factors such as their perception of what is relevant to the answer. However, these

influences will not affect the validity of the results unless they affect one group significantly

more than the other. We do not foresee any factors that could be influenced by the independent

variable and hence might affect one group more than the other. (It may be that it is more

difficult to describe the functionality of a program than a specification because of the difference

in abstract level. However we consider this to be an essential part of what we are measuring

rather than a source of bias. By 'comprehensibility' we mean ability to understand the

functionality). The random assignment of subjects should therefore eliminate the effect of the

ability-based factors, but as with any sample method there is always the chance that an

unfortunate allocation (such as a disproportionately high number of more able subjects in one of

the groups) has occurred.

The threat to the second stage is the method of scoring the written descriptions. The descriptions

were marked according to a list of points (objects, properties or behaviour) and given one mark

for each point mentioned. The answers were marked without knowledge of which group they

belonged to so that no prejudice of the marker was introduced. Some points were easier to

obtain than others and this means that the measure is non-linear affecting the scale validity.

However, we feel that this will not be a significant problem as those who obtained harder marks

generally obtained the easier marks. We considered weighting the points with differing amounts

of marks but this would be a subjective judgement and in most cases it is not obvious what the

weighting should be.

45

4.10 Possible Areas for Replication

Confidence in experimental results and further knowledge of influencing factors is gained by

replication of experiments. Basili, Shull and Lanubile (1999) discuss a framework for

organising related sets of experiments with the aim of building up a complete picture of the

results over a wide range of contexts. (The term 'replication' is generally taken to include

variations in the experimental work as well as strict replications). An experiment (or other

empirical assessment) using practitioners with varying degrees of experience would be useful to

establish that the results may be generalised to industrial situations. The area of scalability and

an evaluation of its importance to formal specification compared with program design would

illustrate its effects on comprehensibility. Further work on the effects of different styles and

structures on comprehensibility would also be an interesting and valuable area to explore.

Existing work in this area includes that of Finney, Fenton and Fedorec (1999), who conducted

an experiment that concluded that the degree of schema structuring in a Z specification affects

its comprehensibility, schemas of approximately 20 lines being optimal. Vinter (1998)

conducted experiments that showed that subjects are likely to misinterpret certain forms of

logical statements including disjunction, conjunction and quantification in the same way that

people commonly misinterpret equivalent natural language descriptions. This implies that some

forms will be more susceptible to misinterpretation than others, depending on context.

4.11 Summary

We set out with the intention of testing the substantive hypothesis that formal specifications are

no more difficult to understand than code. Our experimental evidence strongly supports a

hypothesis that subjects such as the ones we used could understand the Z version of the example

approximately as well as the Java version of the same example. The data recorded for the Z

specification closely matches that for the Java. The means for both score and rate of scoring

were very close. The variance for score was also closely matched but there does appear to be a

slightly higher variance in the times taken for the Z specification. This may be due to a wider

variation in mathematical background, familiarity and confidence.

At the usual 95% confidence level we needed to allow a 25% margin for score and 18% margin

for rate of scoring (i.e. Z is within 25% as understandable as Java).

We have chosen to adhere to the commonly used arbitrary confidence level of 95%. To give a

guide to how the quantitative margin of the results would be improved by a looser choice of

confidence level, we calculated alternative margins for the bootstrap result at the 80% and 75%

levels. The corresponding results for scores were Z is within 18% and 14% as understandable as

46

Java respectively. The corresponding results for rate of scoring were Z is within 7% and 4% as

understandable as Java respectively.

In the previous section we discussed various threats to the validity of the results and in

particular, threats to the generalisation of the experiment needed to support the substantive

hypothesis. There are some areas that would benefit from further investigation, however, subject

to these reservations, we conclude that formal specifications are no more difficult to understand

than code. Consequently, industry should expect similar levels of effort in reading and

understanding formal specifications as they already experience in reading and understanding

programs provided they allocate similar resources to the task.

The threats to validity illustrate the difficulties involved in performing empirical assessments

involving human performance. In particular the consideration of construct validity illustrates

some of the difficulties of finding suitable and valid measures of complex attributes associated

with human behaviour such as comprehension.

47

Chapter 5

Why Writing Formal Specifications is

Difficult

Perhaps the most powerful method we use for solving new problems is our ability to recognise

similarities with, and differences from, our past experiences. We have the ability to recall

situations, actions that were taken and resultant outcomes from our ever-increasing memory of

past experiences. We are able to recognise similar instances and from this generalise to find

desirable actions for classes of scenarios. Furthermore, we are able to recognise differences so

that we can adapt these general strategies to new experiences.

Within computer science, as in other disciplines, such techniques are so basic and commonplace

that they are used as a routine technique. For example new computer based solutions are

invariably developed based on a collection of techniques learnt from previous projects.

Experienced software engineers debug software by matching faulty behaviour with that of the

past to lead them to probable causes. Working by similarity has been used in a more explicit

manner by Brereton, Budgen and Hamilton (1998) when discussing the maintenance problems

of hypertext.

In Chapter 3 we found that formal methods practitioners generally agree that writing formal

specifications is difficult. In this chapter we make some suggestions as to why this might be so.

First we outline a general definition of 'specifications' that is widely applicable to items at any

stage in the programming process. Then we discuss the process of creating a formal

specification and why it is difficult. We make some comparisons with writing procedural

programs. Finally we use a cognitive dimensions analysis to assess B with respect to

exploratory design. During this analysis we consider the design process and tools for formal

specification in comparison with that of computer programming. From this comparison we

identify one of the main differences between the two processes as the lack of equivalent design

visualisation tools for formal specification.

48

5.1 Models, SpeciGcations and Implementations

A specification is a description. This is a very broad and flexible definition and therefore

encompasses many things. One kind of specification is a requirements specification where we

describe things we desire to be true of a system. Another is a functional specification where we

describe the actual behaviour of a system. It would be difficult to combine these views because

we would need to maintain the distinction between things that are reported as fact and things

that are stated as desired. Pamas (1997) defines specification to mean requirements descriptions,

excluding 'actual' descriptions. Pamas warns that, unless explicitly stated, many descriptions

could be interpreted as either requirements specifications or actual descriptions leading to

confusion over an important distinction.

Different specifications, therefore, describe different viewpoints. Even within one viewpoint,

specifications are rarely complete. A specification usually concentrates on one aspect such as

functionality, or materials, or performance. We use many varied notations for specification

because different notations allow us to express different views or aspects most effectively.

Nuseibeh and Finkelstein (1992) recognise the importance of different viewpoints in their

framework for the development of heterogeneous, composite systems.

One technique for describing things that is often used in specifications is modelling. A model is

an object that resembles a 'target' object in some ways. A model is a way of describing the target

object, so a model is a form of specification. According to FOLDOC, the free on-line dictionary

of computing^, a model is "A description of observed behaviour, simplified by ignoring certain

details. Models allow complex systems to be understood and their behaviour predicted within

the scope of the model, but may give incorrect descriptions and predictions for situations

outside the realm of their intended use".

A model boat resembles the target object in shape and colour; perhaps also, to some extent, in

its functionality if it floats, but in many other ways, such as size and materials, it does not. The

'reader' needs to understand the scope of the model in order to interpret it correctly. That is, the

reader needs to know which attributes of the model are intended to describe the target and which

are not. In the model boat example the reader is left to make their own judgement (based on

common knowledge of the generic class of the object) on which attributes are similar in a real

boat and which are not.

' http://foldoc.doc.ic.ac.uk/foliioc/mdex.html

49

http://foldoc.doc.ic.ac.uk/foliioc/mdex.html

Another example of a model is a Z specification. Here the representative attributes are the

abstract mathematical state and behaviour information. The model may completely specify this

attribute of the target, but it leaves many implementation options unspecified. The reader

distinguishes the representative attribute as a convention of the notation. That is, the reader

knows that with Z specifications, attributes such as the notation and the choice of mathematical

structures is not representative of the target.

Wills and D'Souza (1997) are careful to point out that the attributes in their types (part of the

Catalysis method which utilises the UML as notation) do not imply that the things represented

by the types have any features with these names. "The only requirement is that the operations....

exhibit the behaviour implied by the model". Clearly, they do not feel that this is obvious

enough from the modelling notation to go unmentioned.

We can even consider a natural language description to be a model. The representative attribute

is the semantics within the text. This is a very flexible form of model, which is why natural

language description is so popular and widespread.

Given this loose definition, all specifications are models; they are synonymous, interchangeable

terms. FOLDOC describes a specification as "A document describing how some system should

work". According to FOLDOC therefore the main difference between models and specifications

is that models describe observed behaviour while specifications describe required behaviour.

This distinction might be pertinent when we are modelling the observable behaviour of a system

(which may or may not already exist) as a systems analysis stage prior to specifying the

requirements for the implementation of a component of the system.

Despite this possible distinction, for our purposes, a model of an observable system is a

specification of its behaviour and the specification of a component is a model of its responses to

events. The term, model, highlights the concept of representative attributes while the term,

specification, highlights the descriptive role, but they are names for the same thing and both

may refer to required or actual behaviour of an observable system or component thereof.

We tend to treat computer programs as the target object of many of our specifications, but

programs are not the final product. They are a description, in a notation (the programming

language), of the operations that a machine will carry out. The program is a specification for the

behaviour of the concrete machine, the computer. However we could view the computer as an

imaginary object. If we know what the imaginary computer is like, we can deduce a behaviour

that is represented in the program. In this sense the program is a model of a possible behaviour

of the computer and is very similar to behaviour specifications written in formal notations such

as B or Z. If we use a program to specify from this viewpoint (i.e. the actions of a computer) the

50

scope of the model is well defined but if we shift our viewpoint to required functionality, it

becomes more difficult to distinguish required functionality from implementation decisions.

However, similar problems arise in formal specification. There are many ways to write a Z

specification (e.g. choice of schemas, choice of data structures) all of which are modelling

details lying outside the attribute representation scope of the specification. We could agree

similar conventions for distinguishing the scope when we use a program as a specification of

required functionality. So perhaps, computer programs can be viewed as specifications in

several senses, of the computers behaviour, but also of the required functionality.

Often the target of a specification is not a physical object but an abstract property or behaviour,

which might be attached to a physical object. The level of abstraction away from concrete

details can be varied providing a means for coping with scale. A highly abstract specification

can first be produced to specify abstract properties of behaviour, which will be made more

visible by not being obscured in detail. Further functional detail can be added in stages of

refinement. Initially these refinements may add purely functional detail and remain

requirements specification. Later refinements may introduce implementation decisions.

Generally, as we move from requirements specification to implementation specification we also

tend to move from declarative to imperative styles.

In some cases, a physical object is within the scope of the specification. In these cases we could

consider the object to be the ultimate specification of itself. It is clearly accurate and complete

but certain properties are not readily visible and may be difficult to measure. A design

specification might be required in order to perform maintenance for example. So there are

desirable properties of specifications other than accuracy and completeness. We generate

specifications (models) because, even though they may be lacking in accuracy and

completeness, they give us different views of the target object. In fact, in order to achieve this,

to accentuate a particular view, we often deliberately suppress the accuracy or completeness of a

specification so that it doesn't obscure the desired view. So the target object is a specification of

itself but is not necessarily the ideal one, there are different ideal specifications for different

roles.

By specification we mean any form of description of an object including the object itself. We

appreciate that specifications can differ in form, accuracy and scope and different forms will be

more suitable for different purposes, even if they lack accuracy and completeness. In order to

avoid any confusion with preconceived ideas of specifications we use the term 'representation'

to mean a specification in this extended sense. We take model to be an alternative word for

specification (and hence representation) that has a different emphasis but refers to the same

concepts.

51

5.2 Writing Formal SpeciGcadons

The process of computer programming can be viewed as a sequence of two or more

representations, starting with an undocumented knowledge of a need for a computer to perform

a task and ending with a program that enables a computer to perform a task that to some degree

satisfies the initial representation. Hence, programming can be viewed as the generation of an

alternative representation (the program) to an initial representation (the requirement). As

described above, these generations may involve many steps of decreasing abstraction. The B

method embodies this process via its concept of progressive verified refinements from formal

specification through to program code. In fact the B method relies on making many small

refinement and decomposition steps starting from a very abstract initial specification. Each

refinement or decomposition introduces more specification details until a complete specification

is achieved. Thereafter, further refinements and decompositions make implementation decisions

until an implementation is reached. We are concerned with the difficulty of creating the first

formal representations that make up a complete formal specification.

In their paper, 'Strategies for Incorporating Formal Specifications', Eraser, Kumar and Vaishnavi

(1994) perform a morphological analysis to derive a framework for classifying strategies for

using formal methods. Their classification is very simple, whether or not a semiformal,

intermediate representation is used and whether or not computer assistance is used to generate

the formal specification. One of the main reasons for analysing these strategies, they say, is

because formal notations do not encourage exploration of the problem structure and this is

detrimental to the resulting specification. They conclude that direct specification from an

informal description into a formal notation without computer assistance is only practical for

small well-structured or prototypical problems, and that iterative transitional (i.e. using a

semiformal intermediate representation) strategies are needed for elicitation, problem

structuring and validation of real-life problems. Further, to cope with the labour intensive

generation of formal specifications, computer assistance provides most promise in addressing

the problem of scale. Craigen, Gerhart, and Ralston (1995) carried out a survey of industrial

applications of formal methods. After analysing the use of formal methods in a dozen industrial

applications they observed that: "Industry will not abandon its practices, but it is willing to

augment and enhance its practices." One of their recommendations was that research should

concentrate on integrating formal techniques with software engineering practices, both in the

area of assurance and in design methods.

Our survey of opinions of formal methods experts has led us to similar conclusions. When

questioned about difficulties in understanding formal notations, these practitioners said that

there were no fundamental difficulties; software engineers find that formal notations are no

52

more difficult to understand than code. Despite this, highly academic and talented consultants

were generally employed to write the specifications. It was reported that the processes of

creating a formal specification are extremely difficult and requires great skill.

The task of creating a model-based formal specification often starts from an informal, poorly

structured and incomplete description of the problem. The next step is to choose and create

abstractions that will be useful in the following step. (Here we use the term 'abstraction' to

mean a grouping of elements that is to be treated as a single entity. Note, however, that often we

need to choose abstractions before deciding the details of the elements they represent). The

following step is to specify the detailed rules that govern the state, structure and behaviour of a

model that represents a well-structured, complete and consistent specification. However,

choosing appropriate abstractions is notoriously difficult and it seems that current formal

notations are not conducive to exploring alternative abstractions before detailed behaviour is

added. Green and Blackwell (1996) point out the "ironies of abstractions": that the difficulties

involved in finding appropriate abstractions are similar to the difficulties they remove. Formal

specification notations such as B and Z are 'abstraction hungry'. That is, they require the user to

choose abstractions before they can be used. (Green and Blackwell describe abstraction hungry

systems as those that "can only be used by deploying user-defined abstractions). The primitives

in the Z notation are such that very little can be said without choosing variables that represent

relationships between elements of state, operations that collate sets of elemental actions and

groupings of these variables and operations to form further abstractions. Furthermore, in order

to specify behaviour succinctly, a coherent collusion of abstractions must be built. This requires

look-ahead, we need to predict what abstractions will be useful and what their interdependencies

are. A collection of abstractions provides an ontology and, hence, the choice of abstractions

changes the basis of reasoning. Therefore changing abstractions later will be difficult because

the behaviour will need to be re-specified within the context of a different ontology.

The following example illustrates how the notation affects the choice of abstractions, how it

determines the ontology and how it affects the visualisation and expression of certain

relationships. The example models the movement of traffic on a road system using the Z

notation.

[VEHICLES]

Road
traffic: seq VEHICLES
dest: P Road

53

traffic is an abstraction that groups a sequence of vehicles, dest is an abstraction that gives a

particular significance to a set of Roads. Road is an abstraction that captures and collates

significant attributes of a road. Roads have destinations and associated traffic.

Unfortunately, this is not a valid Z specification because schemas cannot be self-referencing.

The chosen abstractions are not suitable for expressing the relationship between a Road and its

destination Road(s). We need higher-level abstractions to do this;

layout: Road P Road

layout is an abstraction that captures the connectivity of the roads in a system, (dest has been

removed from Road). Note that we prefer the total function from roads to (possibly empty) sets

of roads, rather than a mapping from roads to roads. This is partly because it seems a more

natural representation of the real world abstraction and also because we use this form in the

U2B translator described in chapter 5. We can now add an event of a vehicle moving from one

road to another, go is an abstraction that represents an event and comprises a precondition and

some state changes defined by a postcondition.

80
from?,from?': Road
to?, to?': Road
to? e layout(from?)

from?'.traffic = tail from?.traffic
to?'.traffio = to?.traffic"<head from?.traffic>

Alternatively, since we have had to remove dest from Road, maybe it would be better to elevate

the abstraction traffic to the level of the road system, Roadsys;

[VEHICLES,ROADS]

Roadsys
layout: ROADS ^ P ROADS
traffic: ROADS seq VEHICLES

go
ARoadsys
from?, to?: ROADS
to? 6 iayout(from?)

layout'=layout
traffic'(from?) = tail (traffic(from?))
traffic'(to?) = traffic(to?)"<head(traffic(from?))>

In this example. Road is a very simple object and its representation (in the first alternative) as

an abstract data type schema is not worthwhile. However, generalising to more complex objects,

which might have other attributes, initially it is not clear whether the encapsulation of traffic

54

within the abstract data type Road is better or worse than modelling traffic at the higher,

Roadsys level. It is not until we start using these abstractions that we start to find out the effect

of such decisions. The system has a different ontology; traffic has a different meaning since it

now refers to all the queues of vehicles in the system, rather than just that on a specific road.

ROADS is a basic type, whereas before. Road was a complex structure with attributes.

Moving from one road to another is constrained so that vehicles don't collide at junctions. We

need some concept of a road being enabled, which is dependant on other roads not being

enabled. We could add this to Roadsys thus.

Roadsys
enabled: P ROADS
depends: ROADS ^ P ROADS
layout; ROADS ^ P ROADS
traffic: ROADS seq VEHICLES

V rr:Roads| rr e enabled • depends(rr) n enabled = 0

The invariant ensures that the road cannot be enabled when a road it depends on is already

enabled

However, the abstractions do not provide the concept of a junction within the ontology. If we

need to introduce concepts related to a junction (perhaps closing a junction for maintenance of

the traffic lights) it is difficult to envisage the effect from the depends abstraction.

As with any complex construction, formal specification involves the construction of multiple

layers, as a description is structured into a hierarchy. This entails ordering abstractions, a

difficult cognitive task. One way to find abstractions is to generalise instances, but this leads to

a set of abstractions with low coherence (they may be good abstractions but they don't fit

together well), another look ahead failure.

We might look to similar tasks with which we can draw parallels. Programming is a task that is

very similar in nature to writing a formal specification. The Programming language is a formal

notation. Programming is a similar task in terms of the level of detail and precision required in

the process. In the early days of computers, a handful of enthusiast and specialist programmers

hand wrote code, but only for simple well-structured problems. As the problems have grown in

size and complexity, programming has become a widespread profession practised by well-

trained but average graduates; it is no longer the province of specialist academics. Now, through

visual interfaces, it is beginning to become available on a widespread level to the general public.

Winograd (1995) describes these typical stages that new technologies go through; 'technology-

driven' when the technology is used by enthusiasts, 'productivity-driven' when it is used by

professionals and 'appeal-driven' when it is used by consumers. In order to achieve these

55

conflicting developments programmers have added more and more intermediate transitional

stages into the design process. First Assemblers, then higher-level languages, then architectural

design stages. Languages have become more natural for expressing the problem solution and

program design paradigms have been developed to encourage better structuring of programs.

Formal specifications have not had the opportunity to develop in this way. Formal specification

has lagged behind programming and only become of serious, widespread interest when the

problems we want to solve with them are complex. While problems were simple, formal

specification was not necessary. Formal specification has been used initially for safety critical

systems and these have been kept simple for safety as well as practical reasons, but this has led

to the view that formal specifications are not viable for other domains. Formal specification has

suffered from a motivational lag. If the motivation to use them had been there in the early days

of programming, methods to enable their effective use would have developed in pace with the

scale of problems being solved.

Formal specification also suffers from its verification role. Structuring mechanisms for design

purposes are often antagonistic to decomposition for proof purposes. For example Object Z

usually has to be 'flattened' for manipulation. B contains significant restrictions to enable proof

composition. For example, only one machine is allowed write access to the data of a shared

machine. (Buchi and Back (1999) have suggested an amendment to B to allow write-shared

machines). It is important to consider the purpose of a specification before selecting a notation

(Hall, 1999). Design structuring mechanisms are important for an industrial scale task because

they allow the problem to be decomposed into manageable parts and allocated to different teams

or individuals. The structuring mechanism must allow the problem to be decomposed into

natural coherent parts and must allow their interfaces and relationships to be understandable and

manageable. We take the view that the first stage of transferring formal methods to industry is

formal specification, and it is important not to significantly degrade design structuring for

mathematical manipulation. A translation to a more suitable form for verification may be a later,

possibly automated, stage. However, for pragmatic reasons, the techniques and tools we present

in the next chapter restrict structuring such that both purposes are served.

Stepwise Refinement (Wirth, 1971) is an established technique for decomposing large systems

into manageable sub-parts by hierarchical stages. The technique works well in developing a

formal specification because a more detailed specification can be formally proven to be a

refinement of a more abstract one. The decomposition at each stage is dependent on structuring

mechanisms, which may be restricted as discussed above, but the introduction of detail in stages

is, itself, beneficial. However, contractual requirements may dictate that complete and detailed

requirements are expressed for customer agreement, and hence the contractual specification may

56

include several stages of refinement. Refinement may also be used to add implementation

details. Refinements for implementation purposes would need to be kept separate from

Refinements that are part of specification.

Formal methods can be used to verify the implementation against the specification and to prove

properties of the specification such as its internal consistency. Usually, formal methods cannot

be used to fully validate the specification. This is because validation involves the examination

of the specified system to determine whether it is useful. The user's requirements for the system

are usually informal and only partially recorded. Validation is when the user assesses whether

the system will be useful in practice. This assessment can involve undeclared background

knowledge, such as working practices, culture etc. Both Hayes and Jones (1989) and Fuchs

(1992) agree that formal specifications improve validation at the specification stage. This is an

important benefit because, otherwise, most validation is done on the implemented system,

where changes are much more costly. Since validation inherently involves users who normally

have no training in formal specifications, a barrier to validation is communicating the meaning

of the specification. One method of overcoming this barrier is to translate the specification into

a form that can be executed so that users can test the specification in specific scenarios. Hayes

and Jones, argue that many of the techniques used to make a specification clear (such as

inverses, negation and quantifiers) and non-determinism, which has an important role in

avoiding over-constraining the implementation, are so hard to implement that doing so

compromises other roles of the specification. Note that Hayes and Jones distinguish prototyping

from specification validation. Prototyping is a method of discovering undeclared requirements

for input into the specification, making validation more successful but not replacing it. Fuchs

refutes the arguments of Hayes and Jones by demonstrating the translation of the same

examples used by Hayes and Jones, into a declarative logic language. He succeeds in providing

an executable version of each example that is similarly structured to the specification, at the

same level of abstraction and does not introduce additional algorithmic details. For some

examples limits have to be introduced where otherwise the computation would be infinite.

Gravell and Henderson (1996) discuss, amongst others, Hayes and Jones and Fuchs work and

conclude that although clarity, expressiveness and abstraction level must be given priority to

enable inspection and review, executable translations of specifications are often achievable and

provide a cost effective means of detecting some kinds of errors. The B-Toolkit includes an

animation facility that is useful for validating B specifications by execution. However we have

found that some specification constructs, such as set construction are not successfully handled.

Leuschel and Butler (2002) have proposed and implemented an alternative animation and

model-checking facility for B that is based on automatic translation into Prolog.

57

Since Formal specification is a similar kind of task to programming, it is reasonable to assume

that similar stages will be necessary to create formal specifications for real-life problems using

average engineering skills. Formal mathematical notations based on set theory have the

advantage that properties can be expressed extremely simply and succinctly compared to a

programming language. Even so, methods for organising these expressions and composing them

into a meaningful and manageable specification are crucial. Already attempts have been made to

develop more useable formal notations. The Z notation has a simple but effective composition

mechanism in its notion of schema. However, schemas do not provide full encapsulation. A

collection of schemas is necessary to cover state, initialisation and operations of a

subcomponent. Also, promotion and binding mechanisms used for composing schema into

higher levels, although mathematically simply and powerful, are not intuitive from the system

designers perspective. Students often find these concepts difficult to grasp. Object-Z and B add

more sophisticated building mechanisms that improve encapsulation, albeit with disadvantages

discussed above. As notations develop, some researchers are beginning to investigate the need

for transitional hierarchical design stages, as noted by Fraser, Kumar and Vaishnavi (1994).

Other references to such examples include Facon, Laleau & Nguyen (1996), Bruel and France

(1998) and Meyer & Souquieres (1999). Here, most attempts actually adapt the program design

methods directly. In Chapter 6 we discuss a translation that we have developed using the UML

as a transitional stage with computer assistance to generate B specifications.

While we have been arguing that there are similarities between formal specification and

programming we recognise that there are significant and fundamental differences. Often, when

writing a specification our aim is to describe requirements or observable behaviour rather than

specify an implementation. That is we are describing what happens rather than how it should be

achieved. This implies different aims, levels of abstraction and techniques. A common

difference is that most formal specification notations are declarative whereas procedural

programming notations are imperative. Declarative notations are good for specification because

they enforce a description of what happens to state when an event occurs without allowing a

description of how it is achieved. However the removal of the facility to decompose behaviour

into sequential stages is a descriptive limitation that is unfamiliar to programmers.

In comparing formal specification and programming we are considering imperative, procedural

programming languages because they are usually used for implementing systems. Declarative

languages such as the logic language, Prolog, (Sterling and Shapiro 1986) have more

similarities with formal specifications.

The following summarises the main differences between set-based formal specification and

procedural programming.

58

Purpose - The aim of formal specification is usually to describe something whereas the aim of

programming is to implement something. This can lead to different aims and priorities.

Process - Program design has received a lot of attention over years of development. Tools and

techniques have been developed to a greater extent than those for formal specification.

Abstractness - Programs are fixed at the concrete implementation level by the machine they are

instructing, whereas formal specifications can be pitched at any desired level of abstraction.

Declarative - Formal specifications are usually declarative whereas procedural programs are

imperative. Programmers are used to decomposing problems into a sequence of steps rather than

a conjunction of truths.

Animation - While animation of formal specifications is possible, current tools to support this

are not entirely satisfactory and hence animation is not widely used. This makes validation

difficult. In contrast, programs are executable by purpose.

Mathematical - Formal specifications are mathematically manipulable enabling reasoning and

formal verification to be carried out.

5.3 Cognitive Dimensions of B

In this section we perform a cognitive dimensions analysis of the B notation with respect to

exploratory design. Exploratory design is the process that is undertaken to create a formal

specification. The 14 dimensions that were introduced in chapter 2 are ordered according to our

rough subjective ordering of their importance in exploratory design. We assess the B notation as

an example of a formal notation and attempt under each verdict to generalise to indicate whether

the dimension contributes to making the process of formal specification difficult. We also

consider how each dimension affects program design and how program design tools are used to

alleviate the problems. We selected the B notation because the analysis will be useful in

supporting chapter 6. We view the B notation as being one of the more practical formal

notations because it has good structuring and encapsulation mechanisms and good tool support.

5.3.1 Abstraction

FOLDOC defines Abstraction as "Generalisation; ignoring or hiding details to capture some

kind of commonality between different instances". An abstraction gives a new meaning or role

to an object or group of objects and allows the group to be referred to by a new name. Formal

notations are very abstraction hungry. This means that they require you to invent abstractions at

59

an early stage. In B, abstractions are created by naming sets, defining types, variables,

definitions and abstract machines. You cannot say anything at all in B without choosing

abstractions. This is to be expected because B is a modelling language and is intended to be

used to describe things by assigning roles to the mathematical constructs of set theory. For

Exploratory design, abstraction hunger is a double-edged sword. On the one hand abstractions

enable you to create a higher-level problem specific language; they determine the ontology of

the problem domain. Once the abstractions have been made the problem can be expressed very

clearly and important properties will be made visible. On the other hand choosing appropriate

abstractions that will fit together in a coherent way is extremely difficult. Abstraction hunger is

a property of any general purpose modelling language and B is not particularly beneficial or

deficient in this respect compared to similar notations, however, we identify abstraction hunger

as one of the main, inherent, difficulties in formal specification. Programming languages

involve similar levels of abstraction hunger. In most large-scale program design, some form of

design support is used. This normally includes a guideline or method for choosing abstractions

and a drawing format for representing their relationships. Often several drawing formats are

involved, giving different viewpoints of the relationships between abstractions (e.g. data

dependencies, invocation sequences, functional hierarchy). We will refer to this support as

'Program design tools', although in some cases the tool consists of nothing more than an

instruction on how to employ the method. For example, in the 1980's the UK Ministry of

Defence required suppliers of real-time computer systems to document their software designs

using the standard, JSP188 (Ministry of Defence, 1980). No, particular drawing tool was

mandated, but the standard defined a framework for decomposing the software first into

'facilities', then 'tasks' and finally into 'modules'. It also defined the types of diagrams that

would provide a visualisation of the relationships amongst these components (functional

decomposition, component decomposition, data flow, and control flow diagrams). The

'MASCOT' method for software design (Simpson, 1986) was developed to comply with

JSP188. Later in the 1980s structured design methods such as that proposed by Ward and

Mellor (1985) and 'Jackson Systems Development' (JSD) proposed by Jackson (1983) were

widely advocated. Software packages supporting these methods with drawing tools that

encompassed and enforced their rules were available. During the 1990's, object-oriented

programming became popular and introduced more kinds of relationships (and consequently

views). Tool support became more necessary and tool vendors were more successful than the

structured design ones. Three main variants of the object-oriented methods emerged and were

competing for popularity (and tool sales). Eventually, a need for unification of the object-

oriented method variants was recognised. This resulted in the 'Unified Modelling Language'

(UML), introduced in chapter 2. Unification benefited both the tool vendors and the companies

60

developing software. Each tool vendor had a larger customer base and the software design

companies no longer had to risk committing to a particular vendors method.

Program design tools assist in making abstractions by providing a visualisation of them to assist

the designer in assessing them. In particular this visualisation assists in assessing the coherence

and coupling of the abstractions by making clear their interactions. Formal methods tools enable

properties of a completed specification to be analysed and verified. In, comparison, program

tools provide very little real assistance in analysing the completed model. However it is their

support for the subjective assessment of the emerging model in the early stages of its creation

that makes them attractive for this exploratory design stage.

JPMreEnalbuure (ZkMocumitinweiit

Premature commitment is when decisions must be made (and committed to) without fully

knowing how those decisions will affect later work. The very nature of exploratory design

implies a lack of knowledge about how the later features of the design will turn out. The less

commitments need to be made the better. With respect to writing formal specifications this

dimension goes hand in hand with abstraction hunger. The main premature commitment that

needs to be made is to the abstractions used in the specification and we have already noted that

formal specification requires these at an early stage. We see the premature commitment to

abstractions as the main difficulty in writing formal specifications. Again, programming

involves similar levels of commitment to abstractions such as data structures and modularisation

before detailed coding, but program design tools have been developed which allow the designer

to visualise and explore different structures before making that commitment. This process

allows the designer to make better predictions about which structures are likely to be more

successful when the detailed code is added.

5 3 3 Viscosity

Viscosity is the amount of effort needed to make significant (i.e. structural) changes to a

completed or partially completed description. This is very important in exploratory design

because the nature of exploration makes it virtually certain that a significant amount of re-

arrangement will be needed as the true nature of the specification and the best way to express it

unfold. Formal specifications are highly viscous. The detailed mathematical notation requires a

significant investment and any structural re-arrangement is likely to require extensive and

careful revisions. However even more significant than this is the effort to revise the abstractions

that the notation was so hungry for and made us prematurely commit too. These abstractions

provide the very ontology of the specification and making revisions will entail revising both

61

structural elements and mathematical details. This is the third side of a vicious triangle of

dimensions: Abstraction hunger, premature commitment and viscosity. Together they account

for the main difficulties with writing formal specifications. Yet again programs are similarly

viscous. To alter data structures or modularisation in any significant way usually involves

significant effort in receding. Program design tools have been developed which reduce viscosity

by allowing the designer to change the structure with graphical drawing tools. The aim is to

obtain a successful architecture before committing to code, but if automatic code generators are

used the viscosity reduction is extended. Small alterations to a program can often be

accommodated fairly easily without substantial changes to the architecture, but as the number of

alterations increases the suitability of the architecture gradually decreases until a 're-factoring'

is needed in order to create a new architecture that better supports the changed functionality. At

this point the viscosity of program architecture is a substantial overhead to the required change.

If a program design tool with automatic code generation is used, effort is saved because the

infrastructure code associated with the structure is automatically produced. This is a desirable

route that we would like to adopt in formal specification. A second less desirable outcome often

occurs when such tools are not used. The structure is not changed because of the viscosity.

Instead re-factoring is avoided and the detail code is made to work within the unsuitable

structure.

53.4 Progressive Evaluation

During exploratory design it is important for the designer to be able to check and review work

performed so far at regular intervals. This is part of the feedback required for exploration. The B

method provides two mechanisms that can be used for progressive evaluation. Abstract

machines provide an encapsulation mechanism, allowing component parts to be independently

analysed, animated and proved within the B-Toolkit. This method imposes a certain ordering on

the evaluation since lower level components need to be checked prior to use in the evaluation of

higher-level components. The order may be counter to the natural order of exploration. It may

be beneficial to design a specification at an abstract level, evaluate this, and then add further

detail in a series of levels. This concept of refinement is central to the B method, where an

initial abstract specification is written and verified before further detail is added in the form of a

refinement that is verified to comply with the more abstract version. The specification can be

built up in levels until the specification becomes the implementation. This is especially obvious

in the B method but similar concepts apply in other formal notations (less so the component

encapsulation). We conclude that progressive evaluation is catered for quite well in formal

specification methods, however we also note that verification proofs are recognised to be

difficult. Since this is the primary means of evaluation, progressive evaluation may still be a

62

barrier to formal specification. Furthermore, most of the verification is aimed at verifying the

internal consistency of the specification; there is still the question of whether the specification is

the right one (validation). Animators test the specification from this point of view.

Unfortunately, writing successful animation tools is difficult. The animator in the B-Toolkit

becomes unusable if some kinds of set constructions are used in a specification. In program

design, the situation is very similar although the methods of verification (such as reviewing) are

usually not rigorous. Modularisation is achieved according to the design paradigm and program

design tools are used to achieve layered design stages. Testing by dynamic execution of the

code (the equivalent of animation) is used for both verification and validation. Although testing

is rarely exhaustive, if performed incrementally as the program is developed, it normally

provides good feedback.

5.3^ Closeness of Mapping

A close mapping between the elements of the notation and entities in the problem domain

makes exploratory design much easier because less effort is expended describing the problem

domain entities allowing more effort to go into describing their behaviour. The B notation is a

general modelling notation and therefore its elements are more abstract than the problem

domain. However, if abstractions have been chosen appropriately, a new set of elements is

created that have a close mapping with the problem domain. Therefore, considering that we

require a general-purpose (rather than domain-specific) notation, we do not view B as being

deficient with respect to closeness of mapping. However, from the point of view of discovering

why formal specification is difficult, the lack of closeness of mapping in our notations causes

difficulties unless we make abstractions, and, as noted above, finding appropriate abstractions is

difficult. The situation in program design is, once again, very similar. In some areas domain

specific languages have been developed (e.g. control algorithm languages used in avionics

control systems software) which improve closeness of mapping to such an extent that

programming becomes relatively easy and error free. Where more flexible, general-purpose

languages are needed a compromise solution is achieved by using the design paradigm of the

language to create an ontology from abstractions for each sub-domain. For example, in an

object-oriented paradigm, classes are used to model entities in the problem domain and methods

represent the behaviour of those entities in response to events. The class's methods are

equivalent to the constructs in a domain specific language.

63

53.6 Hard Mental Operations

Hard mental operations affect the designer's ability to express semantics in a specification. In

general, formal notations (mathematics) have a relatively high incidence of expressions that

most people find difficult to cope with and this dimension is probably responsible for the

majority of the prejudices against them. However, in most cases, with practice, these

expressions become more accessible, indicating that the dimension is a less significant obstacle

to creation for experienced users. The B notation, although a declarative formal notation based

on set theory and similar to Z, is expressed in a form that resembles program statements and

organisation. The post condition is expressed as a set of changes to the state variables accessible

to the operation. Like a program, but unlike Z, any variables not mentioned are assumed to be

unchanged and assignment is used to express the changes. There is still no sequential

composition (at the specification level) but this is made explicit and more accessible by a

'simultaneous' operator instead of relying on conjunction as Z does. We conclude that this

dimension may be a moderate obstacle to formal specification but B mitigates this by using a

form that helps the designer envisage what is being expressed. We think this mitigation will be

especially important for novices, although there is a danger that they will misinterpret the

notation as imperative.

53.7 Visibility and Juxtaposability

Visibility is the ability to view component parts of a description easily. Juxtaposability is the

ability to view several components side by side. For example, juxtaposability is important when

two components are being compared or when information is needed about a component when

another is being developed or altered. The B-Toolkit allows several abstract machines to be

displayed on screen in separate windows so that this can be achieved. Initially it might be

assumed that this is sufficient for a textual notation and that this dimension does not cause a

problem in writing formal specifications. However, Craigen, Gerhart and Ralston (1995)

reported that one of the tools that the commercial sector (as opposed to the regulatory-governed

sector, who are more interested in formal verification) desired most was specification navigation

tools such as browsers and cross-referencing tools. Visibility issues should not be

underestimated and in program design perhaps one of the biggest driving factors for using

graphical design tools is the visibility they provide through multiple views of the emerging

design. We therefore conclude that formal specification suffers quite badly with respect to

visibility through a lack of such tools compared with program design and integrated

development environments (IDEs).

64

53.8 Hidden Dependencies

A hidden dependency is a dependent relationship between two components where the

dependency is not clearly visible. Hidden dependencies tend to fall into two categories. In one-

way dependencies, the relationship is only visible from one of the end components of the

relationship. In local dependencies an overall relationship can only be deduced by traversing

many local relationships. Hidden dependencies affect exploratory design because they increase

viscosity (i.e. they are difficult to find when a major change is needed). For example, in Z,

invariants expressed in the state part are assumed to hold in operations. This means that some

state changes that take place when an operation occurs might not be stated explicitly in the

operation schema. Some users avoid this hidden dependency by stating the operation post

conditions even if they are redundant (see Chapter 3). B does not suffer from this hidden

dependency. In B, the invariant is a property that must be proven to hold throughout all

operation events, it is not assumed to hold and 'supplement' the operation semantics. Hence

operations must explicitly state all changes to state variables including those that are necessary

to maintain the invariant. While the negative effects of hidden dependencies have been

identified and addressed within the programming community, most general purpose

programming languages and practices still allow the programmer to create hidden dependencies

via global data accesses. Hence depending on discipline, conventions and culture within the

organisation, programs may be worse than formal specifications with respect to this dimension.

We conclude that formal notations, and B especially, score highly with respect to this

dimension.

SJL9 Error-Proneness

Error-Proneness is the tendency to make minor slips (rather than errors of design judgement) in

the notation. This would hamper exploratory design. There may be a tendency, especially in

novices, to make errors in the mathematical expressions. However, we do not view this as a

major contributor to problems with formal specification once some practice has been gained. It

would seem no worse, and perhaps easier, than writing programs. We note that another

dimension, progressive evaluation, is important in mitigating the effect of Error-Proneness. The

ability to detect and correct errors at a unit level is of great benefit in developing the overall

specification. This has similarities in programming where modules are individually compiled

and tested so that the problem of error detection and correction is manageable. The importance

of tools for progressive evaluation (and hence in mitigating error-proneness) has been discussed.

65

5.3.10 Consistency

A notation is consistent if similar semantics are expressed in similar forms. For example, if the

syntax for expressing conjunction were different in an invariant and an operation, this would be

inconsistent. Consistency is beneficial for exploratory design because it reduces the number of

syntactic rules that need to be remembered when writing a specification. We know of no

inconsistencies in B. Typically formal notations, by their mathematical nature are highly

consistent. We conclude that this dimension is not a reason for the difficulty in writing formal

specifications.

53.11 Diffuseness/Terseness

Diffuseness is the verbosity of a notation. Terseness is the opposite of diffuseness. Verbose

notations tend to slow thinking performance. Terseness is beneficial for exploratory design

because it reduces the time taken to express properties in the notation but can also increase

error-proneness. The negative effect of terseness on comprehension is not likely to be apparent

during the design stage since the design team will recall what they have expressed. B, like most

formal mathematical languages based on set theory, tends to be terse. We conclude that this

dimension is not a reason for the difficulty in writing formal specifications.

5.3.12 Role-Expressiveness

Role-expressiveness is the degree to which it is obvious what each component of the

specification or program is for. This is more relevant to comprehension than design. The

designer will generally appreciate the role of each element, being the one who selected it. We

conclude that this dimension has very little bearing on design. However, we note that the

genericness of the constructs and notation in B detracts from its role-expressiveness. It is not

apparent what role each machine, operation or data structure plays in the specification without

deducing the behaviour of each component. This can be overcome if secondary notation such as

comments and well-chosen names are provided.

53.13 Secondary Notation

Secondary notation (i.e. information conveyed outside of the formal syntax of the notation) can

convey extra information, such as the grouping and role of related statements. Secondary

information can be of two types. It may be 'redundant' if it is already present in the formal

syntax (e.g. indentation of code) or may be additional information provided by an 'escape from

formalism' (e.g. commenting). It is common practice to add secondary information to programs

66

in the form of comments and indentation. Similarly, it is seen as an essential part of writing

formal specifications in Z, to intersperse each schema with a paragraph of natural language to

describe its role and explain how the mathematics models the real problem. The natural

language description is so integral to a Z specification that the resulting document can be seen

as a description in two complimentary notations, rather than a formal specification with

supporting comments. This resembles the literate programming ideas of Knuth (1984).

Similarly to role-expressiveness and for the same reasons, secondary notations are more

important for comprehension than for design. We conclude that this dimension has only a minor

bearing on design, but note that B has facilities for adding secondary information. For example,

comments can be embedded, B statements can be indented or grouped and capitalisation

conventions may be employed to aid comprehension.

5.4 Summary

In summary we see the main problems in writing a formal specification as being the

requirement to commit to abstractions at an early stage and the difficulty of subsequently

altering these abstractions. Abstractions are needed to achieve a suitable closeness of mapping.

The B notation is typical in this respect. Progressive evaluation is difficult in formal

specification even though it is generally catered for. Improved animators would address this.

Visibility is not adequately addressed. Formal specification notations often involve hard mental

operations, although B is better than many in this respect. Formal notations tend to tackle

hidden dependencies, error-proneness and consistency fairly well, so that these dimensions are

not problematic and their terseness is, if anything a benefit during design. Role-expressiveness

and secondary notation are of little relevance during design.

Considering that program design suffers from similar problems leads us to the hypothesis that

the solutions adopted from program design would similarly benefit formal specification. A

graphical design, transitional, stage would provide better visibility of abstractions and how they

interact to compose the whole and this would be of value when assessing abstractions thereby

alleviating premature commitment. The tool would also lower viscosity by automatically

providing the infrastructure of a formal notation version. Fig. 5.1 represents the relationships

between the main problematic dimensions for formal specification and illustrates where a

graphical design tool would alleviate these problems.

67

provides

requires

alleviates

assists commitment decisions compounds notation for

reduces
provides

«Cognilive Oimension»

Visibility
«CogrifveDitretBbn»

Viscosity

«Ccgrifv e Di tTiensbi»

Abstraction

«Cogritv e DintEns b t »

Cos en ess of iVIapping

«Cognilive Di(nension»

Progressive evaluation

«CogrifveDimen5bi»

Premature Commitment

Fig.5.1 relationships between cognitive dimensions that affect formal specification and
how a design visualisation tool would alleviate these problems

68

Chapter 6

B-UML and U2B: Adapting the UML for

Formal Specification

In Chapter 5 we discussed specification and why we think formal specification is so difficult.

We analysed the process of writing a formal specification using the B notation as an example

and contrasted it with the process of writing a computer program, which is, itself, a kind of

formal specification. We established that the difficulties are very similar in computer

programming but that design tools such as the UML alleviate these difficulties. We believe that

graphical modelling tools similar to those used for program design would aid the process of

formal specification.

With this in mind we have used diagrammatic notations of the UML for formal specification.

To support this we have developed a prototype tool to convert adapted forms of UML class

diagrams and statecharts into specifications in the B language. The aim is to use some of the

features of UML diagrams to make the process of writing formal specifications easier, or at least

more approachable to average programmers. We view this work as a feasibility investigation

rather than a final method or product. The translation relies on precise expression of additional

behavioural constraints in the specification of class diagram components and in statecharts

attached to the classes. These constraints are described in an adapted form of the B 'abstract

machine notation'. The type of class diagrams that can be converted is restricted in order to

comply with constraints of the B-method without making the B unnatural. The resulting UML

model is a precise formal specification but in a form which is more friendly to average

programmers, especially if they use the same UML notation for their program design work. The

diagrammatic notation and tool support brings its benefits to the modelling process for formal

specification. The translation to textual B specification does not add anything to the

specification; it merely provides an alternative mathematical, textual form. In this textual form,

however, the benefits of the B method are obtained. The translation also demonstrates the

validity of the graphical forms and defines their semantics. We envisage benefits to B users

(especially novices) from being able to develop models in the UML diagrammatic form and we

see this as a possible way to overcome some of the psychological barriers that programmers

have against formal specification.

69

The majority of students on computer science courses express an aversion to formal

specification whereas they are quite comfortable using graphical program design notations such

as the UML^. We believe that this is largely an unwarranted fear and that formal specification,

given the same level of tool and language support should be no more difficult than

programming. Advantages of graphical design aids are more to do with the creation of models

than with conveying information. Graphical descriptions can be misleading to read, they often

convey different meanings to different readers and require experience to interpret secondary

features (Petre, 1995) but to the writer they provide a quick way to express their ideas and to

assist in visualizing prototype models that must otherwise be built entirely within the mind.

Textual representations, although often more accurate in conveying precise meanings, are much

more cumbersome for creating some aspects of these models. Graphical representations are

good for helping to visualize structures, composition and the relationships between elements.

Modelling large systems usually requires initially a structural design, which is then populated

with more precise semantic detail. It is this first modelling stage that benefits from program

design tools such as UML. Class diagrams allow the types of objects in the problem domain and

the relationships between them to be modelled, visualized, prototyped and altered quickly.

Attempts to add the semantic detail to these models may result in deficiencies in the model

being discovered and lead to refinements to the model. These changes can be made quickly

because the model is highly visible and easily alterable with the aid of the graphical design

tools. Readability and ambiguity is not an issue because it is the creators that are using the tools

for modelling. These features have made graphical design techniques such as UML popular for

developing programs. We contend that the process of writing formal specifications is in many

ways similar to programming and involves similar difficulties in abstraction, look-ahead and

viscosity. Therefore tools that programmers have evolved for writing programs, or ones very

similar to them, should bring similar benefits when writing formal specifications. In particular

the UML and associated tools attack viscosity in order to alleviate the difficulty of choosing and

committing to appropriate abstractions.

^ This view was based on the comments of several lecturers. In order to test it we asked computer science students at

The University of Southampton whether they liked using formal methods such as Z and B, and whether they liked

using graphical design notations such as UML. Of the 118 students that responded, 67% preferred using graphical

design notations and 15%, formal methods. The data from the poll and further results are shown in Appendix C.

70

6.2 Benefits of Translating UML to B

As will be seen, the translatable UML model with formal annotations is just as precise and

complete as the equivalent B specification. This is demonstrated by the fact that it can be

translated to B automatically. However, there are still benefits to translating into a B

specification:

• The textual B specification is a complete mathematical description that may be more

readable to experienced formal methods users.

9 The B specification can be manipulated mathematically, enabling reasoning and proof

to be performed.

• Tools are available for type analysis, proof assistance and animation.

e The translation demonstrates the semantics of the UML version.

A B specification can be animated with the B-Toolkit to explore the dynamic behaviour of the

modelled system. In UML terms this means that operations of an object can be invoked and the

B animator will check preconditions, and invariants and display the new state of the system in

terms of the object's attributes and relationships with other objects. Animation is useful,

especially to novices, because it provides feedback and debugging of the specification. It is also

useful for validation, i.e. demonstrating to users that the specification describes a system which

will be useful.

A class' dynamic behaviour can be proven to conform to its invariants. In UML terms this

means that the proof tools will provide assistance in proving that no sequence of invocations of

an object's operations can produce a resultant state (in terms of the class' attributes and

associations with other objects) that disobeys the invariant. A safety or business critical property

of the system could be specified and verified in this way.

UML models prepared for translation to B contain invariant and method specifications written

in B notation. The annotated UML diagram is given a precise semantics by the B generated by

the translator.

71

6.3 The U2B Translator

The U2B translator converts Rational Rose"* UML Class diagrams (Rational 2000A), including

attached statecharts, into the B notation. U2B is a script file that runs within Rational Rose and

converts the currently open model to B. It is written in the Rational Rose scripting language,

which is an extended version of the Summit BasicScript language (Rational 2000B, Rational

2000C). U2B is configured as a menu option in Rose. U2B uses the object-oriented libraries of

the Rose Extensibility Interface to extract information about the classes in the logical diagram of

the currently open model. The object model representation of the UML diagram means that

information is easily retrieved and the program structure can be based around the logical

information in the class rather than a particular textual format. U2B uses Microsoft Word^ to

generate the B Machine files. The current version of U2B is a prototype for exploring the

translation rules and the efficacy of the concept. The translator could be improved in efficiency

and robustness as outlined in Chapter 9.

6.4 Structure and Static Properties

The translation of Classes, attributes and operations is derived from proposals for converting

OMT to B (Meyer & Souquieres 1999). However, since our aims are primarily to assist in the

creation of a B specification rather than to generate a formal equivalent of a UML specification,

our translation simplifies that proposed by Meyer and Souquieres. This is achieved by

restricting the translation to a suitable subset of UML models.

A separate machine is created for each class and this contains a set of all possible instances of

the class and a variable that represents the subset of current instances of the class. Attributes and

(unidirectional) associations are translated into variables whose type is defined as a function

from the current instances to the attribute type (as defined in the Class diagram) or associated

class.

For example consider the following class diagram with classes A and B, where A has an attribute

X and there is a unidirectional association from A to B with role y and 0..1 multiplicity at the

target end. A second association, w, has a L.n multiplicity:

''Rational Rose is a trademark of the Rational Software Corporation

M̂icrosoft Word97 is a trademark of the Microsoft Corporation

72

+w

This will result in the following machine representing all instances of A:

MACHINEA
EXTENDS

B
SETS

ASET
VARIABLES

Ainstances,
X ,

w.
y

INVARIANT
Ainstances <: ASET &

X : Ainstances --> X &
w : Ainstances > POWl(Binstances) &
y : Ainstances +-> Binstances

INITIALISATION
Ainstances := {} |
X := {} I I

W : = { } I I

y := {}

Note that the multiplicity of the association w is handled as a function from instances of class A

to sets of instances of class B using the POW (powerset) operator. Multiplicities of associations

are discussed in more detail later. The machine is initialised with no instances and hence all

attribute and association functions are empty. A separate machine will be generated for class B.

In the example above, as well as in the examples that follow, we use the usual B conventions for

capitalisation of names. That is, type sets, including given or enumerated sets, are named in

upper case and variables are named in lower case. Hence attributes and association roles are

named in lower case. Class names are given in upper case since they are used to generate the

name for the given set of possible instances of the class. This results in the variable representing

the set of possible instances being part upper and part lower case, however this reflects its main

role as a type specifier.

73

6.4.1 Instance Creation

A create operation is automatically provided for each class machine so that new instances can

be created. This picks any instance that isn't already in use, adds it to the current instances set,

and adds a maplet to each of the attribute and association relations mapping the new instance to

the appropriate initial value. Note that, according to our definition (via translation) of class

diagrams, association means that the source class is able to invoke the methods of the target

class. The example below is similar to the first example but class A has an additional attribute,

z, that has an initial value, k.

z : X = k

B

Return < Acreate =
PRE

Ainstances /= ASET
THEN

ANY new
WHERE

new : ASET - Ainstances
THEN

Ainstances := Ainstances \/ {new } 1 1
ANY XX WHERE XX:X THEN

X(new) :=xx END | |
z(new):=k ||
ANY XX WHERE xx:POWl(Binstances) THEN

w(new):=xx END ||
ANY XX WHERE xx:Binstances THEN

y(new):=xx END ||
Return := new

END
END

Attribute x has no initial value specified and is therefore initialised non-deterministically to any

value of the type X. Attribute z is initialised to the specified initial value, k. Association w must

be initialised to a non empty set because its multiplicity may be greater than one but is definitely

greater than zero. (Currently, we have no means of specifying initial values for associations). It

is initialised non-deterministically to any non-empty subset of instances of B. The association, y,

is initialised non-deterministically to any instance of B. (Since its multiplicity is 0 or 1 it could

have been left undefined. This is discussed further below).

74

6.4.2 Association Multiplicities

In UML, multiplicity ranges constrain associations. The multiplicities are equivalent to the

usual mathematical categorisations of functions: partial, total, injective, surjective and their

combinations. Note that the multiplicity at the target end of the association (class B in the

example above) specifies the number of instances of B that instances of the source end (class A)

can map to and vice versa. This can be confusing when thinking in terms of functions because

the constraint is at the opposite end of the association to the set it is constraining. The

multiplicity of an association determines its modelling as shown in Table 6.1. We use functions

to sets of the target class instances (e.g. POW(B)) to avoid non-functions. Note that n is assumed

unless otherwise specified in the UML class diagram.

Multiplicity also affects the initialisation of an association that is performed when new instances

of the source class are created. Currently this has not been adequately addressed in the U2B

translation. For example, in the first case in Table 6.1 (0..n->0..1), the translator selects any

existing instance of class B. This is unnecessarily restrictive since creating a new instance of B

or leaving the association undefined are equally viable options. In the case (L . l ^ L . l) the

translator's action is invalid since the only allowable initialisation is to create a new instance of

B to map the association to. The (automatically generated) create operation supplies a new

instance as an output of the operation but this can only be assigned to a local variable or output

variable. Assignment of an operation output to a global variable would require the use of

sequential composition, which is not allowed in specifications in B. An alternative 'create'

operation that accepts a parameter identifying the new instance to be created is required.

Similarly, for the case 0..n 0..n, because the multiplicity at the target class may be greater

than 1, it should be possible to initialise the association to a set consisting of any combination of

existing and newly created instances of B. In the last case in Table 6.1 (l..l->l..n) the

translator's action is, again, invalid since the only valid action is to create a (non-empty) set of

new instances of B. To create and assign a set of new instances, an alternative create operation is

needed that accepts as a parameter the set of new instances.

75

Association Representations in B for Different Multiplicities I
Ai and Bi are the current instances sets of class A and B respectively (i.e. Ainstances and Binstances)
and f is a function representing the association (i.e. the role name of the association with respect to the
source class, A).
disjoint (f) is defined in B as:

!(al,a2).{ al:dom(f) & a2:dom(f) & al/=a2

1 UML association
multiplicity

Informal description of B
representation B invariant

1 0..n -> ()..! partial function to Bi Ai +-> Bi

1 0..n 1..1 total function to Bi Ai --> Bi

j 0..n 0..n total function to subsets of Bi .Ai --> POW(Bi)

1 0..n l..n
total function to non-empty subsets
o f B i

Ai — > POWl(Bi)

partial injection to Bi Ai >+> Bi

0..1 ^ 1..1 total injection to Bi Ai >-> Bi

1 0..1 0..n
total function to subsets of Bi
which don't intersect

Ai — > POW(Bi) &
disjoint(f)

1 0 .1 l..n
total function to non-empty subsets
of Bi which don't intersect

Ai --> POWl(Bi) &
disjoint(f)

j l . .n->0..1 partial surjection to Bi Ai +->> Bi

1 l..n -> 1..1 total surjection to Bi .Ai -->> Bi

1 l..n -> 0..n
total function to subsets of Bi
which cover Bi

Ai — > POW(Bi) &
union(ran(f))= Bi

l..n l..n
total function to non-empty subsets
of Bi which cover Bi

Ai --> POWl(Bi) &
union(ran(f))= Bi

1.1 * & . l partial bijection to Bi Ai >+» Bi

1..1 ^ 1..1 total bijection to Bi Ai >-» Bi

1..1 0..n
total function to subsets of Bi
which cover Bi without intersecting

Ai --> POW(Bi) &
union(ran(f))= Bi &
disjoint(f)

1..1 l..n
total function to non-empty subsets
of Bi which cover Bi without
intersecting

Ai --> POWl(Bi) &
union(ran(f))= Bi &
disjoint(f)

Table 6.1 - How associations are represented in B for each possible multiplicity constraint

In Fig. 6.1 a mapping represents an association between the classes A and B with multiplicity

0..n 0..1. The representation in B is a partial function. It is not a total function because the

element a4 doesn't map to anything in B (as indicated by the 0 at the right hand end of 0..n

0..1). It is not injective because b2 is mapped to by both a2 and a3 (as indicated by the n at the

left hand end of 0..n -> 0..1). It is not surjective because b3 is not mapped to by anything in A

(as indicated by the 0 at the left hand end of 0..n -> 0..1)

76

A B

Fig 6.1 Mapp ing representing a 0..n -> 0..1 association

6.4.3 Attribute Types

Attribute types may be any valid B expression that defines a set. This includes predefined types

(such as NAT, NATl, BOOL and STRING) functions, sequences, powersets, instances of

another class (referenced by the class name), and enumerated or deferred sets defined in the

class specification documentation window. (If translating to B-Core B, the appropriate B library

machines must be referenced via a SEES clause in the class's specification documentation

window). If the type involves another class (and there is no unidirectional path of associations

to that class) the machine for that class will be referenced in a USES clause so that its current

instances set can be read. If there is a path of unidirectional associations to the class it will be

extended (EXTENDS) by this machine in order to represent the association and this will

provide access to the instances set. (Note that only unidirectional associations are interpreted as

associations. Unspecified or bi-directional associations are ignored and can therefore be used to

indicate type dependencies diagrammatically if required). Any references to the class in type

definitions of variables or operation arguments will be changed to the current instances set for

that class.

For example, the following shows a class that has an attribute x of type, non-empty finite subset

of natural numbers. It has an attribute y that is of type, non-empty sequence of booleans. The

library machine BOO1_TYPE has been referenced via a SEES clause in the class's

documentation window (this would not be necessary for Atelier-B). It has an attribute z that has

type, total injection from Y to permutations of z. A 'SETS' clause has been added to the class'

documentation window that defines Y as a deferred set and z as an enumerated set.

77

A
FIN1(NAT)

MIy seql(BOOL)

l ^ z : Y >-> perm(Z)

l ^ w : POW(B)

B

Q Class Specification For A

Relations

General

Name: p

Type:

Components | Nested | Files

Detail I Operations | Attributes

Parent: Logical View

Class ~3
" 3 Stereotjipe: j

Export Control

I * Public C Protected Private C Implementation

Documentation:

SEES
E

SETS
BooLTYPE

V;

" 3

Z = {blue, yellow, green, red}

zl

OK Cancel App l i i Browse 1 Help

Note that 'Export Control' settings in the class specification are not used in the U2B translation.

The corresponding B machine for class A is shown below.

MACHINEA
SEES

Bool_TYPE
USES

B
SETS

ASET ;
Y ;
Z = {blue, yellow. green, red}

VARIABLES
Ainstances,
X ,

y ,
z.
w

INVARIANT
Ainstances <: ASET &

X : Ainstances --> FINl(NAT) &
y : Ainstances --> seql(BOOL) &
z : Ainstances --> Y >-> perm(Z) &
w : Ainstances --> POW(Binstances)

6.4.4 Global Definitions

It is often useful to define types as enumerated or deferred sets for use in many machines. We

use 'class utilities' for this. In UML, a class utility is a class that doesn't have any instances, only

static (class-wide) operations and attributes. The U2B translator creates a machine for each class

utility and copies any text in the specification documentation window of its class specification

into the machine. Hence definitions, sets and constants can be described in B clauses in the

78

documentation window. Any machines that reference things defined in this way must have an

association to the class utility. (This association will not be interpreted as an association to an

ordinary class). In the following example a class utility, DEFS, is used to define a set x that is

used as a type by 2 other classes.

A B

H i x ; X i i z : X

I Class Specification for DEFS JjJM

Relations

General

DEFS Name:

Dpe: jciassUtility

Components | Nested | Files

Detail | Operations | Attributes

Parent: Logical View

" 3
-3 Stereotype: |

•£xport Control

f* Public C Protected ^ Private C Implementation

Documentation:

SETS

zJ

OK Cancel Apply Browse • Help

The corresponding machine for class utility DEFS is:

MACHINEGLOBALS

The machines for classes A and B will reference DEFS via a 'SEES clause:

SEES
DEFS

6.4.5 Local Definitions

As we have seen in a previous example, such sets can also be defined locally to a class in the

class' specification documentation window, hi fact, any valid B clause can be added in this

window. For example, we use this method to specify invariants for the class. Each clause must

be headed by its B clause name in capitals and starting at the beginning of a line, the text that

follows that clause, up until the next clause title (if any) will be added to the appropriate clause

in the machine. Any text before the first clause is treated as comment and added as such at the

top of the machine

79

6.4.6 Singular Classes

Often, a B machine models a single generic instance of an entity, rather than an explicit set of

instances (in the same way that a class in UML leaves instance referencing implicit). The

resulting specification is simpler and clearer for not modelling instances. If the class multiplicity

(cardinality) is set to 1..1 in the UML class specification, the U2B translator creates a machine

with no instance modelling. Note that this can only be done at the top level of an association

hierarchy since at lower levels the instance set is used for referencing by the higher level. Below

is shown the machine representing class A from the first example above if the class' multiplicity

is set to 1..1. Note that there is no modelling of instances; the types of attributes are simpler

because it is no longer necessary to map from instances to the attribute type. There is no

instance create operation, attributes are initialised in the machine initialisation clause.

MACHINEA
EXTENDS

B
VARIABLES

X,
w.
y

INVARIANT
X X &
w POWl(Binstances) &
y Binstances

INITIALISATION
X : X 1 1
W : POWl(Binstances) ||
y = {}

END

6.4.7 Restrictions

The B method imposes some restrictions on the way machines can be composed. These

restrictions ensure compositionality of proof Their impact is that no write sharing is allowed at

machine level (i.e. a machine may only be included or extended by one other machine). Also,

the inclusion mechanism of B is hierarchical. Hence, if Ml includes M2, then M2 cannot, directly

or transitively, include Ml. We reflect these restrictions in the UML form of the specification,

which must therefore be tree like in terms of unidirectionally related classes. Non-navigable

(and bi-directional) associations are ignored but may be used to illustrate the use of another

class as a type (i.e. read access only). However, multiple, parallel associations between the same

pair of classes are permitted.

Although we would like to adhere to the UML class diagram rules as much as possible, since

our aim is to make B specification more approachable rather than to formalise the UML we are

80

relatively happy to impose restrictions on the diagrams that can be drawn. That is, we only

define translations for a subset of UML class diagrams. Other authors (Facon, Laleau &

Nguyen, 1996, Meyer & Souquieres, 1999, Meyer & Santen, 2000, Nagui-Raiss, 1994, Shore,

1996) have suggested ways of dealing with the translation of more general forms of class

diagrams. However, the structures of B machines that result from these more general

translations can be cumbersome. If the specification were written directly in B, it would be

highly unlikely that the resulting B would have this form. Since we also desire a usable B

specification we prefer to restrict the types of diagrams that can be drawn.

6.5 ID îMuiuclBehaviour

The dynamic behaviour modelled on a class diagram that is converted to B by U2B is embodied

in the behaviour specification of class operations and invariants. UML does not impose any

particular notation for these definitions; they could be described in natural language or using

UML's Object Constraint Language (OCL). However since we wish to end up with a B

specification it makes sense to use bits of B notation to specify these constraints. The

constraints are specified in a notation that is close to B notation but needs to observe a few

conventions in order for it to become valid B within the context of the machine produced by

U2B. When writing these bits of B the writer shouldn't need to consider how the translation

would represent the features (associations, attributes and operations) of the classes. Also we felt

we should follow the object-oriented conventions of implicit self-referencing and the use of the

dot notation for explicit instance references. This is illustrated in examples below.

6.5.1 Invariant

Unfortunately there is no dedicated text box for a class invariant in Rational Rose. One

suggestion is to put invariant constraints in a note attached to the class (Warmer & Kleppe,

1999), but notes are treated as an annotation on a particular view (diagram) in Rational Rose

and not part of the model. This makes them difficult to access from the translation program and

unreliable should we extend the conversion to look at other views. Therefore we include the

invariants as a clause in the documentation text box of the class' specification window.

Invariants are generally of two kinds, instance invariants (describing properties that hold

between the attributes and relationships within a single instance) and class invariants

(describing properties that hold between different instances). For instance invariants, in keeping

with the implicit self-reference style of UML, we chose to allow the explicit reference to 'this

instance' to be omitted. U2B will add the universal quantification over all instances of the class

automatically. For class invariants, the quantification over instances is an integral part of the

81

property and must be given explicitly. Hence, U2B will not need to add quantification and

instance references.

For example, if bx: NAT is an attribute of class B then the following invariant could be defined

in the documentation box for class B:

bx < 100 Sc

! (bl,b2) . ({bl:B & b2:B & bl/=b2)=> (bl.bx/=b2. bx)

This would be translated to:

!(thisB).(thisB:Binstances =>
bx(thisB) < 100 &
!(bl,b2).{(bl:Binstances & b2rBinstances & bl/=b2)

=> (bx(bl)/=bx(b2))
)

The translation has added a universal quantification, ! (t h i s B) , over all instances of B and this

is used in the first part of the invariant. It is not used in the second part where the invariant

already references instances of class B. (Note that currently the translator adds one universal

quantification for the entire invariant whether or not it is needed).

6.5.2 Operation Semantics

Operation preconditions are specified in a textual format attached to the operation within the

class. Details of operation behaviour are specified either in a textual format attached to the

operation, or in a statechart attached to the class. Operation behaviour may be specified

completely by textual annotation, completely by statechart transitions, or by a combination of

both composed as simultaneous specification.

Operation textual behaviour specification - In Rational Rose, 'Specifications' are provided for

operations (as well as many other elements) and these provide text boxes dedicated to writing

preconditions and semantics for the operation. (A postcondition text box is also provided.

Initially we used this for the operation body. Reviewers found this strange because operation

bodies in B do not look like postconditions predicates. In fact they are mathematically

equivalent, but since our motivation is to achieve a more user-friendly and intuitive form of

formal specification, we decided to use the semantics box because it suits the pseudo-

operational style of B).

Operations need to know which instance of the class they are to work on. This is implicit in the

class diagram. The translation adds a parameter thisCLASS of type CLASSinstances to each

82

operation. This is used as the instance parameter in each reference to an attribute or association

of the class.

A %
B A % g b x : NAT

• s e t _ y (i : NAT) : out
1

H[b_op(b i : NAT)

In the above example, s e t _ y might have the following precondition:

i > y.bx

and semantics

y.b_op(i) 1
IF y.bx <100
THEN

out : = FALSE
ELSE

out : = TRUE
END

which would be translated to

i > bx(y(thisA)

and

t>_op (y (thisA)) II
IF bx{y(thisA)) <100
THEN

out := FALSE
ELSE

out := TRUE
END

Operation Return Type - UML operation signatures contain a provision for specifying the

type for a value returned by the operation. Since B infers this from the body of the operation we

use it instead to name the identifiers that represent operation return values. The string entered in

the return type field for the operation will be used as the operation return signature in the B

machine representing the class. For example, the set_y operation in the above example has its

return field set to out. The operation signature for set_y in the B machine A will be:

83

out < — set_y {thisA,i)

Statechart Behavioural Specification - For classes that have a strong concept of state change,

a statechart representation of behaviour is appropriate. In UML a statechart can be attached to a

class to describe its behaviour. The underlying model representing the statechart is constructed

and viewed via a set of one or more state diagrams. A statechart consists of a set of states and a

set of transitions that represent the changes between states that are allowed. If a statechart is

attached to a class the U2B translator combines the behaviour it describes with any operation

semantics described in the operation specification semantics windows. Hence operation

behaviour can be defined either in the operation semantics window or in a statechart for the

class or in a combination of both.

The name of the statechart model is used to define a state variable. (Note that this is not the

name of a state diagram, several diagrams could be used to draw the statechart of a class). The

collection of states in the statechart is used to define an enumerated set that is used in the type

invariant of the state variable. The state variable is equivalent to an attribute of the class and

may be referenced elsewhere in the class and by other classes. State chart transitions define

which operation call causes the state variable to change from the source state to the target state,

i.e., an operation is only allowed when the state variable equals a state from which there is a

transition associated with that operation. To associate a transition with an operation, the

transition's name must be given the same name as the operation. Additional guard conditions

can be attached to a transition to further constrain when it can take place. All transitions cause

the implicit action of changing the state variable from the source state to the target state. (The

source and target state may be the same). Additional actions (defined in B) can also be attached

to transitions. The translator finds all transitions associated with an operation and compiles a

SELECT substitution of the following form:

SELECT statevar=sourcestatel & transitionl_guards
THEN statevar:=targetstatel || transitionl_actions
WHEN statevar=sourcestate2 & transition2_guards
THEN statevar:=targetstate2 || transition2_actions
etc
END I I

This is composed with the operation precondition and body (if any) from the textual

specification in the operation's precondition and semantics windows:

Let Popw be the precondition in the operation precondition window, Sosw be the operation

body from the operation semantics window and Gstc the SELECT substitution for this

84

operation composed from the statechart. Then the translator will produce the following

operation:

Popw
THEN

This can be represented as; Popw | (Gstc || Sosw)

Hence the pre condition, Popw, has precedence and, if false, the operation will abort. If an event

B style systems simulation (Abrial 2000) is desired, the specifier should take care not to define

preconditions that conflict with the transition guards. (For example, if an event only occurs if an

attribute, bx, is positive, and this is modelled by a guarded transition; adding the precondition

bx>0 would change the meaning of the model to represent a system where the event

can occur at any time but aborts if bx is not greater then 0).

Note that it would be entirely valid (although somewhat obtuse) to write a precondition within

the operation semantics window; Sosw = Posw | Slosw. However, preconditions take

precedence in simultaneous substitutions, so

(Gstc II (Posw I Slosw)) = Posw | (Gstc || Slosw)

Hence, writing the precondition in the operation semantics window is equivalent to writing it in

the precondition window. It has the same precedence and possible conflicts with the operation

guards derived from the statechart. We feel that writing the precondition in the operation

semantics window should be discouraged because the precedence may not be obvious to readers

of the specification.

If the precondition (Popw A POSW) is true, then the guard from Gstc takes precedence over the

simultaneous substitution, Sosw. This means that the textual operation body from the operation

semantics window, although defined separately from the statechart and not associated with any

particular state transition, is only enabled when at least one of the state transitions is enabled.

That is, if

Gst:c = (G1 => Tl) O O (Gn => Tn)

then,

(Gstc II Sosw) = (Gl => (T1 I I Sosw)) • ... • (Gn => (Tn || Sosw))

where • represents choice.

85

Actions should be specified on state transitions when the action is specific to that state

transition. Where the action is the same for all that operation's state transitions, it may be

specified in the operation semantics window in order to avoid repetition. The following example

illustrates how a statechart can be used to guard operations and define their actions. It also

shows how common actions can be defined in the operation semantics window and how a

precondition could upset the constraints imposed by the statechart.

inc / bx := bx+1
inc/bx;=bx+10

dec[bx=1]

zero non zero

dec[bx>1]

The statechart has 2 states, ze ro and non_zero. The implicit state variable, b _ s t a t e (the

name of the statechart) is treated like an attribute of type B_STATE = {zero, non_zero}. An

invariant, {b_s ta te=zero) <=> (bx=0), defines the correspondence between the value of

the attribute bx and the state z e r o . The invariant would be written in the class specification

window. When an instance is created its b _ s t a t e is initialised to ze ro because there is a

transition from an 'initial' state to zero.

MACHINEB
SETS

BSET;
B_STATE={zero,non_zero}

VARIABLES
Binstances,
b_state,
bx

INVARIANT
Binstances <: BSET &
b_state : Binstances --> B_ .STATE &
bx : Binstances --> NAT &
!(thisB).(thisB:Binstances = >
(b_state(thisB)=zero) <=>
\

(bx(thisB)=0)
)

INITIALISATION
Binstances := { } | |
b_state := {} ||
bx := {}

86

Bcreate =

/= BSET

Binstances

OPERATIONS
Return <--

PRE
Binstances

THEN
ANY new
WHERE

new : BSET
THEN

Binstances := Binstances \/ {new }
b_state(new) :=zero | |
ANY XX WHERE xx:NAT THEN

bx(new):=xx END ||
Return := new

END
END

Operation inc can occur in either state. Its action is different depending on the starting state and

so actions have been defined on the transitions and are combined with the state change action.

inc (thisB)
PRE

thisB Binstances
THEN

SELECT b_state(thisB)=zero
THEN b_state(thisB):=non_zero ||

bx(thisB):=bx(thisB)+10
WHEN b_state(thisB)=non_zero
THEN bx(thisB) := bx{thisB)+l
END

END

Operation dec has two guarded alternatives when in state non_zero but does not occur while

in state zero. Since the action is the same for both transitions it has been defined in the

operation's semantics window.

Operation Specification for dec

General
Semantics

Semantics:

|bx:=bx-1

Detail j

Postconditions

Preconditions

I Files

" 3

87

dec (thisB)
PRE

thisB : Binstances
THEN

SELECT b_state(thisB)=non_zero &
bx{thisB)=1

THEN b_state(thisB):=zero
WHEN b_state(thisB)=non_zero &

bx(thisB)>1
THEN skip
END 1 1
bx(thisB):=bx{thisB)-1

END
END

If we had put a precondition in the operation specification precondition window (or even in the

operation semantics window), the guard would no longer function since the precondition would

fail resulting in an abort when bx=0.

: • 3 3

Semantics Postconditions 1 Files 1
General j Detail Preconditions

preconditions;

bx>0 " 3

dec (thisB) =
PRE

thisB : Binstances &
bx(thisB)>0

THEN
SELECT b_state{thisB)=non_zero &

bx(thisB)=1
THEN b_state(thisB):=zero
WHEN b_state(thisB)=non_zero &

bx(thisB)>1
THEN skip
END I I
bx(thisB):=bx{thisB)-1

END

This could be avoided by repeating the precondition and decrement substitution in the action

field of each dec transition on the statechart in which case the guard would take precedence.

6.6 Summary

In this chapter we have described a method for attaching formal constraints to class diagrams

drawn in the Rational Rose UML tool. The class diagram becomes a graphical formal

specification notation, B-UML, which we hope will bring benefits to the process of creating a

formal specification. We define a translation to the B notation, which ensures a precise

definition of the semantics of B-UML. The translation also provides a pure textual equivalent in

a recognised formal notation that has good tool support.

89

Chapter 7

Examples of B-UML and U2B in Use

In this chapter we present three examples of B-UML models and show how they translate into

equivalent B specifications. The first example, a raffle game, demonstrates the features of the

class diagram translation. The second example, a railway station, introduces the use of

statecharts to specify operation behaviour within a class. The third example, part of a teletext

page selection system, is based on a real industrial project. It is a simplified version of a model

initially developed jointly with M. Satpathy at Reading University. This example illustrates

some techniques for coping with more complicated statecharts. Although the teletext example is

suitable for the purposes of illustrating the translation techniques, it is apparent that a statechart

description is not the most suitable means to describe the problem. This demonstrates the

importance of having the textual form in the operation semantics windows. The example also

illustrates some limitations of the current translation methods.

7.1 RafHe Game

This example describes a raffle game system. Newly created games must be initialised by

setting their set of prizes before tickets can be sold. When a ticket is sold a record of the player

that bought it is kept. A draw of the winning tickets can be attempted at any time but is only

achieved when enough tickets have been sold to win all the prizes. A ticket can be checked to

see if it is a winning ticket. A prize can be claimed by submitting a winning ticket and

identifying the player that bought it correctly.

Fig. 7.1 shows a class GAME that has typed and initialised attributes, parameterised operations

(some with return values), three association relationships with a class TICKET and an aggregate

relationship with another class, PRIZE. The class also uses another class, PLAYER, as a type.

The associations have role names Prizes, Tickets, winners and Claimed, which are used

to refer to the instances of the associated class involved in the association. The class GAME has

an operation setprizes that allows the associated prizes to be defined for a particular instance

of GAME. When this has been done, operation buy allows players to buy tickets for a game by

incrementing attribute Sales and non-deterministically selecting an unused instance of class

TICKET, calling its sell operation (which sets its Owner and Sold attributes) and adding it to

90

the association Tickets. Once a minimum number of tickets have been sold for a game,

operation draw allows the winning tickets for that game to be selected, one for each prize, and

added to the association winners. Players can check to see whether their ticket belongs to the

association winners. If it does, they can use operation claim to obtain one of the prizes, which

is selected non-deterministically. The ticket, for which a prize has been claimed, is added to the

association claimed. Attribute Owner, of class TICKET, records which player bought the

ticket so that this can be checked when a prize is claimed.

GAME

SISales : NAT = 0

Bsetprizes(pp: ROW (PRIZE))
B[buy(buyer: PLAYER): ticket
HdrawQ : success
Bcheck(t t ; TICKET): won
N#claim(tt: TICKET, pi : PLAYER): prize

Oyl 0 .1 o i l o . X ^

+Prizes/
0 . . n /

PRIZE

+Tick(+C/almed

0..n

TICKET

PLAYER

iName: STRING

SOwner ; PLAYER
aiSold : BOOL = FALSE

•se l l (buyer : PLAYER)

Qclass Specification for GAME

Relation* | Components | Nested } Files j MSVC

General 1 Detail I Operations | Attributes

i lame:

l y p e :

GAME Parent; Logical View

|Cla*$ 13
~3 Stereotype: j

Export Control _ _ _ _ _ _ —

(* Public n PrjQtected C Private r Implementation

Documentation:

A game can be initialised by setting its Prizes attribute.
thereafter, if t he game has not been drawn tickets can be
bought. If more tickets have been sold than the number of
prizes, then the game can be drawn. This selects a subset
of the bought tickets that has the same cardinality as the set
of Prizes. After the game has been drawn a particular ticket
can be c h e c k e d to see if it is in the set of winning tickets
and not yet claimed. If it is a claim can be made for that
ticket and a Prize will be returned. That prize is then no
longer available for claiming.
SEES
BooLTYPE
INVARIANT
card(Tickets) = Sales &
WimoM <: Ticket* &
Claimed <; Winners &
!(gg>hh). (gg:SAME & hh:GAME &

g g / = h h => gg.Tickets A hh.Tickets = {})

zi

OK Cancel | 6PP(P Browse • Help

Fig. 7.1 Class Diagram and Class SpeciRcation for Game

Alongside the class diagram is shown the Rational Rose specification for the class GAME.

Following the natural language description in the 'Documentation' box some class invariants are

given. These express the requirements that the number of sales is equal to the number of tickets

sold, winning tickets are a subset of the tickets sold and tickets for which a prize has been

claimed are a subset of the winning tickets. These invariants describe relationships between the

attributes and associations within a single instance of the class GAME. The last invariant ensures

that a ticket cannot be sold for two different games and describes a relationship between

instances of the class. This last invariant was entered before the translator supported

multiplicities on associations. It is now redundant since the association multiplicity 0..1 at the

source end expresses this constraint and U2B automatically generates the equivalent predicate

disjoint (Tickets). Note that the attribute Sales is also redundant and could be removed.

Apart from requiring extra operations to maintain it, redundant information requires invariants

91

to ensure it is kept consistent and these will generate additional proof obligations. (Both have

been left in the example purely for illustrative reasons.) The Atelier-B proof tools were used

(by a colleague) to prove that these invariants were preserved by the operations of the example.

The proofs uncovered a mistake in the original version of the buy operation that allowed a ticket

that already belonged to another game to be resold. In the buy operation described below, the

precondition and selection predicate of the ANY substitution contained tt rTlCKET-Tickets

(i.e. tt is a ticket that doesn't already belong to this game) instead of tt: TICKET-

UNION (gg) . (gg:GAME I gg.Tickets) (i.e. tt is a ticket that doesn't already belong to any

game).

Each operation of the class also has a Rose Specification window with appropriate tabs for the

definition of the operation. The operation preconditions and body shown in Fig. 7.2 are taken

from the precondition and semantics tabs of the specification for the buy operation in class

GAME. The ANY construct is a statement of the B language that selects a value for a variable

(here tt) satisfying some condition. In this case the condition is tt:TICKET-

UNION (gg) . {gg:GAME I gg.Tickets), i.e. select an unused ticket. The second part of this

expression is a generalised union of the association Tickets over all instances of the parent

class, GAME. This is expressed as the union of gg. Tickets for all gg: GAME. Also, note the call

to operation sell of the Tickets class. The operation is called for the instance tt of TICKET.

precondition
Prizes /= {} &
Winners = {} &
TICKET-UNION(gg) .(gg:GAME 1gg.Tickets) / = {}

semantics
AMY Ct WHERE tt: TICKET - UNION(gg).(gg :GAME1gg.Tickets)
THEN

Tickets := Tickets \/ {tt} |1
tt.sell(buyer) ||
Sales := Sales +1 11
ticket : = tt

END

Fig. 7.2 Precondition and Semantics for operation buy of class GAME

Below is shown the automatically produced B machine for the class GAME:

92

MACHINEGAME
/*" A game is initialised by setting its Prizes attribute. "*/

SEES
Bool_TYPE

EXTENDS
PRIZE,
TICKET

USES
PLAYER

SETS
GAMESET

VARIABLES
GAMEinstances,
Sales,
Prizes,
Tickets,
Winners,
Claimed

Machines of associated classes are extended so that their
operations are accessible to higher level classes. Classes
used as types only need USES access.

Current class instances is a variable which is a subset of
the possible instances, a given set, GAMESET.

Variables model the attributes and associations of the
class.

The types of variables used to model attributes and associations are defined in the
invariant as functions from the current instances to the attribute/association type.
Association multiplicities affect these functions and impose constraints on their ranges.
In this case the functions map to subsets of the target class that don't intersect

INVARIANT
GAMEinstances <; GAMESET &
Sales : GAMEinstances --> NAT &
Prizes : GAMEinstances — > POW{PRIZEinstances) &
disjoint(Prizes)
Tickets : GAMEinstances --> POW(TICKETinstances) &
disjoint(Tickets)
Winners : GAMEinstances — > POW{TICKETinstances) &
disjoint(Winners)
Claimed : GAMEinstances --> POW(TICKETinstances) &
disjoint(Claimed)
!(thisGame).(thisGame:GAMEinstances =>
card(Tickets(thisGame)) = Sales(thisGame) &

Winners(thisGame) <: Tickets(thisGame) &
Claimed(thisGame) <: Winners(thisGame) &
!(gg,hh). (gg:GAMEinstances & hh:GAMEinstances &

gg/=hh => Tickets(gg) /\ Tickets(hh) {}))

Invariants from the class documentation window are copied into the machine invariant and
have universal quantification over all current class instances added. Dot notation of explicit
instance references has been converted to parameterisation.

93

INITIALISATION
GAMEinstances
Sales := {} II

{}

{}

= {}

= {}

= {}

GAMEcreate

Prizes
Tickets
Winners
Claimed

OPERATIONS
Return <

PRE
GAMEinstances

THEN
ANY new
WHERE

new : GAMESET
THEN

GAMEinstances

All machine variables are initialised to empty
sets. An instance creation operation is
automatically provided. This initialises the
attribute values for the new instance according
to the initialisation values specified for the class
or non-deterministically where no initialisation
value is given.. The new instance is returned.

/= GAMESET

GAMEinstances

GAMEinstances \/ {new }
Sales(new):=0 ||
ANY XX WHERE XX: POW{PRIZEinstances-union (ran (Prizes)))
THEN Prizes(new):=xx END ||
ANY XX WHERE XX: POW {TICKETinstances-union (ran (Tickets)))
THEN Tickets(new):=xx END ||
ANY XX WHERE xx: POW (TICKETinstances-union {ran (Winners)))
THEN Winners(new):=xx END | j
ANY XX WHEFIE xx:POW(TICKETinstances-union(ran(Claiined)))
THEN Claimed(new):=xx END j |
Return := new

END
END

/*" Initialise the Prizes attribute with a set of Prizes "*/
setprizes (thisGame,pp) =
PRE

thisGame : GAMEinstances &
pp:POW(PRIZEinstances) &
Prizes(thisGame) = {}

THEN
Prizes(thisGame) := pp

END

/*" If the game has had its Prizes set and has not been drawn then "*/
/*" a ticket is sold to the buyer and added to Tickets and returned"*/
ticket <-- buy (thisGame,buyer) =

PRE
thisGame : GAMEinstances &
buyer:PLAYERinstances &
Prizes(thisGame) /= {} &
Winners{thisGame) = {} &
TICKETinstances-UNION(gg) .(gg:GAMEinstancesI Tickets(gg)) /= {}

THEN
ANY tt WHERE tt: TICKETinstances -

UNION(gg) . (ggzGAMEinstances [Tickets (gg))
THEN

Tickets(thisGame)
sell(tt,buyer) ||
Sales(thisGame) :;
ticket := tt

;= Tickets(thisGame) \/ {tt}

Sales(thisGame) +1

END
END

94

/*" If the game has been set up and not been drawn already and "*/
/*" enough tickets have been sold to provide a winner for each "*/
/*" prize then the game is drawn by selecting a subset of the "*/
/*" tickets sold as winners of the prizes and true is returned. "*/
/*" If the game has been set up and not been drawn already but "*/
/*" not enough tickets have been sold, false is returned "*/
success <-- draw (thisGame) =

PRE
thisGame ; GAMEinstances &
Prizes(thisGame) /= {} &
Winners(thisGame) = {}

THEN
IF card (Prizes (thisGame)) < card (Tickets (thisGame))
THEN

ANY WW WHERE
WW : POW (Tickets(thisGame)) &
card (ww) = card (Prizes(thisGame))

THEN
Winners(thisGame) ;= ww

END I I
success := TRUE

ELSE
success := FALSE

END
END

/*" If tt is in the set of winners but not in the set of claimed "*/
/*" true is returned, otherwise false is returned "*/
won <-- check (thisGame,tt) =

PRE
thisGame : GAMEinstances &
tt;TICKETinstances

THEN
IF tt : Winners(thisGame) - Claimed(thisGame)
THEN

ELSE

END
END

won := TRUE

won := FALSE

/*" If tt is in Winners but not in Claimed and pi is the owner of "*/
/*" tt one of the prizes in Prizes is returned and is removed from "*/
/*" Prizes and the ticket is added to claimed "*/
prize <-- claim (thisGame,tt,pi) =

PRE
thisGame : GAMEinstances &
tt:TICKETinstances &
pi:PLAYERinstances &
tt : Winners(thisGame) - Claimed(thisGame) & Owner(tt) = pi

THEN
ANY pp WHERE pp :Prizes(thisGame)
THEN

END
END

END

Claimed(thisGame) := Claimed(thisGame) \/ {tt}
Prizes(thisGame) := Prizes(thisGame) - {pp} ||
prize := pp

95

This example demonstrates how effective the semi-diagrammatic method is for creating formal

specifications. In producing the specification, we found the representation of its main elements

(such as GAME and TICKET) and the organisation of attributes, associations and operations,

helpful in visualising and deriving the model. Much of the infrastructure of the B machines was

generated automatically, which left us free to concentrate on adding the operation semantics and

invariants. The separation of the parts of textual specification by 'hanging' them onto

diagrammatic entities seemed to help psychologically in making them seem easier to consider.

The resulting specification closely resembles the familiar UML class diagram making it

approachable and comprehendible to software engineers. Using the textual B version of the

model enabled us to detect a mistake in it.

7.2 Railway Station

This example is a model of a railway station. It is an extension of the example in Lano (1996).

A station has a number of platforms and extra platforms can be added. Arriving trains are

allocated to an available platform if one exists or are queued until a platform becomes available

or an error occurs. In the latter case a queued train moves to one of the platforms whether or not

it is available and hence a crash may occur. Platforms may be opened and closed. A platform is

available when it is open and no train is occupying it. A crash occurs if a train arrives at a closed

or occupied platform. If a crash occurs at a platform it may be cleared and made available by

opening it. If a multiple crash occurs (i.e. more than 1 train occupies the platform) opening the

platform will leave it closed and a subsequent opening is required to make it available.

The class diagram in Fig. 7.3 consists of a class STATION that has a typed and initialised

attribute, parameterised operations (one with a return value), and an association with another

STATION

'queue : seq(TRAIN) = <>

PLATFORM

"train_arrives(tt: TRAIN): outcome
•train_departs(pp: PLATFORM)
•next_train(error: BOOL)
•add_platform(pp: PLATFORM)

+platforms
0..n

|®»tralns: POW(TRAIN) = {}:

'arrival(tt: TRAIN)
•departureO
•closeplatformO
•openplatformO

Fig. 7.3 Class Diagram for Example Station

class PLATFORM. The association has a role name platforms, which is used to refer to

instances of the associated class.

96

In Fig. 7.4 the Rational Rose specification window for the class PLATFORM is shown. Following

the natural language description in the documentation box some class invariants are given. The

first part of the invariant contains three instance invariants that implicitly apply to all platform

instances. The final part of the invariant is a class invariant that is explicitly quantified for all

pairs of platforms. Note that some of these invariants refer to a state variable, platfom_state,

and its possible values that have been obtained from a statechart attached to the class.

class Specification for STATION _?jxj

Relations

General

Components

I Detail I

Nested j Files | MSVC

Operations | Attributes

Name: jSTATION

Iipe:

Parent: Logical View

Class ~3
~zl Stereotiipe: j

•Export Control

(• Public C Protected C Private Implementation

documentation:

A station can have several platforms. When a train arrives it * 1
is sent to anv of the available platforms. If no platform is
available it is queued until a platform is freed by a train
departing
SEES
BooLTYPE
SETS
MSG={in_station,waiting}
INVARIANT
ran(queue)AUNION(pp).(pp:platformslpp. trains) = {} &
size(queue)=card(ran(queue))

zi

OK Cancel Apply Browse Help

E Class Specification for PLATFORM mm
Relations

General

Components | Nested j Files | MSVC

1 Detai l I Operations I Attributes

Name:

Type:

PLATFORM Parent: Logical View

Class 3

~3 Stereotype: ||

r Export Control

Public Protected Private Implementation

Documentation:

A platform is available when it has no trains and occupied 2]
when it has one train. If a second train arrives at a platform
or if a train arrives a t a closed platform, there is a crash. A
platform can be c losed if it has no trains at it and then
opened again. W h e n crashed opening the platform will clear
any trains from that platform and make it available if it had 1
train at it, or make it closed if it had more than 1 train.
SETS
TRAIN
INVARIANT
((platform_state=available or platform_state=closed) <=>

(trains={})) &
((platform_state=occupied] => (card[trains)=1)) &
((platform_state=crashed) => (trainsM})) &
l(p1,p2).(p1:PLATF0RM 8<p2:PLATFORM &

(p1/=p2) => (pi.trainsAp2.trains={}))

d

OK 1 Cancel Apply Browse Help

Fig. 7.4 Class specification windows for the classes S T A T I O N and P L A T F O R M

The multiplicity of the STATION class has been set to 1 by setting the multiplicity field in the

detail tab of the class's specification box (not shown). This will prevent the U2B translation

from modelling instances of the class.

Each operation of the class also has a Rose Specification window with appropriate tabs for the

definition of the operation. The operation precondition and body, shown in Fig. 7.5, are taken

from the precondition and semantics tabs of the specification for the train_arrives operation

in class STATION. The precondition states that tt must not belong to the range of queue and it

must not belong to the union of the set trains for all platforms associated with this station.

That is, the arriving train must not be waiting to get into the station or at a platform already. If

an empty platform exists at this station, the operation sends the train to any such empty platform

and returns the outcome in_station. Note that the arrival at a platform is handled by calling

97

the arrival operation of class PLATFORM, specifying the selected platform, pp, using the dot

prefix notation. If no platform is available the train is appended to the queue and an outcome,

waiting, is returned.

train_arrives precondition

tt/: ran(queue) &
tt/: UNION(pp) . (pp:platforms I pp.trains)

train_arrives semantics

IF #(qq).(qq:platforms & qq.platform_state=available)
THEN

ANY pp WHERE
pp:platforms &
pp .platforin_state=available

THEN
pp.arrival(tt) ||
outcome:=in_station

END
ELSE

queue:=queue^[tt] ||
outcome:=waiting

END

Fig. 7.5. Precondition and semantics for operation train_arrives of class Station

• initial

closeplatform

openplatform

openplatform[card(trains)>1] / trairis:={}
arrval

arrival

depaiture openplatform[card(tiewis)=1] / trains:={}

arrival

arrival

closed

craslied occupied

available

Fig. 7.6. State chart attached to class platform

98

Fig. 7.6 shows the statechart attached to class PLATFORM. The statechart describes the states that

a platform can be in and which transitions between states are possible. Each transition

corresponds to an operation of the machine and has its event named after an operation. For

example, when a platform is in the state available, two operations are allowed:

closeplatform and arrival. Execution of the arrival operation in this state changes the

control state to occupied, while executing the closeplatform operation changes the control

state to closed. The transitions associated with the operation openplatform have additional

guards which determine which of the transitions will be taken when openplatform occurs from

the state crashed. These transitions also take a different action from the openplatform

transition that occurs from the state closed.

Below is shown the B machine for the class PLATFORM.

MACHINE PLATFORM
/*" A platform is.. etc. "*/

SETS
PLATFORMSET;
PLATFORM_STATE= {available, closed, occupied, crashed} ;
TRAIN

PLATFORMSET is the Set of all possible instances of PLATFORM. PLATFORM_STATE has been

generated from the states on the attached statechart. TRAIN has been generated from the SETS

machine clause in the class specification documentation window.

VARIABLES
PLATFORMinstances,
platform_state,
trains

INVARIANT
PLATFORMinstances <: PLATFORMSET &
platform_state : PLATFORMinstances --> PLATFORM_STATE &
trains : PLATFORMinstances --> POW(TRAIN) &

PLATFORMinstances is a variable subset of PLATFORMSET, representing the current instances

of PLATFORM. A variable, platform_state represents the state that each

PLATFORMinstance is in. A variable, trains, represents the subset of TRAIN belonging to

each instance of PLATFORM.

99

!(thisPlatform).{thisPlatform:PLATFORMinstances =>
((platforin_state (thisPlatform) =available or
platforin_state (thisPlatform) =closed) <=>

(trains(thisPlatform)={})) &
((platform_state(thisPlatform)=occupied) <=>

(card{trains(thisPlatform))=1)) &
((platform_state(thisPlatform)=crashed) <=>

(trains(thisPlatform)/={})) &
! (pi, p2). (pi: PLATFORMinstances & p2 : PLATFORMinstances &

(pl/=p2) => (trains(pi)/Vtrains(p2) ={}))
)

Further invariants reflect the invariants specified in the specification documentation text box for

class PLATFORM. Universal quantification over PLATFORMinstances has been added and the

dot notation of explicit instance references has been converted into parameters.

INITIALISATION
PLATFORMinstances := {} ||
platform_state := {} || trains ;= {}

OPERATIONS
Return <-- PLATFORMcreate =
PRE PLATFORMinstances /= PLATFORMSET
THEN

ANY new
WHERE

new : PLATFORMSET - PLATFORMinstances
THEN

PLATFORMinstances := PLATFORMinstances \/ {new} ||
platform_state(new):=available ||
trains(new):={} ||
Return := new

END
END ;

Initially PLATFORMinstances is empty, and hence all variables are empty sets. A create

operation is provided which non-deterministically picks any unused instance from

PLATFORMSET and initialises state and attribute variables to the initial values given in the

statechart and UML class specification respectively

100

arrival (thisPlatform,tt) =
PRE

thisPlatform : PLATFORMinstances Sc

tt:TRAIN &
tt/:UNION(pp).(pp:PLATFORMinstances 1 trains(pp))

THEN
SELECT platform_state{thisPlatform) =available
THEN platform_state{thisPlatform) : =occupied
WHEN platform_state{thisPlatform) =closed
THEN platform_state{thisPlatform) : =crashed
WHEN platform_state{thisPlatform) =occupied
THEN platform_state{thisPlatform) : =crashed
WHEN platform_state{thisPlatform) ̂crashed
THEN skip
END 1 1
trains{thisPlatform):=trains{thisPlatform) \/ {tt}

END ;

openplatform {thisPlatform) =
PRE

thisPlatform : PLATFORMinstances
THEN

SELECT platform_state{thisPlatform) =closed
THEN platform_state{thisPlatform) :=available
WHEN platform_state{thisPlatform) =crashed &

card{trains{thisPlatform))=1
THEN platform_state(thisPlatform) :=available ||

trains(thisPlatform):={}
WHEN platform_state(thisPlatform) ̂crashed &

card(trains(thisPlatform))>1
THEN platform_state{thisPlatform) =closed 11

trains(thisPlatform):={}
END

END
END

Operations are defined for each operation of the class. (Only two operations are shown). A

parameter, thisPlatform, has been added to define the instance that the operation is to

operate on; this is implicit in the UML class diagram version. The type of this and any other

parameters are defined as operation preconditions. Other preconditions are derived from the

operation preconditions specification window of the class diagram. The operation body is

derived from the operation semantics specification window of the class diagram (see Fig. 7.5)

and from the statechart. The body of operation arrival consists of a 'SELECT' guard, which

defines the state transitions that take place when this operation (event) occurs, and, in parallel,

the action specified in the semantics window, which occurs for each state transition. In

operation openplatform additional conditions determine the final state when the initial state is

crashed leading to two different SELECT branches for the crashed state.

The B machine for the class STATION does not model instances (because the class multiplicity

has been set to one) and therefore variables representing attributes and associations are typed

101

directly rather than as functions. This machine EXTENDS the PLATFORM machine so that it can

call operations of PLATFORM if required.

MACHINE STATION
/*" A Station can have several platforms...etc. "*/

SEES
Bool_TYPE

EXTENDS
PLATFORM

SETS
MSG={in_station,waiting}

VARIABLES
queue,
platforms

INVARIANT
queue : seq(TRAIN) &
platforms : POW(PLATFORMinstances) &
ran(queue)/XUNION(pp) .(pp:platforms|trains(pp)) = { } &

size(queue)=card(ran(queue))
INITIALISATION

queue:=<> ||
platforms := {}

A variable, platforms, which is a subset of PLATFORMinstances, is used to model the

association with class PLATFORM. NO create operation is generated because instances are not

modelled. Instead, the variables are initialised in the INITIALISATION clause to the values

specified in the class diagram (in this case both are initialised to empty). The precondition and

semantics for the train_arrives operation of STATION shown in Fig. 7.5 is as follows:

outcome <-- train_arrives (tt) =
PRE

tt:TRAIN &
tt/: ran(queue) &
tt/: UNION(pp).{pp:platform|trains(pp))

THEN
IF #(qg).(gq:platforms &

platform_state(qg)=available)
THEN

ANY pp WHERE
pp:platforms &
platform_state(pp)^available

THEN
arrival(pp,tt) || outcome:=in_station

END
ELSE

queue: =queue'̂ [tt] || outcome: =waiting
END

END

102

This operation makes various references to components of the PLATFORM class, including

reading the state variable platform_state and calling its arrival operation. The object-

oriented dot notation of Fig. 7.5 has been changed to standard B notation.

This example demonstrates how statecharts can be used to specify the behaviour of a class in

terms of the state changes that occur when its operations are invoked. The example shows how

common information specified in the operation semantics is composed with the statechart

defined operation actions when the model is translated to B. One of the benefits of using

statecharts in this way is that an overall view of the behaviour of a class through its combined

operations is presented

7.3 Teletext

The following example is a simplified version of a teletext page selection system. Pages are

selected in a two tier hierarchical pair of columns where the selected group determines the

column of pages available for selection. Selection of items in each column is made by left, right,

up and down arrow keys. An ok key confirms the selected page. The example illustrates how

statecharts as well as semantics windows can be used flexibly with suitable machine definitions

to define class behaviour. The example also uncovers and illustrates some limitations with the

current translation, which will be the subject of future work.

The system was modelled as two classes (Fig. 7.7), OVERVIEWTABLE (of which there is only

one instance) and COLUMN of which there are two distinct instances each being associated with

the overview table in a different role. The COLUMN class models the scrolling behaviour of a

column so that all pages are accessible even if the display is too small to show the complete

column. (Note that in the following, to avoid confusion with up and down arrow keys and

cursor movements, when we refer to scrolling movements we refer to the movement of the

displayed portion rather than the column movement behind the display. Hence scroll down

means that the column moves up relative to the display). The class has operations. Up and Dn, to

respond to up and down commands. It also has a Reset operation to re-initialise the column

(for example the page column is reset every time a new group is selected in the group column).

The class also keeps track of the index of the item currently selected in that column. Note that

the column does not contain the actual sequence of pages of a column; these belong to the other

class. The OVERVIEWTABLE class has two attributes, GPS and G2P, that contain the current list

of groups and a mapping that gives the list of pages corresponding to each group. The type

PAGE is declared as a deferred set in the class specification. The attributes are initialised via the

operation init. The operation OK, corresponding to the OK key pressed event, returns the

103

currently selected page. The operation Display returns the information necessary to produce a

display corresponding to the current selection state. That is, the current list of groups and the

one that is currently selected, and the current list of pages and the one that is currently selected.

The remaining operations define responses to the cursor movement (arrow) keys and are defined

by a statechart described below.

The remaining symbol, SQUASH, is a parameterised class utility used to define a function

constant needed for manipulating sequences.

]TYPE

SQUASH

+page

HReset(newsize: NAT)
• U p ()
• D n ()

Qcsize: NAT = 0
HSelected : NAT = 1
BIScrdI: NAT= 0

COLUMN

Bilnit(gps : seq(PAGE), map : PAGE -> seq(PAGE))
BRightArrowO
HUpArrowO
HjDnArrowO
HfLeftArrowO
HOK{) : SelectedPage
B|Display(): gcol,gsel,pcol,psel

I|3GPS : seq{PAGE) = <>
a G 2 P ; PAGE > seq(PAGE) = {}

OVERVIEWTABLE

Fig. 7.7 Class Diagram for Example Teletext

The specification for class COLUMN (Fig. 7.8) contains some definitions that are used in the

statechart describing its behaviour. The definitions aid readability as well as making the amount

of text on the diagram more readable and mitigating repetition of expressions on different

transitions. We found the use of definitions in this way essential to make state diagrams more

manageable.

(Note that the translation of dot notations to parameterisation is currently not very robust. For

example the dots in number ranges can be mistaken for explicit instance references preventing

the addition of a 'thisClass' type instance reference. To avoid this we have put brackets around

the upper bound of the number range.)

The definitions introduce the concept of cursor position on the display. This is an essential

concept in the display of a column. However, Scroll and Selected (item in list) are even

more fundamental concepts within the aims of the system, and, as shown in Fig 7.9, cursor

position can be calculated from them. Since redundant information necessitates invariants to

ensure consistency, which generate additional proof obligations, it is undesirable to introduce

Cursor as an attribute. Instead we use a definition, which allows us to write 'Cursor' instead

of 'Selected-Scroll' to aid readability. Two types of response to a vertical movement are

defined, a cursor movement when the cursor changes position within the display area to select a

104

new item and a scrolling movement where the information on the display moves up or down

and the cursor position remains constant and thereby selects a new item. The final definition, a

boolean expression NrBottom, illustrates the use of definitions to aid readability in transition

guards.

E class Specification for COLUMN

Nested

General ! Detail

I Files

Operations j Attributes

I MSVC

Relations I Components

Name:

Ivpe :

COLUMN Parent: Logical View

I Class ~3
3 Steteotjjpe: |

Export Control

Public Protected C Private C Implementation

documentation:

CONSTANTS
dsize

PROPERTIES
dsize = 20

DEFINITIONS
Cursor — (Selected • Scroll);
Curllp — (Selected := Selected • 1) ;
CurDn == (Selected := Selected + 1) ;
ScrollUp — (Scroll := Scroll - 1 II Selected := Selected • 1) ;
ScrollDn == (Scroll := Scroll +1 || Selected := Selected + 1) ;
NrBottom == (Selected=csize-1)

INVARIANT
Selected: 1..(csize) &
Scroll: 0..(csize-dsize+1) !t
Cursor: 1 ..dsize &
((column_slate = Top) <=> (Selected-1)] &
((column_state = ScrollingUp) <=> (Cursor=2jj &
([column_stale = CursorMoving) <=> ((Cursor)2) &

(Cursor<dsize-1 & Selected<Gsize)))!
((column_state = ScrolllngDown) <=> (Cutsor=dsize-1 & Selected<csize)) &
((column_state = Bottom) <=> (Seleoted=csize))

zl

OK Cancel Apply Browse Help

Fig. 7.8 Class Specification for the COLUMN class

Column

•I
off-screen
part of column

1 Scroll = 6

Display 1
2
3
4

Cursor = 5
6
7
8

7 Display 1
2
3
4

Cursor = 5
6
7
8

8
Display 1

2
3
4

Cursor = 5
6
7
8

9

Display 1
2
3
4

Cursor = 5
6
7
8

10

Display 1
2
3
4

Cursor = 5
6
7
8

Selected = 11

Display 1
2
3
4

Cursor = 5
6
7
8

12

Display 1
2
3
4

Cursor = 5
6
7
8

13

Display 1
2
3
4

Cursor = 5
6
7
8 14

15
. . . .161

displayed
part of column

off-screen
part of column

Fig 7.9 Relationship between Selected, Scroll and Cursor

105

Up[Scro l l=0] / CurtJp Up[S c m ^ > 1 1 / S c m n U p

Dn / CurOn

Dn / CurDi

Up[Cursor=3 l y CurUp

D n p Cursor<dsize-2 & not(NrBottom)] / CurDn Up[Cura) r>3] / Cu lUp

CurUp
U p / C j rUp

Dn[Cursor=dsize-2 & n o t (N r B o t t ^)] / CurDn

Dn[NrBbt tom] / CurDn

Dn[NrBot tom] / Scro l lDn

/ S c r o l l D n

Scro l l ingUp

CursorMoving

T o p

Bo t tom Scro l l i ngDown

Fig. 7.10 State chart model of semantics of Up and Dn operations of class COLUMN

The statechart (Fig. 7.10) describes the behaviour of the operations Up and Dn. hiitially the

coluinn_state is Top. An invariant requires the equivalence of this state to the condition

where the Selected item is the top of the column. From this state the operation up is not

available. (For a less abstract model we might wish to allow the Up event to occur and specify

that nothing happens). A Dn event from Top will move the cursor down one place (i.e. increase

Selected item by one while leaving Scroll at zero) and change the state to ScrollingUp.

Since Scroll is zero a subsequent Up event would return the state straight back to Top. In

general, while Scroll is greater then zero, Up events in the ScrollingUp state result in the

amount of Scroll and the Selected item both decreasing by one (i.e. Cursor remains at

position 2 on the display). A Dn event from ScrollingUp moves the cursor down one place

and changes the state to CursorMoving. M this state further Dn events will keep moving the

cursor down until it is two places from the bottom of the display. At this point, if the selected

item is not the one before last in the column the cursor is moved down one position and the state

106

is changed to ScrollingDown. From ScrollingDown further Dn events will cause Scroll

and Selected to both be increased by one until Selected is one before the last item in the

column when, in addition, the state will change to Bottom. From the state Bottom, further Dn

events do not occur but an Up event will move the cursor up one position and change the state

straight to CursorMoving (we circumnavigate ScrollingDown because we have already

scrolled past the bottom of the column and ScrollingDown changes to Bottom via another

ScollDn action). CursorMoving can return straight to Bottom, with an increase cursor

action, if the cursor is two places from the bottom of the display and Selected is one before

the last item in the column.

hi some problems a clear concept of state is involved with a few discrete states that segregate

the system behaviour cleanly into different conditions, hi these cases a statechart is clearly an

appropriate means of description. In other cases this is not the case and a textual form of

description is clearer. The example here tends toward the latter. The example statechart provides

a visualisation of some of the conditions that the column can exist in, but the behaviour in

response to an event is often the same for several states. The statechart requires a substantial

investment of effort in order to understand it and to glean significant information from it. The

equivalent textual specifications for the two operations are shown below (Fig. 7.11) and can be

described as follows. Dn: Downward movements can occur while Selected has not reached the

last item in the column. The cursor is increased to the next item on the display unless it is one

before the bottom of the display in which case a scroll down is made instead. Up: Upward

movements can occur while Selected has not reached the first item in the column. The cursor is

decreased to the previous item on the display unless it is one below the top of the display and

the display has been scrolled (Scroll>0) in which case a scroll up is made instead.

Dn
SELECT Selected<csize THEN

IF Cursor = dsize-1 THEN
ScrollDn

ELSE
CurDn

END
END

up
SELECT Selected>l THEN

IF Cursor = 2 & Scroll>0 THEN
ScrollUp

ELSE
CurUp

END
END

Fig. 7.11 Equivalent textual semantics definitions for operations Up and Dn

107

The specification for the class OVERVIEW?ABLE (Fig. 7.12) contains two definitions used in the

statechart describing the class's behaviour. These definitions conditionally select the next, or

previous (respectively), group and reset the column of pages accordingly.

class SpeciFication for OVERVIEWTABLE

Relations

General

Name:

Tjipe:

Components j Nested j Files | MSVC

Detail I Operations | Attributes

OVERVIEWTABLE Parent: Logical View

Class 1 3

~ 3 stereotype: |

-Export Control — — — —

(* Public Protected Private Implementation

Documentation:

SEES
BooLTYPE

INCLUDES
SQUASH[PAGE)

SETS
PAGE

DEFINITIONS
SelPrevGp —

IF group.Selected > 1 THEN
group.Up II
page. R eset(size(G 2P(G PS (group. S elected-1))))

END;
SelNextGp ==

IF group.Selected < group.csize THEN
group. Dn II
page. R eset(size(G 2P(GPS (group. S elected+1))))

END

INVARIANT
ran(GPS)<:dom(G2P)

" 3

z j

OK Cancel Apply Browse Help

Fig. 7.12 Class Specification for OVERVIEWTABLE

The definitions illustrate a problem with the relationship structure between classes. When the

group is changed via the operation call group. Up (i.e. the Up operation, of class COLUMN, with

instance parameter group) the pages column has to change simultaneously via the operation

call page.Reset (i.e. the Reset operation of class COLUMN with instance parameter page).

Since, to ensure consistency, B does not allow the simultaneous invocation of two operations in

the same machine, the definitions are illegal. The problem is inherent in any association

between two classes. Systems can only be modelled when each event alters the state of at most

one instance of each associated class. The class relationship structure shown in the class

diagram is a special case where instances are known via different association roles. A solution

to the problem in this case would be to model the two instances as separate classes. Future work

on inheritance and on parameterisation of classes would mitigate the consequent repetition. In

the more general case where there is no suitable role distinction between the instances being

108

simultaneously altered, a possible solution might be to allow the illegal form in the UML

operation semantics (where an instance based reference is beneficial) but detect it during

translation and convert it to an allowable form (such as a single operation that accepts two

instance references).

The invariant ensures that the group's pages that are in the GPS attribute are contained in the

domain of the groups to pages mapping G2P.

The statechart (Fig. 7.13) describes the behaviour of the class in response to the four arrow

keys. Two states are used in the statechart which correspond to which column is the focus for up

and down arrows. Initially it is the Group state. LeftArrow and RightArrow events switch

between the Group and Page states. LeftArrow events only occur while in the Page state and

RightArrow events only occur while in the Group state. While in the Group state, UpArrow

and DownArrow events result in the actions defined by SelPrevGp and SelNextGp

respectively. While in the Page state they invoke the Up and Dn operations of the COLUMN class

upon the instance, page. Note that the guards in the Up and Dn operations of the COLUMN class

mean that UpArrow and DnArrow events only occur when a new selection can be made. It is

not necessary to re-specify these guards. Currently the state transition to final state (event, OK)

has no meaning and is ignored. (We anticipate that its meaning should be that the state model

will not respond to further events except perhaps an initialisation event to return it to its initial

state).

UpArrow / SelPrevGp UpArrow / page. Up

LeftArrow

RightArrow

DnArrow / SelNextGp
DnArrow / page.Dn

OK O K

Group Page

Fig. 7.13 State chart model for the OVERVIEWTABLE class

Finally, the operation semantics (from the operation specifications) for the OK and Display

operations are shown below (Fig. 7.14 and Fig. 7.15).

109

Fig. 7.14 Semantics for operation OK of OVERVIEWTABLE class

Display
gcol:= squash(group.Scroll..(group.Scroll+dsize) <| GPS)
gsel:= group.Selected ||
pcol:= squash(page.Scroll..(page.Scroll+dsize) <|
G2P(GPS(group.Selected))) ||
psel:= page.Selected

Fig. 7.15 Semantics for operation Display of OVERVIEWTABLE class

The operation Di sp lay uses a function, squash, which converts a function whose domain is a

set of integers into a sequence by replacing the smallest integer in the domain with one, the

second smallest with two, and so on. This function is not available in B. We defined it as a

constant in a separate parameterised machine represented by a parameterised class utility (Fig.

7.7). The parameter defines the type for the range of the sequence and enables us to define the

squash function generically, rather than specifically for the type, PAGE, that we currently

require it for. Parameterisation is currently not supported by the U2B translator. For now we

manually add (TYPE) to the machine header of SQUASH.mch. The content of SQUASH.mch is

copied from the class utility specification window shown in Fig. 7.16.

This example explores the practicalities of using statecharts to model the behaviour of classes

and how this information is composed with textually specified operation semantics. We have

found that displaying guard and action information in a statechart can become unwieldy but this

can be solved by using declarations in the class specification. We have found that statecharts are

not always the most appropriate specification medium. In some cases the textual operation

specifications are clearer and more succinct and in many cases a combination of the two forms

will be most appropriate. Currently we have assumed an event-based approach that is more

appropriate for abstract models of observed systems rather than specifications of

implementations.

The example shows that class relationships where more than one instance of an associated class

is modified simultaneously cannot be translated to valid B by the current translator. Future work

will include developing the translation rules to solve this problem.

110

Q Class SpecifiGation for SQUASH

Relations | Components j Nested j Files | MSVC)

General | Detail | Operations | At t r ibutes |

Parent: Log ica l V iew Name: jSQUASH

IJ'P®' I ParameterizedClassU

Stereotype: |j T |

Export Control

f * Public Protected C Private C Implementat ion

Documentation:

SEES

BooLTYPE

CONSTANTS

" 3

sortset,
squash

PROPERTIES
sorted: seq(NAT1)-->B00L &
(l(sq).(sq:dom(sorted) => (

(!(nn,mm).(nn:dom(sq) & mm:dom(sq) & nn>mm =>
sq(nn)>=sq(mm)) & sorted(sq)=TRUE) or
(#(nn,mm).(nn:dom(sq) & mm:dom(sq) &

nn>mm & sq(nn)<sq(mm)) & sor ted(sq)=FALSE)))) &

sortset: P0W(NAT1)->seq(NAT1) &
(!(ss).(ss:dom(sortset) =>

sortset(ss): perm(ss) & sorted(sortset(ss))=TRUE)) &

squash: (NAT1+->TYP£)+->seq(TYPEj &
(!(ff).(ff:dom(squash)=> (squash(ff)=(sortset(donn(ff));ff))))

zl

OK Cancel Apply Browse *• Help

Fig. 7.16 Class Specification for SQUASH

7.4 Summary

In tiiis ctiapter we have presented example specifications written in B-UML that illustrate its

use. We have illustrated how a formal specification model can be built up within the UML class

diagram and statechart notations using the specification windows that Rational Rose provides

for textual annotation. The examples have also demonstrated the importance of choosing

appropriate notations for different problems and hence the significance of B-UML's flexible

combination of statechart and operation semantics for specifying the behaviour of classes. The

examples have also raised some limitations of the current translator that will be addressed in

future work.

I l l

Chapter 8

Related Work

In this chapter we summarise related work that is similar to, or relevant to, the U2B translation.

In summarising each work we point out similarities and differences from U2B. Table 8.1 Lists

work we consider to be relevant.

Reference From To Tool
UML's official,formal notation

OCL Warmer and Kleppe Constraints in UML N/A n/a
Tool supported translations of UML

RoZ Dupuy and du Bousquet U M L CD Z y
IFAD IFAD U M L CD VDM++ y

Translations to B
Nagui-Raiss ERD B n

CEDRIC-
HE

Facon, Laleau and Nguyen U M L CD B n CEDRIC-
HE Facon, Laleau and Mammar U M L CD, SD and ID B P
LORLV
DEDALE

Meyer and Souquieres U M L C D . S D B n LORLV
DEDALE Meyer and Santen Class hierarchies B P
LORLV
DEDALE

DEDALE: Ledang and
Souquieres

UML CD and ID B P

iSTATE Sekerinski and Zurob SD B P
Translations to other notations

Kim and Carrington U M L CD O b j Z n
France Bruel Larrondo-Petrie
and Shroff

U M L CD Z n

DeLoach, Smith and Hartrum CD and SD 0-Slang n
Borger, Cavarra and
Riccobene

SD A S M n

Bolton and Davies UML AD Z & C S P n
SOFL Liu & Sun Integrated SM-OO-FM - n/a

(CD=Class Diagram, SD=Statechart Diagram, ID=Interaction Diagram, AD=Activity Diagram,
ERD=Entity Relationship Diagram, p = proposed)

Table 8.1 Related Work

() (3 L

The diagrammatic notations of the UML are not sufficient to express all the information needed

in a model. Typically, annotations of constraints, invariants and operation semantics are needed

to complete the information in a specification. The UML therefore contains within its definition,

a precise textual notation in which these annotations can be expressed. This notation is called

112

the Object Constraint Language (OCL) (Warmer & Kleppe 1998). OCL is a formal declarative

notation but uses few mathematical symbols. It was conceived with the aim that it should be

precise but approachable to engineers and programmers without experience in formal notations

or extensive mathematical training. It also follows an object-oriented style dot notation for

accessing attributes, associations and operations of an instance. While OCL may have achieved

its aim of being approachable to typical programmers, a number of problems have been raised

by Vaziri and Jackson (1999) including:

a) OCL has an implementation style in that it uses operations in constraints.

Operations can be undefined (e.g. if an infinite loop is caused) leading to constraints

being undefined.

b) OCL expressions are overly verbose due to frequent use of coercions

(oclIsKindOf). Classes are not treated as sets of objects and hence set operators

cannot be used.

c) OCL constraints can be difficult to read due to stacking (via navigation) of

quantifiers and collection operators, but not of logical operators.

d) OCL is not a stand-alone language. The notation is intended to apply constraints to

objects described in the other notations of the UML. Therefore it relies on the

diagrammatic specifications of entities to which its constraints can be applied.

We see d) as being the most significant problem with OCL since it is difficult to reason about

properties when a complete textual description is not available. Even if a complete mathematical

specification could be obtained, no logic system or tools are available to enable mathematical

manipulation. Although our main aim is to make formal specifications easier to write we do not

wish to sacrifice one of the important benefits of formal specification in order to achieve it. A

UML model with OCL constraints is not a complete formal specification and so does not meet

our aims even though, at first sight, it appears to provide a similar type of modelling notation.

8.2 RoZ

RoZ (Dupuy and du-Bousquet, 2000) translates Rational Rose class diagrams to Z

specifications. Constraints representing invariants on the attributes and associations of a class

can be expressed in Z Latex, in the class diagram specification documentation windows. This is

similar to our approach except that, in RoZ, constraints for a class may be in the specification

windows for the attributes or associations to which they relate. Upon translation to Z, these

constraints are collated as the predicate for a schema describing the attributes of an instance of

113

the class. Only class invariants (i.e. constraints between different instances of a class) are

written in the class specification window. These are used as the predicate in a schema describing

the set of instances of the class (the attribute schema being used as the element type for the set

of instances). A minor inconsistency is that a constraint between two attributes of a single

instance has to be placed in one of the attribute specifications (so that it is translated into the

attribute's schema). This is because any predicate in the class' specification will be translated

into the instance's schema. Type definitions for attributes have to be added in a separate text

file. Our approach was to define them in the specification of the class that used them or, if used

by several classes, in a class utility.

Basic operations to modify each attribute and to add and remove an instance of the class are

generated automatically. The behaviour of the generated operations is defined, using Z Latex

(Spivey 1990), in the post conditions tab of their specification window. (Currently we do not

generate basic operations automatically, however this could easily be added. We generate

operation signatures automatically where they are not present in a class but appear in a

statechart attached to that class).

The class operations are translated into Z schemas using the postcondition predicates. Attribute

modifying operations, which are recognised by a keyword 'intension operation' embedded in

their semantics field, are translated to a schema that changes the attribute schema. These

operations are promoted via a general-purpose promotion schema ('promotion operation').

Operations that change the set of instances of a class ('extension operation') are translated into

schemas that alter the instance's schema of the class. Non-basic operations can be added to the

class manually and these can have the above types as well as 'composed operation' for an

operation that is composed from other operations.

Note that for abstract classes (an abstract class in UML is one that doesn't have any instances),

the instances schema and operation promotions are not generated. This is similar to our singular

machine (representing a class that has multiplicity 1), which does not model instances explicitly.

However we have taken the approach that implicitly one instance exists, currently we do not

support abstract classes.

Finally, associations are represented by schemas that define the relationship between the classes

at their ends. The two roles are modelled by functions between the class type (attribute) schemas

with finite powerset used to represent multiplicities. Predicates reflect any constraints attached

to the association and a predicate defines the inverse relationship between the 2 roles. (It is not

clear to us how mutable associations could be accessed from operations).

The translation also handles inheritance, which we have not tackled as yet.

114

Precondition validation theorems can be automatically generated for proof with the Z-EVES

theorem prover. This is not needed for our translation to B because the B-Toolkit and Atelier-B

contain facilities to generate proof obligations.

The RoZ tool is similar to our approach in its implementation techniques, such as the use of

Rational Rose scripting language, embedding of invariant text and operation semantics in

specification windows. RoZ has some features, such as basic operation generation, that we have

not tackled but lacks the ability to use statecharts to define class semantics that U2B has. RoZ

does not constrain models to hierarchical structures in the way that U2B does. RoZ appears to

treat associations as a higher level (above the class layer) rather than a navigable (by operations)

link to an associated class' attributes and operations.

8.3 IFAD Rose-VDM++ Link

IFAD's VDM++ (IFAD 2000a) is an object-oriented extension of VDM. A tool is provided

which performs syntax and type checking and code generation. IFAD provide an extension to

the tool (IFAD 2000b) that enables conversion to and from Rational Rose class diagrams. The

tool is also capable of merging specifications that exist in both formats. Conversion is

straightforward because the formal notation (VDM++) is object-oriented and therefore, most

UML concepts have a corresponding feature in VDM++. In some cases, however, features of

VDM-I-+ are not represented directly in UML and a stereotype is used to make distinctions. For

example, class values of VDM++ are represented by a UML attribute with stereotype <value>.

The stereotype distinguishes it from an instance variable. Stereotypes are also used to explicitly

distinguish between operations and functions. Since UML does not provide a way to define a

result identifier, the special identifier RESULT is used in pre and post conditions

However, only class diagrams are converted and operation semantics are not handled in the

UML representation. Hence, the tool allows the designer to develop a model of a system in

terms of the classes, associations and operations but doesn't allow the operation behaviour to be

specified within the visual representation. It is necessary to convert to the VDM++ form in

order to add behaviour. Similarly, invariants are not represented in the UML form. A link to the

VDM++ file representation of each class is embedded as an 'external file' for each class. This

ensures that the behavioural information added to the VDM+4- version remains associated with

its UML class. The tool provides reverse engineering facilities to update the UML model for

alterations.

The method provides most of what is needed to provide a visual formal specification tool, but

does not treat the UML version as the primary specification medium. UML is seen as an

115

ancillary form and hence the relatively simple step of making it a complete specification has not

been taken.

8.4 Translating to B

Several groups have proposed translations from object-oriented notations to B. As well as those

discussed below, see earlier work by Nagui-Raiss (1994), Shore (1996) and Lano (1996). The

suggestions for modelling the static class data structure and relationships are similar to each

other and are the basis for our own approach. Our approach differs from these because our aim

is to provide a graphical notation for expressing B specifications rather than a formal

representation of a UML model. The main difficulties in mapping from classes into machines

are in representing mutable associations and operation behaviour. This is because of the

restrictions that B imposes in order to ensure compositionality of proof. Whereas most groups

attempt to accommodate all valid class structures as far as possible, we allow only those UML

models that have natural B representations. Hence we impose restrictions on our UML models

to only allow strictly hierarchical structures with uni-directional navigable associations.

We look at the major groups that have contributed in the past and are continuing ongoing

research in the area. The methods differ for modelling the dynamic behaviour represented in

UML operations. At the time of writing, none of these groups had a translation tool available for

evaluation, although all have proposed them or claim to be in the process of developing them.

8.4.1 Work at CEDRIC-IIE Laboratory

Researchers at the CEDRIC-IIE Laboratory have developed schemes for translating UML class

diagrams and dynamic behavioural diagrams into B specifications. Facon, Laleau & Nguyen

(1996) provide a comprehensive mapping of static class diagram features into B and structure

this into machines. Later work at CEDRIC has concentrated on Information systems and

database applications (Facon, Laleau, & Mammar, 1999) that are data-centric and generally

involve simple basic operations. These types of systems involve a high degree of data

relationships modelling and our approach of restricting the use of UML would probably be

intolerable. Conversely they require only simple operations and so our use of operation

behaviour modelling techniques would be largely redundant. The approach taken at CEDRIC

has been to automatically define basic operations of a class according to class properties such as

mutability and multiplicity. Class statecharts are then used to define how external (to the class)

events invoke the basic operations of the class according to state and guard conditions.

Collaboration diagrams define which class events occur in response to each external (to the

system) transaction.

116

External, use case, transactions with the system are described with functional sequence

diagrams (i.e. a sequence diagram involving users and the system). Each step on a functional

sequence diagram is a transaction message that is further described by a simplified collaboration

diagram. The collaboration diagram identifies a system level operation and its implementation

in terms of events at the class statecharts level. (Note that the sequence diagram itself is not

represented in B since the aim of the translation is to check the consistency of data

modifications rather than to model functional scenarios).

Thus, the hierarchy of system behaviour is represented in layers made up of different UML

modelling notations (collaboration, state and class) rather than by imposing hierarchy in the

class structure as we do. Functionality is still largely encapsulated within the class behaviour,

but the statechart describes an additional layer of class behaviour that is not represented by

operations shown in the class diagram. A third layer describes functionality that involves more

than one class. The CEDRIC approach is more suited to data intensive systems that fit a

collaborative class oriented description whereas our approach is more suited to process intensive

systems where the emphasis is on process/data encapsulation.

8.4.2 Work at LORIA - Universite Nancy

Meyer & Souquieres (1999) proposed a method for transforming OMT diagrams (on which

UML class diagrams are based) including operations and dynamic behaviour expressed in

statecharts. Similarly to the approach of CEDRIC-IIE, classes have very basic and simple

operations and the class' statechart provides additional functionality by defining the events and

state transitions under which these basic operations are used. Unlike CEDRIC-IIE's approach,

the statechart layer is represented as operations within the class machine. To avoid calling

operations within the same machine, basic operations are translated to definitions (B's

equivalent of macros) using a DEFINITIONS clause rather than as B operations. (For different

reasons, we have also used this technique to define actions that are repeated in several places on

a statechart). The resulting structure of B machines consists of a top-level system machine, a

machine for each class (including subclasses and aggregate components) and a machine for each

unfixed (or attributed) association. (Associations that have no attributes and are fixed for at least

one class are handled within the class for which they are unfixed). The disadvantage of this is

that functionality that might be naturally associated within a class is elevated to the top-level

machine in order to obtain write access over association links. This is probably more significant

in process control applications, where operation behaviour is more complex, than in information

systems where the accent is on data maintenance.

117

Meyer & Santen (2000) go on to describe how Atelier-B can be used to verify behavioural

conformance of inheritance (generalisation/specialisation) relationships in a UML class diagram

by using the translation proposed by Meyer and Souquieres. Currently we are concentrating on

issues involved in writing specifications, however, we recognise verification as an important

benefit of writing formal specifications. In the translations used for presenting this work, non-

basic operations are specified, not in the UML, but by post-translation additions to the B

machine. It would be a simple step to attach the operation bodies to the UML classes as we have

done but the example chosen illustrates that combinations of basic operations defined in a

statechart are not always suitable.

Further work by Ledang and Souquieres (2001) considers techniques for arranging non-basic

operations into separate machines to comply with the operation calling restrictions of B. The

calling sequence defined in a collaboration diagram (which must not contain any cyclic calling

dependencies) is analysed and allocated into layers so that,

a) there is no calling-called dependency amongst operations in the same layer;

b) basic operations (which do not call any other operation) are in the bottom layer;

c) system operations (which do not have a calling operation) are in the top layer;

d) operations above the bottom layer only call operations of the next lower layer.

A structure of B machines is constructed with one machine for each layer except at the bottom

layer where there is one machine for each class. However, an operation at one level may call

several operations at the next lower layer. Since this is not allowed in machines and machine

inclusion, implementations and imports are used to define the operations instead.

8.4.3 SwdkerhiskiaKMilZtuxd)- Statecharts to B

Sekerinski (1998) describes how reactive systems can be designed graphically using statecharts

(Harel, 1987) and how these designs can be converted to B for analysis and refinement to code.

A full treatment of statecharts is given, including hierarchies, concurrency and various

equivalents to shortcuts used in statecharts. An example of a conversion to B is then given.

The treatment differs from ours in that statecharts, although similar to UML state machines, are

treated as an independent form of design notation rather than as a subnotation to class diagrams.

On the other hand, hierarchical statecharts (i.e. states may have substates) and concurrency (i.e.

states may have groups of substates which may progress independently and concurrently) are

included. These are areas that we would like to tackle as future work and note that Rational

118

Rose state machines are able to express both features. In addition, communication between

concurrent sub-parts is available via internal events that are generated as part of the action of

one transition and are referenced as the event triggering another. This is translated to a B

definition in order to ensure the event is not available externally (this also avoids the fact that

operations cannot be called from within the same machine). Externally available events are

modelled as operations, as we have done. However, the approach is to model the

implementation of a reactive component with operations representing called procedures, rather

than an action system approach in an event B style with operations representing actions.

Therefore operations are treated as procedures with conditional substitutions rather than guarded

actions.

Sekerinski and Zurob (2001) go on to describe a meta-model of statecharts via a class diagram

with semantics formally defined in a B like notation. A normalisation of statecharts is formally

described (to add arrows that may be left out as shortcuts). This is the first stage in translation to

B. A flawed condition, when states are unreachable, is formally described. This condition is

translated to B but warnings are given. Finally, illegal statechart conditions (such as transitions

between two concurrent groups of sub-states), which prevent translation to B, are described.

8.5 Translations to Other Formal Notations

We have reported on OCL, two well developed tools that transform UML class diagrams into

formal notations (not B) and several groups that have proposed translations to B from various

combinations of the UML notations, class diagrams, statecharts and interaction diagrams.

Others have proposed translations of UML notations into formal notations other than B.

France, Bruel, Larondo-Petrie and Shroff (1997) propose a formalisation of UML class

diagrams in Z. This work focuses on formalising the UML, rather than using UML to assist in

formal specification, but in the process translation rules are developed and illustrated by

example. The use of Z, and hence the freedom from the proof composition restrictions of B,

enables more complex class diagram structures to be catered for. This is developed in France

(1999) where the equivalent Z specification is used to analyse the semantics of class diagram

structures. Again the focus is on defining a precise semantics for the UML. For example outline

proofs are given for various inferences that can be made about incomplete class diagrams

involving generalisation relationships.

Kim and Carrington (2000) give a formal definition of UML class diagrams using Object Z.

They also provide a formalised meta-model of Object Z and hence a formal mapping from class

119

diagrams to Object Z. The object-oriented facilities of ObjectZ make the translation more

natural and simpler than that for Z.

Borger, Cavarra and Riccobene (2000 and 2001) have used Abstract State Machines (ASMs)

(Gurevich, 1995) to rigorously define UML statecharts and activity diagrams. This work is

strong in its treatment of the UML's integration of statecharts with the object model, including

the concepts of events, actions and activities. This will be relevant to future work enhancing the

U2B translation tool to cover these features of UML statecharts and/or activity diagrams.

Bolton and Davies (2000) present a formal semantics for UML activity diagrams using a

combination of Z and CSP. They use Z to model the static objects within an (possibly

hierarchical) activity diagram and parallel CSP processes, one per state, to model its behaviour.

The synchronisation of the CSP processes, upon their respective alphabets, models the sequence

of events expressed by the transitions between states. Since a class diagram can also be

translated into Z, it could be verified for consistency with a requirements specification

expressed as an activity diagram by translating the activity diagram into Z/CSP.

DeLoach, Smith and Hartrum (2001) define a translation from UML class diagrams and

statecharts into 0-SLANG (DeLoach and Hartrum, 2000). O-SLANG is an object-oriented

extension of Slang; a theory based algebraic specification language. The translations were

verified by defining a formal semantics for the UML notations and mapping both O-SLANG

and UML to those semantics. A prototype system has been developed to demonstrate

automation of the transformation. The motivation is similar to ours, to facilitate the creation of

formal specifications via semi-formal diagrammatic stages. O-SLANG is not as widely used as

B but benefits from being specifically designed to describe object-oriented models making

translation from UML more natural and complete.

We have reported mostly on translations from existing object-oriented diagrammatic notations

to existing or new formal notations. For some researchers the primary aim is to formalise the

existing object-oriented notation so that the descriptions that use it are precisely understood. For

others the aim is to gain the benefits of an approachable diagrammatic modelling notation while

creating a specification in their favoured formal notation. Most researchers opt for the pragmatic

route and use an existing object-oriented diagrammatic notation. However, an alternative

approach is to propose a new integrated diagrammatic and formal notation, which can then be

designed with integration in mind. Liu and Sun (1995) have taken this approach with their

SOFL (Structured Object-Oriented Formal Language). Data Flow diagrams are used to

decompose the functional requirements into 'condition processes' in a stepwise hierarchical

manner. Each condition process on a data flow diagram receives and creates data items. Its

120

process is described formally via pre and post conditions and it can either be further

decomposed via another data flow diagram or can be declared to have an implementation

module. Implementation modules are described in an executable programming language that

may be structured using procedures and classes. The use of diagrammatic forms is limited to the

hierarchical refinement data flow diagrams. Although the diagrams are highly integrated with

the formal specification this appears to demote their significance to an outline structure viewer

with most reliance placed on the textual form. Object orientation is used only at the (textual)

programming level and not represented diagrammatically.

121

Chapter 9

Conclusions

This chapter summarises the research and how it meets the aims introduced in Chapter 1. Future

directions are proposed for development of the B-UML notation and the U2B translator that will

facilitate further exploration of the adaptation of UML notations for creating B specifications.

Further evaluations of the use of B-UML in realistic situations are proposed.

9.1 Meeting the Research Aims

The overall aim of the research was to explore the barriers to using formal specification

techniques. This has been achieved through the following steps.

The first stage of research was an exploratory survey of formal methods practitioners in order to

identify some of the main barriers to use. The survey was limited to a small set of experienced

users from a range of market sectors. The purpose of the survey was to identify the most

relevant issues for further investigation. The survey achieved a broad exploration of the use of

formal specifications in industry and identified several possible issues related to barriers to their

use. The survey's strength was that it derived empirical evidence from some of the market

leading organisations using formal techniques for commercial products. Despite a varied range

of market sectors, there was a reasonable degree of convergence in the interviewees' responses.

The survey was presented at the Empirical Assessment of Software Engineering (EASE2000)

conference (Snook and Harrison, 2000) and published in the journal, Information and Software

Technology (Snook and Harrison, 2001a). Glass reported the publication in his newsletter 'The

Software Practitioner' (Glass 2001). Glass recognises the contribution of such surveys, saying;

"Formal methods have been lauded by academics and ignored by practitioners for over 30 years.

Both camps are locked into their positions; almost no one on either side does the deeply-needed

evaluative research which could determine which camp is closer to the truth." In our reply, also

published in the same newsletter (Glass 2001) we suggested that: "Perhaps academia is not

prioritising the problems it researches to the greatest effect. Targeting the pragmatic problems

that practitioners initially face would lead to increased interest and funding from industry, and a

more widespread take up of formal specification would later lead to faster development of

subsequent research areas in formal methods. Our research" (in combining UML with B) "has

122

attempted to find ways of making formal specification easier or at least more accessible to

novices".

From the survey findings, two issues were selected for further investigation. The first was

comprehensibility, which was thought not to pose a significant problem for suitably trained

software engineers. The second was the difficulty in writing formal specifications, which was

thought to be problematic.

The second stage of research was a further investigation into whether the comprehension of a

formal specification could be a barrier to their use. Comprehension depends on the skills and

training of the reader and so could be a barrier in several different situations such as customer

approval of the specification, quality assurance processes as well as the software design and

maintenance processes. In this stage of the research we explored comprehensibility of formal

specifications by suitably trained software personnel and hence focused on the last of these

situations. We devised an experiment that tested the hypothesis that formal specifications are no

more difficult to understand than code. The experiment compared subjects understanding of a Z

specification with that of its implementation in Java. The experiment was presented at the

Empirical Assessment of Software Engineering (EASE2001) conference (Snook and Harrison,

2001b). Subject to the threats to validity discussed in Chapter 4, we found that comprehension is

not a barrier for software personnel.

The remainder of the research focused on the second issue selected from the survey. This was

that formal specifications are difficult to write. This was recognised as a significant barrier by

those interviewed. We looked at the similarities and differences between formal specification

and program design and applied the cognitive dimensions framework in order to assess a formal

specification notation with respect to exploratory design. We reasoned that the processes

involved in formal specification are similar in many respects to that of program design. Both

involve the selection of suitable abstractions in an exploratory design phase. We concluded that

one of the main differences is that, for program design, tools and notations have been developed

to assist in the difficult process of choosing a coherent set of useful abstractions. Experienced

formal specifiers may have developed sufficient experience and expertise to be able to form

these abstractions mentally, but novices find the task insurmountably difficult. This leads to a

strong deterrent to their increased uptake. In order to test this theory, we adapted two notations

from the UML (class diagrams and statecharts) so that they could be used to write semi-

diagrammatic formal specifications using one of the leading UML design tools. Rational Rose.

We call the adapted notation B-UML. Using the extensibility facilities within Rose, we

provided a translation facility, U2B, so that the verification benefits of an existing, tool

supported, formal notation (B) could be used to verify the B-UML specifications. The

123

translation also clarified the semantics of B-UML. The notation, B-UML, and its translator,

U2B, are not fully developed methods or tools. Rather, they are prototypes used to test the

feasibility of using such techniques and whether they are beneficial. We developed several

examples that illustrated the approach. One example is a simplified version of an industrial

application. B-UML and U2B were presented at the UML 2000 workshop 'Dynamic Behaviour

in UML Models: Semantic Questions' (Snook and Butler, 2000) and at the 13"* Annual

Workshop of the Psychology of Programming Interest Group (PPIG2001) (Snook and Butler,

2001). We felt that specifications were easier to write using B-UML than they would have been

in B. However, we recognise that this is a subjective opinion and further evaluation of the

technique is required before firm conclusions can be made. This is discussed below. The

examples also uncovered limitations in the current method and threw up possible routes for

extending and enhancing B-UML and U2B. Subject to further evaluation and development we

believe that the research carried out so far supports the hypothesis that modelling notations and

tools similar to those used in program design would benefit the difficult task of writing formal

specifications.

9.2 Lessons Learned Using B-UML

The use of the UML provides a visual modelling interface that assists in developing a structure

for the specification. This is likely to be most significant for programmers who are familiar with

using the UML for software design and unpractised at using formal notations. The automatic

generation of B machines from the diagrammatic components of a UML model and the isolation

of formal annotations for class invariants and operation semantics makes the formal

specification more manageable. It may be more difficult to gain a complete view of the

specification from the UML model but this is available via the translation to B. State charts can

be used successfully to model the behaviour of classes and this information can be combined

with textually specified operation semantics. We have found that displaying guard and action

information on a statechart can become unwieldy but this can be solved by using B definitions

in the class specification. We have found that statecharts are not always the most appropriate

specification medium. In some cases the textual operation specifications are clearer and more

succinct and in many cases a combination of the two forms will be most appropriate.

In order to achieve compositionality of proof, B contains restrictions on how machines can

access the operations of other machines and on simultaneous changes to machine variables. The

restrictions are as follows:

1. A machine cannot have more than one other machine that makes calls to its operations.

This restriction disallows data sharing involving multiple write access.

124

2. Operations cannot call other operations within the same machine

3. Each operation may make, at most, one call to the operations of each other machine.

4. Each variable of a machine can be altered by at most, one of the simultaneous

substitutions of an operation

Note, however, that a machine can promote an operation of a machine it includes. Promotion is

equivalent to defining an operation of the promoting machine that invokes the operation of the

included machine.

The first compositionality restriction of B means that the natural mapping of class operations

into machine operations (where the machine represents the class) does not permit associations to

be altered by both the associated classes. In addition, non-hierarchical class relationship

structures, which imply that a class is alterable by more than one other class, are not permitted.

Since we were primarily concerned with enhancing the process of creating B specifications,

restricting the use of UML class diagrams to match these B restrictions was acceptable. We

therefore restricted our models to hierarchical class structures using uni-directional associations.

Since these restrictions are equivalent to the restriction in B, we do not expect them to be any

more problematic than they are in writing B specifications. Our experiences so far have not

revealed any difficulties arising out of these restrictions.

The second compositionality restriction is not restrictive since it can always be avoided by

repeating the substitutions of the 'called' operation within the 'calling' operation in place of the

call. The disadvantages of repeating blocks of substitutions can be avoided by using B

definitions (a DEFINITIONS clause in the class specification window).

The third compositionality restriction is restrictive. Operation semantics where more than one

instance of an associated class is modified simultaneously cannot be translated to valid B by the

current version of the translator. This restriction is imposed partly by the object-based nature of

the modelling. In a normal B specification, the called operation could be designed to modify

multiple instances.

Similarly, the fourth compositionality restriction is restrictive if more than one instance of the

machine requires modification of the same attribute. Again it is the imposition of an object-

based notational style that leads to the problem. In normal B the function representing the

mapping from instances to attribute values could be altered using set operators so that all

instances were altered within the same substitution.

Future work will include developing the translation rules to solve these problems.

125

9.3 Further Work

In this section we outline further work that could be done. The section is split into the following

subsections: further evaluation of the effectiveness of B-UML in making formal specification

easier; further development of B-UML and U2B to solve current deficiencies and extend the

notation and techniques. Further work to improve confidence and generalizability of the

experimental conclusions concerning comprehensibility of formal specifications was suggested

in Chapter 4.

93.1 Evaluation of B-UML and U2B

Further evaluation should be carried out to assess the prime motivation for devising a semi-

graphical formal notation, that it will make formal specifications easier to create. We envisage

two possible forms of evaluation. Firstly, a formal experiment which would involve two groups

of subjects writing a formal specification of the same example but one using B-UML and the

other using B. Possible dependant variables which would indicate a difference in suitability of

the formal notations and supporting tools might be; correctness of the specification, usefulness

of the specification for various tasks and time taken to produce the specification. The subjective

qualitative opinions of the subjects would also be of interest.

The second form of evaluation we envisage is a case study using the techniques. Ideally, this

would involve an independent organisation using B-UML and U2B to write formal

specifications that are required for real applications. Some form of comparison with writing

formal specifications without the technique is desirable. It is unlikely that any organisation will

be able to replicate the case study, but it may be possible to develop part of the project with, and

part without, the techniques. The case study should involve some experienced and some novice

personnel to evaluate whether the techniques benefit one group more than the other. The

evaluation would rely mostly on qualitative feedback augmented by measurements comparing

the treated and untreated parts of the project.

Some progress towards such an evaluation (mostly on the use of statecharts) has been made by

Abo Akademi as part of a more general case study (Matisse, 2001). The initial feedback is

favourable but the work is at too early a stage to report in this thesis.

9.3.2 Development of B-UML and U2B

The translator could be improved in several areas. Firstly, we intend to improve the way it

works. Currently it is a prototype that works by building files representing B machines using the

126

text replacement facilities of Microsoft Word. The files are added to, and edited, as the program

progresses through the UML model. Although this method was quick to implement and

achieved the aim of providing a prototype for feasibility testing, the translation is not very

robust. For example, when new examples of operation interactions, association navigations and

attribute accesses are attempted, there is a high risk that the text replacement commands will not

have anticipated the new formats. Before embarking on further enhancements, we intend to re-

write the translation so that it builds an internal representation of the B machines before

generating the text files. This will also allow us to dispense with any reliance on Word, which

will improve the performance of the translation.

Once the method of translation has been strengthened, we intend to enhance it in various ways

to extend the facilities for modelling, provide additional checking of the model before and

during translation and to facilitate other model based activities such as refinement.

The UML provides options for different types of association relationships. These imply

differences in the creation and destruction of instances of the associated class. For example,

composition implies that instances should be created and destroyed with the parent class

instance. Currently the U2B translator does not do this automatically.

In Chapter 6 we discussed the implications of different association multiplicities for

initialisation of newly created instances. In some cases the current translator is unnecessarily

restrictive and in a few cases multiplicities are not supported because no valid initialisation is

possible with the current options available in the translator. We envisage the addition of (or

possibly the selection of appropriate) creation operations to enable new instances, and new sets

of instances, to be specified by, and hence used by, a higher-level class. For example the create

operation of a higher-level class. A, might use the new create operation of class B to initialise

an association with multiplicities 1..1->1..1 as follows:

PRE
Binstances /= BSET

THEN
ANY newB
WHERE

newB : BBBSET - BBBinstances
THEN

Bcreate (newB) ||
Aassoc(newA) := newB

END
END

The same class A would use the createSet operation of class B to initialise an association with

multiplicities 0..n-)0..n as follows:

127

ANY oldBs,newBs
WHERE

oldBs:POW{Binstances) &
newBs:POW(BSET-Binstances)

THEN
BcreateSet(newBs) ||
Aassoc(newA):=oldBs \/ newBs

END

Other features of UML class diagrams, such as generalisation, class parameterisation and

abstract classes have not been considered at present. It may be that these facilities are useful in

translation to corresponding B facilities.

Enhancements to tackle the problems described in the previous section concerning simultaneous

changes to instances of an associated class and simultaneous alteration of the same attribute for

multiple instances of the class are envisaged. It may be possible to allow apparently illegal B

forms in the B-UML specification that are converted into a legal B form at translation.

Enhancements to the use of state machines might include the use of hierarchically structured

state machines, the use of activity chart constructs such as parallel state transition paths, entry

and exit actions, event actions. Currently we assume an event style model of a system. It may be

useful to allow the choice between this and a non-event style model.

Other notations within the UML have not been considered. Component diagrams may be useful

as a higher-level structuring mechanism as used by Abo Akademi (Matisse, 2001). It may be

useful to use interaction diagrams, as do Ledang and Souquieres (2001) for preliminary

definition of inter-class operation calling structures.

Enhancements to the facilities provided by the translator may be useful. Currently the translator

performs no checking of the model prior to translation. The B-Toolkit or Atelier-B is relied

upon to check that the model represents valid B. The translator could provide, at least basic

syntax checking. For example, that the class association restrictions discussed earlier in this

chapter have been obeyed in the B-UML.

Many of these improvements are currently being worked on as part of the EU projects,

MATISSE (Snook and Wald6n, 2002) and PUSSEE (PUSSEE, 2002). Current work within the

PUSSEE project has concentrated on extending U2B to support the B refinement method (rather

than a single layer of specification). The translation described in this thesis concentrates on the

abstract machine specification level and de-composition of a large machine into smaller

machines based on the UML classes and their relationships. However, the primary

decomposition mechanism in B is not the inclusion of other machines but decomposition by

128

refinement. An abstract machine specification is refined until an implementation specification is

reached. The implementation imports other abstract machines that encapsulate its variables. A

hierarchy of modules is constructed, each component consisting of a refinement chain, from

abstract machine to implementation. Our current work extends U2B so that refinement and

implementation can be modelled in UML using realisation relationships between classes.

Furthermore, the UML model can be organised hierarchically using packages so that the B

project decomposition technique can be employed within a B-UML model. With this extended

version of the U2B translator we will investigate the use of B-UML on the industrial case

studies provided by the project partners and contrast it with conventional B project

developments.

9.4 Conclusion

In this thesis we have considered formal methods, a software engineering technique that has

become very popular as an area for academic research but has only been adopted 'sporadically'

within industry. It is clear from current literature that there are benefits to the quality of the

software produced using this technique, but there are also barriers that prevent widespread use.

Using empirical methods we have investigated what industry believes are the barriers to the use

of formal methods. We have investigated further, comprehension, an area that might have been

seen as a barrier, and decided (in agreement with those in industry) that it is not. We have then

investigated, by constructing an example, a possible technique to assist in the construction of

formal specifications, which was seen as a barrier by those in industry. We have found this to be

of benefit when writing formal specifications. Through our close work with industrial partners

we plan to continue to explore the barriers to formal specification and to investigate ways that

they can be overcome.

129

References

Abrial, J.R. (1996) The B Book - Assigning programs to meanings. Cambridge University Press.

Abrial, J.R. (2000) Guidelines to formal system studies. Draft Version 2.
httv://www.matisse.dera.sov.uk/formal euidelines vl.vdf

Austin, S and Parkin, G. (1993) Formal methods: a survey, National Physical Laboratory.

Bakan, D. (1960). The test of significance in psychological research. Psychological Bulletin,
Vol.66, No.6, pp.423-437.

Basili, R.V., Shull, F. and Lanubile, F. (1999) Building knowledge through families of
experiments. IEEE Transactions on Software Engineering, Vol.25, No.4, pp.456-473.

B-Core (1996) B-Toolkit User's Manual, Release 3.2. B-Core(UK) Ltd, Oxford (UK).

Behm, P., Benoit, P., Faivre, A. and Meynadier, J-M. (1999) MeteorrA successful application of
B in a large project. In J. Wing, J. Woodcock, J.Davies, editors. World Congress on
Formal Methods in the Development of Computing Systems, FM'99, Vol. I, Lecture
Notes in Computer Science, Vol.1708, Springer-Verlag, pp.369-387.

Bolton, C., Davies, J. (2000) Activity graphs and processes. In W.Grieskamp, T.Santen and
B.Stoddart, editors, Integrated Formal Methods, Second International Conference, IFM
2000. Lecture Notes in Computer Science, Vol.1945, Springer-Verlag, pp.77-96.

Borger, E., Cavarra, A. and Riccobene, E. (2000) An ASM semantics for UML activity
diagrams. In T.Rus, editor. Algebraic Methodology and Software Technology, 8th
International Conference, AMAST2000, Lecture Notes in Computer Science, Vol.1816,
Springer-Verlag, pp.293-308.

Borger, E., Cavarra, A. and Riccobene, E. (2001) Modeling the dynamics of UML state
machines. Abstract State Machines Theory and Applications. International Workshop,
ASM 2000, Lecture Notes in Computer Science, Vol.1912, Springer-Verlag, pp.223-41.

Bowen, J.P. and Hinchey, M.G. (1995) Seven more myths of formal methods. IEEE Software,
Vol.12, No.4.

Brereton, O.P., Budgen, D. and Hamilton, G. (1998) Hypertext the next maintenance mountain.
IEEE Computer, Vol.31, No. 12, pp.49-55.

Brooks, R.E. (1980) Studying programmer behaviour experimentally: the problems of proper
methodology. Communications of the ACM, Vol.23, No.4, pp.207-213.

Brookes, T.M., Fitzgerald, J.S., and Larsen, P.G. (1996) Formal and informal specifications of a
secure component: final results in a comparative study. In M-C. Gaudel and J.
Woodcock, editors. Industrial benefit and advances in formal methods, FME'96,
Lecture Notes in Computer Science, Vol.1051, Springer-Verlag, pp. 214-227.

130

http://www.matisse.dera.sov.uk/formal

Bruel, J. and France, R. (1998) Transforming UML models to formal specifications. Conference
on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA'98).
Workshop on Formalising UML. Why? How?

Buchi, M. & Back, R. (1999) Compositional symmetric sharing in B. In J. Wing, J. Woodcock,
J.Davies, editors. World Congress on Formal Methods in the Development of
Computing Systems, FM'99, Vol. 1, Lecture Notes in Computer Science, Vol.1708,
Springer-Verlag, pp.431-451.

Chow, S. (1996) Statistical significance. SagePublications.

ClearSy System Engineering, Aix-en-Provence (F). AtelierB User Manual V3.6.

Collins, B.P., Nichols, J.E. and Sorenson, I.H. (1991) Introducing Formal Methods: the CICS
Experience with Z. Mathematical Structures for Software Engineering, Clarendon Press
Oxford, pp. 153-164.

Courtney, R.E. and Gustafson, D.A. (1993) Shotgun correlations in software measures.
Software Engineering Journal, Vol.8, No.l, pp.5-13.

Craigen, D., Gerhart, S. and Ralston, E. (1995) Formal methods reality check: industrial usage.
IEEE Transactions on Software Engineering, Vo.l21, No.2, pp.90-98.

Curtis, B. (1980) Measurement and experimentation in software engineering. Proceedings of the
/EEE, Vb/. 68. No.9, pp. 1144-1157.

Daly, J. (1996) Replication and a multi-method approach to empirical software engineering
research. PhD Thesis, University of Strathclyde.

DeLoach, S., Hartrum, T. (2000) A theory-based representation for object-oriented domain
models. IEEE Transactions on Software Engineering, Vol.26, No.6, pp.500-517.

DeLoach, S., Smith, J. and Hartrum, T. (2001) Translating graphically-based object-oriented
specifications to formal specifications. To be published -
http://wwwl. coe. neu. edu/~jsmith/Publications/publications. html

Draper, J., Trehame, H., Boyce, T., Ormsby, B. (1996) Evaluating the B-method on an avionics
example. Data Systems in Aerospace (DASIA) Conference, pp.89-97 (European Space
Agency Publication Division WPP-116).

Dupuy, S. and du Bousquet, L. (2000) A multi formalism approach for the validation of UML
models. Formal Aspects of Computing, Vol.12, No.4, pp.228-230.

Efron, B. and Tibshirani, R.J. (1993). An introduction to the bootstrap. Chapman & Hall.

Facon, P., Laleau, R., and Nguyen, H.P. (1996) Mapping object diagrams into B specifications.
In Methods Integration Workshop, Electronic Workshops in Computing (eWiC),
Springer-Verlag.

Facon, P., Laleau, R., Nguyen, H.P. and Mammar, A. (1999) Combining UML with the B
formal method for the specification of database applications. Research report, CEDRIC
Laboratory, Paris.

Fenton, N. (1993) How effective are software engineering methods. Journal of Systems and
Software, Vol.22, pp. 141-146.

131

http://wwwl

Fenton, N. (1996) Software metrics: a rigorous approach. 2nd Edition, International Thomson
Computer Press.

Finney, K., Fenton, N. and Fedorec, A. (1999) The effects of structure on the comprehensibility
of formal specifications. lEE Proceedings of Software, Vol.146, No.4, pp. 193-202.

Finney, K., Rennolls, K. and Fedorec, A. (1998) Measuring the comprehensibility of Z
specifications. The Journal of Systems and Software, Vol.42, pp.3-15.

France, R.B. (1999) A problem oriented analysis of basic UML static requirements modeling
concepts. In proceedings of Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA'99). pp.57-69.

France, R.B., Bruel, J., Larrondo-Petrie, M. and Shroff, M. (1997) Exploring the semantics of
UML type structures with Z. In H.Bowman and J.Derrick, editors. Formal Methods for
Open Object-based Distributed Systems. Vol.2 IFIP TC6 WG6.1 Chapman & Hall, pp.
247-57.

Eraser, M.D., Kumar, K. and Vaishnavi, V.K. (1994) Strategies for incorporating formal
specifications in software development. Communications of the ACM, Vol.37, No. 10,
pp.74-86.

Fuchs, N.E. (1992) Specifications are (preferably) executable. Software Engineering Journal,
VbAZ, mJpp.165-179.

Glass, R. (1994) The software research crisis. IEEE Software, Vol.11, No.6, pp.42-47.

Glass, R. (2001) Formal methods: a largely positive study, but with some interesting questions.
In The Software Practitioner, Vol.11, No.5 September 2001.

Gravel, A. and Henderson, P. (1996) Executing formal specifications need not be harmful. lEE
Software Engineering Journal, Vol.11, No.2, pp. 104-110.

Green, T.R.G. (1989) Cognitive dimensions of notations. In A.Sutcliffe and L. Macaulay,
editors, People and Computers, Vol.5, Cambridge University Press.

Green, T.R.G. and Blackwell, A.F. (1996). Ironies of abstraction. In Proceedings 3rd
International Conference on Thinking. British Psychological Society.

Green, T.R.G. and Blackwell, A. (1998) Cognitive dimensions of information artefacts: a
tutorial http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

Gurevich, Y. (1995) Evolving algebras 1993: lipari guide. In E.Borger, editor. Specification and
Validation methods, pp.9-36. Oxford University Press.

Hall, A. (1990) Seven myths of formal methods. IEEE Software Vol.9, pp.11-19.

Hall, A. (1999) What does industry need from formal specification techniques. 2nd IEEE
Workshop on Industrial Strength Formal Specification Techniques. IEEE Computing
Society, pp.2-7.

Harel, D (1987) Statecharts: a visual formalism for complex systems. Science of Computer
Programming, Vol.8, No.3, pp.231-274.

Hayes, I.J. and Jones, C.B. (1989) Specifications are not (necessarily) executable. Software
Engineering Journal, Vol.4, No.6, pp.320-338.

132

http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf

Hoare, C.A.R. (1985) Communicating sequential processes. Prentice-Hall.

Houston, I. and King, S. (1991) CICS Project Report: Experiences and results from the use of Z
in IBM. In Proceedings of The 4''' International Symposium ofVDM Europe. Vol.1,
Springer-Verlag, pp.588-596.

IFAD (2000a) VDMTooIs: The IFAD VDM++ language http://www.ifad.dk

IFAD (2000b) VDMTooIs: The Rose-VDM++ link http://www.ifad.dk

Jackson, D. (2000) Alloy: A lightweight object modelling notation. Technical Report 797, MIT
Lab for Computer Science.

Jackson, M.A. (1983) System Development, Prentice Hall.

Jia, X. (1998) ZTC: A Type Checker for Z Notation User's Guide, Version 2.03, Division of
Software Engineering, School of Computer Science, Telecommunication and
Information Systems, DePaul University.

Jones, C.B. (1986) Systematic software development using VDM. Prentice-Hall.

Kim, S. and Carrington, D. (2000) A formal mapping between UML models and Object-Z
specifications. In J.Bowen, S.Dunne, A.Galloway, S.King, editors, ZB 2000: Formal
Specification and Development in Z and B. First International Conference ofB and Z
Users, Lecture Notes in Computer Science, Vol.1878, Springer-Verlag, pp.2-21.

Kitchenham, B.A. (1996) Evaluating software engineering methods and tool - part 1 & 2. ACM
SIGSOFTSoftware Engineering Notes, Vol. 21, No.} and No.2.

Kitchenham, B.A., Linkman, S.G. and Law, D.T. (1994) Critical review of quantitative
assessment. Software Engineering Journal, Vol.9, No.3, pp.43-53.

Kitchenham, B.A., Pfleeger, S.L. and Fenton, N. (1995) Towards a framework for software
measurement validation. IEEE Transactions on Software Engineering, Vol. 21, No. 12,
pp.929-944.

Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D C., El-Emam, K. and
Rosenborg, J. (2001) Preliminary guidelines for empirical research in software
gMgfMgenng. Technical Report, NRC/ERB-1082, January 2001, NRC 44158.

Knuth, D. (1984) Literate Programming, The Computer Journal, Vol.27, No.2, pp.97-111.

Lano, K. (1996) The B language and method: a guide to practical formal development, FACIT
Springer-Verlag.

Ledang, H. and Souquieres, J. (2001) Integrating UML and B specification techniques. In
proceedings of Informatik2001 Workshop on Integrating Diagrammatic and Formal
SpecificationTechniques.

Liu, S. & Sun, Y. (1995) Structured methodology 4- object-oriented methodology + formal
methods: methodology of SOFL . In Proceedings of First IEEE International
Conference on Engineering of Complex Computer Systems. ICECCS'95.

Matisse (2001) Methodology of integration of formal methods within the healthcare case study.
Deliverable D7 within the Matisse project, IST-1999-11435, October 2001.

133

http://www.ifad.dk
http://www.ifad.dk

Meyer, E. & Souquieres, J. (1999) A systematic approach to transform OMT diagrams to a B
specification. In J. Wing, J. Woodcock, J.Davies, editors. World Congress on Formal
Methods in the Development of Computing Systems, FM'99, Vol. I, Lecture Notes in
Computer Science, Vol.1708, Springer-Verlag, pp.875-895.

Meyer, E. & San ten, T. (2000) Behavioural conformance verification in an integrated approach
using UML and B. In W.Grieskamp, T.Santen, B.Stoddart, editors, IFM'2000: 2nd
International Conference on Integrated Formal Methods, Lecture Notes in Computer
Science, Vol.1945, Springer-Verlag, pp.358-379.

Milner, R. (1985) Control flow and data flow: concepts of distributed programming. In
proceedings of NATO Advanced Study Institute International Summer School. Springer-
Verlag, pp.205-228.

Ministry of Defence (1980) Joint Services Publication 188: Requirements for the
documentation of software in military operational real-time computer systems, Ed. 3.

Ministry of Defence (1997) Def Stan 00-55: Requirements for safety related software in defence
equipment. Issue 2. http://www.dstan.mod.uk/data/00/055/02000200.pdf

Nagui-Raiss, N. (1994) A formal software specification tool using the entity-relationship model.
In P.Loucopoulos, editor, 13"^ International Conference on the Entity-Relationship
Approach, Lecture Notes in Computer Science, Vol.881, Springer-Verlag, pp.315-332.

Nuseibeh, B. and Finkelstein, A. (1992) Viewpoints: a vehicle for method and tool integration.
In G.Forte, N.H.Madhavji and H.A.Mueller, editors. Proceedings of the Fifth
International Workshop on Computer-Aided Software Engineering, CASE 92, IEEE
Computer Press, pp.50-60.

Paige, R. (1997) Formal method integration via heterogeneous notations. Thesis for Doctor of
Philosophy, University of Toronto.

Pannell, D. and Pannell, P. (1999) Introduction to social surveying: pitfalls, potential problems
and preferred practices. SEA Working Paper 99/04,
http://www. general, uwa. edu. au/u/dpannell/seameth3. htm

Pamas, D.L. (1997) Precise description and specification of software. In V.Stavridou, ed.
Mathematics of Dependable Systems II, Clarendon Press, pp. 1-14.

Petre, M. (1995) Why looking isn't always seeing. Communications of the ACM, Vol.38, No.6,
pp.33-44.

Pfleeger, S.L. and Hatton, L. (1997) Investigating the influence of formal methods. IEEE
Computer, Vol.30, No.2, pp.33-43.

Pfleeger, S.L., Jeffery, R., Curtis, B. and Kitchenham, B. (1997) Status report on software
measurement. IEEE Software, Vol.14, No.2, pp.33-43.

Phillips, M. (1989) CICS/ESA 3.1 Experiences. In proceedings of The 4''' Annual Z User
Meeting. Springer-Verlag Workshops in Computing, pp. 179-185.

PUSSEE (2002) Definitions of Requirements for Integration of UML and B. Deliverable D4.1.1
within the PUSSEE project, IST-2000-30103.

Rational (2000A) Using rose - Rational Rose 2000e. Rational Software Corporation. Part
Number 800-023321-000.

134

http://www.dstan.mod.uk/data/00/055/02000200.pdf
http://www

Rational (2000B) Rose extensibility user's guide - Rational Rose 2000e. Rational Software
Corporation. Part Number 800-023328-000.

Rational (2000C) Rose extensibility reference - Rational Rose 2000e. Rational Software
Corporation. Part Number 800-023329-000.

Rozeboom, W. (1960) The fallacy of the null-hypothesis significance test. Psychological
Bulletin, Vol.57, No.5, pp.416-428.

Rumbaugh, J., Jacobson, I. & Booch, G. (1998) The Unified Modelling Language Reference
Manual. Addison-Wesley.

Satpathy, M., Harrison, R., Snook, C. and Butler, M. (2001) A comparative study of formal and
informal specifications through an industrial case study.In proceedings of lEEE/IFIP
Workshop on Formal Specification of Computer Based Systems (FSCBS'Ol).

Scanlon, D. (1989) Structured flowcharts outperform pseudocode: an experimental comparison.
IEEE Software, Vol.6, No.5, pp28-36.

Sekerinski, E. (1998) Graphical design of reactive systems. In D.Bert, editor, B'98: Recent
Advances in the Development and Use of the B Method, Lecture Notes in Computer
Science 1393, Springer-Verlag, pp. 182-197

Sekerinski, E. and Zurob, R. (2001) iState; a state chart translator. In M.Gogolla, C.Kobryn,
editors, UML 2001 - The Unified Modeling Language. Modeling Languages, Concepts,
and Tools, Lecture Notes in Computer Science, Vol.2185, Springer-Verlag, pp.376-
390.

Shore, R. (1996) An object-oriented approach to B. In H.Habrias, editor. Putting into Practice
Methods and Tools for Information System Design - P' Conference on the B method.

Simpson, H.R. (1986) The MASCOT Method. Software Engineering Journal, Vol.1, Iss.3,
pp. 103-120.

Snook, C. and Butler, M. (2000) Verifying dynamic properties of UML models by translation to
the B language and toolkit. In G.Reggio, A.Knapp, B.Rumpe, B.Selic, R.Wieringa,
editors. Dynamic Behaviour in UML Models: Semantic Questions, UML 2000
workshop proceedings, pp.99-105.

Snook, C. and Butler, M. (2001) Using a graphical design tool for formal specification. In
G.Kadoda, editor. Proceedings of the 13"' Annual Workshop of the Psychology of
Programming Interest Group, (PPIG'2001), pp. 311-321.

Snook, C. and Harrison, R. (2000) Practitioners' views on the use of formal methods; an
industrial survey by structured interview. In EASE2000, Papers from the Conference on
Empirical Assessment in Software Engineering.

Snook, C. and Harrison, R. (2001a) Practitioners' views on the use of formal methods: an
industrial survey by structured interview. Information and Software Technology, Vol.43,
lss.4, pp.275-283.

Snook, C. and Harrison, R. (2001b) Experimental comparison of the comprehensibility of a Z
specification and its implementation. In Proceedings of The Conference on Empirical
Assessment in Software Engineering, EASE2001.

135

Snook, C. and Walden, M. (2002) Use of U2B for Specifying B Action Systems, In proceedings
of RCS'2002 International Workshop on Refinement of Critical Systems: Methods,
Tools and Experience.

Spivey, J.M. (1988) Understanding Z. Cambridge University Press.

Spivey, J.M. (1990) A guide to the zed style option (available via anonymous FTP at
ftp.comlab.ox.ac.uk.).

Sterling, L. and Shapiro, E. (1986) The Art of Prolog, Advanced Programming Techniques, MIT
Press.

Tichy, W. (1998) Should computer scientists experiment more. IEEE Computer, Vol.31, No.5,
pp.32-40.

Vaziri, M. & Jackson, D. (1999) Some shortcomings ofOCL, the object constraint language of
UML Response to Object Management Group's Request for Information on UML 2.0.

Vinter, R.J. (1998) Evaluating formal specifications: a cognitive approach. PhD Thesis
University of Hertfordshire.

Ward, P.T. and Mellor, S.J. (1985) Structured Development for Real-Time Systems. Prentice-
Hall/Yourdon Press, 1985. Three volumes.

Warmer, J. and Kleppe, A. (1999) The Object Constraint Language: precise modeling with
UML. Addison-Wesley.

Winograd (1995) Environments for designing. Communications of the ACM, Vol.38, No.6,
pp.65-74.

Wills, A.C., D'Souza, D. (1997) Rigorous component-based development, http://www.trireme.u-
net. com/catalysis/

Wirth, N. (1971) Program development by stepwise refinement. Communications of the ACM,
pp.221-227.

Wonnacott, R. and Wonnacott, T. (1985) Introductory statistics. Wiley.

Wynekoop, J. and Russo, N. (1997) Studying system development methodologies: an
examination of research methods. Information Systems Journal, Vol.7, pp.47-65.

Zelkowitz, M. and Wallace, D. (1998) Experimental models for validating technology. IEEE
Computer, Vol.31, No.5, pp.23-31.

136

ftp://ftp.comlab.ox.ac.uk

Appendix A Survey Materials

A.1 Questionnaire

1) How would you define a formal method?

2) What experience has the company had with formal methods?

3) Which formal methods have you used most?

4) How big are the systems that you use formal methods on?

4a) Does the size of the system affect the practicality of using formal methods?

5) How do formal methods affect the software life cycle?

6) How do formal methods affect software quality assurance activities? (records, audits,
certification etc)

7) What are the benefits that you have found?

7a) Are they measurable in terms of quality of software products?

7b) Are they measurable in terms of software process improvements?

7c) Has any quantitative data been collected that demonstrate the benefits?

8) What problems have been encountered?

8a) How do the problems affect the quality of software products?

8b) How were they overcome?

9) Have any understanding difficulties or benefits been found?

9a) If so, has this affected correctness and verification of resulting code?

9b) Is there any pattern to the misunderstanding? i.e. particular constructs or styles

10) Do you use any style rules or codes of practice when writing formal specifications

10a) How do they affect understanding (if at all)?

11) Have you found that the structure of the specification model influences the
implementation?

11a) Is this good or bad?

12) How have formal specifications affected maintenance issues?

12a) Do the formal specifications help determine the correct code change?

12b) Are the formal specifications difficult to update? Are they kept up to date?

12c) Do the formal specifications prevent (or worsen) degradation of the code structure
through maintenance?

12d) Does the structure of the specifications themselves deteriorate through maintenance?

13) How do customers view the use of formal methods?

13a) Are formal documents used as an interface to customers?

13b) If so, how does this affect understanding of the system by the customer

13c) Has it affected system validation and acceptance stages?

14) Is there anything we haven't covered that you would like to talk about?

A.2 Results Summary Matrix

Question Interviewee A IBM Marconi Philips Praxis
How would
you define a
formal
method?

Unambiguous
mathematical
notation in which
you can express
system behaviour
and structure. Has a
precise syntax and
semantics. Doesn't
count things like
UML as formal
enough

Mathematical and
can prove
correctness
Distinguish between
Spec notations and
methods (inc. proof)
(notations such as
UML can't express
the important
relationships)

Method with
underlying
mathematical theory,
well defined syntax
and semantics and
rules for manipulation
and verification.

Notation with precise
syntax & well defined
semantics, with a method
for refinement into an
implementation and
support for requirements
elicitation,
state charts are
sufficiently formal
although don't support
proofs.
{O-O notations s.a. UML
also discussed -
comments relating to
these are shown in
braces}

Mathematically based
notation, specification
optionally with
verification proofs
(UML some aspects
formal but not very
expressive)

What
experience has
the company
had with
formal
methods?

One large project
which was specified
in Z. Several small
projects (electronics
components) were
specified formally
and subcontracted

Since 1983 but not
so widespread use
now

Full size, parallel case
study (18 months
duration)

COLD developed by
Philips and used on 1 or
2 products (but didn't do
formal refinement).
Lighter weight version of
COLD used more
extensively for
specification

Lots, specialise in this
area

Which formal
methods have
you used
most?

Z, CSP, VDM Z and B toolkit B Toolkit COLD (notation in genre
o f Z . VDMetc)
{UML has been used on
a few products esp. use-
case for requirements}

Z, VDM very
extensively
CSP, CCS a bit

How big are
the systems
that you use
formal
methods on?

1 large safety critical
project (150 s/w
engineers)
several small
projects

50 KLOC 900 LOC (ADA) with
full formal spec and
verification, 2000 LOC
with partial formal
specification to
estabUsh doesn't affect
critical parts.

from lOKloc upwards.
Biggest products have
been medical systems
(70 people for 2 years)
but consumer products
are becoming quite large
in terms of software
systems

Biggest 2OOKI0C, often
lOOKloc, lOs Kloc
Def. Stan. 00-55

Does the size
of the system
affect the
practicality of
using formal
methods?

No more than any
other factor/method

No, as long as you
break it down into
encapsulated
components
Encapsulation is
important and formal
spec defines the
interfaces between
components

Yes, but also affected
by other factors such
as degree of formality
reqd. (proofs etc),
complexity.
Also encapsulation
helps break problem
down as get into
design stages - size
problem mainly at
reqmts. spec stage.

Not per se but, rapid
growth in size of
software systems has
meant that recruit
programmers to cope and
haven't been able to
formal specify these
systems quickly enough

Mostly the methods
scale up but model
checkers not very well
and proof checkers
even worse

How do
formal
methods affect
the software
life cycle?

N/A - In large
project the formal
spec wasn't used for
subsequent
development, in
small projects the
development was
subcontracted

Don't change its
structure but major
shift of effort to up
front, specification
stage away from
debugging and
testing.

Same stages but shift
effort to specification
stage, reduce rework
later, assists testing
and validation later

Increase effort to get
spec right, but timescales
are short so development
has to proceed in parallel
and product may
complete before spec is
finished. There is a
difficulty with precise
specification since
Ufecycle is often
iterative, developing the
requirements as the
design evolves.
As formal specification
aims to sort out
requirements issues prior
to starting design it
doesn't fit with iterative
development.
{O-O modelling enables
the quick animation-

Front loading - spec
takes longer to get
right but in the process
resolve many problems
and spec makes
subsequent stages
much easier (esp.
coding and testing)
Same stages
throughout except
conventional lifecycle
often omits the system
specification and
works from the
requirement spec
instead

Question Interviewee A IBM Marconi Philips Praxis
refine-code generation
iteration methods)

How do
formal
methods affect
software
quahty
assurance
activities?
(records,
audits,
certification
etc)

N/A - as 5 above Not applicable, don't
do any

Unchanged really.
Auditors need to have
an outline
understanding of the
expected outputs of
processes in order to
verify that the
processes are being
performed. Procedures
have been written to
cover formal methods.

beginning to put in place
templates and checklists
to standardise formats to
improve exchange
between divisions and
this will go into
procedures.
Quality is the main
driving force behind
pushing for more formal
{mostly in the looser
sense} methods.

Doesn't change Q.A.
role but does make
quality control checks
more effective.
Improves traceability
which helps Q.A,

What are the
benefits that
you have
found?

Makes you think
through and
understand the
problem domain. A
tool for thinking
Discover spec
problems early
Image - a very good,
clever organisation
Expert effect - you
need clever people
to use them, clever
people make quality
software with any
method.

Allows you to see
the users view of the
system.
Uncovers
specification issues
early rather than
discovering them
late in the day
Significant
improvement in
failure rates

Get spec, problems
resolved and discover
errors early so much
less rework. Test cases
can be automatically
generated which
enables efficient and
effective validation
testing

Discover problems early
{e.g. when developing
state charts}
Clear about the
requirements and
whether they are
complete and consistent

Cheaper (if you want a
system that works)
High defect removal
(still get bugs but
easier to detect with a
formal spec)
Coding is much more
straightforward (know
exactly what's needed)
As a consequence
performance is
improved
Complexity deters
functionality/code
from growing
unnecessarily

Are they
measurable in
terms of
quality of
software
products?

N/A - not measured 40% reduction in
post delivery failures
(this is based on
fault report data for
the CICS system)

N/A
product was not put
into service but
expected to be more
reliable

N/A Yes, Product is more
reliable

Are they
measurable in
terms of
software
process
improvements
?

N/A - not measured Reduces costs of
later development
and testing activities
due to less problems

Requirements
validation process
much improved.
Testing process much
improved by auto
generation of test cases
and expected results

Benefits in providing
something to test against.
Knowing what is being
developed
Maintenance helped

Yes, reviewing and
testing is more
effective

Has any
quantitative
data been
collected that
demonstrates
the benefits?

N/A - No (data has
been collected at
ACSL but they
haven't started using
An yet)

Some informally
collected data for 7a
above

(see paper) No but plan to collect
data

Yes but no baseline for
comparison (but see
Pfieeger & Hatton)
One example where
data convinced
customer that a
formally re-engineered
version of the existing
system would be
worthwhile

What
problems have
been
encountered?

Attitude - reluctance
of ordinary
engineers to get
involved.
Complexity - hard
work to become
fluent

Keeping an expertise
base together
Ability to create
good models with
useful abstractions
(difficult to teach)
Customers don't
want to be tied down
early
Management
perceive it as a big
risk

Structuring and
resourcing the
requirements
specification.
Size of proof at first
stages of refinement
due to lack of
encapsulation at this
stage.
Tools are not formally
developed and
validated so any use in
verification
compromises validity

Resourcing to use
effectively
Extended timescale of
spec means it is of
limited benefit
Doesn't fit with
incremental development
lifecycle

Customer resistance,
acceptance of incorrect
software (see 13)
Immature tools not
integrated into the rest
of the development
lifecycle
e.g. can't write in
standard word
processors, being
unable to use normal
development tools is a
big turn off
Proof tools not
industrial strength
(except maybe B)

How do the
problems
affect the
quality of
software

They don't get used Reduced use of
formal methods (loss
of benefits)

N/A not covered in
interview

N/A Lack of use of formal
methods - don't
achieve benefits
Misunderstanding can
still exist between

Question Interviewee A IBM Marconi Philips Praxis
products? formal spec and

requirements (i.e. is
spec valid)

How were
they
overcome?

They weren't really
but good teaching
and team building is
seen as a solution.

They weren't
Oxford Uni.
provided a lot of
consultancy on
modelling

Specification
structured by most
highly skilled people,
others filled in detail.
Take small refinement
steps initially.

Plan to standardise on
UML which doesn't
suffer these problems
and then use formal
methods for
(encapsulated)
subcomponents within
the UML model for the
critical parts

N/A

Have any
understanding
difficulties or
benefits been
found?

Yes, See 8 Need English
comments to explain
Z (not so much in B
as this is better
structured)

Harder to get top level
requirements reviewed
but this was solved by
using the animation
facility.

No, but tend to recruit
from research for these
roles so limited resources
so tending to move away
from formal
{O-O not so much a
problem but UML use-
cases and requirement
elicitation needs (soft)
skills that hard
developers don't find
easy so now recruiting
specialist requirements
people}

(see 13 for customer
understanding)
Not too much of a
problem, employ good
calibre staff but don't
think you need special
people to understand
formal specs, easier
than understanding
code, just need
practice.

If so has this
affected
correctness
and
verification of
resulting
code?

N/A - no examples
of coding from spec

No No N o because experts used No significant effect

Is there any
pattern to this
misunderstand
ing? i.e.
particular
constructs or
styles

Some constructs are
difficult e.g.
functions that return
functions

N/A No N o No, not really

Do you use
any style rules
or codes of
practice when
writing formal
specifications?

Use simpler forms
even if more verbose
- reduced subset
Friendly style with
explanation
Teach via metaphors
to help visualisation

Had codes of
practice for
embedding
comments in Z, now
policy is for literate
programming where
specification (formal
and informal) and
design and code are
all kept together.

Naming conventions,
capitalisation, naming
correspondence
through refinement
levels for traceability

Yes had documented
styles and codes of
practice
{UML - trying to do the
same - templates and
checklists}

Yes, lexical constraints
on spelling etc, use of
delta and sigma,
common format

How do they
affect
understanding
(if at all)?

Easy to understand
and also less off
putting

See 9 N/A (not asked but
assume aid readability)

{Needed to migrate high
end products to other
divisions as they become
older}

Makes 2 peoples specs
look similar so know
where to expect things

Have you
found that the
structure of
the
specification
model
influences the
implementatio
n?

No examples of
writing code from
specs but would
expect the structure
to follow through
into the code

Yes, most people
structure their design
similar to their
specification (but,
the formality assists
in maintaining a
purer external
requirements view,
i.e. the spec contains
less design
decisions)

To some extent but
refinement stages used
to re-structure for
design purposes. State
structure unchanged.
Code structure reflects
B notation

This is a question under
consideration at PRL -
PK thinks it won't if it is
at the right abstraction to
be a requirements
document but they are
looking at whether it can
be done purposefully

Yes, to a fairly large
degree but some
features such as
atomicity,
concurrency, timing
are design stages that
affect this
correspondence

Is this good or
bad?

Trade off - helps
traceability but may
not be efficient code

Good, it aids
traceability
(although a purist
might argue that the
design will lead to
less efficient code
the pragmatic view
is more important)

Helped in maintaining
code to B
correspondence

It may be good to
express requirements so
that they influence the
structure of the
implementation to make
it have reusable
components
On the other hand it may
confuse the requirements

Good helps traceability

Question Interviewee A IBM Marconi Philips Praxis
role of the spec to have
this in it.

How have
formal
specifications
affected
maintenance
issues?

N/A - no
maintenance
experience

(answered below) The formal specs
themselves had no
effect on maintenance.
B tool helped a lot in
automatically detected
everything that relied
on a changed
component and
assisting in re-
checking these,

Improve understanding
of code being changed
making it easier to get
the change right

Spec helps with
determining correct
code change and the
effects on the rest of
the system

Do the formal
specifications
help determine
the correct
code change?

N/A In one example the
formal spec was
used to good effect
and gave an
estimated 50%
reduction in
maintenance cost.
However this is an
isolated case and
usually the
specification is not
used or maintained
after development.

No. Yes, provided
traceability is ok from
spec to code (but this is
often not the case due to
timescales during
development)

Yes

Are the formal
specifications
difficult to
update? Are
they kept up to
date?

N/A Not usually kept up
to date.

Were updated, and this
is not difficult due to
the help from the B
toolkit

Specs are fairly easy to
update but it is only done
if traceable to code

Yes, they are kept up
to date. This is partly
culture but also formal
specs are worth
keeping up to date
because they are so
useful compared to
natural language specs.
Usually easier to
update formal specs
because you can work
out what needs
changing better.

Do the formal
specifications
prevent(or
worsen)
degradation of
the code
structure
through
maintenance?

N/A Don't affect it either
way, usually don't
go back to the spec
anyway

Prevent degradation
because the B tool
allows you to maintain
the design structure
easily and the code is
kept in-line with this
structure.

if traceable prevent code
degradation since the
change is made with the
spec structure in mind.

Help prevent
degradation indirectly
by supporting a good
process, tend to do
things in the right
order starting with the
spec and this helps
keep good code
structure

Does the
structure of
the
specifications
themselves
deteriorate
through
maintenance?

N/A Not much practical
experience but
perception that the
formality will
increase the
tendency to avoid
restructuring leading
to degradation.

N/A
No experience of post-
delivery maintenance.
(During early spec
development the
structure was
maintained but may be
different later on)

Have found that natural
language specs
deteriorate quickly with
changes whereas Formal
Specs do not.

Some degradation.

How do
customers
view the use
of formal
methods?

hnpressed, usually
have someone who
is keen to learn the
methods to again
personal position

General warm
feeling that company
is doing something
good to look after
quality

MoD Customers
mandate the use of
formal methods and
want to sort out any
spec.
misunderstandings
early and tie down the
requirements.
US customers may
need persuasion to
accept proof instead of
testing etc. (MoD vice-
versa)

(usually project manager
or marketing act as
customer proxy)
Tend to want good
methods to achieve
quality in general so
supportive

Depends on customer,
some (e.g. MoD)
mandate due to
regulatory pressure
Some resist, may not
fit in with practices,
cost of training etc.
General acceptance
that software rarely
works - this takes
away the incentive to
use formal methods
since it is cheaper to
produce a system that
doesn't work than to
make one that does
using formal methods

Are formal
documents

Were used to place
subcontracts for

Internal customers
only (encapsulated

Yes Yes project manager
needs to approve

Sometimes

Question Interviewee A IBM Marconi Philips Praxis
used as an
interface to
customers?

small projects subsections called
domains are
developed separately
so Formal specs will
be used to define the
interfaces for the
domain and this will
be used by the other
domain groups)

requirements spec

If so, how
does this
affect
understanding
of the system
by the
customer?

Interviewee was the
customer and wrote
the spec,
subcontractors were
able to understand
the friendly, reduced
subset Z

Beneficial (but note
that these
'customers' are other
IBM software
developers)

Customers have people
that understand the
methods, also
animation of spec is
used to illustrate its
meaning. If not
mandatory there may
be some understanding
problems but not
insurmountable.

The project manager has
problems understanding
formal specs, so working
towards levels of
abstraction and to make
readable so that they can
understand while still
being formal as possible

Technical engineering
staff understand better
and can answer
questions about the
behaviour of their
future system, but the
audience is restricted

Has it affected
system
validation and
acceptance
stages?

Has helped in
working out test
cases.
No auto test output
generation so far but
agreed could be
done

No, except that there
are less problems at
this stage.

Helps derive test cases
and also contributes to
acceptance evidence
(for the right
customers)

Yes, one of the main
driving forces is to
improve the final testing
by having a clear spec of
what it should do.

Beneficial because
traceability of tests to
spec is clearer,
customer can see that
the system does what
was specified

Is there
anything we
haven't
covered that
you would like
to talk about?

Would like to see
improved learning
techniques.
Would Not want
notation to be made
easier if this
contaminated the
mathematical purity
of the notation

There is no impetus
to using formal
methods because
customers accept the
current level of
quality without FM
and supplier can
cover corrective
work in price.

Thinking about formal
methods for non-
functional
requirements such as
parallelism, timing and
also for hardware (def
Stan 00-54)

Have strong commercial
pressures for high quality
but also timescale
pressures. So looking at
UML for re-use
component based
approach and will
formalise the critical bits

No

Lack of specification
precision leads to
late changes -
people are aware
that late changes
happen and therefore
avoid precision -
vicious circle!!

Full formal
development with
proofs, same as for
conventionally
developed high
integrity software but
think variance of
estimates may be
higher at moment due
to limited experience,
limited skills base etc.
Considering using
formal specification
with B tool but less
proving as this might
be more efficient than
conventional
development.

Problem with B -
starts late in the
lifecycle, need a z spec
to start off then
translate to B

Don't use code gen.
facility of b toolkit
due to code
inefficiency

Did not use B-Tool
code gen because -
didn't trust it (not
formally developed)
and didn't want C
(unsafe).

The really rich
languages like Z are
only semi-decidable

timescales are
similar to
conventional
methods

Structure of
requirements spec,
proofs, (refinement is
ok, much like design)

Agreed, domain
specific languages
probably the way
forward

B tool - relied on
heavily and found it
helped a lot in tracing,
proving and
maintenance rework.
Some holes - need to
add rules for proving
but proofs rely on the
validity of these rules,
no ADA translator

Appendix B Experiment Materials

B.l Z speciGcadon

State

RoadType
length :

length > 0

PositlonType
road; RoadType
space: N

space e 1.. road.length

VehlcleType
pes: PositionType

RoadsysType
roads: P RoadType
goesto : RoadType «-> RoadType

dom goesto = roads
ran goesto c roads

Traffic
roadsys; RoadsysType
vehicles: P VehicleType

V v ; vehicles • v.pos.road e roadsys.roads
V V, w : vehicles | v w • v.pos.road = w.pos.road =>

v.pos.space ^ w.pos.space

Initialisation

Trafficlnit
Traffic'
vehiclesinit? : P VehicleType
roadsysinit_roads? : PRoadType
roadsysinit_goesto? : RoadType RoadType

vehicles' = vehiclesinit?
roadsys'. roads = roadsysinit_roads?
roadsys'.goesto = roadsysinit_goesto?

143

Operations

Report ::= Okay | Destination already occupied
Success

error!: Report
error! = Okay

moveSameRoadn
A Traffic
pos? : PositionType
pos?.road e roadsys.roads
pos?.space < pos?.road.length
3 V : vehicles • v.pos = pos?
-.3 w ; vehicles • w.pos.road = pos?.road a w.pos.space = pos?.space+1

vehicles' = vehicles u {v :VehicleType | v.pos.road^pos?.road A
v.pos.space=pos?.space+1}

\ {v : vehicles | v.pos = pos?}
roadsys' = roadsys

pickRoad
roadset?: P RoadType
road!: RoadType
roadset? ^ 0

road! e roadset?

moveNewRoadn
A Traffic
pos? : PositionType
pos?.road e roadsys.roads
pos?.space = pos?.road.length
3 V: vehicles • v.pos = pos?
-.3 w ; vehicles • w.pos.road =

pickRoad roadsys.goesto pos?.road A w.pos.space = 1

vehicles' = vehicles u {v; VehicleType | v.pos.road =
pickRoad roadsys.goesto pos?.road A v.pos.space = 1}

\ {v: vehicles | v.pos = pos?}
roadsys' = roadsys

144

destlnatlonAlreadyOccupied

S Traffic

pos?: PositionType
error!: Report
pos?.road e roadsys.roads

3 v: vehicles • v.pos = pos?

((pos?.space < pos?.road.length A

3 w: vehicles • w.pos.road = pos?.road A

w.pos.space = pos?.space+1)
V

(pos?.space = pos?.road.length A

3 w: vehicles • w.pos.road = pickRoad roadsys.goesto pos?.road

A w.pos.space = 1))

error!=Destination already occupied

move Vehicle =

((moveSameRoado v moveNewRoado) A Success)

V destinationAireadyOccupied

B.2 Java Program

import Java.lang.Exception;
class InvariantException extends Exception {

public InvariantException (String msg) {super(msg);}
}

class RoadType {
int roadlength;

public RoadType(int inpjength) throws InvariantException {
if (inpjength < 1) {

InvariantException e = new InvariantException
("Invariant: road length must be >= 1");

throw e;}
roadlength=inp_length;}

}

class PositionType {
RoadType road;
int space;

public PositionType (RoadType inp_road, int inp_space) throws InvariantException {
if (inp_space < 11| inp_space > inp_road.roadlength) {

InvariantException e = new InvariantException
("Invariant: position must be within road");

throw e;}
road = inpjoad;
space = inp_space;}

public boolean sameas (PositionType inp_pos) {
boolean same = false;
if (inp_pos.road==road && inp_pos.space==space) same =tru8;

145

return same;}
}

class VehicleType {

PositionType pos;

public VehicleType(PositionType inp_pos) {pos = inp_pos;}

public void moveto(PositionType inp_pos) {pos = inp_pos;}
}

class RoadsysType {
RoadTypeO roads;
RoadType[][] goesto;

public RoadsysType(RoadType[] init_roads,RoadType[][] init_goesto) throws InvariantException {
roads = init_roads;
if (init_goesto.length < roads.length) {

InvariantException e = new InvariantException
("Invariant: all roads must go somewhere");

throw e;}
for (int i=0; i<roads.length; i++) {

if (init_goesto[i]. length == 0) {
InvariantException e = new InvariantException

("Invariant: all roads must go somewhere");
throw e;}

for (int j=0; J<init_goesto[i].length; j++) {
if (!isaroad(init_goesto[i]0])) {

InvariantException e = new InvariantException
("Invariant: invalid goesto road");

throw e;} }}
goesto = init_goesto;}

public boolean isaroad(RoadType inp_road) {
boolean r=false;
for (int j=0: j<roads.length; J++)

if (roadsO] == inp_road) r=true;
return r;}

public RoadType[] allgoesto(RoadType inp_road) {
int 1=0;
while (roads[i] 1= inpjoad) i++;
return goesto[i];}

import java.utii.Random;
class Pick {

static Random r=new Random();

static public RoadType pickroad (RoadTypeO array) {
int n=Math.abs(r.nextlnt() % array.length);
return array[n];}

}

class Traffic {
RoadsysType roadsys;
VehicleTypeO vehicles;

public Traffic(RoadType[] init_roads,RoadType[][] init_goesto,VehicleType[] init_vehicles) throws InvariantException {
roadsys = new RoadsysType(init_roads,init_goesto);
for (int 1=0; i<init_vehicles.length; i++) {

146

if (!roadsys.isaroad(init_vehicles[i].pos.road)) {
InvariantException e = new InvariantException

("Invariant: Vehicle not in valid road");
throw e;}

for (int j=0; J<init_vehicles.length; J++) {
if (init_vehicles[i].pos.sanfieas(init_vehiclesO].pos) && i!=j) {
InvariantException e = new InvariantException

("Invariant: 2 vehicles at same position");
throw e;} }}

vehicles = init_vehicles;}

public void moveVehicle(PositionType inp_pos) throws Exception {
PositionType destination;
if (inp_pos.space < inp_pos.road.roadlength) {

destination = new PositionType(inp_pos.road,inp_pos.space+1);}
else{

RoadType exit=Pick.pickroad(roadsys.allgoesto(inp_pos.road));
destination = new PositionType(exit,1); }

if (isVehicleAt(destination)) {
InvariantException e = new InvariantException

("Invariant:: Destination already occupied");
throw e;}

getVehicleAt(inp_pos).moveto(destination); }

public boolean isVehicleAt(PositionType inp_pos) {
boolean found = false;
if (vehicles 1= null) {

for (int i=0; i<vehicles.length; i++) {
if (vehicles[i].pos.sameas(inp_pos)) found=true;}}

return found; }

public VehicieType getVehicleAt(PositionType inp_pos) {
int i=0;
while (!vehicles[i].pos.sameas(inp_pos)) i++;
return vehicles[i]; }

}

147

]&.3 Questionnaire

Your email address:

Please record the time taken for each of the first 2 questions including all of the time

you spend reading the specification/program).

Ql . Describe the physical objects represented in the system and their behaviour (i.e. the

functionality of the specification/program) Time taken for Ql.; mins

Q2. 'PickRoad' represents an indeterministic or random choice. In real-world,

functional, terms what is it used for? Time taken for Q2.: mins

Q3. How difficult did you find the specification/program to understand compared to

how you think you would have found an English language equivalent?

Easy O O O O O o O O O O O Hard (replace an O with an X)

Q4. How difficult do you find mathematical subjects? (i.e. what is your subjective

judgement of your own mathematical abilities compared to your peers)

Easy O O O O O o O O O O O Hard (replace an O with an X)

Q5. What training/qualifications do you have in mathematical (and related) subjects

(e.g. GCSE, A-level Maths/physics etc)?

Q6. How much experience have you had with the notation/language used in the

specification/program?

Q7. Any other comments? (or things that might have affected your answers)

148

B.4 Marking sheet

Ql. Roads

Roads are directional

Roads have a length

... which is greater than zero

Roads are modelled as a sequence of discrete positions

The end of each road is connected...

....to one or

.. ..more other roads

Vehicles

Vehicles exist on a particular road

...at a particular position on that road

2 vehicles cannot occupy the same position

Vehicles can move along roads...

.. .one position forward at a time

.. .but only if the destination position is unoccupied

A vehicle at the end of a road...

.. .can move to another road...

.. .that is connected to its road...

...in fact any of the connected roads...

.. .the choice is random/undefined

...but only if the destination is unoccupied

Q2. it represents the vehicles/drivers choice of . . .

... which new road to enter.

Total

Total time taken: (Q1+Q2 = +)

marks per minute

149

B.5 Summary of Results

Time 03 04 05 06 | 0 7
(mins) (answers to Q6 and Q7 are summarised)

z

1 20 10 2 2 A <1yr

2 12 8 3 -2 B 1 course dreading z would have preferred J

3 20 7 -1 -2 A module

4 9 7 5 -1 C little formal spec more difficult than code

5 10 15 1 -2 A fair amount in course

6 29 8 5 -4 A module

7 25 9 2 0 A semester

8 27 13 1 2 A semester

9 13 10 3 0 A course

10 25 9 0 -3 A course code easier then spec

11 13 4 - - - - -

12 20 15 3 -3 A module z awkward / symbols

13 23 6 2 -3 A 2modules

M 35 5 2 -5 A some last term difficulty ops

15 33 6 3 -2 A little difficult due lack of knowledge of z

16 13 3 5 -2 A 12x45min lectures spec totally confusing

17 1 8 7 1 -1 A 1 module

76 18 7 3 -2 A 2 modules

J a v a

19 22 8 0 -4 A lyr

a? 22 9 2 3 A 6months

21 19 4 2 -1 A 6months

2 2 15 7 3 -3.5 A Bmonths names made it easy

2 3 14 10 2 -1 A 6months progs easier than z/more natural to write

24 1 5 3 2 1 A some

25 14 8 2 -3 A module

2 6 15 16 3 -2 A lOmonths traffic implies functionality

2 7 21 1 0 2 0 A 12months in depth

2 8 22 12 3 -3 A module lack of comments

2 9 35 7 4 2 A 3 to 4 months lack of comments

3 0 12 6 3 3 B 1st yr Java confusing

31 25 7 3 -3 A 6 months

3 2 25 9 1 1 A module

33 15 4 3 1 B not much V difficult to understand this prog

3 4 25 8 3 5 B semester not strong at coding - Java diffciult

35 23 17 3 -4 A lots of Java not too hard to understand

36 27 14 2 3 A fair amount - module weird coding style

key for 05: A=Aleve maths, B=GCSE maths C=maths as part of french baccalaureat

150

B.6 Corrected Z Specification in ZSL

specification

RoadType -
I length: N

length > 0

-- PositionType
road: RoadType;
space: N

space in 1..road.length

-- VehicleType
pos: PositionType

true

-- RoadsysType
roads: P RoadType;
goesto: RoadType <-> RoadType

dom goesto = roads;
ran goesto subseteg roads

-- Traffic
roadsys: RoadsysType;
vehicles; P VehicleType

forall v:vehicles @ v.pos.road in roadsys.roads;
forall v,w:vehicles | v/=w @

V.pos.road=w.pos.road => v.pos.space/=w.pos. space

-- Trafficlnit
Traffic';
vehiclesinit?: P VehicleType;
roadsysinit_roads?: P RoadType;
roadsysinit_goesto?: RoadType <-> RoadType

vehicles' = vehiclesinit?;
roadsys'.roads = roadsysinit_roads?;
roadsys'.goesto = roadsysinit_goesto?

151

Report ::= Okay | Destination_already_occupied

Success
I error!: Report

I error! = Okay

-- moveSameRoadO
Delta Traffic;
pos?: PositionType

pos ?.road in roadsys.roads;
pos?.space < pos?.road.length;
exists v: vehicles @ v.pos = pos?;
not{exists w:vehicles @

w.pos.road=pos?.road and w.pos.space=pos?.space+1);

vehicles'= vehicles | |
{v:VehicleType | v.pos.road=pos?.road and

v.pos.space=pos?.space+1} \
{v:vehicles | v.pos=pos?};

roadsys'=roadsys

-- pickRoad
roadset?: P RoadType;
road!: RoadType

roadset?/={};

road! in roadset?

— moveNewRoadO
Delta Traffic;
pos?: PositionType

pos?.road in roadsys.roads;
pos?.space = pos?.road.length;
exists v:vehicles © v.pos = pos?;

let roadset?=={rr:RoadType | (rr,pos?.road) in roadsys.goesto} @
exists road!:RoadType | pickRoad @
not(exists w:vehicles @ w.pos.road=road! and w.pos.space=l)=>

vehicles' = vehicles ||
{v:VehicleType | v.pos.road=road! and v.pos.space=l} \
{v:vehicles | v.pos=pos?};

roadsys'=roadsys

152

-- destinationAlreadyOccupied
Xi Traffic;
pos?: PositionType;
error!: Report

pos?.road in roadsys.roads;
exists v:vehicles @ v.pos = pos?;
{pos?.space < pos?.road.length and
(exists w:vehicles @ w.pos.road=pos?.road and

w.pos.space=pos?.space+1))
or
(pos?.space = pos?.road.length and
(let roadset?=={rr:RoadType | (rr,pos?.road) in roadsys.goesto}
not(exists road!:RoadType | pickRoad @
not(exists w:vehicles @ w.pos.road=road! and w.pos.space=l)
)

)

) ;
error!=Destination_already_occupied

moveVehicle ='̂ = ((moveSameRoadO or moveNewRoadO} and Success)
or destinationAlreadyOccupied

end specification

153

Appendix C Results of Student Poll

C.l Poll Results

Results - all years ZB
total responses 118
useable responses 116
strong dislike 47%
dislike 29%
neutral 12%
like 8%
sDmnglMe 3%
prefer UML
equal
prefer ZB

Results - first years ZB
total responses 33
useable responses 33
strong dislike 30%
dislike 21%
neutral 24%
Hke 15%
strong like 9%
prefer UML
equal
prefer ZB

Results - second years ZB
total responses 50
useable responses 49
strong dislike 57%
dislike 29%
neutral 6%
like
strong like 2%
prefer UML
equal
prefer ZB

Results - Th i rd years ZB
total responses 35
useable responses 34
strong dislike 50%
dislike 38%
neutral 9%
l&e 3%
strong like 0%
prefer UML
equal
prefer ZB

U M L

116
12%
21%
28%
35%
3%

U M L

33
12%
21%
36%
30%
0%

U M L

49
6%
29%
29%
33%
4%

U M L

34
21%
9%
21%
44%
6%

pref

115

67%
18%
15%

pref

33

52%
18%
30%

pref

48

77%
17%
6%

pref

34

68%
21%
12%

154

C.2 Poll Data
-2=strongly dislike, -l=dislike, 0=neutral, l=like, 2=strongly like, dk=don't know

Cohort ZB UML pref Cohort ZB UML pref
first year -2 0 2 second year -2 1 3
first year -2 1 3 second year -1 1 2
first year -2 1 3 second year -2 1 3
first year 1 -1 -2 second year -2 0 2
first year -2 1 3 second year -1 1 2
first year -2 -1 1 second year 1 1 0
first year 1 0 -1 second year 0 1 1
first year -1 0 1 second year 2 -1 -3
first year 1 1 0 second year -2 1 3
first year -2 -1 1 second year -2 -1 1
first year -2 -2 0 second year -2 -1 1
first year -1 -1 0 second year -1 1 2
first year -1 -2 -1 second year -2 -1 1
first year 2 -2 -4 second year -2 0 2
first year 1 0 -1 second year -2 -2 0
second year -2 0 2 third year -1 1 2
second year -2 1 3 third year -1 1 2
second year 0 1 1 third year -2 1 3
second year -2 dk third year -1 -2 -1
second year -2 0 2 third year -2 -2 0
second year -1 1 2 third year 0 0 0
second year 1 -1 -2 third year -2 -2 0
second year -2 0 2 third year -2 -2 0
second year -2 -1 1 third year -2 -2 0
second year -2 -1 1 third year -2 1 3
second year -1 2 3 third year -2 1 3
second year -2 0 2 third year -2 0 2
second year -2 -1 1 third year 0 1 1
second year -1 1 2 third year -2 0 2
second year -2 -2 0 third year -1 0 1
second year -1 -1 0 third year -2 1 3
second year -1 0 1 third year -2 1 3
second year -2 0 2 third year 1 2
second year -1 -1 0 third year 1 2
second year dk 1 third year 1 2
second year -2 -2 0 third year 1 2
second year -2 0 2 third year 2 3
second year -1 0 1 third year -2 0 2
second year -2 1 3 third year 1 1 0
second year 1 1 0 third year -2 2 4
second year -2 -1 1 third year -2 0 2
second year -2 -1 1 third year -2 1 3
second year -1 0 1 third year -2 1 3
second year -2 0 2 third year -1 0 1
second year -2 0 2 third year -1 -2 -1
second year -1 0 1 third year 0 -1 -1
second year -1 1 2 third year -1 -1 0
second year -2 2 4 third year dk dk
second year 0 -1 -1 third year -1 -2 -1
second year -1 -1 0 third year -2 -1 1

155

