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The increasing interest in processing sequences of images (rather than single 

ones) motivates development of techniques for sequence-based object analysis and 

description. Accordingly, new velocity moments have been developed to describe 

an object, not only by its shape but also by its motion through an image sequence. 

These moments are an extended form of centralised moments and compute sta-

tistical descriptions of the object and its behaviour. Two variations of this new 

technique are presented. The first uses the non-orthogonal Cartesian basis, while 

the second utilises the orthogonal Zernike one. Despite their difference in basis, both 

techniques exhibit favourable characteristics. Evaluation illustrates the advantages 

of using a complete image sequence (over single images), exploiting temporal cor-

relation to improve a shape's statistical description, while also improving the per-

formance of these statistical features under less favourable application scenarios, 

including occlusion and noise. To further characterise the velocity moments, they 

have been applied to gait recognition - a potential new biometric. Good recognition 

results have been achieved using relatively few features and basic feature selection 

and classification techniques. However, the prime aim of this new technique is to 

allow the generation of statistical features which encode shape and motion infor-

mation, with generic application capability. Theoretical and applied analyses show 

the potential of this new sequence-baaed statistical technique and highlight the 

consistency of its performance attributes with those of conventional moments. 
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Chapter 1 

Context and contributions 

1.1 Motivation 

Traditionally, image processing and computer vision has largely focussed on analysing 

single images for their content. With the introduction of cheaper camera systems, 

along with digital video, the need and interest in processing streams of video footage 

continues to increase. One way in which this can be achieved is simply to separately 

analyse each consecutive image in the sequence. This produces frame orientated 

results that hold no information about how the images within the sequence re-

late to each other. More recent approaches use temporal information from within 

the image sequence to their advantage, exploiting the correlation between images 

within the sequence. For example, the popular MPEG [52] compression technique 

for video sequences updates the motion information in consecutive images, reduc-

ing the bandwidth by not updating static objects and therefore exploiting the high 

correlation between images. 

One large area of image processing and computer vision is pattern classification. 

In general this area is divided into model-based and statistical methods. A few re-

cent model-based methods have utilised the inclusion of temporal information into 

the descriptor, including the velocity Hough transform (VHT) [56], XYT slices to 

recognise human articulated motion [59] and velocity snakes [63, 67]. These tech-

niques locate and describe a shape using both its motion and boundary description. 

Alternatively shapes can be described by their structure or distribution, using sta-

tistical techniques. However, the inclusion of temporal information and correlation 

into these statistical techniques is relatively unexplored. For example, Little [46] 

linked pairs of images using statistical moments, while Rosales [68] encoded an im-

age sequence into a single image, and then described the single image by moments. 

However, these techniques do not consider the image sequence as a single entity 

(within the descriptor), in contrast with the previously mentioned model based 

methods. 



Here we are interested in statistically describing a time varying, or temporal 

sequence of images. The image sequences analysed consist of either a static or a 

deforming shape. Unlike the statistical methods mentioned above, we are primarily 

interested in describing the sequence as a whole, rather than describing each sepa-

rate image within the sequence. This enables us to exploit temporal correlation to 

provide an improved shape descriptor from a sequence of images. It is important 

to note that achieving high classification rates requires some application-specific 

selection of features and, as such, our primary focus (from a classification point of 

view) is in enabling generic selection of appropriate features. The generated fea-

tures are descriptors encoding both shape and motion, thus enabling description, 

analysis and classification. 

1.2 Temporal correlation 

The analysis of an image sequence, in contrast to analysing a single image allows 

the exploitation of the temporal statistics of the sequence. The technique of using 

temporal correlation within an image sequence has previously been used to enhance 

feature extraction and description methods, examples include the previously men-

tioned VHT [56] and velocity snakes [67]. The use of an image sequence can be 

used to enrich a shape description, providing further information about the shape's 

structure, while also allowing its motion to be studied. For example, multiple im-

ages of a simple object, under noise conditions can be used to produce a single 

reduced-noise (averaged) image of the object. Figures 1.1, 1.2 and 1.3 demonstrate 

this. Additive zero mean (/i = 0), unit variance (cr̂  = 1) random Gaussian noise 

has been added to a simple 100 x 100 binary image of the shape shown in Figure 

1.1(a). Figure 1.1(b) shows the result of adding the noise to this single image. The 

shape is barely visible, while the contour plot of the grey-level values in Figure 

1.1(c) shows considerable confusion between the foreground shape and the noisy 

background. Accumulating and averaging the pixel values over ten images (of the 

same original shape but with diEerent random noise) produces the results in Figure 

1.2. Here the shape is becoming clearer, separating from the background noise and 

is visible in the contour plot of Figure 1.2(b). The perimeter of the shape is begin-

ning to appear on the projection displayed at the base of the plot. Continuing the 

process and accumulating over forty images produces the results in Figure 1.3. Here 

the noise floor level has dropped (in comparison to Figure 1.2(b)), while the fore-

ground shape haa become more prominent, producing an increased signeil to noise 

ratio. Accumulating information using a sequence of images, instead of analysing a 

single image has improved the shape's contrast in the presence of Gaussian noise, 

as shown by comparing Figure 1.1(b) and Figure 1.3(a). More formally, the error 



in the estimate of the average (image) is O(^), where W is the number of samples 

(or images). Therefore as iV —)• cx) the error approaches zero. 

1.3 Shape description for classification 

Once a shape has been isolated in a scene (by any number of feature extraction 

methods), it may be desirable to describe it, for classification. Shape description 

can use either region or boundary information. The former describes the shape with 

respect to its structure, while the latter is a representation of the shape's perime-

ter. It is often desirable for these shape descriptors to possess selected invariance 

properties. These include scale, rotation, position and even perspective invariance, 

allowing the shape description to be more versatile. First we discuss the boundary 

case, and then move on to regions. 

Boundary descriptors can be efficient in terms of computing resources, as only a 

small proportion of the overall image is processed. Simple chain codes [21] describe a 

boundary by defining each pixel's location in terms of its previous neighbour, while 

traversing the contour. Fourier descriptors [86] describe the contour by a series 

of closed curves, a variation of the standard Fourier series time domain analysis. 

This enables contours to be described in a continuous manner (allowing reduced 

error when scaling). There exist many variations of Fourier descriptors eg. [23]. 

Alternatively, the curvature scale space [51] of a shape can be used aa a boundary 

descriptor. Here the points of inflection, found as a shape's contour is traversed, 

are used as features to describe the contour. One problem with these boundary 

descriptions is that any important descriptive information held within the boundary 

is lost. 

Shape descriptions via skeletons, first proposed by Blum [7] use the medial 

axis function (however, further variations exist). In this paper, Blum describes a 

shape's boundary in terms of its interaction with a series of energy functions which 

propagate through the interior of a binary shape. This is a compacted form of 

region description. Various simple repzon descriptors exist [58] including measures 

of area, compactness (or roundness - the ratio of perimeter to area) and elongation. 

A shape's topology can be described, where the interest is in properties of the 

region that do not change, even if the shape does - although this excludes tearing 

of the shape, or joining it with another. Convex hulls can be used to measure 

the number or size of any concavities within a shape, perhaps determining the 

differences between the letters '0' and 'C. Fourier descriptors can also be used 

for region description [39]. Extremal points in their simplest form can be used to 

determine the bounding area of a shape. By connecting them together the major 

and minor axis of a shape can be determined. These axes in turn can be used to 

define characteristics like the aspect ratio of the object. 



(a) Original image. (b) Additive Gaussian noise. 
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Image x-axis Image y-axis 

(c) Surface contour plot 

Figure 1.1: The original image, the image with additive Gaussian noise and the 
corresponding surface plot of the image. 



(a) Additive Gaussian noise. 
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(b) Surface contour plot 

Figure 1.2: The accumulated result of 10 images with additive Gaussian noise and 
the corresponding surface plot of the image. 
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(b) Surface contour plot 

Figure 1.3: The accumulated result of 40 images with additive Gaussian noise and 
the corresponding surface plot of the image. 



Many of the global region descriptions (including area, spread, kurtosis and axes' 

orientation) can also be determined through a general framework called statistical 

moments. These global descriptions collate low frequency information about the 

image. In addition, the more complicated high frequency image content is available 

through the same framework. In this thesis we are primarily interested in statistical 

moments, as applied to images [27]. They describe a region, or shape in terms of its 

distribution. Depending on the particular type of moments used, various invariance 

properties are available (including rotation, scale and position). 

1.4 Statistical moments 

Statistical moments extract information from a signal, describing its distribution 

and make-up. Simple properties can be extracted including area (mass), mean and 

variance, while more specific information is available, i.e. projection information 

including kurtosis, skewness, spread and radii of gyration. The application of clas-

sical moments to two-dimensional images was first considered in the early sixties by 

Hu [27, 28]. Hu tested their validity using a simple experiment to recognise written 

characters. Hu was only concerned with images without noise, but further work by 

Teh [80] showed that traditional moment performance degrades when the view is 

occluded or noisy. 

A survey of moment based techniques with respect to computer vision, Prokop 

[65], details many of the current techniques regarding representation and recog-

nition. Belkasim [3] presents a comparative study of moment invariants, while 

Mukundan [53] provides descriptions of most of the current moment techniques, 

along with background information and applications. In general the different types 

of moments fall into two categories, orthogonal and non-orthogonal. Orthogonal 

moments produce features that are less correlated than their non-orthogonal counter 

parts. Further, the orthogonality property enables simple, accurate signal recon-

struction from the generated moments. Moments that are non-orthogonal tend to 

be simpler to implement, computationally less expensive and include descriptors 

that have a range of useful properties i.e. scale, translation and rotation invariance. 

However, their highly correlated features make reconstruction more difficult. 

There have been many studies using two dimensional moments for image recog-

nition purposes. For example Dudani [17] used moments to recognise aeroplane 

silhouettes with results that were more successful than the human eye. Ryo [78] 

used local moments to recognise hand poses, while Beardsley [2] used Cartesian 

moments to produce simple hand control of a toy robot. 

However, all of these are only interested in processing single images. Little [46] 

used moments to characterise optical flows between images for gait recognition. 

This technique still only links adjacent images, and does not consider the complete 
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sequence. Resales [68] described motion by producing one image that contained 

information from a complete sequence, building on the work done by Davis [15]. 

Rosales's system was based on Hu invariant moments and was used to recognise 

types of motion, eg. sitting down or kicking. However, due to several images 

being compressed into one, subtle differences between subjects are lost due to self 

occlusion and overlapping of data. 

For this work we started by looking at a traditional statistical method of mo-

ments to describe the motion of a person through multiple images. Unfortunately 

this does not provide a very detailed description of the motion, as there is no in-

formation linking the images of the sequence, since they are treated as separate 

entities. By using the general theory of moments a method has been developed 

that not only contains information about the pixel structure of the subject, but 

also how their movement flows between images. 

1.5 Contributions 

We will describe a novel framework for statistically characterising shapes within a 

temporal sequence, called velocity moments. The new framework is based around 

the well established centralised moments. It fuses a per-image description of a 

shape's structure with a description that contains information about the motion of 

the shape as it moves within the image sequence - exploiting temporal correlation. 

We propose two variations of the velocity moments, Cartesian and Zernike, each 

with beneficial properties. The Cartesian velocity moments are a non-orthogonal 

descriptor (in terms of each separate image), which are simple to compute and 

computationally inexpensive. However, due to their non-orthogonality the features 

produced are highly correlated. Discrimination within a small dataset was found to 

be straightforward using both structural and motion based features. When apply-

ing the technique to a large dataset, the high feature correlation may hamper the 

separation of diSFerent classes. The solution to this problem is to use an orthogonal 

basis set within the velocity moment framework - the Zernike velocity moments. 

The features produced by the Zernike velocity moments are invariant to image by 

image scale changes, making them useful in situations where camera zoom is appar-

ent. The performance of this new framework has been analysed using synthetic data 

and also by application to human gait analysis. The application based properties of 

the moments have been analysed along with their capability to enable classification 

of temporal sequences. 

1.6 Thesis overview 

The introduction, development and characterisation of the new velocity moments, 

are the central aims of this thesis. This includes the background material related to 
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the new techniques, along with their application to human gait analysis. The thesis 

is separated into six chapters. Chapter 2 covers the background theory of statisti-

cal moments, as applied to images. This ranges from the theory behind moments 

through to implementation issues. Chapter 3 introduces the new velocity moments, 

the ideas behind them and their application. Preliminary analysis is included to 

highlight the advantages and uses of these moments in describing temporal image 

sequences. In Chapter 4 the velocity moments are applied to the problem of com-

puter driven human gait classification, via a selection of different gait databases. 

The databases include those created in-house along with those kindly supplied by 

overseas research groups. Following on. Chapter 5 looks into the performance anal-

ysis of the Zernike velocity moments, via use of the human gait analysis from the 

previous chapter. Chapter 6 suggests possible future directions for this research. 

Finally Chapter 7 concludes this thesis with a discussion on the overall conclusions 

of this research. 

1.7 Publications related to this research 

There are currently four publications associated with this thesis. The early work of 

the Cartesian velocity moments was presented in [72], applied to synthetic images 

of moving shapes and a small four subject human gait database. [74] presents the 

analysis of a larger six subject gait database, including the analysis of optical flow 

images. [73] is a theory based paper describing the reconstruction of images from 

moments, first explaining for Cartesian moments and then extending the theory for 

Cartesian velocity moments. [71] describes the theory behind the Zernike velocity 

moments, their application to a six subject silhouette gait database and preliminary 

occlusion analyses. 



Chapter 2 

Background theory 

Moments are applicable to many different aspects of image processing, ranging from 

invariant pattern recognition and image encoding to pose estimation. When applied 

to images, they describe the image content (or distribution) with respect to its 

axes. They are designed to capture both global and detailed geometric information 

about the image. Here we are using them to characterise a grey level image so as to 

extract properties that have analogies in statistics or mechanics. In continuous form 

an image can be considered as a two-dimensional Cartesian density distribution 

function f{x,y). With this assumption, the general form of a moment of order 

(p + 9), evaluating over the complete image plane ^ is: 

= 1 , 2 , . . . , 00 (2.1) 

The AemeZ or function is This produces a weighted description 

of /(a;, 1/) over the entire plane The baais functions may have a range of useful 

properties that may be passed onto the moments, producing descriptions which can 

be invariant under rotation, scale, translation and orientation. To apply this to 

digital images, Equation 2.1 needs to be expressed in discrete form. The proba-

bility density function (of a continuous distribution) is different from that of the 

probability of a discrete distribution. For simplicity we assume that ^ is divided 

into square pixels of dimensions 1 x 1 , with constant intensity 7 over each square 

pixel. So if Pxy is a discrete pixel value then: 

f;ry = /(:r,2/)AA (2.2) 

where A/l is the sample or pixel area equal to one. Thus, analysing over the 

complete discrete image intensity plane produces: 

^pq ~ ^ y ^ y)Pxy j p, ^ = 0, 1, 2, ..., OO (2.3) 

10 



The choice of basis function depends on the application and any desired invariant 

properties. The choice of basis may introduce constraints including limiting the 

X and y range, or translating the description and image to polar co-ordinates (eg. 

mapping it to the unit disc). 

2.1 The moment generating function 

To describe the distribution of a random variable the characteristic function can be 

used [61]: 

/ OO 
/(a;) exp(jwz) (fa; = E[exp(jwa;)] (2.4) 

OO 

shown here for the signal density f{x), where j = \ / ^ and w is the spatial fre-

quency. This is essentially the Fourier transform of the signal and has a maximum 

at the origin w = 0, a.s f{x) > 0. Figure 2.1 shows an example of X(w) for a zero 

mean, unit variance Gaussian density f{x). 

I 

Figure 2.1: Characteristic function of a Gaussian density f{x). 

If /(a;) is the density of a positive, real valued random variable a;, such that 

3:eR, then a continuous exponential distribution can be defined. Replacing jw in 

Equation 2.4 with s produces a real valued integral of the form: 

M':(5) /(%) exp(a;g) (fa; = .B[exp(a;s)] 

11 
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where E[.] is the expectation and M^{s) exists as a real number. M^{s) is called the 

moment generating function^ shown here for a one-dimensional distribution. It is 

used to characterise the distribution of an ergodic signal. Expressing the exponential 

in terms of an expanded Taylor series produces: 

exp(a;s) = ^ —— = 1 + a;s + — + ... + Rn{x) (2.6) 
n=0 

where Rn{x) is the error term. It can be seen that the series will only converge and 

represent z(s) completely if Rn{x) = 0. Therefore, if the distribution is finite in 

length, all values outside this length must be zero (or in terms of an image, all values 

outside the sampled image plane must be zero). Assuming this and substituting 

Equation 2.6 into Equation 2.5 produces: 

= / /(a;)exp(a;s) da; 

1 
—OO 
oo 

2^! (1 4- zg + ^2; a'' + ...)/(a;) (fa; 
00 

= 1 + SfTli + — + . . . , ( 2 . 7 ) 

where is the moment about the origin. Differentiating Equation 2.5 n times 

with respect to g produces: 

M^(s)=E[a;"exp(a;g)] (2.8) 

If M^(s) is differentiable at zero, then the order moments about the origin are 

given by: 

M:(0) = E[a;"] = (2.9) 

So the first three moments of this distribution are: 

M^(g) = E[exp(a;g)] ; Mg:(0) = l 

M^(g) = .B'[3;exp(a;g)] ; M^(0) = a; (2.10) 

M2(g) = ^[a;^exp(a;g)] ; M2(0)=a:^ 

If the distribution of the signal is a Gaussian, then it is completely described by 

its two moments, mean (M^(0)) and variance (Mg (0) — (M^(0))^), while the total 

area (Mg (0)) is 1. If the joint moment M^^(g) for two signals is required (i.e. a 

two-dimensional image) then it is noted that: 

M'^(a) = E[exp((a; i- i/)s)] = .B[exp(a;s) exp(i/g)] (2.11) 
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assuming that x and y are independent, then: and 

M ^ ( g ) = E[exp(a;8)]^[exp(2/g)] = (2.12) 

In conclusion, it is possible to evaluate the moments of a distribution by two meth-

ods. Either by using the direct integration (Equation 2.1), or by use of the moment 

generating function (Equation 2.5). However, in practice the moment generating 

function is more widely applied to the problem of calculating moment invariants, 

while the direct integration method is used to calculate specific moment values. 

2.2 Non-orthogonal moments 

Hu [27, 28], stated that the continuous two-dimensional {p + g)*^ order Cartesian 

moment is defined in terms of Riemann integrals as: 

/

oo ÔO 

/ /(:r,3/) (fa; (2.13) 
OO * / —OO 

It is assumed that f{x,y) is a piecewise continuous, bounded function and that it 

can have non-zero values only in the finite region of the x — y plane (i.e. all values 

outside the image plane are zero - see the Taylor series expansion (Equation 2.6) 

and explanation in the previous section). If this is so, then moments of all orders 

exist and the following uniqueness theorem holds [28]: 

T h e o r e m 1 Uniqueness theorem : the moment sequence mpg (Equation 2.13 - the 

Aasia 6?/ / ( z , ?/) OMii /(a;, i/) zs itmgueZ?/ (fe/iMecf 

62/ mpg . 

This implies that the original image can be described and reconstructed, if sufB-

ciently high order moments are used. By adapting Equation 2.5 to two dimensions, 

the Cartesiaji moments (Equation 2.13) can be expressed in terms of the moment 

generating function. Analysing a two-dimensional irradiance distribution f{x,y): 

/ ' O O ^ 0 0 

M^^(2f,t;)= / / exp(t/a;-t-2;^)/(a;, (2.14) 
—00 */ —00 

and expanding the exponential using Taylor series produces: 

(2.16) 
,=0 ,=.0 

where rupg are the moments of this two dimensional distribution. 
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momenta 

The discrete version of the Cartesian moment (Equation 2.13) for an image consist-

ing of pixels Pxy, replacing the integrals with summations, is; 

M N 

x=l y=l 

(2.16) 

Where M and N are the image dimensions and the monomial product xPy'^ is the 

basis function. Figure 2.2 illustrates the non-orthogonal (highly correlated) nature 

of these monomials (in contrast to the orthogonal polynomials in Figure 2.6, to be 

discussed later) plotted for the positive x axis only. The zero order moment moo 

23 0.4 

X value 

Figure 2.2: The first five Cartesian monomials. 

is defined as the total mass (or power) of the image. If this is applied to a binary 

(i.e. a silhouette) MxTV image of an object, then this is literally a pixel count of 

the number of pixels comprising the object. 

M AT 

x=l y=l 

(2.17) 
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The two first order moments are used to find the Centre Of Mass (COM) of an 

image. If this is applied to a binary image and the results are then normalised with 

respect to the total mass (moo), then the result is the centre co-ordinates of the 

object. Accordingly, the centre co-ordinates x,y are given by : 

5 = ^ y = " ^ (2.18) 
moo moo 

The COM describes a unique position within the field of view which can then be 

used to compute the centralised moments of an image. 

momenta 

The definition of a discrete centralised moment as described by Hu[28] is: 

M N 

//p, = ^ (2.19) 
x=l y=l 

This is essentially a translated Cartesian moment, which means that the centralised 

moments are invariant under translation. To enable invariance to scale, normalised 

moments 7%,, are used [83], given by: 

^ (2.20) 
/̂ oo 

where : 

Having described an image by a set of moments, it may prove useful to investi-

gate which moments give rise to which characteristics of the image, or vice versa. 

This can be achieved by reconstructing the original image from the calculated mo-

ments. Moment reconstruction, for moments with orthogonal basis functions (such 

as Legendre and Zernike moments which will be discussed later) has been developed 

extensively, [62, 65, 79, 80]. However, where the basis set is non-orthogonal (such 

as Cartesian and centralised moments), only one method has appeared (although, 

non-orthogonal transform methods exist). This is the method of moment matching 

for non-orthogonal moment reconstruction [79]. The method is baaed upon creating 

a continuous function that has identical moments to that of the original function. 

In this section it has been applied first to Cartesian moments and then to the cen-

tralised moments. It must be noted that in applying the theory to sampled images, 

the continuous conditions are replaced by discrete versions, reducing the accuracy 

of the final function. 
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Assuming that all moments Mpg of a function f{x, y) and of order N = {p+q) are 

known from zero through to order Nmax, it is then possible to obtain the continuous 

function g{x, y) whose moments match those of the original function f{x, y), up to 

order Nmax- (With reference to the Taylor series expansion in Section 2.1), assuming 

that the given continuous function can be defined as: 

(̂2;, 3/) == Poo + pioa; + ^̂ 012/ 4- 2̂02;̂  + (2.22) 

which reduces to: 

Nrr P + 9 
p=0 g=0 

(2.23) 

then the constant coefficients gpq, are calculated, so that the moments of g{x, y) 

match those of f{x,y), assuming that the image is a continuous function bounded 

by: 

X e [—1,1] , y e [—1,1] (2.24) 

These limits can be achieved by normalising the pixel range over which the Cartesian 

moments are calculated, thus: 

p(a;, = Mp, (2.25) 
J-I 

Substituting Equation 2.22 into Equation 2.25 and then solving the integration 

produces a set of Linear Equations (LE), the number of which is determined by the 

order (p + g) of reconstruction. These can then be solved for the coeSicients (in 

terms of the moments Mpg) by using matrix inversion. For order three {{p + q) < 3), 

the LEs in matrix form are; 

Poo 

P20 

P02 

1 

4 

Moo 

M20 

M02 

(2.26) 

1 
5 

1 
7 

X 
15 

1 
5 
1 
7 

J_ 
15 

1 
9 
1 

15 
1 

15 

1 
9 
_1_ 
15 J_ 

15 

PlO 

P30 

. P12 _ 

1 

~ 4 

M i o 

M 3 0 

M 1 2 

(2.27) 

Poi 

P03 

. P2I _ 

1 

~ 4 

MQI 

M o 3 

M 2 1 

(2.28) 
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and finally: 

Pii -M 11 (2.29) 

Applying matrix inversion to the first matrix, Equation 2.26 produces: 

14 - 1 5 - 1 5 Mqq 
1 

Poo 

- 1 5 45 0 M20 
" 1 6 

P20 

- 1 5 0 45 Mq2 . 902 _ 

(2.30) 

By repeating this for all the matrices, it is possible to calculate all the coefficients. 

If they are then substituted back into Equation 2.22 an expression for g{x,y) is 

produced. This expression can then used to reconstruct an approximation of the 

original image. The reconstruction function g{x,y) is now in terms of weighted 

sums of the moments Mpq, which have been previously calculated from the original 

function f{x,y). The resultant function g{x,y) for order three is: 

16^(a:, y) = (14Afoo ~ 15Af2o — 15Afo2) 

+ (90_&fio """ 105)7*30 ~ 45Afi2)z 

+ (OOikfoi ^ 105-Mo3 ^ 45Af2i)y (2.31) 

ISikfoo + 45-M2o)^^ 4" 2)Q]V[iixy 

+ (—15Afoo + 45ikfo2)y^ + (—105-Mio + ITSAfgo)^^ 

45Afoi + 135M2i)x'^y + (—45ikfio + 135Mi2)xy'^ 

105iWoi "k ITSAfos)^/^ 

Implementing this method to order {p + q) = 8 for binary images of simple shapes 

produces recognisable results, as shown in Figures 2.3 and 2.4. Figure 2.3a is the 

original image from which the moments were calculated and Figure 2.3b is the 

image reconstructed from the moments. The borders of the shape appear unclear, 

but they appear when the reconstructed image is thresholded, Figure 2.3c. Here the 

level of the applied threshold was adjusted by visual comparison with the original 

image. Due to the nature of the continuous function, the final shape is dependent 

on the threshold level, as is apparent in Figure 2.3c, as compared with the original 

image, Figure 2.3a. This analysis is then repeated for the rectangle in Figure 2.4. 

The corners of the rectangle in Figure 2.4c are missing. The corners represent 

the high frequency content in the image, thus will be described fully by higher 

order moments. So the thresholded shape will converge to the original shape as 

the number of moments (and thus the order) increases. However for more complex 

shapes, higher accuracy (p + g) 8 is needed. This is analogous to the high 

frequency information needed to reconstruct pulsed time domain waveforms, using 
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# # # 
(a)Or%^MUInmge l"/ (c)ThM!8hoWed 

continuous function 
Figure 2.3; Order 8 Cartesian reconstruction of an ellipse. 

methods like Fourier series. As the order (and accuracy) increases, so does the 

number of LEs that need to be solved (reconstruction for order eight resulted in 

forty five LE's). Further, if it was required to increase the order of reconstruction 

(using Equation 2.31), then all coefficients need to be re-calculated. This is due 

to the correlated nature of the Cartesian moments, each moment does not simply 

provide its own individual contribution, (unlike the orthogonal case which will be 

discussed later in this chapter). It is interesting to note the effects of the Gibbs 

phenomena [75] which are more evident in the reconstructed ellipse - Figure 2.3b. 

The Gibbs phenomena (explained in terms of Fourier series) is the inability for a 

continuous function to recreate a step function - no matter how many finite high 

order terms are used, an overshoot of the function will occur. Here the discontinuous 

edge of the original intensity function of the ellipse (between the ellipse and the 

background) appear unclear in the reconstruction. While outside of the original 

area of the ellipse, ' ripples' of overshoot of the continuous function are visible. 

(a) Original Image (c) Thresholded 
continuous function 

Figure 2.4: Order 8 Cartesian reconstruction of a rectangle. 

By assuming the same constraints as for Cartesian moment matching, the theory 

can be extended to centralised moments. The continuous function i/) is now 

defined as: 

(3:, 2/) = ^ ^ - 4^(2/ - 2/)̂  
p=0 q=0 

^max — P Q (2.32) 
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similarly, Equation 2.25 becomes: 

-i ri 
(̂a;, ?/)(:c - - i/)^ (fa; = Mp, (2.33) 

-1 J-I 

where x and y are the x and y COM's, respectively. Solving for g(x, y) is then 

achieved in the same manner as already described for the Cartesian case. 

A measure of asymmetry in an image is given by its skewness, where here the 

description is a statistical measure of a distribution's degree of deviation from sym-

metry about the mean [53]. The third order moments (skewness and bi-correlations) 

will be zero if the distribution is symmetric eg. Gaussian. The degree of skewness 

can be determined using the two third order moments, /iso and /io3. Prokop [65] 

used these moments as a basis to define the coefficients of skewness. The direction 

of skewness can be determined by analysing the signs of these results. 

More generally, Li [43] described the basis function (in Equation 2.16), as 

a weighting function which extracts features of the image f{x,y) concerning the 

symmetry in the irradiance distribution. Li used this property to show how low 

order (p + g)*̂  normalised centralised moments (Equation 2.20) produce descrip-

tions which are directly comparable to the existence of symmetry within the image. 

Here symmetry is being detected about the COM of the image, hence the use 

of the centralised moments. The first seven scale-normalised centralised moments 

(%i,%o,%2,%i,77i2,%o,%3) were analysed using typed characters as binary input 

images. It was shown that by looking at the sign and the magnitude of the cen-

tralised moments, character recognition based on symmetry properties is possible. 

Here follows a summary of this work. Shapes that are either symmetric about the 

a; or ^ axes will produce ?7ii = 0. For shapes symmetrical about the axis %2 = 0 

and 7730 = 0, Figure 2.5a and Table 2.1. However for shapes symmetric about the 

a; axis, 7̂ 03 = 0 and ?yi2 is positive, Figure 2.5b and Table 2.1. Further to this the 

following generalities are true: 

rjpq = 0 Vp = 0 ,2 ,4 . . ; 5 = 1 ,3 ,5 . . (2.34) 

for shapes symmetric about the a; axis. However shapes which are asymmetrical 

about the a; axis produce: 

< 0 Vp = 0,2,4.. ; g = 1,3,5.. (2.35) 

and: 

%o > 0 , 77(̂  > 0 Vp = 0,2,4.. /(a;, 1/) > 0 (2.36) 
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In this way it can seen that the sign of the normalised centralised moments can be 

arranged to give qualitative information about the shape being described (i.e. the 

existence of symmetry), while the magnitude of the centralised moments gives a 

quantitative description (i.e. their size and density). 

M G 
(a) (b) 

Figure 2.5: Axes of symmetry for typed characters. 

Character m i %2 %2 %3 

M 0 + + - 0 0 -

C 0 + + 0 + + 0 

Table 2.1: Typed characters values indicating symmetry. 

2.3 Hu invariant set 

The non-orthogonal centralised moments are translation invariant and can be nor-

malised with respect to changes in scale. However, to enable invariance to rotation 

they require reformulation. Hu [28] described two different methods for producing 

rotation invariant moments. The first used a method called principal axes, however 

it was noted that this method can break down when images do not have unique 

principal axes. Such images are described as being rotationally symmetric. The 

second method Hu described is the method of absolute moment invariants and is 

discussed here. Hu derived these expressions from algebraic invariants applied to 

the moment generating function under a rotation transformation. They consist of 

groups of nonlinear centralised moment expressions. The result is a set of absolute 

orthogonal (i.e. rotation) moment invariants, which can be used for scale, position, 

and rotation invariant pattern identification. These were used in a simple pattern 

recognition experiment to successfully identify various typed characters. They are 

computed from normalised centralised moments up to order three and are shown 

below: 

h 

h 

h 

h 

%0 + %2 

(%0 — %2)^ + 4?̂ ^̂  

(%0 — 3^12)̂  + (3%1 — %3)̂  

(%o + Vlif + (%i + VozY 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

20 



h = (%o — 37712) (7730 + 7712) [(%o + 7712)̂  — 3(%i + ^03)^] + (3%i (2.41) 

— %3)(%1 + %3)[3(%0 + 7712)̂  — (%! + 7703)̂ ] 

6̂ — (%0 — %2)[(%0 + 1̂2)̂  — (%1 + %3)̂  (2.42) 

+47711(7730 + ^12) (̂ 21 + 7703)] 

Finally a skew invariant, to help distinguish mirror images, is: 

h = (37721 — 7703) (%o + ^12) [(%o + 7712)̂  — 3(7721 

+%3)^] + (7730 — 37712) (7721 + 7703) [3(7/30 (2.43) 

+7712)̂  — (%1 + ?703)̂ ] 

These moments are of finite order, therefore, unlike the centralised moments they 

do not comprise a complete set of image descriptors, [43]. However, higher or-

der invariants can be derived, [3, 28]. It should be noted that this method also 

breaks down, as with the method based on the principal axis for images which are 

rotationally symmetric as the seven invariant moments will be zero [65]. 

2.4 Orthogonal moments 

Cartesiem moments, Equation 2.13 are formed using a monomial basis set This 

basis set is non-orthogonal and this property is passed onto the Cartesian moments. 

These monomials increase rapidly in range as the order increases, producing highly 

correlated descriptions. This can result in important descriptive information being 

contained within small differences between moments, which leads to the need for 

high computational precision. 

However, moments produced using orthogonal basis sets exist. These orthogonal 

moments have the advantage of needing lower precision to represent differences to 

the same accuracy as the monomials. The orthogonality condition simplifies the 

reconstruction of the original function from the generated moments. Orthogonality 

means mutually perpendicular, expressed mathematically - two functions and 

7/n are orthogonal over an interval a < z < 6 if and only if: 

b 

2/m(a;) 2/n(3:)(̂ 3; = 0 ; 771^71 (2.44) 

Here we are primarily interested in discrete images, so the integrals within the 

moment descriptors are replaced by summations. It is noted that a sequence of 

polynomials which are orthogonal with respect to integration, are also orthogonal 

with respect to summation, [85]. Two such (well established) orthogonal moments 

are Legendre and Zernike. 
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2.4-1 Legendre moments 

The Legendre moments [79] of order (m + n) are defined as; 

Amn = y y (iz d?/ (2.45) 

where m,n = 0,1, 2,..., oo, and Pn are the Legendre polynomials and f{x, y) is 

the continuous image function. The Legendre polynomials are a complete orthog-

onal basis set defined over the interval [—1,1]. For orthogonality to exist in the 

moments, the image function f{x,y) is defined over the same interval as the basis 

set, where the order Legendre polynomial is defined as: 

== Onj scJ (2x16) 
j=0 

and are the Legendre coefiScients given by: 

n - j = even (2.47) 

So, for a discrete image with current pixel Equation 2.45 becomes; 

A„.„ = E E (2.48) 

and z, ?/ are defined over the interval [—1,1]. 

CompZ&c moments 

The Zernike polynomials were first proposed in 1934 by Zernike [87]. Their moment 

formulation appears to be one of the most popular, outperforming the alternatives 

[80] (in terms of noise resilience, information redundancy and reconstruction capa-

bility). The pseudo-Zernike formulation proposed by Bhatia and Wolf [6] further 

improved these characteristics. However, here we study the original formulation of 

these orthogonal invariant moments. 

Complex Zernike moments [79] are constructed using a set of complex polynomi-

als which form a complete orthogonal basis set defined on the unit disc {x'^+y'^) < 1. 

They are expressed aa: 

771 1 f f 
= / / /(a:,2/)[%nn(a:,i/)]* (fa; cfi/ where + 1/̂  < 1 (2.49) 

^ J X J y 

where m = 0,1,2,... , oo and defines the order, /(a;, i/) is the function being described 

and * denotes the complex conjugate. While n is an integer (that can be positive or 
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g, r) = 7"" (2.53) 

negative) depicting the angular dependence, or rotation, subject to the conditions: 

m— I n I = euGM , | M | < m (2.50) 

and = Am-n is true. The Zernike polynomials [87] Vmn{x,y) expressed in 

polar coordinates are: 

%nn(r,^) = ^n ( r ) exp( jMg) (2.51) 

where (r, 6) are defined over the unit disc, j = and Rmn{f) is the orthogonal 

radial polynomial, defined as: 

m—\n\ 
2 

F(m,M,g,r) (2.52) 
3=0 

where: 
fTl TD T) O 

g!(l2:^ - a ) ! ( I ! !^ - g ) ! 

where JRmn(r) = Rm,~n{r) and it must be noted that if the conditions in Equation 

2.50 are not met, then Rmnix) = 0. The first six orthogonal radial polynomials 

are: 

7̂ 00 (r)— 1 ^ii(r) = r 

^20 (r) = 2r^ - 1 A22(r) = (2.54) 

A3i(r) = — 2r ^33(7") = 

Figure 2.6 shows eight such radial responses, where it can been seen that the polyno-

mials become more grouped, as they approach the edge of the unit disc (r approaches 

unity). (Care must be taken with regard to the accuracy of these polynomial calcu-

lations as the factorial operations can quickly produce large integer values, even at 

relatively low order m). The difference between these orthogonal polynomials and 

the non-orthogonal monomials can be seen by comparing Figure 2.6 with Figure 

2.2. So for a discrete image, if is the current pixel then Equation 2.49 becomes: 

^ ?/)]* where < 1 (2.55) 
a; y 

To calculate the Zernike moments, the image (or region of interest) is first mapped 

to the unit disc using polar coordinates, where the centre of the image is the origin 

of the unit disc. Those pixels falling outside the unit disc are not used in the 

calculation. The coordinates are then described by the length of the vector from 

the origin to the coordinate point, r, and the angle from the x axis to the vector r, 

23 



0.5 -
/ I : 
/ / ; 

§ I 
a 
.« 
cc 

-0.5 

- 1 _i_ 
&1 &2 &3 &4 0 ^ o.e 

r 

0.7 0.8 

2̂0 •• 
2̂2 "" 
3̂1 -
4̂0 " 
3̂3 •• 

hiiZ 
0.9 

Figure 2.6; Eight orthogonal radial polynomials plotted for increasing r. 

9, by convention measured from the positive x axis in a counter clockwise direction. 

The mapping from Cartesian to polar coordinates is: 

a; = r cos ^ y = r sin 0 (2.56) 

where 

r — \/x'^ + y'^ 9 = tan ^ ^ (2.57) 

However, tan"^ in practice is often deGned over the interval — § < ^ so 

care must be taken as to which quadrant the Cartesian coordinates appear in. 

Translation and scale invariance can be achieved by normalising the image using 

the Cartesian moments prior to calculation of the Zernike moments [37]. Translation 

invariance is achieved by moving the origin to the image's COM, causing moi = 

mio = 0. Following this, scale invariance is produced by altering each object so that 

its area (or pixel count for a binary image) is moo = where ^ is a predetermined 

value. Both invariance properties (for a binary image) can be achieved using : 

/^(3;,2/) = / ( ^ + a;,^ + i/) where a = (2.58) 

and h{x, y) is the new translated and scaled function. The error involved in the 
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discrete implementation can be reduced by interpolation. If the coordinate calcu-

lated by Equation 2.58 does not coincide with an actual grid location, the pixel 

value associated with it is interpolated from the four surrounding pixels. As a re-

sult of the normalisation, the Zernike moments | Aqq | and | An | are set to known 

values. I All | is set to zero, due to the translation of the shape to the centre of 

the coordinate system. This however will be affected by a discrete implementation 

where the error in the mapping will decrease as the shape (being mapped) size (or 

pixel-resolution) increases. | yloo I is dependent on moo, and thus on /5: 

= - (2.59) 
TT 

Further, the absolute value of a Zernike moment is rotation invariant as reflected 

in the mapping of the image to the unit disc. The rotation of the shape around 

the unit disc is expressed as a phase change, if is the angle of rotation, is 

the Zernike moment of the rotated image and Amn is the Zernike moment of the 

original image then: 

exi)(--J?T4&) (2.60) 

vl on encotfmp 

By returning to the continuous form of the Zernike moments (in order to enable 

easy manipulation of the moments), it is possible to gain an insight into the image 

encoding itself. As before, the Zernike moments are defined by Equation 2.49, where 

the Zernike polynomials are expressed by Equation 2.51. Converting the integration 

of Equation 2.49 to polar coordinates, using dx dy = r dr dO and Equations 2.51, 

2.56 and 2.57, produces: 

TTl -j- \ f f 
= / //(a;,^)[%»;i(a;,?/)]*d2;di/ where 1 

^ J X J y 

j~n 4- 1 ^2^ 
= / / /(r, g)Amn(r)exp(-jW)rc(rdg (2.61) 

TT Jo Jo 

Re-arranging the integral produces: 

Tfi -f" 1 
= / e x p ( - j 7 i ^ ) / / ( r , g ) r j ^ n ( r ) ( f r ( f g (2.62) 

^ Jo Jo 

It can be seen that the /(r, )̂ term is weighted by r.Rmn()̂ )' The radial polynomials 

are normalised such that: 

Amn(l) = 1 (2.63) 
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is true [6, 53]. Due to the unit disc, r is at a maximum when equal to unity, meaning 

that: 

I &nn(r) |< 1 (2.64) 

This result is illustrated in Figure 2.6. Using these results and returning to the 

weighted term (in Equation 2.62), we can see that the weighting is bounded by r: 

I r ^ n ( r ) |< r (2.65) 

This produces descriptions which are weighted in favour of their distance from 

the origin of the unit disc. Those pixels lying closer to the perimeter of the unit 

disc will have more weight than those lying closer to the origin. As r approaches 

unity the radial polynomials display steeper gradients and converge (becoming more 

correlated - Figures 2.6 and 2.7). The higher order polynomials (and their corre-

sponding moments) will have improved capability in describing image detail due to 

their increased oscillations (see Figure 2.7) especially in the region before conver-

gence due to the increased frequency of these oscillations. Image detail which is 

encoded around the region of convergence will be more correlated. However, these 

characteristics can be exploited. Considering the case of applied perimeter noise 

on simple shapes (i.e. circle, square and triangle), the effects of the noise (close to 

the disc's perimeter) can be reduced by scaling the shape (during mapping) to an 

appropriate size, where the noise cannot be described efRciently enough to pose a 

problem, however enabling sufficient detail to describe the shape. 

The method of moment matching (Section 2.2.3), as described for the reconstruction 

of non-orthogonal moments is also applicable to reconstruction of an image by 

orthogonal moments. However, the orthogonality condition enables a faster, more 

direct approach. Teague [79] showed that, for orthogonal Legendre moments, if 

all moments of a Cartesian function /(z,! /) up to a given order are known, 

then it is possible to reconstruct a discrete function /(a;, i/), whose moments match 

those of the original function f{x,y), up to the order Nmax- This relationship is 

due to the orthogonality condition of the Legendre moments, while the accuracy 

of the reconstructed function improves as TVmoi approaches inSnity. Khotanzad 

[37] expressed this relationship in terms of Zernike moments, shown here in radial 

coordinates: 

/ (^ ,^) = ^ (2.66) 
m = 0 n 
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Figure 2.7; Higher order orthogonal radial polynomial plotted for increasing r. 

and n is constrained by Equation 2.50. Expanding this using real-valued functions 

produces: 

c„ 
^ COS 4- s m + - ^ & n o ( r ) (2.67) 
m=0 n>0 

composed of their real (i?e[.]) and imaginary {Im[.]) parts: 

2?7i 2 
C„ 2.Re 

TT 
E E (r) cos ng (2.68) 

I :/ 
— 2 77% — 2 % i———— 

== -27m[Amn] = % ^ ^ y ( r , g ) 7 ( m m ( r ) 8 m n g (2.69) 
TT 

I 3/ 

bounded by 4- 2/̂  < 1. Here, each Zernike moment simply adds its own contri-

bution to the function /(r, ^), unlike the Cartesian reconstruction case discussed 

in Section 2.2.3. Figure 2.8b shows the result of order 2 through 12 reconstruction 

on a 64 X 64 image, while Figure 2.8a is the original image. Orders 0 and 1 are 

discarded due to the scale and translation mapping used. Equations 2.58 and 2.59. 

This makes | An | zero, while | ^ 0 0 I (the shape's area) is set to a known value, /?. 

Due to the nature of the function / ( r , 9), the Gibbs phenomena [75] will affect the 
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final result (as already mentioned for the moment matching case in Section 2.2.3). 

However, the effects are less apparent in Figure 2.8b due to faster convergence of 

the final function / ( r , 9). 

(a) The original image. (b) Order 2 — 12 reconstruction 

Figure 2.8: Zernike moment reconstruction example. 

2.5 Relating Zernike and Cartesian moments 

To help reduce computation complexity, it may prove useful to express the Zernike 

moments in terms of Cartesian moments. This removes the need for the polar 

mapping of the image, while also removing the dependence on the trigonometric 

functions. Alternatively, expressing Cartesian moments in this way would aid the 

selection of less correlated descriptors. This conversion can be achieved by slightly 

re-arranging the Zernike moment equation. If, as before, the Zernike polynomials 

are given by Equation 2.51 [87] and the radial polynomials Rmnif) are defined by 

Equation 2.52, re-ajranging g, r) gives: 

"̂(772, n, 8, r) 
( m — s)! 

s! 'm+ n . «)! 
(m — g)! 

— r 
s)\ 

xn—2s 

m—2s 

g^m-2.+|n|y, ^ m—2s— n )! 
r (2.70) 

then substituting k = {m — 2s) and re-arranging again, produces: 

mnk T" 
k (m — A;) M > 0 

k=n 

where: 

5. mnk — 

(™+fc)| 

(2.71) 

(2.72) ^m—k^ I ̂ fc+nj I ̂ k~n^| 

Using this manipulated form of the radial polynomials produces Zernike moment 

definitions (in continuous form) of: 

A-r. 
m + 1 

TT 
mnk 

k=n 

2-k 

0 JO 
r*^exp(—jn^)/(r, ̂ ) r dr ; r < 1 (2.73) 
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which when translated to Cartesian coordinates is: 

, -j M l n n 

^ Bmnk / / (a; - 3/) da: d?/ (2.74) 

bounded by < 1 and j = The double integral can now be expressed 

in terms of a series of summed Cartesian moments, of the form: 

TTipg = / (2.75) 
J X J y 

For example: 

Zoo = 
1 " 

^ Boot / /(a; - J2/)°(a;^ + 2/) (̂ 3; 
^ t=0 

= - / / /(a;, 2/) c(a; (f?/ 
^ Jx Jy 

= —77̂00 (2.76) 
TT 

It must be noted that this comparison is only valid if the Cartesian moments are 

calculated on images confined to [—1,1], which is due to the Zernike moments being 

calculated over the unit disc. 

2.6 Moment noise sensitivity 

Various invariant moment schemes have proved useful in recognition and reconstruc-

tion tests [2, 17, 28, 78]. They have proved successful and have shown invariance 

properties for images containing very little or no noise. However in the presence of 

noise, the computed Hu invariant moments Mi_7, begin to degrade. One study [80] 

showed that higher order moments are more vulnerable to white noise, thus making 

their use undesirable for pattern recognition. A more recent study [70] compared 

the performance of the Hu invariant moments with a set of moments based on 

wavelet basis functions. This study showed that when using Hu's moments, even a 

slight discrepancy in the image can cause considerable confusion (i.e. minor shape 

deformation or digitisation errors) if trying to discriminate between two similar im-

ages. However, noise simulation (in terms of image analysis) is very involved, and 

is highly dependent on the type of noise being simulated, its distribution, how it 

is applied etc. These noise-related issues are further discussed in Sections 6.3 and 

6.7. It must be noted that while studies involving noise analyses may be correct 

for each specific test condition, care must be taken when generalising to alternative 

noise-related conditions. 
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2.7 Conclusions 

This chapter has detailed the conventional use of statistical moments - the anal-

ysis of single two-dimensional images. Non-orthogonal and orthogonal descriptors 

have been discussed, describing moments which possess various useful properties in-

cluding translation, scale and rotation invariance. We have considered both image 

description and reconstruction. These techniques are applied to single images and 

describe a shape in terms of its spatial (or pixel) distribution. However, many com-

puter vision and image processing problems involve the analysis of image sequences. 

For example, analysing the movement of an aircraft in the sky, or ultra-sound im-

ages of a beating heart. These image sequences can be of a rigid shape (i.e. an 

aircraft) or a deforming one (i.e. a beating heart), while consecutive images within 

the sequence tend to be highly correlated. Thus, a general framework called velocity 

moments has been developed to utilise the useful properties of statistical moments 

enabling the analysis of moving features within image sequences. The next chapter 

introduces the structure of these moments, here we are primarily interested in their 

description capability, although the problem of reconstruction is also covered. 
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Chapter 3 

Velocity moments 

3.1 Introduction 

One method of developing a technique to analyse image sequences is to stack the 

images into a three dimensional XYT (x, y plus time) block, and then apply a 3D 

descriptor to this data. Data in this form could be described using conventional 3D 

moments (i.e. Cartesian 3D moments [69]), treating time as the z axis. However, 

this method confounds the separation of the time and space information, as they are 

embedded in the data. Time is fundamentally different from the spatial analysis, 

thus, we intend to acknowledge this by treating it separately. Further, we are 

interested in the ability of separating time and space, enabling description of motion 

and/or space. 

An alternative method to analyse image sequences is to reformulate the descrip-

tor to incorporate time, enabling the separation of the time and spatial descriptions 

(if desired), resulting in a more versatile descriptor. To achieve this, a method of 

motion description within the moment basis is required. We have already seen how 

the COM (centre of mass) describes a unique global position within the Geld of 

view forming the basis for the centralised moments (Section 2.2.2). Using the COM 

descriptions between consecutive images, a description of global motion in either 

axis is possible. Further, the COM is guaranteed to exist, independent of the dis-

tribution (unlike alternative higher order moments), justifying the use of this low 

order moment as the basis of a generic framework. 

Our new velocity moments are based around the COM description and are pri-

marily designed to describe a moving and/or changing shape in an image sequence. 

The method enables the structure of a moving shape to be described, together 

with motion information. The velocity moments are calculated from a sequence of 
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images. Their generalised structure is: 

I 

A m n f i - / = ^ ^ (^-i) 
i=2 a; y 

Here the shape's structure (from each image i) contributes through each pixel 

and the weighting function S. Here S is either a centralised Cartesian polynomial 

[28], or a Zernike polynomial [87]. Motion, or velocity, is introduced through U 

as the differences between consecutive COMs in the image sequence. The Carte-

sian monomials were first studied due to their simplicity and ease of computation. 

Further to this, the orthogonal Zernike moments are a well established and proven 

standard technique (in both image noise and pattern recognition), providing an 

ideal platform to enable the analysis of the new framework on an orthogonal set. 

3.2 Cartesian velocity moments 

The Cartesian velocity moments [74] are computed from a sequence of images as: 

I M N 

^ ^ ^ p, g) (3.2) 
i=2 x=l y=l 

where 6'(̂ , p, g) arises from the centralised moments: 

'^(^,P,9) = ( 3 ; - ^ ) ^ ( 2 / - W (3 3) 

and (%, 'y) introduces velocity aa: 

(̂ (%,A(,7) = ( ^ - ^ i : i : ) ' ' ( ^ - ^ ) ' ^ (3.4) 

^ is the current COM in the a; direction, while is the previous COM in the 

X direction, ^ and yi-i are the equivalent values for the y direction. (The image 

sequence is assumed to begin at image index 2 = 1, however, summation commences 

at % = 2 to ensure that the 6rst velocity calculation (7(2, --y) is defined, essentially 

achieving invariance to the start position within the field of view). It can be seen 

that the equation can easily be decomposed into averaged centralised moments 

('umiioo), and then further into an averaged Cartesian moment (̂ ;miioo with ^ = 

= 0). The velocity moments for which /̂  = 'y = 0 are: 

/ M 71/ 

- I Z Z (3-5) 
%=2 1=1 g/=l 
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which are the averaged centralised moments. Setting p = q = 0 produces: 

/ M N 
^ (3.6) 
1=2 1 = 1 y=l 

which is a summation of the difference between COMs of successive images (i.e. the 

velocity). The structure of Equation 3.2 allows the image structure to be described 

together with velocity information from both the x and y directions. These results 

are averaged by normalising with respect to the number of images and the average 

area of the object. This results in pixel values for the velocity terms, where the 

velocity is measured in pixels per image. The normalisation is expressed as: 

VUlpq^ry 
- A{I - 1) 

(3.7) 

where A is the average area (number of pixels) of the moving object, I is the number 

of images and is the normalised Cartesian velocity moment. 

,9. ,2../ 

Due to the non-orthogonal monomials that they are based on, the Cartesian veloc-

ity moments are also non-orthogonal, which suggests that the moment matching 

reconstruction method is applicable. If we consider the velocity moment case for 

a single image, then this is actually a centralised moment for a single image, so 

the method described in Section 2.2.3 holds. To consider the case of the image 

index i, for / > 2, the problem can be simplified by assuming that the resulting 

velocity moments describe a single image, even though they are in fact derived 

from a sequence of images. For example, the velocity moments computed from a 

sequence of a rigid moving shape would effectively produce a refined description of 

the rigid shape, averaging out the affects of any noise in the sequence. To consider 

attempting to reconstruct the complete image set, the COM's for each separate 

image would be needed, along with the velocity moment value before it is summed 

and averaged over the complete sequence. So to reproduce a single combined image, 

(̂a;, 1/) (Equation 2.23) can be defined as: 

6'(:c, 1/) = ^ - )̂̂ (3/ - (3.8) 
j,k,l,m=0 

where: 

G = Gferoge a; = 'umooio , 6 = = fmoooi (3.9) 
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Here x and y are assumed to be the averaged COM's in the x and y directions. 

Similarly Equation ?? becomes: 

1 
k „lljn (̂a;, (?/ - ^) 06"" (fa; 0(2/ = (3.10) 

1 

Applying this in practice means that an increasing number of large CLEs need to 

be solved, even if only low order {{j 4- A) < 4) reconstruction is required. However 

it would appear that an order of at least ( j + A:) ^ 8 is needed to produce a 

meaningful reconstruction (as found in Section 2.2.3). As such the computation 

involved appears excessive, though it certainly would appear that the new velocity 

moments do allow for partial reconstruction, should it be desired. Reconstruction 

may prove useful to investigate which moments give rise to which characteristics 

within the image sequence, or vice versa. This topic is discussed briefly in Section 

7.1.4. 

The centralised moments can be normalised with respect to scale using Equation 

2.20. This normalisation can be applied to the Cartesian velocity moments to 

produce individual-image scale invariance. First we consider the simple case of two 

consecutive images {1 = 2), from a sequence of a moving and rotating object with 

constant shape. Applying this to the Cartesian velocity moments produces: 

7 Af W 

2=2 a;=l 2/=l 
M AT 

= [ / ( 2 , / / , 7 ) ^ ^ ( a ; - ^ ) P ( 2 / - ^ ) ' ' f 2 . , (3.11) 
x=l y=l 

[/(2, '"/) is scalar and the remainder of the expression is just a centralised moment, 

the result can be normalised with respect to scale using Equation 2.20 producing: 

= (7(2,/^,'y) 
/̂ oo 

= [/(2,/2,3/)77pg (3.12) 

If a sequence of images with 7 > 2 is considered, then the Cartesian velocity mo-

ments need to be reformulated to include (individual image) scale invariance: 

^ [/(%,//, 7) mn/i'y — / / / I 'y 
1=2 V '̂00 
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(3.13) 
: = 2 

subject to Equation 2.21, where is the zero-order moment (/ioo) and 77,̂ ^ 

is the 2*̂  scale normalised centralised moment, Equation 2.20. It must be noted 

that this scale invariance will increase the between-image correlation, which in turn 

increases the already highly correlated (non-orthogonal) description. However, this 

modification to the descriptor may be useful for specific applications, such as de-

scribing an object which is moving towards the camera. One direct application 

could be, say, providing a feature to follow at a football match to allow the cameras 

to focus on the action. Equally individual-image scale invariance is also possible by 

rescaling, or normalising the image prior to calculation, a technique explained in 

Section 2.4.2 and used later in Section 3.3. 

In order to assess the performance of the Cartesian velocity moments on extracted 

images, tests were run on synthetic images. By applying the velocity moments to 

three different sequences the recognition capabilities were examined. The sequences 

were of a square and triangle moving along the x axis at 5 pixels/image and a circle 

moving at 7 pixels/image. The circle also had a small movement of 0.1 pixels/image 

in the y axis. Each sequence consisted of ten images. These produced significantly 

different second order moments. Table 3.1 (see Section 3.2.4 for an explanation 

of what these moments represent), and the a; velocity term fmooio was estimated 

correctly in each case. 

Index Square Triangle Circle 

O.OOeOO 
0.16e04 
0.55e06 
S.OOeOO 

O.OOeOO 
6.65e02 
2.66e04 
S.OOeOO 

1.32e04 
0.26e04 
0.74e06 
y.OOeOO 

fm2010 
O.OOeOO 
0.16e04 
0.55e06 
S.OOeOO 

O.OOeOO 
6.65e02 
2.66e04 
S.OOeOO 

1.32e04 
0.26e04 
0.74e06 
y.OOeOO 

f7n,2210 

O.OOeOO 
0.16e04 
0.55e06 
S.OOeOO 

O.OOeOO 
6.65e02 
2.66e04 
S.OOeOO 

1.32e04 
0.26e04 
0.74e06 
y.OOeOO 

O.OOeOO 
0.16e04 
0.55e06 
S.OOeOO 

O.OOeOO 
6.65e02 
2.66e04 
S.OOeOO 

1.32e04 
0.26e04 
0.74e06 
y.OOeOO 

Table 3.1: Low order simple moving shape Cartesian velocity moments 

A common problem in the application of a new technique to a real-world situa-

tion is the issue of image noise - a topic which will be frequently re-visited through-

out this thesis. Applying increasing amounts of noise across each image in a se-

quence will cause the COM calculations (for each image) to slowly drift towards the 

centre of the image (irrespective of the shape). This process essentially 'smears' the 

shape across the image. Further, the addition of such noise in an image sequence 

can be perceived as a pre-processing problem, as arguably 'salt and pepper' noise 

could be removed by a simple median filter. Due to these considerations it was 

decided to investigate the effects of perimeter noise on the velocity moments. This 
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(a) Original (c) cr̂  = 2.5 (d) <7̂  = 5.0 (e) = 7.5 (e) = 10.0 

Figure 3.1: Original tug-boat image and example perimeter noise images. 

(a) Original (c) = 2.5 (d) = 5.0 (e) cr̂  = 7.5 (e) = 10.0 

Figure 3.2: Original overlaid-shapes image and example perimeter noise images. 

was achieved using a set of synthetic image sequences with the perimeter of the 

shape degraded by noise, simulating poor contour extraction. To provide a basis 

for comparison, a set of averaged Hu [28] invariant moments was used. The cen-

tral limit theorem [61] states that given a population distribution, a distribution 

of samples about its mean approaches a normal, or Gaussian distribution, given 

enough samples. The larger the number of samples, the better this approxima-

tion becomes. In this limit we can assume all noise (perimeter or otherwise) to be 

Gaussian distributed. Due to the higher order Hu invariant moments being close to 

zero for symmetrical shapes (i.e. a circle), two sequences of moving asymmetrical 

shapes were used, each consisting of nine images. The first consisted of a series of 

overlaid geometrical shapes, the second wag a silhouette of a tug-boat (all images 

were 128 x 128). Figures 3.1 and 3.2 show an image from each sequence with added 

perimeter noise. The zero mean Gaussian distributed noise function was able to 

both add and remove pixels from the perimeter of the shape, e%ctively moving the 

perimeter pixels into the shape, or outwards away from their original position. (A 

detailed explanation of the perimeter noise algorithm can be found in Appendix 

A. 1.1.) The amount of perimeter noise applied was adjusted using the variance of 

the Gaussian process. The variance took values from 0.0 pixels (no noise) to 10.0 

pixels, in 0.1 steps. The performance of the two methods was then plotted and 

compared, with example results shown in Figure 3.3 and 3.4. The moment values 

have been plotted in terms of their percentage deviation from the original no-noise 

value. Further examples and analysis can be found in Appendix A. The motion 

estimates (wmooio) shown in Figure 3.3 have a peak-to-peak variation of approx-

imately 7% of the original (no noise) value, a relatively low variation given the 

original value was small at 3.64 pixels/image. Clearly the new velocity moments 

(Figure 3.4b shows fmgoio) are much less affected by noise, changing at most by 
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9%, whereas the traditional moments can change by a great amount even when 

averaged, Figure 3.4a shows ~ 40% variation for fg. The effects of the perimeter 

noise on the new technique can be seen in Figure 3.4b, where the gradually in-

creasing (mean) Cartesian velocity moment value reflects the spread of the image 

in the x axis, with respect to the x direction velocity. A theoretical analysis of 

the effects of the perimeter noise (resulting in similar conclusions) can be found in 

Appendix A. Here we have modelled poor extraction using a zero mean Gaussian 

fluctuation about the perimeter of a shape. Intuitively it will have little or no effect 

on the COM calculations, a conclusion which has been illustrated by these results 

and by theoretical analysis (also shown in Appendix A). As a direct result little 

effect on the motion information in the velocity moments will occur (see Figure 

3.3), as these are the differences between consecutive COM calculations. However, 

the effects will be visible in the higher order moments, since the moments describe 

the image distribution, for example see Figure 3.4b. Some effects will be apparent 

in the low order moments due to the discrete nature of both the implementation 

and the approximation of a Gaussian process. By exploiting temporal correlation 

within the sequence, these effects can be reduced. Applying the same noise model 

to the averaged invariant Hu moments will have the same effect, refer to Section 

A.1.3. Again the correlation of the sequence can be exploited, although the effects 

of the noise are amplified by the non-linear combinations of the centralised moments 

comprising the Hu invariant set, producing results like those shown in Figure 3.4a. 

(These non-linear combinations are used to produce rotation invariance.) Modelling 

poor extraction in this manner has illustrated how the velocity moment structure 

incorporating motion description is less affected by uncorrelated perturbations in 

the shape's perimeter. Using a sequence of images can further improve the spatial 

descriptions, provided that non-linear combinations of the velocity moments are not 

employed. Finally it must be noted that the results produced by analyses like this 

are dependent on the image content, making them application dependent. Different 

moments describe different aspects of an image distribution, therefore if the char-

acteristic produced by the noise was not present in the image previously, then the 

noise will understandably have a large eSFect. This can be illustrated by considering 

the moving circle image sequence. Cartesian moments of order (p 4- g) > 2 should 

be zero (or approximately zero) for a binary image of a circle. The addition of the 

perimeter noise will cause these moments to oscillate either side of zero, as they will 

only be affected by the noise and not by the original shape. In the same way the 

effects of the perimeter noise on the motion information in the velocity moments 

(i.e. vmooio) will be proportional to the size of the motion present in the image 

sequence. Thus, the smaller the average motion, the greater the effect the noise will 

have. These effects can be described in terms of the signal-to-noise ratio, between 
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Noise variance 

Figure 3.3: Example vmooio result for the overlaid-shapes sequence against increas-
ing perimeter noise variance. 

the image content and the perimeter noise function. 

Zow order momenta 

If we consider a Cartesian moment description rriio, then this can be considered as 

the mean value of the pixels in the x direction. Alternatively moi is the mean value 

of ?/. As we have already shown in Section 2.2.1, these values for a binary image 

can be interpreted as the central co-ordinates of image. In this way it is easy to 

locate the centre of an single object present in the image. Following on from this, 

;̂miooo is the averaged centralised moment, //iQ. This is effectively the averaged and 

translated Cartesian moment of order miQ. Therefore, fmiooo describes the pixel 

construction with respect to the a; dimensions of the object as it moves through the 

sequence. 

gpread 

If we now consider the second order moment 77120, this describes the spread of pixels 

in the x direction only. If calculated about the mean (i.e. the centralised moment 

fi2o), then this is the image's x direction (sample) variance. Similarly /io2 is the vari-

ance about the y axis and is the image's co-variance. Therefore, the velocity 

moment vmnoo is an expression of the image sequence's time averaged co-variance. 
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Noise variance 

(a) Hu invariant moment /a with increasing perimeter noise variance. 

C 

O 
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4 6 

Noise variance 

(b) vm2QiQ with increasing perimeter noise variance. 

Figure 3.4: Example Hu and velocity moment results for the overlaid-shapes se-
quence against increasing perimeter noise variance. 
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Using this information the velocity moment vmmQ contains information about the 

average pixel spread in both the x and y axis (about the mean) with respect to the 

shape's x direction velocity. It can be seen that these moments are more resilient 

to noise that degrades the density of the shape, due to them containing informa-

tion about the spread of the object. Strictly speaking, when discussing variance 

calculations on an image using Cartesian moments, we are actually referring to 

the un-normalised sample variance, (in contrast to the population variance), as the 

mean value used to calculate the variance is determined from the samples them-

selves (i.e. the image) rather than being known a priori and the result has not been 

normalised with respect to the number of samples. 

The direction and orientation of the motion can then described using the moments 

vm22Qi and vm22\d- This is possible as vm22oo will always be positive due to the 

values of p and q. By looking at the signs of these moments an estimate of the 

direction of motion can be determined, assuming the orientation of the image space 

is known o pnon. '̂ 7712202 describes the average magnitude of velocity (squared) 

in the y direction. Similarly vm2220 is the average magnitude of velocity (squared) 

in the x direction. vm22oo will be the same irrespective of the direction of move-

ment, since the centralised moments are invariant to translation. Essentially the 

shape can move along any orientation, without any effect on the moment value. 

In practice there will be slight variation in the moment value due to the discrete 

implementation. Neglecting this, the magnitude of the velocity term is therefore 

invariant with direction and orientation. 

3.3 Zernike velocity moments 

The new Zernike velocity moments are expressed as; 

. I 
^(7)^,^) (3.14) 

i=2 X y 

They are bounded so that (a;̂  -t- ^ )̂ < 1, while the shape's structure contributes 

through the orthogonal polynomials: 

S(m,M) = [%nn(r,0)]* (3.15) 

Velocity is introduced ag before (Equation 3.4), while normalisation is produced by: 
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The coordinate values for U{i, /i, 7) are calculated using the Cartesian moments and 

then translated to polar coordinates. If we consider first the x direction case only, 

from Equation 2.56 the angle 9 for a difference in x position is either 0 or tt radians. 

The value used is dependent on the direction of movement. If the movement is left 

to right then: 

X = r cos 6 = r cos(O) = r (3.17) 

where r is the length of the vector from the previous COM to the current COM, i.e. 

the velocity in pixels/image. Alternatively, if the movement is right to left then: 

X = r cos 6* = r cos(7r) = —r (3.18) 

The mapping to polar coordinates results in a sign change that could be used to 

detect the direction of motion. Similarly for the y direction velocity, the values of 

6 are either | or ^ radians, and using Equation 2.56 produces: 

y = r sin^ = r sin = r (3.19) 

aad 

y = r sin 0 = r sin f — j = —r (3.20) 

The normalised orthogonality condition for the Zernike moments is [53]: 

/ g) r dr dg = — — ( 3 . 2 1 ) 
Vo n + I 

where: 

^ab = 1 for a = b, 5ab = 0 for a ^ b (3.22) 

where here the Zernike polynomial (or basis function) (r, ^), is being analysed. 

Again we consider the simple case of two consecutive images ( / = 2) from a sequence 

of a moving shape. Applying the Zernike velocity moments to this sequence enables 

one image to be described (the second of the two images), along with the motion 

information from between the two images. From Equation 3.14 the basis function 

of the Zernike velocity moments is Uab{i, "y)Vab{r, 9), using this and Equation 3.21 

produces the unnormalised orthogonality condition (for 7 = 2 and): 

2ir pi 

/ [Un((2, ^)] [[4nt(2, //, 7)%nA:(r, ̂ )] r (fr (fg 
0 JO 

p2-iT rl 
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— (2, 'y) f̂ mA; (2,/i,'y) (3.23) 
77. + 1 

where Equation 3.22 holds and //, "y) is a real-valued scalar subject to: 

:> 0 (3.2/1) 

If the shape is constant, such as a car and more than two images are processed, then 

each individual image's spatial descriptions remain orthogonal, just weighted by 

Uabih //, 7), Equation 3.23. However, the overall description of the sequence becomes 

correlated, due to the high similarity between the images. Further, if we consider 

Zernike velocity moments describing just spatial information (no motion), then the 

resultant temporal correlation is exploited, refining the description of the rigid shape 

as the sequence progresses. The final Zernike velocity moments can be considered as 

refined (or averaged) Zernike moments of a single image, the descriptions of which 

are orthogonal (Equation 3.21). If the shape is both moving and deforming (non-

rigid), such as a person walking, then the correlation between consecutive image 

descriptions is reduced. However, this correlation is the result of the temporal 

sequence and is advantageous. Increasing the size of the image sequence refines the 

description of the moving shape within it. 

In conclusion the Zernike velocity moments are a weighted sum of the Zernike 

moments over multiple consecutive images. The weighting is real-valued and scalar, 

therefore the spatial description of each consecutive image in the sequence remains 

orthogonal. However, the overall description is temporally correlated due to the 

images being a consecutive temporal sequence. 

Here we assume that the Zernike velocity moments produced describe a single image, 

even though they are in fact derived from a sequence of images, (as previously 

described for the Cartesian velocity moment case in Section 3.2.1). To attempt to 

recreate each image within the sequence would require the COM values for each 

separate image, along with the Zernike moment value before they were summed. 

Whereas if a single image is to be reconstructed from the sequence of a rigid shape, 

then the moments produced are effectively a refined description of the moving shape 

over time. So if applied to the moments describing a rigid shape moving in the 

presence of noise, the velocity moments will average out the eEects of that noise. 

Assuming we are describing a rigid shape, then the orthogonality condition holds 

(Section 3.3.1), as each single image's spatial descriptions remain orthogonal. The 

overall description of the rigid shape is refined due to the highly correlated sequence 

description. Equation 2.66 can be extended using the Zernike velocity moments, 

shown here for the /i = 7 = 1 case: 
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^ (3.25) 
m = 0 n 

where n is constrained by Equation 2.50, expanding this expression (as before in 

Section 2.4.3) using real-valued functions, produces; 

^ yi(Cmnll COSMg -k 5'mnll SillM^) 7^n(r) -k -^^Amo(r ) (3.26) 
m=0 n>0 

where: 

C, mnll — 
2Re 

( / - I ) 

( 7 - r i l - [/(%,l,l)/i(^,^)-Rmn(r)cosMg (3.27) 
^ 1=2 X y 

— 2/m [Amnll] 
mnll — ( 7 - 1 ) 

- 2 m - 2 ^ 
[ / (%,! , ! ) / i (r ,^)^n(r)s inng (3.28) 

1) ^ i=2 I y 

and each image is bounded by (z^ -t-i/^) < 1. Figure 3.5c shows an example Zernike 

velocity moment reconstructed image (orders 2 — 12 were used for reconstruction). 

The Zernike velocity moments were generated from the consecutive (binary silhou-

ette) sequence of a person walking. An example image from the sequence (showing 

the person mid-stride) is displayed in Figures 3.5a and d. The reconstructed results 

reflect the time-averaged nature of the velocity moments, producing an image which 

blurs the area containing leg motion. This blurred contour becomes clearer when 

thresholded, as shown in Figure 3.5f. While the person's torso, (whose position and 

motion will be more constant throughout the image sequence) appears well rep-

resented. Evidence of Gibbs phenomena [75] is also visible in the un-thresholded 

image. In comparison the (single image) reconstructed version of the same person 

mid-stride can be seen in Figure 3.5b, (constructed using Figure 3.5a aa the source). 

While the reconstructed version is clearly lacking in detail (or high frequency infor-

mation), the separation between the person's legs is apparent, unlike its sequence 

constructed version (Figures 3.5c and f). 

We have already seen that the absolute value of a Zernike moment is rotation 

invariant as reflected in the mapping of the image to the unit disc. Section 2.4.2. 

Re-iterating this, the rotation of the shape around the unit disc is expressed as a 

phase change, if (/> is the angle of rotation, is the Zernike moment of the rotated 
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A 
(a) Example silhouette. (b) Single image 

reconstruction. 
(c) Sequence 

reconstruction. 

k 
(d) Example silhouette. (e) Thresholded (b). (f) Thresholded (c) 

Figure 3.5: Zernike velocity moment reconstruction (order 2 — 12) example. 

image and vlmn is the Zernike moment of the original image then: 

eXp(-jM<^) (3.29) 

To apply this to the Zernike velocity moments, we again consider the simple case 

of two consecutive images (7 = 2). However, here the rigid shape is moving and 

rotating object. Calculating the magnitude of the Zernike velocity moment produces 

rotation invariance, (assuming the shape is moving at the same spatial velocity, 

although the speed of rotation can vary). Here the description includes velocity 

information (between the images), while describing the structure of the shape from 

the second image, essentially a velocity-weighted Zernike moment: 

A, 
+ 1 

TT 

f ( 2 , *i,7) A, 

1=2 X y 

m + 1 

TT 
;9(2,m,M) f z . 

I y 
(3.30) 
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since rotation introduces a phase change (Equation 2.60) then: 

= (7(2, //, Y) exp(-jM(;6) 

= (3.31) 

where again, (p is the angle of rotation, Amn is the original Zernike moment (unro-

tated and stationary) and t/(2,/^, 7) > 0. The magnitude | 1/(2,//, 7) A^^ | will be 

rotation invariant. A longer sequence of images ( / > 2) will not maintain rotation 

invariance, since: 

I Affin I + I AjYin I 7 ^ I | (3.32) 

However, through a slight modification, rotation invariance for / > 2 is possible. 

The rotation invariant Zernike velocity moment Rmnnj is: 

Rmnnj — ^ ] U[i, jJ,, 7) 
i=2 

I 

IT 
I !/ 

— ^ ^ I I (3.33) 

as bounded by {x^ + y"̂ ) < 1 and where Ai^^ is the Zernike moment. A simple 

experiment can be used to demonstrate the rotation properties of Equation 3.33. 

Tables 3.2 and 3.3 show the results of applying this description to multiple sequences 

of moving and rotating images (128 x 128) of the character 'A' (the moment val-

ues are normalised with respect to sequence length and mass using Equation 3.16). 

Table 3.2 shows moments which describe purely spatial information, while Table 

3.3 shows moments which include both spatial and motion information. Four se-

quences were tested, where each sequence had a different angle of rotation (between 

consecutive images), from 0° through to 90° rotation, producing diSFerent speeds of 

rotation. Figure 3.6 shows five example consecutive images from the 30° sequence. 

Each sequence consisted of thirteen images of the rotating character moving at 2 

pixels per image in the z direction. The direction of rotation was anti-clockwise 

for all sequences except the 90° case, where the rotation was clockwise. Tables 3.2 

and 3.3 show the corresponding sample mean //, standard deviation (7, and <7///% 

(coefBcient of variation), indicating the percentage spread of the moment values. 

Small values of cr//2% indicate a compact set (or cluster) of moments. Table 3.3 

shows example motion versions of those velocity moments shown in Table 3.2. (For 

example, the values for .R2010 are approximately double that of the values for 7̂ 2000-

This is due to i?2oio being effectively a time averaged 2i?2ooo due to the constant x 

direction motion of 2 pixels per image.) It can be seen that oj[x% is 0.94 for both 

i?2ooo and -R2010, while all of the results have values of <7//i% < 7. 
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A V < & 
Figure 3.6: Consecutive windowed images from the 30° rotation sequence. 

Rotation 
sequence 

-R2000 -R2200 -R3100 %300 

0° 
30° 
60° 
90° 

2190.07 
2170.34 
2169.20 
2140.73 

98.21 
105.46 
105.34 
110.02 

162.79 
166.36 
166.36 
188.05 

527.93 
552.41 
553.27 
563.10 

o 
2167.59 

20.31 
104.76 
4.88 

170.89 
11.56 

549.18 
14.97 

(%///% 0.94 4.66 6.77 2.73 

Table 3.2: Purely spatial rotation invariant descriptions. 

Rotation 
sequence 

-R2010 -R2210 ^3120 -R3320 

0° 
30° 
60° 
90° 

4380.14 
4340.69 
4338.40 
4281.47 

196.41 
210.93 
210.69 
220.05 

651.19 
665.44 
665.45 
752.18 

2111.74 
2209.62 
2213.08 
2252.42 

a 
4335.18 

40.61 
209.52 

9.77 
683.57 
46.23 

2196.72 
59.88 

(%///% 0.94 4.66 6.76 2.73 

Table 3.3: Spatial and velocity rotation invariant descriptions. 

These results are comparable with those previously calculated on single rotated 

images, [38, 37]. By analysing a temporal image set of a shape via Equation 3.33, the 

description of the moving shape can be refined, while also containing velocity and 

direction of movement information. Further improvements in performance would 

be apparent (over describing a single image) where occlusion or image noise is 

present. The descriptions produced appear to be both invariant to rotation and 

direction/speed of rotation while the addition of the velocity does not appear to 

affect the spread (coefhcient of variation, cr//i%) of the moment values. It must 

be noted that exact invariance is not obtained as a result of the errors introduced 

by the discrete implementation, both in the calculation of the moments and the 

mapping of the image to the unit disc. Further, the results are very much dependent 

on the shape itself, along with the image size. Greater errors will appear where 

high frequency information is present, i.e. corners within the images. Descriptions 

using Equation 3.33 will be more correlated than the non-rotation invariant version, 
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Equation 3.14. This is directly linked to the spatial description being the absolute 

value of the Zernike moment for each image (in Equation 3.33), rather than being 

composed of the respective real and imaginary parts. 

For traditional Zernike moments and Rmnn-y, the effects of the rotation are very 

much dependent on the size of the object being rotated. This means that the scale 

and translation mapping can drastically alter the rotation performance, Section 

2.4.2. Pixels which are closer to the edge of the unit disc will be described more 

efficiently, than those pixels which are grouped around the origin (centre) of the unit 

disc. Equally, objects with pixels falling close to the edge of the unit disc will have 

descriptions which are more correlated, due to the converging radial polynomials as 

r approaches unity, Figure 2.6. 

3.4 Relating Zernike and Cartesian velocity moments 

Section 2.5 explained how traditional Zernike and Cartesian moments are related, 

allowing conversion between the two, (i.e. expressing Zernike moments as a summed 

combination of Cartesian moments, or vice versa). Here this theory is applied to the 

two versions of the velocity moments, considering an image sequence of a moving 

shape. To allow comparison between the two traditional moments, the image has 

to be confined to [—1,1]. The moving shape can be mapped to this domain using 

the Zernike mapping. Equation 2.58, while the motion information is 

determined before this operation. The mapping sets ^ ^ = 0 while care must be 

taken to ensure all of the shape is encompassed by [—1,1]- The shape will appear 

central to the coordinate system, with respect to its mass. This in turn means that 

the centralised moments of the image decompose to the Cartesian moments, due 

to ^ ^ = 0. If the image sequence is now described via the Cartesian velocity 

moments: 
7 M N 

At, 7) (3; - (3.34) 
2=2 y=l 

confining a;, 1/ to [—1,1] and applying the mapping produces: 

I 

^ Z ] I Z (3 35) 
1=2 X y 

which can be rewritten as: 

/ 

^ (7(2, At, 7) ^ ^ (3.36) 
1=2 X y 
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Similarly the Zernike velocity moments: 

m + l ^ 
•^mnnj — ^ [Vmn{x,y)] Pî y (3.37) 

i = 2 X y 

bounded by: 

(z'-K ?/"):< 1 (3X%0 

can be rewritten as: 

; , 1 

(339) 
1=2 X y 

The right hand side of Equations 3.36 and 3.39 are summed versions (over the images 

of the sequence) of the Cartesian and Zernike moments, weighted by the velocity of 

the moving shape. Perceived in this way, conversion between the two descriptions 

appears possible using the theory previously explained in Section 2.5. This analysis 

highlights a useful connection between the two velocity moment implementations. 

The Zernike velocity moments have improved characteristics over the Cartesian 

implementation (which is also true for traditional Zernike and Cartesian moments). 

However, by only using the combinations of Cartesian velocity moments which 

comprise their Zernike version, simple selection of less correlated features appears 

possible. Viewed in an alternative manner, this introduces a method of mapping 

the Cartesian velocity moments to an orthogonal basis, with respect to each image 

description. Further, this shows that it is possible to implement the Zemike velocity 

moments via the Cartesian coordinate system thus reducing the complexity of the 

calculation. It must be noted that this assumes that the Cartesian coordinate 

system's origin is located at the bottom left of the image. Otherwise, care must 

be taken when considering the direction of motion, as the signs will be different 

between the Cartesian and Zernike implementations. This is due to the directional 

information for the Zernike moments being independent of the image coordinate 

system, refer to Equations 3.17 through 3.20. 

3.5 Scale, frame rate and sequence length invariance 

Features which are independent of frame rate may be required. For example, this 

allows features generated on the European PAL (Phase Alternation Lines) image 

systems (at 25 frames/second) to be comparable to features generated on the Ameri-

can, Mexican, Canadian and Japanese NTSC (National Television Standards Code) 

systems (at 30 frames/second). A further example is the use of time-lapse filming in 

security applications, a technique which is investigated in Section 6.6. Normalising 
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the velocity moments with respect to the number of images, camera frame rate and 

scale is achieved by: 

while 
1 

A W 

(3.40) 

(3.41) 

where t{s) is the time between consecutive images, in seconds and /r(s) is the frame 

rate in seconds, (i.e. 25 frames/second). A is the average area of the moving shape 

and I is the number of images. 

3.6 Comparison of techniques 

This brief section compares the two velocity moment techniques, Cartesian and 

Zernike, in terms of their descriptor properties. Table 3.4 summarises these proper-

ties allowing comparison between the two implementations. Here a signifies that 

the descriptor has the corresponding property and a * signifies that descriptions 

with the corresponding property are possible through a slight modification to the 

velocity moment equations, (as detailed in previous sections in this chapter). These 

modifications invariably produce descriptions which are more restricted, or corre-

lated than their original versions. It can be seen that both techniques have positive 

attributes. Overall, the Zernike velocity moments appear more versatile. However, 

it must be noted that the Cartesian implementation is computationally simple and 

inexpensive, although simple conversion between the two techniques is possible. 

Property Cartesian Zernike 

Coordinate system Cartesian p o h # 

Orthogonal (individual images) X v 
Reconstruction V V 
Invariance property Cartesian Zernike 
Rotation X 

Translation V y 
Scale (individual image) v 
Scale (sequence) V y 

Table 3.4: Comparison of properties of the two velocity moment implementations. 

3.7 Exploiting velocity 

By including velocity in the shape description, similar objects moving in different 

manners can be separated. For example, we can consider two cases, a bouncing 

ball and a ball rolling across the floor. Traditional shape descriptors that analyse 

the ball itself (and are scale invariant) encode information about its shape and 
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structure. However distinctions between types of motion would not be addressed. 

For a football match, say, the commentator may be interested in what percentage 

of the match time the ball has spent being kicked, or moving towards one team's 

end of the pitch. To illustrate this point, a set of experiments were run using the 

Zernike velocity moments on a small database of images of a moving basketball. 

Three different sequences were analysed, all of which were captured on the same 

day. The first sequence was of the ball falling vertically (sequence 1). The second 

has the ball bouncing up and across the field of view (sequence 2), while in the last 

sequence the ball was being thrown across the field of view in a slight arc (sequence 

3). The basketball in each of the sequences was then extracted using a statistical-

based background subtraction technique, detailed in Appendix B. Figure 3.7 shows 

example images from the three original sequences and the corresponding extracted 

versions. The extracted images were then binary thresholded to remove any effects 

due to the ball rotating and changes in lighting (reflections etc). Distortions of 

the spherical shape of the ball occur due to camera lens radial distortion and the 

changing viewing angle between the camera and the ball, as it moves. Viewing 

the ball from below (i.e. the camera's horizontal viewing plane is lower than the 

ball) will produce a ellipsoidal shape, instead of a sphere. Equally, viewing from 

above will cause a similar distortion (i.e. the camera's horizontal viewing plane is 

above that of the ball). (Any change in viewpoint (under an affine transform) about 

the normal viewing-plane will cause a circle to be perceived as an ellipse.) These 

effects, along with imperfect extraction causing noise around the perimeter of the 

basketball, are visible in the extracted images - producing variations in the shape 

contour between consecutive binary images. Figure 3.8 demonstrates this, where 

here the binary images have been scaled and centralised (with respect to the ball) 

to ease visualisation. 

A small set of low order Zernike velocity moments was then run on the three se-

quences. The results were analysed in terms of the corresponding mean standard 

deviation a and (coefficient of variation), indicating the percentage spread 

of the moment values. Table 3.5 shows a selection of these results, demonstrating 

moments that are tightly clustered (A2000, ^4200 a,nd Asioo)- These moments are 

describing the ball shape itself, its structure, which is highly correlated throughout 

the three image sequences, although still perturbed by camera distortion, perimeter 

noise etc. The remaining moments separate the sequences producing <7///% > 100 

(-̂ 2022, -̂ 4220 and ylsiio). These are describing the structure of the ball, along with 

the corresponding velocity information - their motion. 

This simple experiment has demonstrated the use of both exploiting temporal 

correlation, and the inclusion of motion in the shape descriptor. The use of tem-

poral correlation has diluted the effect of noise within the image sequence, while 
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Figure 3.7: Example consecutive images from sequence 3, along with their extracted 

versions. 

Figure 3.8: The extracted baaketball from sequence 3, showing varying shape con-
tours between images. 

motion information has enabled the separation of the three image sequences of a 

moving basketball - producing moments that can describe both shape and motion. 

The variation in shape contour between consecutive images has been encoded along 

with the velocity information for each pair of images. In this way the final de-

scription holds not only the average velocity information but also a result from the 

correlation of the different contours and their corresponding velocity. In the simple 

case of the moving ball, this information may not be of interest. However, if there 

are larger changes in shape between consecutive images, along with a variation 

in the velocity component (within the sequence), then this information becomes 

potentially more interesting. The next chapter on human gait analysis aims to 

exploit these properties, using the velocity moments to describe a temporal image 

sequence of a shape, which (as the sequence progresses) alters in both composition 

and motion. 
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Sequence •̂ 2000 -̂ 4200 ^3100 -̂ 2022 ^4220 3̂110 
1 
2 
3 

1.899 
1.892 
1.899 

0.129 
0.117 
0.074 

0.091 
0.065 
0.086 

6.035 
926.831 

2819.414 

0.018 
I.232 

II.118 

0.003 
0.018 
0.138 

yw 
o 

1.897 
0.004 

0.029 
0.107 

0.081 
0.014 

1250.760 
1434.390 

4.123 
6.088 

0.053 
0.074 

(%///% 0.215 26.803 17.277 114.681 147.665 140.369 

Table 3.5; Moment clustering results for the three sequences of a bouncing basket-
ball - demonstrating both tight and loose clustering. 

3.8 Discussion 

It is usually prudent to compare a new technique with an existing equivalent tech-

nique, to aid its characterisation. The performance of the Cartesian velocity mo-

ments has already been compared with an averaged Hu [28] invariant set, Section 

3.2.3. This was performed to help illustrate the advantages of exploiting temporal 

correlation to overcome problems including image noise. The analysis also illus-

trated some possible disadvantages of using non-linear combinations of Cartesian 

moments. Further, the possible advantages of including motion into the descrip-

tor have been addressed, as applied to real-world imagery in Section 3.7. In view 

of this, to further illustrate and characterise the velocity moments under differing 

conditions, a set of classification and performance tests are proposed. Firstly, both 

implementations are analysed with respect to classification problems on a series of 

human gait databases. Chapter 4. Secondly, the characterisation of the Zernike 

velocity moments technique under the conditions of image noise, occlusion, image 

resolution degradation and time-lapse imagery is investigated. This is done to pro-

vide the user with an insight into their behaviour under these conditions and is 

detailed in Chapter 6. Depending on the velocity moment chosen, different charac-

teristics (or information) from an image sequence's distribution will be described. 

Ultimately there is an infinite number of moments that could be computed for any 

given image sequence, each of which will invariably behave differently under varying 

conditions, such as occlusion or image noise. However, the general efiFect of these 

conditions should remain constant. For example, the low order Zernike velocity 

moments, v4oooo and Anoo are set to known values by the mapping process, thus 

will not be affected by occlusion, unless the object is totally occluded, i.e. there is 

nothing present in the image. Therefore, including v4oo** and vln** in Emy perfor-

mance tests would bias the results. In general, low order moments describe gross 

shape information, such as mass or spread in each axis. Higher order moments 

describe the high frequency components of the image, or fine detail. For any given 

application, a range of both orders (high and low) is likely to be used. However, 
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characterising all the velocity moments is not viable, due to the possible list being 

infinite. The characteristics of the low order Zernike velocity moments have already 

been examined under the problem of rotation, Section 3.3.3. Previous work has 

studied the effects of image noise [80], while moments are known to perform poorly 

under occlusion, due to the description being a single image area measure. If you 

remove part of the shape, understandably the result will alter. For these reasons, 

it was decided to observe the effects of varying conditions (i.e. occlusion, noise etc) 

using the velocity moments that proved useful for a particular application. The 

chosen application is the use of the Zernike velocity moments for the description 

and classification of moving shapes, as applied to human gait. 

3.9 Conclusions 

In this chapter we have presented a new framework which enables the extension of 

traditional moment theory to include the analysis of image sequences. Previously 

moment analysis of an image sequence would concentrate on each separate image 

within the sequence. Here, however, the analysis enables the sequence to be de-

scribed collectively, while also including shape-motion information. This results in 

a framework that allows the statistical analysis of both rigid and non-rigid moving 

shapes, and is next applied to describing walking people. 
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Chapter 4 

Application to human gait 

This chapter describes the ideas behind human gait classification, and details pre-

vious work in this relatively young field of research. It continues by outlining the 

approach taken to enable the analysis of gait via the new velocity moments. The 

chapter then concludes with descriptions of the feature selection and classification 

techniques to be used in the next chapter, where the results of applying the velocity 

moments to seven different gait databases is presented. 

4.1 Introduction 

Gait is defined as the 'manner of walking or forward motion' [81]. It is primarily 

determined by muscular and skeletal structure. In this way a person's gait can be 

perceived as being individual, and comprised of hundreds of components. (However, 

within-subject variations may also exist depending on a person's mood, posture, 

etc.) Human gait components range from a subject's thigh rotation patterns and 

leg swings, to their 'bobbing' or vertical motion. To help understand the different 

parts of a person's gait, we must first explain a gait cycle, as defined by Murray 

[55]. A gait cycle is the time interval between successive foot-to-floor contact or 

heel strikes for the same foot, Figure 4.1. Referring to Figure 4.1 (and the right 

foot), the gait cycle begins at the heel strike, the first part of the phase. As 

the ankle fiexes the foot is placed fiat on the ground, as the subject's body weight is 

transferred onto it. As the other leg (shown in black in Figure 4.1) swings through 

to the front, the heel of the first lifts. The knee of the supporting leg flexes to allow 

the shift in body weight to the other leg. The lifted leg which is behind, lifts further 

to clear the ground and the phase ends aa the toe (of the lifted leg, shown 

in white in Figure 4.1) leaves the fioor. Next the gwmp phase commences as the 

toes of the lifted leg leave the fioor, this means that the body weight is transferred 

to the other foot. The swinging leg moves forward to strike the ground in front of 

the other foot and thus begins the next gait cycle. Two further characteristics of 

the gait cycle are the stride and step length. The stride length in defined as the 

54 



linear distance in the plane of progression between successive points of foot-to-floor 

contact for the same foot, while the step length is the distance between successive 

contact points of opposite feet. 

/w //> AM mi 
Ri Heel Strike 

5 0 % 
Lt Heel Strike 

100% 
R t H c c l Strike 

Duration o f Total R t Walking Cycle 

[MB| Single-Limb Support 

Double-Limb Support 

Rt Stride Length 

Rt-Lt Step Length LtmRt Step L « % t h 

Figure 4.1: Relationships between different gait cycle components. 

4.2 Previous work in human gait recognition 

Recognition of a person digitally, via biometrics is a method widely used today. 

These methods aim to capture information about a person's physical characteristics 

or personal traits. Current methods include fingerprints, iris and retinal scans, hand 

and face geometry, speech and even key stroke dynamics. Humans use biometrics to 

identify familiar people, by characteristics like hair colour, face structure and height. 

Here we are considering using gait as a biometric. It has advantages over current 

methods as it is both non-invasive and difficult for the subject to hide or disguise. 

One of the earliest documented examples of recognition by gait was Shakespeare 

who wrote in The Tempest [Act 4 Scene 1] 

o/ Juno cornea; 7 A;now Aer 6?/ Aer 

There are two main approaches in computer vision to gait recognition. The first is 

model-based where the subject's movement is described by a mathematical model. 

This approach was used by Niyogi [59] where recognition of a walking subject was 

detected by looking at an XT-slice (where X is a slice along the a; axis through a 

stacked image sequence and T is time), from which the trajectory through time of 

the subject is reconstructed using snakes. This information is then used to create a 

stick model of the subject for recognition. Nash [57] used a simple pendulum model 

as a basis for searching a scene to locate a moving person using a method called 

the Velocity Hough Transform (VHT) [56]. Cunado [12] built on this by using the 

VHT with a double pendulum model to characterise the hip movement of a subject 

and from this analysed the frequency response of this simple harmonic motion. 
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This idea was extended to incorporate the lower leg motion, producing a coupled 

oscillator gait model [84] that was then applied to a database of running and walking 

gait sequences. Other modelling techniques include using Kalman filters to filter 

or track the movement of an individual through a sequence of images [1, 66] and 

then to analyse this movement (although not yet used for recognition purposes). A 

more recent study analysed silhouettes from varying view points and, through view 

point calibration, composed a view-invariant set of body parameters that are used 

for gait classification [36]. 

An alternative method (and the one which is used here) is to apply a holistic 

description to the set of images. This approach has been used by Murase [54] where 

an eigenspace representation enabled efficient image sequence comparison. First 

silhouettes of the subject are extracted from the sequences. These silhouettes are 

then projected into the eigenspace where they are compared with a database of 

previously analysed sequences. Using this system a recognition rate of 100 % was 

achieved on a database of seven subjects. A similar approach has been used by 

Huang [31], where optical flow fields are generated which are then processed us-

ing both eigenspace transformation and canonical space transformation, to achieve 

100 % recognition. Another study also used eigen analysis to characterise gait [4], 

however, here the technique was applied to self-similarity maps. Whereas, Meyer 

[49] used optical flow information to help estimate the shape of the person and from 

this went on to train Hidden Markov models [50] to describe and classify different 

types of gait. Alternative non-model based gait recognition techniques include the 

analysis of temporal symmetry [25, 26} or area-based masks to enable direct extrac-

tion of specific gait characteristics [19, 20]. One statistical study [46] again used 

optical flow fields, but feature description was achieved using a method based on 

low order moments. From this a model free description of instantaneous motion 

was achieved. 

The model based methods are more amenable to re-deployment to alternative 

camera views, or even different applications. However, the statistical methods, or 

more specifically the holistic techniques, have improved capability over application 

problems such as image noise, due to them utilising more subject information i.e. 

using the subject's complete silhouette, as compared with a model description of 

just their legs. 

4.3 Methodology 

As a person walks, variations in both horizontal and vertical motions exist. Here, 

we intend to produce descriptions that link both the person's motion and their 

corresponding shape, in each stage of their gait cycle. The motion information 

is extracted from the image sequence using their COM (centre of mass). Figure 
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4.2 shows the corresponding x and y COM plots for two sequences of the same 

subject, walking for one complete gait cycle (heel strike to heel strike). Figure 4.2b 

clearly shows the 'bobbing' vertical motion as the subject reaches the minimum 

leg-width position (both legs together) producing their maximum height in the 

sequence - around image 10 and again at image 25. It can be seen that variations 

exist between the two sequences on each plot, especially Figure 4.2a. However, it 

must be noted that the sampling rate is 25 frames per second, meaning that the first 

sequence samples may well be missing from the second sequence and vice versa. This 

possible under-sampling is less apparent in the Figure 4.2b where the variations in 

motion are greater in magnitude. (There may also be between-sequence variations 

introduced by the extraction technique). These variations in COM are linked to 

the images themselves, suggesting that using just the x oi y COM variations alone 

would not prove useful (in terms of classification). 

Humans perceive gait by observing a person's overall shape and how this moves 

and changes as they walk. Thus, for human vision both shape and motion are im-

portant. Consequently, we duplicate this behaviour in our classification approach 

by using two different image sets. Firstly a set of binary silhouettes, or spatial 

templates (STs) for each subject sequence is obtained through removal of the back-

ground. Optical Sow images or temporal templates (TTs) are then computed using 

an algorithm based around matching image patches, the results of which are con-

sistent with human psychophysics, [8]. Further, this method of determining optical 

flow produces results similar to how humans perceive motion. The velocity mo-

ments are then calculated for these two image sets, STs and TTs. Due to the 

periodic nature of gait, analysis is performed on one complete gait cycle (Figure 

4.1). In this way, the results of classification are not biased by unbalanced consider-

ation of different parts of the gait cycle. However, a sequence of images containing 

data from 'heel strike to heel strike' will contain a duplicate image - the first and 

last image will be identical. The velocity moments use the Arst image to calculate 

motion information only, so this duplication will not bias the overall calculation. 

Those velocity moments suitable for claasiGcation are then selected using the single 

factor ANOVA technique and the Scheffe post-hoc test. Due to the small number 

of gait sequences (or samples) available per subject, the ANOVA method is only 

used as a guide as the resulting variance estimates will be inaccurate. This analysis 

is viable for small databases due to the small number of subjects. However, using 

these techniques with greater numbers of subjects proves impractical due to the 

increased number of features needed to separate them. The single-way ANOYA 

selects features that singularly separate portions of the dataset. Whereas we are 

actually using multiple features to classify, suggesting an n-way ANOVA may prove 

more useful for larger datasets, enabling the analysis of the interaction between 
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Figure 4.2: The x and y COM variations for one complete gait cycle (heel strike to 
heel strike of the same foot). 
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features for an n dimensional feature or classification space. For larger databases, 

the single factor ANOVA analysis can be useful in reducing the feature set to those 

features which may prove useful for classification. Ideally, an exhaustive search 

of all combinations of this reduced feature set can then be performed using the 

classification rate as the measure of success. Unfortunately, even if the reduced 

feature set contains just 100 possible moments, solving this problem (in terms of all 

possible combinations of moments) would take months on a 1 GHz machine (for a 

database of 200 sequences). Here seven databases are analysed, making the exhaus-

tive approach impractical due to time constraints. Further, the main drive of this 

research is not feature set selection, a vast research field in itself. For these reasons 

final selection is achieved by manual intervention, resulting in possible non-optimal 

results (i.e. an entirely difi'erent subset of the reduced moment set may produce 

an improved or identical classification rate). The selected moments are used to 

produce a multidimensional feature space for classification, rather than combining 

them (i.e. non-linear combinations of moments) prior to classification. Combining 

features in this manner is avoided for the reasons discussed in Section 3.2.3. 

Classification of these selected features is possible through a number of different 

methods, ranging from simple distance metrics to neural networks and support 

vector machines. Again, classification theory is itself a large field of research. Here 

we have chosen to use a simple classifier so as to avoid getting trapped in the 

intricacies of classifier theory. Thus, simple classification (or recognition) of the 

moment features is achieved using the k-nearest neighbour technique {k = 1 and 

k = 3) using the leave one out rule with cross validation. Doubtless the overall 

classification results could be improved by using a more powerful technique. 

4.4 Template extraction 

To apply this new method to gait, we first need to extract the subject (or fea-

ture). Various different methods of extraction were used throughout this work. 

The differing methods reffect a progression of new extraction techniques and differ-

ent scenarios. Using different techniques illustrates that the results gained from the 

velocity moments are not dependent solely on one extraction technique. In all, seven 

databases were analysed: SOTON (University of Southampton), UCSD (University 

of California, San Diego), four CMU (Carnegie Mellon University) databases and 

finally the HiD dataset (Human ID at a distance program - captured at the Univer-

sity of Southampton). However, the differing extraction techniques follow the same 

overall structure. Simple feature extraction is achieved using templates, first spatial 

and then temporal. Silhouette data or spatial templates (STs) are produced, which 

in turn are used to extract the subjects, allowing the calculation of optical flow or 
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temporal templates (TTs). These then provide suitable data for study using the 

velocity moments. 

In the next sections we describe the different extraction methods employed. 

However, it must be noted that many alternative model-based and statistical-based 

extraction techniques exist, eg. [24, 57]. 

4.4-1 Subject extraction 1 - Background subtraction 

This simple subtraction method was applied to the SOTON database. The complete 

method of template extraction is shown in Figure 4.3. A background image is 

derived by application of a temporal-mode filter to the image sequence. By selective 

subtraction and region growing a subject can be extracted, which then can be 

used to compute optical flow (described in Section 4.4.4). For the extraction of 

spatial templates (STs), the subject is first isolated using background subtraction. 

However the difference image thus produced is prone to noise, i.e. speckle noise in 

the background scene, or holes appearing in the subject's silhouette. To remove this 

noise the image is region grown. Merging of pixels is determined by evaluating a 

homogeneity criterion. The region growing algorithm is a variant of the basic split 

and merge method. However instead of using a hierarchical data structure, which 

is then searched to determine areas to be merged, merging is achieved by looking 

at the pixel distribution, a variation of the algorithm proposed by Dubuisson and 

Jain [16]. Finally to produce a binary spatial template that is suitable for use in 

extraction, the region grown image is thresholded. The final silhouette can then be 

windowed using the subject's average velocity. This velocity value is then stored 

for later use. Logically ANDing the silhouette with the original grey-scale image 

allows subject extraction, as shown in Figure 4.3. 

Estimated background 
image 

Selective 
subtraction 

Region grown 
and thresholded ST 

Image from sequence 

Figure 4.3: Producing the spatial templates (STs) 

Extracted 
subject 
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^ gceMe OMoZyaig 

For the UCSD database a statistical based subject-extraction method [33] was used 

to produce a small database of silhouettes. The extraction method analyses the 

statistics of the sequence and uses both luminance values and edge information to 

determine the background and foreground objects. First, a background model is 

constructed which consists of time averaged mean and variance images. A mod-

ified background subtraction technique based on these mean and variance images 

produces a set of confidence maps. These two steps are repeated for both the lu-

minance and edge information. The results of which are combined to produce a 

final set of confidence maps. These in turn allow the separation of the foreground 

(moving) objects. Appendix B contains a more detailed explanation and example 

silhouettes. 

Due to the nature of both the capture and colour data of the HiD database, the 

use of a colour specific extraction was possible. Blue screening or more generally 

chroma-keying is the process of filming an object, or subject in front of an evenly 

lit, bright pure coloured backdrop. Object or subject extraction (through backdrop 

removal) is easily achieved, allowing an alternative background colour or scene to 

be used in its place. Any pure colour can be used as the backdrop, although the 

choice is restricted by the colours of interest on the subject. Here a bright green 

was used, mainly as it is an unlikely colour for the subjects to wear. Also, video 

cameras are usually more sensitive in the green channel, and often have the best 

resolution and detail in that channel (due to having twice as many green pixels aa 

red and blue, an attempt at matching human-vision colour sensitivity). 

To maintain a uniform chroma colour backdrop (thus improving extraction) two 

lighting schemes are needed, one for the subject and the second for the backdrop. 

To enable an evenly lit backdrop and maintain an illuminated subject while reducing 

the effects of shadows, the lighting schemes are separated. Powerful flood lighting is 

used to light the backdrop, preferably from directly above and from the sides. The 

subject is then placed in front of this lighting, while a further set of lower power 

diS'use lights are used to light the subject directly, refer to Figure 4.4. 

The chroma-key process is based on the luminance key. In a luminance key, every-

thing in the image over or under a set brightness level, is 'keyed' out and replaced 

by either another image, or a colour from a colour generator. Here we key out 

the (bright-green) colour to remove the backdrop and the floor. An absolute error 

range is added around the selected colour to allow for lighting variations due to 

61 



Camera 
orientation 

Subject lighting 
low power 

diffuse lights 

Subject's walking path 

Backdrop 
lighting 

' high power 
flood lights 

Coloured backdrop 

Figure 4.4; Laboratory lighting arrangement, enabling the separation of the two 
lighting schemes. 

the large backdrop. Noise due to isolated pixels within the backdrop area can be 

removed by a simple shrink and expand operation. This process will leave large 

objects relatively untouched. Figure 4.5 shows an example source and keyed image 

from a sequence. It can be seen that part of the ceiling (a mirrored ceiling light 

reflector) has been removed due to reflections from the backdrop colour. 

A 
1 

Figure 4.5: Example original image and chroma-keyed result. 

By processing the image with a second stage chroma-key the (darker green) floor 

is removed. Using simple thresholding on the result produces a binary silhouette, 

Figure 4.6. This result can be further improved, flrst by cropping the image to 

remove superfluous data. A simple connected components algorithm along with 

filtering by size removes all but the largest object (the subject), Figure 4.6. Finally, 

any holes left by the two passes of the chroma-key extraction can be filled by a 

simple expanding and shrinking process. 
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Figure 4.6: Example silhouette and final cropped ST. 

4-4-4 Dense optical flow fields 

Using the STs as a mask, the subject can be extracted from the original intensity 

image - the result can be used to produce an optical fiow description of the subjects 

motion. Here we use Dense Optical Flow Fields (DOFF) [8], generated by minimis-

ing the sum of absolute differences between image patches. The algorithm relies 

on the assumption that the optical flow is due locally to a first approximation to 

fronto-parallel translation of a Lambertian surface. To this end the images are first 

filtered to remove the efi'ects of shadows, reflections and changes in lighting. This 

is achieved, first by taking the logarithm of brightness and then by filtering using 

a Laplacian of Gaussian function, or band pass filter. The corresponding patch 

for each pixel is compared with a finite number of shifted versions of the original 

image n, the results of which form a voting space. The shifted patch producing the 

highest correlation with the (n + 1) image's equivalent patch, determines the motion 

for that pixel. Therefore, two consecutive images produce one optical fiow image. 

Figure 4.7. The images are then reversed and the process is repeated. Upon sum-

ming the results of the two passes, correct results will cancel, only these pixels are 

retained. This helps to reduce any possible incorrect estimates. In this way DOFF 

images are produced for both the a; and ^ directions, the magnitudes of which are 

then added to produce the final Temporal Template (TT), shown in Figure 4.8. 

White pixels correspond to no detected movement, light-grey pixels represent high 

amounts of motion, conversely darker areas signify low amounts of motion. It has 

been displayed here in this way to aid visualisation. The areaa corresponding to 

the subject's legs and hands are lighter in colour than the torso, indicating (aa 

expected) greater movement. The magnitudes of a; -I- flow (| a; -I- |) are used 

as Huang [30] showed that these had improved descriptive capabilities than just x 

flow or y flow alone. 

The algorithm assumes that only differences due to motion are detectable be-

tween consecutive images. As a result it is limited by the pixel size relative to the 

motion being described. I.e. if the motion is poorly represented due to the low im-

age resolution, then it cannot be described effectively or if the motion is too large 
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Figure 4.7; Producing the temporal templates. 

Figure 4.8: Example consecutive temporal templates. 

then it may be lost. As a result the chosen patch and shift sizes are dependent on 

the image size, the object size (producing the motion) and the motion itself. 

4.5 One way ANOVA - Analysis of variance 

Analysis of variance (ANOVA) is a general method for studying sampled-data re-

lationships [9, 10]. The method enables the diSerence between two or more sample 

means to be analysed, achieved by subdividing the total sum of squares. One 

way ANOVA is the simplest case. The purpose is to test for signi&cant diEerences 

between class means, and this is done by analysing the variances. Incidentally, 

if we are only comparing two different means then the method is the same as the 

f—test for independent samples. The basis of ANOVA is the partitioning of sums of 

squares into between-class and within-class It enables all classes to be 

compared with each other simultaneously rather than individually; it assumes that 

the samples are normally distributed. The one way analysis is calculated in three 

steps, 6rst the sum of squares for all samples, then the within class and between 

class cases. For each stage the degrees of freedom are also determined, where 

df is the number of independent 'pieces of information' that go into the estimate 

of a parameter. These calculations are used via the Fisher statistic to analyse the 
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null hypothesis. The null hypothesis states that there are no differences between 

means of different classes, suggesting that the variance of the within-class samples 

should be identical to that of the between-class samples (resulting in no between-

class discrimination capability). It must however be noted that small sample sets 

will produce random fluctuations due to the assumption of a normal distribution. 

If dij is the sample for the class and data point then the total sum of squares 

is defined as: 
a D 

S5, = (4.1) 
i=l j=l 

with degrees of freedom: 

dft = {S D) — 1 (4.2) 

where D is the number of data points (assuming equal numbers of data points in 

each class) and S is the number of classes and GM is the grand mean: 

= ( A Z Z 4 ; (4.3) 
' 2=1 j = l 

The second stage determines the sum of squares for the within class case, defined 

as: 
S D 

== -- (4.4) 

where Mi is the class mean determined by: 

1 ^ 
== dij (4.5) 

3=1 

and the within class df is: 

= .9(^0 --1) (4.6) 

The sum of squares for the between class case is: 

s 
== 2) (jy% _ (;jkr)2 (4.7) 

with the corresponding d/" of: 

dfb — 5 — 1 (4.8) 

Defining the total degrees of freedom and the total sum of squares 5'5't as: 

== d/b (4.9) 
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SSt = SSb + SSu (4.10) 

Finally if MSSb is the mean square deviations (or variances) for the between class 

case, and MSS^ is the reciprocal for the within class case then: 

% 
#6 

% 
(4 11) 

It is now possible to evaluate the null hypothesis using the Fisher or F statistic, 

defined as; 

^ ^ (4-12) 

If F > > 1 then it is likely that differences between class means exist. These 

results are then tested for statistical significance or f-value, where the f-value 

is the probability that a variate would assume a value greater than or equal to 

the value observed strictly by chance. If the f-value is small (eg. P < 0.01 or 

P < 1%) then this implies that the means differ by more than would be expected 

by chance alone. By setting a limit on the P-value, (i.e. 1 %) a critical F value can 

be determined. The critical value Fcru is determined (via standard lookup tables) 

through the between-class (dfb) and within-class (c^^) df values. Values of F greater 

than the critical value denote the rejection of the null hypothesis, which prompts 

further investigation into the nature of the differences of the class means. In this 

way ANOVA can be used to prune a list of features. Figure 4.9 shows example 

Fcrit values for a low df distribution (i.e. a small dataset). As df increases (i.e. the 

dataset size increases) the F distribution will become 'tighter' and more peaked in 

appearance, while the peak will shift away from the x axis towards F = 1. 
F ( x ) 

F 0.05 ( 5 % ) 

F O . O l ( 1 % ) 

Figure 4.9; Example F distribution (for low d f ) showing possible 5 % and 1 % 
intervals. 

The F value gives a reliable test for the null hypothesis, but it cannot indicate 

which of the means is responsible for a significantly low probability. To investigate 
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the cause of rejection of the null hypothesis post-hoc or multiple comparison tests 

can be used. These examine or compare more than one pair of means simultane-

ously. Here we use the Scheffe post-hoc test. This tests all pairs for differences 

between means and all possible combinations of means. The test statistic Fs is: 

F . = (4.13) 
( i + i ) d f , 

where i and j are the classes being compared and and Mi are the number of 

samples and mean of class i, respectively. If the number of samples (data points) 

is the same for all classes then n, = rtj = D. The test statistic is calculated for 

each pair of means and the null hypothesis is again rejected if Fg is greater than 

the critical value Fcrit, as previously defined for the original ANOVA analysis. This 

Scheffe post hoc test is known to be conservative which helps to compensate for 

spurious significant results that occur with multiple comparisons [10]. The test 

gives a measure of the difference between all means for all combinations of means. 

In terms of classification, large F statistic values do not necessarily indicate 

useful features. They only indicate a well spread feature space, which for a large 

dataset is a positive attribute. It suggests that the feature has scope or 'room' for 

more classes to be added to the dataset. Equally, features with smaller F values (but 

greater than the critical values Fcru) may separate a portion of the dataset, which 

was previously 'confused' with another portion. Adding this new feature, increasing 

the feature space dimensions, may prove beneficial. In this manner, features which 

appear 'less good' (i.e. lower f statistic values than alternative features) may, in 

fact, prove useful in terms of classification. 

4.6 Clcussification 

Classification is the method by which a set of measurements are attributed a class 

label. There are many approaches to this problem including Artificial Neural Net-

works and simple distance metrics. Classification can also be achieved by simplify-

ing the data set to just those items that contribute to the classification process, by 

methods like Canonical Analysis or Principle Components Analysis. Here we are 

concentrating on using the simple A;-nearest neighbour classifier (A;-nn), by measur-

ing the distance between feature points. 

The k-nn classifier associates the sample or feature point with the label of the 

majority (or mode) of its nearest k-neighbours, if A; = 1 then the sample is grouped 

with the class of its nearest neighbour. To determine which neighbours are closest 
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a distance metric is used. There are many different distance metrics (i.e. Bhat-

tacharyya, Matusita, Li norm), here we are using the Euclidean distance d, mea-

sured between H feature points, defined as; 

d 
\ 

H 
(4,14) 

Z = 1 

where s is the current sample of interest and A: is a known class member (or training 

point). The dimensionality of the feature space is determined by H, making it easy 

to add multiple features. Equation 4.14 is also referred to as the I/2 norm. By 

computing all the distances from the current sample of interest to all other samples, 

and then arranging them in order of size, the nearest neighbours are determined. 

By then applying the leave one out rule with cross-validation, all samples are tested 

against each other. The leave one out rule refers to the method of retaining one 

sample for test data and using the remaining samples to form the training data. 

By repeating this for all the samples cross-validation is achieved. These procedures 

are well established in pattern recognition and allow for appropriate comparison 

between other classification methods. It must be noted that if between-class feature 

values vary in their order of magnitude, then prior to classification they may need 

to be normalised using their maximum values, so as to remove any possible bias. 

4.7 Moment order 

In general, low order moments describe the gross image information, including image 

mass and pixel spread. Higher order moments describe the high detail, or high 

frequency components of the image, (equivalent to the high order harmonics of a 

Fourier transformed signal). However, the higher order moments are more prone 

to the eEects of noise. This is due to the calculations themselves and also due to 

the low power of the information being described (i.e. high frequency detail). This 

presents a problem - at what point are high order moments too noisy to be usable in 

terms of discriminatory capability? - one approach, used by Khotanzad [37], applied 

image reconstruction to this problem. By reconstructing the original image, and 

then studying the pixel error between the original image and the reconstructed one, 

as the moment order increased - aji optimum order can be established. Khotanzad 

used small (64 x 64) images of binary typed characters and silhouettes of the 'Great 

Lakes' for testing. It was found that to achieve a maximum of a 10 % pixel difference 

(between the original and reconstructed image), order 12 (47 moments) were needed 

for the typed characters. The Lake dataset required order 8 (23 moments) to 

produce the same accuracy. Further to this, Teague [79] used up to order 18 (of 

Legendre moments) for reconstruction of a similar set of typed characters (21 x 21), 
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comparing the results visually. Pawlak [62] also studied the effects on reconstruction 

of increasing the order of orthogonal Legendre moments, demonstrated for a simple 

21 X 21 binary image of a cross, in the presence of Gaussian noise. Again, the pixel 

error between the reconstructed and original images reduced as the moment order 

increased. However, a minimum was reached at around order 10, after which the 

error then increased. These studies have demonstrated the need for relatively high 

order moments to efficiently describe small images (< (64 x 64)). These results 

suggest the need for different maximum moment orders is dependent upon the 

application - different applications will produce different image sizes and content. 

Thus, the maximum order for efficient description can be described as being data 

driven. Here we are studying images of people, where the height of the subjects 

within the images range from ~ 90 to 140 pixels (as compared with the 64 pixels 

of Khotanzad's typed characters). The image sequences are also likely to be rich 

in high frequency information, indicating a need to study both low and high order 

moments. However, it must be noted that here we are only interested in separating 

the classes within a dataset, and not with reconstructing images. 

4.8 Conclusions 

This chapter has detailed the ideas and methods behind current methods of human 

gait classification. We have then proposed a method based on human perception 

of gait, with the aim of utilising both shape and motion information. Simple pre-

processing, or subject-extraction methods have been described, providing features 

which are suitable for analysis by the velocity moments. Finally, methods of feature 

selection, or more specifically feature list reduction have been described, along with 

a simple classification method. All these provide the basis for the the next chapter, 

the analysis of seven human gait databases using both the Cartesian and Zernike 

velocity moments. 
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Chapter 5 

Database results 

5.1 Introduction 

This chapter details the analysis of the velocity moments (both Cartesian and 

Zernike) as applied to seven different gait databases. The subject extraction tech-

niques discussed in the previous chapter are used to provide features suitable for 

analysis by the velocity moments, while the analysis of the features themselves uses 

the statistical techniques discussed. A description of each database is included and 

the results are presented in terms of classification analyses, detailing between-class 

separation and within-class clustering through the use of the ANOVA. technique and 

the ScheSFe post-hoc test. These results are then displayed using scatter diagrams 

to aid data visualisation. Unless otherwise stated all velocity moment values are 

normalised, as per Equations 3.7 and 3.16. 

5.2 Cartesian velocity moments 

We begin by applying the Cartesian velocity moments (Equation 3.2) to the problem 

of gait classification. The Cartesian velocity moments are designed to capture both 

spatial and motion information from a sequence of images through use of the non-

orthogonal Cartesian centralised moments. 

The 6rst of the databases studied is part of the SOTON database, captured at 

the University of Southampton. It consists of 4 subjects with 4 sequences of each 

subject. Figure 5.1 shows an example image from the SOTON database. In each 

sequence, the subject is walking indoors (in a laboratory environment) normal to 

the direction of the camera, the direction of travel is left to right for two of the 

four sequences and right to left for the remainder. Each image sequence has been 

cropped so that it consists of one complete gait cycle, heel strike to heel strike of the 

same foot. Using the technique detailed in Section 4.4.1, a small database of STs 

was produced from the SOTON database of image sequences. The resulting STs 
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were then windowed using the subject's average velocity, the values of which form 

part of the database. Next, using the STs and the technique described in Section 

4.4.4 a small database of TTs was produced. Figure 5.2 shows example templates 

from the database. 

Figure 5.1: Example image from the SOTON database. 

I 

Figure 5.2: Example windowed STs (top) and TTs (bottom) from the SOTON 
database. 

A complete set of Cartesian velocity moments up to p = g = // = 4; 'y — 0 (a 

total of 125 moments) was then calculated on each template set - STs and TTs. In 

order to help reduce the size of the computational problem, it was decided to only 

study the z direction velocity information, hence -y = 0. The average magnitude 

of velocity (from the windowing operation) for each subject is combined with the 

actual COM calculation on each image. This combination is then placed into the 

motion half of the velocity moment calculation (Equation 3.4). The COMs are 

calculated and added (or removed) to allow for differences which may be present 

between the average velocity and the actual velocity between successive images. 
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Velocity moments less likely to be suitable for classification were removed from 

the calculated list using the single factor AN OVA technique (described in Section 

4.5). These were moments producing F statistic values below the 1 % confidence 

level. Table 5.1 displays the number of moments (in terms of percentages of the 

total of 125) that showed promising properties in terms of subject clustering and 

separation, determined via the F statistic. A large majority of these include ve-

locity information. Here F » Fcru illustrates those with F > 30 (an arbitrarily 

large number ensuring F » Fcritil%) confidence level). Next, using the Scheffe 

Template F > F » 
ST 
TT 

51 % (40 %) 
41% (30%) 

9% (4%) 
10% (4%) 

Table 5.1; Percentages of total moments (for the SOTON database) calculated 
which show promising properties for classification, as determined by the 1 % Fcru 
value of 5.95 - those including velocity information are shown in brackets. 

post-hoc test, the differences between sample means of the remaining moments 

were analysed. Using these results as a guide, manual moment selection from the 

available set was achieved. Those moments describing both structural and velocity 

information were favoured, as these descriptors imply a within-subject (or class) 

correlation, and between-subject separation, between the image sequence and the 

subject's relative motion - thus focusing on classification by body shape and mo-

tion. Three velocity moments (fmo2oo, 7̂712310 and were found sufBcient 

to separate the complete database, illustrated in Tables 5.2a,b and c which show 

the results from the Scheffe post-hoc test for the three selected moments. Here, 

each entry is the Fs statistic value for the subjects indicated by the row and col-

umn labels (with duplicate comparisons removed). By using the three moments, 

all combinations are well separated with respect to the 5 % confidence level - only 

one combination (1,2) is not covered by the 1 % confidence level. The resultant F 

statistic values for each of the moments selected for the STs can be seen in Table 

5.3a, in comparison to the critical values shown in Table 5.3b. Table 5.2d shows the 

Scheffe result for '(;m23oo, comparing these results with those for t;m23io (Table 5.2a) 

illustrates that the inclusion of velocity has improved the separation of the (3,4) 

combination, while slightly reducing the separation of the remaining combinations. 

Finally, classification of these manually selected moments is achieved using the 

A-nn approach (with A: = 1 and A; = 3), as described in Section 4.6. (Prior to 

classification the moment values are normalised using their maximum values, so 

as to remove any bias caused by sets of moments with greater values). Plotting 

the three selected moments shows distinct subject clustering. Figure 5.3a. While 

Figure 5.3b demonstrates the linear relationship between 7712310 and f7712320- Using 
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the three selected velocity moments for classification produces the results in Table 

5.4. All subjects have been successfully separated producing 100% classification. 

2 3 4 
1 3.5 116.0* 67.4* 
2 79.1* 40.1* 
3 6.6* 

(a) 'umasio 

2 3 4 
1 3.6 9.6* 34.5* 
2 24.9* 60.5* 
3 7.7* 

2 3 4 
1 2.0 63.9* 26.5* 
2 43.4* 14.0* 
3 8.1* 

(b) ?;77l2320 

2 3 4 
1 4.1 137.7* 109.7* 
2 94.3* 71.4* 
3 1.7 

(c) i;mo2oo (d) ;̂77l2300 

Table 5.2: Scheffe post-hoc results (Fs) for the SOTON STs. A * indicates a value 
greater than the 1 % value of 5.95. 

Moment F-value 

1')7l2310 

'U 77̂ 0200 

156.34 
78.94 
70.43 

Confidence Fcrit 

5% 
1% 

3.49 
5.95 

Moment F-value 

vmQ4m 

?̂T̂ 0200 
88.40 
154.68 
52.37 

(a) STs. (b) values. (c) TTs. 

Table 5.3: F and Fcru values for the selected Cartesian velocity moments on the 
SOTON database. 

Cartesian velocity moments Classification Cartesian velocity moments 
k = 1 k = 3 

'Umggio 
^̂ 7̂ 2310, vm2320 
)̂TT'2310, 7̂7712320, 

93.75% 
93.75 % 
100.00% 

87.50% 
93.75% 
100.00% 

Table 5.4: ST classification results for the SOTON database. 

Cartesian velocity moments Classification Cartesian velocity moments 
A = 1 k = 3 

)̂TT'0400, )̂TT'4110 
l'77l0200, 7̂710400, ^^4110 

87.50% 
100.00% 
100.00% 

81.25% 
81.25% 
100.00% 

Table 5.5: TT classification results for the SOTON database. 

Applying the same techniques 100 % classification is achieved on the TT database, 

using three velocity moments (t;mo2oo,i'7T ô4oo and as shown in Table 5.5. 

Plotting these features produces the distinct subject clusters shown in Figure 5.4. 

Table 5.3c shows that these three velocity moment F statistic values are all far 

greater then the Fcru values shown in Table 5.3b. 
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Figure 5.3: Normalised ST classiBcation results for the SOTON database. 
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Figure 5.4; Scatter plot for the TTs from the SOTON database. 
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5.2.2 UCSD database 

Here we analyse the UCSD subject database (captured at the University of Califor-

nia San Diego), as used by Little [46] and Huang [29]. It consists of six subjects with 

seven sequences per subject. In each sequence the subjects are walking (outdoors) 

from right to left, along a slight incline in front of a static background, an example 

of which can be seen in Figure 5.5. The subjects were first extracted using the 

statistical technique, as detailed in Section 4.4.2 and Appendix B. The resulting 

STs for one complete gait cycle were then windowed using each subject's average 

velocity, the values of which form part of the database. Using these STs a set of 

TTs were then generated using the dense optical Bow technique described in Section 

4.4.4. Example STs and TTs can be seen in Figure 5.6. 

Figure 5.5: Example image from the UCSD database. 

ji* 11 

Figure 5.6: Example windowed STs (top) and TTs (bottom) from the UCSD 
database. 

Templa t e -P" > -PLrit F > > 

ST 
TT 

74% (58%) 
67% (51%) 

4% (0.8%) 
2 % (0 %) 

Table 5.6: Percentages of total Cartesian velocity moments (for the UCSD database) 
calculated that show promising properties for classification, as determined by the 
1 % value of 3.57 - those including velocity information are shown in brackets. 

As with the SOTON database 125 velocity moments were calculated on each set 

of templates, allowing for the windowed data by using the method described in the 

previous section. Table 5.6 displays the number of moments (in terms of percentages 

of the total) that showed promising properties with respect to subject clustering 
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and separation, determined via the F statistic. Even though initial results produced 

more moments with F > Fcrit than the SOTON database (comparing Tables 5.1 and 

5.6), further examination reveals that less satisfy F » Fcrit- Table 5.6 shows that 

only 0.8 % of the STs with F » Fcrit {F > 30) include velocity. The Scheffe post-

hoc analysis allowed the manual selection of two moments (wmoaio and vmo4oo), with 

the corresponding Fs results shown in Table 5.7. Even though only two moments 

have been isolated a high classification rate of 80.95 % is achieved, as shown in 

Table 5.9. The corresponding F statistic values for these two moments can be seen 

in Table 5.8a. The Scheffe results demonstrate that the two moments complement 

each other, although particular subject comparisons - (2,5), (2,6) and (5,6) - cause 

confusion, a result which is reflected in their scatter plot shown in Figure 5.7. (An 

alternative feature set may produce improved separation for these comparisons). 

Analysing the TTs in the same manner produces the classification results shown 

in Table 5.10, which are plotted in Figure 5.8. Figure 5.8a demonstrates subject 

clustering, while rotating it about the horizontal plane illustrates the linear relation-

ship between the two of the selected velocity moments (Figure 5.8b). Combining 

the template descriptions to produce a description of both shape and temporal mo-

tion does not improve the classification rate. The classification results for this case 

can be seen in Table 5.11. Here the two ST velocity moments from Table 5.9 have 

been combined with one of the TT moments (t̂ mo2oo)-

The results presented for the SOTON database are encouraging, with high classi-

fication rates on a small sixteen sequence database. The inclusion of velocity was 

seen to alter the subject mean cluster value, as illustrated by the Scheffe post-hoc 

analysis. This result is dependent on the correlation between the motion and the 

image sequence, and on the consistency of each subject's multiple image sequences. 

The STs are describing the subject's overall shape change with respect to their 

forward motion. In contrast, the TTs are describing limb movement independent 

of the subject's forward motion (removed by the windowing). By including the 

average forward velocity into the TT moment calculation, the DC value that is 

lost by the windowing process can be restored. This produces a range of possible 

features which can include limb movement, overall body motion, or a combination 

of the two. If the data was not windowed the TT would contain a combination of 

overall motion and limb movement, which could not be separated. 

The classification results for the UCSD database are somewhat disappointing. 

Velocity moments with F values greater than the critical values were still produced. 

However, the amount available for classification was far fewer than for the SOTON 

database. This may be a combined effect of the reduced resolution of the UCSD 
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2 3 4 5 6 2 3 4 5 6 
1 8.7* 13.0* 0.6 12.3* 22.7* 1 6.0* 33.9* 12.9* 4.3* 5.4* 
2 0.4 13.7* 0.3 3.3 2 11.4* 1.3 0.1 0.0 
3 19.0* 0.0 1.3 3 5.0* 14.0* 12.3* 
4 18.2* 30.5* 4 2.3 1.6 
5 1.6 5 0.1 

(a) i;772o400 (b) umosio 

Table 5.7: SchefFe post-hoc results {Fs) for the Cartesian velocity moments - UCSD 
STs. A * indicates a value greater than the 1 % Fcru value of 3.57. 

Moment F-value 

7̂̂ 0400 
fTMoSlO 

53.01 
36.86 

Confidence Fcrit 

5% 
1% 

2.48 
3.57 

Moment F-value 

)̂7̂ 0200 
7710400 

'̂ '̂ 0310 

81.01 
52.24 
9.04 

ra) STs. (b) values. (c) TTTTs. 

Table 5.8: F and Fcrit values for the selected Cartesian velocity moments on the 
UCSD database. 

Cartesian velocity moments Classification Cartesian velocity moments 
A; = 1 A: = 3 

•̂ ^0400 
7̂)̂ 0400, '̂ '̂ 0310 

42.86% 
76.19% 

42.86% 
80.95% 

Table 5.9: Cartesian velocity moments - the UCSD classification results for the STs. 

Cartesian velocity moments Classification Cartesian velocity moments 
k = l k = 3 

f?TT'0200 
^^0200, t'yM'0400 
)̂7Z0200, l'f)̂ 0400, 

52.38% 
64.29% 
54.76% 

30.95% 
52.38% 
57.14% 

Table 5.10: Cartesian velocity moments - the UCSD classification results for the 
TTs. 

Cartesian velocity moments Classification Cartesian velocity moments 
k = 1 k = 3 

^;m0400(ST), 'umo3io(ST), 'umo2oo(TT) 76.19% 76.19% 

Table 5.11: Cartesian velocity moments - the UCSD classification results for the 
combined templates. 
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Figure 5.7: Cartesian velocity moments - UCSD ST scatter diagram. 

database, its increased size, and the highly correlated descriptors produced by the 

Cartesian velocity moments. Further to this, there are inconsistencies evident in this 

database. The subjects in the UCSD database are all walking at similar speeds, 

but variations will exist within a subject's sequence, implying between-sequence 

variation (for the same subject). The distance between the camera and the sub-

ject varies between some sequences thus the need for scale invariance within the 

feature description. The current formulation of the Cartesian velocity moments in-

cludes sequence-scale invariance (refer to Equation 3.7), however individual image 

scale invariance is not handled. Here the image-by-image scale invariance version 

of the Cartesian velocity moments (Section 3.2.2) was not used, so as to avoid fur-

ther increasing the correlation of the features. The variation in distance leads to 

interaction between both the ground and the background causing shadows to ap-

pear/disappear. This is in addition to the shadows appearing (on most sequences) 

on the Boor between the subject's legs, evident in Figure 5.6. There is also evi-

dence of interaction between some subject's clothes and the background affecting 

the feature (subject) extraction. These inconsistent characteristics of the database 

will also affect the Cartesian velocity moment calculations. There may also be sec-

ondary effects in the UCSD TTs due to the lower image resolution. The subjects 

within the UCSD sequences are typically 94 pixels in height, as compared to the 
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Figure 5.8: Scatter plot for the TTs from the UCSD database, showing 3 velocity 
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SOTON database of 156 pixels (~ 40% reduction). This reduction in resolution 

will affect the performance of the TT algorithm; eg. the between-subject motion 

variations may be of a sufficiently small scale to be lost due to the loss in image 

resolution. (It is interesting to note that even at the larger scale using the subject's 

face for classification would appear difficult). 

Further to these problems, both databases (SOTON and UCSD) consist of win-

dowed data, which may effectively be reducing the accuracy of the information in 

which we are interested. Additionally, the subject speed inconsistencies already 

mentioned may degrade this information. The next section addresses the problem 

of the highly correlated description by applying the Zernike velocity moments to 

the gait description, beginning initially with the UCSD database. Further, these 

moments include individual image scale invariance. It then continues to analyse a 

larger non-windowed database. 

5.3 Zernike velocity moments 

The Zernike velocity moments (Equation 3.14) are designed to capture both spatial 

and temporal information from an image sequence. This is achieved by utilising the 

orthogonal shape description provided by the Zernike polynomials, deGned within 

the unit disc. Each image within the sequence is first mapped onto the unit disc, 

and this structural information is then combined with the motion information from 

between consecutive images. As a direct result of the Zernike polynomials, the 

individual image descriptions are less correlated and smaller in magnitude. Here 

we apply these velocity moments to describing gait sequences, with the aim of 

producing less correlated and more compact descriptions as compared with the 

Cartesian velocity moments. 

When the subject is mapped onto the unit disc (prior to the Zernike moment cal-

culation for each image), care must be taken to ensure that no part of the subject's 

shape falls on the perimeter of, or outside the unit disc. The value of for Equa-

tion 2.58 is set, so that the mapped pixels' coordinates are within 90 % of the unit 

disc's radius. This is done to reduce the effect of the converging polynomials as 

r approaches unity, illustrated in Figure 2.6. Due to the nature of the encoding 

of information in the Zemike polynomial (Section 2.4.2), the Zernike moments will 

e&ciently describe the extremities of the subject as they move. Details including 

the head, arms and legs will appear closer to the perimeter of the unit disc mapping 

than the torso. This means that the characteristics that are most likely to vary be-

tween subjects (i.e. leg, arm and head shape/movement) are described efficiently, 

whereas details including explicit torso shape will not be as efficiently encoded. 
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5.3.2 UCSD database 

The analysis detailed in this section is applied to the UCSD subject database (both 

STs and TTs), which has already been described in Section 5.2.2. Prior to the 

translation and scale invariance mapping detailed in Section 2.4.2, the COMs are 

calculated to adjust the velocity calculations for differences between the average ve-

locity and the actual velocity between successive images. Identical to the approach 

taken for the UCSD database in Section 5.2.2). 

Zernike velocity moments up to order m, n = 12, /i = 4 ,7 = 0 (a total of 196) 

were calculated for all the sequences of STs in the database. The moment orders 

were chosen in-line with the discussion presented in Section 4.7. To further re-

duce the size of the selection problem only the magnitudes of the velocity moments 

were studied. Phase information (of complex Zernike moments) has been shown 

to be insignificant, in terms of classification, especially when high order moments 

are included, [37]. Suitable moments for classification were then selected using the 

one-way ANOVA technique. Moments producing F values below the 1 % confidence 

level were then removed from the list. Table 5.12 shows the numbers of moments 

(percentages taken from 196) that showed promising attributes in terms of sub-

ject separation and clustering - as determined by the F statistic. Those velocity 

moments including motion information are shown in brackets. It can be seen that 

only 5 % of the moments of the STs did not exceed the 1 % threshold. As before 

F » Fcrit indicates F > 30. Analysis using the Scheffe post-hoc test revealed that 

Template F > > 

ST 
TT 

95 % (71 %) 
91% (67%) 

35% (18%) 
15% (1%) 

Table 5.12: Percentages of total Zernike velocity moments (for the UCSD database) 
calculated which show promising properties for claasification, as determined by the 
1 % Fcrit value of 3.57 - those including velocity information are shown in brackets. 

complete separation of the STs (in terms of classes, or subjects) could be achieved 

using five of the velocity moments from the remaining list. The corresponding F 

statistic values for the manually selected moments can be seen in Table 5.14a, along 

with the Scheffe results in Table 5.13. (The use of parentheses for the moment or-

der i.e A(i2)22o is to disambiguate between moment orders that are > 9). Here the 

entries in the Scheffe tables are the values for the subject pairs indicated by the 

row and column. The combination of the five velocity moments separates all the 

subject combinations above the 5 % confidence level (all except two combinations 

are separated above the 1% confidence level). Prior to classification the velocity 

moments were normalised by their maximum values, to ensure that moments with 

larger average values did not bias the results. Table 5.15 details the classification 
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2 3 4 5 6 2 3 4 5 6 

1 32.7' 1.8 63.4* 0.23 3.3 1 2.6 10.6* 11.7* 2.7 2.1 

2 19.0* 5.1* 27.4* 15.1* 2 2.8 3.3 0.0 0.0 

3 43.6* 0.7 0.2 3 0.0 2.6 3.3 

4 56.0* 37.8* 4 3.1 3.9* 

5 1.9 5 0.0 

(a) A 8210 (b) (̂12)220 

( c ) ^ (12 )420 (d) A 5100 

2 3 4 5 6 

1 4.9* 43.3* 18.5* 3.0 0.6 
2 77.3* 42.4* 15.5* 9.0* 
3 5.2* 23.6* 33.5* 
4 6.6* 12.3* 
5 0.9 

2 3 4 5 6 2 3 4 5 6 

1 4.1* 7.8* 0.9 2.4 0.0 1 27.5* 17.3* 30.5* 2.4 5.9* 

2 0.6 1.2 0.2 5.2* 2 1.2 0.0 13.5* 8.0* 

3 3.5 1.5 9.1* 3 1.8 6.8* 3.0 

4 0.4 1.4 4 15.7* 9.6* 

5 3.2 5 0.7 

(s) Aggoo 

Table 5.13: Scheme post-hoc results (fg) for the Zernike velocity moments - UCSD 
STs. A * indicates a value greater than the 1 % value of 3.57. 

Moment F-value 

-^8210 102.73 

-^(12)220 16.25 

^(12)420 13.87 

-^5100 48.02 
-<4.9900 98.81 

(a) STs. 

Table 5.14: F and 
UCSD database. 

Confidence Fzrit 

5% 
1% 

2.48 
3.57 

Moment F-value 

.̂ (10)200 
^9100 

152.11 
55.74 

(b) values. (c) TTs. 

values for the selected Zernike velocity moments on the 
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Zernike velocity moments Classification Zernike velocity moments 
k = 1 k = 3 

-^8210 61.90% 52.38% 
-/4.8210, -^(12)220 80.95% 76.19% 
-^8210: -^(12)220, -/1(12)420 85.71% 88.10% 
^8210, ̂ (12)220) ̂ (12)420) -^5100 97.62% 97.62% 
-<48210, -<4(12)220, -<4(12)420, -<45100, -<49900 100.00% 100.00% 

Table 5.15: The Zernike velocity moments - UCSD classification results for the STs. 

Zernike velocity moments Classification Zernike velocity moments 
k = 1 k = 3 

-<4(10)200 

-<4(10)200, -<49100 

54.76% 
97.62% 

35.71% 
95.24% 

Table 5.16: The Zernike velocity moments - UCSD classification results for the TTs. 

Zernike velocity moments Classification Zernike velocity moments 
k = 1 A; = 3 

-<4(10)200 (TT), Agioo (TT), ^§210(ST) 100.00% 100.00% 

Table 5.17: Combining templates - UCSD classification results for the Zernike ve-
locity moments. 

results. It can be seen that a classification rate of over 80 % with A: = 1 is achieved 

using only two features. 100 % classification is achieved using just five features, for 

both k — 1 and k = 3. Figure 5.9a shows a scatter plot of the first two Zernike 

velocity moments, while Figure 5.9b shows a scatter plot of the first three moments 

illustrating both clustering and cluster separation. 

Applying the same analysis to the TTs of the UCSD database produced the 

classification results shown in Table 5.16, resulting in a classification rate of 95% 

using two velocity moments, displayed in Figure 5.10. Here velocity moments which 

contain predominately structural information appear useful. The corresponding F 

statistic values can be seen in Table 5.14c. By then adding a single ST velocity 

moment (/Igzio) to the TT moments, 100 % classification is achieved (shown in Table 

5.17), improving previous results on the same database, Section 5.2.2 and [46], and 

with fewer descriptors. By combining the two types of templates, a description of 

both shape with motion (STs) and an individual's limb motion (TTs), (independent 

of their average motion) is produced. Naturally, a larger database would doubtless 

require more moments to separate subjects, but it is perhaps worth noting that 

only a basic classifier has been used. 

There are four CMU databases (captured at the Carnegie Mellon University), each 

consisting of STs of the same 25 subjects walking on a treadmill. The computation 
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Figure 5.9: Scatter plots of the selected Zernike velocity moments used for claasiG-
cation of the UCSD STs. 
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Figure 5.10: Scatter plot of the selected Zernike velocity moments used for classifi-
cation of the UCSD TTs. 

C M U Database Camera Walking speed VieM^ing angle 

CMU_03_7^ 03_7 slow normal 
CMU_03_7_f 03_7 faat normal 
CMU_05_7_8 05_7 slow oblique 
CMU_05_7_f 05_7 fast oblique 

Table 5.18: The different CMU databases. 

of the TTs waa not possible due to most of the original data being unavailable. 

Two of the databases view the subject from the side (normal to the camera), the 

remaining two view from an oblique angle (c:̂  45° from normal), as shown in Figure 

5.11. For each viewing angle there is data captured at two different walking speeds, 

classiAed as slow and fast. Table 5.18 summarises these details. The STs were 

generated from the original colour data using a simple background subtraction 

technique. The result was median Altered ( 3 x 3 mask) to remove the eEects of 

noise caused by variations in lighting, etc. Figure 5.12 shows an example image 

from one of the CMU databases, along with its corresponding ST. All subjects have 

four sequences per database of them walking for one complete gait cycle, heel strike 

to heel strike of the same foot, producing STs with no forward or DC velocity. 

However, fluctuations about the mean x position may exist. 
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Figure 5.11; A plan view of the treadmill and cameras for the CMU databases. 

Figure 5.12: Example image from the CMU_03_7_s database (a) and the correspond-
ing ST (b). 

For the first database of STs (CM[/_03_7_s) a total of 784 Zernike velocity 

moments were calculated (on 100 sequences in total). This took approximately 

ten days to process on a cluster of eight 1 GHz machines. Consequently, this list 

wag reduced to those moments which satisSed F > 30, along with those moments 

which proved useful in the UCSD analysis. This reduced the moment list for the 

remaining three databases to 90, 43 of which included velocity information (both z 

and 2/). Table 5.20 shows the A:-nn classification results for each database using all 

90 velocity moments, showing results of over 90 % for all four databases. A further 

reduced feature set was achieved using the one way AN OVA technique with the 

Scheffe post-hoc tests. The f statistic results for the manually selected moments 

can be seen in Tables 5.19a and b, all of which are much greater than the Fcru values 

shown in Table 5.19c. The moments used (for both camera views) to classify the 

fast and slow walks are identical, while between camera views they differ. Table 5.21 

shows the classification results for this manually refined list of 6 velocity moments, 
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all of which are over 85 %. 

Due to the nature of the treadmill, none of the ST sequences have any forward 

velocity information. This is apparent in the selected velocity moments (refer to 

Table 5.21), as none include a forward velocity term i.e. If the treadmill 

speed for each subject had been known, then this could have been used as a DC 

value in the velocity moment calculation. This would be supplemented by any 

X direction variations present in the STs (similarly achieved for the SOTON and 

UCSD databases, refer to Section 5.2). However, a subject's y direction motion 

information is visible in treadmill data, appearing as a vertical 'bobbing' motion 

as they walk. This richness of y direction motion information is reflected in the 

selected moments, as many of them include y velocity information (mostly mag-

nitude information i.e. 4̂***2). In both cases the fast walk sequences have lower 

classiGcation results as compared with the slow walk sequences, rejecting a loss 

in temporal resolution i.e. less images describing the gait cycle. It is interesting 

to note that these STs are richer in information than their UCSD versions. Not 

only due to their increased resolution, but also due to the large number of holes 

within each subject's perimeter, as shown in Figure 5.12b. The holes correspond 

to areas of the background that have interfered with the background subtraction. 

This has effectively increased the amount of spatial information as these holes are 

correlated to the subject's shape and movement. One study exploited such a tech-

nique to increase the efficiency of moment descriptors, by occluding part of the 

shape being described [76]. In this work a shape is occluded using a set of circles, 

producing a family of shapes which represent the original object. This results in 

(potentially) more spatial information being available, reducing the need, in terms 

of clagsiHcation, for higher order moments as the shape essentially becomes more 

unique. 

J. 5.^ databage 

The HID database (Human ID at a distance research program) used here consists 

of 50 subjects, with 4 sequences of each subject, a total of 200 sequences (:^ 6000 

images). The subjects are walking around a continuous bone-shaped track, the main 

shank of which is normal to the camera. The sequences studied here contain the 

subjects walking from left to right for one and a half gait cycles (three consecutive 

heel strikes). The subjects are walking in a relaxed manner, achieved by letting them 

settle into their walk (around the continuous track) before filming. The surface of 

the track was flat, while the loops at either end of the track are out view of the 

camera, allowing the subject to be walking in a straight trajectory when normal to 

the camera. Figure 4.4 shows a diagram of the main shank of the track minus the end 

loops. Due to the background and the controlled lighting conditions, chroma-key 
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Moment F values Moment 
Slow Fast 

-̂ 8202 98.49 63.50 
-/̂ (12)400 114.47 133.94 
/I2OOO 151.30 200.86 
2̂200 155.99 138.75 

40.47 34.64 
-/̂ 4002 87.63 82.97 

Moment F values Moment 
S l o v y Fast 

^ 8 2 0 0 271.85 28.69 
-^(12)402 141.09 93.53 
^ 2 2 0 0 247.34 81.95 
-<44202 249.37 164.94 
Ajjoo 116.43 64.44 
-^^4402 296.24 223.53 

fa) CMU_03_7 F values. (b) CMU_05_7 F values. 

Confidence Fcrit 

5% 
1% 

1.66 
2.05 

(c) flrit values. 

Table 5.19: F and F^rit values for the selected Zernike velocity moments on the 
CMU databases. 

Camera Classification A: = 1 Classification k = 3 Camera 
SIovî  Fast Slovy Fast 

CMU_03_7 
CMU_05_7 

100.00% 
100.00% 

100.00% 
99.00% 

100.00% 
99.00% 

100.00% 
95.00% 

Table 5.20: The classification results for the four CMU databases using 90 velocity 
moments. 

Camera Zernike velocity 
moments 

Classification k = 1 Classification k = 3 Camera Zernike velocity 
moments Slow F a s t Slow Fast 

CMU_03_7 

CMU_05_7 

.<48202 ,^ (12)400 ,-<42000 

^ 2 2 0 0 , , - 4 4 0 0 2 

-/IgOOO , / l (12)402 ,-<42200 

^ 4 2 0 2 ,-<47700 ,-^4402 

91.00% 

95.00% 

91.00% 

96.00% 

90.00% 

92.00% 

87.00% 

87.00% 

Table 5.21: The classification results for the four CMU databases using 6 velocity 
moments. 
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A 
(a) Original (b) ST (c) TT 

Figure 5.13: Example image from the HiD database, its corresponding cropped ST 
and TT (computed from image n, n + 1). 

extraction was possible, detailed in Section 4.4.3. Both STs and TTs were computed 

for this database. Figure 5.13 shows an example image from the database along 

with its corresponding cropped ST and TT (histogram equalised and computed from 

image n, n + 1). Due to the increased resolution of the images and the distance 

over which the subjects walked, the optical flow for the TTs was computed within a 

moving window, moving at the subject's average velocity, a method already used in 

gait recognition by Little [45]. The average velocity was calculated using the COM 

information from the STs. As before the TTs are (effectively) windowed data, so 

the average velocity is placed back into the velocity moment calculation (as done for 

the SOTON and UCSD databases). However, due to the increased resolution and 

size of the HiD TTs dataset, the Zernike moment scaling (for the TTs) was switched 

off to avoid problems through scaling large, non-binary images (i.e. the mapping 

could scale the subject causing it to exceed the unit disc's area). The images were 

instead scaled to appear visually central to the unit disc i.e. the thresholded COM 

was used in the mapping (in-place of the actual greyscale COM). 

A list of 234 Zernike velocity moments was computed on the STs and TTs. 

The moment list contained moments describing both x and y velocity components 

along with spatial information. The list was manually constructed using the re-

sults from previous database analyses and contained moments up to, and including 

order/rotations = 12. This prior selection was made to help reduce the com-

putation time. The A;-nn classiEcation results for the complete moment list of 234 

moments on the STs and TTs can be seen in Table 5.23. These classification results 

are low, suggesting the need for feature selection. Results for a subset of eight ST 

moments selected using the ANOVA technique, are shown in Table 5.24. Table 

5.22a summarises the F statistic values for the eight selected ST moments, whereas 

Table 5.22c shows those for a set of 6ve selected TT moments. The F statistic 

values shown in Table 5.22a and c are all greater than the critical values shown 

in Table 5.22b. A high classification of 83.50 % {k = 3) is achieved on this large 
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database using eight ST velocity moments, as shown in Table 5.24. Table 5.25 

shows the classification rates for the five selected TT velocity moments which are 

relatively low in comparison. The selected TT velocity moments favour those hold-

ing solely spatial information (i.e. ^**oo)- A similar result was found upon analysis 

of the UCSD TT database, supporting the hypothesis that the TTs hold detailed 

information about a subject's limb motion (which may not vary enough between-

subjects on its own to allow good subject separation), while the STs hold global 

shape/motion differences. It is interesting to note that these results (STs and TTs) 

consistently show the k = 1 classification results to be greater than k = 3. This 

suggests that the feature space is closely packed (with respect to subject clusters). 

There are two obvious solutions to overcome this problem. The first is to increase 

the dimensionality, using more features to increase cluster separation, or secondly 

to use a more sophisticated classifier, as mentioned in Section 4.6. Although, this 

efi'ect may be caused by the normalisation of the moment values. The normalisation 

is used to stop biasing of the /c-nn classifier by moments which naturally produce 

larger values. However, if one subject produces significantly different feature values 

to the rest of the database, the remaining subjects within the database (and the 

differences between them) will be compressed into a small area of the feature space. 

This is illustrated in Figure 5.14 where 20 subjects from the HiD are plotted, sub-

ject 20's features are significantly different from the remaining subjects which are 

closely grouped. Alternatively the same effect will be observed if an outlier to a 

subject cluster exists i.e. one of subject 18's sequences in Figure 5.14. (A situation 

which is explored further in the Section 5.3.5). These results highlight the possible 

need for an alternative classifier when analysing larger datasets, or in situations 

where the feature's order of magnitude may vary. Alternatively, we can combine 

the two template results (as done for the UCSD database). Table 5.26 displays the 

results of combining the eight selected STs velocity moments with the first four TT 

velocity moments. This results in a higher classification rate of 96% (A = 3). The 

proximity of this result to the A; = 1 classification rate of 97 % suggests that the 

feature space is less packed with respect to between-subject differences, than it was 

when using just STs or TTs alone. 

J Cage sfi/cfzeg 

This section details two simple case studies which help to illustrate that the Zernike 

velocity moments contain both structural information and motion information, as 

reflected in their formulation (Equation 3.14). The first of these examples was pro-

duced by adding one extra subject to the HiD database, using the same laboratory 

conditions as used to capture the original database (refer to Sections 4.4.3 and 

5.3.4). The subject's data consisted of three sequences of him walking in a normal 
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Moment F-value 

ĴGOOO 61.51 
j48200 61.54 

25.97 
j4(i2)(12)20 21.26 

23.31 
:42200 38.41 
^8410 15.15 
4̂(12)400 45 J7 

Confidence Fcrit 
5% 
1% 

1.44 
167 

Moment F-value 

^5100 59.67 
^6200 71.95 

9̂900 85.75 
(̂10)(10)00 106J5 

^6610 47.03 

(a) STs. (b) fLrit values. (cl TTs. 

Table 5.22: F and Fcrit values for the selected Zernike velocity moments on the HiD 
database. 

HiD 
Template 

Classification HiD 
Template k = 1 k = 3 

ST 
TT 

74.00% 
52.50% 

57^0% 
28.50% 

Table 5.23: The classification results for the HiD database using 234 velocity mo-
ments. 

Zernike velocity moments Classification Zernike velocity moments 
k = 1 k = 3 

^6000, ^8200 39.50% 31.00% 
•̂ 6000 J ^8200) 8̂810 63.00% 47.50% 

îeooo, 1̂8200, ^̂ [120(12)20, 80.00% 66.00% 
-<46000, -"4.8200, -<48810, -'4(i2)(12)20, -<42200, -<48410, -<4(12)400 93.50% 83.50% 

Table 5.24: The HiD classification results for the spatial templates. 

Zernike velocity moments Classification Zernike velocity moments 
k = 1 k = 3 

4̂5100, ^̂ 6200 
^5100, -<46200, -<49900, -<4(10)(10)00 

^5100, ^6200, ^9900; (̂10)(10)00, -<46610 

24.50% 
52.50% 
61.50% 

17.00% 
38.00% 
50.50% 

Table 5.25: The HiD classiScation results for the temporal templates. 

Zernike velocity moments Classification Zernike velocity moments 
A; = 1 A; = 3 

(STs) -̂GOOO ,̂ 8200,-<48810 ,-<4(l2)(12)20 ,̂ 7110,-<42200 ,-<48410,̂ (12)400 
(TTs) 5̂100,-<46200,̂ 9900,-<4(10)(10)00 

97.00% 96.00% 

Table 5.26; The HiD classification results for combining the templates. 
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Figure 5.14: 20 subjects from the HiD database plotted for 3 Zernike velocity 
moments (used for classification), illustrating the possible effects of normalising the 
features. 

relaxed manner, achieved by asking him to walk normally around the continuous 

track. For his fourth sequence he was asked to walk in an abnormal manner. This 

fourth sequence produced the subject walking with more vertical motion throughout 

the sequence, along with variations in stride length and arm motion. (The subject 

swung his arms considerably more than usual and walked in a 'jerky' manner.) A 

set of Zernike velocity moments for all four sequences was then calculated, allowing 

the subject to be added to the databaae. Figures 5.15 and 5.16 show the results 

of adding this new subject to the database. To allow for visualisation this extra 

subject is compared with 9 others (picked at random) &om the HiD database. Note 

these plots show alternative Zernike velocity moments to those already presented 

for the classification of the HiD database, illustrating the availability of features 

that produce tight class (or subject) clustering. The scatter plot has been rotated 

about the horizontal plane in a clock-wise direction to produce the four plots. The 

additional subject (Subject 10) is represented by the cluster of triangles at the cen-

tre of the 6rst plot (Figure 5.15). As the plot rotates the feature points cluster 

and then separate, resulting in the final plot (Figure 5.16) where the feature point 

corresponding to the abnormal walk is an outlier, visible at the far left of the plot. 

It is worth noting that all three of the velocity moments in the plots include motion 
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information. The second example in this data illustrates a similar result. This 

subject chose to hold their chin throughout one of their sequences, producing one 

sequence with little or no arm-swing. The difference caused in the spatial templates 

is reflected in the feature point clustering, as can be seen in Figures 5.15 and 5.16, 

where the outlier to Subject 3 is the sequence in question. These velocity moments 

fail to allow clustering of the four feature points for Subject 3, however, an alter-

native moment set exhibit improved clustering as shown in Figure 5.17. The x axis 

(^8200) is a measure of the subject's spatial area and clusters well, which agrees 

with the subject's arm being visible while holding their chin. A full study of po-

tential within-class variation caused by these factors and others (i.e. same subject 

with different footwear, carrying objects etc.) is within Southampton's part of the 

HiD research program and beyond the scope of this thesis. However, within-class 

variations will also exist due to alternative application environments motivating the 

next chapter on performance analyses. 

5.4 Discussion 

One large constraint on this work is the definition of the gait cycle. The work 

detailed here has focussed on describing one complete gait cycle. Due to the periodic 

nature of gait, theory suggests (as applied to the velocity moments) that it will not 

matter where in the gait cycle the description (or sequence) starts, just as long as 

one complete cycle is described - the results should not differ. One possible way 

of automatically determining a complete cycle, would be to study the low order 

moments of the ST sequence. Here the periodicity of the low order moments should 

correspond to the periodicity of the gait cycle, thus enabling the length of the 

sequence to be determined. Figure 5.18 shows the periodic nature of a ST's mass 

(/̂ oo) as it varies through a gait cycle. The local maxima correspond to the legs at 

full stride, whereas the minima signify the legs being together (refer to Figure 4.1). 

One area which has not been addressed is the problem of image calibration. 

None of the images used within the databases have been corrected for radial (lens) 

distortions or colour calibration. (The requisite calibration information was un-

available.) The lens distortions as the person walks across the field of view can 

be visibly apparent through the image sequences, especially where large resolution 

images are used, i.e. the HiD database. (This may also be the reason why there is 

a slight degrading trend in Figure 5.18.) This creates slightly 'warped' silhouettes, 

which vary depending on where in the field of view the subject is positioned. How-

ever, most of the subjects within each database are walking along approximately 

the same part of each track, thus between-subject distortions may be consistent. 

This however is not guaranteed. Also, sequences of subjects walking in different 
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Figure 5.15: The result of an abnormal walk causing one of subject lO's feature 
points to drift. The 3D scatter plots are of the same three velocity moments, 
rotated about the horizontal axis, demonstrating the feature point clustering. 
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Figure 5.16: The result of an abnormal walk causing one of subject lO's feature 
points to drift. The 3D scatter plots are of the same three velocity moments, 
rotated about the horizontal axis, demonstrating the feature point clustering (top) 
and separating (bottom). 
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Figure 5.17: Improved clustering for subject 3 who chose to hold their chin through 
one of their walking sequences. 

directions (i.e. the SOTON database) are more likely to experience problems, due 

to the distortions affecting different halves of the subject's silhouette, depending 

on their direction of motion. Eg. walking in one direction may cause the leading 

leg to be distorted, while walking in the opposite direction (along the same part 

of the track) would cause the trailing leg to be distorted. Thus, a detailed study 

into direction independent gait classiGcation would require lens corrected data. The 

problem of colour calibration (in terms of this research) haa less of an eSFect. Varia-

tions may be detectable in the optical How calculations and the subject extraction 

methods as these depend directly on luminance values. The effects of these calibra-

tion issues will be present in the subject (or class) variance of the corresponding 

features. Correcting these issues, would potentially improve the clustering of the 

subjects, thus the overall classiEcation results. 

Possible improvements could be made to the TT generation. One possibility 

is to produce higher-detail versions, with increased numbers of displacements re-

moving the need for the average-velocity windowing. Alternatively, noise within 

the resultant TTs could be reduced by use of connected components analysis to 

help remove small areas of variation, which may be due to noise (as employed by 

Little [45]). However, this may in turn remove possible detailed information that 
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Figure 5.18: Periodic nature of the varying mass (/ioo) of a ST sequence (from the 
HiD database). 

exists between-subjects in a large database. One further limiting factor of this in-

vestigation is the type of classifier used. The HiD database results (comparing the 

k = 3 and k = 1 results) suggest improvements on the classification results could 

be achieved by using a more complicated classifier. This may more intelligent sep-

aration of the subject clusters, improving the performance of the existing selected 

features. Here, we are primarily interested in the features produced, rather than 

fine tuning the classification results - a possible route of further investigation. 

Previous psychological studies i.e. [13, 18] have concluded that a person's gait can 

be described in terms of symmetry and that it plays an important part in a persons' 

gait pattern, producing a synchronous symmetrical pattern of movement [13]. The 

arms and legs (or pendula) refiect about the (vertical) axis or torso and are 

asymmetric about the a; (horizontal) axis, further symmetries exist within the leg 

motion itself [18] (and are inherent to pendulum models) producing symmetry of 

motion through the temporal sequence. Explicit symmetry operators have already 

been applied to gait classification [25, 26] producing comparable recognition results 

(greater than 90% on a 28 subject database), however, the number of features 



utilised is far greater than the results presented here. Alternative area measures 

may also exploit this symmetry [19, 20]. Symmetry is also an area of interest to 

the face recognition community eg. [47]. 

Statistical moments have been shown to produce descriptions that extract sym-

metric (or asymmetric) characteristics of an image as described in Section 2.2.4. 

It is apparent that the centralised moments contain information about symmetry. 

These form the basis of the velocity moments, so it would appear feasible for them 

to also exhibit these symmetry properties. A direct comparison to Li's results pre-

sented in Section 2.2.4 is not possible as they were attained using scale-normalised 

centralised moments (Equation 2.20), which is not true in the case of the Cartesian 

velocity moments. This scale normalisation was not used to avoid increasing the 

(already high) feature correlation. However, some interesting observations can still 

be made if we consider the Cartesian velocity moments used for classification on the 

SOTON database. The results presented in Table 5.4 (calculated on the SOTON 

STs) favour vm2z**- On its own the p = 2 value (i.e. fmgooo) describes the range of 

pixel spread in the x axis. This can be attributed to the subjects' stride length and 

range of arm swing, as %;m2ooo is the time averaged version of //go- Also, on its own 

the g = 3 value (i.e. t'mosoo) is describing the time averaged skewness in the y axis 

(or the asymmetry of the distribution in that axis). (It is noted that interaction 

between these two descriptions will occur for producing a correlated time 

averaged spread with respect to skewness - a fifth order moment.) Further, wm23io 

will produce a correlated time averaged spread with respect to skewness and mo-

tion. All of the moments in Table 5.4 are time averaged (and/or motion weighted) 

versions, of the low order moments described in Section 2.2.4 to hold symmetry or 

asymmetry information. This is also true for the moments used for classification 

of the SOTON TTs in Table 5.5. These moments have proved useful in terms of 

subject separation implying that they significantly difiFer between subjects, produc-

ing possible unique symmetries for each subject. However, the remaining velocity 

moments which are directly comparable to those described in Section 2.2.4 vary be-

tween subjects. Assuming they encode symmetry information then these moments 

could provide more general symmetry information, which may be exploitable to 

detect human, or bipedal movement. Although, with reference to Equation 2.34, 

non-zero values are more likely due to the gait cycle not being exactly symmetri-

cal, the summing over many images and the discrete implementation. For example 

the values for have been observed to oscillate either side of zero suggesting 

possible symmetries in either axis. 

These results support the hypothesis that symmetry information within the 

gait cycle, captured through the Cartesian basis (via the velocity moments) enables 

classification through the difi"erences in a subject's symmetry of motion. In this 
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manner the velocity moments are describing symmetry (or asymmetry) within the 

different image sequences. With this in mind, the velocity moments of the silhouette 

data contain information about spatial symmetry within the image sequence. In 

contrast, when applied to the optical flow data they contain information describing 

the symmetry of temporal changes. 

Murray showed that the amount of upper body sway was greater for males than 

females [55]. When viewed from the side this movement is visible as a vertical mo-

tion or 'bobbing' as the subject walks [13]. The Cartesian velocity moments used 

for classification of the SOTON TTs and the Zernike velocity moments applied to 

the CMU databases exploit this vertical motion, suggesting future possibilities for 

gender recognition. This also reflects the conclusion that the optical flow images 

(TTs) contain the inter-subject differences in joint and torso movements. (An alter-

native gender classification approach could simply exploit the differences in height 

between subjects. However, this assumes a fixed camera geometry and distance 

from subject. Also, the Zernike velocity moments re-scale the subject silhouette (to 

overcome variations in scale) removing any available relative height information. 

The results gained from the SOTON database demonstrate the availability of ve-

locity moments that are invariant to direction of movement. The CMU database 

results emphasize that the features may be speed independent, provided that the 

gait cycle is not under-sampled or aliased. It must be noted though that a human 

running gait is fundamentally difi'erent to that of walking [84]. The two case studies 

have highlighted the effects of using different Zernike velocity moments, suggesting 

that different motions of a single subject are detectable, further emphasising that 

the velocity moments encode both shape and motion. 

5-4-3 Summary of results 

Two methods of velocity moments (Cartesian and Zernike), based on the same 

structure have been applied to seven different human gait databases, producing 

encouraging classification results. Table 5.27 collates all the classification results 

for the seven different databases. The final result separates the majority (96.00 %) 

of a 50 subject dataset using just twelve features. If there are % independent 

subjects then the probability of randomly correctly classifying each subject is: 

c , = ^ (5.1) 

Assuming that there are 14̂  independent sequences (samples) of each subject, and 

X independent subjects, then the probability of randomly correctly classi^ing one 

sequence (for one subject) is; 

100 



Database No. of No. of Image Velocity No. of moments Classification k = 3 Prob. of chance 

Subjects gait cycles dimensions moment STs TTs STs TTs STs+TTs classifier Css 

SOTON 4 1 128 X 288 ( w ) Cartesian 3 3 100.009o 100.0096 — 0.0039 

UCSD 6 1 128 X 160 ( w ) Cartesian 2 3 80.95% 57.14% 76.19% 110036 x 10-3 

UCSD 6 1 128 X 160 ( w ) Zernike 5 2 100.00% 97.62% 100.00% 0.0036 x 10-3 

CMU_03_7_8 25 1 486 X 640 Zernike 6 — 90.00% — 
— &04 

CMU_03_7J 25 1 486 X 640 Zernike 6 — 87.00% — — &04 

CMU_05_7_8 25 1 486 X 640 Zernike 6 — 92.00% — 
— &04 

CMU_05_7_f 25 1 486 X 640 Zernike 6 — 87.00% — — 0.04 

HiD 50 1.5 690 X 400 Zernike 8 5 83.50% 50.50% 96.00% 0.00016 X 10-3 

Table 5.27: Comparison of the different database classification results (k = 3) and resolutions, where 'w' indicates windowed data. 



and the probability of randomly correctly classifying the complete database for all 

independent sequences W, for each subject X is given by: 

Cssd ^WX (^'3) 

The corresponding values of Css for each database are displayed in Table 5.27. The 

CMU databases consisted of four sequences per subject, each split from one long 

sequence, thus its value of Css is higher than that of the other databases. All of 

the chance probabilities are very low, and the values for Cssd for each database 

would be essentially zero. The ability for the Zernike velocity moments to handle 

larger databases (reflected in the UCSD results for both the Cartesian and Zernike 

cases) reinforces the less correlated nature of the Zernike descriptors. These results 

are by analysis of relatively small databases, in comparison with other biometric 

databases, although, currently the HiD database is the largest of its kind. Possi-

ble specific velocity moments for gait recognition can only be determined through 

the analysis of larger databases. The results and analyses thus far have helped to 

isolate those moments more suitable to the classification of human gait. This is 

illustrated in both the CMU and HiD analyses where the list of possible moments 

were reduced using knowledge gained from the UCSD and SOTON analyses. Al-

ternative feature extraction (i.e. subject extraction and optical flow) techniques 

exist, based around more complicated and sometimes intelligent methods i.e. [24]. 

Therefore the ideas, results and conclusions presented here are not solely dependent 

on the simple extraction methods used i.e. the background subtraction techniques 

used for the SOTON and UCSD databases. The AN OVA analysis has provided a 

simple way of reducing the feature set, however, this technique may fail for larger 

databases, not least due to the assumption that the samples of each subject (here 

4) are normally distributed. The STs and TTs appear to complement each other, 

supporting the hypothesis that buttressing biometric techniques together is a valid 

avenue for further research. Increasing the number of sequences per subject may 

be desirable to improve clustering capability, also with respect to the A;-nn classifier 

approach. A more intelligent classifier would invariably improve the results, aiding 

to avoid the problems of feature normalisation illustrated in the HiD analysis. In 

light of these considerations, classification results that encourage the use of gait as 

a biometric have been achieved, using simple feature extraction and classification 

techniques, and statistical features that encode shape and motion. 

A direct comparison between difi'erent gait recognition techniques is not always 

possible. Such comparisons are hampered by differences between; the databases 
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that each technique is tested upon, the pre-processing or feature extraction tech-

niques employed (i.e. subject extraction or optical flow techniques) and the final 

classifier techniques. As a result (in the majority of cases) comparison between 

results becomes a comparison of the complete methodology and not necessarily just 

the feature description technique. However, with this in mind, here follows a brief 

comparison of the results presented in this thesis with other current (at time of 

publication) gait recognition techniques. 

The UCSD database analysis (Section 5.3.2) has improved upon the results by 

Little [46] on the same database. A result essentially due to the use of a scale 

independent descriptor (i.e. Zernike velocity moments), helping to overcome the 

problem of the varying distance between camera and subject - an issue not ad-

dressed by the original study. Huang [29] produces similarly high classification 

results for the UCSD database (using different silhouette data), although adding 

further subjects to this method of gait classification requires re-analysis of the com-

plete database, unlike the method of velocity moments. The classification results 

for the CMU databases (Section 5.3.3) are higher than those achieved by Collins [11] 

and BenAbdelkader [5] using identical silhouette (ST) data. Higher classification 

results than those presented in Section 5.3.4 have been achieved on the Southamp-

ton ST HiD database by Hayfron-acquah [25] (the authors full results have yet to be 

published), however, these results have been achieved using a far greater number of 

features. Area masks, also applied to the ST HiD data [20] (the authors full results 

have yet to be published) produced lower classification rates than those presented in 

Section 5.3.4, however fewer features were available. An alternative method based 

on moments [41] (of single images, similar to the work by Little [46]) has achieved 

high classification results on a 24 subject database. The same technique achieved 

comparable results to those presented in Section 5.3.3 for the CMU ST databases. 

(However, this study [41] and other recent work [64] is more concerned with the 

problem of inter-subject variation caused by clothing, footwear, carrying object etc. 

An area which is beyond the scope of this thesis). 

In conclusion, the results presented in this thesis have built upon previous 

gait studies producing improved or comparable claasification results on identical 

databases. Similarly high classification rates have also been achieved on new larger 

databases, and further justification for the gait symmetry hypothesis has been pre-

sented. These high classification results have been achieved using relatively few 

features, while the number of features available are (in theory) infinite, and the 

addition of further subjects to the analysis is trivial. 
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Chapter 6 

Performance analysis - Zernike 

velocity moments 

6.1 Introduction 

This chapter details the performance evaluation of the Zernike velocity moments 

as applied to the complete HiD ST database. The analysis is intended to provide 

an insight into the robustness of the technique under a selection of conditions, 

simulating possible application scenarios. This analysis has not been applied to 

the TTs as the results would be dependent on both the Zernike velocity moments 

and the optical flow technique. For example, we consider occlusion analysis. A 

partially occluded subject will produce different TTs. The results of analysing 

these new TTs will include secondary effects (effects of the occlusion on the optical 

flow calculation) rather than just characterising how the Zernike velocity moments 

perform under occlusion. In contrast, for the STs, the addition of occlusion or 

random noise is simple, due their binary nature. For each sequence of STs, the 

Zernike velocity moments used for classiScation (detailed in Table 5.24) were re-

calculated for each increment step of the corresponding performance test (eg. for 

noise analysis, the velocity moments are calculated for each different level of image 

noise). The normalised mean squared error (NMSE) is then calculated between 

the original velocity moment values (O,) (i.e. the noise free values) and the new 

'altered' values (W )̂, at each step of the performance test. The NMSE is defined 

as: 

NMSE = 

where K is the number of features, or moments and a NMSE value of 1 indicates 

100% variation from the original feature values. Describing the performance char-

acteristics in terms of an error-rate produces an analysis that is independent of the 

characteristics of the database. For example, if this analysis was conducted using 
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the classification rate (instead of the NMSE), the results may be dependent on 

subject cluster compactness and separation. Additionally, the subject clusters may 

all shift in the feature space relative to each other (eg. as the amount of occlusion 

is varied), representing no change in the classification rate, even though the fea-

tures themselves have changed. For each performance evaluation (except Section 

6.4) the NMSE results are plotted for the complete HiD database, along with an 

example set of results for one randomly selected HiD subject. The results for the 

complete database display the NMSE mean (//) and standard deviation (a) relative 

to the mean (// i cr), indicating how the moment values disperse as the performance 

increment (i.e. noise) varies. 

This chapter is structured as follows; The occlusion and image noise analyses 

(Sections 6.2, 6.3 and 6.4) are concerned with problems caused by the scene itself 

(i.e. static occluding objects and noise due to cluttered scenes or poor extraction 

techniques). The remaining evaluations: image resolution reduction and time-lapse 

imagery (Sections 6.5 and 6.6) are concerned with possible problems due to varia-

tions in image-acquisition hardware. 

6.2 Occlusion 

This analysis simulates to some extent the effects of a subject walking behind a 

lamp-post or another such static occluding object. It is interesting to note that 

human gait is self occluding, due the pendular arm and leg motion. A stationary 

occluding object can have one of two effects on the extracted subject ST. The first 

adds itself to the ST, the second removes a proportion of the shape. For example, 

both images in Figure 6.1 could be caused by a lamp post. In part, the differing 

effects will be due to the extraction technique, other factors include the camera 

viewpoint and also the item which is causing the occlusion. The performance of 

traditional moments degrades where the shape is occluded due to the loss in region-

information. This is, in part, due to the moments being calculated from a single 

image. They are a global descriptor, so if a portion of the object is missing (or 

has increased in size), it does not seem unreasonable to expect the result to be 

different from that of the original un-occluded object. Depending on the size of 

la; (b) 

Figure 6.1: A subject walking past a lamp post - two differing views of occlusion. 
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(a) 0% (b) 12% (c) 18% 

(d)23% (e) 29% 

Figure 6.2: STs with increasing amounts of occlusion 
occluded). 

(f) 35% 

(percentage of gait cycle 

the occlusion, even the lowest order moments (i.e. mass) will be altered. With 

respect to the Zernike velocity moments, adding an occluding object to the subject 

silhouette (Figure 6.1a) will cause the calculations to degrade rapidly. The addition 

of the occluding strip will bias the mapping function. Further, the calculation of the 

Zernike polynomials will be more efficient towards the edge of the unit disc (Section 

2.4.2), favouring the top and bottom of the occluding strip, rather than the exterior 

of the un-occluded target object, i.e. the subject. For these reasons the analysis 

of the second type of occlusion, removing part of the ST (Figure 6.1b) is studied 

here. Figure 6.4 shows an example ST sequence of a subject walking through a 

stationary occluding strip. The Zernike velocity moments used for classification 

were re-calculated for the complete HiD database, at each occlusion increment. 

For each increment the NMSE, between the original un-occluded and the occluded 

moments was then calculated. The increment was determined in pixels, expressed 

here as a proportion of the average distance over which the subjects walked. 

Figure 6.3a shows the results for one subject (4 sequences), whereas the results 

from the complete HiD database can be seen in Figure 6.3b. The NMSE is below 

0.1 with 6% occlusion applied. The descriptions drift as the occlusion increases. 

The descriptions can be seen to become noisy and diverge (ju f <7 increases) as the 

occlusion increases past 18%, which Figure 6.2 shows to occlude a large proportion 

of the ST. It must be noted that only one gait cycle has been used for the calculation. 

If, however, more than one gait cycle is analysed then the effects of the occlusion will 

essentially be further diluted, due to an increase in the spatial resolution, potentially 

providing more information about different parts of the gait cycle. Thus increasing 

the amount of occlusion that can be handled before the descriptions become overrun 

by noise. Similar effects will be true for all of the performance analyses. 
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(a) Increasing occlusion for one subject. 

LU 
CO 

Complete HiD ST database i—n 
NMSE mean — 
NMSE |a + o 
NMSE |j, - 0 

18 23 29 

Increasing size of occlusion 

(b) Increasing occlusion for the complete HiD database. 

Figure 6.3; NMSE with increasing occlusion for (a) one subject and (b) the complete 
HiD database. 
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Figure 6.4: A sequence of STs showing the 18% occlusion case. The subject is 
walking left to right and the sequence runs from the top left to bottom right. 
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seed uniform random number generator 
for (x —)• (width x height) ) 
{ 
noisCunh — uniform real random number from 0 to 100; 
noiseuni2 = uniform real random number from 0 to 255; 
if {noiscunh < amount) 
{ 
if {noiseunii > 127) pixel[x] = 1; 
else pixel [x] = 0; 
} 

} 

Figure 6.5; The pseudo code algorithm for the artificial noise analysis. 

6.3 Simulated image noise 

The analysis of the effects of simulated noise within image processing can be per-

ceived as being very artificial, in the sense that noise can appear under many differ-

ent guises. Noise within the system could be as a result of many different factors, 

take many different forms, with different noise distributions. Noise can be intro-

duced into the overall system through both the hardware configuration (i.e. sensor 

noise in the camera pixel array, connecting leads - an effective antenna to back-

ground electrical noise, or even variations in mains supply or subject illumination), 

and any pre-processing on the raw data (i.e. extraction techniques, conversions 

between image formats, compression algorithms etc). Here we are attempting to 

illustrate the effects of general image noise on the Zernike velocity moments, to 

give an idea of their performance attributes where the data is randomly perturbed 

from its true value. Random uniformly distributed thresholded noise was uniformly 

applied to each image pixel in each sequence. The amount of noise varied from 

0% to 100%, in 10% steps. For clarity, the pseudo code for the single image noise 

function (255 grey levels) is shown in Figure 6.5, where amount sets the percent-

age of noise to be added to each image. The use of the uniform (linear) deviate 

(MozgeuniJ to determine whether the noise is added allows a linear increase in the 

amount of noise added. The uniformly distributed deviate (between 0 and 255) re-

placing the pixel value (fiotseunig) is thresholded at 127 to provide binary noise, as 

the STs are binary. Thus a Gaussian distribution (thresholded in the same manner) 

would produce a comparable result (with // = 127 for 255 grey-level image, ignoring 

any rounding effects at the mean), however, using the uniform distribution imple-

mentation is computationally simpler. Figure 6.6 illustrates three images from the 

HiD database, shown with increasing amounts of noise. The effects of applying the 

noise before and after the mapping process (Equation 2.58) are considered. This is 
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done due to the degrading effects that the noise can have on the mapping function. 

However, we are primarily interested in the effects of the noise on the Zernike ve-

locity moments. Considering first the before-mapping case. The mapping process 

depends directly upon mass and centroid information. The random noise quickly 

degrades this information, causing a 'domino' effect. The noise degrades the map-

ping function, while the mapping function in return effectively amplifies the noise, 

the results of which are then passed on to the Zernike polynomials. The final cal-

culations degrade rapidly from their true value, as can be seen in Figure 6.7, shown 

for one sequence from the HiD database. Applying the noise to the complete image 

causes the mapping function to map the complete image (rather than just the sub-

ject silhouette) into the unit disc. This occurs as soon as any noise is introduced. 

As the noise increases the mapped silhouette becomes smaller (with respect to the 

area covered by the noise). This is due to the mapping process maintaining the 

image mass for scale invariance. The Zernike polynomials evidently describe the 

noise with constant image mass. Hence the noise error rate increases rapidly, as 

seen in Figure 6.7. The analysis was not repeated for the complete HiD database 

due to these initial results and conclusions. 

However, applying the noise after the mapping process produces the results 

shown in Figure 6.8a. The NMSE for the complete HiD database steadily increases 

with the noise level. Here, as before, the error bars show the standard deviation 

a (with respect to the mean [i) of the moment values for each level of noise. The 

standard deviation can be seen to be very small. Figure 6.8b shows a similar plot to 

that of Figure 6.8a, with replaced by the (NMSE) minimum and maximum 

values (about the mean value) illustrating that some variation about the mean 

does occur. These results reflect the effect of the subject silhouette being spread, 

or diluted, across the unit disc as the noise increases. As the noise increases the 

subject silhouette has less and less of an effect. The noise is applied to the complete 

unit disc and noise pixels appearing close to the unit disc's perimeter will have more 

weighting effect on the moment values than the silhouette (which is located about 

the origin - centre of the unit disc). The random nature of the images being encoded 

will in turn produce random Zernike moment results (for each image), the values 

of which oscillate over the possible moment value range i.e. positive and negative 

about zero. Therefore the summed (or average) result of each image's Zernike 

moment (i.e. the velocity moments) of a sequence will approach zero as the noise 

and sequence length increase. As the velocity moment values approach zero, so will 

Wi in Equation 6.1, hence, as the noise increases the NMSE will degrade to 1. 
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Figure 6.6: Part of a subject sequence showing increasing amounts of noise. 
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Figure 6.7; NMSE with increasing noise (applied before mapping) for one sequence 
from the HiD database. 

6.4 Real-world image noise 

Due to the artificial nature of the previous study on noise, an analysis based on real-

world noisy data was carried out. This analysis is aimed at studying the translation 

of the velocity moments from the laboratory data, to data that is less controlled 

(i.e. no controlled lighting, pedestrian and vehicle scene noise etc). However, the 

results will essentially analyse the performance of the extraction technique. An 

in-depth analysis on the whole HiD database would yield results which were highly 

dependent on aspects like the meteorological conditions and how they aEected the 

extraction. Thus, we have chosen to study only a small part of the HiD database 

in an attempt to illustrate possible affects of using real-world data. This outside 

data consisted of two subjects from the HiD (indoor) database, with four sequences 

of each subject walking for three consecutive heel strikes (as per the HiD indoor 

database). The images were captured outside on the same day as the indoor data 

comprising the HiD database, so the subjects have the same attire. Example ex-

tracted images can be seen in Figure 6.9. The background scene is visually noisy 

(i.e. cars, pedestrians, bicycles, etc) thus affecting the subject extraction. Holes in 

the ST and shadows on the ground are apparent in Figure 6.9b, whereas part of a 

car (which happens to be moving at the same speed as the subject) has been ex-

tracted in Figure 6.9a. The subjects were extracted using a colour implementation 
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(a) NMSE plotted with mean and standard deviation estimates. 
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(b) NMSE plotted with mean, minimum and maximum values. 

Figure 6.8: NMSE with increasing noise (applied after mapping) for the complete 
HiD database. 
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of the statistical extraction technique [33], described in Section 4.4.2 and Appendix 

B. As the subject's trajectory was known, the area outside of this was masked -

this helped to reduce the scene noise, while also speeding up the (computationally 

expensive) extraction. Windowing the subject may further improve the extraction 

results - this could be achieved by automatic techniques, i.e. [57, 24]. 

The selected Zernike velocity moments used for ST classification were re-calculated 

on this outside data. The HiD ST database (captured inside and extracted using 

chroma-keying) was used as a benchmark or ground-truth, and estimates of the 

within-class (or subject) variances along with the cluster centroid movement (be-

tween inside and outside data) are presented. The moments were first normalised to 

the maximum values across all sixteen sequences (four per subject, two subjects and 

two sources of data - inside and outside) removing any possible bias from moments 

with naturally large values, while allowing between subject comparisons. The shift 

in each outside data cluster centroid is expressed as a Euclidean distance, measured 

from the corresponding inside data cluster centroid. The multidimensional within-

class variance for K samples, using the Euclidean distance metric d (Equation 4.14) 

is expressed as: 

(6.2) 

Table 6.1 shows these results and Figure 6.10 displays the results graphically, where 

each cluster centroid /i and variance is represented by a Gaussian distribution. 

Both subject cluster centroids (outside data) /i have drifted from their original (in-

side data) value, whereas the within-class variance cr̂  for subject 012 has increased 

dramatically. This is most likely due to the large shadows (Figure 6.9b) appeirent 

throughout the four image sequences (caused by bright sunlight), a characteristic 

which is not present on the inside data. Subject 037's within-class variance has 

also increased, again reflecting the addition of background noise and slight shad-

ows around the feet appearing in the ST (Figure 6.9a). These additional objects 

appear and disappear through the sequences. This can be seen in the example 

outside data sequences (original and STs) in Appendix D. (In contrast, the holes 

present within the subject silhouettes in the CMU data (Section 5.3.3) are consis-

tent throughout the image sequences, effectively increasing the amount of usable 

subject spatial information). However, it must be noted that these results are only 

a rejection of how these particular velocity moments (jointly) behave under less 

favourable scene conditions. Speci6c moments will invariably be affected by di%r-

ent changes in image content. Possible moment selection could be based around 

both the ANOVA analysis of clean (inside) data and analysis of outside data, util-

ising moments which exhibit good inter-subject separation and reduced variation 
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(b) Subject 012 

Figure 6.9: Example images from the outside data, along with their corresponding 
STs. 

Subject Inside Outside Outside /J, shift 
037 
012 

0.0013 
0.0034 

0.0389 
0.3764 

0.4906 
0.8874 

Table 6.1; Comparing the inside data velocity moments with those calculated on 
outside data. 

due to outside scene noise. Further, longer image sequences will invariably improve 

the results by exploiting sequence correlation. 

6.5 Image resolution 

Camera resolutions vary considerably between different manufacturers, while the 

distance from the camera to the point/area of interest will also vary, dependent on 

the application. Gait as a biometric has the unique advantage of being potentially 

detectable from a distance (unlike for example, iris or fingerprint analysis). By 

analysing the effects on the velocity moments of reducing the image resolution, an 

insight can be gained into how the technique may translate to lower resolution im-

agery. In this way, an idea can be gained of the minimum resolution needed before 
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Figure 6.10; Gaussian representation of the within-subject distributions for indoor 
and outdoor data. 
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the moment values diverge grossly from their original value, effectively becoming 

overrun by noise through loss of image information. If this reduction in resolution is 

performed before the mapping function then the results are dependent both on the 

mapping calculation and the Zernike moment calculation. However, the mapping 

process will have a positive effect on the handling of lower resolution images. It 

effectively ensures that there is no loss in the accuracy of the Zernike polynomial 

calculations, by mapping the reduced resolution image to the same grid size as the 

original resolution calculation, thus making the two results directly comparable. If 

the reduction in resolution is applied after the mapping process, theory suggests that 

the errors will rapidly increase due to loss of both image and calculation precision. 

Therefore, here we have studied the effects of applying the reduction in resolution 

before the mapping process. Assuming that the original image is the highest resolu-

tion available, the images were progressively re-sampled to reduce their resolution. 

Sub-pixel estimation is allowed, enabling any re-sampling size to be achieved. A de-

tailed description of the image re-sampling algorithm can be found in Appendix C. 

Eleven different resolutions were analysed from | the original resolution, through to 

At each different resolution, the previously selected Zernike velocity moments 

used for classification were calculated. The NMSEs were then calculated between 

the original resolution velocity moments and the reduced resolution versions. Figure 

6.11 shows an original ST and reduced resolution versions, shown both expanded 

to their original and their relative sizes. Whereas, Figure 6.12a shows the NMSE 

plotted as the image resolution decreases, shown for one subject (four sequences). 

The X axis is the relative pixel size n, where ^ is the new resolution. Figure 6.12b 

shows the mean /i results for the complete database, with error bars indicating the 

standard deviation a of the NMSE for each image resolution. It can be seen that 

the errors begin to diverge (// f <7 increases) as the pixel size increases past 10. 

However, the NMSE errors are still low, less than 0.02. A slight increase in variance 

can be seen at n = 5 in Figure 6.12b. This may be due to moving decision bound-

aries in the re-sampling algorithm causing an increased error rate for a selection of 

subjects, effectively a rounding error. There are two possible reasons for the overall 

low NMSE values shown in Figure 6.12b. The 6rst is with reference to the selected 

velocity moments themselves, which give measures of average pixel distribution in 

both the a; and directions. These properties will steadily degrade, however they 

will still be present until just before the image becomes one large pixel, refer Fig-

ure 6.11. Further, even though the image sequence resolution is being degraded, 

the overall a; velocity will stay relatively consistent, as this is calculated using the 

COMs. The second reason for the low NMSE is (as already mentioned) due to 

the mapping process. The re-sampled images are passed onto the Zernike velocity 

moments for calculation at the same unit disc resolution, while the data itself is 
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Figure 6.11: ST resolution degradation, original at the top, (showing from left to 
right) the re-sampling scalar, the difference image, resultant re-sampled image and 
their relative sizes. 
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Figure 6.12: NMSE with decreasing resolution for (a) one subject and (b) the 
complete HiD database. 
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'grainier'. Thus, even though the image resolution has been reduced the accuracy 

of the calculation has not. Degrading the resolution is effectively adding noise to 

the perimeter of the silhouette, up to the point where each image loses its overall 

shape. This can be seen in Figure 6.11, where a re-sampled image has been overlaid 

onto the original resolution image, producing the difference images. The dark grey 

areas are the remains of the original silhouette after the differencing operation. The 

light grey areas are the remnants of the re-sampled image. It can be seen that pixels 

have both been added, and removed from the original silhouette by the re-sampling 

operation. As a final point, even at the ^ resolution very little specific spatial in-

formation (except that from motion) will be available (as illustrated in Figure 6.11), 

whereas the NMSE error is still relatively low at < 0.05 (Figure 6.12b), reinforcing 

the advantage of using a correlated temporal image sequence. 

6.6 Time-lapse imagery 

This analysis is aimed to provide an insight into the effect on the Zernike velocity 

moments of reducing the temporal resolution. Images were successively removed 

from each sequence, to simulate the effect of time-lapse imagery, present in most low 

cost, restricted bandwidth surveillance camera systems. The analysis is restricted 

both by the frame rate of the original data, here 25 frames per second (fps), and by 

the length of gait cycle. The sequence length of one complete gait cycle is typically 

30 images (viewed from a distance of ~ 3m and captured at 25 fps). Halving the 

frame rate considerably reduces the temporal resolution. Table 6.2 demonstrates 

the method used to reduce the frame rate (demonstrated for only nine images). To 

enable this analysis the Zernike velocity moment calculations use the scale, time 

and sequence length normalisation described in Section 3.5. As before, the velocity 

moments used for the classification process (for the complete HiD ST database) were 

re-calculated as increasing numbers of images from the ST sequence were removed. 

Figure 6.13a shows the NMSE results for one subject, while Figure 6.13b shows 

the results for the complete HiD database. As expected, reducing the temporal 

resolution can significantly affect the velocity moments. It must be noted that 

different combinations of velocity moments will produce different NMSE results, 

however, the trend of the results will remain the same. For example, velocity 

moments describing purely average z direction motion will be less affected by time-

lapse imagery, than those describing purely structural information. The structural 

description will become increasingly diluted due to the increasing lack of specific 

spatial information. Figure 6.13b demonstrates this, as the frame rate decreases 

(image increment increases, see Table 6.2) the range of the NMSE increases rapidly. 

The increasing NMSE is occurring across the complete dataset, as shown by the 

increasing NMSE mean (/i) and standard deviation (u) values. 
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(a) Decreasing frame rates for one subject from the HiD database. 
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(b) Decreasing frame rates for the complete HiD database. 

Figure 6.13: NMSE with decreasing frame rates (increasing image increment) for 
(a) one subject and (b) the complete HiD ST database. 
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Image Images numbers present Equivalent 
Increment 1 2 3 4 5 6 7 8 9 Frames/Second 

1 X X X X X X X X X 25.00 
2 X X X X X 12.50 
3 X X X 8.33 
4 X X X 6.25 
5 X X 5.00 

Table 6.2; The equivalent time lapse frame rates, showing the construction of the 
image sequences from the original 25 fps, shown here for only 9 images. 

6.7 Discussion 

These performance analyses were designed to provide an insight into the character-

istics of the velocity moment framework, and more specifically the Zernike velocity 

moments. However, performance metrics which involve artificially created scenar-

ios will invariably produce artificial results. They can however be used to gain an 

insight into how these scenarios may affect the technique under test, highlighting 

possible advantages or pitfalls. For instance, the results of any noise analysis on 

a system will be dependent on the noise model employed. Here we are analysing 

statistical moments, which are used to describe the distribution of an image plane. 

Thus, a different noise model will alter the distribution in a different manner, pro-

ducing different results. However, the overall conclusions should remain consistent. 

Where the noise model is not only the type of noise distribution employed (uniform, 

Gaussian, Rician etc), but also includes the way in which the noise is applied to 

each pixel and the method used to vary the amount of noise. Whether the noise be 

additive, replicative and/or varied by altering the noise variance, or dependent on 

a further distribution. One further consideration is the point of entry of the spec-

ified noise (i.e. scene noise from lighting effects, camera sensor noise, background 

electrical noise affecting the connecting cables etc). This in turn may determine 

the distribution and/or the model used. Here we have used a Gaussian distribution 

(using the assumption of the central limit theorem). 

In terms of performance analysis, first we have looked at the problem of perime-

ter noise, simulating poor extraction of a contour (Section 3.2.3), then moving on 

to scene 'salt and pepper' noise in Section 6.3 simulating possible camera sensor 

and/or noise produced through transmission or image compression techniques. The 

'real-world' noise analysis has highlighted the possible need for velocity moment 

selection based both on ideal data and application based data. We have already 

mentioned the different ways of perceiving occlusion (Figure 6.1), the result of 

which is primarily determined by the feature extraction technique. The image res-

olution analysis attempts to address the problem of increased distance between 

camera and subject, zooming and the effects of reduced resolution images - often 
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incurred through low cost surveillance systems or home movie cameras. However, 

this analysis is very much dependent both on the original image resolution which 

is re-sampled (used as the ground truth) and the re-sampling algorithm itself. Fur-

ther to this there are also lens effects - smaller resolution cameras will invariably use 

lenses with different radial effects, a variable which is dependent on both the quality 

of the camera and its physical size. Further, zoomed imagery will be affected by 

radial distortion in a different manner to scaled imagery. The time-lapse analysis 

has highlighted the effects of reduced temporal resolution, the results of which are 

very much dependent on the number of gait cycles analysed. This is also true for all 

of the performance analyses. Longer image sequences will effectively dilute the ef-

fects of noise, occlusion and reductions in both spatial and temporal resolutions, by 

increasing the temporal correlation. Overall for the data studied here, the velocity 

moments appear least sensitive to the image resolution and most sensitive to the 

temporal sampling. However, the results will always be highly dependent on the 

feature segmentation. The image calibration issues discussed in Section 5.4.1 are 

equally applicable to these performance analyses. Finally, it is interesting to note 

that the scale and translation invariant mapping can essentially be perceived as a 

pre-processing technique used to improve the results and properties of the Zernike 

polynomial calculations. 
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Chapter 7 

Future work 

Two approaches to further this research are discussed - technique and application. 

The first is concerned with furthering the theoretical moment theory and technique, 

with aspects including alternative feature analysis techniques, optimisation of the 

velocity moments, the effects of altering the properties of the images/templates be-

ing described and the possibility of altering the moments' basis function. The second 

includes reinforcing the gait studies carried out so far, by increasing the depth and 

variation of the subject database. This will help to clarify the results gained and to 

increase the understanding of the velocity moment metrics, i.e. which ones are most 

useful in human gait recognition. Aspects including variations in clothes, baggage 

and even footwear have yet to be investigated. This avenue of research includes 

gait-specific issues regarding the recognition of types of motion. Lastly, the analy-

sis of alternative applications would doubtless aid further understanding of this new 

technique. Alternative moving-shape applications include medical imaging (analy-

sis of injured joint movement as compared with healthy movement - i.e. vertebrae 

damage to the lower back), astronomy (observing comets as their shape degrades 

due to the effects of planets or collisions) or even biology (monitoring cell growth 

and movement within a solution). 

7.1 Technique 

One critique of the feature selection methods presented here is that the selected fea-

tures can tend to be dataset dependent. This is in part due to the limited sizes of the 

databases (as mentioned in Section 5.4.3), and due to the differences between them 

i.e. outside data versus treadmill data and different spatial resolutions. For exam-

ple, using a (selected) moment list from the UCSD database as potential selected 

features for the CMU or HiD database may prove inconclusive. The CMU database 

consists of treadmill data in comparison to the outside UCSD (non-treadmill) data. 

Whereas the HiD data will have improved vertical motion resolution, due to the 
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increased image spatial resolution, in comparison to the UCSD data which has less 

than half the spatial resolution. In light of these differences the possible moment 

list was gradually reduced to those which showed promising attributes for human 

gait classification, through the analysis of multiple databases. (The method used 

may be more attuned to promoting further gait analysis, as the databases studied to 

date will not be fully representative of a large population, suggesting the possibility 

that some gait components needed for separation of a larger sample are not present 

in this reduced moment list.) These selected features were not necessarily the op-

timum set, both due to the final manual intervention after the AN OVA analysis 

and the ANOVA analysis itself. The ANOVA technique suggests which features 

are useful in separating the dataset. As the dataset increases in size, the need for 

multiple features becomes more apparent. The single-way ANOVA selects features 

that singularly separate portions of the dataset. Whereas we are actually using 

multiple features to classify, suggesting an n-way ANOVA may prove more useful 

for larger datasets, enabling the analysis of the interaction between features for an n 

dimensional feature or classification space - a topic that is touched upon in Section 

4.3. This more in-depth analysis will produce a massive computation overhead as 

producing an optimum solution involves testing all combinations of moments. 

An alternative method of analysis of the selected features is possible by dividing 

each database into two. This would enable more independent selection - ideally 

implemented using a larger database. By training, or selecting features on one half 

of the dataset and then testing or probing the remainder using the selected features, 

the problem of dataset specific features can be addressed. This approach was used 

in a recent study [64] where they describe a gait challenge centred around a large 

74 subject (~ 300 Gigabytes) database. With reference to the work presented 

in this thesis, it is noted that the velocity moments used for the classification of 

the CMU databases use identicEil moments for the two different speeds for each 

view (i.e. CMU_03_7_s versus CMU_03_7_f and CMU_05_7_s versus CMU_05_7_f ), 

essentially training on one gait speed dataset, then testing on the second speed 

dataset, producing high classification rates for both cases - an example of dataset 

independent selection. 

Finally, presenting the performance analyses in terms of classification rates may 

complement the techniques detailed in Chapter 6 when comparing (application 

based) classification rates, especially if the compared techniques have been applied 

to the same database. 

The research to date has been concerned with development and analysis of the 

properties of the velocity moments. However, once a technique is applied, the need 
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for faster computation becomes apparent - the need to optimise existing algorithms. 

For example, speed increases can be easily obtained by the use of look-up tables for 

values which are used repeatedly eg. mapping functions from Cartesian to polar 

coordinates. Two main areas of optimisation are discussed here, the first concerns 

the method of the moment calculations, the second with hardware configuration. 

The representation of a digital image used here is a collection of pixels, with a 

intensity value for each pixel. In this representation the double integral of a 2-

dimensional moment. Equation 2.13 is replaced by double summations. Equation 

2.16. The direct computation of such an equation requires a large number of ad-

ditions and multiplications, which are computationally demanding. Many studies 

[35, 44, 77, 82], have looked at the problem of making moment computations real-

time. Two main approaches are apparent: the first is to exploit the properties of 

either the moment calculation itself or the images being compressed. For binary 

images, it is possible to describe the region of the shape using chain codes (or other 

boundary descriptors), and then compute the moments based on the assumption 

that the area within the boundary is filled. If the shape to be compressed is a 

polygon, the moments can be calculated using the vertices [77], or corner points of 

the triangles which make up the polygon [82]. An alternative approach is to calcu-

late the line segment integrals [44], converting the calculation of two dimensional 

moments into a one dimensional problem. This method appears to be applicable 

to the Cartesian velocity moments. 

Statistical moments are ideally suited to implementation via parallel computing. 

This involves altering the algorithm to exploit the independence of operations. In 

terms of the velocity moments, the calculations for each image sequence within a 

database are independent. Further, the calculation of a sequence could be processed 

concurrently, as each image's spatial descriptions are also independent. Once an 

image sequence's features are computed, adding another to the database is trivial. 

In this way it is possible to increase the database size over time, without the need for 

large compute power to re-anaiyse the database. This is a problem which hampered 

previous holistic shape description methods, 

7.^.5 CoTieamn moment 

Once specific Zernike velocity moments have been isolated (through preliminary 

analysis or theoretical justification), a useful reduction in the complexity of the 

calculation can be utilised, by decomposing these selected Zernike velocity moments 

into their respective Cartesian components. Any future analysis (i.e. the addition of 

new subjects to a gait database), could be accomplished by expressing the Zernike 

velocity moments in terms of Cartesian ones (Section 3.4), providing a reduction 

in computational requirement and thus an increase in speed. This is effectively 
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using the Zernike velocity moments to aid the selection of less-correlated Cartesian 

velocity moments. 

This approach could also be used to increase the understanding of the content 

of the two velocity moments. In general the traditional Cartesian moments are 

more widely understood (as compared to the Zernike moments), partly due to their 

simplicity, but also because they predate the Zernike moments. This knowledge 

could be used to help further understand the Zernike velocity moments. First the 

velocity moments (both Cartesian and Zernike) of an image sequence with known 

distribution are calculated. By then analysing both sets of results in parallel it may 

be possible to identify which moments characterise which specific features from the 

image sequence. This type of analysis would enable moment selection based on 

extracting specific information from the image sequence distribution. Equally this 

approach could be utilised to aid the analysis of the traditional Zernike moments. 

Further analysis of the velocity moments may be possible by utilising moment re-

construction theory, specifically by using the velocity moments that proved success-

ful for classification. Through moment reconstruction, an insight could be gained 

into which characteristics of the image sequence are captured by specific moments. 

However, in general, a greater number of moments will be needed for accurate im-

age reconstruction than for classification. Thus, images reconstructed using a small 

number of selected moments will invariably not visually resemble the original image. 

There are two possible ways of implementing this reconstruction. The first would 

involve storing the corresponding velocity moment value for each image within the 

sequence (before summation), and then reconstructing a complete sequence of im-

ages, utilising the single image reconstruction theory - Sections 2.2.3 and 2.4.3. 

Using these reconstructed images, the actual gait characteristics extracted by the 

velocity moments could be studied. Figure 7.1a shows example images from an HID 

ST sequence. Figure 7.1b shows the corresponding Zernike velocity moment recon-

structed versions, using just those velocity moments used for classification (Table 

5.24) and Figure 7.1c shows the thresholded reconstructions. The images are vis-

ibly different, while the reconstructed image corresponding to the subject's 'legs 

together' stance has a symmetrical nature. 

The second method would use the theory in Sections 3.2.1 and 3.3.2 to recon-

struct a single image, from the velocity moments calculated from the complete 

sequence. By producing a single composite image per sequence, it may be possible 

to again visibly observe the difiFerences between subjects, which are being encoded 

by the velocity moments. Figure 7.2 shows three example Zernike velocity mo-

ment reconstructed images. Two are produced from subject sequences from HiD 
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ST database, while the third is from a sequence in the UCSD ST database. Once 

again, visible differences between the three images are apparent. The moments used 

for this reconstruction were those selected for the HiD ST classification, detailed in 

Table 5.24. (The results shown in Figure 7.1 correspond to the same subject as the 

results in Figure 7.2a.) This type of reconstructed image could be used for classi-

fication by another method eg. a Fourier transform. Alternatively, this method of 

reconstruction could be used to perform the initial velocity moment selection for 

alternative applications, i.e. class separation within the database via extraction of 

a specific visual characteristic from each image sequence. Finally, these kinds of 

analyses may provide further information regarding the existence of symmetry (or 

asymmetry) within the human gait cycle. 

7.1.5 Zernike mapping and optimal encoding 

The Zernike (pre-processing) mapping function (Equation 2.58) is used to enable 

scale and translation invariant descriptions when mapping the shape onto the unit 

disc, where the scale of the mapped shape is set by /3. As we have already seen the 

radial polynomials become more efiicient at encoding image detail as r approaches 

unity (as detailed in Section 2.4.2 and shown in Figures 2.6 and 2.7). Considering 

the Zernike moments, descriptions closer to the unit disc's circumference will gain 

greater weighting than those about the origin. The pre-set value of jS is very much 

dependent on the shape's distribution, essentially making it application specific. 

For this study its value was altered through manual observation to ensure that 

the shape (most often a subject's silhouette) did not interact with the perimeter 

of the unit disc, while maintaining a shape whose extremities were approaching 

90% of the unit disc's radius (r = 0.9). Thus, determining a value for /? enabling 

application-specific optimum encoding has not been considered, a possible area of 

further investigation for both the Zernike velocity moments and traditional Zernike 

moments. 

Currently the work has been concerned with the use of two basis functions, Carte-

sian and Zernike, producing the spatial descriptions within the velocity moments. 

The Zernike polynomials have the advantage of the orthogonality property produc-

ing less correlated descriptions. The Cartesian basis, has the advantage of compu-

tational simplicity, coupled with the disadvantage of the correlated non-orthogonal 

description. However, it is possible to design a specific basis function, tailored to 

the application. If we consider human gait, then it could prove prudent to use a ba-

sis function which specifically encodes sinusoidal motions (arms, legs, hip rotations 
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a) Example images from a HiD ST sequence. 

(b) Their reconstructed versions (using 8 velocity moments). 

(c) Their thresholded reconstructed versions. 

Figure 7.1: Example images from a HiD ST database sequence along with their 
corresponding reconstructed versions. 

etc throughout the image sequence). For example, 5" in Equation 3.1 could be: 

g) = sinP(a: - a;,) sin^(^ - ^i) (7.1) 

This will produce descriptions which are bounded in size to unity, and highly corre-

lated due to the relationship between sin (a;), sin^(a;), sin^(a;) etc which can be seen 

in Figure 7.3a. It may prove useful in detecting the presence of articulated (sinu-

soidal) motion, within a sequence (i.e. the di%rence between a sequence of a person 

walking, and a sequence of a moving car - see also Section 7.2.4). However, many 

more orthogonal basis functions exist including Hermite, Chebyshev, Laguerre and 
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fa) HiD Male. (b) HiD Female. (c) UC8D Male. 

Figure 7.2: Example Zernike velocity moment (complete sequence) reconstructed 
images and thresholded versions for three different subjects. 

Jacobi. Alternatively, a specific orthogonal basis set could be designed [85]. For 

example the function; 

2/n(a;)=8inn2; ; n = l,2....oo (7.2) 

forms an orthogonal set on the interval — tt < a; < tt as shown in Figure 7.3b, 

suggesting that using: 

?) = sin (p(z - a;̂ )) sin (g(i/ - (7.3) 

may prove productive, in terms of less correlated but bounded descriptors (equally 

cosines could be used in Equations 7.1 and 7.3 in place of the sine terms). 

7..Z.7 

A normalised Gaussian distribution is completely characterised by its two moments, 

mean and standard deviation (variance). Non-Gaussian distributions require, in 

general, an infinite number of moments or cumulants to characterise them. Cumu-

lants are a higher order statistic which can be easier to manipulate than moments 

as they scale linearly (L). (Moments scale with order n, O ~ (Z,")). This linearity 

makes cumulants more desirable when trying to model a distribution and is reflected 
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Figure 7.3: Example alternative basis functions. 

131 



in their generating function, defined as the logarithm of the characteristic function 

(Equation 2.4): 
00 / ' \ 

G(w) = Zo^[X(w)] ^ ^ (7.4) 
n\ 

n = l 

expressed here as a Taylor series. The first three cumulants are equal to the first 

three centralised moments (or Cartesian moments of a zero mean distribution), 

while equations exist to convert between higher-order moments and cumulants [42]. 

It may prove fruitful to apply a similar framework including velocity to cumulants 

(as developed here for moments). Alternatively, the conversion equations between 

moments and cumulants may be applicable to the Cartesian velocity moments. 

Combining this with the work proposed in Section 7.1.3 may produce linearly scaled, 

orthogonal descriptions from the Cartesian velocity moments - through combina-

tions of selected Cartesian velocity moments. Note that while the cumulants and 

moments are linked trivially for a single distribution, this is not the case when 

averaging over an ensemble of distributions. 

7.^.^ momenta 

The reconstruction and classification of three dimensional objects is attracting in-

creasing attention in recent times. Scene reconstruction through perspective vol-

ume intersection [40, 48, 60] (using multiple two-dimensional images), allows for 

three-dimensional scene analysis. The velocity moment framework is currently de-

fined within a two-dimensional Cartesian coordinate system. However, Cartesian 

and centralised moments, and algebraic invariants have already been extended to 

three-dimensional space [69]. Extending the velocity moments to describe a three-

dimensional space, shown here for the Cartesian basis would produce: 

^ ^ E ^ 7, 0 '9(*, P, 9, r) (7.5) 
1=2 x=l y=l z=l 

where, here the sampled space is divided up into three-dimensional voxels 

(instead of two-dimensional pixels f̂ ^ )̂ and 5'(%,p, g,r) arises from the centralised 

moments, in a;, ?/ and z: 

'5'(%,p,g,r) = ( a ; - ^ ) P ( ? / - ^ ) ^ ( z - ^ ) ' ' (7.6) 

while (z, //, 'y, (̂ ) introduces three-dimensional velocity as: 

= ( ^ - ^rT)'^(^- : ^ ) ^ (7.7) 

Possible uses of this implementation include three-dimensional shape trajectory 

description and classification. 
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7.2 Application 

7.2.1 Multiple shapes 

The work presented here has concentrated on the application of the velocity mo-

ments to images containing a single shape. The analysis could be extended to the 

description of multiple shapes within the field of view, describing the shapes, their 

motion and interaction with each other. (The problem of multiple shapes in a scene 

is also an extraction problem, as multiple shapes independently extracted are a set 

of single shapes.) Two identical rigid shapes moving away from each other at the 

same velocity will produce an average velocity of zero (as the COM will remain in 

the middle of the two shapes - the identical motion information of the same two 

shapes when stationary). Thus, describing the interaction between masses in a su-

pernova (the explosion of most of the material in a star) may prove informative in 

terms of the distribution of energy, suggesting the approximate position of origin 

of the explosion. Alternatively, the analysis of a single deforming shape i.e. a bird, 

could be duplicated and combined together in such a way, as to help decompose 

and analyse a scene of flocking birds. 

7.;8.;g - Geniier and ope 

Murray showed that the amount of upper body sway was greater for males than 

females, [55]. When viewed from the side this movement is visible as a vertical 

motion or 'bobbing' aa the subject walks, [13]. Velocity moments characterising y 

axis motion (or spread) may be able to detect this. Cutting [13] also found that 

gender identification by humans may depend on structural differences. The ratio 

of hip to shoulder width measurements for males and females was found to differ, 

a characteristic which may be detectable using the velocity moments from frontal 

viewing of the subject. Figure 7.4 demonstrates these differences, wider shoulders 

dominate the male stature, whereas the female has more slender shoulders and more 

pronounced hips. When shoulder width is divided by hip width, males produce a 

higher ratio. The shoulder to hip ratios for the subjects in Figure 7.4 are 0.96 

(female) and 1.15 (male), consistent with Cutting's findings. Equally, recent work 

has suggested ways of distinguishing adults from children using stride length and 

frequency information [14]. It may be possible to use velocity moments describing 

spread in the a; axis to further these ideas. 

7 . ,8. ,9 OMoZi/gza 

One apparent extension from the analysis of human gait, is to apply the same tech-

niques to animal gait. Preliminary analysis of animal gait classiBcation includes 

work using symmetry [26] and mask operators [20], both producing promising re-

sults. Here the velocity moments could be used to discriminate between quadrupeds 

and bipeds, both within an animal dataset and between animal and human datasets. 
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A 

(a) Ratio of 0.96. (b) Ratio of 1.15. 

Figure 7.4: A female (a) and male (b) subject, viewed from the front demonstrating 
variations in hip to shoulder ratios. 

Further, the discrimination between a combination of the two may be possible, i.e. 

the difference between a horse and a horse with rider. These ideas may prove useful 

in video-sequence database browsing. Figure 7.5 shows exemplar animal silhouette 

data. 

Figure 7.5: Example images from an animal database, an elephant, a zebra and a 
hoarse (with rider) respectively. 

If a (non-windowed) image sequence of a moving shape is processed by the velocity 

moments then the description will include the overall average velocity of that shape, 

along with detailed velocity information from consecutive images. In this way it 

may be possible to recognise a sequence of movements, such aa a subject walking 

into a room, stopping and then exiting or a subject walking slowly and then running 

away. This may mean paying attention to structural velocity moments (eg. Aozoo) 

to recognise individuals, while looking at speciEc velocity terms (eg. or yl**2o) 

to study the type of motion (refer to Section 3.2.4), or a mixture of the two. This 

analysis of trajectories could be applied to gesture recognition or more explicitly -

gestures through motion. A further aspect of this is the possibility of distinguish-

ing between articulated and non-articulated motion, where here a possible concern 

would be to distinguish between road traffic (non-articulated) and pedestrians (ar-

ticulated) . An application for this work could be as an early warning system for the 
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car to slow down if a pedestrian steps into its path. This would involve identifying 

particular velocity moments (or characteristics) which are significantly different be-

tween the two types of motion. Areas of possible attention may concentrate on the 

differences, or lack of symmetry (or asymmetry) within the temporal sequences. 

7.2.5 Alternative uses within computer vision 

Here we are using the AN OVA technique to identify which moments are useful in 

terms of a shape classification problem. However, shape classification is only one 

area of image processing where moments are applicable. Other possible areas where 

the velocity moments may be applicable include: medical marker-less gait analysis, 

motion pose estimation (a variation of Section 7.2.4), image sequence encoding for 

transmission (utilizing reconstruction) or even motion template matching. These 

are all application areas which traditional moments are capable of analysing - if 

described by a single image. However, here it may be possible for the velocity 

moments to utilise the inclusion of motion. 
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Chapter 8 

Conclusions 

This final chapter draws together the results and conclusions of all the chapters 

which precede it. It begins with a brief summary of the work conducted throughout 

this study and finishes with overall conclusions. 

8.1 Summary of work 

Traditional statistical moment theory has concentrated on analysing single images. 

The motivation for this research has been to enable the analysis of temporal im-

age sequences using statistical moments, with the drive towards producing a shape 

description which includes information about both shape and motion. It was pro-

posed that by analysing a sequence of images, rigid and non-rigid shapes could be 

described in terms of their spatial characteristics and their motion, exploiting any 

temporal correlation present within the image sequence. 

A simple framework called velocity moments was presented utilising the shape's 

centre of mass (COM) information to enable motion descriptions. The initial choice 

of spatial description function was the non-orthogonal Cartesian centralised mo-

ment's basis. This produced a simple temporal statistical moment technique. Via 

the use of Zernike polynomials the extension of the framework to enable orthog-

onal spatial descriptions was achieved. Thus, two techniques are presented, the 

non-orthogonal Cartesian velocity moments, and the orthogonal Zernike velocity 

moments. Further extensions and theory for these two techniques have been dis-

cussed including the topics of reconstruction, scale invariance issues, rotation in-

variant features, frame-rate and sequence length invariance and the conversion of 

features between the two techniques. To more fully demonstrate the properties 

of the velocity moments, they have been applied to the problem of human gait 

classification. Simple feature extraction techniques were utilised to produce fea-

tures suitable for analysis by the velocity moments. A method based on human 

perception of gait has been proposed utilising both a subject's spatial silhouette 

and their movement, or optical flow. Seven gait databases were analysed producing 
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good classification results. The largest of these consisted of 50 subjects, a total of 

~ 6000 images. Feature selection, or 'thinning' was achieved through the Analysis 

of Variance (ANOVA) tools, while the final classification used a simple k near-

est neighbour approach. However, the main drive of this research was to produce 

features which enable classification of moving shapes, and not achieving optimal 

classification rates. 

To further understand the performance characteristics of this new framework, 

performance analysis using the largest of the gait databases and the Zernike veloc-

ity moments was carried out. This analysis studied the issues of occlusion, image 

noise (simulated and 'real-world'), image resolution and time-lapse imagery, thus 

providing further understanding of the properties of the technique. Further possible 

extensions of the theory and techniques were then discussed, along with some pre-

liminary results of these extensions. The extensions discussed include reconstruc-

tion, tailored basis functions, three-dimensional velocity moments and trajectory 

analysis. Finally, it is noted that a selection of the work detailed in this thesis 

exists in the following publications [71, 72, 73, 74]. 

8.2 Overall conclusions 

A new description aimed at capturing both structural and temporal information 

of a time varying sequence has been proposed. It contains both scale and trans-

lation invariance. Two diEerent variations of the technique have been presented, 

both yielding useful attributes. The Cartesian velocity moments are theoretically 

simplistic, although they will produce highly correlated features due to their non-

orthogonal basis. This characteristic may hamper their successful use in the analysis 

of large datasets. The single-image orthogonality condition of the Zernike velocity 

moments means that the features produced are both smaller in magnitude than the 

Cartesian implementation and less correlated. They are however correlated in the 

sense that the images being described constitute a correlated sequence, a charac-

teristic which has been shown to be beneficial. Further to this the Zernike velocity 

moments produce single-image scale invariant features, a property which is directly 

applicable to the problem of camera zoom on a piece of imagery. 

It has been shown that the velocity moments have simple recognition properties, 

producing distinct results for different synthetic temporal test sets. The results 

refiected the structure of the velocity moment equation. They indicated that the 

expression holds information about the structure of the moving object aa well as its 

velocity information. Hence, they can produce unique results for different objects 

moving at the same constant velocity, while, both unique omcf homogeneous results 

for the same object moving along different motion trajectories are possible. These 
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effects have been illustrated through the analysis of both rigid shapes (a bouncing 

ball) and non-rigid shapes (human gait case studies). 

The Hu invariant moments have been seen to be inherently sensitive to perimeter 

noise, a result which is highly-dependent on the shape being described. This sensi-

tivity is quite often due to the original (noise-free) value of the invariant moment 

being zero for the higher orders. Once noise is added the values for these moments 

begin to oscillate considerably, whereas the non-linear combinations of correlated 

Cartesian moments (comprising the Hu invariant set) appear capable of amplifying 

the effects of the perimeter noise. The method of velocity moments has been shown 

to have favourable characteristics when faced with the problems of image noise, 

simple occlusion, and loss in resolution. The performance of which is partly due to 

the integration of complete sequences, rather than describing each image separately. 

This suggests that the method would prove useful when applied to poorly extracted 

sequences, or possibly those where incomplete perimeter contours are apparent in 

images within a sequence. Increasing the length of the sequence will inherently en-

able improved description when hampered by these effects, a property not available 

for traditional moment analysis on single images. However, it has been explained 

how artificial performance analyses can themselves be misleading, especially in the 

case of image noise, while any area-based description method is essentially depen-

dent on the performance of the initial feature extraction (pre-processing) technique. 

The importance of using significantly higher order moments for description has also 

been covered, even though higher order moments are more likely to be affected by 

noise. 

Hum&ns perceive gait by observing a person's overall shape and how this moves 

and changes as they walk. Using the velocity moments, a gait description method 

has been presented which takes these cues from nature. Classification by gait has 

been achieved using a person's build and stature. These results can be enhanced 

by including limb motion information (temporal templates containing optical flow), 

which describes a subject's intimate movements. The successful implementation of 

spatial template extraction techniques has in turn produced (visually) good tem-

poral templates. These temporal templates should be more independent of the 

subject's surroundings and clothes than just extraction alone. Using these tech-

niques high classification rates have been achieved on array of different human gait 

databases. However, possible speciGc velocity moments for gait recognition can only 

be determined through the analysis of larger databases, as the results presented here 

are by analysis of relatively small databases, in comparison with other biometrics. 

At the time of analysis the HiD database was the largest of its kind. However, this 

method of gait description has already produced promising results based on cues 

from human gait perception. Once an image sequence's features are computed, 
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adding another to the database is trivial. In this way it is possible to increase the 

database size over time, without the need for large compute power to re-analyse the 

database - a problem which hampered previous holistic shape description methods. 

A hypothesis concerning gait symmetry has been put forward, suggesting that the 

Cartesian velocity moments do indeed retain the symmetry properties exhibited by 

the centralised moments. 

In conclusion, the velocity moments compress a temporal image sequence into 

a set of features that enable classification through both spatial and/or motion in-

formation. The use of an image sequence, in place of single images enables the 

exploitation of temporal correlation within the sequence, allowing the possibility 

of refining the description as the sequence length increases. The theory behind 

this new technique (and extensions to it) are presented, while its performance has 

been analysed using both synthetic data and through the application to human 

recognition by gait. 
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Appendix A 

Noise analysis 

A.l Perimeter noise 

This appendix details the perimeter noise algorithm, as used in Section 3.2.3 and 

helps verify the results gained through experimentation via theoretical analysis of 

the noise function. Perimeter noise is applied to a sequence of binary images of a 

simple moving shape. This is achieved by first determining the perimeter of the 

shape in each image, and then applying zero-mean Gaussian noise to only those 

pixels located on the perimeter. The algorithm effectively moves the perimeter 

pixel as the noise affects a pixel's position, not its value. 

A. 1.1 Perimeter noise algorithm 

Canny edge detection is first applied to each binary image, producing edge magni-

tude 1/) and phage information The phage information is used 

to determine the direction in which the perimeter pixel moves. Using the edge 

(perimeter) image E{x,y) as a mask - for every pixel in the original image which 

exists on the perimeter of the shape, a zero-mean Gaussian random number w is 

generated. Positive values of w cause a line to be drawn (of w pixels in length) along 

the orientation of the edge in a positive direction expanding the shape's perime-

ter. Negative values of w cause a line to be removed of length w, starting at the 

perimeter pixel location, again in the orientation of the edge, causing the perimeter 

to shrink into the shape. The amount of noise applied to each sequence can be 

adjusted by altering the variance of the Gaussian distribution. Figure A.l shows 

an example image from the tug (boat) sequence of images, along with the corre-

sponding perimeter magk and perimeter noise images for cr̂  = 2,4 and 6. It is noted 

that noise on a perimeter produced through poor extraction will tend to be more 

structured than just the single pixel-wide lines used here, i.e. in practice blocks 

of pixels along the perimeter are more likely to appear or disappear. However, we 

are interested in the average affect of altering the perimeter, allowing the use of 

this simplified model. Further, the detection of the perimeter could be achieved 
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Jb 
(a) Original (b) Perimeter (c) = 2 (d) = 4 (e) cr̂  = 6 

Figure A.l: Original shape, perimeter mask and example perimeter noise images. 

by using a Sobel operator. This results in a thicker perimeter mask, allowing for 

parts of the perimeter to become detached from the shape (as the noise is applied 

to all pixels within the perimeter). Here we are only interested in deforming the 

perimeter (i.e. applying the noise to the perimeter pixel locations), hence the use 

of the Canny method. Although is it still possible for parts of the perimeter to 

become detached when using the Canny method. This occurs where large variance 

noise overlaps, occurring at areas of high frequency in the perimeter mask (rapid 

changes in the shape's perimeter orientation). 

The central limit theorem [61] states that given a population distribution, the dis-

tribution of samples about it's mean approaches a normal, or Gaussian distribution, 

given enough samples. The larger the number of samples the better this approxi-

mation becomes. In this limit we can assume all noise (perimeter or otherwise) to 

be Gaussian distributed. However, there will always be outliers to any distribution, 

while in practice here we are actually using a discrete approximation to a Gaussian. 

We are attempting to simulate zero-mean Gaussian noise around the perimeter of 

the shape. Due to the zero-mean condition it is possible to both add and remove 

pixels. By considering the effect of the perimeter noise on the centralised moments, 

it is then possible to determine the effect of the perimeter noise on the velocity 

moments. Referring Arst to the centralised moments, defined by Equation 2.19, 

where the COM for the a; co-ordinate is: 

(A.l) 
moo 

substituting in for mio and moo using Equation 2.19 gives: 

sr^M r> Em p 

x=l 2^v=l 3 
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Considering the noise on the x co-ordinates of the perimeter expressed as {x + 5) 

produces; 

x 

EM n 
x=l 2^y=l 

(A.3) 
E f i i 

EM n 
1=1 2_̂ 1/=1 

On average the image mass {J2^=i Y^y=i Pxy) will be unchanged by a zero mean 

random process. Since the image and noise are uncorrelated then: 

J = (A.4) 

where £'[.] is the expectation. Since the Gaussian distributed noise is zero-mean, 

as the number of samples (of the discrete approximation) increases then: 

EM -4. 0 (A.5) 

Using this result and Equation A.4 reduces Equation A.3 to: 

S-yM -spiV p 
2-Jx=l ^y=l 

Em p 
1=1 2_,̂ =i zi/ 

_ (A.6) 

A similar result is produced for the COM of the y co-ordinate. Accordingly the 

noise does not affect the center positions, or COM calculations. It must be noted 

that the image itself has changed, whereas the mean (%) has remained constant 

(minus any inaccuracies due to the discrete implementation). Using the result that 

the COM coordinates are unchanged by the perimeter noise, we can move onto 

the velocity moments themselves. First we consider the velocity moment fmooio 

(referring to Equation 3.2 in Chapter 3): 

/ M TV 
t;mooio = E E ( ^ - (A.7) 

1=2 x—l y=l 

We have already seen that the COM calculations are unaffected by the perimeter 

noise. This motion estimate fmooio is the difference between consecutive COMs, 

therefore it is not unreasonable to conclude that this result will also be unaffected 

by the perimeter noise. As such neither vmooio or wmoooi will vary when zero-mean 

Gaussian perimeter noise perturbs the relevant co-ordinate (a; or ^ respectively). 

Experimental results reflect this conclusion, as shown in Figures A.2 and A. 12 

where a peak-to-peak variation of < 8 % is apparent. The moment values have 
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been plotted in terms of the percentage deviation from the original no-noise value. 

Any discrepancies where the value can be seen to fluctuate slightly appear to be 

due to rounding errors, and the distribution of the noise function being a discrete 

approximation to a Gaussian. Understandably these affects will be greater for 

smaller images and motions. However, the motion element of the moment descriptor 

has not been affected by the perimeter noise. Using this result we can now consider 

the velocity moment fmgoio- From Equation 3.2 this is expressed as: 

i = 2 x=l y=l 

The motion information is unaffected by the perimeter noise, assuming this we can 

consider just the spatial description part of Equation A.8 i.e. wm2ooo- Applying the 

noise to this expression (on the pixel coordinates) as before (and using the result 

in Equation A.5) produces: 

E[vm2QQQ + (^] = E[vm2om] + + 2x5 — 2xi5)Pi^^] 

Now using this result we can return to analysing fmgoio producing, in terms of the 

perimeter noise: 

E[vm2QiQ + 5] = E\vm2o\Q\ + (A.10) 

Therefore the velocity moment's spatial descriptions will be affected by the perime-

ter noise. However, for a rigid shape these effects can be reduced by exploiting 

temporal correlation (explained in Section 1.2). 

moments 

For completeness a similar analysis was applied to the (time-averaged) Hu invariant 

moments. The Hu invariant moment I2 (from Section 2.3) is: 

-̂ 2 = (%o — %2)̂  + (A.11) 

As before we assume that due to the zero-mean Gaussian process, the image mass 

will be unchanged. While the shapes in the analysed image sequences (tug-boat and 

overlaid-shapes) have constant size. Therefore, the scale normalisation (Equation 

2.20) will have no effect on this analysis and can be considered to be //p, (an 

un-normalised centralised moment). By using the centralised moment definition 

(Equation 2.19) and adding the noise in the same way as for the velocity moment 

case, the noise contributions of the first term, can be calculated. Assuming the 
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same conditions as before and using Equations A.5 and A.4 produces: 

jSCsbo 4-,5] = j5[%2o]-f (^1.12) 

similarly the second term in Equation A.11 (7̂ 02) produces the same result. Intu-

itively these two results when placed into Equation A. 11 will cancel each other out, 

however, we will retain them. Again, using the same conditions to evaluate the last 

term in Equation A. 11 {rju) results in the expression: 

Blriu + <il = + BlS'PiJ (A.13) 

Once this expression is then placed into Equation A.11, it can be seen that the 

error due to the noise {E[5'̂ Pxy]) will always be positive, due to the squared term. 

Collecting all the noise terms together we now have: 

E[h + i] = E[h] + + iE[6^P,J (A.14) 

This will cause the value of I2 to increase beyond its true value as the amount 

of perimeter noise increases. This amplification of the noise is mainly due to the 

squared term. This conclusion is reflected in the results gained through testing, 

shown in Figures A.8 and A.18. The results shown in Figures A.2 to A.11 are for 

the moving overlaid-shapes sequence, and Figures A.12 to A.21 show the results for 

the tugboat sequence. As before, the moment values have been plotted in terms of 

their percentage deviation from the original no-noise value. The amplified effects 

of the noise are a result of the non-linear combinations of centralised moments 

which comprise this invariant set. Again, it is noted that through the exploitation 

of temporal correlation in the image sequence, these eSects can be reduced. It 

is worth noting that Ii is less affected by the perimeter noise than the other Hu 

invariant moments, as shown in Figures A.7 and A. 17. This is a direct result 

of h not comprising of non-linear combinations of centralised moments (refer to 

Equation 2.37). The slightly increasing trends shown by these plots reflect both the 

discrete approximation of the Gaussian process and the effect of the perimeter noise 

spreading the shape's edge pixels. This analysis has shown that the Hu invariant 

moments are more likely to be affected by perimeter noise, in comparison to the 

Cartesian velocity moments. 
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Figure A.2: Perimeter noise applied to the overlaid-shapes sequence - 2;mooio 
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Figure A.3; Perimeter noise applied to the overlaid-shapes sequence - fmgoio 
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Figure A.4: Perimeter noise applied to the overlaid-shapes sequence - vm22io 
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Figure A.5; Perimeter noise applied to the overlaid-shapes sequence - vrnmo 
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Figure A.6: Perimeter noise applied to the overlaid-shapes sequence - 'um2iio 
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Figure A.7: Perimeter noise applied to the overlaid-shapes sequence - h 
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Figure A.8: Perimeter noise applied to the overlaid-shapes sequence - I2 
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Figure A.9: Perimeter noise applied to the overlaid-shapes sequence -
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Figure A.10; Perimeter noise applied to the overlaid-shapes sequence - 7̂  
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Figure A.11: Perimeter noise applied to the overlaid-shapes sequence -
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Figure A.12: Perimeter noise applied to the tug-boat sequence - frnqoio 
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Figure A.13: Perimeter noise applied to the tug-boat sequence - vm2Qio 
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Figure A. 14: Perimeter noise applied to the tug-boat sequence - um22io 
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Figure A.15; Perimeter noise applied to the tug-boat sequence - vmino 
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Figure A. 16: Perimeter noise applied to the tug-boat sequence - fmgno 
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Figure A.17: Perimeter noise applied to the tug-boat sequence -
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Figure A. 18: Perimeter noise applied to the tug-boat sequence - I2 
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Figure A.19: Perimeter noise applied to the tug-boat sequence - 7$ 
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Figure A.20: Perimeter noise applied to the tug-boat sequence - I4 
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Figure A.21: Perimeter noise applied to the tug-boat sequence - is 
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Appendix B 

Temporal statistical feature 

extraction 

A statistical subject extraction method based on work by Jabri [32, 33] is detailed 

here. This offers considerably improved performance over simple basic foreground 

extraction operations, such as the subtraction of an image from the estimate of its 

background. The detection and extraction of moving humans is achieved in three 

parts. First of all a background model is needed, utilising this image background 

subtraction is then achieved. However, improvements over simple background sub-

traction are achieved by using both grey-scale and edge information. Here we are 

considering the algorithm's application to grey-scale images, however, it is worth 

noting that the method can be translated to colour images. This is achieved by 

applying everything detailed here separately to each of the three colour channels: 

red, green and blue, and then combining the results to form a colour image. 

B.l Edge data 

Prior to generating the background model, edge data is needed. This is generated 

using a Sobel operator. The masks for the a; and 2/ edge directions respectively are: 

0 - 1 

0 - 2 

0 - 1 

1 2 1 

0 0 0 

- 1 - 2 - 1 

(B.l) 

These masks are then convolved with the image to produce the gradient images 

(7(3;) and (?(;/) for the 2; and ?/ directions, respectively. (These results are then 

scaled to fit the image pixel range, here this was 0 — 255.) This process is repeated 

for the whole sequence of images, resulting in 3 different source image sequences, 

the grey-level sequence (original data) and the two edge sequences. 
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B.2 Background model 

The background model consists of mean images of both edge information and grey-

scale. Together with these, the standard deviation images are calculated again for 

both the edge and grey-scale data. These images are used to aid the background 

subtraction detailed in the next section. The mean images are produced using a 

weighted sum technique, or exponential forgetting [22]. In this way the effects of 

changes in lighting and objects moving within the field of view can be removed. The 

background image effectively becomes a long term average of the scene, similar to 

a long exposure time on photographic film. The mean pixel value M^y for I images 

is calculated using: 
i 

= + (B.2) 
i=l 

where is the current pixel of image i, T is the time constant (or forgetting 

constant) and Mxŷ _̂  is the mean pixel up to (and including) image i — 1. The pixel 

variance cr̂  is also calculated using a weighted sum; 

OI, = Y . T (P... - M „ f + (1 - T) (B.3) 
i=l 

where <7^ is the pixel variance up to (and including) image i—1. The source 

images to create the background model can either be the sequence being extracted, 

or a sequence taken (preferably captured at the same time) containing just the 

background. The problem with the former is that the sequence must be long enough 

for the subject to have moved out of the area of interest, or ideally completely out 

of view. This is due to the nature of the weighted sum, if the subject is present 

in the last image used in Equations B.2 and B.3 then an area corresponding to 

their shape will appear in the final estimates of mean and variance. Example mean 

and variance images (constructed from a HiD background-only sequence) can be 

seen in Figures B.la and b. For visual purposes only, the variance image has 

been histogram equalised to improve the contrast. The background model now 

consists of six different images. Three mean images of grey-scale and edge data 

(M(grei/), M(e(Z^e a;) and M(e(fpe ?/)), their three corresponding variance 

images (cr^(prei/), cr^(edge a;) and cr (̂e(f̂ e ?/))-

B.3 Background subtraction 

The subtraction is performed on both the grey-scale and edge data, the results 

of which are then combined. First we consider the grey-scale case. Rather than 

applying simple background subtraction on the grey level images, a confidence map 

is produced. This effectively labels regions within the image sequence as foreground 
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(a) Variance image (b) Mean image 

Figure B.l: Example background variance (histogram equalised) and mean images. 

(i.e. moving objects or subjects) or background. The higher the confidence C, the 

more likely the grey-level pixel is part of the foreground. The confidence level is 

set using two thresholding levels, rrig and Ug. These integer values set the confidence 

levels, i.e. how many standard deviations there are between the foreground and 

background objects. If the difference result < nga{grey)xy then the pixel has a 

0% confidence, whereas if > mga{grey)xy then it has a 100% confidence level. 

For cases between these regions the grey-level confidence for an image i is calculated 

according to; 

(B.4) 
(mg 

while the difference between the current image pixel and the mean image 

Mj;y determined by: 

M(pre2/) p,- (B.5) 

These calculations result in a further image sequence of grey level confidence maps, 

an example image is shown in Figure B.2b. Subtraction of the edge data sequences, 

for image z is applied according to: 

= I M(ed^e z) ;̂̂  - (^(a;)^ 

= I M(e(f^e 2/)a;y - G(i/)i, 

These two sequences are combined to give: 

(B.6) 

(B.7) 

(B.8) 

which expresses the magnitude of the difference in both i and Next the edge 

reliability is calculated, this step aims to take into consideration the effects of noise 

on the edges. This produces measures which reflect how reliable the subtracted edge 

is, i.e. does the edge exist due to a lighting change, or is it present due to the subject 

moving. It is expressed as the ratio of the computed edge (difference) strength to 
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the confidence in the observed difference. The edge reliability R is defined as; 

= 4 ^ {B.9) 

the edge strength is expressed as: 

(B.IO) 

and: 

=1 M(edpe | + | 2/),^ | (B.ll) 

1 + I 08.12) 

where are the current image edge maps in a; and ?/ (G(i/)^ ). This 

means that in place of edge difference used in Equation B.4, a measure of edge 

difi'erence and reliability can be used, producing edge confidence: 

where rrie and rie are the edge-system parameters which have similar properties 

to their grey-level counterparts, while axy is the combined standard deviation for 

both the z and ?/ direction edges ((T(e(f̂ e z) -I- cr(e(i^e ^)). Figure B.2c shows an 

example edge confidence map. Finally, combining both confidence maps (edge and 

grey-scale) produces the combined confidence maps: 

Q . , (B.14) 

as shown in Figure B.2d. It is worth noting that by looking further at the edge 

phase information it is possible to classify the edges by type: occluding, occluded 

or background [32}. Care must also be taken to avoid divide-by-zero errors in 

Equations B.4, B.9 and B.13. 

B.4 Locating and delineating the foreground 

To improve the consistency of the combined confidence maps, median filtering is 

applied. A simple connected components algorithm is used, this enables objects to 

be filtered depending on their size. Hysteresis thresholding can be applied to re-

move any false positives not connected to a high confidence region. Finally, simple 

hole filling (i.e. holes within the subject's contour) is achieved using expanding and 

shrinking techniques [34] producing the final binary foreground confidence maps. 

Figure B.2e shows an example. Extraction of the subject can be achieved by log-

ically ANDing the resultant confidence map image set with the original grey-scale 
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(a) Example image 

(c) Edge confidence 

Final confidence map 

(b) Grey-scale confidence 

(d) Combined confidence 

(f) Extracted subject 

Figure B.2: An example image from a sequence showing it's colour subtracted 
version, edge confidence (histogram equalised) and the final confidence map. 

images. An example result is shown in Figure B.2f. It is possible to further improve 

the confidence map by producing a contour around the main content of the map 

[32], i.e. the subject. By then extracting only the areas which are encompassed 

by this contour removes the possibility of holes appearing within the subject as 

the sequence progresses (holes that have been missed by the expanding/shrinking 

process). 
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Appendix C 

Image re-sampling algorithm 

This appendix details the algorithm used in Section 6.5 to re-sample an image to 

a lower resolution. It assumes that the original image is the highest resolution 

available and sub-pixel estimation is allowed, enabling any re-sampling size to be 

achieved. Figure C.2 shows an example satellite image of mount Fiji re-sampled to 

different resolutions using this algorithm. An implementation of the algorithm in 

' C for binary images can be found on the demonstration CD-ROM in Appendix 

D. If Xo and Yo are the dimensions of the original image to be re-sampled (Figure 

C.l), then Xn and are expressed as: 

x„ = / i ' 
out 

(^) 
//(a;) is the value of a; rounded down to the nearest integer (the 'Boor' value). 

The opposite operation being rounding the value of a; up to the nearest integer, 

expressed as the 'ceiling' value c/(a;). and effectively define how many pixels 

of the original image, contribute to one pixel of the new image, outi^^^ and outŷ ^^ 

define the new re-sampling size, producing the area of the new image defined as: 

out^: = 0 out^^^, 

out^ = 0 - 4 out^^,, (C.2) 

The offset of the new sampling area from the origin of the original image ensures 

that the contents of the image do not move due to rounding errors (i.e. if the new 

pixel size is not an integer multiple of the original image size). This oHiset is deAned 

as: 

offset. = 
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offset, = (C.3) 

where mod{x, y) is the modulus operator, returning the remainder of x/y as Xn will 

be a rounded integer value due to dealing with discrete image coordinates. We can 

now define the new pixel size in terms of R and Q, Figure C.l. First we consider 

the case for point R. Its position is given by; 

^ = (outa; + oSketi 

= (out^ + oGiset̂  (C.4) 

while its corresponding sub pixel values are: 

Rxmult — Rx f^{Rx) 

If Rxmult > 0 then the left (sub-pixel) edge exists, similarly if Rymuit > 0 then the 

top edge exists. Similarly, the coordinates for the point Q are defined by: 

Qx — Rx 4" Xn 

Qy = Ay 4- (C.6) 

along with: 

Qxmult ~ Qx f^iQx) 

QymuU = Qy — f K Q y ) ( C . 7 ) 

If QzmuZf > 0 then the right edge exists, while if > 0 then the bottom edge 

exists. Qzmuff and are dependent on the desired image re-sampling size. 

Depending on this re-sampling size, is assumed and may be true. 

A similar assumption is valid for and We can now determine the 

contents of each new re-sampled pixel. Thus, the contributions of the inner block of 

the new pixel, the corners and the edge components are calculated. If the current 

pixel of position of the original image is f (a;,?/), then the area of the inner 

block 7;, is defined by: 

h= E f k ; / ) (C-8) 
x=cl{Rx) y=cl{Ry) 

169 



The corners Ci_4, (starting at the top left and moving in a clock-wise direction) 

contribute through: 

= P ( /Z(7Za;) , / ^ ( ^ ) ) 

Cz = f ( /^(Qi) , / ^ ( ^ ) ) Qimuff 

C's — P{ f^iQx) ) f^iQy^ ) Qymult Qxmult 

Q = f ( / Z ( ^ ) , //(Qy) ) QymWf (C.9) 

Finally, considering the edge contributions -E'1-4, the left and right edges (respec-

tively) are: 

-Bl = ^ f (/((Ea;) , 1/) 
y=cf(Ay) 
/'(QJ 

^2 = ^ f ( /KQ,) , %/) (C.io) 

and the top and bottom edges respectively are given by: 

E3 — ^ f (a; , / / ( ^ ) ) 

E4 — ^ P(a; , /((Qy)) Qymuzt (C-H) 
y=cl{Rx) 
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Figure C.l: Image re-sampling algorithm - deEning the new pixel size. 
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Figure C.2: Image re-sampling, original satellite image of mount Fuji at the top, 
(showing from left to right) the re-sampling scalar, resultant re-sampled image and 
their relative sizes. 
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Appendix D 

Demonstration CD-ROM 

A CD-ROM accompanies this thesis containing HTML pages describing and con-

taining the following: 

• Postscript and pdf versions of this thesis. 

• Postscript versions of the author's publications. 

• Animated sequences from each of the human gait databases. 

• Animated extracted sequences from each of the human gait databases. 

• Animated scatter plots of calculated features. 

• Re-sampling algorithm ' C source code. 

These pages can also be found at the following website: 

Further to this, tutorial information describing Zernike and velocity moments can 

be found at: 
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