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We review strings and branes in general, and then introduce the AdS/CFT Corre-

spondence. The original work begins with an examination of the geometry for A/" = 4 

on moduli space. We find a neat prescription for the encoding of the gravity solution 

in terms of the dual gauge theory. We next try to extend this to the A/" = 2* scenario, 

but encounter problems due to the gravity solution giving unexpected renormaliza-

tion. Then we consider the correspondence applied to two field theories off their 

moduli spaces. We encounter unexpected problems with A/' = 2* again, but are 

successful in interpreting the Leigh-Strassler case. Finally, we apply the AdS/CFT 

correspondence to examine A/' = 4 super Yang-Mills at finite (7(1)^ charge density, 

using the supergravity backgrounds around spinning D3 branes. We complete the 

interpretation of the field theory duals of these backgrounds by interpreting the non-

supersymmetric naked singularity class of the solutions. We find that these naked 

spinning D-brane distributions describe the coulomb branch at finite density. At a 

critical density a phase transition occurs to a spinning black brane representing the 

deconhned phase where the higgs vevs have evaporated. We also extend our analysis 

to include finite temperature. We perform a free energy calculation to determine the 

phase diagram of the coulomb branch at finite density and temperature. 
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C h a p t e r 1 

In t roduc t i on 

1.1 M o t i v a t i o n 

All of fundamental physics, except gravity, is described by gauge field theory. It is 

difhcult to do calculations in these field theories not using perturbation theory [3]. 

Perturbative calculation is only possible when the strength, or coupling, of the force 

being considered is small. This is not a practical problem for electromagnetism and 

the weak nuclear force, since their couplings are small at low energies. The problem 

really lies in dealing with Quantum Chromodynamics (QCD) [4, 3]. QCD is the 

gauge theory believed to describe the strong nuclear force, that is, the force which 

binds together atomic nuclei. The coupling in QCD gets weaker at shorter distances, 

which is known as asymptotic freedom. In this regime a few of the lowest order 

terms in perturbation theory form a good approximation. At longer range, that is, 

lower energy however, the QCD coupling become large, so perturbation theory is not 

applicable - calculations cannot be made at real world energies for the force which 

binds together atomic nuclei. There are, of course, ways to do non-perturbative field 

theory, e.g. lattice field theory, but to find a better way of understanding gauge 



theories at strong coupling would certainly be a very significant achievement. 

One of the reasons that the AdS/CFT correspondence [15, 16, 17] has become 

such a vigourous area of research is its potential for providing such understanding of 

gauge theories. Because the AdS/CFT correspondence is a duality between a strongly 

coupled gauge theory and a weakly coupled gravity background, one could hope to And 

a gravity theory dual to the gauge theory one is interested in, perform a perturbative 

calculation on the gravity side and then interpret the result in terms of the field 

theory. As yet, no-one has managed to find such a gravity dual for a gauge theory 

that is truely thought to describe the physical world. The work in this thesis is to add 

to the effort to find such phenomenological theories. The AdS/CFT correspondence 

is not a proven duality, so any evidence for its truth in the particular cases examined 

in this thesis also adds further weight to the credibility of this extremely popular 

theory. 

1.2 S ty le a n d O u t l i n e 

Some effort has been made to make this work clearer to the less expert reader. There 

is supposed to be a reasonable amount of more general introductory material to put 

the more technical or specialist work in context, plus references to further background 

introductory material. There has been an attempt to not be too terse, and not to 

leave out too many 'obvious^ but important points. 

The following two chapters set out background material to the research. Chap-

ter 2 introduces strings, branes, supergravity and some related field theory. Chapter 

3 gives an introductory account of the AdS/CFT correspondence, with the essen-

tial preliminaries on A" = 4 super Yang-Mills theory and anti-de-Sitter space. The 

first original research comes in Chapter 4, with an examination of the moduli space 

of = 4 SYM. We interpret the dual supergravity solution in terms of this field 
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theory, finding a simple prescription for the encoding of the held theory operators 

in the supergravity solution. In Chapter 5 we try to extend the work of Chapter 4 

to the so-called A/" = 2* scenario. Our interpretations are hampered by unexpected 

renormalization appearing from the supergravity solution. 

Chapter 6 covers our attempts to interpret the off moduli space regions of two 

theories. The hrst of these is the = 2* case, where we again had unexpected 

problems. We were unable to satisfactorily interpret the supergravity dual in terms 

of the field theory. The second case was the Leigh-Strassler theory. Here we were 

able to write the supergravity solution in terms of the field theory, as expected. 

The research content is completed in Chapter 7, where we apply the AdS/CFT 

correspondence to examine = 4 super Yang-Mills at finite (7(1)^ charge density, 

using the supergravity backgrounds around spinning D3 branes. We complete the 

interpretation of the field theory duals of these backgrounds by interpreting the non-

supersymmetric naked singularity class of the solutions. We foimd that these naked 

spinning D-brane distributions describe the coulomb branch at finite density. At a 

critical density a phase transition occurs to a spinning black brane representing the 

deconfined phase where the higgs vevs have evaporated. We also extended our analysis 

to include finite temperature. We performed a free energy calculation to determine 

the phase diagram of the coulomb branch at finite density and temperature. 

The thesis is completed with a conclusions section, and appendices on conformal 

symmetry, A/̂  — 4 super Yang-Mills multiplets and the A/̂  = 2* field theory. 



C h a p t e r 2 

St r ings and Branes 

This chapter covers the basics of strings and branes, with some emphasis on the areas 

most relevant to later chapters of this thesis. The standard basic texts on string 

theory are those by Green, Schwarz and Witten [1] and Polchinski [2]. The first 

text dedicated to D-branes has recently been written by Johnson [7]. Reviews of the 

AdS/CFT correspondence often contain good introductory material on D-branes, for 

example [13] and [51]. These books and reviews should be consulted by the reader 

seeking more detail, and for more complete references to original papers. 

String theory is a very compelling idea. All of the previous wonderful successes in 

particle theory [4, 3] have come through field theories dealing in infinitessimal point 

particles, so the great, but simple, step of attributing a spatial extent to the funda-

mental 'particle' of the theory is in itself very exciting to the eye of the uninitiated. 

But string theory is, of course, such a popular subject for more than just being a nice 

idea. It holds enormous promise for solving great problems in physics, and as it be-

comes more and more studied it is proving to have incredibly rich and deep structure. 

Indeed advances in research seem to be leading beyond just string theory; maybe the 

fundamental theory is really 'M-theory' [10], and perhaps branes should be viewed as 



the fundamental objects, not strings. 

The greatest promise of string theory is that it can provide a true unification 

of the four fundamental forces seen in Nature. It is easy to come up with a 

theory which unifies the quantum field theories of the electroweak and strong forces 

[3]. The problem lies with gravity [5] and in particular the non-renormalizability 

of quantum gravity [2]. The cause of this problem can be seen from considering 

graviton corrections to the free propagation of two particles. The ratio of the two-

graviton exchange to the zero-graviton exchange amplitudes diverges in the high 

energy limit, and the divergence becomes more severe the more gravitons are added. 

These divergences occur when all the graviton vertices are coincident. 

Now it may be that this divergence arises from the expansion that is done in 

the powers of the interaction and everything would be fine if an exact method of 

calculation could be found, but there is one other alternative and it is a historically 

fruitful line of attack. Quantum gravity may be the low energy limit of some higher 

theory, so then the problem is simply that one is trying to apply a theory to an energy 

region where it is not valid. The full higher theory can provide a softening of the 

divergence by spreading out the interaction region. 

However, some very considerable problems arise in trying to 'smear out' a quan-

tum field theory interaction. In particular, if we want to preserve Lorentz invariance 

then any spreading out of the interaction in space will mean spreading it in time aa 

well, giving a violation of causality or unitarity. In fact such problems are so con-

siderable that no one has managed, in a consistent way, to cut off the divergences of 

a quantum held theory gravitational interaction by such a smearing. Instead it has 

been realized that to have an extended object as the elementary particle is a very 

natural way to have a 'spread out' interaction. String theory is in fact the only consis-

tent quantum theory of gravity known. This provides great incentive to study string 

theory but, as we will see, the discovery of the AdS/CFT correspondence [15, 16, 17] 



means string theory has become of great interest (again) to those interested in strong 

coupling and confinement in Aeld theory [3]. 

2.1 String Theory 

A point particle traces out a world-line as it moves in spacetime. If the invariant 

interval of this world-line is (fa and the particle has maas m, then its action is 

6" = —m y (fa (2 1) 

- proportional to the invariant length of the world-line. A string on the other hand 

sweeps out a two dimensional world-sheet as it moves in spacetime. The point particle 

case then suggests that the string action should be proportional to the area of the 

world-sheet. 

We parametrize the world-sheet with the two pai-ameters T, which runs from 

—oo to -t-oo, and c, which runs from 0 to /. We then use the functions %^(T, o"), 

= 0, . . . ,D — 1, to map the world-sheet into the D-dimensional physical spacetime. 

We need the induced metric Aab which is given by 

A.6 = (2.2) 

where the indices a, 6 run over (T,(7), and we use here a (—t- +-!-) signature metric, 

The area of the world-sheet is given by the square root of the determinant of 

this metric, so we arrive at the Nambu-Goto action, 

/ (ZTc((7(-det Aab)̂ /̂  (2.3) 

where M denotes the world-sheet and T is a constant of proportionality which makes 



the action dimensionless, by having dimension (mass)^. T is actually the tension of 

the string. The Regge slope parameter, a ' , is often used instead of the tension. These 

two parameters are related by 

The square root of a determinant form of the Nambu-Goto action tends to make it 

awkward to use. One can introduce an independent world-sheet metric, 'yab(T;Cr), to 

And the more practically useful Polyakov action, 

(2.5) 
47r(r VM 

where = detent- '$'p has the following three symmetries: 

1. f)-dimensional Poincare invariance: 

'yl6(T,(^)=7a6(T,0-) (2.6) 

2. General coordinate transformation, or diffeomorphism (diE) invariance: 

x ' ^ ( / , y ) = x^(T,(7) 

| ^ | ^ 7 L ( / , ( ; 0 = 7 . 6 ( r , . ) (2.7) 

for some new coordinates <7''̂ (r, cr) 

3. Two-dimensional Weyl invariance: 

X'^(T,(7) = X'^(T,(7) 

7l6(T, (;) = exp(2w(r, (7))'-y (̂,('r, cr) (2.8) 
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for arbitrary w(r, o"). 

The energy-momentum tensor is defined via a variation of the action as 

= (2.9) 

DiEinvariance requires this to be conserved, i.e. VaT"'' — 0. Also, the Weyl invariance 

of S'p means that 

7a6-p—'S'f = 0 => 7^ = 0 (2.10) 

The equation of motion from the variation of the action with respect to '-/a;, is 

r.6 = 0 (2.11) 

The variation with respect to gives 

1 fOO 

ZTTCt J— CO Jo 

1 foo 

/ oo 
(2.12) 

-oo 
2TTa' J -

The first term gives the wave equation 

= 0 (2.13) 

There are two, and only two, ways in which the second, surface term can be made to 

vanish if we want D-dimensional Poincare invariance and the equations of motion to 

hold. The first of these are boundary conditions on 

<9"%^(T, 0) = Z) = 0 (2.14) 



or 

= 0 on (2.15) 

where is normal to the boundary These describe the ends of an open string 

which can move freely in spacetime. The second are perwtfzc boundary conditions, 

Z) = 0), /) = 0), 

0) (2.16) 

These describe strings without a boundary. The endpoints are joined to form a closed 

loop; the closed string. 

We will now fix the gauge to light-cone gauge. This will allow us to find the 

critical dimension, but hides the covariance of the theory. We begin by defining 

light-cone coordinates in spacetime: 

a;^ = 2-^/^(a;°±3;^), :c\% = 2 , . . . , D - l (2.17) 

The lower case 3:'̂  are the spacetime coordinates and r ) are the associated 

world-sheet fields. The metric is then 

-)- (fz*' (2.18) 

Now setting the world-sheet parameter r at each point of the world-sheet to be equal 

to the spacetime coordinate means that z""" plays the role of time and p" is the 

energy. The longitudinal variables a;" and p""" and the transverse a;' and p' are the 

spatial coordinates and momenta. 

Now consider first the open string case, with the coordinate region —00 < 

r < 00 and 0 < cr < Z. We choose the gauge by choosing light-cone gauge for the 

9 



world-sheet time coordinate and imposing two conditions on the metric: 

~ 0, 

det^(j5 — 1 

( 2 . 1 9 ) 

(2.20) 

(2.21) 

The gauge condition (2.21) can be solved for 'yTT(T, o"), and since is independent 

of (%, the independent degrees of freedom of the metric are ''/(̂ (̂ (T) and ''y(rT(T, o"). The 

inverse metric is then given by 

7"" 

7 T ^ ( T , < 7 ) T / ; ; ^ ( l - - 1 / ^ ^ ( 7 , < 7 ) ) 

(2.22) 

The Polyakov lagrangian becomes 

1 

47ra;' Vo 

2 ' y _ ( & y - - + 7 ; ; ( i -

(2.23) 

(2.24) 

where 

y"(T, cr) — %"(?-, (7)a;"(r) 

(2.25) 

(2.26) 

a;"('r) is the mean value of at a given T. ^"(T, o") has a mean value of zero. It is 

nondynamical since since it does not appear in any terms with time derivatives. It is 

a Lagrange multiplier which constrains to vanish. The open string boundary 

condition (2.14) becomes in this gauge 

= 0 at cr = 0, Z (2.27) 

10 



For = + we have 

= 0 at (7 = 0,/ (2.28) 

and vanishes everywhere since For % the boundary condition is 

= 0 at cr = 0, Z (2.29) 

Taking the lagrange multiplier into account and imposing the gauge con-

ditions, the system reduces to the variables a;"('r), ^^(^(T) and fields %'(''";(^) v/ith 

lagrangian 

^ ^ (2.30) 

The momentum conjugate of a;" is 

is a momentum and not a cooordinate. The momentum density conjugate to 

X*(y, <%) is 

The Hamiltonian is 

Jo 

= — ^ ('27ra'n'n' + (2.33) 
47ra'p+ Vo \ 27ra;' / 

This describes D — 2 free helds with p"*" a conserved quantity. The equations of 

11 



motion are 

a . x - = ^ ^ = 0, (2.34) 
op- p+ 02;" 

= ^ = 2 - ° ' ^n ' . a ,n- = - = ^ a ; x - (2.3.5) 

which implies the wave equation 

(2.36) 

with velocity c = //27ro:'p+. We can can set c = 1 by choosing the coordinate length 

of each string to be proportional to p""" is positive and conserved, so the total 

string length is also conserved. 

It is useful to expand in normal modes the free wave equation satisfied by the 

transverse coordinates. The general solution to this wave equation with the boundary 

condition (2.29) is 

X'(r,(7) = a;' + - ^ T + %(2o;y/^ ^ - a j ^ e x p ^ - ^ ^ ^ ^ l c o s — ^ (2.37) 

For reality of following centre of mass variables have been 

defined, giving the average postion and the total momentum: 

a;'(T) = T / cr), (2.38) 
£ Jo 

p ' (T )= / (Zcrn'('r,<T) = ^ / (f(7^^%'(T,cr) (2.39) 
Vo ( Vo 

also satisfy the free wave equation; this is trivial for and only a short calcu-

lation is needed for . 

The theory can now be quantized by imposing the equal time canonical com-

12 



mutation relations: 

= zTy"""" = — ( 2 . 4 0 ) 

[%'((;), m ( y ) ] = - y ) (2.41) 

All other commutators between independent variables vanish. The Fourier component 

relations are 

= (2.42) 

(2-43) 

The modes satisfy a harmonic oscillator algebra, for each TTZ and %, with non-standard 

normalization 

^ ^ m > 0 (2.44) 

Define the state |0;A;), where & = (A;+,A;'), as being annihilated by the lowering 

operators and being an eigenstate of the centre-of-mass momenta, 

p+|0;A:) = A;+|0;A;), p'|0;A;) = A;'|0;A;), (2.45) 

a^jO; A;) = 0, m > 0 (2.46) 

Raising operators can then be applied to |0; A;) to form a general state. 

I AT; 6) = 
^ -1 CO /aL»)^'' n n [ 0 ; k ) ( 2 . 4 7 ) 

=2 „ = i [ W - N . j y i ' l 

After inserting the mode expansion (2.37) into the Hamiltonian (2.33) we get 

1 3 



The order of operators in the Hamiltonian is ambiguous; here we have chosen to put 

the lowering operators on the right and raising operators on the left and introduced 

the unknown constant A from the commutators. This constant can be determined 

carefully by the following procedure. One has to check the Lorentz invariance of the 

theory by finding the generators of Lorentz transformations and then checking 

that they have the correct algebra with and each other. This only works out when 

A — —1 and D = 26. This would take a long time, but we can give here a brief 

plausibility argument. 

We start by asserting that for a free field, the Hamiltonian's operator ordering 

constant is a result of summing the zero-point energies of each oscillator mode for 

a bosonic held like For this gives 

n _ 9 

where the D — 2 factor comes from summing over transverse directions. This sum 

can be evaluated by regulating the theory, then preserving Lorentz invariance in the 

renormalization, giving the strange result, 

OO 1 
^ M (2.50) 
n=l 

Some motivation for this can be seen as follows. Insert the smooth cut-off factor 

exp(-eT/;;^/^|A;^|) (2.51) 

into the sum, with = nvr/Z, and invariance under cr reparameterizations is achieved 

by the Then we get 

n n OO 
A -4̂  —-— ^ n exp 1̂ —eM(7r/2p"'"a;'Z)̂ '̂ ^ 

n-l 

14 



It turns out that Weyl invariance requires that the Arst and third terms cancel, leaving 

only the cut-oE independent second term, 

9 — D 
A = ^ (2.53) 

Since p = ^ , we get 

m' = 2/^7 - p'p' = 4 + ^177^1 (2 54) 
a ' \ 24 

where TV is the ZeueZ 

D — X CO 

(2.55) 

i=2 n=l 

so the mass of a state is determined by its level of excitation. The lowest excited 

state is given by 

Now consider spin, hrst for massive particles. One may use the rest frame = 

(m,0, ...,0), where the internal states form a representation of the spatial represen-

tation group 5'C)(D — 1). There is no rest frame for massless particles, so choose 

the frame = ( E , ^ , 0, ...,0). Here the internal states form a representation of 

5 '0(D — 2). So, in D dimensions, a massive vector particle has _D — 1 spin states, and 

a massless one needs only D — 2 states. We have just found the D — 2 states at 

the first level, so they must be massless and 

v 4 = - l , D = 2 6 ( 2 . 5 7 ) 

15 



So, although the classical theory is Lorentz-invariant for any D, this symmetry only 

survives quantization in D = 26. 

We will now discuss the closed strings, but only very briedy, since the light-

cone treatment is quite similar to that for open strings. The Arst diffemce to note is 

that the imposition of the gauge condition (2.21) for the closed string still leaves the 

coordinate freedom 

CT' = cr + 5 ( r ) m o d I (2.58) 

since the point cr = 0 can be chosen anywhere along the string. The further gauge 

condition 

'yT(r(T,0) = 0 (2.59) 

reduces this to 

cr' = (7 + 5 mod / (2.60) 

We will come back to this shortly. 

The lagrangian, canonical momenta, Hamiltonian and equation of motion are 

exactly as for the open string. The general periodic solution to the equation of motion 

IS 

,\ 1/2 

X ^ ( ^ e x p 
27rzn((7 + cr 

l 
+ —exp 

n 

27rm(cr CT 

I 
[2.61) 

There are now two independent sets of oscillators, and representing left- and 

right-moving wave along the string. Again, the independent degrees of freedom are 

16 



the transverse oscillators and the transverse and longitndinal centre-of-mass variables, 

(2.62) 

with canonical commutators 

a; = - 2 , (2.63) 

(2.64) 

(2.65) 

(2.66) 

Defining the state |0,0; A;) with centre-ol-mass momentum and annihilated 

by and for m > 0, then the general state is 

TV; A:) = |0,0;A;) 

The mass formula is 

(2.67) 

m " = 2p'^ H — p""]]' 

a ' .n=l 

= —(/V-t-A^-kA-kA) 
CK 

(2.68) 

where both the level and zero point constant have been split into left- and right-

moving parts. Summing the zero-point energies again gives 

A = A = 
2 - D 

24 
(2.69) 

The physical states are those which are gauge-invariant, but we still have the 

17 



cr-translations. These translations are generated by 

f = -
Jo 
27r + & • - , < ) + A + A 

L?i=l 

T̂T ^ 

= - — ( # - 7 V ) (2.70) 

Therefore states must satisfy 

# = # (2.71) 

The first excited states are 
: in n. L\ 26 - D 0,0; A;), = (2.72) 

Just as the open string case, these states do not All out a representation of 5'0(_D — 2), 

and we find that this level must be massless, so 

A = A = - 1 , D = 26 (2.73) 

We have found Lorentz invariant quantized bosonic theory in 26 dimensions 

for both the open and closed strings. We have not examined the problem that there 

exists a tachyon in both these scenarios. This is one reason why we will now introduce 

superstrings. 

2 . 1 . 1 S u p e r s t r i n g s 

Two major problems with bosonic string theory are that it contains tachyons and 

that it does not contain fermions. Both of these problems can be solved by introduc-
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ing a world-sheet supersymmetry [56] that relates the spacetime coordinates to new 

fermionic partners. These are two-component world-sheet spinors. Physically, they 

correspond to internal degrees of freedom which can propagate freely along the string. 

In light-cone gauge, it can be shown that, as in the bosonic case, the requirement of 

a Lorentz invariant quantized theory specifies the number of dimensions, but now 

D = 10 rather than D = 26. A generic spinor in ten dimensions has 32 components, 

but we are going to assume that we start with Majorana-Weyl spinors. The Majorana 

condition makes them real, and the Weyl condition sets half equal to zero, leaving 

16 real components. The light-cone gauge condition halves this to only eight real 

components. The only symmetry manifest in the light-cone gauge is the rotational 

invariance of the eight transverse dimensions. The eight surviving components of 

the original spinor form an eight-dimensional spinor representation of the transverse 

6'0(8) group, in fact its spin(8) covering group. 

The light-cone gauge action can be written (with explicit string tension) ^ 

5" = (2.74) 
2 J 7T 

Here 6''' is the world-sheet spinor for the eight components that survive the restriction 

to light-cone gauge. It can be thought of as being composed of two components 5'̂ '̂  

and 5"̂ ^ which may be regarded as one-component Majorana-Weyl world-sheet spinors 

for right- and left-moving degrees of freedom, repectively. are two-dimensional 

Dirac matrices. 

We have already seen analysis for bosonic coordinates, so we will now just 

consider the quantization of the fermionic ones. The 5""̂ " coordinates have canonical 

^We are using here the conventions and notation of Chapter 5 of [1], which should make it easy 
for the interested reader to find a more rigourous and detailed treatment. 
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anticommutation relations 

^), ^)} = - (%') (2.75) 

We now need to specify boundary conditions. For open strings the appropriate choices 

are 

^^"(0,r) = 5'"''(0,T) (2.76) 

^l':(7r,T) = 6'^"(7r,T) (2.77) 

The mode expansions for the open string that follow from (2.74) are 

S " ° ( < 7 . t ) = ^ E ( 2 . 7 8 ) 

-oo 
oo 

S ' ' - ( , T . r ) = 4 = J ] 5 > - " ' - + " > ( 2 . 7 9 ) 

V ^ — C O 

From the reality of these coordinates we get 

S l ^ = ( 5 ° ) * ( 2 . 8 0 ) 

and in terms of the expansion coefEcients, the canonical commutation relations be-

come 

{•?;.. S ' } = (2.81) 

Now for the closed strings. Their only boundary condition is periodicity: 

6'^''(,7,T) = ^^"((7 + 7r,T) (2.82) 
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and the mode expansion becomes 

r ) = ^ ^2.84) 

with independent right and left moving modes. 

From a consideration of the super-Poincare algebra in spin(8) notation, one can 

arrive at the light-cone hamiltionian, 

H = : ^ [ ( f f + i N ) (2A5) 

where 

oo 
N = E (2,86) 

m.=l 

Note that because there is a cancellation of zero-point energies of the a and 5" modes, 

normal ordering is trivial here. The mass-shell condition is just = p". 

Consider the massless spectrum and note that since there are no tachyons here, 

this is the ground state. In the spin(8) description, the ground state represents the 

algebra , 5'o} = It can then be shown that the ground states form an 8^ -|- 8c, 

that is eight Bose states in the 8^ representation of spin(8) and eight Fermi states in 

the 8c representation. Use |^o) to denote this 16-dimensional multiplet of massless 

ground states. One can obtain the excited (massive) open-string states by applying 

and excitations to the ground state The physical states at the hrst 

excited level are 

aLi|.^o), (2.87) 

which describe 128 bosonic and 128 fermionic modes. These fit into spin(9) multiplets, 
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the representations being 44 + 84 for the bosons, and a 128 'spin 3/2' for the 

fermions. 

For closed strings, one set of modes is needed for the right-movers and another 

for the left-movers. The massless states are described by the direct product of states 

X |<;6o). There are two distinct cases here since the two original Majorana-Weyl 

spinors can have either the same or opposite chirality. When they are opposite there 

can be no symmetrization of the two factors, so the massless multiplet must have 

16 X 16 = 256 modes. The spin(8) content is the tensor product of two super Yang-

Mills multiplets of opposite chirality, 

(8v + 8c) ® (8v + 8g) = (1 + 28 + 35v + 8^ -|- 56v)g 

4-(8s 8c 4- 56g -H 56c)f (2.88) 

The subscripts B and F indicate bosonic and fermionic states, respectively. This is 

the particle content of D = 10 type IIA supergravity. 

When both spinors have the same chirality and no other restrictions are imposed 

there are still 256 modes. Now the spin(8) content of the massless multiplet is formed 

by the product of two super Yang-MiDs multiplets of the same chirality, 

(8v + 8c) ® (8v + 8c) = (1 + 28 + 35v + 1 + 28 + 35c)g 

-f(8s + 8s + 56s + 56C)F (2.89) 

We now have the D = 10 chiral type IIB supergravity particle content. We can also 

consider the same-chirality case with an additional symmetrization condition that 

only terms invariant under the interchange of |<;6o) and |<̂ o) aje allowed. This means 

a graded symmetrization in the tensor product of the super Yang-Mills multiplets, 

[ ( 8 v + 8 c ) 0 ( 8 v + ^s)]graded sym ~ + ^\)sym + ( ^ v + 8 c ) + ( 8 c + ^c)antisym 
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= (1 + 28 + 35v)B + 8g + 56s)f (2.90) 

This is the particle content of D = 10 chiral type I supergravity. 

The condition that a fermionic field on the world-sheet be periodic is the 

(R) boundary condition. The (NS) boundary condition on 

the other hand, is when the fermionic Aeld on the world-sheet is anti-periodic. Since 

the closed string can have any combination of these for its left- and right-moving 

modes, there are four different closed string sectors, known as NS-NS, NS-R, R-NS 

and R-R. 

2.2 D - B r a n e s 

D-branes were discovered by examining the T-duality of string theory [2]. Since a 

superstring theory must live in ten dimensions but we live in only four we must do 

something with the six extra dimensions. Consider compactifying one of these extra 

dimensions on a circle of radius If we make this radius very small, we will not 

be able to see this extra dimension, solving the problem. This is the principle of 

compactification, but we will now discuss some remarkable subtleties. First of all, 

consider a point particle with a compact dimension. When the radius of the compact 

dimension goes to zero, the excitation energy for a particle in this direction diverges, 

so this dimension can be ignored as we just suggested. 

The picture is changed dramatically for a closed string because a closed string 

can be wound on the compact dimension. The mass spectrum can be calculated [2], 

Af' = ^ + i ^ ^ + 4 ( A ' + j V - 2 ) (2.91) 

where M and w are integers. The third term is the normal result without a compact-
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location - TV and TV are the number operators 

oo oo 
TV— (2.92) 

71=1 71=1 

This spectrum is unchanged by the interchange of variables, 

U) Tl 

q;' 
E <4̂  - (2.93) 

This means that there is a good string description for when ^ is much smaller than 

the string length in terms of a theory with A much greater than the string length. As 

^ 0 the momentum modes become infinitely massive, as in the particle case, but 

here the w modes with jZ —> a ' / A replace them in a sense, so that the theory still 

sees the original number of dimensions. 

What about open strings in this scenario? An open string itself cannot wind on 

the compact dimension, so they must experience the dimensional reduction, like the 

particle. However, open string theories generate closed strings at loop level, so there 

must always be closed strings which see the full number of dimensions. Also, sections 

of an open string away from the end-points are just like sections of closed string, so it 

is only the end-points of the open strings that are restricted to the lower dimensions. 

We can T-dualize in more directions, increasing the number of dimensions in which the 

open string end-points are restricted. The picture that emerges is open strings with 

their end-points restricted to lower dimensional hyperplanes, or n-branes, while the 

closed strings propagate throughout the higher dimensional space. See Figure (2.2). 

It is Dirichlet boundary conditions which restrict the open strings to the n-branes, 

hence the name Dirichlet-branes. 
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Open strings ending on D-brane Closed strings propagating in bulk 

Figure 2.1: Ends of open strings are restricted to D-brane while closed strings prop-
agate in the bulk 

2.3 F ie ld T h e o r y on D - b r a n e s 

Global symmetries can be introduced into string world-sheet theory. The only natural 

place to put global charges is at the ends of open strings. These are called Chan-

Paton degrees of freedom [12]. If we have such charges and either end of a string 

can have a different charge % and then there can be different strings (see Figure 

2.2). A string wavefunction may then be decomposed as 

N 

(2.94) 
i j = l 

where the basis of x matrices, A? , are called Chan-Paton factors. All open 

string vertex operators also have such factors. Consider the diagram for four-point 

scattering of open strings shown in Figure 2.3. The Chan-Paton state must be the 

same all along each edge of the world-sheet, i.e., each dashed, arrowed line, which 
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Figure 2.2: An open string with Chan-Paton degrees of freedom. 

gives a trace of the product of Chan-Paton factors, 

(2.95) 

Similar traces arise in all open string amplitudes, and they are invariant under the 

[ / ( # ) transformation 

A ' ' ^ ( 2 . 9 6 ) 

Amplitudes can be calculated in this enriched string theory and one can then look for 

a spacetime action which reproduces these amplitudes to Arst order. This effective 

action is a [/(A^) gauge theory. What has happened is that the [/(A^) global world-

sheet symmetry has been promoted to a local spacetime symmetry. [1, 2] 

If we follow through the T-dualizing procedure of the previous section, the 

ends of these strings will again be restricted to D-branes. The plural D-branes is 

used because each of the charges is associated with a different D-brane. The 

important feature that these Chan-Paton factors have introduced is that the low 

energy (a ' — 0 limit) effective theory of these open strings is (/(A^) gauge theory 

in the p -|- 1 dimensions of the D-branes. We have the nice intuitive picture of the 

ends of open strings which are points in the D-brane world-volume describing a point 

particle [/(A^) gauge theory. If we have D3-branes, that is, D-branes with a world-

volume of three spatial plus one time dimensions, then we have a gauge field theory 
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Figure 2.3: Four-point scattering of open strings. 

of the correct dimensions for describing our observed low-energy world^. 

As we are dealing with a theory of gravity the branes must be allowed to move 

in the bulk space, since gravity waves distort everything. One can imagine moving one 

of the branes off in the transverse space, leaving TV — 1 branes stiD coincident. This 

will mean that strings with one end having the Chan-Paton charge of the single brane 

and the other end carrying a charge of one of the other D-branes will be stretched 

between the single brane and the other — 1 branes (see Figure 2.4). It is clear that 

we will then have the low energy theories of (7(1) gauge theory on the single brane 

and — 1) on the # — 1 branes. In fact this a geometric description of the Higgs 

mechanism [3] since there are scalar fields in the gauge theory which represent the 

position of the D-branes, and moving the single brane away corresponds to giving the 

relevant scalars vevs. This corresponds to the strings being stretched to get masses 

^ We will see at the start of the next chapter how the .A/" = 4 super Yang-Mills Held theory in four 
dimensions can be derived from a dimensional reduction o f ( i = : 1 0 v V = l SYM. 
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N-1 Dp-branes Single Dp-brane 

Figure 2.4: A geometrical picture for the Higgs mechanism with D-branes 

[(tension) X(distance 8tretched)=mass]. Generically, all N branes may be separated 

to give the breaking (7(1)^. 

2.4 T h e D i r a c - B o r n - I n f e l d A c t i o n 

To do the D-brane calculations in our research we need an action for them, so we 

will now sketch out the form of the Dirac-Born-Infeld action [7]. We saw earlier that 

the simple Nambu-Goto action for a bosonic string is basically just the area of the 

string world-sheet. This principle extends to higher dimensional world-volumes, so 

we should expect the Dp-brane action to contain the square-root of a determinant 
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which contains an induced metric on the world-volume, Gab- We want to describe 

a brane with a gauge Aeld living on it and a perturbative expansion of the string 

theory indicates the ansatz of adding a term in to the determinant. We have 

also seen that in general there is an antisymmetric background tensor field so 

there must be an induced antisymmetric Held in there too. The final field we 

need to include is the dilaton. We are dealing with open string tree level physics, 

so we should have a factor of that is Putting all this together, we get the 

Dirac-Born-Infeld action for Dp-branes, 

y (F+'^e-^det'/"(G.6 + ^,6 + 27ra%6) (2.97) 

2.5 F r o m S u p e r s t r i n g s t o S u p e r g r a v i t y 

Although the full conjecture of the AdS/CFT Correspondence concerns Type IIB 

string theory [1, 2] (see following chapter on the AdS/CFT Correspondence), my 

research has principally only involved dealing with its low energy Type IIB super-

gravity description. It was shown previously that a string theory contains a finite 

number of maasless states plus an infinite tower of massive excitations. These mas-

sive states are characterized by the Regge slope a ' , or equivalently the string tension. 

To produce a gravitational interaction with the observed Newtonian strength, this 

fundamental parameter must be of order the Planck mass, Mp = lO^^GeV, assuming 

the compactification radius corresponds to the string scale and the string coupling is 

of order one. At energies much lower than this, it should be possible to find a very 

good approximation to the full theory which does not involve the massive states. Mp 

is very large, so such an effective theory should be valid for phenomenology at any 

practical energies. So we want an effective action for just the massless states. 

If we represent the finite number of massless fields by (;̂ o aJid the infinite number 
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of massive fields by , then the string theory should be able to be described by some 

classical, or a quantum effective, action 6'((^o,<An)' Of course it would be great to 

find such an exact classical action and learn directly from it, but this has proved too 

difficult to do as yet. From this action one could integrate out the massive helds to 

leave a low energy action involving only the massles fields, 

_ y (2.98) 

At the classical level, this amounts to eliminating the massive fields from the equations 

of motion to leave only equations of the massless fields. This is just the tree level 

computation of the path integral. In the quantum theory the massive fields of course 

still come into the low energy theory, through the massive loop diagrams in the rest 

of the path integral. 5'eyy(<;6o) can take the form of a power series in /i, with the power 

of ^ corresponding to the number of loops. The classical elimination of is just 

the first, term. 

We still do not have a satisfactory from which to derive, as just 

described, a low energy action for the massless fields of string theory. What has 

been done though is to just construct a classical action for the massless fields which 

reproduces the string ^'-matrix elements. For example, Type IIB supergravity was 

constructed to reproduce the results from Type IIB string theory. IIB supergravity is 

the low energy effective theory of IIB string theory, but it does not simply fall out of 

the string theory when one takes a certain limit in the equations, as say taking the low 

velocity limit of special relativity produces the equations of Newtonian mechanics. 
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The Aeld and particle content of Type IIB supergravity is [13] 

56^ 

/i + 
'-Al^Lupa 

35g metric - graviton 

2g axion - dilaton 

rank 2 antisymmetric 

35,8 antisymmetric rank 4 

V'L, / —1,2 112f^ Majorana-Weylgravitinos 

A ,̂ 7 = 1 , 2 16f Majorana-Weyldilatinos 

The action for Type IIB may be written as 

(2.99) 

4^ a 
1 

4KB 
VGdFil" + iFsr + ^ l A r ) + A+ A % A 

+ f e r m i o n s [2.100) 

where the field strengths are defined by 

Fi = (ZC, ^3 

^ =(3fv4+ 

-Fq — dAo 

4 5 

(2.101) 

Aj" haa a self-dnal field stength, so we also require the supplementary condition 

= Fg. KB is the Newton constant in ten dimensions. The first line of the 

action comes from the NS-NS sector of the string theory and the second line comes 

from the RR sector. The fermion part of the action is rarely written out explictly in 

the literature, because it is rather large and is set to zero in finding a supersymmetric 

vacuum anyway. 

^We use exterior differential notation for anti-symmetric tensor fields, e.g. for a rank 3 tensor 
Aa 5 with field strength 5 jAg. 
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It is not evident from looking at (2.100), but Type IIB snpergravity baa a,n 

^ 6'i}(2,R) non-compact symmetry. This symmetry can be revealed by a 

change of coordinates. To do this, swap the that has been used so 

far for the defined by 

(2.102) 

and introduce the complex fields 

T = C + %e-^, G3 = ^ (2.103) 
y i m r 

The action then takes the form, 

s „ B = ̂  ^ 
- j K f A t A G ^ A G , (2J04) 

4% Kg V 

The metric and Aj" helds are invariant under the 5'[/(l, 1) ^ 5'J[}(2,R) symmetry. T, 

the combined dilaton-axion held undergoes the Mobius transformation, 

(IT 4-
r — = 6 c = l , G,6, c, d G R (2.105) 

cr + 0 

Lastly, the linear transformation associated with this Mobius transformation acts to 

rotate the and ^2^1, helds into one another. This may be written concisely in 

terms of the complex 3-form field Gg: 

% ^ (2.106) 
CT + d 
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2.6 B r a n e s in S u p e r g r av i t y 

We have discovered the existence of Dp-branes in string theory, and also that 10-

dimensional snpergravity is the low-energy effective theory of the snperstring theory, 

so one should be able to And a supergravity description for the Dp-branes of the string 

theory. In fact, p-brane solutions of Type IIA/B supergravity had been discovered 

before the D-branes of Type IIA/B string theory had been found. 

A general (p + l)-form, 

+ A ... A (2.107) 

couples naturally to geometrical objects Cp+i with spacetime dimension p -t- 1 since 

the diffeomorphism invariant action, 

6"̂ +! = ] ;+! / (2.108) 

may be constructed. This is just a generalisation of the standard gauge coupling to 

a point particle [3]. This action is invariant under the rank p abelian gauge transfor-

mations /)p(a;), 

^ 4" (2.109) 

since transforms with a total derivative. has a gauge invariant held strength 

with conserved Sux. A supergravity solution with non-trivial is called a 

p-brane due to the dimension of its spacetime geometry. 

Every gauge held has a 'magnetic' dual (D — 3 — p)-form, which 

is Hodge dual [14, 2] (denoted by a preceding *) to 

(2.110) 
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Brane Name Associated Field Magnetic Dual Brane 

D(-l) instanton Ao = C + D7 
F l string NS5 
D1 string D5 
D3 brane ^4iJ,upff D3 

Table 2.1: Type IIB supergravity branes. 

This Aeld couples to a (D — 4 — p)-brane, which constitutes a magnetic dual to the 

original 'electric'j»-brane. This is a simple generalisation of standard electro-magnetic 

duality in (3+1) dimensions, where a field strength has a dual =* 

The ten dimensional case is similar, but the e-tensor has ten indices. Table (2.1) 

summarises the electric branes and their magnetic duals in Type IIB supergravity. 

All these fields are charged in the R-R sector and are associated with D-branes, except 

This a NS-NS field associated with the fundamental string, F l , whose magnetic 

dual is something called the NS5-brane [7]. 

We now look at the supergravity solutions for the branes we have been dis-

cussing. The (p -|- l)-dimensional 8at hypersurface of a p-brane has the Poincare 

invariance group x 5 '0(l ,p) . This leaves a (D — p — l)-dimension transverse 

space, and solutions can always be found with the associated 5 '0(D — p — 1) maximal 

rotation symmetry. So p-branes in lOD supergravity are solutions with symmetry 

group X 5'C)(l,p) X 5'0(D —p— 1). For example, D3-branes have the symmetry 

group X 5'0(1,3) X 5'0(9 — p). 

We shall denote the coordinates parallel to the brane as jU = 0,1,.. . ,p 

and coordinates perpendicular to the brane as w = 1,2, ...,Z) — p — 1. 

In the p -|- 1 dimensions parallel to the brane the metric must be a rescaling of the 

Minkowski Sat metric due to Poincare invariance. The transverse directions must 

be a rescaling of the Euclidean metric because of their rotational invariance. Also, 

these metric rescaling functions should not depend on If one builds these three 

restrictions into an Ansatz and substitutes it into the IIB field equations, one find 
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that the solutions may be written in terms of a single function ^ thus [13], 

Dp : (2.111) 

#6 '5 : = ^ ( 0 (2.112) 

where the Dp metric is in the string frame and ^ must be harmonic in 

These metrics should tend to Sat spacetime as ^ oo. Using this and the 

assumption of 6 '0(D — p — 1) maximal rotational symmetry in the transverse dimen-

sions, the most general solution is parametrised by a single scale factor, so that 

IS 

r Z ) - p - 3 

Hi.y) = l + - ^ , (2.113) 

Obviously, to make the second term of (2.113) dimensionless must have dimensions 

of length, and since the only dimensionful parameter of the theory is a ' , which has 

dimension (length)^, Z must be proportional to may also depend on the 

dimensionless string coupling, Although we are dealing with supergravity, we are 

interpreting it here as a low energy effective theory of string theory. This string theory 

parameter comes in through the lOD Newton constant, Kg, in the IIB SUGRA action 

(2.100). An important example is the solution for coincident branes, for which 

^D-p-3 _ for Dp-branes, Pp = ^3(47r)(^"^)/^r((7 — p)/2)(a')(^"^''^)/^. 

If one relaxes the condition on rotational invariance in the transverse space, then the 

general solution extends to 

H { y ) = l + J : \ y - y ' ^ - p ^ C , = N , p „ N , e N ( 2 . 1 1 4 ) 

for aji array of # points This is a multicentre solution; the branes ai'e found at 

multiple points spread out in the transverse space [19]. 
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We now examine the dependence of the various brane solutions of Type IIB 

string theory on the string coupling in particular, the dependence of Pp. Remember 

that the string coupling is given by = e'̂ , where = ($) . Now look at the field 

equation for IIB (from the IIB action (2.100), but without derivative terms in the 

dilaton and axion for simplicity): 

Now recall that the fundamental string F1 and the NS5 brane have non-vanishing 

helds, but vanishing RR helds 7Z,. So these brane solutions do not involve 

gfg, therefore their is independent of ^3. In contrast, the D-brane solutions have 

= 0, but at least one of the RR antisymmetric fields is non-zero. These 

solutions have explicit string couphng dependence, and so pp ^ 

2.7 D 3 - B r a n e s 

The special case of D3-branes is of particular interest for a number of reasons: 

e It has 4-dimen8ional Poincare invariance on its worldvolume. 

# It has constant axion and dilaton Aelds. 

# It is regular at (/ = 0. 

# I t i s s e l f - d u a l . 

DS-branes are also extremely important in the context of the AdS/CFT Correspon-

dence and come into all of the research content of this thesis. They are therefore 

worthy of a fuller discussion. The D3 solution is given by [13]: 

C constant, 
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^5t.p.T = (2.116) 

where is the volume element transverse to the D3-brane. The solution for 

N = 22/ parallel D3-branes placed in groups of at position in the transverse 

space is 

c.f. (2.114) and the expression for ,9̂  just before it. 

Now examine how the scales involved in the D3-brane solution relate to the 

coupling constant. The Planck length is defined by /p = a ' and it is related to the 

radius of the D3-brane solution to string theory by = 47rgfa When 1, 

is negligible in comparison to the string length Zf, in which case the supergravity 

approximation is not a valid approximation for the full string solution. However, 

in this regime <K 1, so that string perturbation theory may be trusted and the 

power of conformal held theory methods may be used to examine the D3-brane. In 

the other case of 3> 1, -L wiU be much greater than Zf, and then the full string 

theory is open to the supergravity approximation. In this instance it is possible to 

take g'a <K 1 if Â  is large enough, then both supergravity and string perturbation 

theory are simultaneously applicable. Note that in general, when p 3 the dilaton 

is not constant and so the strength of the coupling depends on the distance to the 

brane. 

D3-branes can be viewed as a two-parameter family of solutions, those param-

eters being the string coupling, and the instanton angle = 27rC. Alternatively, 

these two can be combined to form the single complex parameter T = C 4- All 

these solutions are in a single orbit of the 5'(7(1,1) ^ 5'_L(2,R) symmetry of Type 
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IIB supergravity since it acts transitively on T. The situation is altered in superstring 

theory since the range of is quantized so the identification ^ ^/+27r can be made, 

which implies T ^ T + 1. This means that the allowed Mobius transformations are 

elements of the 5"2 (̂2, Z) subgroup of 5';L(2, R), where a, 6, c, (Z E Z. String solutions 

are mapped into equivalent solutions by these transforms, and so any string theories 

which are defined on D3 backgrounds which are related by this 5'^(2, Z) duality are 

all equivalent. 

2.8 B r a n e P r o b i n g 

We will now describe the very useful technique of brane probing [6]. We have used 

brane probing repeatedly in our research as a tool in interpreting supergravity back-

grounds in terms of their field theory AdS/CFT duals (see later). In particular, it 

leads to the unique coordinates appropriate to the field theory dual. 

In a brane probe one considers introducing a single probe Dp-brane into the 

supergravity background created by a large number, # of Dp-branes. must be 

large so that is large, the curvatures are small and we may trust our super-

gravity solutions. Of course, we want to take small rather than large so we don't 

have strongly coupled strings. The single Dp-brane can be taken to move in the 

background without altering it. In brane probing it is sensible to use what is known 

as "static gauge". This is where spacetime Lorentz invariance and world-volume 

reparametrizations are used to align the world-volume coordinates, of the brane 

with the spacetime coordinates so that 

^0 = $0 = 

6 — ^ ^ ~ 17 • • • 7 7-̂7 

r = m = p + l , . . . ,9 (2.118) 
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The branes have p common directions in which the background Aelds will have no 

structure, so the problem is just as a particle moving in the 9—p transverse directions. 

The action for the probe is the Dirac-Bom-Infeld action (2.97) plus a coupling to the 

4-form, C(p+i), 

S-p = - ] ; y (F+^^e-^det'/'(G'.6 + + 27ra'F.6) + Q^+i) (2.119) 

where Gat is the pull-back metric, 

(2.120) 

To perform a brane probe we substitute in all the required terms from the configura-

tion we want to probe and take the probe to be slow moving, i.e. that the velocity 

defined by is small enough that only terms up to quadratic order in i; 

need be considered in the expansion of the determinant. 

The resulting action can tell us a number of important things. The first thing 

one might look for is how many directions have no potential. Remember that there 

is a (7(A/̂ ) (p + l)-dimensional gauge theory on the # Dp-branes. This theory has a 

family of (9 — p) adjoint scalars, 0"^. The crucial point is that these fields correspond 

to the positions of the branes transverse to their world-volumes (c.f. the geometrical 

Higgs mechanism in Section 2.3). This means that giving a vev to one of these fields 

corresponds to moving a brane to the equivalent position in the transverse space. If 

there is no potential to this movement of the brane then there is a "moduli space" 

of inequivalent vacua in the field theory. This means, for example, that if one has 

a supergravity solution which is supposed to correspond to A/" = 4 SYM (see next 

chapter), then the brane probe had better reveal the required six dimensional moduli 

space. 
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C h a p t e r 3 

T h e A d S / C F T Cor r e spondence 

This chapter is an exposition of the AdS/CFT Correspondence, with some emphasis 

on aspects particularly relevant to the later research chapters. vV = 4 SYM and 

AdS space are introduced as preliminaries to the Correspondence. For more on the 

AdS/CFT Correspondence there are many reviews available, for example [50, 13, 51, 

52, 53, 54, 55]. To the beginner we might recommend [50], followed by the first half 

of [13]. 

3.1 W" = 4 S u p e r Yang-Mi l l s 

The CFT of the AdS/CFT Correspondence is W' = 4 Super Yang-Mills (SYM) in four 

dimensions, so we will describe this theory here. The lagrangian for VV = 4 Super 

Yang-Mills is unique and may be written as [13], 

£ = Tr - J ] D ^ X W X ' 

+ Y . s C f K [ X \ X i , ] + ^ I (3.1) 
a,6,« / 
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This lagrangian can be derived from a dimensional reduction of &( = 10 A/" = 1 SYM, 

r = - ^Tr[Ar^DMA] (3.2) 

where A is a Majorana-Weyl 16 spinor of 6'0(1,9). The reduction decomposes this 

symmetry by 

^0(1 ,9) ^ ^0(1 ,3) X 6'0(6) (3.3) 

which means 

16 = (2,4) + (%4) (3.4) 

The ten dimensional gauge field becomes a 4d gauge field plus six scalar fields: 

AM = (^; i ,^a) , ^ = (/^,G), 

/i = 0,1,2,3, G = 4, . . . ,9 (3-5) 

The four dimensional lagrangian then comes by assuming that the fields depend on 

only. The ten dimensional theory we started with is the low energy effective action for 

open superstrings and we have reduced that to the four dimensional effective theory 

when the open strings are restricted to end on a D3-braiie. 

A/" = 4 is the maximum supersymmetry one can have in four dimensions and 

have only particles of spin < 1 [56]. There are 16 supercharges that transform as 

four spinors (Q^,Q^), a — 1,2,3,4, where 0^ are Weyl spinors. An 5'L/(4) 

rotation of these four spinors is an automorphism of the supersymmetry algebra, so 

the theory has an '5'[/(4) R-symmetry. The field content is an 'A^=4 gauge multiplet', 

(A^ %'). is a vector field in the adjoint representation of 5 ' [ / (#) , and is a 

singlet under 5'0(6). The are six real scalars in the 6 vector representation of 
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6'0(6), which transform in the adjoint of The are four Weyl fermions in 

the adjoint of and in a 4 spinor representation of 5'0(6) (or the fundamental 

of 

= 4 [ / ( # ) SYM in 3 + 1 dimensions is a conformal (see Appendix A.l) 

theory, which means that its beta function is zero to all orders. The symmetries 

of a conformal theory are made up of Poincare symmetry (Lorentz transformations 

7},̂ ^ and translations f plus dilatations D and 'special conformal transformations' 

which go together to form an 5'0(2,4) ^ 5'(/(2,2). In fact, A/" = 4 (7(A/) is 

even more symmetric because the conformal symmetry fits together with the other 

global symmetries to form a superalgebra. The other constituent symmetries of this 

superalgebra are: 

# The R-symmetry 6'0(6)B 6'[/(4);^ generated by A = 1,..., 15 

# The Poincare supersymmetries as mentioned above, generated by the super-

charges and their complex conjugates Qaa, a = 1, ...,4. 

# Con/ormaZ generated by supercharges .S'aa and their complex 

conjugates 5"?. These are the commutators of the Poincare supersymmetries 

and the special conformal transformations, Since these two things are 

symmetries their commutator must also be a symmetry. 

The two bosonic subalgebras 5'0(2,4) and 5'(7(4)j^ commute, while the supercharges 

and 5"? transform in the 4 of 5'f7(4)j^, and their conjugates and 6'aa in the 

4*. So all these generators fit into a superalgebra in the form 

^ r.. n .. IJ LJ" 1 

(3.6) 

and the global continuous symmetry group of A/' = 4 SYM is in fact the supergroup 

^[/(2,2|4) [57]. 
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The dynamical behaviour of A/" = 4 SYM can be deduced from the potential 

energy term, 

- g ' E / T r [ A - . A ' f ( 3 . 7 ) 

'J 

Since the generators of the gauge algebra, are Hermitian, Tr[^^,^r] positive 

definite. Therefore each sum in this potential is positive or zero. So when the potential 

is zero we have a minimum, corresponding to an = 4 supersymmetric ground state. 

The condition for this ground state 

= = (3.8) 

has two different classes of solution: 

# (%') = 0 for all 2 = 1, ...,6 which is called the since the 

superconformal symmetry 5'[/(2,2|4) is unbroken. 

# (%') ^ 0 for at least one called the or 

The superconformal syrmnetry is spontaneously broken since the non-zero vev 

(%') sets a scale. The generic symmetry breaking is ^ where r = rank^ 

where the low energy theory will look like r copies of A' — 4 [/(I). 

3.2 A n t i - d e - S i t t e r Space 

Anti-de-Sitter (AdS) space is a maximally symmetric spacetime with constant nega-

tive curvature, (p 2) dimensional AdS space is the hyperboloid 

p+i 
a;' ' ^ + (3-9) 

=1 
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Figure 3.1: (Minkowskian) Anti-de-Sitter Space. 

where the 2:̂ 8 are coordinates of with metric 

-c(zr "J'p+2 
p+i 

+ IZ 
,=i 

(3.10) 

One can see that the topology of this manifold is that of a cylinder 6"̂  x R times a 

sphere 5"̂ . The boundary is therefore = 6"̂  x 6" .̂ A sketch of AdS space 

is shown in Figure 3.1, in which + ... + This is obviously a good 

representation to spot the 5'0(2,p + 1) isometry of but some coordinate 

changes can be used to extract other properties of this space. 

The hrst of these is achieved by substituting 

^ = Zp+i + a; p+2, V — Xp^\ Xp-\-2^ 

R 
(3.11) 
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into (3.10) to obtain the fomcare me(r;c of AdS, 

R2 
= —(c(z^ — ĉZQ + + ... + (fzp) (3.12) 

Then using a coordinate w = 1/z one can write the AdS metric as 

(Zzq + + ... + (fz^) + -R^—IT (3.13) 

In this form we can make a very important visualization of AdS space. The terms 

inside the brackets of (3.13) are just a Minkowski space. In addition we have a single 

w-direction, so we can think of AdS as a continum of Minkowski spaces 'stacked' in 

the radial w-direction. The factors act as a 'warp factor' between the Minkowski 

slices. By writing %/ = we get 

(̂ 5̂  = (3.14) 

in which is the warp factor. 

3.3 T h e A d S / C F T C o r r e s p o n d e n c e 

We are now ready to put forward the argument for Maldacena's Conjecture [15]. We 

consider type IIB superstring theory in the presence of TV D3-branes and And two 

different descriptions for a certain limit of this configuration. 

In this background string theory has closed string excitations which propagate 

in the bulk and open string excitations, attached to the D3-branes. At energies much 

less than the string scale l/Z,, there are only massless excitations and the effective 
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action is 

I y + y (3.15) 

Here vC//g is the elective action of IIB string theory, containing the snpergravity 

action pins higher derivative terms and Zlbrane is the low energy theory on the brane. 

If we now take the low energy a ' — 0 limit then the gravitational couphng goes 

to zero, 

STrGio = ^ 0 (3.16) 

So in this limit the gravitational and higher derivative interaction terms disappear. 

We saw in the previous chapter that /Ibrane becomes [/(A/^) SYM in 3+1 dimensions 

in the a ' — 0 limit, so what we are left with after taking this limit is = 4 (/(A') 

SYM with free gravity in the bulk. 

Now turn to the supergravity description for this D3-brane configuration. Such 

a solution may be written as 

+ y^^^(r)((Zr^ + (3.17) 

with 

^123r = \ = COnst (3.18) 

where 

f ( r ) = 1 + (3.19) 
y , 4 

Clearly, when ;:$> a ' t h i s spacetime looks like Aat R^°. (which means 

close to the branes) is often called the 'throat' region. This label is motivated by the 
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Flat Space 

Throat 

Figure 3.2: A picture representing the spacetime for # coincident D3 branes, showing 
the Sat region and the throat, where the space looks like Agfa's x 5"̂  

visualization of the space shown in Figure 3.2. 

This background has two types of low-energy excitations; those close to the 

horizon at r — 0, and massless particles in the bulk. The large redshift near the 

horizon means that an excitation of energy ^ in that region is seen from infinity to 

have an energy, 

(3.20) 

Now if we take the a ' 0 limit as in the previous description, keeping r / a ' = u 

constant (so r —0) , then an observer at infinity measures finite energies for string 

excitations of level » = Applying this limit to the metric (3.17) gives, 

a — ( — - | - -|- -|- ((zg) -t- (3.21) 

which is just x 5"̂ ; we have superstring theory on x 5"̂ . Maldacena spotted 

that there are two different descriptions of the same configuration and conjectured 
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that they must be equivalent. The statement of the AdS/CFT Correspondence is 

that the following two theories are dual, 

# Type IIB superstring theory on x 5"̂ , with equal radius for both 

and 6"̂ , with integer Sux for the 5-form and with string 

coupling 

# A/" = 4 SYM in 4 dimensions, with gauge group ( / / ) and Yang-Mills coupling 

gryM, in its superconformal phase. 

with the following identifications between the parameters of the string and gauge 

theories, 

= ^'yM, (G) = 07 (3 

where (C) is the axion expectation value. 

This statement applies for all values of and but the quantization 

of string theory on a general curved manifold, including x 6"̂  is an unsolved 

problem. It is possible though to take different limits of this so-called 'strong form' 

of the conjecture which are still highly non-trivial but are much more open to study. 

3.3.1 T h e ' t H o o f t Limit 

Keeping t h e ' t Hooft coupling [58], A = fixed while taking 00 con-

stitutes the 't Hooft limit. This limit of Yang-Mills field theory yields a perturbative 

topological expansion in Feynman diagrams. On the AdS side of the Correspondence, 

the string coupling may be written in terms of the 't Hooft coupling as = A/TV. 

Therefore the string coupling goes small in the 't Hooft limit, giving weak coupling 

48 



string perturbation theory. In this limit the conjecture becomes a correspondence 

between classical string theory and the large limit of gauge theories. 

3.3.2 T h e Large 't H o o f t Coup l ing Limi t 

A is the only parameter left after taking the 't Hooft limit. The perturbative limit of 

quantum field theory is when A <K 1, however, A 3> 1 is the natural limit to take on 

the AdS side, as we will now show. An expansion of the effective action in powers of 

a ' takes the form [13] 

Z: = + ... (3.23) 

with ^ the Riemann tensor. We are concerned with the throat region, where distance 

scales are set by the AdS radius Z,. Therefore, the Riemann tensor is of the scale 

^ = ^ ,3.24, 
1," a ' a ' 

so the expansion of the effective action in powers of o ' becomes an expansion in 

powers of 

r = + 02^-^ + G3(a3^A-^/" + ... (3.25) 

In the large A limit, the conjecture becomes an equivalence between this expansion of 

string theory in A"^/^ and the strong coupling limit of Yang-Mills field theory. The 

three forms of the AdS/CFT conjecture we have just covered are summarised in Table 

3.1. 
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. AT = 4 SYM 

* 9s = 9YM 

# Type IIB string theory on AcfS's x 5"̂  
# = 47r̂ 3A^o;'̂  

# ' t Hooft limit of = 4 SYM 
(A = Axed, # —oo) 

# 1/A^ expansion 
<#> 

# Classical Type IIB string theory 
on AcZS-s X 6"̂  

# ^3 string loop expansion 

# Large A limit of jV = 4 SYM 
(for oo) 

# expansion 

# Classical Type IIB supergravity on 
on X 6'̂  
e a ' expansion 

Table 3.1: The AdS/CFT Correspondence's three forms, in decreasing strength order. 

3.4 M a p p i n g Globa l S y m m e t r i e s 

The most obvious thing to check after proposing the duality is that the global unbro-

ken symmetries of the two theories are identical: 

1) ^(7(2, 2|4) 

We saw earlier that the continous global symmetry of vV = 4 SYM in its confor-

mal phase is 5'(/(2,2|4), with 6'[/(2,2) x 6'(7(4)B ^ 6'0(2,4) x ^'0(6)^ the maximal 

bosonic subgroup. This is the isometry group of x 5"̂ ; 5'0(2,4) for the AofS's 

and 6'0(6)B for the 5"̂ . On the AdS side the supergroup is completed because only 

16 of the 32 Poincare supersymmetries are preserved in the full D3-brane geometry, 

and taking the AdS limit introduces an additional 16 conformal supersymmetries. 

2) ^1(2, Z) 

Type IIB string theory has an 6'_L(2, Z) S-duality (c.f. the discussions of IIB SUGRA 

and D3-branes in the previous chapter); if we define 

A 
2tt 

+ Ze = n -t- ZT2 (3.26) 

then 

r 
OT -t- 6 

cr 4-
— 6c = L o, 6, c, G Z (3.27) 

50 



is the 6'_L(2, Z) symmetry. A/" = 4 SYM is invariant nnder the similar transformation, 

This is the Montonen-Olive or S-dnality symmetry [59]. It should be pointed out that 

this S-duality is a good symmetry only for the strongest form of the Correspondence. 

It is spoilt by taking t h e ' t Hooft limit; if one then takes = 0, then the S-duality 

maps l/a'yM and so A —> which is supposed to be Axed in t h e ' t Hooft 

limit. 

3.5 M a p p i n g R e p r e s e n t a t i o n s a n d C o r r e l a t o r s 

We have shown that the global symmetries on either side of the correspondence match. 

The next thing to show is that the representations of 5'f7(2,2|4) also coincide. 
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Single colour trace operators are important objects since they can be used to 

form any higher trace operators, via the operator product expansion. It is natural 

to identify these single trace operators in the SYM with the single particle states (or 

canonical fields) on the side [15, 60]. Bound states of these one particle states 

will then correspond to the multiple trace states.^ 

To find the contents of irreducible representations of 2|4) on the AdS side 

one can use helds Y? on the /lens's x 6"̂  to describe all Type IIB massless supergravity 

and massive string degrees of freedom. We write the metric as 

'Is' = g ^ f d z ' d z " + g^^Jy'dy' (3.29) 

where we have introduced coordinates // = 0,..., 4 for the At/S's and (/", = 1, ..5 

for the 5"̂ . y is then a function of z and and can be decomposed as a series on 6"̂ , 

00 
= Z i yA(z)}A(i/) (3.30) 

A = 0 

where are a basis of spherical harmonics on 5"̂ . In the case of scalars, for example, 

the are labelled by the rank A of the totally symmetric traceless representations of 

6'0(6). The momentum mode of a field on circle contributes to the mass of that Held; 

helds compactiAed on 6"̂  get a mass contribution in the same way. A relation between 

the mass and scaling dimension for the scalar case may be derived in the following 

manner [61, 62, 63]. If we assume that away from the bulk interaction region, the 

bulk helds are free asymptotically, then the free field satisfies (OAjg + = 0 

for scalars. Writing the AtZS's metric as 

(3.31) 

^Single and higher trace operators are reviewed in Appendix A.2, along with other background 
material relevant to this section, including descendant states and vV = 4 chiral or BPS multiplets. 
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the scalar Aeld equation is 

y + (3.32) 

This has solution 

(3.33) 

with 

= A(A — 4) (3.34) 

Relations between mass and scaling dimension for other spins may be similarly found: 

spin 1/2, 3/2 |m| = A — 2 

p-form — (A — p)(A + p — 4) 

spin 2 = A(A — 4) (3.35) 

The full mapping of 6'(7(2, 2|4) representations in the correspondence is summarized 

in Table 3.2. The mapping of descendant states can be worked out explicitly. A 

particular case which is relevant for the research chapters is that for the SYM operator, 

O)}; trJ^^, A; > 2. This corresponds to the supergravity fields and Its 

dimension is A; and its 5'0(2,4) x (7(l)y x 5'[/(4)j% quantum numbers are spin (0,0), 

y = 0 and (0,A;,0). Its lowest representations are the 20% 50 and 105. 

We now need to take the final step in making the proposal of duality complete 

by setting out how correlators are to be mapped between the two theories. At the 

AdS boundary, w = oo, the string fields are general functions of These fields act 

as sources for operators in the Yang-Mills held theory. The prescription for the Aeld 
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Type IIB String Theory AT = 4 SYM 

Supergravity Excitations 
1/2 BPS, 8pin<2 

Chiral primary -H Descendants 
02=tr%^*%''^ -t- desc. 

Supergravity Kaluza-Klein 
1/2 BPS, spin<2 

Chiral primary -|- Descendants 
OA=trX^^*^ + desc. 

Type IIB massive string modes 
non-chiral, long multiplets 

Non-chiral operators, dimensions ^ 
e.g. Konishi trA '̂vY *̂ 

Multiparticle states products of operators at different points 
C'Ai(a:i)...OA^(a;») 

Bound states product of operators at same point 
OAi(x)...OA^(x) 

Table 3.2: Mapping string and snpergravity states to SYM operators, 

theory correlator functions is 

(exp 

= e x p [ Isugra{'Poy\ (3.36) 

where 

f3.3'; 

This sets out explicitly that each field propagating in the AdS corresponds to an 

operator in the CFT. 

At this point it can be seen how to generalize the AdS/CFT correspondence 

to general string vacua on /left's x %5, by taking Equation (3.36) to dehne the con-

formal field theory correlators via the string partition function on the said more gen-

eral space. Just this sort of generalization arises in the following research chapters. 

These backgrounds tend not to preserve any supersymmetry and therefore define 

non-supersymmetric four dimensional conformal field theories. The set-up can, in 

fact, be generalized further by using any 5d asptotically AdS space, F , in place of 

the Any ten-dimensional string solution that looks like y x % at infinity can 
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be considered, but unless there is a D-brane interpretation available to enable an 

understanding of the low energy theory, it is difEcult to find the dual Aeld theory. 

3.6 R e n o r r n a l i z a t i o n G r o u p F l o w in A d S / C F T 

An important feature of the duality is how Renormalization Group (RG) Eow [3] 

in the field theory is incorporated in the AdS side. Consider again the = 4's 

conformal symmetry 5'0(2,4); this includes the dilatations 

a; —> (3.38) 

which leave the massless scalar action, 

(3.39) 

invariant. The supergravity theory, having mass scales associated with the Kaluza-

Klein states on the 5"̂ , is not conformal and this symmetry is instead realized as a 

pure spacetime symmetry. In particular, for the a;-tran8formation in (3.38) to be a 

symmetry of the metric 

= —— + (3.40) 

must transform as 

(3.41) 

So the duality implies that under dilatations of the field theory, the radial w direction 

of AdS transforms as a maas dimension. The natural identification to make is that 

motion in the radial direction of AdS corresponds to RG Sow in the Held theory. 
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The field theory may hve on any of the Minkowski slices of but the action on 

each, defined by the supergravity vevs, is that of the Aeld theory at a different RG 

scale. Maldacena's original proposal of duality concerned W = 4 at its moduli space 

origin, for which there are no sources turned on and so there are no supergravity field 

vevs. The supergravity is the same on every Minkowski slice, because W' = 4 SYM is 

conformal. In the following two research chapters we will be investigating extensions 

of the correspondence to describe field theories with more interesting RG Bows. 
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C h a p t e r 4 

T h e AT = 4 G e o m e t r y 

This covers the hrst half of the paper ^Secrets of the Metric in — 4 and A/" = 2* 

Geometries' (Babington, Evans and Hockings [8]) 

4.1 I n t r o d u c t i o n 

Maldacena's original duality proposal concerns = 4 at the origin of its moduli 

space, so an obvious step in testing how generic such dualities are is to try to extend 

to the whole of the = 4 moduli space. This has been done by deducing the 

gravity duals both from D3-brane constructions [19, 35] and from deformed 5d gravity 

solutions [34] lifted to lOd solutions [46]. These two solutions have been shown to 

match. We have examined this connection from the held theory side. We performed a 

brane probe on the lOd lift supergravity solution and showed that this provides an easy 

method of finding the natm;al coordinates of the field theory. In these coordinates, 

a prescription for the encoding of the metric in terms of field theory operators is 

manifest. While the 5d solutions describe only part of the full moduli space, the 

full set of lOd supergravity solutions needed to cover the whole moduli space can be 
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deduced from this encoding prescription. 

This explicitly realises the expectation that because the two theories are dual 

they should simply be reparametrisations of the same "solution", and if the com-

plete solution to some held theory is known then its gravity dual should be uniquely 

determined. 

Before launching into the research content in the next section it is a good idea 

to give a discussion of multicentre D3-brane solutions, bringing together a number of 

points covered in Chapter 2. The multicentre solution describing # parallel DS-branes 

spread out at multiple points in the transverse space is given by 

= constant (4-1) 

where 

N c 
= 1 + E C; = 6 N (4.2) 

1=1 \y yi\ 

and /)3 = c.f. Equations (2.111) and (2.114). Open strings are stretched 

between the D3-branes in the transverse space. If all of these DS-branes are 

coincident then Chan-Paton factors on the ends of the open strings give rise to a 

(/(A^) 4-dimensional field theory on the D3-branes' worldvolumes (which has = 4 

supersymmetry and is in fact superconformal). This theory contains a family of six 

adjoint scalars, If one of the D3-branes is moved away from the other — 1 then 

the held theory on the worldvolumes is broken to [ / (#—1) x [ / ( l ) , with the [/(AA — 1) 

living on the TV — 1 branes and the (7(1) living on the single brane. The position of 

the single brane in the six tranverse dimensions is given by the vevs of the six scalars. 

This vev is then the minimal length for the open strings stretched between the branes. 

A massive 'W-boson' is formed from this broken gauge group. Its mass is given by the 

tension of the stretched string multiplied by the distance stretched, and it is in the bi-
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Open string 

(0) 

N-1 D3-branes Single D3-brane 

Figure 4.1: Separating a single D3-brane from TV — 1 D3-branes. 

fundamental representation of [ / ( # — 1) x (7(1). This provides a geometrical version 

of the Higgs mechanism. Figure 4.1 provides an illustration, where the vertical lines 

represent the D3-branes and the horizontal direction represents the six dimensions 

transverse to the D3-branes, c.f. Figure 2.4. Moving all the D3-branes to different 

points in the transverse space (the general multicentre solution) provides the generic 

breaking of the field theory symmetry, (7(A^) -4̂  (7(1)^. If they are separated out in A; 

groups, instead of singly, the (7(#) will be broken to (7(A^i) x ... x (7(A î) x ... x [/(A^t), 

where ZZLi the W-bosons will be in the bi-fundamental representations 

of [/(AT )̂ X [/(A/,). 

4.2 T h e g rav i ty d u a l of A/̂  = 4 o n m o d u l i space 

We wish to examine the six dimensional moduli space of W = 4 SYM by using 

gravity duals derived from 5d supergravity. This moduli space is parametrised by 

the six scalars, so we want to have a non-zero vev for the scalar operator tr(;6 .̂ 
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This operator is a symmetric traceless 6 x 6 matrix which transforms in the 20 of the 

global symmetry. The AdS/CFT correspondence tells us that the scalar, a , 

in the 5D truncation of IIB supergravity on x 5"̂  acts as the source for tr<;6̂ . 

So to study = 4 SYM with a scalar vev switched on, one should look for solutions 

of the 5d supergravity equations of motion with non-zero a. The task of getting 

these equations of motion is actually quite hard work as the scalars live in the coset 

^6/(/6'p(8). Happily, these matters are discussed in [34], so we can just work from 

the hnal results here. 

We shall consider the example of turning on tr(;6^ = d iag( l , l , l , l ,—2, —2). 

The corresponding supergravity scalar was identified in [34]. Now, of course, in the 

supergravity theory the metric is dynamical and one cannot consider the scalar vev 

in isolation. The metric may be parametrized as 

(4.3) 

where z// are the coordinates of the Minkowski space slices of the AdS space, r is 

the radial direction, and in the AdS limit v4(r) = r/i}, being the AdS radius. The 

equations of motion preserving sixteen supercharges are first order, 

where p = 6°̂  and the fermionic shifts vanish. One can solve these equations in the 

/) — A plane using 

Bp I ( P - P ' \ ,4 5) 

with the result 

2 \ l + / / 2 , 
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is a constant of integration. At this point we already have a solution of the 

supergravity with the a scalar turned on, but it is not yet clear what this can tell us 

about the dual gauge theory. 

The first step is to use the lift of this solution back to ten dimensions [34, 46]. 

yl/2 yl/2 / r2 sin^ ^ COS"̂  r 
(4.7) 

where is the metric on a 3-sphere and 

X = cos'' ^ sin^ ( 4 , 8 ) 

A consistent solution also requires a non-zero C4 potential of the form 

( 4 J ) 

This metric has been shown [34] to be equivalent to the near horizon limit of a multi-

centre D3-brane distribution solution. It is still far from clear how this relates to the 

field theory, but now we are in ten dimensions we will be able to use the tool of brane 

probing which will give us the unique set of coordinates in which the field theory 

duality is manifest. 

We now perform the brane probe by substituting (4.7)-(4.9) into the Dirac-

Born-Infeld action. 

"Sprobe — -7-3 / (Z^a;det[G[^^-t-27ro!'e ^ -K/zg / C4 (4.10) 

with the result 

5" = — 
Vvw P 

r"+ — — + sin^ g / cos" ^ (Ig (4.11 
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The Arst thing to spot is that there is no potential for the motion of the probe in 

the six transverse directions, which corresponds to a six dimensional moduli space for 

the held theory scalars. This is as expected, since = 4 SYM has six scalars with a 

potential of the form tr[(^, which vanishes when one takes commuting vevs. 

These kinetic terms correspond to kinetic terms for the held theory scalars. In 

A/" = 4 SYM (in W = 1 notation) these are l/87rlm('r$^$)|g, so the coefhcients of 

these kinetic terms are the gauge coupling. The = 4 theory is conformal, so the 

probe should see a Sat metric on moduli space. This is not manifest as it stands, but 

one can make the probe metric hat with the coordinate change 

(4.12) 

such that 

2A 
cos^ a = cos^ sin^ a = sin^ 6 (4.13) 

In these coordinates the action becomes 

5" = — — / (̂ 6̂  +sin^ a + cos^ a Hg) (4.14) 
2o. VvW/, I- ^ 

We now have the unique set of coordinates in which the probe displays the conformal 

property and the gravity solution should now have a clear held theory interpretation. 

Applying this coordinate change to the full metric gives 

which is of the standard form 

^ Q = A A A (4.16) 
i = l 
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Using the 5d solution (4.6), we can extract from the coordinate transformations 

(4.13) a quadratic for in the new coordinates^, 

— sin^ cos^ ^ ^ ^ ^ ^ a = 0 (4.19) 

Taking the large limit to connect with the field theory and solving for yields 

/2 / / 2 \ 2 
= \ -\—- + ( — j (1 — sin" a) + ( — j (1 — 3 sin" a + 2 sin^ cx) 

+ 0 ( ^ ] ( 4 . 2 0 ) 

and using this to calculate ^ from (4.15) gives 

^ ( ^ ) = ^ f 1 + "^(3 sin^ a — 1) + - ^ ( 1 — 8 sin^ a + 10 sin^ a) | + O | —rrr I 21) 

Finally we have arrived at the point were we should be able to interpret the 

metric in terms of field theory operators. Firstly has the scaling dimension of mass, 

so the scaling dimension of the coefBcient of each term can be read olf. Secondly it 

turns out that each term has a unique spherical harmonic in it; the angular depen-

dence of the 1/?/^ term is the 20 of 5'[/(4)j% spherical harmonic, that of the 1/̂ ^^ term 

is the 50 of 5'f7(4)^ spherical harmonic, etc. So we see that the # t h coefBcient has 

the dimension and symmetry properties of tr(;6", plus the operators are not renormal-

ized - each spherical harmonic appears only once. This leads one to the general form 

haa been shown [34] that in these coordinates Zr('u) can be written as a multi-centre solution 
with a D3 density, o", 

= y (r(^) (4.17) 

and here cr is a uniform density 2d disk in the ^ = 7r/2 plane 

cr(a:) = ^^(Z^ - (418) 
TTl^ 

63 



for 

^ W = ^ ( I + E ^ K ) ( 4 ^ 2 2 ) 

So it turns out that there is a very nice interpretation of the supergravity solution 

in terms of the held theory. The obvious next step is to see if similar results can 

be obtained in more complicated RG flow theories, so in the next chapter we will 

examine the = 2* theory. 

Before moving on there are a couple of points to be noted. The first is that 

in the 5d supergravity theory, only a vev for the dimension two operator, tr<^ ,̂ was 

introduced, but the lOd lifted solution contains vevs for higher dimension operators. 

The original would be recovered in a truncation back to Ave dimensions. As shown 

by (4.21), the 5d supergravity gives specific relations between the operators, whilst 

the six dimensional moduli space of the field theory tells us that they should be 

arbitrary. Indeed, this expansion but with arbitrary coefhcients has been shown 

to solve the supergravity field equations [19]. This really had to be the case as it 

was already known that the multi-centre configurations solve the field equations for 

arbitrary D3-brane distributions. 

The second point of interest is in further appreciating the power of the brane 

probing proceedure. The solutions above can be derived from a brane probe alone. 

To find the metric dual to a point on the moduli space of VV' = 4 one could start with 

an arbitrary lOd metric. Then if we impose the fact that a probe brane should see 

both a six dimensional moduli space and a conformal coupling, the metric must be 

of the form of (4.16). Taking this as an ansatz, the supergravity equations reduce to 

the six dimensional transverse dat space laplacian [47], 

A6^(t/) = 0 (4.23) 
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and this has the mnlti-centre solutions. Again, as should be possible for two truly dual 

theories, we see the supergravity being uniquely determined from the field theory. 

4 .3 S u m m a r y 

Our goal in this chapter was to discover how the field theory operators of A/' = 4 on 

moduli space are encoded in their gravity dual solutions. We were successful in doing 

this and found a very nice prescripton for said encoding. This invites one to see if 

similar success can be achieved in a more complicated theory, which is the aim of the 

next chapter. 
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C h a p t e r 5 

T h e J\f = 2* G e o m e t r y 

This covers the second half of the paper 'Secrets of the Metric in VV" = 4 and = 2* 

Geometries^ (Babington, Evans and Hockings 

5.1 I n t r o d u c t i o n 

After finding the prescription for the encoding of the field theory operators in the 

A/" = 4 case in the previous chapter, it is natural to hope that this prescription is 

more generic. In this chapter we investigate this by examining the gravity dual of the 

= 2* theory, that is, the = 4 theory with a mass te rm added which breaks the 

the snpersymmetry to A/" = 2 at low energy. This is a more interesting field theory 

in that it has more interesting RG Eow properties. 

Such solutions have been found by introducing relevant perturbations in the 

5d supergravity theory in [32, 44, 45] and lifted to lOd by Pilch and Warner [46] and 

also in [44]. It is far from clear how to interpret these lOd results in terms of the 

gauge theory, but the connections were elucidated via the power of brane probing 
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in [27, 28]. The metric was found to describe a 2d moduli space, as required for an 

= 2 theory. The function for the gauge coupling was also determined and, once 

cast in the suitable A/" = 2 coordinates [27], it is as expected from field theory. Of 

the set of solutions describing the moduli space there is a particularly interesting one 

corresponding to a singular point where in the IR the gauge coupling diverges. This 

is an example of the enhancon mechanism [33], when there are points in the space 

where a probe brane's tension falls to zero. 

When we write the moduli space metric in the appropriate field theory coordi-

nates it takes the form of a single function, as in the = 4 case, multiplied by the 

gauge coupling function. We then applied our A/" = 4 presciption to this function to 

read off gauge theory operators. It has been shown that the only RG Sow in the field 

theory is in the gauge coupling [48], but the supergravity solution seems to also have 

renormalisation of the scalar- operators. Also there is a logarithmic renormalisation 

in the far UV which prevents a return to the A/" = 4 form. 

To re-enforce this discrepancy, we applied the method of [27] to derive the D3-

brane distribution as a function of the moduli space coordinates from the expected 

field theory gauge coupling, and the supergravity form of the coupling. This allows 

us to arrive at the distributions for all the 5d supergravity lifts and from these we can 

work out the expected scalar operators; again these differ from the function in the 

metric. We presume that there is some hidden subtlety that renders the prescription 

inaccurate for the more complicated A/̂  = 2* theory. 

5.2 T h e g r a v i t y d u a l of VV = 2* 

As mentioned above, the 5d supergravity with the required deformations turned on 

had previously been studied in [32, 44, 45]. Two scalars must be turned on in the 

supergravity; one describes the mass term and the other any vev given to the two 
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remaining scalar Aelds. Some interpretation of these 5d solutions in terms of the dual 

Aeld theory had been achieved, but much was still unclear. In [46, 44] these solutions 

have been lifted to lOd. The result may be summarised: 

\ C \ cÂ 2 -^1 7 ^2 

, ( c X , X , f l * 

i 2 = , c = cosh 2m 
P 

%i = cos^ ^ sin^ %2 = c cos^ ^ sin^ ^ 
g4A 

C4 = A (Za;̂  A A (5.2) 

with 

(7i = 2 (cos + sin a sin 

1 
(72 = -(— sin + cos a sin 

(73 = + cos (5.3) 

Also, the dilaton is non-trivial, and writing the complex scalar A = Co+ 26"^ we have 

^ ' ( i r i ) . » = ( p 7 I T ^ ) . ( > = c o . h ( 2 m ) ^ (5.4) 

m, A and /? = 6°" are the supergravity fields determined by the 5d supergravity 

equations of motion: 

_ 1 / 1 4 

8.4 2 / 1 1 , \ 
* = 3 l U + 2 ' ' 
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—— ̂ ^/)'^sinh(2?7z) (5-5) 

which are solved by 

= A: 

= cosh(2m) + siiih^(2m) I -y + 

sinh(2m 

s inhm 

cosh 
(5.6) 

A general solution also has non-zero 2-forms [46], but we are interested here in just 

the 0 = 7r/2 plane, in which these vanish. 

To see why this plane is the interesting region, again the ubiquitous brane probe 

was used to get in touch with the field theory. The authors of [28] and [27] noted 

that on substitution of the above lOd solution into the DBI action, the potential is 

zero in the ^ = 7r/2 plane. This is the moduli space for the brane motion, matching 

the two dimensional moduli space of the A' = 2* field theory, with its two real scalar 

Aelds. A probe brane postioned off this moduli space corresponds to giving a vev to 

a massive scalar field, which is neither supersymmetric nor a vacuum of the theory. 

Since we know of no held theory results with such vevs turned on, we would have 

nothing to compare any results from a the dual theory to. So we examine only the 

moduli space plane. 

The (7(1) 6eld theory from the moduli space of this brane probe is given by 

C = U p * c . s H 2 , n ) e ^ V + ^ V coA(2n , )e" ^ 1 (5.7) 

The relation to VV = 2* is not yet clear; we need to find the correct coordinates 

to make the duality manifest. There are two separate changes that must be made. 

Firstly, the two kinetic terms for the scalar fields must be the same. Secondly, there 

must be a common coefhcient for these scalar kinetic pieces and the gauge kinetic 

term, given by the running coupling of the gauge theory, l/6'yM('^)- The change of 



coordinates for this first step is 

(5.9) 

cosh 2m — 1 

such that 

or 7} 

giving 

(5.10) 
2 sinh 2m 

for the scalar kinetic terms. 

Before performing the second step to reach the A/̂  = 2* form, this is a good 

point to make some observations about these solutions. The solutions depend on the 

two constants A; and --y corresponding to the mass term and the scalar vev respectively 

[27]. As in previous work [32, 45, 28, 27], since we have no physical interpretation for 

"Y > 0, we consider only < 0. Although are not the coordinates that exibit the 

duality, they do show the S0(2) symmetry in (5.10). Varing -y changes the postion 

of the divergence of the metric when 0. Using (5.6) and (5.8) one can get an 

expression for 'y in terms of the radius /, 

7 = + | + (6.11) 

This divergence is interpreted as signaling the presence of a D3-brane source, 

so larger negative ^ means a larger disc of branes, corresponding to larger vevs in 

the held theory. With 'y = 0 the metric is well-behaved right down to the radius 

at which point cosh 2m -4̂  oo and so the scalar kinetic terms' coefhcient 

goes to zero. This is the enhancon locus where the tension of the branes goes to zero 

70 



(the coupling diverges in the held theory). Previous work [33] tells us to discard the 

solutions inside this radius. For all the other metrics ("y < 0), 0 at a larger 

radius, before the coefBcient of the scalar kinetic terms can diverge, so the enhancon 

point cannot be reached. 

We now return to finding the A' = 2* form for the solution. In [27] it was noted 

that aa the coefhcient of the is 

= n — , . x r 
g'al COS (p + %C8m<p| ' ' 

the theory is not in an — 2 form and the connection to the gauge coupling cannot 

yet be made. The following conformal transformation must be made in the plane 

which equates the gauge and scalar kinetic pieces [27]. 

- T ( Y 4 ) ( - ) 

y = y = are complex parameters on this plane. We then have the low 

energy theory in the required form, 

£ = + Im {t(F"F„ + (5.14) 

where 47r/gfy^(y) = Imr and 

y y2 _ ^22,2 

The background in these coordinates is given by 

g'KM 

C. = A A A 

T = (5.15) 
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T3(27ra!')^e = — (5.16) 

with^ 

We have now arrived at the unique coordinates to show an A/' = 2 supersymmetric 

theory from the brane probe of the ^ = 7r/2 plane. It is in these coordinates that one 

should be able to interpret the rest of the metric in terms of held theory operators, 

as we were able to do in the = 4 case. Here the process is a bit more complicated, 

and, as we will see, the results somewhat puzzling. 

We see that the metric on the moduli space, in the physical coordinates has 

two functions in it; the Yang-Mills coupling and 77, which remains to be interpreted. 

As in the previous chapter, to make contact with the low energy field theory we need 

to expand 77 at large radius in these new coordinates. To do this we need to note the 

slightly unusual nature of the final coordinate transformation we made, (5.13). The 

coordinates y are in fact a double cover of the y space as the circle = 7, maps to the 

real line of length and the interior of this circle is mapped to the points exterior 

to the line in F-space. Since the probe in the t; coordinates cannot go through the 

enhancon, the region i; < 1 should be ignored. Now, from (5.13), we can expand f at 

large Y, 

V 
2?/ A; cos 2?; A; 3 

A; 2?/ 32;/ 
(1 —5cos4?y) + ... (5.18) 

may be noted that the brane probe result is not aifectd by a rescaling of by an arbitrary 
power of the Yang-Mills couplings, so the form of fT is not hxed uniquely. This cannot help with 
the discrepancies we will discover below, since the coupling (5.15) contains no logarithms. 
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Then , using (5.6), (5.13) and (5.17), we arrive at our hnal expansion for 

r 4 L 4 r 6 L 6 / ;2 r 2 / \ 

'282/8 
+ - 2 c ° s 2 i , j 

+2 cos 2rj ^—2 + 2— — 2— + 8 In 

+ 13 + 2— — 2-^^— 8 In ^ — 8 cos 2?; + 14 cos 4?y (5.19) 

We can use the same process of examining symmetry properties as in the A/" = 4 

case. ^ has mass dimension 1, and the angular dependence in can be identified as 

5'0(2) harmonics cos(m7;) with (7(1) charge R. This invites the interpretation of the 

coeihcient of C08(n?y) as tr(^" (<̂  being the massless, two component scalar Aeld), which 

should be associated with a factor of The uncharged terms would correspond 

to tr|(;6|", which would also be associated with a factor of Observing the cos 2?y 

term at order l/i/^ shows that there mixed operators in the form of products of these 

two types of operator. 

Unfortunately there are also log terms in (5.19), which are completely unex-

pected and really spoil our previous interpretations. One would expect the A/" = 2' 

theory to revert toA/" = 4asZ—>00, but the log terms cannot be ignored in this limit, 

and this solution seems to be giving logarithmic renormalization in the UV. In the 

large Z limit the leading terms in Z do match the W" = 4 expansion (4.21), but this does 

not contain any log terms. Later on we will venture some possible explanations and 

solutions for the evident disparity. In the following subsection we will emphasize the 

discrepancy by calculating the D3-brane distributions implied by the gauge coupling 

and finding the expansion of that follows from them. 
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5.2.1 D 3 Di s t r i bu t i ons 

In finding the D3-brane distribution we generalize work done in [27]. They find the 

line distribution in y-space which arises in the special case "y = 0, we find the result for 

all 'y. The starting point is to assume the standard one loop renormalized expression 

for the prepotential for = 2* which completely determines the low energy effective 

action, 

U " . - I n + r n Y I n 

(5.20) 

The field theory is reviewed in [27], and in Appendix A.3. Since in the supergravity 

dual for A/" = 2* the scalar vevs should be large compared to the mass term one can 

arrive at [27], 

cpG represents an element of Y-space and cr is the density of vevs/D3-branes. Match-

ing this with the supergravity result requires the identification m [27]. We 

can now find the distributions that reproduce the supergravity result for T. This is 

not practical in F-space since there is no spherical symmetry, but in y-space the 

distributions are circular from the low radius cut-off at u = Z, out to L Pleasingly, 

a simple expression may be found for the density for any -y, or equivalently by 

re-writing (5.21) in y-space using (5.13) and 

(5.22) 
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Expanding said result for large i/, and using an expansion in powers of l / f for we 

have 

- I / J P ) ( 6 /23 ) 

It can be shown that this can reproduce the supergravity result (5.15) to all orders 

of expansion. 

If we take -y = 0 and integrate this density over from u = to then take 

the limit Z — Z we And that the number of D3-branes is given by 

1 
#1)3 = — / (1 — co8 2 )̂(Z^ (5.24) 

TT Jo 

and changing variables to 2/ = cos ^ gives the line density 

2 
(5.25) 

These are exactly the special case results of [27]. 

We can now use (4.17) to calculate As = 2* only has renormalization 

in its gauge coupling, the = 4 expression for 77 evaluated in the ^ = 7r/2 plane 

should contain the full set of operators. So rescaling 2/ to 2^/A;, changing variables to 

y-space via 

2/ cos 7; = — ( u + - I cos (p, sm 7/ = — I u I sm (p 

^2 _ ^ ^ ^ 2 cos <;6 — 2 sin (5.26) 
4 \ / 

doing the integration, expanding at large Y, and restricting to the ^ — 7r/2, we have 
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L8 r S / / 74 r 4 \ ;2 / r 4 \ \ 

(̂ %4 + 4 + - ^ j + 1 6 — 1̂ 1 + — j COS 2?7 + 20 cos ^ (5 .27) 

This does not match (5.19). The snpergravity is showing logarithmic renormalization 

that is not present in this held theory prediction. 

5.2.2 Exp la in ing t h e D i sc repancy 

We can think of two possible reasons for the discrepancy between our snpergravity 

result and the result expected from held theory. They are both complications arising 

from using 5d supergravity. The first is that we may have inadvertently introduced 

more than just a mass term into the held theory. As we pointed out in the last chapter 

with Eq. (4.21) in the W" = 4 case, if one introduces a dimension 2 operator in the 5d 

supergravity and then lifts the solution to lOd, a whole tower of higher dimensional 

operators results. If the same thing is happening here then the W" = 2* solutions may 

be encoding an unknown tower of deformations as well as the held theory scalai' vevs 

we were looking for. 

The other possibility concerns the transformation from the y coordinates to 

the physical Y coordinates. The 5d solution came in the y coordinates, but these 

are a double cover of the Y coordinates and we excised the solution inside — Z/. It 

is possible that this was throwing away some internal structure which is projected to 

large ^ in the y coordinates. This could mean that there are D3-branes throughout 

the whole space in the physical coordinates! 

5.3 Discuss ion a n d S u m m a r y 

Our attempt to extend the work of the previous chapter on the moduli space of A/" = 4 

has run into difhculties at the next simplest case of VV — 2*. We were not able to 
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satisfactorialy interpret our gravity solution in terms of the field theory it is supposed 

to be dual to, because of the extra renormalization it seems to indicate. However the 

simple form of the metric on moduli space (5.16) strongly encourages the application 

of the prescription which we carried through, and we believe the philosophy of this 

work is sound. The difhculties we have encountered might turn out to be useful and 

interesting in future work constructing and interpreting such dualities. 
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C h a p t e r 6 

Off Modu l i Space 

This Chapter presents previously unpublished work done in collaboration with Dr. 

Nick Evans. Dr. Clifford Johnson and Dr. Michela Petrini were also collaborators on 

the Leigh-Strassler section. 

6.1 I n t r o d u c t i o n 

So far, in the previous two chapters, we have examined field theories only on their 

moduli spaces. We have seen that the AdS/CFT duality seems to hold on these 

moduli spaces. The duality should of course extend off the moduli space of a field 

theory, so we have made some efforts to verify this. Our attempts to tackle general 

cases have been hampered by messy algebra, so we present here a treatment of only 

a subspace of the full moduli space for a couple of field theories. First we consider 

a scenario which has been studied by Leigh and Strassler [68], in which a mass term 

is given to only one of the chiral superfields which gives an A/' = 1 theory in the IR, 

rather than A' = 2. This is followed by the = 2* theory we have just been looking 

at in the previous chapter. 
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6.2 Le igh-S t rass le r Off M o d u l i S p a c e 

6.2.1 T h e Leigh-Strassler Flow 

We consider a scenario in which a mass term is introduced in the field theory for 

only one of the chiral superfields (as opposed to two for = 2*). We are concerned 

with the results of [69], which describe an RG Sow to a large version of the Leigh-

Strassler point [68]. This dual field theory has only = 1 supersymmetry. Our 

starting point is the ten dimensional metric calculated in [69], which may be written 

as 

where 

and 

with 

(6.1) 

(̂ "̂ 1,4 = + (fr (6.2) 

I ' 
n/ 

cosh X 
cos^ ^ (7o + 

/ cosh % _2 , (̂ i + 

2 

+ 
%2 cosh % sin^ ^ p sinh % tanh % cos" ^ 

-crs (6.3) 

^ cosh % 

p 

cos^ ^ sin ^ 

sech% cos^ ^ cosh % sin^ ^ (6.4) 
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p(r) = and % are snpergravity scalars which couple to particular operators in 

the dual gauge theory. /), % and v4(r) obey 

(Zp _ 1 1 //)^(cosh(2%) —3 + co8h(2%) + l \ 

(/r 6_L /) / 

^ ^ / ( / - 2 ) s i n h ( 2 x ) \ 

((r 2i, \ y 

^ ^ " 6 % / - ( 3 / + 2)) (6.5) 

l y is the supergravity superpotential, 

^ = ^p^(cosh2% - 3) - ^ ( c o 8 h 2 % + 1) (6.6) 

There is also the R-R four-form potential to which the D3-branes naturally couple: 

4 -
C4 = 10(7", ^)(fzo A (Za:i A (fz2 A (6-7) 

where 

p4A 

u;(r, ^) = % — s i n ^ ^(cosh(2%) — 3) — cos^ ^(1 -|- cosh(2x))] (6.8) 
op 

This background was probed with a D3-brane and its moduli space examined 

in [49]. Its K ^ e r structure was also investigated in [29]. The effective lagrangian for 

this slowly moving probe is [49] 

r = T - y = 2/" - 7-3 ge"^p^(cosh(2x) - 1) (6.9) 

Here the coordinates transverse to the brane are 2/"̂  = (r, ^,YPi,y2,Y^3) and Gmn 

are the Einstein frame metric components. This descibes a field theory with a four 

dimensional moduli space (when ^ = 0) [49]. Before examining the off moduli region, 

we give some more detail about this gauge theory. 
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6.2.2 T h e G a u g e T h e o r y 

We are dealing with a specific mass deformation the vV" = 4 theory to A/ = 1. This 

deformation can be described in an explicitly A/" = 1 supersymmetric way using the 

superfield formalism [49, 70]. In = 1 terms there is a vector multiplet A4) and 

three chiral multiplets. Each of these contains one of the remaining fermions and a 

complex scalar, thus, 0^ = (At, <6̂ ), where A; = 1, 2,3. They have 

the superpotential 

: y = /,Tr(03[$i,$2]) (6.10) 

/z is related to through the superconformal symmetry. The mass deformation we 

have been talking of is introduced by 

+ h.c. (6.11) 

so that the superpotential is now 

Vy = ATr($3[$i, $2]) + ^mTr($^) (6.12) 

In a Sow to a scale below this mass the supersymmetry is broken to A/̂  = 1. This held 

theory then has "matter" multiplets in two "Savours", $1 and 02, that transform in 

the adjoint of 5 '[ /(#) . The A^ = 4 5'(/(4) 2:; 5'C)(6) R-symmetry breaks to 6'[/(2)f x 

[ /( l)^. The 'R' signiSes the A" = 1 R-symmetry and the denotes the Savour 

symmetry which gives the matter multiplet doublet. This 5'[/(2) x [/(I) is manifest 

in the lOd metric (6.1) as the squashed 5"̂  in the coordinates of (6.3). 

We are introducing a small, but relevant mass perturbation to the UV and 

Sowing to the IR. In the supergravity this means switching on particular scalar Selds, 

which asymptote to zero. Also, the supergravity equations of motion require a back 
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reaction on the geometry, deforming the spacetime, as given by v4(r), etc. For more 

details see [49, 70] and the refences therein. 

In the far infra-red the massive scalar $3 can be integrated out, giving the 

quartic snperpotantial 

; ^ = ^ T r ( [ 0 i , $ 2 ] ' ) (6.13) 

This is actually a marginal operator of the theory. Variation of its coeScient defines 

a fixed^ line of theories [68]. There is a line of fixed points in the space of couplings, 

so the value of the coupling changes along this line without breaking scale invariance. 

The line does not in fact pass through the origin, so it is not certain to exist, but 

Leigh and Strassler conjectured that this deformed theory goes to a conformal fixed 

point on this line of marginal couplings. Adding this deformation does not break 

the conformal invariance, because of its exactly marginal coupling. The vV = 1 

supersymmetry combines with this conformal symmetry to make the infra-red, 'Leigh-

Strassler' theory superconformal, with supergroup 6'[/(2,2|l). The presence of this 

marginal operator also means that we have an interacting conformal theory. The 

moduli space here is determined by [c î, 1̂ 2] = 0, with the lowest components of 

6.2.3 Off t h e IVIodiili Space 

We now examine a particular part of the off moduli space region, namely that obtained 

by setting sin^ = 1 and ignoring the Y?i,y2,y3 coordinates. From (6.9) one then gets 

r = cosh"(2x)e"^/r" + cosh"(2%)e^^^2 
P 

^'Fixed' refers to the /^-functions for the gauge coupling, g, and the couplings in the superpotential 
being zero. Under an RG Sow a theory will stay at such a fixed point in the space of couplings; the 
couplings do not run and the theory is scale invariant. These beta functions can be calculated [71] 
exactly using non-renormalization theorems. 
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for the kinetic piece of the lagrangian, and 

y = 2e'̂ '̂ /)'̂ (cosh^(2%) — 1) (6.15) 

for the potential piece. But we know it should be possible to write this held theory 

in terms of a Kahler potential, [56]. Specifically, there should be a change of radial 

coordinate r —> such that the kinetic piece assumes the canonical form 

+ (6.16) 

where / ( f ) = /T", with ' representing diEerentiation with respect to the chiral super-

fields. Also, the potential should be given by 

y = (6.17) 

We will now find an explicit form for and check that it is consistent. 

Start with the kinetic piece. From equating the coefEcients of in (6.14) and 

(6.16) we get 

And from equating the and terms, 

/(Zf \ ^ cosh^(2x) 

( f r / y(u) 
(6.19) 

Now turn to the potential and equate (6.15) and (6.17). Having done this one can 

then use (6.18) to get the following expression for i;: 

= 2e^'^cosh^(2%)(cosh^(2%) — 1) (6.20) 
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The consistency of this can be checked. From (6.19) and (6.18) we get 

(6 .21 ) 

Using the Eow equations (6.5), one can show that (6.20) is indeed consistent with 

(6.21). We have shown that the supergravity dual does indeed provide a good de-

scription for at least part of the Leigh-Strassler field theory's moduli space. 

6.3 J \ f = 2* Off M o d u l i Space 

We now take the lOd metric for A/" = 2* (5.1) and set cos ^ = 1, and = constant, 

so that = 0, (72 = 0 and cg = Then a brane probe in the (r, a) directions 

yields lagrangian kinetic piece: 

2/)̂  8 cosh 2??% 

and potential: 

y=—:^(cosh2m —1) (6.23) 
P' 

But we know that it should be possible to write the Aeld theory in the form 

r = /(t;)(?)^ + (6.24) 

with again / (u ) — A"", where is the Kahler potential. Equating the 6^ terms in 

(6.22) and (6.24) then gives 

r 2 2A 2 

84 



Equating the other kinetic terms produces 

/ (Zt; \ cosh 2m 

(fr y 
(6.26) 

then using (6.25) gives 

(f'u 2t; cosh 2)7% 
(6.27) 

If the potential is simply that of = 2* (i.e. superpotential = m$^), then 

it should also be determined by the Kahler potential, as 

v = — ( 6 . 2 8 ) 

Then, using (6.25), 

Equating (6.23) and (6.29) gives 

, / = (6.29) 

.4 (cosh2m — 1) 

8 cosh 2m 
(6.30) 

We can then differentiate this expression with respect to r , using the dow equations 

for A and m to check that it is consistent with (6.27). Carrying this out shows that 

the two expressions are in fact consistent. We have uncovered another puzzling 

result from examining the VV = 2* scenario, to go with that of the previous chapter. 

We have been unable to satisfactorily interpret this supergravity solution in terms of 

the held theory it is supposed to be dual to. We have found here a particular problem 

with trying to interpret the oif moduli space region. 
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6.4 S u m m a r y 

We set out to verify that the supposed supergravity dual of the Leigh-Strassler held 

theory does give a good desciption of the theory off its moduli space. Practical 

difhculties prevented us finding a description for the whole off moduli space region, 

but for the part of the off moduli region which we considered, we did find a good 

description for the supergravity in terms of the dual field theory. 

For the A/" = 2* case however, even for the restricted region we have examined 

here, we were unable to interpret the supergravity solution in terms of the field 

theory as should have been possible. Along with the results of the previous chapter, 

we believe that this shows some deficiency in our understanding of this particular 

scenario. (Rather than indicating some problem with the AdS/CFT correspondence 

itself!) Hopefully future work will resolve the difSculties. 



C h a p t e r 7 

= 4 Super Yang Mills a t Fini te 

Dens i ty 

This covers the paper = 4 Super Yang Mills at Finite Density: the Naked Truth', 

Nick Evans and James Hockings [9]. 

7.1 I n t r o d u c t i o n 

In this chapter we will again use the AdS/CFT Correspondence to study a held theory 

non-perturbatively, this time A/" = 4 super Yang MiDs at finite (7(1)^ charge density 

[15, 16, 17]. The gravity dual to this held theory is the background to a stack of 

spinning D3 branes [18, 19, 20]. 

A set of metrics have been found to describe spinning D3 branes by lifting five 

dimensional charged black hole solutions to lOd [18]. These ten dimensional solutions 

split into two classes. The first are rotating black branes which have been much 

studied in the literature [18, 19, 20, 22]. They have been interpreted as being dual to 
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the high density and high temperature phase of the = 4 gauge theory. The phase 

structure for the A/" = 4 theory at the origin of moduli space was worked out in [20, 21]. 

The other class of solutions are nakedly singular metrics. Their supersymmetric limit 

has been shown to correspond to disc distribution, multi-centre D3 brane solutions 

[19]. We will recount this work and use brane probing, in the well established manner 

[27, 28, 8, 29], to And the coordinate system in which the duality is manifest. The 

main goal though is to And an interpretation for the non-supersymmetric members 

of the class. They have many of the properties of the rotating black branes, so it 

seemed likely that they described spinning disc distributions that correspond to the 

gauge theory Coulomb branch at hnite density. This is what we in fact found. 

As density is increased, there is a critical point at which a horizon develops, sig-

naling a switch from the non-supersymmetric naked solutions to the zero temperature 

black brane solutions. We interpret this as the high density deconfinement transition 

of the Coulomb branch of the gauge theory, above which the scalar vevs evaporate. 

The parameters of the model have completely different meanings on either side of 

the transition. We then extend our analysis to include finite temperature as well as 

density, finding the phase diagram for the Coulomb branch. This is done by compact-

ifying the time dimension and comparing the free energy of the spinning D3 brane 

distribution background with a black brane geometry having the same temperature 

and density. 

It had been realized previously [22] that the black brane backgrounds considered 

here are unstable for large spin or density. We show this using a brane probe (note 

that some related configurations have been probed in [30]). Evans and Petrini [31] had 

shown the perturbative instability of the gauge theory at zero temperature and finite 

density, as the chemical potential destabilizes the scalar potential giving a runaway 

vacuum. The naive scalar instability of the theory is clear when one notes that a probe 

in pure x 5"̂  feels zero potential, so there is no force to support any rotational 
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motion. In any attempt at rotation, the angular momentum of the probe will simply 

send it off to inhnity, corresponding to a runaway scalar vev in the Aeld theory. Our 

analysis in this chapter conhrms this instability non-perturbatively. This instability 

does not prevent us discovering the physics of the finite density phase transition. 

7.2 T h e r m o d y n a m i c s of Schwarzch i ld Black Holes 

in 

We start by reviewing what happens when hnite temperature is introduced into an 

Schwarzchild solution. This was done for general (in a box) by Witten 

[38]. Temperature, T, is introduced by compactifying the time-like direction with 

period = l / T . The metric for a Schwarzchild black hole in x 5'̂  can be 

w r i t t e n a s 

(̂ 5̂  = - (7.1) 

where A' = — A;/r^. Setting & = 0 gives without a black hole. There is also a 

4-form, 

^4 = — A (7.2) 

which gives the 5-form held strength Gg = 6(^4. 

We now examine the thermodynamics by taking the action difference of the 

black hole and no-black hole cases, following Hawking and Page [40]. The appropriate 

action is 

/ = - — + — ( 7 . 3 ) 



The second integral is a surface term where 

1 a 
I ^ f i u — ' ^ ( 9 ) ~ c l e t G - ^ i / , ^ ' ( ' - 4 ) 

2 \ / G r r dv 

There is a subtlety that must be dealt with. As described in [40, 38], to allow 

comparison of the two spacetimes the period of the time integral of the naked case, 

must be set to match the geometry of the hypersurface at large in the two cases. 

To achieve this we require 

which here becomes 

7.5) 

0 
1/2 

(7.6) 

The curvature /Z is zero in both cases, so we are left with the Gg and surface pieces 

to deal with. First, calculating the surface term contribution gives 

surf a 
Vol(^5)yo/(3) 

Vol(%)yo/(3);g 

6 

r J " 2 

4- (7.7) 

where Vo^S's) is the volume of the five-sphere and Vol(3) is the volume of the spatial 

part of the branes (both common to the two geometries). But (7.7) vanishes in the 

r —oo limit, so only the Gg piece remains. Calculating this gives 

4 

Vol(&)Vol(3)/) I ̂  

1 
— —Vol(6'5)Vol(3)^ 

where r/̂  is the horizon radius of the black hole. 

' , , 4 - CO > 4 

T 4 
• '•f t 

4 \ 
- r . 7.8) 
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We now need to make an interpretation in terms of temperature. The temper-

ature of a black hole is given by 

27rT = (7.9) 
r=r,i 

where 7"/̂  is the horizon radius, r,. is when A" = 0, and therefore = &. Plugging 

this into (7.8) gives 

2 
A7 = - -Vol (%)Vol (3)^ r^ (7.10) 

but (7.9) gives 

7rT = r;, (7.11) 

so 

A / = -^Vol(&)Vol(3)/97r^r' ' (7.12) 

So in fact a black hole will form as soon as a hnite temperature is introduced. (This 

is essentially because a scale has been introduced where none existed previously.) We 

will see that this is not the case when we introduce rotation into the scenario. Next 

we bring in rotation, but with zero temperature. 

7.3 I n t r o d u c i n g S p i n / F i n i t e D e n s i t y 

First of all, why should a spinning supergravity solution provide the AdS/CFT dual 

of a held theory with hnite charge density? Consider a general lorentz boost to a 
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rotating frame, 

+ (7.13) 

Applying such a transformation to a diagonal metric can rotate the time-time com-

ponent into some oE-diagonal components, 

A% : G" (7.14) 

which after Kalnza-Klein compactihcation on the 6"̂  becomes a gauge Aeld for the 

'$'^(4)^ symmetry. On the CFT side of the Correspondence, this field becomes a 

source which is in fact a chemical potential that puts the field theory at finite density. 

A term of the form 

(7.15) 

is introduced into the Lagrangian, where A represents a fermion field and // is the 

chemical potential. 

Our practical starting point is a background found by Cvetic et al [18] from 

the lift of five dimensional charged black hole solutions. It is the near horizon limit 

of a rotating D3 braae configuration. 

dŝ Q — V A 
r2 

— ( f f i ^2^3) 4- (-/7i^^2^3)^^^ 4-

where the /̂ , are three direction cosines and 
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A' = = 1 + 4 
smh a 

A ^ (7.19) 

B(4) = ^ A (Ẑ a; + A (7.20) 

At large r the solution asymptotes to AdSg x 5"̂  with the AdS radius i}. We will 

keep _L fixed in the following analysis. The solution then has four free parameters, 

the Z, and // (or equivalently m or a ). In the five dimensional black hole solutions 

the Z, are rotation parameters and the temperature. After the lift to ten dimensions 

we expect these parameters to become those that control the rotation in the three 

distinct (7(1) planes of the 6"̂ , and the temperature. The horizon radius, is found 

where the function / = 0, giving 

4 ^ i ( r ^ ) j 7 2 ( r n ) ^ 3 ( r ; f ) = (7.21) 

Then plugging our ten dimensional solutions into the formula for the temperature of 

a black hole (7.9) yields 

(2 -

(7.22) 

We can solve these equations for a number of special cases to find the value 

of that corresponds to [T = 0. For example when a single is non-zero T = 0 

corresponds to /y = 0, for two equal non-zero Z, [T = 0 corresponds to and 

when there all three Z,- are equal T = 0 corresponds to ^ = 27Z /̂4Z} .̂ For greater 

than or equal to these values, the solutions have a singularity, originating in the 
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0.2 

Figure 7.1: The metric component ^rr plotted as a function of radial position for 
varying up to /̂  = /.(c at Axed Zi = Z2 = 3̂ = ^ showing the development of a 
horizon. 

/ function, which corresponds to the horizon of the black hole. As increases the 

black hole temperature increases. However, for 0 < /̂  < the solutions do not have 

a horizon but have a naked singularity at r = 0. We show this in the plots of Figure 

7.1 where gfrr is plotted against r at varying for the case when all three Zi are equal. 

The black hole/brane solutions are closely related to those analysed in [20, 21] 

to describe the behaviour of W=4 super Yang Mills at Anite temperature and density. 

In [20, 21] the three were taken equal and the variant of the above metric where the 

Minkowski space slices of are compactihed was considered^ . The parameters 

Z* control the rotation speed of the black hole or the chemical potential in the Held 

theory. The parameter controls the temperature of the black hole, or in the dual 

held theory, with corresponding to T = 0. Following [20, 21] these black 

^ Putting the gauge theory on an 5'̂  brings another scale into the problem that increases the area 
of the thermodynamic temperature vs density plane where the confined phase survives [20]. On 

the phage transition to the deconfined phase is induced as soon as a temperature or chemical 
potential is introduced. 
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hole solutions should be interpreted as gravity duals of the field theory at the origin 

of moduli space across the full temperature and density plane (the origin of the 

T — p plane is described by the usual AdS/CFT correspondence). The behaviour 

of a Wilson loop [38] in these backgrounds show that at finite chemical potential 

and temperature the theory lives in a distinct (deconfined) phase from the (confined) 

theory at the origin. 

7.3.1 Spinning Discs 

We now turn to the nakedly singular solutions, when ^ < //c- Recent work [32, 

42] has shown that such naked singlarities are not necessarily unphysical, as would 

previously have been declared. They may now be interpreted as signaling the presence 

of extended objects, such as D-branes, in the space. The simplest such backgrounds 

are the multi-centre solutions [19, 34, 35] that describe distributions of D-branes dual 

to the Coulomb branch of the A/" = 4 gauge theory. The supersymmetric, > 0 limit 

of the particular backgrounds we study here had in fact already been identified as 

multi-centre solutions [19]. We will now start with that analysis, before turning on 

and seeing what happens. 

One must be careful in taking the 0 limit to remember to keep fixed 

which also requires a —> oo. The background becomes 

f/Ŝ Q — 

,,2 
(H1H2H3) ^ + dx"!j) - f 'A 

^2 3 
(7.23) 

'7.24) 
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Note that the one form potential vanishes in this limit leaving a non-rotating 

solution. The difhculty with interpreting backgrounds as duals of gauge theory is 

though the familiar problem of Ending the coordinates appropriate to the duality. 

We once again apply the very useful tool of brane probing, allowing us to use field 

theory intuition to And the correct coordinates [27, 28, 8, 29]. Thus we place a slow 

moving D3 brane in the above background through the Born-Infeld action 

^ / d '^^y-det^. t - m / ^ 4 (7.25) 
J J 

where T3 = and is the pull back of the background to the world sheet. We 

find the action 

= + (7 .26 ) 

There is no potential obstructing motion of the probe in the six dimensional 

transverse space giving another strong hint that the theory is indeed the pure A/ =4 

theory. In the coordinates appropriate to the duality we expect a canonical kinetic 

term for the six scalar helds on the probe suggesting we t ry the new coordinates 

+ (7.27) 

which render the terms canonical. It follows that 

= (7-28) 

These are the coordinates identified in [19] that convert the metric to the familiar 

form of a multi-centre solution. They transform the probe action so that it has a Sat 

metric and leave the spacetime background in the form 

(7.29) 



with 

A (7.30) 

We may And the form of from the component of the metric using the 

coordinate transformation in (7.27). For example, for a single switched on we And 

= y%(^' — (/^i + , .5̂  = 1 -I 2 _ m 2 (^-31) 
1-j XJJ L 2 

where 

-2 2 -2 

and thus 

^ (w^ + Ẑ ) ± \/(w2 _|_ ̂ 2)2 _ 4/2^2^2 
//! = 

This result is unenlightening, except that if we look in the <̂ i plane at w = / by 

setting — 1,^2/3 = 0 which corresponds to = l;/22/3 = 0 at lu = Z and we And 

= 0- The metric in this case is singular at w = /, or in the original coordinates, 

at r = 0. The singularity corresponds to the position of the D3 brane distribution 

responsible for the background - it is a disc in the (;6i plane at w = L 

Similar manipulations for the case with two equal give 

= y%(w^ — /^(^i + //2))^ + ^̂ 2 + , 

Again looking at w — / and setting ^3 = 0 (//g = 0) so + ;U2 = 1 (/^i + /22 = 1) 

we And singularities in the four dimensional space described by the (;6i and 1̂2 planes 
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corresponding to a spherical D3 distribution in that space. The case with three equal 

Z, gives the much simpler result 

(7.35) 

Here the distribution is an 5"̂  at w = Z as can be deduced from the fact that the r 

coordinates only extend to r — 0 or w = Z, or by following the deformation of one 

of the above singular distribution as /a is switched on. Note that the 5"̂  distribution 

does not show up as singularities in because it is an 5'0(6) singlet and hence does 

not appear in the supergravity because it is not an operator in a short multiplet. The 

space is x 5"̂  truncated at w = L 

Now we have identified the physical coordinates for /̂  = 0 we can consider 

turning back on, for a fixed distribution, i.e. with the fixed. Turning on 

introduces spin, corresponding to finite density in the field theory. This can be seen 

by observing the metrics at large w (c± r) where they look like AdS with a gauge 

potential 

A (7.36) 

In this limit the solution may be treated as five dimensional and one may calculate 

the charge density in the interior. In this way we may deduce a charge density in the 

dual field theory associated with each of the three (7(1)^ subgroups of 5'(7(4);% which 

are proportional to It seems reasonable to conclude that we are looking at a 

spinning version of the disc distribution. 

We must however check that we have not introduced any other unwanted 

deformations of the theory. Let us first look at the middle example, where two 

of the are switched on with equal values. Firstly, note that switching on does 

not change the component of the metric. The singularity locus in this component 



stays at the same place. Also the four-form A is not changed, so the number 

of D3 branes in the interior is unchanged. The final observation is that introduces 

no angular dependence in the or ^2 plane. The combination of these facts show 

that ^ does not change the angularly constant in the (̂ 1 and i;62 planes, distribution 

of D3 branes at w = Z. 

Thus the metrics with /̂  < /̂ c seem to naturally describe spinning versions of 

the multi-centre solution corresponding to the dual A/"=4 theory being on its coulomb 

branch with a chemical potential. In fact it is clear that these metrics must describe 

such configurations because they are the unique solutions of the field equations with 

the symmetries of these systems. This sharing of synzmetries between the black hole 

solutions and rotating D-brane distributions explains why the two sets of solutions 

are naturally intertwined. It should be noted here that it has not as yet been checked 

that these solutions are 'sensible', in the sense of not containing negative densities of 

branes, see Gubser, et al Q. 

7.3.2 F in i t e Dens i ty P h a s e Trans i t ion 

It is interesting that, for a fixed distribution (fixed /,), we cannot increase the chemical 

potential to infinity and maintain a rotating distribution form for the solution - at 

// = jUc there is a transition to a black brane and we loose all information about the 

interior structure. In the held theory at this critical density apparently knowledge 

of the scalar vevs is lost. Note that there is a sharp change in the interpretation of 

the parameters of the solution. When the interior is naked the solution must provide 

information about the interior structure which it does through the parameter Z and 

then plays the role of rotation speed. Above the critical // there is a black brane and 

knowledge of the interior structure is lost and so / switches to describing the rotation 

and describes the newly available parameter, temperature. 
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In the held theory dual we must be seeing the 0/ 

coi/Jom^ 6rancA where the scalar potential is forced to favour zero vevs. When the 

chemical potential is much less than the scalar vevs, the vevs will be unaffected, but 

when the chemical potential is much larger the theory should look like the deconhned 

phase at the moduli space origin. The scale of the transition should be set by the 

size of the vevs, i.e. the /, and we have indeed seen this since //c Above the 

critical density the spacetime is a black hole, a phase that has been identified with 

the deconhned phase of the field theory, as expected for the phase when the scalar 

vevs evaporate. 

If we begin with a black brane metric with ^ = //g ( ^ = 0) and want to decrease 

the chemical potential we now realize there are two possibilities in the field theory. If 

the theory has small or zero vev it will remain in the deconfined phase as we decrease 

the density, else, if the theory has a large vev, then as we decrease the density below 

that vev the system should undergo a transition to the coulomb phase. It's now clear 

that the dual background elegantly offers us both of these choices! We can decrease 

the density in two ways - either we keep // = and decrease Z in which case we 

retain a black brane configuration corresponding to the first case in the field theory, 

or we can keep Z fixed and decrease in which case we obtain a spinning multi-centre 

solution describing the coulomb phase. 

The solutions with the three equal fit this story equally well except that 

there is no singularity to monitor the position of the D3 branes as is switched on. 

Again by considering deformations of other singular configurations it is clear that the 

interpretation is the same as that just given. The metrics with a single switched 

on, however, do not show this behaviour. In fact as we saw above the condition for 

a T = 0 black brane is precisely // = 0 where the solution becomes a supersymmetric 

non-rotating disc distribution. For some reason these metrics do not provide us with 

any description of the rotating zero temperature states. Presumably this is just a 
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failure of the completeness of these solutions rather than anything more subtle and 

we would expect similar behaviour on that part of the coulomb branch if only we had 

the appropriate metrics. 

We note that this transition from the coulomb phase to the deconhned phase 

is also apparent in the similar solutions in which the Minkowski space slices of AdS 

are compactihed [20, 21]. Recently Myers and TaQord [43] have argued that the 

nakedly singular metrics in that case correspond to distributions of giant gravitons. 

Again though, above some critical angular momentum the solutions shift to black 

hole solutions showing that at high enough density the giant gravitons are forced to 

evaporate leaving a deconhned phase. 

7.3.3 Stabi l i ty 

The black branes from the class of geometries we examine here have been studied by 

many authors [22, 30] and they have found them to be unstable for large densities. 

This instability hts with an analysis of the dual gauge theory [31]. If, at zero temper-

ature, a chemical potential is introduced in to the A/" = 4 gauge theory at tree level 

via a vev for the temporal component of a spurious gauge field then, as the scalars 

are in the 6 of there is a contribution to the scalar potential, 

A r = (7.37) 

This is a negative mass term for the scalar, which destabilizes the moduli space of 

the theory, giving a runaway potential. This is the same phenomena that occurs if 

one tries to rotate a D3 probe in space. Rotational motion cannot be supported 

as there is no potential in the transverse space (as we found in (7.26)), so the brane 

will go straight to the edge of moduli space, corresponding to the runaway scalar 

vev. Quantum effects could stabilize the potential, so this argument is somewhat 
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naive. In contrast, the backgrounds to spinning branes we have been examining 

are a complete dual description of the field theory with a chemical potential, so we 

may triiely determine their stability by calculating the potential for a probe of them. 

Consider the example of the case where the three are set equal. Expanding the 

resulting probe potential for small Ao = = Z) = gives 

1 1 /14 74 

+ - (7.38) 
212 ^ ' g ^4 

The probe is forced to infinity by the potential (we plot the full expression 

in Figure 7.2). We deduce that the whole configuration is indeed unstable since 

any of the D3s in the distribution can be considered as the probe - they all want 

to run away to infinity. Remarkably, these backgrounds have though allowed us to 

explore the finite density behaviour of the coulomb branch of the theory ignoring this 

instability. 

7.4 T h e r m o d y n a m i c s of t h e C o u l o m b B r a n c h 

We will now extend our analysis to include finite temperature along with finite density 

and deduce the phase diagram for a point on the coulomb branch, o Za Hawking-Page 

phase transition [40]. The procedure is just as in Section 7.2. Temperature, T, is 

introduced by compactifying the time-like direction with period = l / T . To simplify 

the calculation we choose the points on the coulomb branch where the global 

symmetry is preserved, which are the distributions where the D3 branes live on an 

5"̂ . This means taking the naked solutions above with all three equal and fixed. 

These solutions exist up to &:id above we identified them with an 6"̂  distribution 

of D3 branes spinning equally in the three transverse planes. The chemical potential 

for these geometries is given by Below /^y^Z, the geometries above also contain 
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Figure 7.2: The form of the probe potential as a function of radial distance in the 
spinning D3 background. 

black brane solutions with the same temperature and chemical potential. To And 

which type of solution is energetically prefered we need to calculate the free energy 

difference. The action is (7.3) still. Similar to previously, to allow comparison of the 

two spacetimes the period of the time integral of the naked case, must be set to 

match the geometry of the hypersurface at large ^ in the two cases. This is again 

achieved by requiring (7.5). 

Calculation shows that the curvature, ^ = 0, leaving us with just the five-form 

and surface pieces. We use subscripts on the // and Z parameters to distinguish the 

naked and black brane cases; a '1' subscript denotes the black hole and a '2' the naked 

geometry. Carrying out the rest of the calculation we And the action difference 

/ = A — /g = —Vol(5'5)Vol(3)/) ^2/; — 2Ẑ  — ^2 + — 2r^ — (7.39) 

where Vol(5'5) is the volume of the deformed five-sphere, Vol(3) is the volume of the 
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spatial part of the branes (both common to the two geometries) and is the horizon 

radius of the black hole. Note that setting the Ts and /^'s to zero returns to the origin 

of the moduli space, so the previous result of (7.10) should be recovered, and it is. 

(7.39) is a function of temperature iT and density p, just as (7.12) is a function of T", 

but we could not solve for the parameters of the current solution in terms of T and 

/). We had to resort here to the use of Maple/Mathematica. 

This action calculation reveals the phase transition between the two geometries 

as a function of temperature and density that we were looking for. The form of the 

phase diagram is plotted in Figure 7.3. At low temperatures and densities the naked 

solution is preferred, and at high temperature and densitity the black brane solution 

is preferred. The transition is essentially governed by the black brane radius becoming 

larger than the distribution size. This is as expected since these are the only two scales 

in the problem. One may note that the transition point on the zero temperature axis 

is slightly below the = 27/4 value we determined earlier. This shows that although 

one can have zero temperature naked solutions up to /̂ c, they are thermodynamically 

disfavoured above this lower value of //. There is no thermodynamic reason why this 

should not be true - the phase diagram still matches expectations, but it does make 

a precise interpretation unclear. 

In the dual held theory at low temperature and density the solution describes a 

point on the coulomb branch with scalar vevs. At high temperature and density there 

is a transition to a deconfined phase without scalar vevs. The transition is brought 

about if the temperature or chemical potential is of the order of the scalar vevs. The 

result of the supergravity calculation matches held theory expectations. 
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Figure 7.3: The temperature-density plane, showing the critical line inside which one 
has the naked solutions (conhned), and beyond it the black holes (deconfined) 

7.5 S u m m a r y 

We have used the ten dimensional backgrounds around spinning D3 branes to study 

= 4 super Yang Mills theory at hnite [/(1)^ charge density. We have completed the 

interpretation of the held theory duals of these backgrounds by interpreting the non-

supersymmetric naked singularity class of the solutions. We found that these naked 

spinning D-brane distributions describe the coulomb branch at finite density. At a 

critical density a phase transition occurs to a spinning black brane representing the 

deconhned phase where the higgs vevs have evaporated. We also extended our analysis 

to include finite temperature. We performed a free energy calculation to determine 

the phase diagram of the coulomb branch at finite density and temperature. 
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Chap te r 8 

Conclusions 

Following the generous amount of general introductory material on strings, branes, 

supergravity and field theory, the research work has been set out. This started in 

Chapter 4 with the considerations of the A/" = 4 geometry. Specifically, we considered 

the extension of Maldacena's original duality proposal to the full moduli space of 

A/" = 4 super Yang-Mills theory. We set out to discover how the field theory operators 

of vV" = 4 on moduli space are encoded in their gravity dual solutions. We were 

successful in doing this and in fact found the encoding prescription to take a nice 

simple form. 

Following this, in Chapter 5 we tried to extend our success to a case with a less 

symmetric field theory, namely the so-called A" = 2* theory, hoping that our reasoning 

in the = 4 theory would prove to be more generic. Unfortunately, we encountered 

problems because the gravity theory seemed to be giving extra renormalization that 

should not be present in the gauge theory. We offered some possble explanation for 

the evident discrepancy. We were however encouraged by the simple form of the 

metric on moduli space and its support for the philosophy of our approach. 

Since the AdS/CFT correspondence is supposed to include the off moduli space 
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region of the field theories, we investigated this explicitly in Chapter 6. Although we 

again encountered unexpected problems in the A/" = 2* case, we did have success with 

the Leigh-Strassler scenario. Albeit only for a subspace of the full off moduli theory, 

we did indeed find a good description of the supergravity solution in terms of the 

dual field theory. 

Finally, we applied the AdS/CFT correspondence to examine = 4 super 

Yang-Mills at finite (7(1);% charge density, using the supergravity backgrounds around 

spinning D3 branes. We have completed the interpretation of the field theory duals 

of these backgrounds by interpreting the non-supersymmetric naked singularity class 

of the solutions. We found that these naked spinning D-brane distributions describe 

the coulomb branch at finite density. At a critical density a phase transition occurs 

to a spinning black brane representing the deconfined phase where the higgs vevs 

have evaporated. We also extended our analysis to include finite temperature. We 

performed a free energy calculation to determine the phase diagram of the coulomb 

branch at finite density and temperature. 

This research has been concerned with examining extensions to the Maldacena 

conjecture, with an emphasis on the potential to learn about gauge theories. Overall 

the effort has been successful. Looking at the bigger picture, these small steps have 

added to the weight of evidence that the AdS/CFT correspondence is a very general 

and powerful principle with enormous potential for describing the physical world. We 

are edging towards a better understanding of strongly coupled field theories and con-

finement. We can also see hope for a successful quantized theory of gravity, perhaps 

even see hope for the grandest aims of theoretical physics, to understand basically all 

of physics as we know it! We can dream. 
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Append ix A 

A . l C o n f o r m a l S y m m e t r y 

A conformal transformation is a diffeomorphism that preserves the metric up to an 

overall scale factor [13], 

or = wG;,,, (A.l) 

It brings together Poincare and scale transformations. In Eat Minkowski space (of 

dimension d > 3) its generators are the Lorentz generators the Poincare trans-

lations pins dilatations D: 2:̂  — a n d the special conformal transformations 

The conformal group is isomorphic to 6'0(c(, 2) with the 

identihcation [50] 

= -(f% + = D (A.2) 
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A field theory operator y's scaling dimension A is determined by its transformation 

under the coordinate scaling: 

D : = A^Y:(Aa;) (A.3) 

A.2 J \ f = 4: S Y M M u l t i p l e t s 

A.2 .1 S u p e r c o n f o r m a l Mul t i p l e t s of Loca l O p e r a t o r s 

The unrenormalized dimensions of the canonical fields and are 1, 3/2 

and 1, respectively. The gauge covariant objects A ,̂ and (the covariant 

derivative) are used to construct gauge invariant operators. Their dimensions are: 

[X'] = = 1, == 2, [A ]̂ = ^ (A.4) 

Ignoring renormalization effects of composite operators, all operator dimensions are 

therefore positive and there are a finite number of operators with dimension below a 

given number. 

Now consider the conformal supercharges 5". They have dimension —1/2, so 

repeated application to an operator of definite dimension must sooner or later produce 

0 (to avoid violating unitarity with a negative dimension operator). This leads to the 

introduction of a pn'mar;/ operator O, defined as 

[5',0]± = 0, O f O (A.5) 

An equivalent definition is as the lowest dimension operator in a given superconfor-

mal multiplet or representation. Note that a con/ormaZ przmari/ operator is defined 

through its annihilation by the special conformal generators and are only a subset 
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of the superconformal primaries. 

A awpercon/ormaZ (fescendan^ operator O of some other (well-defined local poly-

nomial gauge invariant) operator O' is when 

0 = (A.6) 

Their dimensions are related by Ao = A c -|- 1/2. It follows from this that in any 

irreducible superconformal multiplet there is a single operator of lowest dimension -

the superconformal primary, from which all other operators 'descend'. 

The fact that a snperconformal primary operator is not the Q-commntator of 

another operator can be used to get explicit forms of the snperconformal primary 

operators in = 4 SYM. The schematic Q-transforms of the canonical Aelds can be 

written 

{0,A} = F + + [%,%], [0,%] = A 

= [0 ,F ] = DA (A.7) 

A local polynomial could not be primary if it contained any of the elements on the 

right-hand side of these structure relations. This severely limits the constituents of 

superconformal primary operators; they are gauge invariant scalars involving only % 

in a symmetrized way. 

What is left splits into gmg'Ze ^race and more complicated (roce oper-

ators. Single trace operators take the form: 

s t r ( % ' : X ' ^ . . % y (A.8) 

Here j are fundamental representation indices and 'str' is the 

symmetrized trace over the gauge algebra (so this operator is symmetric in 6'0(6)B 
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indices). tr%' = 0, leaving 

t rX'%' ^ Konishi multiplet 
i 

supergravity multiplet (A.9) 

to constitute the simplest operators, where {zj} means the traceless pait only. The 

multiple trace operators are formed from products of the single trace operators. Tak-

ing tensor products of totally symmetric representations leads to (partially) anti-

symmetrized representations of 6'0(6)j%. There is a one-to-one map between the 

chiral primary operators and unitary superconformal multiplets, which allows a la-

belling of all state and operator multiplets in terms of the superconformal chiral 

primary operators. 

A.2.2 Ch i ra l or B P S Mii l t ip le ts of O p e r a t o r s 

The quantum numbers of the bosonic subgroup of 6'[/(2,2|4) are good labels for the 

unitary representations of this superconformal algebra, thus, 

5'0(1,3) X ^0(1 ,1) X ^[/(4)B 

(5+,5_) A [ri,r2,r3] (A.10) 

are positive or zero half-integers, A is the positive or zero dimension and [ri, r2, rg] 

are the Dynkin labels from the 6'(/(4);%. Instead of Dynkin labels, the 6'[/(4);% repre-

sentations can be labelled by their dimensions, given in terms of f, = r, 4-1 by 

dim[ri,r2,r3] = —rir2r3(ri -|- f2)(f2 -t- r3)(n + ^2 + rs) (A.11) 

Complex conjugation is given by [ri,r2,r3]* = [r3,r2,ri]. 
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The dimensions A are bounded below, in unitary representations, by the spin 

and quantum numbers. To show this, it is only necessary to consider the 

primary operators, since they have the lowest dimension in a given multiplet. We 

have seen above that these operators aje scalars, so the bounds will in fact only 

involve the quantum numbers. It can be shown [64, 66, 67] that there are 

four distinct series: 

# A = ri + r2 + rs 

# A = + r2 + > 2 + + r2 + this requires ri > rg + 2 

# A = + r2 + §r3 > 2 + §ri + r2 + this requires rs > ri + 2 

# A > Max 1̂2 + §ri + r2 + 2 + + r2 + §r3 

The second and third are complex conjugates of each other. 

The first three cases correspond to discrete series of representations, where at 

least one supercharge Q commutes with the primary operator. These are shortened 

representations called cAz'raZ or (BPS from analogy with 

Poincare supersymmetry). The dimension of these representations is unrenormalized 

(cannot get quantum corrections) due to this shortening. The fourth case corresponds 

to continuous series of representations, called non-BPS, where no supercharges Q 

commute with the primary operator. The properties of the various BPS and non-

BPS multiplets are set out in Table A.l [13] (in which # Q is the number of Poincare 

supercharges that leave the primary invariant). 

A.3 # = 2' F ie ld T h e o r y 

As mentioned in the main text, the A/" = 2* field theory is a mass deformation of 

— 4 5 '[ /(#) Yang-Mills theory [27]. We first review its content in terms of four 
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Operator Type # Q Spin Range Primary Dimension A 

identity 16 0 [0,0,0] 0 
1/2 BPS 8 2 [0,A;,0], & > 2 k 

1/4 BPS 4 3 [ / , k , i ] , k > 2 A:+ 2/ 
1/8 BPS 2 7/2 [/, A;, Z -t- 2m], Z > 1 A; + 2Z -j- 3m, m > 1 
non-BPS 0 4 any unprotected 

Table A.l: Properties of BPS and non-BPS mnltiplets 

dimensional = 1 supersymmetry. It has a vector multiplet y and an adjoint 

chiral snperheld 0 which go together to form an W" = 2 vector multiplet. It has 

two further adjoint chiral multiplets Q and Q that form an = 2 hypermultiplet. 

There aje the standard gauge-invariant kinetic terms for these helds, but there are 

additional interactions and hypermultiplet mass terms, which can be summarized by 

the following superpotential: 

W = 0 $ ) + + trQ=; (A.12) 

There is a Coulomb vacua moduli space which is parametrized by expectation 

values of the adjoint scalar, 

$ = diag(ai,02, ---,0^), ^ Gi — 0 (A.13) 

in the Cartan subalgebra of the gauge group. The low energy effective action /Z for 

the # — 1 (7(1) = 2 vector multiplets can be completely determined in terms of 

the prepotential ^ m; {oi}) where the gauge coupling T = ^ + 

is the hypermultiplet mass. The prepotential is defined as 

(A.14) 
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so that 

We have 

r (A.15) 

STrZ! = —g'-

+Re {t,, - 2A'S»Z)„A') I (A.16) 

where 

Ti- = Im[r,j] (A. 17) 

and and A' are the fermionic snperpartners of the scalars and gauge bosons re-

spectively. The Levi-Civita connnection of the scalar metric forms the covariant 

derivative, 

(A.18) 

The full qnaatum prepotential can be written as a sum of classical and pertnrbative 

and non-pertubative quantum corrections: 

^ ^dass 4" ^pert ~\~ ^aon—pert (A.19) 

The classical part is given by 

= (A.20) 
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and the non-perturabtive part is generated by instantons. The perturbative piece 

quoted in Chapter 5, in (5.20), 

T In 
, 

^(o , - - In 
i+3 

(cli — cij + m ) ' 

. 

(A.21) 

is one-loop exact [73, 72] and comes from standard quantum field theory calculation. 
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