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Coastal seas are often characterized by relatively high concentrations of suspended mineral
particles, compared to the open ocean. These suspensions can degrade the performance of high
frequency (tens of kHz and above) sonars and other acoustic sensors operating in turbid
environments. Existing sonar performance prediction models do not include the effects of
suspended particles. There is therefore a requirement to investigate the effects of suspended
particles on acoustic propagation and develop techniques for accounting for these effects in sonar
performance models.

The purpose of the research described in this thesis was to address that requirement. The
effects of suspended solid particles on ultrasonic propagation have therefore been investigated
through theory, modelling and laboratory experimentation. The effects considered were:
visco-inertial absorption; thermal absorption; scattering: and changes to the phase speed. A
numerical model which accounts for each of these effects in suspensions of spherical particles is
described. The complexity of this model is such that it obscures physical insight, and more
intuitive, approximate models for visco-inertial absorption and scattering have been employed
throughout much of this thesis. It is demonstrated that visco-inertial absorption is the dominant
effect for most sonar performance applications, with scattering only becoming important at the
highest frequencies considered. Furthermore, it is shown that thermal absorption and changes to
the speed of sound may usually be neglected in sonar performance studies.

In order to validate the model for visco-inertial absorption by dilute suspensions of spherical
particles, and study absorption by more natural particle shapes, a laboratory measurement
technique has been developed. Measurement of the absorption due to dilute suspensions in a
laboratory-scale experiment was found to be challenging, and a novel experimental configuration
was adopted to address these challenges.

The predictions of the models for visco-inertial absorption in suspensions of spherical
particles were found to be in very good agreement with measurements made using spherical glass
particles. However significant departures from these predictions were observed in measurements
made using highly non-spherical particles. Consequently a model for absorption by suspensions of
spheroidal particles was employed and the predictions of this model agreed well with
nmeasurements made with plate-like kaolin particles. No a priori information from the attenuation
measurements was required to achieve this agreement. Approximate agreement was obtained
between the model predictions and measurements using natural marine sediment particles.

It was determined both theoretically and experimentally that visco-inertial absorption by
suspensions can contribute significantly to volume attenuation in the frequency range tens to
hundreds of kHz.

The contributions to volume attenuation by visco-inertial absorption and scattering have
been incorporated into a high frequency sonar performance model for the first time. This
demonstrates the importance of the effects within the context of the other influences on high
frequency sonar performance in shallow water. The enhanced sonar model has also been used to
explore the possibility of using direct-path acoustic absorption measurements to monitor
suspended sediment flux through an estuary.



‘ACOUSTICS - A complicated and involved as well as insecure science which has many
imponderables. The reader is recommended to read it up first in an encyclopaedia before

proceeding to a complete book on the subject’, Alan Jefferson in Inside the Orchestra, 1974,

(© Simon Richards, 2002.
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Chapter 1

Introduction

1.1 Introduction to this thesis

This thesis describes research carried out by the author on the subject of ultrasonic attenuation

in water containing suspended solid particles.

In writing this thesis it was the intention that, as far as possible, it should be self contained and
no specialist knowledge of the subject matter should be required of the reader, other than a
graduate level knowledge of physics. For this reason derivations of key results obtained by
previous researchers have been included. It has been made clear in the text where this is the

case, and the original papers have been cited and included in the list of references.

1.2 Background

Sonar performance prediction modelling has classically focused on the long-range, low frequency,
antisubmarine warfare (ASW) scenarios in the deep ocean (so-called ‘blue water’), well away
from any coastal influences. More recently, there has been increased interest in the use of high
frequency (tens to hundreds of kHz) sonar in shallow coastal environments. Anecdotal evidence
suggests that current sonar performance prediction models are incapable of predicting with any

accuracy the variability in high frequency sonar performance observed in such environments.

Many coastal marine environments are characterized by high concentrations of suspended
particulate matter relative to the open ocean. Such material may arise from rivers or estuaries
discharging their sediment load to coastal seas, through the action of waves and tidal currents in
stirring up bottom sediment, or through anthropogenic activity such as the dredging of
navigation channels, for example.

This thesis will demonstrate that the presence of suspended solid particles can have a significant
effect on the performance of high frequency sonars and other acoustic sensors operating at similar
frequencies. The primary effect for typical marine suspensions (with grain sizes in the range

0.1 to 100 wm) is an increase in the acoustic attenuation through the processes of visco-inertial
absorption and scattering, although suspended particles can also have an influence on the sound
speed.

Figures 1.1, 1.2 and 1.3 show evidence of coastal turbidity along the coast of the Gulf of Mexico

in the United States. These figures were chosen simply because these images were easily available
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Figure 1.1. Photograph of the Louisiana & Texas Gulf Coast showing coastal turbidity. (The scale and
orientation indicators are approximate. The two scale bars indicate the perspective arising from the oblique
viewing angle.) Source: NASA, reproduced with the permission of the Lunar and Planetary Institute.

and not because they depict extraordinary features. Similar examples of coastal turbidity can be

found in coastal regions throughout the world.

Figure 1.1 shows a synoptic oblique view of part of the Texas and Louisiana coastline of the Gulf
of Mexico, extending from west of Galveston Bay in the lower central region of the picture,
eastwards towards the Mississippi Delta in the upper right corner of the figure (Source : NASA
Space Shuttle, STS-41C, April 1984, Picture #13-51-2422). The light coloured patch to the west
of the Mississippi Delta shows sediment discharging from the Atchafalaya River into the Gulf of
Mexico through Atchafalaya Bay. It is noticeable that the sediment discharge from the
Atchafalaya River is much greater than that from the Mississippi. It is also evident that the
sediment plume from Atchafalaya Bay is being advected along the coast by a westward longshore
current. A balloon-shaped sediment plume can also be seen discharging from the Trinity River

into the Gulf through Trinity Bay / Galveston Bay.

Figure 1.2 shows a larger scale photograph of the Trinity Bay and Galveston Bay area (Source :
NASA Space Shuttle, STS-51D, April 1985, Picture #23-40-019). Note that this picture was
taken a year later than Figure 1.1. A sediment plume can clearly be seen streaming out of the
inlet of the bay into the Gulf. This plume only flows straight for a short distance before being
turned westwards by the longshore current.

Figure 1.3 shows the Mississippi Delta (Source : NASA Space Shuttle, STS-61A, October -
November 1985, Picture #61A-42-051). In this picture the sediment discharge plume from the

major western distributary can be seen flowing freely into the Gulf, as it is flowing with the
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10 km

Figure 1.2. Photograph of Trinity Bay / Galveston Bay, Texas Gulf Coast, showing a turbidity plume
from the Trinity River. (The scale and orientation indicators are approximate.) Source: NASA, reproduced
with the permission of the Lunar and Planetary Institute.

10 km

Figure 1.3. Photograph of the Mississippi Delta showing sediment discharge. (The scale and orientation
indicators are approximate.) Source: NASA, reproduced with the permission of the Lunar and Planetary
Institute.
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westerly longshore current. The sediment plumes on the eastern side of the delta, on the other
hand, are being turned sharply to the south and west by wind-driven long-shore current in the
open Gulf. Wind-induced choppy waves can be seen in the bottom-right of the picture,

contrasting with the relatively calm water to the west of the delta.

Although there is a great deal of similar evidence of turbidity in coastal waters, very little work
appears to have been done to assess the impact of coastal turbidity on sonar performance. The

research presented in the remainder of this thesis addresses this shortfall.

1.3 Purpose of the research

The purpose of the research described in this thesis is to elucidate the physics of, and provide a
methodology for enabling quantitative predictions of the effects of dilute suspensions of marine

particles on high frequency (tens to hundreds of kHz) sonars.

The problem of developing a model which is capable of accurately predicting sonar performance
in shallow water environments is a highly complex one in which many different phenomena
should be considered. Such a model would require detailed data regarding the bottom
bathymetry, geoacoustic properties of the seabed, acoustic properties of the water column,
physical properties and distributions of suspended particulate matter, ambient bubble

populations, sea surface scattering properties, etc.

The research described in this thesis is therefore confined to the study of one particular aspect of
the larger problem. The other factors influencing the performance of high frequency active sonars
operating in shallow, coastal environments should each be investigated to a similar level of detail
in order to produce a model which is capable of accurate predictions of sonar performance in

such environments.

1.4 Thesis plan and original contributions

Very little previous work has been carried out on the effect of turbidity on the performance of
high frequency sonars and acoustic sensors, and the primary contribution of this thesis is to

address this issue.

Chapter 2 describes the physics of absorption and scattering by dilute particulate suspensions.
Models for the contributions to the volume absorption coefficient are presented and their
applicability to the problem of attenuation by marine suspensions at sonar frequencies in the
range from a few tens of kHz to 1 MHz is discussed. The independent formulations for absorption
and scattering described in Chapter 2 have the benefit of facilitating physical insight into the

phenomena, but they are based on a number of approximations and assumptions.

A more complete, rigorous, theoretical model for scattering of plane waves by a thermally
conducting, elastic sphere suspended in a thermally conducting viscous fluid is described in
Chapter 3. This may be viewed as the benchmark solution to the problem and it is in this

capacity that it has been employed here for validation of the formulations of Chapter 2.

In Chapter 4 the predictions of the different models are compared. It is shown that the

approaches described in Chapter 2 are a reasonable approximation to the more complete model
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described in Chapter 3 for particle sizes to be found in suspension in the sea and at practical
sonar frequencies below 1 MHz. For the first time results are presented which demonstrate the
magnitude of the increased attenuation for practical sonar applications and the important

parameter dependencies.

Chapter 5 discusses the effect of suspended particles on the sound speed in turbid water, and
presents a wave equation for sound propagation in suspensions. This chapter shows that the
change in sound speed due to the presence of suspended particles is small over the parameter
range of interest. The attenuation may also be obtained from the complex wave number in the
wave equation, and the attenuation coefficient obtained by this method is shown to be equivalent
to the models presented in Chapter 2. The wave equation formulation facilitates the inclusion of
the effects of particle shape, and this is demonstrated in Chapter 5 by employing a shape factor
and inertia coefficient to obtain the attenuation coefficient and sound speed in suspensions of

non-spherical particles.

In order to have confidence in the theoretical models experimental validation is required. Whilst
a significant amount of previous experimental work has been done on scattering by particulate
suspensions, little or no work appears to have been done on experimental measurements of
visco-inertial absorption in dilute suspension at frequencies in the range tens to hundreds of kHz.
Chapter 6 describes a novel laboratory technique for measuring the ultrasonic absorption
coefficient in dilute suspensions. Although the attenuation due to dilute suspensions can be
significant in the sea over propagation ranges of hundreds of meters, it is a very challenging
quantity to measure in a laboratory scale experiment. The development of the method is
described and new results are presented showing the measured attenuation for a number of
particulate suspensions over the frequency range 50 kHz to 150 kHz. These measurements are
compared with the predictions of the models discussed in Chapter 2. Some of the measurements
were made in suspensions of highly non-spherical particles and these results are compared with
the predictions of the model of attenuation by suspensions of spheroidal particles described in
Chapter 5. It is thought to be the first time that results have been presented showing the
comparison between: predictions of a model for visco-inertial absorption in suspensions of
spheroids; and laboratory measurements of attenuation at sonar-relevant frequencies in

suspensions of the kind found in the sea.

For the first time the effects of suspended particulate matter have been incorporated into a sonar
performance prediction model and this work is described in Chapter 7. Within the framework of
this model the relative importance of the suspended particles has been compared with the other
phenomena influencing sonar performance. New results are presented which show that the
detection range of a high frequency active sonar may be significantly reduced by the presence of
suspended particles in the water.

The dependence of volume attenuation on the concentration of suspended particulate matter
presents the possibility of inverting sonar transmission measurements to infer sediment
concentration across, say, a river mouth or estuary. This approach is proposed here for the first
time and the sonar performance model described in Chapter 7 has been employed to model an
example scenario of this nature.

The additional attenuation contributions depend on the density, viscosity and sound speed in the

water, all of which depend on the ambient temperature, pressure and salinity. Appendix A
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therefore presents an original investigation into the effect of temperature, pressure and salinity on
the acoustic attenuation coefficient in seawater containing suspended particulate matter. This
investigation shows that the ambient temperature in particular can have a significant effect on
the attenuation, and the local temperature should therefore be taken into account in the

calculation of the attenuation.

The Kramers-Kronig relations may be used to relate the attenuation to the dispersion in
dispersive media. This presents the possibility of inferring absorption from measurements of
dispersion, and this is discussed in Appendix B.

A number of publications arose from the research described in this thesis, and these are listed on
Page 143 et seq.

Chapter 2, starting overleaf, introduces the physics of absorption and scattering as relevant to

the problem of high frequency sonar performance in turbid coastal waters.



Chapter 2

The physics of absorption and scattering

2.1 Introduction

This chapter introduces the basic physics of absorption and scattering of sound in seawater
containing a suspension of mineral particles. Models for calculating the visco-inertial absorption
and scattering contributions to the attenuation are discussed and the validity of the dilute

approximation is examined in each case.

2.2 Attenuation

Sound propagating through seawater containing suspended particulate matter is attenuated by
several mechanisis. These include physico-chemical absorption by the seawater, thermo-viscous
absorption and scattering by suspended particulate matter, geometric spreading of the acoustic

wavefronts, and losses due to interactions with the seabed and sea surface.

Considering for the moment just the plane wave attenuation, the sound intensity after

propagation over distance z may be given by

I = Jye= %= (2.1)

where I is the sound intensity at some reference range z = 0 and ( is the attenuation coefficient

of the medium in Nepers m™1.

In sonar research it is convenient to express attenuation in terms of dBm™! and these are the
units used in the remainder of this thesis. The relationship between the attenuation coefficient o

in dBm™! and the coefficient ¢ in Npm~? is given by

o = 10log (?) ¢ (2.2)

The total volume attenuation coefficient «v in seawater containing suspended particles may be
considered as the linear sum of the attenuation due to clear seawater, oy, and that due to
visco-inertial absorption, o, and scattering , o by suspended particles. The attenuation

coefficient may therefore be written
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Q= Qw + Qy + 0 (2.3)

These three contributions to the attenuation are discussed in the following sections. In fact there
is a fourth contribution to the attenuation which may be referred to as thermal absorption. This
effect, which will be discussed in Chapter 3, may generally be neglected for mineral particles in

seawater at sonar frequencies (below 1 MHz) and will therefore not be discussed further in this

chapter.

2.3 Sound absorption in seawater

The absorption of sound in clear seawater is considered as the sum of the contributions from pure
water, and two jonic relaxation processes involving magnesium sulphate (MgSOy) and boric acid
(B(OH)s). Contributions from other ionic reactions are small and are neglected. Several
empirical expressions exist for calculating the absorption in seawater (e.g. Fisher and

Simmons [1], Thorpe [2], Shulkin and Marsh [3]) but the one that appears to be the most
complete is that of Francois and Garrison [4,5]. Their expression yields the total attenuation
resulting from the three contributions as a function of frequency, pressure, temperature, salinity

and pH, and may be written as

2 2
Abapbafbaf Amspinsfmsf + prppwfz dBm_l (2.4>

Oy = 1073
" 2+ 12 2+ fa

where Ap,, Ans and Ap, represent the temperature and salinity dependencies, Pa, Pns and Pow
are the pressure dependencies, fi,. and f,s are the relaxation frequencies and the subscripts ba,
ms and pw refer to the boric acid, magnesium sulphate and pure water contributions respectively.

These terms are given below [4].

Boric acid contribution

Apa = 880 1p®7H-9  gBjm~KHs ! (2.5)
[

Ba=1 (2.6)

foa = 2.8(5/35)0:51014—1245/(6+273)) |y (2.7)

where c is the sound speed (ms™!), H is the pH, © is the temperature (degrees Celsius) and S is

the salinity, measured on the practical salinity scalel.

1 The Practical Salinity Scale 1978 was introduced to address problems with the traditional chlorinity-conductivity
relationship used to establish salinity [6~8]. Salinity is now expressed in the dimensionless units psu or practical

salinity units.
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Magnesium sulphate contribution

Ams = 21.44(S/¢)(1 +0.0250)  dBkm ™ *kHz ! (2.8)

Prs =1—=1.37-10%d + 6.2 10%2 (2.9)

8.17 - 10(8-1990/(9+273))

Tme = T o o018(5 — 35y (2:10)

where d is the depth (m).

Pure water contribution

Py =1-383-107°d+4.9.10719g? (2.11)
For © < 20°C,
Apy =4.937-107* —2.59-107°0
4+9.11-107702 - 1.50-107%@*  dBkm ™ 'kHz"! (2.12)
For © > 20°C,

Apw =3.964 1071 — 1,146 - 107°0
+1.45-107702 - 6.5-1071°9%  dBkm~'kHz ™! (2.13)

2.4 Visco-inertial absorption

Visco-inertial absorption arises as a result of the phase lag between the motions of suspended
particles or droplets and the suspending fluid in response to an acoustic wave. Unless the
particles or droplets are of the same density as the ambient fluid (i.e. they are neutrally buoyant)
their inertia will differ from that of the fluid they displace. As a result there will be a phase lag
between the particle and fluid oscillations, which means that there is a boundary layer at the
surface of the particle in which there is a velocity gradient. This velocity gradient results in the

conversion of energy to heat as a consequence of the viscosity of the suspending fluid.

The absorption of sound in a suspension of small particles was considered theoretically by

Sewell [9] in 1910, and more recently by Epstein [10]. Sewell considered the case of small, rigid,
spherical particles which are taken to be immobile in that they do not oscillate in the sound field.
He was interested in the propagation of sound in fogs and clouds, and the assumption of
immobile particles is valid for water droplets in air at audio frequencies. However, in the case of
aqueous suspensions at megahertz and sub-megahertz frequencies, the particles do respond to the

acoustic field and Sewell’s theory breaks down.
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Lamb [11] extended Sewell’s theory to the case of rigid, incompressible particles that are free to
move in the sound field. His approach was to obtain an expression for the velocity potential of
the waves scattered by such a particle and to obtain the absorption by finding the average rate at

which work is done over a large spherical surface surrounding the particle.

Urick [12] obtained the same result as Lamb by employing the expressions for the viscous drag
developed by Stokes [13], and this derivation is reproduced here. Stokes investigated theoretically
the effect of viscosity on the period of a spherical pendulum bob swinging in a viscous fluid. He
found that the force F' exerted by the fluid on a sphere of radius a oscillating with angular

frequency w is

F= —de—? ~ STMWu (2.14)
where 7 and s are defined as
1 9
_r. 9 2.15
T=5+ (2.15)
and
9 1
2 (L 2.16
7 1fa < * ﬁa> (216

The velocity u is the instantaneous velocity of the sphere, m = %7?’(13 p is the mass of ambient
fluid of density p displaced by the sphere and 8 = \/w/2v. In fact, 3 is the inverse of the scale

length over which the viscous shear waves are damped in the fluid, the skin depth d,, i.e.

by = \/iz (2.17)

Equation 2.14 may be compared with Equation 5.15 in Section 5.3.1 which considers the more
general case of suspensions of viscous spheres. Equation 5.15 reduces to Equation 2.14 in the case
of rigid particles.

The fivst term on the right of Equation 2.14 represents an addition to the inertia of the sphere,
while the second is a frictional, or drag, force proportional to velocity. The velocity u can be

considered as the relative velocity between particle and fluid, i.e.

v=1v —v (2.18)
For a particle of density p’ with mass m’ = %ngp’ the equation of motion is then

dv’ du dv’
m' S — —rmEE s + me— (2.19)

dt dt dt

where mdv’/dt is the external force produced by the sound field if both the particle size and its
displacement are small compared with a wavelength. On replacing dv’/d¢ by du/dt + dv/dt, and
writing o = m//m (= p’/p, the ratio of particle density to fluid density), this becomes for

sinusoidal motion
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(o + >du n ] dv
st = — (o —1)—
o+ 7) 3+ swu (o0 — 1) "
= —iw(o — 1)vpe!~t (2.20)
This has the solution
u = uge' =¥ (2.21)
where
c—1
uo = vo (2.22)
[s2 + (0 + )2/
and
tany = 2.23
ang = — g (2.23)
Since the drag force on a single particle is
F=—smwu (2.24)
the instantaneous rate of energy loss is
dE
o Fu = —smwu? (2.25)
The average rate is therefore
dE> 1 9
— = —5smwug (2.26)
< dt Av ?

If there are N particles per unit volume then the rate of energy loss per unit area of the beam, or

intensity lost after propagating a distance rmdz, is

dl = —%smwu%Ndz (2.27)

where the z-direction is defined as being along the axis of the beam and plane waves are assumed.

Introducing the relationship I = —%— pcvg where c is the speed of sound, we obtain

2
af _ smw (@) Nds (2.28)
1 pe \ o

Introducing the volume concentration € = Nm/p and the acoustic wavenumber k = w/c yields

2
4 = —eks <%> dz (2.29)

I Vo
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Integrating this equation gives

I =Iyexp [weks (%ﬂ (2.30)

Comparing this expression with Equations 2.1 and 2.2, in which the attenuation coefficient o was

defined, we see that the visco-inertial absorption coefficient is given by

2 (e — 1)2
ay ks (ug _ ek{oc — 1) s (2.31)
10loge? 2 \vo 2 52+ (o +71)?

The visco-inertial absorption coefficient therefore depends upon the square of the ratio of the

velocity difference between particles and fluid to the velocity of the fluid.

Implicit in Equations 2.29 to 2.31 is the assumption that the absorption coeflicient in a
suspension of similar particles is linearly proportional to the volume fraction, €, i.e. the process is
linearly additive. This assumption is valid for dilute suspensions, in which inter-particle
interactions may be neglected. Urick showed experimentally [12] that this linear relationship
between the viscous ahsorption coefficient and concentration holds for volume fractions of up
8-9% for kaolin particles at MHz frequencies. Note that a volume fraction of 8% corresponds to a

mass concentration of approximately 200 kgm ™2 for these particles.

Departing from Urick’s work, it is instructive to estimate theoretically the concentrations at
which particle interaction effects may become important. We may proceed with this by comparing
the mean inter-particle separation with the scale length over which the viscous shear waves are
damped in the fluid. This scale length is the skin depth, which was given by Equation 2.17

5. — \/'%7 (2.32)

For water, having a kinematic viscosity of v = 107% m?s™!, at a frequency of 100 kHz, this yields

oy = 1.78 pm.

Now, turning to the estimation of the mean inter-particle separation, the volume fraction is given
) g P )

by

_M (2.33)

0
where M is the mass concentration and p’ is the density of the particles.
The number density, &V, is then

€
N =& 2.34
N=g (2.34)

where V' = $7a® is the volume of the (spherical) particles.

The mean inter-particle separation may then be estimated to be N~1/3. Note that this is the
mean separation between the centres of the particles, and it is important to take the finite size of

the particle into account. A more appropriate separation to use is therefore
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de=N7%—2q (2.35)

Taking as an example a mass concentration of 1 kgm™2, a particle radius of 1 ym and a particle
density of 2600 kgm™2, the mean separation d is found to be 20.1 pum. Since this separation is

much greater than the skin depth of the shear waves the inter-particle effects may be neglected in

this case.
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Figure 2.1. Estimates of the maximum concentration at which the effects of inter-particle interactions
on attenuation may be neglected, as a function of particle radius, for 3 different frequencies.

More generally we can calculate the maximum volume fraction for which the effects of
inter-particle interactions on the attenuation may be neglected for a given frequency and particle
size. Let us assume that we may neglect these inter-particle effects if the mean inter-particle
separation is greater than three times the skin depth, by which distance the amplitude of the
shear waves will have been attenuated by about 95%. We can then calculate the maximum
volume fraction for which this condition is satisfied, as a function of particle size, for different
frequencies. Figure 2.1 shows the results of such a calculation for quartz particles and frequencies
of 50, 300 and 1000 kHz. This shows that the maximum volume concentration for which
inter-particle effects may be ignored increases as the particle size increases. This is because for a
given mass concentration the number density reduces as the particle mass increases, and hence
the inter-particle separation increases. As the frequency increases the viscous skin depth
decreases, explaining the increase in the maximum concentration for which inter-particle effects
may be neglected as frequency increases. The figure shows that for 1 um particles at a frequency
of 1 MHz, particle interactions should be taken into account for volume fractions above about
8-9%, which is in agreement with Urick’s observations [12]. Note that this corresponds to a mass
concentration of the order of 200 kgm ™3, which is far higher than concentrations to be found in
the sea, except perhaps in the sediment boundary layer at the seabed. The experimental

measurements presented in Chapter 6 were made with a maximum volume fraction of less than
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0.1%, and are therefore consistent with the dilute approximation.

2.5 Scattering

Acoustic plane waves incident on inhomogeneities in the medium through which they are
propagating will be scattered in all directions. Energy which is scattered, whilst remaining part
of the total acoustic field, represents a contribution to the attenuation of the forward propagating
wave.

In the spherical polar coordinate system, {r, 8, ¢) shown in Figure 2.2 the instantaneous acoustic

pressure p; at time t due to a plane wave travelling along the polar axis is given by the real part of

P = poexp i (ker cosf — wt)] (2.36)

where po is the source pressure, w is the angular frequency of the incident compression wave,

k. = w/c is the wavenumber and ¢ is the sound speed of the compression wave.

X

Figure 2.2. Schematic showing the spherical polar coordinate system.

The instantaneous pressure ps due to a wave scattered from a particle, at any point (7,8, ¢) in

the far-field of the particle, in the absence of attenuation, is given by

Ps = Di {9%57—@} exp [i (ker — wt)] (2.37)

where a is the particle radius, fo is the far-field scattering form function, 8 is the scattering
angle and r is the radial distance from the particle.

Employing a partial wave expansion as used by Faran [14], the far-field scattering form function

for spheres may be written [14,15]
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e}

fol0) = =23 (20 + 1) sin g, exp (—inn) P(cos ) (2.38)

T
€ n=0

where 7, is the phase shift of the nth partial wave and P, is the Legendre polynomial of order n.
The size parameter z. is defined as the product of the wavenumber in the ambient fluid and the
particle radius, z. = k.a.

The elastic properties of the scatterer enter the problem through the phase shifts n,, which are

given by [14]

[tan o, (@) + tan &, (2, z1)]

=t I 2
tann, = tand,(z¢) [tan By (2e) £ tan o, (20 20)] (2.39)
where
tand,(z.) = — julze)/nn(ze) (2.40)
tan o, (ze) = — gl /in(Te) (2.41)
tan Bn(2e) = — xenl, /nn(zc) (2.42)

in which z/, = kla and z} = kla where k. and k. are the wavenumbers of the compression and
shear waves in the scatterer. The functions j, and n,, are the spherical Bessel and Neumann
functions, and primes on these functions denote differentiation with respect to the argument.

The elastic properties of the scatterer are contained solely within the tan ®,, term, given by

22 tan o, (!
tan ®,, = PLs ———————-~————-n< )

2p' tan o, (z)) + 1
(n® +n)
(24 n—1)—22/2 + tanan(zl)

n?4+n—z2/2+ 2tana,(z))
tan g, (al) + 1

X

-1

3 (n? + n) [tana,(z) + 1] (2.43)
(n2+n—1)—z?2/2+ tana,(z))

The attenuation coefficient due to scattering, as may be obtained from the far-field scattering

form function through the expression

&

as 3¢ [S[feo(0)] (2.44)
10loge?  4a T,

where € = M/p’ is the volume concentration of suspended particles, M is the mass concentration

and ' is the density of the solid.

As in the case of the viscous absorption expression (Equation 2.31) this expression contains the

implicit assuwmption that the attenuation coefficient depends linearly on the volume

concentration, €. This implies that multiple scattering may be neglected.
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Bjerng and Bjorne [16] looked at the problem of multiple scattering in suspensions both
experimentally and theoretically, following the theoretical approach of Gaunaurd et al. [17]. In
their summary of the analysis of the numerical solutions they state that the two main parameters
governing the interaction between two rigid spheres of radius a are ka and the ratio D = dy/a,
where dy is the distance between the centres of the spheres. The analysis also suggests that the
effects of multiple scattering should become important when ka = do/a. Their experimental
approach was to measure the backscattered intensity from a pair of stainless steel spheres
suspended by fine nylon lines in the far field of a transducer. The measurements were made at
frequencies in the range 300 - 1200 kHz, and with spheres giving ka in the range 5 - 30. They
found that the form function for a pair of spheres exhibits significant angular dependence, as
expected, and also that interaction between the two spheres can be significant for separations up

to D = 10 for certain angles.

We can now calculate the maximum volume fraction for which the effects of multiple scattering
on the attenuation may be neglected. This may be calculated as a function of particle size, for
different frequencies, as was done for viscous absorption on page 13. The result of such a
calculation is shown in Figure 2.3, which shows the volume fraction at which ka = 0.1D. This
shows that the effects of multiple scattering may be neglected at all practical concentrations over
the ranges of particle radius and frequency of interest. The effects of multiple scattering begin to
become significant at lower concentrations as both the frequency and the particle size increase,

i.e. as ka increases.
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Figure 2.3. Estimated maximum concentration at which the effect of multiple scattering on the attenu-

ation may be neglected, as a function of particle radius, for 3 different frequencies.

Johnson (18] introduced the high pass model for backscattered intensity from a fluid sphere. A
simple polynomial is used to represent the general z.-dependence of the scattering form function
approximately by requiring that it fits the form of f., exactly in the Rayleigh (small z;) and

geometric (large x.) regimes.
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Sheng and Hay [19] extended Johnson’s model to include the angular dependence, and their

expression takes the form

KffEQ
()] = —e _
|foo (8)] T K2 (2.45)
where
2
Ki = 3 |7 + ¥, cos 0] (2.46)

and . and 7y, are the compressibility and density contrasts, given by

e = 8 (2.47)
K
/ p—
by = 2o =p) (2.48)
20"+ p

For small z., Equation 2.45 has the required Rayleigh dependence (fs o z2) and for large z,

| foe ()] goes to unity as required.

D

18 F ———  Scattering theory -

- - — — . High-pass mode!
1.6 -
1.4
1.2
1.0 - S VY Y NS Y A DU

08 |-
06 - L

Backscatter form function
1

04 -
0.2

0.0 1 1 L i ] 1 1 H L
0 5 10 15 20

Dimensionless scattering parameter, ka

Figure 2.4. Far-field backscattering form function for an elastic, movable quartz sphere: Comparison

between scattering theory and high-pass model.

Figure 2.4 shows the far-field amplitude backscattering form function as a function of ka,
computed using Faran’s model as described above. This was calculated using compression and
shear wave speeds representative of those of quartz. Also shown is the approximate form function
calculated using the high pass model. A great deal of structure is observed in the full form
function and this is due to resonances of the normal modes of the sphere. These normal modes
are each characterized by a wavelength which fits into the circumference of the sphere an integer
number of times. The zeroth order mode (n = 0) is known as the monopole or breathing mode in

which the surface moves radially in and out, n = 1 is the dipole mode in which the body moves
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rigidly to and fro, and the n = 2 mode is the quadrupole mode in which the shape oscillates
between prolate and oblate spheroids, etc. Rayleigh’s observations on the significance of these
modes, or terms in the partial wave expansion, are discussed in Section 3.2. All of these motions
represent standing waves which may be resolved into pairs of surface waves travelling in opposite
directions. The modal series may be transformed, by means of the Watson transformation (see
e.g. [20]), into a series of creeping surface waves which fall into a number of distinct categories.
These include Rayleigh waves, whispering gallery waves, Stonely waves and Franz waves. See

Reference [20] for a discussion of these various types of surface wave.

Whilst the scattered field from a monodisperse suspension of spheres will be characterized by this
complex resonant structure, it has been shown [21] that a distribution of particle sizes leads to
the smoothing out of this structure. This results in a form function which has a profile similar to

the high pass filter response, as represented by the high pass model.
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Figure 2.5. Far-field backscattering form function for a rigid, movable quartz sphere: Comparison between

scattering theory and high-pass model.

Figure 2.5 shows the form function for a rigid, mobile sphere. In this calculation the compression
and shear wave speeds in the solid have been made artificially high, to approximate to the rigid
limit. The complicated resonance structure observed in the elastic case is not manifested in the
rigid case, since most of the surface waves are not supported by the impenetrable, rigid sphere.
Only one type of surface wave still exists in the rigid case and that is the Franz wave, which
propagates solely in the fluid and arises as a result of the curved geometry. The interference
between the circumferentially propagating Franz waves and the backscattered wave is responsible
for the oscillations in the form function for rigid spheres. Whilst this phenomenon may be
explained in terms of these creeping Franz waves, it may be realized that it is nothing more than
simple diffraction due to an impenetrable sphere.

This form function is once again compared with the high pass model, shown by the dashed curve.

It is clear from this figure that the high pass model has the same general z. dependence as the

rigid form function, as required. The characteristic oscillations in the form function due to
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diffraction are not, of course, represented by the high pass model. As described above, this
structure will be different for each particle size in a distribution of sizes and will thus be smeared

out in the ensemble average over all particles contributing to the total scattering.

Clearly the elastic resonances that are excited at certain z. values can have a significant effect on
the scattering form function. It might be expected that the elastic model for the form function
would yield the best agreement with experimental measurements with real (i.e. elastic) particles.
For measurements made with a monodisperse population of spheres this is indeed the case.
However, for measurements made with natural sand grains the rigid models and the high pass
model have been shown to provide a better fit to measurements [19]. This implies either that
resonant excitation does not occur, or at that it not significant. This is partly due to the
smoothing effect of the size distribution, and partly because natural sand grains are irregular in
shape and inhomogeneous in composition. The importance of waves travelling on the surface of
the particle has already been discussed in the context of resonant scattering, and the circuit
times of these surface waves at a resonance must be an integral dividend of the incident wave
period. It appears likely that in natural sand grains the irregularities in shape are such that the
surface waves do not have well-defined circuit times and many of the resonance structures are not
therefore observed in the form function [22]. Scattering measurements made with irregular
particles [22] do show some evidence of structure arising from surface waves, principally the
Rayleigh wave, but the ensemble averaging over many shapes, sizes and orientations smears these

features out in the mean form function.

The high pass model of Equation 2.45 may therefore be considered appropriate for approximating
the form function in natural suspensions.

Sheng and Hay have also constructed a high pass medel for the attenuation coefficient which can

be written as

g _ 6Ka:c‘é (2.49)
10loge?  a(3K.xl+&z2+1)
where
1 2 72
Ko==[~*+2L 2.50
< G (’y,{ + 3 > ( )

and £ is an adjustable constant > 1. The ¢ term allows the form of the polynomial to be adjusted

to improve the fit to experimental data for intermediate z. values.

2.6 Summary and conclusions

In this chapter the key areas of physics relating to the attenuation of sound in dilute suspensions
of solid particles have been introduced and discussed. Urick’s model [12] has been introduced to
calculate the visco-inertial absorption contribution to the attenuation and Sheng and Hay’s
high-pass model has been introduced to calculate the contribution due to scattering. The validity
of the dilute approximation in the cases of absorption and scattering has been examined, and it
was shown that at practical sonar frequencies below 1 MHz the dilute approximation is valid for

naturally occurring suspensions.



Sumumary and conclusions 20

The contribution to the attenuation due to viscous absorption can be modelled using
considerations based on the viscous drag experienced by a particle oscillating in a sound field.
This approach was taken by Urick [12], and his model was discussed in section 2.4. This model
calculates the acoustic energy dissipated by a single spherical particle. To calculate the total
attenuation by a collection of particles the single particle result is multiplied by the number
density of suspended particles. i.e. the total attenuation is assumed to be the linear summation
of the attenuation due to each particle. This is only valid for dilute suspensions where
inter-particle interactions may be neglected, and the maximum concentration for which such an
assumption is valid was investigated using simple arguments based on mean inter-particle
separation. This investigation showed that over the range of frequency, particle size and
concentration of interest in the present study, the assumption that particle interactions may be
ignored is valid. Urick [12] measured the attenuation at 1 MHz in a suspension of kaolin particles
as a function of particle concentration and found a linear dependence up to a volume fraction of
around 8% — 9%, and the calculations of the concentrations at which particle interactions become

important presented here are in agreement with this observation.

Section 2.5 discussed a method for calculating the scattering form function of an elastic sphere
suspended in an inviscid fluid based on a partial wave expansion. Although the intensity
scattering form functions can be complicated as a result of resonance excitation the general trend
is to obey a (ka)* dependence for ka < 1 (Rayleigh scattering) and to tend to unity for ka > 1
(geometric scattering). This behaviour permits a considerable simplification, as the form function
can be approximated by a fourth-order polynomial in z = ka. This approach is known as the

high-pass model.

Calculations of the scattering form function for a homogeneous quartz sphere suspended in water
showed the expected complexity due to resonance excitation, with large departures from the
predictions of the high-pass model for large ka. However, natural sand grains are not found to
exhibit strong resonances, for the reasons discussed in this chapter. The high-pass model is
therefore believed to be an adequate model for calculating the attenuation due to scattering by
natural particles. In fact, for the present study, the small ka regime is of the most interest, where

the (ka)* dependence of the high-pass model represents the scattering form function very well.

As with the viscous absorption calculations, a linear dependence on particle concentration has
been assumed in the scattering models, thus ignoring multiple scattering. By employing
arguments similar to those used in the case of absorption, the maximum concentration for which
such an assumption is valid was calculated. It was found that the effects of multiple scattering
may be neglected at all practical concentrations over the ranges of particle radius and frequency
of interest.

The following chapter introduces a rigorous theoretical treatment of absorption and scattering by

an elastic, thermally conducting spherical particle suspended in a viscous, thermally conducting

fluid. This model will be used as a benchmark model against which the models presented in this

chapter may be compared.



Chapter 3

A model of a spherical scatterer in a

thermo-viscous fluid

3.1 Introduction

In this chapter a rigorous theoretical treatment for the attenuation of sound by elastic, thermally
conducting spheres suspended in a viscous, thermally conducting fluid is introduced. This
approach constitutes a benchmark solution to the problem and results from this model will be

compared with the results of the models discussed in Chapter 2.

3.2 Complete theory

A unified model to describe the attenuation of an acoustic wave propagating through a fluid
containing suspended particulate matter is conceptually preferable to the independent explicit
models for absorption and scattering described in Chapter 2. Although these models have the
advantage of simplicity, it is important to compare them with a more complete physical

description of the effects over the parameter range of interest.

The problem of sound attenuation by suspensions of small spherical particles has been the
subject of a number of studies, originating with Rayleigh’s [23] discussions of the disturbance of
plane waves produced by small obstacles. He observed that the magnitude of the zero-order term
in a partial wave expansion of the disturbed field is a manifestation of the compressibility
difference between the particle and the suspending fluid. This is apparent as the zero-order or
monopole term describes radial pulsations of the sphere, and is often referred to as the breathing
mode, as described in Section 2.5 on Page 17. Rayleigh further observed that the first-order or
dipole term is determined by the density difference. Section 2.5 discussed how this term describes
rigid, translational motion of the particle. It is therefore clearly associated with relative motion

of the particle and fluid, and hence the viscous drag losses described in Section 2.4.

It was previously stated that Sewell’s treatment [9] of the absorption of sound in a suspension of
small particles considered the particles to be rigid and immobile. Lamb [11] removed the
restriction that the particles be immobile and Epstein [10] refined the theory to include elastic
particles. In this latter treatment, the spherical objects representing the particles in suspension
were attributed the properties of viscous fluids or elastic solids. Urick [12] derived a result

equivalent to that of Lamb and Epstein using simple arguments based on viscous drag, as

21
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described in section 2.4.

Isakovich [24] noted that sound propagation in a suspension can produce temperature gradients
at the particle-fluid interface, due to the adiabatic character of acoustic waves and may result in
significant attenuation via thermal diffusion. Epstein and Carhart [25] independently deduced
the thermal loss contribution in a detailed theoretical examination of the problem. Their work
was primarily aimed at attenuation in aerosols, although the bulk of their analysis may also be

applied to dispersions in condensed media.

Allegra and Hawley [26] (hereafter referred to as AH), closely following the derivation of Epstein
and Carhart, have extended the theory to include the case of elastic, heat-conducting, solid
spheres suspended in a viscous, heat-conducting fluid. The AH formulism has been used here,
and the fundamentals of the theory are summarized below. For a more complete description the
interested reader is referred to the original papers [25, 26].

The attenuation of a sound wave propagating in an inhomogeneous medium is defined as the sum
of scattering and absorption losses. In the inviscid, non-conducting case three waves are required
to describe adequately the response of the fluid-solid system to an incident compression wave.
These are the scattered compression wave in the fluid and compression and shear waves in the
solid. When viscous effects are included an additional viscous shear wave in the fluid arises, and
considering thermal effects requires that thermal waves in both the fluid and the solid be taken

into account.

Mathematically the increased absorption of the incident wave in the presence of the scatterer is
due to the damping of these additional waves. Physically, energy loss arising from thermal
conduction is due to the differences in amplitude and phase of the acoustically driven
temperature fluctuations in the fluid and particle. This leads to a heat flux between the fluid and
particle. Viscous losses arise from a momentum flux hetween the fluid and particle due to the
relative motion of the fluid and the particle. The viscous losses reach a maximum when the
viscous shear wavelength is approximately the same as the particle size. Similarly, the thermal
losses are at a maximum when the wavelength of the thermal wave is comparable to the size of
the particle. At low frequencies the temperature difference between the particle and fluid will
equilibrate in the time of the passage of the wave, whilst at high frequencies only a small fraction

of the particle volume near the surface will participate in the thermal conduction process.

These heat and momentum fluxes are large where the temperature and velocity gradients are
large. This is the case in the boundary layers surrounding the particles. The thicknesses of the
boundary layers are defined as the skin depths of the viscous and thermal waves, i.e. the distances

over which the amplitudes of the waves are damped by a factor of 1/e. They are given by

Oy = 1/23 and ;= 2& (3.1)
w w

where v is the kinematic viscosity of the fluid and x is the thermal diffusivity , given by

K
rChp

where K here is the thermal conductivity of the fluid, and Cj, is its specific heat capacity.

Similarly, a skin depth for the thermal wave within the solid particle may be defined as
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2x’
5 = — (3.3)
with
K’
= 3.

where the primed symbols indicate the respective physical properties of the solid.

The first step in calculating the attenuation is to obtain the wave equations for the propagation
of the compression, shear and thermal waves in the two media. The wave equations are obtained
from the conservation laws , a stress-strain relation, and two thermodynamic equations of state.
The wave equations are then solved in spherical coordinates in terms of series expansions
involving spherical Bessel and Hankel functions and series of unknown coefficients. From the
boundary conditions at the fluid-particle interface six simultaneous equations are obtained which
may be solved to give the unknown coeflicients. The attenuation of the primary wave may be

related to these coefficients.

The amplitude of the sound wave is taken to be sufficiently small that nonlinear effects can be
ignored!. In this case the deviation of a variable from its mean value is also small, and products
of such deviations are negligible. Dropping these terms, and time and space derivatives of mean
quantities, the conservation equations together with the equations of state are reduced to two
coupled equations. Using the identity 8/t = —iw these equations may be written [27] as follows

for the fluid

-/ . 2 .l
WV 4 <9- - i‘i’ﬂ> V(V v)+ g WG, (3.5)
yooo3p 7 P
and
1
P—ﬁ—} Vv —iwl — 4y V2T =0 (3.6)

where v is the velocity vector, ¢ is the sound speed of compression waves in the fluid, T is the

absolute temperature and » is the molecular viscosity of the fluid.

In a solid the equivalent equations are

72 / /219/ lv2
s (e ) w9 - By 278 )
v 3p ¥ P
and
. ’7/ -1 e 7 1 I72m
—iw V ou—iwT" —+X'VIT" =0 (3.8)
,19/

where T is the temperature, u is the displacement vector, ¢} is the sound speed of spherical

compression waves in the solid and g/ is the shear modulus of the solid.

1 The acoustic amplitude used in the experiments described in Chapter 6 is far too small for finite amplitude effects
to be significant.
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The other variables in these equations are

~v = ratio of specific heat at constant pressure to that at constant volume in the fluid
p = density of the fluid
¥ = thermal expansion coefficient of the fluid

x = thermal diffusivity = K/pCy, of the fluid
K = thermal conductivity of the fluid
C}, = specific heat capacity of the fluid

and primed quantities refer to the respective physical properties of the solid.

The velocity field in the fluid and displacement field in the solid are represented by scalar

potentials ¢ and vector potentials A such that

v=-Vo+VxA (3.9)
u=-V¢ +VxA (3.10)

where V- A =0 and
$:¢c+¢t (311)

in which ¢. and ¢, are the scalar potentials for the compression and thermal waves.

In the fluid

¢C = QsO + ¢r (312)

where ¢p and ¢, are the scalar potentials for the incident and scattered compression waves.

The Helmholtz equations for the three potentials - compressional, ¢., thermal, ¢, and viscous,

A, may be written in the form

(V2 +k2) ¢ =0 (3.13)
(V24 k) o =0 (3.14)
(VP+Ek)A=0 (3.15)

in the fluid, and

(V2+E2) ol =0 (3.16)
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(V2 +k3) ¢, =0 (3.17)

(V2+EP)A =0 (3.18)

in the solid.

The wavenumbers of the compression, thermal and shear waves in the fluid medium are given by

@@l e

g2 v (3.20)
X
p2 =P (3.21)
n
provided the temperature is given hy
T — M (3.22)
—iw

where

o (G b (2594
(@)l €5

Note that 3.19 and 3.20 are only valid if |k /kt| < 1, |ke| ~ w/c and

ke

ks

3pc?
w<<_p_
4y

<1 (3.25)

For water, Equation 3.25 requires that the frequency be much less than 101! Hz, i.e. this is not a

practical limitation in this case.

In the solid the wavenumbers are given by

2 s / ’ -1
W wx’ AN +2u1'/3
K= (-0 (5:26)

where A’ is the Lamé constant ,

2w (3.27)
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/2
k2 = ";‘j (3.28)
provided
T' = b6, + b (3.20)
where

A /2
— [wg - <c—1 + ———k”")] (3.30)

12,41
c?d

_,Y/ C/2 4H/
b{; = 03219/ [u}Q — ( 1 + é“p—l-k‘? (331)

Again, the equations for £. and k{ hold only if |k/| ~ w/c" and |k.|/k{ < 1. This does not impose

a restriction on the frequency, as was the case in the ambient fluid, but requires that in the solid

~' must be very close to 1.

Note that the equations for fluid and solid media are identical if du/dt = v, (v = —iwu),
W = —iwny’ and ¢] = ¢’ provided
ICQ
ol (3.32)

which is equivalent to Equation 3.25

It is now possible to solve the problem of a plane compression wave impinging on a solid sphere
of radius a suspended in a fluid medium. The presence of the sphere gives rise to a reflected
compression wave in the fluid, a compression wave in the sphere, and thermal and viscous shear

waves inside and outside the sphere.

The series solutions of the wave equations in spherical polar coordinates with symmetry about

the polar axis, and which remain finite at the origin and at infinity are given by

i (21 + 1)jn(zc) Pa(cos 8) (3.33)

¢ = gi"(% + 1) Aphin () Pa(cos 6) (3.34)

by = i (20 4 1) Bphn (2) Pa(cos 6) (3.35)

A = i i"(2n 4 1)Cyhy (25) Pl (cos §) (3.36)
n=0

¢ = ii”(?n + 1)A! jn () Pa(cos 6) (3.37)

n=0
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oQ

¢ =Y i*(2n+1)B)jn(x;) Palcos 0) (3.38)
n=0

A = Z i"(2n 4+ 1)CL jn (zL) Pl (cos ) (3.39)
n=0

where A and A’ represent the non-vanishing azimuthal components of A and A’. The j, are the
spherical Bessel functions and the h, are the spherical Hankel functions (actually A but
written h, here for convenience). The functions P, and P} are the Legendre functions and the
associated Legendre functions. The arguments of the Bessel and Hankel functions are z. = kca,

xy = kia and x5 = kga for the fluid and their primed equivalents for the solid.

The values of the unknown coefficients A,,, B,, C,, A/, B/, C! are determined by the boundary
conditions at the surface of the sphere. These condmons are that the radial velocity, tangential
velocity, temperature, heat flux, radial stress and tangential stress be continuous [25,26]. The
boundary conditions yield six simultaneous equations which may be solved for the six unknown

coeflicients.
These equations are

(a) continuous radial velocity

Tejl(Te) + m A (xe) + tBuhl (z4) — Cun(n + 1) ha(zs)
= (_iw) {T Alljn( ) + TtBn]n(Tt) Ovlln(n + 1)371(Té>] (340}

(b) no-slip condition (continuous tangential velocity)

jn(mc> + Anhn(l‘c) + Bnhn(l‘t) - Cn [hn(-rs) + CL‘Sh/ (Ts)}
= (“l&)) {Anjn( ) + ann(rt) 07/1 [-7 ( ) + xs]n(/ts”} (341)

(c) continuous temperature

be [n(we) + Anhn(@e)] + b Bl (20) = (=1w) [beAy gn () + b Brjn (1)) (3.42)

(d) continuous heat flux

K {be [xcjy, + Antehy (we)] + Babihy (20)} = (—iw) K’ [A bty (x0) + Brblyjn(zt)] - (343)

(e) continuous radial stress

D {162 - 222) juled) — 22271(2)]
+ An [(22 = 222) ha(ze) — 222001 (2c)]
By [(22 = 227) ha(zy) — 222 (20)] + Cu2n(n + 1) [zhy, (zs) — ho ()] }
= 4, [(wpa® - 'T’Q) a(ze) = 20’22 (x)]
+ B, [(w?p'a® = 20/a?) gulat) — 20'25) (2))] + Cr2u'n(n + 1) (257 (€0) — Fn ()]
(3.44)
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(f) continuous tangential stress

1{Tedn(@e) = fn(@e) + An [Tehy,(2e) = n(ze)]

+B [wehyy (w) = ha(ze)] = Cn [22h)(25) = (n® + 1 — 2)hn(2s)] /2}

= ' {45, [wedn (x0) — du (@] + By, (205 (20) — jn(2)]

—Cy, [2ddn(xg) — (n® + n = 2)ja ()] /2} (3.45)

where the primes on the spherical Bessel and Hankel functions denote differentiation with respect

to the argument.

In the thermally non-conducting case the conditions on temperature and heat flux are dropped.

The attenuation of sound in suspensions and emulsions arises from energy scattered by the
sphere to infinity, i.e. distances r with k.r 3> 1, as well as the energy absorbed in the vicinity of
the particle. The scattered energy is just that contained in the reflected compression wave, ¢,.
The viscous shear and thermal waves that are produced at the fluid-particle interface are damped
close to the boundary, (recall from page 22 that the e-folding length for these waves is the
thickness of the boundary layer) and do not contribute to the scattered field at large distances
from the particle.

The energy absorbed can be obtained by writing the total velocity potential at infinity in terms
of incoming and outgoing waves. Then the difference in the energy carried by these waves yields
the energy absorbed by the medium.

In this way the attenuation of the incident wave is found to depend explicitly on the coefficients
of the reflected compression wave, A,, only [26]. The attenuation coeflicient due to viscous

absorption, thermal absorption and scattering, expressed in dB m~! may be written

3 o
oy + oy + as = (10loge?) {"ﬁ—k—;czg Z (2n + 1)§R(An)} (3.46)
< n=0

where € is the volume fraction of suspended particles. More generally, both the attenuation and

phase speed may be evaluated from the single scattering equation

Fgus \ 2 36
SUS ) E : , 3.47
( Py ) 1+ a7 2 (2n+1)A, (3.47)

where kgys is the complex wavenumber for the suspension. The total attenuation coefficient,
& = @y + ot + as, and the phase speed, ¢, may be determined from the imaginary and real parts

of the complex wavenumber respectively.

AL S (3.48)

ksus - -
Cs + 101oge?
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3.3 Multiple scattering

This thesis is concerned with acoustics in dilute suspensions in which the effects of particle
interaction and multiple scattering are not significant. The validity of the dilute approximation
was examined in Sections 2.4 and 2.5. However, it is interesting to see how one might proceed in

nore concentrated suspensions in which the dilute approximation is not valid.

A number of multiple scattering equations exist, the simplest of which is that of Waterman and

Truell [28]. For values of n from 0 to 2 this gives

ksus 2 3e 2762
( > =1+ W (Ap+ 341 + 5A2) — (A(]Al -+ 5A1A2) (349)

k. kSaS

Lloyd and Berry [29] also give a multiple scattering equation, which differs from Equation 3.49 in

that it contains an additional term in €2

ksus 2 3¢ 2762
=i ik3a® (4o + 341 +54s) — L6406 (AoA1 + 541 45) (3.50)

54¢2

5 115
2 2
_ —k‘EQG <A1 -+ §A0A2 + 34,4, + ———21 Az)

3.4 Simplifications

For the case of mineral particles suspended in water the thermal losses are negligible, as shown
by the result in Figure 4.2 on Page 36. Therefore heat conduction may be ignored and kf and k.
are purely real. In contrast both ky and k. are complex. However, it is clear from Equation 3.19
that the imaginary part of k. is negligibly small for all practical frequencies and k. may therefore

be considered to be real. On the other hand the real and imaginary parts of ks are equal.

Now, from Equation 3.21, the magnitude of the scattering parameter for the shear waves in the

ambient fluid may be written

coax 1/2
|z = < P > (3.51)

Hay and Mercer [15] simplified the algebraic solution of the AH equations in the absence of
thermal conduction by employing the asymptotic form of the spherical Hankel function of

argument zg, i.e.

hn(zs) = (1/zs) explifzs — (n+ 1)7/2]] (3.52)

The condition for the use of this form of the spherical Hankel function may be written

lzs] > n(n+1)/2 (3.53)

From Equation 3.51 it may be determined that this condition is not satisfied for very fine

particles (O(1 pm)) suspended in water at the lowest frequencies of interest (O(10 kHz)). In this
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regime the full AH solution would be required. However, for the case of larger particles, such as
sand grains (O(100 pm)), use of the asymptotic approximation is appropriate.

Hay and Mercer proceeded with a partial wave method as described in Section 2.5, recognizing
the following relationship between the partial wave phase shift, 7,,, and the coefficient 4,, of the

AH theory

Ap = —isinn,e™ " = —itann,/ (1 +itann,) (3.54)

Hay and Mercer employed the standard recursion relations for the spherical Bessel and Hankel
functions to eliminate the second derivatives of these functions in the AH equations. They then
proceeded to reduce these equations to the forms shown below (correcting a typographic error in
their paper).

The phase shift 7,, of the nth partial wave is given by (c.f. Equation 2.39)

[tan an (2c) + tan U, (zf, zl)] (3.55)
[tan Bn(zc) + tan ¥, (xL, z1)] '

tanmn, = tand,(z.)

where

tan 8, (2) = — ju () /Mn () (3.56)
tan g (2.} = — Zejn /inlTe) (3.57)
tan B, (zc) = — xenl, /nn(ze) (3.58)

and the properties of the materials enter the problem through the term tan W, defined as

Cs(n? +n)bstan A, — Bs [(Tn(zs) + 1] tané, (3.59)
1+ 5s (2tan A, — tanéy) '

tan¥,, =

where

tan A, = ( tanan(zg) +G(n? +n) (0 +n) [P(a) G )
" tan oy, (27) + 1 — B:lTn(s) Q(zh) + BsCsTn(zs)
(n? +n) [l — Bsls(1 — izs)] — 22/2 + 2 tan s ()
x ( tana, (L) + 1 — BsGTn ()
— (n? R(x{) + BsG(1 — ix) > - 3.60
0w + ) e

and
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an — ) + ﬁsCs(l - 1$s> tan aﬂ( c) + Cs(n + n)
‘ 671 {< (33/)+5Cfn( s) > <tanan( )+1_/BSC5 ( ))
B < n? +n xl) — CJ) <(n2 +n) (1 = Bsls(1 —izs)] —x’2/2+2tanan($é)>}
+/BSC5 ( ) tanan( )+ 1 — B¢ I ( )
{( n? +n (1~ BsCs(1 —iws)] — a2/2 + 2tan o, (al)
tan o (@) + 1 — BoCGIn(s)
o BlED) A AG (L )\ T
o e ) ) o0
with

3.62)
3.63)
3.64)
3.65)
3.66)
3.67)
3.68)

By =iwn/u' = (pz) / (p'a%)

Cl=1+iz,

P(zl) =[1 —tanap (2))]”"

Q(z}) = P(a}) [tanay (al) + (n® + n — 1) — /2]
R(zl) = P(x)) [tan () + 1]

Tolzs) = (02 4+n—1—24/2 —izg)

bs = pal2 /20" + Bo(n? + n)[1 + G (1 — izg)]

P e s S P

The tan ¥,, are the analog of the tan ®,, discussed in Section 2.5, but include the effects of

viscosity. In the inviscid limit they become identical, i.e.

lim tan ¥, (z', 2, xs) = tan ®,, (', zl) (3.69)

n—0 LRt 8]

As with the AH model, the total attenuation coefficient is given by (c.f. Equation 3.46, neglecting

thermal absorption);

3 o0
o + as = (10loge?) {_é—k_;ajz(gng{h 1)%(/1”)} (3.70)
€7 n=0

whilst the scattering and viscous absorption components respectively are given by [26]

= (1010ge2){ CTETE Z 2n 4+ 1)|A,[? } (3.71)

n=0

= (10loge?) {—Q;’TEGS i(2n+l) [|An? +§R(An)}} (3.72)
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3.5 Numerical methods

The AH model for scattering of plane waves from a thermally conducting, elastic sphere in a
thermally conducting viscous fluid has been implemented in Fortran. The six simultaneous
equations derived from the boundary conditions (Equations 3.40 to 3.45) are formulated as a
matrix equation, and the complex spherical Bessel and Hankel functions j,(z;) and hg)(zl) are

evaluated from their cylindrical counterparts J, (z1) and H,El)(zl) using the defining

Jn(z1) = w/%IJWMm (3.73)

expressions [30]

and
R () = [ H ) (m =1,2) (3.74)
1

Note that for n = 0 Equations 3.41 and 3.45 are not valid and the problem reduces to four
simultaneous equations. Similarly the terms in C,, vanish because of the factor n(n + 1).
Physically this is to be expected because the transverse waves should not enter into the problem
for the spherically symmetric n = 0 mode.

The Bessel and Hankel functions of complex argument and non-integer order are evaluated in
double precision using standard subroutines® from the Numerical Algorithms Group (NAG)
Fortran subroutine library.

The first and second derivatives of the spherical Bessel and Hankel functions are calculated using

the following expressions [30]

f?g(zl) = :—lfn(zl) e fn+1(21) (375)
and
= 2(—rﬁ;;—l—)fn(zﬂ - 2”: lfn+1(zl) + fri2(z1) (3.76)
41 o

where fn(z1) may be j,(z1) or A (z1).
As a check on the accuracy of the spherical Bessel and Hankel functions and their first and second
derivatives the Wronskian determinants are calculated and compared with their expected values.

The Wronskian determinant for j,(z1) and h,(z1) and their first derivatives is given by [30]

n(21) ! (1) i
/;77(11)((21) hil)(/(zl) [: ) (3.77)

22
1

The Wronskian determinant for the second derivatives may be obtained analytically from the sine

and cosine representations of the zero order spherical Bessel and Hankel functions, i.e.,

2 Subroutines SI7TDEF and S17DLF.
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sin z1

Jo(z1) = (3.78)
z1
and
]1(()1)(21) _ S1It 27 _ 1CO8 z1 (379)
zZ1 2
Differentiating these twice and evaluating the determinant yields
(s o _9;

D (z) A (z) z

The complex double precision matrix equation which is formed from the six simultaneous
equations derived from the houndary conditions is solved to give the values of the unknown
coefficients using a standard NAG routine®, after having first been LU factorized by another
NAG routine*. The process of LU factorization is a numerical technique to facilitate the solution
of the matrix equation. The matrix is factorized into a lower triangular matrix, an upper

triangular matrix and a diagonal matrix.

Thermal dissipation can be turned off in the model by dropping the boundary conditions on

temperature and heat flux, and solving the remaining four simultaneous equations.

There are a number of difficulties associated with the numerical solution of the AH equations:

e There are typographic errors in the papers
e Very large amplitudes may arise in the Bessel and Hankel functions

e The matrix is ill-conditioned

Whilst the implementation of the AH model described above generally yields a good solution
over the parameter range considered, some numerical artefacts were observed due to these issues.
Other researchers have spent many years addressing these problems and it was therefore felt

pragmatic to use one of the well developed and tested models.

3.6 Other models

In Chapter 2 a method was described for deriving the visco-inertial absorption coefficient, based
on simple energy balancing arguments. Also described was a partial wave expansion for
computing the attenuation due to scattering and a simple heuristic approximation to this. In this
chapter a model for attenuation by a thermally-conducting, elastic sphere suspended in a
thermally-conducting, viscous fluid was described. Chapter 5 will discuss the derivation of a wave
equation for propagation in suspensions, using an approach similar to that employed in

Chapter 2.

Other researchers have adopted different theoretical approaches to the problem and those of note

are simply mentioned here for completeness.

3 FO7ASF
4 FOTARF



Summary and conclusions 34

Temkin and Dobbins [31] describe the viscous and thermal losses in terms of relaxation
phenomena, using equations which take the same form as the equations for molecular relaxation

due to a sound wave.

Morfey [32] extended Temkin & Dobbins’ analysis to include compressible particles (or bubbles).
This leads to an additional relaxation mechanism in which pulsations of the suspended particles

are resisted by the shear viscosity of the surrounding fluid.

There exists a category of model collectively known as coupled phase models. These, in common
with the wave equation approach discussed in Chapter 5, are continuum models. They are based
on the same set of equations as the scattering models i.e. the conservation equations and
equations of state. These are then ‘coupled’ via a momentum transfer term in the momentum
equations and a heat transfer term in the energy equation. The fact that the two phases occupy
the same volume of space is accounted for by means of volume averaged variables, which has the
effect of coupling the continuity equations. Coupled phase theories fall into two categories. The
first [33,34] assumes an incompressible particular phase and allows for heat transfer between the
phases. The second [35-37] allows for a compressible particulate phase but neglects heat transfer.
A coupled phase theory which accounts for both a compressible particulate phase and heat

transfer has also now been developed [38].

Several other researchers have published treatments which are derivatives or special cases of

theories which are covered elsewhere in this thesis or mentioned above and these are not

discussed further.

The model which contains the fewest number of assumptions and approximations is the Allegra
and Hawley model discussed in this chapter. Therefore this model has been chosen as the

benchmark against which to compare the predictions of the models discussed in Chapter 2.

3.7 Summary and conclusions

In this chapter a rigorous method was introduced for calculating the attenuation due to
scattering and absorption by a suspension of spheres. In this treatment the spheres are elastic
and thermally conducting, and are free to move in a viscous and thermally conducting fluid. This
approach implicitly includes visco-inertial absorption, thermal absorption and scattering, and
represents the benchmark solution to the problem for dilute suspensions of spheres.

In Chapter 4 the predictions of the models presented in Chapter 2 will be compared against the
results of the treatment discussed in this chapter. Chapter 4 then goes on to use the models to
calculate the magnitude of the effects under investigation and to study the importance of the

relevant physical parameters.



Chapter 4

Model results

Pluralitas non est ponenda sine neccesitate.
William of Ockham (ca. 1285-1349)

Physics should be made as simple as possible, but not simpler,
Albert Einstein (1879-1955)

4,1 Results

4.1.1 Introduction

In this chapter results from the models described in Chapters 2 and 3 will be presented and
compared. These results will show how the scattering and absorption models discussed in
Chapter 2 compare to the benchmark model discussed in Chapter 3 over the parameter range of
interest. Further results will be presented to show how the magnitude of the absorption varies

with the key parameters.

4.1.2 Comparison of models

Figure 4.1 shows the results of calculating the attenuation for a suspension of quartz-like spheres
in pure water using the AH model presented in Section 3.2 and the explicit models for absorption
and scattering presented in Sections 2.4 and 2.5. Thermal absorption was included in the AH
calculation, but no explicit model for thermal absorption has been included. The figure shows
results for calculations at frequencies of 1 MHz and 100 kHz and the attenuation has been
normalized with respect to mass concentration of the suspended material. The attenuation in
dBm™! can thus be obtained from this plot by reading the normalized attenuation off the vertical
axis and multiplying by the sediment concentration in kgm™3. The results from the AH model
presented in Figures 4.1 and 4.2 were calculated for the author by Dr. Andrew Holmes of

Nottingham University [39]

As can be seen from the figure, there is excellent agreement between the models, with the two

curves at each frequency overlaying almost exactly. It will be noted however that in the 1 MHz
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Figure 4.2. Calculated attenuation for a suspension of quartz-like spheres, with and without thermal

losses.
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case the two models begin to depart at the upper end of the particle size range. This is where
scattering begins to be important and there is some disagreement between the AH model and the
high-pass model in this area. This region is characterized by intermediate values of ka and
agreement between the models could be improved by adjusting the value of £ in the high-pass

model. In this calculation the default value of £ =1 has been used.

Figure 4.2 shows the effect of thermal losses at 1 MHz and 100 kHz for quartz-like spheres
suspended in water. The figure shows the results of running the AH model twice, once with
thermal effects included and once without. Again the curves at each frequency overlay each other

almost exactly indicating that thermal losses are negligible in these cases.

These two figures clearly demonstrate that the magnitude of the thermal absorption is very much
smaller than the magnitude of the visco-inertial absorption for quartz-like particles suspended in
water. The thermal effects can therefore be ignored for quartz-like particles suspended in water,

as suggested by the good agreement between the non-thermal AH calculation and the Urick

calculation shown in Figure 4.1.

For other materials, however, the thermal effects may be more significant and may even be the
dominant absorption mechanism, as is the case for polystyrene spheres suspended in water [26].
The important factor in determining the thermal losses is the difference in the ratio 8/(pC,) for
the solid and suspending fluid. The absorption depends upon the square of this difference [26]
which is an order of magnitude greater for polystyrene in water than for quartz in water.
Additionally, the density of polystyrene is close to that of water, so the visco-inertial contribution
is very much smaller for polystyrene than for quartz. Whilst polystyrene is clearly not relevant to
the present study, it is likely that organic material might have a density close to that of water,
and the thermal properties might be such that thermal effects become important. Where there is
a large density contrast between phases, as for mineral particles suspended in water, the
visco-inertial term is dominant.

These results demonstrate that Urick’s equation for visco-inertial absorption agrees well with the
more complete AH model over the parameter range of interest, and the simpler model will

therefore be used in the remainder of this thesis.

4.1.3 Attenuation calculations

The results presented in this section were calculated using Urick’s equation for visco-inertial

absorption (Equation 2.31) and the high pass model for scattering (Equation 2.45).

Except where otherwise stated, the physical parameters of the sediment material and the
suspending fluid are as shown in Table 4.1. These parameters are representative of quartz
particles suspended in seawater [40]. Quartz has been used as a generic mineral material for the

purposes of example calculations throughout much of this thesis.

Density, p | Compressibility, £ | Kinematic viscosity, v
kgm ™3 Pa~! m2s7!
solid 2600 2.71 x 1071 —
fluid 1028 4.31 x 10710 1.478 x 107°

Table 4.1. Physical parameters of sediment particles and ambient fluid [40].
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Figure 4.3. Calculated attenuation coefficient for quartz particles suspended in seawater.

10 T
8 |
€
=
U)6 n
=2
ke
@
o0
(6]
£ 4r 7
IS
a
2 ]
0 | ! L |

0 200 400 600 800 1000

Frequency (kHz)

Figure 4.4. Locus of viscous absorption peak in the frequency-size domain for quartz particles suspended

in seawater.
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Figure 4.3 shows the calculated attenuation as a function of frequency and particle radius for a

suspension of quartz particles in seawater.

The peak in the high frequency and large particle size region of Figure 4.3 is the contribution due
to scattering, which becomes important in this region of parameter space due to the increase in

the scattering parameter, ka.

The peak in the high frequency and small particle size region of Figure 4.3 is the peak due to the
visco-inertial absorption contribution, which achieves a maximum as a result of the relative
effects of particle mass and surface area. This peak moves to larger particle sizes as the acoustic
frequency is reduced. This behaviour is shown by the bold curve on the plot, which is the locus
of the visco-inertial absorption peak. The locus of the peak in the frequency-size domain is shown

in Figure 4.4.

4.1.4 Comparison with clear water attenuation

Figure 4.5 shows the total attenuation due to seawater and suspended sediment. The attenuation
due to the suspended sediment was calculated using Equations 2.31 and 2.45, assuming quartz
particles of radius 3 um and a concentration of 0.2 kgm™3. The particle size was chosen to be

3 pm as this gives the largest attenuation at 100 kHz (see Figure 4.4), a frequency in the range of
interest for high frequency sonar applications. The contribution due to the seawater was
calculated using the Francois & Garrison expression (Equation 2.4), assuming a temperature of

4°C, salinity of 35, pH of 8, and a pressure of 1 atmosphere (i.e. near surface).

The solid bold curve in the figure is the total attenuation for seawater containing the sediment,
whilst the lighter solid curve shows the total attenuation for clear seawater. The broken curves
are the individual contributions due to particles (scattering and absorption), pure water and the
boric acid and magnesium sulphate relaxation processes. From Figure 4.5 it can be seen that in
the frequency range of interest (50 kHz — 300 kHz) the total acoustic attenuation coefficient is
significantly greater than that due to seawater alone, with the difference being approximately
0.03 dBm~" at 100 kHz. This means, for example, that for a total propagation path length of
200 m, the additional attenuation due to the presence of a suspension of 3 um quartz particles
with a concentration of 0.2 kgm™3 would be 6 dB for a sonar system operating at 100 kHz. This

corresponds to reducing the intensity at the receiver by a factor of 4, and is thus significant.

Figure 4.5 also demonstrates that the total attenuation approaches the pure water attenuation
asymptotically at very high frequencies (f > 1 MHz), and at very low frequencies (f < 100 Hz)

the boric acid relaxation is the dominant process.

4.1.5 Effect of particle size distributions

The results presented thus far have all been obtained assuming that all particles in the
suspension have the same radius (i.e. a monodisperse suspension). However, in the natural
environment we know that there will be some distribution of particle sizes. It is therefore useful

to investigate the effects that such distributions would have on the acoustic losses.

In-situ measurements of suspended particle size distributions in estuaries [41] have shown that
such distributions often follow a log-normal curve, sometimes with a ‘tail’ of fine particles.

Figure 4.6 shows log-normal distributions with and without this tail, where both distributions
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Figure 4.5. Attenuation coefficient for seawater containing suspended quartz particles, using Equa-
tions 2.31 and 2.45 with the solid parameters given in Table 4.1, and Equation 2.4 with © =4°C, § = 35,
p=1atm, and a pH of 8.

have the same total concentrations of 0.2 kgm =3,

The simplest method of calculating the attenuation arising from a distribution of particle sizes is
to integrate over a series of single-size calculations of the form presented above, using a series of

particle sizes and concentrations to represent the complete distribution. Figures 4.7 and 4.8 show
the results of such a calculation for the distributions shown in Figure 4.6. In these calculations

the particle size distributions have been represented by 100 regularly spaced bins.

Figure 4.7 shows the attenuation due to the distributions shown in Figure 4.6. The solid line here
refers to the attenuation due to the log-normal distribution, and the dashed line refers to the

distribution with a tail of fine particles, consistent with the notation of Figure 4.6. The dotted



Figure 4.7. Attenuation due to the particle size distributions of Figure 4.6, calculated using Equations 2.31

and 2.45.
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line represents the calculated attenuation for a suspension of particles which all have the same
radius of 10 pm.

Figure 4.8 shows the difference between the calculated attenuation coefficients due to the
distributions shown in Figure 4.6, and the attenuation coefficient calculated for a single mean

particle size of 10 pum.
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Figure 4.8. Difference in attenuation due particle size distributions of Figure 4.6 and single mean particle

size of 10 pm.

The results shown in Figure 4.8 clearly demonstrate that for the case considered here, performing
the attenuation calculations for just the mean particle size would significantly underestimate the
actual attenuation due to the full distribution. Similarly, the tail of fine particles contributes

significantly to the attenuation coefficient.

Let us now apply these results to the prediction of the performance of an active sonar operating
at 300 kHz, for a target at range 250 m, corresponding to a total straight-line propagation path
of 500 m. If the real suspended sediment particle size distribution was given by the log-normal
distribution with a tail of fine particles shown in Figure 4.6, then assuming the log-normal
distribution would underestimate the propagation loss by 3.75 dB, and assuming all particles had

the same radius of 10 pm would underestimate the loss by 6 dB, a factor of 4 in intensity.

It should also be realized that, in some circumstances, assumption of a single mean particle size
could lead to an overestimate of the attenuation. For example, if the attenuation was calculated
for a particle radius lying on the peak of the viscous absorption curve in Figure 4.3 at some
frequency, then some distribution centred on this mean (or modal) particle size would give a

lower attenuation for the same total concentration.

It is instructive to perform a check on whether a sufficiently large number of bins was used to
represent the distributions in these calculations. Figure 4.9 shows the peak error in the
calculation of attenuation due to the log-normal distribution of Figure 4.6 as a function of the

number of bins. The error here is defined as being the difference between the attenuation
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Figure 4.9. Peak error in the calculated attenuation as a function of the number of bins used to represent

the size distribution.

calculated with a given number of bins and that calculated with 1000 bins. As expected, the
error approaches zero as the number of bins becomes large. With 100 bins used to represent the
distribution the peak error is about 10™° dBm ™!, as compared with a maximum attenuation of
about 0.066 dBm™! (Figure 4.7). This represents a fractional error of only 0.015%, suggesting
that, in this case, the distribution could have been represented by far fewer than 100 bins.
However, since the computational requirement for these calculations is fairly trivial 100 bins were

retained.

4.1.6 Effect of particle density

In addition to considering the effects of particle size distributions on the attenuation, it is also
interesting to look at the nature of the particles themselves. In the natural environment,
particularly in estuaries where fresh water flows into more saline water, small clay or mineral
particles have a tendency to flocculate as a result of biogeochemical processes. Development of a
rigorous mathematical treatment of the ahsorption and scattering by such flocs is a complex
problem, and even an approximate method for dealing with them will require much further work
(absorption by simple non-spherical bodies is discussed in Section 5.4). However, since we know
that the average density of a floc must be lower than that of the homogeneous particles considered

so far, it may be useful to investigate the effects of particle density on the attenuation coefficient.

Figure 4.10 shows the calculated attenuation coefficient as a function of particle radius, at a
frequency of 200 kHz, for three different particle densities. This shows that reducing the density
reduces the attenuation. This is the expected result because as the density of the particle
approaches the density of the ambient fluid, the difference between the inertia of the particles
and that of the fluid decreases, and the velocity difference between the particles and fluid, from

which the viscous absorption arises, therefore decreases. The figure also shows that the
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absorption peak moves to larger particles as the density is reduced. This may be explained by the
fact that for a particle of a given mass (and thus inertia), the lower the density the larger the
particle must be. The scattering term is not apparent in Figure 4.10 because for the range of
particle sizes plotted scattering is negligible at 200 kHz.

Figure 4.11 presents the effects of particle density in an alternative way. This figure shows the

calculated attenuation as a function of particle density for three different particle sizes and two

different frequencies.
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4.1.7 Effect of sediment concentration
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Figure 4.12. Attenuation as a function of mass concentration for three particle sizes at 100 kHz and
200 kHz.

Figure 4.12 shows the calculated attenuation as a function of sediment mass concentration for
three different particle sizes and two different frequencies. The linear dependence on
concentration is an assumption of the models, as discussed in Chapter 2. It was demonstrated
there that this assumption, which implies that interparticle effects may be neglected, is valid for

all concentrations and parameter ranges considered here.

4.2 Summary and conclusions

In this chapter results are presented from the models of ultrasonic absorption discussed in

Chapters 2 and 3.

It was realized that the assumption of an inviscid fluid in the scattering models was inconsistent
with the viscous absorption model. In order to address this issue and provide some validation of
the independent models for absorption and scattering the AH model was employed. This model,
which was described in Chapter 3, includes the effects of scattering, viscous absorption and
thermal absorption which was not considered in the simple models at all. The results of the AH
model were compared with the predictions of the simpler models, and found to be in very good
agreement over the parameter range of interest. It was also shown that the thermal absorption

contribution was not significant for the cases considered.

The generally good agreement between the AH model and Equations 2.31 and 2.45, over the
parameter ranges considered in this thesis, led to the use of the Urick model for viscous
absorption combined with the high pass model for scattering for the parameter sensitivity study

presented in this chapter and the remainder of the thesis.
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The results presented demonstrate that the attenuation coeflicient of seawater, at frequencies in
the range tens to hundreds of kHz, may be significantly increased by a suspension of mineral
particles at concentrations typically observed in turbid coastal environments. The effect of
distributions of particle sizes was investigated by integrating the attenuation calculations over the
size distribution. In this way it was demonstrated that significant errors in the estimation of the
attenuation coefficient could result if calculations were carried out using a mean or modal particle

size, as opposed to taking the full distribution into account.

It was found that, over the parameter range of interest to the present study, viscous absorption is
the dominant attenuation mechanism associated with the presence of suspended particles. Since
the density of the particles is a key parameter governing this phenomenon, the sensitivity of the
attenuation to density was investigated, the results showing how the attenuation depends on

density.

Finally, although a linear dependence on suspension concentration is implicit in the models used,
the attenuation as a function of concentration for two frequencies and three particle sizes was

presented.

In addition to the additional attenuation discussed theoretically in Chapters 2 and 3, and
investigated numerically in this chapter, suspended particles may also modify the sound speed.
The next chapter discusses the calculation of sound speed in suspensions, and describes a model
based on the formulation of the wave equation for sound propagation in suspensions. This
formulation also yields the attenuation in such a way as to facilitate the treatment of

non-spherical particles. This will also be discussed in the next chapter.



Chapter 5

The wave equation, complex wavenumber and

non-spherical particles

5.1 Introduction

In this chapter the wave equation for sound propagation in dilute suspensions is introduced. This
formulation allows the phase speed to be inferred from the wavenumber and, since the

wavenumber is complex, the attenuation may also be obtained.

In addition to increasing the attenuation, the presence of suspended mineral particles may also

affect the sound speed in suspensions.

It might be expected that estimates of the sound speed in a suspension may be obtained by
simply considering that a fraction of the volume of the water has been replaced with solid
particles with a higher bulk modulus and density. It is shown in this chapter that this bulk
averaging approach does not always predict the correct sound speed, and a different technique

must be employed.

Using simple considerations of mass and momentum balances on a sufficiently small,
homogeneous and compressible volume element of a suspension, Ahuja [42,43] has formulated a
wave equation for the propagation of sound in suspensions or emulsions. This approach has been
used here to calculate the sound speed in aqueous suspensions, and the main elements of his
derivation are reproduced in Section 5.3.2. This approach is generic to both suspensions and
emulsions in that the suspended particles are assumed to be spheres of viscous fluid. Rigid
particles are accounted for by employing a very large viscosity.

In addition to the sound speed the formulation of the wave equation for sound propagation
through suspensions yields the attenuation coefficient through the the complex wavenumber. It
will be shown that the visco-inertial absorption derived in this way is equivalent to the expression
due to Urick (Equation 2.31) presented in Chapter 2. The wave equation formulation facilitates
the task of considering attenuation by non-spherical particles by employing correct expressions
for the drag force acting on non-spherical bodies. This approach will be used to model the

attenuation due to suspensions of oblate and prolate spheroids.

47
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5.2 Speed of sound - bulk averaging approach

The speed of sound in a fluid is given by

B
c= \/; (5.1)

where p is the ambient density of the fluid and B is the bulk modulus, defined as the fractional

volume change dV resulting from a pressure change dp, i.e.

dp

B=-V— 5.2
dv (5.2)
From Equations 5.1 and 5.2 we have
dV dp
A 5.3
V c2p (5:3)
So, for a pressure increase of Ap the volume change is given by
VA
AV = =P (5.4)
cop

In an aqueous suspension consisting of a volume V of water of density p with sound speed ¢ and
a volume V" of solid particles of density p’ with sound speed ¢’ the volume changes of the water

and solid components resulting from a pressure increase of Ap are therefore given by

AV = — VQAP (5.5)
2p
and
V/
I (5.6)
c¢p

The total change in the volume of the suspension is then AVio; = AV + AV’ and from

Equation 5.2 the effective bulk modulus of the suspension is given by

Ap Ap
Vo= wvaevny—2E 5.7
Be= Vg =~V VIRy T AV (5-1)
Substituting for AV and AV’ yields
A
Be=(V+V") P (5.8)

<VAp> <V’Ap>
2 + 12 At
cep cep

Rearranging, we have
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This may be rewritten in terms of the volume fraction, €, recognizing that

4 v

€

ie.

e[ ()

Now, turning to the density, the average bulk deunsity of the suspension may be written

pV+p/V/
JP AL . 5.12
NN (5:12)
Again, writing in terms of ¢, we have
ps=(1—e€)p+ep (5.13)
Finally, from Equation 5.1, the sound speed in the suspension is given by

5.3 Formulation of the wave equation

The propagation speed for compression waves travelling through a suspension can be obtained,
together with the attenuation coefficient, by formulating the wave equation for propagation

through the medium. This was done by Ahuja [43], and his formulation is used here.

5.3.1 Equation of motion

The passage of an acoustic plane wave through a suspension or an emulsion causes the suspended
particles to pulsate and oscillate. Assume that the acoustic wavelength is large compared to the
particle radius (k.o < 1) and consider the region of fluid in the vicinity of the particle (ke < 1).
Under these conditions it may be shown [44] that, to second order in kca, the acoustic wave
equation reduces to V2p = 0. This is Laplace’s equation for incompressible potential flow and the
fluid in the vicinity of the particle may therefore be considered to be incompressible under the
above assumptions. As discussed in Chapter 2, viscous effects are important within the skin

depth of the viscous shear waves, d,, given by Equation 3.1.

Assuming then that the amplitude of the particle oscillation is very small compared with its size,
the linearized Navier-Stokes equations apply for the unsteady incompressible viscous flow in the
fluid surrounding the particle. If the molecular viscosity of the particle, 7', is at least one order of
magnitude greater than that of the surrounding fluid, 7, then the linearized Navier-Stokes

equation can be applied for the steady, incompressible flow inside the particle.

The pulsations of the particle are neglected and the following boundary conditions at the surface

of the particle are employed:
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e  zero radial velocity inside and outside the particle
e continuity of tangential velocity

e continuity of tangential stress

The complex drag force experienced by a spherical particle of radius @ may then be written (c.f.

Equation 2.14)

F= —Tm% — STWU (5.15)

where u is the instantaneous particle velocity and is defined as v/ — v, where v/ is the velocity of
the centre of the particle and v is the velocity of the fluid at the centre of the particle if the
particle were absent. The quantity m = %ng‘p is the mass of ambient fluid displaced by the

particle w is the angular frequency of the acoustic wave and 7 and s are given by

;e % + Ov { (2 + 37)° } (5.16)

da | [(+m) + an/30,)" + (an/36,)°
s=3 n (8" (L+a/6) [(n+7) + an/35.] + (n/3) (a/m?}
4 {(277 ) ( a ) [(n + ) + an/36,)° + (an/368.)° 47

Equation 5.15 is valid for viscous spherical particles with n//n > 10. In the limiting case of rigid

particles, 7' /n — oo, and Equation 5.15 reduces to that derived by Stokes (Equation 2.14).

As discussed in Section 2.4, the first term on the right hand side of Equation 5.15 represents the
inertial contribution to the complex drag force, and the second term represents the viscous

contribution .

Now, the equation of motion of the sphere oscillating in the sound field is
/
A _ o F 518)

which is equivalent to Equation 2.19. Using Equation 5.15 and the relation u = v/ — v, the
equation of motion may be written

7

d
(U+T)d_1; + swv’ = (T+1)% + swu (5.19)

where o = p'/p.
Again, it was shown in Section 2.4 that, assuming a sinusoidal time dependence, the equation of

motion may be solved to give the instantaneous particle velocity as

u = uge!@t#) (5.20)

where

o—1
’UO jroond 1/2 'UO (521)

52+ (0 +7)?]
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and

(5.22)

tang = n
o+T

Note that Equations 5.20 to 5.22 are equivalent to Equations 2.21 to 2.23 in Section 2.4.

5.3.2 Formulation of the wave equation - continuum approach

The treatment presented here is based on the analysis of sufficiently small volume elements which
may be considered to be homogeneous with respect to the acoustic field. For this to be valid the
volume elements must be small compared with the wavelength and large enough to contain many

particles.

In order to determine the range of parameters over which this condition is satisfied, consider a
cubic volume element with sides equal to one tenth of the acoustic wavelength in water and
assume that this volume element must contain at least 100 particles. It is then straightforward to
calculate the minimum volume fraction of suspended particles required to meet these criteria as a
function of particle radius for different frequencies. Figure 5.1 shows the results of such a

calculation for particle radii in the range 1 um to 100 pm, at 30 kHz, 100 kHz and 300 kHz.
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Figure 5.1. Minimum volume fraction necessary to satisfy the homogeneity condition at three frequencies

(see text).

This figure clearly shows that, as the particle size increases, greater concentrations are required to
satisfy the condition of homogeneity. This is to be expected since, for a given volume fraction, the
number of particles in a volume element decreases as the particle size is increased. The figure also
shows that, as the frequency is increased (and hence the wavelength is reduced) higher volume

fractions are required to meet the homogeneity condition as expected. Numerically it can be seen

that, at 100 kHz, the homogeneity condition is only satisfied for volume fractions € greater than
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about € = 10~ for particles smaller than about 10 um, and that at lower concentrations or with
larger particles the condition is not satisfied according to the criteria specified above. Of course,
in practice there will not be a sharp cut-off delimiting regions of parameter space for which the
present treatment does or does not apply, and it may be expected that the formulism will give

reasonable predictions for slightly lower concentrations and larger particles.

Assuming then that the above condition is satisfied or nearly satisfied, a volume element of the
suspension may be replaced, in the first approximation, by a homogeneous and continuous fluid

of temporally and spatially independent volume-averaged bulk density given by

pv=(1—¢€)p+ep (5.23)

and volume-averaged bulk compressibility given by

ky = (1 —€)k + er’ (5.24)

Now consider an acoustic plane wave propagating in the positive z-direction and consider a
volume dz of the suspension, containing many particles, bounded by unit areas of the planes

z = zg and z = zg + dz and the planes perpendicular to these. As described above, the
suspension in this volume element is replaced with a homogeneous and continuous fluid. Now, in
response to the passage of the acoustic disturbance the density, pressure and temperature of the
fluid undergo fluctuations as functions of both z and time, ¢. It is assumed that these

fluctuations are small with respect to the equilibrium values of the quantities involved.

In a thermally non-conducting medium the acoustic compressions are adiabatic and the pressure

and density fluctuations are in phase. In this case the density fluctuation, Ap satisfies

Ap = pKrp (5.25)

where p is the acoustic pressure.

If there is a contrast between the thermodynamic properties of the suspended particles and the
suspending fluid then their temperature fluctuations will be different, as discussed in Chapter 3.
This leads to a temperature gradient in a boundary layer surrounding the particle, with a

thermal skin depth of

Oy = 2K (5.26)
pCpw

(see Equations 3.1 and 3.2), where K is the thermal conductivity of the suspending fluid and C;,
is the specific heat capacity at constant pressure. Since thermal energy can flow between the
suspension components there is a net flow of energy from the acoustic field into heat (dissipation)
and the compressibility in the thermal boundary layer therefore becomes a complex quantity.
This complex compressibility of the suspension may be derived from scattering theory, and can

be expressed as

Ky = By + AR (527>
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with

wenfion(-528)' (2
o Few - <1 - Z;ﬁg;f <%) (1 + %)} } (5.28)

where v is the ratio of specific heats at constant pressure and volume and ¥ is the coefficient of

thermal expansion.

It is now assumed that the homogeneous, continuous fluid representing the suspension has a bulk
compressibility given by Equation 5.28. In the first approximation the linear relationship between

density and pressure fluctuations holds (strictly only true in a lossless medium) so that

A/) == PyvRsPsus (529)

where psys is the acoustic pressure in the suspension.

It is further assumed that, in the sound field, the homogeneous and continuous fluid enters the

volume element dz at volume-averaged values of velocity and momentum.

We may now proceed with the derivation of the wave equation by formulating the continuity

equation and momentum equation in the usual way.

Beginning with the equation of mass continuity, the mass flux entering the volume element at

section z = zg is

{(ov +Ap) [(1 =) v+ ']} (5.30)

20

and the mass flux leaving the volume element at section z = z5 + dz is

{(ov +2p) [(1T — v +ev']}, a4, (5.31)

The net mass of fluid leaving the element per unit time is therefore

O oo+ Ap) (1= v+ ev/]}dz (5.52)

The decrease in mass in the volume element with time may be written
o
5% (pv + Ap)dz (5.33)

so equating this with Equation 5.32 yields

ot a0 = 2+ 2 [ - v+ ) (5.34)

This equation may be linearized to give
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(A
2L D et - v) (5.35)

Now, substituting for Ap from Equation 5.29 and employing Equation 5.21 gives

apsus _ 1 — € (J B 1) eXp(—l«p) @ (5 36)
S or 1/2 )
(0477 +52] 9z

Turning to the momentum equation, balancing the total time derivative of the volume-averaged

momentum by the acoustic pressure gradient yields
Cl aZ)SUS
— (1 —&)pv+epv] = -2 5.37
3 (L= pv+ep] 3, (5.37)
The total time derivative may be written in terms of partial derivatives as

!

) , 9 0
E [(1—¢€)pv+epv]+(1— e)pvé—z +ep’v a—i (5.38)

from which the second and third terms, being of higher order, may be neglected to leave

a a sus
T [(1—¢€)pv+ep] = —% (5.39)

Substituting from Equations 5.19 and 5.20 gives

pg—z + pe <’T%—1§ + wsv) o ~1) exp(l—/lgp) - 51695:15 (5.40)
o™ T

Finally, differentiating the continuity equation (Equation 5.36) with respect to z and the
momentum equation (Equation 5.40) with respect to ¢ and eliminating the non-linear term

0?psus/ 020t gives the wave equation for acoustic plane waves propagating in suspensions:

v 1+ eL (7 + is) exp(—ip) ] (5.41)
022 \ pk (by +iby) [1 — eLexp(—iyp)] ) Ot2 '
where
/ —
L= ('/p = 1) (5.42)

AN 9 pC,\ 2 (6
11 ) ey o _ il 5.43
by =1 6<1 K>+25(/ 1)<1 I Cr . (5.43)

' pCy\ 2 [ 6, 5
by =2e(v—1)(1— b — = 5.44
2=2¢0 )< 19p’0,3> <a><1+a (544

and
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Kg = R (bl + lbz) (545)

Since the suspension is represented by a homogeneous fluid, the wave equation may be written

&%y ks \ O%v
0z \w ) (5.46)

where kgus is the wavenumber for sound waves of frequency w propagating in the suspension. As

the fluid representing the suspension is dispersive, the wavenumber may be written

w iC!vt

e Ihal AT 5.47
cs 10loge? (5.47)

ksus =

where ¢s is the phase speed of sound propagating in the suspension and @y is the sum of the

viscous ahsorption and thermal absorption coefficients.

Having derived the wave equation and complex wavenumber, it is now possible to extract

expressions for the sound speed and attenuation coefficients. Recognizing that ¢? = 1/kp we have

. 2 . .
w it w2 1 — el (T + is) exp({—ip)
L )y ==z b 5.48
<cs 1010ge2> (c) (b +ib2) 1 —eL exp(—ip) (5.48)

We now use the Euler relation
exp(—ip) = cosp —isingp (5.49)

and the binomial formula (for [eL exp(—i¢)] < 1)

1

N1+ elexp(—i 5.50
1 — eL exp(—ip) +eLexp(-i) ( )

to give

) - 2 )
(g; * ﬁ%g%) ~ (%) (b1 +1b2) [1 + €L cos ¢ — ieLsin ]
X [1+4 €L (7cosp + ssing)

+ieL (scosp — Tsin @) (5.51)

Neglecting higher order terms in ¢ this becomes

. 2 2
(24 me ) () et i+ ycoss + ssng)

WA 2
+1 <Z) {eLby [scosp — (T + 1)sing] + by} (5.52)

Taking the square root of both sides and using the binomial formula again gives
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w iy Wy 172 .
(2+ pis) ~ (5)8° (L ALl + Do+ ssinel)
o

+i (%) {eLby [scosp — (T + 1) sing] + ba} (5.53)

Since the sound speed depends only on the real part of the wavenumber, we can equate the real

parts of Equation 5.53 and substitute the expressions for b; and by to give

1 1 K ¥ pCu\? (6 2
—~ )l (l=—= ) +3e(vy—-1) {122 had
e (oD o (-78)
x {1+ LeL[(T+1)cosp + ssing]} (5.54)
The speed of sound propagation in suspensions is finally obtained by taking the reciprocal of

both sides, substituting the expressions for L and ¢ and using the binomial formula yet again.

The result may be written

<! 9 pCu\2 /6
L~ 1.(1_& B (n _ P 2
‘ C<1+26< H)“E(/ 1)<1 ﬁp’%) <a

o — o+T T 82
1 1)[(: )(1+7)+ l> (555)

The attenuation arises from the imaginary parts of the wavenumber, so equating the imaginary

components of Equation 5.53 we have

Qg

w
T0loec? ~ (%> {6Lb1 [S cosp — (7 1)sin gp} + b2} (5.56)

Substituting expressions for b1, L and ¢ and neglecting higher order terms in e gives

Qe W <(6(0‘—1)23_+bg> (5.57)

10loge?  2¢ \ (o +7)% + 52

As stated previously, the total attenuation coefficient, vy = o + @, s the sum of the
visco-inertial attenuation coefficient and the thermal attenuation coefficient. On examination, it
is clear that the thermal effects are contained within the by term, such that the visco-inertial

absorption coefficient may be written

oy ew (o — 1)2

10loge? 2c

: 58
82’%‘(0'—}*7’)2} (5.58)

It may be noted that Equation 5.58 for the visco-inertial absorption coefficient is identical to

Urick’s expression (Equation 2.31) on page 12.
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5.3.83 Simplification

It was shown in Chapter 4 that the effects of thermal dissipation are not significant for mineral

particles suspended in water, and this permits considerable simplification of the expression for

the sound speed in such a suspension.

Letting §; — 0 in Equation 5.54, rearranging and ignoring terms in €2 vields.
S Yt 3 S5 5 1S3 Yy

2~ [14(1—3/)}_1 L —clcosgp (5.59)
s K 1+ eL{(r +1)cosp + ssine}

Using the binomial formula once again and neglecting € terms we have

2 1 —eLcosyp } (5.60)

N02
s {[l—e(l—n’/n)] [1+eL(7cosp+ ssiny)]

This is the expression derived by Ahuja in Reference [42], in which he did not take thermal

dissipation into account.

5.3.4 Results

Using the bulk averaging approach described in Section 5.2 the sound speed may be calculated as

a function of volume fraction and the results of such a calculation for quartz particles are

presented in Figure 5.2.
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Figure 5.2. Sound speed in an aqueous suspension of quartz spheres as a function of volume fraction,

calculated using the bulk averaging approach.

This figure demonstrates that at low concentrations the sound speed is reduced as the
concentration increases, indicating that the increasing density dominates, whilst at higher

concentrations the sound speed increases with increasing concentration, indicating that the
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increasing bulk modulus has become the dominant effect. As the volume fraction approaches
unity the sound speed tends towards the sound speed in the solid as expected (not shown in this
figure).

Figure 5.2 may be compared with Figure 5.3, which shows the results of calculating the sound
speed at a frequency of 100 kHz, for spherical particles with density and bulk compressibility
comparable to those of quartz, as a function of volume fraction for four different particle radii.
These curves were calculated using Equation 5.59 rather than Equation 5.60, i.e. without the
final use of the binomial approximation and omission of €? terms. It was found that, whilst
Equation 5.60 is generally a good approximation to Equation 5.59, it does diverge slightly for the

smallest particles.
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Figure 5.3. Sound speed in an aqueous suspension of quartz spheres as a function of volume fraction for
three different particle sizes, calculated using Equation 5.59.

It is clear from these two figures that the bulk averaging approach of Section 5.2, which does not
include any dependence on particle size, does not generally predict the correct sound speed for

propagation in suspensions.

Investigating the dependence on particle size further, it is interesting to plot the sound speed as a
function of particle radius for a fixed concentration. Figure 5.4 shows such a plot for a volume
fraction of 0.01, with the prediction of the bulk averaging model shown for comparison. Clearly
there is a significant dependence on the particle size over this range. However, the sound speed
becomes independent of particle size for very small and very large particles, and the two methods

converge when the particle size becomes very small.

The reason that the sound speed depends on the particle size is that, in fact, it is determined not
only by the compressibilities of the suspension components, but also by the inertial part of the
complex drag experienced by the oscillating particle. The fact that the sound speed becomes
independent of particle size for very small and very large particles may be explained in terms of

the phase lag between the particles and the fluid oscillating in the acoustic field. Very small
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Figure 5.4. Sound speed as a function of particle size, calculated using Equation 5.14 and Equation 5.59.

particles have little inertia, and can therefore oscillate in phase with the acoustic field, whilst
very large particles have a large inertia and do not therefore respond to the acoustic field. In each
case the phase lag becomes independent of the particle size, and consequently so does the sound
speed. It may be seen from this result that, in order to calculate the sound speed over the range

of particle sizes and frequencies of interest, the bulk averaging method will not be sufficient, and

the wave equation approach is required.
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Figure 5.5. Sound speed in an aqueous suspension of glass spheres over the volume fraction range of

interest for the laboratory experiments of Chapter 6.
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Finally, Figure 5.5 shows sound speed as a function of volume fraction over the range of interest
for the experimental measurements discussed in Section 6. This result shows that the variation in
sound speed caused by the introduction of the particles into the experiment is very small

(typically less than 0.01%).

5.4 Non-spherical particles - visco-inertial absorption and phase speed

5.4.1 Introduction

Thus far only spherical particles have been considered. Natural marine particles are not, of
course, spherical (see Section 6.4.3) and an approach is required to estimate the absorption due
to non-spherical particles in suspension. To attempt this by employing scattering theory involves
significant additional complication and the problem rapidly becomes intractable. However the
formulation of the wave equation for acoustic propagation in suspensions, presented in

Section 5.3, allows non-spherical particles to be accounted for by employing correct expressions

for the drag force acting on non-spherical bodies [45].

Oblate (h<1), parallel flow

Prolate (h>1), parallel flow

Prolate (h>1), perpendicular flow .
Oblate (h<1), perpendicular flow

Figure 5.6. Oblate and prolate spheroids oriented with their axes of symmetry parallel or perpendicular
to the direction of motion through the fluid. The motion is parallel to the axis plotted.
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The non-spherical particles considered in this analysis are oblate and prolate spheroids, together
with their degenerate forms of circular disks and cylindrical needles. Reference [45] gives results
for spheres and oblate and prolate spheroids with the same volume, and the same examples are

also used here. Figure 5.6 shows oblate and prolate spheroids orientated with their axes of

symmetry parallel or perpendicular to the direction of motion.

5.4.2 Theory

In this analysis only visco-inertial absorption is considered and the dilute approximation is
assumed.
The drag on an axisymmetric body oscillating along its axis of symmetry in a viscous fluid is

given by [46]

FO . r2 —i
F=F |1+ —2 (14+1)M, +O(M2)| e~ 5.61
o |1 G (DM OO (5.61)

where Fy is the Stokes drag, 7 is the molecular viscosity of the suspending fluid, «’ is the radius
perpendicular to the axis of symmetry, ug is the magnitude of the instantaneous velocity of the

particle and M, = V24 /8, where 4y is the shear wave skin depth.

Strictly Equation 5.61 is derived for axisymmetric unsteady flow, but Reference {46] argues that
this may be applied to unsteady flow parallel to any principal axis of a body provided that

correct forms are employed for the Stokes drag, as below.

For spheroids the Stokes drag may be written

Fy = 6mnKgea'ug (5.62)

(noting that this is stated incorrectly in Reference [45]) and Equation 5.61 may be written

4 94 d
F= —p <§7T(l/2b/> (ZEI(SQIF> (a’?‘) (563)

4 94§ ., 1 6
-p<§na b> <4b’KSf 1+st )

where Kt is a shape factor (see Table 5.1) and o’ and b’ are, respectively, the semi-major and
semi-minor axes for oblate spheroids and the semi-minor and semi-major axes for prolate
spheroids. '

As w - 0 (i.e. as the flow becomes steady), the du/d¢ term in Equation 5.61 vanishes and the u
terms tends to 67na’ug, such that the total drag force tends to the Stokes drag. However, as

§ — 0 (ideal fluid) in the unsteady flow F — 0. This is incorrect as the drag on a body moving at

nonuniform velocity in an ideal fluid is given by

du
= ’ 5.64
F m; (dt> ( )

where m; is the induced mass of the body. For a sphere of radius a oscillating in a fluid of density
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p the induced mass is

1/4
mi= g <§7ra p> (5.65)

where %ﬂag p is the mass of the displaced fluid and % is the inertia coefficient [11], which depends
on the particle shape and orientation to the acoustic field. For the spheroids considered here the

induced mass is given by
4 1211
my = L gﬂ'a b'p (5.66)

where L; is the inertia coefficient.

Combining Equations 5.63, 5.64 and 5.66 yields the following expression for the drag on spheroids

oscillating in a viscous fluid

F=—p (%ﬁa'%') T (%) —p <§7ra’2b'> wsu (5.67)

where

=1L+ 2 (;) KX (5.68)

and

SOLIEIO)

Proceeding to formulate the wave equation, as in Section 5.3, yields expressions for the speed of

sound (Equation 5.55) which, ignoring thermal conduction, may be written

cs=c

/ a - g+T T) + §?
H%e( ,{>_36< H[(c+7)(1+7) }} (5.70)

1—=
K 2 (0 +7)° + 52

and the visco-inertial absorption coefficient (Equation 5.58)

oy ew (o —1)°

10loge? 2¢

e (;4_7)2} (5.71)

5.4.3 Shape factor and inertia coefficient

Shape factors for oblate and prolate spheroids with flow parallel and perpendicular to the axis of
symmetry are given in [47] and inertia coefficients are given in [11].

5.4.3.1 Shape factor

The shape factor for oblate spheroids with h = V//a’ < 1, for flow parallel to the axis of symmetry

is given by
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8( 20 21-2n%) . _ [(1—hx)2
Kby = 3 {1 — 7 + TDEE tan {“h—}} (6.72)

In the limiting case of a thin circular disk moving broadside on, A — 0 and

8
Koy =— 5.73
ob, || 3 ( )
The shape factor for prolate spheroids with h = b'/a’ > 1, for flow parallel to the axis of
symmetry is given by
8 2h 21 — 1 h+ (B2 — 1)1 7
Kopp==<~ 5.74
pr. | 3{ I (2 _12 " {h_(hQ _1>1/2}} (5.74)
In the limiting case of a long cylindrical needles moving end on, A > 1 and
2h
K (5.75)

prll ™ 3n2h — 0.5)

It will be noted that as a’ — 0 and h — oo, K, ) — oo, but the Stokes drag, Fy, correctly tends
to zero.

For oblate spheroids with h = b'/a’ < 1 and flow perpendicular to the axis the shape factor is

8 h 2h% -3 1 -1
== - in~1(1 — h?)1/2 5.76
Kob 1 7 { T2 T () sin” (1 — h*) (5.76)

In the limiting case of a thin circular disk moving edgewise, h — 0 and

16
I<ob,_L ~ 9— (577)

™

For prolate spheroids with A = 0'/a’ > 1 moving perpendicularly the shape factor is

-1
8 h 2h% — 3
Ky =< 5.78
prod 3{hQ—l+(}12—1)3/2111[/1—!—(/12—1)1/2]} (5:78)
In the limiting case of a cylindrical needle moving broadside on, & >> 1 and
4h (5.79)

Kyl ———
Pt ™ 3(In2kh + 0.5)

Again, as o/ — 0 and h — oo, Ky, | — 00, but the Stokes drag, Fp, correctly tends to zero.

5.4.83.2 Inertia coefficient

The inertia coefficient for oblate spheroids moving parallel to their axis of symmetry is given by

o (5.80)
2 — [8%)]

Lov, =
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where

ap = (%) {1 —ViZe (Sm;EH (5.81)

s
<

with the eccentricity £ given by

b2

..‘572_

£ = (5.82)

In the limiting case of a thin circular disk moving broadside on, ¢ — 1 and

ap = 2~ 7w/ 1 —g? (5.83)

such that ap — 2 and L, |; — oo. However in the limiting case of € = 1, a direct calculation for a

thin circular disk moving broadside on yields the inertial coefficient L; = 2/x [11].

The inertia coefficient for prolate spheroids moving parallel to their axis of symmetry is given by

Qg
Lpe = 5o (5.84)

where

ag = {Q(IE;BEQ)J {%In Ejj —e} (5.85)

and the eccentricity is

2
e=4/1- ZTZ (5.86)

In the limiting case of a long cylindrical needle moving end on, ¢ — 1 and

7\ 2 /
2
ag — 2 <%> [m = 1} (5.87)
a

Under this limiting approximation, as € — 1 so g — 0 and Ly, ; — 0.

For fluid motion perpendicular to the axis of symmetry the inertia coefficient for an oblate

spheroid is

o (5.88)

where

V1 — g2 _ g2
70:---——1 c sin"le — F E} (5.89)

with
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e=4/1-— (5.90)

In the limiting case of a thin circular disk moving edgewise ¢ — 1 and

w0—(3)Vi-2 (5.91)

In the limit as e — 1 so vo — 1 and Loy 1 — 0.

Finally, the inertia coeflicient for a prolate spheroid with fluid motion perpendicular to the axis

of symmetry is

71
5.92
py—— (5.92)

- G- )

Lpr,L =

where

with

72
e=1/1— %-5 (5.94)

In the limiting case of a long cylindrical needle moving broadside on, € — 1 and

N\ 2 /
o 1— (Z-) In <2a—b,> (5.95)

Again considering the limit as € — 1s0 v, — 1l and Ly, | — 1

5.4.4 Results

In order to illustrate the effects of particle shape on the propagation parameters in suspensions,
examples are chosen from Reference [45]. These examples were initially chosen to validate the
code by comparing the predictions with the results presented in Reference [45], but for the
purposes of this chapter they also serve as illustrative examples. The geometric parameters of

these bodies are given in Table 5.1.

Figures 5.7 to 5.10 show the results of calculating the attenuation coefficients for the particles of
Table 5.1 using the approach described in Sections 5.4.3 and 5.4.2. The frequency range for these
calculations was extended up to 10 MHz for comparison with the results presented in

Reference [45].

Figure 5.7 shows the calculated attenuation, normalized with respect to concentration, for the
oblate spheroids of Table 5.1. The attenuation for the equivalent volume sphere is also shown for
comparison. This result demonstrates that particle orientation has a significant effect on the
absorption. At low frequencies the attenuation for oblate spheroids orientated edgewise to the

flow is close to that for spheres, whilst at higher frequencies the attenuation becomes greater
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Particle Dimensions Orientation to | Shape factor | Inertia coefficient
(pm) acoustic field K L
Sphere Radius a = 2.75 1 0.5
Oblate spheroid Major radius ¢’ = 4.36 | Broadside 0.868 2.374
Minor radius &' = 1.1 Edgewise 0.682 0.174
Prolate spheroid Major radius &' = 6.9 Broadside 2.057 0.872
Minor radius @’ = 1.7 | End on 1.598 0.0816
Circular disk Diameter 2a’ = 5.5 Broadside 0.849 0.627
Thickness 26" = 0.055 Edgewise 0.571 0.008
Cylindrical needle | Diameter 2a" = 0.055 Broadside 23.0 1
Length 2b' = 5.5 End on 13.894 0

Table 5.1. Shape factors and inertia coefficients for a variety of simple particle shapes.

than the attenuation by spheres. The attenuation for oblate spheroids oriented broadside to the
flow is consistently lower than the both the attenuation for the orthogonal orientation and that of

spheres of the same volume.

Figure 5.8 shows the equivalent result for prolate sphercids. Once again particle orientation has
an effect, although the difference in attenuation for the two orthogonal orientations is smaller in

the case of prolate spheroids than for oblate spheroids.

Figures 5.9 and 5.10 show the attenuation for the degenerate forms of oblate and prolate
spheroids, i.e. disks and needles. These show again the effects of orientation on the attenuation.
The attenuation for the spheres is shown again in these figures for comparison, but it should be

noted that the disks and needles do not have the same volume as these spheres.

The results for the spheroids are summarized in Figure 5.11, which shows the ratio of the

absorption coefficient for spheroids to that of spheres of equivalent volume.

Figure 5.12 shows the ratio of the phase speed in a suspension of particles to that in the
suspending fluid. Results are shown for spheres, oblate spheroids and their degenerate form,
disks. Figure 5.13 shows the corresponding result for prolate spheroids and needles. It may be
noted from these figures that the degenerate forms of both the oblate and prolate spheroids
appear to exhibit very little dispersion compared to either spheres or spheroids. However it must
be remembered that the degenerate examples have a much smaller volume than the spherical or

spheroidal examples.

The cases examined in this section should be viewed merely as illustrative examples of the
calculation of attenuation and phase speed in suspensions of oblate and prolate spheroids. The
examples were chosen to be the same as in Reference [45] in order to validate the computer
model which implements the theory described in that reference. These examples do, however,
serve to demonstrate that both particle shape and orientation do have an effect on the
visco-inertial dissipation and should be considered when dealing with non-spherical particles.
The model described in this section will be applied to the interpretation of absorption

measurements made with suspensions of non-spherical particles in Chapter 6.
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Figure 5.7. Attenuation coefficient for the spheres and oblate spheroids of Table 5.1.
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Figure 5.8. Attenuation coefficient for the spheres and prolate spheroids of Table 5.1.
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Figure 5.9. Attenuation coefficient for the spheres and disks of Table 5.1.
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Figure 5.10. Attenuation coefficient for the spheres and needles of Table 5.1.
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Figure 5.11. Ratio of the attenuation coefficient for the spheroids of Table 5.1 to that of spheres.
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Figure 5.13. Sound speed ratios for the prolate spheroids, spheres and needles of Table 5.1.

5.5 Summary and conclusions

In addition to increasing the acoustic attenuation, the presence of particles in suspension can also

influence the sound speed.

In this chapter a simple method for calculating the sound speed in suspensions, based on
replacing a fraction of the volume of fluid with material of different density and bulk modulus,
was described. An alternative method was also described in which the sound speed was obtained

by formulating the wave equation for propagation in suspensions.

Results presented in this chapter demonstrated that, although the bulk averaging approach gives
the correct result in the limit of very small particles, the expression derived from the wave
equation is required in general. This is because the sound speed in the suspension depends not
only on the sound speed in each suspension component, but also on the inertial part of the

complex drag experienced by the oscillating particle.

The attenuation coefficient may be obtained from the imaginary part of the complex wavenumber
in the wave equation, and the viscous absorption coefficient obtained in this was was shown to be
identical to the expression obtained by Urick as described in Section 2.4. This was to be expected
as a similar approach was taken in the derivation of both the wave equation and the Urick

expression.

The results presented here show that, for dilute suspensions of mineral particles, the change in
the sound speed is relatively small, and will have little effect on refraction of sound at the
relatively short ranges of interest for high frequency sonars. The change in sound speed resulting
from bubble populations in shallow, coastal waters is likely to be far more significant. At very
high concentrations, such as may be found in the muddy boundary layer near the seabed, the

change in sound speed due to particles in suspension may become significant.
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Finally, a method for calculating the absorption and phase speed in suspensions of oblate and
prolate spheroids was discussed. Example results from this model showed that the absorption by
suspensions of spheroids may be significantly different from absorption by spheres of equivalent
volume. It was also shown that the orientation of the spheroid with respect to the sound field is
important.

Theoretical models of visco-inertial absorption by suspensions of both spheres and spheroids have
now been discussed. Results from these models will be compared with measurements in the next
chapter, which introduces a laboratory technique for measuring absorption in dilute suspensions

at low ultrasonic frequencies.



Chapter 6

Experimental investigations

6.1 Introduction

The preceding chapters discussed the theory of sound absorption and scattering by solid particles
suspended in water, and included results of calculations based on these theories. In order both to
validate this theoretical work and to gain a deeper physical insight into the phenomena of

interest, it is important to investigate the physical processes experimentally.

The literature contains numerous examples of measurements of scattering in suspensions and
emulsions, e.g. [21,48-50]. Acoustic backscattering techniques are also becoming common for the
measurements of suspensions in the sea, as reviewed by Thorne and Hanes [51]. Furthermore,
measurements have also been made of the scattering form function of suspended cubes [52,53] and
polyhedra, to address the issue of scattering by angular, faceted, non-spherical bodies. However,
there is a lack of laboratory measurements of the absorption coefficient in dilute aqueous

suspensions of mineral particles over the frequency range extending from tens to hundreds of klz.

To address this a series of experimental investigations has been carried out. This work was
carried out by a team which comprised the author, Dr. Niven Brown and Prof. Tim Leighton.
This team was jointly responsible for the design and development of the experimental technique.
Dr. Brown performed most of the technical work in building and setting up the apparatus and he
carried out the measurements made with spherical particles, the results of which are shown on
Page 88 et seq. The author was responsible for making the measurements with kaolin and calcium
carbonate particles, the results of which are given in Figures 6.26 and 6.27 respectively. All three

members of the experiment team contributed to the analysis and interpretation of the results.

The development of the experimental technique and the results have been presented in a number

of publications by the author and colleagues [54-60].

It should be noted that, in the course of this investigation, the laboratory measurement of
absorption by dilute suspensions of mineral particles in small volumes of water at frequencies in
the range 50 - 150 kHz was found to be extremely challenging. Whilst the absorption can be
significant in the sea, over ranges of order hundreds of metres, the absorption in a laboratory
scale experiment is extremely small. The fact that the attenuation by the particles in suspension
can be much smaller than both the boundary losses at the walls of the container and the
absorption due to the instrumentation means that the absorption being measured was a small
part of the total attenuation in the system. In fact it was even found that the measurement was

sensitive to small changes (O(mm)) in the length of submerged hydrophone cable. This

72
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illustrates the type of difficulties encountered in making these measurements. Other practical
problems include the following: The particles settle out of suspension under the influence of
gravity, necessitating some means of resuspension, and the addition of any stirrer into the water
to achieve this increases the absorption in the system. In addition natural particles, such as clay

particles, may have a tendency to flocculate, severely complicating the effects under study.

6.2 Method

6.2.1 Theory

The experimental method used in the present investigation was to infer the total acoustic loss in
a volume of fluid containing suspended particulate matter from measurements of the
reverberation time of the system. The attenuation due to the suspended particles may thus be
estimated by comparing the reverberation times of the system with and without the particles
present. Making measurements relative to the clear water case in this way partially corrects for
the effects of the boundary losses and other contributions to the total attenuation in the system.
However, it should be noted that when the suspended particles’ contribution to the total
attenuation is small (i.e. at low concentration) the effect of the relatively large boundary losses
will be to give large errors in the relative measurement of the influence of the suspended particles

on the reverberation time.

The reverberation time of a reverberating volume is defined as the time taken for the sound

pressure level to fall by 60 dB after the sound source is removed and may be given by (e.g. [61])

55.26V,
t — enc 6.1
00 C(Senca + 8C‘/enc) ( )

where V., is the volume of the enclosure, Se,c is the surface area, ¢ is the compression wave
speed, @ is the average Sabine absorptivity and ¢ is the absorption coefficient of the fluid in

Nepers per metre. The average Sabine absorptivity is defined

A
g = —hc 6.2
“ T Sene (62)

where Aepc is the total sound absorption of the enclosure, expressed in units of m?, such that a is

dimensionless.

If tgo and t§, are the reverberation times of a volume of particulate-free water and water
containing particles respectively, then it is clear from Equation 6.1 and Equation 2.2 that the

difference in the attenuation coefficients of the two fluids, expressed in dB m~!, is given by

5526 (1 1
Aa = (10loge?) 2= <% _ i_(;) (6.3)

0L _ 1
& t%O teo

provided that the addition of the particles does not significantly affect:
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the sound speed in the medium;

- the volume of fluid;

- the absorption at the boundaries;

Chapter 5 showed that the change in sound speed resulting from the introduction of the particles
at concentrations used in the experiments is small (less than a few tens of cm s™! even at the
highest concentrations). It is trivial to demonstrate that the volume change due to the addition
of the particles at the concentrations used in these experiments is similarly small (volume
fractions are typically much smaller than 1073) and it is reasonable to assume that the particles
in suspension have little effect on the absorption properties of the walls. Particles that settle to
the bottom of the volume may, however, affect the boundary losses, but attempts were made to

make measurements with the majority of the particles in suspension.

Ideally, the reverberation time should be determined from the decay of a diffuse sound field, that
is to say one in which the average energy density is the same throughout the entire volume and
all directions of propagation are equally probable [61]. The onset of a diffuse sound field in an
enclosure can be described by the Schroeder cut-off frequency [62], which gives an indication of
the lowest frequency at which the modal density, i.e. the number of modes per unit bandwidth, is

sufficient to constitute a diffuse field. The Schroeder cut-off frequency, f;, may be written [62]

03 % tGO %
o 6.4
fs <41n 10) <Venc> (6-4)

Ideally then, all experiments should be carried out at frequencies well above the Schroeder cut-off

in order to ensure that the measurements are not influenced by modal structure in the sound field.

6.2.2 Preliminary investigations

Prior to converging on the design of the final experimental system (described in Section 6.2.3)
two developmental systems were tested [54]. These served to prove the concept and reveal the

critical features that were required of the final system.

In both a 1 m™3 plastic tank and a 0.03 m~2 glass tank the reverberation time was observed to
decrease as the concentration of suspended sand grains was increased. The smaller volume of the
glass tank was desirable as it enabled greater control of experimental conditions. However, the
increased surface area to volume ratio of the smaller system resulted in a greater relative
contribution by the losses at the boundaries. These development systems therefore indicated that
the final configuration should be optimized in order to minimize wall losses. The ideal system
should therefore have perfectly reflecting walls, which may be achieved in theory either with a
pressure-release boundary condition or a perfectly rigid boundary. Of these the easiest to
approximate to in practice is the pressure-release boundary, since an air-water interface is a good
approximation to this. The final system therefore employed a thin-walled (30 pm) polythene bag
containing around 0.016 m? of water, suspended from a frame and surrounded by air. This
provided an approximation to the ideal situation in which a pressure-release surface surrounds
the entire volume, leading to a pressure amplitude reflection coefficient close to -1. Measurements
of decay rate with this arrangement confirmed that the wall-losses were much lower than in the

glass tank, and all subsequent measurements were carried out using the suspended polythene bag.
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6.2.3 Experimental system

The experimental system used to obtain the results presented in this chapter is shown

schematically in Figure 6.1 [54] and Figure 6.2 shows a photograph of the apparatus.

—

[stirrer l(—'“‘\\
LSS ‘ Power Amp.
Polythene
bag )
L1
P
B&K 8103/ Charge Amp. oy PC with A/D board
hydrophones

Figure 6.1. Schematic of the experimental apparatus used to measure absorption in dilute suspensions
over the frequency range 50-150 kHz [54].

The signal generation, data acquisition and signal processing were all performed under the
LabVIEW laboratory instrument management system, running on a personal computer (PC).
The signal from the PC’s digital-to-analogue converter (DAC) board was fed to a power amplifier
driving a Briel and Kjer (B&K) 8103 hydrophone. A second B&K 8103 hydrophone was used
for the receiving transducer and the signal from this was amplified and fed to a LeCroy digital
storage oscilloscope (DSO). The DSO was connected to the PC via a GPIB interface, and the
data were transferred to the computer for storage and post processing. A mechanical stirring
device (propeller) was used to resuspend particles that had settled out of suspension. This was
removed from the water when the acoustic measurements were performed, as additional
absorbing / reflecting surfaces complicate the acoustic system. The temporal variation in the
concentration of the suspension was monitored using a Sea Tech light scattering sensor (LSS},
and this was also removed from the volume during acoustic measurements. In later experiments
the LSS was mounted horizontally on the outside of the bag, with its window in close contact
with the side of the bag. The mating faces of the LSS window and the side of the bag were
wetted to ensure good optical coupling. This configuration ensured that any spatial integrating
inherent in the LSS measurements would be in the horizontal direction, not in the vertical where

the concentration would be expected to be spatially varying after a finite period of settling.

The photograph (Figure 6.2) shows the polythene bag suspended from its mechanical support by
means of fine wires attached to a metal hoop. The items dipping into the water are, from left to
right, the LSS used to monitor the concentration of the suspended particles, the transmitting and
receiving hydrophones and the propeller used to stir the water in order to suspend the particles.

The diameter of the bag at the water surface is about 235 mm.
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LSS

Hydrophones

Stirrer

Figure 6.2. Photograph of the experimental apparatus [54]. This photograph is illustrative only, as the
LSS and stirrer were removed during acoustic measurements. The majority of experiments were carried out
with the LSS mounted horizontally on the outside of the bag (see text). Other instrumentation included
pH, temperature and dissolved oxygen probes (not shown). The hydrophones are mounted in rigid tubes
to prevent movement.
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From Equation 6.4 the Schroeder cut-off frequency for the water volume held in the bag can be
shown to be around 55 kHz for typically measured reverberation times, providing a lower limit on
the frequency used for the tests. The cut-off frequency could be reduced to below 50 kHz by
increasing the water volume to about 0.02 m®, although this would mean approaching the

strength limit of the bag.

Prior to acoustic measurements the water was passed through a reverse osmosis system and then
filtered to remove any remaining particulate matter. This ensured that no particles of diameter
greater than 0.22 ym remained in the water. The water was then degassed under partial vacuum
in order to avoid the presence of bubbles which may be acoustically significant. The temperature
and pH of the water were measured using a Jenway 3071 pH and temperature meter and these
measurements were used to calculate the speed of sound in the ambient water. The level of
dissolved oxygen was monitored throughout the experiments (between acoustic runs) using a
Jenway 9010 dissolved oxygen probe attached to the 3071 meter. This was to ensure that the
addition of the particles or the stirring process did not cause significant gas entrainment. The
dissolved oxygen content was found to vary from 51% to 65% (expressed as a percentage of the

saturation level) over the course of a measurement period, and no bubbles were observed.

In each series of experiments reverberation time measurements were first made in the nominally
clear water in order to provide a reference measurement. Particles were then added in stages, in
known quantities by mass, to enable a series of measurements to be made at varying

concentrations?.

Before each series of acoustic measurements the suspension was stirred by the mechanical stirrer
until the spatial distribution of suspended particles appeared to be homogeneous. The time taken
for this to occur was shown, by measurements made with the LSS, to be of the order of a few
seconds. Care was taken to ensure that the particles that collect in the corners formed by the
bottom seam of the bag were resuspended by the stirring. As the stirring takes place just before
each set of acoustic measurements, the clear water reference measurements were also made on
stirred water. This ensured that the reference signal used was obtained under conditions which
most closely represented those experienced during the measurements made with the particles in
suspension. It may be noted that stirring induces turbulence which can, in principle, lead to
absorption. This issue is addressed in Section 6.3, where it is shown that the absorption due to

turbulence in these experiments may be neglected.

The acoustic measurement itself consisted of first generating the sound field, then switching off

the sound source and recording the decay of the reverberant sound field.

Two techniques for generating the sound field were investigated; an impulse and a long burst

(20 ms) of uniform white noise. Both of these methods produce a broadband sound field. The
advantage of using the long burst technique is that it gives sufficient time for a steady-state sound
field to build up before the source is switched off, and the decaying sound field is also less prone
to large perturbations resulting from direct reflections and particular modes of the volume. For

these reasons the long burst generation method was used for the results presented in this chapter.

Typically a series of measurements consisted of emitting 10 noise bursts from the transmitting

transducer and recording their responses via the receiver hydrophone, with the entire sequence

! The concentration is the spatial average over the volume, i.e. the mass of particles added divided by the volume
of water.
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lasting approximately 35 s. During this period the concentration, which changes as a result of the
particles settling out, does not decay appreciably according to the estimates obtained using the

LSS.

The decaying reverberant sound field measured by the receiving hydrophone demonstrates
seemingly random fluctuations resulting from the interference between the many modes within
the reverberating volume (see Figure 6.4 on Page 84). These fluctuations limit the accuracy with
which the decay rate of the reverberant field may be determined from the measured decay curve.
In order to improve the accuracy of the estimate of the reverberation time of a reverberating
volume, it is usual practice to repeat the experiment many times and average the decay rates
obtained from the individual measurements. This method is, however, inefficient owing to the
large number of measurements which must be made in order to obtain an accurate estimate of
the decay rate or reverberation time. This averaging also obscures any ping-to-ping variations in
the decay rate and any temporal variation within the integration time, which can be long due to

the requirement for a large number of measurements.

The decay rates were therefore determined by applying the method of integrated impulse

response (IIR) [63] to the sound field from the time that the driving signal was switched off. This
method was used, even for signals derived from non-impulsional sources, as it gives a decay curve
which is equivalent to the average over infinitely many decay curves that would be obtained from

exciting the volume with bandpass filtered noise.

The value of the IIR represents the ensemble average of the squared noise responses at time ¢
after the onset of decay, which is equal to the squared tone-burst response integrated from time ¢
to oco. The practical implementation of this method is as follows. The response of the volume to
the burst of random noise (which contains the frequency range of interest) is squared then
backwards integrated from an upper time limit (some time before the response is exceeded by the
background noise) to the lower time limit when the sound was cut off. This produces the IIR
curve, the slope of which is determined from a linear regression over the linear part of the curve
(where ‘linear’ here refers to straight lines on a log-linear plot). Typically, the lower time limit for
the linear regression was some 10 ms after the sound was cut off and the upper limit was chosen

depending on the rate of the decay.

Post-processing of the results also involved performing the IIR analysis at each of the desired
frequency bands. The raw data were filtered using a Butterworth bandpass filter in 10 kHz
bands over the frequency range 50 kHz to 150 kHz. Butterworth filters are characterized by an
extremely flat passband response with sharp cut-offs. The data were also reduced into time bins
which represented the r.m.s. value of the signal for a user-defined number of samples, typically

100. The sampling rate of the DSO was 500 kHz.

It will be noted that whilst these experiments are broadband, the theories described in

Chapters 2 and 3 are obtained for a single insonifying frequency. However, under the assumption
that the individual frequency components are linearly independent, the single-frequency models
may be applied to the interpretation of the broadband measurements in each narrow band. In
the following sections good agreement is obtained between the single-frequency calculations and
the frequency-binned measurements, thus validating the assumption that the frequency

components may be considered as linearly independent.
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6.2.4 Particle concentration and size distribution

6.2.4.1 Light scattering sensor

Because the particles settle out of suspension over time, the LSS was used to monitor the
concentration to ensure that it did not change significantly over the time taken for a series of
acoustic measurements to be carried out. It is important here to note the limitations of such a
device for quantitative measurements of suspended particle concentration. The LSS device emits
light in the forward direction and detects the light which is backscattered from the medium.
Whilst the intensity of the backscattered light depends upon the concentration of particles in
suspension, it also depends upon the properties of the particles, such as their size, shape and
complex refractive index. The LSS may be calibrated using a known concentration of the
suspension of interest. However, in cases where the suspension contains particles with a range of
sizes, larger particles will settle out of suspension quicker and the size distribution will therefore
be time-varying, thus invalidating the calibration. It should be noted that the LSS was not used
to obtain quantitative measurements of particle concentration for normalization of the
attenuation measurements. This was done by careful weighing of the quantity of particles added

and ensuring that all particles were in suspension.

The LSS only provides a relative measurement of the total concentration of suspended particles
in the measurement volume, and does not provide any information on the sizes of the particles
present. Since the particle size is an important parameter influencing the acoustic absorption by
suspended particles, it is important to know the size distribution of the particles in suspension.
Whilst this is possible with spherical particles, it is not a simple matter where non-spherical

particles are used. This is discussed in the following sections.

6.2.4.2 Laser diffraction analysis

Laser diffraction analysis was used to determine the size distributions of particles used in the
experiments. This technique uses the diffraction pattern of laser light scattered by a sample of
particulate in suspension to infer the particle size distribution in the range 0.4 pm to 1000um. It
is important to note that, since this is not an in-situ measurement, it was not possible to

measure the particle size distribution dynamically.

It is instructive to describe briefly the laser diffraction method of particle sizing, which exploits
the fact that small particles in a laser beam scatter light in a characteristic pattern, i.e. the
diffraction pattern. The details of the diffraction pattern depend upon the distribution of particle
sizes contributing to the light scattering. Information about the particle size distribution can

thus be inferred from the details of the light flux pattern.

A discussion of diffraction by a collection of spheres should be available in any standard reference
on physical optics (e.g. [64]). The simplest flux pattern, that from a monomodal dispersion of
spheres, consists of a central bright spot, known as the Airy disk, surrounded by concentric
bright and dark rings whose intensity diminishes further from the centre of the diffraction
pattern, that is to say at higher scattering angles. The scattering angles at which the diffraction
maxima and minima occur depend on the size of the particles, with smaller particles leading to
higher scattering angles. The particle size in such a monomodal dispersion of spheres can

therefore be simply inferred from the scattering angles.
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These scattering patterns obey the principle of linear superposition, meaning that the total
scattering pattern for a mixture of two (or more) monomodal dispersions can be constructed by
adding the intensities of the scattering patterns from each constituent monomodal dispersion.
This allows the possibility of inferring the particle size distribution from sufficiently accurate

measurements of the scattering pattern due to a multimodal dispersion of spherical particles.

The interpretation of laser diffraction measurements of particle size distribution becomes
complicated when non-spherical particles are involved. The standard analysis yields the size
distribution of spherical particles which would give the observed diffraction pattern. In principle
it would be possible to infer the size distribution of particles of a different shape by inverting a
forward model for the diffracted pattern obtained from forward scattering by such particles.
However for highly irregular particles and suspensions containing many different particles, this
becomes impractical. A more fundamental question is what exactly we mean by the size when
discussing non-spherical particles. In general non-spherical particles cannot be described by a
single number, such as the diameter of a sphere. The laser diffraction technique may be
considered to yield an effective spherical diameter for optical scattering. Other particle sizing
techniques are available which also yield effective spherical diameters for non-spherical particles.
In order to compare with the measurements made by laser diffraction, measurements have also
been made using two alternative techniques: gravitational sedimentation and centrifugal

sedimentation.

6.2.4.3 Gravitational sedimentation

The gravitational sedimentation technique, described in Reference [65], is based on the
measurement of the rate of settling of particles. This method yields the Stokes diameter of the
particle, defined as the diameter of a sphere which has the same density and the same free falling
velocity in a given fluid as the particle, within the viscous flow regime. From Stokes’ equation the

Stokes diameter may be written

where 7 is the molecular viscosity of the suspending fluid, hs is the distance the particle falls in
time ¢, p’ and p are the densities of the particle and fluid, and g is the acceleration due to gravity.
The time taken for the particle to reach its terminal velocity is negligible [65], and the free fall
velocity is therefore taken to be v, = hy/t.

Stokes’ equation is only valid in the region of viscous flow, which sets an upper limit on the
particle size which may be determined by this technique. This limit is determined by the

magnitude of the Reynolds number

Re = PVt (6.6)
"

The Reynolds number should not exceed 0.25 if the error in the Stokes diameter is not to exceed
3% [65]. Setting Re = 0.25 and equating Equations 6.5 and 6.6 yields the following expression for

the limiting Stokes diameter
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For example, for silica (p’ = 2650 kg m™?), sedimenting in water (p = 1000 kg m~3;

7 = 0.001 Pa s) the limiting Stokes diameter is 65.3 pum.

The lower size limit is partly determined by the long settling times experienced by small
particles, and partly by other motions which may be significant compared to the small settling
velocities, such as Brownian motion, diffusion and convection currents which may be set up over
long integration periods. For these reasons the use of gravitational sedimentation is not usually

recommended for particles smaller than about 1 um.

6.2.4.4 Centrifugal sedimentation

Some of the difficulties associated with the use of gravitational sedimentation for fine particles
may be reduced by speeding up the settling time. This may be achieved through the use of

centrifugal sedimentation techniques, described in [66].

As in the case of gravitational sedimentation the Stokes diameter is determined from Stokes’ law
(see Equation 6.5), but now the acceleration due to gravity is replaced by the centrifugal

acceleration and the free fall velocity is replaced by the radial settling velocity to give

187 dre 7
f= =T 6.8
o <(p’—p)wé’7‘c dt) (65

where 7 is the radial distance of the particle from the axis of the centrifuge, dr./dt is the radial

settling velocity and w, is the rotation speed of the centrifuge.

Centrifugal sedimentation is usually used for particles up to a few microns in diameter, although
this can easily be extended using more viscous suspending fluids and longer settling times. The
lower limit on particle size is determined by the consideration that the radial displacement of the
particles by Brownian motion during sedimentation should be much smaller than the
displacement due to centrifugal motion. For a typical example (see [66]) the minimum Stokes

diameter is less than 0.01 pum.

For the measurements of the size distributions of clay-like and marine sediment particles
presented later in this chapter, the samples were dispersed in the suspension media and insonified
with ultrasound (normally for one minute) to assist in dispersal and breaking up of agglomerates.
Additionally, the sample portions used for the centrifugal sedimentation were dispersed using
prolonged ultrasonics in an attempt to disseminate the aggregates and obtain a particle size

distribution more representative of the discrete particles.

6.3 Turbulence

Since stirring is employed in the experiments to suspend the particles there is a degree of
turbulence inherent in the measurement volume. It is therefore necessary to investigate the
potential impact of this turbulence on the acoustic absorption to determine whether it is an

important contribution to the total absorption coefficient being measured in the experiments.
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Noir and George [67] calculated the amount of acoustic energy converted to turbulent kinetic
energy for a plane wave propagating through an unbounded field of turbulence. Their approach
has been used here to estimate the order of magnitude of the contribution to the acoustic
absorption coefficient resulting from turbulence in the experiments. Their analysis is based on
the interaction of two opposing phenomena. These are the perturbation of the turbulence field by
the acoustic wave, leading to anisotropic Reynolds stresses, and the redistribution of turbulent
kinetic energy as it cascades from the large scale to the dissipation scale, leading to a return to
isotropy. As a result of these two effects, the Reynolds stress is not in phase with the acoustic
field, and there is thus a net transfer of energy from the acoustic field to turbulent kinetic energy,

corresponding to absorption of acoustic energy.

As the acoustic time scales are generally much shorter than the time scales associated with the
turbulence, previous investigators assumed that there is no change in the turbulence structure
over the time scale of the interaction, thus considering frozen turbulence. Noir and George,
however, allowed the Reynolds stresses to fluctuate in response to the sound wave in their

analysis, thus introducing non-frozen turbulence.

In terms of energy, the absorption of sound by turbulence produces additional turbulent kinetic
energy, which is eventually dissipated by viscosity. The production term in the turbulent kinetic
energy equation involves mean-flow gradients and the normal Reynolds stresses. A model of the
coupling between the Reynolds stress and the mean flow then results in a time-average

production of turbulent kinetic energy.

Unfortunately the analysis of Noir and George does not lend itself well to summarization without
compromising clarity, so this section is necessarily limited to simply quoting their key results. For
the complete argument the interested reader is referred to the original paper [67].

Assuming that the distortion of the turbulence field by the acoustic wave may be considered to

be locally homogeneous, the analysis of Reference [67] yields the following result for the

absorption coefficient due to turbulence, cv;:

c3

ar ~ 20log(e) <2'36d> (6.9)

where €4 is the dissipation rate of turbulent kinetic energy and c is the speed of sound. In cases
where the acoustic wavelength is smaller than the largest length scale of the flow, as may be the
case in the experimental system described here, the acoustic wavelength, A, is taken to be the

upper limit of the spatial scale, and the attenuation coefficient becomes

0y, (2) o1

where 7y is the Kolmogorov length scale, the characteristic scale of the turbulent eddies at the

ar = 20log(e) [

smallest, dissipative end of the turbulent energy cascade process, given by

Tk = <V—3>1/4 (6.11)

€d

where v is the kinematic viscosity of the fluid.
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Both of the expressions for the coefficient of sound absorption by turbulence (Equations 6.9 and
6.10) clearly depend upon the dissipation rate, eq, of turbulent kinetic energy which, in the case
of the experimental system discussed in this chapter, is not known. The predictions of these two
equations are shown in Figure 6.3 as functions of this turbulent dissipation rate. The solid line
shows the result of Equation 6.10, which assumes that the turbulence may be approximately

characterized by an energy spectrum of the form

E(ke) ~ 1.5623k75/3 (6.12)

where ke is the wavenumber of the turbulent eddies.

The dotted line shows the result of assuming that the turbulence is locally homogeneous
(Equation 6.9). Note that the two equations give significantly different predictions of the
attenuation coefficient as a result of the different assumptions made in each case [67]. Both
models, however, predict that the attenuation coefficient is several orders of magnitude below the
calculated viscous absorption coefficient and the measured attenuation coefficient presented in

Section 6.4 over most of the range of dissipation rate shown.
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Figure 6.3. Predicted attenuation coeflicient due to turbulence

Although it is not possible to predict accurately the turbulent dissipation rate in the
experimental system, it is possible estimate an upper limit on the order of magnitude of this
parameter, allowing us to estimate the maximum order of magnitude of the turbulence
attenuation coefficient. Let us assume that the maximum rate at which turbulent kinetic energy
is dissipated in the experimental system is equal to the rate at which energy is supplied to the
system by the mechanical stirrer. In fact this will overestimate the dissipation rate, as we know
from observations that the system remains turbulent after the stirrer has been switched off. The
electrical power rating of the stirrer motor is 25 W. Let us assume that this power is coupled to

the turbulence with an efficiency of 0.3 (an optimistic estimate), such that the maximum possible
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rate at which turbulent kinetic energy is produced in the system is about 7.5 W. Recognizing
that the units in which the dissipation rate is expressed (m?s3) are dimensionally equivalent to
Wkg~! we can estimate that the upper limit of the turbulence dissipation rate in the 16 kg or so
of water in the experimental system is less than 1 m2s~3. From Figure 6.3 we can therefore see
that the upper limit on the turbulence absorption coefficient to be expected in the experimental
system is of the order of 1078 dBm~!. This is several orders of magnitude smaller than the
predicted viscous absorption coefficient and the measured absorption, suggesting that the
phenomenon of sound absorption by turbulence may be neglected in the present series of

measurements.

6.4 Results

In this section results of measurements made using three different categories of particles are
presented in a logical order. Firstly results of measurements made using spherical glass particles
are presented. These particles were chosen to enable direct comparisons to be made between
measurements and the prediction of the models described in Chapter 2, which assume the
particles to be spherical. Next to be presented are results from pure samples of clay-like particles.
These particles are similar in form to particles found in natural, fine-particulate suspensions, but
are much better characterized than natural samples and have known physical properties. Finally

results are presented of measurements made with natural, marine sediment particles.

To help the reader understand the nature of the measurements it is perhaps helpful at this point

to show an example of a measured reverberation decay curve.
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Figure 6.4. Typical binned time trace for reverberation time calculation (upper curve) and corresponding
integrated impulse response (lower curve). Note that the vertical scale applies only to the time trace.

Figure 6.4 shows the binned time trace and integrated impulse response curve for a typical
sample. The IIR curve clearly represents the decay rate of the sound energy in the volume. It
should be noted that the vertical scale in Figure 6.4 relates only to the time trace, not to the IIR

curve of which only the gradient is important. The reverberation time calculated for this trace
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was 0.139 s and the figure illustrates that the magnitude of the decay curve drops by nearly
60 dB in the time shown.
6.4.1 Spherical particles

Initial measurements were made using spherical glass beads. This was to facilitate direct
comparison with the predictions of the models of Chapter 2, which are based on the assumption

of homogeneous spherical particles.

6.4.1.1 Scanning electron micrographs

Examples of the spherical glass particles are shown in the scanning electron microscope (SEM)
images of Figures 6.5 and 6.6 These images show the high degree of sphericity of these particles.

|I»"ﬁ )._ e

Figure 6.5. Scanning electron microscope image of glass particles taken with an original instrument

magnification of x250.
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Figure 6.6. Scanning electron microscope image of glass particles - detail of area shown in Figure 6.5
with an original magnification of x1400.
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Figure 6.7. Size distribution of spherical glass particles measured by laser diffraction analysis.
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6.4.1.2 Particle size distributions

Figure 6.7 shows the size distribution of these particles, measured using the laser diffraction
analysis technique described on page 79, the measurements being made in the Department of

Geology, University of Southampton.

6.4.1.8 Attenuation measurements

In order to provide a reference measurement, the decay rate of the reverberant sound field was
first measured in particulate-free water. To this known quantities of particulate were then added

in stages in order to measure the decay rate at various concentrations.

Figures 6.8 to 6.14 show the attenuation coefficient measured with increasing concentrations of
suspended particles, as a function of frequency, normalized to a concentration of 1 kgm™3. Also
shown in each of these figures is the calculated viscous absorption coefficient obtained using the
Urick expression (Equation 2.31) integrated over the measured particle size distribution shown in

Figure 6.7.

The most significant contribution to the experimental error in the attenuation measurements was
found to be a residual spatial dependence of the sound field. A series of reverberation
measurements made with the hydrophones in different locations within the bag showed a 4%
standard deviation in the reverberation time. The error bars shown on the experimental data
plotted in this chapter are therefore derived from this 4% standard deviation in reverberation
time, together with smaller contributions due to changes in water temperature over the duration

of the measurements and errors in the mass of added particulate.

It is clear from these figures that the agreement between the experimental measurements and the
theoretical predictions significantly improves as the concentration is increased. This is to be
expected since at low concentrations the difference in the decay rates caused by the introduction
of the particles is small, and this is reflected in the larger error bars on the low concentration
data points. However, in all cases the theoretical curve lies within the error bars of the majority
of the data points. At the highest concentrations the error bars are relatively small, and the fact
that most of the experimental data lie on the theoretical curve to within this error indicates that
the attenuation measurements are in agreement with the predictions of the Urick model for
viscous absorption. It should be noted that, since the experimental technique is based on
measurements of the decay of a reverberant sound field, sound that is scattered by the particles
remains a contribution to the sound field in question and does not therefore represent a loss from
the system. The model used for the theoretical predictions in this chapter does not therefore
include the effects of sound scattering. The experimental measurements do, however, include any
other dissipative processes in which sound is converted to other forms of energy (ultimately heat)
as a result of the presence of the particles. Therefore the thermal absorption contribution
discussed in Chapter 2 would also be included in the measured attenuation. The fact that the
Urick model for visco-inertial absorption appears to predict the measured attenuation reasonably
well suggests that, in the case under investigation, thermal absorption does not represent a

significant contribution to the total dissipative attenuation coefficient, as predicted in Chapter 2.

It may be noted that an anomalously high attenuation at 50 kHz appears to be a common
feature in Figures 6.8 to 6.14. It should, however, be remembered that the Schroeder cut-off
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Figure 6.8. Normalized attenuation coefficient measured with a concentration of 0.50 kgm™ (circles)

compared with theoretical prediction (solid line).
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Figure 6.9. Normalized attenuation coeflicient measured with a concentration of 0.75 kgm’3 (circles)

compared with theoretical prediction (solid line).
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Figure 6.10. Normalized attenuation coefficient measured with a concentration of 1.00 kgm™* (circles)

compared with theoretical prediction (solid line).
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Figure 6.11. Normalized attenuation coefficient measured with a concentration of 1.25 kgm™2 (circles)

compared with theoretical prediction (solid line).
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Figure 6.14. Normalized attenuation coefficient measured with a concentration of 2.00 kgm™2 (circles)

compared with theoretical prediction (solid line).

frequency of the measurement volume is around 55 kHz, and it is therefore reasonable to assume

that the sound field at 50 kHz is not truly diffuse, and some modal structure in the system may

therefore be responsible for the observed anomalies.

6.4.1.4 Particle settling

An example of a L.SS measurement is shown in Figure 6.15. This figure shows the variation in
suspended particle concentration as a function of time, for a suspension with a nominal
concentration of 1 kgm™2. The trace clearly shows the time at which the stirrer was turned on
and also demonstrates that the nominal concentration is reached very quickly. This indicates
that the suspension is well mixed by that time. The stirrer was switched off at 20 s and the
concentration shows a gradual decay from that time, as the particles settle out. The smooth
curve in the figure is the result of a theoretical calculation of the concentration as a function of

time based on considerations of the particles settling out at the Stokes settling velocity, vs, given

by (c.f. Equation 6.5)

vs = (2“—)2%71@—9- (6.13)
where a is the radius of the particles, p’ and p are the densities of the particles and suspending
fluid, g is the acceleration due to gravity and 7 is the dynamic shear viscosity of the suspending
fluid. The settling calculation was performed for each particle size in the distribution and the
results show the total concentration of suspended particles at each time. Clearly the
measurement displays some fluctuation in the concentration, but the general trend agrees

reasonably well with the predicted concentration.

The size distribution of the suspended particles is shown in Figure 6.16. In this figure the solid
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Figure 6.15. Temporal variation of particle concentration measured using the LSS, compared with

prediction based on Equation 6.13.
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Figure 6.16. Temporal variation of particle size distribution predicted by Equation 6.13.



Results 93

0.06 . ; T T T r
Before settling
005 F e After 35 seconds 7 T
— — - After96seconds ~ _— .- _ A
~o004r T -7 ~
£
a
2
»5 0.03 -
© e
g
c ' -
2 -
¥ 002 -
0.01 + -
O 1 s ! ! L i 1
40 60 80 100 120 140 160

Frequency (kHz)

Figure 6.17. Calculated attenuation coefficient before and after particle settling based on the the particle
size distributions shown in Figure 6.16.

curve denotes the distribution measured by laser diffraction analysis, and the dotted and dashed
curves show the predicted distribution 35 s and 95 s later, respectively, calculated using the
Stokes settling model described above. This figure shows that the size distribution shifts slightly
towards smaller particles as the particles settle. This is to be expected since the larger particles
sink more rapidly than the smaller particles. The lack of a dynamic measurement of the particle
size distribution in the system meant that these predictions could not be tested experimentally,
but as has already been shown the predictions of total concentration agreed well with the LSS

measurements.

In order to investigate the effect of the settling out of the particles on the attenuation, the
visco-inertial absorption coefficients were calculated for both the initial distribution and the
predicted distributions after 35 s and 95 s of settling shown in Figure 6.16, assuming a total
initial concentration of 1 kgm™3. The results of these calculations are shown in Figure 6.17. The
line-styles of the curves in this figure correspond to the those in Figure 6.16, such that the solid
curve is the attenuation with the initial distribution, and the dotted and dashed curves show the
attenuation with the predicted distributions after 35 s and 95 s of settling respectively. Clearly
the attenuation reduces as the particles settle out, as expected. The acoustic measurements were
all made within 35 s of the stirrer being switched off, and although the reduction in attenuation
is noticeable after this time, it is relatively small and well within the experimental error of the

measurement.

6.4.2 Clay-like particles

The preceding section showed how good agreement was obtained between measurements of
absorption made with spherical particles and the Urick model for viscous absorption by spherical

particles. The next stage in the experimental programme was to make measurements with
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non-spherical particles to assess the applicability of the spherical models as the particles depart
from being spherical.

For this purpose two samples of particulates were obtained from ECCI (English China Clays
International, now Imerys). The first was a type of kaolin (china clay) with the trade name
Speswhite, and the second was a form of calcium carbonate with the trade name Polcarb. Both
of these samples were relatively pure and relatively well characterized industrial samples,
allowing the study of absorption by non-spherical particles without the problems associated with

using natural marine sediments of unknown composition and physical parameters.

6.4.2.1 Scanning electron micrographs

Figures 6.18 to 6.20 show scanning electron micrographs of the Speswhite particles. They were

produced by DERA Bridgwater [68] using the following technique.

A clean brush was dipped into each of the samples and brushed across a carbon impregnated
sticky tab attached to an aluminium stub. Any excess material was blown off using compressed
air. The samples were then gold coated in a sputter coater in order to make them electrically

conducting, before being examined on the scanning electron microscope at various magnifications.

Figure 6.18 shows a typical area of the sample, imaged at an original magnification of x2000.
Obviously the magnification of the printed image differs from the the original instrument

magnification, but the scale is indicated by the micron marker at the bottom right of the image.

Figures 6.19 and 6.20 show higher magnification (x10000) details of parts of the area shown in
Figure 6.18.

It may be seen from these micrographs that the sample is composed of flat, very thin, plate-like
flakes which aggregate together to form larger particles. This structure is typical of clay minerals.
The difference between the plate thickness and length or width can clearly be seen in some cases.
The whole sample appeared to be composed of these plate-like, flat, clay particles, with very little

material from other origins, as expected for this nominally pure industrial sample.

Figures 6.21 to 6.23 show representative scanning electron micrographs of the Polcarb

particles [68]. Figure 6.21 was obtained using an original instrument magnification of x2000 and
Figures 6.22 and 6.23 show details of this region at an original magnification of x10000.

It may be seen that the form of the particles is different from the Speswhite particles shown in
the previous images. Here there are few aggregates, and the particles are more angular and not
plate-like. Some particles do appear to be composed of layers, but they are larger and appear

thicker than the china clay fakes.

6.4.2.2 Particle size distributions

Figures 6.24 and 6.25 show particle size distributions for the Speswhite and Polcarb particles
respectively, measured using laser diffraction analysis, gravitational sedimentation and centrifugal
sedimentation [68].

Clearly there are very significant differences between the size distributions obtained using these
different methods. This serves as an illustration of the fundamental difficulties of characterizing

irregular particles. The laser diffraction technique may be considered to yield an effective optical
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Figure 6.18. Scanning electron micrograph of Speswhite particles taken with an original instrument
magnification of x2000.

Figure 6.19. Scanning electron micrograph of Speswhite particles taken with an original instrument
magnification of x10000 - detail of area shown in Figure 6.18.
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Figure 6.20. Scanning electron micrograph of Speswhite particles taken with an original instrument
magnification of x10000 - another detail of area shown in Figure 6.18
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Figure 6.21. Scanning electron micrograph of Polcarb particles taken with an original instrument mag-
nification of x2000.
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Figure 6.22. Scanning electron micrograph of Polcarb particles taken with an original instrument mag-
nification of x10000 - detail of area shown Figure 6.21.
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Figure 6.23. Scanning electron micrograph of Polcarb particles taken with an original instrument mag-
nification of x10000 - another detail of area shown in Figure 6.21.
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Figure 6.24. Size distribution of Speswhite particles measured by centrifugal sedimentation, gravitational

sedimentation and laser diffraction.
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Figure 6.25. Size distribution of Polcarb particles measured by centrifugal sedimentation, gravitational

sedimentation and laser diffraction.
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scatterer dimension, since it gives the size distribution of spherical particles which would give the
observed optical diffraction pattern. Both the gravitational and centrifugal sedimentation

techniques use Stokes’ law to determine particle size, and hence yield an effective Stokes diameter.

In the case of Speswhite in particular the centrifugal sedimentation measurement shows a strong
bias towards smaller particles. Since samples used for the centrifugal sedimentation
measurements were treated with prolonged ultrasound to break up aggregates this might possibly
be an indication that there was some degree of aggregation of the Speswhite particles. This is

consistent with the SEMs of the Speswhite particles, which do show some clumping of particles.

6.4.2.8 Attenuation measurements

Figure 6.26 shows the measured attenuation coefficient for the Speswhite (kaolin) particles as a
function of frequeﬁcy, normalized with respect to concentration. The symbols indicate
measurements made at different concentrations. The measurements are binned at 10 kHz
intervals over the range 50-150 kHz, but are shown offset slightly so that the individual error bars

can be resolved.

Also shown on this graph is the attenuation predicted by Equation 2.31 for spherical particles
using the three size distributions shown in Figure 6.24. These three predictions are in
surprisingly close agreement with each other, given the apparent differences displayed by the size
distributions measured by the different techniques. However, it must be remembered that over
the relatively limited frequency range of the acoustic measurements the absorption is dominated
by those particles whose size is close to the peak in the visco-inertial absorption (see Figure 4.3).
As expected for these highly non-spherical particles, the prediction of the theory for spherical

particles does not agree well with the measured attenuation.
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Figure 6.26. Normalized attenuation coefficient for Speswhite particles: experimental data and theoretical
predictions assuming spherical particles. Data points have been offset in frequency to show individual error

bars (see text).
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Figure 6.27. Normalized attenuation coefficient for Polcarb particles: experimental data and theoretical
predictions assuming spherical particles. Data points have been offset in frequency to show individual error

bars (see text).

Figure 6.27 shows the results of the measurements of attenuation with Polcarb {calcium
carbonate) particles. Again, the symbols indicate measurements made at different concentrations,
and the data have been normalized with respect to concentration. In this case the theoretical
predictions using the size distributions yielded by the different sizing techniques show greater
differences than in the case of the Speswhite. This would be because the size distributions have
greater differences in the particle size range contributing most to the absorption, although this is
not immediately apparent from visual inspection of the curves showing cumulative mass
percentage oversize.

The measurements for Polcarb show much better agreement with the theoretical predictions than
was the case for Speswhite. Although the theoretical curves do not have the same form for the
frequency dependence as suggested by the data, the magnitude of the predicted absorption is
close to the measured absorption over much of the frequency range. The fact that the Polcarb
measurements agree better with the predictions of the spherical particle theory than the
Speswhite measurements is not surprising, since inspection of the SEMs shows the Speswhite
particles to be highly plate-like whereas the Polcarb particles, although certainly irregular and

non-spherical, are closer to spheres in aspect ratio.

6.4.3 Marine sediments

The measurements with spherical particles described in Section 6.4 enabled the models to be
tested in the idealized case. Moving to the Speswhite and Polcarb particles allowed investigations
to be carried out with highly non-spherical particles in a relatively controlled way. The final part
of the experimental study involved the use of real marine sediment particles from a seabed

sediment core sample. This core was obtained in about 1600 m of water on the continental slope,
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west of the Malin Shelf and comprises primarily soft grey clay.

6.4.8.1 Scanning electron micrographs

Figure 6.28 shows a SEM image of a typical sample of these sediment particles, imaged at an
instrument magnification of x2000 [68]. Figures 6.29 and 6.30 show details of the area shown in
Figure 6.28, imaged at a magnification of x10000. These figures show that the particles are highly
irregular and highly variable, with a mixture of plate-like particles and more granular particles.
This sample does appear to have similarities with the Speswhite sample, indicating that the
sediment contains a significant component of clay-like particles. However, there also appear to be
other types of particle present. Grains appear to range in size from fine silt (about 10 to 15 um)
to fine clays (about 0.5 to 1 um). Although the SEM was not used to identify grain mineralogy,
it is likely that the sample will comprise quartz, chlorite, calcite, feldspar and illite [69].

ediment 212 - Marine scdimeﬁt, 10027204

Figure 6.28. Scanning electron micrograph of sediment particles taken with an original instrument
magnification of x2000.

6.4.3.2 Particle size distributions

Figure 6.31 shows the size distribution of these particles, measured by laser diffraction analysis,
centrifugal sedimentation and gravitational sedimentation. Again, the three techniques yield
different results over much of the size range. As with the Speswhite the centrifugal sedimentation
technique yields a size distribution biased towards smaller particles, indicating that there might
be some aggregation of these particles. This is supported by the SEMs.
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Figure 6.29. Scanning electron micrograph of sediment particles taken with an original instrument
magnification of x10000 - detail of the area shown in Figure 6.28.

; Vi 9
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Figure 6.30. Scanning electron micrograph of sediment particles taken with an original instrument
magnification of x10000 - another detail of the area shown in Figure 6.28.
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Figure 6.31. Size distribution of sediment particles measured by centrifugal sedimentation, gravitational

sedimentation and laser diffraction.
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Figure 6.32. Normalized attenuation coefficient for marine sediment particles: experimental data and

theoretical predictions assuming spherical particles.

Figure 6.32 shows the results of measuring the attenuation due to the sediment particles. As

before, the symbols indicate measurements made at different concentrations and normalized with

respect to concentration. It may be noted that there is a greater spread between measurements
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made at different concentrations than was the case for Speswhite or Polcarb particles. This may
be attributed to the greater uncertainty in the mass of sediment added to the test volume. In the
cases of Speswhite and Polcarb the dry particulates were carefully weighed before being dispersed
in water and added to the experimental system. In contrast to this the sediment particles were
taken from a wet core sample leading to uncertainty in the dry mass of particles added. To
estimate the water content of the core, samples of the wet sediment were weighed, dried and
re-weighed. The resulting value for the water content was then used to estimate the dry mass of
sediment particles added to the experiment. The variability in water content of the core is the

major contribution to the variability observed in the normalized attenuation measurements.

The size distributions obtained using the three different techniques clearly lead to different
predictions for the attenuation over the frequency range of the measurements. The theoretical
curves generally overpredict the attenuation over most of the frequency range, although all three
curves are within the experimental error in the range 50 to 70 kHz. The predictions based on the
size distribution determined by gravitational sedimentation are within the experimental error of
the majority of the data points, albeit at the upper end of the error bar. The predictions based
on the centrifugal sedimentation measurements overpredict by the greatest margin. This may be
explained by examination of Figure 6.31 which shows that the centrifugal sedimentation yields a
size distribution which is strongly biased towards smaller particles. This may be because the
sediment sample contains some flocs which are more likely to be broken up by the centrifugal

technique than the other particle sizing methods.

The SEMs show that the sediment sample contains a high proportion of clay-like particles of
similar form to the kaolin particles of the Speswhite sample. Given the poor agreement between
the attenuation measurements for Speswhite and the predictions of the spherical particle model,
it is perhaps surprising to find that the predictions of the model are reasonably close to the
measured data for sediment particles (particularly using the gravitational sedimentation size
distribution). It is likely that this is a consequence of ensemble averaging over many different
particle shapes and sizes in the case of the natural sediment particles, as opposed to the pure
samples of similarly shaped, highly non-spherical particles in the case of the Speswhite. This
gives some encouragement that the spherical particle models may be of some use for predicting

the attenuation from natural marine suspensions.

6.4.4 Application of the theory for non-spherical particles

The results in the previous sub-section showed the comparison between the predictions of Urick’s
equation, which assumes spherical particles, and measurements made with non-spherical particles.
These results showed that the spherical model is of some limited use in providing estimates of the
attenuation from the Polcarb and marine sediment particles. In the case of the highly

non-spherical Speswhite particles, the spherical theory significantly overpredicts the attenuation.

A method for calculating the attenuation due to suspensions of oblate and prolate spheroids was
described in Section 5.4. Since the degenerate form of an oblate spheroid is a thin circular disk it

is appropriate to approximate the Speswhite plate-like particles as oblate spheroids.

In order to apply the method of Section 5.4 it is necessary to know the size distribution of the
spheroids representing the particles. It is not appropriate to simply use the size distributions

shown in the previous sub-section as these are distributions of Stokes diameters (equivalent
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spheres). Therefore these distributions have been used to derive new distributions for spheroids.

The starting point for this process is the distribution of Stokes diameters obtained from
gravitational sedimentation measurements. These were originally derived by applying

Equation 6.5 to measurements of the fraction of particles which settle out of suspension as a
function of time, Unfortunately the original time-domain data were not available but it was
possible to recalculate them by inverting Equation 6.5 and applying it to the distributions of
Stokes diameters. This gives the fraction of particles which settle out of suspension as a function
of time. Now, if the settling velocity of spheroids is known as a function of their major and minor

radii, these data can be used to derive a particle size distribution for the spheroids.

The steady-state settling velocity for spheroids may be obtained by equating the drag force on a

spheroid (Equation 5.62) with the gravitational force and rearranging to give

drad’ (p' —p) g
= e TP 6.14
Y 187 K¢ ( )
The shape factors, K, for oblate spheres with their axis of symmetry oriented parallel and

perpendicular to the flow are given by Equations 5.72 and 5.76 respectively.

In this way the size distribution for Speswhite particles derived by gravitational sedimentation,
shown in Figure 6.24, was used to calculate the size distribution of spheroids of given aspect

ratio, h = b'/a’, which would give the same measured settling time history.

These particle size distributions were then used to calculate the attenuation spectrum due to the
suspension of spheroids, using the approach described in Section 5.4. The attenuation
measurements, as described in Section 6.2, employ an approximately diffuse field in which all
directions of propagation are equally probable. Ideally, then, these calculations would be
integrated over all orientations. However, the method only yields solutions for the two orthogonal
cases, so the results presented below were obtained assuming equal concentrations of the two

orthogonal orientations.

Figure 6.33 shows the comparison between the attenuation predicted using the oblate spheroid
model and the measured attenuation for Speswhite particles. Predictions are for h = 1, i.e. for
spherical particles, and h = 1/30 and h = 1/40 which is the range of typical aspect ratios of the
Speswhite particles as quoted by the suppliers. The predictions for spheres, using the spheroidal
model with h = 1, are in agreement with the predictions of the spherical model shown in

Figure 6.26, and thus overestimate the attenuation. The predictions for the aspect ratios which
are representative of the Speswhite particles, however, show excellent agreement with the
measured attenuation. It is notable that this agreement is achieved without using any a prior:

knowledge of the attenuation measurements.

The spheroidal approach has also been applied to the Polcarb particles in exactly the same
manner. However, inspection of Figures 6.21 to 6.23 shows that they are very angular and
irregular. The spheroidal approach was therefore not expected to yield significantly improved
agreement over the spherical model. Furthermore, no information was available on the aspect
ratio, other than perhaps what could be inferred from the microscope images. Therefore
calculations were performed for a number of different aspect ratios and those which gave
predictions which were reasonably close to the measured data are shown in Figure 6.34. All that

can really be concluded from this result is that the predictions of the spheroidal model for
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Figure 6.33. Normalized attenuation coefficient for Speswhite particles: experimental data and theoretical
predictions using the model for spheroidal particles. The size distribution of the spheroids was derived

from gravitational sedimentation measurements.
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Figure 6.34. Normalized attenuation coefficient for Polcarb particles: experimental data and theoretical
predictions using the model for spheroidal particles. The size distribution of the spheroids was derived

from gravitational sedimentation measurements.



Summary and conclusions 107

T | T T T
——— h =1 (spheres)

025 L e h=1/10 R
——=- h=1/40

— O  031kgm®

o 020 - -
N; | 0.62 kgm™

g ¢ 0.92kgm®

- 0.15

S A

5

3

o

Joi

<

0.05

0.00
40 60 80 100 120 140 160

Frequency (kHz)

Figure 6.35. Normalized attenuation coefficient for marine sediment particles: experimental data and
theoretical predictions using the model for spheroidal particles. The size distribution of the spheroids was

derived from gravitational sedimentation measurements.

0.1 < h <1 are neither better nor worse than the predictions of the spherical model. This is

consistent with expectations, given the nature of the particles.

Finally, the spheroidal approach was applied to the natural marine sediment particles. Again,
independent data on the aspect ratio were unavailable, although could potentially be estimated
by detailed analysis of electron microscope imagery. Since the sediment samples contain a
mixture of particles, some of which are granular and similar in form to the Polcarb particles, and
others which are clay-like and similar to the Speswhite, calculations were performed for h =1,
h=1/10 and h = 1/40. Owing to the spread in the measured data, all of these theoretical curves
may be considered to lie broadly within the experimental error. However, the h = 1/10 curve lies
closest to the centre of the dataset. Ideally, when faced with such a sample containing a
distribution of particle shapes, the calculations should be integrated over a range of aspect ratios.

In this case, however, data were not available to support this approach.

6.5 Summary and conclusions

The method of measuring the attenuation due to solid particles described in this chapter has
been demonstrated to yield estimates of the attenuation due to spherical glass particles which are
in agreement with the theoretical predictions of the Urick model for viscous absorption to within
experimental error. From this it may be concluded that the experimental technique is suitable for
the measurement of the acoustic attenuation coefficient in particulate suspensions over the range
of parameters considered. It may also be concluded from the fact the the Urick model predicts
the observed attenuation to within the measurement error that this attenuation is primarily due
to viscous absorption, and that contributions from other dissipative processes, such as thermal

absorption, are small.



Summary and conclusions 108

Having validated the experimental method with the spherical glass particles, measurements were
made with highly non-spherical particles of kaolin and calcium carbonate. With these
non-spherical particles the method of obtaining the particle size distribution became an
Important issue, and three different particle sizing techniques were employed. Significant
differences were observed in the particle size distributions yielded by the three techniques, leading

to differences in the predicted attenuation.

The predictions of Urick’s model for visco-inertial absorption by spherical particles, integrated
over the size distributions obtained using the three particle sizing techniques, significantly
overestimate the attenuation by the Speswhite particles. This poor agreement is to be expected
since the plate-like kaolin particles are far from spherical. Agreement between the spherical
particle model and the experimental data for Polcarb particles is much better, although the
mode] fails to predict the observed frequency dependence in the attenuation. These calcium
carbonate particles, while still highly irregular, are nearer to spheres than the kaolin particles, so

the improved agreement is consistent with expectation.

The final series of measurements was made with natural marine suspension particles. Although
the marine sediment sample contains a significant number of clay-like particles, in common with
the kaolin sample, agreement between experiment and theory was much better in the case of the
sediment particles. In particular the prediction based on the size distribution measured by
gravitational sedimentation agrees with the attenuation measurements to within experimental
error for most of the data points. However, there does appear to be a tendency for the model to

overpredict the attenuation.

A model for acoustic attenuation by dilute suspensions of spheroidal particles has been used to
predict the attenuation in suspensions of the three different particles. This model is most
appropriate for the plate-like kaolin particles as the degenerate form of an oblate spheroid is a
circular disk. The predictions of the model for oblate spheroids were found to be in excellent
agreement with the measurements of attenuation by kaolin particles without requiring any a
priori information about the attenuation measurements. Agreement between this model and the
measurements made on calcium carbonate and marine sediment particles was less good, as

expected due to the shape of these particles.

The experimental method uses stirring to suspend the particles and turbulence is therefore
inherent in the test volume. Since it is possible that there could be a net transfer of acoustic
energy to turbulent kinetic energy it was important to estimate the magnitude of this effect in
order to determine whether this was a significant contribution to the total dissipative
attenuation. A method was described in this chapter for estimating the order of magnitude of
this turbulence attenuation coefficient. Calculations using this method based on estimates of
maximum energy suggested that the turbulence attenuation coefficient in the experimental
system was several orders of magnitude smaller than both the measured attenuation and the
calculated viscous absorption coefficient. It is therefore concluded that turbulence is not a

significant absorption mechanism in the experiments described in this chapter.

Thus far this thesis has described a theoretical and experimental investigation into the effects of
dilute suspensions of mineral particles on acoustic propagation, within ranges of parameters which
are pertinent to high frequency sonar systems operating in coastal waters. The next chapter goes

on to apply this work to the problem of high frequency sonar performance prediction.
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Application to the sonar performance problem

7.1 Introduction

This thesis describes theoretical, computational and experimental investigations of visco-inertial
dissipation by dilute particulate suspensions. One immediate application of this research is the
determination of the effects of suspended particulate matter on the performance of high
frequency acoustic sensors operating in shallow, turbid, coastal waters.

This chapter addresses this application of the research by including the additional attenuation
due to suspended particles into a high frequency sonar detection model.

Shallow coastal waters are also likely to be characterized by persistent microbubbles throughout
the water column, and these are likely to be acoustically significant. Therefore the effect of such
bubble populations on the attenuation and phase speed have also been included in the work

presented so that the magnitude of the effect may be compared with the magnitude of the effect

of the solid particles.

7.2 Sonar detection model

7.2.1 Background

The sonar performance calculations presented in this chapter are based on a modified version of
the SEARAY mine countermeasures sonar performance model.

SEARAY was originally implemented at the Naval Coastal Systems Center (NCSC), Panama
City, Florida, and was based on a BASIC version of the MINERAY sonar simulation model
developed and in use at the Applied Research Laboratories, University of Texas at Austin
(ARL:UT).

The version which was modified in this work was Fortran version 1.4, obtained from the NATO
Undersea Research Center (SACLANTCEN) along with a set of Matlab functions which serve as

a graphical user interface to the underlying model.

7.2.2 Model operation

The operation of the SEARAY model is described in Reference [70]. The main elements of the

model operation are summarized below.

109
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SEARAY models the acoustic environment by using ray tracing to determine sound paths in a
horizontally stratified water column. The signal to noise ratio along each ray is determined by
calculating the directivity, absorption, geometric spreading loss, the effects of various noise and

reverberation sources, and applying the active sonar equation

SNR=SL-2TL+DI+TS—-RL—~NL (7.1)

where

SL = Sonar source level

TL = One way transmission loss

DI = Directivity index

TS = Target strength

RL = Total reverberation level (bottom, surface and volume)

NL = Total noise level {ambient, flow, propeller, receiver)

These terms are discussed in the following sub-sections.

7.2.3 Source level and target strength

Both the source level and target strength are expressed in dB and are input by the user.

The source level is the sound pressure level of the source, measured at a distance of 1 m from the
array. Sound pressure levels in SEARAY are expressed in dB re. 1 pbar, but all sound pressure
levels in this thesis are expressed in the more conventional (in the UK) units of dB re. 1 pPa.

Conversion from dB re. 1 pbar to dB re. 1 uPa is achieved by adding 100 dB.

The target strength is the ratio, in dB, of the scattered acoustic intensity to the incident acoustic
intensity. The scattered and incident intensities are referenced to a point located 1 m from the
centre of the target. As a result of this definition, positive target strengths are common. Some

typical target strengths are given in Table 7.1.

Target Aspect 75 (dB)
submarine beam 3to 25
submarine bow-stern | 0 to 10
mine beam 0 to 10
mine off-beam -25 to 10
unsuited swimmer | any -15

Table 7.1. Some typical target strengths (illustrative only) [71,72].

7.2.4 Transmission loss

The transmission loss is the attenuation along the ray path, normally including losses at
boundary interactions as well as geometric spreading and volume absorption. However, SEARAY

models the seabed and sea surface as lossless reflectors.

For geometric spreading SEARAY models spherical spreading of wavefronts along the calculated
ray paths. The effects of ray convergence and divergence are not calculated. These

approximations are reasonable for the direct path scenarios for which the model is used.
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Absorption of sound in seawater was discussed in Section 2.3. SEARAY provides two models for
the absorption coefficient: Francois & Garrison [4] and Schulkin & Marsh [3]. The Francois &

Garrison model, as described in Section 2.3, has been used here.

7.2.5 Directivity index

Most sonar systems employ directional arrays, which means that they transmit and receive over
finite beam patterns rather than omni-directionally. This results in an array gain relative to an
omnidirectional transmitter or receiver. In the special case where the signal is coherent and the
noise is isotropic the array gain is referred to as the directivity index.
Three different routines for calculating the directivity index are used in the model, depending on
the application and user choice. For the calculation of flow noise and ambient noise, which are
independent of ray angle, the following approximation for the directivity is used

Bth

=7 7.2
DI = (7.2)

where B}, and B, are the horizontal and vertical beam-widths in radians.

For other applications within the model the beam-pattern is computed using either a bizonally

shaded or Taylor shaded planar array [70].

7.2.6 Bottom reverberation

Bottom reverberation refers to sound that is scattered from the seabed and propagates to the
receiver. This effect can have an important influence on sonar performance, especially in shallow

water. The bottom reverberation level in dB is given by

RLy, = SL —40log(r;) — 2ar; + Sp + 10 log(Ap) (7.3)

where SL is the sonar source level, o is the volume absorption coefficient, ;. is the range along

the ray, Sy, is the bottom scattering strength and Ay, is the insonified area of the seabed.

The version of SEARAY used in this work provides four alternative models for computing the

bottom scattering strength:

e McKinney-Anderson [73]

e Lambert’s law [74]

e GESMA (Group d’Etudes Sous-Marines de I’Atlantique) [75]

o APL-UW (Applied Physics Laboratory, University of Washington) {76]

The McKinney-Anderson model was developed from data taken in shallow water over a frequency
range of 12 to 290 kHz. Backscattering is a function of bottom type (my), grazing angle in
radians (6;) and frequency in kHz (fi). The bottom type is divided into four classes: 1 for mud;
2 for sand; 3 for gravel; 4 for rock. The bottom type can be any real number between 1 and 4

(e.g. 1.5 for mud and sand). The scattering strength is given by

Sp = 10log (2.53 - Gy, - 227 08mv . 1028me—12 4 1075)
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where

Cy = By (sin (64 + 0.19)) 7 (7.5)
By, =1+ 125e (7.6)
Dy, = my(cos(6y))*° (7.7)
2
By = —2.64(mp, — 1.75)2 — <m> (7.8)
my
fx = frequency in kHz (7.9)
G, = grazing angle in radians (7.10)
Lambert’s law computes scattering as a function of bottom type and grazing angle, and is
frequency independent:
Sy = po -+ 201og(sin(bg)) (7.11)

where 64 is the grazing angle in radians and g is a constant depending on bottom type. Typical

values of u are given in Table 7.2. This was the model used for the calculations presented in this

chapter.
Bottom type po(dB)
Mud -29
Sand -22
Gravel and rock | -15

Table 7.2. Typical values of Lambert’s constant, po.

The GESMA model is also based on bottom type and grazing angle and is independent of

frequency:

Sy, = ag + B log(6a) (7.12)

where 04 is the grazing angle in degrees and o, and 3, are constants which depend on the

bottom type. Typical values are given in Table 7.3

Bottom type | ag | Gg
Mud -60 | 13
Fine sand -67 | 28
Sand -47 1 21
Gravel 371 21
Rock 16 | 7

Table 7.3. Typical values of constants a and 3; in GESMA model.

The APL-UW model is based on seafloor sediment grain size and porosity and it depends on
both grazing angle and frequency. This model is an empirical fit to data collected at 20 to 80 klz
and grazing angle from 5 to 90°. The expression for calculating the bottom scattering strength is

more complicated than the preceding models, and as the APL-UW model has not been used in
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this work the expression will not be reproduced here. The interested reader is referred to
Reference [76].

A comparison of these four environmental sub-models for computing bottom scattering may be

found in Reference [77].

7.2.7 Surface reverberation

The surface reverberation level is given by

RL; = SL —40log(r) — 2ar, + S5 + 101log(A4,) (7.13)

where S is the surface scattering strength and As is the insonified area of the sea surface.

The version of SEARAY used here provides three alternative sub-models for computing surface

scattering strength:

e  Chapman-Harris [78]
e  Urick-Hoover [79]
e APL-84 [80]

The Chapman-Harris model is derived from measurements in the frequency range 400 Hz to
6.4 kHz and is a function of wind speed in knots (w), grazing angle in radians (6,) and frequency
in kHz (fx). The actual model implemented in SEARAY is a modified form of the

Chapman-Harris model which has been extended to include data at higher frequencies:

S. = —51.3 + 20 log(1 + w) + @gg%io—'l—) + 10T log(tan 6,) (7.14)
where
4{w + 2) ~1/3 1/8
=222 (2.5(f + 0. ~ 7.15
= +<25(fk+01) 4) (cos 8) (7.15)

The Urick-Hoover model was developed from data measured at 60 kHz. The formula is
independent of frequency but depends on both grazing angle and wind speed. The Urick-Hoover
model has not been used here and the formula is therefore not reproduced. The APL-84 is an

adaptation of the Urick-Hoover model, and has also not been used in this work.

7.2.8 Volume reverberation

The volume reverberation level is given by

RL, =Sy, +SL—2TL +10log Vs (7.16)

where V, is the insonified volume and S, is the volume scattering strength given by

S, = —89 + 7log fx (7.17)
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This scattering strength is representative of conditions in the body of the ocean under conditions
of sparse marine life, and the presence of denser marine life such as is found in shallow, coastal
environments may raise the volume scattering level by as much as 15 dB. The increase in
scattering strength with increasing frequency accounts for the fact that as the wavelength gets

smaller more forms of life become large with respect to the wavelength and thus become

significant scatterers.

7.2.9 Ambient noise

The ambient noise model is a fit to the Knudsen curves [81] (based on empirical measurements)

with a high frequency cut-off at the thermal noise limit of an omnidirectional hydrophone of unit

efficiency [82,83].

10-7 3.1072 1076 . 2
]am = o 2.5. -1z, 2 7.18
b= +1+104-ff+1+f;;/3+ 10712 f2 (7.18)

where [, is the ambient noise intensity, fi is the frequency in kHz and w is the wind speed in
knots.

The terms in Equation 7.18 account for: low frequency background noise (e.g. seismic activity);
distant shipping noise; wind generated noise; and thermal noise, respectively. At frequencies
above around 1 kHz the wind generated and thermal noise contributions dominate. Wind leads
to generation of noise by the effects of wave splashing and the entrainment of air bubbles which
subsequently oscillate, or ring. The ambient noise level increases with increasing wind speed for
frequencies below about 300 kHz; at higher frequencies the wind speed dependence is negligible
for wind speeds within normal ranges. Ambient noise levels decrease with increasing frequency at

a rate of around 5 dB per octave until the thermal noise limit of the hydrophone is reached.

7.2.10 Flow, propellor and receiver noise

Hydrodynamic noise due to flow over a moving sonar housing is calculated using an expression

developed at ARL:UT

NL; = 56.6 + 10log (10%/10 - 1) — 20log(fi) — 100 (7.19)

where vy, is the platform speed in knots and fy is the frequency in kHz.

The propeller noise level, N Ly, received by a sonar which trails behind the stern of a ship is

calculated by subtracting transmission loss from a user-input propeller source level.

Receiver noise level, NL, in SEARAY may be calculated from the ratio of the thermal noise
voltage of the receiver to the receiver sensitivity [84]. Alternatively a user-input receiver noise

level can be used.

7.3 Model limitations

The SEARAY model has a number of limitations of which users must be aware:
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e The model calculates the SNR along the individual ray paths calculated by the ray tracing
algorithm. Multipath interference effects are thus neglected. In some scenarios this may be
perfectly adequate whilst in others it may be seen as a major limitation.

e  The seafloor and sea surface are modelled as lossless reflectors. The number of interface
reflections to include is set by the user.

e Sloping or rough bottoms cannot be modelled.

e The geometric spreading term is calculated assuming spherical spreading instead of
performing a calculation based on ray convergence or divergence.

e  The model is range-independent.

7.4 Model enhancements

As a result of the work described in this thesis, and other work by the author [85], the SEARAY
sonar model has been enhanced in a number of respects in order to include the effects of

suspended particulate matter and microbubbles.

7.4.1 Suspended particles

The additional attenuation due to visco-inertial absorption and scattering by suspended solid
particles has been added to the volume absorption algorithm in SEARAY. This is used to
compute the propagation loss in all propagating terms, including the signal, surface, bottom and
volume reverberation and propagating noise terms. Visco-inertial absorption is computed by
Equation 2.31 and scattering by Equation 2.45. The attenuation coefficient including
physico-chemical absorption in seawater and visco-thermal absorption and scattering by

suspended particles is given by Equation 2.3.

7.4.2 Microbubbles

As with solid particles, the presence of microbubbles in the water column leads to additional
acoustic attenuation through thermal and viscous absorption and scattering. Unlike particles,
however, resonant scattering can be important in the case of bubbles, and the scattering
cross-section of a bubble near resonance may be very much larger than its geometric cross-section.

Bubbles also cause the compressibility of the medium to be complex, resulting in dispersion.

The dispersion relation for a bubbly liqguid may be written [86]

k2 = 8—22- + dmw? /00 ___________;Lonb(;lo)dt?o (7.20)
c ap=0 Wi — w? + 2ibw

where ky, is the complex wavenumber for the bubbly liquid, w is the angular frequency of the

acoustic wave, ¢ is the speed of sound in the ambient fluid, ag is the equilibrium bubble radius,

wp is the resonant frequency of bubbles having equilibrium radius ag and ny(ag)dao is the

number of bubbles per unit volume in the size range ag to ap 4+ dag (it is conventicnal to take

dag = 1 pm). The damping constant b is a summation of the viscous, thermal and radiation

damping of the bubble, given by [86]
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2n Do on  wiag
- o .
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where p and 7 are the density and molecular viscosity of the ambient liquid, and py, is the

equilibrium gas pressure in the bubble. The complex term @ is a thermal scaling factor given by

3y
°= 7.22
1-3(ig {(i/E)l/Zcoth(i/E)l/Z _ 1J (7.22)

in which

== e (7.23)
wad
where x, is the gas thermal diffusivity and - is the ratio of the specific heat of the gas at

constant pressure to that at constant volume.

The phase speed ¢, and attenuation coefficient v, for the bubbly liquid may be obtained from the

real and imaginary parts of the complex wavenumber (Equation 7.20) using the following relation

W iab
ky = — + —— 7.24

b oL + 10loge? ( )

The attenuation coefficient ay, is added to the volume loss term in SEARAY and the phase speed

cp is used to modify the sound speed profile.

7.4.3 Water column properties

In order to include the additional effects of suspended particles and microbubbles into the model
the density and viscosity of the water must be known. However, these are not available in the
original version of the model as they were not explicitly required. Instead the water column is
described in terms of a single sound speed profile (SSP) or a single temperature profile, together
with a constant value of salinity or a single salinity profile. Note that whilst salinity profiles are

supported by the model itself they are not currently implemented in the user interface.

In the case where the temperature profile is supplied by the user, the SSP is computed using the
Del Grosso equation [87] for sound speed as a function of temperature, salinity and depth. Where
the SSP is given, the temperature profile is calculated using the Del Grosso equation inverted to

give temperature as a function of sound speed, salinity and depth.

The simplest way to provide the additional parameters of density and viscosity would be to make
these user inputs to the model. However, this would inevitably lead to inconsistencies between
water column properties, as both density and viscosity depend on temperature, salinity and
depth. Temperature in particular has been shown [88] (see Appendix A) to affect strongly the
attenuation due to suspended particles in seawater. The new version of SEARAY has therefore
been enhanced to compute density and viscosity profiles using the temperature profile (user
supplied or calculated from the SSP) and salinity value available in the original version of the
model. This approach ensures that all of the water column properties are consistent with each

other. The expressions used to calculate density and viscosity as functions of temperature,
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pressure and salinity are given in Appendix A.

7.5 Results

In this section some example results from the enhanced version of SEARAY, described in the

preceding sections, are presented.

The basic situation which is modelled here is a typical shallow water, high frequency sonar
scenario. A monostatic sonar system, i.e. one in which the source and receiver are co-located, is
placed at a depth of 10 m in 40 m of water, with a 3° downward tilt angle. The sonar source
emits a 1 ms pulse with a centre frequency of 100 kHz and a bandwidth of 4 kHz, with a source
level of 220 dB re. 1 pPa. The transmitting array has horizontal and vertical beam-widths of 90°
and 10° respectively, whilst the corresponding beam-widths of the receiver array are 10° and
1.5°. Both the transmitting and receiving arrays are Taylor shaded! and the projector has a
side-lobe level of 8 dB whilst the receiver has a side-lobe level of 18 dB. The receiver noise level is

49 dB re. 1 pPa and the target strength is -23 dB.

The water-column is isothermal, with a temperature of 15°C and salinity of 35 on the practical
salinity scale at all depths. The wind speed is 7 knots and the bottom type is mud. The volume
absorption coeflicient of seawater is calculated using the Francois- Garrison expression

(Equation 2.4), surface scattering by Chapman-Harris (Equation 7.14) and bottom scattering by

Lambert’s law (Equation 7.11).

Figure 7.1 shows the ray paths calculated by SEARAY for the above scenario, together with the
SSP. This shows the SSP and resultant ray paths in the absence of bubbles. Under the
isothermal and isohaline conditions modelled here, the sound speed increases slowly with depth
due to the increasing hydrostatic pressure. This results in a weakly upward refracting

environment as evidenced by the ray paths shown in the figure.

Figure 7.2 shows the sound pressure levels for the most significant terms in the active sonar
equation (Equation 7.1) calculated by SEARAY for the scenario described above. The three
terms omitted from this plot are the ambient noise level, flow noise level and propeller noise level.
All of these terms, like the receiver noise level (shown), are independent of target range and all
three are significantly lower than the receiver noise. It may be noted that the bottom
reverberation level is cut off at small ranges. Examination of the ray trace in Figure 7.1 reveals

that this is because no rays have interacted with the seabed at the earliest ranges.

For sonar performance assessment the important terms are the total background level, consisting
of the sum of noise and reverberation levels, the signal level and, ultimately, the signal to noise
ratio. These are shown, for the scenario considered here in Figure 7.3. In this plot the total
background level and the signal level are plotted in dB re. 1 uPa whilst the signal to noise ratio,

which is the ratio of the other two terms, is in dB.

Figure 7.4 shows the same SNR, along with corresponding curves for the same basic scenario but
including either suspended particles, bubbles, or both. For the purposes of this illustrative
example the particulate suspension chosen was simply a monodisperse suspension of quartz-like,

spherical particles with a radius of 1 gm and a concentration of 0.2 kgm™3 at all depths.

1 Taylor shading: array elements are weighted according to a Taylor series to achieve desired beam-patterns.
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Figure 7.1. Ray paths calculated by SEARAY with SSP shown on the right. See text for the model

parameters used in this calculation.
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Figure 7.2. Levels calculated by SEARAY. See text for the model parameters used in this calculation.
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Figure 7.3. Signal level, total noise level (noise + reverberation) and the SNR for the scenario described
in the text. The signal and noise levels are in dB re. 1 pPa, whilst the SN R is a simple ratio in dB.
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Figure 7.4. The effect of suspended particles and microbubbles on the SNR for the scenario described in
the text.
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The bubble population modelled here is more complicated, including both a distribution of sizes
and a depth dependence. The bubble spectrum, containing bubbles with radii in the range 10 pm

to 200 pm, is given by [89)

K1(ao/60)"%(d)~'/2 for 200 um > ag > 60 um

7.25
Ky(ag/60)~ 4/ Lv for 10 pm < ap < 60 um (7:25)

np{ag)dag = {
where Ly &= 7 m is the e-folding depth for small bubbles, d is depth in metres and K; and K5 are
constants which depend on time of day and season. Here the constants were chosen as
{1 =382.7 and Ky = 298.8 to give an approximate fit to measurements of bubble spectra made

in near-calm, isothermal, coastal waters [90, 91].

Figure 7.4 shows that these suspended particle and bubble populations have a significant effect
on the SNR in this modelled scenario. If it is assumed that the detection range for this particular
sonar system is defined as the range beyond which the SNR. drops below 0 dB then it may be
seen from the figure that the detection range would be in excess of 500 m in clear water. This
drops to less than 400 m in the presence of the chosen population of suspended particles and is
reduced to less than 300 m in the presence of the modelled bubble population. If both suspended
particles and bubbles are included in the model then the detection range is less than 250 m. Note
that for a real sonar system the lowest SNR at which detection is possible depends on a number
of factors, including the signal processing, and the specified probability of detection and

probability of false alarm.

7.6 Proposal for estuarine measurements

7.6.1 Introduction

In this section a speculative proposal for monitoring suspended sediment flux through an estuary
mouth is discussed. The relationship between the propagation loss for a high frequency active
sonar and the concentration of suspended particulate matter presents the possibility of inferring
path-integrated suspended sediment concentration from measurements of transmission loss across
an estuary. Measurements of this nature have a range of applications in the field of

environmental monitoring and management of the coastal zone.

Current acoustic techniques for measuring in-situ suspended sediment concentrations exploit
backscattering at frequencies of 1 MHz and above. As a consequence they are local
measurements, typically operating over ranges of 1 m or less. In contrast the proposed method
presents the opportunity of yielding path-integrated concentrations over ranges of the order of

100 m.

7.6.2 Proposed method

A practical implementation of a trans-estuary transmission loss measurement would probably
cousist of a projector array located near one side of a river mouth or estuary, with a receiver
array placed on the opposite side. The transmitter would ideally project a narrow beam, in both
vertical and horizontal directions, in order to avoid multipath issues, whilst the receiver would

have a wider beam-pattern to ensure that source-receiver alignment does not present too much of
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a problem. A single hydrophone may even suffice for the receiver.

An extension to this technique may employ a vertical array of receiver hydrophones, with the
projector using beam-forming to scan the launch angle in the vertical plane. This will give
transmission loss measurements for a series of chords in the vertical plane, which may be

processed to yield 2D estimates of sediment flux.

7.6.3 Worked example

In order to illustrate the potential of the proposed technique, an example calculation is
presented. This calculation was carried out using the sonar performance model discussed in
Section 7.2. As described in that section the model is a monostatic target detection model, so the
calculation presented here is for a monostatic geometry, rather than the bistatic case described
above which may be more appropriate for practical measurements. Nevertheless, the monostatic
calculation will serve to illustrate the key points. In this geometry the source and receiver are
co-located on one side of the estuary, and an inert target is place on the opposite side. The

transmission loss in this case must be calculated over both the outgoing and reflected paths.

The scenario modelled here has the projector and receiver arrays co-located at depths of 10 m or
20 m in 40 m of water. The projector has a horizontally directed beam with a 3 dB beam-width
of 1° in both vertical and horizontal directions, and a source level of 220 dB re. 1 pPa. For
simplicity the receiver beam-width is the same, although in practice the receiver would probably
employ a wider beam, possibly even omni-directional, as discussed above. A target with target

strength of 0 dB is at a range of 100 m and at the same depth as the projector and receiver arrays.

The water column is isovelocity before the effects of microbubbles on the phase speed are taken
into account. For simplicity, the suspended particle population used in this illustrative example is
a depth-independent, monomodal suspension of 1 um particles of density 2600 kgm™3. A
depth-dependent [89] distribution of microbubbles with equilibrium radii in the range

10 — 200 pm was used, with coefficients chosen to approximate at-sea bubble density
measurements [90,91]. This bubble population is appropriate for the persistent background

bubble population.

Figure 7.5 shows how the level of the received signal would vary with the mass concentration of
suspended particles, with and without the chosen bubble population, for sonar and target depths
of 10 m and 20 m. Only one line is plotted for the case where bubbles were not included in the
calculation as there was no significant difference between the results for the two depths in the
absence of bubbles. It is clear from this graph that even a calm water bubble population has a
significant effect on the proposed measurement. At a sonar depth of 10 m the bubbles result in
an additional reduction of the signal level of 24 dB. Even at a depth of 20 m the additional
two-way transmission loss is 4.7 dB. The consequence of this is that if the effect of the bubbles is
not taken into account a signal level of, say, 120 dB re. 1 uPa might be taken to infer a
path-averaged particle concentration of about 0.36 kgm 3, whereas the signal level in the
presence of the bubble population corresponds to a concentration of 0.2 kgm™2. In a practical
measurement of this nature the effects of a static bubble population could be calibrated out.
However it is likely that the bubble population may be sufficiently dynamic to preclude this. In
such circumstances care would be required to ensure that the interpretation of the measurements

accounted for both the particles and the bubble populations correctly. A priori knowledge of the
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Figure 7.5. Variation in signal level with suspended particle concentration. Results are shown for a
simulations with and without a bubble population. In the bubbly case results are shown for source/receiver
depths of 10 m and 20 m (see text for full details).

bubble population may also be exploited to optimize transmission measurements of the form

discussed here. For example, it is clear that the effect of bubbles is greater near the surface,

where their number density is highest.

7.7 Summary and conclusions

This chapter describes, for the first time, the inclusion of the additional attenuation due to
visco-inertial absorption and scattering by suspended mineral particles into a sonar performance
model.

In addition to including the effects of solid particles on the volume attenuation, the effects of
microbubbles distributed throughout the water column on both the volume absorption coefficient

and the sound speed profile have been taken into account.

Nlustrative, example results from this enhanced sonar model have been presented. These results
demonstrate that the presence of suspensions of solid particles and microbubbles can have a
significant effect on the signal to noise ratio, resulting in shorter detection ranges for high

frequency active sonars.

Also presented in this chapter is a somewhat speculative proposal for exploiting the relationship
between suspended particle concentration and the signal level in an active sonar operating in a

turbid environment. It is proposed and demonstrated numerically by a modelled example, that a
properly designed and calibrated system based on measurements of direct path transmission loss

could be used to monitor suspended sediment mass flux through an estuary.
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Discussion

8.1 Summary and conclusions

The aim of the research described in this thesis was to elucidate the physics of, and provide a
methodology for enabling the quantitative predictions of the effects of dilute suspensions of

marine particles on high frequency sonar.

Suspended particles can influence the performance of high frequency sonars by contributing to
the total attenuation coefficient and by modifying the sound speed. In Chapter 2 the theory of
sound absorption and scattering by suspended particles was investigated, and numerical models
based on these theories were described. Three attenuation mechanisms associated with the
suspended particles were investigated; visco-inertial absorption, thermal absorption and
scattering. Of these, visco-inertial absorption was shown to be the dominant effect over the range
of frequency and particle size of interest, with scattering becoming important as the frequency
and particle size increases, i.e. as the scattering parameter ka increases. Thermal absorption was
shown not to be important for mineral particles over the parameter range of interest. The
visco-inertial absorption contribution to the attenuation coefficient may be modelled using a
simple expression based on Stokes’ law for viscous drag and the scattering contribution may be

modelled using a simple heuristic approach.

A more complete mathematical model of the relevant phenomena is provided by the
Allegra-Hawley model, discussed in Chapter 3. This model solves the Helmholtz equations for the
six waves (compression, shear and thermal waves in both phases) generated when a plane wave
impinges on an elastic, thermally-conducting sphere suspended in a viscous,
thermally-conducting fluid. This approach implicitly accounts for visco-inertial absorption,
thermal absorption and scattering, allows the phase speed in the suspension to be determined
and facilitates the effects of multiple scattering to be estimated. The disadvantages of this model
include numerical difficulties in computing the solution and its complexity, which obscures
physical insight. Therefore the AH model has only been used here to validate the more intuitive
models for absorption and scattering. Comparison between these models indeed showed that the
simpler models provide a good approximation to the more complete model over the range of
parameters considered. Furthermore, this comparison confirms that thermal absorption is not

important for mineral particles suspended in water.

In Chapter 5 a wave equation for acoustic propagation in suspensions was described. From this

approach the acoustic wavenumber in the suspension may be determined, from which the phase

123
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speed and attenuation coefficient can be inferred. It is demonstrated that the visco-inertial
absorption coeflicient arising from this method is equivalent to Urick’s equation discussed in
Chapter 2. It is further shown that the sound speed calculated from the wave equation is not the
same as that which may naively be obtained from the bulk averaging of density and
compressibility, due to the fact that the sound speed depends not only on the bulk properties but
also on the inertial part of the complex drag on the particles. Calculations of the phase speed in
aqueous suspensions of mineral particles showed that the change in phase speed, and hence
refraction, due to natural suspensions may normally be neglected for the purpose of high
frequency sonar performance modelling. The primary advantage of formulating the wave
equation in this way is that it facilitates the task of accounting for non-spherical particles by
employing correct expressions for the drag force. Consequently a model is described for the

calculation of attenuation in dilute suspensions of oblate and prolate spheroids.

In order to validate the models and investigate their applicability to non-spherical particles a
laboratory measurement technique was developed. Measurement of absorption by dilute
suspensions in a laboratory-scale experiment was found to be challenging and a novel
experimental arrangement was adopted to overcome the difficulties. The results of measurements
made using spherical glass particles were found to be in very good agreement with the
predictions of the Urick equation for visco-inertial absorption. Comparisons between this model
and measurements made with non-spherical particles did not yield such good agreement, as was
to be expected. In particular, the model for spherical particles significantly overpredicted the
attenuation for kaolin particles, which are plate-like in form. In the cases of calcium carbonate
particles, which are granular, and natural marine sediment particles, which have a distribution of
shapes, the agreement was moderate. These experiments highlighted the fundamental issue of
how the size distribution for non-spherical particles should be interpreted. Three techniques were
employed for measuring particle size distribution: gravitational scdimentation; centrifugal
sedimentation; and laser diffraction. Differences were observed between the particle size
distributions obtained using these techniques due to a combination of factors including the fact
that the methods measure different physical properties, have different limitations and are
interpreted in different ways. For the purpose of performing the acoustic attenuation calculations
it is expected that the sedimentation methods should yield the most appropriate size distribution
as the parameter measured (Stokes settling velocity) is directly related to the drag. However, the

settling velocity is usually interpreted assuming the particles to be spherical.

Since the kaolin particles are very plate-like and the degenerate form of an oblate spheroid is a
thin disk, results from the model for attenuation by oblate spheroids were compared with the
attenuation measurements for kaolin particles. In order to achieve this the size distribution
obtained by gravitational sedimentation for these particles was re-analysed using expressions for
the Stokes drag on oblate spheroids to yield the size distribution for oblate spheroids which gave
the same settling time history. The attenuation due to oblate spheres was then calculated
assuming this size distribution, together with the aspect ratio quoted by the suppliers of the
particles. This resulted in excellent agreement between theory and measurements. It is therefore
concluded that this model for attenuation by oblate spheroids may be used to predict the
visco-inertial absorption in dilute suspensions of clay particles. Predictions of the spheroid model
were also compared with the measurements obtained with calcium carbonate particles and

marine sediment particles, although the agreement was not significantly better than that
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obtained using the spherical models. This is to be expected for calcium carbonate as the shapes
of the granular particles are not approximated well by oblate spheroids. The marine sediments
are composed of a distribution of particle shapes, and a model should therefore include such a
shape distribution or, in the case of the spheroidal model, a distribution of aspect ratios. Lack of

such data in this case would have made such an exercise pointless.

The effects considered in Chapter 2 depend upon the viscosity, sound speed and density of the
suspending fluid and, in the case of seawater, these parameters all depend in turn on the
temperature, salinity and hydrostatic pressure. In Appendix A an investigation into the effects of
temperature, salinity and pressure on the attenuation coefficient of seawater containing
suspended mineral particles is presented. This investigation demonstrates that, over the range to
be found globally, the ambient temperature has a significant effect on the attenuation coefficient
of seawater containing suspended mineral particles and the local sea temperature should
therefore be taken into account when calculating the attenuation coefficient for high frequency
sonar performance predictions. The effect of salinity variations over the range found in the
natural environment are shown to be less important and the effect of hydrostatic pressure is
found to be insignificant for water depths in the shallow, coastal environments of interest for high
frequency sonar performance predictions. The expressions presented in Chapter 2 and

Appendix A enable the attenuation coefficient in seawater containing suspended solid particles to
be calculated as a function of temperature, salinity, pressure, acoustic frequency, particle size,

particle density and particle compressibility.

Finally, the stated aim of the research presented in this thesis was to elucidate the physics of, and
provide a methodology for enabling quantitative prediction of the effects of dilute suspensions of
marine particles on high frequency sonar. The elements for achieving the first part of this aim
were established in Chapters 2 to 6, and calculations of sonar performance were finally presented
in Chapter 7. These calculations demonstrated, for the first time, the inclusion of the effects of
suspended particulate matter in sonar performance calculations. It was thus demonstrated that
suspended particles can have a significant effect on the detection range of a high frequency active
sonar operating in turbid coastal environments. The enhanced sonar model which was used for
these calculations was also applied to the problem of measuring path-integrated attenuation
across an estuary. It was thus demonstrated how, in principle, direct path acoustic propagation

measurements across an estuary might be used to monitor sediment flux.

8.2 Further work

Any good piece of research raises questions and presents opportunities for further research. It is

possible to see how the research described here may be carried forward beyond the scope of this

thesis.

In order for the work presented in this thesis to be of practical use in sonar performance
prediction, it is necessary to have some means of measuring or predicting the suspension
properties in the environment. This presents several opportunities for further research, including
investigating in-water acoustic and optical techniques for estimating suspended sediment
properties, as well as techniques based on the inversion of remotely sensed measurements of
water-leaving radiance spectra. The author is engaged in research in these areas, but this is

beyond the scope of this thesis.
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The prediction of high frequency sonar performance in coastal waters is a complicated problem,
and the effect of suspended particles is only one element of the larger problem. Other effects
include the influence of microbubbles which are prevalent in coastal waters, the effects of bottom
topography, the propagation of acoustic energy into the seabed and scattering of energy from the
bed, the scattering of sound from the sea surface, and so on. Each of these effects should be
investigated at a level of detail similar to that of this thesis in order to produce a model that is
capable of predicting, with any accuracy, the performance of high frequency sonars operating in
turbid coastal waters. To this end the effects of microbubbles on the volume attenuation
coefficient and phase speed have been included in the sonar performance model described in

Chapter 7. This was described briefly in that chapter but a full treatment is outside the compass

of this thesis.

Another interesting line of investigation is the possibility of inverting measurements of
transmission loss across, say, a river mouth or estuary, in order to estimate suspended particle
load. There would be a significant amount of work in doing justice to such a study, and it is
therefore beyond the scope of the current investigation. However, some preliminary calculations

are presented in Section 7.6. It is suggested that this topic may make a suitable investigation for

a future Ph.D. thesis.

Finally there is significant scope for further research on the subject of absorption by
non-spherical particles. The model for absorption by oblate spheroids described in Section 5.4
proved very successful in predicting the measured absorption due to the plate-like kaolin particles
discussed in Chapter 6. However, whilst both the spherical and spheroidal models yield
approximate agreement with the measurements for the more granular calcium carbonate particles
and the natural sediment particles, further work is required. To do justice to this problem
requires significant theoretical development on the subject of oscillatory drag on these irregular
particle shapes and careful experimental studies including complete characterization of the

particulate samples. This subject is also recommended as a further Ph.D. investigation.



Appendix A

The effect of temperature, pressure and salinity

A.1 Introduction

Shallow coastal environments are highly variable, with temperature varying both seasonally and
as a result of diurnal heating locally, as well as exhibiting large variations with geographic
location. Salinity also varies greatly, from nearly fresh water in river estuaries to highly saline
water in very warm, shallow seas such as the Persian Gulf or Dead Sea. The variation in the
attenuation of sound in clear seawater with temperature, pressure (or depth) and salinity is well
established, and is accounted for in the various empirically derived formulae for the attenuation
coefficient of seawater [1-5]. The attenuation by suspended particles will also depend on
temperature, pressure and salinity, since it depends on the compression wave speed, density and
viscosity of the seawater, which all depend on temperature, pressure and salinity. In this chapter
suitable expressions are employed for density, viscosity and scund speed in seawater as a function
of temperature, salinity and pressure in order to investigate the variation in the attenuation
coefficient of seawater containing suspended particles over the ranges of these parameters found
in the environment.

Microbubbles which are prevalent in shallow water environments will also contribute to the total
attenuation, and this effect will also depend on temperature, pressure and salinity. It is also
possible that the bubble population itself may be influenced by these parameters. These effects

are not within the scope of the present investigation.

A.2 Viscosity

Matthaus [92] gives a formula for calculating the molecular viscosity, n (Pas) of seawater as a
function of temperature ©(°C), salinity S (measured on the practical salinity scale) and pressure
p (dbar), which is valid for 0°C < © < 30°C, 0 < 5 < 36 and 1 dbar < p < 1000 dbar. By

employing summation notation his formula may be expressed in the following form

7(S,0,p) =011 p'> Q&7 + 8> R.O" (A1)
i 7 k

where Q;; and Ry, are coefficients obtained by fitting to experimental data. These coefficients are

given in Table A.1.
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The kinematic viscosity used in Equation 2.31 is given by v =n/p.

Sound speed

j=0 j=1 j=2 j=3
Qo; 1.79-1072 —6.1299 - 107* 1.4467 - 107° —1.6826- 1077
Qy; | —1.8266-10"7 | 1.3817-107® | —2.6363.1071%° 0
Qa2; | 9.8972-1071% | —6.3255-1071% | 1.2116 .10 0
R; | 24727.107° 4.8429 - 1077 —4.7172-107% | 75986 - 107"

Table A.1. Coefficients for the calculation of viscosity.

A.3 Sound speed

The recommended [93] formula for computing sound speed in seawater as a function of
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temperature, pressure and salinity is that of Chen & Millero. Recent studies [94] have shown

that, in fact, the Del Grosso [87] sound speed equation is more accurate than the Chen & Millero

expression for high hydrostatic pressures corresponding to depths greater than about 1000 m.

However, in the current investigation we are concerned with shallow water environments, and it

is therefore appropriate to use the recommended Chen & Millero expression.

[95]. Using summation notation as for viscosity, their formula may be written

with

The coefficients Cj;, Aij, Bi; and D; are given in Table A.2. This expression is valid for

(S, 9,p)

Cw(©,p) =

Ay (©,p) =

“ @p)

2720
202 45O
202 By

p) = Z Dip'

0°C < © <40°C, 0 <5 <40 and 0 dbar < p < 10000 dbar.

A.4 Density

= C(0,p) + Ay(0,p)S + By(0,p)S? 4 Dy(p)S?

(A.2)

The expressions for the density of seawater as a function of temperature, pressure and salinity

used here are taken from reference [93]. These are based on the international equation of state for

seawater diluted with pure water or concentrated by evaporation [96,97], which is valid for

—2°C <0 <€40°C, 0 < § <42 and 0 dbar < p < 10000 dbar.
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j=0 j=1 j=2 i=3 j=4 j=5
Ao; 1.389 —1.262 1072 7.164 - 107° 2.006 - 10°° —3.21-107° 0
Ay | 9.4742.107% | —1.2580-107® | —6.4885-107° 1.0507 - 1078 | —2.0122-107° 0
Agj | —3.9064-1077 | 9.1041-107% | —1.6002-1071° | 7.988 .10~ 12 0 0
As; | 1.100-1071° 6.649-1071% | —3.389.1071® 0 0 0
Bg; | —1.922-107% | -4.42.107° 0 0 0 0
By | 7.3637-107° 1.7945 - 1077 0 0 0 0
Coj 1402.388 5.03711 —5.80852-107% | 3.3420 - 107¢ —1.478-10°° | 3.1464 -107°
C1j 0.153563 6.8982-107* | —8.1788-107° 1.3621 - 1077 | —6.1185-107%° 0
Cqj | 3.1260-107% | —1.7107-107% | 2.5974.107% | —2.5335.1071° | 1.0405-107 "2 0
Ca; | —9.7729.107° | 3.8504-107%° | —2.3643.10*? 0 0 0
Do 1.727 1073 - - - - -
Dy | —7.9836.107° - - - - -
Table A.2. Coeflicients for the calculation of sound speed.
The density of seawater may be written
p($,9,0)
p(8,0,p) = — 22— (A7)
1-p/B(S,0,p)
where B(S,¢,p) is the bulk modulus.
Using summation notation as before, the density at p = 0 may be expressed
p(S,0,0)=py+ 8 b0 + 52 ;07 +doS* (A.8)
i j
where
Pw = Z aigi (AQ)
i
and coefficients a;, b;, ¢; and d; are given in Table A.3.
The bulk modulus is given by
B(S,t,p) = B(S,t,0) + Psp + Qp’ (A.10)
where
B(S,t,0)=Bg+ S Y _ fi0'+5%*> " g,0 (A.11)
i J
PB =P+ SZ Zz@l +j053/2 (A12)
i
Qs =Quw+5) Lo (A.13)
i




Results 130
Py =) h© (A.15)
i
and
Qu =) k®' (A.16)
i
Again, the coefficients are listed Table A.3.
=0 j=1 j=2 j=3 j=4 j=5
a; 999.842594 6.793952 - 102 | —9.095290 - 10~ | 1.001685 - 10~ | —1.120083 -10~° | 6.536332 - 10~°
b; | 8.24493-107! —4.0899 - 1073 7.6438 - 1075 —8.2467 - 1077 5.3875-107° 0
e; | —5.72466 - 1073 1.0227 - 1074 —1.6546 - 107° 0 0 0
ds 48314 -107* 0 0 0 0 0
e 10652.21 148.4206 —92.327105 1.360477 - 1072 | —5.155288 - 107° 0
f 54.6746 —0.603459 1.09987 - 102 —6.1670 - 107° 0 0
9i 7.944 1072 1.6483 - 1072 —~5.3009 - 1074 0 0 0
hs 3.239908 1.43713 - 1073 1.16092 - 104 —5.77905 - 10~7 0 0
i 2.2838 . 1073 ~1.0081-10"% | —1.6078-107° 0 0 0
7 1.91075 - 1074 0 0 0 0 0
k; | 8.50035-107° | —6.12203 .10~ 5.2787- 1078 0 0 0
I, | —9.9348 . 1077 2.0816 - 1078 9.1679 - 10~ 1° 0 0 0
Table A.3. Coefficients for the calculation of density.
A.5 Results

The attenuation in turbid seawater has been calculated using the Francois & Garrison expression
(Equation 2.4) for absorption in clear seawater together with the expressions for attenuation due
to absorption and scattering by a suspension of spherical particles (Equations 2.31 and 2.45).
The sound speed, density and viscosity of seawater used in these equations were calculated using
the expressions in Sections A.2, A.3 and A.4, as functions of temperature, salinity and pressure.
Results are thus presented for attenuation in turbid seawater as a function of temperature,

salinity and pressure, over the ranges

0°C < © <30°C

1 dbar < p < 900 dbar

It has been assumed that the variation in the bulk compressibility and density of solid mineral
particles can be considered to be negligible compared with the variation of the physical

properties of the seawater within these parameter ranges.

It may be seen from Section 2.3 that only the boric acid relaxation is dependent on pH. Since we

are interested in frequencies well above the boric acid relaxation frequency, this is not an
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important attenuation mechanism and the effect of pH on the attenuation may be neglected. All

results presented in this chapter were calculated using a pH of 8.0.

Figure A.1 shows the attenuation as a function of temperature and salinity for p = 1 dbar,
f=1MHz,a=1 pum, M =1 kgm~3. This figure shows that for the given parameters, the
attenuation decreases significantly as the temperature is increased. Over the range

0°C < © < 30°C the attenuation in dBm™?! changes by a factor of approximately 1.24 for a
salinity of 35, whilst in fresh water (S=0) the factor is approximately 1.4. The variation with
salinity is less significant, but it is notable that there is a positive variation with salinity at the
upper end of the temperature range, whilst the opposite is true at the lower end of the
temperature range. Figure A.2 is similar to Figure A.1, but with a pressure of 900 dbar. The
similarity between these figures indicates that pressure does not have a very significant impact on

attenuation over the range of parameters studied here.

Figures A.3 and A.4 show the attenuation as a function of salinity and pressure for © = 0°C and
© = 30°C respectively, with f =1 MHz, a = 1 um, M = 1 kgm™3. Temperature clearly has a
significant effect on the attenuation as noted in Figures A.1 and A.2 These figures demonstrate
that the effect of pressure on the attenuation over the range 0 to 900 dbar is small and, since for
shallow water applications we are generally only interested in water depths of order 100 m or less
(p up to about 100 dbar), the effect on the attenuation of pressure variation with depth may be
neglected. This is supported by Figures A.5 and A.6, which show that there is little variation in
attenuation with pressure over the entire temperature range considered, for salinities of 35 and 0
respectively.

Figures A7 and A.8 show the variation in attenuation with frequency and particle radius, for
temperatures of 30°C and 0°C respectively and Figure A.9 shows the difference between these
two cases. The peak occurring in the small a region of Figures A.7 and A.8 is due to viscous
absorption, which peaks when the skin depth (e-folding length) of the viscous shear waves in the
fluid is of the order of the particle size. The increase in absorption at large a is due to scattering,
which becomes important as the frequency and particle size become large, i.e. with increasing ka.
There is clearly a significant difference between these cases in terms of both the overall
magnitude of the absorption, with a maximum difference of over 0.5 dBm™!, and also in the
position of the viscous absorption peak along the particle radius axis at a given frequency. It is
this shift in the absorption peak which leads to the negative regions of the difference plot. From
Figures A.7 and A.8 it can be seen that the absorption peak moves towards smaller particles as
the temperature is increased. This may be understood in terms of the kinematic viscosity, v and
the skin depth of the viscous shear waves, 8, = \/m As the temperature increases, the
viscosity decreases, and hence § decreases. Since the absorption peak occurs when &, ~ a, the
peak would be expected to shift to smaller a as § decreases. Therefore the peak should shift to

smaller a as the temperature increases, as observed.
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Figure A.3. Attenuation as a function of pressure and salinity for © = 0°C, f = 1 MHz, a = 1 um,
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Figure A.5. Attenuation as a function of pressure and temperature for S =35 f=1MHz, a=1pum,
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Figure A.7. Attenuation as a function of frequency and particle radius for © =230°C, S =35, p=1 dbar,

M =1kgm™
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A.6 Summary and conclusions

A method has been described for including the effects of temperature, pressure and salinity into
the formula for calculating total attenuation by seawater containing dilute suspensions of solid
mineral particles (Equation 2.3). This involves the substitution of suitable expressions for sound
speed, density and viscosity as functions of temperature, pressure and salinity into the formulae
for the attenuation contributions due to scattering and viscous absorption by suspended
particles. Combined with the Francois & Garrison expression for the absorption coefficient of
clear seawater, this gives the capability for calculating the total absorption coefficient of seawater
containing solid particles as a function of temperature, salinity, pressure, frequency, particle size,

particle concentration and the density and bulk compressibility of the solid particles.

Results presented have shown that over the range of values found in the environment,
temperature has the most significant impact on the attenuation coefficient of turbid water, whilst
the effect of salinity is less significant and the effect of pressure may normally be neglected in the

shallow water environments of interest.

Future sonar models applied to high frequency acoustic devices operating in shallow, coastal
waters should include the effects of suspended particulate matter on the attenuation coefficient
and these results suggest that the local salinity and particularly temperature should be taken
into account in such calculations. The method presented in this appendix can be used to carry

out these calculations.

Whilst experimental validation of the dependencies predicted by these calculations is highly
desirable, it should be recognized that the expressions for density, viscosity, sound speed and
clear-water absorption are all empirically derived. It may be possible to include temperature and
salinity dependencies in laboratory measurements of viscous absorption by aqueous suspensions

of mineral particles, such as those described in Chapter 6.



Appendix B

Attenuation, dispersion and the Kramers-Kronig

relations

B.1 Introduction

The Kramers-Kronig relations [98,99] may be used to describe the relationship between the
frequency dependence of the attenuation and the frequency dependence of the phase speed in a
dispersive medium. This leads to the possibility of an independent method for determining the

attenuation in suspensions in which the attenuation spectrum is inferred from measurements of

dispersion.

B.2 Theory

The Kramers-Kronig relations for acoustic waves in the linear regime may be written [100,101]

2 [ Wki(W)
() = — 22 wdw’ (B.2)
T Jo wWe —=w

where &, and &; are the real and imaginary parts of the dynamic compressibility respectively.

The acoustic wavenumber for a dispersive medium may be written

_ W, o) (B.3)

" c(w) " 10loge?
where c is the phase velocity and o is the total attenuation coefficient. The following analysis
involves only this total attenuation coefficient and does not depend on the details of the
attenuation mechanisms (i.e. absorption, scattering, or a combination of the two). The effect on
the incident wave is the same regardless of whether the energy removed is immediately dissipated
or scattered and subsequently dissipated to heat, and in either case the effect may be represented

by a phenomenological compressibility x(w) which obeys Equations B.1 and B.2.

If the real part of the wavenumber is much greater than the imaginary part, such that

a(w)e(w)/w < 1, the real and imaginary parts of the compressibility may be directly related to
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the attenuation and phase velocity such that

1
elw) ~ W (B.4)

and
) = i) (B.5)

Using Equations B.1 and B.4 the dispersion at a specified frequency may be obtained from a
knowledge of the attenuation at all frequencies. Conversely, if the dispersion is known at all
frequencies the attenuation at any particular frequency may be found from Equations B.2 and

B.5.
The practical application of Equations B.1 and B.2 is hindered by the fact that they are

non-local in frequency. That is to say that determination of dispersion at a single frequency
requires knowledge of the attenuation at all frequencies, and determination of attenuation at a
single frequency requires knowledge of the dispersion at all frequencies. Of more practical use are
the nearly-local approximate forms of the dispersion-attenuation relationships which may be
obtained under the assumptions that the attenuation and dispersion are sufficiently small and do

not change rapidly over the frequency range of interest. The validity of these assumptions is

discussed in [101].

The nearly-local relationships are

ow) <mu2> de(w) (B.6)

10 log 2 2¢2,. ) dw
and
2c¢2. ¥ a(w’)
Acl(w) = — Cref O ref dw’ B.7
) = o) = et = 221 | (B7)

where wyer i some convenient reference frequency and cof = c(wrer) is the phase velocity at this
reference frequency.

Consequently, measurements of dispersion over a finite frequency range can be used to infer the

attenuation in that range through the application of Equation B.6.

B.3 Example calculation

In order to investigate the feasibility of using the Kramers-Kronig approach to infer attenuation
from measurements of dispersion it is necessary to determine how dispersive the suspensions

under investigation are. Equation B.7 has been used to calculate the dispersion due to a 1 kgm™
suspension of the glass beads used for the measurements described in Chapter 6. The attenuation

was calculated using the particle size distribution shown in Figure 6.7, using the Urick equation

3

for viscous absorption and the high pass equations for scattering. These models have been

validated experimentally for this suspension (Figures 6.8 to 6.14)
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Figure B.1. Calculate dispersion due to a 1 kgm™> suspension of glass beads.

Figure B.1 shows the calculated dispersion for this example. Clearly the suspension is weakly

dispersive, and measurement of this dispersion with sufficient accuracy to enable the attenuation

to be determined accurately will be experimentally challenging.

For comparison, the change in phase speed resulting from variations in temperature has been
calculated using the Chen & Millero sound speed equation [95] with salinity S = 0 and depth

d =0. Figure B.2 shows the change in sound speed, Ac, as a function of the temperature
difference A© = © — 6 for three the reference temperatures, @¢ = 10°C, 15°C, 20°C. Clearly
temperature changes of less than 0.1°C result in sound speed changes in excess of those expected
as a result of dispersion over the frequency range of the measurements, again indicating that

measurement of this weak dispersion is experimentally difficult.
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Figure B.2. Calculated change in phase speed due to temperature variations.

B.4 Experimental design

The determination of attenuation from dispersion in weakly dispersive fluids requires very
accurate measurements of phase speed. One potential technique for achieving the desired
accuracy may be to determine directly the difference between the phase velocity of the test fluid
and a reference fluid, such as pure, degassed water, which may be assumed to be non-dispersive.

This technique was proposed in Reference [102].

Figure B.3 shows a schematic of the apparatus which might be used for making such
measurements. A test vessel, divided in half by a thin, acoustically transparent film membrane,
holds the test liquid on one side of the membrane and a reference liquid on the other. This vessel
is submerged in a temperature bath to ensure thermal stability. The source transducer is located
in the liquid on one side of the membrane, whilst the receiving transducer is located on the other
side. The two transducers are mounted on a sliding assembly such that their separation is fixed
but they can be moved accurately relative to the membrane by means of a micrometer
positioning system. This means that the transducers may be moved from a position where
propagation between the transducers is entirely in the reference liquid, through to a position
where propagation is entirely in the test liquid. In this way, using time-of-flight measurements
between transducers, the difference in phase speed between the test liquid and the reference
liquid may be accurately determined.

One of the advantages of this technique is that, by measuring the phase speed difference between
the test fluid and the reference fluid rather than measuring the phase speed directly, the effect of

temperature on the phase speed may be eliminated.
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Figure B.3. Experimental arrangement for the measurement of dispersion [102]

B.5 Summary and conclusions

In this appendix an independent method for determining the attenuation in dilute suspensions
has been proposed. This technique is based on measurement of phase speed dispersion and use of

the Kramers-Kronig relations to determine the attenuation from the dispersion.

This approach requires very accurate measurements of velocity dispersion and is therefore
experimentally challenging. In particular, it has been demonstrated that small changes in

temperature could potentially swamp the effects of dispersion.

Finally, an experimental configuration for measuring phase speed dispersion with the required

accuracy has been proposed.
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Watson transformation, 18
wave equation, 23, 47
continuum formulation, 51
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wavenumber, 25, 138
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Addendum

The following comments are added to clarify points raised by the examiners. The author is
grateful to Dr. Victor Humphrey (University of Bath) and Professor Chris Morfey (University of

Southampton).

(i) The experimental data were filtered using Butterworth bandpass filters, as described on
Page 78. These were 2nd order Butterworth filters, giving a roll-off of 12 dB per octave
outside of the pass-band. The consequence of the relatively gentle roll-off associated with
low order filters is that each frequency bin will contain some out-of-band data. If these
experiments were repeated it would be wise to use higher order filters. However, it will be
noted that the frequency dependence of the attenuation isn’t great, so this is not expected to
affect the results greatly.

(ii) The upper time limit for the integration in the method of integrated impulse response (see
Page 78) was determined manually by visually checking the linearity of the resulting IIR
curve. As the reverberation level approaches the noise level, the IIR curve departs from
linearity. The upper time limit for the integration was chosen such that this departure from
linearity was not apparent in the IIR curve.

(iil) The typical reverberation time for clear water samples in the experimental configuration
described in Chapter 6 was around 300 ms.

(iv) The Schroeder cut-off frequencies for the test volume were typically in the range 50 kHz to
75 kHz, depending on the reverberation time.

(v) All error bars on measurements of absorption coefficient represent one standard error.

(vi) Each calculation of reverberation time was based on the average of ten sets of ten noise
bursts, with the hydrophones in fixed positions.

(vil) No averaging over measurements made at different locations in the volume was carried out.
Instead a 4% standard error in the reverberation time was included in the error analysis to
account for the measured spatial variation in the reverberation time.

(viii) The oblate spheroid analysis of the measurements with non-spherical particles assumed
that half of the particles are orientated edgewise to the sound field and half are oriented
broadside. However, it will be noted that there are three orthogonal spatial axes, which may
be resolved into one broadside direction and two edgewise directions. It would therefore be
more correct to assume that two thirds of the particles are orientated edgewise to the sound

field and one third broadside to the field.
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