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ULTRASONIC VISCO-INERTIAL DISSIPATION IN DILUTE PARTICULATE SUSPENSIONS 

by Simon David Richards 

Coastal seas aie often characterized by relatively liigh concentrations of suspended mineral 
particles, compared to the open ocean. These suspensions can degrade the performance of high 
hequency (tens of kHz and above) sonars and other acoustic sensors operating in tmbid 
environments. Existing sonar performance prediction models do not include the eSects of 
suspended particles. There is therefore a requirement to investigate the ejects of suspended 
particles on acoustic propagation and develop techniques for accounting for these eEects in sonar 
performance models. 

The purpose of the research described in tliis thesis was to address that requirement. The 
eSects of suspended solid particles on ultrasonic propagation have therefore been investigated 
tlnough theory, modelling and laboratory experimentation. The effects considered were: 
visco-iiiertlal absorption; thermal absorption; scattering; and changes to the phase speed. A 
numerical model which accounts for each of these eSects in suspensions of spherical particles is 
described. The complexity of tliis model is such that it obscures physical insight, and more 
intuitive, approximate models for visco-inertial absorption and scattering have been employed 
tliroughout much of this thesis. It is demonstrated that visco-inertial absorption is the dominant 
eSect for most sonar performance applications, with scattering only becoming important at the 
highest hequencies considered. Furthermore, it is shown that thermal absorption and changes to 
the speed of sound may usually be neglected in sonar- performance studies. 

In order to vahdate the model for visco-inertial absorption by dilute suspensions of spherical 
particles, and study absorption by more natural particle shapes, a laboratory measurement 
technique has been developed. Measurement of the absorption due to dilute suspensions in a 
laboratory-scale experiment was found to be challenging, and a novel experimental conhguration 
was adopted to address these challenges. 

The predictions of the models for visco-inertial absorption in suspensions of spherical 
particles were found to be in very good agreement with measurements made using spherical glass 
particles. However significant departures from these predictions were observed in measurements 
made using highly non-spherical particles. Consequently a model for absorption by suspensions of 
spheroidal particles was employed and the predictions of tlris model agreed well with 
measurements made with plate-like kaohn particles. No o pTiorz information fiom the attenuation 
measurements was required to achieve this agreement. Approximate agreement was obtained 
between the model predictions and measurements using natural marine sediment particles. 

It was determined both theoretically and experimentally tha t visco-inertial absorption by 
suspensions can contribute signiScantly to volume attenuation in the frequency range tens to 
hundreds of kHz. 

The contributions to volume attenuation by visco-inertial absorption and scattering have 
been incorporated into a high frequency sonar performance model for the first time. This 
demonstrates the importance of the effects witliin the context of the other inAuences on high 
fiequency sonar performance in shallow water. The enhanced sonar model has also been used to 
explore the possibility of using direct-path acoustic absorption measurements to monitor 
suspended sediment Sux tlirough an estuary. 
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'ACOUSTICS - A complicated and involved as well aa insecure science which has many 

imponderables. The reader is recommended to read it up Erst in an encyclopaedia before 

proceeding to a complete book on the subject', Alan Jefferson in /Mszcfe (/ze 1974. 

(c) Simon Richards, 2002. 

The material contained within this thesis is the intellectual property of QinetiQ Ltd. 
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C h a p t e r 1 

I n t r o d u c t i o n 

1.1 In t roduc t ion to this thesis 

This thesis describes research carried out by the author on the subject of ultrasonic attenuation 

in water containing suspended solid particles. 

In writing this thesis it was the intention that, as far as possible, it should be self contained and 

no specialist knowledge of the subject matter should be required of the reader, other than a 

graduate level knowledge of physics. For this reason derivations of key results obtained by 

previous researchers have been included. It has been made clear in the text where this is the 

case, and the original papers have been cited and included in the list of references. 

1.2 Background 

Sonai' performance prediction modelling has classically focused on the long-range, low frequency, 

antisubmarine warfare (ASW) scenarios in the deep ocean (so-called 'blue water'), well away 

hom any coastal inSuences. More recently, there has been increased interest in the use of high 

frequency (tens to hundreds of kHz) sonar in shallow coastal environments. Anecdotal evidence 

suggests that current sonar performance prediction models are incapable of predicting with any 

accuracy the vaiiability in high fiequency sonar- performance observed in such environments. 

Many coastal marine environments are chaiacterized by high concentrations of suspended 

particulate matter relative to the open ocean. Such material may arise from rivers or estuaries 

discharging their sediment load to coastal seas, through the action of waves and tidal currents in 

stirring up bottom sediment, or through anthropogenic activity such as the dredging of 

navigation channels, for example. 

This thesis will demonstrate that the presence of suspended solid particles can have a signihcant 

effect on the performance of high fiequency sonais and other acoustic sensors operating at similar 

frequencies. The primary eSect for typical marine suspensions (with grain sizes in the range 

0.1 to 100 fim) is an increase in the acoustic attenuation through the processes of visco-inertial 

absorption and scattering, although suspended particles can also have an influence on the sound 

speed. 

Figures 1.1, 1.2 and 1.3 show evidence of coastal turbidity along the coast of the Gulf of Mexico 

in the United States. These figures were chosen simply because these images were easily available 

1 
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Atchafalaya 
discharge 

Figure 1.1. Photograph of the Louisiana & Texas Gulf Coast showing coastal turbidity. (The scale and 
orientation indicators are approximate. The two scale bars indicate the perspective arising from the oblique 
viewing angle.) Source: NASA, reproduced with the permission of the Lunar and Planetary Institute. 

and not because they depict extraordinary features. Similar examples of coastal turbidity can be 

found in coastal regions throughout the world. 

Figure 1.1 shows a synoptic oblique view of par t of the Texas and Louisiana coastline of the Gulf 

of Mexico, extending from west of Galveston Bay in the lower central region of the picture, 

eastwards towards the Mississippi Delta in the upper right corner of the figure (Source ; NASA 

Space Shuttle, STS-41C, April 1984, Picture #13-51-2422). The light coloured patch to the west 

of the Mississippi Delta shows sediment discharging from the Atchafalaya River into the Gulf of 

Mexico through Atchafalaya Bay. It is noticeable that the sediment discharge from the 

Atchafalaya River is much greater than tha t from the Mississippi. I t is also evident tha t the 

sediment plume from Atchafalaya Bay is being advected along the coast by a westward longshore 

current. A balloon-shaped sediment plume can also be seen discharging from the Trinity River 

into the Gulf through Trinity Bay / Galveston Bay. 

Figure 1.2 shows a larger scale photograph of the Trinity Bay and Galveston Bay area (Source : 

NASA Space Shuttle, STS-51D, April 1985, Picture #23-40-019). Note tha t this picture was 

taken a year later than Figure 1.1. A sediment plume can clearly be seen streaming out of the 

inlet of the bay into the Gulf. This plume only flows straight for a short distance before being 

turned westwards by the longshore current. 

Figure 1.3 shows the Mississippi Delta (Source : NASA Space Shuttle, STS-61A, October -

November 1985, Picture #61A-42-051). In this picture the sediment discharge plume from the 

major western distributary can be seen flowing freely into the Gulf, as it is flowing with the 
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Figure 1.2. Photograph of Trinity Bay / Galveston Bay, Texas Gulf Coast, showing a turbidity plume 
from the Trinity River. (The scale and orientation indicators are approximate.) Source: NASA, reproduced 
with the permission of the Lunar and Planetary Institute. 

Figure 1.3. Photograph of the Mississippi Delta showing sediment discharge. (The scale and orientation 
indicators are approximate.) Source: NASA, reproduced with the permission of the Lunar and Planetary 
Institute. 
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westerly longshore current. The sediment plumes on the eastern side of the delta, on the other 

hand, are being turned sharply to the south and west by wind-driven long-shore cmrent in the 

open Gulf. Wind-induced choppy waves can be seen in the bottom-right of the picture, 

contrasting with the relatively calm water to the west of the delta. 

Although there is a great deal of similar evidence of turbidity in coastal waters, very little work 

appears to have been done to assess the impact of coastal turbidity on sonar performance. The 

resear ch presented in the remainder of this thesis addresses this shortfall. 

1.3 P u r p o s e of t h e research 

The purpose of the research described in this thesis is to elucidate the physics of, and provide a 

methodology for enabling quantitative predictions of the effects of dilute suspensions of marine 

particles on high fiequency (tens to hundreds of kHz) sonars. 

The problem of developing a model which is capable of accurately predicting sonar performance 

in shallow water environments is a highly complex one in wliich many diSerent phenomena 

should be considered. Such a model would require detailed data regarding the bottom 

bathymetry, geoacoustic properties of the seabed, acoustic properties of the water column, 

physical properties and distributions of suspended particulate matter, ambient bubble 

populations, sea surface scattering properties, etc. 

The research described in this thesis is therefore confined to the study of one particular aspect of 

the larger problem. The other factors influencing the performance of high frequency active sonars 

operating in shallow, coastal environments should each be investigated to a similar level of detail 

in order to produce a model which is capable of accurate predictions of sonar performance in 

such environments. 

1.4 Thesis p lan and original con t r ibu t ions 

Very httle previous work has been carried out on the effect of turbidity on the performance of 

high frequency sonars and acoustic sensors, and the primary contribution of this thesis is to 

address this issue. 

Chapter 2 describes the physics of absorption and scattering by dilute particulate suspensions. 

Models for the contributions to the volume absorption coefficient are presented and their 

applicability to the problem of attenuation by marine suspensions at sonar frequencies in the 

range from a few tens of kHz to 1 MHz is discussed. The independent formulations for absorption 

and scattering described in Chapter 2 have the benefit of facilitating physical insight into the 

phenomena, but they are based on a number of approximations and assumptions. 

A more complete, rigorous, theoretical model for scattering of plane waves by a thermally 

conducting, elastic sphere suspended in a thermally conducting viscous fluid is described in 

Chapter 3. This may be viewed as the benchmark solution to the problem and it is in this 

capacity that it has been employed here for validation of the formulations of Chapter 2. 

In Chapter 4 the predictions of the different models are compared. It is shown that the 

approaches described in Chapter 2 are a reasonable approximation to the more complete model 
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described in Chapter 3 for particle sizes to be found in suspension in the sea and at practical 

sonar frequencies below 1 MHz. For the Rrst time results are presented which demonstrate the 

magnitude of the increased attenuation for practical sonar applications and the important 

parameter dependencies. 

Chapter 5 discusses the effect of suspended particles on the sound speed in turbid water, and 

presents a wave equation for sound propagation in suspensions. This chapter shows that the 

change in sound speed due to the presence of suspended particles is small over the parameter 

range of interest. The attenuation may also be obtained from the complex wave number in the 

wave equation, and the attenuation coefhcient obtained by this method is shown to be equivalent 

to the models presented in Chapter 2. The wave equation formulation facilitates the inclusion of 

the eEects of particle shape, and this is demonstrated in Chapter 5 by employing a shape factor 

and inertia coefficient to obtain the attenuation coefficient and sound speed in suspensions of 

non-spherical particles. 

In order to have confidence in the theoretical models experimental validation is required. Wliilst 

a signiScant amount of previous experimental work has been done on scattering by particulate 

suspensions, little or no work appears to have been done on experimental measurements of 

visco-inertial absorption in dilute suspension at frequencies in the range tens to hundreds of kHz. 

Chapter 6 describes a novel laboratory technique for measuring the ultrasonic absorption 

coe&cient in dilute suspensions. Although the attenuation due to dilute suspensions can be 

significant in the sea over propagation ranges of hundreds of meters, it is a very challenging 

quantity to measure in a laboratory scale experiment. The development of the method is 

described and new results are presented showing the measmed attenuation for a number of 

particulate suspensions over the frequency range 50 kHz to 150 kHz. These measurements are 

compared with the predictions of the models discussed in Chapter 2. Some of the measurements 

were made in suspensions of highly non-spherical particles and these results are compared with 

the predictions of the model of attenuation by suspensions of spheroidal particles described in 

Chapter 5. It is thought to be the first time that results have been presented showing the 

comparison between: predictions of a model for visco-inertial absorption in suspensions of 

spheroids; and laboratory measurements of attenuation at sonar-relevant frequencies in 

suspensions of the kind found in the sea. 

For the first time the eSects of suspended pgirticulate matter have been incorporated into a sonar 

performance prediction model and this work is described in Chapter 7. Within the framework of 

this model the relative importance of the suspended particles has been compared with the other 

phenomena inAuencing sonar performance. New results are presented which show that the 

detection range of a high frequency active sonar may be signiGcantly reduced by the presence of 

suspended particles in the water. 

The dependence of volume attenuation on the concentration of suspended particulate matter 

presents the possibility of inverting sonar transmission measurements to infer sediment 

concentration across, say, a river mouth or estuary. This approach is proposed here for the first 

time and the sonar performance model described in Chapter 7 has been employed to model an 

example scenario of this nature. 

The additional attenuation contributions depend on the density, viscosity and sound speed in the 

water, aU of which depend on the ambient temperature, pressure and sahnity. Appendix A 
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therefore presents an original investigation into the e^ect of temperature, pressure and salinity on 

the acoustic attenuation coefBcient in seawater containing suspended particulate matter. This 

investigation shows that the ambient temperature in paiticular can have a significant effect on 

the attenuation, and the local temperature should therefore be taken into account in the 

calculation of the attenuation. 

The Kramers-Kronig relations may be used to relate the attenuation to the dispersion in 

dispersive media. This presents the possibihty of inferring absorption from measurements of 

dispersion, and this is discussed in Appendix B. 

A number of publications arose from the research described in this thesis, and these are listed on 

Page 143 aeg. 

Chapter 2, starting overleaf, introduces the physics of absorption and scattering as relevant to 

the problem of high fr equency sonar performance in turbid coastal waters. 



C h a p t e r 2 

T h e physics of absorp t ion and sca t t e r ing 

2.1 I n t r o d u c t i o n 

This chapter introduces the basic physics of absorption and scattering of sound in seawater 

containing a suspension of mineral paiticles. Models for calculating the visco-inertial absorption 

and scattering contributions to the attenuation are discussed and the validity of the dilute 

approximation is examined in each case. 

2.2 A t t e n u a t i o n 

Sound propagating through seawater containing suspended particulate matter is attenuated by 

several mechanisms. These include physico-chemical absorption by the seawater, thermo-viscous 

absorption and scattering by suspended particulate matter, geometric spreading of the acoustic 

wavefionts, and losses due to interactions with the seabed and sea surface. 

Considering for the moment just the plane wave attenuation, the sound intensity after 

propagation over distance z may be given by 

7 = 7oe-^<" (2.1) 

where Iq is the sound intensity at some reference range 2 = 0 and C is the attenuation coefficient 

of the medium in Nepers m"^. 

In sonar research it is convenient to express attenuation in terms of dBm"^ and these are the 

units used in the remainder of this thesis. The relationship between the attenuation coefficient a 

in dBm~^ and the coefficient C in Npm~^ is given by 

a = 101og(e^)( (2.2) 

The total volume attenuation coefficient a in seawater containing suspended paiticles may be 

considered aa the hnear sum of the attenuation due to clear seawater, Ow, and that due to 

visco-inertial absorption, and scattering , by suspended particles. The attenuation 

coefficient may therefore be written 
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(y. = Qfw + ctv + dg (2.3) 

These tliiee contributions to the attenuation are discussed in the following sections. In fact there 

is a fourth contribution to the attenuation which may be referred to as thermal absorption. This 

effect, which will be discussed in Chapter 3, may generally be neglected for mineral particles in 

seawater at sonar hequencies (below 1 MHz) and will therefore not be discussed further in this 

chapter. 

2.3 Sound absorp t ion in seawater 

The absorption of sound in clear- seawater is considered as the sum of the contributions &om pure 

water, and two ionic relaxation processes involving magnesium sulphate (MgSO^) and boric acid 

(B(0H)3). Contributions hom other ionic reactions are small and aze neglected. Several 

empirical expressions exist for calculating the absorption in seawater (e.g. Fisher and 

Simmons [1], Thorpe [2], Shulkin and Marsh [3]) but the one that appears to be the most 

complete is that of Francois and Garrison [4,5]. Their expression yields the total attenuation 

resulting &om the three contributions as a function of frequency, pressure, temperature, salinity 

and pH, and may be written as 

10"^ 
^ba-Pba/ba/ ^ms-Pms/ms/' , p 

dBm-^ (2.4) 

where Aba, &nd represent the temperature and salinity dependencies, -Fms and 

aie the pressure dependencies, /ba and /ms are the relaxation fi'equencies and the subscripts ba, 

ms and pw refer to the boric acid, magnesium sulphate and pure water contributions respectively. 

These terms are given below [4]. 

Bor ic acid c o n t r i b u t i o n 

Aba = — - 10(° dBkm-^kHz-^ (2.5) 

= 1 (2.6) 

/ba = kHz (2.7) 

where c is the sound speed (ms"^), is the pH, 8 is the temperature (degrees Celsius) and 5' is 

the salinity, measured on the practical salinity scale^. 

^ The Practical Salinity Scale 1978 was introduced to address problems wi th t he tradit ional chlorinity-conductivity 
relationship used to establish salinity [6-8]. Salinity is now expressed in t h e dimensionless units psu or practical 
salinity units. 
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M a g n e s i u m s u l p h a t e c o n t r i b u t i o n 

Ams = 21.44(5'/c)(l + 0.0258) (2.8) 

f L s = l - 1 . 3 7 .10-^d + 6.2 -10-^d^ (2.9) 

8.17 . 10(8-1990/(8+273)) 

^ 1 + 0.0018(5'-35) 

where d is the depth (m). 

P u r e w a t e r c o n t r i b u t i o n 

= 1 - 3.83 . IQ-^d + 4.9 . 10-^°d^ (2.11) 

For G < 20°C, 

Apw = 4.937 .10-^ - 2.59 - lO'^G 

+ 9.11. 1 0 - W - 1.50 . 10-^8^ dBkm-^kHz-^ (2.12) 

For 8 > 20°C. 

= 3.964 .10-" - 1.146 . 1 0 - ^ 8 

+ 1.45 . lO-'^e^ - 6.5 . 1 0 - i ° 8 ^ dBkm-^kHz-^ (2.13) 

2.4 Visco-inert ial absorp t ion 

Visco-inertial absorption arises as a result of the phase lag between the motions of suspended 

particles or droplets and the suspending Euid in response to an acoustic wave. Unless the 

particles or droplets are of the same density as the ambient fluid (i.e. they are neutrally buoyant) 

their inertia will differ from that of the fluid they displace. As a result there will be a phaae lag 

between the particle and Auid oscillations, which means that there is a boundary layer at the 

surface of the particle in which there is a velocity gradient. This velocity gradient results in the 

conversion of energy to heat aa a consequence of the viscosity of the suspending 8uid. 

The absorption of sound in a suspension of small particles was considered theoretically by 

Sewell [9] in 1910, and more recently by Epstein [10]. Sewell considered the case of small, rigid, 

spherical particles which are taken to be immobile in that they do not oscillate in the sound field. 

He was interested in the propagation of sound in fogs and clouds, and the assumption of 

immobile particles is valid for water droplets in air at audio frequencies. However, in the case of 

aqueous suspensions at megahertz and sub-megahertz fiequencies, the particles do respond to the 

acoustic field and Sewell's theory breaks down. 
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Lamb [11] extended Sewell's theory to the caae of rigid, incompressible particles that are free to 

move in the sound Held. His approach was to obtain an expression for the velocity potential of 

the waves scattered by such a particle and to obtain the absorption by finding the average rate at 

which work is done over a large spherical surface surrounding the particle. 

Urick [12] obtained the same result as Lamb by employing the expressions for the viscous drag 

developed by Stokes [13], and this derivation is reproduced here. Stokes investigated theoretically 

the egect of viscosity on the period of a spherical pendulum bob swinging in a viscous fluid. He 

found that the force F exerted by the Huid on a sphere of radius o oscillating with angular 

frequency w is 

F = — sviLJu (2.14) 

where T and s ai e deGned as 

and 

The velocity u is the instantaneous velocity of the sphere, m = is the mass of ambient 

Guid of density p displaced by the sphere and In fact, is the inverse of the scale 

length over which the viscous shear- waves are damped in the Guid, the skin depth i.e. 

= A/— (2.17) 
V w 

Equation 2.14 may be compared with Equation 5.15 in Section 5.3.1 which considers the more 

general case of suspensions of viscous spheres. Equation 5.15 reduces to Equation 2.14 in the case 

of rigid paiticles. 

The Grst term on the right of Equation 2.14 represents an addition to the inertia of the sphere, 

wliile the second is a frictional, or drag, force proportional to velocity. The velocity u can be 

considered as the relative velocity between particle and fluid, i.e. 

u = v' — V (2.18) 

For a par ticle of density with mass m' = the equation of motion is then 

du d f ' . 
m — ^ = —Tm-r STTWu + m-r— (^1^) 

dt dt dt 
where mdi;'/d( is the external force produced by the sound Geld if both the particle size and its 

displacement are small compared with a wavelength. On replacing dv'/dt by du/dt + dv/dt, and 

writing cr = m' /m (= /)'//), the ratio of particle density to Guid density), this becomes for 

sinusoidal motion 
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/ , du ^ _ di; 
(cr + Tj— h SU)U = — 1(7 — ll — 

d( ^ d( 
= - iw(o' - l)foe"^* (2.20) 

This has the solution 

u = (2.21) 

where 

Uo = — (2.22) 
+ (c + 

and 

t a n y = —^— (2.23) 
<j + r 

Since the drag force on a single particle is 

F = —S77WU (2 24) 

the instantaneous rate of energy loss is 

— = Fw = — ( 2 . 2 5 ) 
dt 

The average rate is therefore 

W V A v 
-»amwu, 0 (2.26) 

If there are N particles per unit volume then the rate of energy loss per unit area of the beam, or 

intensity lost after propagating a distance rmdz, is 

df = — ̂ smwugA/'dz (2.27) 

where the z-direction is deEned as being along the axis of the beam and plane waves are assumed. 

Introducing the relationship I = ^pcvg where c is the speed of sound, we obtain 

7 /)c \ fo 

Introducing the volume concentration e — Nm/p and the acoustic wavenuniber k = us/c yields 

(2.29) 
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Integrating this equation gives 

I = IQ exp (2.30) 

Comparing this expression with Equations 2.1 and 2.2, in which t he attenuation coefficient a was 

defined, we see that the visco-inertial absorption coeScient is given by 

10 log e^ 
eks / uo 

2 
EA:(o- — 1)^ 

+ ((7 + T)^ 
(2.31) 

The visco-inertial absorption coeSicient therefore depends upon the square of the ratio of the 

velocity difference between paiticles and 8uid to the velocity of the fluid. 

Implicit in Equations 2.29 to 2.31 is the assumption that the absorption coefficient in a 

suspension of similar particles is hnearly proportional to the volume faction, e, i.e. the process is 

linearly additive. This assumption is valid for dilute suspensions, in which inter-particle 

interactions may be neglected. Urick showed experimentally [12] that this hnear relationship 

between the viscous absorption coefBcient and concentration holds for volume fractions of up 

8-9% for kaolin particles at MHz hequencies. Note that a volume fraction of 8% corresponds to a 

mass concentration of approximately 200 kgm"^ for these paiticles. 

Departing hom Urick's work, it is instructive to estimate theoretically the concentrations at 

which particle interaction effects may become important. We may proceed with this by comparing 

the mean inter-particle sepaiation with the scale length over which the viscous shear waves are 

damped in the fluid. This scale length is the skin depth, which was given by Equation 2.17 

<5v = (2.32) 

For water, having a kinematic viscosity of — 10 ^ m^s at a frequency of 100 kHz, this yields 

(5v = 1.78 ^m. 

Now, turning to the estimation of the mean inter-particle separ ation, the volume fiaction is given 

by 

e = 
P' 

(2.33) 

where Af is the mass concentration and is the density of the particles. 

The number density, TV, is then 

(2.34) 

where y = is the volume of the (spherical) particles. 

The mean inter-particle separation may then be estimated to be Note that this is the 

mean separation between the centres of the particles, and it is important to take the finite size of 

the particle into account. A more appropriate separation to use is therefore 
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& = - 2 o (2.35) 

Taking as an example a mass concentration of 1 kgm^^, a particle radius of 1 and a particle 

density of 2600 kgm"^, the mean separation cfg is found to be 20.1 /^m. Since this separation is 

much greater than the skin depth of the shear waves the inter-particle eGFects may be neglected in 

tliis case. 

2 
0) 

§ 

1 MHz 
300 kHz 
50 kHz 

10 

Radius (|im) 

F igure 2.1. Estimates of the maximum concentration at which the effects of inter-particle interactions 
on attenuation may be neglected, as a function of particle radius, for 3 different frequencies. 

More generally we can calculate the maximum volume fraction for which the eSects of 

inter-particle interactions on the attenuation may be neglected for a given kequency and particle 

size. Let us assume that we may neglect these inter-particle effects if the mean inter-particle 

separation is greater than three times the skin depth, by which distance the amplitude of the 

shear waves will have been attenuated by about 95%. We can then calculate the maximum 

volume fiaction for which this condition is satisfied, as a function of particle size, for diSerent 

frequencies. Figure 2.1 shows the results of such a calculation for quar tz particles and frequencies 

of 50, 300 and 1000 kHz. This shows tha t the maximum volume concentration for which 

inter-particle effects may be ignored increases as the particle size increases. This is because for a 

given mass concentration the number density reduces as the particle mass increases, and hence 

the inter-particle separation increases. As the frequency increases the viscous skin depth 

decreases, explaining the increase in the maximum concentration for which inter-particle effects 

may be neglected as hequency increases. The figure shows that for 1 /^m particles at a frequency 

of 1 MHz, particle interactions should be taken into account for volume fractions above about 

8-9%, which is in agreement with Urick's observations [12]. Note that this corresponds to a mass 

concentration of the order of 200 kgm"^, which is far liigher than concentrations to be found in 

the sea, except perhaps in the sediment boundary layer at the seabed. The experimental 

measurements presented in Chapter 6 were made with a maximum volume fraction of less than 
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0.1%, and are therefore consistent with the dilute approximation. 

2.5 Sca t t e r ing 

Acoustic plane waves incident on inhomogeneities in the medium through which they are 

propagating wiU be scattered in all directions. Energy which is scattered, whUst remaining part 

of the total acoustic held, represents a contribution to the attenuation of the forward propagating 

wave. 

In the spherical polar coordinate system, (r, (̂ ) shown in Figure 2.2 the instantaneous acoustic 

pressure p. at time ( due to a plane wave travelling along the polar axis is given by the real part of 

Pi = po exp [i (/cgr cos ^ — w^)] (2.36) 

where po is the source pressure, w is the angular frequency of the incident compression wave. 

Ale = w/c is the wavenumber and c is the sound speed of the compression wave. 

Figure 2.2. Schematic showing the spherical polar coordinate system. 

The instantaneous pressure pa due to a wave scattered hom a particle, at any point (r, (̂ ) in 

the far-held of the particle, in the absence of attenuation, is given by 

% = Pi ^ ^ Gxp [i (/Ccr - (2.37) 

where a is the particle radius, foe is the far-field scattering form function, 9 is the scattering 

angle and r is the radial distance hom the particle. 

Employing a partial wave expansion as used by Far an [14], the far-field scattering form function 

for spheres may be written [14,15] 
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yoo(^) = ^ (2n + 1)sin?7nexp (-177^1) f^(cos( (2.38) 

where is the phase shift of the nth partial wave and is the Legendre polynomial of order n. 

The size parameter Zc is deEned as the product of the wavenumber in the ambient 8uid and the 

particle radius, Tc = kga. 

The elastic properties of the scatterer enter the problem through the phase shifts 7;̂ , which are 

given by [14] 

where 

tanT^n = tan(^n(3;c) 
[tanan(a:c) +tan0n(2:c ,Za)] 

[tan/3n(3:c) + tan$n(3;^ ,%0] 
(2.39) 

tail(^^(.Tc) — Jn(^c)/^n(^c) 

tanan(3 :c)= -3;cJn/ jn(Zc) 

tan^n(a ;c)= -3;cM^/Mn(zc) 

(2.40) 

(2.41) 

(2.42) 

in which = /CgH and Zg = A;ga where and A:g aie the wavenumbers of the compression and 

shear waves in the scatterer. The functions jn and are the spherical Bessel and Neumann 

functions, and primes on these functions denote differentiation with respect to the argument. 

The elastic properties of the scatterer are contained solely within the tan 0^ term, given by 

tan 0^ = 
r / tanan(Zc) 

2 y \tana:n(3;c) + 1 

+ n) in-

+ 71 — 1) — %ĝ /2 + tan 

+ n — 37^/2 + 2 t a n a n ( i c ) 

tan 0:̂ (3:̂ ) + 1 

(n^ + n) [tan 0^(3:5) + 1] 

(n^ + n — 1) - Zg^/2 + tan0:^(3:0 
(2.43) 

The attenuation coeScient due to scattering, as may be obtained from the far-field scattering 

form function through the expression 

a . 

10 log 

3e 

4a 
9^[/oo(0)] (2.44) 

where e = M/p' is the volume concentration of suspended particles, M is the mass concentration 

and y is the density of the sohd. 

As in the case of the viscous absorption expression (Equation 2.31) this expression contains the 

implicit assumption that the attenuation coefficient depends linearly on the volume 

concentration, e. This implies that multiple scattering may be neglected. 
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Bj0in0 and Bj0rn0 [16] looked at the problem of multiple scattering in suspensions both 

experimentally and theoretically, following the theoretical approach of Gaunaurd e( a/. [17]. In 

their summary of the analysis of the numerical solutions they state that the two main parameters 

governing the interaction between two rigid spheres of radius a are t a and the ratio D = do/a, 

where (fo is the distance between the centres of the spheres. The analysis also suggests that the 

effects of multiple scattering should become important when ka = do/o- Their experimental 

approach waa to measure the backscattered intensity from a pair of stainless steel spheres 

suspended by fine nylon lines in the far field of a transducer. T h e measurements were made at 

frequencies in the range 300 - 1200 kHz, and with spheres giving ka in the range 5 - 30. They 

found that the form function for a pair of spheres exhibits signiEcant angular- dependence, as 

expected, and also that interaction between the two spheres can be significant for separations up 

to D = 10 for certain angles. 

We can now calculate the maximum volume fi action for which the effects of multiple scattering 

on the attenuation may be neglected. This may be calculated aa a function of particle size, for 

different frequencies, as was done for viscous absorption on page 13. The result of such a 

calculation is shown in Figure 2.3, which shows the volume fract ion at which ka = Q.lD. This 

shows that the eEects of multiple scattering may be neglected at ah practical concentrations over 

the ranges of particle radius and fiequency of interest. The effects of multiple scattering begin to 

become significant at lower concentrations as both the frequency and the particle size increase, 

i.e. as increases. 

2 
o 
E 
3 

50 kHz 
300 kHz 
1 MHz 

10 

Radius ((.im) 

Figure 2.3. Estimated maximum concentration at which the effect of multiple scattering on the attenu-
ation may be neglected, as a function of particle radius, for 3 different frequencies. 

Johnson [18] introduced the high pass model for backscattered intensi ty from a fluid sphere. A 

simple polynomial is used to represent the general Zc-dependence of the scattering form function 

approximately by requiring that it Rts the form of /oo exactly in the Rayleigh (small and 

geometric (large ig) regimes. 
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Sheng and Hay [19] extended Johnson's model to include the angular dependence, and their 

expression takes the form 

|/oo(^)| = 
1 + 

where 

(2.45) 

= g cos g| 

and '/K &nd "ŷ  are the compressibihty and density contrasts, given by 

(2.46) 

K — K 
T/t (2.47) 

7p 
3 ( f ' - f ) 

2 y + p 
(2.48) 

For 

l/oc( 

small ic , Equation 2.45 haa the required Rayleigh dependence (/go oc T^) and for 

7r)| goes to unity as required. 

large ic , 

C 
o 
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Figure 2.4. Far-field backscattering form function for an elastic, movable quartz sphere: Comparison 
between scattering theory and high-pass model. 

Figure 2.4 shows the fai-6eld amphtude backscattering form function as a function of ka, 

computed using Faian's model as described above. This was calculated using compression and 

shear- wave speeds representative of those of quartz. Also shown is the approximate form function 

calculated using the high pass model. A great deal of structure is observed in the full form 

function and this is due to resonances of the normal modes of the sphere. These normal modes 

aie each characterized by a wavelength which fits into the circumference of the sphere an integer 

number of times. The zeroth order mode (n = 0) is known as the monopole or breathing mode in 

which the surface moves radially in and out, n = 1 is the dipole mode in which the body moves 
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rigidly to and fro, and the n = 2 mode is the quadrupole mode in which the shape oscillates 

between prolate and oblate spheroids, etc. Rayleigh's observations on the signiBcance of these 

modes, or terms in the partial wave expansion, are discussed in Section 3.2. All of these motions 

represent standing waves which may be resolved into pairs of surface waves travelling in opposite 

directions. The modal series may be transformed, by means of the Watson transformation (see 

e.g. [20]), into a series of creepmg surface waves which fall into a number of distinct categories. 

These include Rayleigh waves, whispering gallery waves, Stonely waves and Franz waves. See 

Reference [20] for a discussion of these various types of surface wave. 

Whilst the scattered 6eld from a monodisperse suspension of spheres will be char acterized by this 

complex resonant structure, it has been shown [21] that a distribution of particle sizes leads to 

the smoothing out of this structure. This results in a form function which has a proSle similai- to 

the high pass Glter response, as represented by the high pass model. 

0 
c 
.2 
E 

1 
m 

Scattering theory 

High-pass model 

5 10 15 

Dimensionless scattering parameter, ka 

Figure 2.5. Far-field backscattering form function for a rigid, movable quartz sphere: Comparison between 
scattering theory and high-pass model. 

Figure 2.5 shows the form function for a rigid, mobile sphere. In this calculation the compression 

and shear wave speeds in the solid have been made artificially high, to approximate to the rigid 

limit. The complicated resonance structure observed in the elastic case is not manifested in the 

rigid case, since most of the surface waves are not supported by the impenetrable, rigid sphere. 

Only one type of surface wave still exists in the rigid case and that is the Franz wave, which 

propagates solely in the fluid and arises as a result of the curved geometry. The interference 

between the circumferentiaUy propagating Franz waves and the backscattered wave is responsible 

for the oscillations in the form function for rigid spheres. Whilst this phenomenon may be 

explained in terms of these creeping Franz waves, it may be realized that it is nothing more than 

simple diffraction due to an impenetrable sphere. 

This form function is once again compared with the high pass model, shown by the dashed cui-ve. 

It is clear fiom tliis Ggme that the high pass model has the same general i c dependence as the 

rigid form function, as required. The characteristic oscillations in the form function due to 
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diEraction aie not, of course, represented by the high pass model. As described above, this 

structure will be different for each particle size in a distribution of sizes and will thus be smeared 

out in the ensemble average over all particles contributing to the total scattering. 

Clearly the elastic resonances that are excited at certain Zc values can have a significant eSect on 

the scattering form function. It might be expected that the elastic model for the form function 

would yield the best agreement with experimental measurements with real (i.e. elastic) particles. 

For measurements made with a monodisperse population of spheres this is indeed the case. 

However, for measurements made with natural sand grains the rigid models and the high pass 

model have been shown to provide a better fit to measurements [19]. This implies either that 

resonant excitation does not occur, or at that it not signihcant. This is partly due to the 

smoothing eSect of the size distribution, and partly because natural sand grains are irregular in 

shape and inhomogeneous in composition. The importance of waves travelling on the surface of 

the particle has already been discussed in the context of resonant scattering, and the circuit 

times of these surface waves at a resonance must be an integral dividend of the incident wave 

period. It appears hkely that in natural sand grains the irregularities in shape are such that the 

surface waves do not have well-deEned circuit times and many of the resonance structures are not 

therefore observed in the form function [22]. Scattering measurements made with irregular 

particles [22] do show some evidence of structure arising from surface waves, principally the 

Rayleigh wave, but the ensemble averaging over many shapes, sizes and orientations smears these 

features out in the mean form function. 

The high pass model of Equation 2.45 may therefore be considered appropriate for approximating 

the form function in natural suspensions. 

Sheng and Hay have also constructed a high pass model for the attenuation coeSicient which can 

be written as 

a , 

a + W + l ) 
(2.49) 

where 

(2.50) 

and ^ is an adjustable constant > 1. The ^ term allows the form of the polynomial to be adjusted 

to improve the fit to experimental data for intermediate Zc values. 

2.6 S u m m a r y and conclusions 

In this chapter the key areas of physics relating to the attenuation of sound in dilute suspensions 

of solid particles have been introduced and discussed. Urick's model [12] has been introduced to 

calculate the visco-inertial absorption contribution to the attenuation and Sheng and Hay's 

high-pass model has been introduced to calculate the contribution due to scattering. The validity 

of the dilute approximation in the cases of absorption and scattering has been examined, and it 

was shown that at practical sonar frequencies below 1 MHz the dilute approximation is valid for 

naturally occurring suspensions. 
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The contribution to the attenuation due to viscous absorption can be modelled using 

considerations baaed on the viscous drag experienced by a particle oscillating in a sound held. 

This approach was taken by Urick [12], and his model was discussed in section 2.4. This model 

calculates the acoustic energy dissipated by a single spherical particle. To calculate the total 

attenuation by a collection of particles the single particle result is multiphed by the number 

density of suspended particles, i.e. the total attenuation is assumed to be the hnear summation 

of the attenuation due to each particle. This is only valid for dilute suspensions where 

inter-particle interactions may be neglected, and the maximum concentration for which such an 

assumption is vahd was investigated using simple arguments based on mean inter-particle 

separation. This investigation showed that over the range of frequency, particle size and 

concentration of interest in the present study, the assumption that particle interactions may be 

ignored is vahd. Urick [12] measured the attenuation at 1 MHz in a suspension of kaolin particles 

as a function of par ticle concentration and found a hnear dependence up to a volume fraction of 

around 8% - 9%, and the calculations of the concentrations at which particle interactions become 

important presented here are in agreement with this observation. 

Section 2.5 discussed a method for calculating the scattering form function of an elastic sphere 

suspended in an inviscid fluid based on a partial wave expansion. Although the intensity 

scattering form functions can be complicated as a result of resonance excitation the general trend 

is to obey a dependence for /ca 1 (Rayleigh scattering) and to tend to unity for ka ^ 1 

(geometric scattering). This behaviom- permits a considerable simplification, as the form function 

can be approximated by a fourth-order polynomial in x = ka. Th is approach is known as the 

high-pass model. 

Calculations of the scattering form function for a homogeneous quartz sphere suspended in water 

showed the expected complexity due to resonance excitation, with large departures from the 

predictions of the high-pass model for large ka. However, natural sand grains are not found to 

exhibit strong resonances, for the reasons discussed in this chapter. The high-pass model is 

therefore believed to be an adequate model for calculating the attenuation due to scattering by 

natural particles. In fact, for the present study, the small ka regime is of the most interest, where 

the (ka)'^ dependence of the high-pass model represents the scattering form function very well. 

As with the viscous absorption calculations, a linear dependence on particle concentration has 

been assumed in the scattering models, thus ignoring multiple scattering. By employing 

arguments similar to those used in the case of absorption, the maximum concentration for which 

such an assumption is valid was calculated. It was found that t he effects of multiple scattering 

may be neglected at all practical concentrations over the ranges of particle radius and frequency 

of interest. 

The following chapter introduces a rigorous theoretical t reatment of absorption and scattering by 

an elastic, thermally conducting spherical particle suspended in a viscous, thermally conducting 

fluid. This model will be used as a benchmark model against which the models presented in this 

chapter may be compared. 



C h a p t e r 3 

A mode l of a spherical sca t t e re r in a 

thermo-v iscous fluid 

3.1 In t roduc t i on 

In tliis chapter a rigorous theoretical treatment for the attenuation of sound by elastic, thermally 

conducting spheres suspended in a viscous, thermally conducting fluid is introduced. This 

approach constitutes a benchmark solution to the problem and results from this model will be 

compared with the results of the models discussed in Chapter 2. 

3.2 Comple t e t heo ry 

A unihed model to describe the attenuation of an acoustic wave propagating through a fluid 

containing suspended particulate matter is conceptually preferable to the independent explicit 

models for absorption and scattering described in Chapter 2. Although these models have the 

advantage of simplicity, it is important to compare them with a more complete physical 

description of the effects over the parameter range of interest. 

The problem of sound attenuation by suspensions of small spherical par ticles has been the 

subject of a number of studies, originating with Rayleigh's [23] discussions of the disturbance of 

plane waves produced by small obstacles. He observed that the magnitude of the zero-order term 

in a partial wave expansion of the disturbed field is a manifestation of the compressibility 

diiBference between the particle and the suspending fluid. This is apparent as the zero-order or 

monopole term describes radial pulsations of the sphere, and is of ten referred to as the breathing 

mode, as described in Section 2.5 on Page 17. Rayleigh further observed that the first-order or 

dipole term is determined by the density difference. Section 2.5 discussed how this term describes 

rigid, translational motion of the particle. It is therefore clearly associated with relative motion 

of the particle and fluid, and hence the viscous drag losses described in Section 2.4. 

It was previously stated that Sewell's treatment [9] of the absorption of sound in a suspension of 

small particles considered the particles to be rigid and immobile. Lamb [11] removed the 

restriction that the par ticles be immobile and Epstein [10] refined the theory to include elastic 

particles. In this latter treatment, the spherical objects representing the particles in suspension 

were attributed the properties of viscous fluids or elastic solids. Urick [12] derived a result 

equivalent to that of Lamb and Epstein using simple arguments based on viscous dr ag, as 

21 
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described in section 2.4. 

Isakovich [24] noted that sound propagation in a suspension can produce temperature gradients 

at the particle-fluid interface, due to the adiabatic character of acoustic waves and may result in 

significant attenuation via thermal diffusion. Epstein and Carhart [25] independently deduced 

the thermal loss contribution in a detailed theoretical examination of the problem. Their work 

was primarily aimed at attenuation in aerosols, although the bulk of their analysis may also be 

applied to dispersions in condensed media. 

Allegra and Hawley [26] (hereafter referred to as AH), closely following the derivation of Epstein 

and Carhart, have extended the theory to include the case of elastic, heat-conducting, solid 

spheres suspended in a viscous, heat-conducting fluid. The AH formulism has been used here, 

and the fundamentals of the theory are summarized below. For a more complete description the 

interested reader is referred to the original papers [25,26]. 

The attenuation of a sound wave propagating in an inhomogeneous medium is deBned as the sum 

of scattering and absorption losses. In the inviscid, non-conducting case three waves are required 

to describe adequately the response of the fluid-solid system to an incident compression wave. 

These are the scattered compression wave in the Suid and compression and shear waves in the 

sohd. When viscous eSects aie included an additional viscous shear wave in the 8uid arises, and 

considering thermal eSects requires that thermal waves in both the fluid and the sohd be taken 

into account. 

Mathematically the increased absorption of the incident wave in the presence of the scatterer is 

due to the damping of these additional waves. Physically, energy loss arising from thermal 

conduction is due to the diEerences in amphtude and phase of the acoustically driven 

temperature Suctuations in the fluid and particle. This leads to a heat flux between the 5uid and 

particle. Viscous losses aiise &om a momentum Hux between the fluid and particle due to the 

relative motion of the fluid and the paiticle. The viscous losses reach a maximum when the 

viscous shear wavelength is approximately the same as the particle size. Similaiiy, the thermal 

losses are at a maximum when the wavelength of the thermal wave is comparable to the size of 

the particle. At low frequencies the temperature difference between the particle and fluid will 

equihbrate in the time of the passage of the wave, wliilst at high frequencies only a small h action 

of the particle volume near the surface will participate in the thermal conduction process. 

These heat and momentum Guxes are large where the temperature and velocity gradients are 

large. This is the case in the boundary layers surrounding the particles. The thicknesses of the 

boundary layers are defined as the skin depths of the viscous and thermal waves, i.e. the distances 

over which the amplitudes of the waves are damped by a factor of 1/e. They are given by 

5v = A / — and = A / — (3-1) 

(3.2) 

w V w 

where k' is the kinematic viscosity of the fluid and % is the thermal diffusivity , given by 

_ 

where K here is the thermal conductivity of the fluid, and Cp is i ts specific heat capacity. 

Similarly, a skin depth for the thermal wave within the solid particle may be defined as 
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(3.3) 

with 

X (3.4) 

where the primed symbols indicate the respective physical properties of the solid. 

The first step in calculating the attenuation is to obtain the wave equations for the propagation 

of the compression, shear and thermal waves in the two media. T h e wave equations are obtained 

from the consei-vation laws , a stress-strain relation, and two thermodynamic equations of state. 

The wave equations are then solved in spherical coordinates in terms of series expansions 

involving spherical Bessel and Hankel functions and series of unknown coeGicients. Prom the 

boundary conditions at the fluid-particle interface six simultaneous equations aie obtained which 

may be solved to give the unknown coefficients. The attenuation of the primary wave may be 

related to these coefScients. 

The amplitude of the sound wave is taken to be sufficiently small that nonlinear effects can be 

ignored^. In tliis case the deviation of a vaiiable hom its mean value is also small, and products 

of such deviations aie neghgible. Dropping these terms, and time and space derivatives of mean 

quantities, the consei-vation equations together with the equations of state are reduced to two 

coupled equations. Using the identity 9/9^ = —iw these equations may be written [27] as follows 

for the fluid 

IWTy V ( V • v) + V T IW?) V^v = 0 (3.5) 

and 

7 - 1 
V • v — iu)T — 7xV T = 0 (3.6) 

where v is the velocity vector, c is the sound speed of compression waves in the Guid, T is the 

absolute temperature and 7) is the molecular viscosity of the fluid. 

In a solid the equivalent equations are 

-.'2 
2_ , / C f , "lyyrTT I - 0 

and 

(3.7) 

( - iw) 
d' 

V u - i w r - Y x ' V ^ T ' = 0 (3.8) 

where T is the temperature, u is the displacement vector, is the sound speed of spherical 

compression waves in the solid and is the shear modulus of t he solid. 

^ T h e acoust ic a m p l i t u d e used in the exper iments descr ibed in C h a p t e r 6 is f a r t o o small for finite a m p l i t u d e effects 
to be significant. 
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The other variables in these equations are 

= ratio of speciEc heat at constant pressure to that at constant volume in the Suid 

p = density of the fluid 

= thermal expansion coeGicient of the 8uid 

X = thermal diffusivity = K/pCp of the fluid 

K — thermal conductivity of the fluid 

Cp — specific heat capacity of the fluid 

and primed quantities refer to the respective physical properties of the solid. 

The velocity Held in the fluid and displacement field in the solid are represented by scalar 

potentials and vector potentials A such that 

V = — V(p + V X A (3.9) 

u = - + V X A' (3.10) 

where V • A = 0 and 

i;6 = (6c+</it (3.11) 

in wliich and aie the scalar- potentials for the compression and thermal waves. 

In the fluid 

(3.12) 

where î o and the scalar potentials for the incident and scattered compression waves. 

The Helmholtz equations for the three potentials - compressional, î c, thermal, (/it, and viscous, 

A, may be written in the form 

(V^ + = 0 (3.13) 

(V" + A:^),^t=0 (3.14) 

(V^+A:^)A = 0 (3.15) 

in the fluid, and 

(3.16) 
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(3.17) 

(V^ + A ' = 0 (3.18) 

in the solid. 

The wavenumbers of the compression, thermal and shear waves in the 8uid medium are given by 

= 
2 M 

4?? 
— + ( 7 - 1 ) % 

- 1 

(3.19) 

h = (3.20) 

(3.21) 

provided the temperature is given by 

T 
6c<̂ c + 

(3.22) 

where 

w 
4iw7) \ 

7 y 

Note that 3.19 and 3.20 are only valid if |tc/A:t| 1, |A;c| ^ w/c and 

3pc^ 
w 4: - — or 

47/7 
<K 1 

(3.23) 

(3.24) 

(3.25) 

For water, Equation 3.25 requires that the kequency be much less than 10̂ ^ Hz, i.e. this is not a 

practical limitation in this case. 

In the solid the wavenumbers are given by 

(3.26) 

where A' is the Lame constant 

K = ILO 

x' 
(3.27) 
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provided 

L/2 _ 

r = b[d[ + b[4>[ 

(3.28) 

where 

h' 

7 + 1?*: ' 

(3.29) 

(3.30) 

(3.31) 

Again, the equations for and hold only if |A:g| '-v w/c' and j/Ccl/^t ^ 1- This does not impose 

a restriction on the Aequency, as waa the case in the ambient Suid, but requires that in the sohd 

'y' must be very close to 1. 

Note that the equations for fluid and sohd media are identical if 9 u / % = v, (v = —iwu), 

= —iw;;' and = c' provided 

w <K 
V' 

(3.32) 

wliich is equivalent to Equation 3.25 

It is now possible to solve the problem of a plane compression wave impinging on a sohd sphere 

of radius a suspended in a Buid medium. The presence of the sphere gives rise to a rejected 

compression wave in the fluid, a compression wave in the sphere, and thermal and viscous shear 

waves inside and outside the sphere. 

The series solutions of the wave equations in spherical polar coordinates with symmetry about 

the polar axis, and wliich remain Gnite at the origin and at inanity aie given by 

^0 = ^ i " ( 2 n + l) jn(a:c)fk(cosg) 
71 = 0 

(Ar = ^ i " ( 2 n + l)^n/ln,(lc)f^(cOSg) 
n = 0 

^ i"(2n + l)Bn/in(z:t)fk(cos g) 
71 = 0 

A = ^ i"(2n + l)C„An(zs)f^(cos g) 
n = 0 

^ i"(2n + l)A;,j^(i^)f;,(cos g) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 
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^ r ( 2 n + l )g^;n(z^)f^(cos g) (3.38) 
?%=0 

A' = ^ r (27, + l ) C 3 ^ ( z : ) ; ^ ( c o s 0) (3.39) 
TL — O 

where A and A' represent the non-vanishing azimuthal components of A and A'. The jn are the 

spherical Bessel functions and the are the spherical Hankel functions (actually but 

written here for convenience). The functions and are the Legendre functions and the 

associated Legendre functions. The arguments of the Bessel and Hankel functions are Zc = kcQ, 

= Atd and Zg = tsO for the Guid and their primed equivalents for the solid. 

The values of the unknown coefBcients C^, are determined by the boundary 

conditions at the surface of the sphere. These conditions are that the radial velocity, tangential 

velocity, temperature, heat flux, radial stress and tangential stress be continuous [25,26]. The 

boundary conditions yield six simultaneous equations which may be solved for the six unknown 

coefficients. 

These equations are 

(a) continuous radial velocity 

3:Jn(zc) + ZcAn/i^(3:c) + - Cnn(M 4- l)/ln(3:B) 

= ( - i ^ ) Kvi;,;^(z;.) + z[g;,;;(];[) - C;,n(M + l)j»(a:B)] (3.40) 

(b) no-shp condition (continuous tangential velocity) 

jn{^c) ~i~ Ajihyiî Xo^ -{- (.Tt) Cji [/^n(^s) 4" ^s^n('^s)] 

— (—iw) {.A^jn(ig) + B^jn(3:^) — [jn(z:s) + (3 41) 

(c) continuous temperature 

6c b»(3:c) + ^^/i»(ic)] + 6tB»/i^(a;t) = ( - iw) (3-42) 

(d) continuous heat flux 

{6c [ i c j ; + = ( - iw)7f ' (3.43) 

(e) continuous radial stress 

{[ W - Jn(3:c) - 2z^j;^(a;c)] 

+ ^71 [(3=5 - Sz^) /l,i(Zc) - 2ic/i»(3;c)] 

[(ig - 2 i t ) /i,i(a;t) - 2a;^/i%(%b)] + Cn27%(n + 1) [^^/^^(zs) - /in(a:s)]} 

= — 2/i'a:^) jn(Zc) — 2/2'ig^j^(a;g)] 

+ — 2/2'a;^^) Jn(^t) — + Cn2/^'7i(M + 1) 

(3.44) 
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(f) continuous tangential stress 

^ {3:cJn(3:c) - ;n(3:c) + [ZcA^(Zc) - /in(a;c)] 

[3:̂ /1 (̂3;̂ ) - - Cn [ i g - (n^ + 7% - 2)An(is)] /2} 

= / - ; » K ) ] + B;, K j n K ) - jn(z:0] 

"C'n + n — 2)jn(a:a)] / 2 } (3.45) 

where the primes on the spherical Bessel and Hankel functions denote differentiation with respect 

to the aigument. 

In the thermally non-conducting case the conditions on temperature and heat 6ux are dropped. 

The attenuation of sound in suspensions and emulsions arises f iom energy scattered by the 

sphere to infinity, i.e. distances r with kcr 1, as well as the energy absorbed in the vicinity of 

the particle. The scattered energy is just that contained in the rejected compression wave, î r-

The viscous shear and thermal waves that are produced at the Huid-particle interface aie damped 

close to the boundary, (recall from page 22 that the e-folding length for these waves is the 

thickness of the boundary layer) and do not contribute to the scattered 6eld at large distances 

from the particle. 

The energy absorbed can be obtained by writing the total velocity potential at inGnity in terms 

of incoming and outgoing waves. Then the diSerence in the energy carried by these waves yields 

the energy absorbed by the medium. 

In this way the attenuation of the incident wave is found to depend exphcitly on the coeGicients 

of the reflected compression wave, only [26]. The attenuation coeGicient due to viscous 

absorption, thermal absorption and scattering, expressed in dB may be written 

Ov + at + cts = (lOloge^) — + l)9%(^n)^ (3.46) 

where e is the volume fraction of suspended particles. More generally, both the attenuation and 

phase speed may be evaluated from the single scattering equation 

+ + (3.47) 

where is the complex wavenumber for the suspension. The to ta l attenuation coefficient, 

a = av + ttt + el's, and the phase speed, Cg, may be determined f rom the imaginary and real parts 

of the complex wavenumber respectively. 
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3.3 Mul t ip le sca t t e r ing 

This thesis is concerned with acoustics in dilute suspensions in which the ejects of particle 

interaction and multiple scattering are not signihcant. The validity of the dilute approximation 

was examined in Sections 2.4 and 2.5. However, it is interesting to see how one might proceed in 

more concentrated suspensions in which the dilute approximation is not valid. 

A number of multiple scattering equations exist, the simplest of which is that of Waterman and 

Ti-uell [28]. For values of n from 0 to 2 this gives 

. 36 , . _ . _ . ^ 276^ 
tc y " ^ ^ 5^1 A2) (3.49) 

Lloyd and Berry [29] also give a multiple scattering equation, which diEers hom Equation 3.49 in 

that it contains an additional term in 

. 36 276^ 
/cc 7 " ^ ^ + 5A1A2) (3.50) 

+ 3A1A2 + 
tgaG V ' 3 " " ' ' ' 21 

3.4 Simplifications 

For the case of mineral particles suspended in water the thermal losses are negligible, as shown 

by the result in Figure 4.2 on Page 36. Therefore heat conduction may be ignored and tg and 

are purely real. In contrast both /cg and /cc are complex. However, it is clear from Equation 3.19 

that the imaginary part of A:c is negligibly small for all practical frequencies and tc may therefore 

be considered to be real. On the other hand the real and imaginary parts of /cg are equal. 

Now, from Equation 3.21, the magnitude of the scattering parameter for the shear waves in the 

ambient fluid may be written 

l-.l = ( ^ ) " ' (3.51) 

Hay and Mercer [15] simpll&ed the algebraic solution of the AH equations in the absence of 

thermal conduction by employing the asymptotic form of the spherical Hankel function of 

argument Zg, i.e. 

/in(3:s) = (1/3:5) exp [i [is - (n + l);r/2]] (3.52) 

The condition for the use of this form of the spherical Hankel function may be written 

|a;s |>n(n + l ) / 2 (3.53) 

Rom Equation 3.51 it may be determined that this condition is not satisGed for very fine 

particles (0(1 //m)) suspended in water at the lowest hequencies of interest (0(10 kHz)). In this 



regime the full AH solution would be required. However, for the caae of larger paiticles, such as 

sand grains (0(100 /^m)), use of the asymptotic approximation is appropriate. 

Hay and Mercer proceeded with a partial wave method as described in Section 2.5, recognizing 

the following relationship between the partial wave phase shift, 7;^, and the coeGicient of the 

AH theory 

An = -isinT/ne""''" = —itanT^n/ (1 f i tany^n) (3.54) 

Hay and Mercer employed the standard recursion relations for the spherical Bessel and Haiikel 

functions to eliminate the second derivatives of these functions in the AH equations. They then 

proceeded to reduce these equations to the forms shown below (correcting a typographic error in 

their paper). 

The phase sliift 7/̂  of the nth partial wave is given by (c.f. Equation 2.39) 

where 

tani^n(a:c)= -Jn(3:c)/nri(a;c) (3.56) 

t anan(zc )= -a :c jn / jn (3 :c ) (3.57) 

tan/3n(2:c)=-3:cMn/Mn(zc) (3.58) 

and the properties of the materials enter the problem through the term tan^n, dehned as 

, _ Cs(M^ + n)6s tan An - /3s [(srn(a:s) + 1] tan^^ 

- l + A ( 2 t a n A n - t a n ^ n ) ^ ^ ^ 

where 

A tana:n(z^) + ( s ( n ^ + n ) (n^ + M ) [ f ( Z g ) - ^ 
L&ri y\.n 

X 

\ tanar ,(a;^) + 1 - /38(srn(zs) Q(a:^) + /3sCrn(zs) 

(n^ + n) [1 - ,8sCs(l - izg)] - z ^ / 2 + 2 tana:n(3;0 

tana!n(z^) + 1 - j8s(srn(a:B) 

and 
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f f tana»(z;:) + ( s ( n 2 + n ) \ 
t a i t n <̂ (̂ 1 + ' ' Q ( z O + / 3 C r ^ W ; ^ , t a n « ^ K ) + l - / 3 , ( , r » ( i , ) ; 

/ (n^ + n) [ f (Zg) - C] \ / (n^ + n) [1 - /3sCs(l - iT^)] - z ^ / 2 + 2 tan 0:̂ (3;̂ ) 
\ 0(3=0 + A(srn(a;s) y \ tanan(T(.) + 1 -

[1 - ACs(l - 13:8)] - 3:^/2 + 2 tan 

tan 0:^(3:0) + 1 - ACsrn(zs) 

with 

= iw77//̂ ' = / (/3:g) (3.62) 

( - : = l + i z s (3 63) 

P(ig) = [1 - tana:^(Zg)]"^ (3.64) 

Q(zO = -P(3:D [tanan(a:0 + + n, - 1) — 3:^/2] (3.65) 

A(Zg) = f (z^ [tan a n + 1] (3.66) 

r»(%s) = ( n ^ + : i - l - a : s / 2 - i i s ) (3.67) 

6s = / ) z^ /2y + ŝ(M^ + n)[l + (s(l " 13:5)] (3.68) 

The tan^n are the analog of the tan$n discussed in Section 2.5, but include the eSects of 

viscosity. In the inviscid limit they become identical, i.e. 

lim tan ^^(a;', ig, Zg) = tan $n(i% Zg) (3.69) 
7?—»0 

As with the AH model, the total attenuation coefRcient is given by (c.f. Equation 3.46, neglecting 

thermal absorption); 

ay + as = (lOloge^) j - ^ ^ 3 ^ ( 2 n + l)3%(^n) j (3-70) 

whilst the scattering and viscous absorption components respectively are given by [26] 

I ^ z (2"+1)1-4.14 ( " 1 ) 
L n=0 ) 

(lOloge^) E (27. + 1) + 3%(^")] j (3 72) 
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3.5 Numer ica l m e t h o d s 

The AH model for scattering of plane waves from a thermally conducting, elastic sphere in a 

thermally conducting viscous fluid has been implemented in Fortran. The six simultaneous 

equations derived from the boundary conditions (Equations 3.40 to 3.45) are formulated as a 

matrix equation, and the complex spherical Bessel and Hankel functions jn{zi) and hn\zi) are 

evaluated from their cylindrical counterparts and H i ^ \ z i ) using the defining 

expressions [30] 

in(^i) = ^ ^^-^1+1/2(^1) (3.73) 

and 

M = 1,2) (3.74) 

Note that for n = 0 Equations 3.41 and 3.45 are not valid and the problem reduces to four 

simultaneous equations. Similarly the terms in vanish because of the factor n(n + 1). 

Physically this is to be expected because the transverse waves should not enter into the problem 

for the spherically symmetric n = 0 mode. 

The Bessel and Hankel functions of complex argument and non-integer order are evaluated in 

double precision using standard subroutines^ from the Numerical Algorithms Group (NAG) 

Fortran subroutine library. 

The Srst and second derivatives of the spherical Bessel and Hankel functions are calculated using 

the following expressions [30] 

= —A(^i ) " A+i(^i) (3.75) 
Zl 

and 

= ^ % : ^ A ( z i ) - ^ ^ A + i ( z i ) + A+2(z i ) (3.76) 

where A ( z i ) may be jn(zi) or /!.;['(zi). 

As a check on the accuracy of the spherical Bessel and Hankel functions and their first and second 

derivatives the Wronskian determinants are calculated and compared with their expected values. 

The Wronskian determinant for jn{zi) and hn{zi) and their first derivatives is given by [30] 

jV.(zi) Jn(zi) 
3 (3.77) 
- 1 

The Wronskian determinant for the second derivatives may be obtained analytically from the sine 

and cosine representations of the zero order spherical Bessel and Hankel functions, i.e., 

Subroutines S17DEF and S17DLF. 



and 

zi ^ 

DiSerentiating these twice and evaluating the determinant yields 
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jo(zi) - (3.78) 

= (3.79) 

J"('Zl) ; n (z i ) 
(3.80) 

The complex double precision matrix equation which is formed from the six simultaneous 

equations derived from the boundary conditions is solved to give the values of the unknown 

coefBcients using a standard NAG routine^, after having 6rst been LU factorized by another 

NAG routine'^. The process of LU factorization is a numerical technique to facilitate the solution 

of the matrix equation. The matrix is factorized into a lower triangular matrix, an upper 

triangular matrix and a diagonal matrix. 

Thermal dissipation can be turned off in the model by dropping t h e boundary conditions on 

temperature and heat Sux, and solving the remaining four simultaneous equations. 

There are a number of difficulties associated with the numerical solution of the AH equations: 

» There are typographic errors in the papers 
» Very large amplitudes may arise in the Bessel and Hankel functions 
® The matrix is ill-conditioned 

Whilst the implementation of the AH model described above generally yields a good solution 

over the parameter range considered, some numerical artefacts were observed due to these issues. 

Other researchers have spent many years addressing these problems and it was therefore felt 

pragmatic to use one of the well developed and tested models. 

3.6 O t h e r models 

In Chapter 2 a method was described for deriving the visco-inertial absorption coefficient, based 

on simple energy balancing arguments. Also described was a pa r t i a l wave expansion for 

computing the attenuation due to scattering and a simple heuristic approximation to this. In this 

chapter a model for attenuation by a thermally-conducting, elastic sphere suspended in a 

thermally-conducting, viscous Huid was described. Chapter 5 will discuss the derivation of a wave 

equation for propagation in suspensions, using an approach similar to that employed in 

Chapter 2. 

Other researchers have adopted different theoretical approaches to the problem and those of note 

aie simply mentioned here for completeness. 

3 F07ASP 
" F07ARF 



Sumznary and coadugjons 34 

Temkin and Dobbins [31] describe the viscous and thermal losses in terms of relaxation 

phenomena, using equations which take the same form as the equations for molecular relaxation 

due to a sound wave. 

Morfey [32] extended Temkin & Dobbins' analysis to include compressible particles (or bubbles). 

This leads to an additional relaxation mechanism in which pulsations of the suspended particles 

aie resisted by the shear viscosity of the surrounding fluid. 

There exists a category of model collectively known as coupled phase models. These, in common 

with the wave equation approach discussed in Chapter 5, are continuum models. They are based 

on the same set of equations as the scattering models i.e. the conservation equations and 

equations of state. These aie then 'coupled' via a momentum transfer term in the momentum 

equations and a heat transfer term in the energy equation. The fact that the two phases occupy 

the same volume of space is accounted for by means of volume averaged variables, which has the 

effect of coupling the continuity equations. Coupled phase theories fall into two categories. The 

Erst [33,34] assumes an incompressible particular" phase and aUows for heat transfer between the 

phases. The second [35-37] allows for a compressible particulate phase but neglects heat transfer. 

A coupled phase theory which accounts for both a compressible particulate phase and heat 

transfer has also now been developed [38]. 

Several other researchers have published treatments which are derivatives or special cases of 

theories which are covered elsewhere in this thesis or mentioned above and these are not 

discussed further. 

The model which contains the fewest number of assumptions and approximations is the Allegra 

and Hawley model discussed in this chapter. Therefore this model has been chosen as the 

benchmark against which to compare the predictions of the models discussed in Chapter 2. 

3.7 S u m m a r y and conclusions 

In this chapter a rigorous method was introduced for calculating the attenuation due to 

scattering and absorption by a suspension of spheres. In this t rea tment the spheres are elastic 

and thermally conducting, and are free to move in a viscous and thermally conducting fluid. This 

approach implicitly includes visco-inertial absorption, thermal absorption and scattering, and 

represents the benchmark solution to the problem for dilute suspensions of spheres. 

In Chapter 4 the predictions of the models presented in Chapter 2 will be compared against the 

results of the treatment discussed in this chapter. Chapter 4 then goes on to use the models to 

calculate the magnitude of the eEects under investigation and to study the importance of the 

relevant physical parameters. 
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Mode l resul t s 
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f a / i o u / ( f 6e matfe as szmpZe as j)oss*6/e, 7io( simpZer, 

Albert Einstein (1879-1955) 

4.1 Resul t s 

4.1.1 I n t r o d u c t i o n 

In this chapter results from the models described in Chapters 2 and 3 will be presented and 

compared. These results will show how the scattering and absorption models discussed in 

Chapter 2 compare to the benchmark model discussed in Chapter 3 over the parameter range of 

interest. Further results will be presented to show how the magnitude of the absorption varies 

with the key parameters. 

4.1.2 C o m p a r i s o n of m o d e l s 

Figure 4.1 shows the results of calculating the attenuation for a suspension of quartz-like spheres 

in pure water using the AH model presented in Section 3.2 and the explicit models for absorption 

and scattering presented in Sections 2.4 and 2.5. Thermal absorption was included in the AH 

calculation, but no explicit model for thermal absorption has been included. The figure shows 

results for calculations at frequencies of 1 MHz and 100 kHz and the attenuation has been 

normalized with respect to mass concentration of the suspended material. The attenuation in 

dBm"^ can thus be obtained from this plot by reading the normalized attenuation off the vertical 

axis and multiplying by the sediment concentration in kgm^^. The results fiom the AH model 

presented in Figures 4.1 and 4.2 were calculated for the author by Dr. Andrew Holmes of 

Nottingham University [39] 

As can be seen hom the Ggure, there is excellent agreement between the models, with the two 

curves at each frequency overlaying almost exactly. It will be noted however that in the 1 MHz 

35 
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Figure 4.1. Comparison of attenuation calculations for a suspension of quartz-like spheres using the AH 
model and the explicit models. 
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Figure 4.2. Calculated attenuation for a suspension of quartz-like spheres, with and without thermal 
losses. 
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case the two models begin to depart at the upper end of the particle size range. This is where 

scattering begins to be important and there is some disagreement between the AH model and the 

high-pass model in this area. This region is characterized by intermediate values of ka and 

agreement between the models could be improved by adjusting t h e value of ^ in the high-pass 

model. In this calculation the default value of ^ = 1 has been used. 

Figure 4.2 shows the effect of thermal losses at 1 MHz and 100 kHz for quartz-hke spheres 

suspended in water. The Egure shows the results of running the AH model twice, once with 

thermal effects included and once without. Again the curves at each frequency overlay each other 

almost exactly indicating that thermal losses are neghgible in these cases. 

These two figures clearly demonstrate that the magnitude of the thermal absorption is very much 

smaller than the magnitude of the visco-inertial absorption for quartz-hke particles suspended in 

water. The thermal eEects can therefore be ignored for quartz-like particles suspended in water, 

as suggested by the good agreement between the non-thermal A H calculation and the Urick 

calculation shown in Figure 4.1. 

For other materials, however, the thermal effects may be more signiScant and may even be the 

dominant absorption mechanism, as is the case for polystyrene spheres suspended in water [26]. 

The important factor in determining the thermal losses is the difference in the ratio /3/(pCp) for 

the solid and suspending Guid. The absorption depends upon the square of this difference [26] 

which is an order of magnitude greater for polystyrene in water than for quartz in water. 

Additionally, the density of polystyrene is close to that of water, so the visco-inertial contribution 

is very much smaller for polystyrene than for quartz. Wlrilst polystyrene is clearly not relevant to 

the present study, it is likely that organic material might have a density close to that of water, 

and the thermal properties might be such that thermal effects become important. Where there is 

a large density contrast between phases, as for mineral particles suspended in water, the 

visco-inertial term is dominant. 

These results demonstrate that Urick's equation for visco-inertial absorption agrees well with the 

more complete AH model over the parameter range of interest, a n d the simpler model will 

therefore be used in the remainder of this thesis. 

4 .1 .3 A t t e n u a t i o n c a l c u l a t i o n s 

The results presented in this section were calculated using Urick's equation for visco-inertial 

absorption (Equation 2.31) and the high pass model for scattering (Equation 2.45). 

Except where otherwise stated, the physical parameters of the sediment material and the 

suspending Huid are as shown in Table 4.1. These parameters are representative of quartz 

particles suspended in seawater [40]. Quartz has been used as a generic mineral material for the 

purposes of example calculations throughout much of this thesis. 

Density, p Compressibility, k Kinematic viscosity, u 
kgm"^ Pa - i m^s~^ 

solid 2600 2.71 X 10-^^ 
fluid 1028 4.31 X 10"^° 1.478 X 1 0 " ^ 

Table 4.1. Physical parameters of sediment particles and ambient fluid [40]. 
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Figure 4.3. Calculated attenuation coefRcient for quartz particles suspended in seawater. 
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F i g u r e 4 . 4 . Locus of viscous absorpt ion peak in t he frequency-size d o m a i n for qua r t z part icles suspended 

in seawater. 
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Figure 4.3 shows the calculated attenuation aa a function of frequency and particle radius for a 

suspension of quartz particles in seawater. 

The pealc in the high frequency and large particle size region of Figure 4.3 is the contribution due 

to scattering, which becomes important in this region of parameter space due to the increase in 

the scattering parameter, ka. 

The peak in the high frequency and small particle size region of Figure 4.3 is the peak due to the 

visco-inertial absorption contribution, which achieves a maximum as a result of the relative 

effects of particle maas and surface area. This peak moves to larger particle sizes as the acoustic 

frequency is reduced. This behaviour is shown by the bold curve on the plot, which is the locus 

of the visco-inertial absorption peak. The locus of the peak in the frequency-size domain is shown 

ill Figure 4.4. 

4.1.4 C o m p a r i s o n vvrith c lear w a t e r a t t e n u a t i o n 

Figure 4.5 shows the total attenuation due to seawater and suspended sediment. The attenuation 

due to the suspended sediment was calculated using Equations 2.31 and 2.45, assuming quartz 

particles of radius 3 fim and a concentration of 0.2 kgm~^. The particle size was chosen to be 

3 /̂ m as this gives the largest attenuation at 100 kHz (see Figure 4.4), a frequency in the range of 

interest for high frequency sonar applications. The contribution due to the seawater was 

calculated using the Francois &: Garrison expression (Equation 2.4), assuming a temperature of 

4°C, salinity of 35, pH of 8, and a pressure of 1 atmosphere (i.e. near surface). 

The solid bold curve in the figure is the total attenuation for seawater containing the sediment, 

wliilst the lighter solid curve shows the total attenuation for clear seawater. The broken curves 

are the individual contributions due to paitides (scattering and absorption), pure water and the 

boric acid and magnesium sulphate relaxation processes. From Figure 4.5 it can be seen that in 

the frequency range of interest (50 kHz - 300 kHz) the total acoustic attenuation coe&cient is 

signiScantly greater than that due to seawater alone, with the difference being approximately 

0.03 dBm~^ at 100 kHz. This means, for example, that for a total propagation path length of 

200 m, the additional attenuation due to the presence of a suspension of 3 /im quartz particles 

with a concentration of 0.2 kgm"^ would be 6 dB for a sonar system operating at 100 kHz. This 

corresponds to reducing the intensity at the receiver by a factor of 4, and is thus significant. 

Figure 4.5 also demonstrates that the total attenuation approaches the pure water attenuation 

asymptotically at very high frequencies ( / > 1 MHz), and at very low frequencies ( / < 100 Hz) 

the boric acid relaxation is the dominant process. 

4.1.5 Ef fec t of pa r t i c l e size d i s t r i b u t i o n s 

The results presented thus far have all been obtained assuming that all particles in the 

suspension have the same radius (i.e. a monodisperse suspension). However, in the natural 

environment we know that there will be some distribution of particle sizes. It is therefore useful 

to investigate the eSects that such distributions would have on the acoustic losses. 

measurements of suspended particle size distributions in estuaries [41] have shown that 

such distributions often follow a log-normal curve, sometimes with a 'tail' of Gne particles. 

Figure 4.6 shows log-normal distributions with and without this tail, where both distributions 
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Figure 4.5. Attenuation coefficient for seawater containing suspended quartz particles, using Equa-
tions 2.31 and 2.45 with the solid parameters given in Table 4.1, and Equation 2.4 with 0 = 4°C, S = 35, 
p = I atm, and a pH of 8. 

have the same total concentrations of 0.2 kgm 

The simplest method of calculating the attenuation arising from a distribution of particle sizes is 

to integrate over a series of single-size calculations of the form presented above, using a series of 

particle sizes and concentrations to represent the complete distr ibution. Figures 4.7 and 4.8 show 

the results of such a calculation for the distributions shown in F igure 4.6. In these calculations 

the particle size distributions have been represented by 100 regularly spaced bins. 

Figure 4.7 shows the attenuation due to the distributions shown in Figure 4.6. The solid hne here 

refers to the attenuation due to the log-normal distribution, and the dashed line refers to the 

distribution with a tail of fine particles, consistent with the no ta t ion of Figure 4.6. The dotted 
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Figure 4.6. Typical idealized particle size distributions. 
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Figure 4.7. Attenuation due to the particle size distributions of Figure 4.6, calculated using Equations 2.31 
and 2.45. 
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line represents the calculated attenuation for a suspension of par ticles which all have the same 

radius of 10 /.im. 

Figure 4.8 shows the (fz^erence between the calculated attenuation coefBcients due to the 

distributions shown in Figure 4.6, and the attenuation coeScient calculated for a single mean 

particle size of 10 /^m. 
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Figure 4.8. Dif ference in a t t e n u a t i o n due par t ic le size d i s t r i bu t i ons of F i g u r e 4.6 and single m e a n par t ic le 

size of 10 /im. 

The results shown in Figure 4.8 clearly demonstrate that for the case considered here, performing 

the attenuation calculations for just the mean particle size would significantly underestimate the 

actual attenuation due to the full distribution. Similarly, the tail of fine particles contributes 

significantly to the attenuation coefBcient. 

Let us now apply these results to the prediction of the performance of an active sonar operating 

at 300 kHz, for a target at range 250 m, corresponding to a total straight-line propagation path 

of 500 m. If the real suspended sediment particle size distribution was given by the log-normal 

distribution with a tail of fine particles shown in Figure 4.6, then assuming the log-normal 

distribution would underestimate the propagation loss by 3.75 dB, and assuming all particles had 

the same radius of 10 /̂ m would underestimate the loss by 6 dB, a factor of 4 in intensity. 

It should also be realized that , in some circumstances, assumption of a single mean particle size 

could lead to an overestimate of the attenuation. For example, if t he attenuation was calculated 

for a particle radius lying on the peak of the viscous absorption curve in Figure 4.3 at some 

frequency, then some distribution centred on this mean (or modal) particle size would give a 

lower attenuation for the same total concentration. 

It is instructive to perform a check on whether a sufficiently large number of bins was used to 

represent the distributions in these calculations. Figure 4.9 shows the peak error in the 

calculation of attenuation due to the log-normal distribution of Figure 4.6 as a function of the 

number of bins. The error here is dehned as being the di&rence between the attenuation 
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Figure 4.9. Peak error in the calculated attenuation as a function of the number of bins used to represent 
the size distribution. 

calculated with a given number of bins and that calculated with 1000 bins. As expected, the 

error approaches zero as the number of bins becomes large. Wi th 100 bins used to represent the 

distribution the peak error is about 10~® dBm~^, as compared w i t h a maximum attenuation of 

about 0.066 dBm"^ (Figure 4.7). This represents a fractional error of only 0.015%, suggesting 

that, in this case, the distribution could have been represented by far fewer than 100 bins. 

However, since the computational requirement for these calculations is fairly trivial 100 bins were 

retained. 

4.1 .6 E f f e c t of p a r t i c l e d e n s i t y 

111 addition to considering the effects of particle size distributions on the attenuation, it is also 

interesting to look at the nature of the particles themselves. In t h e natural environment, 

particulaiiy in estuaries where fresh water Sows into more saline water, small clay or mineral 

particles have a tendency to flocculate as a result of biogeochemical processes. Development of a 

rigorous mathematical treatment of the absorption and scattering by such floes is a complex 

problem, and even an approximate method for dealing with t hem will require much further work 

(absorption by simple non-spherical bodies is discussed in Section 5.4). However, since we know 

that the average density of a floe must be lower than tha t of the homogeneous particles considered 

so far, it may be useful to investigate the eSects of particle density on the attenuation coefficient. 

Figure 4.10 shows the calculated attenuation coefficient as a funct ion of particle radius, at a 

hequency of 200 kHz, for three diSerent particle densities. This shows that reducing the density 

reduces the attenuation. This is the expected result because as t h e density of the particle 

approaches the density of the ambient fluid, the difference between the inertia of the particles 

and that of the fluid decreases, and the velocity difference between the particles and fluid, from 

which the viscous absorption arises, therefore decreases. The flgure also shows that the 
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absorption peak moves to larger particles as the density is reduced. This may be explained by the 

fact that for a particle of a given mass (and thus inertia), the lower the density the larger the 

particle must be. The scattering term is not apparent in Figure 4.10 because for the range of 

particle sizes plotted scattering is neghgible at 200 kHz. 

Figure 4.11 presents the effects of particle density in an al ternative way. This figure shows the 

calculated attenuation as a function of particle density for three different particle sizes and two 

different frequencies. 
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Figure 4.10. Effect of particle density on attenuation. 
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Figure 4.11. Attenuation as a function of particle density for three particle sizes at 100 kHz and 200 kHz. 
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4 .1 .7 E f f e c t of s e d i m e n t c o n c e n t r a t i o n 
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Figure 4.12. Attenuation as a function of mass concentration for three particle sizes at 100 kHz and 
200 kHz. 

Figure 4.12 shows the calculated attenuation as a function of sediment mass concentration for 

three different particle sizes and two different frequencies. The linear dependence on 

concentration is an assumption of the models, as discussed in Chapter 2. It was demonstrated 

there that tliis assumption, which implies that interparticle effects may be neglected, is valid for 

aU concentrations and paiameter ranges considered here. 

4.2 S u m m a r y and conclusions 

In this chapter results aie presented from the models of ultrasonic absorption discussed in 

Chapters 2 and 3. 

It was realized tha t the assumption of an inviscid fluid in the sca t ter ing models was inconsistent 

with the viscous absorption model. In order to address this issue and provide some validation of 

the independent models for absorption and scattering the AH mode l was employed. This model, 

which was described in Chapter 3, includes the effects of scattering, viscous absorption and 

thermal absorption which was not considered in the simple models a t all. The results of the AH 

model were compared with the predictions of the simpler models, and found to be in very good 

agreement over the parameter range of interest. It was also shown that the thermal absorption 

contribution was not significant for the cases considered. 

The generally good agreement between the AH model and Equations 2.31 and 2.45, over the 

parameter ranges considered in this thesis, led to the use of the Urick model for viscous 

absorption combined with the liigh pass model for scattering for the parameter sensitivity study 

presented in this chapter and the remainder of the thesis. 
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The results presented demonstrate that the attenuation coeGicient of seawater, at frequencies in 

the range tens to hundreds of kHz, may be signiRcantly increased by a suspension of mineral 

particles at concentrations typically observed in turbid coastal environments. The eSect of 

distributions of particle sizes was investigated by integrating the attenuation calculations over the 

size distribution. In this way it was demonstrated that signiScant errors in the estimation of the 

attenuation coeScient could result if calculations were carried out using a mean or modal particle 

size, as opposed to taking the full distribution into account. 

It was found that, over the parameter range of interest to the present study, viscous absorption is 

the dominant attenuation mechanism associated with the presence of suspended particles. Since 

the density of the particles is a key parameter governing this phenomenon, the sensitivity of the 

attenuation to density waa investigated, the results showing how the attenuation depends on 

density. 

Finally, although a linear dependence on suspension concentration is imphcit in the models used, 

the attenuation as a function of concentration for two frequencies and three particle sizes was 

presented. 

In addition to the additional attenuation discussed theoretically in Chapters 2 and 3, and 

investigated numerically in this chapter, suspended particles may also modi^ the sound speed. 

The next chapter discusses the calculation of sound speed in suspensions, and describes a model 

based on the formulation of the wave equation for sound propagation in suspensions. This 

formulation also yields the attenuation in such a way aa to facilitate the treatment of 

non-spherical particles. This will also be discussed in the next chapter. 



C h a p t e r 5 

The wave equation, complex wave number and 

non-spherical par t ic les 

5.1 I n t r o d u c t i o n 

In this chapter the wave equation for sound propagation in dilute suspensions is introduced. This 

formulation allows the phase speed to be inferred fiom the wavenumber and, since the 

wavenumber is complex, the attenuation may also be obtained. 

In addition to increasing the attenuation, the presence of suspended mineral particles may also 

affect the sound speed in suspensions. 

It might be expected that estimates of the sound speed in a suspension may be obtained by 

simply considering that a h action of the volume of the water has been replaced with sohd 

particles with a higher bulk modulus and density. It is shown in th is chapter that this bulk 

averaging approach does not always predict the correct sound speed, and a different technique 

must be employed. 

Using simple considerations of mass and momentum balances on a suSciently small, 

homogeneous and compressible volume element of a suspension, Ahuja [42,43] has formulated a 

wave equation for the propagation of sound in suspensions or emulsions. This approach has been 

used here to calculate the sound speed in aqueous suspensions, and the main elements of his 

derivation are reproduced in Section 5.3.2. This approach is generic to both suspensions and 

emulsions in that the suspended particles are assumed to be spheres of viscous fluid. Rigid 

particles are accounted for by employing a very large viscosity. 

In addition to the sound speed the formulation of the wave equation for sound propagation 

through suspensions yields the attenuation coefficient through the the complex wavenumber. It 

will be shown that the visco-inertial absorption derived in this way is equivalent to the expression 

due to Urick (Equation 2.31) presented in Chapter 2. The wave equation formulation facilitates 

the task of considering attenuation by non-spherical particles by employing correct expressions 

for the drag force acting on non-spherical bodies. This approach will be used to model the 

attenuation due to suspensions of oblate and prolate spheroids. 

47 
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5.2 Speed of sound - bulk averaging approach 

The speed of sound in a Euid is given by 

c = ^ (5.1) 

where p is the ambient density of the Auid and B is the bulk modulus, dehned as the hactional 

volume change dV resulting from a pressure change dp, i.e. 

B = (5 2) 

Rom Equations 5.1 and 5.2 we have 

d y dp 

So, for a pressure increase of Ap the volume change is given by 

A F = (5.4) 

In an aqueous suspension consisting of a volume V of water of density p with sound speed c and 

a volume y of solid par ticles of density p' with sound speed c' the volume changes of the water 

and solid components resulting &om a pressure increase of Ap are therefore given by 

y A p 
A y = ^— (5.5) 

and 

A r = (5.6) 

The total change in the volume of the suspension is then AT^ot = A V + A F ' , and from 

Equation 5.2 the effective bulk modulus of the suspension is given by 

Substituting for A F and A F ' yields 

/ y A p \ / y ' A p \ 

IW j + j 
Rearranging, we have 

y \ / 1 \ / y 

y + y y l^y + y y ^ ^ c y v 
(5.9) 
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This may be rewritten in terms of the volume fraction, e, recognizing that 

N O ) 

i.e. 

B.S = 
1 — 6 

1 —1 
(5.11) 

Now, turning to the density, the average bulk density of the suspension may be written 

Again, writing in terms of 6, we have 

Ps — {1 — e)p + €p' (5.13) 

Finally, from Equation 5.1, the sound speed in the suspension is given by 

(5.14) 

5.3 Formula t ion of t h e wave equa t ion 

The propagation speed for compression waves travelling through a suspension can be obtained, 

together with the attenuation coefficient, by formulating the wave equation for propagation 

through the medium. This was done by Ahuja [43], and his formulation is used here. 

5.3.1 E q u a t i o n of m o t i o n 

The passage of an acoustic plane wave through a suspension or an emulsion causes the suspended 

particles to pulsate and oscillate. Assume that the acoustic wavelength is large compared to the 

particle radius (tga 1) and consider the region of Guid in the vicinity of the particle (kcr 1). 

Under these conditions it may be shown [44] that, to second order in kca, the acoustic wave 

equation reduces to = 0. This is Laplace's equation for incompressible potential flow and the 

fluid in the vicinity of the particle may therefore be considered to be incompressible under the 

above assumptions. As discussed in Chapter 2, viscous effects are important within the skin 

depth of the viscous shear waves, 5^, given by Equation 3.1. 

Assuming then that the amplitude of the particle oscillation is very small compared with its size, 

the linearized Navier-Stokes equations apply for the unsteady incompressible viscous flow in the 

fluid surrounding the particle. If the molecular viscosity of the particle, rj', is at least one order of 

magnitude greater than that of the surrounding fluid, rj, then the linearized Navier-Stokes 

equation can be applied for the steady, incompressible Sow inside the particle. 

The pulsations of the particle are neglected and the following boundary conditions at the surface 

of the particle are employed: 
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® zero radial velocity inside and outside the particle 

» continuity of tangential velocity 

• continuity of tangential stress 

The complex drag force experienced by a spherical particle of radius a may then be written (c.f. 

Equation 2.14) 

F = —Tm—^ smuju (5.15) 
df 

where u is the instantaneous particle velocity and is dehned as u' — where ti' is the velocity of 

the centre of the particle and n is the velocity of the fluid at the centre of the particle if the 

particle were absent. The quantity m = is the mass of ambient Suid displaced by the 

particle w is the angular h equency of the acoustic wave and T and s are given by 

+ ^ 2 I (5.16) 

a = - ((27, + 37?') I (5.17) 
4 [ \ a y [(:; + ^0 + + (a?7/3Jv) j 

Equation 5.15 is valid for viscous spherical particles with rj'/r] > 10. In the limiting case of rigid 

particles, 7)'/)) —» oo, and Equation 5.15 reduces to that derived by Stokes (Equation 2.14). 

As discussed in Section 2.4, the hrst term on the right hand side of Equation 5.15 represents the 

inertial contribution to the complex drag force, and the second term represents the viscous 

contribution . 

Now, the equation of motion of the sphere oscillating in the sound field is 

ydii' dt; f . 

which is equivalent to Equation 2.19. Using Equation 5.15 and the relation u = — f , the 

equation of motion may be written 

{a + T) — + sutv' ~ + awi; (5.19) 

where cr ^ 

Again, it was shown in Section 2.4 that, assuming a sinusoidal time dependence, the equation of 

motion may be solved to give the instantaneous particle velocity as 

u ^ (5.20) 

where 
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and 

t a n y : (5.22) 

Note that Equations 5.20 to 5.22 are equivalent to Equations 2.21 to 2.23 in Section 2.4. 

5 .3 .2 Formulat ion of the wave equat ion - cont inuum a p p r o a c h 

The treatment presented here is based on the analysis of sufficiently small volume elements which 

may be considered to be homogeneous with respect to the acoustic held. For this to be valid the 

volume elements must be small compared with the wavelength and large enough to contain many 

particles. 

In order to determine the range of paiameters over which this condition is satisfied, consider a 

cubic volume element with sides equal to one tenth of the acoustic wavelength in water and 

assume that tliis volume element must contain at least 100 particles. It is then straightforward to 

calculate the minimum volume fraction of suspended particles required to meet these criteria as a 

function of particle radius for different hequencies. Figure 5.1 shows the results of such a 

calculation for particle radii in the range 1 /̂ m to 100 /im, at 30 kHz, 100 kHz and 300 kHz. 

10 

10 
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E 
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3 10'^ 

10 

10" 
10 
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10 

Figure 5.1. Minimum volume fraction necessary to satisfy the homogeneity condition at three frequencies 
(see text). 

This hgure clearly shows that, as the particle size increases, greater concentrations are required to 

satisfy the condition of homogeneity. This is to be expected since, for a given volume fraction, the 

number of particles in a volume element decreases as the particle size is increased. The hgure also 

shows that, as the hequency is increased (and hence the wavelength is reduced) liigher volume 

h actions are required to meet the homogeneity condition as expected. Numerically it can be seen 

that, at 100 kHz, the homogeneity condition is only satisfied for volume fractions e greater than 
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about e == 10"^ for particles smaller than about 10 /̂ m, and that at lower concentrations or with 

larger particles the condition is not satisEed according to the criteria speciEed above. Of course, 

in practice there will not be a sharp cut-oS delimiting regions of parameter space for which the 

present treatment does or does not apply, and it may be expected that the formulism will give 

reasonable predictions for slightly lower concentrations and larger particles. 

Assuming then that the above condition is satisfied or nearly satisfied, a volume element of the 

suspension may be replaced, in the hrst approximation, by a homogeneous and continuous Suid 

of temporally and spatially independent volume-averaged bulk density given by 

Pv — (1 s)/) + £/>' (5.23) 

and volume-averaged bulk compressibility given by 

ACv ~ (1 — €^K -j- 6K (5.24) 

Now consider an acoustic plane wave propagating in the positive z-direction and consider a 

volume dz of the suspension, containing many particles, bounded by unit areas of the planes 

z = zo and z = zo -|- dz and the planes perpendicular to these. As described above, the 

suspension in tliis volume element is replaced with a homogeneous and continuous Suid. Now, in 

response to the passage of the acoustic disturbance the density, pressure and temperature of the 

Auid undergo fluctuations as functions of both z and time, It is assumed that these 

Suctuations are small with respect to the equilibrium values of the quantities involved. 

In a thermally non-conducting medium the acoustic compressions are adiabatic and the pressure 

and density fluctuations are in phase. In this case the density Guctuation, Ap satisfies 

Ap = p/tp (5.25) 

where p is the acoustic pressme. 

If there is a contrast between the thermodynamic properties of the suspended particles and the 

suspending Huid then their temperature fluctuations will be diSerent, as discussed in Chapter 3. 

This leads to a temperature gradient in a boundary layer surrounding the particle, with a 

thermal skin depth of 

(see Equations 3.1 and 3.2), where jiT is the thermal conductivity of the suspending 5uid and Cp 

is the speciSc heat capacity at constant pressure. Since thermal energy can Sow between the 

suspension components there is a net flow of energy from the acoustic field into heat (dissipation) 

and the compressibility in the thermal boundary layer therefore becomes a complex quantity. 

This complex compressibility of the suspension may be derived 6rom scattering theory, and can 

be expressed as 

Kg = ~i~ A/( (5.27) 
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with 

y \ a 

+ i (5.28) 

where 'y is the ratio of specific heats at constant pressure and volume and is the coeScient of 

thermal expansion. 

It is now assumed that the homogeneous, continuous Guid representing the suspension has a bulk 

compressibihty given by Equation 5.28. In the first approximation the linear relationship between 

density aiid pressure Buctuations holds (strictly only true in a lossless medium) so that 

/\p ~ Pv l^sPsUS (5.29) 

where psug is the acoustic pressure in the suspension. 

It is further assumed that, in the sound field, the homogeneous and continuous Auid enters the 

volume element dz at volume-averaged values of velocity and momentum. 

We may now proceed with the derivation of the wave equation by formulating the continuity 

equation and momentum equation in the usual way. 

Beginning with the equation of mass continuity, the mass flux entering the volume element at 

section z = zo is 

{(/)v + Ap)[ ( l — + (5.30) 

and the mass Hux leaving the volume element at section z = zo + dz is 

( K + A^) [(1 - e) %, + (5.31) 

The net mass of Suid leaving the element per unit time is therefore 

^ {{Pv + Ap) [(1 — e) w + ev'W dz (5.32) 

The decrease in mass in the volume element with time may be wr i t t en 

- ^ ( ; O v + A/,)dz (5.33) 

so equating this with Equation 5.32 yields 

A ^ A - () f (5.34) 

This equation may be linearized to give 
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Now, substituting for Ap Aom Equation 5.29 and employing Equation 5.21 gives 

/ 

(5.35) 

a t 
1 - e 

v 
(a —l)exp(—iy?) j 9 ;̂ 

(5.36) 

Turning to the momentum equation, balancing the total time derivative of the volume-averaged 

momentum by the acoustic pressure gr adient yields 

— [(1 - e) /w 4- e / r ' (5.37) 

The total time derivative may be written in terms of partial derivatives as 

— [(1 - e) fw -I- ep ] 4- (1 - e) / w — + ep f — 

from which the second and third terms, being of higher order, m a y be neglected to leave 

(5.38) 

| l ( i - < ) ^ . + v V i = - % (5.39) 

Substituting fiom Equations 5.19 and 5.20 gives 

^ ^ ^ ^ ( ( ^ - l ) e x p ( - i Y 7 ) _ apsus 

(d-l-T)" 
- , 1 / 2 az 

(5.40) 

Finally, diEerentiating the continuity equation (Equation 5.36) with respect to z and the 

momentum equation (Equation 5.40) with respect to t and eliminating the non-linear term 

gives the wave equation for acoustic plane waves propagating in suspensions: 

yher( 

8^1; / l - | -eZ,(T4-i5)exp(—iy) \ ^^2; 

9z2 \pK(6i-1-162) [ l -EZ,exp( - iy ; ) ]y 
(5.41) 

( / / f - 1) 

( / / p - l - T ) + ^ 2 
1/2 

(5.42) 

= 1 - 6 1 (5.43) 

62 — § 6 (-y - 1) 1 
y \ a 

(5.44) 

and 
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Kg = K (6i +162) (5.45) 

Since the suspension is represented by a homogeneous Auid, the wave equation may be written 

where /cgua is the wavenumber for sound waves of hequency w propagating in the suspension. As 

the Auid representing the suspension is dispersive, the wavenumber may be written 

where Cg is the phase speed of sound propagating in the suspension and avt is the sum of the 

viscous absorption and thermal absorption coeScients. 

Having derived the wave equation and complex wavenumber, it is now possible to extract 

expressions for the sound speed and attenuation coe@cients. Recognizing that = l/fcp we have 

We now use the Euler relation 

exp(—iy) = cos y — i sin y; (5.49) 

and the binomial formula (for |EZ,exp(—iy)| <K 1) 

1 + EZ^exp(—iy) (5.50) 
1 — eZ,exp(—iy) 

to give 

" + ' ^ ( " 1 (6 i+ i62 ) [ l + EZ,cosi^-iejLsin(/)] 
Cg lOloge''/ \ c / 

X [1 + eZ/ (r cos y; + 5 sin y) 

+i6Z,(acosy —Tsiny)] (5.51) 

Neglecting higher order terms in ip this becomes 

+ 6 i { l + El,[(T + l)cosY; + ss iny]} 
\Cs lOloge'^y \ c / 

+ i^—^ {EZ,6i[3cosy3 —(T' + l ) s i n y ] + 6 2 } (5.52) 

Taking the square root of both sides and using the binomial formula again gives 



fbrmuJat jon of tAe wave eguatjoa 56 

10 loge^ 
6^^ { l + ^eZ, [(T + 1) c o s y + ssiiiY?]} 

+ i ^ ^ {el/6x ['S c o s — (t + 1) sin Lp\ +62} (5.53) 

Since the sound speed depends only on the real part of the wavenumber, we can equate the real 

paits of Equation 5.53 and substitute the expressions for 61 and 62 to give 

1 

Cs 
1 - 6 1 + # 4 7 - 1 ) 1 -

1 / 2 

X {l + ^EZ,[(T + l ) c o s y + gsini^]} (5.54) 

The speed of sound propagation in suspensions is Gnally obtained by taking the reciprocal of 

both sides, substituting the expressions for Z, and Y? and using the binomial formula yet again. 

The result may be written 

2^ 

1 (cr - 1) [(iT + -r) (1 + T) + 

(cr + T) + . 
(5.55) 

The attenuation arises hom the imaginary parts of the wavenumber, so equating the imaginary 

components of Equation 5.53 we have 

^Vt ^ {sZ/bi [a cos y? — (T + 1) sin (/?] + 62} 
10 log e^ 

Substituting expressions for 61, L and (j) and neglecting higher order terms in £ gives 

(5.56) 

Ckvt ; ( c r - 1)" 

lOloge^ 2 c ( ( c r + T) + s 2 
62 (5.57) 

As stated previously, the total attenuation coeScient, + ctt, is the sum of the 

visco-inertial attenuation coefficient and the thermal attenuation coefficient. On examination, it 

is clear that the thermal effects are contained within the 62 term, such that the visco-inertial 

absorption coefficient may be written 

10 log e^ 

(cr — 1)'' 

2c ((7 + T)' 
(5.58) 

It may be noted that Equation 5.58 for the visco-inertial absorption coefBcient is identical to 

Urick's expression (Equation 2.31) on page 12. 
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5.3 .3 S impl i f icat ion 

It was shown in Chapter 4 that the eSects of thermal dissipation are not signi6cant for mineral 

particles suspended in water, and this permits considerable simplification of the expression for 

the sound speed in such a suspension. 

Letting (5t ^ 0 in Equation 5.54, rearranging and ignoring terms in yields. 

1 1 - — 

K 

1 — cos y; 

1 + eZ, {(-r + 1) cos y + s sin y } 

Using the binomial formula once again and neglecting 6̂  terms we have 

(5.59) 

1 — eZ, cos y 

[1 — E (1 — «'//()] [1 + eZ, (Tcosy; + s s iny)] 
(5.60) 

This is the expression derived by Ahuja in Reference [42], in which he did not take thermal 

dissipation into account. 

5 .3 .4 R e s u l t s 

Using the bulk averaging approach described in Section 5.2 the sound speed may be calculated as 

a function of volume fraction and the results of such a calculation for quartz particles are 

presented in Figure 5.2. 
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1450 

0.2 0.3 
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Figure 5.2. Sound speed in an aqueous suspension of quartz spheres as a function of volume fraction, 
calculated using the bulk averaging approach. 

This figure demonstrates that at low concentrations the sound speed is reduced as the 

concentration increases, indicating that the increasing density dominates, whilst at higher 

concentrations the sound speed increases with increasing concentrat ion, indicating tha t the 
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increasing bulk modulus has become the dominant eSect. As the volume faction approaches 

unity the sound speed tends towards the sound speed in the solid as expected (not shown in this 

Ggure). 

Figure 5.2 may be compared with Figure 5.3, which shows the resul ts of calculating the sound 

speed at a frequency of 100 kHz, for spherical paiticles with density and bulk compressibility 

comparable to those of quartz, as a function of volume fraction for four different particle radii. 

These curves were calculated using Equation 5.59 rather than Equa t ion 5.60, i.e. without the 

final use of the binomial approximation and omission of terms. I t was found that, whilst 

Equation 5.60 is generally a good approximation to Equation 5.59, it does diverge slightly for the 

smallest particles. 
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Figure 5.3. Sound speed in an aqueous suspension of quartz spheres as a function of volume fraction for 
three different particle sizes, calculated using Equation 5.59. 

It is clear from these two Gguies that the bulk averaging approach of Section 5.2, which does not 

include any dependence on particle size, does not generally predict the correct sound speed for 

propagation in suspensions. 

Investigating the dependence on particle size further, it is interesting to plot the sound speed as a 

function of particle radius for a fixed concentration. Figure 5.4 shows such a plot for a volume 

fraction of 0.01, with the prediction of the bulk averaging model shown for comparison. Clearly 

there is a significant dependence on the particle size over this range. However, the sound speed 

becomes independent of particle size for very small and very large particles, and the two methods 

converge when the particle size becomes very small. 

The reason tha t the sound speed depends on the particle size is t h a t , in fact, it is determined not 

only by the compressibilities of the suspension components, but also by the inertial part of the 

complex drag experienced by the oscillating particle. The fact that the sound speed becomes 

independent of particle size for very small and very large particles may be explained in terms of 

the phaae lag between the particles and the Huid oscillating in the acoustic field. Very small 



fbrmujation of the wave equation 59 
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Figure 5.4. Sound speed as a function of particle size, calculated using Equation 5.14 and Equation 5.59. 

particles have little inertia, and can therefore oscillate in phase wi th the acoustic field, whilst 

very large particles have a large inertia and do not therefore respond to the acoustic field. In each 

case the phase lag becomes independent of the particle size, and consequently so does the sound 

speed. It may be seen fiom this result that, in order to calculate the sound speed over the range 

of particle sizes and frequencies of interest, the bulk averaging me thod will not be sufficient, and 

the wave equation approach is required. 
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Figure 5.5. Sound speed in an aqueous suspension of glass spheres over the volume fraction range of 
interest for the laboratory experiments of Chapter 6. 
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Finally, Figure 5.5 shows sound speed as a function of volume f rac t ion over the range of interest 

for the experimental measurements discussed in Section 6. This resul t shows that the variation in 

sound speed caused by the introduction of the particles into the experiment is very small 

(typically less than 0.01%). 

5.4 Non-spher ica l par t ic les - visco-inertial a b s o r p t i o n and phase speed 

5.4 .1 In troduct ion 

Thus far only spherical particles have been considered. Natural ma r ine particles are not, of 

course, spherical (see Section 6.4.3) and an approach is required t o estimate the absorption due 

to non-spherical particles in suspension. To at tempt this by employing scattering theory involves 

significant additional complication and the problem rapidly becomes intractable. However the 

formulation of the wave equation for acoustic propagation in suspensions, presented in 

Section 5.3, allows non-spherical particles to be accounted for by employing correct expressions 

for the drag force acting on non-spherical bodies [45]. 

Prolate (h>1), parallel flow 
Oblate (h<1), parallel flow 

Prolate (h>1), perpendicular flow 
Oblate (h<1), perpendicular flow 

Figure 5.6. Oblate and prolate spheroids oriented with their axes of symmetry parallel or perpendicular 
to the direction of motion through the fluid. The motion is parallel to the axis plotted. 
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The non-spherical particles considered in this analysis are oblate and prolate spheroids, together 

with their degenerate forms of circular disks and cylindrical needles. Reference [45] gives results 

for spheres and oblate and prolate spheroids with the same volume, and the same examples are 

also used here. Figure 5.6 shows oblate and prolate spheroids orientated with their axes of 

symmetry parallel or perpendicular to the direction of motion. 

5.4.2 Theory 

In this analysis only visco-inertial absorption is considered and the dilute approximation is 

assumed. 

The drag on an axisynimetric body oscillating along its axis of symmetry in a viscous Huid is 

given by [46] 

1 + (l + i )M, + 0 ( M ^ 
6v27r7ya'uo 

e-"^' (5.61) 

where fb is the Stokes drag, 7) is the molecular viscosity of the suspending fluid, a' is the radius 

perpendicular to the axis of symmetry, uq is the magnitude of the instantaneous velocity of the 

particle and = \/2a'/^v where is the shear wave skin depth. 

Strictly Equation 5.61 is derived for axisymmetric unsteady flow, but Reference [46] argues that 

this may be apphed to unsteady flow parallel to any principal axis of a body provided that 

correct forms aie employed for the Stokes drag, as below. 

For spheroids the Stokes drag may be written 

f o = 67r7)j(7Bfa'uo (5.62) 

(noting that this is stated incorrectly in Reference [45]) and Equation 5.61 may be written 

4 1 
3 y \ 4 6'"=^y o ' 

where Ji'sf is a shape factor (see Table 5.1) and a' and 6' are, respectively, the semi-major and 

semi-minor axes for oblate spheroids and the semi-minor and semi-major axes for prolate 

spheroids. 

As w —» 0 (i.e. as the Sow becomes steady), the dw/dt term in Equation 5.61 vanishes and the u 

terms tends to 67r7;a'uo, such that the total drag force tends to the Stokes drag. However, as 

5 —» 0 (ideal fluid) in the unsteady flow f —* 0. Tliis is incorrect as the drag on a body moving at 

nonuniform velocity in an ideal fluid is given by 

f — —771; (5.64) 

where mi is the induced mass of the body. For a sphere of radius a oscillating in a fluid of density 
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p the induced mass is 

62 

1 / 4 
(5.65) 

where gTra^p is the mass of the displaced Huid and 1 is the inertia coeGcient [11], which depends 

on the particle shape and orientation to the acoustic Geld. For the spheroids considered here the 

induced mass is given by 

mi = Li ( ^7ra'^6'/5 (5.66) 

where Li is the inertia coefficient. 

Combining Equations 5.63, 5.64 and 5.66 yields the following expression for the drag on spheroids 

oscillating in a viscous Huid 

f t I (5.67) 

where 

sf (5.68) 

and 

9 

4 L ' 
1 + (5.69) 

Proceeding to formulate the wave equation, aa in Section 5.3, yields expressions for the speed of 

sound (Equation 5.55) which, ignoring thermal conduction, may be written 

Cc — c 
1 , 1 A 1 ( ( 7 - 1 ) [(o- + T ) ( l + ' r ) + s^ 

' + r I ' - - 2 ' ( , + 
(5.70) 

and the visco-inertial absorption coeSicient (Equation 5.58) 

10 log e^ 

eu (cr — 1)^ 

Yc + (cr + -r) ' 
(5.71) 

5.4.3 Shape factor and inertia coefficient 

Shape factors for oblate and prolate spheroids with Gow parallel and perpendicular to the axis of 

symmetry are given in [47] and inertia coe&cients are given in [11]. 

The shape factor for oblate spheroids with h = h' ja' < 1, for flow parallel to the axis of symmetry 

is given by 
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^ o b II = % 
8 r 2/i 
3 I 1 - (1 _ /i2)3/2 

(1 - 7^2)1/2 
(5.72) 

In the limiting case of a thin circular disk moving broadside on, —» 0 and 

- A 

The shape factor for prolate spheroids with /i = 6'/a' > 1, for Gow parallel to the axis of 

symmetry is given by 

(5.73) 

2h 2 / 1 ^ - 1 
3 L 1 ' (/̂ 2 _ 1)3/2 

In 
h + (/i^ — 1)^/2 

A - ( A 2 - 1)1/2 

- 1 

(5.74) 

In the limiting case of a long cylindrical needles moving end on, 1 and 

/<n 
2/i 

(5.75) 
P""'" 3(ln 2 /1-0 .5) 

It will be noted that as a' —̂  0 and A —» oo, .fTprji —» oo, but the Stokes drag, .Fo, correctly tends 

to zero. 

For oblate spheroids with & = < 1 and Sow perpendicular to the axis the shape factor is 

A'ob,^ = n 
8 r A 2 / 1 ^ - 3 
3 ( 1 - (1 _ /t2)3/2 

sin 
- 1 

(5.76) 

In the limiting case of a tliin chcular disk moving edgewise, A —̂  0 and 

K ob.X 
16 

(5.77) 

For prolate spheroids with > 1 moving perpendicularly the shape factor is 

K p r , 

2 A ^ - 3 

3 | ^ A 2 - 1 (/l2 - 1 ) 3 / 2 In [/l + ( / l 2 _ 1)1/2] j 

In the limiting case of a cyhndrical needle moving broadside on, 1 and 

(5.78) 

K, 
Ah 

pr,± 3(ln 2/1 + 0.5) 
(5.79) 

Again, as o' —* 0 and /i —» oo, » oo, but the Stokes drag, .Fb, correctly tends to zero. 

The inertia coefficient for oblate spheroids moving parallel to their axis of symmetry is given by 

-^objl — 
ao 

2 — do 
(5.80) 
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where 

ao = 3T 1 — v 1 — < 
/ si sin £ 

V ^ 

with the eccentricity 6 given by 

6 = A/1 
/)/2 

In the limiting case of a thin circular disk moving broadside on, £ —> 1 and 

(5.81) 

(5.82) 

ao—»2 — Try l — (5.83) 

such that do ^ 2 and .Lpr.|| —> oo. However in the limiting case of 6 = 1, a direct calculation for a 

thin circular disk moving broadside on yields the inertia! coeHicient = 2/7r [11]. 

The inertia coefRcient for prolate spheroids moving parallel to their axis of symmetry is given by 

Lpr II — 
CKO 

2 — CKo 
(5.84) 

where 

ao 
" 2 ( 1 - E ^ ) -

( - I n 
"l + £" 

1 — £ 
— s (5.85) 

and the eccentricity is 

E = Wl -
6'2 

(5.86) 

In the limiting case of a long cylindrical needle moving end on, E —» 1 and 

ao 2 I — 1 . ^ - 1 
a' 

(5.87) 

Under this limiting approximation, as £ —> 1 so ao —̂  0 and i^pr,|| —» 0. 

For fluid motion perpendicular to the axis of symmetry the inertia coefficient for an oblate 

spheroid is 

Loh,l — 
70 

2 - 7 0 
(5.88) 

where 

70 
V l - . 1 - £ " 

• sm £ — (5.89) 

with 
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£ = \ 1 
fe'2 

In the limiting case of a thin circular disk moving edgewise £ ^ 1 and 

70 (f ) \ / r : i 

(5.90) 

(5.91) 

In the limit as c —» 1 so '/o ^ 1 and Z,ob.± 0-

Finally, the inertia coefficient for a prolate spheroid with fluid motion perpendicular to the axis 

of symmetry is 

T - -Jl 
^pr,± - 2 _ , yi 

(5.92) 

where 

71 = ^ I 1 -
1 — C 

26 
In 

1 + 6 
(5.93) 

with 

1 -
6'2 

(5.94) 

In the limiting case of a long cylindrical needle moving broadside on, E —» 1 and 

'2b' 

Again considering the limit as E —» 1 so "yi —» 1 and î pr,± —̂  1 

(5.95) 

5.4.4 Resul ts 

In order to illustrate the eEects of particle shape on the propagation parameters in suspensions, 

examples are chosen from Reference [45]. These examples were initially chosen to validate the 

code by comparing the predictions with the results presented in Reference [45], but for the 

purposes of this chapter they also serve as illustrative examples. The geometric parameters of 

these bodies are given in Table 5.1. 

Figures 5.7 to 5.10 show the results of calculating the attenuation coefficients for the particles of 

Table 5.1 using the approach described in Sections 5.4.3 and 5.4.2. The frequency range for these 

calculations was extended up to 10 MHz for comparison with the results presented in 

Reference [45]. 

Figure 5.7 shows the calculated attenuation, normalized with respect to concentration, for the 

oblate spheroids of Table 5.1. The attenuation for the equivalent volume sphere is also shown for 

comparison. This result demonstrates that particle orientation has a signiEcant effect on the 

absorption. At low fiequencies the attenuation for oblate spheroids orientated edgewise to the 

Sow is close to that for spheres, whilst at higher fiequencies the attenuation becomes greater 
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Particle Dimensions 
(fim) 

Orientation to 
acoustic field 

Shape factor Inertia coefficient 
Li 

Sphere Radius a = 2.75 1 0.5 
Oblate spheroid Major radius a' = 4.36 

Minor radius b' = 1.1 
Broadside 0.868 2.374 Oblate spheroid Major radius a' = 4.36 

Minor radius b' = 1.1 Edgewise 0.682 0.174 
Prolate spheroid Major radius 6' = 6.9 

Minor radius a = 1.7 
Broadside 2.057 0.872 Prolate spheroid Major radius 6' = 6.9 

Minor radius a = 1.7 End on 1.598 0.0816 
Circular disk Diameter 2a' = 5.5 

Thickness 26' = 0.055 
Broadside 0.849 0.627 Circular disk Diameter 2a' = 5.5 

Thickness 26' = 0.055 Edgewise 0.571 0.008 
Cylindrical needle Diameter 2a' = 0.055 

Length 26' = 5.5 
Broadside 23.0 1 Cylindrical needle Diameter 2a' = 0.055 

Length 26' = 5.5 End on 13.894 0 

Table 5.1. Shape factors and inertia coefficients for a variety of simple particle shapes. 

than the attenuation by spheres. The attenuation for oblate spheroids oriented broadside to the 

Eow is consistently lower than the both the attenuation for the orthogonal orientation and that of 

spheres of the same volume. 

Figure 5.8 shows the equivalent result for prolate spheroids. Once again particle orientation has 

an effect, although the diSerence in attenuation for the two orthogonal orientations is smaller in 

the case of prolate spheroids than for oblate spheroids. 

Figures 5.9 and 5.10 show the attenuation for the degenerate forms of oblate and prolate 

spheroids, i.e. disks and needles. These show again the eSects of orientation on the attenuation. 

The attenuation for the spheres is shown again in these Ggures for comparison, but it should be 

noted that the disks and needles do not have the same volume as these spheres. 

The results for the spheroids are summarized in Figure 5.11, which shows the ratio of the 

absorption coe&cient for spheroids to that of spheres of equivalent volume. 

Figure 5.12 shows the ratio of the phase speed in a suspension of particles to that in the 

suspending Auid. Results are shown for spheres, oblate spheroids and their degenerate form, 

disks. Figure 5.13 shows the corresponding result for prolate spheroids and needles. It may be 

noted from these figures that the degenerate forms of both the oblate and prolate spheroids 

appear to exliibit very little dispersion compared to either spheres or spheroids. However it must 

be remembered tha t the degenerate examples have a much smaller volume than the spherical or 

spheroidal examples. 

The cases examined in this section should be viewed merely as illustrative examples of the 

calculation of attenuation and phase speed in suspensions of oblate and prolate spheroids. The 

examples were chosen to be the same as in Reference [45] in order t o validate the computer 

model which implements the theory described in that reference. These examples do, however, 

serve to demonstrate that both particle shape and orientation do have an effect on the 

visco-inertial dissipation and should be considered when deahng with non-spherical particles. 

The model described in this section will be applied to the in terpreta t ion of absorption 

measurements made with suspensions of non-spherical particles in Chapter 6. 
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Figure 5.7. A t t e n u a t i o n coefficient for t h e spheres a n d o b l a t e sphe ro ids of Table 5.1. 
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Figure 5.8. A t t e n u a t i o n coefficient for t h e spheres a n d p r o l a t e s p h e r o i d s of T a b l e 5.1. 
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Figure 5.9. Attenuation coefficient for the spheres and disks of Table 5.1. 
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Figure 5.10. Attenuation coefficient for the spheres and needles of Table 5.1. 
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Figure 5.11. Ratio of the attenuation coefficient for the spheroids of Table 5.1 to that of spheres. 
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Figure 5.12. Sound speed ratios for the oblate spheroids, spheres and disks of Table 5,1, 
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Figure 5.13. Sound speed ratios for the prolate spheroids, spheres and needles of Table 5.1. 

5.5 S u m m a r y and conclusions 

In addition to increasing the acoustic attenuation, the presence of particles in suspension can also 

inSuence the sound speed. 

In tliis chapter a simple method for calculating the sound speed in suspensions, based on 

replacing a fraction of the volume of fluid with material of different density and bulk modulus, 

was described. An eilternative method was also described in which the sound speed was obtained 

by formulating the wave equation for propagation in suspensions. 

Results presented in this chapter demonstrated that , although t h e bulk averaging approach gives 

the correct result in the limit of very small particles, the expression derived from the wave 

equation is required in general. This is because the sound speed in the suspension depends not 

only on the sound speed in each suspension component, but also on the inertial part of the 

complex drag experienced by the oscillating particle. 

The attenuation coefBcient may be obtained from the imaginary part of the complex wavenumber 

in the wave equation, and the viscous absorption coe&cient obtained in this was was shown to be 

identical to the expression obtained by Urick as described in Section 2.4. This was to be expected 

as a similar approach was taken in the derivation of both the wave equation and the Urick 

expression. 

The results presented here show that, for dilute suspensions of mineral particles, the change in 

the sound speed is relatively small, and will have httle eEect on refraction of sound at the 

relatively short ranges of interest for high frequency sonars. The change in sound speed resulting 

from bubble populations in shallow, coastal waters is likely to be far more significant. At very 

high concentrations, such as may be found in the muddy boundary layer near the seabed, the 

change in sound speed due to particles in suspension may become signiEcant. 
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Finally, a method for calculating the absorption and phase speed in suspensions of oblate and 

prolate spheroids was discussed. Example results from this model showed that the absorption by 

suspensions of spheroids may be signiRcantly different &om absorption by spheres of equivalent 

volume. It was also shown that the orientation of the spheroid with respect to the sound Seld is 

important. 

Theoretical models of visco-inertial absorption by suspensions of both spheres and spheroids have 

now been discussed. Results fiom these models will be compared with meaauiements in the next 

chapter, which introduces a laboratory technique for measuring absorption in dilute suspensions 

at low ultrasonic fiequencies. 



C h a p t e r 6 

E x p e r i m e n t a l invest igat ions 

6.1 I n t r o d u c t i o n 

The preceding chapters discussed the theory of sound absorption and scattering by solid particles 

suspended in water, and included results of calculations based on these theories. In order both to 

validate this theoretical work and to gain a deeper physical insight into the phenomena of 

interest, it is important to investigate the physical processes experimentally. 

The literature contains numerous examples of measurements of scattering in suspensions and 

emulsions, e.g. [21,48-50]. Acoustic backscattering techniques are also becoming common for the 

measurements of suspensions in the sea, as reviewed by Thorne and Hanes [51]. Furthermore, 

measurements have also been made of the scattering form function of suspended cubes [52,53] and 

polyhedra, to address the issue of scattering by angular, faceted, non-spherical bodies. However, 

there is a lack of laboratory measurements of the absorption coefficient in dilute aqueous 

suspensions of mineral particles over the frequency range extending 6 0 m tens to hundreds of kHz. 

To address this a series of experimental investigations has been carried out. This work was 

carried out by a team which comprised the author, Dr. Niven Brown and Prof. Tim Leighton. 

This team was jointly responsible for the design and development of the experimental technique. 

Dr. Brown performed most of the technical work in building and sett ing up the apparatus and he 

carried out the measurements made with spherical particles, the results of which are shown on 

Page 88 seg. The author was responsible for making the measurements with kaolin and calcium 

carbonate particles, the results of which are given in Figures 6.26 and 6.27 respectively. All three 

members of the experiment team contributed to the analysis and interpretation of the results. 

The development of the experimental technique and the results have been presented in a number 

of pubhcations by the author and colleagues [54-60]. 

It should be noted that, in the course of this investigation, the laboratory measurement of 

absorption by dilute suspensions of mineral particles in small volumes of water at frequencies in 

the range 50 - 150 kHz was found to be extremely challenging. Whilst the absorption can be 

significant in the sea, over ranges of order hundreds of metres, the absorption in a laboratory 

scale experiment is extremely small. The fact that the attenuation by the particles in suspension 

can be much smaller than both the boundary losses at the walls of the container and the 

absorption due to the instrumentation means that the absorption being measured was a small 

part of the total attenuation in the system. In fact it was even found that the measurement was 

sensitive to smaU changes (0(mm)) in the length of submerged hydrophone cable. This 

72 
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illustrates the type of difBcuities encountered in mEiking these measurements. Other practical 

problems include the following: The particles settle out of suspension under the influence of 

gravity, necessitating some means of resuspension, and the addition of any stirrer into the water 

to achieve this increases the absorption in the system. In addition natural particles, such as clay 

particles, may have a tendency to Hocculate, severely complicating the eSects under study. 

6.2 M e t h o d 

6.2.1 T h e o r y 

The experimental method used in the present investigation was to infer the total acoustic loss in 

a volume of 8uid containing suspended paiticulate matter from measurements of the 

reverberation time of the system. The attenuation due to the suspended particles may thus be 

estimated by comparing the reverberation times of the system with and without the particles 

present. Making measurements relative to the clear water case in tliis way partially corrects for 

the effects of the boundary losses and other contributions to the total attenuation in the system. 

However, it should be noted that when the suspended particles' contribution to the total 

attenuation is small (i.e. at low concentration) the eEect of the relatively large boundary losses 

will be to give large errors in the relative measurement of the influence of the suspended particles 

on the reverberation time. 

The reverberation time of a reverberating volume is deGned as the time taken for the sound 

pressure level to fall by 60 dB after the sound source is removed and may be given by (e.g. [61]) 

55.26V;nc 

where is the volume of the enclosure, ^enc is the surface area, c is the compression wave 

speed, a is the average Sabine absorptivity and ( is the absorption coefficient of the fluid in 

Nepers per metre. The average Sabine absorptivity is deGned 

a = ^ (6.2) 
'̂ enc 

where Aenc is the total sound absorption of the enclosure, expressed in units of m^, such that a is 

dimensionless. 

If fgo and fgQ are the reverberation times of a volume of particulate-free water and water 

containing particles respectively, then it is clear from Equation 6.1 and Equation 2.2 that the 

difference in the attenuation coefEcients of the two fluids, expressed in dB m"^, is given by 

A a = (6-3) 

_ m / _ ! ^ 

C \^60 6̂0 

provided that the addition of the paiticles does not signiGcantly affect: 
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the sound speed in the medium; 

the volume of fluid; 

the absorption at the boundaries; 

Chapter 5 showed that the change in sound speed resulting from the introduction of the particles 

at concentrations used in the experiments is small (less than a few tens of cm s"^ even at the 

highest concentrations). It is trivial to demonstrate that the volume change due to the addition 

of the particles at the concentrations used in these experiments is similarly small (volume 

fractions are typically much smaller than 10"^) and it is reasonable to assume that the particles 

in suspension have httle effect on the absorption properties of the walls. Particles that settle to 

the bottom of the volume may, however, aifect the boundary losses, but attempts were made to 

make measurements with the majority of the particles in suspension. 

Ideally, the reverberation time should be determined from the decay of a diSnse sound field, that 

is to say one in which the average energy density is the same throughout the entire volume and 

all directions of propagation are equedly probable [61]. The onset of a diffuse sound field in an 

enclosure can be described by the Schroeder cut-off frequency [62], which gives an indication of 

the lowest frequency at which the modal density, i.e. the number of modes per unit bandwidth, is 

sufBcient to constitute a diSuse field. The Schroeder cut-oE Aequency, /a, be written [62] 

= (41^) ( & ) 

Ideally then, all experiments should be carried out at frequencies well above the Schroeder cut-off 

in order to ensuie that the measurements are not influenced by modal structure in the sound held. 

6.2.2 P r e l i m i n a r y inves t iga t ions 

Prior to converging on the design of the Gnal experimental system (described in Section 6.2.3) 

two developmental systems were tested [54]. These served to prove the concept and reveal the 

critical features that were required of the final system. 

In both a 1 m"^ plastic tank and a 0.03 m"^ glass tank the reverberation time was observed to 

decrease as the concentration of suspended sand grains was increased. The smaller volume of the 

glass tank was desirable as it enabled greater control of experimental conditions. However, the 

increased surface area to volume ratio of the smaller system resulted in a greater relative 

contribution by the losses at the boundaries. These development systems therefore indicated that 

the final configuration should be optimized in order to minimize wall losses. The ideal system 

should therefore have perfectly reflecting walls, which may be achieved in theory either with a 

pressure-release boundary condition or a perfectly rigid boundary. Of these the easiest to 

approximate to in practice is the pressure-release boundary, since an air-water interface is a good 

approximation to this. The final system therefore employed a thin-walled (30 /im) polythene bag 

containing aiound 0.016 m^ of water, suspended fiom a frame and surrounded by air. This 

provided an approximation to the ideal situation in which a pressure-release surface surrounds 

the entire volume, leading to a pressure amphtude reflection coefficient close to -1. Measurements 

of decay rate with this arrangement confirmed that the wall-losses were much lower than in the 

glass tank, and all subsequent measurements were carried out using the suspended polythene bag. 
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6 .2 .3 E x p e r i m e n t a l s y s t e m 

The experimental system used to obtain the results presented in this chapter is shown 

schematically in Figure 6.1 [54] and Figure 6.2 shows a photograph of the apparatus. 

stirrer 

LSS 

Polythene 
bag 

B&K8103 
hydrophones 

Power Amp. 

G P I B . 

Charge Amp. 
DSO PC with A/D board 

Figure 6.1. Schematic of the experimental apparatus used to measure absorption in dilute suspensions 
over the frequency range 50-150 kHz [54]. 

The signal generation, data acquisition and signal processing were all performed under the 

Lab VIEW laboratory instrument management system, running on a personal computer (PC). 

The signal from the PC 's digital-to-analogue converter (DAC) b o a r d was fed to a power amplifier 

driving a Briiel and Kjaer (B&K) 8103 hydrophone. A second B&K 8103 hydrophone was used 

for the receiving transducer and the signal from this was amplified and fed to a LeCroy digital 

storage oscilloscope (DSO). The DSO was connected to the PC via a GPIB interface, and the 

data were transferred to the computer for storage and post processing. A mechanical stirring 

device (propeller) waa used to resuspend particles that had settled out of suspension. Tliis was 

removed from the water when the acoustic measurements were performed, as additional 

absorbing / reflecting surfaces comphcate the acoustic system. T h e temporal variation in the 

concentration of the suspension was monitored using a Sea Tech light scattering sensor (LSS), 

and this was also removed from the volume during acoustic measurements. In later experiments 

the LSS was mounted horizontally on the outside of the bag, wi th its window in close contact 

with the side of the bag. The mating faces of the LSS window a n d the side of the bag were 

wetted to ensure good optical couphng. This conRguration ensured that any spatial integrating 

inherent in the LSS measurements would be in the horizontal direction, not in the vertical where 

the concentration would be expected to be spatially varying after a Snite period of setthng. 

The photograph (Figure 6.2) shows the polythene bag suspended f rom its mechanical support by 

means of fine wires attached to a metal hoop. The items dipping into the water are, from left to 

right, the LSS used to monitor the concentration of the suspended particles, the transmitting and 

receiving hydrophones and the propeller used to stir the water in order to suspend the particles. 

The diameter of the bag at the water surface is about 235 mm. 
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Hydrophones 

Stirrer 

Figure 6.2. Photograph of the experimental apparatus [54]. This photograph is illustrative only, as the 
LSS and stirrer were removed during acoustic measurements. The majority of experiments were carried out 
with the LSS mounted horizontally on the outside of the bag (see text). Other instrumentation included 
pH, temperature and dissolved oxygen probes (not shown). The hydrophones are mounted in rigid tubes 
to prevent movement. 
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Prom Equation 6.4 the Schroeder cut-og frequency for the water volume held in the bag can be 

shown to be around 55 kHz for typically measured reverberation times, providing a lower hmit on 

the frequency used for the tests. The cut-o5 frequency could be reduced to below 50 kHz by 

increasing the water volume to about 0.02 m^, although this would mean approaching the 

strength limit of the bag. 

Prior to acoustic measurements the water was passed through a reverse osmosis system and then 

Sltered to remove any remaining particulate matter. This ensured that no particles of diameter 

greater than 0.22 //m remained in the water. The water was then degassed under partial vacuum 

in order to avoid the presence of bubbles which may be acoustically signiEcant. The temperature 

and pH of the water were measured using a Jenway 3071 pH and temperature meter and these 

measurements were used to calculate the speed of sound in the ambient water. The level of 

dissolved oxygen was monitored throughout the experiments (between acoustic runs) using a 

Jenway 9010 dissolved oxygen probe attached to the 3071 meter. This was to ensure that the 

addition of the particles or the stirring process did not cause signiEcant gas entrainment. The 

dissolved oxygen content was found to vary from 51% to 65% (expressed as a percentage of the 

saturation level) over the course of a measurement period, and no bubbles were observed. 

In eax:h series of experiments reverberation time measurements were Erst made in the nominally 

deal" water in order to provide a reference measurement. Particles were then added in stages, in 

known quantities by mass, to enable a series of measurements to be made at varying 

concentrations^. 

Before each series of acoustic measurements the suspension was stirred by the mechanical stirrer 

until the spatial distribution of suspended par ticles appeared to be homogeneous. The time taken 

for this to occur was shown, by measurements made with the LSS, to be of the order of a few 

seconds. Care was taken to ensure that the particles that collect in the corners formed by the 

bottom seam of the bag were resuspended by the stirring. As the stirring takes place just before 

each set of acoustic measurements, the clear water reference measurements were also made on 

stirred water. This ensured that the reference signal used was obtained under conditions which 

most closely represented those experienced during the measurements made with the particles in 

suspension. It may be noted that stirring induces turbulence which can, in principle, lead to 

absorption. This issue is addressed in Section 6.3, where it is shown that the absorption due to 

turbulence in these experiments may be neglected. 

The acoustic measurement itself consisted of hrst generating the sound Eeld, then switching oE 

the sound source and recording the decay of the reverberant sound Eeld. 

Two techniques for generating the sound Eeld were investigated; an impulse and a long burst 

(20 ms) of uniform white noise. Both of these methods produce a broadband sound Eeld. The 

advantage of using the long burst technique is that it gives sufEcient time for a steady-state sound 

Eeld to build up before the source is switched oE, and the decaying sound Eeld is also less prone 

to large perturbations resulting from direct reEections and particular modes of the volume. For 

these reasons the long burst generation method was used for the results presented in this chapter. 

Typically a series of measurements consisted of emitting 10 noise bursts Eom the transmitting 

transducer and recording their responses via the receiver hydrophone, with the entire sequence 

^ The concentration is the spatial average over the volume, i.e. the mass of par t ic les added divided by the volume 
of water. 
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lasting approximately 35 s. During this period the concentration, which changes as a result of the 

paiticles settling out, does not decay appreciably according to the estimates obtained using the 

LSS. 

The decaying reverberant sound Geld measured by the receiving hydrophone demonstrates 

seemingly random Euctuations resulting from the interference between the many modes within 

the reverberating volume (see Figure 6.4 on Page 84). These Suctuations limit the accuracy with 

which the decay rate of the reverberant Geld may be determined from the measured decay curve. 

In order to improve the accuracy of the estimate of the reverberation time of a reverberating 

volume, it is usual practice to repeat the experiment many times and average the decay rates 

obtained from the individual measurements. This method is, however, inefficient owing to the 

large number of measurements which must be made in order to obtain an accurate estimate of 

the decay rate or reverberation time. This averaging also obscures any ping-to-ping variations in 

the decay rate and any temporal variation within the integration time, which can be long due to 

the requirement for a large number of measurements. 

The decay rates were therefore determined by applying the method of integrated impulse 

response (IIR) [63] to the sound Geld from the time that the driving signal was switched off. This 

method was used, even for signals derived from non-impulsional sources, as it gives a decay curve 

which is equivalent to the average over inGnitely many decay cui-ves that would be obtained from 

exciting the volume with bandpass Gltered noise. 

The value of the IIR represents the ensemble average of the squared noise responses at time t 

after the onset of decay, which is equal to the squared tone-burst response integrated from time t 

to oo. The practical implementation of this method is as foUows. The response of the volume to 

the burst of random noise (which contains the Gequency range of interest) is squared then 

backwards integrated from an upper time limit (some time before the response is exceeded by the 

background noise) to the lower time limit when the sound was cut off. This produces the IIR 

curve, the slope of which is determined from a linear regression over the linear part of the curve 

(where 'linear' here refers to straight lines on a log-linear plot). Typically, the lower time limit for 

the linear regression was some 10 ms after the sound was cut off and the upper limit was chosen 

depending on the rate of the decay. 

Post-processing of the results also involved performing the IIR analysis at each of the desired 

frequency bands. The raw data were filtered using a Butterworth bandpass filter in 10 kHz 

bands over the Gequency range 50 kHz to 150 kHz. Butterworth Glters are characterized by an 

extremely Gat passband response with sharp cut-offs. The data were also reduced into time bins 

which represented the r.m.s. value of the signal for a user-deGned number of samples, typically 

100. The sampling rate of the DSO was 500 kHz. 

It will be noted that whilst these experiments are broadband, the theories described in 

Chapters 2 and 3 are obtained for a single insonifying frequency. However, under the assumption 

that the individual frequency components are linearly independent, the single-frequency models 

may be applied to the interpretation of the broadband measurements in each narrow band. In 

the following sections good agreement is obtained between the single-frequency calculations and 

the frequency-binned measurements, thus validating the assumption that the frequency 

components may be considered as linearly independent. 
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6.2.4 P a r t i c l e c o n c e n t r a t i o n a n d size d i s t r i b u t i o n 

j scoMenng aemaor 

Because the particles settle out of suspension over time, the LSS wag used to monitor the 

concentration to ensure that it did not change significantly over t he time taken for a series of 

acoustic measurements to be carried out. It is important here to note the Umitations of such a 

device for quantitative measurements of suspended particle concentration. The LSS device emits 

light in the forward direction and detects the hght which is backscattered from the medium. 

Whilst the intensity of the backscattered light depends upon the concentration of particles in 

suspension, it also depends upon the properties of the particles, such as their size, shape and 

complex refractive index. The LSS may be calibrated using a known concentration of the 

suspension of interest. However, in cases where the suspension contains paiticles with a range of 

sizes, larger particles will settle out of suspension quicker and the size distribution will therefore 

be time-varying, thus invalidating the calibration. It should be noted that the LSS was not used 

to obtain quantitative measurements of particle concentration for normalization of the 

attenuation measurements. This was done by careful weighing of the quantity of particles added 

and ensuring that all particles were in suspension. 

The LSS only provides a relative measurement of the total concentration of suspended particles 

in the measurement volume, and does not provide any information on the sizes of the particles 

present. Since the particle size is an important parameter influencing the acoustic absorption by 

suspended particles, it is important to know the size distribution of the particles in suspension. 

Whilst this is possible with spherical particles, it is not a simple matter where non-spherical 

particles are used. This is discussed in the following sections. 

Laser diSraction analysis was used to determine the size distributions of particles used in the 

experiments. This technique uses the diffraction pattern of laser light scattered by a sample of 

particulate in suspension to infer the particle size distribution in the range 0.4 fim to lOOO t̂m. It 

is important to note that, since this is not an in-situ measurement, it was not possible to 

measme the particle size distribution dynamically. 

It is instructive to describe briefly the laser diffraction method of particle sizing, which exploits 

the fact that small particles in a laser beam scatter light in a characteristic pattern, i.e. the 

diffraction pattern. The details of the diffraction pattern depend upon the distribution of particle 

sizes contributing to the light scattering. Information about the particle size distribution can 

thus be inferred from the details of the light flux pattern. 

A discussion of diffraction by a collection of spheres should be available in any standard reference 

on physical optics (e.g. [64]). The simplest Aux pattern, that horn a monomodal dispersion of 

spheres, consists of a central bright spot, known as the Airy disk, surrounded by concentric 

bright and dark rings whose intensity diminishes further from the centre of the diffraction 

pattern, that is to say at higher scattering angles. The scattering angles at which the diffraction 

maxima and minima occur depend on the size of the particles, wi th smaller particles leading to 

higher scattering angles. The particle size in such a monomodal dispersion of spheres can 

therefore be simply inferred from the scattering angles. 
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These scattering patterns obey the principle of linear superposition, meaning that the total 

scattering pattern for a mixture of two (or more) monomodal dispersions can be constructed by 

adding the intensities of the scattering patterns &om each constituent monomodal dispersion. 

This allows the possibility of inferring the particle size distribution from sufficiently accurate 

measurements of the scattering pattern due to a multimodal dispersion of spherical particles. 

The interpretation of laser diffraction measurements of particle size distribution becomes 

complicated when non-spherical particles are involved. The s tandard analysis yields the size 

distribution of spherical particles which would give the observed diffraction pattern. In principle 

it would be possible to infer the size distribution of particles of a different shape by inverting a 

forward model for the diffracted pattern obtained from forward scattering by such particles. 

However for highly irregular particles and suspensions containing many different particles, this 

becomes impractical. A more fundamental question is what exactly we mean by the size when 

discussing non-spherical particles. In general non-spherical particles cannot be described by a 

single number, such as the diameter of a sphere. The laser diffraction technique may be 

considered to yield an effective spherical diameter for optical scattering. Other paiticle sizing 

techniques are available which also yield effective spherical diameters for non-spherical particles. 

In order to compare with the measurements made by laser diSraction, measurements have also 

been made using two alternative techniques: gravitational sedimentation and centrifugal 

sedimentation. 

The gravitational sedimentation technique, described in Reference [65], is based on the 

measurement of the rate of settling of particles. This method yields the Stokes diameter of the 

particle, deGned as the diameter of a sphere which has the same density and the same free fahing 

velocity in a given fluid as the particle, within the viscous flow regime. From Stokes' equation the 

Stokes diameter may be written 

where 77 is the molecular viscosity of the suspending fluid, hs is the distance the particle falls in 

time t, y and are the densities of the particle and fluid, and g is the acceleration due to gravity. 

The time taken for the particle to reach its terminal velocity is negligible [65], and the free fall 

velocity is therefore taken to be = /ig/t. 

Stokes' equation is only valid in the region of viscous flow, which sets an upper limit on the 

particle size which may be determined by this technique. This limit is determined by the 

magnitude of the Reynolds number 

(6.6) 
V 

The Reynolds number should not exceed 0.25 if the error in the Stokes diameter is not to exceed 

3% [65]. Setting jZe = 0.25 and equating Equations 6.5 and 6.6 yields the following expression for 

the limiting Stokes diameter 
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(6.7) 

For example, for silica (p' = 2650 kg m ^), sedimenting in water (/) = 1000 kg m 

T] = 0.001 Pa s) the limiting Stokes diameter is 65.3 /xm. 

The lower size limit is partly determined by the long settling times experienced by small 

particles, and partly by other motions which may be signiGcant compared to the small settling 

velocities, such as Brownian motion, diffusion and convection currents which may be set up over 

long integration periods. For these reasons the use of gravitational sedimentation is not usually 

recommended for particles smaller than about 1 /urn. 

Some of the diSculties associated with the use of gravitational sedimentation for fine particles 

may be reduced by speeding up the settling time. This may be achieved through the use of 

centrifugal sedimentation techniques, described in [66]. 

As in the case of gravitational sedimentation the Stokes diameter is determined Aom Stokes' law 

(see Equation 6.5), but now the acceleration due to gravity is replaced by the centrifugal 

acceleration arid the fiee fall velocity is replaced by the radial settling velocity to give 

where is the radial distance of the particle from the axis of the centrifuge, drc/dt is the radial 

settling velocity and Wc is the rotation speed of the ccntrifuge. 

Centrifugal sedimentation is usually used for particles up to a few microns in diameter, although 

tliis can easily be extended using more viscous suspending Huids and longer settling times. The 

lower limit on particle size is determined by the consideration t h a t the radial displacement of the 

particles by Brownian motion during sedimentation should be much smaller than the 

displacement due to centrifugal motion. For a typical example (see [66]) the minimum Stokes 

diameter is less than 0.01 /̂ m. 

For the measurements of the size distributions of clay-like and marine sediment particles 

presented later in this chapter, the samples were dispersed in the suspension media and insonified 

with ultrasound (normally for one minute) to assist in dispersal and breaking up of agglomerates. 

Additionally, the sample portions used for the centrifugal sedimentation were dispersed using 

prolonged ultrasonics in an attempt to disseminate the aggregates and obtain a particle size 

distribution more representative of the discrete particles. 

6.3 Turbu lence 

Since stirring is employed in the experiments to suspend the particles there is a degree of 

turbulence inherent in the measurement volume. It is therefore necessary to investigate the 

potential impact of tliis turbulence on the acoustic absorption to determine whether it is an 

important contribution to the total absorption coeScient being measured in the experiments. 
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Noir and George [67] calculated the amount of acoustic energy converted to turbulent kinetic 

energy for a plane wave propagating through an unbounded Seld of turbulence. Their approach 

has been used here to estimate the order of magnitude of the contribution to the acoustic 

absorption coe&cient resulting from turbulence in the experiments. Their analysis is based on 

the interaction of two opposing phenomena. These are the perturbation of the turbulence Held by 

the acoustic wave, leading to anisotropic Reynolds stresses, and the redistribution of turbulent 

kinetic energy as it cascades &om the large scale to the dissipation scale, leading to a return to 

isotropy. As a result of these two effects, the Reynolds stress is not in phase with the acoustic 

Held, and there is thus a net transfer of energy from the acoustic field to turbulent kinetic energy, 

corresponding to absorption of acoustic energy. 

As the acoustic time scales are generally much shorter than the time scales associated with the 

turbulence, previous investigators assumed that there is no change in the turbulence structure 

over the time scale of the interaction, thus considering turbulence. Noir and George, 

however, allowed the Reynolds stresses to Euctuate in response to the sound wave in their 

analysis, thus introducing non-frozen turbulence. 

In terms of energy, the absorption of sound by turbulence produces additional turbulent kinetic 

energy, wliich is eventually dissipated by viscosity. The production term in the turbulent kinetic 

energy equation involves mean-Sow gradients and the normal Reynolds stresses. A model of the 

couphng between the Reynolds stress and the mean flow then results in a time-average 

production of turbulent kinetic energy. 

Unfortunately the analysis of Noir and George does not lend itself well to summarization without 

compromising clarity, so this section is necessarily limited to simply quoting their key results. For 

the complete argument the interested reader is referred to the original paper [67]. 

Assuming that the distortion of the turbulence Held by the acoustic wave may be considered to 

be locally homogeneous, the analysis of Reference [67] yields the following result for the 

absorption coeScient due to turbulence, 

cti- - 201og(e) (6 9) 

where ea is the dissipation rate of turbulent kinetic energy and c is the speed of sound. In cases 

where the acoustic wavelength is smaller than the largest length scale of the 8ow, as may be the 

case in the experimental system described here, the acoustic wavelength. A, is taken to be the 

upper limit of the spatial scale, and the attenuation coefScient becomes 

20 log(e) (6.10) 

where % is the Kohnogorov length scale, the characteristic scale of the turbulent eddies at the 

smallest, dissipative end of the turbulent energy cascade process, given by 

where is the kinematic viscosity of the fluid. 
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Both of the expressions for the coeScient of sound absorption by turbulence (Equations 6.9 and 

6.10) cleaiiy depend upon the dissipation rate, Cj, of turbulent kinetic energy which, in the case 

of the experimental system discussed in this chapter, is not known. The predictions of these two 

equations are shown in Figure 6.3 as functions of this turbulent dissipation rate. The solid hne 

shows the result of Equation 6.10, which assumes that the turbulence may be approximately 

characterized by an energy spectrum of the form 

(6 .12) 

where te is the wavenumber of the tmbulent eddies. 

The dotted line shows the result of assuming that the turbulence is locally homogeneous 

(Equation 6.9). Note that the two equations give signihcantly different predictions of the 

attenuation coeScient as a result of the different assumptions made in each case [67]. Both 

models, however, predict that the attenuation coeScient is several orders of magnitude below the 

calculated viscous absorption coefficient and the measured attenuation coeScient presented in 

Section 6.4 over most of the range of dissipation rate shown. 

E 10 

9i 10 

Dissipation rate (m^s^) 

Figure 6.3. Predicted attenuation coefficient due to turbulence 

Although it is not possible to predict accurately the turbulent dissipation rate in the 

experimental system, it is possible estimate an upper limit on the order of magnitude of this 

parameter, allowing us to estimate the maximum order of magnitude of the turbulence 

attenuation coeScient. Let us assume that the maximum rate at which turbulent kinetic energy 

is dissipated in the experimental system is equal to the rate at which energy is supplied to the 

system by the mechanical stirrer. In fact this will overestimate t h e dissipation rate, as we know 

hom observations that the system remains turbulent after the stirrer has been switched off. The 

electrical power rating of the stirrer motor is 25 W. Let us assume that tliis power is coupled to 

the turbulence with an eSciency of 0.3 (an optimistic estimate), such that the maximum possible 
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rate at which turbulent kinetic energy is produced in the system is about 7.5 W. Recognizing 

that the units in which tlie dissipation rate is expressed (m^s~^) are dimensionally equivalent to 

Wkg"^ we can estimate tha t the upper limit of the turbulence dissipation rate in the 16 kg or so 

of water in the experimental system is less than 1 From Figure 6.3 we can therefore see 

tha t the upper limit on the turbulence absorption coefficient to b e expected in the experimental 

system is of the order of 10~® dBm"^. This is several orders of magni tude smaller than the 

predicted viscous absorption coefficient and the measured absorption, suggesting tha t the 

phenomenon of sound absorption by turbulence may be neglected in the present series of 

measurements. 

6.4 Resu l t s 

In this section results of measurements made using three difi^erent categories of particles are 

presented in a logical order. Firstly results of measurements made using spherical glass particles 

are presented. These particles were chosen to enable direct comparisons to be made between 

measurements and the prediction of the models described in Chap te r 2, which assume the 

particles to be spherical. Next to be presented are results from p u r e samples of clay-like particles. 

These particles are similar in form to particles found in natural , fine-particulate suspensions, bu t 

are much better characterized than natural samples and have known physical properties. Finally 

results are presented of measurements made with natural, marine sediment particles. 

To help the reader understand the nature of the measurements it is perhaps helpful at this point 

to show an example of a measured reverberation decay curve. 
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Figure 6.4. Typical binned time trace for reverberation time calculation (upper curve) and corresponding 
integrated impulse response (lower curve). Note that the vertical scale applies only to the time trace. 

Figure 6.4 shows the binned time trace and integrated impulse response curve for a typical 

sample. The IIR curve clearly represents the decay rate of the sound energy in the volume. It 

should be noted tha t the vertical scale in Figure 6.4 relates only t o the time trace, not to the IIR 

curve of which only the gradient is important . The reverberation t ime calculated for this trace 



Results 85 

was 0.139 s and the figure illustrates tha t the magnitude of the decay curve drops by nearly 

60 dB in the time shown. 

6.4 .1 Spherical part ic les 

Initial measurements were made using spherical glass beads. Th i s was to facilitate direct 

comparison with the predictions of the models of Chapter 2, which are based on the assumption 

of homogeneous spherical particles. 

6.4-1-1 Scanning electron micrographs 

Examples of the spherical glass particles are shown in the scanning electron microscope (SEM) 

images of Figures 6.5 and 6.6 These images show the high degree of sphericity of these particles. 

•r 3 

8 K I I ^ m rn 

Figure 6.5. Scanning electron microscope image of glass particles taken with an original instrument 
magnification of x250. 
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Figure 6.6. Scanning electron microscope image of glass particles - detail of area shown in Figure 6.5 
with an original magnification of x 1400. 
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Figure 6.7. Size distribution of spherical glass particles measured by laser diffraction analysis. 
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Figure 6.7 shows the size distribution of these particles, measured using the laser di&action 

analysis technique described on page 79, the measurements being made in the Department of 

Geology, University of Southampton. 

In order to provide a reference measurement, the decay rate of the reverberant sound 5eld was 

first measured in particulate-free water. To this known quantities of particulate were then added 

in stages in order to measme the decay rate at various concentrations. 

Figures 6.8 to 6.14 show the attenuation coefEcient measured with increasing concentrations of 

suspended particles, as a function of fiequency, normalized to a concentration of 1 kgm"^. Also 

shown in each of these figures is the calculated viscous absorption coefficient obtEiined using the 

Urick expression (Equation 2.31) integrated over the measured particle size distribution shown in 

Figure 6.7. 

The most significant contribution to the experimental error in the attenuation measurements was 

found to be a residual spatial dependence of the sound Geld. A series of reverberation 

measurements made with the hydrophones in diSerent locations within the bag showed a 4% 

standard deviation in the reverberation time. The error bars shown on the experimental data 

plotted in this chapter are therefore derived from this 4% standard deviation in reverberation 

time, together with smaller contributions due to changes in water temperature over the duration 

of the measurements and errors in the mass of added particulate. 

It is clear from these figures that the agreement between the experimental measurements and the 

theoretical predictions significantly improves as the concentration is increased. This is to be 

expected since at low concentrations the difference in the decay rates caused by the introduction 

of the particles is small, and this is reflected in the larger error bars on the low concentration 

data points. However, in all cases the theoretical curve lies within the error bars of the majority 

of the data points. At the highest concentrations the error bars are relatively small, and the fact 

that most of the experimental data lie on the theoretical curve to within this error indicates that 

the attenuation measurements are in agreement with the predictions of the Urick model for 

viscous absorption. It should be noted that, since the experimental technique is based on 

measurements of the decay of a reverberant sound field, sound tha t is scattered by the particles 

remains a contribution to the sound field in question and does not therefore represent a loss from 

the system. The model used for the theoretical predictions in this chapter does not therefore 

include the effects of sound scattering. The experimental measurements do, however, include any 

other dissipative processes in which sound is converted to other forms of energy (ultimately heat) 

as a result of the presence of the particles. Therefore the thermal absorption contribution 

discussed in Chapter 2 would also be included in the measured attenuation. The fact that the 

Urick model for visco-inertial absorption appears to predict the measured attenuation reasonably 

well suggests that, in the case under investigation, thermal absorption does not represent a 

significant contribution to the total dissipative attenuation coeflicient, as predicted in Chapter 2. 

It may be noted that an anomalously high attenuation at 50 kHz appears to be a common 

feature in Figures 6.8 to 6.14. It should, however, be remembered that the Schroeder cut-oS 
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Figure 6.8. Normalized attenuation coefRcient measured with a concentration of 0.50 kgm ^ (circles) 
compared with theoretical prediction (solid line). 
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Figure 6.9. Normalized attenuation coefficient measured with a concentration of 0.75 kgm ^ (circles) 
compared with theoretical prediction (solid line). 
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Figure 6.10. Normalized attenuation coefficient measured with a concentration of 1.00 kgm ^ (circles) 
compared with theoretical prediction (solid line). 
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Figure 6.11. Normalized attenuation coefficient measured with a concentration of 1.25 kgm (circles) 

compared with theoretical prediction (solid line). 
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Figure 6.12. Normalized attenuation coefRcient measured with a concentration of 1.50 kgm ^ (circles) 
compared with theoretical prediction (solid line). 
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Figure 6.13. Normalized attenuation coefficient measured with a concentration of 1.75 kgm ^ (circles) 
compared with theoretical prediction (solid line). 
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Figure 6.14. Normalized attenuation coefficient measured with a concentration of 2.00 kgm ^ (circles) 
compared with theoretical prediction (solid line). 

fiequency of the measurement volume is around 55 kHz, and it is therefore reasonable to assume 

that the sound field at 50 kHz is not truly diffuse, and some modal structure in the system may 

therefore be responsible for the observed anomalies. 

An example of a LSS measurement is shown in Figure 6.15. This Sgure shows the variation in 

suspended particle concentration as a function of time, for a suspension with a nominal 

concentration of 1 kgm~^. The trace clearly shows the time at which the stirrer was turned on 

and also demonstrates tha t the nominal concentration is reached ve ry quickly. This indicates 

that the suspension is well mixed by that time. The stirrer was switched off at 20 s and the 

concentration shows a gradual decay from that time, as the particles settle out. The smooth 

curve in the figure is the result of a theoretical calculation of the concentration as a function of 

time based on considerations of the particles setthng out at the Stokes setthng velocity, given 

by (c.f. Equation 6.5) 

187? 
(6.13) 

where a is the radius of the particles, p' and p are the densities of the particles and suspending 

Suid, g is the acceleration due to gravity and v) is the dynamic shear viscosity of the suspending 

fluid. The settling calculation was performed for each particle size in the distribution and the 

results show the total concentration of suspended particles at each time. Clearly the 

measurement displays some Auctuation in the concentration, but the general trend agrees 

reasonably well with the predicted concentration. 

The size distribution of the suspended particles is shown in Figure 6.16. In this figure the solid 
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Figure 6.15. Temporal variation of particle concentration measured using the LSS, compared with 
prediction based on Equation 6.13. 
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Figure 6.16. Temporal variation of particle size distribution predicted by Equation 6.13. 
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Figure 6.17. Calculated attenuation coefficient before and after particle settling based on the the particle 
size distributions shown in Figure 6.16. 

curve denotes the distribution measured by laser diSraction analysis, and the dotted and dashed 

curves show the predicted distribution 35 s and 95 s later, respectively, calculated using the 

Stokes settling model described above. This figure shows that the size distribution shifts shghtly 

towards smaller paiticles as the particles settle. Tliis is to be expected since the larger particles 

sink more rapidly than the smaller particles. The lack of a dynamic measurement of the particle 

size distribution in the system meant that these predictions could not be tested experimentally, 

but as has already been shown the predictions of total concentration agreed well with the LSS 

measurements. 

In order to investigate the effect of the settling out of the particles on the attenuation, the 

visco-inertial absorption coefBcients were calculated for both the initial distribution and the 

predicted distributions after 35 s and 95 s of setthng shown in Figure 6.16, assuming a total 

initial concentration of 1 kgm~^. The results of these calculations are shown in Figure 6.17. The 

line-styles of the curves in this Egure correspond to the those in Figure 6.16, such that the solid 

curve is the attenuation with the initial distribution, and the do t t ed and dashed curves show the 

attenuation with the predicted distributions after 35 s and 95 s of settling respectively. Clearly 

the attenuation reduces as the particles settle out, as expected. The acoustic measurements were 

all made within 35 s of the stirrer being switched off, and al though the reduction in attenuation 

is noticeable after this time, it is relatively small and well within the experimental error of the 

measmement. 

6.4.2 Clay- l ike p a r t i c l e s 

The preceding section showed how good agreement was obtained between measurements of 

absorption made with spherical particles and the Urick model for viscous absorption by spherical 

particles. The next stage in the experimental programme was to malce measurements with 
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non-spherical particles to assess the applicability of the spherical models as the particles depart 

from being spherical. 

For this purpose two samples of particulates were obtained from ECCI (English China Clays 

International, now Imerys). The first was a type of kaolin (china clay) with the trade name 

Speswhite, and the second was a form of calcium carbonate with the trade name Polcarb. Both 

of these samples were relatively pure and relatively well characterized industrial samples, 

allowing the study of absorption by non-spherical particles without the problems associated with 

using natural marine sediments of unknown composition and physical parameters. 

j 5'canmng ekctron microgrmpAs 

Figures 6.18 to 6.20 show scanning electron micrographs of the Speswhite particles. They were 

produced by DERA Bridgwater [68] using the following technique. 

A clean brush was dipped into each of the samples and brushed across a carbon impregnated 

sticky tab attached to an aluminium stub. Any excess material waa blown oS using compressed 

air. The samples were then gold coated in a sputter coater in order to make them electrically 

conducting, before being examined on the scanning electron microscope at various magniScations. 

Figure 6.18 shows a typical area of the sample, imaged at an original magniScation of x2000. 

Obviously the magnification of the printed image differs from the the original instrument 

magniBcation, but the scale is indicated by the micron mar ker at the bottom right of the image. 

Figures 6.19 and 6.20 show higher magnification (x 10000) details of parts of the area shown in 

Figure 6.18. 

It may be seen hom these micrographs that the sample is composed of Gat, very thin, plate-like 

flakes which aggregate together to form larger particles. This structure is typical of clay minerals. 

The difference between the plate thickness and length or width can clearly be seen in some cases. 

The whole sample appeared to be composed of these plate-Hke, flat, clay particles, with very little 

material from other origins, as expected for this nominally pure industrial sample. 

Figures 6.21 to 6.23 show representative scanning electron micrographs of the Polcarb 

particles [68]. Figure 6.21 was obtained using an original instrument magnification of x2000 and 

Figures 6.22 and 6.23 show details of this region at an original magniGcation of x 10000. 

It may be seen that the form of the particles is different from the Speswhite particles shown in 

the previous images. Here there are few aggregates, and the particles are more angular and not 

plate-like. Some particles do appear to be composed of layers, but they are larger and appear 

thicker than the china clay flakes. 

fartzc/e size (fzsMtwtzons 

Figures 6.24 and 6.25 show particle size distributions for the Speswhite and Polcarb particles 

respectively, measured using laser diffraction analysis, gravitational sedimentation and centrifugal 

sedimentation [68]. 

Cleaiiy there are very significant diEerences between the size distributions obtained using these 

different methods. This serves as an illustration of the fundamental difficulties of characterizing 

irregular particles. The laser diSraction technique may be considered to yield an effective optical 
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Speawhlte - China clay, 0027001 

Figure 6.18. Scanning electron micrograph of Speswhite particles taken with an original instrument 
magnification of x2000. 

Speswhite - China, clay, 0027002 

Figure 6.19. Scanning electron micrograph of Speswhite particles taken with an original instrument 
magnification of x 10000 - detail of area shown in Figure 6.18. 
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A 

peawhite - China clay, 0021003 

Figure 6.20. Scanning electron micrograph of Speswhite particles taken with an original instrument 
magnification of x 10000 - another detail of area shown in Figure 6.18 

Polcarb - Calcium carbonate. 0027101 

Figure 6.21. Scanning electron micrograph of Polcarb particles taken with an original instrument mag-
nification of x200G. 
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Polcarb - Calcium carbonate, 0D211D2 

Figure 6.22. Scanning electron micrograph of Polcarb particles taken with an original instrument mag-
nification of X10000 - detail of area shown Figure 6.21. 

Polcarb - Calcium carbonate, 0027103 

Figure 6.23. Scanning electron micrograph of Polcarb particles taken with an original instrument mag-
nification of X10000 - another detail of area shown in Figure 6.21. 
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Figure 6.24. Size distribution of Speswhite particles measured by centrifugal sedimentation, gravitational 
sedimentation and laser diffraction. 
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Figure 6.25. Size distribution of Polcarb particles measured by centrifugal sedimentation, gravitational 
sedimentation and laser diffraction. 
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scatteier dimension, since it gives the size distribution of spherical particles which would give the 

observed optical diSraction pattern. Both the gravitational and centrifugal sedimentation 

techniques use Stokes' law to determine particle size, and hence yield an e&ctive Stokes diameter. 

In the case of Speswhite in particular- the centrifugal sedimentation measurement shows a strong 

bias towards smaller particles. Since samples used for the centrifugal sedimentation 

measurements were treated with prolonged ultrasound to break up aggregates this might possibly 

be an indication that there was some degree of aggregation of the Speswhite particles. This is 

consistent with the SEMs of the Speswhite particles, which do show some clumping of particles. 

Figure 6.26 shows the measured attenuation coe&cient for the Speswhite (kaolin) paitides as a 

function of frequency, normalized with respect to concentration. The symbols indicate 

measurements made at different concentrations. The measurements are biimed at 10 kHz 

intervals over the range 50-150 kHz, but are shown offset shghtly so that the individual error bars 

can be resolved. 

Also shown on this graph is the attenuation predicted by Equation 2.31 for spherical particles 

using the three size distributions shown in Figure 6.24. These three predictions are in 

surprisingly close agreement with each other, given the apparent differences displayed by the size 

distributions measured by the different techniques. However, it must be remembered that over 

the relatively hmited fiequency range of the acoustic measurements the absorption is dominated 

by those paiticles whose size is close to the peak in the visco-inertiai absorption (see Figure 4.3). 

As expected for these highly non-spherical particles, the prediction of the theory for spherical 

particles does not agree well with the measured attenuation. 
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Figure 6.26. Normalized attenuation coefficient for Spesvvhite particles: experimental data and theoretical 
predictions assuming spherical particles. Data points have been offset in frequency to show individual error 
bars (see text). 
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Figure 6.27. Normalized attenuation coefficient for Polcarb particles: experimental data and theoretical 
predictions assuming spherical particles. Data points have been offset in frequency to show individual error 
bars (see text). 

Figure 6.27 shows the results of the measurements of attenuation with Polcarb (calcium 

carbonate) particles. Again, the symbols indicate measurements maxie at diSerent concentrations, 

and the data have been normahzed with respect to concentration. In this caae the theoretical 

predictions using the size distributions yielded by the different sizing techniques show greater 

differences than in the case of the Speswhite. This would be because the size distributions have 

greater differences in the particle size range contributing most to the absorption, although this is 

not immediately apparent from visual inspection of the curves showing cumulative mass 

percentage oversize. 

The measurements for Polcarb show much better agreement with the theoretical predictions than 

was the case for Speswhite. Although the theoretical curves do not have the same form for the 

hequency dependence aa suggested by the data, the magnitude of the predicted absorption is 

close to the measured absorption over much of the frequency range. The fact that the Polcarb 

measurements agree better with the predictions of the spherical particle theory than the 

Speswhite measurements is not surprising, since inspection of the SEMs shows the Speswhite 

particles to be highly plate-like whereas the Polcarb particles, although certainly irregular and 

non-spherical, are closer to spheres in aspect ratio. 

6.4.3 M a r i n e s ed imen t s 

The measurements with spherical particles described in Section 6.4 enabled the models to be 

tested in the idealized case. Moving to the Speswhite and Polcarb particles allowed investigations 

to be carried out with highly non-spherical particles in a relatively controlled way. The final part 

of the experimental study involved the use of real marine sediment particles from a seabed 

sediment core sample. This core was obtained in about 1600 m of water on the continental slope. 
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west of the Malin Shelf and comprises primarily soft grey clay. 

6.4-3.1 Scanning electron micrographs 

Figure 6.28 shows a SEM image of a typical sample of these sediment particles, imaged at an 

instrument magnification of x2000 [68]. Figures 6.29 and 6.30 show details of the area shown in 

Figure 6.28, imaged at a magnification of x 10000. These figures show that the particles are highly 

irregular and highly variable, with a mixture of plate-like particles and more granular particles. 

This sample does appear to have similarities with the Speswhite sample, indicating that the 

sediment contains a significant component of clay-like particles. However, there also appear to be 

other types of particle present. Grains appear to range in size f rom fine silt (about 10 to 15 /um) 

to fine clays (about 0.5 to 1 jim). Although the SEM was not used to identify grain mineralogy, 

it is likely that the sample will comprise quartz, chlorite, calcite, feldspar and illite [69]. 

ediment 212 - Marine sediment. 0027204 

Figure 6.28. Scanning electron micrograph of sediment particles taken with an original instrument 
magnification of x2000. 

6.4-3.2 Particle size distributions 

Figure 6.31 shows the size distribution of these particles, measured by laser diffraction analysis, 

centrifugal sedimentation and gravitational sedimentation. Again, the three techniques yield 

different results over much of the size range. As with the Speswhite the centrifugal sedimentation 

technique yields a size distribution biased towards smaller particles, indicating that there might 

be some aggregation of these particles. This is supported by the SEMs. 
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edicnent 212 - Marine sediment. 0027^05 

Figure 6.29. Scanning electron micrograph of sediment particles taken with an original instrument 
magnification of x 10000 - detail of the area shown in Figure 6.28. 

Sediment 212 - Majzine aediment, 002/^06 

Figure 6.30. Scanning electron micrograph of sediment particles taken with an original instrument 
magnification of x 10000 - another detail of the area shown in Figure 6.28. 
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Figure 6.31. Size distribution of sediment particles measured by centrifugal sedimentation, gravitational 
sedimentation and laser diffraction. 
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Figure 6.32. Normalized attenuation coefficient for marine sediment particles: experimental data and 
theoretical predictions assuming spherical particles. 

Figure 6.32 shows the results of measuring the attenuation due to the sediment particles. As 

before, the symbols indicate measurements made at different concentrations and normalized with 

respect to concentration. It may be noted that there is a greater spread between measurements 
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made at different concentrations than was the case for Speswhite or Polcarb particles. This may 

be attributed to the greater uncertainty in the maas of sediment added to the test volume. In the 

cases of Speswhite and Polcarb the dry particulates were carefully weighed before being dispersed 

in water and added to the experimental system. In contrast to th is the sediment particles were 

taken from a wet core sample leading to uncertainty in the dry mass of particles added. To 

estimate the water content of the core, samples of the wet sediment were weighed, dried and 

re-weighed. The resulting value for the water content waa then used to estimate the dry mass of 

sediment particles added to the experiment. The variability in water content of the core is the 

major contribution to the variability observed in the normalized attenuation measurements. 

The size distributions obtained using the three different techniques clearly lead to different 

predictions for the attenuation over the frequency range of the measurements. The theoretical 

curves generally over predict the attenuation over most of the frequency range, although all three 

curves are within the experimental error in the range 50 to 70 kHz. The predictions based on the 

size distribution determined by gravitational sedimentation are within the experimental error of 

the majority of the data points, albeit at the upper end of the error bar. The predictions based 

on the centrifugal sedimentation measmements overpredict by the greatest margin. This may be 

explained by examination of Figure 6.31 which shows that the centrifugal sedimentation yields a 

size distribution which is strongly biaaed towards smaller particles. This may be because the 

sediment sample contains some floes which are more likely to be broken up by the centrifugal 

technique than the other particle sizing methods. 

The SEMs show that the sediment sample contains a high proportion of clay-like particles of 

similar form to the kaohn particles of the Speswhite sample. Given the poor agreement bet^^een 

the attenuation measurements for Speswhite and the predictions of the spherical particle model, 

it is perhaps surprising to find that the predictions of the model are reasonably close to the 

measured data for sediment particles (particularly using the gravitational sedimentation size 

distribution). It is likely that this is a consequence of ensemble averaging over many diSerent 

particle shapes and sizes in the case of the natural sediment particles, as opposed to the pure 

samples of similarly shaped, highly non-spherical particles in the case of the Speswhite, This 

gives some encouragement that the spherical particle models may be of some use for predicting 

the attenuation from natural marine suspensions. 

6.4.4 App l i ca t i on of t h e t h e o r y for non- sphe r i ca l p a r t i c l e s 

The results in the previous sub-section showed the comparison between the predictions of Urick's 

equation, which assumes spherical particles, and measurements made with non-spherical particles. 

These results showed that the spherical model is of some limited use in providing estimates of the 

attenuation from the Polcarb and marine sediment particles. In the case of the highly 

non-spherical Speswhite particles, the spherical theory significantly overpredicts the attenuation. 

A method for calculating the attenuation due to suspensions of oblate and prolate spheroids was 

described in Section 5.4. Since the degenerate form of an oblate spheroid is a thin circular disk it 

is appropriate to approximate the Speswliite plate-hke particles as oblate spheroids. 

In order to apply the method of Section 5.4 it is necessary to know the size distribution of the 

spheroids representing the particles. It is not appropriate to simply use the size distributions 

shown in the previous sub-section as these are distributions of Stokes diameters (equivalent 
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spheres). Therefore these distributions have been used to derive new distributions for spheroids. 

The starting point for this process is the distribution of Stokes diameters obtained from 

gravitational sedimentation measurements. These were originally derived by applying 

Equation 6.5 to measurements of the fraction of particles which settle out of suspension as a 

function of time. Unfortunately the original time-domain data were not available but it was 

possible to recalculate them by inverting Equation 6.5 and applying it to the distributions of 

Stokes diameters. This gives the fraction of particles wliich settle out of suspension as a function 

of time. Now, if the settling velocity of spheroids is known as a function of their major and minor 

radii, these data can be used to derive a particle size distribution for the spheroids. 

The steady-state setthng velocity for spheroids may be obtained by equating the drag force on a 

spheroid (Equation 5.62) with the gravitational force and rearranging to give 

The shape factors, /'Tsf, for oblate spheres with their axis of symmetry oriented parallel and 

perpendicular to the flow are given by Equations 5.72 and 5.76 respectively. 

In this way the size distribution for Speswhite particles derived by gravitational sedimentation, 

shown in Figure 6.24, was used to calculate the size distribution of spheroids of given aspect 

ratio, h = h'/a', which would give the same measured setthng t ime history. 

These particle size distributions were then used to calculate the attenuation spectrum due to the 

suspension of spheroids, using the approach described in Section 5.4. The attenuation 

measurements, as described in Section 6.2, employ an approximately diSuse field in which all 

directions of propagation are equally probable. Ideally, then, these calculations would be 

integrated over all orientations. However, the method only yields solutions for the two orthogonal 

cases, so the results presented below were obtained assuming equal concentrations of the two 

orthogonal orientations. 

Figure 6.33 shows the comparison between the attenuation predicted using the oblate spheroid 

model and the measured attenuation for Speswhite particles. Predictions are for /i = 1, i.e. for 

spherical particles, and h = 1/30 and h = 1/40 which is the range of typical aspect ratios of the 

Speswhite particles as quoted by the supphers. The predictions for spheres, using the spheroidal 

model with /i = 1, are in agreement with the predictions of the spherical model shown in 

Figure 6.26, and thus overestimate the attenuation. The predictions for the aspect ratios which 

are representative of the Speswhite particles, however, show excellent agreement with the 

measured attenuation. It is notable that this agreement is achieved without using any o prion 

knowledge of the attenuation measurements. 

The spheroidal approach has also been apphed to the Polcarb particles in exactly the same 

manner. However, inspection of Figures 6.21 to 6.23 shows that they are very angular and 

irregular. The spheroidal approach was therefore not expected to yield signihcantly improved 

agreement over the spherical model. Furthermore, no information was available on the aspect 

ratio, other than perhaps what could be inferred from the microscope images. Therefore 

calculations were performed for a number of diSerent aspect ratios and those which gave 

predictions which were reasonably close to the measured data are shown in Figure 6.34. All that 

can really be concluded from this result is that the predictions of the spheroidal model for 
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Figure 6.33. Normalized attenuation coefficient for Speswhite particles: experimental data and theoretical 
predictions using the model for spheroidal particles. The size distribution of the spheroids was derived 
from gravitational sedimentation measurements. 
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Figure 6.34. Normalized attenuation coefficient for Polcarb particles: experimental data and theoretical 
predictions using the model for spheroidal particles. The size distribution of the spheroids was derived 
from gravitational sedimentation measurements. 
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Figure 6.35. Normalized attenuation coefficient for marine sediment particles: experimental data and 
theoretical predictions using the model for spheroidal particles. The size distribution of the spheroids was 
derived from gravitational sedimentation measurements. 

0.1 < /i < 1 are neither better nor worse than the predictions of the spherical model. This is 

consistent with expectations, given the nature of the particles. 

Finally, the spheroidal approach was applied to the natural marine sediment particles. Again, 

independent data on the aspect ratio were unavailable, although could potentially be estimated 

by detailed analysis of electron microscope imagery. Since the sediment samples contain a 

mixture of particles, some of which are granular and similai" in form to the Polcarb particles, and 

others which are clay-hke and similar to the Speswhite, calculations were performed for = 1, 

h = 1/10 and h = 1/40. Owing to the spread in the measured da ta , all of these theoretical curves 

may be considered to lie broadly within the experimental error. However, the h = 1/10 curve lies 

closest to the centre of the dataset. Ideally, when faced with such a sample containing a 

distribution of particle shapes, the calculations should be integrated over a range of aspect ratios. 

In this case, however, data were not available to support this approach. 

6.5 S u m m a r y and conclusions 

The method of measuring the attenuation due to solid particles described in this chapter has 

been demonstrated to yield estimates of the attenuation due to spherical glass particles which are 

in agreement with the theoretical predictions of the Urick model for viscous absorption to within 

experimental error. From this it may be concluded that the experimental technique is suitable for 

the measurement of the acoustic attenuation coefBcient in particulate suspensions over the range 

of parameters considered. It may also be concluded from the fact the the Urick model predicts 

the observed attenuation to within the measurement error that this attenuation is primarily due 

to viscous absorption, and that contributions from other dissipative processes, such as thermal 

absorption, are small. 
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Having validated the experimental method with the spherical glass particles, measurements were 

made with highly non-spherical particles of kaolin and calcium carbonate. With these 

non-spherical particles the method of obtaining the particle size distribution became an 

important issue, and three different particle sizing techniques were employed. Significant 

differences were observed in the particle size distributions yielded by the three techniques, leading 

to differences in the predicted attenuation. 

The predictions of Urick's model for visco-inertial absorption by spherical particles, integrated 

over the size distributions obtained using the three particle sizing techniques, signiGcantly 

overestimate the attenuation by the Speswhite particles. This poor agreement is to be expected 

since the plate-like kaolin particles are far from spherical. Agreement between the spherical 

particle model and the experimental data for Polcarb particles is much better, although the 

model fails to predict the observed frequency dependence in the attenuation. These calcium 

carbonate particles, while still highly irregular, are nearer to spheres than the kaolin particles, so 

the improved agreement is consistent with expectation. 

The final series of measurements was made with natural marine suspension particles. Although 

the marine sediment sample contains a significant number of clay-like particles, in common with 

the kaohn sample, agreement between experiment and theory waa much better in the caae of the 

sediment particles. In particular the prediction based on the size distribution measured by 

gravitational sedimentation agrees with the attenuation measurements to within experimental 

error for most of the data points. However, there does appear to be a tendency for the model to 

overpredict the attenuation. 

A model for acoustic attenuation by dilute suspensions of spheroidal particles has been used to 

predict the attenuation in suspensions of the three different particles. This model is most 

appropriate for the plate-like kaolin particles as the degenerate form of an oblate spheroid is a 

circular disk. The predictions of the model for oblate spheroids were found to be in excellent 

agreement with the measurements of attenuation by kaolin particles without requiring any a 

priori information about the attenuation measurements. Agreement between this model and the 

measurements made on calcium carbonate and marine sediment particles was less good, as 

expected due to the shape of these particles. 

The experimental method uses stirring to suspend the particles and turbulence is therefore 

inherent in the test volume. Since it is possible that there could be a net transfer of acoustic 

energy to turbulent kinetic energy it was important to estimate the magnitude of this effect in 

order to determine whether this was a significant contribution to the total dissipative 

attenuation. A method was described in this chapter for estimating the order of magnitude of 

this turbulence attenuation coefficient. Calculations using this method based on estimates of 

maximum energy suggested that the turbulence attenuation coefficient in the experimental 

system was several orders of magnitude smaller than both the measured attenuation and the 

calculated viscous absorption coefficient. It is therefore concluded tha t turbulence is not a 

significant absorption mechanism in the experiments described in this chapter. 

Thus far this thesis has described a theoretical and experimental investigation into the effects of 

dilute suspensions of mineral particles on acoustic propagation, within ranges of parameters which 

are pertinent to high frequency sonar systems operating in coastal waters. The next chapter goes 

on to apply this work to the problem of high frequency sonar performance prediction. 
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Appl ica t ion t o t h e sonar p e r f o r m a n c e p rob lem 

7.1 I n t r o d u c t i o n 

This thesis describes theoretical, computational and experimental investigations of visco-inertial 

dissipation by dilute particulate suspensions. One immediate application of this research is the 

determination of the ejects of suspended particulate matter on the performance of high 

hequency acoustic sensors operating in shallow, turbid, coastal waters. 

Tliis chapter addresses this application of the research by including the additional attenuation 

due to suspended particles into a high frequency sonar detection model. 

Shallow coastal waters are also hkely to be characterized by persistent microbubbles throughout 

the water column, and these are hkely to be acoustically significant. Therefore the eSect of such 

bubble populations on the attenuation and phase speed have also been included in the work 

presented so that the magnitude of the effect may be compared with the magnitude of the eEect 

of the solid paitides. 

7.2 Sonar de tec t ion model 

7.2.1 B a c k g r o u n d 

The sonar performance calculations presented in this chapter are based on a modified version of 

the SEARAY mine countermeasures sonar performance model. 

SEARAY was originally implemented at the Naval Coastal Systems Center (NCSC), Panama 

City, Florida, and was based on a BASIC version of the MINERAY sonar simulation model 

developed and in use at the Applied Research Laboratories, University of Texas at Austin 

(ARL:UT). 

The version which was modified in this work was Fortran version 1.4, obtained from the NATO 

Undersea Research Center (SACLANTCEN) along with a set of Mat lab functions which serve as 

a graphical user interface to the underlying model. 

7.2.2 M o d e l o p e r a t i o n 

The operation of the SEARAY model is described in Reference [70]. The main elements of the 

model operation are summarized below. 

109 
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SEARAY models the acoustic environment by using ray tracing to determine sound paths in a 

horizontally stratiGed water column. The signal to noise ratio along each ray is determined by 

calculating the directivity, absorption, geometric spreading loss, the effects of various noise and 

reverberation sources, and applying the active sonar equation 

= + + (7.1) 

where 

SL = Sonar source level 

TL = One way transmission loss 

DI = Directivity index 

TS = Target strength 

RL = Total reverberation level (bottom, surface and volume) 

yVZ, = Total noise level (ambient, How, propeller, receiver) 

These terms are discussed in the following sub-sections. 

7 .2 .3 S o u r c e level a n d t a r g e t s t r e n g t h 

Both the source level and target strength are expressed in dB and are input by the user. 

The source level is the sound pressure level of the source, measured at a distance of 1 m from the 

array. Sound pressure levels in SEARAY are expressed in dB re. 1 /Libar, but all sound pressure 

levels in this thesis are expressed in the more conventional (in the UK) units of dB re. 1 /^Pa. 

Conversion &om dB re. 1 /ibar to dB re. 1 /^Pa is achieved by adding 100 dB. 

The target strength is the ratio, in dB, of the scattered acoustic intensity to the incident acoustic 

intensity. The scattered and incident intensities aie referenced to a point located 1 m from the 

centre of the target. As a result of this deEnition, positive target strengths aie common. Some 

typical target strengths are given in Table 7.1. 

Target Aspect Tg (dB) 
submarine beam 3 to 25 
submarine bow-stern 0 to 10 
mine beam 0 to 10 
mine off-beam -25 to 10 
unsuited swimmer any -15 

Table 7.1. Some typical target strengths (illustrative only) [71,72], 

7 .2.4 T r a n s m i s s i o n loss 

The transmission loss is the attenuation along the ray path, normally including losses at 

boundary interactions as well as geometric spreading and volume absorption. However, SEARAY 

models the seabed and sea surface as lossless reflectors. 

For geometric spreading SEARAY models spherical spreading of wavefronts along the calculated 

ray paths. The effects of ray convergence and divergence are not calculated. These 

approximations are reasonable for the direct pa th scenarios for which the model is used. 
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Absorption of sound in seawater was discussed in Section 2.3. SEARAY provides two models for 

the absorption coe&cient: Francois & Garrison [4] and Schulkin & Marsh [3]. The Francois &: 

Garrison model, as described in Section 2.3, has been used here. 

7.2.5 Di rec t iv i ty index 

Most sonar systems employ directional arrays, which means that they transmit and receive over 

finite beam patterns rather than omni-directionally. This results in an array gain relative to an 

omnidirectional transmitter or receiver. In the special case where the signal is coherent and the 

noise is isotropic the array gain is referred to as the directivity index. 

Three different routines for calculating the directivity index are used in the model, depending on 

the application and user choice. For the calculation of Eow noise and ambient noise, wliich are 

independent of ray angle, the following approximation for the directivity is used 

D7 = (7.2) 
47r 

where and By are the horizontal and vertical beam-widths in radians. 

For other apphcations within the model the beam-pattern is computed using either a bizonaUy 

shaded or Taylor shaded planar array [70]. 

7.2.6 B o t t o m r eve rbe ra t i on 

Bottom reverberation refers to sound that is scattered hrom the seabed and propagates to the 

receiver. This effect can have an important inBuence on sonai- performance, especially in shallow 

water. The bottom reverberation level in dB is given by 

= 52^ — 40 log(rt.) — 2arr 4- 'S'y -|-10 log(Ab) (7 3) 

where SL is the sonar source level, a is the volume absorption coefficient, is the range along 

the ray, 5'b is the bottom scattering strength and yly is the insoniGed area of the seabed. 

The version of SEARAY used in this work provides four alternative models for computing the 

bottom scattering strength: 

® McKinney-Anderson [73] 

« Lambert's law [74] 

• GESMA (Group d'Etudes Sous-Marines de I'Atlantique) [75] 

9 APL-UW (Applied Physics Laboratory, University of Washington) [76] 

The McKinney-Anderson model was developed from data taken in shallow water over a frequency 

range of 12 to 290 kHz. Backscattering is a function of bottom type (my), grazing angle in 

radians (^g) and frequency in kHz (/k)- The bottom type is divided into four classes: 1 for mud; 

2 for sand; 3 for gravel; 4 for rock. The bottom type can be any real number between 1 and 4 

(e.g. 1.5 for mud and sand). The scattering strength is given by 

5'b = 10 log (2.53 . Cb - _ ^Q2.8mb-12 10-4.S^ 
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where 

Cb = Bb (sin (gg +0.19))^" 

Bb = 1 + 125e^'' 

Db = mb(cos(gg))^^ 

Eb = - 2 . 6 4 ( m b - 1 . 7 5 ) ^ -

/k = frequency in kHz 

= grazing angle in radians 

50 cot^ 

my 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

Lambert's law computes scattering as a function of bottom type and grazing angle, and is 

frequency independent: 

% = /:o + 201og(sin(gg)) (7.11) 

where 0g is the grazing angle in radians and /̂ o is a constant depending on bottom type. Typical 

values of are given in Table 7.2. This was the model used for the calculations presented in this 

chapter. 

Bottom type //o(dB) 

Mud -29 

Sand -22 

Gravel and rock -15 

Table 7.2. Typical values of Lambert's constant, jJo-

The GESMA model is also based on bottom type and giazing angle and is independent of 

frequency: 

'S'b = % + /)g log(gd) (7-12) 

where is the grazing angle in degrees and Og and ;8g are constants wliich depend on the 

bottom type. Typical values are given in Table 7.3 

Bottom type ag Pg 
M u d -60 13 
Fine sand -67 28 

Sand -47 21 
Gravel -37 21 
Rock -16 7 

Table 7.3. Typical values of constants Og and Pg in GESMA model. 

The APL-UW model is based on seafioor sediment grain size and porosity and it depends on 

both grazing angle and frequency. This model is an empirical At to data collected at 20 to 80 kHz 

and grazing angle from 5 to 90°. The expression for calculating the bottom scattering strength is 

more complicated than the preceding models, and as the APL-UW model has not been used in 
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this work the expression will not be reproduced here. The interested reader is referred to 

Reference [76]. 

A comparison of these four environmental sub-models for computing bottom scattering may be 

found in Reference [77]. 

7.2.7 Su r face r e v e r b e r a t i o n 

The surface reverberation level is given by 

AZ/s = .92, — 401og(ri.) — 2arr + Sg + 10 log(.4s) (713) 

where .9s is the surface scattering strength and .4^ is the insoniAed area of the sea surface. 

The version of SEARAY used here provides three alternative sub-models for computing smface 

scattering strength: 

» Chapman-Harris [78] 

e Urick-Hoover [79] 

. APL-84 [80] 

The Chapman-Harris model is derived from measurements in the frequency range 400 Hz to 

6.4 kHz and is a function of wind speed in knots (w), grazing angle in radians (^g) and frequency 

in kHz (/k). The actual model implemented in SEARAY is a modified form of the 

Chapman-Harris model which haa been extended to include data at higher frequencies: 

g, = -51 .3 + 201og(l + ^ ) + ^ W A + 0 . 1 ) ^ loriog(tangg) (7.14) 

where 

r = + (2.5(/k + 0.1)-̂ /" - 4) (cosgg)i/» (7.15) 

The Urick-Hoover model was developed from data measured at 60 kHz. The formula is 

independent of frequency but depends on both grazing angle and wind speed. The Urick-Hoover 

model has not been used here and the formula is therefore not reproduced. The APL-84 is an 

adaptation of the Urick-Hoover model, and has also not been used in this work. 

7.2.8 Vo lume r e v e r b e r a t i o n 

The volume reverberation level is given by 

RLv = 5v + SL — 2TL 4-10 log V^, (7.16) 

where is the insonified volume and .9̂  is the volume scattering strength given by 

& = - 8 9 + 71og/k (7 17) 
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This scattering strength is representative of conditions in the body of the ocean under conditions 

of sparse marine life, and the presence of denser marine life such as is found in shallow, coastal 

environments may raise the volume scattering level by as much as 15 dB. The increase in 

scattering strength with increasing frequency accounts for the fact that as the wavelength gets 

smaller more forms of hfe become large with respect to the wavelength and thus become 

significant scatterers. 

7.2.9 A m b i e n t noise 

The ambient noise model is a Et to the Knudsen curves [81] (based on empirical measurements) 

with a high frequency cut-off at the thermal noise limit of an omnidirectional hydrophone of unit 

eSciency [82,83]. 

/amb = ^ + 1 % 0 4 . ; 4 + ^ ^ ' 1 0 " ' ' ' /k (718) 

where iamb is the ambient noise intensity, /k is the frequency in kHz and w is the wind speed in 

knots. 

The terms in Equation 7.18 account for: low frequency background noise (e.g. seismic activity); 

distant shipping noise; wind generated noise; and thermal noise, respectively. At frequencies 

above around 1 kHz the wind generated and thermal noise contributions dominate. Wind leads 

to generation of noise by the effects of wave splashing and the entrainment of air bubbles which 

subsequently oscillate, or nng. The ambient noise level increases with increasing wind speed for 

fiequencies below about 300 kHz; at higher frequencies the wind speed dependence is neghgible 

for wind speeds within normal ranges. Ambient noise levels decrease with increasing fiequency at 

a rate of around 5 dB per octave until the thermal noise hmit of the hydrophone is reached. 

7.2.10 F low, p r o p e l l e r a n d rece iver noise 

Hydrodynamic noise due to 8ow over a moving sonai- housing is calculated using an expression 

developed at AR1,:UT 

= 56.6 + 10 log ^10"p/^° - - 201og(/k) - 100 (719) 

where fp is the platform speed in knots and is the fiequency in kHz. 

The propeller noise level, NLp, received by a sonar which trails behind the stern of a ship is 

calculated by subtracting transmission loss from a user-input propeller source level. 

Receiver noise level, in SEABAY may be calculated &om the ratio of the thermal noise 

voltage of the receiver to the receiver sensitivity [84]. Alternatively a user-input receiver noise 

level can be used. 

7.3 Mode l l imi ta t ions 

The SEARAY model has a number of limitations of which users must be aware: 
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The model calculates the SNR along the individual ray paths calculated by the ray tracing 

algorithm. Multipath interference effects are thus neglected. In some scenarios this may be 

perfectly adequate whilst in others it may be seen as a m a j o r limitation. 

The seaGoor and sea surface are modelled as lossless reSectors. The number of interface 

rejections to include is set by the user. 

Sloping or rough bottoms cannot be modelled. 

The geometric spreading term is calculated assuming spherical spreading instead of 

performing a calculation based on ray convergence or divergence. 

The model is range-independent. 

7.4 Mode l enhancemen t s 

As a result of the work described in this thesis, and other work by the author [85], the SEARAY 

sonar model has been enhanced in a number of respects in order to include the eEects of 

suspended particulate matter and microbubbles. 

7.4.1 S u s p e n d e d pa r t i c l es 

The additional attenuation due to visco-inertial absorption and scattering by suspended solid 

particles has been added to the volume absorption algorithm in SEARAY. This is used to 

compute the propagation loss in all propagating terms, including the signal, surface, bottom and 

volume reverberation and propagating noise terms. Visco-inertial absorption is computed by 

Equation 2.31 and scattering by Equation 2.45. The attenuation coeScient including 

physico-chemical absorption in seawater and visco-thermal absorption and scattering by 

suspended particles is given by Equation 2.3. 

7.4.2 M i c r o b u b b l e s 

As with solid particles, the presence of microbubbles in the water column leads to additional 

acoustic attenuation through thermal and viscous absorption and scattering. Unhke particles, 

however, resonant scattering can be important in the case of bubbles, and the scattering 

cross-section of a bubble near resonance may be very much larger than its geometric cross-section. 

Bubbles also cause the compressibility of the medium to be complex, resulting in dispersion. 

The dispersion relation for a bubbly liquid may be written [86] 

kg = + 47^^:: Z"" ao7ib(^o)(^o gg) 
Ao=0 wg - + 2i6w 

where fcb is the complex wavenuniber for the bubbly liquid, lo is the angular frequency of the 

acoustic wave, c is the speed of sound in the ambient fluid, oo is the equilibrium bubble radius, 

Wo is the resonant frequency of bubbles having equilibrium radius cto and nb(ao)<:̂ ao is the 

number of bubbles per unit volume in the size range oo to no -|- dao (it is conventional to take 

daQ = 1 /im). The damping constant 6 is a summation of the viscous, thermal and radiation 

damping of the bubble, given by [86] 
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where /) and ?) are the density and molecular viscosity of the ambient liquid, and pb is the 

equilibrium gas pressure in the bubble. The complex term $ is a thermal scaling factor given by 

3'7 
$ = (7.22) 

1 - 3('Y)iS coth (i/Z)^/^ - 1̂  

in which 

E = ^ (7.23) 

where %g is the gas thermal diSusivity and "y is the ratio of the speciSc heat of the gas at 

constant pressure to that at constant volume. 

The phase speed cy and attenuation coe&cient ay for the bubbly liquid may be obtained from the 

real and imaginaiy parts of the complex wavenumber (Equation 7.20) using the following relation 

The attenuation coefScient ay is added to the volume loss term in SEARAY and the phase speed 

cy is used to modify the sound speed proBle. 

7.4.3 W a t e r c o l u m n p r o p e r t i e s 

In order to include the additional effects of suspended particles and microbubbles into the model 

the density and viscosity of the water must be known. However, these aie not available in the 

original version of the model as they were not explicitly required. Instead the water column is 

described in terms of a single sound speed profile (SSP) or a single temperature profile, together 

with a constant value of salinity or a single salinity profile. Note t h a t whilst salinity profiles are 

supported by the model itself they are not currently implemented in the user interface. 

In the caae where the temperature proEle is supphed by the user, the SSP is computed using the 

Del Grosso equation [87] for sound speed as a function of temperature, salinity and depth. Where 

the SSP is given, the temperature profile is calculated using the Del Grosso equation inverted to 

give temperature aa a function of sound speed, salinity and depth. 

The simplest way to provide the additional par ameters of density and viscosity would be to make 

these user inputs to the model. However, this would inevitably lead to inconsistencies between 

water column properties, as both density and viscosity depend on temperature, salinity and 

depth. Temperature in particular has been shown [88] (see Appendix A) to aSect strongly the 

attenuation due to suspended particles in seawater. The new version of SEARAY has therefore 

been enhanced to compute density and viscosity profiles using the temperature proGle (user 

supplied or calculated from the SSP) and salinity value available in the original version of the 

model. This approach ensures that all of the water column properties are consistent with each 

other. The expressions used to calculate density and viscosity as functions of temperature, 
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pressure and salinity are given in Appendix A. 

7.5 Resu l t s 

In this section some example results &om the enhanced version of SEARAY, described in the 

preceding sections, are presented. 

The basic situation which is modelled here is a typical shallow water, high frequency sonar 

scenario. A monostatic sonar system, i.e. one in which the source and receiver are co-located, is 

placed at a depth of 10 m in 40 m of water, with a 3° downward tilt angle. The sonar souice 

emits a 1 ms pulse with a centre frequency of 100 kHz and a bandwidth of 4 kHz, with a source 

level of 220 dB re. 1 //Pa. The transmitting array has horizontal and vertical beam-widths of 90° 

and 10° respectively, whilst the corresponding beam-widths of the receiver array are 10° and 

1.5°. Both the transmitting and receiving arrays are Taylor shaded^ and the projector has a 

side-lobe level of 8 dB whilst the receiver has a side-lobe level of 18 dB. The receiver noise level is 

49 dB re. 1 /iPa and the target strength is -23 dB. 

The water-column is isothermal, with a temperature of 15°C and salinity of 35 on the practical 

salinity scale at all depths. The wind speed is 7 knots and the bottom type is mud. The volume 

absorption coeSicient of seawater is calculated using the Francois-Garrison expression 

(Equation 2.4), surface scattering by Chapman-Harris (Equation 7.14) and bottom scattering by 

Lambert's law (Equation 7.11). 

Figure 7.1 shows the ray paths calculated by SEARAY for the above scenario, together with the 

SSP. This shows the SSP and resultant ray paths in the absence of bubbles. Under the 

isothermal and isohahne conditions modelled here, the sound speed increases slowly with depth 

due to the increasing hydrostatic pressure. This results in a weakly upward refracting 

environment aa evidenced by the ray paths shown in the Ggure. 

Figure 7.2 shows the sound pressure levels for the most signiScant terms in the active sonar 

equation (Equation 7.1) calculated by SEARAY for the scenario described above. The three 

terms omitted from this plot are the ambient noise level, flow noise level and propeller noise level. 

All of these terms, like the receiver noise level (shown), are independent of target range and all 

thiee are signiGcantly lower than the receiver noise. It may be noted that the bottom 

reverberation level is cut off at small ranges. Examination of the ray trace in Figure 7.1 reveals 

that this is because no rays have interacted with the seabed at the earliest ranges. 

For sonar performance assessment the important terms are the total background level, consisting 

of the sum of noise and reverberation levels, the signal level and, ultimately, the signal to noise 

ratio. These are shown, for the scenario considered here in Figure 7.3. In this plot the total 

background level and the signal level are plotted in dB re. 1 jiPa. whilst the signal to noise ratio, 

which is the ratio of the other two terms, is in dB. 

Figure 7.4 shows the same SNR, along with corresponding curves for the same basic scenaiio but 

including either suspended particles, bubbles, or both. For the purposes of tliis illustrative 

example the paiticulate suspension chosen was simply a monodisperse suspension of quar tz-like, 

spherical particles with a radius of 1 /̂ m and a concentration of 0.2 kgm"^ at all deptlis. 

^ Taylor shading: array elements are weighted according to a Taylor series t o achieve desired beam-pat terns . 
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Figure 7.1. Ray paths calculated by SEARAY with SSP shown on the right. See text for the model 
parameters used in this calculation. 
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Figure 7.2. Levels calculated by SEARAY. See text for the model parameters used in this calculation. 
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Figure 7.3. Signal level, total noise level (noise + reverberation) and the SNR for the scenario described 
in the text. The signal and noise levels are in dB re. 1 //Pa, whilst the is a simple ratio in dB. 
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Figure 7.4. The effect of suspended particles and microbubbles on the SNR for the scenario described in 
the text. 
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The bubble population modelled here is more complicated, including both a distribution of sizes 

and a depth dependence. The bubble spectrum, containing bubbles with radii in the range 10 //m 

to 200 /̂ m, is given by [89] 

/ w /A'i(ao/60)-^((f)-^/^ for 200 / ^ m > a o > 6 0 / i m 

nMd.0 = I ( ' • » ) 

where Lb ~ 7 m is the e-folding depth for small bubbles, d is depth in metres and Ki and K2 are 

constants which depend on time of day and season. Here the constants were chosen as 

7(̂ 1 = 382.7 and A'z = 298.8 to give an approximate fit to measurements of bubble spectra made 

in near-calm, isothermal, coastal waters [90,91]. 

Figure 7.4 shows that these suspended particle and bubble populations have a significant effect 

on the SNR in this modelled scenario. If it is assumed that the detection range for this particular 

sonar system is defined as the range beyond which the SNR drops below 0 dB then it may be 

seen from the figure that the detection range would be in excess of 500 m in clear water. This 

drops to less than 400 m in the presence of the chosen population of suspended particles and is 

reduced to less than 300 m in the presence of the modelled bubble population. If both suspended 

particles and bubbles are included in the model then the detection range is less than 250 m. Note 

that for a real sonar system the lowest SNR at which detection is possible depends on a number 

of factors, including the signal processing, and the speciGed probability of detection and 

probability of false alarm. 

7.6 P roposa l for es tua r ine measu remen t s 

7.6.1 I n t r o d u c t i o n 

In this section a speculative proposal for monitoring suspended sediment Gux through an estuary 

mouth is discussed. The relationship between the propagation loss for a high frequency active 

sonar and the concentration of suspended particulate matter presents the possibihty of inferring 

path-integrated suspended sediment concentration fiom measurements of transmission loss across 

an estuary. Measurements of this nature have a range of applications in the Held of 

environmental monitoring and management of the coastal zone. 

Current acoustic techniques for measuring suspended sediment concentrations exploit 

backscattering at frequencies of 1 MHz and above. As a consequence they are local 

measurements, typically operating over ranges of 1 m or less. In contrast the proposed method 

presents the opportunity of yielding path-integrated concentrations over ranges of the order of 

100 m. 

7.6.2 P r o p o s e d m e t h o d 

A practical implementation of a trans-estuary transmission loss measurement would probably 

consist of a projector array located near one side of a river mouth or estuary, with a receiver 

array placed on the opposite side. The transmitter would ideally project a narrow beam, in both 

vertical and horizontal directions, in order to avoid multipatli issues, whilst the receiver would 

have a wider beam-pattern to ensure that source-receiver alignment does not present too much of 
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a problem. A single hydrophone may even suffice for the receiver. 

An extension to this technique may employ a vertical array of receiver hydrophones, with the 

projector using beam-forming to scan the launch angle in the vertical plane. This will give 

transmission loss measurements for a series of chords in the vertical plane, which may be 

processed to yield 2D estimates of sediment flux. 

7.6.3 W o r k e d example 

In order to illustrate the potential of the proposed technique, an example calculation is 

presented. This calculation was carried out using the sonar performance model discussed in 

Section 7.2. As described in that section the model is a monostatic target detection model, so the 

calculation presented here is for a monostatic geometry, rather t h a n the bistatic case described 

above which may be more appropriate for practical measurements. Nevertheless, the monostatic 

calculation will serve to illustrate the key points. In this geometry the source and receiver are 

co-located on one side of the estuaiy, and an inert target is place on the opposite side. The 

transmission loss in this case must be calculated over both the outgoing and rejected paths. 

The scenaiio modelled here has the projector and receiver arrays co-located at deptlis of 10 m or 

20 m in 40 m of water. The projector has a horizontally directed beam with a 3 dB beam-width 

of 1° in both vertical and horizontal directions, and a source level of 220 dB re. 1 /iPa. For 

simplicity the receiver beam-width is the same, although in practice the receiver would probably 

employ a wider beam, possibly even omni-directional, as discussed above. A target with target 

strength of 0 dB is at a range of 100 m and at the same depth as the projector and receiver arrays. 

The water column is isovelocity before the eSects of microbubbles on the pheise speed are taken 

into account. For simplicity, the suspended particle population used in this illustrative example is 

a depth-independent, monomodal suspension of 1 /im particles of density 2600 kgm"^. A 

depth-dependent [89] distribution of microbubbles with equilibrium radii in the range 

10 — 200 //m was used, with coeScients chosen to approximate at-sea bubble density 

measurements [90,91]. This bubble population is appropriate for the persistent background 

bubble population. 

Figure 7.5 shows how the level of the received signal would vary with the mass concentration of 

suspended particles, with and without the chosen bubble population, for sonar and target depths 

of 10 m and 20 m. Only one line is plotted for the case where bubbles were not included in the 

calculation as there was no significant difference between the results for the two depths in the 

absence of bubbles. It is clear from this graph that even a calm water bubble population has a 

significant effect on the proposed measurement. At a sonar depth of 10 m the bubbles result in 

an additional reduction of the signal level of 24 dB. Even at a depth of 20 m the additional 

two-way transmission loss is 4.7 dB. The consequence of this is t h a t if the effect of the bubbles is 

not taken into account a signal level of, say, 120 dB re. 1 /^Pa might be taken to infer a 

path-averaged particle concentration of about 0.36 kgm"^, whereas the signal level in the 

presence of the bubble population corresponds to a concentration of 0.2 kgm"^. In a practical 

measurement of this nature the effects of a static bubble population could be calibrated out. 

However it is likely that the bubble population may be sufficiently dynamic to preclude this. In 

such circumstances care would be required to ensure that the interpretation of the measurements 

accounted for both the particles and the bubble populations correctly. A priori knowledge of the 
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Figure 7.5. Variation in signal level with suspended particle concentration. Results are shown for a 
simulations with and without a bubble population. In the bubbly case results are shown for source/receiver 
depths of 10 m and 20 m (see text for full details). 

bubble population may also be exploited to optimize transmission measurements of the form 

discussed here. For example, it is clear that the effect of bubbles is greater near the surface, 

where their number density is highest. 

7.7 S u m m a r y and conclusions 

This chapter describes, for the first time, the inclusion of the additional attenuation due to 

visco-inertial absorption and scattering by suspended mineral particles into a sonar performance 

model. 

In addition to including the eSects of solid particles on the volume attenuation, the eSects of 

microbubbles distributed throughout the water column on both the volume absorption coefBcient 

and the sound speed proGle have been taken into account. 

Illustrative, example results from this enhanced sonar model have been presented. These results 

demonstrate that the presence of suspensions of solid particles and microbubbles can have a 

significant eSect on the signal to noise ratio, resulting in shorter detection ranges for high 

frequency active sonars. 

Also presented in this chapter is a somewhat speculative proposal for exploiting the relationship 

between suspended particle concentration and the signal level in an active sonar operating in a 

turbid environment. It is proposed and demonstrated numerically by a modelled example, that a 

properly designed and calibrated system based on measurements of direct path transmission loss 

could be used to monitor suspended sediment mass flux through an estuary. 
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Discussion 

8.1 S u m m a r y and conclusions 

The aim of the research described in this thesis was to elucidate the physics of, and provide a 

methodology for enabling the quantitative predictions of the e & c t s of dilute suspensions of 

marine particles on high frequency sonar. 

Suspended particles can inAuence the performance of high frequency sonars by contributing to 

the total attenuation coe@cient and by modifying the sound speed. In Chapter 2 the theory of 

sound absorption and scattering by suspended pazticles was investigated, and numerical models 

based on these theories were described. Three attenuation mechanisms associated with the 

suspended particles were investigated; visco-inertial absorption, thermal absorption and 

scattering. Of these, visco-inertial absorption was shown to be the dominant eSect over the range 

of frequency and particle size of interest, with scattering becoming important as the frequency 

and particle size increases, i.e. as the scattering parameter increases. Thermal absorption was 

shown not to be important for mineral particles over the parameter range of interest. The 

visco-inertial absorption contribution to the attenuation coeGicient may be modelled using a 

simple expression based on Stokes' law for viscous drag and the scattering contribution may be 

modelled using a simple heuristic approach. 

A more complete mathematical model of the relevant phenomena is provided by the 

Allegra-Hawley model, discussed in Chapter 3. This model solves the Helmholtz equations for the 

six waves (compression, shear and thermal waves in both phases) generated when a plane wave 

impinges on an elastic, thermally-conducting sphere suspended in a viscous, 

thermally-conducting fluid. This approach implicitly accounts for visco-inertial absorption, 

thermal absorption and scattering, allows the phase speed in the suspension to be determined 

and facilitates the effects of multiple scattering to be estimated. The disadvantages of this model 

include numerical difficulties in computing the solution and its complexity, which obscures 

physical insight. Therefore the AH model has only been used here to validate the more intuitive 

models for absorption and scattering. Comparison between these models indeed showed that the 

simpler models provide a good approximation to the more complete model over the range of 

parameters considered. Furthermore, this comparison confirms t h a t thermal absorption is not 

important for mineral particles suspended in water. 

In Chapter 5 a wave equation for acoustic propagation in suspensions was described. Prom this 

approach the acoustic wavenumber in the suspension may be determined, from wliich the phase 

123 



Summary and coadusjons 124 

speed and attenuation coe&cient can be inferred. It is demonstrated that the visco-inertial 

absorption coe&cient arising from this method is equivalent to Urick's equation discussed in 

Chapter 2. It is further shown that the sound speed calculated f r o m the wave equation is not the 

same as that which may naively be obtained from the bulk averaging of density and 

compressibihty, due to the fact that the sound speed depends not only on the bulk properties but 

also on the inertial part of the complex drag on the particles. Calculations of the phase speed in 

aqueous suspensions of mineral particles showed that the change in phase speed, and hence 

refraction, due to natural suspensions may normally be neglected for the purpose of high 

frequency sonar performance modelling. The primary advantage of formulating the wave 

equation in this way is tha t it facilitates the task of accounting for non-spherical particles by 

employing correct expressions for the drag force. Consequently a model is described for the 

calculation of attenuation in dilute suspensions of oblate and prolate spheroids. 

In order to validate the models and investigate their applicabihty to non-spherical particles a 

laboratory meaamement technique was developed. Measurement of absorption by dilute 

suspensions in a laboratory-scale experiment was found to be challenging and a novel 

experimental arrangement was adopted to overcome the diSculties. The results of measurements 

made using spherical glass particles were found to be in very good agreement with the 

predictions of the Urick equation for visco-inertial absorption. Comparisons between this model 

and measurements made with non-spherical particles did not yield such good agreement, as was 

to be expected. In particular, the model for spherical particles significantly overpredicted the 

attenuation for kaolin particles, which are plate-hke in form. In t h e cases of calcium carbonate 

particles, which are granular, and natural marine sediment particles, which have a distribution of 

shapes, the agreement was moderate. These experiments highlighted the fundamental issue of 

how the size distribution for non-spherical particles should be interpreted. Three techniques were 

employed for measuring particle size distribution: gravitational sedimentation; centrifugal 

sedimentation; and laser diSraction. Differences were observed between the particle size 

distributions obtained using these techniques due to a combination of factors including the fact 

that the methods measure different physical properties, have different limitations and are 

interpreted in diSerent ways. For the purpose of performing the acoustic attenuation calculations 

it is expected that the sedimentation methods should yield the m o s t appropriate size distribution 

as the parameter measured (Stokes setthng velocity) is directly related to the drag. However, the 

settling velocity is usually interpreted assuming the particles to be spherical. 

Since the kaolin particles are very plate-like and the degenerate form of an oblate spheroid is a 

thin disk, results from the model for attenuation by oblate spheroids were compared with the 

attenuation measurements for kaolin particles. In order to achieve this the size distribution 

obtained by gravitational sedimentation for these particles was re-analysed using expressions for 

the Stokes drag on oblate spheroids to yield the size distribution for oblate spheroids which gave 

the same settling time history. The attenuation due to oblate spheres was then calculated 

assuming tliis size distribution, together with the aspect ratio quoted by the suppliers of the 

particles. This resulted in excellent agreement between theory and measurements. It is therefore 

concluded that this model for attenuation by oblate spheroids may be used to predict the 

visco-inertial absorption in dilute suspensions of clay particles. Predict ions of the spheroid model 

were also compared with the measurements obtained with calcium carbonate particles and 

marine sediment particles, although the agreement was not significantly better than that 
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obtained using the spherical models. This is to be expected for calcium carbonate as the shapes 

of the granulai- particles are not approximated well by oblate spheroids. The marine sediments 

aie composed of a distribution of particle shapes, and a model should therefore include such a 

shape distribution or, in the case of the spheroidal model, a distribution of aspect ratios. Lack of 

such data in this case would have made such an exercise pointless. 

The eSects considered in Chapter 2 depend upon the viscosity, sound speed and density of the 

suspending Euid and, in the case of seawater, these parameters all depend in turn on the 

temperature, salinity and hydrostatic pressure. In Appendix A an investigation into the effects of 

temperature, salinity and pressure on the attenuation coefficient of seawater containing 

suspended mineral particles is presented. This investigation demonstrates that, over the range to 

be found globally, the ambient temperature has a signihcant effect on the attenuation coeScient 

of seawater containing suspended mineral particles and the local sea temperature should 

therefore be taken into account when calculating the attenuation coefficient for high frequency 

sonar performance predictions. The eSect of sahnity variations over the range found in the 

natural environment are shown to be less important and the effect of hydrostatic pressure is 

found to be insignificant for water depths in the shallow, coastal environments of interest for high 

hequency sonai" performance predictions. The expressions presented in Chapter 2 and 

Appendix A enable the attenuation coefhcient in seawater containing suspended solid particles to 

be calculated as a function of temperature, sahnity, pressure, acoustic frequency, particle size, 

particle density and particle compressibility. 

Finally, the stated aim of the research presented in this thesis was to elucidate the physics of, and 

provide a methodology for enabhng quantitative prediction of the effects of dilute suspensions of 

marine particles on high frequency sonar. The elements for achieving the first part of this aim 

were established in Chapters 2 to 6, and calculations of sonar performance were hnally presented 

in Chapter 7. These calculations demonstrated, for the first time, the inclusion of the effects of 

suspended particulate matter in sonar performance calculations. It was thus demonstrated that 

suspended particles can have a signihcant effect on the detection range of a high hequency active 

sonar operating in turbid coastal environments. The enhanced sonar model which was used for 

these calculations was also apphed to the problem of measuring path-integrated attenuation 

across an estuary. It was thus demonstrated how, in principle, direct path acoustic propagation 

measurements across an estuary might be used to monitor sediment Eux. 

8.2 F u r t h e r work 

Any good piece of research raises questions and presents opportunities for further research. It is 

possible to see how the research described here may be carried forward beyond the scope of this 

thesis. 

In order for the work presented in this thesis to be of practical use in sonar performance 

prediction, it is necessary to have some means of measuring or predicting the suspension 

properties in the environment. Tliis presents several opportunities for further research, including 

investigating in-water acoustic and optical techniques for estimating suspended sediment 

properties, as well as techniques based on the inversion of remotely sensed measurements of 

water-leaving radiance spectra. The author is engaged in research in these areas, but this is 

beyond the scope of this thesis. 
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The prediction of high frequency sonar performance in coastal waters is a complicated problem, 

and the eSect of suspended paiticles is only one element of the larger problem. Other eSects 

include the influence of microbubbles which are prevalent in coastal waters, the eEects of bottom 

topography, the propagation of acoustic energy into the seabed a n d scattering of energy from the 

bed, the scattering of sound from the sea surface, and so on. Each of these effects should be 

investigated at a level of detail similar to that of this thesis in order to produce a model that is 

capable of predicting, with any accuracy, the performance of high frequency sonars operating in 

turbid coastal waters. To this end the effects of microbubbles on the volume attenuation 

coefficient and phase speed have been included in the sonar performance model described in 

Chapter 7. This was described briefly in that chapter but a full t reatment is outside the compass 

of this thesis. 

Another interesting hne of investigation is the possibility of inverting measurements of 

transmission loss across, say, a river mouth or estuary, in order t o estimate suspended particle 

load. There would be a signiGcant amount of work in doing justice to such a study, and it is 

therefore beyond the scope of the current investigation. However, some preliminary calculations 

are presented in Section 7.6. It is suggested that tliis topic may make a suitable investigation for 

a future Ph.D. thesis. 

Finally there is significant scope for further research on the subject of absorption by 

non-spherical particles. The model for absorption by oblate spheroids described in Section 5.4 

proved very successful in predicting the measured absorption due to the plate-like kaolin particles 

discussed in Chapter 6. However, whilst both the spherical and spheroidal models yield 

approximate agreement with the measurements for the more granular calcium carbonate particles 

and the natural sediment particles, further work is required. To do justice to this problem 

requires signiScant theoretical development on the subject of oscillatory drag on these irregular 

particle shapes and careful experimental studies including complete characterization of the 

particulate samples. This subject is also recommended as a fur ther Ph.D. investigation. 



Appendix A 

The effect of t e m p e r a t u r e , p r e s s u r e and salinity 

A . l I n t r o d u c t i o n 

Shallow coastal environments are highly variable, with temperature varying both seasonally and 

ag a result of diurnal heating locally, as well as exhlbithig laige variations with geogr aphic 

location. Salinity also varies greatly, from nearly fresh water in river estuaries to highly saline 

water in very warm, shallow seas such as the Persian Gulf or Dead Sea. The variation in the 

attenuation of sound in clear seawater with temperature, pressure (or depth) and salinity is well 

established, and is accounted for in the various empirically derived formulae for the attenuation 

coefficient of seawater [1-5]. The attenuation by suspended particles will also depend on 

temperature, pressure and salinity, since it depends on the compression wave speed, density and 

viscosity of the seawater, which all depend on temperature, pressure and salinity. In this chapter 

suitable expressions are employed for density, viscosity and sound speed in seawater as a function 

of temperature, sahnity and pressure in order to investigate the variation in the attenuation 

coefBcient of seawater containing suspended particles over the ranges of these parameters found 

in the environment. 

Microbubbles which are prevalent in shallow water environments will also contribute to the total 

attenuation, and tins effect will also depend on temperature, pressure and salinity. It is also 

possible that the bubble population itself may be inHuenced by these parameters. These eSects 

are not within the scope of the present investigation. 

A.2 Viscosity 

Matthaus [92] gives a formula for calculating the molecular viscosity, (Pas) of seawater as a 

function of temperature 0(°C), salinity S (measured on the practical salinity scale) and pressure 

p (dbar), which is valid for 0°C < 8 < 30°C, 0 < 5 < 36 and 1 dbar < p < 1000 dbar. By 

employing summation notation his formula may be expressed in the following form 

77(^, 8 , p ) = 0.1 (A.l) 

where and .Rt are coeGicients obtained by Gtting to experimental data. These coeScients are 

given in Table A.l . 
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The kinematic viscosity used in Equation 2.31 is given hy v = -q/p. 

j = 0 j = 1 j = 2 J = 3 

Qo; 
Ol] 

1.79 -10-^ 
-1.8266 -10-^ 
9.8972 . 10-^^ 

-6.1299 -10-" 
1.3817 10-^ 

-6.3255 -10-^^ 

1.4467 -10-'" 
-2.6363 .10-^° 
1.2116 -10-^^ 

-1.6826 -10- ' 
0 
0 

Rj 2.4727 - 10-'' 4.8429 . 10-"̂  -4.7172.10-*' 7.5986 - 10-'" 

T a b l e A . l . Coefficients for the calculation of viscosity. 

A.3 Sound speed 

The recommended [93] formula for computing sound speed in seawater as a function of 

temperature, pressure and sahnity is that of Chen & Millero. Recent studies [94] have shown 

that, in fact, the Del Grosso [87] sound speed equation is more accurate than the Chen & MiUero 

expression for high hydrostatic pressures corresponding to depths greater than about 1000 m. 

However, in the current investigation we are concerned with shallow water environments, and it 

is therefore appropriate to use the recommended Chen & Millero expression. 

[95]. Using summation notation as for viscosity, their formula m a y be written 

c(g, e , p ) = Cw(8,p) + Aw(8,p)S + 4- Dw(p)S" (A.2) 

= (A.3) 

i j 

= (A.4) 

i j 

Bw(8,p) = ^ 5^, 8^ (A.5) 
i 3 

= (A.6) 

with 

The coefficients Cy, Ay, Bij and Di are given in Table A.2. This expression is valid for 

0°C < 8 < 40°C, 0 < S < 40 and 0 dbar < p < 10000 dbar. 

A.4 Dens i ty 

The expressions for the density of seawater as a function of temperature, pressure and salinity 

used here are taken from reference [93]. These are based on the international equation of state for 

seawater diluted with pure water or concentrated by evaporation [96,97], which is valid for 

—2°C < 6 < 40°C, 0 < 5 < 42 and 0 dbar < p < 10000 dbar. 
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j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 

Aoj 1.389 -1.262 - lO-'' 7.164 -10-= 2.006 . 10-*^ -3.21 -10- s 0 
9.4742 -10-^ -1.2580 - 10-^ -6.4885 .10-^ 1.0507 10-^ -2.0122 • 10 -10 0 

A2j -3.9064 - 10-^ 9.1041 -10-^ -1.6002 -10-^° 7.988 . 10-^^ 0 0 

Xsj 1.100 -10-^° 6.649 .10-^^ -3.389 -10-^^ 0 0 0 

Bo, -1.922 - lO"'' -4.42 -10-" 0 0 0 0 

Bij 7.3637 -10"° 1.7945 -10-^ 0 0 0 0 

Co; 1402.388 5.03711 -5.80852 . lO-'' 3.3420 10"" -1.478 10 -B 3.1464 . 10-^ 
Ci , 0.153563 6.8982 -10-'* -8.1788 .10-^ 1.3621 10-^ -6.1185 10 -10 0 

C2; 3.1260 .10-^ -1.7107 10-^ 2.5974 - 10-^ -2.5335 . 10-10 1.0405 - 10- 12 0 

Cgj -9.7729 -10-^ 3.8504 .10-^° -2.3643 -10-^^ 0 0 0 

Do 1.727 -10- ' - - - - -

Di -7.9836 -10-^ - - - - -

T a b l e A . 2 . Coefficients for the calculation of sound speed. 

The density of seawater may be wiitten 

X5', 8 , p ) = 
X ^ , 0 , O ) 

1 - p / B ( 5 ' , 0 , p ) 

where B{S,t,p) is the bulk modulus. 

Using summation notation as before, the density at p = 0 may be expressed 

p(^, 8 , 0 ) = g ^ 6^8' + ^ 

where 

Pw — ^ \ 

and coeScients a,, 6 ,̂ and are given in Table A.3. 

The bulk modulus is given by 

where 

B(S, f, 0) = % + g ^ /<8 ' + 
i j 

Q s = Qw + ^ ^i8' 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A. l l ) 

(A.12) 

(A.13) 

(A.14) 
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(A.15) 

and 

Qw = ^ kiQ^ (A.16) 

Again, the coeSicients are listed Table A.3. 

j — 0 J = 1 J = 2 j = 3 j = 4 J = 5 
ai 999.842594 6.793952 - 10"^ -9.095290 -10-^ 1.001685 • 10--4 -1.120083 -10-" 6.536332 - 10'^ 
hi 8.24493 - 10-' -4.0899 -10-^ 7.6438 .10-= -8.2467 • 10- 7 5.3875 -10-^ 0 

Ci -5.72466 - 10"^ 1.0227-10-'^ -1.6546 -10-^ 0 0 0 

di 4.8314 -10-"* 0 0 0 0 0 

Bi 19652.21 148.4206 -2.327105 1.360477 • 10" -2 -5.155288 -10-= 0 

h 54.6746 -0.603459 1.09987 -10-^ -6.1670 10- s 0 0 
7.944 - 10-^ 1.6483 -10-^ -5.3009 -10--* 0 0 0 

h^ 3.239908 1.43713 - 10-^ 1.16092 - 10-" -5.77905 • 10^ -7 0 0 

ii 2.2838 - 10-^ -1.0981.10-^ -1.6078 -10-^ 0 0 0 

Ji 1.91075 - 10-" 0 0 0 0 0 

h 8.50935 - 10-^ -6.12293 .10-^ 5.2787. 10-^ 0 0 0 

k -9.9348 - 10-'^ 2.0816 .10-^ 9.1679 - 10-'° 0 0 0 

T a b l e A . 3 . Coefficients for the calculation of density. 

A.5 Resu l t s 

The attenuation in turbid seawater haa been calculated using t h e Francois &: Garrison expression 

(Equation 2.4) for absorption in clear- seawater together with t he expressions for attenuation due 

to absorption and scattering by a suspension of spherical particles (Equations 2.31 and 2.45). 

The sound speed, density and viscosity of seawater used in these equations were calculated using 

the expressions in Sections A.2, A.3 and A.4, as functions of temperature, salinity and pressure. 

Results are thus presented for attenuation in turbid seawater as a function of temperature, 

salinity and pressure, over the ranges 

0°C < 0 < 30°C 

0 < S < 35 

1 dbar < p < 900 dbar 

It has been assumed that the variation in the bulk compressibility and density of solid mineral 

particles can be considered to be negligible compared with the variation of the physical 

properties of the seawater within these parameter ranges. 

It may be seen &om Section 2.3 that only the boric acid relaxation is dependent on pH. Since we 

are interested in frequencies weU above the boric acid relaxation frequency, this is not an 
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important at tenuation mechanism and the eEect of pH on the a t tenua t ion may be neglected. All 

results presented in this chapter were calculated using a pH of 8.0. 

Figure A. l shows the attenuation as a function of temperature a n d salinity for p = 1 dbai", 

/ = 1 MHz, a = 1 jim, M = 1 kgm"^. This figure shows that for t h e given parameters, the 

attenuation decreases significantly as the temperature is increased. Over the range 

0°C < 8 < 30°C the attenuation in dBm"^ changes by a factor of approximately 1.24 for a 

salinity of 35, whilst in fresh water (S=0) the factor is approximately 1.4. The variation with 

salinity is less signiGcant, but it is notable tha t there is a positive variation with salinity at the 

upper end of the temperature range, whilst the opposite is true a t the lower end of the 

temperature range. Figure A.2 is similar to Figure A. l , but with a pressure of 900 dbar. The 

similarity between these Ggures indicates tha t pressure does not have a very signiBcant impact on 

attenuation over the range of parameters studied here. 

Figures A.3 and A.4 show the attenuation as a function of sahni ty and pressure for 8 = 0°C and 

8 = 30°C respectively, with / = 1 MHz, a = 1 /^m, M = 1 kgm"^ . Temperature clearly has a 

significant eSect on the attenuation aa noted in Figures A. l and A.2 These figures demonstrate 

that the effect of pressure on the attenuation over the range 0 t o 900 dbar is small and, since for 

shallow water applications we are generally only interested in wa te r depths of order 100 m or less 

(p up to about 100 dbar), the eSect on the attenuation of pressure variation with depth may be 

neglected. This is supported by Figures A.5 and A,6, which show t h a t there is little variation in 

attenuation with pressure over the entire temperature range considered, for sahnities of 35 and 0 

respectively. 

Figures A.7 and A.8 show the variation in attenuation with f iequency and particle radius, for 

temperatures of 30°C and 0°C respectively and Figure A.9 shows t h e diSerence between these 

two cases. The peak occurring in the small a region of Figures A.7 and A.8 is due to viscous 

absorption, which peaks when the skin depth (e-folding length) of the viscous shear waves in the 

8uid is of the order of the particle size. The increase in absorption a t large a is due to scattering, 

which becomes important as the frequency and particle size become large, i.e. with increasing t a . 

There is clearly a significant difference between these cases in t e rms of both the overall 

magnitude of the absorption, with a maximum difference of over 0.5 dBm~^, and also in the 

position of the viscous absorption peaJc along the particle radius axis at a given frequency. It is 

tliis shift in the absorption peak which leads to the negative regions of the difference plot. From 

Figures A.7 and A.8 it can be seen tha t the absorption peak moves towards smaller particles as 

the temperature is increased. This may be understood in terms of t h e kinematic viscosity, u and 

the skin depth of the viscous shear waves, 5v = \/2v/uj. As the t empera tu re increases, the 

viscosity decreases, and hence J decreases. Since the absorption peak occurs when a, the 

peak would be expected to shift to smaller o as J decreases. Therefore the peak should shift to 

smaller a as the temperature increases, as observed. 



Results 132 

0 30 

Salinity 
Temperature ( C) 

F i g u r e A . l . At tenuat ion as a function of t empera tu re and salinity for p = 1 dbar , / = 1 MHz, a = 1 jim, 

Af = 1 kgrn"^. 

0 30 

Salinity 
Temperature ( C) 

F i g u r e A . 2 . At tenuat ion as a function of t empera ture and sal ini ty for p = 900 dbar , / 

a = 1 /2m, M = 1 kgm~®. 

1 MHz, 
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35 900 800 

Pressure (dBar) 
Salinity 

F i g u r e A . 3 . At tenuat ion as a function of pressure and salinity for Q = 0°C, / — 1 MHz, a — 1 fim, 

M = 1 kgm~®. 

35 900 800 

Pressure (dBar) 
Salinity 

F i g u r e A . 4 . At tenuat ion as a funct ion of pressure and salinity for © — 30 C, / — 1 MHz, a 1 /xm. 

M == 1 kgm 
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30 900 800 

Pressure (dBar) 

Temperature ( C) 

F i g u r e A . 5 . Attenuation as a function of pressure and temperature for S = 35, / = 1 MHz, a, - 1 ;zm, 

M = 1 kgm~^. 

30 900 800 

Pressure (dBar) 

Temperature ( C) 

F i g u r e A . 6 . At tenuat ion as a function of pressure and t e m p e r a t u r e for S — 0, / — 1 MHz, a 1 fim, 

M = 1 kgm~^. 
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Frequency (kHz) 
Radius (urn) 

Figure A.7. Attenuation as a function of frequency and particle radius for 8 = 30°C, 5 = 35, p — 1 dbar, 

M = 1 kgm 

33 0 . 8 

Frequency (kHz) 
Radius (nm) 

F i g u r e A . 8 . At tenuat ion as a function of frequency and particle r ad ius for 8 — 0°C, S — 35, p — 1 dbar, 

M = 1 kgm" 
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Frequency (kHz) 

Radius (nm) 

Figure A.9. Difference between attenuation at 8 = 0°C and G = 30°C, for i? — 35, p — 1 dbar, 

M = 1 kgm"^. 
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A.6 S u m m a r y and conclusions 

A method has been described for including the effects of temperature, pressure and salinity into 

the formula for calculating total attenuation by seawater containing dilute suspensions of solid 

mineral particles (Equation 2.3). This involves the substitution of suitable expressions for sound 

speed, density and viscosity as functions of temperature, pressure and salinity into the formulae 

for the attenuation contributions due to scattering and viscous absorption by suspended 

particles. Combined with the Francois & Garrison expression for the absorption coefficient of 

clear seawater, this gives the capabihty for calculating the total absorption coefficient of seawater 

containing sohd particles as a function of temperature, salinity, pressure, frequency, particle size, 

particle concentration and the density and bulk compressibihty of the solid particles. 

Results presented have shown that over the range of values found in the environment, 

temperature has the most significant impact on the attenuation coefficient of turbid water, whilst 

the effect of salinity is less signihcant and the eSect of pressure m a y normally be neglected in the 

shallow water environments of interest. 

Future sonai" models apphed to high hequency acoustic devices operating in shallow, coastal 

waters should include the eSects of suspended particulate mat ter on the attenuation coefficient 

and these results suggest that the local salinity and particularly temperature should be taken 

into account in such calculations. The method presented in this appendix can be used to carry 

out these calculations. 

Whilst experimental validation of the dependencies predicted by these calculations is highly 

desirable, it should be recognized that the expressions for density, viscosity, sound speed and 

clear-water absorption are all empirically derived. It may be possible to include temperature and 

salinity dependencies in laboratory measurements of viscous absorption by aqueous suspensions 

of mineral particles, such as those described in Chapter 6. 



A p p e n d i x B 

Attenuation, dispersion and the Kramers-Kronig 

re la t ions 

B . l I n t roduc t i on 

The Kramers-Kronig relations [98,99] may be used to describe t h e relationship between the 

frequency dependence of the attenuation and the hequency dependence of the phase speed in a 

dispersive medium. This leads to the possibility of an independent method for determining the 

attenuation in suspensions in which the attenuation spectrum is inferred from measurements of 

dispersion. 

B.2 T h e o r y 

The Kramers-Kionig relations for acoustic waves in the linear regime may be written [100,101] 

/(r(w) - Kr(oo) = - / (B l ) 
TT Vo ^ 

Ki(w) = - — F dw' (B.2) 
TT ^0 W'2 -

where Kr and K, ar e the real and imaginary parts of the dynamic compressibility respectively. 

The acoustic wavenumber for a dispersive medium may be wr i t t en 

where c is the phase velocity and a is the total attenuation coefScient. The following analysis 

involves only this total attenuation coe&cient and does not depend on the details of the 

attenuation mechanisms (i.e. absorption, scattering, or a combination of the two). The effect on 

the incident wave is the same regardless of whether the energy removed is immediately dissipated 

or scattered and subsequently dissipated to heat, and in either case the effect may be represented 

by a phenomenological compressibility K{UJ) which obeys Equat ions B. l and B.2. 

If the real part of the wavenumber is much greater than the imaginary part , such tha t 

a:(w)c(w)/w 1, the real and imaginary parts of the compressibihty may be directly related to 
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the attenuation and phase velocity such that 

and 

^ — ifc(w)Ki(w) (B.5) 

10 log e^ ^ 

Using Equations B.l and B.4 the dispersion at a speciEed frequency may be obtained from a 

knowledge of the attenuation at all frequencies. Conversely, if the dispersion is known at all 

frequencies the attenuation at any particular hequency may be found from Equations B.2 and 

B.5. 

The practical application of Equations B.l and B.2 is hindered by the fact that they are 

non-local in frequency. That is to say that determination of dispersion at a single hequency 

requires knowledge of the attenuation at oZ/ hequencies, and determination of attenuation at a 

single frequency requires knowledge of the dispersion at aH frequencies. Of more practical use are 

the nearly-local approximate forms of the dispersion-attenuation relationships which may be 

obtained under the assumptions that the attenuation and dispersion are suSciently small and do 

not change rapidly over the frequency range of interest. The validity of these assumptions is 

discussed in [101]. 

The nearly-local relationships are 

a(w) / \ (fc(w) 
(B.6) 

and 

A c ( w ) _ c M Cref-

where Wref is some convenient reference frequency and Cref = c(wref) is the phase velocity at this 

reference frequency. 

Consequently, measurements of dispersion over a Rnite frequency range can be used to infer the 

attenuation in that range through the application of Equation B.6. 

B.3 E x a m p l e calculat ion 

In order to investigate the feasibility of using the Kramers-Kronig approach to infer attenuation 

from measurements of dispersion it is necessary to determine how dispersive the suspensions 

under investigation are. Equation B.7 has been used to calculate the dispersion due to a 1 kgm^^ 

suspension of the glass beads used for the measurements described in Chapter 6. The attenuation 

was calculated using the particle size distribution shown in Figure 6.7, using the Urick equation 

for viscous absorption and the high pass equations for scattering. These models have been 

validated experimentally for this suspension (Figures 6.8 to 6.14) 
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C 0.10 

^ 0 .05 

80 100 120 

Frequency (kHz) 

140 160 

F i g u r e B . l . Ca lcu la t e d ispers ion d u e to a 1 k g m ® s u s p e n s i o n of glass beads . 

Figure B.l shows the calculated dispersion for this example. Clearly the suspension is weakly 

dispersive, and measurement of this dispersion with sufBcient accuracy to enable the attenuation 

to be determined accurately will be experimentally challenging. 

For comparison, the change in phaae speed resulting from variations in temperature has been 

calculated using the Chen & Millero sound speed equation [95] wi th salinity 5 = 0 and depth 

(f = 0. Figure B.2 shows the change in sound speed, Ac, as a funct ion of the temperature 

difference AG = 0 — ©o for three the reference temperatures, Go = 10°C, 15°C,20°C. Clearly 

temperature changes of less than 0.1°C result in sound speed changes in excess of those expected 

as a result of dispersion over the frequency range of the measurements, again indicating that 

measurement of this weak dispersion is experimentally difficult. 
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F i g u r e B . 2 . Ca lcu la ted change in phase speed d u e t o t e m p e r a t u r e var ia t ions . 

B.4 Expe r imen ta l design 

The determination of attenuation from dispersion in weakly dispersive fluids requires very 

accurate measurements of phase speed. One potential technique for achieving the desired 

accuracy may be to determine directly the difference between t h e phase velocity of the test Guid 

and a reference 8uid, such as pure, degassed water, which may be assumed to be non-dispersive. 

This technique was proposed in Reference [102]. 

Figure B.3 shows a schematic of the apparatus which might be used for making such 

measurements. A test vessel, divided in half by a thin, acoustically transparent film membrane, 

holds the test liquid on one side of the membrane and a reference liquid on the other. This vessel 

is submerged in a temperature bath to ensure thermal stability. The source transducer is located 

in the liquid on one side of the membrane, whilst the receiving transducer is located on the other 

side. The two transducers are mounted on a sliding assembly such that their separation is fixed 

but they can be moved accurately relative to the membrane by means of a micrometer 

positioning system. This means that the transducers may be moved from a position where 

propagation between the transducers is entirely in the reference liquid, through to a position 

where propagation is entirely in the test liquid. In this way, using time-of-Sight measurements 

between transducers, the difference in phase speed between the tes t liquid and the reference 

hquid may be accurately determined. 

One of the advantages of this technique is that, by measuring t he phase speed difference between 

the test Suid and the reference fluid rather than measuring the phase speed directly, the eSect of 

temperature on the phase speed may be eliminated. 
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Rail 

sliding transducer 
assembly 

Source 

transducer 
X 

Film membrane Receiving 
transducer 

Degassed water Test liquid 

Temperature bath 

Figure B.3. Experimental arrangement for the measurement of dispersion [102] 

B.5 S u m m a r y and conclusions 

In this appendix an independent method for determining the attenuation in dilute suspensions 

has been proposed. This technique is based on measurement of phase speed dispersion and use of 

the Kramers-Kronig relations to determine the attenuation from the dispersion. 

This approach requires very accurate measurements of velocity dispersion and is therefore 

experimentally challenging. In particular, it has been demonstrated that small changes in 

temperature could potentially swamp the effects of dispersion. 

Finally, an experimental configuration for measuring phase speed dispersion with the required 

accuracy has been proposed. 
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Que6ec, Canada, 2000. [115] 



f,igt of puWi'cations 145 

(xii) Richards S D and Leighton T G, Sonar performance in t u r b i d and bubbly environments, 

f r o g m m 0/ (Ae Mee^mg 0/ (/le 5'oc2e(^ 0/ ^ m e n c a , Beac/i, C/l, 

[A?/!, 2000, 2562, (abstract). [116] 

(xiii) Richards S D, Leighton T G and White P R, High f requency sonar variability in littoral 

environments: irregular particles and bubbles, submitted t o Submitted to First 

fon-^4men'con/7&erzan on Cancum, Mezzco, 2002. 

Report s : 

(i) Richards S D, Heathershaw A D, An investigation of viscous absorption of sound energy in 

turbid seawater at mine-hunting frequencies, DRA Report DRA/SS(PS)/CR96021. 

1996. [117] 

(ii) Richards S D, Hewitt R N, Acoustic properties of turbid coas ta l waters: Yeai- 2 progiess 

report, DERA Report DERA/SS(PS)/CR97014, 1997. [118] 

(iii) Richards S D, Acoustic properties of turbid coastal waters : Year 3 interim progress report, 

1998. [119] 

(iv) Richards S D and Hewitt R N, Final report on the acoustic properties of turbid coastal 

waters, D.EA.A 1998. [120] 

(v) Richards S D, A review of acoustic techniques to characterize suspended particles, 

Paper Q7ArEr/Q/5'6/^/5'C5'/M/fOgOggg), 2002. [121] 

(vi) Richards S D, High Frequency Sonar Performance in Shallow Water: CRP Fellowship Final 

Summary Report, .Report QZA/E2YQ/5'0.B/5'C5'/GRO;9.ZO57), 2002. [122] 

(vii) Richards S D, High Frequency Sonar Performance in Shallow Water: Suspended Particles 

and Microbubbles, QmetzQ PKor/^ng Paper 2002. [123] 



References 

[1] F H Fisher and V P Simmons. Sound absorpt ion in sea water . J. Acoust. Soc. Am., 62:558-564, 

1977. 

[2] W H Thorpe . Deep ocean sound a t t enua t ion in the sub and low kilocyle per second range. J, 

Soc. 4̂771., 42:648-654, 1965. 

[3] M Schulkin and H W Marsh. Sound absorpt ion in seawater. J. Acoust. Soc. Am., 34:864-865, 1962. 

[4] R E Francois and G R Garrison. Sound absorption based on o c e a n measurements: Part I: Pure 

water and magnes ium sulfate contr ibut ions. J. Acoust. Soc. Am., 72:896-907, 1982. 

[5] R E Francois and G R Garrison. Sound absorpt ion based on o c e a n measurements : P a r t II: Boric 

acid contr ibut ion and equat ion for to ta l absorpt ion. J. Acoust. Soc. Am., 72:1879-1890, 1982. 

[6] E L Lewis. T h e pract ical salinity scale 1978 and its an teceden t s . IEEE J. Oceanic Engr., OE-5:3-8, 

1980. 

[7] R G Perkin and E L Lewis. T h e pract ical salinity scale 1978. IEEE J. Oceanic Engr., OE-5:9-16, 

1980. 

[8] F Culkin and P Ridout . Salinity: Definitions, de te rmina t ions a n d s t andards . Sea Technology, 

30:47-49, 1989. 

[9] C T J Sewell. O n the extinct ion of sound in a viscous a t m o s p h e r e by small obstacles of cylindrical 

and spherical form. fMZ. TWiTw. Soc. i /onjon, 210:239-270, 1910. 

[10] P S Epstein. (o mecAonica, T/teotfore von A'dT-mam Anaweraary 

California Ins t i t u t e of Technology, 1941. 

[11] H Lamb. Hydrodynamics. Dover Publications, New York, s i x th edi t ion, 1945. 

[12] R J Urick. T h e absorpt ion of sound in suspensions of i rregular par t ic les . J . Acoust. Soc. Am., 

20:283-289, 1948. 

[13] G G Stokes. On the effect of internal friction of fluids on the m o t i o n of pendulums . Transactions of 

(Ae Comtndge PWoaopAicaf Sociefi/, IX, 1851. 

[14] J J Far an, J r . Sound scat ter ing by solid cylinders and spheres . J. Acoust. Soc. Am., 23:405-418, 

1951. 

[15] A E Hay and D G Mercer. On the theory of sound sca t te r ing a n d viscous absorpt ion in aqueous 

suspensions at med ium and short wavelengths. J . Acoust. Soc. Am., 78:1761-1771, 1985. 

[16] I K Bj0rn0 and L Bj0rn0. Modelling of mult iple sca t ter ing in suspens ions . In Proc. 3rd European 

Con/erence on (/nderwafer y4coua(ica, jifenzWion, Crete, Greece, June, pages 87-92, 

1997. 

[17] G G G a u n a u r d , H Huang, and H G Strifors. Acoust ic s ca t t e r i ng by a pair of spheres. J . Acoust. 

Soc. ;4m., 98:495-507, 1995. 

[18] R K Johnson. Sound sca t te r ing from a fluid sphere revisited. J . Acoust. Soc. Am., 61:375-377, 

1977. 

[19] J Sheng and A E Hay. An examinat ion of the spherical s c a t t e r e r approx ima t ion in aqueous 

suspensions of sand. J. .Acouaf. Soc. .A?n., 83:598-610, 1988. 

[20] H Uberall. Surface waves in acoustics. In f/ iyaico/ .4coua(ica, v o l u m e X, pages 1-60. Academic 

Press, 1973. 

146 



B e & r e n c e s 1 4 7 

[21] P D Thome, L Hayhurs t , and V F Humphrey . Scat ter ing by non-me ta l l i c spheres. Ultrasonics, 

30:15-20, 1992. 

[22] P D Thorne , K R Waters , and T J Brudner . Acoustic m e a s u r e m e n t s of scat ter ing by objects of 

irregular shape. J. 5oc. 97:242-251, 1995. 

[23] J W Lord Rayleigh S t ru t t . Theory of Sound, volume 2. Dover, N e w York, 2nd edition, 1945. 

[24] M A Isakovich. On propagation of sound in emulsions. ZA. Etaperim. i Teor. 18:907, 1948. In 

Russian. 

[25] P S Eps te in and R R Carhar t . T h e absorpt ion of sound in suspens ions and emulsions I. Wa te r fog 

in air. J. Acoust. Soc. Am., 25:553-565, 1953. 

[26] J R Allegra and S A Hawley. At tenua t ion of sound in suspens ions and emulsions: Theory and 

exper iments . J . Acoust. Soc. Am., 51:1545-1564, 1971. 

[27] A E Hay and R W Burling. On sound scat ter ing and a t t e n u a t i o n in suspensions with marine 

applicat ions. J. Acoust. Soc. Am., 72:950-959, 1982. 

[28] P C Waterman and R Truell. Wave propagation through an assembly of spheres IV. Relations 

between different multiple scattering theories. 7. AfatA. f / iya . , 2:512-537, 1961. 

[29] P Lloyd and M V Berry. Multiple scattering of waves, f roc . ^oc., 91:678-688, 1992. 

[30] M Abramowitz and I A Stegun, editors. o / formWoa, 

Graphs and Mathematical Tables. Number 55 in Nat ional B u r e a u of S tanda rds Applied 

Ma thema t i c s Series. Uni ted Sta tes Depa r tmen t of Commerce , 1965. 

[31] S Temkin and R A Dobbins. A t t enua t ion and dispersion of s o u n d by par t iculate-relaxat ion 

processes. J. Acoust. Soc. Am., 40:317-324, 1966. 

[32] C L Morfey. Sound a t t enua t ion by small particles in a fluid. J. Sound Vib., 8:156-170, 1968. 

[33] N A Gumerov , A I Ivandaev, and R I Nigmatul in . Sound waves in monodisperse gas-particle or 

vapour-drople t mixtures . J. Fluid. Mech., 193:53-74, 1988. 

[34] T S Margulies and W H Schwartz. A mul t iphase cont inuum t h e o r y for sound wave propagat ion 

th rough di lute suspensions of particles. J. Acoust. Soc. Am., 96:319-331, 1994. 

[35] A H Barker and J A G Temple. Velocity and a t t enua t ion of u l t r a s o u n d in suspensions of particles 

in fluids. J. Phys. D: Appl. Phys., 21:1576-1588, 1988. 

[36] R L Gibson and M N Toksoz. Viscous a t t enua t ion of acoustic w a v e s in suspensions. J . Acoust. Soc. 

y4m., 85:1925-1934, 1989. 

[37] G M Atkinson and H K Kyotomaa . Acoustic wave speed and a t t e n u a t i o n in suspensions. Int. J. 

Multiphase Flow, 18:577-592, 1992. 

[38] J M Evans and K At tenborough. Coupled phase theory for s o u n d propaga t ion in emulsions. J . 

.Acoiwt. ,9oc. ^4m., 102:278-282, 1997. 

[39] A K Holmes, pr ivate communicat ion, J u n e 2002. 

[40] G W C Kaye and T H Laby. Tables of Physical and Chemical Constants. Longman, f i f teenth 

edition, 1982. 

[41] K Kranck. Par t i cu la te m a t t e r grain-size characterist ics and f loccu la t ion in a part ial ly mixed 

estuary. Sedimentology, 28:107-114, 1981. 

[42] A S Ahu ja . Formulat ion of wave equat ion for calculating veloci ty of sound in suspensions. J. 

Acoust. Soc. Am., 51:916-919, 1972. 

[43] A S Ahu ja . Wave equat ion and propagat ion pa ramete r s for s o u n d p ropaga t ion in suspensions. J. 

AppZ. PAys., 44:4863-4868, 1973. 

[44] A D Pierce. Acoustics: an introduction to its physical principles and applications. Acoustical 

Society of America, New York, 1994. pp 187. 

[45] A S A h u j a and W R Hendee. Effects of part icle shape and o r i e n t a t i o n on propagat ion of sound in 

suspensions. J. Acoust. Soc. Am., 63:1074-1080, 1978. 

[46] R P Kanwall . Drag on an axially symmet r ic body v ibra t ing slowly along its axis in a viscous fluid. 

J. MecA., 19:631-636, 1964. 



References 148 

[47] J Happe l and H Bremner , Low Reynolds Number Hydrodynamics. Prentice-Hall, Englewood Cliffs, 

NLI, 1965. 

[48] P D Thorne and S C Campbel l . Backscat ter ing by a suspens ion of spheres. J. Acoust. Soc. Am., 

92:978-986, 1992. 

[49] P D Thorne and P J Hardcast le . Acoustic measurements of s u s p e n d e d sediments in tu rbu len t 

currents and comparison wi th in-si iu samples. J. Acoust. Soc. Am., 101:2603-2614, 1997. 

[50] P D Thorne , P J Hardcast le , and R L Soulsby. Analysis of a c o u s t i c measurements of suspended 

sediments. J. Geophys. Res., 98:899-910, 1993. 

[51] P D T h o r n e and D M Hanes. A review of acoustic m e a s u r e m e n t s of small-scale sediment processes. 

Conf. S/ieZ/. Aea., 22:603-632, 2002. 

[52] P A Chinnery, V F Humphrey , and J D Zhang. Low frequency acous t ic scat ter ing by a cube: 

Exper imenta l measurements and theoret ical predictions. J. Acoust. Soc. Am., 101:2571-2582, 

1997. 

[53] P D Thorne , S B Sun, J D Zhang, II K Bj0rn0, and T Mazoyer . Measurements and analysis of 

acoustic backscattering by elastic cubes and irregular polyhedra. J. .<4coua(. .9oc. .Am., 

102:2705-2713, 1997. 

[54] N R Brown, T G Leighton, S D Richards, and A D Heathershaw. Sound absorption by suspended 

par t icu la te ma t t e r . In High Frequency Acoustics in Shallow Water, pages 75-82, Italy, 1997. 

N A T O S A C L A N T Undersea Research Center . 

[55] N R Brown, T G Leighton, S D Richards, and A D H e a t h e r s h a w . Bounda ry and volume losses in a 

diffuse acoustic Geld near the atmosphere / ocean boundary. In froc. Sea Sui/ace 

21-24 July, pages 123-132, 1997. 

[56] N R Brown, T G Leighton, S D Richards, and A D H e a t h e r s h a w . Measurement of viscous sound 

absorpt ion at 50-150 kHz in a model turb id environment . J . Acoust. Soc. Am., 104:2114-2120, 

1998. 

[57] S D Richards, N R Brown, and T G Leighton. Turbidi ty in f u t u r e high frequency sonar 

per formance models. In Proc. Joint Meeting of the Interna,tional Congress on Acoustics and the 

Acoust. Soc. Am., Seattle, WA, 20 - 26th June 1998, pages 1349-1350, 1998. 

[58] N R Brown, T G Leighton, S D Richards, and A D H e a t h e r s h a w . Measurement at 50-150 KHz of 

acoustic absorpt ion due to suspended par t icula te ma t t e r . In Proc. Joint Meeting of the 

International Congress on Acoustics and the Acoust. Soc. Am., Seattle, IVA, 20 - 26th June 

jggg, pages 1347-1348, 1998. 

[59] S D Richards, N R Brown, and T G Leighton. Charac te r i sa t ion of p ropaga t ion pa ramete r s for high 

frequency sonar in tu rb id coastal waters. In Proc. 4th European Conference on Underwater 

Acouafica, Aome, September pages 709-714, 1998. 

[60] S D Richards, T G Leighton, and N R Brown. Visco-inertial a b s o r p t i o n in di lute suspensions of 

irregular particles. Proc. Roy. Soc. Lond. A, 2002. In review. 

[61] L E Kinsler, A R Prey, A B Coppens, and J V Sanders. Fundamentals of Acoustics. Wiley, New 

York, th i rd edition, 1982. 

[62] A D Pierce. Acoustics: an introduction to its physical principles and applications. Acoustical 

Society of America, New York, 1994. 

[63] M R Schroeder. New method of measur ing reverberat ion t ime. J. Acoust. Soc. Am., 37:409-412, 

1965. 

[64] E Hecht. Optics. Addison Wesley, 1974. 

[65] BS3406 P a r t 2. British Standard Methods for Determination of Particle Size Distribution. Part 2: 

Recommendations for Gravitational Liquid Sedimentation Methods for Powders and Suspensions, 

1984. 

[66] BS3406 P a r t 6. British Standard Methods for Determination of Particle Size Distribution. Part 6: 

Aecommen(fa(iona /or Cenfri/ugaZ Seffimenfatmn MetAo(is /or f owcfera omcf Suapenaiorw, 



References 149 

1985. 

[67] D T Noir and A R George. Absorption of sound by homogeneous turbulence. 7. Afec/z., 

86:593-608, 1978. 

[68] S Foran and J Irvine. Part ic le character isat ion and scanning e l e c t r o n microscopy (SEM) of china 

clay, calcium ca rbona te and sediment samples. Technical R e p o r t D E R A / C B S T S / T N 0 0 2 0 8 9 , 

D E R A Bridgwater , March 2000. 

[69] S G Healy. Pr iva te communicat ion, 2001. 

[70] S M Tuovila. Searay sonar simulat ion model. T N 946-88, N C S C , March 1989. 

[71] R J Urick. Principles of Underwater Sound. McGraw-Hill , 3rd ed i t ion , 1983. 

[72] A D Waite . Sonar for Practising Engineers. Thomson Marconi S o n a r Ltd. , 2nd edition, 1998. 

[73] C M McKinney and C D Anderson. Measurements of b a c k s c a t t e r i n g of sound from the ocean 

b o t t o m . J. Acoust. Soc. Am., 36:158-163, 1964. 

[74] M A Gensane. A stat is t ical s t u d y of acoustic signals b a c k s c a t t e r e d f rom the sea bo t tom. IEEE J. 

Ocean. Eng., 14:84-93, 1989. 

[75] S Guyonic. Analysis of reverberat ion level and stat is t ics of two di f ferent b o t t o m types f rom 15 to 

40 kHz. Technical Repor t 1916, GESMA, Brest , 1991. 

[76] J R Ventura . H F E A M high frequency environmental acoustic m o d e l . Technical Repor t T D 10 114, 

Naval Underwater Sys tems Centre , Newpor t , RI, 1992. 

[77] P Caprais and A Lombardi . Development of a S A C L A N T G E N M C M sonar performance model. 

Technical Report SM 315, SACLANTCEN, 1996. 

[78] R P C h a p m a n and J H Harris. Surface backscat ter ing s t r eng th m e a s u r e d with explosive sound 

sources. J. Acoust. Soc. Am., 34:1592-1597, 1962. 

[79] R J Urick and R M Hoover. Backscat ter ing of sound from the s e a surface. J. Acoust. Soc. Am., 

28:1038-1042, 1956. 

[80] S O McConnell . Format t ing s t ra tegy for N A V O C E A N O acous t i c survey. Technical Repor t 

TM2-82, Applied Physics Laboratory , University of W a s h i n g t o n , 1992. 

[81] V O Knudsen , R S Alford, and J W Emling. Underwater a m b i e n t noise. J . Marine. Res., 

3:410-429, 1948. 

[82] R H Mellen. T h e the rmal noise limit in the detect ion of u n d e r w a t e r acoustic signals. J . Acoust. 

goc. Am., 24:478-480, 1952. 

[83] V M Albers. Underwater Acoustic Handbook S. Penn S ta t e P r e s s , 1965. 

[84] C D Motchenbacher and F C Fi tchen. Low Noise Electronic Design. Wiley, 1973. 

[85] S D Richards and T G Leighton. High frequency sonar p e r f o r m a n c e predict ions for littoral 

opera t ions - the effect of suspended sediments and mic robubb les . Journal of Defence Science, 

2002. In press. 

[86] K W Commande r and A Prospere t t i . Linear pressure waves in b u b b l y liquids: Compar ison 

between theory and exper iments . J. Acoust. Soc. Am., 85:732-746, 1989. 

[87] V A Del Grosso. New equat ion for the speed of sound in n a t u r a l wa te r s (with comparisons to other 

equat ions) . J. Acoust. Soc. Am., 56:1084-1091, 1974. 

[88] S D Richards. T h e effect of t empera tu re , pressure and sal ini ty o n sound a t t enua t ion in tu rb id 

seawater. J. Acoust. Soc. Am., 103:205-211, 1998. 

[89] H Med win and G S Clay. Fundamentals of Acoustical Oceanography. Academic Press, 1998. 

[90] H Med win. In-situ measurements of bubble popula t ions in coas t a l waters . J . Geophys. Res., 

75:599-611, 1970. 

[91] H Med win. In-situ measurements of microbubbles a t sea. J . Geophys. Res., 82:971-976, 1977. 

[92] W Matthaus. Die viskositat des meerwassers. Beifroje zur Meeres/runcfe, 29:93-107, 1972. In 

German . 

[93] N P Fofonoff and R C Millard, Jr . Algori thms for c o m p u t a t i o n of f u n d a m e n t a l proper t ies of 

seawater. (/neaco TecAnicaZ fopera tn MoHne Science, 44, 1983. 



References 150 

[94] J L Spiesberger and K Metzger. New estimates of sound speed in waer. J. <9oc. /Im., 

89:1697- 1991. 

[95] C Chen and F J Millero. Speed of sound in seawater a t high p ressures . J. Acoust. Soc. Am., 

92:1129-1135, 1977. 

[96] P J Millero, C Chen, A Bradshaw, and K Schleicher. A new h i g h pressure equation of s ta te for 

seawater. Deep Sea Res., 27A:255-264, 1980. 

[97] F J Millero and A Poisson. S u m m a r y of d a t a t r ea tmen t for t h e unesco one a tmosphere equat ion of 

s t a t e for seawater . Deep Sea Res., 28A:625-629, 1981. 

[98] R Kronig. On t he theory of dispersion of X-rays. J . Opt. Soc. Am., 12:547, 1926. 

[99] R Kronig and H A Kramers . Absorpt ion and dispersion in X - r a y spect ra . Zeits. f . Phys., 48:174, 

1928. 

[100] M O'Donnel l , E T Jaynes, and J G Miller. General re la t ionships between ultrasonic a t tenua t ion 

and dispersion. J. ^4cou3(. ^oc. j4m., 63:1935-1937, 1978. 

[101] M O'Donnel l , E T Jaynes, and J G Miller. Kramers-Kronig r e l a t i onsh ip between ultrasonic 

attenuation and phase velocity. J. .<4coua(. .9oc. Am., 69:696—701, 1981. 

[102] E L Carstensen. Measurement of dispersion of velocity of sound in liquids. J. ,9oc. j4m., 

26:858-861, 1954. 

[103] A D Heathershaw, S D Richards, and P D T h o m e . Acoustic a b s o r p t i o n and scat ter ing by 

suspended sediments in turbid coastal waters. Joumaf o/De/ence Science, 1:200-206, 1996. 

[104] S D Richards , A D Heathershaw, and P D T h o m e . T h e effect of suspended par t icula te ma t t e r on 

sound a t t enua t ion in seawater . J. Acoust. Soc. Am., 100:1447—1450, 1996. 

[105] S D Richards , T G Leighton, and N R Brown. Sound a b s o r p t i o n f rom non-spherical particles 

suspended in water: Compar ison of measurements with p red i c t i ons based on various part icle 

sizing techniques. J. Acoust. Soc. Am., 2002. In p repa ra t ion . 

[106] S D Richards, T G Leighton, and N R Brown. Ultrasonic a b s o r p t i o n in a di lute suspension of 

natural marine sediment particles eind its effect on sonar performance. J. Ocean. Eng., 

2002. In preparation. 

[107] S D Richards and T G Leighton. Sonar per formance in coastal env i ronments : Suspended sediments 

and raicrobubbles. Acoustics Bulletin, 26 (1):10-17, 2001. 

[108] S D Richards and T G Leighton. Acoustic sensor pe r fo rmance in coastal waters: Solid suspensions 

and bubbles. In T G Leighton, G J Heald, H D Griffiths, a n d G Griffiths, editors. Acoustical 

Oceanograpy, volume 23 of Proceedings of the Institute of Acoustics, pages 399-406, Ba th , 2001. 

B a t h University Press. 

[109] S D Richards. Sound a t t enua t ion by suspended particles in t u r b i d coastal waters . Presented to 

U K / U S Ocean Modelling Workshop, F N M O C , Monterey, Ca l i fo rn ia , 8th-10th October , 1996. 

[110] R N Hewit t , S D Richards, and A D Heathershaw. Modelling t h e t r an spo r t of suspended sediment 

in coastal waters and its effect on sound propagat ion . P r e s e n t e d to 22nd General Assembly of 

t he European Geophysical Society, Vienna, 21st - 25th Apri l , 1997. 

[111] S D Richards, R N Hewit t , and A D Heathershaw. T h e effect of sed iment p lumes on sonar 

per formance . In Proc. lEE Conference on Electronics in Oceanography, Southampton 

Oceanography Centre, 23-25th June, 1997, pages 67-72, 1997. 

[112] S D Richards, A D Heathershaw, R N Hewit t , N R Brown, a n d T G Leighton. T h e effect of 

suspended particles on the per formance of minehunt ing s o n a r s in tu rb id coastal water . In Proc. 

Undersea Defence Technology, Hamburg, Germany, S4th - 27th June 1997, pages 171-174, 1997. 

[113] S D Richards , A D Heathershaw, N R Brown, and T G Le igh ton . T h e effect of suspended 

par t i cu la te m a t t e r on t he per formance of high frequency s o n a r s in tu rb id coastal waters. In High 

Frequency Acoustics in Shallow Water, pages 443-450, I taly, 1997. N A T O S A C L A N T Undersea 

Research Center. 

[114] S D Richards . Rap id envi ronmenta l assessment of tu rb id i ty for sonar pe r fo rmance predict ion. 



References 151 

Presented to U K / U S Ocean Modelling Workshop, D E R A H a s l a r , Gospor t , UK, 28th-29th 

October , 1996. 

[115] S D Richards and T G Leighton. Acoustic propagat ion in b u b b l y and turb id environments. In 

Proceedings of the International Conference on Acoustics, Noise and Vibration, 2000. Still in 

press as of May 2002. 

[116] S D Richards and T G Leighton. Sonar per formance in bubb ly a n d tu rb id environments. In 

Program o/ (Ae Meefing o/ (Ae i9ocie(^ o/ BencA, CA, page 

2562, 2000. 

[117] S D Richards and A D Heathershaw. An investigation of v iscous absorpt ion of sound energy in 

tu rb id seawater a t mine-hunt ing frequencies (U). Technical R e p o r t D R A / S S ( P S ) / C R 9 6 0 2 1 , 

D R A Winf r i t h , March 1996. 

[118] S D Richards and R N Hewit t . Acoustic proper t ies of tu rb id c o a s t a l waters : Year 2 progress 

repor t . Technical Repor t D E R A / S S ( P S ) / C R 9 7 0 1 4 , D E R A W i n f r i t h , March 1997. UK 

RESTRICTED. 

[119] S D Richards. Acoust ic propert ies of tu rb id coastal waters : Y e a r 3 interim progress report . 

Technical Report D E R A / S S / P S / C R 9 8 0 0 6 1 , D E R A Winfrith, March 1998. 

[120] S D Richards and R N Hewitt. Final report on the acoustic properties of turbid coastal waters. 

Technical Report D E R A / S & P / U W S / C R 9 8 0 1 3 3 , D E R A Winfri th , March 1998. 

[121] S D Richards. A review of acoustic techniques to characterize s u s p e n d e d particles. Technical 

Report QINETIQ/S&E/SGS/WP020262 , QinetiQ Winfrith, March 2002. 

[122] S D Richards . High frequency sonar per formance in shallow w a t e r : C R P Final summary report . 

Technical Report QINETIQ/S&E/SCS/CR021097 , QinetiQ Win&ith, June 2002. 

[123] S D Richards. High frequency sonar per formance in shallow w a t e r : Suspended particles and 

microbubbles. Technical Report Q I N E T I Q / S & E / S C S / W P 0 2 1 0 5 1 , QinetiQ Winfrith, June 2002. 



Index 152 

Index 

absorption 
boric add contribution, 8, 39, 130 
clay-like paitides, 105 
coe@cient of, 55, 56 
due to turbulence, 82, 83 
in seawater, 8, 39 
magnesium sulphate contribution, 9, 39 
marine particles, 103, 107 
pure water contribution, 9, 39 
thermal, 37, 87 
visco-inertial, 1, 9, 61, 87, 115 

coeScient of, 12, 31, 56, 62 
volume, 111 

abstract, ii 
adiabatic, 52 
Ally disk, 79 
array gain, 111 
attenuation, 7 

bubbles, 116 
clay-like particles, 99 
coefficient, 7, 28, 31 
plane wave, 7 
scattering, 1 
spherical particles, 87 

background, 1 
beam 

pattern. 111 
width. 111 

Bessel function, 32 
binomial formula, 55 
boundary 

pressure-release, 74 
rigid, 74 

boundary conditions, 23, 27-28 
boundary losses, 73 
broadband, 77, 78 
Brownian motion, 81 
bubbles, 70, 77, 115 

attenuation, 116 
damping constant, 115 
dispersion relation, 115 
phase speed, 116 
population, 120 
thermal scaling factor, 116 

bulk modulus, 48 
average, 48 

seawater, 129 
Butterworth filter, 78 

calcium carbonate, gee clay-like particles 
centrifugal sedimentation, 81 
clay-like particles 

attenuation measurements, 99, 105 
particle size distribution, 94 
scanning electron micrographs, 94 

compressibility 
of suspension, 52 

conservation equation, 23, 53 
convection, 81 
coupled phase model, 34 

density, 128 
diffraction, 18 

pattern, 79 
diSuse sound field, 74 
diSusion, 81 
dilute approximation, 12, 15, 29, 61 
dipole mode, 17, 21 
directivity index, 111 
dispersion, 138 

measurement of, 141 
dissolved oxygen, 77 
drag, 10, 50, 61 

equation of motion, 10, 50 
equation of s ta te , 23 

seawater, 128 
estuarine measurements, proposal for, 120 
Euler relation, 55 
experimental 

error, 87 
method, 73 
system, 75 

photograph, 76 
schematic, 75 

geometric spreading, 110 
gravitational sedimentation, 80 

Hankel function, 32 
asymptotic form, 29 

Helmholtz equation, 24 
high pass model, 16-18, 37 



jhdex 153 

for attenuation, 19 
homogeneity 

condition of, 51 
hydrophone, 75 

induced mass, 61, 62 
inertia, 10, 50 

coefficient, 62, 63, 65 
integrated impulse response, 78 
ionic relaxation, 8 

kaolin, aee clay-like particles 
Kolmogorov length scale, 82 
Kramers-Kronig relations, 138 

neaiiy local forms, 139 

Lame constant, 25 
Lambert's law, 112 
Laplace's equation, 49 
laser diSraction analysis, 79 
light scattering sensor, 75, 79 
lineal" superposition, principle of, 80 

marine particles 
attenuation measurements, 103, 107 
particle size distribution, 101 
scanning electron micrographs, 101 

modal density, 74 
momentum equation, 54 
monopole mode, 17, 21 
multiple scattering, 16, 29 

Navier-Stokes equations, 49 
noise 

ambient, 114 
How, 114 
propeller, 114 
receiver, 114 

non-spherical particles, 60, 80, 94, 104 
nonlineai- eSects, 23 
normal modes, 17 

partial wave expansion, 14, 18, 30 
particle size distribution, 39, 79, 91 

clay-like particles, 94 
log-normal, 39 
marine particles, 101 
spherical particles, 87 
spheroids, 105 

phase shift, 15, 30 
phase speed, 28 

in suspension, 55-60, 62 
plane wave, 52 
practical salinity scale, 8 
probability 

of detection, 120 
of false alarm, 120 

quadrupole mode, 17 
quartz, 37 

recursion relations, 30 
resonances, 17 
reverberation 

bottom. 111 
decay curve, 84 
surface, 113 
time, 73, 77, 78 
volume, 113 

reverse osmosis, 77 
Reynolds number, 80 

Sabine absorptivity, 73 
salinity profile, 116 
scalar potential, 24 
scanning electron micrographs 

clay-like particles, 94 
marine particles, 101 
spherical particles, 85 

scattering, 14, 115 
attenuation coeGcient due to, 15, 31 
form function, 14 

elastic, 17 
rigid, 18 

geometric, 16, 20 
multiple, see multiple scattering 
Rayleigh, 16, 20 
single, see single scattering 

scattering s t rength 
bottom, 111 
surface, 113 
volume, 113 

Schioeder cut-off fiequency, 74, 77, 91 
settling velocity, 80, 81, 91, 105 
shape factor, 61, 62, 65, 105 
signal to noise ratio, 110, 117 
single scattering, 28 
size parameter, 15 
skin depth 

thermal, 22, 52 
viscous, 10, 22, 49, 131 

sonai-
bistatic, 121 
equation, active, 110, 117 
model, 109 

enhancements to, 115 
limitations of, 114 

monostatic, 117, 121 
performance, 4, 39, 42, 109 

sound speed, 1, 77, 128 
bulk average, 48, 49 
in suspension, see phase speed 
profile, 116 

source level, 110 



jhdex 154 

spherical particles 
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vaiiability, 1 
vector potential, 24 
viscosity, 127 

water column, 116 
Watson transformation, 18 
wave equation, 23, 47 

continuum formulation, 51 
for suspension, 54 
series solution, 26 

wavenumber, 25, 138 
in suspension, 28, 55 

Wronskian determinant, 32 



A d d e n d u m 

The following comments are added to clarify points raised by t he examiners. The author is 

grateful to Dr. Victor Humphrey (University of Bath) and Professor Chris Morfey (University of 

Southampton). 

(i) The experimental data were Altered using Buttei-worth bandpass Alters, as described on 

Page 78. These were 2nd order Butterworth filters, giving a roll-oS of 12 dB per octave 

outside of the pass-band. The consequence of the relatively gentle roll-off associated with 

low order filters is that each fiequency bin will contain some out-of-band data. If these 

experiments were repeated it would be wise to use higher order Glters. However, it will be 

noted that the fiequency dependence of the attenuation isn ' t great, so this is not expected to 

aS^ect the results greatly. 

(ii) The upper time limit for the integration in the method of integrated impulse response (see 

Page 78) was determined manually by visually checking t he linearity of the resulting IIR 

curve. As the reverberation level approaches the noise level, the HR cm-ve departs from 

linearity. The upper time limit for the integration was chosen such that this departme from 

linearity was not apparent in the IIR curve. 

(iii) The typical reverberation time for cleai" water samples in t he experimental configmation 

described in Chapter 6 waa around 300 ms. 

(iv) The Schroeder cut-off frequencies for the test volume were typically in the range 50 kHz to 

75 kHz, depending on the reverberation time. 

(v) All error bars on measurements of absorption coe&cient represent one standard error. 

(vi) Each calculation of reverberation time was based on the average of ten sets of ten noise 

bursts, with the hydrophones in Axed positions. 

(vii) No averaging over measurements made at different locations in the volume was carried out. 

Instead a 4% standard error in the reverberation time was included in the error analysis to 

account for the measured spatial variation in the reverberation time. 

(viii) The oblate spheroid analysis of the measurements with non-spherical particles assumed 

that half of the particles are orientated edgewise to the sound field and half are oriented 

broadside. However, it wiU be noted that there are tlrree orthogonal spatial axes, which may 

be resolved into one broadside direction and two edgewise directions. It would therefore be 

more correct to assume that two thirds of the par ticles ar e orientated edgewise to the sound 

field and one third broadside to the field. 
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