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By Zhenhong WANG 

This thesis discusses and develops the theory of power flow analysis to assess the 

dynamic characteristics of engineering structures adopting a substructure approach. 

The general substructure receptance approach is extended and used to investigate the 

power flow characteristics applicable to engineering structures. This is achieved by 

complementing the normal dynamic equations with geometrical compatibility conditions 

allowing the assessment of dynamic characteristics of power flow excited and 

transmitted within the system. Each substructure is modelled analytically or numerically 

and its receptance function is formulated by modal analysis. The method may be 

classified as a form of substructuring analysis using a free-free interface condition. The 

displacement components induced by external forces and the interface coupling forces 

are deduced, permitting determination of the coupling forces and power flow between the 

interface of substructures. A power flow density vector is defined. The numerical 

examples demonstrate the applicability of the method and the detailed configurations 

display the power flow characteristics associated with beam frames, L-shaped plates, 

corner plates, beam-stiffened plates and coupled plate-cylindrical shell systems. 

KEY WORDS: power flow, substructure approach, beam, plate, modal synthesis, 

receptance function. 
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NOTATIONS 

a the length of a rectangular plate 

A section area of beam 

b the width of a rectangular plate 

B a continuum system 

B],82,63,84 coefficients in modal shape function 

C the connected joint of beam frame 

Cijki the elastic properties of solid 

Ci the longitudinal wave speed 

C j the transverse (in-plane) shear wave speed 

D flexural rigidity of plate or shell 

b the rate of change of energy dissipation 

E Young's modulus 

E rate of change of mechanical energy (chapter 2) 

ejy general expression of strain tensor 

Eij amplitude of ey 

f i t ) general expression of force 

fi(x^, ye,t) force at position (xe, ye) along direction i 

F amplitude of f ( t ) 

G shear modulus 

h, hp the thickness of a plate 

hs the thickness of a shell 

i = 4 ^ 

I moment of inertia 

J polar second moment 

I the length of a beam 

L the length of a cylindrical shell 

k wave number 

K the rate of change of kinetic energy 

[K] structure stiffness matrix 
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m, n the mode number used in modal analysis 

M general expression of bending moment and twist moment 

,Myy, Mq bending moment per unit length 

, Mj^g twisting moment per unit length 

[M] structure mass matrix 

irir, rrirs generalized modal mass 

N general expression of axial or in-plane force 

^xx' ^yy ' ^ 0 extension force per unit length 

^xy' ^x0 in-plane shear force per unit length 

principal co-ordinate 

g general expression for power flow 

(q) general expression for time averaged power flow 

q" the power flow across the interface with the normal v,. 

qy the rate of energy input 

Q general expression for shear force 

& , Gy, Gg transverse shearing forces per unit length 

R radius of cylindrical shell 

Rg interface receptance function under external excitations 

Rg interface receptance function under internal coupling forces 

interface between substructures I and J 

S the surface of a domain 

T period of excitation 

Ti internal traction force in i direction 

[tr] the orthogonal co-ordinate transformation matrix between global 

and local co-ordinate systems 

u(t) general expression for displacement 
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u{t) general expression for velocity 

U the rate of change of potential energy 

Ux, Uy, Uz the amplitude of displacement at x, y and z direction respectively 

V ( 0 general expression for velocity 

x,y,z or 6 spatial co-ordinates 

xy, X3 spatial co-ordinates for a continuum 

Xe, ye excitation position 

a the angle between global and local coordinate systems 

Pr, Yr plate solution parameter (defined in chapter 5) 

5{x) Dirac delta function 

T] damping loss factor 

= co^a^sjp/D, eigenvalue of plate 

(p general expression for phase angle 

(p̂  principal mode shape of beam/rod 

principal mode shape of plate or shell 

^ plate aspect ratio 

Poisson's ratio 

'd general expression for slope angle 

'd general expression of angular velocity 

6*̂  angle at the coupling edges in the cylindrical co-ordinate system 

p mass density 

Gij stress tensor 

Vj unit normal 

CO exciting frequency 

cOy the rth natural frequency 

O the domain of a continuum 

[ ] a matrix 

[ transpose of a matrix 

[ ] ^ inverse of a matrix 
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(•) 

\ y 

fA\ 

\ y 

time derivative 

a complex quantity 

a prescribed quantity 

Subscript 

Mx// 

r, ^ 

z, y, z or ^ 

tensor subscript, can independently be 1, 2 or 3 in a three-

dimensional case (chapter 2,3) 

rowsxcolumns of a matrix in chapter 3 

the rth or fth principal mode shape 

the variables in x, z direction or in rotation direction in a 

cylindrical co-ordinate system 

Superscripts 
* 

I, J 

complex conjugate 

subsystem number 
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1. Introduction 
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1.1. Brief Review 

The dynamic behaviour of engineering structures is a very important aspect of 

assessing the whole performance of a structural system, but analysis of dynamic 

characteristics is a difficult task. If the structure system to be analysed is simple and 

idealised (e.g., uniform beams and rectangular plates with special boundary conditions), 

classical techniques may be used to give exact results. Unfortunately for most real 

engineering structures, the application of classical theory is never simple or wholly 

satisfying. Most engineering problems could not be fully solved until the science of 

computers and the techniques of finite element analysis (FEA) were well developed. 

Finite element analysis (see, for example, Zienkiewicz 1971) is a powerful numerical 

method to provide detailed modal characteristics of complex structures. 

FEA may be divided into two categories. One approach involves directly solving the 

system's dynamic equations to derive modal parameters. Another approach to determine 

natural frequencies and mode shapes associated with a structural analysis is to adopt a 

component modal synthesis technique or alternatively called a substructure approach. 

This approach utilises eigensolutions of each substructure, together with geometric 

compatibility conditions and force equilibrium equations on interfaces of substructures to 

synthesise the dynamic characteristics of the global structure (see Hurty 1965, Hou 1969, 

Craig & Change 1976 and Hale & Meirovitch 1982). However, classical vibration 

theories tell us that all structures, even the simplest structure, have an infinite variety of 

natural modes, with corresponding natural frequencies covering the entire frequency 

range. This leads to the conclusion that FEA, a discretization procedure, is best suited to 

the low frequency range. 

For most complex engineering structures, the results derived by prediction of 

frequency response based on modal analysis using FEA become more and more 

unreliable and tedious as the frequencies increase. The fundamental reason is that the 

sensitivity of modal resonance frequencies and relative modal phase response to small 

changes in structural details, especially boundary conditions, increases with mode order. 
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1. Introduction 

The distribution of higher order modes begin to overlap (Manohar & Keane 1994), 

indicating that there is increasing uncertainty in the results derived by a frequency 

response analysis. 

There is also unavoidable uncertainty concerning structural detail and material 

properties associated with manufacturing tolerances and fabrication imperfections. This 

is especially true for the high frequency dynamic properties of joints between 

components. As a result, high frequency vibration responses of individual examples of 

nominally identical structures are observed to differ, some times greatly (Komella & 

Bernhard, 1993). 

The theoretical basis of Statistical Energy Analysis (SEA) or Power Flow Analysis 

(PFA) has developed because of such deficiencies incorporated into finite element 

methods to analyse accurately the structural dynamic responses of a system excited at 

high frequencies. SEA, which is based on the concept of an ensemble-averaged 

behaviour together with statistical measures of the distribution of responses about this 

average, is a possible approach to generate an estimation of frequency response in the 

higher frequency range. The development of SEA arose from a need by aeronautical and 

aerospace engineers in the early 1960s to predict the vibrational response of flight 

vehicles. It has also been applied to predict structure borne noise in ship structures 

(Cabos 1999) and buildings (Gibbs & Gilford 1976 and Luzzato & Ortola 1988). 

Fahy (1994) presents a comprehensive critical review of SEA theory highlighting its 

origin, development and future possible directions and applications. One of the earliest 

applications of SEA to describe and analyse simple vibrating systems was presented by 

Lyon & Maidanik (1962) who formulated a mathematical method based on modal 

theory. Lyon (1975) further developed their ideas with applications to more complex 

vibrating systems. Langley (1992) described a wave theory approach and a predictive 

approach was proposed by Heron (1999) based on the wave approach. Manning (1994) 

developed the concept of a mobility model which was incorporated into a statistical 

energy analysis. Keane & Price (1997) and Fahy & Price (1999) present recent 

developments and advances in SEA theory and its mathematical modelling with 

applications to complex, coupled vibrating systems. 

The application of SEA to a vibrating system aims to determine the spatial, time and 
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frequency statistical averages of energy flowing through each subsystem within the 

overall dynamic performance using the quantities known as coupling loss factors (Lyon 

1975). Therefore a SEA approach provides only the space averaged information of the 

field variables with the loss of detailed knowledge of the local distribution of the 

variables. Because coupling loss factors are usually determined under the assumption of 

semi-infinite structural domain theory (see, for example, Langley 1990 and Cremer et al 

1988), SEA is suitable for application in the high frequency range. In contrast, the power 

flow approach is not necessarily restricted to the high frequency range and the parameters 

of power flow and mobility may be expressed as a modal function aggregate to retain the 

resonant behaviour of the individual and global structures at low modal density. If it is 

assumed that all phase effects may be neglected at high modal density, which implies 

that various mode components may be considered to be uncorrelated, the mobilities can 

be expressed in a similar form to those obtained by SEA (Langley 1990, Manning 1994). 

1.2. Background of Engineering Application to a Power Flow Analysis 

Power flow analysis is usually applied in three aspects: in calculation and control in 

engine isolation system, in calculation and comparison of energy transmission factors or 

coupling loss factors used in SEA as well as determination of the dominant propagating 

paths of vibration energy and structure borne noise. 

1.2.1. Application to Engine Isolation Systems 

The general interest focused on dynamic structural analyses demonstrates the 

necessity for vibration control, the common objective being to minimise vibration levels. 

For engine isolation systems, the amount of power flowing from the machine is 

dependent on the characteristics of the source, the isolator system and the support 

structure. The use of power flow in problems of this type is very valuable because it 

combines both forces and velocities as a single concept. An attempt to decrease their 

radiation or vibration in a structure by reducing only the force or velocity amplitude and 

not considering the relative phase angle relation may not necessarily be successful. 

However, improvements may result by decreasing the power flow applied to a structure 

(see, for example, Goyder & White 1980). Many other researches, for example. 
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Pinnington & White (1981), Pinnington (1987), Pan et al (1992), Gardonio et al 

(1997a,b), Li & Lavrich (1999), Xiong et al (2000), also focus their studies on 

application and control of power flow to engine isolation systems. 

1.2.2. Application to Calculate Coupling Loss Factors of SEA 

Statistical energy analysis is a feasible way to solve averaged energy flow problems 

in the high frequency domain. The basis of this technique lies in the fact that the energy 

flow within a system can be related to the difference in vibrational energy between parts 

of the system. This allows simple formulation of dynamic quantities, i.e. coupling loss 

factors (Lyon 1975), to describe the energy flow of the dynamic system based on linear 

differential equations. However, a strict experimental determination of these factors can 

be difficult, because they relate to systems of infinite size according to their definitions. 

Therefore, alternative approaches for use in the low to middle frequency domain are of 

interest to solve energy flow problems and to estimate coupling loss factors for simple 

applications of SEA. Simmons (1991), Steel & Craik (1993), Fredo (1997) and Shankar 

& Keane (1997) developed PEA models to calculate the energy flow around systems and 

to estimate the coupling loss factors or energy flow factors between substructures. This 

improves SEA predictions in the low to middle frequency range. 

1.2.3. Application to Determine Power Flow Paths 

The identification of power flow paths in dynamically loaded structures is also 

important. Structure-borne sound is the vibrational energy which travels through 

dynamically loaded mechanical systems. This vibrational energy is radiated eventually 

into an acoustic medium as noise. An example cited by Wohlever & Bemhard (1988) is 

an aeroplane wing loaded by engine vibrations. The vibrational energy travels along the 

wing to the fuselage and is radiated as sound into the cabin. Luzzato & Ortola (1988) 

addressed the problem of structure-borne sound in hotels and apartment buildings, where 

vibrational energy flows through walls and floors and is radiated as sound into other 

rooms. The calculation of a power flow density vector is a way of quantifying the 

propagation of vibration energy and structure-borne sound. This method identifies the 

magnitude and direction of power at any location in a structure and helps analysts to find 

the dominant paths of energy flow, the energy sinks and the propagation of structure-

borne sound in a given problem. Understanding the paths of energy which flow from a 
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vibration source to other parts of the structure helps an engineer pinpoint and control 

vibration problems. Examples may be cited for a wide range of applications, such as 

damping materials inserted into dominant paths of energy flows and mechanical 

equipment arranged near the energy sinks for a passive vibration control measure. 

1.3. Development and Current State of Power Flow Analysis 

The fundamental concepts of power flow analysis, as discussed and described by 

Goyder & White (1980), use the rate of energy flow to characterise the dynamic response 

of vibrating systems. This was found to be a more meaningful parameter in assessing the 

dynamic properties of isolator-engine systems as confirmed by Pinnington & White 

(1981). 

1.3.1. Theoretical Model of Power Flow Analysis 

Several PFA approaches have been presented which combine the analytical solution 

of individual structural elements in finite sized structures. These include: 

The mobility approach 

The global structure in a mobility approach is modelled by a set of coupled 

substructures with forces or moments introduced at the joints (or line) between the 

substructures. The power flow into a source substructure and between the substructures is 

expressed in terms of input and transfer structural mobility functions. Structural mobility 

is defined as the ratio of the rate of change of displacement with time per unit input load. 

For input mobilities the response and load are considered at the same location, whereas 

for transfer mobilities the response and load are defined at separate locations. It is a kind 

of progressive approach and can be conveniently applied at a joint as discussed by 

Pinnington & White (1981) and Cuschieri (1990a). Cuschieri (1990b) also applied the 

approach to solve the dynamics of L-shaped plates. 

Xiong, Xing & Price (2001) developed two progressive approaches to analyse the 

power flow into and transmission between substructures in a complex coupled system 

consisting of any number of subsystems. Generalised mobility/impedance matrix 

formulations of each substructure are first derived allowing the construction of 
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1. Introduction 

equivalent mobility and equivalent impedance matrices to describe the dynamic 

behaviour of a substructure assembled from several inter-connected substructures within 

the overall system. 

The direct dynamic stiffness method 

The direct dynamic stiffness method presented by Langley (1989) focuses on the 

study of the transverse response of a row of coupled plates subject to an acoustic pressure 

field. The solution is restricted to the case when two opposing edges are simply 

supported so that the two coupled variables in the dynamic equation of each uncoupled 

plate can be reduced independently. The dynamic stiffness matrix of each uncoupled 

plate can then be derived analytically and using standard techniques, the dynamic 

stiffness matrix for the whole system produced. The degrees of freedom in this method 

are the deflections at the joints. This approach was also used by Bercin & Langley (1996) 

to calculate the in-plane vibrations of similar plate frames. 

The travelling wave and scattering approach 

In this approach, exact wave mode expressions are used to represent the solution of 

each substructure, then continuity and equilibrium of substructure displacements and 

forces and satisfaction of displacement boundary conditions at the junction are used to 

calculate the junction scattering and generation matrices. This approach was applied to 

two and three-dimensional beam frames by Miller & Flotow (1989), Horner & White 

(1991), Beale & Accorsi (1995). 

The receptance approach 

This approach is similar to the dynamic stiffness method in that it also finds the 

solution in terms of the characteristics of uncoupled substructures. However, the degrees 

of freedom in this approach are the coupling forces at the interface rather than the 

displacements used in the dynamic stiffness method. These unknown coupling forces are 

calculated by utilising the compatibility conditions at the interface. The receptance 

approach was applied in an indeterminate beam system by Wang, Xing & Price (2002a), 

and in two coupled rectangular plates by Dimitriadis & Pierce (1988), Farag & Pan 

(1998), Beshara & Keane (1998) and Wang, Xing & Price (2002b). 

The general objective of these analytical exact approaches is to assess the averaged 
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power flow across the coupling edges and joints of the subsystems. Beshara & Keane 

(1997, 1998) determined the power flow at a compliant and dissipative joint and edge 

using a receptance approach. Investigations using a power flow analysis mainly focus on 

coupled beams or plate-like structures because solutions adopted in these exact 

approaches are restricted to cases in which the dynamic distortions of subsystems can be 

determined theoretically. For example, substructures consisting of uniform beams with 

any standard boundary conditions or uniform rectangular plates with two opposing edges 

simply supported. 

1.3.2. Power Flow Analysis by FEA Model 

Applications of FEA to energy flow modelling are not new. Lyon (1975) suggested 

the use of FEA to predict SEA coupling loss factors during the early development of 

SEA theory. A power flow finite element method was proposed by Nefske & Sung 

(1987) and investigated by Wohlever & Bernhard (1992). They postulated that if the 

mechanical energy of a vibrating structure is governed by a heat conduction equation, 

then this should simplify the computational requirements for a power flow analysis in the 

mid-frequency range. For a simple beam, Nefske & Sung compared the results derived 

by a conventional structural FEA and SEA with EE predictions based on a heat 

conduction analogy approach and an exact solution for the system. For the same number 

of elements, the heat conduction FE approach yields better results at higher frequencies 

than the conventional FEA and gives better spatial resolution than SEA. Wohlever & 

Bernhard (1992) showed that the heat conduction analogy for mechanical energy is only 

approximately true for rods and beams. 

Various studies investigating vibrational energy by FEA models are described by 

Simmons (1991), Stimpson & Lalor (1992), Steel & Craik (1993), Fredo (1997) and 

Mace & Shorter (2000). These authors expressed the response of a finite element model 

in terms of an energy flow through a global FEA performed on a global system. The 

natural frequencies and mode shapes are calculated first and velocity at the nodes 

determined by modal analysis. The use of a lumped mass formulation is implicitly 

assumed and the kinetic energy is evaluated adopting a single summation involving the 

nodal mass and nodal velocity of responding nodes. 

Shankar & Keane (1995,1997) developed an alternative local FEA method using a 
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receptance approach in which the response of each subsystem is described by a Green 

function to analyse energy flow for both simple and complex models. It is the same as 

the receptance approach discussed in 1.3.1 but the receptance function of substructures is 

obtained by FEA. 

Finite element analysis has also been used to calculate structural intensity. For 

example, the structural intensities of a rectangular stiffened plate and a uniform 

rectangular plate are analysed by Hambric (1990) and Gavric & Pavic (1993) 

respectively. It is advantageous to use FEA models in a power flow analysis and in 

structural intensity calculations because they can be conveniently applied to complex 

structures subject to boundary conditions. However, in general, because the structure 

intensity prediction requires an accurate description of various spatial derivatives, it is 

necessary to admit a large number of modes into the analysis to ensure convergence of 

solution. Numerical approaches adopting modal superposition encounter difficulties due 

to the computational effort required. Furthermore, since the intensity is sensitive to the 

relative phases of these modes, predictions are potentially very sensitive to the accuracy 

of the data used to describe the system and to FEA discretization error. 

1.3.3. Definition of Power Flow Density Vector in a Continuum 

(a) (b) 

Figure 1.1 Schematic illustration of a system with three subsystems I, II, III. The arrows 

indicate energy flow from one subsystem to another. In the indeterminate system of (a), a 

delta energy flow pattern occurs and three energy flow quantities are required to analyse the 

energy flow in the system. In contrast, the sequential energy flow pattern observed in (b) 

requires only two energy flows to analyse the system. 

Xing & Price (1999) developed the concept of an energy flow density vector which 

uniquely defines the energy transmission between one part of a system and another. The 
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analysis of structural intensity or energy flow density vector identifies the magnitude and 

direction of the power at any location in a structure and allows determination of 

dominant paths of energy flow. To understand the mechanisms and paths of energy 

transmission flowing from a vibration source to other parts of a structure has been 

recognised as an important tool for control vibration (Pan & Hansen, 1991). 

To study the energy flow in a vibrating system or continuum adopting either a 

statistical energy analysis or a power flow analysis it is necessary to divide the 

continuum domain or system into a number of subsystems. For illustrative purposes, 

figure 1.1 schematically shows a continuum divided into three sub-domains (I, II, III), 

but with different configurations. For figure 1.1a, Xing & Price (1999) showed that three 

energy flows q.j, forming a delta flow pattern, are required in a PFA, whereas only two 

energy flows, forming a sequential flow pattern, are required to analyse the subsystem 

configuration in figure Lib . They also demonstrated that because the number of 

independent energy flow equations for three sub-domains is two, the delta flow pattern 

cannot be determined solely from an energy flow balance analysis. In fact, the energy 

flow lines in figure l . l a form a closed curve, i.e., a conceptual delta shape, so that any 

quantity of energy flow added will not affect the energy flow balance, further confirming 

that the subdivided system of figure l . l a cannot be determined only by examination of 

the equation of energy flow balance. To overcome such deficiencies, Wang, Xing & 

Price (2002b) proposed a substructure method to analyse the power flows in L-shaped 

plates. 

Most power flow analyses adopt a substructure approach because 

(1) Long computer runs are avoided for large, complex structures. 

(2) It is more efficient to confirm a large quantity of input data via subsets. 

(3) The input data for each substructure can be prepared almost independently by 

separate analysts. 

(4) Numerous restart points are automatically provided. 

(5) For some special components of structures, for example, a wing of an aeroplane, 

experiments can also be adopted to determine the dynamic and damping 

characteristics of these components. 
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The different theoretical models of power flow analysis presented in 1.3.1 are all 

based on substructure approaches but use different analytical models to describe the 

dynamic characteristics of each substructure. 

Besides the advantages of adopting a general substructure approach, this technique 

has the ability to calculate directly substructure energy transmissions, since it deals with 

both interface forces and displacements at interfaces. It also allows inclusion of 

substructure specific damping. 

1.4. Objectives of the Research 

The objective of this thesis is to investigate the power flow characteristics of 

engineering structures. A general substructure receptance approach for a continuum with 

free-free interface condition is formulated by complementing the normal dynamic 

equations with geometrical compatibility equations allowing assessment of power flow 

dynamic characteristics applied to and excited within the system. Each substructure is 

modelled analytically or numerically and its receptance function is formulated by modal 

analysis. The displacement components induced by the external and the interface 

coupling forces are deduced, permitting determination of the coupling forces and power 

flow between the interface of substructures. A power flow density vector is defined. 

Engineering numerical examples demonstrate the applicability of the method and their 

detailed configurations display the power flow characteristics associated with 

indeterminate beam systems, L-shaped plates, corner plates, beam-stiffened plates and 

coupled plate-cylindrical shell systems. 

The main advantage of using a theoretical model in a power flow analysis allows 

calculation of high-frequency components easily and efficiently, so it is suitable to 

calculate the detailed distribution of the power flow density vector in a structure. 

Convergence problems do not arise because dynamic displacements and internal forces 

have formulated expressions in the proposed theoretical models. The limitation of all 

theoretical models, including mobility approach, dynamic approach and wave-guide 

approach is obvious, because the displacements or internal forces of each substructure 

need to be solved analytically. Therefore, theoretical models can only be applied to 
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relatively simple structures, for example, a beam frame or a uniform plate system with 

two opposite edges simply supported. The substructure approach presented herein uses 

substructure results analysed by analytical methods, numerical approaches, measurement 

results or their combinations. When a substructure is readily defined by an analytical 

solution, a theoretical substructural model is adopted, otherwise, a PEA model is adopted 

to analyse more complex systems. It is also much easier to derive PEA results for a 

substructure than those for a global model although there may exist difficulties in 

deriving convergent solutions at high modal density. 

1.5. Outline of Thesis 

In Chapter 2, the fundamentals of power flow are described. Three approaches of 

power flow analysis, that is, mobility approach, direct dynamic stiffness approach and 

travelling scattering wave approaches are presented briefly. The concept of an energy 

flow density vector is introduced and equations of energy flow balance are derived to 

describe the basic characteristics of energy flow in a continuum. 

In Chapter 3, a general substructure approach with free-free interface condition 

applied to a continuum is presented. The force balance and geometric compatibility 

conditions of an interface are introduced to form the synthesis process. 

In Chapter 4, a power flow analysis applied to an indeterminate rod/beam system is 

presented. Two calculation examples show the power f low characteristics of beam 

systems. 

In Chapter 5, a power flow analysis applied to coupled plate systems is presented. 

The power flow characteristics in L-shaped plates and in corner plates are calculated and 

discussed. Power flow lines are illustrated within the plate system and they show how the 

power flows at any instant and in a period of excitation. 

In Chapter 6, the power flow characteristics of a beam-stiffened plate are calculated 

and discussed. 

In Chapter 7, a power flow analysis applied to a coupled plate-cylindrical shell 

system is presented. The power flow characteristics of the system are calculated and 
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discussed for both conservative and dissipative couplings. Power flow lines are adopted 

to illustrate how the power flows in the plate and shell. 

Chapter 8 summaries the main conclusions and achievements of the research study. 

Further work and possible engineering applications of a power flow analysis are also 

discussed. 
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2. REVIEW OF ANALYTICAL POWER FLOW APPROACHES 

The general power flow approaches presented herein adopt substructure techniques 

because it is impossible to determine the response of a complex structure analytically 

other than by a FEA or a numerical method. Therefore, force balance conditions and 

geometrical compatibility equations supplement the various power flow approaches. The 

main difference between these approaches is the analysis methods of the responses of 

substructures. These power flow approaches reviewed here are the mobility progressive 

approach, wave scattering approach and dynamic stiffness method. A general receptance 

approach is presented in chapter 3. 

2.1. Basic Concept of Power Flow Analysis 

The fundamental concepts of power flow analysis, as discussed and described by 

Goyder & White (1980a,b,c), use the rate of energy flow to characterise the dynamic 

response of vibrating systems. The use of power flow is valuable in vibration control 

because it combines both forces and velocities together. An attempt to decrease the 

radiation or vibration in a structure by reducing only the force or velocity amplitude and 

not considering their relative phase angle may not necessarily be successful. However, an 

improvement may be ensured by decreasing the net vibrational power (time averaged 

power) applied to a structure. 

The basic definition of power is the rate at which work is done and given by 

= (2.1) 

where/frj and v(t) are the instantaneous values of physical force and velocity at a point. 

In a dynamic analysis, harmonic quantities are often represented mathematically by 

harmonic functions. In complex mathematical forms, a harmonic force f { t ) with 

amplitude F and frequency CD, or a velocity v{t) with amplitude V, frequency co and 

relative phase angle cp, can be expressed as 

Jf(f) = (2.2) 
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= = (2.3) 

where i = and, in general, V = andF = F are treated as complex quantities. 

In a PFA, the real power at time t is given by 

^(f) = Re{7(f)}Re{v(f)} = + iZ') 
4 (2.4) 

= - R e { 7 v 

The time averaged of this real power over a period of vibration IttIco , i.e. the mean 

power, is given by 

F V cos^ 

= - R e { F y * } = - R e j f V } = - ( R e { F } R e { y } + Im{F}lm{y}). 

(2.5) 

Mathematically, an instantaneous complex power may be defined as 

< ? ( ' ) = j F ( f ) ; ; ( ' ) = ( 2 . 6 ) 

with corresponding time averaged quantity 

(;?(;))== 0. (2.7) 

This result clearly conveys the essential difference between a physical power and a 

complex power. Therefore, real power is the primary quantity considered. 

Goyder & White (1980a,b,c) analysed a number of typical foundations constructed 

from beams, plates and beam-stiffened plates using a wave propagation approach. Each 

structural component was treated as if it was infinite in dimension. 

2.2. Mobility Approach 

The basic concepts of a mobility approach (see, for example, Cuschieri 1990b and 

Xiong, Xing & Price 2001) to determine the transmitted vibrational power between a 

point-coupled substructure. The mobility function is defined as 
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fk 
(2.8) 

and defines the velocity response at position j under a unit exciting force at position k. If 

j=k, is called a point mobility and if j # denotes the transfer mobility between 

position i and k. 

Figure 2.1 illustrates schematically a coupled system with n series connected 

subsystems Sk (k=l,2,...,n), where each substructure represents either a rigid or flexible 

component of the global system. A representative substructure Sk may have r^ inputs and 

Tfc+i outputs within the global system. 

Figure 2.1. Schematic illustration of general mobility model with n substructures. 

While boundary conditions / ] = / i , v^+i = ^n+i are prescribed, the progressive 

approach allows determination of internal forces and response velocities on interfaces 

between the substructures. The dynamic equations (see, for example, Xiong, Xing & 

Price 2001) describing the dynamical characteristics of all substructures Sk {k=l,2,...,n) 

can be represented by the generalised mobility matrix expressions 

J ^ i L 

1^2] 

[ 1 

' 1 

F 
11 

(1) 
721 

T/12 
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T/22 
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(2.9) 
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( Z l l ) 

(2.12) 
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Equation (2.11) is for substructure Sk (k=l,2,...,n). It follows that 

A+i 
1/22 y22 

yl2 ^22 1"! ^211 12 
( t ) 

y22 
4:%) V&+1 

^kefk ^kv^k+l 

(Z13) 

(2.14) 

where y22 /21 y22 
4:*) (215) 

Substituting equation (2.14) into equation (2.10) for substructure Sk-i we derive the 

following equations describing the coupling characteristics of two adjacent substructures 

St and S't-y: 

A = y22 _ y 
{k-\) ^ke ^kv^k+l ^{k-\)fk~\ (2.16) 

1̂2 /22 2̂1 712 v,_, = i „ - r „ ] "nr . , , \ n _ , + y22 _ Y 
Â-v̂ A+l 

- ' A-1 + 

(217) 

where - "{ ^V-1) - ) (^ I ) 
y 2 2 y y21 (Z18) 

y _ y l 2 y 2 2 y 

ke (2.19) 

The continuation of this procedure leads to the following progressive formulation 

characterising a coupled global system consisting of substructures Sj, S2,...,Sk,-.-,Sn-

Namely, 

n = y t , f k + N i „ f „ ^ „ (2.20) 

A+i 
y y 2 2 y 2 2 y 

4:6) 
-1 

^(k+l)v^n+l'> 

for 1,2,...,n, 

where A t̂v = ^ ' % + i ) v 

^n+l)e 0. 

(2.21) 

(2.22) 

(223) 

According to the basic definition of time averaged power f low in equation (2.5), the 
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power flow through of the Mh substructure is given by 

= = ^=A2,...». (2.24) 

This mobility progressive approach is applied conveniently in series connected 

systems, for example, a coupled isolator-engine system after all mobility functions of 

each substructure are defined. However, it cannot be applied to a more complex system, 

for example, a system represented a delta energy flow pattern as shown in figure 1.1a. 

2.3. Dynamic Stiffness Approach 

Langley (1989) presented the dynamic stiffness method to investigate the forced 

vibration of a row of rectangular panels which are stiffened transversely and simply 

supported along the longitudinal edges. 

The differential equation governing the panel vibration shown in figure 2.2 may be 

written as (Leissa 1993) 

(z, y, f) + (z, y, f) = / ( z , f ) , (2.25) 

with stress-displacement relations 

= - D 

a*: 3 / dx^ 

d^u. 

< 2 , = - D - + ' 

ax' a^a);' 

a%a);' 

. G , = - D 
3rr ^ 

dy dx dy 

(2.26) 

(2.27) 

Here f ( x , y,t) denotes the distribution of exciting force which includes the external 

transverse force and internal coupling force, represents the bi-harmonic operator, 

Qx,Qy the transverse shear forces per unit length and Mxx,Myy,M^ the internal 

bending moments and twisting moment per unit length. The plate flexural rigidity D is 

given by 
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D 
EA" 

1 2 ( 1 - / ) 
(2.28) 

simply supported 

simply supported 

Figure 2,2. A uniform rectangular panel and its coordinate axis system. 

If the panel is simply supported along the edges x=0 and x=a then the deflection 

under harmonic excitation may be expanded in the form 

:(;:, = %%.() ' )s in(r%V)g"*. (229) 

Inserting equation (2.29) into equation (2.25), multiplying by sin(rm:/a), and 

integrating over x leads to the result 

dy' 
^ ^ + DkX-pta\ l̂OM _ _ r'^y . gjĵ  ^ y . (2.30) 

a •'0 

where = rnja. If the excitation takes the form of a plane acoustic wave with 

7 ( x , y, t) = exp(-i// ix - i//2y + , (2.31) 

then equation (2.30) may be rewritten as 

. sin - ck "r , 2 ' •'r "=• Jr,' 
a -'u 

. (2.32) 

-1/̂ 2 y 

The solution of equation (2.32) consists of the sum of a complementary function and 

a particular integral in the form 
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S=l 

(2.33) 

where the A„ terms are integration constants and are the four roots of the following 

equation in t . 

- 2m^A:^ + (Dj^^ - ) = 0. (2.34) 

The particular integral Y^p{y) appearing in equation (2.33) takes a number of 

different forms. A convenient form is given by the response of an infinite panel: 

y ( y ) = (235) 

Using equations (2.26), (2.27) we find that the longitudinal effective shear force 

Q,.{y) and bending moment M^{y) corresponding to the deflection Yriy) are given 

respectively as 

MX)') = - D 

(2.36) 

(237) 

Equations (2.33), (2.36) and (2.37) imply that the relation between deflection vector 

= (};(0),}y(0),};.(6),};f(6)) and force vector = (6^(0), MXO),GX^), 

is expressible as 

{ f A = [D,]{u,} + {d,]HM. (2.38) 

where [D^] denotes the dynamic stiffness matrix and the panel force vector (see, 

Langley 1989). Equation (2.38) gives the dynamic properties of a single panel element in 

a form which allows the behaviour of a complete panel row to be analysed by using the 

force balance conditions and geometrical compatibility equations at the coupling edges of 

each panel. If panel j and j+1 are coupled at their edges in the same co-ordinate system, 

the force balance conditions and geometrical compatibility equations are given by 

(2.39) 
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(2.40) 

where is the length of panel j. The information contained through assembly of all 

panels of the system and equation (2.38) allows the deflection vector {M^} to be 

determined. 

2.4. Travelling Wave and Scattering Approach 

Miller & Flotow (1989), Horner & White (1991), Beale & Accorsi (1995) presented 

the travelling wave and scattering approach and its application to a beam frame system. 

In this approach, each structural member is treated as a waveguide which transmits 

axial, torsional and flexural wave modes. The waveguide equations relate a member's 

state vector to wave mode amplitudes expressed as 

\u\ 

l / J 
'^uR 

(2.41) 
I Wp 

Here u and / are the generalised displacement and force vectors at one end of the beam 

and wl and wr are the wave mode amplitude coefficients. 

The waveguide equations for axial modes are found by solving the following 

equations for harmonic vibration of a rod 

9%̂  
+ p(D = 0, (2.42) 

9% 

where Ux and N are the axial displacement and force, respectively. 

The solution of equation (2.42) may be written as 

= + (2.44) 

where ul and ur denote wave mode amplitude coefficients, = / e . The 

substitution equations of (2.43) and (2.44) into equation (2.41) yields the following 
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waveguide equations for axial modes at both left and right ends of the beam: 

N ik^EA 
(2.45) 

N 

-it.L 

Ur 
(2.46) 

Similarly, the twist angle ^ and torque for harmonic torsional vibration at the 

left end of a uniform beam are given by 

6 xy 

M 

1 1 
(2.47) 

Here (pi and ^ denote the wave mode amplitude coefficients of torsional vibration. The 

waveguide equation for the right end of the beam has a similar form. 

For the flexural vibration of a uniform Euler-Bernoulli beam, the differential 

equations of motion are given by 

-EI 
9 % ( x , f ) (%,r) 

= 0 (2.48) 

with stress-displacement relations, 

dz 

M(z, r ) = - E / 
9 Wy(%,f) 

(2.49) 

(2.50) 

The solution of equation (2.48) is written as 

4 

u 

;=i 

ikjX (251) 

where = -^2 = i^pAco^/EIj'^, = -k^ = i{pAo? jElY'^. (2.52) 

Using equations (2.49)-(2.52), it is found that the waveguide equations at the both 

ends of the beam are given by 
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0 
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(253) 
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W, 

w. 4 J 

(2.54) 

where a,- = ikj, bj = -Elk], Cj = -iEIk^j,j=l,2,3,4- (2.55) 

These waveguide equations are derived in a local co-ordinate system, they may be 

changed to global co-ordinate system by a transformation matrix [Jr] . That is 

Wi 

Wz 
(256) 

Concepts such as continuity of member displacements, equilibrium of member 

forces and satisfaction of displacement boundary conditions at a junction are used to 

calculate the junction scattering. The condition that must be satisfied at a junction or 

boundary in which the junction force or displacement is prescribed is written as 

/ i + A + ' " + /» - ^ , 

11-^ — — •' • ~ — tj , 

(2.57) 

(258) 

where n denotes the total number of beams connected to the junction, F and U denote 

prescribed junction loads and displacements respectively. 

The substitution of equation (2.56) into equations (2.57), (2.58) yields the junction 

scattering equation as follows 

{w„} = [s]{wJ+[G]{^:} , (2.59) 

where [5], [G] are called the junction scattering and generation matrices respectively and 

{7?} denote the generalised junction loads. 

After solving equation (2.59), the displacement, coupling force and power flow at 
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the junction may be obtained using equations (2.4), (2.5) and (2.56). 

2.5. Field Equations and Power Flow in Viscoelastic Continuum 

The power flow approaches presented previously focus on specific application to 

beam and plate structures. Here the general description of power flow in a continuum is 

introduced. 

2.5.1. Field Equation 

Figure 2.3 Energy transmission from one part to another in the elastic body 

To develop field equations and a power flow equation in a continuum, a standard 

Cartesian tensor notation and a summation convention (see, for example, Reismann & 

Pawlik 1980 or Xing & Price 1999) are used herein. Therefore any valuable with a 

subscript i, j, k or I (i, j, k, 7=1,2,3) indicates the valuable is a vector. 

The equation of motion of the continuum system is expressed as 

dcT;: 

(2.60) 

where ay denotes a stress tensor, d y j = a body force per unit volume of 

the continuum, p represents the density and VpV,the velocity and acceleration along the 

/th direction respectively. 
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When a sinusoidal exciting force is applied to a viscoelastic solid, the strain is 

observed to lag behind the stress. Their relative phase angle g) denotes a loss angle. In 

engineering analysis, the hysteretic energy-absorption mechanism related to linear 

viscoelastic materials is normally introduced into Hook's constitutive equation (see, for 

example, Cremer et al 1988) defining the elastic solid by a complex modulus of 

elasticity. That is, 

^ij = Q/w%' Qjki - Qjki (1 + i ̂ ) ' (2.61) 

where the real part of the complex modulus represents the stiffness of the material in 

association with a storage modulus coefficient, and the imaginary part represents the 

damping capacity of the material and hence is associated with a loss modulus coefficient. 

If the complex strain has the form 

% = + <̂ ) + isin((W -h ^)) 

e,j-i 
(2.62) 

the complex stress in equation (2.61) becomes 

Q/W 
(2.63) 

Therefore the real form of the constitutive equation representing a viscoelastic 

material is expressed as 

cr . = <7%.+. o"? + C:*;(;7/a,)g*f. C2.64) 

The strain - displacement relation is given by 

<1/ = (2.6!)) 

and the rate of strain by 

4 = ).r = ^ 

where w, denotes the displacement and u^j = • 
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For a problem in solid mechanics, the traction condition on the boundary St and the 

displacement condition on the displacement boundary Su are usually defined as 

Traction; ~ ^ on ST, (2.67) 

Displacement: w, = Uj on Su, (2.68) 

where u denotes a unit normal. 

2.5.2. Energy Flow Components 

The energy transmission from one part to another in a continuum excited by an 

external force can be investigated by analysing the energy flow across the closed surface 

5 within the continuum B illustrated in Figure 2.3. Let A j denote an elemental surface on 

5' and Vj a unit normal to with its positive direction pointing outward from the 

(negative) interior to the (positive) exterior. The interactions between material lying on 

either side of this surface cause internal actions defined by the traction or stress vector T. 

representing the force per unit area acting on the surface 5. Through the rate of work done 

by this traction T., the power flow across the surface with unit normal Vj is given by 

==--v,7;. (2.60) 

A positive value o f g " represents the transmission of energy per unit time through 

the unit area of As from the material within 5 to the outside. 

It follows from Cauchy's formula (see, for example, Fung 1965), that the traction 

7] (ZfO) 

so, 

q =—VjCTjjVj = qjVj. (2.71) 

Here, the power flow density vector (see, Xing & Price 1999) 

9, == -VfCTo (2 72!) 

is defined by the dot product of the velocity v. and stress tensor (7- and is a vector field 
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function dependent on the co-ordinate z and time ^. In a continuum mechanics 

approach, this power flow density vector specifies the energy transmission from one part 

to another per unit time in the dynamic system and allows the determination of power 

flow at each point in or on the continuum across any interface in any direction with unit 

normal Vj through the expression given in equation (2.71). Physically, the jth component 

q j of the power flow density vector represents the summation of the individual power 

done by the three stress components O",., and acting on a unit area with a normal 

along the yth direction of the co-ordinate system. 

The time averaged quantity over a period of excitation T is given by 

(<?/) = , (2.73) 

and it is equivalent to the structural intensity parameter described by Hambric (1990), 

Gavic & Pavic (1993) and has similarity to an acoustic intensity parameter in a fluid 

domain being the product of pressure and the in-phase component of particle velocity 

(see, for example, Fahy 1989). 

2.5.3. Equations of Energy Flow Balance 

The transmission of energy within a continuum is governed by the law of 

conservation of energy. If heat conduction is neglected, the local equation of energy flow 

balance is derived from the field equations (2.60)-(2.68) (see, Xing & Price 1999). 

Multiplying the motion equation (2.60) by the velocity V/, we obtain 

and by using equation (2.72), it follows that 

j j ~ ~ ^iP^i ~ ^ ' (2.75) 

where ^ ^ d e n o t e s the rate of change of kinetic energy per unit 

volume. The strain energy density U and energy dissipation per unit volume D in a 

continuum is defined by (see, for example, Xing & Price 1999) 
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^ -jo' 

^ = J o " = />«%'"• (2-77) 

From equations (2.64)-(2.66), (2.76) and (2.77), the second term on the left hand of 

equation (2.75) can be expressed as 

= (/ + ^ . (2.78) 
'<J U \ U I J ) IJ 

Thus, the final form of the local equation of energy flow balance is given by 

(2.79) 

where qj = v^fi denotes the rate of energy input and E = K + U the rate of change of 

mechanical energy representing the ability of the continuum to store mechanical energy. 

This equation, defined at any point in the continuum, states that the divergence of the 

energy flow density vector, i.e. the rate of energy transmission, equals the difference 

between the rate of energy input and the rate of energy stored and dissipated. The 

integration of the local energy balance equation (2.79) over the space subdomain ^2, 

closed by the surface 5- (see, figure 2.3) and using Gauss divergence theory allows the 

integral equation of energy flow balance to be rewritten in the integral form 

(^y - E - D)6fO . (2.80) 

The integral of the rate of energy flow on the surface 5 represents the power flow out 

of the closed surface j through the work done by the traction Tj. That is, 

£ qjVjds = -v jTjds. (2.81) 

The integral equation (2.80) of energy flow balance states that the total power flow 

out of the surface of the subdomain iS, through the rate of work done by the traction 

force on its surface 5, in conjunction with the total rates of change of mechanical energy 

and energy dissipation in domain £2s balance the total power of work done by the external 

body force in this subdomain. If the integration is on the whole system B which is fixed 

or free at its boundary, there is no power output or input except excitations. Therefore, 

equation (2.80) becomes 
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gy (fQ = jg - (^82) 

This means that the total input power of external excitation balances the total rates of 

change of mechanical energy and energy dissipation in the system at any instant. 

In the case of harmonic motions, the kinetic energy and the strain energy remain 

unchanged after every cycle and for stationary random processes (see, for example, 

Newland 1975 or Price & Bishop 1974), it follows that the time averaged values of the 

rates of change of kinetic energy density, the strain energy density are all zero, i.e. 

X:) = /[7\ = /E\ = 0. (2.83) 

Therefore, the time averaged power flow balance equation in the whole system is 

given by 

= (2.84) 

This means that the total input power of the system in a period of excitation balances the 

damping dissipation in this period. 

44 



3. A 5'w6jfrwcfwrgj^proacA 

3.1. Introduction 

A substructure or a component mode synthesis approach is usually applied in a finite 

element analysis to reduce the number of degrees of freedom in the dynamic analysis of 

large complex structures. Such methods involve dividing the structure into a number of 

separate substructures or components. Each substructure is represented by modal 

substitution of a finite element model, a theoretical model or an experimental test model. 

All the substructures are then assembled together by applying interface conditions and 

the complete structure analysed. In this way, one large eigen problem is replaced by 

several smaller ones. 

As mentioned previously in Chapter 1, the main advantage of such a technique is 

that long computer runs are avoided for a large, complicated structures. 

There exist two major kinds of substructure approaches. That is, the fixed interface 

method described by Graig & Bampton (1968), Singh (1978) and the free interface 

method discussed by Cromer et al. (1976), Craig & Chang (1976). The basic steps of 

these two substructure approaches are the same. The approach presented herein may be 

classified as a free interface method but it differs from the traditional substructure 

method by the fact that (i) it does not require the eigen-solutions of the system and (ii) it 

derives the interface and system responses from the substructure modal parameters. 

3.2. Basic Steps in the Substructure Approach 

3.2.1. Division of the Structure 

In any substructure approach, the first step, is to divide the complete system into a 

number of substructures. This is illustrated in figure 3.1 where a solid continuum system 

B with a closed surface S is divided into N substructures with total interfaces Nj. A whole 

system can be divided theoretically into any number of substructures of any shape. 

However, the basic rule of the division of the substructure is based on the geometrical or 
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structural features. For example, the L-shaped plate system shown in Figure 5.2 is easily 

divided into two substructures, each substructure is a rectangular plate. The wings and 

fuselage of an aircraft are usually treated as different substructures according to their 

geometrical and structural characteristics. 

Figure 3.1. Division of a system B into substructures. 

3.2.2. Substructure Receptance Analysis 

The second step is to determine the receptance or frequency response function of 

each substructure. Every substructure can be treated as an independent structure excited 

by prescribed external excitations and time, frequency dependent internal interface 

forces f y \ It is assumed that each substructure is a viscoelastic body and modal 

analysis applied to determine the receptance of each substructure. The key function of the 

modal analysis is to determine the natural frequencies and principal modal shapes of each 

substructure. Usually, three kinds of approaches are adopted to investigate the natural 

vibration of an engineering structure, i.e., theoretical solution, numerical calculation and 

measurement. 

Theoretical Solution of Free Vibration of a Continuum 

In some cases, when the geometry of the continuum is relatively simple (i.e., 

uniform beams, plates, etc), analytical solutions of boundary value problems can be 
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generated without too much difficulty. The free bending and longitudinal vibration of 

uniform beams under almost all kinds of standard boundary conditions can be solved 

theoretically. However, for uniform plates, only a few cases have exact theoretical 

solutions. For example, a circular plate simply supported around its edge and a 

rectangular plate with two opposite simply supported edges. The free vibration solutions 

of uniform beams and plates are given by Meirovitch (1967), Timoshenko, Young & 

Weaver (1974), Bishop & Johnson (1979), Gorman (1982), Leissa (1993), etc and their 

solutions are discussed in the following chapters. 

The main advantage of analytical solutions in substructure approaches lies in the 

convergence of the summation process especially for calculation of the power flow 

density vector because modes and internal forces have formulated expressions. 

Numerical Approach 

Many complex engineering structures are assembled with a wide range of different 

structural components and their receptance functions cannot be determined analytically. 

To circumvent these difficulties, analysts have applied various numerical techniques to 

the boundary value problems of elasticity, structural mechanics and vibration. 

The essential feature of numerical methods is that the original boundary value 

problem is replaced by a finite set of simultaneous algebraic equations. The solution of 

this set of simultaneous equations provides an approximation for displacement or stress 

in the continuum. This feature makes these methods readily amenable to computer 

implementation. The more popular numerical approaches are Ritz method, weighted 

residual method, finite difference method and finite element method (see, for example, 

Zienkiewicz 1971 or Reismann & Pawlik 1980). The finite element method (FEM) is the 

most widely used computational scheme to solve problems in the theory of elasticity and 

vibration. 

The idea behind the FEM is quite simple and physically appealing. The given 

structure is viewed as an assembly of a finite number of elements. These elements are 

normally chosen because they occur naturally, such as the members in a truss or frame, 

or because they possess a simple geometrical shape. The displacement in each element is 

then determined or assumed in terms of its values at certain points in the element called 

nodes. The nodal degrees of freedom, as they are called, determine the desired solution 
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within each element. When the elements are pieced together to form the structure of 

interest, one obtains a piecewise approximation for displacement in the entire structure in 

terms of the as yet unknown nodal degrees of freedom. The total displacement field is 

then required to satisfy either a variational principle, a conservation law, or an 

equilibrium condition. This requirement results in a set of linear eigenvalue equations 

which can be solved for the natural frequencies and mode shapes associated with the 

continuum. Detailed explanations of finite element vibration analysis are given by 

Zienkiewicz (1971) and Petyt (1990). 

In the substructure approach, each substructure of the continuum system is 

discretized, the dynamic equation of motion of the form with a loss factor is 

described by 

M ( / ) 

where M (/) 

+ (l + , 7=1,2,..., TV, (3.1) 

, denote the mass and stiffness matrices of the Zth substructure, 

j the vector of nodal degrees and the vectors of external exciting 

nodal forces and coupling forces at the nodes of the interface of the /th substructure, 

respectively. There exist several methods to solve the linear eigenvalue problem of 

equation (3.1) given by the equation 

M {!) , ( f ) + K ( / ) , ( / ) 
0. (3.2) 

For example (see, Petyt 1990), the Jacobi method to solve for all eigenvalues and 

eigenvectors simultaneously, or a subspace iteration method for solution of large 

eigenvalue problems. 

Experimental Investigations 

If a particular substructure is difficult to model using finite element techniques, its 

modal representation and receptance function can be determined experimentally and 

included in a substructure synthesis. It is simpler to test the modal component with free 

interface boundaries rather than fixed, and therefore a free interface method is easier to 

use to derive test results. Examples of the combined use of theoretical and experimental 

models are discussed by Cromer & Lalanne (1976). For a dynamic analysis, a value of 
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the damping loss factor is necessary but cannot be obtained analytically and therefore 

resort to experiments is the only way to obtain such information for engineering 

structures. 

3.2.3. Substructure Synthesis 

The last step in a substructure approach is synthesis of the substructure equations 

using the displacement compatibility condition and force balance equations at the 

interfaces of substructures. At an interface between two substructures, the displacements 

determined by substructure modal analysis at the interfaces of these two substructures 

should be same and the coupling forces balance. The assembly of the displacement 

compatibility and force balance conditions at all interfaces of the system allows the 

coupling forces between the interfaces of substructures to be determined. 

3.3. Mathematical Model of the Substructure Approach 

3.3.1. Receptance Function of a Substructure 

Similar to 2.5., a standard Cartesian tensor notation and a summation convention are 

used herein. Let us examine the dynamics of an elastic body B occupying a domain Q 

which has its fixed boundary Su and traction boundary St. It is assumed that this elastic 

body is subject to a prescribed boundary displacement = 0 on boundary 5„, traction 7} 

on boundary St and body force f i . All these forces are assumed to be harmonic variables 

with frequency co. 

In the substructure approach, the elastic body is divided into a number of 

substructures. This is illustrated in figure 3.1 where a whole system B with a closed 

surface S is divided into N substructures with total interfaces Nj. Each substructure I with 

its domain prescribed displacement boundary S^^ \ traction boundary S^̂ ^ 

and interface {J=l,2,...,Nij, where Nu is the total interface number on 

the /th substructure) is treated as an independent structure but excited by external 

excitations and time, frequency dependent internal interface forces f y \ The 

governing equations describing the dynamics of this body are as follows (see, for 
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example, Xing & Price, 1999). 

Dynamic equation of motion 

+7̂ '% , 7=1,2,...^. (3.3) 

Constitutive equation 

4 " = c"'?''), C<'' = c<'>(l + i»,), (3.4) 

Strain - displacement relation 

% 
(/) 1 

{"U +",[?) (3.5) 

= uj^^ = 0, X e Sl'\ (3.6) 

== jce aj/), (3.7) 

Internal interface force condition 

% E y = 1,2 , (3.8) 

where p is the density of the substructure, denotes the Jth interface of the /th 

substructure. 

If the traction boundary S j ^ is assumed free, boundary condition (3.7) becomes 

(3.9) 

For a harmonic motion, a set of boundary conditions which describe how the 

viscoelastic body is supported and how it comes into contact with other media along its 

boundary and interfaces (equations 3.6-3.9), together with the differential equation (3.3) 

of motion, constitute a boundary-value problem. 

According to a theorem due to Rayleigh (1894), any distortion of a substructure may 

be expressed as an aggregate of distortions in its principal modes. That is 
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r=\ 

(3.10) 

where , p'-'" '̂̂ ^^(r) denote the rth principal modal shape and principal co-ordinate 

of the hh substructure in the system and n modes are admitted into the analysis. From 

equations (3.3)-(3.9), the boundary-value problem of no damping free vibration is given 

by 

d i i ) 

X G. S U) 

The natural vibration of the elastic structure is given by = Ul'^e"^ from which 

it follows that 

4 i M f , S = o . (3.12) 

= 0, X E 5' ( / ) 

The natural frequency co^ and mode shape (r =1,2,..., n) are determined 

from equation (3.12) using analytical, numerical or test methods. These principal mode 

shapes of a three-dimensional elastic structure are orthogonal as discussed in Appendix A 

and satisfy 

I r = q 

10 r ^ q 

(p 

'rq^T 0 r^q 

C113) 

(3.14) 

where is the Kronecker delta and a generalised modal mass. 

From equations (3.4), (3.5), (3.10) and (3.11), the differential equation of motion 

(3.3) of the /th substructure under a harmonic excitation takes in the form 
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- = y ; / ' ' , ^ ( 3 . 1 5 ) 
r=l r=l 

with boundary conditions and internal interface force condition as follows 

= (3.16) 
r=l 

72 
^ = 0, z E , (3.17) 
r=l 

s . (3.18) 
r=l 

(Z = 1,2,3,..., y e # , J . 

Pre-multiplying equation (3.15) by , integrating over the domain and 

using boundary conditions and internal interface force conditions (3.16)-(3.18), Green 

theorem (see, for example, Fung 1965) and the orthogonality of the principal mode 

shapes (3.13), (3.14) yields the principal co-ordinate in the form 

p " , j f . (3.19) 
m^(A) - 6)"̂  +1( )'̂  j 

Furthermore, if the traction boundary is assumed free and the external exciting 

forces and internal coupling forces are assumed concentrated forces, using equations 

(3.10) and (3.19), the distortion at any interface of the /th substructure can be expressed 

as 

, 7=7,2,.. . , M (3.20) 

where and denote the interface receptance function under external excitations 

and internal coupling forces of the /th substructure respectively. 

Therefore, the response of the viscoelastic continuum is determined after the natural 

frequencies and principal modal shapes of the structure are determined. 
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3.3.2. Coupling Relation and Synthesis of Substructures 

In a continuum system, at any elemental surface A5 on the interface between any 

two substructures, the interactions between material lying on either side of this surface 

cause internal actions defined by the complex traction force vector (7=1,2,...,7V) on 

substructure representing the force per unit area acting on the interface 

Therefore, each sub-domain is treated as an independent uncoupled system with two 

kinds of force acting on it. One is the external exciting force whereas the other is the 

internal coupling traction force applied at the interface. These latter quantities are 

unknowns which must be determined. This is achieved through the force balance 

conditions and geometric compatibility equations at all interfaces, which allow a set of 

linear simultaneous equations to be constructed. These equations can be solved and the 

coupling forces determined. The internal traction force balance condition and the 

displacement compatibility equation at any point over interface of two adjacent 

substructures I and J (see, for example, figure 3.2) are given by 

and w ; ( / ) ( / ) 
on 5 (3.21) 

respectively, where I< N ,J< Nu and J I. 

Figure 3.2. Schematic illustration of interface condition between two substructures. 

In engineering applications, the interface 5*̂ "̂  should be divided into a series of (for 

example, Nsu) small areas As. Assuming there exists Ki external exciting force in the 

displacement response at any position of an interface of each substructure determined by 

either a theoretical model or a PEA model under the external exciting forces and 

53 



3. A Substructure Approach 

internal coupling forces having the matrix form 

( / / ) 

^^SIJ xl 

(=7,2,J,7=;,2,...,M (3.22) 

The displacement response and interface force vectors of a substructure given by 

equation (3.22) are usually expressed in a local co-ordinate system. These are related to 

those in the global co-ordinate (xj, X2, xj) by an orthogonal co-ordinate transformation 

matrix [fr] (see, for example, Reismann & Pawlik 1980) expressed as 

tr ( / ) 

Therefore, the coupling relations given in equation (3.21) become 

J 3x3 L ' J 3x1 L . 3 x 3 1 J 3x1 

and 
L J&3I ' J&u J&3L' J&u 

on 

(3.24) 

(3.25) 

The assembly of the coupling relation equations (3.24) and (3.25) at all interfaces of 

the system and their combination with the receptance function (3.22) of all N 

substructures yield a homogeneous set of linear algebraic equations for the coupling 

forces and displacement {i=l,2,3, 1=1,2,...,N) at all interfaces. It 

therefore follows that the response of the whole system can be determined after solutions 

of the receptance functions of all substructures. 

If the whole system contains only two substructures as illustrated in figure 3.2, the 

synthesis process is relatively simple. For example, the force balance condition and the 

displacement compatibility equation at all positions of the interface take the simplified 

form 

-i3Nj;j2x3Af̂ i2 ^ J 3/̂ 512̂ ^ 

I J 3̂ 1̂2X1 L 

( 2 ) 

3W512X3N512 J 3̂ 512̂ 1 
(3.26) 

(2) 

I J2 
= 0,on/^^{ (3.27) 

3̂ 5,2X3̂ 512 I J 3̂ 512X1 

where denotes the co-ordinate transformation matrix of all points of the interface 
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of substructure I and j 
3A'J12X3A'5I2 

The substitution of equation (3.22) into equation (3.26) gives 

f r f ' J ] 0 0 0 

0 [frf 'J 0 0 

0 0 0 

0 0 0 

, 7=1,2. 

(1) 
Tr 

= [ r r 

3A'̂ i2x3A'̂ 12 ' 

(2) ' 

3̂ 512X3 A'̂12 

+ 
^ r J ^,xi 

R (1) 

^ r J ATzxi 
(2) (ir^2)l 

3Â512X1 

3̂ 512X1 

(128) 

and the coupling force vectors at interface determined from the equation 

{ Tr ( 2 ) R 

Tr' 

(2) 

+ 

R (1) 

X 

(3.29) 

(3.30) 

It follows that the responses of all substructures are determined using equation 

(3.10). 

In many engineering applications, substructures are connected by spring dampers. In 

the general situation, these spring dampers are treated as independent substructures. If the 

spring dampers between the interfaces are assumed massless, to simplify calculation, the 

couplings between substructures are treated as compliant and dissipative. Let us assume 

that the dampers are described by a complex stiffness value at any position in the 

interface given by 

- -^D(1 + • (331) 

The force balance condition and the geometrical compatibility equation in equations 

(3.26), (3.27) become 

Tr (1) (332) 

(3.33) 
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Using the equation (3.22), we find that the coupling forces at the compliant and 

dissipative interface can be written as 

Tr (1) r(l) 

Here [l] is a unit matrix. 

(3.34) 

3.4. Power Flow Across an Interface 

According to the general definition of power flow in equation (2.69), the power flow 

across an interface at any position x on the interface of the 7th substructure is given 

by 

^(')(x) = -Re{iZy)(x)}Re{7;.(')(x)}, (3.35) 

where the elements u[^\x) and 7ĵ ^ (̂x) (x e ; 7 = 1 , 2 , J g N J J . ) are the 

averaged velocity response and coupling force over a small area As, respectively. 

The total power transmitted across the interface s'"'̂  is 

with a time averaged value over a period of excitation of 

(3.36) 

(3.37) 

56 



4. Power Flow Analysis of Indeterminate Rod/Beam Systems 

4. POWER FLOW ANALYSIS OF INDETERMINATE 

]g&o]]VTE(iGvUvi ZSTfiSTnEivis; 

In this chapter, the power flow characteristics of two indeterminate vibrating systems 

consisting of three rods and eight beams, respectively, are examined. The first one is a 

segment of a rod-truss system, which is used widely in engineering. Usually, only 

compressive responses in the rod are considered in a static analysis and/or in the low 

modal density range analysis of the rod-truss system, but herein bending influence is also 

examined because there may be many bending modes in the frequency range under 

investigation. The second example consisting of eight beams also examines in both 

bending and compressive influences. A theoretical modal substructure approach is used 

to evaluate the vibration power flow characteristics of these systems. Hence, natural 

frequencies and mode shapes of the single rod/beam are first determined and then a 

receptance function or frequency response function is derived for the coupled system. 

This is achieved by introducing geometrical compatibility conditions which supplement 

the normal dynamic equations describing the vibrating characteristics in the 

indeterminate system. Both instantaneous and time-averaged power flows in the 

rod/beam systems are calculated and their characteristics discussed. 

4.1. Theoretical Receptance Function of a Single Uniform Beam 

The receptance analysis presented here is based on modal analysis. This implies that 

the natural frequencies and modal shapes of the substructure are first determined and then 

the receptance function or frequency response function of a single uniform beam derived 

from a theorem due to Rayleigh (1894). 

Usually, three kinds of vibrations exist in a single beam. That is, axial, torsional and 

flexural bending vibrations. The receptance function of a uniform beam under all 

standard boundary conditions can be derived theoretically. If the beam vibrates in a 

plane, there is no torsional vibration component, but this must be considered when the 

system vibrates in three-dimensions, as arises for a beam coupled to a plate. 
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Here a substructure is treated as an idealised system consisting of a single uniform 

beam of length I (see, figure 4.1). This beam of uniform cross-section area A, moment of 

inertia / and polar second moment / is made of material of mass density p, elastic 

Young's modulus E, shear modulus G and its structural damping properties are 

represented by a linear Voigt viscoelastic model with hysteretic damping or loss factor 77. 

Figure 4.1. A uniform beam and its coordinate axis system. 

It is assumed that the axial, torsional and transverse beading responses of the beam 

are uncoupled. This allows these vibrations to be determined independently. 

4.1.1. Axial Vibration of a Uniform Beam 

For axial extension vibration it is assumed that cross sections, which are initially 

plane and perpendicular to the axis X of the beam, remain plane and perpendicular to that 

axis and that the normal stress in the axial direction X is the only component of stress. 

The free vibration equation describing the axial displacement u^(x,t) (see, for 

example, Meirovitch 1967 or Warburton 1976) is given in the form 

-zr/i 4-/34" ' == 0 (4.1) 

with stress-displacement relation 

= = (4.2) 
ox 

For free vibration it is assumed that the displacement is a harmonic function of time, 

i.e. 

= (4.3) 
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The substitution of this equation into equation (4.1) gives the auxiliary equation for 

Ux in the form 

P dx 

with solution 

sin ^ ^ cos . (4.5) 

The coefficients in equation (4.5) are determined by utilising the boundary 

conditions. When the beam is clamped at x=0, free at x=l, the natural frequencies co^ and 

principal mode shapes (p̂  are given by 

(4.6) 

cp^ = sin — = sin^^x, r=l,2, (4.7) 

When the beam is free at both ends, the natural frequencies cô  and principal mode 

shapes cp̂ . are given by 

(Wr (4.8) 

(p,. =cos^^ = cosk^x, r=0,l,2, (4.9) 

It can be shown that these mode shapes are orthogonal (see. Appendix A), satisfying 

the condition 

j^^^(z)^^(A;)ak = 0, (4.10) 

for a uniform beam. 

If an applied force f^it) acts in the X direction at the free end of the beam at x=l, the 

equation of motion describing the axial displacement u^{x,t) is given in the form 

+ = (4.11) 
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where 5{x) denotes the Dirac delta function. 

When the assumed solution from Rayleigh's theorem (equation 3.10) is substituted 

into the equation of motion (4.11) and the resulting equation multiplied by cp^ix) prior to 

integrating with respect to % over the length of the beam, the equation describing the rth 

principal co-ordinate expressed as 

A[E(1 + f 

for r = 1,2,3, ,n. If the applied force is harmonic and given by 

BL12) 

/ ^ ( f ) = (4.13) 

the principal co-ordinate is defined by the expression 

Jo 0 (4.14) 

_ [((Or 

p/ 2 
where m^ = j^pA(p^(x)dx denotes the generalised modal mass of the beam. The 

substitution of equation (4.14) into equation (3.10) gives the axial displacement of the 

beam at position x,0<x<l. That is 

' ' " A + ' 

together with the vibration velocity, 

,2 , . ,2\ 

VU.,) - UAXJ) - 1 

_ V ^(PR^^)(PRI^)PX UOX+CPU) 
(4.16) 

1 /^ 
^̂=1 [((u^ - 6) ) + /; 6;% y 

where 
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= tan" 
r=l/Mr 

is the phase angle 

between the velocity and axial applied force. 

4.1.2. Torsional Vibration of a Uniform Beam 

For torsional vibration, it is initially assumed that the cross section of the beam is 

circular. The cross sections of the beam initially perpendicular to the axis X remain plane 

and their radii remain straight during deformation. Then from elementary elasticity 

theory (Reismann & Pawlik 1980) the torque-twist relation is 

(4T7) 

where is the torque at section %, is the angular rotation about the X axis. From 

consideration of the dynamic equilibrium, the free vibration equation describing the 

angular rotation (see, for example Warburton 1976) is given in the form 

- C 
2 9^^;,(x,f) 

DX^ 
+ • = 0 0L18) 

where C2 = j is the velocity of propagation of shear waves in the material. 

Equation (4.18) has the same generic form as the axial extension differential 

equation (4.1), thus its natural frequencies are similar to those expressed in equations 

(4.6) and (4.8) with G replacing E. For example, for a beam free at both ends, the natural 

frequencies co,. and principal mode shapes (p^ are given by 

r7l G 
BL19) 

RMC 
(p^ = cos-j- = cosk^x, r=0,l,2,. (4.20) 

For a beam clamped at both ends, the natural frequencies cOj. and principal mode 

shapes q}̂  are given by 
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rjr I CT 

J - , (4.21) 

(p^ = = s,ixik^x , r=l,2,3, (4.22) 

For non-circular cross sections the torque-twist relation can be expressed as 

/kf; == (4.:!3) 

where K denotes a numerical factor depending on the cross sectional dimensions. The 

only change in the analysis is that Ci is refined as Q = . Thus for non-circular 

sections the solution depends on the dimensions of the cross section. Timoshenko & 

Goodier (1970) give an extensive treatment of the torsion of non-circular rods and 

include data from which the factor K can be determined. 

The angular rotation response of the beam under an external torque M at position 

Xe, 0 < Xg < I has a similar form to that expressed in equation (4.15). That is 

rl « 

Here, the rth modal mass m^ - pJ(Pr (x)dx . 
Jo 

4.1.3. Bending Vibration of a Uniform Beam 

For transverse bending vibration, the beam is treated as a simple Euler-Bernoulli 

beam. It is assumed that planes which are normal to the beam axis X in the non deformed 

state remain plane in the deformed state and the vertical displacement of all points on any 

normal cross sectional plane is the same. The effect of rotary inertia and transverse shear 

deformation are neglected. A more sophisticated theory may be adopted e.g. assuming a 

Timoshenko beam, Vlasov beam, etc, which add complication to the analysis without 

contributing additional insights into the power flow mechanisms. 
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pAdxiis 

Q^ dQ/dx)dx 

M+( dM/dx)dx 

Figure 4.2. Element of beam in flexure. 

As shown in figure 4.2, the free vibration equation describing the transverse 

displacement Uy(x,t) (see, for example, Meirovitch 1967 or Warburton 1976) is given in 

the form 

- E 7 — + /3A-— 
ax"" 

with stress-displacement relation 

DT' 
0 (4.25) 

da 
04.26) 

where Qix,t) and M(x,t) denote the shear force and bending moment at section x. 

(4.27) 

For free vibrations, Uy{x,t) is a harmonic function of time, i.e. 

and the substitution into equation (4.25), the auxiliary equation for Uy is given by 

04 28) 

04.29) 

with solution 

Uy = sin kx + Bj cos kx + B^ sinh kx + B^^ cosh kx. 04 JO) 

The coefficients in equation (4.30) are determined by utilising the boundary 

conditions. The standard end conditions are 

63 



4. Power Flow Analysis of Indeterminate Rod/Beam Systems 

(a) simply supported, for which the displacement and bending moment are zero, i.e. 

&r,:=0 auid z ==(); (431) 
/ me 

(b) fixed or clamped, for which the displacement and slope are zero, i.e. 

and = 0; (4.32) 

(c) free, for which the shear force and bending moment are zero, i.e. 

0 arid 0. (433) 

Generally, the boundary conditions used in a free-free interface substructure 

approach are one end free, the other simply supported, fixed or free. 

When the beam is clamped atx=0, free atx=l, the end conditions are: 

At x=0, Uy=0, i.e. B2+B4=0. (4.34) 

At z=0, = 0, i.e. (4.35) 

At x=l, ^ - 0, i.e. /:^g|(-sin&:Z - s i n h H ) + cos - cosh ^Z) = 0. (4.36) 
/ 

At x=l, i.e. ^^&(s inM-s inhH) + ^%i ( - cosH-coshAZ) = 0. (4.37) 
/ 

Eliminating B]/B2, we derive the frequency equation 

cos A:/cosh/:/+1=0. (4.38) 

The successive roots kj, k2, ks, ... of equation (4.38), from which the natural frequencies 

are obtained, are given by 

kil ~ 1.875, ~ 4.694, k^l ~ 7.855, k^l ~ (r-05)71 for r > 4; and 

with its principal mode shapes 
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, \ , 7 , cosALZ + CKKih/LZ, . , , . , ^ 
(pJx) = cosh.k^x-cosk^x — ( s i n h - s m , r=l,2,... (4.40) 

sin k^l + sinh k^l 

For a beam simply supported at x=0, free at x=l, the frequency equation is given by 

cos kl sinh kl - cosh kl sin kl-Q, (4.41) 

with successive roots, 

= 0, = 3.927, » 7.069, = (r-0.75);r for r > 4. 

The natural frequencies have the same form as addressed by equation (4.39) and the 

principal mode shapes are given by 

% r = l 

. , sin A;/ . (4.42) 
smK„x + — sinhAr^x r = 2,3,4,... 

" s i d i t J 

For a beam free at both ends, the frequency equation is given by 

cos cosh = 1, (4.43) 

with successive roots, 

kil = Q, k2l = 0, k'^l ~ 4.730, k^l ~ 7.853, k^l ~ 10.996, k^l ~(r- I5)n for r > 6. 

The natural frequencies have the same form as expressed in equation (4.39) and the 

principal mode shapes are given by 

1 r = 1 

(4.44) 
, , , sinhkd + ?:mkd , . ^ . . . . . . _ 

cosk^x + cosh^^x + — (sm^^z + sinhK^x), r =3,4,5,... '' cosh k^l - cos k^l 

The orthogonality condition of mode shapes is 

j^^^(x)^^(x)A; = 0, (4.45) 
JO 

for a uniform beam. 

If a harmonic distributed applied force_^(%)g^^ acts in the Y direction along the 

length of the beam and a harmonic concentrated force Qe^'^ as well as a moment 
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act at the free end of the beam x=l, the equation of motion describing the transverse 

displacement Uy{x,t) is given in the form 

(4.46) 

When the assumed solution from Rayleigh's theorem (equation 3.10) is substituted into 

the equation of motion (4.46) and the resulting equation multiplied by (p^ix) prior to 

integrating with respect to x over the length of the beam, the equation describing the rth 

principal co-ordinate p^(r)is expressed as 

[E/(l + i?7)^r P r ( 0 - (5^(x)dk = 

ri ~ ~ f/ d(MS(l — x)\ 
L (;c)/y (%)^ + f - ;c)dk - J 0 / % ) -

(4.47) 
JClM 

for r = 1,2,3,- ,n. 

Since (see, for example, Riley, et al 1998) 

<2(̂ (Z - x)^x%)ck = G ^ / Z ) , 

dx 
-dx = f 

= M 

dx ""O 

= 

A: - - %) (fx: 

(4.48) 

(4.49) 

x=l 

the principal coordinate is defined by the expression 

f r ( 0 = 
(6)^ - (U^) - j ^ ^ ( x ) ^ X x ) d k + Gf ' r ( 0 + j 

(4.50) 

f/ A 

where = ^^pA(p^(x)dx. The substitution of equation (4.50) into equation (3.10) gives 

the transverse displacement of the beam at position x, 0<x<l. That is 

W),(;t,f) = % -
r = l 

(4.51) 
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together with the vibration velocity, 

n 0) _\__r - / • n 

S MA{C^L-O?F + RFO^U 

= v(x,f) 

(4.52) 

These solutions are the receptance functions and have form similar to equation 

(3.19). 

4.2. Power Flow Characteristics of a Single Uniform Beam 

After accounting for the different ways power flows through the rod and equation 

(3.35), the instantaneous power flow in the rod at section % is given by: 

^(z , f ) = -Re-[w^(x,f)jRej^N(x,r)j - Rejwy(z,r)jRej^G(A;,f)j + Rej#(%,f)jRe{M(z,f) j , 

(4j3) 

where N{x,t), Q{x,t), M(x,t) denote the axial force, transverse shear force and 

bending moment respectively. The sign of the third term on the right hand side of 

equations (4.53) is dependent on the directions of M and 6 based on the sign convention 

of elasticity theory (see, for example, Reismann & Pawlik 1980). 

The time-averaged value of power flow over a period of excitation T at position % is 

given by 

(g'(x, O) = ^ f - (4 54) 

It is easy to obtain from basic beam theory all the parameters in equation (4.53) and 

those in equations (4.16), (4.52) respectively. The definition of power flow given by 

Goyder & White (1980) or Cremer et al (1988, Chapter 4, equation 129), i.e. 

P =-^Re|7(;v:,r)v*(x,o| , where v*'ix,t) is the conjugate of the velocity, is the time-

averaged power flow of equation (4.53), and hence, is equivalent to equation (4.54). 
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For illustrative purposes and to simplify analysis only, a one end free another end 

fixed steel rod of mass m=3120 kg, with properties 7; = 0.015, £ ' /p=2.69xl0 ' m^/s^, 

length /=10 m, section area A=0.04 is examined under a unit amplitude excitation in the 

axial direction at the end of the beam. That is, transverse bending is not considered in this 

example such that the instantaneous power flow in the rod simplifies to 

= - [ / (x)r (x)cos(^^(x)-^Y'(^))cos^((W + ^y.(x)), (4.55) 

+^[/(A:)r(%)sin(^^(x) - ^y.(z))sin2(G;f + 

where U(x) and T{x) are the amplitude distributions of axial velocity and traction force 

respectively, (Pj{x) is the phase angle between the traction force and axial exciting force. 

This equation is similar in form to the instantaneous sound intensity derived by Fahy 

(1989) and has two components; (i) an active component, of which the time averaged 

value is non-zero, corresponding to local transport of the energy; and (ii) a reactive 

component, of which the time averaged value is zero, corresponding to local oscillatory 

transport of energy, that is, the local transport between kinetic and potential energy. 

Figures 4.3 and 4.4 illustrate the magnitudes of response velocity, traction force and 

power flow distributed along the rod at frequencies of 200 Hz and 388.9 Hz. The 

frequency 388.9Hz corresponds to the resonance frequency of the second natural mode of 

the rod. In this case, the magnitude of input power and time averaged input power 

induced by the unit amplitude excitation have the same value of 8.74xl0"®w. The 

frequency 200 Hz corresponds to a non-resonance condition, its magnitude of input 

power and time averaged input power induced by the unit amplitude excitation have 

values of 2.71x10'^ w and 8.59xlO~'w respectively. 
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velocity at resonance 
velocity at non-resonance 

Traction force at r e s o n a n c e 
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Figure 4.3. Distribution of the magnitudes of velocity and traction force. 
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Figure 4.4. Distribution of power flow along the rod. 
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As shown in figure 4.3, at the resonance frequency of 328.9Hz, the response velocity 

and traction force along the rod experience minimum values at different position, thus 

creating two troughs in the power flow distribution curve as shown in figure 4.4. At a 

non-resonance frequency of 200 Hz, only the traction force exhibits a minimum value 

producing only a single power flow trough at exactly the same position on the rod. The 

magnitude of instantaneous power flow at any point along the rod (i.e., 0< x< I) may be 

larger than the magnitude of instantaneous input power of the exciting force at x=l due to 

the influence of resonance. The reactive power along the rod in equation (4.55) has 

different phase angles and the reactive power at some points may be opposite to those 

observed at other points. This means some points of the rod store energy whereas other 

points release energy. Whilst the rate of energy transfer between kinetic and potential 

energy at some sections of the rod is larger than the input power, the magnitude of 

instantaneous power flow at these sections is larger than the magnitude of instantaneous 

input power of the exciting force. The distribution curve of the time averaged power flow 

does not exhibit troughs along the rod in both resonant and non-resonant conditions as 

shown in figure 4.4. The time averaged power flow values always increase with 

increasing x along the rod. This is due to the fact that in any period, the time-averaged 

power flow value in any section x is equal to the rate of total energy dissipation of the rod 

from sections 0 to section x. 

4.3. Application to a Tliree-beam Indeterminate System 

2 

Figure 4.5. A three-beam indeterminate system 
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Figure 4.5 illustrates the three-beam system under examination. It is assumed that 

each uniform beam is constructed of the same material (i.e. same Young's modulus E 

and structural damping loss factor rf) but of different lengths / . (y = 1,2,3), moments of 

the inertia cross-sectional areas Aj and masses m^ = pljA.. Each rod is hinged at its 

base (see also figure 4.5) and connected at their ends at C where an external exciting 

force f { t ) = Fe'" acts causing axial traction forces Nj(t) and transverse shear forces 

G^ (r) at C. 

Because of structural damping, the axial traction force and transverse shear force in 

each rod at C is expressed in the complex valued form 

(4.56) 

Q 

where ,denote the phase angles between the external force f(t) and axial traction 

forceA^j(r), the external force f(t) and transverse shear force Qj(t) of the rod j, for 

j=l,2,3, respectively. 

For the simplified indeterminate system under examination, the force balance 

equation at C is given by 

Ni(f)sin(%+ <2i(r)coso: + QgCO - ^3(r)sin/g + = / ( f ) c o s / , 

^ i ( f ) c o s ( 2 - 0 i ( O s i n a + iV2(?) + N'^it)cosl3+ Q-^{t)sml3 = / ( r ) s i n x , 

where the angles are defined in figure 4.5. For solution, this set of equations must be 

supplemented by a geometrical compatibility equation. That is, the distortions or 

velocities at point C of the three rods are the same in all directions, thus providing the 

conditions 

M^i(r)sina + M^j ( r )cosa- My2(0 = 0 

w^i(f)cos(Z- w^i(f)sinor- w^2(f) = 0 
, (4.58) 

-M^3(f)sin;g+ Wy3(r)C0S/?- = 0 

M^3(F)C0S)^+ WY3(F)SIN;^- ^ 

where u^j{t), Uyjit) denote the axial and transverse velocities, respectively, at point C of 
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the rod 

It follows from equations (4.16), (4.52) that the axial and transverse velocities at C 

in each rod of this indeterminate system can be expressed in the form 

, ( 4 . 5 9 ) 

where [/„•, . are the amplitude of axial velocity and the phase angle between axial 

velocity u^i t ) and traction forceA^y(f) at C of the jth beam respectively, Uyj, are 

the amplitude of transverse velocity and the phase angle between transverse velocity 

Uyj{t) and shear force Qj{t) at C of the jth beam respectively, for j=l, 2, 3. 

The information contained within the force balance equation (4.57), the geometrical 

compatible equation (4.58) and the receptance functions (4.59), (4.60) allow the traction 

forces Nj(t) and shear forces Qj(t) in each rod C to be determined. 

The real input power to each rod at connection point C is given by 

9 y ( f ) = R e { ^ ^ . ( f ) } R e { N y ( f ) } + R e { ^ y / r ) } R e | G / r ) } . ( 4 . 6 1 ) 

The substitution of equations (4.59) and (4.60) into the previous equation gives 

?j(f) = Re^ij^y . A / , / " " " " ' ' I Re lw , 

+ Rei U , j • 'I ' 

COS + cos(2(Mf + 2^;^. + )j + - I^cos + cos(2(Mf + 2 ^ g . + ) 

= ^ ((/x/AT ? cos cos ) + Cy cos(26Uf + ) 

( 4 . 6 2 ) 

and its time averaged value over a period T of excitation is 

( O ) = — j g y c o s G ; c o s , ( 4 . 6 3 ) 
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cos(2f?,^^ + cos(2f?^^ + ) 

^XJ 

2 
cos(2^;y. + cos(2^g. + )) 

; sin(2^;v^. + ) + [/^(2y sin(2^g, + )) 

The combination of these last two equations gives 

9 / 0 = ( 9 / ^ ) ) + ( 9 / 0 ) ^ 
•' \ J / \ J / C0S(Pj 

indicating that the power flow in each rod contains a component equal to its time 

averaged power flow value and hence constant in time but varying with frequency of 

excitation. Because of the influence of structural damping, cosg), >0, since (p . 9̂  90° and 

this component reduces in value as > 0. The dynamic component has an oscillatory 

behaviour of double the frequency of excitation. The instantaneous power flow q^it) 

expressed in equation (4.62) or (4.64) is similar in form to the instantaneous sound 

intensity component derived by Fahy (1989) and Bobrovnitskii (1999). It contains two 

components; an active component, with a non-zero time averaged value, corresponding 

to local transport of the energy and a reactive component, with a zero time averaged 

value, corresponding to local oscillatory transport of energy. 

Similarly, the input power at C due to the external exciting force is given by 

9 ^ ( 0 = Re{wXO}Re{/(f)}, (4.65) 

with a corresponding averaged quantity (^,„(0)> where u^{t) is the velocity along the 

direction of exciting force/( / j at point C. From the geometrical compatibility condition, 

the input power at C due to the external exciting force becomes 

= Re{w^2(0}Re{/(f)}sinx + Re{wy2(0}Re{/(f)}cos/ , (4.66) 

with the corresponding time averaged quantity (<?,„(0)-

It is interesting to note that expressions for the power flow balance condition at C 
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may be obtained by multiplying the geometric compatible equations by the velocity at C. 

Unfortunately, in this form these balance equations are difficult to handle in terms of 

deriving solutions of power flows. The basic power flow balance equation from the 

geometric compatible equation at C is given by 

9m (^) = 9]a) + 92(0 + %(0, (4.67) 

with time averaged quantity, 

+ (%(0). (4.68) 

Let us assume that the indeterminate system is defined by the data set: 

/j = 10m, Zg = 5m, /j = 5.7735 m, Aj = 0.04m^ = A2 = A3, 

/, = 7; - 4 -1-333 X10^ m \̂ 

p = 7.8 77 = 0.015; « = 60° , )g=30° ,F=1 .0N. 

The largest natural frequency for the substructure modal analysis of both 

compressive and bending vibration in each rod is chosen to be greater than ten times of 

the maximum frequency used in calculation. 

In the following presentation of predictions of power f low variation with frequency 

or time, figures 4.7-4.11 relate to condition y = 45° (see figure 4.5). Figure 4.7 illustrates 

the variation of the amplitude of power flow with frequency CO and non-dimensional 

frequency Q (Q = ) in each beam at C (i.e. equation 4.62) and the excitation 

power flow given by equation (4.65). Figure 4.8 shows their time average quantities, i.e. 

(qji t)) and(9,„(r)). Figures 4.9 and 4.10 present the same information in terms of Oct 

value. Figure 4.11 illustrates the time variation of the power flow quantities under 

investigation at an exciting frequency /„ =315Hz. Figures 4.12-4.15 show a selection of 

power flow results for y = 0°, 45°, 90° and 135°, allowing comparison with figure 4.9 to 

evaluate the effect of angle of application of the external excitation on the dynamic 

characteristics of the indeterminate system. 

Although the instantaneous excitation input power i?,„(?) is equal to the sum of the 

three input powers of each rod, as observed in equation (4.67) and figure 4.11, its value is 
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not necessarily larger than the individual quantities. This is due to the influence of 

resonance and the manner in which energy is transferred within the overall system. For 

example, the amplitude g,(f) is much larger than the amplitudes of org,„(0 but at 

any instant their phasing is such that the energy in the total system remains in balance. 

In contrast, as shown in figures 4.8 and 4.10, the time averaged excitation power 

is always greater in value than the other time averaged quantities. This is due to 

the fact that in any period, the time-averaged power of excitation is equal to the rate of 

total energy dissipation of the system, (see, for example, Lyon 1975, Fahy 1994 and Xing 

& Price 1999) and is equal to the sum of the energy dissipations in each rod, (see 

equation 4.68). As demonstrated in equation (4.63), each time averaged quantity 

contains a constant component contribution to the overall dynamics of the system, 

depending on both the amplitude of the instantaneous input power and the phase angle 

between the velocity response and the traction and shear forces. Their peak values occur 

at resonance because both values of amplitude of power and cos or cos . are 

largest. 

In the low frequency band range, figures 4.9 and 4.10 show both the instantaneous 

power and time-averaged power influenced by resonance but this diminishes with 

increasing frequency values. For frequencies greater than 1.25kHz, both instantaneous 

and time-averaged input powers expressed in the 1/3 Oct scale range are stable in form. 

This is due to the presence of more modes and an increased influence of damping in the 

higher frequency band range, indicating that SEA is an appropriate analysis tool over 

1.25 kHz. 

For the indeterminate system under examination, input power depends on the 

excitation, dynamic and geometrical characteristics of the structures. It can be seen 

clearly from the selected results shown in figures 4.12-4.15 that the input power of 

excitation and the power flow in each rod is related to the angle of excitation (figure 4.5). 

For illustrative and comparison purposes, figures 4.16-4.19 relate to condition 

y = 45° (see figure 4.5) and show a set of results including and excluding bending 

influences. That is, in the latter case, only the compressive response of the rod is 

considered. Figures 4.16 and 4.17 illustrate the variation of the amplitude of power flow 
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with y ^ O c t in each rod at C and the excitation power. Figures 4.18 and 4.19 show their 

time averaged quantities. 

Although there are many bending modes in the rod truss system, the amplitudes of 

instantaneous and time-averaged power flow in each rod at C and the excitation power 

flow have similar levels of magnitude in the middle and high frequency ranges for both 

conditions examined. There are obvious resonant bending mode influences below and 

near the first natural frequency (about 120 Hz) of compressive vibration of rod 1. These 

resonant influences in a time-averaged power flow analysis become larger and more 

noticeable because time-averaged power depends on both values of amplitude of power 

and cos , or cos (see, equation 4.63) with cosg)^^, largest in the bending resonant 

condition. 

4.4. Application to a Eight-beam Frame System 

2 0 3 0 - 2030 2030 2030 

Figure 4.6. A beam frame with eight members of lengths measured in mm (Beale & Accorsi 

The second example shown in figure 4.6 is a more complex beam system 

constructed using eight beam members. Their material and geometric properties are as 

follows: £=207 GPa, p - 1860 kg/m^, 77 = 0.01; section area of beams (1), (3), (5), (6), 
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(7)=203x203 (mm)^, section area of beams (2), (4), (8) =152x152 (mm)^. The frame is 

loaded at junctions A and C by harmonic forces f^{t) = 2225e^'^ N and 

f2i t ) = AA5e^^N respectively. This system was originally examined by Beale & 

Accorsi (1995) to assess its dynamic characteristics adopting a travelling wave model. 

Similar to the calculations described in example 1, a modal substructure approach is 

again used to calculate the power flow utilising the force (moment) balance equations 

and geometrical compatibility equations at junctions A, B and C. The substructure 

boundary conditions used here are one end fixed, one end free for beams (1), (2), (3), two 

free ends for beams (4), (7) and one end simply supported, one end free for beams (5), 

(6), (8). The expressions describing power flow at a junction are similar to those given in 

equations (4.66), (4.67) and (4.68). The power flow at a junction is zero (for example, 

junction B) if there is no applied external excitation force at this position because of the 

balance between internal forces and continuous displacements. 

Figures 4.20-4.22 illustrate the variation of the amplitude of power flow with 

frequency at junctions A and C. The calculated time averaged power flow values at 

junctions A and C demonstrate the same trends as those presented by Beale & Accorsi 

(1995). From figure 4.22, it is observed that the time averaged power flow at junction A 

produces negative values at several exciting frequencies implying that the direction of the 

exciting force f i ( t ) and the velocity are opposite to one another. This means that the 

exciting force source fi(l) at junction A absorbs power from the system and it behaves as 

an active control source at these frequencies. 
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W 0.0 

l.OE-04 

l.OE-05-l 

l.OE-06-

l.OE-07-

l.OE-08-

1.0E-09-

l.OE-10 

Figure 4.7. The variation with frequency of the amplitudes of the input power flows in the 

three rods j-1, 2 3 and excitation 
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Figure 4.8. The variation with frequency of the amplitudes of the time averaged input power 

flows in the three rods and excitation ( ^ , „ ( 0 ) -
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Figure 4.9. The corresponding information to figure 4.7 expressed in a 1/3 Oct scale (Ref. 

power 10"'^ W). 
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Figure 4.10. The corresponding information to figure 4.8 expressed in a 1/3 Oct scale. 
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4 
Time (s) xMi 

Figure 4.11. The variation with time of the input power flows in the three rods and the 

excitation at an exciting frequency of 375 Hz and angle of application of force, Y = 4 5 ° 

(see, figure 4.5). 
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Figure 4.12. The variation with frequency of the amplitudes of the input power flow to rod 1 

(see, figure 4.5) expressed in a 1/3 Oct scale for different angles of application of force y. 
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Figure 4.13. The variation with frequency of the amplitudes of the input power flow to rod 2 

(see, figure 4.5) expressed in a 1/3 Oct scale for different angles of application of force y. 
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Figure 4.14. The variation with frequency of the amplitudes of the input power flow to rod 3 

(see, figure 4.5) expressed in a 1/3 Oct scale for different angles of application o f f e r e e y. 
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Figure 4.15. The variation with frequency of the amplitudes of the excitation power flow 

expressed in a 1/3 Oct scale for different angles of application of fo rce y (see, figure 4.5). 
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Figure 4.16. The variation with frequency of the amplitudes of the power flow in rod 1 and 

excitation expressed in a 1/3 Oct scale. 
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Figure 4.17. The variation with frequency of the amplitudes of the power flow ^ 2 ( 0 ' 

in rods 2, 3 respectively expressed in a 1/3 Oct scale. 
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Figure 4.18. The variation with frequency of the time averaged power flow (<?i(^)) in rod 1 

and excitation ( f )^ expressed in a 1/3 Oct scale. 
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Figure 4.19. The variation with frequency of the time averaged power flow , 

( ^ 3 ( 0 ) rods 2, 3 respectively expressed in a 1/3 Oct scale. 
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Figure 4.20. The variation with frequency of the amplitudes of the power flow injunction A. 
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Figure 4.21. The variation with frequency of the amplitudes of the power flow injunction C. 
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Figure 4.22. The variation with frequency of the time averaged power flow in junctions A 

and C. 

85 



5. Power Flow Analysis in Coupled Plate Systems 

i) . IPlJUTIE gSTfSnriCAdCS 

In this chapter, the power flow characteristics of two coupled plate systems are 

examined. One is a L-shaped plate system and the other is a corner plate system. It is 

assumed that all substructures in these two systems are thin uniform rectangular plates. 

The substructure approach discussed in chapter 3 is used to evaluate the vibration 

power flow characteristics of the two proposed systems. Hence, natural frequencies and 

mode shapes of the single plate are first determined using both theoretical solution and 

FEA and then a mobility function or frequency response function is derived for the 

coupled system by introducing the force balance equations and geometrical compatibility 

conditions. Both instantaneous and time-averaged power flows within the system and 

across the coupling edges are calculated and their characteristics discussed. 

5.1. Substructure Analysis of a Coupled Plate System 

simply supported 

My.x(X,0) 

Myx(x,b) 

simply supported 

Figure 5.1. Schematic illustration of a uniform rectangular plate in the local co-ordinate 

system. 

Figure 5.1 shows a substructure treat as an idealised system consisting of a single 

rectangular uniform plate of length a and width b. The material properties of this plate 

86 



5. Power Flow Analysis in Coupled Plate Systems 

are mass density p, elastic Young's modulus E and its structural damping properties are 

represented by a linear Voigt viscoelastic model with hysteretic damping or loss factor rj. 

A harmonic external exciting force is applied at (x^, y^) and internal distributed coupling 

forces act on the free edge of the plate. 

5.1.1. In-plane Vibration of a Thin Rectangular Plate 

The basic underlying assumption of in-plane vibration of a rectangular plate lies in 

the fact that a small deflection and small slope in the deformed shape leads to a bending 

vibration in the plate which is uncoupled from the in-plane vibration. The differential 

equations describing in-plane vibration of a plate (see, for example, Leissa 1993) under 

excitation force vector position (x^,y^) are given by 

C^—-^ + C ^ — ^ + + + 6) (5.1) 
9% 9); pA 

By 9% 9x9} pA 

where are the displacements in the x and j directions respectively. 

c | = e/p{l~}/), Cj = £'/2/9(l + /i) denote the square of the longitudinal wave speed 

and transverse (in-plane) shear wave speed in the plate respectively, pi denotes the 

Poisson ratio and h the thickness of the plate. 

Theoretical solutions of equations (5.1), (5.2) are difficult to derive analytically 

because these two equations are coupled. Numerical methods, for example FEA, can be 

used to obtain accurate solutions for the in-plane vibration of the plate under different 

boundary conditions (see, Grice & Pinnington 2000). Langley (1989), Farag & Pan 

(1998) resort to an approximate method for simple engineering applications. They 

assume neglect of the coupling between displacement responses and resulting in 

the absence of the third term on the left hand side of equations (5.1), (5.2). The coupling 

between and w is due to Poisson effects and shear waves accompanying the 

longitudinal waves. The main emphasis of the present study is to assess the coupling 

between longitudinal and flexural vibrations of the plates at the coupling edge, so it is 

reasonable to neglect the influences of Poisson effects and shear waves in the manner of 
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Farag & Pan (1998). When the plate is assumed clamped at x=0, x=a, y=0 and free at 

y=b, the solution of equation (5.2) takes the form 

, (x ,y ,0 = 2 Z 4 . 
r=l i=l,3,5,' 

. TTtX . STTy 
Sin sm—^ 

a 2b 

jcot (53) 

The governing equation for in-plane vibration becomes 

S Z 
r=l J=l,3.' 

\2 
+ c# 

^ a y 
- 0 ) 

/ 
sin sin ~ ~S(x - Xg)5iy - y^) (5.4) 

a 26 

and after using the orthogonal property of the assumed principal mode shapes. 

A„ 
4 ? sin ̂  sin ̂  

' a 2b 

c l 

V « y 
+ C 

, 2 6 , 
- w 

(5.5) 

for r = 1,2,3, ,n and j' - 1,3,5, ,m . 

The displacement response in the x direction has the same form as described in 

equations (5.3), (5.5). These solutions can be expressed in a receptance function form 

similar to equation (3.10). 

When the plate is assumed clamped at x=0, x=a and free at y=0, y=b, in a similar 

manner to equations (5.3), (5.5), the solution of equation (5.2) takes the form 

. s "ST* V ^ 
= c o s — « 

r=l5=0 

(5.6) 

and 

A_ = 
4 / sin cos 

" a 6 

pabh Cl 

• 1^ 

+ Cn 

V « y , 2 6 / 

(5.7) 

for r = 1,2,3, ,n and ^ = 0,1,2, ,m . 

The internal forces per unit width caused by in-plane vibration are given by 
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7V_ =• 
1 - / / dx 

+ //• 
y dx 

J 

N =N =——— 
2(1 + //) 

9w, 

a? a* 
(5^0 

and are determined knowing and u . 

5.1.2. Bending Vibration of a Thin Rectangular Plate 

For transverse bending vibration of a thin plate it is assumed that the deflection, , 

of a plate is small when compared with the plate thickness h. The normal stresses in the 

direction transverse to the plate can be ignored. There is no force resultant on the cross-

sectional area of a plate element. The middle plane of a plate does not undergo 

deformation during bending and can be regarded as a neutral plane. Any straight normal 

to the middle plane before deformation remains a straight line normal to the neutral plane 

during deformation. 

Under these assumptions of thin plate theory, the differential equation with hysteric 

loss factor r] (see, for example, Leissa 1993) describing plate bending vibration is 

expressed as 

pAW; (.;c, y, f) + D(1 + i??) (x, y, r) = / (%, y, r ) , 

with stress-displacement relations 

M,.„ = - D 
dx^ 3 / 

, = - D 

2 ~ A 

• + /i 
ax ' 

(5.9) 

a^ay ' 

3~ \ 
• + • 

dx dxdy 

u, d u 
-l-

3~ \ 

dy^ dx dy 

(5.10) 

(5.11) 

Here f { x , y j ) denotes the distribution of exciting force which includes the external 

transverse force and internal coupling force, represents the bi-harmonic operator, 

Qx,Qy the transverse shear forces per unit length and M ^ , Myy, the internal 
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bending moments and twisting moment per unit length. The plate flexural rigidity D is 

given by 

D = 
12(1-/z") 

(5.12) 

For free vibration it is reasonable to assume that the displacement is a harmonic 

function of time, i.e. 

wXa,y,f) = [ /Xz,) , ) / ' "+9 ' ) . C113) 

Substituting equation (5.13) into equation (5.9), we find the auxiliary equation for of 

free vibration becomes 

+ 2 
^ a / D 

U, =0. (5.14) 

For a uniform rectangular plate, the analytical solution of equation (5.14) exists only 

when two opposite edges of the plate are simply supported because two variables x, ); in 

are coupled under general boundary conditions. When two opposing edges of a 

rectangular plate are simply supported at x=0 and x=a, as shown in figure 5.1, two 

variables x, y in are uncoupled and can be expressed using the Levy solution as 

follows 

r=l 

r/DC 

a 
C115) 

The substitution of equation (5.15) into equation (5.14) gives the auxiliary equation 

for Yr in the form 

I 
r=l d y 

- 2 

\ a y 4 ; ' 
- + 

\ a J D 
sm = 0. 

a 
(5.16) 

Equation (5.16) is the Fourier expansion of a function having zero value over the 

interval from x=0 to x=a. The coefficients, that is, the quantities inside the parentheses, 

must be zero for each r, i.e. 

- 2 
rn 

\ a ) 
• + 

V a y D 
i ; = o (5.17) 
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with solution 

}^()') = cosh s inh^'"^ + Q cos^ '^^ + sin^'^^ 

for and 

}^()/) = cosh sinh + Q cosh sinh 

for < (r;r)^, 

(5.18) 

(5.19) 

where 

(5.20) 

ana 

(5.21) 

The constant coefficients in equations (5.18) and (5.19) are determined from 

prescribed boundary conditions. Generally, the boundary conditions used in this free-free 

interface substructure approach are two opposite edges free, or simply supported and one 

edge free, the other simply supported. 

When the plate is simply supported at y=0, free at y=b, the boundary conditions are 

At y=0, displacement Yr=0, i.e. Ar+Cr=0. 

At y=0, bending moment Myy = — j - + j i — j - = 0, i.e. A^/3f - = 0 , 
d y dx 

so, Ar=Cr=0. 

a": 
At y=b, bending moment M = ^ + / / — ^ = 0, i.e. 

B. sinh 4- sin = 0, (5.24) 2/__\2 

(5.22) 

(5.23) 

for k^>{r7i:)^ and 

5. sinh sinh y^ = 0, (5.25) 
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for <(7-;:)^. 

h\.y=b, effective shear force (see, Warburton 1976), —1- + ( 2 - / / ) 0, i.e. 

cosh/g - D cos/^ = 0 (5.26) 

for k^>{r7t)^ and 

& 

for < (r;:)^. 

cosh c o s h / ^ = 0 (5.27) 

Eliminating B,/Dr, we find the eignvalue equation and relative principal mode shapes 

are given by 

= - (2 - )cosh sin ' 

4^(a,y) sin—!—+ 
6 

sm-rTDC 

(5.28) 

(5.29) 

for ^^>(r;r)^ and r = l,2,3, , or 

Xr W - (2 - //)(^^r^;r^ )sinh cosh 

= - (2 - //)^^r^;z'̂  XXr " )cosh sinh 

sinh 
b - //̂ z) )sinh b 

sin-
rfDc 

a 

(5.30) 

(5.31) 

for <(r;r)^. 

For any r (=1,2,3, ), a series solution of k, which can be expressed as krs 

(r= 1,2,3, ; 5 = 1,2,3, .) is obtained numerically from eigenvalue equation (5.28) 

or (5.30). The natural frequencies are determined thus in the form - { k ^ J a ^ ) ^ D j p . 

Its relative principal mode shape ^^(x, y) determined by equation (5.29) or (5.31) should 

then be rewritten as (p^^{x,y) (r = 1,2,3, ; s-1,2,3, .). 
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Similarly, when both edges at y=0 and y=b (see, for example, figure 5.1) are free, 

the eignvalue equation and relative principal mode shapes are given by 

+ (2 - )sin ^ cosh ^ 

= - (2 - )sinh ^ yg, 2 , r C 0 S - r r 

(5.32) 

9^(a ,y) c o s ^ ^ + ^ cosh ^ 

)cosh - ^ 
sm-

I'TDC 
(5.33) 

for symmetric modes, for A;^>(r;F)^, 

= /^rWr -//f>^r^;z '^)sinh^yg^cosh^y. 

(5.34) 

cosh Xr)' 
( x ^ - / Z f ) " / - y ) c o s h l y ^ yo 

^ — cosh 
) cosh - ;g , ^ 

sm-/ m (5.35) 

for symmetric modes, < {rTt)^, 

+ ( 2 - / / ) ( ! > s i n h ^ y g . 

(5.36) 

^Xx, ) ' ) = s inZ:Z + 
(Xr 

•sinh 
firy . rTDc 

sm , 
a 

(5.37) 

for anti-symmetric modes, k ^ > { r n f ' and 

y, - (2 - //)f)^r^;r^ X/̂ ^ " )cosh ^ y, sinh ^ /g, 

= -(2-//)(Z>^/'^;r^Xyr - ^ ^ r ^ ^ z - ^ j c o s h ^ / g . s i n h ^ x . 

(5.38) 
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sinh 2 — . rm; 
sin C139) 

for anti-symmetric modes, < { r j l f , r - 1,2,3,-

If the boundary conditions of these two edges (y=0 and y=b) are both simply 

supported, the solution of equation (5.14) is relatively simple and can be expressed as 

f _ 2 2 \ r s 

V J 

, . . r%% . 
)') = sin sm 

a 6 

(5.40) 

(5.41) 

According to a theorem due to Rayleigh (1896), any distortion of the plate may be 

expressed as 

r = l 5 = l 

(5.42) 

When the excitation f{x, y,t) is harmonic and consists of an external exciting force 

F(Xg,_yg)e'^at position (Arg.yg) and internal distributed forces 

at coupling edge (y=b), the principal co-ordinate p^^(f) of the plate under examination 

(see, for example, Cremer, et al 1988), using the orthogonality of principal mode shapes, 

is given by 

(5.43) 

where nii.^ = j^j^ph(pj^{x,y)dxdy denotes the generalised mass and (p\.^{x,b) = 

Thus the displacement of the rectangular plate is expressed as 

n m 

ay 
y-b 

r=l5=l 

F(^Xg, ye)^rs^^e' J q Qy (x, 6)^^^ ( 6 ) 4- (x, 6)^;^ (x, 6) 

nif.^ 

ICtX 

(5.44) 

94 



5. Power Flow Analysis in Coupled Plate Systems 

with the rotation angles, 6^ix, y,t) - ^ (5.45) 
O)' r=lj=l O)' 

and § (;c,y,f)= = (546) 
^ ok 

The dynamic responses of the plate under internal distributed forces Qy, Myy at 

coupling edge (y=0) or at both coupling edges {y=0 and y=b) have the same forms as 

derived in equations (5.44)-(5.46). 

Equations (5.44)-(5.46) describe the relationship between the general displacement 

responses and excitations, that is, the receptance functions. It is noted that all the 

receptance functions and internal forces have complex values because of the influence of 

damping. 

5.1.3. The Coupling of Substructures 

The L-shaped plate system under investigation is shown in figure 5.2. This total 

system can be separated into two subsystems with each subsystem under examination as 

shown in figure 5.1. Here, it is assumed that the rectangular plate has simply supported 

boundary conditions applied to three edges of the plate with the coupling edge {y=0 in 

the local co-ordinate system) assumed free. The corner plate system (shown in figure 5.4) 

has a similar coupling relationship but there now exist three substructures and three 

coupling edges. 

Two kinds of forces act on each substructure. One is the external excitation force at 

position whereas the other is the internal distributed coupling force acting at the 

coupling edge, see figure 5.1. The whole system is coupled at the coupling edge by the 

distributed internal forces of bending moment Myy , transverse shear force Qy and in-

plane longitudinal force Nyy along the free edge of each subsystem. 
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Plate I 

Figure 5.2. Schematic illustration of a L-shaped plate system. 

The internal force vector [ / ' ' ]= f and relative displacement vector 

Uy , , 0^ at the coupling edge in the local co-ordinate axis reference system {X, 

Y, Z) are related to those in the global co-ordinate {XQ ,YQ ,ZQ ) by a co-ordinate 

transformation matrix \Tr\ (see, for example, Reismann & Pawlik 1980) expressed as 

/o and % (5.47) 

where 

cos a - s in a 0 

sin (2 cos or 0 

0 0 1 

(5.48) 

The coupling relationship between two connected plates is expressed by their force 

balance and geometric compatibility conditions at the coupling edge in the global co-

ordinate system. That is. 

[ r r , f c l = [ r r j (5.49) 
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= 0. (5.50) 

From equations (3.22) and (5.44)-(5.46), the displacement vectors at the coupling 

edges can be further expressed in terms of components excited by an external excitation 

vector / ^ and an internal coupling force vector / . For example, the displacement 

vector on the /th plate is given by 

["/] Ri // + , 7=7,2. (5^1) 

Here, Rr and R'r denote the receptance functions between displacements at interface 

and external excitations or internal coupling forces of two substructures respectively. 

Equation (5.50) can be rewritten as 

' M ] = ^ T r ^ Y ' l T r M ' (5.52) 

The substitution of equations (5.51), (5.52) into equation (5.49) gives the coupling 

forces expressed in the form 

7 i 1 = ( [ ^ ' 2 ] [ « 2 ' f e r ' [ r n ] + [ r n ] [ < l ) ' ' { [ r r 2 ] [ ^ | ] f e (5.53) 

It therefore follows that the response of the plate system can be determined after 

solution of the receptance function of a single rectangular plate. 

If it is assumed that the coupling edge between the two plates is simply supported, 

the coupling relationship simplifies to 

^ x \ ~ ^x2 = 0 . #,1 T JWyyl (5J4) 

This formula implies that the coupling relationship is independent of the coupling 

angle a . 
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5.2. Power Flow Density Vectors in a Thin Plate 

N« 

Mj, Nzr 

My: 

Figure 5.3. Direction convention of force and displacement components on a plate element. 

From the general definition of power flow in chapter 2 (also see, Xing & Price 

1999), the instantaneous power flow density vector in a thin plate is defined as 

, ( 0 = - R e { i ; j R e { 4 . } + Re{§ ,}Re{M„} + Re{§,}Re{M, ,} 

- Re{:7, } Re{iV„ } - Re{2, } Re{ iV,, } 

,(l) = - R e { i ; j R e { 4 } + R e { g , } R e { M „ } + Re{§,}Re{M„,} 

- R e { 5 4 Re{/V,,} - RejiJ^jRefA?,,} 

(5.55) 

(5.56) 

The signs of the second and third terms on the right hand of equations (5.55), (5.56) 

are dependent on the directions of M and 6. They are defined in figure 5.3 based on the 

sign convention of elasticity theory (see, for example, Reismann & Pawlik 1980). 

The time averaged power flow densities over a period of excitation in the thin plate 

are 

^ ^xx^y ^xy^x '^ ^xx^x ^xy^y^-> (5.57) 

1 
— ——Re^Qy^z ~ M^,^,6^ + N + N (5.58) 

When the plate is simply supported at all edges and only transverse exciting forces 
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exist, the components of in-plane vibration in equations (5.55)-(5.58) are equal to zero. 

The instantaneous and time averaged power flow density vectors in the coupling 

edge {y=0) are only in the direction and have already been expressed in equations 

(5.56), (5.58). If the boundary condition on the coupling is also simply supported, the 

instantaneous and time averaged power flow density vectors in the coupling edge become 

q. = Re^,}Re{M„}, (5.59) 

= (5.60) 

The total transmitted power in a coupling edge is given by the integral of the 

transmitted power flow density along the length of the coupling edge. That is, 

^trans 

0 

= (5 61) 
0 

with corresponding time averaged quantity, 

= (5-62) 

0 

It is convenient to determine the power flow at the coupUng edge using a 

substructure receptance approach because the solution of the coupling force in the 

coupling relationship equations (5.52), (5.53) and the receptance function expressed in 

equations (5.44)-(5.46) are simple and in the same local co-ordinate axis system. 

If an external exciting force | / | e"^ is applied at position ( x ^ , y j and the velocity 

response at this position is the input power from this excitation is 

given by 

?i„(0 = Re{ | / [e"}Re{v,« ' '«} 
(5.63) 

/ | - |vg|-[cos^y +cos(2ay + ^y)]. 
2 

with corresponding time averaged quantity. 
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where (p̂  denotes the phase angle between exciting force and velocity response. 

For illustrative purposes, a power flow analysis of a L-shape plate system and a 

corner plate system are examined. 

5.3. Application to a L-shaped Plate System 

Figure 5.2 illustrates the L-shaped plate system under examination. It is assumed that 

simply supported boundary conditions apply to all edges of the system except the 

coupling edge. The L-shaped plate system shown in figure 5.2 is defined by the data set: 

p = 2 1 \ Q k g l m ^ , E - 12GPa , r] - 0 . 0 1 , j i - 0 . 3 ; 

a=1.0 m, b — c — 0.5 m, /z=0.00635 m. 

Two coupling edge conditions were examined. The first assumes simply supported 

boundary conditions apply at all edges of each plate including the coupling edge. This 

system was originally examined by Cuschieri (1990b) to assess the power flow 

transmitted between two plates adopting a mobility function approach. The other 

assumes simply supported boundary conditions apply at three edges of each plate but the 

plates are rigidly connected at the coupling edge. More complex boundary conditions 

may be adopted, e.g. fixed or free at some edges of a plate, etc, which add complication 

to the analysis without contributing significant additional insights into the power flow 

mechanism occurring in the coupled plate system. 

5.3.1. Simply Supported Coupling Edge 

Figures 5.5 and 5.6 illustrate the variation of the time averaged input power flow and 

total transmitted power flows along the length of the coupling edge with frequency to a 

unit amplitude loading applied at different positions. Figure 5.5 shows the results of an 

excitation at the centre of plate I whereas figure 5.6 displays the predictions caused by a 

loading at position (0.33 m, 0.125 m) on plate I. The calculated time averaged 

transmitted power flow values at the coupling edge demonstrate the same trends and 

magnitudes as those presented by Cuschieri (1990b). The receiving plate i.e. plate II in 

figure 5.2 is not connected to any other substructure except the source plate (plate I), and 
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thus the transmitted time averaged power in figures 5.5, 5.6 equals the rate of energy 

dissipation due to the internal loss factor. The total energy dissipation of the system in a 

period is equal to the time averaged input power in figures 5.5, 5.6. 

Because receptance functions of many practical engineering structures cannot be 

determined theoretically, the results derived by a FEA substructure receptance approach 

are also included in figures 5.5, 5.6. The FEA plate model has the same structural 

characteristics as the original substructure and contains 527 nodes and 480 plate-shell 

elements. Ninety natural frequencies and principal mode shapes of a plate were extracted 

using FEA package ANSYS spanning the frequency range up to 4150 Hz. It is observed 

that only small differences exist between the theoretical substructure predictions and 

those evaluated by the FEA approach after 500 Hz as illustrated in figures 5.5, 5.6. This 

is because only a small number of principal mode shapes are used in the FEA 

substructure approach (see, for example, Xing, Price & Du 1996). 

In the following presentation of spatial distributions of time averaged power flow 

density vectors, figures 5.7-5.10 relate to a unit amplitude exciting force applied at 

position Xe=0.75m, ye=0.125m on plate I and this position of excitation is indicated by 

the symbol "+" in these figures. For clarity of presentation, the modulus of time 

averaged power flow density vectors in figures 5.7-5.10 are defined as 

)'))|°^ = (^, )')r + (^, - (5.65) 

Figure 5.7 illustrates the distribution of the time averaged power flow density 

vector at a frequency of 77.7 Hz. This corresponds to the first natural frequency of the 

system with one bending wave in both x and ); directions in each plate. Figure 5.8 shows 

the corresponding vector distribution at a frequency of 124.1 Hz. This corresponds to the 

third natural frequency of the system with two bending waves in the x direction and one 

bending wave in the y direction of each plate. Figure 5.9 shows findings at a frequency of 

201.4 Hz. These correspond to the 5th natural frequency of the system with three bending 

waves in the x direction and one bending wave in the y direction of each plate. Figure 

5.10 shows results at a frequency of 263.8 Hz. These relate to the 7th natural frequency 

of the system with one bending wave occurring in the x direction and two bending waves 

in the y direction. 
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A L-shaped plate can be separated into two rectangular plates with a time and 

frequency dependent distributed moment excitation applied to the coupling edge of the 

two plates. This moment excitation together with the angular deformation represent the 

energy exchange between the two plates. As shown in figures 5.8-5.10, the energy does 

not always flow simply from source plate (plate I) to receiver plate (plate II), because in 

some parts along the coupling edge, energy flows from receiver to source plate. The 

direction of time averaged power flow is dependent on the phase angle between internal 

force and velocity response. This is demonstrated in figure 5.11 through illustration of 

the shapes of instantaneous bending moment, angular velocity and power flow occurring 

along the coupling edge of plate l a t a frequency of 124.1 Hz. At any position on the 

coupling edge, when the phase angle between internal bending moment and angular 

velocity is less than 90°, the sign of the instantaneous power flow is negative and the 

direction of the rate of energy flow in a period is in a direction indicating energy 

absorption. Alternatively, if the phase angle is between 90° and 180°, the sign of the 

instantaneous power flow is positive and the direction of the rate of energy flow in a 

period is in a direction indicating an output of energy. The total power flowing in and out 

of the coupling edge remains balanced regardless of the number of plates combining at 

the coupling edge when the coupling is conservative. This is a mechanism similar to the 

one observed in Kirchhoff's law of electric current in that the summation of current flow 

into and out of a connection point is equal to zero. 

The power flow in a L-shaped plate is not similar to the power flow in an infinite 

plate. Goyder & White (1980a) indicate that power flow under a single force excitation at 

any frequency propagates in the form of a cylindrical wave with decreasing amplitude as 

the distance from the driving force source increases. Power flow in a L-shaped plate 

under a single force excitation is frequency dependent and does not display simple 

cylindrical wave characteristics. The power flow density at a position near to the source 

is not necessarily always larger than its density at positions further away from the source. 

Power flows from the excitation source and usually ends at a boundary but there exists 

the possibility that the time averaged power flow density is equal to zero at positions in 

the plate and a circulation or vortex type flow exists in the vicinity of this position. Such 

flows are illustrated in figures 5.8-5.10. 

Figures 5.12-5.15 illustrate the instantaneous power flow density vector at four 
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different time instants of the first natural frequency at 77.7 Hz. The instantaneous power 

flow displays the characteristics of energy exchange between kinetic and potential 

energies. At instants t=0 and t=T/8 (figures 5.12, 5.13), both plates release energy and it 

is usual for power to flow from the peak value position of a modal shape to a boundary 

(i.e., the zero position of a modal shape). This peak value position acts similar to a power 

source. At instants t=T/4 and t=3T/8 (figures 5.14, 5.15), both plates absorb energy and 

there is no obvious power source. Power flows from boundary to the peak value position 

of the modal shape and this latter position behaves similar to a sink. 

Compared to the displacement response, convergence of the calculated internal force 

(moment and shear force) and power flow density vector is very slow, especially for the 

moment excitation due to the abrupt changes of stress. The number of principal modes 

admitted in the present calculation relates to the highest eigenfrequency accepted in the 

analysis which is at least 150 times higher than the excitation frequency. 

5.3.2. Rigidly Connected Coupling Edge 

Figures 5.16, 5.17 illustrate the variation of the time averaged transmitted power 

flows with frequency to different assumed conditions at the coupling edge. An excitation 

is applied at the centre of plate 1 and results presented over the frequency range of 0-1500 

Hz (figure 5.16) and 2000-4000 Hz (figure 5.17). The conditions at the coupling edge 

are: simply supported (i.e., the same as considered in figures 5.5, 5.6) and rigidly 

connected with plates at 45°, 90°, 135° and 165° to one another. Below 600 Hz, the 

results derived for all conditions are almost identical. The right angle set of predictions is 

similar to the simply supported case below the frequency of 4000 Hz which is about 0.7 

times the value of the first natural frequency of in-plane vibration. This implies that the 

simply supported case assumption at the right angle coupling edge is valid below a 

frequency of 0.7 times the value of the first natural frequency of in-plane vibration. The 

influence of in-plane vibration increases as the angle between the two plates deviates 

from a right angle. 

103 



5. Power Flow Analysis in Coupled Plate Systems 

5.4. Application to a Corner Plate System 

Figure 5.4. Schematic illustration of a corner plate system. 

Figure 5.4 illustrates the corner plate system under investigation. The chosen 

parameters in the calculation are geometric sizes a = 1.0m, b = c = 0.5m, uniform 

thickness /z=0.00635m, Young's modulus E = 7.2x10'° /^ , Poisson ratio jU = 0.3, mass 

density p = lllOkgm"^, damping loss factor r] - 0.01. 

Similar to the calculations described in the L-shaped plate example, a substructure 

approach is again used to calculate the power flow characteristics of the corner plate 

system. The four boundaries of each plate are assumed simply supported. 

Figures 5.18 and 5.19 illustrate the variation of time averaged input power of 

external excitation and time averaged power dissipation in Plate 7(7=1, 2, 3) under a unit 

external excitation force at the centre of the plate 1. The results derived by a FEA model 

are also included in figures 5.18 and 5.19. The FEA corner plate model consists of 2081 

nodes and 2000 plate elements. One hundred natural frequencies and principal mode 

shapes were extracted using FEA package ANSYS spanning the frequency range up to 

approximately 2000 Hz. From the surface deflection data at each node, the spatial 

averaged surface squared velocity of each element was derived. The time averaged power 

dissipation of plate I, {DJ) , (Cremer, et al, 1988) can be expressed as 
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D j ) - corjpabh V? (5.66) 

where denotes the spatial averaged squared velocity of the plate / (7=1,2,3). It is 

observed that only small differences exist between the theoretical substructure 

predictions and those evaluated by FEA model. 

The three substructures of this corner plate system actually form a delta power flow 

pattern (see, 1.3.3) and this type of flow pattern cannot be determined sole by an energy 

balance analysis. For example, the energy balance conditions of the corner plate system 

under the external excitation at plate 1 are 

( A ) = - (912) - (913), (5.67) 

= (5-68) 

(D3) = (^13) + (^23), (5-69) 

where is the time averaged external input power, {qu) (/, 7=1,2,3) denotes the 

power flow from plate 7 to plate J and 

( l u ) = - { l j , ) (5.70) 

because the coupling is conservative. 

These three energy balance equations (5.67)-(5.69) are not linearly independent 

because the determinant of the coefficient matrix formed f rom equations (5.67)-(5.69) 

gpves 

- 1 - 1 

1 0 

0 1 

0 

1 

0. (5 71) 

Therefore, any quantity of power flow added will not affect the energy flow balance in 

equations (5.67)-(5.69). A global FEA model can be applied to calculate the power 

dissipation of each substructure but cannot derive power flow crossing the coupling edge 

of this corner plate system. 

Figures 5.20-5.22 show the lines of time averaged power flow density vectors with 
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frequencies of f=80.0, 130.8 and 211.3 Hz excited by a unit amplitude force applied at 

position Xe=0.75m, ye=0.125m on plate 1 respectively. This position of excitation is 

indicated by the symbol "+" in these figures. For clarity of presentation, the modulus of 

the time averaged power flow density vectors in figures 5.20-5.22 are defined in the same 

manner as given in equation (5.65). 

Figure 5.20 illustrates the distribution of the time averaged power flow density 

vector at a frequency of 80.0 Hz. This corresponds to the first natural frequency of the 

system with one bending wave in both x and ); directions in each plate. Figure 5.21 shows 

the corresponding vector distribution at a frequency of 130.8 Hz. This corresponds to the 

third natural frequency of the system with two bending waves in the x direction and one 

bending wave in the j direction of plates 1 and 3 and one bending wave in both x and y 

directions in plate 2. Figure 5.22 shows findings at a frequency of 211.3 Hz. These 

correspond to the 6th natural frequency of the system with three bending waves in the x 

direction and one bending wave in the _y direction of plates 1 and 3 and two bending 

waves in the x direction and one bending wave in the direction of plate 2. 

As illustrated, power flows similarly to those previously described in the L-shaped 

plate system shown in figures 5.7-5.10. The corner of three plates is defined as a 

boundary point because of the basic boundary conditions, so its power density is zero and 

power flows around the corner of three plates creating a vortex type flow. 
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+ input power(FEA) 

input power 

transmitted power(FEA) 

transmitted power 

Hz 

800 1000 

Figure 5.5. Results of time averaged input power and transmitted power flows (excitation at 

the centre of plate I). 

+ input power(FEA) 

- Input power 

transmitted power{FEA) 

transmitted power 

Hz 

200 4 0 0 600 800 1000 

Figure 5.6. Results of time averaged input power and transmitted power flows (excitation at 

Xe=0.33m, ye=0.125m of plate I). 
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Figure 5.7. Time averaged power flow density vector in two plates, f=ll.l Hz. 

indicates the excitation position. 
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Figure 5.8. Time averaged power flow density vector in two plates, ^=124.1 Hz. "+" 
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Figure 5.9. Time averaged power flow density vector in two plates, f=2Q\A Hz. "+" 

indicates the excitation position. 
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Figure 5.10. Time averaged power flow density vector in two plates, /=263.8 Hz. "+" 

indicates the excitation position. 
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Figure 5.11. Shapes of instantaneous bending moment, angular velocity and transmitted 

power flow along the coupling edge of plate I at frequency of 124.1 Hz. 
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Figure 5.12. Instantaneous power flow density vector a t /=77 .7 Hz, t=0. "+" indicates the 

excitation position. 
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Figure 5.14. Instantaneous power flow density vector aty=77.7 Hz, t=T/4. "+" indicates the 

excitation position. 

115 



5. Power Flow Analysis in Coupled Plate System 

\ 
\ \ \ 

\ 

/ 

J 

X ^ — — ' / / 
/ / / / x . 
/ / / / ^ ' / 
/ 
/ 
/ ^ ^ — 

^ X / 
X X / 
X X / 
X X / 

X / 

"T I r I I t I I I t I I I t I 

=3T/8 

plate I 

' I I I I I I I I I I I I 

\ X ^ ^ ^ ~ ^ ^ x x x x \ \ \ 
\ \ x x x x x x x x w \ \ 
\ \ x x x x x x x x \ \ \ \ 
\ \ x x ^ x x x x x \ \ \ \ 
\ \ 

— - — ^ — X 

1 r 
I 

M 

/ 
/ / / X X X ^ ^ . 

/ / / x x ^ ^ 
/ / / x x ^ ^ . 

jl / / / X X x - ^ . 

^ / X X ^ ^ — -
\ 

^ ^ X / 
X X X / 
X X X / 
X X X / 

^ X X / 
X / 

/ y ^ ^ ^ .-̂  X X / 
/ x ^ ^ ^ ^ ^ ^ ^ x x X / / 
/ X x x ^ x ^ x ^ x ^ x ^ X X / / / 
/ X X ^ ^ ^ ^ X X X X / / / 
/ X x ^ ^ ^ ^ % ^ x x x X / / 

/ X 
I \ X ^ ^ 
t \ \ X X 

\ \ \ x x ^ -
\ \ \ X X X -

f \ \ \ X X X -
I \ \ \ X X X -
I \ \ \ X X 
f \ X ^ ^ -.k.. -

. "V. \ 

. ^ ^ X \ 
X X \ 

. ̂  X \ \ 

. ^ ^ X \ 

. ^ ^ V \ 

plate I 

Figure 5.15. Instantaneous power flow density vector at j=ll.l Hz, i=3T/8. "+" indicates 

the excitation position. 
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Figure 5.16. The variation with frequency of time averaged transmitted power for different 

coupling angle (0-1500Hz). 
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Figure 5.17. The variation with frequency of time averaged transmitted power for different 

coupling angle (2000-4000Hz). 
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Figure 5.18. Results of time averaged external input power and power dissipation in plate 1 

(excitation at the centre of plate I). 
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Figure 5.19. Results of time averaged power dissipation in plate 2 and 3 (excitation at the 

centre of plate I). 
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Figure 5.20. Time averaged power flow density vector in 

indicates the excitation position. 

the system, J^SO.O Hz. 

Itii 11 

Figure 5.21. Time averaged power flow density vector in the sys tem, /=130 .8 Hz. 

indicates the excitation position. 
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Figure 5.22. Time averaged power flow density vector in the system, _/=211.3 Hz. 

indicates the excitation position. 
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6. POWER FLOWS ANALYSIS OF A BEAM-STIFFENED PLATE 

In this chapter, the power flow characteristics of a beam-stiffened plate, shown in 

figure 6.1, is studied and discussed. It is a typical segment of a beam-stiffened plate 

system, which is used widely in many engineering structures such as ships, aircraft, etc. 

6.1. Substructure Analysis of a Beam-Stiffened Plate 

beam 3 / 4 

beam 2 beam 1 

- a, 4 
* ^ " 

A 

Figure 6.1. Schematic illustration of a beam-stiffened plate. 

In a substructure approach, the beam-stiffened plate shown in figure 6.1 can be 

separated into four substructures, a rectangular plate and three beams. Here, we treat the 

rectangular plate as a uniform plate with length a, width b and each beam as a uniform 

beam with length Ij, cross-section area Aj, moment of inertia about x, y axes 7^, lyj and 

polar moment of inertia Jj (/=1,2,3). All edges of the plate and the two ends of each beam 

are assumed simply supported. The material properties of all four substructures are mass 

density p. Young's modulus E and the structural damping properties are represented by a 

linear Voigt viscoelastic model with hysteretic damping or loss factor r]. 

Beams 1 and 2 are coupled with the plate at x=xi and x=x2. Beam 3 is coupled with 
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6. Power Flows Analysis in a Beam-Stiffened Plate 

the plate at y=yi. A harmonic external exciting force is applied at point (Xg, y^) on the 

plate or at any positions on the beams. 

Two types of forces act on each substructure. One is the external excitation force 

whereas the other is the internal distributed coupling force acting at the coupling edge. 

The receptance functions of the plate and three beams under both external and internal 

force can be determined theoretically using the same methods as those described in 

Chapters 4 and 5. The whole system is coupled by the distributed internal forces of 

transverse shear force, bending moment and twisting moment along the three coupling 

lines of each subsystem. There exists in-plane force components along the X, Y axes and 

a twist moment component around the Z axis at the interfaces between the plate and 

beams. However, under the small deflection assumption, the bending vibration and in-

plane vibration of the plate or beam are uncoupled. Therefore, in-plane force components 

along the X, Y axes and the twisting moment component around the Z axis can be 

neglected when the external exciting forces are applied only in the Z direction. 

The internal force vector / s i j = and the relative displacement vector 

8̂1 u^,d^,dy of beam 1 at the couphng line x=xi in the local beam co-ordinate 

axis reference system are balanced and are compatible with the internal force vector 

and displacement vector of the plate in the global co-ordinate system (as 

shown in figure 6.1) and expressed as 

H / m l + fci (6.1) 

and 

where 

[rr] % *p,x\ (6.2) 

[ r r ] = 

1 0 0 

0 0 - 1 

0 1 0 

(6.3) 

The coupling relationships between beam 2 and the plate are exactly the same as 

defined in equations (6.1), (6.2) but the coupling relationships between beam 3 and the 
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plate are slightly different because the local co-ordinate system of beam 3 is the same as 

the global co-ordinate system. Therefore, these relationships can be expressed as 

/83 + / = 0 . 

and ^53 

(6 .4) 

(6 .5) 

There exists two special points A, B (shown in figure 6.1) because beam 3 is 

connected to beam 1 and 2. The coupling relationships at point A are 

M Tsi,}'! + 7B3,;cl + 0, 

and [Tr] "g3.xl ^p,x\,y\ 

(6.6) 

(6 .7) 

where "81, denote the internal force and displacement vectors of beam 1 at 

the position of the local co-ordinate x=y}. /gg i,Ai ^g3.xl have similar definitions to 

and F' p.jcl.)'! ^pl,x\,yl denote the internal force and displacement 

vectors of the plate at position x=xi, y=yi. The coupling relationships at point B are 

similar to those at point A as defined by equations (6.6), (6.7). 

The substitution of the receptance functions of the beam as given in (4.24), (4.51) 

and those of the plate are expressed in equations (5.44)-(5.46) into equations (6.2), (6.5) 

and (6.7) yields a homogeneous set of linear algebraic equations for the coupling forces 

along the three coupling lines. It therefore follows that the response of the whole system 

can be determined after solution of the receptance functions of a single substructure. 

6.2. Power Flow Density Vectors 

The instantaneous power flow density vector and its time averaged value over a 

period of external excitation in a thin plate is the same as the relations expressed in 

equations (5.55)-(5.58). The instantaneous power flow density vector and its time 

averaged value in a beam differ from those stated in equations (4.53) and (4.54) because 

of the contribution of the twisting moment component. The instantaneous power flow 
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6. Power Flows Analysis in a Beam-Sliffened Plate 

density vector at position % in the local co-ordinate system in the beam is given by 

(&8) 

with its time averaged value over a period of excitation T 

(6.9) 

The transmitted power between the plate and any beam is given by the product of the 

coupling force and the velocity along the coupling line. That is, 

"B;. I (6.10) 

with corresponding time averaged quantity, 

T 

0 

For illustrative purposes, a power flow analysis of a beam-stiffened plate is 

investigated. 

6.3. Application to a Beam-Stiffened Plate 

Figure 6.1 illustrates a beam-stiffened plate under examination. The system shown in 

figure 6.1 is defined by the data set: 

p = 2710kg/m^, E = 12GPa , 77 = 0.01, // = 0.3; 

(2=1.0 m, 6 = 0.5 m , A=0.00635 m; 

xi=0.3m, X2=0Jm, yi=Q.25m; A;=A2=Aj=1.5875xl0'^/M^,' 

1x1=1x2=1x3= I y l = I y 2 = l y 3 = '&-21y~lQ)'^m^, 7; =/z=/)=8.8x 1 

Figures 6.2 and 6.3 illustrate the variation of the time averaged input power and 
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transmitted power flowing from the plate to the beams with frequency caused by a unit 

amplitude loading applied at the centre of the plate. The results derived by a FEA model 

are also included in figures 6.2 and 6.3. The FEA. model of the beam-stiffened plate 

consists of 861 nodes, 400 plate elements and 80 beam elements (20 elements for beam 1 

and 2 respectively, 40 elements for beaai 3). Forty natural frequencies and principal 

mode shapes were extracted using FEA package ANSYS spanning the frequency range 

up to about 2000 Hz. From the deflection data at each beam node, the spatial averaged 

squared velocity of each beam element was derived. The time averaged power dissipation 

D;) of the beam I as given by Cremer, eted (1988) is 

(6.12) 

where denotes the spatial averaged squared velocity of beam 1 (7=1,2,3). It is 

observed that only small differences exist between the theoretical substructure 

predictions and those evaluated by the FEA model. Because each beam of the system is 

only connected to the plate except at the cross points A and B (see, figure 6.1), the time 

averaged power dissipation of each beam is approximately equal to the power transferred 

from the plate to the beam. It is observed in figures 6.2, 6.3 that the theoretical 

substructure predictions and those evaluat&d by the FEA approach produce almost same 

results for the time averaged input power generated by the external excitation but small 

differences arise for the transmitted power flows from plate to beams. This is because 

each beam is connected not only to the plate but also to another beam at a point. 

Therefore a small part of power is transferred between the beams. It is difficult to 

evaluate this portion of power transmittal using energy balance equations in a global 

FEA model as previously undertaken when examining the corner plate system in 5.4. 

In the following presentation of spatial distributions of time averaged power flow 

density vectors, figures 6.4-6.8 relate to a unit amplitude exciting force applied at 

position ye=0.15m on the plate and this position of excitation is indicated by the 

symbol "x" in these figures. For clarity of presentation, the modulus of the time 

averaged power flow density vectors in figures 6.4-6.8 are defined in a similar manner 

presented in equation (5.65). 

Figure 6.4 illustrates the distribution of the time averaged power flow density vector 
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at a frequency of 92.9 Hz. This corresponds to the first natural frequency of the system 

with one bending wave in both % and y directions present in the system. Figure 6.5 shows 

the corresponding vector distribution at a frequency of 147.7 Hz. This corresponds to the 

second natural frequency of the system with two bending waves existed in the x direction 

and one bending wave present in the y direction. Figure 6.6 shows findings at a 

frequency of 253.3 Hz. This corresponds to the third natural frequency of the system with 

three bending waves existed in the % direction and one bending wave present in the y 

direction. Figure 6.7 shows results at a frequency of 330.3 Hz. This relates to the 4th 

natural frequency of the system with one bending wave occurring in the x direction and 

two bending waves existed in the j direction. Figure 6.8 shows results at a frequency of 

392.8 Hz. This relates to the 5th natural frequency of the system with two bending waves 

occurring in the both % and y directions. 

The basic features of time averaged power flow arising in the beam-stiffened plate 

are similar to those previously described in a plate as discussed in chapter 5. The 

stiffened beam can absorb and transfer power, this produces some special features in the 

beam stiffened-plate. It is observed in figures 6.4 and 6.5 that there exist obvious 

differences in the amplitudes or directions of power flow densities on both sides of beam 

1 under the exciting frequencies/=92.9 and 147.7 Hz. If the whole system is divided into 

six regions, as shown in figure 6.9, the amplitudes of power flow densities alongside 

beam 1 in region 2 (i.e., excitation region) are much larger than those values alongside 

beam 1 in region 1. This means some energy is transferred from the plate to beam 1. 

Opposite directions of power flow densities on both sides of beam 1 in regions 4 and 5 

are observed in figures 6.4 and 6.5. This means that beam 1 releases energy to the plate 

in this area. This phenomena can also be observed in the distribution of time averaged 

transmitted power along beam 1 as shown in figure 6.10 under the same excitation as 

used in figures 6.4 and 6.5. It is observed in figure 6.10 that almost half of the beam 

absorbs energy, the other releases energy. The stiffened beam in the system absorbs 

energy from the plate in some areas. This absorbed energy can be separated into two 

parts — the one is dissipated by beam damping and the other transmitted along the beam 

and released to other areas of the plate. 

Figures 6.11-6.13 illustrate the spatial distributions of time averaged power flow 

density vectors under a unit amplitude exciting force applied at position Xe=0.3m, 
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6. Power Flows Analysis in a Beam-Stijfened Plate 

ye=0.25m at the beam cross point A (see, figure 6.1) of beams 1 and 3. The position of 

excitation is indicated by the symbol "x" in these figures. Figure 6.11 illustrates the 

distribution of time averaged power flow density vector at a frequency of 92.9 Hz. Figure 

6.12 shows the corresponding vector distribution at a frequency of 147.7 Hz. Figure 6.13 

shows findings at frequency 253.3 Hz. Figures 6.14 and 6.15 illustrate the distributions 

of time averaged transmitted power between the plate and beams 1 and 3. 

It is observed from figures 6.11-6.13 that the amplitudes of power flow density 

vectors in beams 1 and 3 are much larger than those in the plate. This means beams 1 and 

3 are the main transmitted paths of power flow in the whole system. The results shown in 

figures 6.14 and 6.15 also indicate this phenomena. Apart from the position of the 

external exciting input power, almost all portions of beams 1 and 3 release energy to the 

plate. This implies that power flows from the external excitation to sections of the beam 

and it is further released to the plate. 
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Figure 6.2. Results of time averaged input power and transmitted power flows from plate to 

beam 1 (excitation at the centre of plate). 
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Figure 6.3. Results of time averaged transmitted power flows from plate to beam 2 and beam 

3 (excitation at the centre of plate). 
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Figure 6.4. Time averaged power flow density vector in the beam-stiffened plate,_/=92.9 Hz. 

"x" indicates the excitation position at the plate. 
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Figure 6.5. Time averaged power flow density vector in the beam-stiffened plate, /= 147.7 

Hz. "x" indicates the excitation position at the plate. 
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beam 1 beam 2 

beam 3 

Figure 6.6. Time averaged power flow density vector in the beam-stiffened plate, f=2533 

Hz. "x" indicates the excitation position at the plate. 
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Figure 6.7. Time averaged power flow density vector in the beam-stiffened plate, /=330.3 

Hz. "x" indicates the excitation position at the plate. 
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Figure 6.8. Time averaged power flow density vector in the beam-stiffened plate, /=392.8 

Hz. "x" indicates the excitation posiaion at the plate. 
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Figure 6.9. Schematic illustration of si? regions of the beam-stiffened plate. 
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Figure 6.10. Time averaged power transmitted from the plate to beam 1, negative value 

means the power transmitted from beam 1 to the plate. 
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Figure 6.11. Time averaged power flow density vector in the beam-stiffened plate, y=92.9 

Hz. "x" indicates- the excitation position at the connection point A of beam 1 and beam 3. 
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Figure 6,12. Time averaged power flow density vector in the beam-stiffened plate,/=147.7 

Hz. ' 'x" indicates the excitation position at the connection point A of beam I and beam 3. 
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Figures.13. Time averaged power flow density vector in the beam-stiffened plate,/=253.3 
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Figure 6.14. Time averaged transmitted power from plate to beam 1, negative value means 

the power transmitted from beam 1 to the plate. 
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Figure 6.15. Time averaged transmitted power from plate to beam 3, negative value means 

the power transmitted from beam 3 to the plate. 
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7. POWER FLOW ANALYSIS OF A COUPLED PLATE-

Many engineering structures (e.g. offshore platform, etc) are constructed by a 

combination of plates and cylindrical shells. They are joined together by welds, bolts or 

dashpots. The coupling between these components may be conservative or compliant 

and dissipative. This chapter continues investigation of the power flow characteristics in 

a more complex coupled plate-cylindrical shell system excited by an external force as 

shown in figure 7.1. Substructure techniques are again adopted in both conservative or 

compliant and dissipative coupling conditions. In a study of the dynamic characteristics 

of cylindrical shells, Franken (1960) derived the input impedance of a simply supported 

cylindrical shell but the analysis did not include the influence of bending stiffness of the 

shell and it has therefore limitations in the estimation of input power in practical 

applications. Heckl (1962) and Fuller (1983) derived analytical expressions to evaluate 

the input radial mobility of an infinite elastic cylindrical shell. Harari (1977) developed a 

general formula to evaluate the transmitted mobility based on the structural impedance of 

finite and semi-infinite cylindrical shells. Ming, Pan & Norton (1999) present the 

mobility function and power flow of a semi-infinite cylindrical shell and two coupled 

shells using Flugge (1973) and Leissa (1973) shell theories. In this chapter, an analysis 

based on thin cylindrical shell equations as given by Timosheko & Woinowsky-Krieger 

(1959), Leissa (1973) is presented to calculate the receptance function of simply 

supported cylindrical shells subject to different types of excitation. The power flow 

characteristics in the system and across the coupling junction of the cylindrical shell and 

plate are calculated. 

7.1. Substructure Analysis of a Plate-Cylindrical Shell System 

The plate-cylindrical shell system under investigation is illustrated in figure 7.1. It is 

assumed that simply supported boundary conditions apply to the ends of the plate and 

cylindrical shell. This total system can be separated into two subsystems. That is, a 

rectangular plate (see, figure 7.2) with simply supported boundary conditions applied to 
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two opposite edges with the coupling edges ( y = ± 6 / 2 ) assumed free and a cylindrical 

shell (see, figure 7.3) with simply supported boundary conditions applied to the two ends 

of the shell with the two coupling edges {6 = 6 D F , 2 ) assumed free. 

7.1.1. The Conservative Coupling of Subsystems 

Figure 7.1. Schematic illustration of a plate-cylindrical shell system. 

simply supported 

a/;:,-6/2/ 

Myx(x,b/2) 

Myy(X,6/2j 

Myy{X,-b/2) 

simply/supported 

Figure 7.2. Schematic illustration of a plate in local co-ordinate system. 

Two types of forces act on each substructure. One is the external excitation force 

whereas the other is the internal distributed coupling force acting at the coupling edge. 

The whole system is coupled by the distributed internal forces 
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}= , Gy, (866, for Bxample, Ggure 7.2) along the coupling edges of the plate 

and {/„ }= [iVg , Q g , M g \ along the coupling edges of the shell. 

When the coupling edges of the plate and cylindrical shell are rigidly connected, the 

coupling relation between the two substructures determined by their force balance and 

geometric compatibility conditions at the coupling edges in the global co-ordinate system 

can be expressed as follows 

f (1) 

nr 7(2) 
^PJCP 

CAl) 

^ p'^cp 

^ p'^cp 

fr„4" (7.2) 

Here Tp denotes the transmission matrix between the plate local and global co-ordinate 

systems, 7^2 the transmission matrices between the local cylindrical co-ordinate 

systems of two coupling edges and the global co-ordinate system, respectively; 

r _ - i r 
(Wgp = uy,u^,d^ ) the displacement vectors at the two coupling edges of the plate and 

( " « - ug,u^,9^ ) the displacement vectors at the two coupling edges of the 

cylindrical shell respectively. 

Figure 7.3. Schematic illustration of a cylindrical shell in local co-ordinate system. 
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The displacement vectors at the coupling edges can be further expressed in terms of 

components excited by an external excitation vector and an internal coupling force 

vector | / c | using the theorem due to Rayleigh (1896). That is. 

R" < 
J cp 

+ CA3) 

r(2) 
L V c.y 1 4 / 1 . 

(7.4) 

In an alternative formulation, equation (7.1) can be rewritten as 

FP 
(2) 

r . r ' T - p / j " 

T ~^T f 
^ s2 p J p 

(7 J ) 

The substitution of equations (7.3)-(7.5) into equation (7.2) allows the coupling 

relations to be expressed in the form 

R pG + R sG 
TPFP 

( 2 ) 
(7.6) 

where R 
pG 

rp nllrp —1 rp 7̂ 12 rp —1 
^P ^ P^P ^P 

T.RFT-' T^RFT-' 
(7.7) 

R 
sG 

T T 
^S\ ^SL^S ^S2 

r p Ty2\rp —1 rp Tl22rp —1 
(7.8) 

It therefore follows that the response of the whole system can be determined after 

solutions of the receptance functions of a single rectangular plate and a cylindrical shell. 

7.1.2. Compliant and Dissipative Coupling 

If two substructures are connected by spring dampers, the coupling is compliant and 

dissipative. These spring dampers can be generally treated as independent substructures 

similar to the plate or the shell. If the dampers are supposed massless, to simplify 

analysis, let us assume that the spring dampers in each displacement and rotational 
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direction along the coupling edges are independent and have different constant complex 

stiffnesses at any position. This allows the complex stiffness matrix at any position x 

along the coupling edge to be written as 

K-TIM + 'VY) 

TiTgWd + iT/g) 

( 7 . 9 ) 

The force balance conditions and responses of the substructures expressed in equations 

(7.1), (7.3) and (7.4) remain unchanged. The geometrical compatibility equations at two 

coupling edges in the global co-ordinate system can be rewritten as: 

T 7(1) 

F 7(2) 
L P-/"? K 

(2) 
D 

sl'^cs 
(1) 

^RS ^P^CP 

T 5"' 

T.JC? (7.10) 

Substituting equations (7.3), (7.4) into equation (7.10), we find the coupling relations 

become 

J- 7(1) 
pJ cp 

I T J S ' 
l - r 7 ( 2 ) 

TJi" - TX'T,2-%fS' + TX,1: 

- T „ R " T A % F ; ; ' + T M , 

jl i s2 pJ cp sl esJ es 

22RR -IRR 7(2) , R>2 

—T ~^T f — T ~^T f 
P P P p-'cp p p P pJcp 

T f V 

_yi r(l) 
p p T f 

^ pJcp 

(2) 
•p epJ ep • 

7 7?^? ) | 
P fP V gp / I 

R pG 

(1) 

T 7 ( 2 ) 

. pJcp 

+ 
T pi 7 IT R f 
^SL^ESJESL L^P^^EPJI 

I \ 

(7 .11 ) 

where \^DG] ' 

K 
(1) 
D 

0 
(7 .12 ) 

Therefore, the coupling forces in the global co-ordinate system may be expressed as 

| r , 2 / J 7 „ . 

\T R^ f 

'TF^F I 
. ( 7 . 13 ) 

It therefore follows that the response of the dissipative coupling system can be 

determined after solutions of the receptance functions of all substructures. 
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7.1.3. Vibration of a Thin Cylindrical Shell 

The whole system under investigation consists of two substructures. That is, a 

rectangular plate (see, figure 7.2) with simply supported boundary conditions applied to 

two opposite edges with the coupling edges ( y = ± 6 / 2 ) assumed free and a cylindrical 

shell (see, figure 7.3) with simply supported boundary conditions applied to the two ends 

of the shell with the two coupling edges ( 0 = = 8^2) assumed free. The bending 

and in-plane vibration of a thin rectangular plate have been described in chapter 5. Here, 

the vibration of a thin cylindrical shell is discussed. The basic assumptions of thin shell 

theory (see, for example, Leissa 1973) are: 

1. The thickness of the shell is small compared with other dimensions. 

2. Deflections are sufficiently small so that quantities of second and higher order 

magnitude in the strain-displacement relations may be neglected in comparison with 

the first order terms. 

3. The transverse normal stress is small compared with the other normal stress 

components and may be neglected. 

4. Any straight normal to the middle surface before deformation remains a straight line 

and normal during deformation and suffers no extension. 

Under these assumptions of thin shell theory, the differential equations describing 

the dynamic behaviour of the cylindrical shell shown in figure 7.3 are expressed as 

2/;^ 2/ ; ax ^ a% 
(7 .14) 

2/( a%a^^ c ! EA 

1 + / / \ — FI _ ^2 \ â Wg D^UG 1 DU^ 3 —/J. N2 z 
22? a%â  2 ' a;ĉ  â ^ a^ 2 aA:̂ â  

i - ' - w 

(7 .15) 
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+ 2)g^ 
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J 

4-' /. 
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EA, 

(7.16) 

with stress-displacement relations 

EA 
N, 

1 - X 
3 " . + / , ( ! % + % ) 
a% v ; a ^ ;? 

Da^z 

/ ( a % 2 ' 
(7.17) 
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_D 

R' 
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H 
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a M . 1 aM 

+" & 
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^ a g a.)r 
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where c p - ^1 / ^ 2^ denotes the phase velocity of the compressional wave 
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travelling in an elastic shell, fi^=h^/l2R^,f^,fg,f^ denote the distributed forces 

along x,6, z directions respectively and D denotes the flexural rigidity of the shell 

similar to equation (5.12). 

The boundary conditions applied at the ends of the cylindrical shell are assumed 

simply supported, but the axial displacement is not zero. This is analogous to the axial 

movement allowed at an end of a simply supported beam (see, for example Warburton 

1976). Under the influence of harmonic excitation it is assumed that 

^ ^ Uij cos jdcos k^x • e 
i=l _/=l 

icot (7.27) 

Mg = sin , 
i=l j=l 

(7.28) 

i=l y=l 

(7.29) 

where = . 

The substitution of equations (7.27)-(7.29) into the equations of motion (7.14)-(7.16) 

yields a homogeneous set of three linear algebraic equations for the displacement 

amplitudes given by 

KL KL As ^IJ 

4 i ^ 2 ^IJ 

^ 2 4 3 . 3 . A . 

(7.30) 

Here, (7.31) 

(7.32) 

(7.33) 

(7.34) 
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I33 = 1 + - 1 ) - (7.36) 

where A - is a non-dimensional frequency, and 
/ 

IL — LP' CL f2;r ~ 
F =2a f^cosj6cosk:xdxd0, (7.37) 

(7.38) 

K = 1"̂  cos y^sin . (7.39) 

If a moment Mg is applied in the 9-direction at position (x^,6'^), equations (7.37)-

(7.39) become 

f ; , = 0 , (7.40) 

1 - / / ^ -
^ p, , sin , (7 41) 

thATT 
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~ Eh I J o j ^ s in kix]Mgd{d - 6*̂  )8{x - x^, )dxdd (7.42) 

1 - / / ^ ~ 
= 2 j Mg sin jdi^ sin k^xi,. 

EhJ.7t 

It therefore follows that the response of the cylindrical shell can be determined under 

any kind of excitation. 

7.2. Power Flow in a Thin Cylindrical Shell 

Xing and Price (1999) and as discussed in chapter 2 expressed the basic definition of 
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a power flow density vector in a continuum. Similar to the definition of a power flow 

density vector in a thin plate (see, equations 5.55-5.58), the instantaneous power flow 

density vector of a thin cylindrical shell in a local co-ordinate system is defined in the 

form 

= -Re{;Z,}Re{A^,} - Re{zZg}Re{Ar,g} - R e | g j R e { G ^ } 

^g(f) = - R e { ^ , } R e { N a , } - Re{3g}Re{jVg} - R e { ^ j R e { G g } 

(7.43) 

(7.44) 

with a time averaged quantity 

- - - R e 

dw^/ 
, / d x , 
V y 

M ' ^ 9 0 % 
V y 

/ \ 
+ <2gWz -

du 

"ax 
- Mz 

dw, / Mg/ 
ARd^ A 

V y 

,(7.45) 

.(7.46) 

The time averaged power flow density vector in equations (7.45), (7.46) is 

equivalent to the structural intensity parameter described by Hambric (1990), Gavic & 

Pavic (1993) and has similarity to an acoustic intensity parameter in a fluid domain being 

the product of pressure and the in-phase component of fluid particle velocity (see, for 

example, Fahy 1989). 

The instantaneous power flow density vector across a coupling edge is only in the y 

direction of the plate in the local plate co-ordinate system (see, figure 7.2) and can be 

expressed as 

1Y=- R « K } R e k } - } - R e f e K { e , }+ R e ^ , )Re{M^ }+ R e ^ } 

(7.47) 

The total transmitted power at a coupling edge is given by the integral of the 

transmitted power flow density along the length of the coupling edge. That is, 
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^TRANS 
0 

= (7.48) 
0 

with corresponding time averaged quantity 

(?„„„) = 1 («;>&• (7.49) 
0 

It is convenient to determine the power flow at the coupling edge using a 

substructure receptance approach because the solution of the coupling force in the 

coupling relationship equations (7.5), (7.6) or (7.13) and the receptance are simple and in 

the same local co-ordinate axis system. 

7.3. Application to a Proposed System 

For illustrative purposes, let us assume that the plate-cylindrical shell system shown 

in figure 7.1 is defined by the data set: 

,o = 7750^g/7M\ E = 2 0 6 G f a , ?; = 0.01, // = 0.3; 

R = 0.177m, a = I = 1.284m, hp = 0.003m, h^ = 0.005m; 

and the angles of two coupling edges in the cylindrical co-ordinate system are given by 

^BI ~ ~^B2 ~ 60 . 

Two coupling edge conditions were examined. The first assumes the plate and the 

cylindrical shell are rigidly connected at the two coupling edges. This means the coupling 

is conservative, all power output from the source substructure inputs to the receiver 

substructure. The other assumes that they are connected by uniform distributed stiffness 

dampers at the two coupling edges. Therefore, the coupling is compliant and dissipative 

and a portion of the power output from the source substructure stores and dissipates in 

the coupling. 

7.3.1. Conservative Coupling Edge 

Figures 7.5 and 7.6 illustrate the variation of the time averaged input power of 

external excitation and transmitted power flows from the plate to the shell with frequency 
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to a unit amplitude loading applied at the centre of the plate. The results derived by a 

global FEA model describing the cylindrical shell and the plate are included to verify the 

substructure calculations. 

The FEA model has the same structural characteristics as the original plate-

cylindrical shell system and contains 1209 nodes (341 nodes to describe the plate and 

930 nodes for the shell) and 1200 plate-shell elements. 150 natural frequencies and 

principal mode shapes of the system were extracted using FEA package ANSYS 

spanning the frequency range up to 2200 Hz. From the surface deflection data at each 

node, the spatial averaged surface squared velocity of each element was derived. Since 

the receiver shell is not connected to any other substructure except the source plate, the 

transmitted time averaged power determined by the FEA model and illustrated in figure 

7.5 equals the rate of energy dissipation of the shell due to the internal loss factor. That is 

v ^ ( / ) , (7.50) 

where ( / ) , v ^ ( / ) denote spatial average squared velocities of the shell and plate 

respectively. The total energy dissipation of the system in a period is equal to the time 

averaged input power as shown in figure 7.5. 

It is seen from figures 7.5 and 7.6 that only small differences exist between the 

theoretical substructure predictions and those evaluated by the FEA approach, thus 

providing a measure of confidence in the validity of the computations. 

In the following presentation of spatial distributions of time averaged power flow 

density vectors, figures 7.7 and 7.8 relate to a unit amplitude exciting force applied at 

position Xe=0.45m, ye=-0.023m defined in the local co-ordinate axes of the plate and this 

position of excitation is indicated by the symbol "+" in these figures. For clarity of 

presentation, the modulus of time averaged power flow density vectors of the plate in 

figures 7.7 and 7.8 have the same definition as given in equation (5.65), whereas those in 

shell are defined as 

Figure 7.7 illustrates the distribution of the time averaged power flow density 

.2, 
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vector at a frequency of 160.5 Hz. This corresponds to the first natural frequency of the 

system. Figure 7.8 shows the corresponding vector distribution at a frequency of 177 Hz. 

This coincides with the second natural frequency of the system. 

The power flow density vector displaying the dynamic behaviour of a plate-

cylindrical shell under a single force excitation is very complex and frequency dependent 

in character. The power flow characteristics in this system are similar to those observed 

in the L-shaped plate. For example, power flows from the excitation source and usually 

ends at a boundary but there exists the possibility that the time averaged power flow 

density is equal to zero at positions in the plate and a circulation or vortex type flow 

exists in the vicinity of this position. Such flows are illustrated in figures 7.7 and 7.8. 

The highest eigenfrequency admitted in the present calculation for a suitable 

accuracy of convergence of solution in the analysis is at least 300 kHz. 

7.3.2. Compliant and Dissipative Coupling Edge 

Figure 7.4. Schematic illustration of a section of a plate-cylindrical shell system with a 

compliant and dissipative coupling. 

Figure 7.4 schematically illustrates a section of a plate-cylindrical shell system with 

a compliant and disspative coupling. The material and geometric properties of the plate 

and shell are the same as the original model but a uniform distributed damper connects 
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both together. The complex stiffness per unit length of damper is only in the z direction 

and is defined by 

(7.52) 

Figures 7.9-7.11 illustrate the variation of the time averaged power flows with 

frequency to different assumed coupling damping coefficient f]^. A unit force excitation 

is applied at the centre of the plate. Figure 7.9 shows the results of time averaged input 

power caused by the external excitation whereas figures 7.10 and 7.11 display the results 

of time averaged output power from the plate and input power to the shell, respectively. 

These figures illustrate that for different coupling damping models, the principal 

dynamic characteristics of the system remain nearly the same as measured by the natural 

frequencies of the system, the input power caused by the external excitation and the 

power from the damping coupling into the receiver shell. But the differences seen in the 

time averaged power from the plate to the damping coupling are large. This implies that 

the coupling damping only absorbs and dissipates the energy stored originally in the 

source plate and there is no obvious influence of coupling damping to the dynamic 

behaviour of the receiver shell. The greater the coupling damping value, the larger the 

energy dissipation at the coupling edges. 
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Figure 7.5. Results of time averaged external input power (excitation at the centre of the 
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Figure 7.6.Results of time averaged transmitted power from the plate to the shell (excitation 

at the centre of the plate). 
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Figure 7.7. Time averaged power flow density vector in the sys tem, /= 160.5 Hz. 

indicates the excitation position. 

150 



7. Power Flow Analysis in a Coupled Plate-Cylindrical Shell System 

\ 1 

/ I 

/ / ' 
I I 

\ \ 

\ 

\ I / z' 
/ / / -

i ̂
 \ I / / 

Plate 

Coupling edge Coupling edge 
^ I 

/ / 

I / 
I I 
I \ 
\ \ 

/ —V 
/ ^ \ 
/ / ( 
t / I 
I 
I 
I 
\ 
\ 
\ \ 

\ \ 

/ / / \ 1 - ^ " 
/ / " / / / \ t ^ ̂  z 
/ / " 

1 1 M j i 1 / \ 1 \ 
I \ : 1 (1 ; 

M \ ; 1 ' , 1 
I \ \/ 1 1 . , 
\ \ / 1 , 
1 \ 1 \ ' ' 

' s / 
/ 

I / X 

I / \ 

I I 
I I 
I I 
I t 
t I 
I I 
\ \ 
\ \ / / 

\ \ V 
1 ( t 
_ / I 
_ / / 

/ / \ \ ^ ' 

/ / \ \ ' 

/ ; \ \ \ -
u I w ' 
I u I I ' 
t U I I '' 
I \ / I I ^ 
I N-- / 
I / 

I ' 

I 
I I 
I \ 

Shell 

-180 180 

Figure 7.8. Time averaged power flow density vector in the system,y=177.0 Hz. 

indicates the excitation position. 
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Figure 7.9. Results of time averaged external input power for the compliant and dissipative 

coupling. 
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Figure 7.10. Results of time averaged transmitted power from the plate to the damper for the 

compliant and dissipative couphng. 
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Figure 7.11. Results of time averaged transmitted power from the damper to the shell for the 

compliant and dissipative coupling. 
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8.1. Conclusions 

This thesis develops and discusses a general substructure approach to investigate 

power flow characteristics of engineering structures. Each substructure is modelled 

analytically or numerically and its receptance function is formulated by modal analysis. 

The method may be classified as a form of sub-structuring using free-free interface 

conditions. The displacement contribution of the external excitation and internal interface 

coupling forces are deduced, permitting the power flow between the interface of 

substructures to be determined. A power flow density vector is defined and the 

corresponding power flow lines illustrate the flow of power in plates and shells. 

Engineering application examples of beam frames, a L-shaped plate system, a corner 

plate system, a beam-stiffened plate system and a coupled plate-cylindrical shell system 

demonstrate the applicability of the method and detailed configurations display the 

power flow characteristics associated with these systems. Some conclusions are obtained 

as follows. 

Power flow characteristics in systems strongly relate to their dynamic responses and 

may be larger in magnitude than the input power of the excitation at any instant because 

of the influence of resonance. When only one excitation source exists, it was shown that 

the time averaged input power of excitation is always greater in value than the other time 

averaged quantities. But when several excitation sources are applied at the same time, the 

time averaged input power of an exciting source may be negative behaving as an active 

control source at some exciting frequencies. The input power depends on the excitation, 

geometrical and dynamical characteristics of the subsystems. 

The resonance influences of beam frames in both instantaneous power and time-

averaged quantity decrease as the frequency increases, with stable dynamic 

characteristics exhibited at higher frequencies (higher modal density). 

On a coupling edge of the coupled plate system (chapter 5), energy does not always 

flow from source plate to receiver plate at some sections of the coupling edge. In fact, it 

was shown that energy flows from receiver to source plate. The direction of time 
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averaged power flow is dependent on the phase angle between internal force and velocity 

response. At positions on the coupling edge where the phase angle between internal 

bending moment and angular velocity is less than 90°, the plate absorbs energy. 

Otherwise, the plate transmits energy when the phase angle is greater than 90°. 

Power flow characteristics in L-shaped plates and in corner plates (chapter 5) differ 

from those observed in an infinite plate. The time averaged power flow density value at 

positions near the source is not necessarily larger than its value at positions far from the 

source. Time averaged power usually flows from the excitation source and ends at a 

boundary but there is every likelihood that the time averaged power flow density is equal 

to zero at positions on the plate and a circulation or vortex like power flow structure may 

exist around this zero density power flow position. The corner of three plates is defined 

as a boundary point by the basic boundary conditions, so its power density is zero and 

power flows around the corner of the three plates also creating in a vortex type flow. The 

instantaneous power flow describes the characteristics of energy exchange between 

kinetic and potential energy. The peak value position of the modal shape is similar to a 

power source when the system releases energy and a sink when the system absorbs 

energy. 

When an external force is applied to a plate, the stiffened beam in the beam-stiffened 

plate system (chapter 6) can absorb energy from the plate at some sections. This 

absorbed energy can be separated into two parts. One is dissipated by damping of the 

beam and the other transmits along the beam and releases to other sections of the plate. 

When an external force is applied to the beam, the stiffened beam always absorbs energy 

from the excitation source and then releases the energy to other substructures. Therefore 

the beam becomes the main path of transmission of power flow in the whole system. 

Power flow characteristics in coupled plate-cylindrical shell systems (chapter 7) are 

similar to those in coupled plate systems. For different coupling damping models, the 

principal dynamic characteristics of the system remain apparently similar to those 

measured by the natural frequencies of the system, the input power caused by the 

external excitation and the power from the damping coupling into the receiver shell. The 

main influence of coupling damping value at a compliant and dissipative coupling edge 

is observed in the source substructure plate. For example, for the same applied excitation. 
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8. Conclusion 

the greater the coupling damping value, the greater the energy dissipated at the coupling 

edge thus reducing the energy dissipated in the source plate. 

8.2. Further Research Work 

To develop a practised useable knowledge base requires further applications of 

power flow analysis to engineering structures. This would f o r m the basis of development 

of a power flow calculating program package for general engineering structures. Another 

area of further research is to improve the SEA results in the middle frequency range. For 

example, to predict indirect power transfer coefficients and their experimental 

verification as well as to predict and measure power transfer coefficients under 

conditions of lower frequency modal overlap. 

Another future research study is power flow analysis in the time domain. Transient 

excitations incorporated into power flow analysis of engineering structures is also an area 

of interest but currently unavailable. When examining the dynamic behaviour of complex 

structures involving many different substructures built f rom different materials (steel, 

composites), in which some material properties of substructures are non-linear, analysis 

in frequency domain is not valid and a time domain analysis is necessary. 
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Appendix A: The Orthogonality of Principal Mode Shapes 

r^HCE4[>I[]riI()(]W:M\LAJL]ri r ()I? PfUPfCZUOP/lI, IVIOJOE S»II/II*E:S 

Let us consider the natural vibration {r] = 0) of an elastic structure occupying 

domain Q with a fixed boundary S„ and a free boundary Sr, where v represents the unit 

normal vector pointing outwards, as shown in figure 2.1. The governing equations 

describing the dynamics of the elastic body are as follows. 

Dynamic equation 

(Vl.1) 

Constitutive equation 

(A.2) 

C&3) 

Boundary conditions 

I == 0, 

[m,. = 0, 

X £ S j , 

X £ S... 
(A.4) 

The substitution of equations (A.2) and (A.3) into equations (A.l) and (A.4) gives 

A; e O, 

Ai, =(), 

X E SJ-, 

;[(= 5%. 

(A.5) 

The natural vibration of the elastic structure is given by from which it 

follows that 

^IJKL^KJJ UJP, 

^IJKL^K,PJ ^ 0 , 

[ / : = 0 . 

(A.6) 
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Appendix A: The Orthogonality of Principal Mode Shapes 

It is assumed that and are two arbitrary natural vibration modes with their 

corresponding natural frequencies ci)̂  and cô  respectively, satisfying 

equation (A.6), i.e., 

= 0, 

(A.7) 

and 

= 0, 

{s) 

Multiplying equation (A.7) by and integrating over the domain i2 yields 

0^8) 

(A.9) 

By using Green theorem and the boundary conditions at (A.7), we obtain the result 

= \ v ' i % i u U ' - k } " i d S - \ j j ' i % i u U ' i ; } d a (A.IO) 

•IJUVI'J' = - J u ' i ' ) Q i „ u l 1 d n , 

and therefore, 

(A.l l) 

Similarly, 

V\%JUUL!DQ = 0) (f). 
L''"' 

(r)rr(f) . (A. 12) 

Applications of the relation (see, for example, Reismann & Pawlik 1980) 

and the summation convention for tensors gives 

= j [ / . (A.13) 
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Subtracting equations (A. 12) from (A. 13) and using the previous result gives 

= 0. (A.14) 

Because co^^o)^, it thus follows that 

J = (A.15) JQ 

and 

(A. 16) 

from equation (A. 11) or (A. 12). 

Finally, the orthogonality of the natural modes of the three-dimensional elastic 

structure can be represented as 

J^pc / ,«c /p '< fn = = | 7 (A.I7) 

= (A. 18) 

where is the Kronecker delta. The generalized mass and generalized stiffness 

take the forms 

m , = \ ^ p V ] ' ^ U ' i ' ' ' d a , (A. 19) 

° (A.20) 
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