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The aims of this project were the synthesis of polystyrene latex microspheres, 

within a size range capable of being able to be taken up by cells, and their subsequent 

functionalization with biomolecules, such as oligonucleotides or oligopeptides. 

Polystyrene latex microspheres possessing hydroxy, carboxylate and amino 

functionalities were synthesized by emulsifier-free emulsion co-polymerization. The 

polystyrene latex microspheres were characterized by IR and titration methods. The 

size distribution was determined by scanning electron microscopy and photon 

correlation spectroscopy. 

The synthesized microspheres were labelled with dyes such as 4(5)-

carboxyfluorescein and studies with ND7 cells indicated cellular uptake of these 

microspheres, offering potential for development as a reporter or carrier system. 

Successful solution phase studies with microsphere bound olgionucleotides and a 

FRET peptide showed the possibility of use as a real time probe. 
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CHAPTER 1 

POLYMER MICROSPHERES 



1.1 INTRODUCTION 

The bioavailablity of drugs or molecular probes directed at intracellular targets 

depends significantly on their being sufficiently polar for administration yet 

sufficiently non-polar for passive diffusion through the relatively non-polar lipid 

bilayer of the cell. Several techniques have been developed to ensure effective cellular 

uptake, such as incorporation into cationic liopsomes'^ attachment to dendrimers"' 

and siderophores''^, all of which have their drawbacks. 

Other methods of cellular penetration involve harnessing the cells' own 

transport mechanisms. Cells actively engulf and internalize compounds from the 

extracellular space in a process known as endocytosis. The engulfed material is 

actively transported within the cellular system, though the exact mechanism of 

transport is not fully understood. Neuroanatomists have exploited this phenomenon 

since the 1960's to study the regional connectivity of axonal tracts in the central and 

peripheral nervous systems. One type of tracer that falls in this category are latex 

microspheres labelled with fluorescent markers'''. Once engulfed, these tracers are 

actively transported throughout the cell and, due to their relative inertness, possess 

low cytotoxicity. In fact they can remain within cells without adverse effects for 

several months. 

The remainder of this chapter will focus on microspheres: their biological 

applications and synthesis. 

1.2 BIOLOGICAL APPLICATION OF LATEX MICROSPHERES 

Microspheres have been used in numerous biological and medical 

applications. Their sizes vary from 10 nm to 100 pm, depending upon the requirement 

of the application. Table 1.1^ summarizes some of the biomedical applications of 

microspheres according to their size. 



Table 1.1 Biomedical applications of polymer microspheres. 

Biocompound Size (micron) Use of microspheres 

Protein 

Virus 

Cdl 

&01 

H I.O 

10.0 

100 

H , 

H 

Cell label 

Particle for phagocytosis assay 

Latex diagonostics 

Protein separator 
Drug carrio^ 
Blood flow indicator 

Cell separator 

Column packing reagait 

Embolum 

Heterogeneous immunoassay 
support 

Cell culture carrier 

1.3 SYNTHESIS OF POLYMER MICROSPHERES 

Polymer microspheres can be described as polymeric particles that are in the 

order of sub-micron to several microns in diameter. Originally the term latex referred 

to a dispersion of microspheres from natural rubber whereas the term polymer colloid 

was associated with a suspension of synthetically produced microspheres. Nowadays 

the terms latex and polymer colloid are used interchangeably and have essentially the 

same meaning. 

Functionalized microspheres have received a great deal of interest in two main 

areas: 

(i) Firstly, they can provide useful models for fundamental studies in colloid 

science, physics and rheology, establishing synthesis-structure-properties 

in emulsion polymers; 

(ii) Secondly, they are currently used in a wide range of applications e.g. 

binders (paints, paper coating, textile) or as solid supports in medical and 

biological fields^ (Table 1.1). 

In both cases, various methods and strategies to prepare these micro-particles 

in various sizes and with a variety of surface group functionalities have been reported 

and can be classified in two main categories: 

(i) Physical methods, such as spray-drying and emulsification; 



(ii) Chemical methods, such as heterogeneous polymerization (emulsion, 

dispersion, etc). Most microspheres are prepared by emulsion 

polymerization. 

The efficient production of functional latex microspheres requires the 

synthesis of monodisperse microspheres (a ratio of weight-average diameter to 

number-average diameter less than 1.005) that will allow reliable and reproducible 

results from their applications. In order to produce particle bearing these properties it 

is necessary to understand the principles of particle nucleation and growth in particle-

forming polymerization. 

1.4 MODES OF EMULSION POLYMERIZATION 

Two types of emulsion polymerization have been identified: Firstly, emulsion 

polymerization in the presence of an emulsifier,^"^ and secondly, emulsifier-free 

emulsion polymerization.®"'" The features of latex microspheres prepared by emulsion 

polymerization is dependent on the monomer, emulsifier and initiators used. To date 

persulfate has been used as initiator in which case the polymer chains are terminated 

by sulfate, hydroxyl, or carboxyl groups'*'""'^ resulting from hydrolysis of the sulfate 

end groups which are not completely stable under the reaction conditions. 

Other initiators'^ include azo compounds. One of the most commonly used 

initiators is 2,2'-azobisisobutyronitrile (AIBN). The thermal decomposition of AIBN 

is shown in Equation 1.1. 

NC \ NC 

Other azo-compounds commonly used as initiators include 2,2'-azobis(2-

methylpropionamide) dihydrochloride ((NH2)(NH)(CH3)2-N=N-(CH3)2(NH)NH2 

•2HC1) and dimethyl-2,2'-azobisisbutyrate (MAIB) (CH3)2C(C(=0)0CH3)N=N-

C(C(=0)0CH3(CH3)2 



Peroxides also constitute a class of initiator. Benzoyl peroxide is an organic 

peroxide widely use as a thermal initiator. Its primary decomposition represented in 

Equation 1.2. 

' - (L2) 

o 

O" 

The radical formed subsequently decomposes according to Equation 1.3. 

o 
o» 

(13) 

Thus in the polymerization processes involving benzoyl peroxide as an initiator, the 

polymerization is initiated by both C6H5-C(=0)-0- and CeHj- radicals. 

1.4.1 Emulsion polymerization in the presence of an emuisifier 

Emulsion polymerization, also known as latex polymerization, is a 

heterogeneous process and generally requires two immiscible phases in the presence 

of a water soluble initiator and an emulsifier, such as a surfactant (e.g. sodium lauryl 

sulfate (CH3(CH2)9CH20S03"Na"^)) or a detergent in order to stabilize the emulsion. A 

batch emulsion polymerization process can be divided in to three distinct intervals^ as 

exemplified in Figure 1.1. 
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Figure LI: Representation of emulsion polymerization in batch, 

R represents an initiator radical, M a monomer molecule, P a polymer molecule and —O a 

surfactant molecule. Interval I is the particle formation period, interval II is the contact growth 

period and interval III is the period in which monomer concentration decreases sharply. 

The surfactant gives rise to micelles, each incorporating the organic monomer 

represented in Interval I (Figure 1.1, upper left). The monomer residues mainly in 

larger size (>1 p,m) droplets, which act as reservoirs of monomer rather than taking a 

direct part in the polymerization process, as represented in the lower right comer of 

upper left Interval I. When reaction starts, the initiator decomposes to from radicals 

which react with the monomer (M) dissolved in the aqueous phase and become 

oligomeric radicals (R) which are then adsorbed onto monomer micelles and start 

polymerization. The resulting growth of the chain is represented in Interval I (top 

right of Figure 1.1). As the polymer forms, more M enters the micelle from the large 

reservoir droplets after diffusing through the aqueous phase. This process is 

continuous: the large monomer reservoir droplets being depleted whilst the micelles 

swell as they accumulate polymer chains as the reaction time passes in the batch 

reaction process. This is evident by the two left-hand parts in Interval II of Figure 1.1. 

Thereafter, the large droplets will have disappeared when 50-75% of the initial M has 



been incorporated into chain of polymer. This is represented by the lower right-hand 

part in Interval III of Figure 1.1. 

It is clear that emulsion polymerization is a heterogeneous process, with active 

species traversing phase boundaries. The mode of polymerization can be use to 

produce spherical particles in the order of 0.1-0.5 pm. 

1.4.2 Emulsifier-free emulsion polymerization 

In the emulsifier-free emulsion polymerization process, polymerization occurs 

in a similar manner to emulsion polymerization except it is conducted in the absence 

of an emulsifier. The basic materials are water, monomer, with or without ionic co-

monomer and initiator. The process of emulsifier-free emulsion polymerization 

proceeds through a complex m e c h a n i s m , a simplified mechanism is shown in 

Figure 1.2. 

Radical capture 
by particles 

Nucleation 

Monomer droplets 

Initiator 

Radical capture 
by monomer drops Dissolved monomer 

Free radical 

Coagulation and growth 

Oligomer radical 

Primary particle 

Stable particle 

Figure 1.2; Schematic of particle-formation mechanism ' 



Water is the continuous phase and the co-monomer and initiator are dissolved in 

water. Initially the monomer is present either as dissolved monomer or monomer 

droplets. It is generally considered that the formation of particles occurs through 

homogeneous nucleation mechanism containing three sequential steps. Firstly the 

reaction starts in water phase; the initiator decomposes to form radicals which react 

with the dissolved monomer to form oligomeric radicals. The polymerization process 

mainly takes place in these particles and then stabilized by collapsing on itself or by 

coalescing with other oligomeric radical to form primary particles. At this time the 

number of polymer particles remains constant while the monomer diffuses from the 

droplets into the particles. The reaction rate is relatively rapid and constant until the 

monomer droplets disappear. Finally, primary particles in the system may coagulate 

and coalesce to from a colloidally more stable particles. The end of the nucleation 

stage in this system occurs when stable particles are sufficiently large and numerous 

to capture all newly formed oligomeric radicals as shown in Figure 1.2. 

1.5 COMPARISON BETWEEN EMULSIFIER-FREE EMULSION 

POLYMERIZATION AND EMULSIFIER EMULSION POLYMERIZATION 

The preparation of polymer microspheres by emulsion polymerization 

containing emulsifier is generally suitable for particles ranging in diameter from 0.1-

0.5 pm, with solids contents as high as 50 %. However, for many cases there are 

certain drawbacks of this technique, e.g. the polymer particles tend to be partly 

stabilized by adsorbed surfactant'"* and removal of the surfactant can lead to 

floculation.'^ In other cases, the surfactant may affect the properties of the latex, e.g., 

an adsorbed surface layer may cause an apparent increase in diameter in suspension 

and, in electrophoretic measurements, it will affect the magnitude of the surface 

charge." The addition of a small amount of nonionic emulsifier caused a bimodal 

distribution of particle size."" An example of a surfactant having an adverse effects 

includes surfactants that are used to disperse the human serum albumin microspheres. 

These have the potential of influencing tissue interactions and drug activity.'^ 

Removal of the emulsifier can prove to be difficult and whether complete removal can 

ever be achieved is debatable.'*'''' To overcome these potential problems, emulsifier-

free emulsion polymerization is often preferred. 



CHAPTER 2 

PREPARATION AND CHARACTERIZATION OF 

POLYSTYRENE LATEX MICROSPHERES 



2.1 INTRODUCTION 

In this chapter the preparation of a variety of flinctionalized polystyrene latex 

microspheres via emulsifier-free emulsion polymerization procedures are discussed. 

2.2 RESULTS AND DISCUSSION 

2.2.1 Synthesis of polystyrene latex microspheres 

Three polystyrene latex microspheres (1, 2 and 7) having DVB as a 

crosslinking agent have been prepared possessing, hydroxyl, carboxyl and amino 

functionalization (Figure 2.1) using the emulsion polymerization emulsifier-free 

technique (Chapter 1, Section 1.4.2). 

o 

( J 

(1) (2) (7) 

Figure 2.1; Representation of polystyrene functionalized latex microspheres. 

2.2.1.1 Synthesis of hydroxyl functionalized polystyrene latex microspheres (1) 

The hydroxyl fianctionalized polystyrene latex microspheres were synthesised 

using the emulsifier-free emulsion co-polymerization method described in Chapter 1 

(Section 1.3.2). Hydroxyethyl methacrylate was added to give a theoretical loading of 

2.6 mmol/g with 4.3 mol % divinyl benzene (with respect to styrene) as the cross 

linker and using 2-2'-azobis(2-methylpropionamidine) dihydrochloride'^ as the 

initiator (Equation 2.1) to give product (1) in 57% yield. 

NH NH 

NH, 2"C' 
ÔH 

80 °C 

(2.1) 

(1) 

10 



The hydroxyl content was determined by titration with phthaHc anhydride'®"^' to give 

a hydroxyl loading of 0.92 mmol hydroxyl/g. 

2.1.1.2 Synthesis of carboxyl functionalizedpolystyrene latex microspheres (2) 

The carboxyl functionalized polystyrene latex microspheres were synthesised 

by the method described in Section 2.2.1.1. Methacrylic acid was added to give a 

theoretical loading of 1.6 mmol/g. Polymerization was conducted using 4.3 mol % 

divinyl benzene (with respect to styrene) as cross linker at 80 °C for 16 h (Equation 

2.2) to give product (2) in 50% yield. 

NH NH o 

Q f ^ O H (2.2) 

80 "C (2) 

The presence of carboxylic groups were quantified by titration according to a protocol 

developed by Sivakumar et This involves the reaction of the polymer with 

NaOH and back-titration with HCl (Equation 2.3) to give loading of 1.35 mmol 

carboxyl/g. 

o o o 0 3 ^ 

( / • O H ^ ( y - O - N . . ^ ' 

2.2.1.3 Preparation of amino functionalized polystyrene latex microspheres (7) 

The amino functionalized polystyrene latex microspheres (7) were prepared in 

two steps. 

(i). Preparation of the co-monomer (6), vinylbenzylamine hydrochloride 

(VBAH), has literature precedence.'^ It has been shown to be a necessity to protect 

the amino group during polymerization and one possible protection method was found 

to be protonation to yield the hydrochloride salt (6), which was obtained according to 

Scheme 2.1. 
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