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The theoretical modelling of ultrasonic propagation in cancellous bone is
pertinent to the improvement of ultrasonic techniques for diagnosing the bone
disease osteoporosis. For such techniques to be confidently used in the clinical
management of osteoporosis, fundamental research is required to establish an
understanding of how ultrasonic waves travel in porous, or cancellous, bone.
This thesis concerns investigations into various theoretical models of
propagation in porous media. These studies are supported by in vitro
experiments on bovine cancellous bone around 1 MHz.

Previous applications to bone of established theories, such as Biot’s theory
for fluid-saturated porous media, have enjoyed limited success. This thesis
begins by considering Biot’s theory in more detail than previously reported in
the literature. Biot’s theory predicts that two longitudinal waves travel in
cancellous bone in response to insonation with a single wave. The existence of
two waves, known as fast and slow waves, is confirmed, which had not been
reported in the literature prior to the start of this work. The importance of the
presence of marrow in the pores on these waves is investigated.

The phase velocities of fast and slow waves are observed to be strongly
dependent on direction, relative to the internal cancellous structure. However,
the isotropic form of Biot is not appropriate for modelling this response.
Therefore, a second approach is proposed, which uses Schoenberg’s theory to
model propagation in a parallel-plate model of cancellous bone. Direction
dependent measured velocities are observed to give qualitative agreement with
the predictions of the Schoenberg model. The two theoretical approaches are
compared when anisotropic mechanical and fluid motion effects are introduced
into Biot’s theory.

Finally the findings of this research are discussed with respect to current
clinical ultrasonic measurements of bone. Recommendations are made for the
development of a future model-based system for bone assessment.
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Preface

In recent years, research into the bone disease osteoporosis has
escalated. Simultaneously, the diagnostics industry has embraced the
introduction of the technique Broadband Ultrasonic Attenuation, based on the
potential of the technique to become a cheaper option than x-rays and ideal for
use in screening programmes. However, after fifteen years, BUA has not
delivered on those initial expectations, and it is widely acknowledged that
further research is required before it may be confidently used in the clinical
management of osteoporosis. If the technology and the industry are to be
sustained, basic work into the physics of the application is required to improve
the technology's reputation for reliability and to yield maximum -clinical
information.

This thesis sets out to describe investigations into the theoretical
modelling of the propagation of ultrasonic waves in porous cancellous bone,
with the aim of advancing understanding and contributing to the development
of ultrasonic bone diagnostics. The work is presented in seven chapters,
beginning with introductions to the fields of osteoporosis, the modelling of
propagation in porous media and ultrasonics. The development of two
theoretical models is described, and results from experimental investigations
are presented.

It is hoped that this thesis will in some way contribute to the
improvement of existing ultrasonic techniques, or to aid the development of

novel uses of ultrasound to render a better clinical tool than currently exists.
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Jviscous viscous frequency (Hz)
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1 time-averaged intensity (W/m’)
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Im(®) imaginary part of FFT
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k permeability (m?)
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1 coefficient of anisotropy

M elastic coefficient of transverse isotropy
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Where observation is concerned,

chance favours only the prepared mind.

Louis Pasteur
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Chapter One

Introduction to Ultrasonic Bone Assessment

1.1 General Introduction

Throughout the development of medical practice, scientists have been
intrigued by methods for examining the human body without the need for invasive
surgery. The development of X-Ray technology in the early twentieth century
marked a vast step forward in this field, and modern tools such as computed
tomography, MRI and virtual reality have given physicians new means of
examining patients.

Non-invasive and non-ionising ultrasonic testing has been used to great
effect in biomedical diagnostics, in applications such as foetal imaging and
Doppler techniques for monitoring blood flow. The compressions and
rarefractions in pressure that accompany acoustic propagation mean that wave
characteristics closely relate to the mechanical properties of the host medium.
Such a dependence had previously been exploited in the non-destructive testing of
mechanical and structural integrity, and the development of diagnostics was
grounded in the application of ultrasound in engineering environments.

This thesis is principally concerned with the application of ultrasound to
the testing of skeletal integrity in vivo, and in the understanding of propagation in

porous bone, for the diagnosis of the bone disease, osteoporosis.
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1.2 Osteoporosis

Osteoporosis is a skeletal disease characterised by low bone mass and
microarchitecture deterioration of bone tissue, leading to increased fragility and
fracture risk (Consensus Development Conference 1993). In the UK, around 30 %
of women and around 8 % of men over 50 years of age are affected by
osteoporosis (National Osteoporosis Society (NOS) 1998a). Women are exposed
to a higher risk owing to rapidly declining oestrogen levels after the menopause,
whilst the occurrence of the disease in men is linked to a lack of testosterone. The
use of corticosteroids, and lifestyle factors such as smoking or lack of exercise,
also affect its occurrence, which is increasing by 10 % per year (NOS 1998a).

Osteoporosis contributes to causing 200,000 fractures in the UK annually
(NOS 1998a). Around 60,000 of these are hip fractures, which often lead to
prolonged convalescence and disability. Fractures of the spine and forearm are
also common. Many patients do not recover sufficiently to allow a return to their
previous lifestyle, and many die within one year of a hip fracture. Not only does
the occurrence of fractures significantly affect the quality of life of individual
sufferers, but it also places a financial burden on public health resources close to
£1 billion (NOS 1998a). In contrast to risk factors such as the trauma of a fall or
impaired mobility through other disease, the lack of bone strength constitutes a
quantifiable and treatable risk factor.

1.3 The Configuration and Strength of Bone Material

1.3.1 The Configuration of Bone

The skeleton provides a rigid framework for the support and protection of
the anatomy of vertebrates. The bones of the skeleton have adapted in form and
configuration to give optimal weight bearing capacity with a given amount of
calcified tissue. Most bones contain two types of calcified tissue: cortical and
cancellous bone. Cortical bone is dense and compact, with density around 2000

kg/m’ (Duck 1990). Cancellous bone is a porous cellular network of bony strands

2
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called trabeculae (figure 1.1), filled with fatty bone marrow with macroscopic
density close to 1100 kg/m’® (Duck 1990).

Long bones, such as the femur pictured in figure 1.2, consist of a hollow
medullary cavity, with two extremities known as epiphyses. The medullary shaft is
made of cortical bone, while cancellous bone forms a lining of increasing thickness
at the ends of the cavity. Marrow fills the medullary cavity and the pores of the
spongy tissue of cancellous bone. Bone is also highly vascular, with long arteries

running the length of the femur, and numerous fine vessels and nerve fibres.

3.0cm

Figure 1.1 - Cancellous bone from the bovine femur.

Cancellous bone

S

Cortical bone

Medullary cavity

Epiphysis
Figure 1.2 - The configuration of bone tissue in the femur.
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1.3.2 Mechanical Strength of Bone Tissue

Bone strength is predominantly determined by two factors: bone density
and the spatial distribution of calcified tissue.

(a) Bone Mass

Research on fractures in humans shows that those in the population who
have less bone, on average sustain more fractures than those with higher mass
(Smith ef al. 1975). Women achieve a lower peak bone mass than men, and the
period of accelerated bone loss following the menopause is coincident with an
exponential increase in hip fractures in women around this age (Cooper 1989).

The breaking stress of bone is a function of the density and Young’s
modulus (Gibson 1985). (Density here relates to the macroscopic or volume
density of cancellous bone, rather than the density of an individual trabecula.) /n
vitro mechanical loading tests established that the compressive strength of
cancellous bone varies with the square of density (Carter and Hayes 1977). This is

discussed further in Chapter 2.

(b) Bone Structure

The distribution of calcified tissue is determined by its role at a certain site.
Cortical bone, being denser than cancellous, is found at sites exposed to the
greatest strain.

The strength of cancellous bone is determined by the structure of the
trabeculae network. The trabecular arrangement of cancellous bone is optimally
adapted to provide a large load-bearing area, while minimising the weight of
tissue. This enables it to withstand the variety of stresses to which it may be
subjected. Bone material generates an electric potential under stress, which may be
either a semiconductor or a piezoelectric effect (Lang 1970). This behaviour may
induce growth along the principal stress trajectories in cancellous bone (Gibson

and Ashby 1988).
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Furthermore, the density and symmetry of the cancellous architecture
depend on the magnitude and direction of the loads it withstands in a particular
location (Gibson and Ashby 1988). Rod-like structures occur in regions of low
stress, while plate-like arrangements are seen in areas subject to higher stress. In
bones where loading is uniaxial, trabeculac are often arranged in a dominant
orientation with cylindrical symmetry (Currey 1984). If the stress pattern on the
skeletal site is complex, then the trabecular structure is elaborate and may be
asymmetric. The same mass of bone is more biomechanically competent when
arranged in numerous, highly connected thin plates rather than thicker, fewer and
less connected plates (Kleerekoper et al. 1985). The classification and
mathematical description of the cancellous fabric will be discussed in further in
sections 2.3.2 and 5.2.

At a finer level of structure, cortical bone is composed of a fibrous organic
matrix (largely collagen) and inorganic calcium compounds. These compounds
include crystalline hydroxyapatite, whose fibres are partially aligned along the
length of long bones, providing higher stiffness in certain directions. Highly
oriented cancellous bone displays relatively high stiffness and compressive strength
in the direction of trabecular alignment, with the stiffness in transverse direction
being as much as ten times lower, for example, in the human tibia (Williams and

Lewis 1982).

1.3.3 Bone Growth and Osteoporosis

Osteoporosis is associated with an imbalance in the regeneration cycle of
bone tissue. Bone is constantly being laid down by cells known as osteoblasts and
resorbed by those called osteoclasts (McFadyean 1953). In healthy humans, these
processes are balanced, such that there is no overall gamn or loss of bone. The
regeneration cycle is severely disrupted in post-menopausal women as a result of a
lack of oestrogen, which results in accelerated bone loss. Additional diseases, such
as liver or thyroid problems, or certain treatments for unrelated illnesses, such as
corticosteroids for asthma, may also contribute to causing osteoporosis and bone

loss (Cooper 1989).
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The large surface area of cancellous bone enables more effective
metabolism than in cortical bone. Hence, the result from imbalances in the
regeneration cycle may be observed first in cancellous bone. In particular,
osteoporosis significantly affects the structure of cancellous bone. The pores
become larger and the structure becomes more open. Image processing has shown
that aged or osteoporotic bone has significantly fewer trabeculae, while those that
remain are reduced in thickness (Mellish ef al. 1989, Croucher ef al. 1994).

Changes in the trabecular architecture contribute to changes in bone
strength (Kleerekoper et al. 1985). The deterioration of the cancellous structure
has been correlated with fracture incidence in humans. Patients who sustained
osteoporotic-related fractures had a significantly lower trabecular plate density,
thickness and connectivity of trabecular elements than control subjects
(Kleerekoper et al. 1985, Croucher et al. 1994). Therefore, although fractures
occur in sites containing both bone types, most clinical techniques assess

cancellous, rather than cortical, bone for early signs of degeneration.

1.4 Clinical Bone Assessment
1.4.1 The Targeting of Treatment

The ultimate aim of current research programmes is to reduce the risk of
age-related hip fractures and the financial burden they incur. Although factors such
as the risk of falling and poor diet also contribute to fracture risk, drug treatments
are available that resist bone loss. The early administration of treatments such as
Hormone Replacement Therapy (HRT), Calcium and Vitamin D have been shown
to be effective at reducing fracture risk (NOS 1998a). However, although HRT
also has cardiovascular benefits, it has been shown to increase the risk of cancer.
Recently developed synthetic hormones, called Selective Estrogen Receptor
Modulators (SERMS), reduce fracture risk and heart disease, but do not increase
cancer rise (NOS 1998a).

Tackling low bone mass by the prescription of such drugs as HRT or

SERMS, requires identification of those in the population requiring treatment.
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One approach is to treat the entire population, ensuring that everyone who
required treatment received it, and reducing a great number of fractures. However,
in addition to this being an extremely expensive approach, patients would be
unaware of their true bone status or response to treatment, and may be reluctant
to comply with such a course.

An alternative strategy is to target those in the population with low bone
mass who are at highest risk of fracture. Treatment could then be administered
where required, providing incentives for patient and doctor to continue treatment
and monitor its progress. However, for such an approach to be effective, those at
risk must be identified as early as possible. Identification requires population

screening using reliable and precise clinical bone assessment techniques.

1.4.2 The Assessment of Bone Condition

Bone assessment systems may be designed with two roles: first, the early
identification of those at highest risk of fracture, and, second, the monitoring of
bone status during treatment. Achieving these aims relies on techniques satisfying
various prerequisites. First, the system should provide information about fracture
risk from a characterising index or parameter that can be measured non-invasively
and in vivo. Second, that parameter should either significantly alter with the
disease over time, or should be of a quantitative level to establish bone condition
from one measurement. Such requirements are strongly dependent on the
performance of an individual technique, and define its clinical utility.

General experimental practice says that, for a result to be meaningful, the
measurement error should be less than the random variability of the parameter
being investigated. The role of a clinical assessment technique is dependent on its
precision', usually quoted as a coefficient of variance (CV or, as a percentage,
%CV), with respect to the variation in the population (95 % confidence limits, or
two standard deviations). Figure 1.3 shows the comparison between the variation

of bone mineral density in the normal population (mean + standard deviation) and

' The word ‘precision’ has varying usage. In engineering it refers to the resolution (decimal
places, scale gradations) to which a measurement may be made. In clinical research, it is ofien
taken as a technique’s reproducibility, as mean =+ std. The latter definition is used in this thesis.

7
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the error (+ 95 % confidence limits), for various coefficients of variance in bone
densitometry of the lumbar region. Coefficients of 1 and 2 % are small compared
with the distribution, whilst 5 % covers a significant proportion of the range. This
suggests a system with a %CV of 1 % would have strong discriminatory
capabilities, whilst that with a %CV of 5 % would not be as beneficial. To be
useful in unique screening measurements, the %CV of a bone assessment system
should be better than 2 % (Reid and Stewart 1998).

If the system is being used to detect a change in a parameter, the
measurement uncertainty must be significantly less than any difference it is trying
to distinguish. The magnitude of a change in bone density between two
measurements depends on the rate of bone loss and the duration of the interval
between tests. However, to be confident of detecting a change with the technique,
the percentage loss must also be significantly greater than the precision. A certain
amount of bone must be lost for a change to be detected, and the delay between
measurements until this occurs can be very long if the system has poor precision.
This is clearly unsatisfactory for the patient requiring urgent treatment. Therefore,
for monitoring the response to treatment, bone densitometers should have

precision around 1 % (Reid and Stewart 1998).

146F
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Figure 1.3 - Possible precision values of bone densitometry, with coefficients of variance as

vertical bars and mean and standard deviation of normal population as dashed lines (Petley1994).
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1.4.3 Current Diagnostic Technigues

Dual Energy X-Ray Absorptiometry (DXA or DEXA) of the lumbar spine
is currently the preferred method for identifying fracture risk and monitoring
response to treatment of osteoporosis (NOS 1998b). An x-ray beam containing
two energies is passed through the body. Since the interaction of x-rays with bone
differs from that with soft tissue, it is possible to compensate for the absorption
from soft tissue and isolate that from the bone. DXA provides high resolution
images and has a precision better than 1 %.

Generally used to assess sites such as the lumbar vertebrae, DXA replaced
Single Photon Absorptiometry, which was applied to peripheral sites. Quantitative
Computer Tomography was adapted for bone assessment, but is expensive
(Consensus Development Conference 1993). Although the DXA method is seen
as being the gold standard in densitometry (Miller et al. 1996), it is relatively
expensive and not widely available in the UK in comparison to the rest of Europe
(European Foundation for Osteoporosis and Bone Disease 1998). A national
screening programme for osteoporosis was recently rejected on the basis that its
cost could not be justified (Royal College of Physicians 1999).

Techniques such as DXA examine bone for one indication of osteoporosis:
reduced mass. However, as stated in section 1.3.2, bone strength also depends on
its internal microstructure. Therefore, assessment that also evaluates architectural
changes, may be a better determinant of fracture risk than DXA alone.
Deterioration of the bone microstructure may potentially be assessed in vivo by
ultrasonic techniques.

Quantitative Ultrasound (QUS) has been available since the mid-1980s and
has experienced rapid development in recent years. It has attracted considerable
interest since it involves no ionising radiation and can be provided by easily
portable and mexpensive machines. The development of such systems, and the role

and performance of clinical QUS are described in the following section.
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1.5 Ultrasonic Studies of Bone

1.5.1 Historical Studies

Ultrasound has been used to characterise the mechanical properties of
bone in attempts to predict bone strength and resistance to fracture. Studies were
first reported in 1949 (Theismann and Pfander), and most early work focused on
cortical bone (for example, Anast et al. 1958, Yoon and Katz 1976). The first
studies on cancellous bone reported in the late 1970s (Fry and Barger 1978, Smith
et al. 1979).

Bone is generally tested at frequencies below 1 MHz, but studies have
been performed using frequencies up to 15 MHz (Lakes et al. 1983). A wide
variety of spatial dimensions and organisational levels have been probed, which
range from the ultrastructural level (dimension < 10 um, such as collagen (Yoon
and Katz 1976)); to the microstructural level (dimension > 10 um, such as
trabeculae (Evans and Tavakoli 1990)); to the whole organ (Antich 1993).

The measurement of ultrasonic velocity and frequency-dependent
attenuation have been most extensively studied. Further factors that have been
studied include resonance (Selle and Jurist 1966) and a combination of velocity
and frequency-dependent attenuation, named stiffness (Lees and Stevenson 1993),
but whose physical significance is not well defined. This parameter is not
considered further here, but the measurement of velocity and attenuation in bone

1s considered below.

1.5.2 Measurement of Ultrasonic Velocity

Two distinct velocities of wave propagation may be defined; group and
phase velocity. For a plane harmonic wave of angular frequency, ®, and
wavenumber, g (= 2n/A, for wavelength, A), the phase velocity is ¢ = o/q. The
phase velocity equals the propagation speed if the ratio w/q is constant with
frequency. If the phase velocity is a function of frequency, the propagation is

dispersive (Kinsler et al. 1982), which may arise from sources such as scattering,

10



E R Hubbuck, 2000 Chapter 1: Introduction 11

the frequency dependence of material constants, or the dissipation of wave energy
into heat. The energy of the wave travels at the group velocity, defined as the
derivative of angular frequency with respect to wavenumber, ¢ (which may be
complex), dw/dg.

Group velocity is evaluated from the time taken for a pulse to travel
through a specimen of known thickness. In a dispersive media, such measurements
are subject to the definition of pulse arrival time. A principal feature of dispersion
is that a pulse may not retain its original shape as it propagates through a
dispersive medium (Sachse and Pao 1978). The group velocity in cortical bone has
been measured on many occasions (e.g. Abendschein and Hyatt 1970, Ashman et
al. 1984, Hunt et al. 1998). It has also been measured through cancellous bone
(e.g. Rich et al. 1966, Ashman and Rho 1988, Nicholson ef al. 1994). It is also
forms an assessment in clinical QUS, where it is known as Speed of Sound, or
SOS. Studies in cancellous bone have shown that group velocity, calculated from
a given waveform, varied by 6 %, depending on the choice of zero-crossing point
(Strelitzki ef al. 1996), owing to the presence of frequency dependent dispersion.

The measurement of phase velocity in cancellous bone has received less
attention. There is evidence that the phase velocity decreases with frequency, that
is, it experiences negative dispersion (Nicholson et al. 1994), although later

research shows evidence of positive dispersion (Strelitzki and Evans 1998).

1.5.3 Young’s Modulus

The measurement of ultrasonic velocity has generated much interest owing
to the relation between velocity and Young’s modulus. The velocity, cs,,, of a

longitudinal wave travelling along a thin rod may be expressed as

Char :VE/p 1.1)

b4

for density, p, and Young’s modulus, E.
The Young’s modulus of bone indicates its potential breaking stress

(Gibson 1985), traditionally found by static loading tests. Such tests permanently

11
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alter the specimen and assume a linear relationship between stress and strain,
which may not exist owing to the visco-elastic nature of bone (Gibson & Ashby
1988). Ultrasound offers a non-destructive measurement of Young’s modulus.

Equation (1.1) is valid for longitudinal disturbances in a bar, the lateral
dimensions of which are small compared with its length. In such cases, the
displacement of particles is parallel to its axis and each cross-sectional plane of the
bar may be considered to move as a unit (Kinsler e al. 1982). In practice, this
condition may be satisfied by choosing a suitable frequency. Propagation in a
sample of finite size is dependent on the ratio of the wavelength to some
characteristic length of the sample. In homogeneous media, this effect is known as
geometric dispersion (Thurston 1978, Ashman et al. 1984). Bar propagation
occurs if the ratio of the characteristic size to the wavelength is much less than
unity. If this ratio is much greater than unity bulk propagation occurs.

Equation (1.1) has been used on numerous occasions to evaluate the
Young’s modulus of cortical bone from measurements of ultrasonic velocity (for
example, Lang 1970, Carter and Hayes 1977). Since cortical bone is relatively
homogeneous at the millimetre scale, measurements at frequencies around 2 - 5
MHz, where the wavelength is of the order of 1 mm, satisfy the bar assumption.
Ultrasonically derived Young’s modulus correlates well with that derived from
loading tests (Abendschien and Hyatt 1970).

For studies of inhomogeneous cancellous bone, experimenters have sought
to satisfy the conditions for bar propagation in two distinct ways. The mode of
propagation in a cancellous sample depends on the ratio of the wavelength to,
either, the size of the discontinuity (pore or trabecular width); or, the specimen
size. Therefore, two possible scenarios emerge: propagation along individual
trabecula, or propagation through a whole cancellous sample.

In the first case, Rho (1998) took the trabecular width as the characteristic
length, and assumed that waves travel along each trabecula. Tests were performed
at 2.25 MHz, where the wavelength in water is 667 pum, which, for the bar
equation to be applicable, should be considerably less than the trabecular width.
However, typically trabeculae are 500 pm m width (Mellish et al. 1989), so the

assumption is not strictly valid. Furthermore, this approach neglects the

12
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contribution of the marrow in propagation, and the possibility of bulk wave
propagation at these frequencies.

The second approach has considered propagation through a whole
cancellous specimen, typically a few centimetres in width, at lower frequencies.
Strelitzki et al. (1997a) used pulses of centre frequency 37 kHz (wavelength
around 4 cm), to ensure the wavelength was greater than the macroscopic
dimensions of the specimen. The resulting time-of-flight velocity values were
significantly lower than those observed at higher ultrasonic frequencies, and it was
suggested that bar propagation was occurring at this frequency.

Ashman et al. (1984) suggested that bar propagation in cancellous bone
may transform into bulk propagation as the frequency increases by a geometric
dispersion effect. The method by which this mode conversion may occur had not

been thoroughly investigated, nor explamed with theory.

1.5.4 Broadband Ultrasonic Attenunation

As ultrasonic waves travel through bone, energy is lost. In a lossy medium,
a plane harmonic wave, of peak amplitude, P,, may be represented as p(x, ) =
P,.exp(jax - qx), where the wavenumber is complex, g = g - jo,, and where o, is
the absorption coefficient (Kinsler ef al. 1982).

Attenuation of ultrasonic waves in bone was first reported by Fry and
Barger (1978) and Smith ef al. (1979) for the measurements of the skull. In 1984,
Langton et al. generated much interest in the measurement of ultrasonic
attenuation for bone health assessment. The subsequent technique has come to be
known as Broadband Ulirasonic Attenuation (BUA) and is the parameter most
commonly measured in clinical ultrasonic bone assessment today.

Broadband Ultrasonic Attenuation measurements are taken by passing
signal with a bandwidth 200 - 600 kHz through the os calcis (the heel bone), often
performed in a water bath. The os calcis is used because it contains a high
proportion of cancellous bone, its sides are approximately parallel, and it is easily

accessible for testing.

13
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The assumption is made that when attenuation, is plotted on a decibel scale
as a function of frequency, f, the plot is linear in the bandwidth 200 - 600 kHz,
that 1s,

atten( ) = (gradient x frequency) + constant (1.2)

where the gradient is also called the BUA value, in dB per MHz. The BUA value
is the gradient of the attenuation spectrum in figure 1.4, evaluated by linear
regression.

In a relatively small study of sixty women, Langton found that the BUA
gradient was significantly higher in young healthy women than in those who had
sustained fractures of the femoral neck. Subsequent studies showing similar

results, became the basis for BUA as a parameter of clinical utility.
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Figure 1.4 Linear relationship between attenuation & frequency which is assumed for BUA.
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1.5.5 The Role of QUS in Bone Assessment

Quantitative ultrasound of the heel bone has attracted considerable interest
as a potential tool in the clinical management of osteoporosis. There are currently
a number of commercial QUS systems, using either a contact method (McCue
CUBA, Hologic Sahara, Metra QUS-2), or a water bath technique (Lunar
Achilles). It is a portable, quick and inexpensive method of bone assessment.
However, its acceptance as a reliable tool has taken some time, owing to a number
of uncertainties regarding its performance.

The potential role of QUS techniques in the management of osteoporosis
is determined by its clinical precision. The static instrument precision of
Broadband Ultrasonic Attenuation has been reported as 2 - 3 %, although for
repositioning, a coefficient of up to 9 % has been measured (Greenspan et al.
1997, Stewart and Reid 1998). For Speed of Sound, the %CV has been quoted as
being in the range 0.5 - 0.8 % (Greenspan et al. 1997). Comparing with normal
population ranges for BUA and SOS of 4.3 % and 1.4 %, respectively (Truscott et
al. 1996), both techniques do not perform as well as established DXA.

However, clinical trials have shown QUS is able to predict hip fracture risk
in the elderly, with and without supporting DXA data (Hans et al. 1996), and,
alone, it may be a stronger predictor of low bone mass than when combined with
other factors (Langton et al. 1997). As a result, the National Osteoporosis Society
recommended that QUS may be used to assess hip fracture risk in elderly women,
with patients with low results being referred for DXA assessment (NOS 1998Db).
However, its relatively poor precision, combined with the low rate of change in
BUA and SOS over time, means that the technique cannot currently be used to
assess response to therapy over a period of time (NOS 1998b).

Research has aimed to establish which physical factors of bone influence
QUS measurements. BUA is correlated with bone mineral density, as measured by
DXA (Petley et al. 1987), although not sufficiently strong to suggest that BUA is
only affected by density. Indeed, BUA is affected more by the structure of
cancellous bone than by the density (Tavakoli and Evans 1992).

Factors affecting the precision of BUA measurement have undergone

investigation. No industrial standards exist, and a large variation n BUA between
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different makes of commercial system has been reported (Evans ef al. 1996). The
assumed linear relationship between attenuation and frequency, typified in figure
1.4, has undergone scrutiny, since the attenuation slope varies in different
frequency ranges (Strelitzki and Evans 1996), or it may be a function of receiver
size (Edwards 1998). The effect of foot positioning was researched by Petley
(1994) who proposed a Region of Interest on which to calibrate measurements.
Laugier et al. (1994) proposed a BUA imaging system to overcome positioning
problems.

Bone-mimicking materials have been developed by some commercial
manufacturers, and by researchers, for testing the precision BUA systems. Such
materials have been made of a mixture of epoxy resin and gelatin (Clarke et al.
1994) to simulate the acoustic properties of real bone. The performance of these
phantoms will be discussed further in section 4.2.6.

Therefore, although QUS technology may offer complementary
information about bone condition to radiological data, further research into
underlying influences is required before it may be used in longitudinal studies. In
particular, the interaction between ultrasound and cancellous bone is poorly
understood, and the identities of those parameters that may be optimal for

assessing bone condition, are not known.

1.6 Presentation of Research

1.6.1 Contributions

The definition of osteoporosis refers to the deterioration of the
architecture of cancellous bone. Ultrasonic waves are influenced by this structure,
and may help to indicate the strength of bone and fracture risk. Since the
interaction between ultrasound and cancellous bone is not fully understood,
examination of an accurate theoretical model 1s vital if ultrasound is to be applied
in an optimal way. It is the aim of this thesis to further the understanding of
ultrasonic propagation in cancellous bone, and the contributions to the field may

be summarised as follows:
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e Biot’s theory for propagation in fluid-saturated porous media, previously
mnvestigated by other authors, is considered here in greater detail, where the
importance of the pore fluid dynamics is highlighted.

e The existence of two compressional waves, which are predicted by Biot’s
theory in cancellous bone and which had not been reported in the literature
prior to the start of this work, is confirmed. Wave velocities are observed to
depend on trabecular orientation, which Biot’s theory is unable to model.

e A second model is introduced here, which uses Schoenberg’s theory for
propagation in parallel-plates to gain qualitative agreement to experimental
data.

o The theories of Biot and Schoenberg are compared. This involves the
introduction of transverse isotropy and amisotropic fluid effects into Biot’s

theory.

Throughout the thesis, a number of issue are tackled, including:

e Can a useful theoretical model be found to describe propagation?

e How does frequency affect propagation?

e What physical factors of the composition and configuration of cancellous bone
affect the propagation of ultrasonic waves?

e Can any suggestions be made regarding the improvement of current clinical

systems ?

1.6.2 Ontline

The research is presented as follows:

Chapter 2  Biot’s theory is discussed in detail, the mechanisms of the
propagation of two compressional waves are addressed, and the theory is used to

predict wave properties for a model of cancellous bone.

17



E R Hubbuck, 2000 Chapter 1: Introduction 18

Chapter 3  An experimental plan was designed to investigate the propagation
of two compressional waves in bovine cancellous bone in vitro. The principles of
ultrasonic measurement are described, and the methods for evaluating wave
properties, the experimental immersion system used here and the extraction of

bone specimens are discussed.

Chapter4  Experimental results are presented and discussed. The fast and
slow compressional waves of Biot’s theory are observed and measured wave
properties are compared with theory. Wave properties are observed to be affected
by the inclusion of marrow in the pores and to vary with angle to the trabecular

orientation.

Chapter 5  An alternative propagation model for to Biot’s theory is presented
here which accounts for the direction dependence of observed wave properties.
Schoenberg’s theory for propagation in periodically alternating fluid-solid layers is
applied to a stratified model of cancellous bone. Experimental results are

compared with predictions from this second approach.

Chapter 6 The Biot and Schoenberg theories for modelling ultrasound in
cancellous bone are compared. Anisotropic fluid and frame effects are introduced
into Biot’s theory, to enable the theory to account for wave properties that change
with angle. These predictions are compared with the available experimental

results.

Chapter 7  The implications of the experimental and theoretical findings of the
previous chapters for clinical bone assessment is discussed. Various suggestions
are made regarding areas for future work in both theoretical modelling and clinical

studies.
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Chapter Two
The Application of Biot’s Theory to

Ultrasonic Propagation in Cancellous Bone

2.1 Introduction

Whilst many experimental studies of ultrasonic propagation In
cancellous bone have been undertaken by previous authors, relatively little
research has been carried out into its theoretical modelling. A thorough
theoretical understanding of the problem may lead to the most appropriate use
of ultrasound in diagnostic systems. Theoretical modelling also identifies
relationships that allow factors indicating bone strength to be inferred from
measurable parameters.

This chapter reviews Biot’s theory and discusses its application to
ultrasound in cancellous bone. The derivation of Biot’s theory is described,
and the main influences on propagation are discussed, including important

practical details.
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2.2 Biot’s Theory for Acoustic Propagation in Porous Media

2.2.1 Acoustics of Porous Media

Several approaches for modelling acoustic wave propagation in porous
media have been proposed. One group is known as Rigid Frame models’
(Zwikker and Kosten 1949, Attenborough 1983, Allard et al. 1992). These
consider media where the porous solid component (the matrix or frame) has a
high density or elastic moduli and its movement can be neglected. Rigid Frame
models have been used to model acoustic wave propagation in the audio range
through air-saturated foams for noise control applications (Champoux and
Stinson 1992). However, for media where the movement of the solid frame is
elastic and contributes to wave propagation, a more comprehensive theory is
necessary.

Biot’s theory is widely acknowledged as the most general theory for
propagation in fluid-solid composite systems. Fluid relates to both liquid and
gas. The theory has been able to model a broad group of physical problems.
These include fluid diffusion through a porous matrix (Chandier and Johnson
1981); dispersion and attenuation due to relative fluid-solid motion (Stoll and
Bryan 1970); and the experimental observation of two compressional waves in
water-saturated porous solids (Plona and Johnson 1980). It has been used
extensively in the geophysical world for seismic prospecting of oil saturated
rocks (Bourbie et al. 1987) and in sediments (Stoll and Bryan 1970).
Furthermore, it has been shown that predictions for Rigid Frame media and
Biot’s theory are equivalent under certain conditions (Geertsma and Smit
1961, Attenborough 1983).

The following sections outline the derivation of the theory and discuss
the main results of Biot’s theory. Equations for wave propagation are given,
which are used in sections 2.4 and 4.4.2 to predict wave properties in

cancellous bone.

A Rigid Frame medium occurs when the bulk modulus of the frame, K, is much greater than
that of the fluid, Kj; and the bulk modulus of the solid material, K is greater than its shear
modulus, N.
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2.2.2 Derivation of Biot’s Theory

Biot’s theory (19564, b) considers acoustic wave propagation in porous
elastic media, saturated with a viscous fluid. The average motions of solid and
fluid are considered separately, creating two effective media. The theory
predicts that three waves propagate simultaneously: two compressional waves
(called waves of the first and second kind, or fast and slow waves), and a
shear wave. The fast wave is a bulk wave, where the fluid and solid are locked
together and move in phase. It usually exhibits negligible dispersion. The slow
wave corresponds to an out-of-phase motion between fluid and solid and is
usually highly attenuated.

A saturated porous medium occurs when both fluid and solid phases
are continuous. Compressional and shear modes propagate in an isotropic
elastic solid, whilst only one compressional wave may propagate in a fluid.
Therefore, it appears logical that three waves will propagate in a fluid
saturated porous solid if the fluid and solid are continuous. This is a useful,
but crude image, since the theory relies on the motion of fluid and solid being
coupled. This will be discussed in sections 2.2.3 and 2.2.4.

The theory assumes that the saturating fluid is compressible and
viscous, whilst the solid is perfectly elastic (that is, it obeys Hooke’s law) and
impervious to the fluid. Fluid and solid displacements are assumed to be small,
allowing the linearisation of the equations of motion. The theory is valid for
frequencies where the wavelength is large relative to the size of the
discontinuities, to allow the medium to be considered as a homogeneous and
isotropic continuum. This criterion is common to most continuum porous
media theories (for example, see Schoenberg’s theory of Chapter 5), and is
called the long wavelength regime. This regime should not be confused with
the Low and High frequency regions of Biot’s theory, introduced in section
2.2.3, the length-scale of which is defined with respect to the dynamics of the
pore fluid rather than the discontinuity size.

An abridged derivation of the theory is presented here to demonstrate
the physical significance and importance of particular terms, and is also useful

for understanding the modifications to the theory presented in Chapter 6.
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Maurice A. Biot derived his theory of porous media in four stages. In
the first stage, the static deformation of a porous medium containing a fluid is
considered. Using the fundamental assumption of the theory of elasticity,
where strain and stresss are proportional (Jaecger 1964), relationships between
stresses in the solid, o, and fluid, o; and strains in the solid, e;, and fluid, €,

are found to be,

0. =2Ne, + A(e, +e, +e,)+Q0¢,
o,,=2Ne, + A(e, te, +e,)+Qc¢,
o, =2Ne, +A(e, +e, +e,)+0¢,

c,=Ne,, o,=Ne,, o,=Ne, o=Qe+Re.(2.1)

with the co-ordinate system shown in figure 2.1. The terms N, 4, Q and R are
known as generalised elastic coefficients. Constants 4 and N correspond to the
Lame coefficients in the theory of elasticity (Jaeger 1964), with the latter
being the shear modulus. Equations (2.1) are for an isotropic porous medium,

that is, one whose properties do not vary with direction.

zl (@ 2 (b) 2 (©)

X X X
Figure 2.1 - Co-ordinates for subscripts in eqn (2.1) (a) zy-; (b) xz-; and (c) xy-planes,

such that stresses over the ij-plane lead to lateral or shear strain in an orthogonal plane.

Expressions for 4, O, and R are derived in terms of measurable
parameters (Biot 1962). These parameters can be determined by “jacketed”
and “unjacketed” compressibility tests. In the former, the specimen is enclosed

in an impermeable jacket and subjected to an external pressure. The pressure

22



E R Hubbuck, 2000 Chapter 2 : Biot’s Theory 23

of the fluid is transmitted to the internal pore walls, and analysis of the
response yields an expression for the bulk modulus of the solid frame, K;. The
unjacketed compressibility test involves immersing a specimen in a pressurised
fluid. The dilatation of the specimen is measured once the fluid has penetrated
the pores, and an analysis of compressibility yields relations between the bulk
modulus of the solid material, K, and the fluid bulk modulus, K. Using these

results, the following expressions for A, Q and R may be found,

n BK. /K, 1)K, +B°K, +(1-2B)(K, - K,) 2N o
1-B-K, /K, +PBK, /K, 3

1-B—K, /K).BK
0= (L=p- K,/ K,)PK, , (2.3)
1-B—K, /K, +BK, /K,

2
R= KB , (2.4)
1-B-K, /K, +BK, /K,

In the second stage of the derivation, Biot considers the dynamics of
the porous medium. Using the displacement of the solid, U, and the fluid, &,
the acceleration of the solid and the fluid are related to strain forces and mass
densities in Lagranian terms. By introducing the operators, div U = e, div u =
g, curl U =w, and curl u = Q, for compressional strains in fluid and solid (¢
and e, respectively) and shear strains in fluid and solid (w and Q, respectively),
dynamic relationships are used to obtain equations of the propagation of

elastic waves. This results in two sets of coupled wave equations,

6»?2
V*(Pe+Q¢)= &T(p”e + P1E)

P , (2.5)
V*(Qe+ Re) = 52—(/312@ + P€)

52
NVw = 5{(pnw+ p129)
i , (2.6)

0 :“é,?(Plzw“LszQ)
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where equation (2.5) represents compressional propagation, whilst equation
(2.6) represents shear propagation. In the first set, the term P = 4 + 2N, and

mass densities, p;, are defined as

Py P12 = (1 - B)Ps , and  pp, +py =Ppy, 2.7

P2 =(1-a)Bpy, (2.8)

for fluid density py; solid density, ps, and interconnected porosity, f. The term
P2 is the cross-mass density, which describes the inertial drag that the fluid
exerts on the solid as the one is accelerated relative to the other. The term, a,
is the tortuosity and is a crucial parameter in Biot’s theory. The significance of
the cross-mass density and the tortuosity will be discussed in section 2.2.4.
Finally, equations (2.5) and (2.6) may be solved by assuming a

harmonic pressure wave, to yield expressions for the complex velocities as,

A+[ - 4(PR~-0*) o~ 1})]

V&zs L slow ™ 5 (29)
s 2(pnpzz "19122)
Vaewr =N/ [(1-B)p, +(1=1/ 2)p, ] (2.10)
where A= Pp,, +Rp,, -20p,,. (2.11)

Equation (2.9) governs the propagation of two compressional waves, known
as waves of the first and second kind, or fast and slow waves, respectively.
Equation (2.10) describes shear wave propagation. The real part of the root of
equations (2.9) and (2.10) provides the phase velocity in metres per second.
Absorption, in Nepers per metre, due to viscous damping at the fluid-solid
interface, is found from the imaginary part of the wavenumber, g siow shear =
® / Viasi, siow, shear- Viscous drag causes a phase lag between fluid and solid,
hence an imaginary term, joz.

It is often useful to consider that the wave of the first kind propagates

predominantly in the solid frame. Similarly, it may be imagined that the wave
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of second kind propagates mainly in the pore fluid, and is influenced by factors
associated with fluid dynamics in a pore or tube. This approximation is
generally true of Rigid Frame media, such as air-saturated foam, where the
densities and moduli of fluid and solid differ by a few orders of magnitude.
The properties of bone and marrow, however, are of the same order of
magnitude (shown in Table 2.1, later), but the Rigid Frame propagation
approximation is still a useful one. The following sections discuss additional

factors important to propagation.

2.2.3 Fluid Flow in Porous Media

During propagation of the compressional wave of the first kind, fluid
and solid are locked together and move in-phase. This locking arises through
two dynamic coupling forces: viscous and inertial. The extent of the relative
motion required for the propagation of the wave of the second kind depends
on the ability of the fluid to move freely within the pores, and on the
frequency of the incident wave. Biot’s theory assumes for low frequencies,
that the motion of the pore fluid, relative to the solid, follows Poiseuille flow.

Poiseuille flow describes the motion of a viscous fluid in a tube,of
radius, 7, and is characterised by a parabolic velocity gradient, as in figure 2.2
for flow between parallel plates (Daily and Harleman 1966). Macroscopic fluid
particles move in imaginary layers in the x-direction. Each layer has a different

velocity, from zero at the boundary, to a maximum at the centre.

Figure 2.2 - Poiseuille flow in a tube, radius r, of parallel sides; with fluid velocity, #, and

solid velocity, U .
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If the wall oscillates harmonically with exp(jot), a disturbance will be
set up in the fluid. In general, at a distance perpendicular from the wall, y, the

velocity parallel to wall, @, can be expressed as,

C()p 1/2
01 = il €XP jwr—(1+j)(7ﬁ] »), (2.12)
n

for maximum velocity, #,,, ; shear viscosity, 1; fluid density, ps; and angular

frequency, o (Biot 1956a). Equation (2.12) describes the relationship between
the flow in adjacent imaginary layers, depicted in figure 2.2, in the y-direction.
Such behaviour has previously been interpreted as a harmonic wave in the y-
direction, the amplitude of which is subject to exponentially decreasing
damping with increasing distance from the wall. For different profiles of
viscous flow, boundary layers are often defined by various criteria, such as
that distance within which the velocity does not exceed a certain percentage of
its maximum value (Sherman 1990). For the case of Poiseuille flow in a
porous medium, the characterising boundary layer is known as the viscous

skin depth, d,, and is expressed” as,
d, =Q2nlop)". (2.13)

Equation (2.13) shows that the viscous skin depth is dependent on frequency.
Indeed, Poiseuille flow only occurs for frequencies where the viscous skin
depth, d;, is greater than the pore radius, . The parabolic velocity profile

breaks down where d; = r, which occurs at the critical frequency, ®.i,
@ e =211/ pr°. (2.14)

Therefore, the viscous skin depth may be used as a yardstick for

acoustic propagation porous media, and its influence on predicted absorption

* Strictly, d, is the distance over which the vorticity decays to zero. Vorticity is a vector field
describing the rotation of fluid particles, relating the flow of adjacent layers (Sherman 1990).
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is discussed in section 2.2.4. The critical frequency will be lower for a medium
with large pores, than one of smaller pores, for the same pore fluid.
Furthermore, the critical frequency divides propagation into two frequency

regimes: Low and High.
(a) Low Frequency Range: ds > r; @ < Qerit

Poiseuille flow occurs at frequencies below the critical frequency,
where the viscous skin depth is large compared with the pore radius, ». The
viscosity of the fluid causes the fluid motion to lock on to the solid motion,
enabling the fast wave to propagate. However, since the slow wave involves a
relative motion of fluid and solid, it becomes over damped, and is described by

a diffusion equation, rather than a wave equation (Biot 1956a)’:
CDV2§=~§— , (2.15)

where & is a normal mode co-ordinate (of pressure, particle velocity) and Cjp is
the diffusion constant (Johnson and Plona 1982). This means the slow wave

will not propagate below the critical frequency.
(a) High Frequency Range : d; < ¥; &> Wiz

Above the critical frequency, Poiseuille flow breaks down where the
viscous skin depth is smaller than the pore size. Consequently, relative motion
of fluid and solid is not impeded by viscous drag, which enables the slow wave
to propagate. Inertial coupling dominates viscous coupling, and enables
locking between fluid and solid for fast wave propagation. Hence, at
frequencies above the critical frequency, both fast and slow compressional
waves propagate and may be observed. Figure 2.3 summarises the frequency

regions.

3 During diffusion, fluid particles filter from high pressure to low, owing to a pressure gradient.
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Long Wavelength Regime

A>a,r A=ar A<a,r
o BIOT’S THEORY ——————
Low Frequency : High Frequency :
Region I Region
|
dS >r ds =r ds <r :
: ' >
0 ocrit, critical frequency frequency

Figure 2.3 - Conditions determining the theoretical frequency regions of Biot’s theory.

2.2.4 Inertial Coupling and Tortuosity

Inertial coupling, or mass coupling, dominates viscous effects at high
frequencies, and may be regarded in the following way. When a solid body
accelerates in a fluid, it drags its own mass plus an additional mass of
surrounding fluid (Daily and Harleman 1966). The extent of this coupled mass
will depend on the shape and size of the solid body; or, in a porous solid, on
the porosity and surface area of the solid matrix. In Biot’s theory, the effect is
represented by the cross mass density, p,, and the tortuosity, o.

The tortuosity, a, is a critical parameter in the theory. It is strictly
defined as the ratio of the length of the winding path through the pores, to the
length of the path if it were straight. It therefore represents the fractional
deviation from a straight path, and is always greater than unity. Various
expressions have been derived for its evaluation in practice, many of which
relate to the geometry of the matrix. However, other factors may cause a
deviation in the path of fluid flow through the pores, and hence some
expressions include factors of fluid motion.

If the dynamics of the fluid are contained in the definition, they may
add a frequency-dependent term. Thus, the cross-mass density of equation

(2.8), may be rewritten as being dependent on frequency,
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pr(@)=—(a(@)-Dfp,, (2.16)

where a(m), the frequency-dependent tortuosity, defines the entire dynamics
of the pore fluid, incorporating inertial and viscous effects. Such effects may
be analysed by considering fluid motion in a Rigid Frame porous solid.

For a harmonic pressure gradient, VP,e’” (constant, P,), applied to a
porous medium, the linear (small amplitude) equation of motion of fluid in the

pores is,
i
-VP, =a(w —, 2.17
o ( )'Dfék ( )

where # is fluid velocity, B is porosity, ps is fluid density, and a(w) is the
frequency-dependent tortuosity. The product, o(w)ps, represents the added
fluid mass, coupled by inertial effects. Darcy’s law states that the rate of flow
through a porous medium is proportional to the pressure gradient causing that

flow,

k
pi=—=VP,, (2.18)
n

where 1 is viscosity and & is the permeability (in m?), which characterises the

rate of fluid flow. The permeability is related to the tortuosity by

a(w) = ;é:—/’f—, (2.19)
f/

which may be alternatively expressed as,

o(w)=a, + —*Jzz g’) , (2.20)
f

where a., is tortuosity at the limit of infinite frequency, that is, it only relates

to geometry. The product, bF(y), governs attenuation, where b = np*/k. The
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function, F(y), measures the deviation from Poiseuille flow as a function of
frequency, and accounts for changes in damping when the skin depth becomes
less than the pore radius. Its definition also describes the geometry of the
medium, whilst y depends on the ratio of the pore size to skin depth
(Attenborough 1987), defined elsewhere. Johnson et al. (1987) evaluated

equation (2.20) in terms of measurable parameters,

djalkip o

a(o)=a, + jnﬁ[l— B J/a)pfko, (2.21)

where a is the pore diameter; k, is the d.c. permeability (for static conditions
without a fluid pressure gradient). Equation (2.21) is also known as the JKD-
tortuosity. Berryman (1980) derived a purely geometric tortuosity for a matrix

of fused spheres, independent of density, and related to a structure factor, S,
a=1-SQ-1/pH=a_. (2.22)

Equation (2.22) has often been used as the first evaluation of tortuosity in the
application of Biot’s theory (for example, for cancellous bone, Williams 1992).
An alternative definition of tortuosity for a layered structure, is discussed in

section 6.3.1.

In practice, the critical frequency is a transitional bandwidth. Johnson
and Plona proposed a rule-of-thumb for a viscous frequency, ®,iscous, above
which the slow wave may be experimentally observed (Johnson and Plona
1982). This occurs at frequencies where the viscous skin depth, d;, is much

less than the pore radius, r,

2n
a)viscous = 2 (223)
Pfrzgz

for the scaling constant, £ ~ 0.01 (Johnson and Plona 1982). The viscous
frequency is therefore a number of orders of magnitude higher than the critical

frequency.
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2.2.5 Conditions for Slow Wave Propagation

Biot’s theory introduces the propagation phenomenon of the wave of
the second kind, or slow wave. This wave propagates mainly in the pore fluid,
and is therefore dependent on those factors relating to fluid flow. The previous
section showed that the ratio between pore radius and viscous skin depth i1s a

crucial factor. The conditions for effective slow wave propagation are:

e the continuity of fluid and solid phases and a high permeability;
e a high frequency content of incident wave;
e a large pore size;

o a low fluid viscosity.
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2.3 A Biot Model for Cancellous Bone

2.3.1 Historical Studies

McKelvie and Palmer first applied Biot's theory to ultrasound in
cancellous bone in 1987. Since then, a number of researchers have
investigated its ability to predict wave properties (McKelvie and Palmer 1991,
Williams 1992, Lauriks et al. 1994, Williams et al. 1996, Hosokawa and Otani
1997). Results show that velocity may be correctly predicted when input
parameters are independently evaluated (Williams 1992, Lauriks et al. 1994,
Williams et al. 1996, Hosokawa and Otani 1997). However, a discrepancy
between measured attenuation and predicted absorption has been reported on
more than one occasion (Williams et al. 1996, Hosokawa and Otani 1997).
The reasons behind this inconsistency will be discussed at length in section
3.3. Biot’s theory predicted qualitative changes in attenuation gradient with
porosity (McKelvie and Palmer 1991), but quantitative agreement was poor.

Lakes et al. (1983) reported observing the two compressional waves in
cortical bone, although this result has not since been independently verified.
At the outset of this work, the slow wave had not been observed in cancellous
bone. This marked a significant omission to the evidence supporting the
applicability of Biot's theory. Observations detailed in following chapters
confirm the existence of the slow wave for certain trabecular geometries. First,
this section describes the estimation of wave properties using a Biot model for

cancellous bone.

2.3.2 Model Input Parameters

The input parameters of a theoretical model generally relate physical
properties of the system to quantifiable parameters, which allow the practical
interpretation of experimental data. If these variables are accurately known, a
straightforward comparison between experiment and theory may be made.

However, in many circumstances, input variables may be undetermined, or
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determined to an insufficient degree, and the behaviour of the model must be
estimated. One method for estimating the predictions of Biot’s theory is
described in section 2.3.3, whilst the evaluation of the input parameters is
considered here.

Accurate prediction of the Biot wave speeds and absorption for
cancellous bone requires knowledge of the properties of the constituents and
the porous architecture. The values of fourteen parameters must be known.
The version of Biot’s theory applied here uses the JKD tortuosity term of
equation (2.21), which requires more knowledge of the structure and fluid
properties than the purely geometric term of equation (2.22), used by previous

authors (Williams 1992, Hosokawa and Otani 1997).
(a)  Material and Mechanical Properties of Cancellous Bone

The material properties of cancellous bone have not been as widely
investigated as those of cortical bone. However, the composition of both types
is approximately the same at the collagen level, and, therefore, it is widely
accepted that the properties of individual trabecula are the same as those of
compact bone (Gibson and Ashby 1988).

The density of human cortical bone is 1800 - 2000 kg/m’, whilst that of
individual trabecula average 1820 kg/m’ (from summaries by Gibson and
Ashby 1988; Duck 1990). A value of 1960 kg/m’ for bovine bone has been
used in previous Biot models (Williams 1992, Hosokawa and Otani 1997).

Understanding the relationship between density, microstructure and
strength in cancellous bone is beneficial, first, for fracture risk assessment;
second, for prosthetic design; and, finally, for determining how stress across
joints cause damage during osteoarthritis. Furthermore, an appreciation of the
mechanical behaviour of cancellous bone is useful for predicting its response
to acoustic waves. Both cortical and cancellous bone are mechanically
anisotropic, that is, their behaviour under tension and compression varies with
direction. Anisotropy in cortical bone arises from the alignment of
hydroxyapatite fibres at the ultra-structural level, whereas in cancellous bone,

it is mainly due to the trabecular structure. The Young’s modulus of human
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cortical bone along the longitudinal axes is 18.1 - 22.6 GPa, and perpendicular
to this, is 10.2 - 11.5 GPa (Gibson and Ashby 1988, Duck 1990).

A problem arises in modelling propagation, because Biot’s theory
assumes cancellous bone to be isotropic, where realistically, it is not. Previous
authors have tackled this problem by modelling wave propagation only in the
direction in which the solid Young’s modulus, F;, and the Poisson’s ratio, vy,
are evaluated. The problem of modelling waves in anisotropic media will be
discussed further in Chapter 5 and 6.

The mechanical behaviour of cancellous bone is typical of a cellular
material and was investigated by Gibson (1985). Cell deformation under stress
depends on three factors: the openness of the cells; the porosity; and the
properties of the cell walls. Standard techniques for the analysis of synthetic
foams and honeycombs, have been employed to investigate the mechanics of
cancellous bone. Gibson showed the relative density of cancellous bone was

proportional to its relative Young’s modulus;

E/E;,=C(p/ ps)", (2.24)

for Young’s Moduli, £ and E;, of the total medium and solid component,
respectively; densities p and p, of the total medium and solid components,
respectively; and constant, C. The index, n, takes the value 2 for open cells,
and 3 for closed cells, and has been evaluated as 1.23 for cancellous bone
(Williams 1992). The ratio of densities, (p/ps), is equivalent to the volume
fraction of the solid, or (1-B), for porosity, f. The Young’s modulus of the

cancellous frame, E;, can therefore be found from equation (2.24) as,

E =E(-p" (2.25)

Equation (2.25) may be used to evaluate the bulk modulus of the solid,

K, (i.e. the material of individual trabecula, taken to resemble cortical bone),

and the bulk and shear moduli of the cancellous frame, as K, and N,,

respectively, from standard expressions for an isotropic medium (Jaeger
1964), as,
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K, =E,/31-2v,), (2.26)
K, =E,/31-2v,), (2.27)
N, =E, /2(1+2v,), (2.28)

where v, and v, are the Poisson’s ratio of the solid material and frame,
respectively. Poisson's ratio is the quotient of lateral contraction to
longitudinal extension under lateral stress (Jaeger 1964), and is therefore
direction dependent. Along the long axis of in bovine cortical bone its value is

0.32 - 0.36, whilst it is 0.4 - 0.5 perpendicular to this (Duck 1990).

(b)  Properties of Bone Marrow

Bone marrow is classified as either red or yellow. Yellow marrow fills
the shafis of cortical bones and is composed principally of fat cells, supported
by a delicate vascular connective tissue (McFaydean 1953). Its density is 923 -
1027 kg/m’ and its amount increases with age. Highly vascularised red
marrow, containing fewer fat cells, fills the trabecular cavities and its density
lies in the range 992 - 1047 kg/m’. Its bulk modulus was previously estimated
as being similar to that of fat at 2.0 GPa (McKelvie and Palmer 1991).

Little is known of the mechanical properties of bone marrow or its
response to ultrasound*. The viscosity of marrow from bovine radii is
dependent on temperature (Bryant et al. 1989), and its value can vary from

0.25 at 20°C to 0.05 Pa.s at 37°C.

(c) Structural Parameters

Defining the structure of cancellous bone is a complex task. The field
of biomechanics has proposed several geometric models, some of which will
be discussed in section 5.2, in addition to a measure of local anisotropy,
known as the fabric ellipsoid (Turner and Cowin 1987). By contrast, acoustic

propagation models such as Biot’s theory require knowledge of parameters

* Hrazdira (1965) found that ultrasound corrupted marrow cell suspensions by mechanical effects
and the production of free radicals. An ultrasonic response of this sort is not considered here.
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unique to dynamics, such as tortuosity and permeability. However, parameters
such as the porosity and pore size are common for analysis in both fields, and,
in practice, the assessment of the trabecular microstructure has been
performed using image processing and topological classification (Mellish et al.
1989, Croucher et al. 1994). Such methods evaluate mean trabecular plate
thickness (MTPT) and separation (MTPS), as well as information regarding
connectivity.

The porosity of young healthy human cancellous bone has been
estimated as around 77 %, rising to around 88 % in older, osteoporotic bone
(Mellish et al. 1989). It should be noted that it is the pore radius, not diameter
or plate separation which is considered by Biot’s theory, and data on the
MTPS (that is, pore diameter, a), suggests the pore radius in normal human
bone may be estimated as 285 + 50 um, whilst that of osteoporotic bone may
be taken as 455 + 130 um.

Williams et al. (1996) established empirical expressions for the
tortuosity and static permeability of cancellous bone. The authors measured
the tortuosity of cancellous bone from the electrical conductivity after marrow
removal. The ratio of conductivity of saline alone to the conductivity of the
sample saturated with saline, provides a geometrical factor which is
proportional to the tortuosity, .. The authors measured the permeability
using Darcy’s law (equation (2.18)) and a gravity-fed permeability chamber.

Such analysis yielded the expressions,

a, =1-2+(72-6x107°. MTPS), (2.29)

k,=44-9.8", (2.30)

where MTPS is the mean trabecular plate separation in microns.

Evaluating all model parameters for a specific sample of cancellous
bone, for the purposes of comparing theory with experimental results, is
problematic. Therefore, established values from literature are used and, since
many of the parameters in Table 2.1 may take a value within a given range, the
extreme limits of the behaviour of the model are estimated. The following

section discusses how the uncertainty in the prediction may be evaluated.
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Table 2.1 - Input parameters for Biot’s theory for a model of propagation in

marrow-saturated healthy and osteoporotic cancellous bone at 20°C.

Parameter

Value

Source and Detail

Independent & Variable

Density of solid (cortical), ps

1800- 2000 kg/m’

Gibson & Ashby (1988)

Density of fluid (marrow), ps

992 - 1047 kg/m’

Duck(1990); unknown species

Young’s modulus of solid, E

18.1 -22.6 GPa

Duck(1990) trabecular axis

porosity,

(2) 0.77 £0.05
(b) 0.88 £0.03

female 19-40 yrs
" 61-90 yrs, Mellish 1989

pore radius, 7

(a) 285 + 50 pm
(b) 455 + 130 pm

female 19-40 yrs
" 61-90 yrs, Mellish 1989

Independent & Fixed

Bulk modulus of fluid, K, 2.2 GPa McKelvie (1991); as water
Viscosity of fluid, n 0.15 Pa.s Bryant (1989); bovine at 20°C
Index of power law, # 1.23 Williams (1992); bovine tibia
Poisson’s ratio of solid, v; 0.32 Gibson (1988); bovine
Dependent

Shear modulus of bone, N, found from equation (2.28)

Poisson’s ratio of frame, v, equivalent to v;

tortuosity, o found from equation (2.22)

permeability, &, found from equation (2.30)
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2.3.3 Dealing with Uncertainties in Predictions

If values of the input parameters to a model are all known, subject to
some error, the simplest method for establishing the uncertainty in the
prediction is to find the upper and lower bounds that the model can take.
These extreme values may be found by determining the appropriate
combination of input values, which may be a complex task if performed by
hand. In practice, the use of optimisation algorithms simplifies this task.

Optimisation is part of almost every simulation or modelling situation
in engineering. It implies either minimising or maximising. Since the maximum
of a function, A(x), occurs at the same place as the minimum of -A(x),
however, it is possible to consider only minimisation. In finding the maximum
and minimum bounds of a theoretical prediction, the function #4(x) being
optimised is the output of the model itself.

Numerical methods that perform optimisation may use the principle
that derivatives of the function are zero at the minimum, or they may look for
the steepest gradient of descent towards the minimum (Kincaid and Cheney
1990). Classic methods, such as Newton’s method (Kincaid and Cheney
1990), adjust one variable at a time. However, they are slow for complex
problems. Faster and more sophisticated methods, such as genetic algorithms
(Kirkpatrick 1983), allow many variables to change at once, and may allow the
input values to be subject certain constraints.

There are established methods and computer algorithms for those
problems where both the function and input constraints are linear. One
example is the Simplex method (Kincaid and Cheney 1990), which is discussed
further in Appendix A.IIl. In practice, multivariable optimisation problems can
be solved using software that represents data as matrices, such as MatLab.
This method has been programmed in the software package MatLab using
standard commands.

Optimisation may be used to evaluate the upper and lower bounds of
wave properties predicted by Biot’s theory. Although there are over a dozen
parameters in the Biot model, not all of those listed in Table 2.1 will

contribute to determining the value of the bounds. Only those which can vary
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within a given range are taken as input parameters. The optimisation searches
iteratively by varying the inputs and monitoring that the value of the model
decreases, until the minimum bound is found.

Parameters headed Variable in Table 2.1, are independent with respect
to other variables in the theory, and may take a value within the range given.
These are the fluid and solid densities, py and p,, respectively; the Young’s
modulus of the solid, E;; the porosity, B, and the pore radius, ». These
parameters are those which may be varied during optimisation. For those
parameters listed as Fixed, there is only one value they can take, generally
because their value is estimated or is the only one quoted in the literature.
These include the fluid bulk modulus, the viscosity, and the index, n. The
Poisson’s ratio of the frame is assumed that same as that of the solid, and so is
fixed. Those parameters listed as Dependent may be evaluated from empirical
or theoretical equations. In this model, solid and frame moduli and the shear
modulus are be found from equations (2.25 - 2.28) and the tortuosity and
permeability are be found from equations (2.22) and (2.30), respectively.
Therefore, of the original fourteen parameters, only five may be varied within
the given range to find the bounds of theory. These are fluid and solid
densities, pyand py, respectively; Young’s modulus of the solid, E,; porosity, B;
and pore radius, 7.

To use the Simplex method to find the bounds of the predictions, it is
necessary to establish that the function (the equations of Biot’s theory) and the
constraints (input variable limits) are linear. Linearity was established for
Biot’s theory and the method used to establish this is outlined in Appendix
A.IIL. Once linearity was established, the Simplex method was used to find the
bounds of the Biot’s theory, allowing the Variable parameters in Table 2.1 to

alter within the given ranges.
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2.4 Prediction of Wave Properties for Cancellous Bone

2.4.1 Viscous Skin Depth and Critical Frequency

Before predictions for wave properties are presented, it is useful to
consider Biot’s defining frequency limits for a model of cancellous bone. In
particular, it is valuable to calculate the critical frequency, ®... (the intercept
of Low and High frequency regions in Biot’s theory), since this parameter
represents the frequency above which two compressional waves will propagate
in that medium. The critical frequency is the frequency where the viscous skin
depth equals the pore radius, ». In addition, the presence of a pore size
distribution in real bone will yield a critical bandwidth.

Figure 2.4 shows the viscous skin depth, d;, of equation (2.13), versus
frequency for pore fluids of marrow at 20 and 37°C (for viscosity, 1 as 0.15
and 0.05 Pa.s, respectively), and for water at 20°C (n = 0.001 Pa.s). The fluid
density was 1000 kg/m’ for all cases. Figure 2.4 also shows the mean pore
radii for normal and osteoporotic bone, as given in Table 2.1, with pore size
distribution given by the error bars. The critical bandwidths and their mean
values for the three fluid conditions were evaluated from Figure 2.4, and are
summarised in Table 2.2.

Clearly, the greater the fluid viscosity, the higher the critical frequency,
and the greater the critical bandwidth. Osteoporotic bone yields lower critical
frequencies for the same fluid conditions than healthy bone, although the
larger pore size distribution in the former does not necessarily give a larger
critical bandwidth, owing to the curvature of the graphs. Consequently, these
results provide the frequency limits below which two compressional waves
will theoretically propagate in cancellous bone with these fluid conditions. It
may be concluded that the two compressional slow waves will propagate at all
ultrasonic frequencies (defined as above 20 kHz) in cancellous bone with pore
radius equal to, or greater than 0.285 mm. It should be noted that, according
to Johnson’s rule of thumb (equation (2.23)), the frequency above which the
slow wave will be easily observed in practice, will be a few orders of

magnitude higher than this.
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Table 2.2 - Summary of critical frequencies for propagation through normal

and osteoporotic human cancellous bone saturated with various fluids.

Critical Bandwidth (and Mean) in Hertz
Normal Osteoporotic
Water at 20°C 3.3-6.9 (4.5) 0.1-2.9 (1.4)
Marrow at 37°C 156 - 341 (224) 48 - 148 (76)
Marrow at 20°C | 490 - 1042 (705) 143 - 451 (231)
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Figure 2.4 - Viscous skin depth versus frequency for marrow at 20°C & 37°C, and water at

20°C, with mean pore radii for normal and osteoporotic bone.
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2.4.2 Phase Velocities and Attenuation

Phase velocities and absorption of fast and slow waves were predicted
using the values in Table 2.1 and equations (2.2 - 2.4), (2.7), (2.9 - 2.11),
(2.16), (2.21 - 2.22), and (2.25 - 2.28). The model was evaluated for marrow-
saturated cancellous bone at 20°C. Figure 2.5 shows the phase velocities of
fast and slow waves and Figure 2.6 shows attenuation plotted over a wide
frequency range.

The effect of the critical frequency, ®..,, may be seen in figures 2.5 (a)
and (b) and figures 2.6 (a) and (b), which clearly show a bi-phasic response
over the frequency range. These phase velocity and attenuation curves both
show a knee between low and high frequency regions. This juncture

corresponds to the critical frequency, or, rather, to a critical bandwidth.
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Figure 2.5 - Maximum and minimum phase velocities of fast and slow waves, predicted by
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Figure 2.6 - Maximum and minimum absorption of fast and slow waves, predicted by Biot

for marrow-filled cancellous bone at 20°C.
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2.5 Summary and Conclusions

This chapter has presented a detailed discussion of the application of
Biot’s theory to ultrasonic propagation in cancellous bone. The equations of
Biot’s theory were presented, and the evaluation of input parameters for a
model of cancellous bone was described. The effects of frequency, structure
and mechanical properties on propagation were discussed, and the phase
velocity and absorption of the two compressional modes were predicted over a
large frequency range.

This analysis has lead to the following conclusions regarding the
practical observation of two compressional waves in cancellous bone at

ultrasonic frequencies.

° Theoretically, both fast and slow compressional waves will propagate
at ultrasonic frequencies in marrow-saturated cancellous bone.
° The open and permeable structure of cancellous bone will aid slow

wave propagation at ultrasonic frequencies.

During the course of the research for this thesis, Hosokawa and Otani
(1997) reported observing two compressional waves in cancellous bone for
propagation in the direction of the trabeculae. Their experiments were similar
to those being carried out for this study at the same time, the experimental

methods of which are detailed in the next chapter.
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Chapter Three

Procedures for the Measurement of

Ultrasonic Properties in Cancellous Samples

3.1 Introduction to Experimental Methods

Whilst the theoretical understanding of ultrasonic propagation has much in
common with that of acoustic propagation at frequencies below 20 kHz, the
practical investigation of the phenomenon has a number of distinctive
characteristics. Ultrasonic transducers utilise materials capable of oscillating at
high frequencies, and measurements are often performed under water, or using a
coupling medium.

Chapter 4 will later present the results of a series of experiments, designed
to investigate ultrasonic waves in cancellous bone in vitro. This study aims to
examine the correlation of measured wave properties with predictions from Biot’s
theory, introduced in the previous chapter. A number of established experimental
and analytical techniques are utilised in the research.

This chapter first describes the principles of ultrasonic measurement,
including the generation and reception of high frequency waves, and the causes of
deviation from ideal acoustic behaviour. The evaluation and interpretation of
measured attenuation is considered in some detail. Next, attention is turned to the
evaluation of phase velocity from experimental data using spectral processing. The
apparatus used in the experimental studies is described, the performance of which
is characterised in various tests. The chapter concludes by describing the

preparation and classification of specimens of bovine bone.
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3.2 Principles of Ultrasonic Measurement

3.2.1 Piezoelectric Transducers

Ultrasonic waves are most commonly generated by the conversion of a
fluctuating electrical signal to mechanical oscillations by a transmitting transducer.
The process is reversed in the measurement of ultrasound by a receiving
transducer. Such conversion is often achieved using semiconductor materials that
exhibit the piezoelectric phenomenon.

The piezoelectric effect occurs in materials where the application of an
electric potential causes a mechanical distortion. The phenomenon is reversible,
such that, if pressure is applied to a sample of such a material, an electrical
potential arises between its opposing faces. Transducers containing piezoelectric
elements are widely used to generate and detect ultrasonic waves, being composed
of materials such as lead zirconate titanate (PZT) and polyvinylidenefluoride
(PVDF). Applying an oscillating voltage to the faces of such a material produces
mechanical fluctuations, which, when coupled to a propagation medium, cause
acoustic waves to be generated.

The practical performance of piston-type piezoelectric transducers, of the

type used in these studies, is now discussed.

3.2.2 Ultrasonic Generation

In general, acoustic waves in air spread out spherically from a point
source. However, the sound field from a plane piston oscillator is more complex,
and has been investigated using Huygen’s principle (Leighton 1994). Huygen’s
principle treats each wavefront (the surface connecting points of the same phase)
as an array of point sources, which radiate secondary spherical wavelets. The
position of the wavefront at some time later, is the envelope of these secondary

wavelets.
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If the size of oscillating source is small compared to the wavelength, the
sound field is uniform. In practice, however, ultrasonic sources generate fields
with wavelengths comparable with the source dimensions, and so the acoustic
field is far more complex. The circular surface of a piston-type transducer can be
imagined to be an array of point sources, and, from Huygen’s principle, the
wavelets emerging from these distributed sources interfere, producing diffraction.

Hence, piston transducers project a field that varies spatially, the variation
of which depends on the transducer geometry and the excitation. For a piston
transducer in the xy-plane, the intensity, I, of a continuous wave field at a

position, z, in the on-axis z-direction, relative to the maximum intensity, Iy, is,

1/2
I—Zzsinzz .(ap2 +zz) -Z¢, 3.1)
1y A

for wavelength, A, and piston radius, a, (Wells 1977).

Figure 3.1 shows the on-axis field pattern, from equation (3.1), of a piston
transducer of 2.5 cm diameter at z = 0, emitting a continuous wave at 1 MHz. The
field contains a series of maxima and minima, whose separation increases with
distance from the transmitter. The position of the last maximum is taken as the
transition between the so-called near and far fields, often termed the Fresnel and
Fraunhofer diffraction regions, respectively. For figure (3.1), the last maximum
occurs at z = 0.105 m. Whilst the near field (z < 0.105 m) is highly complex, plane

wave propagation may be assumed to occur in the far field (z > 0.105 m).

a

Relative ints

0.1 02 03 0.4 05
Distance from Transducer (m)

Figure 3.1 - On-axis beam pattern for a radiating piston of 25 mm-diameter at I MHz.
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Transient pulses do not produce the same interference pattern as
continuous waves, and temporal information is required to predict a transient field
(Beaver 1974). However, it may be assumed that transient excitation affects the
amplitude variation in the near field more significantly than the far field (Kinsler et
al. 1982). The on-axis position of the transition between near and far fields for a
transient response may be approximated as that location predicted in the
continuous case, by equation (3.1). Section 3.3.2 will consider a case where it is

beneficial to probe a test object with the far field in practical measurement.

3.2.3 Ultrasonic Detection

The voltage output of a piezoelectric receiver is proportional to the
average pressure over its sensing surface. Transducers of finite size may spatially
average the pressure of an incident signal. For example, if a receiver is used to
measure the maximum pressure at a focus smaller in area than the sensing surface,
it will sense the peak, plus surrounding regions of lower pressure (figure 3.2). This
variation will be averaged over the sensing area, producing a signal output lower
than the actual peak pressure present (Leighton 1994). The transducer may only
measure the true peak if that pressure is sustained over the whole sensing surface.

The averaging of signal properties is considered later in section 3.3.2.

«+«—— Iransducer

Sensing element
PRI

'S

Pressure

*> Distance

Figure 3.2 - Source of spatial averaging during measurement (Leighton 1994).
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3.2.4 Non-linear Propagation

Linear wave propagation assumes fluctuations in particle velocity are much
smaller than the speed of sound, and fluctuations in density are negligible
compared to equilibrium density (Kinsler et al. 1982). However, particle
displacements cause local fluctuations in density in sound fields of sufficient
amplitude (often termed finite amplitude), such that density and pressure
variations do not satisfy the linear wave equation. There are two possible sources
of non-ideal behaviour: convection and material non-linearities (Leighton 1994).

Convection non-linearities occur if the particle velocity, v, is a significant
proportion of the wave speed, c. For high peak pressures, parts of the wave will
propagate with the combined speed, (v + ¢). This causes the peaks to travel faster
than other parts of the wave, whilst the troughs lag (Leighton 1994), in the
manner shown in figure (3.3) for a sinusoid. Material non-linearities occur when a
medium is compressed, causing its bulk modulus to increase locally. This leads to
an increase in the local speed of sound, which enhances the peak-trough shift.

Both forms of non-linearity cause the waveform to distort, in the manner
shown in figure 3.3. As a sinusoidal wave propagates through the medium, local
effects cause parts of the wave to travel faster than others, skewing the sinusoid.
The waveform becomes sawtooth at a distance from the source known as the
discontinuity length. The shock which occurs causes increased absorption by
redirecting energy from the fundamental frequency to harmonics, which are
attenuated more strongly. Afier the discontinuity length, the amplitude of the
shock decreases. Further absorption occurs after this (o/d age), and the waveform

becomes a small amplitude sinusoid.
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Figure 3.3 - Distortion of a sinusoidal wave due to non-linear propagation (after Leighton 1994).

The presence of non-linear propagation gives rise to various consequences
for the practical experiment. Non-linear waveform distortion may interact with
diffraction effects, causing a sinusoidal pulse to become non-symmetrical about
the zero axis: generally, the peak pressure is increased, whilst the trough becomes
rounded (Leighton 1994). In practice, analysis of the maximum and minimum peak
pressures may reveal the presence of non-linear propagation. Amplitude scaling
tests may also be performed. Both are used in these studies, as described in
sections 3.5.2 and 4.2.2. Linearity may be approximated for small wave
amplitudes in practice.

If comparisons are made between a theoretical model based on linear
propagation, and the results from a practical non-linear case, discrepancies are
likely to occur. For example, section 3.3.1 will later describe the evaluation of
attenuation based on a linear propagation model, is evaluated as the ratio of
amplitude spectra of reference and test trace, found using Fourier Transforms.
Although Fourier analysis may be applied to any signal, it is not strictly valid to
evaluate their spectral ratio if propagation is non-linear (Stremler 1990).
Furthermore, non-linear waveform distortion and the absorption of higher
harmonics may occur to different degrees in test and reference media. This will
lead to differing waveforms in the respective media and may bias attenuation

measurcs.
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3.2.5 Configuration for Measurement of Bone

Pulse-echo measurements are commonly used in ultrasonic applications
such as imaging and Doppler. A single transducer performs both the transmission
and reception of signals. In this monostatic arrangement, the test pulse traverses a
site twice, after the direct signal is reflected back at some rear interface. Bone is
highly absorbent in comparison with soft tissue (Bamber 1997), and thus signals
may be strongly attenuated over two traverses of a test site. Hence, measurements
of bone are better suited to transmission techniques, where the test object is
placed between a transmitting transducer and a receiving transducer.

Transmission tests may use a contact or a fixed-path arrangement, both of
which have been applied to QUS bone assessment (for example, in the Lunar®
Achilles and the Metra QUS-2™, respectively). In the contact method, probes are
placed against the site surfaces, hence only generating waves normal to the
surface. In contrast, the fixed-path are often performed under water, which
provides acoustic coupling. The following sections discuss the evaluation of

attenuation and phase velocity using transmission systems.

51



E R Hubbuck, 2000 Chapter 3 : Experimental Procedures 52

3.3 The Measurement of Attenuation

3.3.1 Definition and Evaluation

Attenuation is the reduction in acoustic intensity of a sound field. Intensity
is defined as the rate of flow of energy through a unit area normal to the direction

of propagation. The instantaneous intensity, /(¢), at time ¢, is given by,
I(@®)= p®- V), (3.2)

for pressure, p(?), and particle velocity, v(f). For a plane harmonic wave, pressure
and particle velocity are related by p = p.cv, for ambient density, p,, and speed of

sound, ¢. So, the intensity at time, ¢, is,

2

1(0y=2—. (3.3)
p,C

a

However, intensity is often averaged1 over time, by the integral over period, 7,

t+T

I=— {pv.dt. 3.4
T{pv (3.4)

Taking p(x, 1) = P,.exp(-a,x).exp(jax - gx) in this integral, for a harmonic plane

wave, the time-averaged intensity is (Kinsler et al. 1982)?,

I: (Poe—a”x)Z

= I(0)e2%%, (3.5)
2p

of

where 1(0) is the intensity at time ¢ = 0. The pressure amplitude will decay as
P.exp(-a,x), whilst the intensity decays with exp(-20,x). The attenuation

coefficient, a,, is expressed in Nepers per metre, but may also be quantified in

! Output of ultrasonic equipment is often stated as a time-average at the spatial peak of intensity.
% Also, rms. pressure and particle velocity may be used for harmonic waves, to give / = P,msz/poc.
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decibels per metre. Since acoustic intensity is commonly expressed in decibels,
with respect to some reference, /L = 10log(/ / L.y, attenuation may be evaluated
as the decrease in measured intensity, with respect to some reference, as,

I
IL —1IL, = lOlog(;l—J . (3.6)
2

In practice, intensity is not generally measured, and the evaluation of
attenuation relies on measurements of pressure. As mentioned in section 3.2.3, the
output voltage from a piezoelectric transducer is proportional to the pressure over
its surface. From equation (3.3), intensity is proportional to the square of pressure,
and therefore also related to the square of voltage. Therefore, the reduction in
intensity of equation (3.6), that is, the attenuation, may be calculated as a function

of frequency, as the reduction in squared output voltage between two conditions,

atten(f) = —IOIOg[%—;;} , (3.7

where H,(f) and H(f) are the amplitude spectra of two distinct signals. Ideally, the
values of H/(f) and H,(f), should correspond to the outputs of the same signal
being measured internally in a test medium at two different locations. This will be
discussed further in the following section. However, in the insertion
measurements, used in clinical QUS and in this research, the values of H;(f) and
H(f), correspond to the cases with and without the bone present, respectively.
Figure 3.4 (a:i - iii) is a flow diagram of the steps involved in evaluation of
attenuation from two voltage signals (figure 3.4 (a:i)), and is used in the
experiments of Chapter 4. First, the Fourier spectrum of each signal is evaluated
by Fast Fourier Transforming (figure 3.4 (a:ii). The attenuation is then found from
the ratio of the two spectra, and may be normalised for sample width. Figure 3.4
also shows the steps involved in the evaluation of phase velocity, which will be

discussed later in section 3.4.
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(a) Attenuation

(i) Signals

Voltage
A through water

through target
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(ii) Amplitude of FFTs
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Spectra
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(iii) Attenuation = H4(f) / Hx(f)
Attenuation
Spectrum
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Figure 3.4 (a) Evaluation of attenuation
(i) signals through water and target;

(ii) amplitude spectra of each signal;

(iii) resulting attenuation.

(b) Evaluation of phase velocity (i) signals
through water and target;

(ii) phase spectra of signals;

(iii) phases unwrapped for jumps of 27;
(iv) the resulting phase velocity.
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(b) Phase Velocity

(i) Signals
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(iv) Phase velocity
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3.3.2 Factors Affecting the Measurement of Attenuation

The accurate evaluation of the attenuation through equation (3.7), depends
on the ability of the method to quantify intensity. For a piezoelectric sensor, this
refers to those factors affecting the determination of pressure. The energy incident
on a receiver’s surface may be reduced by factors other than the bulk absorption
of the test specimen. Several measurement artefacts may be duplicated in both
reference and test signals (such as quantisation and electronic noise), and
eliminated by division in equation (3.7). However, the presence of the test medium
itself will produce increased scattering and reflection losses, and may enhance the
attenuating function of diffraction, phase averaging, and non-linear propagation.
These subsidiary factors, and their influence on bone insertion measurements, are
discussed in the following sections. Of particular importance to the measurement
of BUA, are those factors that contribute a frequency-dependent attenuation. An
attenuating factor that increases with frequency will bias the attenuation gradient
(that is, the BUA value). The BUA value may therefore be too high, thus

conceivably leading to a poor bone status not being recognised.

(a)  Diffraction of the Projected Field

Section 3.2.2 discussed how diffraction influences the spatial variation of
an acoustic field. Consequently, such effects contribute a frequency-dependent
factor to the measured signal loss (Seki 1956). Methods of correcting for
diffraction, pioneered by Papadakis (1966), may be applied to any parameter of
the acoustic field, to yield a plane wave solution. Whilst several methods exist for
correcting pulse-echo measurements, few exist for insertion measurements.
Corrections can often be neglected where the velocities of the reference and test
media are approximately equal, such as for soft tissue, but, if they are significantly
different, diffraction loss may considerably add to attenuation, as found for
immersion measurements on perspex (Xu and Kaufman 1993). However,
diffraction corrections can make gross assumptions, and their usefulness is yet to

be proved.
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Owing to diffraction and interference, in parts of the field, wavefronts will
not be planar. The assumption that intensity is related to pressure squared is only
applicable to plane waves, and hence, the validity with which equation (3.7) can be
applied may be called into question if diffraction is present. In practice, planar
propagation within a specimen may be approximated by placing it in the far field,
thus equation (3.7) may be used.

The influence of the presence of diffraction on measurements of
attenuation and BUA in cancellous bone has been studied by previous authors.
Diffraction loss is frequency-dependent, which may bias BUA gradients. or a
model of the heel bone, diffraction loss has been estimated as 1.66 - 1.91 dB/MHz
for insertion techniques, although it was found to be critically dependent on
whether a contact or immersion technique is used (Strelitzki and Evans 1998).
Discrepancies may result from contact and immersion measurements using regions
of a field, such as that in figure 3.1, with differing spatial variations. Contact
measurements are generally performed on sites of a few centimetres in thickness,
and are likely to probe with the near field (that is, z < 10.5 cm in figure 3.1). By
contrast, immersion techniques may operate in, or nearer to’, the far field (z>10.5
cm). Measurements will be subject to different diffraction effects and may
therefore be expected to give significantly differing results. Furthermore, contact
measurements in the near field will be more sensitive to variations from
repositioning and site thickness variation than the fixed-path method, where the

beam profile will be virtually consistent between measurements.
(b) Phase Cancellation

If the medium through which a wave propagates has locally varying
acoustic properties, parts of the wave will travel at different speeds. Spatial
fluctuations may occur along the wavefront as a result of variations in travel times,
leading to the distortion of an originally planar wavefront (Marcus and Cartsensen
1975). If fluctuations are smaller than the receiver size, the different phases arrive
at the sensor simultaneously and will be spatially averaged across its surface: an

effect known as phase cancellation. Since the output of a piezoelectric receiver is

* Lunar Achilles has a fixed separation of 9.5 cm, operating at 0.2 to 1.0 MHz.
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proportional to the average pressure over its surface, it is therefore sensitive to
phase. Additionally, the phenomenon is proportion to frequency.

Phase cancellation will only occur during the measurement of propagation
through an inhomogeneous medium. Therefore, when this is compared with that
through an isotropic reference medium, it may bias estimations of the true
attenuation. Since cancellous bone is extremely inhomogeneous, phase
cancellation is a concern in the measurement of attenuation and BUA, which have
tended to use isotropic reference media. In particular, since phase cancellation
increases with frequency, measurements made with large receivers may
overestimate the BUA value, conceivably resulting in a misdiagnosis.

Investigations into the effect of phase cancellation, have been carried out
by contrasting phase sensitive and insensitive measurements made using
transducer arrays (Petley 1994, Strelitzki et al. 1999). Phase sensitive
measurements, such as those made using piezoelectric receivers, may be emulated
by first combining signals from each transducer element in the time domain. The
Fourier transform is then performed on the averaged signal. In contrast,
performing the FFT on the time data first, and then averaging their spectra, is
equivalent to a phase insensitive measurement. Thus, the two methods can be
compared for the same data set. For measurements of attenuation and BUA in
cancellous bone, Petley (1994) demonstrated a significant difference between
phase sensitive and insensitive measurements when focused on a Region of
Interest. However, in a similar study, Strelitzki et al. (1999) reported no
significant difference between the two cases.

An additional factor influencing the extent of phase cancellation is the size
of the receiver. For a given frequency and field with spatially fluctuating
wavefronts, a receiver of certain surface area will produce an output subject to
greater phase cancellation than that from one of smaller area. The consequences of
receiver size have been studied for measurements of attenuation in bone (Petley
1994, Edwards 1998). Phase differences of up to 150° have been measured
through os calces over a width of 37 mm at 400 kHz (Petley 1994). Such a
variation is likely to contribute to phase cancellation, influencing estimates of
attenuation. Indeed, attenuation made at 1MHz, measured for receivers of 0.5

mm- and 25 mm-diameter, were seen to differ by 9 + 3 dB (Edwards 1998). This
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gave reasonable agreement with predictions of 12 dB from a simple model
developed by that author.

Finally, since the phase difference between components with different
travel times is proportional to frequency, phase cancellation increases with
frequency (Petley 1994). Hence, its occurrence may affect the attenuation

gradient, and, as with diffraction effects, bias the BUA value.

(c) Reflection Losses

Losses resulting from the reflection of waves impinging on interfaces will
also contribute to measured signal loss. Large impedance mismatches between
reference and test media result in large reflection coefficients. For normal
incidence, the pressure reflection coefficient, R, may be found using the formula,

rR=£22 P19 (3.8)
P2c2 + P16

for density, p; and sound speed, ¢; (Kinsler et al. 1982), where i is medium 1 or 2.
Since the intensity of a harmonic plane wave is related to the square of pressure
(equation (3.3)), the intensity reflection coefficient is [R|* (Kinsler ez al. 1982).

Equation (3.8) is valid for reflection from the surfaces of isotropic media,
but the situation is somewhat more complicated for that from the surfaces of
inhomogeneous media. When a sound wave impinges at normal incidence on a
porous surface, part of the wave is reflected back into the reference medium,
whilst part is transmitted into the medium as a fast wave, and part as a slow wave.
The acoustic properties of a porous boundary are highly sensitive to the state of
the surface (Johnson et al. 1994).

Some authors have employed a substitution method, where specimens of
different widths are used to calculate bulk attenuation (Johnson et al. 1994,
Hosokawa and Otani 1997). It is assumed that the reflection losses from the
surfaces of both samples are identical and may be eliminated in dividing their
spectra. However, for this to be achieved, all surfaces must display identical

acoustic properties, which is often impractical for biological specimens.
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For a water-cortical bone interface, the pressure reflection coefficient is
0.6 (for speeds in bone and water of 3000 m/s and 1500 mys, respectively, and
densities of 2000 kg/m’ and 1000 kg/m’, respectively). That is, the pressure
amplitude of the reflected wave will be greater than that of the wave transmitted
into cortical bone. The proportion of the energy that is reflected is approximately
36 %. Strelitzki and Evans (1998) incorporated dispersion into a prediction of the
interface losses through a model of the heel bone. Their results suggest that
frequency dependent losses of this kind could be up to 0.24 dB/MHz.

Reflection, discussed in the following section, is a form of scattering where

the structures are much larger than the wavelength.

(d) Scattering

Scattering is defined as a change in amplitude, phase, frequency or
direction of a wave as a result of spatial or temporal irregularities in a medium.
The effect may be classified as coherent or incoherent (Chivers 1991). Coherent
scattering is that which simply adds in amplitude to a plane wave such as general
bulk, or volume. Incoherent attenuation implies that which adds a fluctuating
intensity, such as specula scattering from distributed irregularities (Hill et al.
1978). Acoustic propagation in biological tissue is subject to both coherent and
incoherent scattering (Bamber 1997). The contribution of each depends on how
randomly multiple scatterers are distributed, and on the ratio of the wavelength to
the size of the scatterers. If sound is scattered incoherently from randomly
distributed sources, the scattering pattern contains fluctuations, which may be
periodic if the tissue has a regular structure on some organisational level (Bamber
1997).

Waves propagating in a porous medium may suffer incoherent specula
scattering from the randomly distributed material discontinuities. The scatterers
may be taken as the fluid-filled pores, or the solid grains or struts, depending on
the proportion of each constituent. As described in section 2.2, the slow wave may
be considered as propagating mainly in the fluid of a porous medium. If a large

impedance mismatch exists between the solid and fluid components, the fluid-
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borne slow wave is likely to be subject to scattering losses from interactions with
solid scatterers.

The slow wave will be subject to scattering when 1/|gsou] (= Vaow/o for
slow wave velocity, Vy,,) becomes small compared with the diameter of the
discontinuity, «; that is, where the product, g...a, 18 equal to or greater than
unity4. Hence, with knowledge of the scatterer size, a, and wave speed, V,, the
frequency where this scattering sets in may be estimated and is termed the
scattering frequency, Oar~ (Vsiow/@).

Scattering has been examined for cancellous bone (McKelvie and Palmer
1987; Tavakoli and Evans 1992). Propagation through cancellous bone exhibits
negative dispersion (Nicholson et al. 1996), which is an observation that is in
qualitative agreement with predictions from multiple scattering models (Schwartz
and Plona 1984). Recent work by Kitamura et al. (1996) considered forward
scattering from cancellous bone by modelling the structure as a diffraction grating.
This will be discussed further in the Future Work of Chapter 7. Although these
studies suggest scattering is present for waves in cancellous bone, its contribution

to attenuation measurements has not been quantified.

(e) Attenuation of the Slow Wave in Porous Media

As discussed in section 2.2, the slow wave is highly absorbed owing to
relative motion between fluid and solid. It may be further attenuated by scattering
from interactions with solid discontinuities, to the extent that it may not be
detectable in practice. Johnson and Plona (1982) proposed a frequency window,
established from practical experience, within which the slow wave may be easily
observed. This is defined as the bandwidth composed of frequencies greater than

the viscous frequency, ®y;...s (from equation (2.23)), but less than the scattering

frequency, Osear— (Veionw/a),

Oviscous < O < l’/:vlow /a. (39)

* Using the wavenumber, g, shows that the scattering depends, not only on the ratio of the
wavelength to the scatterer size, but also on the speed.
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This is illustrated schematically in figure 3.5 (a). The slow wave will be highly
attenuated by viscous or scattering losses at all frequencies outside this window,

rendering it difficult to detect in practice.

(@ (b)

Slow Wave
Frequency Window No Frequency Window
i Scatteri
Viscous Scattering V'fﬁ‘s"s‘s cﬁo:s”ng

Loss

I I
I I

Loss
| I | overlap
I [

frequency frequency

fscat fviscous

f viscous fscat

Figure 3.5 - (a) The slow wave frequency window; (b) the overlap of viscous and scattering

frequencies. The rates of loss are arbitrary.

Since the product (¢gowa) should be greater than unity to avoid significant
scattering, for a given frequency, o, the slow wave velocity, V. should be large
to avoid large scattering losses. Johnson and Plona (1982) demonstrated that the
slow wave velocity is proportional’ to the combination of the frame bulk modulus,
K,, and the shear modulus, N;, as (K + “/3N3). If the bulk moduli of the fluid and
of the frame are of the same order, or the medium has a high porosity (see
equations (2.25 - 2.28) ), the factor (K, + “/;N;), and hence the slow wave
velocity, will be small. In such cases, the frequency to avoid scattering, must also
be low, and, crucially, may even be lower that the viscous frequency, ®yicous- Since
this is contrary to equation (3.9), the slow wave will be subject to viscous and
scattering losses at all frequencies in media with moduli of the same order. This is
illustrated schematically in figure 3.5 (b), where the rates of change of loss with
frequency are arbitrary®.

S in the form of a bulk wave, for speed, ¢ = (K; + /3N,)/p.
8 This analysis does not consider a threshold above which the slow wave may be observable.
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The slow wave frequency window was investigated for cancellous bone
saturated with various fluids. Previous work by the current author (Hubbuck et al.
1998) had shown that the bulk modulus of the cancellous frame (3.2 + 0.6 GPa),
is of the same order as that of the marrow (1.2 + 0.5 GPa). This suggested that
cancellous bone has a relatively weak frame, and may result in no frequency
window being present for slow wave propagation.

First, the viscous frequency in Hertz, f,i.0us» was calculated from equation
(2.23), using the pore radii and trabecular widths for normal and osteoporotic
human cancellous bone, estimated from Mellish et al. (1989). The fluid density
was varied between 992 - 1047 kg/m’, and the marrow viscosity was taken at two
temperatures: 0.05 Pa.s at 37°C and 0.15 Pa.s of 20°C from Bryant ef al. (1989).

Next, making the assumption that the fluid-borne slow wave may be
scattered by interactions with the calcified trabeculae, the scattering frequency,
Jscar» Was evaluated from fio = (Viow / 2Mdyap). Trabecular thickness, dpqp, was
taken as 160 £+ 40 pum for normal bone and 120 + 25 pm for osteoporotic bone
(after Mellish et al. 1989). Slow wave velocities were calculated as in section 2.3,
using parameters given in Tables 2.1 for normal and osteoporotic human bone,
taking the mean value at 1 MHz. The resulting slow wave frequency windows are

summarised in Table 3.1.

Table 3.1 Slow wave frequency limits for marrow-saturated human bone

Normal Bone Osteoporotic Bone

(mean = error)

(mean * error)

Marrow at 20°C
Viscous Frequency 6.3+ 2.3 MHz 2.6+ 1.6 MHz
Scattering Frequency 1.4+ 0.4 MHz 1.7+ 0.4 MHz
Marrow at 37°C
Viscous Frequency 2.1 £0.7 MHz 0.9 +0.5 MHz
Scattering Frequency 1.4+ 0.4 MHz 1.7 £ 0.4 MHz

Water at 20°C
Viscous Frequency

Scattering Frequency

425+ 155 kHz
1.2+0.3 MHz

195 + 108 kHz
1.6 + 0.3 MHz
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For marrow-saturated normal bone at 20°C (the irn vitro condition), Table
3.1 shows that the mean scattering frequency is lower than the mean viscous
frequency. That is, the limits of the slow wave frequency window overlap, and
therefore the wave will be subject to viscous and/or scattering losses at all
frequencies, as in figure 3.5 (b). Similarly, for such fluid conditions in osteoporotic
bone, there is also no window. This suggests that the observation of the slow
wave may be problematic in cancellous bone in vitro.

The viscous frequency decreases with increasing temperature in marrow,
whilst the scattering frequency remains the same (to this accuracy). Consequently,
whilst no window exists for normal bone at 37°C, a narrow bandwidth of
frequencies may exist for the osteoporotic case (namely, 0.9 £ 0.5 to 1.7 + 0.4
MHz), in keeping with figure 3.5 (a). This suggests that it may be easier to
observe the Biot slow wave in osteoporotic bone in vivo than in healthy bone.

Finally, for a pore fluid of water, a window may exist for both bone
conditions. The influence, or otherwise, of these losses on the slow wave in

cancellous bone in practice is discussed in section 4.2.5.

3.3.3 The Measurement of Attenuation in a Porous Medium

The energy of an ultrasonic wave travelling through a porous medium will
be partitioned between fast, slow and shear waves. The extent of such division will
be related to the transmission coefficients of the three waves for a porous surface,
defined with respect to Biot’s theory (Johnson et al. 1994).

Attenuation, as defined in equation (3.7), is stated relative to a reference
signal. Ideally, the attenuation of a single mode (whether fast, slow or shear) is
measured by placing two probes inside the specimen at a certain separation,
enabling the mode to be measured after it has travelled a known distance through
the medium. The reference signal in this case is the wave recorded at the first
probe. However, the technique faces practical obstacles, including the fact that the
presence of the probe itself may alter the properties of the medium. Therefore,
historic measurements of bone have generally used the substitution method where

the reference signal is a single pulse recorded without a specimen present (called
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the no-specimen reference here). However, if this no-specimen reference signal is
used in the calculation of attenuation of either of the two compressional waves,
the energy in the incident pulse will be counted twice: once for fast wave
attenuation and once for slow wave attenuation.

The studies of Chapter 4 will compare measured wave properties with
those predicted by Biot’s theory. In doing so, it is essential that the same wave
characteristics are contrasted. In accounting for energy partition, plus the
additional factors affecting the accurate determination of pressure, the definitions
of absorption, attenuation and signal loss should be carefully considered.

The true attenuation of a mode in a porous medium (mode X, where X
denotes fast, slow or shear), measured with respect to a single pulse using

substitution, may be expressed as,

[ empirical signal | energy predicted additional
loss of mode X, subject to | partition | = |absorption |+ |losses affecting
from no-specimen of mode X of mode X mode X
reference
(3.10)

On the right hand side of equation (3.10), predicted absorption refers to the
internal viscous loss of the wave (whether fast, slow and shear wave) from Biot’s
theory. The preceding sections discussed those additional losses (diffraction,
scattering and phase cancellation), which are likely to modify the properties of all
waves. It is worth remarking that these elements may affect each mode to a
different extent. Indeed, section 3.3.2 already discussed how the slow wave may
be subject to greater scattering owing to interactions with solid discontinuities and
its relatively long wavelength at a given frequency. Strictly, the right hand side is
equivalent to the “attenuation” found by measuring the empirical signal loss with
respect to a no-specimen reference pulse, to which an energy partition weighting
has been applied for that specific wave, determined from transmission coefficients.
It has been common practice in previous applications ofi Biot’s theory to

cancellous bone (Williams et al. 1996, Hosokawa and Otani 1997) to compare
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predicted absorption with attenuation, calculated using a single reference pulse
without allowing for energy partition. Hence, it is not surprising that these authors
did not find correlation with Biot’s predictions. Partition and the additional
empirical losses must be known for the comparison between theoretical absorption
and signal loss, measured by substitution with respect to reference in an isotropic
medium, to be meaningful. Furthermore, it is unlikely, therefore, that measured
empirical signal loss will provide information about bone properties directly, nor
give direct agreement with Biot’s predictions. Therefore, in seeking agreement
between theory and observation, the phase velocity is used, the evaluation of

which is described in the following section.
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3.4 The Measurement of Phase Velecity

Previous workers have compared measured time-of-flight velocity (that is,
group velocity) in cancellous bone with predictions of phase velocity from Biot’s
theory (Williams 1992, Lauriks et al. 1994, Williams ez al. 1996). This comparison
is only valid if propagation is non-dispersive. However, as previously discussed,
waves in cancellous bone are dispersive, and therefore theory should be compared
with experimentally determined phase velocity. The most commonly used
algorithm for evaluating phase velocity in insertion experiments is known as the
Phase Spectrum Method.

The Phase Spectrum Method (PSM) was developed by Sachse and Pao
(1978) to measure the phase velocity in dispersive solids by a transmission
technique. It was later modified by Lee et al. (1990) for the purposes of
immersion measurements, and was applied by Alvarez-Arenas et al. (1994) in
identifying Biot slow waves in porous fabric. The algorithm is only applicable for
propagation at normal incidence, where no internal refraction occurs’.

The output signal, after passing through a test specimen, may contain more
than one waveform, arising from multiple echoes, scattering, or mode conversion
(discussed further in section 3.6.2). Where a time trace contains more than one
mode, they may be separated by temporal windowing, where the time axis is
sectioned into intervals, each containing a single mode. Spectral analysis may then
be performed on the mode contained in the chosen time interval. When a time
series is truncated abruptly, errors may be introduced into the calculations because
only part of the data stream is used. Fourier spectral analysis is based on the
concept that a signal is the sum of contributions of all frequencies that extend in
time to infinity (Oppenheim and Schafer 1975). Truncation results in bias errors
and spectral smearing, reducing the low frequency content of the signal and the
resolution of the Fourier Transform. To lessen these processing effects, shaped
temporal windows are used, such as Hanning or Gaussian windows (Oppenheim

and Schafer 1975).

7 Section 5.5.2 considers an alternative method of evaluating phase velocity at non-normal
angles.
66



E R Hubbuck, 2000 Chapter 3 : Experimental Procedures 67

The amplitude and phase of a mode may be computed using a Fast Fourier

Transform (FFT) algorithm. The phase spectrum of the mode is,
#(®) =tan" (Im(®) / Re(w)), (3.11)

where Re(w) and Im(w) are the real and the imaginary parts of the FFT,
respectively. The phase velocity, ¥, of the mode is then

do
(=81 (@) = B g (co)+—§3-<d +V,1,)

w

V(o) = (3.12)

The terms @ and @y are the phase spectra of the signal with and without the
test specimen present, respectively. The term, V,, is the speed of sound in the
reference medium (usually water), and d is the target thickness. The term, 7,
compensates for the path length through water displaced by the insertion of the
specimen, which is included in the reference phase, @.; and not present in the
specimen phase, Grger-

Prior to performing the FFT, the peak value of the waveform should be
aligned with the centre of the window, otherwise the resulting phase will change
rapidly, providing erroneous results®. The peak of waveform is aligned by adding
(or subtracting) zeros from the start of the processing window. This is equivalent
to moving the pulse by a delay equal to the ratio of the number of additional zeros
to the sampling frequency. This delay is equivalent to 7., in equation (3.12).

Figure 3.4 (b:i - iii) is a flow diagram of the steps involved in evaluation of
phase velocity from two voltage signals (figure 3.4 (b:i)), and is used in the
experiments of Chapter 4. First, the Fourier spectrum of each signal is evaluated
by Fast Fourier Transforming (figure 3.4 (b:ii)). To ensure a smooth spectrum, the
phase was unwrapped for jumps of 2n. The phase velocity is then found by using

the phase spectra in the formula of equation (3.12).

¥ This achieves zero phase (at zero frequency), providing a reference for the subtraction of
phases in eqn (3.2). Theoretically, zero phase occurs when a signal is symmetric around the time
origin (Oppenheim 1975), approximated here by aligning the peak at the centre of the temporal
window.
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3.5 Experimental System

3.5.1 Apparatus and Arrangement

The two compressional waves of Biot’s theory may be generated and
observed in porous media using an impulse method. Plona and Johnson (1980)
first reported the observation of fast and slow waves in a porous medium of fused
glass spheres, using short pulses of ultrasound, which enabled distinct modes of
differing frequency to be separated in time and observed on an oscilloscope trace.
The technique was subsequently used by other authors to observe fast and slow
waves in a variety of porous media (Lakes et al. 1983; Alvarez-Arenas et al.
1994; Hosokawa and Otani 1997). Therefore, a fixed-path transmission impulse
technique was used in this study to generate Biot fast and slow bulk modes in
marrow-saturated cancellous bone through mode conversion at the water-
specimen interface. Water was used as the coupling medium, since its acoustic
properties are well established, and its attenuating properties may be assumed to
be negligible compared to bone (Bamber 1997).

The experimental configuration is shown in figure 3.6 and photographs of
the apparatus are shown in figure 3.7. Two Panametrics 1 MHz-resonant 25 mm-
diameter piezoelectric transducers were suspended and coaxially aligned in a tank
filled with degassed water. The water temperature was recorded at the start and
finish of each test. A single sinusoid, with a centre frequency 1 MHz and a pulse
repetition frequency of 100 Hz, was produced by a Thurbly Thandar TG1304
programmable signal generator. This was fed to a ENI RF power amplifier (Model
240L), which amplified the signal by 50 dB. The amplified signal was fed to the
transmitting transducer.

The test specimen was placed in a reflective polystyrene mount, coaxially
aligned with the transducers, to prevent ultrasonic signal leakage around the side
of the specimen. The signal passed through the specimen and was acquired by the
receiver. The received waveform was recorded by a Lecroy 9314L Digital Storage
Scope, sampling at 10 MHz, above the Nyquist frequency to avoid aliasing
(Oppenheim and Schafer 1975). The output was averaged over 500 acquisitions to

lessen the effects of electronic noise and stored on floppy disc. The signals were
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analysed off-line on a Hi-Grade 486 PC, by first converting data from binary to
ASCII format using the software package FGM, and then the MatLab Version 4.0

data processing package. A Hanning window and 2048 FFT points were used.

fmﬁ
| |
ENI 240L i :
Power [ %
Amplifier : |
Water | 7 ; i E :
Tank | active
Element | | Sample Mount
) 50 cm g
Trigger
4 v
Thurlby Thandar Lecroy 9314L
TG1304 Signal Digital Storage
Generator Scope

Figure 3.6 - Schematic diagram of experimental system

Figure 3.7 - Photographs of
experimental equipment.

(a) I-to-r: signal generator,
power amplifier, water bath;
(b) Lecroy oscilloscope;

(c) coaxially aligned
transducers, showing active
element.
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3.5.2 Acoustic Field Characteristics

A transducer is generally most efficient when used at its resonant
frequency. The resonance frequency of the 25 mm-diameter transducers was 1
MHz, and, from the discussion of section 2.4.2, this frequency was considered to
be in that range where two Biot waves may be observed.

The acoustic field produced by the 25 mm-diameter transmitter was
investigated for a single sinusoidal input pulse of centre-frequency 1 MHz. Figure
3.8 (a) shows the voltage output received by the second 2.5 cm transducer
through water at an on-axis distance of 14 cm. The origin of the time axis is at the
trigger, taken on the rising edge of the input pulse from the signal generator. The
waveform is seen to have a prolonged decay, likely to result from both transducers
being poorly damped at resonance. Such a response was seen to occur to some
extent for excitations of both impulses and sinusoidal pulses, as expected for
resonance. The duration of the pulse is around 4.5 ps. Waveforms of the type in
figure 3.8 (a) were used as the reference signal for the calculations of phase
velocity and attenuation throughout the experimental work of this thesis.

Figure 3.8 (b) is the power spectral density of the pulse in figure 3.8(a),
showing a maximum value around 920 kHz. The -3 dB bandwidth, within which
the signal-to-noise ratio may be assumed to be good, is roughly 0.85 - 1.02 MHz.
It should be noted that the spectrum may also reflect the frequency response of the
other elements of the system, such as the power amplifier.

The field transmitted by the transducers was characterised using the NPL
Beam Calibration Unit. The system evaluates key parameters, such as maximum
and minimum pressures, p' and p~ respectively; beam width, temporally averaged
intensity, /,, and total power output. Transducers were calibrated with a pulse
input to the power amplifier of centre frequency 1 MHz, 800 mV peak-to-peak
input, amplified by 50 dB, used throughout the experiments of Chapter 4 and 5.
Details of the calibration procedure are summarised in Appendix A.I

The maximum and minimum peak pressures of the field were found to be
48.4 kPa and -32.0 kPa, and the -6 dB beam width was 1.2 cm. This indicated that
the pulse was not significantly distorted by the interference of non-linear and
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diffraction interference. Further linearity tests, reported in section 4.2.2, were

performed on samples of cancellous bone.
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Figure 3.8 - (a) Waveform through water; (b) its spectral density (in dB/Hz).
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The test specimen was placed in a reflective polystyrene mount, coaxially
aligned with the transducers, to prevent ultrasonic signal leakage around the side
of the specimen. To approximate plane wave propagation, the sample was placed
in the far field. For a 25 mm transducer, operating at 1 MHz in water, the near-far
field transition was found in section 3.2.2 to start at 10.5 cm from the transducer
face. However, the signal had an operational bandwidth of 0.85 - 1.02 MHz,
which may cause the transition to occur at 8.9 - 10.7 cm from the transmitter.
Therefore, to ensure the sample was in the far field, it was placed at approximately

14 cm from the transmitter face, where plane wave propagation could be assumed.

3.6 Validating the Experimental Method

3.6.1 Introduction

At the beginning of an experimental study, the method should be validated
for the results to be meaningful. The previous section already discussed the
characterisation of the acoustic field and some tests of the presence of non-linear
propagation. In addition, the function of the algorithms used to evaluate wave

properties should be established, using various test objects.

3.6.2 Mode Separation and Reverberation

An acoustic wave in a finite-sized specimen may internally reverberate, as
reflections arise from waves impinges on interfaces with the external reference
medium. If reflections of the reverberated wave overlap with the direct wave, the
output signal may be corrupted.

Figure 3.9 shows the problem for an isotropic medium. A direct signal
propagates through the medium, and is partly reflected and partly transmitted at
the rear interface. Some interference may occur between direct and reflected
signals near this edge of the test object if the pulse duration is long, regardless of

sample thickness. The first echo inside the sample is reflected a second time at the
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front boundary, is finally transmitted into the reference medium. Thus the first

reverberation travels an additional distance of 2d.

specimen thickness, d

& 2
@ Lt

(a)———%———b direct wave
(b) interference
VAV

reflected <----- nd

(c) -~ - reflected

time delay = 2d / speed

<« >

D'
pulse length

Figure 3.9 - Reverberation inside a specimen and the emerging signal.

To achieve clear temporal distinction between direct modes and echoes,
the pulse duration should be less than the time delay between arrivals. From figure
3.9 (d), this delay is twice the thickness divided by the mode speed. Since the
mode speed is determined by the medium, and the pulse duration is fixed by the
measurement system, presence of this effect in practice is established by the
sample thickness, d.

The velocity of a direct signal through cancellous bone has been measured
as approximately 2600 m/s at IMHz (Truscott e al. 1996)°. Since the duration of
the pulse in figure 3.8 (a) is 4.5 s, reflected and direct signals may overlap in the
time trace if the sample has a thickness less than 0.585 cm (= (4.5 ps x 2600) /2).
Therefore, to observe reverberant echoes distinct from the direct arrivals in the
time domain, it is necessary that samples are thicker than 0.6 cm.

The scenario is further complicated for a porous medium, owing to the

presence of more than one propagation mode. The emergent time history will

® Although not associated with a Biot wave, it is prudent to take the fastest speed available.
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consist of a fast wave, followed by a slow wave and a sequence of reverberant
echoes, separated by predictable time delays. The temporal separation between
arriving modes depends on the thickness of the specimen.

It is possible to examine whether a signal contains echoes from
reverberation using spectral analysis. Signal processing methods (known as
cepstral analysis, or homomorphic filtering (Oppenheim and Schafer 1975)) exist
for detecting and removing echoes from time series, commonly used in speech
processing, sonar and seismic studies. If the echo, amplitude a,, of a fundamental

signal, s(#), occurs at time ¢,, the resulting signal is,
x(®) =s() +a,s(t—t,). (3.13)
The Fourier transform of this signal gives the spectrum X{(f), as

X(f) =S|l +ae ], (3.14)

where S(f) is the Fourier Transform of s(f), and ¢”*? is the Fourier Transform of a
pure delay at 7,. Using the identity €° = cos® + j.sind, the power spectral density

may be written as,

X" =S| {1 +a, +2a, cosaft, )} (3.15)
The term in parenthesis {...} on the right hand side of equation (3.15) adds a
sinusoidal ripple to the spectrum at a “frequency” of ¢, (see figure 3.10).

Therefore, the presence of reverberation in a signal through a test medium may be

established by examining the power spectral density of the signal.
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Figure 3.10 - (2) Signal composed of direct wave and echo; (b) schematic of its spectral density

(Hammond and Peardon 1994).

3.6.3 Testing the Processing Algorithms

The Phase Spectrum Method for the evaluation of phase velocity,
introduced in section 3.5, was programmed in MatLab and validated with real
ultrasonic data. First, the speed of sound in water was evaluated and verified
against its well-established value. With the transducer separation at 14 cm, a 1
MHz pulse was transmitted through water and recorded. In this test, the reference
and test signal are the same (of the type in figure 3.8 (a)). As a result there should
be no resulting phase change between the signals. It can be seen from equation
(3.11), that the resulting phase velocity should therefore be equal to the speed of
sound in the reference medium, V,,.

Figure 3.12 shows the computed phase velocity for a pulse in water,
compared with its established value of 1480 m/s at 20°C. The speed of sound in an
acrylic test object of thickness 0.6 cm, was also evaluated, and compared with an
established value of 2650 m/s (Kinsler et al. 1982). Figure 3.11 shows the
waveform received with the test object present, whilst figure 3.12 shows its phase
velocity. At 1 MHz, the measured velocity gave agreement to the established
values to within 0.5 % in water, and 5 % in acrylic. However, the presence of
dispersion clearly affects performance at other frequencies. Nevertheless, the

algorithm can be assumed to be operating correctly at the frequency of interest.
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Figure 3.12- Established and measured phase velocities of pulses through water (fig 3.8 (a)) and
acrylic (fig 3.11).
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3.7 Cancellous Bone Specimens

3.7.1 Sample Preparation

Tests were performed on samples of bovine cancellous bone, which is
generally acknowledged as having similar properties to human bone (Gibson and
Ashby 1988). Bovine tibia and femora were obtained fresh from a local butcher.
The proximal and distal epiphyses were known to contain regions of cancellous
bone with a well-oriented trabecular structure.

The bone was first cleaned of cartilage with boiling water and the cortical
shell was removed. Samples, of square cross-section 3.0 cm x 3.0 cm, were cut
under running water, with thickness varying from 0.6 cm to 1.5 cm (£ 0.05 cm). A
specimen of cortical bone was also cut from the shaft of the tibia. Samples were
stored in the preservative formalin, and were kept moist at all times.

Specimens were classified by the orientation of the internal trabecular
structure. Those samples with trabeculae running parallel to the thickness will be
referred to as Parallel samples, whilst those with structure normal to this will be
distinguished as Perpendicular samples. Specimens were also prepared with
internal structure at 30° and 45° to the cross-section, referred to as Oblique
samples. Typical samples are shown in the photographs of figure 3.14, and figure
3.13 summarises the naming convention.

Chemical fixation affects ultrasonic propagation in tissue, since it causes
linkages between adjacent molecules, producing higher absorption effects (Bamber
1997). Tissue stored in formalin may exhibit an increase in attenuation, particularly
at high frequencies (10 % at 1 MHz, 50 % at 7 MHz), and the directional
dependence of attenuation in tissue such as muscle, may be affected (Bamber

1997).
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Figure 3.13 - Location and nomenclature of cancellous bone in the bovine femur.
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Figure 3.14 - Photographs of cancellous samples. (a) Parallel; (b) Perpendicular and

(c) Oblique at 45°.
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After ultrasonic testing, the marrow was extracted from the pores by
immersing samples in trichloroethylene for a number of hours. Samples were
cleaned and flushed through with water using a small submersed conduit, then re-
saturated with water using the pipe. When this occurs tiny bubbles may become
trapped within the pores, which may significantly affect ultrasonic propagation
through the medium. Therefore, the water-filled samples were left for an hour
before testing to ensure the surface bubbles were dissolved. However, some may
have persisted internally, the potential effect of which is considered below.

The presence of air bubbles in a liquid will modify its bulk modulus, its
sound speed and its attenuating characteristics (Leighton 1994). Such effects
depend on the size and population of the bubbles, as well as the driving frequency.
First, the bulk modulus is defined as the ratio of the change in pressure to the
relative change in volume. Therefore, for a given change in pressure, the change in
volume is greater when a bubble is present, than in the bubble-free liquid. It is
possible to calculate the new bulk modulus (Leighton 1994), with knowledge of
the bubble size and population, and use the modified value in propagation models
such as Biot’s theory (Alvarez-Arenas et al. 1994).

In general, a bubble resonates at a natural frequency inversely proportional
to its radius (Leighton 1994). The ratio of resonant to the incident frequency
determines whether the presence of a population of bubbles affects the sound
speed. If their resonant frequency is above the incident frequency, the sound speed
is reduced. However, large bubbles, with natural frequencies less than the driving
frequency, tend to have little effect on sound speed (Leighton 1994). In both
cases, they increase attenuation, with the major effect being scattering, owing to a
high acoustic impedance mismatch of air-filled cavities with the surrounding water.

For a typical sample of bovine cancellous bone, it is reasonable to suppose
that bubbles of radius less than 1 pm will be flushed from the pores or will
dissolve rapidly. Hence, only those bubbles similar in size to the pore may remain
in the sample. Whilst such bubbles could have a significant effect on attenuation,
these relatively large ones are likely to have the least effect on bulk modulus and

sound speed.
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3.7.2 Validation of Intersample Comparison

To compare the acoustic results from different cancellous samples, it is
necessary to define non-acoustic criteria for stating which samples classify as
being the same. One factor, which is easy to establish and is required for modelling
propagation, is the porosity.

The porosity of cancellous samples was found using Archimedes'
technique. The volume of a cylinder of water is measured with and without a
porous sample submersed (Usampre and Uuger, respectively). The difference in
volume in each case is equivalent to the volume of the solid phase, Vs in the
sample. From a knowledge of the total volume of sample, Uusoia» if the sample is a

cuboid, the porosity, B, may be found as,

water (3 . 16)

where Ueupois = length x breadth x height of specimen (m’). The method measures
interconnected porosity, rather than due to isolated pores. It is, however, the
former that is required by Biot's theory. Indeed, isolated pores will not occur in
any biological tissue, owing to metabolic requirements.

Equation (3.16) was used to evaluate the porosity of samples of cancellous
bone in order to classify samples as the same. First, it is necessary to establish how
great a difference can be distinguished by a non-acoustic measurement of porosity.
The measurement of porosity using equation (3.16) will have associated
systematic and random errors. Taking the largest of these (systematic error bar or
two standard deviations), two samples may be said to have the same porosity if
their mean or average values are not separated by the error. Their subsequent
acoustic measurement can be compared.

The systematic error represents the resolution (or systematic precision) to
which the evaluation of equation (3.16) can be carried out, given uncertainties in
input parameters. The sample dimensions were measured with a micrometer to +

0.5 x 10” m (a fractional error in the order of + 0.1 %), and the water volume can
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be measured to a systematic precision of + 5 ml (fractional error of = 1 %).
Fractional analysis'® was carried out on equation (3.16) to find the uncertainty in
the porosity as a result of these errors in the input variables.

The measurement of porosity may be biased by the presence of bubbles,
which contribute to the perceived solid volume fraction (1 - f3). Although this is
likely to contribute to the error, it is difficult to quantify without knowing the
bubble size of their population. The total systematic error in the evaluation of
porosity from equation (3.16) was found to be no more than *+ 1.3 %. The total
random error in ten measurements was + 3.6 %, which, being the greater of the
two, was taken as the measurement error.

Figure 3.15 gives a summary of seven Parallel samples (/ to 7), three
Perpendicular samples (8 to 70) and two Oblique samples (/] and 12) and their
porosities, showing the maximum uncertainty in their values''. To determine
whether two samples are the same, it is necessary to consider whether their mean
values are separated by more than the measurement error.

Groups of samples may be assembled from this data. The porosities of
Parallel samples / to 4 do not differ by more than the error (that is, 3.6 %), as
with samples 5 to 7. Therefore, samples 1 to 4 may be grouped as having a mean
porosity of B = 74.5 %, with a standard deviation of 2.3 %, whilst Samples 5 to 7
can also be grouped, with mean porosity § = 80.5 %, standard deviation 2.8 %.
Perpendicular samples 8 fo 10 meet the criterion, such that they may all be
considered as having the same porosity (mean 81.4 %, standard deviation 2.1 %).
Oblique samples // and 12 give a mean porosity of 80.1 %, standard deviation
0.9 %. Therefore, the porosities of Parallel samples 4 to 7, Perpendicular and
Oblique samples, are equivalent to within the measurement error, enabling

measurements from these samples to be compared.

' The random error in F(x,y,z.) resulting from errors in x,y,z. is given by (Trim 1983),

2 2
an’ aF an’
+6F = + (_} (%)’ +(~—j ()’ +(--] (%) ....
& & &
' Additional samples were tested, but their porosities were not recorded.
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Figure 3.15 - Summary of porosities of cancellous samples used in experiments.

3.8 Summary

This chapter has outlined the principles of ultrasonic measurement and the
measurement of ultrasonic wave properties. Deviation from ideal acoustic
behaviour, caused by non-linear propagation, diffraction and additional empirical
factors, have been discussed in some detail.

The following chapter outlines in vitro studies carried out to study the
propagation of the two compressional waves predicted by Biot’s theory in
cancellous bone, using the techniques and specimens described here. Owing to
problems in the precise evaluation and interpretation of measured attenuation,

agreement with theory is found by comparing phase velocities.
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Chapter Four
In Vitro Studies of Biot Waves in

Cancellous Bone

4.1 Introduction

This chapter describes in vitro experimental studies compressional wave

propagation in cancellous bone. The objectives were as follows:

o 7o observe Fast and Slow compressional waves in cancellous bone.

The open and permeable structure of cancellous bone is favourable for the
propagation of the slow wave in the High frequency region. At the outset of
this work, the observation of two waves in cancellous bone had not been
reported. Observation of these modes would give weight to models, such as
Biot’s theory, which predict two waves.

o To study the effect of the interstitial fluid.

The viscosity of the interstitial fluid determines the frequency
above which the slow wave will propagate in a porous medium. Therefore, it is
predicted that varying the fluid will affect the wave properties of Biot waves.

e To study the effect of the cancellous structure.

Applying Biot’s theory requires the assumption that cancellous bone is
mechanically and structurally isotropic. Real bone is highly anisotropic
however, so the Biot assumption is not strictly valid. Propagation of fast and
slow waves in anisotropic cancellous bone is likely to be dependent on

direction.
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4.2  Validation of Biot’s Theory

4.2.1 The Observation of Fast and Slow Waves

The first study aimed to examine the existence of fast and slow waves in
bovine cancellous bone in vitro. The apparatus and methods described in Chapter
3 were used to test Parallel samples, of mean porosity 74.5 %, and thickness
varying from 0.6 to 1.5 cm, with the marrow intact.

Figures 4.1 (a - d:ii)) show those waveforms received through samples
tested at normal incidence. (Figure 4.1 (d:ii) shows the waveform of (d:i) on an
expanded scale.) The origin of the time axis is at the trigger, taken on the rising
edge of the input to the amplifier. Compared to the water-only waveform of figure
3.7 (a), those shown in figures 4.1 (a - d) exhibit a considerable amplitude
modulation that suggests the presence two distinct wavepackets. Taking the
arrival time as the first deviation from zero (or, if not clear, the rising edge), the
separation of the arrival of these wavepackets is seen to vary from roughly 2.5 ps,
for a sample 0.6 cm thick (figure 4.1 (a)), to 6.0 ps, for a sample 1.5 cm thick
(figure 4.1 (d:i - ii)). Therefore, the delay between wavepackets is dependent on
sample thickness. Such behaviour may arise for waves propagating through the
specimen.

It was believed that the first wavepacket corresponded to the fast wave
and the second to the slow wave. This assumption will be validated in the
following sections. Strictly, the waves received are compressional waves in water,
resulting from the mode conversion of the Biot wave at the rear face of the

specimen.
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Figure 4.1 - Waveforms through Parallel samples of thickness (a) 0.6 cm; (b) 1.0 cm;

(¢) 1.2 cm; and (d): (i) 1.5 cm; (ii) on an expanded scale.
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4.2.2 Linearity Tests

A scaling method was used to establish whether propagation, and the
measurement system, were sufficiently linear. As discussed in section 3.2.4, this is
investigated to determine the validity with which results may be compared with,
and analysed by, those of linear propagation models. The presence of non-linear
propagation may also bias estimates of empirical attenuation. Tests were
performed using Parallel samples, with the marrow intact.

Figure 4.2 (a - ¢) shows the output waveforms from a sample 0.6 cm thick,
for a sinusoidal pulse of 1 MHz. The input voltage to the power amplifier was first
set at 1 V, and the positive peak amplitudes of fast and slow waves were noted
from figure 4.2 (a), as 18 mV for the fast wave and 92 mV for the slow wave.
Next, the input voltage was reduced to 900 mV, and the output amplitudes were
noted from figure 4.2 (b), as 17 mV and 87 mV for fast and slow waves,
respectively. Therefore, between the two cases, the input was scaled by a factor of
0.9, and the output amplitudes were seen to scale by a factor of 0.95 for both
waves, that is, a linear change to 5 %. Next, the input was reduced to 500 mV,
and fast and slow wave amplitudes were noted, from figure 4.2 (c), as 8 mV and 4
mV, respectively. In this case, the input was scaled by 0.5, and outputs by 0.44 for
each wave: linear to 6 %.

The presence of discrepancies between controlled and measured scaling
factors does not constitute a convincing argument for linear propagation.
However, an additional test may be performed. Section 3.2.4 mentioned that a
waveform will appear non-symmetrical if the effects of diffraction and non-linear
propagation interact. Since it may be confidently assumed that diffraction is
present, non-symmetrical fast and slow waveforms may therefore indicate non-
linear propagation, or, at least, to its influence in these tests. Study of the
magnitudes of positive and negative peaks of waves in figure 4.2 (a - ¢) shows the
waveforms are relatively symmetrical. Therefore, it may be assumed that
propagation and measurement system are sufficiently linear for an amplifier input
of 1 MHz, 800 mV and amplified 50 dB, used throughout these studies.
Consequently, this enables the application of methods of sections 3.3 and 3.4 for

the calculation of phase velocity and attenuation.
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Figure 4.2 - Waveforms through Parallel sample, 0.6 cm thick, for power amplifier input
amplitudes of (a) 1V; (b) 900 mV; (c) 500 mV.
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4.2.3 Propagation Mode Identification

The first arrival observed in the recorded time histories was assumed to
have travelled the shortest path to the receiver, that is directly through the
specimen. To determine the origin of the second arrival, attention was turned to
the influence of reflections from external and internal surfaces.

The shortest reverberant path to the receiver, from which a second arrival
may arise, is that of a direct signal reflected from the receiver casing, to the rear
face of the sample, and returning to the receiver sensing surface. Such a route
covers a path length equal to twice the sample-receiver separation. In these
studies, the sample and receiver were separated by a distance of 2.0 £+ 0.05 cm,
hence, a reverberant wave in water between the two surfaces would arrive 27 + 3
us after the direct arrival. Such a delay is clearly longer than that between first and
second arrivals in figure 4.1 (a - d), previously noted as between 2.5 - 6.0 ps.
Therefore, the second arrival could not originate as echo from an external surface.

Attention was turned to internal reverberation as a source of this wave. As
section 3.6.4 described, the first reflection of reverberation within the sample may
overlap with the direct wave in samples of certain thickness. In section 4.2.4 it will
be shown that the speed of the first arrival at 1 MHz is approximately 3000 nv/s
(for porosity 74.5 %). For a reference pulse duration of 4.5 us (figure 3.7 (a)), an
overlap may occur for samples thinner than 0.68 cm (from (4.5 ps x 3000 m/s) /
2). Therefore, it would be expected that the waveform in figure 4.1 (a), from a
sample of thickness 0.6 cm, would contain overlapping reverberant waves.
However, whilst two distinct waveforms remain visible in this case, overlap is
unlikely to occur in the waveforms of thicker samples of figure 4.1 (a - d).

In samples of thickness 1.0, 1.2 and 1.5 cm, the first reflection of the
reverberation of a direct mode of 3000 m/s, would be expected to arrive at 6.6 ps,
8.0 ps, and 10.0 ps, respectively, from the rising edge of the first arrival.
However, these predicted delays do not agree sufficiently with measured delays
through samples of such thickness as 3.5 ps, 4.0 ps, and 6.0 ps, respectively.
Therefore, there is not sufficient evidence to assuming that the second arrival is a

reverberant wave using arrival times. Indeed, given that cancellous bone is a
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dispersive medium, it is unlikely that this issue can be resolved with the use of
times of flight'. The origin of the second arrival was investigated further.

As outlined in section 3.6.2, analysis of the spectrum of the waveform may
be used to establish whether echoes of the direct signal were present in the time
series of figure 4.1 (a - d). The power spectral density of the whole signal figure

4.1 (a), shown in figure 4.3, was found using a Fast Fourier Transform.
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Figure 4.3 - Power Spectral density of a typical time series from a Parallel sample.

The spectrum of figure 4.3 does not clearly demonstrate the ripple effect
associated with that of a reverberant signal. When processed this way, all the
signals in figure 4.1 (b - d) exhibited similar spectra. Therefore, it could be
concluded with reasonable certainty, that the second arrival was not an echo from
reverberation of the direct signal within the sample. Since no shear wave would be
generated at normal incidence, the arrivals were assumed to be bulk compressional

modes.

" It is questionable whether a direct signal of relatively low amplitude would give rise to an echo
of higher amplitude, after attenuation of the initial wave over subsequent traverses of the sample.
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In porous media acoustics, the first arrival is generally associated with the
fast wave and the second with the slow wave of Biot's theory. However, this
should not be automatically assumed. Biot's theory predicts phase velocity (the
speed of the wavefronts), whilst arrival time is determined by group velocity (the
speed of energy propagation). In a dispersive medium, phase and group velocity
are generally not equal. Thus, strictly, speeds derived from arrival times cannot
reliably be used in identify Biot waves. Under specific conditions in a porous
medium, the velocity of the slow wave may theoretically be faster than that of the
fast wave (Lawrence and Don 1996). To classify the modes with respect to fast
and slow waves of Biot’s theory, experimental phase velocities were compared

with theory. This is described in the following section.

4.2.4 Phase Velocity and Measured Signal Loss

Signal loss and phase velocity were evaluated using the methods described
in sections 3.3 and 3.4. A waveform of the type in figure 3.8 (a) was used as the
reference signal for the calculations throughout.

Systematic errors in the measured phase velocity and signal loss arise from
the measurement of sample thickness (£ 0.05 cm), water temperature (£ 0.05°C)
and the effect of temporal windowing. These produce a total systematic error,
through the equations of the PSM of section 3.4, of no greater than 2 % for
velocity. It was necessary to establish that the data was representative of the
general response of Biot waves in cancellous bone. This was established by
investigating its spread and precision. Reproducibility was examined in a number
of ways, being evaluated as a coefficient of variance (%CV = {std / mean} x 100).
Table 4.1 summarises the coefficients of variance for apparatus, positioning and

intersample precision.
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Table 4.1 - Reproducibility coefficients of variance for measurement system.

Parameter Apparatus Positioning Intersample
(at 1IMHz) Reproducibility | Reproducibility Reproducibility
(%CV) (%CV) (%CV)
Phase Velocity 1.7 % 34 % B=745) 6.0%
(B=280.5 45%
Signal Loss 2.6 % 4.5 % B=74.5) 84%
(B=80.5) 9.7%

First, the apparatus precision was established, that is, the reproducibility in
the measurement of one sample a number of times without repositioning. This
term reflects the uncertainty in measurements owing to variations in factors such
as electronic and quantisation noise, and water temperature. It was found by
testing the same sample ten times without repositioning, and finding the spread in
the values of phase velocity and signal loss at the centre frequency of 1 MHz.

Next, the reproducibility in a number of measurements of one sample with
repositioning was assessed, that is, positioning precision. This coefficient of
variance will naturally include the above apparatus errors, plus additional
uncertainties from removing and replacing a sample in position to test. It may be
expected to be larger than the apparatus coefficient of variance. The same sample
was tested ten times, being removed from the sample holder and repositioned each
time. The coefficient of variance was found for velocities and signal loss.

the that is, the

Finally, intersample precision was determined;
reproducibility between measurement of a number of samples. This uncertainty
will include both apparatus and positioning errors, but will include an addition
from variations between samples, and may therefore be larger than the previous
two coeflicients. Samples within the same porosity groups were tested once each,
and the coefficient of variance found for the data, for each porosity.

The values in Table 4.1 are consistent with those quoted for commercial
QU systems, which range from 1.34 % to 9.44 % (Greenspan et al. 1997). It can
be seen in Table 4.1 that the measurement of velocity has a higher reproducibility

than that of signal loss, a trend compatible for BUA and SOS from commercial
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systems (Greenspan ef al. 1997). This is not surprising in the cases of positioning
and intersample precision, given that the empirical factors that contribute to signal
loss may vary between cases.

Figure 4.4 shows the phase velocities of fast and slow waves as functions
of frequency for the two porosity groups ((a) 74.5 = 2.3 % and (b) 80.5 + 2.8 %).
The solid curves shown are the mean values of all the data in those groups (that is,
with and without repositioning, for all samples), with error bars in solid lines,
associated with the largest uncertainty. This convention is used throughout this
thesis for plotting data. This corresponds to the intersample error of 6.0% for the
curves of figure 4.4 (a), and 4.5 % for (b).

Experimental wave properties were compared with predictions by Biot’s
theory. The dashed lines in figure 4.4 show the maximum and minimum
predictions of phase velocity from Biot’s theory, found by the method of section
2.4. The parameters used for a model of marrow-saturated bovine bone for a
measured water temperature of 20.0 £+ 0.5°C are shown in Table 4.1. Pore size
was estimated using a scanning microscope to be 815 + 32 um, the range arising
from experimental uncertainties. The value of the Young’s modulus of the solid is
taken in the propagation direction in order that isotropy may be approximated.
The values in Table 4.1 were used to predict phase velocity and absorption, for
each porosity group studied.

Figures 4.5 (a) and (b) give signal loss in dB/m for the two porosity
groups. The solid lines correspond to the experimentally derived signal loss,
normalised for sample thickness, for the mean values of all the data in those
groups (that is, with and without repositioning, for all samples). Solid error bars
are associated with the largest uncertainty on the data, being the intersample
uncertainty at 8.4 % for porosity, = 74.5 %, and 9.7 % for § = 80.5 %. Dashed
lines in figure 4.4 show the maximum and minimum predictions of absorption from
Biot’s theory, found by the method of section 2.3.3. The parameters used for a

model of marrow-saturated bovine are shown in Table 4.2.
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Table 4.2 - Input parameters to the Biot model for marrow-saturated

bovine cancellous bone at 20°C.

Parameter Value

Variable

Density of cortical bone, p; 1800 - 2000 kg/m’

Density of marrow, py 992 - 1047 kg/m’

Young’s modulus of cortical bone, E 18.1-22.6 GPa

Porosity, (a) 0.745 £ 0.023
(b) 0.805 + 0.028

Pore radius, 815+ 32 um

Constants

Bulk modulus of marrow, K 2.2 GPa

Viscosity of marrow at 20°C, n 0.15 Pa.s

Index of power law, # 1.23

Poisson’s ratio of cortical bone, v, 0.32
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Figure 4.4 - Measured and predicted phase velocities of fast and slow waves for mean porosity:

(a) 74.5 % and (b) 80.5 %. Error bars on data show intersample precision.
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Figure 4.5 - Measured signal loss and predicted absorption of fast and slow waves for mean
porosity: (a) 74.5 % and (b) 80.5 %. Error bars on data show intersample precision.
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4.2.5 Discussion of Experimental Results

(a) Identification of Fast and Slow Waves

To identify the origin of the two modes in figures 4.1 and 4.2,
experimentally determined wave properties were compared with those predicted
by Biot’s theory for a model of cancellous bone. As has been stated already, since
it is problematic to compare empirical attenuation with predicted absorption,
waves were classified through the analysis of phase velocities.

Figures 4.4 (a) and (b) clearly show that the phase velocity of the first
arrival is consistent with that predicted for the fast wave. Similarly, the phase
velocity of the second arrival is consistent with that predicted for the slow wave.
For both porosity groups, experimentally determined fast wave velocities and its
uncertainty, lie within the limits predicted by theory, although its frequency-
dependence is not predicted. Experimental slow wave velocities lie at the upper
limits of the predictions. It could therefore be concluded that the fast and slow
waves of Biot’s theory had been observed. The first arrival will be referred to as
the fast wave; and the second as the slow wave for the remainder of this work.
Finally, these findings contradict the hypothesis in section 3.3.7 that the slow wave

may be attenuated to the extent that it could not be observed.

(b) The Effect of Porosity

Comparison of figures 4.4 (a) and (b) shows that the porosity affects the
values of both measured and predicted phase velocities. The measured fast wave
velocity at 1 MHz decreases from 3080 m/s in figure 4.4 (a) to 2640 m/s in (b), a
reduction of 14 %, subject to the stated error. Such trends are in keeping with
porosity-dependent decreases in velocity in bone measured by previous authors
(Tavakoli and Evans 1992, Hosokawa and Otani 1997).

Two points are made here regarding these results, but not pursued further.

First, Biot’s theory predicts shifts in the extreme bounds of the theory with
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porosity. A porosity, B = 80.5 % renders bounds which are 5 - 8 % less than § =
74.5 %. The analysis of whether this is a statistically significant decrease would
require careful study, outside the scope of this work. Second, it was observed that
there was a relatively large change in measured velocity with porosity. This may
imply that the acoustic method is more sensitive than the Archimedes’ technique

(of section 3.7.2) for determining changes in porosity.

(c) Wave Amplitudes

The wave amplitudes in cancellous bone display an unexpected behaviour
compared with the general response of porous media in this frequency range.
Ordinarily, in cases where Biot fast and slow waves have been observed in
synthetic and natural porous media, the slow wave amplitude has been much lower
than that of the fast wave (Plona and Johnson 1980). Indeed, Biot’s theory
predicts that the slow wave will be subject to greater absorption than the fast
wave. However, in this study, it appears that the reverse is true, since the slow
wave is the dominant arrival. In samples thicker than, say, 2 cm, the fast wave may
be attenuated to the extent that it may be undetectable by the system’s dynamic
range. This is the most probable reason for the lack of observation of two waves
in previous studies of cancellous bone.

Plona and Johnson (1980) showed that the slow wave will have a relative
amplitude larger than the fast wave for a specific case. This occurs when the
frequency is close to where scattering sets in, as defined in section 3.3.6. At this
frequency both viscous and scattering losses are minimal (the former is negligible
in the High frequency region; and the latter is relatively small owing to gguowa
being close to unity) and so do not significantly attenuate the slow wave. Section
3.3.7 gave the scattering frequency for marrow saturated cancellous bone at 20°C
as around 0.7 MHz. This is sufficiently close to the incident frequency of 1 MHz
to render a large amplitude slow wave here.

The anomalous trend in the relative wave amplitudes possibly arises from
the boundary conditions, which may assist the setting up of a high amplitude slow

wave. In Parallel sample, the pores are open to the reference medium (water).
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There is a good impedance match between water and marrow, since they have
similar densities (1000 and 970 kg/m’, respectively) and sound speeds (both near
1500 m/s). Wave motion in the water will effectively couple into the marrow at the
specimen interface, and hence the slow wave, which may be thought of as

propagating in the pore fluid.

(d) Absorption and Measured Signal Loss

There is a clear quantitative disagreement in measured signal loss and
predicted absorption in figures 4.5 (a) and (b). This is as anticipated from the
discussions in section 3.3.3, where it was remarked that the measured signal loss
of a single mode could be confidently compared with theoretical predictions only
if energy is partitioned between the modes is included. Such division is not
incorporated here, and these results are consistent with the findings of previous
workers who neglected partition (Williams et al. 1996, Hosokawa & Otani 1997).

The measured signal loss of the slow wave is less than that of the fast
wave, and such a discrepancy from the predicted trend is significant. It is most
likely that this inconsistency arises from the neglect of partition and the losses of
empirical factors. As the above discussion on wave amplitudes has shown, the
conditions of the porous boundary are crucial to the transmission of waves into
the medium. Complex models for the transmission coeflicients of porous surfaces,
based on Biot’s theory, do exist (Johnson et al. 1994), but their application is
outside the scope of this study.

Some practical factors of empirical signal loss, such as diffraction, phase
cancellation and bulk scattering, may only contribute to a quantitative constant or
frequency-dependent signal loss of both fast and slow waves. Such factors will not
contribute to the error in trend. However, factors that affect the properties of each
wave to a unique degree, such as specular scattering of the slow wave in section
3.3.2, may reduce the difference, or reverse the trend in signal loss. Again, whilst
establishing these contributions may be essential to appreciating the cause of the
trend, their evaluation is beyond the scope of this work. Owing to these
confounding problems, which could not be easily rectified without further work,

subsequent studies focus on measurement of velocity.
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4.2.6 Bone-Mimicking Materials

Owing to the poor performance of commercial ultrasonic bone assessment
systems, bone-mimicking materials have been developed for monitoring
performance (Clarke et al. 1994, Hodgskinson et al. 1996, Asaba et al. 1999).
Clarke et al. (1994) constructed a phantom from epoxy resin, to mimic calcified
tissue, and a gelatine/water mixture, to mimic marrow. These materials were
chosen to have acoustic properties similar to those of the components of real
bone. The gelatine formed pore-shaped granules, with the porosity controlled by
the proportion of each component. Other phantoms have been constructed from
perspex (Hodgskinson et al. 1996) and plaster (Ashaba et al. 1999).

Velocities and attenuation” of ultrasonic waves in Clarke’s phantom varied
with porosity. Phase velocities at frequencies around 500 kHz were found to cover
a higher range than those measured in real bone (1844 to 3118 m/s compared with
1465 to 2084 m/s for real bone). Attenuation and BUA of the phantom agreed
reasonably well with those of real bone. Of particular interest, is that attenuation
and BUA in both media display a parabolic relationship with porosity. A peak was
observed around 50 % porosity for the Clarke phantom, and at 65 - 75 % for real
bone (Hodgskinson et al. 1996). It was proposed that this response is caused by
scattering from the isolated inclusions (fluid filled pores) at low porosities and
from the continuous phase (solid matrix) at high porosities.

Whilst propagation in bone phantoms raises interesting questions, the
fundamental propagation mechanisms involved are not compatible with those in
real cancellous bone. The propagation of fast and slow waves relies on the
assumption that the fluid and solid are interconnecting, which does occur in real
bone. In a homogeneous medium containing isolated particles, such as Clarke’s
phantom, only one direct compressional wave will propagate and Biot’s theory
cannot be applied. This disparity makes it unfeasible to directly compare the
results of this study with those for a phantom where only one wave is present.

In conclusion, bone phantoms display macroscopic properties, such as
scattering, which mimic real bone, and are therefore useful in monitoring the

performance of systems measuring attenuation. However, since propagation

* with respect to a single reference pulse
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mechanisms differ in the two media, comparisons of the measurement of phase

velocity should be carefully considered.

4.2.7 Frequency and Implications for Historical In Vitro Studies

Section 1.5.2 mentioned the bar equation has been used to approximate
propagation in cancellous bone within various frequency bands (Strelitzki et al.
1997, Rho 1998). Ashman et al. (1984) hypothesised that bar propagation may
transform into bulk propagation as the frequency increases, but this mechanism
has not been thoroughly investigated. The effect may be equivalent to geometric
dispersion for homogeneous media. This occurs where the propagation is
dependent on the product of the specimen length and the wavenumber (Thurston
1978, Ashman et al. 1984). However, in porous media, there may be another
cause for the change in propagation mechanisms with frequency, namely, that
approaching the viscous frequency, ®,;q0us, 0f equation (2.23), above which fast
and slow waves will propagate.

Strelitzki et al. (1997) investigated propagation in os calces at 37 kHz,
where the continuum assumptions of the bar equation are valid. Measured
velocities were lower than those at frequencies in the BUA range. For a pore
radius in human bone of 250 + 50 pm (Mellish et al. 1989), and a viscosity in
water of 0.001 Pa.s at 20°C (Kinsler et al. 1982), the viscous frequency, ®,iscous, Of
equation (2.23), is 50 + 14 kHz. The frequency is close to the 37 kHz used in bar
propagation investigations by Strelitzki ef al. (1997).

Therefore, rather than being a geometrical dispersion effect, it may be
postulated that limit of the viscous frequency, ®yiscous, 1S the point of a suggested
transition from apparent bar propagation at low ultrasonic frequencies to that bulk

propagation observed at frequencies near 1 MHz.
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4.3 Study into the Effect of Pore Fluid

4.3.1 Introduction and Objectives

Alves et al. (1996) showed that, at frequencies from 0.5 - 1 MHz, velocity
in bovine cancellous bone increased by 2 % and attenuation (with respect to an
isotropic medium) decreased by 6 % when marrow was replaced by water. This
suggests that the role of the pore fluid is important at ultrasonic frequencies.

Most previous studies considering Biot’s theory in cancellous bone have
replaced marrow with water before testing (Hosokawa and Otani 1997, Williams
1992, Lauriks et al. 1994). This displacement will influence wave propagation,
since the viscosity of water differs from that of marrow substantially (see section
2.3.2). This is also demonstrated for cancellous bone in the viscous skin depth
graph of figure 2.4. A reduction in viscosity for the same frequency, will lessen
viscous coupling, and enhance relative motion between fluid and solid. Therefore,
propagation in samples saturated with marrow may be expected to differ from

those with water.

4.3.2 Method

The effect of replacing marrow with water in the pores of cancellous
samples was investigated. The same methods and experimental apparatus of the
previous study were used. Parallel samples of both porosity groups with marrow
intact were tested, and the data was processed to evaluate wave properties. The
marrow was then removed as detailed in section 3.7.1. Samples were re-saturated
with water, and left before testing to ensure the surface bubbles were dissolved.

The wave properties of the water-saturated samples were then established.
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4.3.3 Results and Discussion

Figure 4.6 (a - f) shows the waveforms through cancellous samples with
marrow and with water in the pores. The results from three Parallel samples are
shown (Samples 5 - 7 from figure 3.15 with porosity 80.5 + 2.8 %).

The presence of different saturating fluids in the pores clearly has an effect
on the propagation of Biot waves in cancellous bone. Fast and slow modes are
recognised in figure 4.6 (a), (¢) & (e) with marrow intact, as investigated in the
previous study. The inclusion of water in the pores has the effect of altering the
appearance of the emerging waveform, as can be seen by comparing figures 4.6
(b), (d) & (1) with (a), (c) & (e), respectively. Corresponding modes are reduced
in amplitude, and the second arrival is delayed. Eliminating echoes and
reverberation, as in section 4.2.3, the modes observed through the water-saturated
samples were found to have propagated through the specimen as compressional
waves.

The phase velocities and signal loss of the waveforms were evaluated for
the two modes, shown in figures 4.7 (a - b) and figure 4.8 (a - b), respectively. It
should be noted that the figures 4.7 (a) and 4.8 (a), velocity and signal loss for
marrow-saturated samples of mean porosity 80.5 %, are the same as figures 4.4
(b) and 4.5 (b), respectively; reproduced to aid comparison. The intersample
reproducibility coefficient of variance for the phase velocity of modes in the water-
saturated case was 8.5 %, higher than the coefficients from the previous study in
Table 4.2. Predictions from Biot’s theory are also shown in figure 4.7, using the
values in Table 4.1, evaluated for two values of viscosity at 20°C: 0.15 Pa.s for

marrow, and 0.001 Pa.s for water, and a porosity of 80.5 + 2.8 %
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Figure 4.6 - Waveforms through Parallel Sample 5 with (a) marrow and (b) water in pores;
Sample 6 with (¢) marrow and (d) water in pores; and Sample 7 with (e) marrow and (f) water

in pores.
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Figure 4.7 - Measured and predicted phase velocities of fast and slow waves

with (a) marrow and (b) water in the pores.
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Figure 4.8 - Measured signal loss and predicted absorption of fast and slow waves

with (a) marrow and (b) water in the pores.
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Comparison of figures 4.7 (a) and (b) demonstrates that the phase
velocities of fast and slow waves, in samples of the same porosity, are influenced
by the interstitial fluid. The fast wave velocity increases with the substitution of
marrow with water, by roughly 8 %, whilst the slow wave velocity decreases by
roughly 13 %. In contrast, when the prediction is modified by replacing the
viscosity value of marrow at 20°C with that for water at this temperature, the
maximum and minimum velocity bounds do not appear to alter significantly.
Whilst viscosity is a defining parameter regarding the extent of propagation
regimes, such a variation in viscosity produces a difference in predicted phase
velocity at frequencies near 1 MHz of less than 1 %.

Figures 4.8 (a) and (b) illustrate that the measured signal loss of both fast
and slow modes is marginally higher for water-saturation than marrow-saturation.
Unlike predicted velocity, predicted absorption at 1 MHz is seen to change by an
order of magnitude between the two cases. The increase in signal loss of the fast
wave, with the insertion of water, may arise from viscous coupling not being as
effective with a fluid of lower viscosity. In addition, the lower viscosity
encourages the relative motion associated with the slow wave, which causes
greater frictional losses’.

An alternative explanation for the increase in signal loss with the second
pore fluid, is that the presence of unwanted bubbles within the sample may cause
increased scattering losses. As discussed in section 3.7.1, air-filled cavities have a
high acoustic impedance mismatch with the surrounding water and will scatter
effectively. Such effects will be significant in the slow wave, which has a smaller
wavelength. Random scattering from varying bubble distributions in each sample
may account for the poor intersample reproducibility, compared with
measurements in marrow-saturated bone, in Table 4.2. However, although the
presence of bubbles may validate the modification of some of the input parameters
to the Biot model (specifically the fluid bulk modulus), the bubbles likely to be
contained in the trabecular matrix will be relatively large and therefore unlikely to

alter its properties significantly.

3 It is a paradox of Biot’s theory that a fluid of lower viscosity, which should instinctively reduce
viscous lagging losses, enables increased relative motion and actually increases viscous losses
through such motion.
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4.4 Study into the Effect of Trabecular Orientation

4.4.1 Objectives and Method

Previous applications of Biot’s theory in cancellous bone investigated
propagation in the trabecular direction only (Williams 1992; Hosokawa and Otani
1997). Isotropy was assumed for propagation in that direction for which the solid
Young’s modulus was defined. Other researchers mvestigated the effect of
trabecular orientation on ultrasound. Many authors have reported significant
differences in measured velocities for three orthogonal axes. Nicholson et al.
(1994) noted such a result for vertebral bone, whilst Strelitzki et al. (1997)
studied a similar effect for propagation at 37 kHz in os calces. Njeh et al. (1996)
noted considerable variance with direction for relationships between velocity and
Young’s moduli. Variations in BUA with orientation have also been demonstrated
(Hodgskinson et al. 1996).

The effect of trabecular structure on the propagation of fast and slow
waves was studied here, using the method and apparatus described in section 3.5.
Propagation through Parallel samples, of mean porosity 80.5 %, could be
compared with that through Perpendicular samples, of mean porosity 81.4 %,
since the difference between mean porosities was less than the error in their
measurement (section 3.7.2). Samples were tested at normal incidence with

marrow intact.

4.4.2 Results

Figure 4.9 (a) shows a pulse transmitted through a Parallel sample of
thickness 1.2 cm, at normal incidence. This may be compared with figures 4.9 (b)
and (c) through Perpendicular samples of varying thickness, and (d) for an Oblique
sample, all having similar porosity. Trabecular orientation clearly influences the
waveforms emerging from in cancellous bone. Only one pulse is seen in figure 4.9
(b - d), compared with two in (a). Eliminating reverberation, as in section 4.2.3,
the mode observed through the Perpendicular samples was found to have

propagated through the specimen as a compressional wave.

107



E R Hubbuck, 2000 Original in Colour

(a) Parallel Sample

0.05

Amplitude (V)

-0.05
85

90 95 100

(c) Perpendicular Sample 9

0.05

Amplitude (V)

-0.05
85

90 95 100
Time (us)

Chapter 4 : Experimental Results 108

(b) Perpendicular Sample 8

0.05

Amplitude (V)

-0.05
85

90 95 100

(d) Oblique Sample 11

0.05

Amplitude (V)
o

)
g8

90 95 100
Time (pus)

Figure 4.9 - Waveforms through (a) a Parallel sample; (b - c) Perpendicular samples
and (d) an Oblique sample.
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Figure 4.10 - Measured and predicted phase velocities of fast and slow waves from Parallel

samples, and that of the mode from Perpendicular samples.
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The lack of discrimination of two modes prevents the temporal windowing
required to evaluate wave properties for separate fast and slow waves, if indeed
both modes are present. Such deficiency may occur because the slow wave has
been attenuated to such an extent that it cannot be distinguished by the dynamic
range of the system. As a result, it was necessary to analyse the wave from
Perpendicular samples as a single mode. The results from the Oblique samples are
relevant to the later studies of Chapter 5 and not studied further here.

The experimental phase velocities were evaluated and compared with
those derived from Biot’s theory. Attenuation was not studied in this case. Figure
4.10 shows the phase velocities along with predictions for the wave received in the
Parallel and Perpendicular samples. The intersample reproducibility in the
measurement of phase velocity of the Perpendicular mode was found to be around
4 %, which compared well with measurements in Parallel samples in Table 4.2.

From figure 4.10, the phase velocity of the single mode does not agree
with predictions of fast and slow wave velocity. Its value at 1 MHz is roughly
1700 m/s, and thus well outside the error bounds from data or theory for either
fast or slow wave. Therefore, it was not certain whether the mode was a fast or
slow wave. Further investigation was required to establish the origin of this wave,

and some such studies are described in the following chapter.

4.5 Conclusions

This chapter has presented the results of an in vitro experimental study into
some aspects of ultrasonic wave propagation in bovine cancellous bone. The aims
of the study were to observe the Biot slow wave, and to examine correlation with
Biot's theory. The influence of marrow and the orientation of the trabeculae were
also investigated.

This study has shown that the slow wave does propagate in cancellous
bone and maye be observed at ultrasonic frequencies. Furthermore, the medium
appears to support slow waves very effectively under certain conditions. This is
likely to be because the structure is highly permeable, and, at these frequencies,

viscous coupling does not significantly impede fluid-solid relative motion.
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As regards the modelling of wave properties, the phase velocities of fast
and slow waves may be accurately predicted using a Biot model of propagation in
cancellous bone for propagation in the trabecular direction. However, as expected,
significant differences were apparent between measured signal loss and predicted
absorption, highlighting the importance of other factors contributing to signal loss,
such as energy partition. Therefore, only phase velocity was thought to be of
practical use for comparison with theory. In addition, propagation at ultrasonic
frequencies was predicted, and observed, to be dependent on the properties of the
pore fluid, such as its viscosity and presence of bubbles.

Finally, the observation of fast and slow waves is dependent on the
orientation of the trabecular structure. Both Biot modes are clearly observed in the
trabecular direction, but are not apparent for propagation normal to this. To
investigate the effect of trabecular orientation in more detail, further studies of the
anisotropic response of bone were conducted. The following chapter outlines
these studies, and introduces an alternative theory of propagation in cancellous

bone.
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Chapter Five
A Stratified Model for Ultrasound in

Cancellous Bone

5.1 Introduction

The previous chapter showed that trabecular orientation influences the
observation of two compressional modes in cancellous bone. Biot’s theory, in the
form discussed in Chapter 2, is unable to model this anisotropic behaviour. This
chapter presents a new approach to considering cancellous bone, which is able to
model the anisotropy. Predictions of waves properties in cancellous bone, with

respect to angle of propagation are compared with data from an in vitro study.

5.2 Models of the Trabecular Structure

Cancellous bone consists of a permeable network of osseous strands or
plates called trabeculae. Historically, devising a suitable simple geometrical or
mathematical model to describe this complex architecture has been problematic,
since many representations have been proposed, without consensus. Structural
characterisation is not only required for propagation models, but also for analysing
its mechanical behaviour, which, as mentioned in section 2.3.2, is desirable in the
design of prosthetic bone. Some of the idealisations of the cancellous architecture
are described below. It is assumed that, since the mechanical properties of
cancellous bone can be analysed using these models, they may help ultrasonic
examination.
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Trabecular models may be categorised, first, as those having a permeable
cellular matrix; and, second, those imagined to have developed as a pattern through
mechanical loading. Of those models with a cellular structure, a common version is
a network of cubes, each containing a spherical void (figure 5.1 (a)). The cubes
may be staggered (Gibson and Ashby 1988), or vertically stacked, the latter having
been used in finite element analysis of stress in cancellous bone (Beaupre and Hayes
1985). A variation is the fabric ellipsoid, found by constructing a characterising
ellipsoid, whose principal axes as the average pore radii in three orthogonal axes,
found from image processing (Turner and Cowin 1987). Bone texture has been
analysed using fractals (Lesspessailles ez al. 1996),

Gibson and Ashby (1988) presented models of trabecular architecture
imagined to have developed from either uniaxial or biaxial loading. From loading in
one direction, an array of prismatic tubes may develop, similar to a honeycomb
structure (figure 5.1 (b)). From loading in two directions, an array of parallel plates
separated by thin cross members, may develop (figure 5.1 (c)). These more regular
geometric models are suitable for use in examining the influence of structure on
ultrasonic propagation, since they may be most easily analysed mathematically. In
particular, the layered structure of figure 5.1 (c) is attractive for further analysis
because there exist well-established theories for acoustic propagation in layers.
Once such theory, Schoenberg’s approach, is investigated for ultrasonic

propagation in bone in the following section.

S =

(@) (b) (©
Figure 5.1 - Idealisations of cancellous bone: (a) a cell with a spherical void (Beaupre & Hayes

1985); (b) honeycomb tubes; (c) parallel plate structure (Gibson & Ashby 1988).
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5.3 Schoenberg’s Theory of Propagation in Stratified Media

5.3.1 Introduction

The analysis of wave propagation in periodically layered fluid-solid
systems was first reported by Rytov (1956) and Brekhovskikh (1981), for
propagation only in those directions parallel and perpendicular to stratification.
Later, Schoenberg (1984) studied propagation in alternating fluid-solid layers in
any direction, which was verified experimentally by Plona et al. (1987).
Schoenberg’s theory has since been used to describe propagation in various natural
and man-made stratified media, such as geological structures and laminated

composites.

5.3.2 Fundamental Equations

In 1984, Michael Schoenberg published his theoretical study into acoustic
wave propagation in a medium composed of periodically alternating fluid-solid
layers. The layering is parallel to the x; and x, directions, with spatial period H in
the x; direction (figure 5.2), being infinitely extending in all directions (that is, there
are no external interfaces). In one period of a medium with porosity 3, the region

of 0 <x3< (1 - B)H is occupied by an elastic solid (that is, it obeys Hooke’s Law),
with density ps, compressional speed, Vs, and shear speed, V. The region (1-B)H

< x3 < H contains an ideal fluid, of density, ps and sound speed Vr.

Ideal fluid behaviour is a valid assumption for frequencies where the
viscous skin depth, d; is much smaller than the fluid layer thickness. Schoenberg’s
model is therefore only applicable in the High frequency region of Biot’s theory
(section 2.4.2), where viscosity may be neglected. Furthermore, as with Biot’s
theory, the length scale of the discontinuities is also considered and Schoenberg’s
theory is only valid for the long wavelength regime; that is, the wavelength should
be long compared to the period, H. This is shown schematically in figure 5.3.
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Figure 5.2 - Schematic diagram of a system of infinitely extending parallel fluid-solid layers,

periodically alternating with period, H. The x;-axis is 0° and the x;-axis is 90° .
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Figure 5.3 - The frequency regions within which Biot and Schoenberg theories are valid.
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Schoenberg’s derivation is briefly summarised here, but may be found in
full in his 1984 paper. Schoenberg derived the dispersion relation for this medium
by relating continuous acoustic field variables in one period to those in the next by
propagator matrices. Acoustic wave propagation is expressed in terms of a
slowness vector, s = (s}, $2, §3). This vector has magnitude equal to the inverse of
phase velocity, with phase angle equivalent to the angle of propagation through the

layers relative to stratification’.

For low-frequency harmonic waves, of exp j(s;x; - t), the dispersion
relation becomes independent of frequency, w. This leaves a relationship between
the components of the slowness vector, s, such that s,, the parallel component, and

53, the normal component, are found from the dispersion relation to be related as

s BT =S (1=-p7 =5
(55 / () { YT R }-o (5-1)

where <p> is a thickness-weighted average density, equivalent to Bpr + (1-B)p,,

and V,, represents the speed of extensional waves in an elastic plate,

1/2
Vi =201~ i;s"';*)m Y, (5.2)

as given by Plona et al. (1987). From equation (5.1), expressions for the magnitude

and phase of the slowness vector, s, may be found as,

Is|=V s’ +s5], (5.3)
Zs=tan" (s3/s;). (5.4)

The magnitude of the phase velocity may then be found as a function of angle, /s,

in a stratified medium as the inverse of the magnitude of slowness, 1/[s|. The angle

! The slowness vector is an established convenient way of representing propagation in anisotropic

media.
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Zs corresponds to the angle of propagation through the layered structure, with

reference to the direction of those layers.

Equations (5.1 - 5.4) predict two compressional waves that are equivalent
to the waves of the first and second kind of Biot’s theory. The waves have a
direction dependence, with both waves propagating for all angles, except for
propagation perpendicular to the plates, where there is only one mode.

Viscosity is omitted from the model. The phase velocity is purely real, and,
since the absorption coefficient is usually found from the imaginary part of the
complex phase velocity, Schoenberg does not therefore predict absorption.
Furthermore, viscous coupling neglected in this model.

The direction dependence of the two propagation modes may be explained
by considering inertial coupling in this system. For propagation perpendicular to the
layers, inertial coupling is large and the motion of fluid and solid are fully locked
together. Only the fast wave propagates, since relative motion associated with the
slow wave is impeded. Inertial coupling decreases as the angle of propagation, with
respect to x; increases, causing relative motion to occur, and allowing the slow
wave to propagate. Parallel to the layers, the inertial coupling is zero. This means
no coupling occurs between fluid and solid, and their respective motions are
independent. Section 6.4.1 will later describe a tortuosity term (and hence inertial
coupling), which may be found for a system of parallel plates that is a function of

angle to the layering.
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5.4 A Stratified Model for Cancellous Bone

Equations (5.1 - 4) were used to plot phase velocity against angle of
refraction for a layered model of cancellous bone, using the values in the second
column of Table 5.1. The resulting prediction is plotted in figure 5.4.

Figure 5.4 shows two distinct phase velocity contours (coloured lines)
when plotted versus angle of propagation, with respect to x;. These contours
correspond to two compressional mode speeds, analogous to the Biot fast and slow
compressional waves (Plona et al. 1987). The fast wave corresponds to the upper
curve, and its velocity varies significantly with angle of propagation, being greatest
parallel to the layering at 90°. In contrast, the slow wave phase velocity varies little
with angle, such that it is approximately constant at angles close to the direction of
layering.

The response is clearly symmetrical around 90°. This is owing to the
theoretical layers being infinitely extending in two dimensions: there are no external
boundaries to the medium. The response of the system may be thought of as arising
from the coupling of an anisotropic fluid mode with an extensional plate mode
(Plona et al. 1987). The velocity curves are bounded by two asymptotes, shown in
figure 5.4, to which the curves display limiting behaviour. The first asymptote
represents the solid plate mode of equation (5.2). The second limit corresponds to
an anisotropic fluid mode, which may be found from the relation between
components of the slowness vector, written in the form of an ellipse, as,

2 2
s, 55

v’ ({W}z/z Vp}}) 2
Pr

Plona et al. (1987) noted that the principle axes of this ellipse (and therefore the

=1 . (5.5)

shape and value of the fluid asymptote) were govern by the ratio between porosity
and density of the layers. Therefore, the asymptotes provide a physical explanation

to the shape of the velocity curves predicted by Schoenberg.
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Table 5.1 - Input parameters to a Schoenberg model of propagation in oriented

cancellous bone for the figures 5.4 and 5.8.

Parameter Value for Fig 5.4 | Range for Fig 5.8
Density of solid bone, p; 2000 kg/m’ 1800 - 2000 kg/m’
Density of fluid, p, 992 kg/m’ 992 - 1047 kg/m’
Porosity, B 0.8 0.804 £ 0.028
Solid compressional speed, V 3150 m/s 3100 - 3200 m/s
Fluid compressional speed, V; | 1500 m/s 1500 m/s
Shear speed, V, 1650 m/s 1650 - 1800 m/s

—— Schoenberg Fast

—— Schoenberg Slow
2500

— Plate Asymptote
— Fluid Asymptote

N
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o
o

1500

1000

Phase Velocity (m/s)
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Figure 5.4 - Predicted phase velocities of fast and slow waves versus propagation angle for
layered bone system, for 90° parallel to layers. Plate asymptote from eqn (5.2) and fluid asymptote
from eqn (5.5) are shown.
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5.5  InVitro Study into the Effect of Trabecular Orientation

5.5.1 Objective and Method

Figure 5.1 (c) illustrated that the cancellous geometry may be considered as
an array of bone-marrow layers. Therefore, Schoenberg’s theory may be
appropriate in understanding the anisotropic response of cancellous bone to
ultrasound. Since Schoenberg’s theory omits fluid viscosity, it may be applied to
propagation at frequencies around 1 MHz, where viscous effects may be neglected.

Investigations were undertaken to establish whether Schoenberg’s theory
was compatible with measurements of direction dependent velocity, to a certain
level of precision. The immersion and acquisition systems described in section 3.5
were used, with the addition of a revolving specimen holder. This mechanism
allowed samples to be rotated manually about a pivot coaxially aligned with the
fixed transducers. The angle of incidence was indicated on an angular scale, and the
output was acquired after each 5° + 0.5° increment in the sample position. Three
Parallel, three Perpendicular and two Oblique samples were used, with marrow left
intact.

When samples were rotated, care was taken to ensure that the beam width
was covered, to avoid signal leakage around the sample. An erroneous output may
arise if a direct wave is measured. Calibration tests, described in Appendix A.l,
showed that the width of the beam was 1.2 cm at 1 MHz. From figure 5.5, a
sample, of width 3 + 0.05 cm, could be tested at angles of incidence from 0° - 60°

before signal leakage occurred. Therefore, Parallel and Perpendicular samples of

such width could be tested to cover the an angular range 0° - 90°.

“wo- Sample
/\N] 3cm

Beam
width 1.2

' pivot Ultrasonic Beam
Transducer T

Figure 5.5 -Rotation of a sample in an ultrasonic beam.
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5.5.2 Evalnating Phase Velocity for Refracted Waves

The Phase Spectrum Method, described in section 3.5.1 for evaluating
phase velocity, is only applicable to propagation in samples tested at normal
incidence. At non-normal angles of incidence, the difference in the velocities of test
and reference media causes refraction to occur at a fluid-porous solid interface. For
an isotropic sample, the path length of the wave will always be greater at non-
normal angles of incidence than at normal angles. Rotating a sample from normal
incidence, the wave is bent away from the normal in all cases, for any velocity in
the sample. A longer path length will cause the pulse to arrive later, appearing as if
its velocity has decreased with angle’. An alternative method for determining phase
velocity overcomes this by accounting for refraction, and is outlined below.

The phase velocity of a refracted wave may be calculated using a
technique developed by Smith (1972), and later modified by Plona et al. (1987) for
ultrasonic immersion tests. This algorithm accounts for the fact that the path
through the sample lengthens by an amount dependent of the angle of refraction.

The group velocity of a dispersive wave (introduced in section 1.5.2) is
generally different from the phase velocity, hence the latter will be refracted at a
different angle. Figure 5.6 shows an ultrasonic beam is incident at the target at an
angle 0; in the yz-plane. The phase velocity component makes an angle, 6, with the
normal to the sample face, whilst the group velocity makes an angle, 6,. In a non-

dispersive medium, the angles, 6, and 6, will be the equal.

Incident Wave
¢ - . - Path of Group Velocity
~
Path of Phase Velocity

Figure 5.6 - Refraction through a finite-sized sample, for angle of incidence, 6;; and the angles of

refraction of group and phase velocities, 0, and 0, , respectively.

? An apparent increase in velocity, where the wave arrives earlier than at normal incidence, only
occurs if the properties of the specimen are anisotropic. No increase is observed if the specimen’s
properties are the same as those of the reference medium.
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Using trigonometry and Snell’s law (Leighton 1994), the angle of
refraction, 6, may be found in terms of the known quantities: specifically, the angle
of incidence, 0;; the phase difference between a pulse with and without the
specimen present (that is, the time difference between group velocities in each
case); the speed of sound in the reference medium, V,,; and the sample thickness, d.

For an angle of refraction, 6, where,

tan 6, = sin 0,(cos 6; —g), (5.6)

the phase velocity, V,(®), can be expressed as
2 2
V@)=V, /(1+ g —2gcos9,-) : (5.7)

where V,, is the velocity in water and,
g=(Vts(@))/ ad, (5.8)

where d is the thickness of the target. The term ¢,(®) is the phase difference
between pulses with and without the target present. If Re(w) and /m(w) are the real
and imaginary parts of the Fourier Transform of a signal, respectively, the phase
may be evaluated as ¢(w) = tan" (Im(w) / Re(w)). The phase difference can be

expressed in degrees as

65(/)=(~Brer )~ (frarger )+ 3601Lc . (5.9)

In equation (5.9), the frequency, £, is in Hertz. The phases, in degrees, of pulses
received with and without the target present are ¢y and ¢,y respectively. The

term L is a time-compensating distance, which accounts for the phase change

present in the reference signal as a result of a section of water displaced by the

insertion of the target. At normal incidence, equation (5.7) reduces to,

Vy(w)=V, /(1-g). (5.10)
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In a dispersive system, the phase velocity will vary with frequency, and thus
it may be expected that each frequency component will refract at a different angle.
By substituting equation (5.8) into (5.6), that the angle of refraction, 0,, is
frequency dependent. Hence, the processing algorithm utilises the fact that different
frequencies will refract at different angles, thus allowing for bandwidth.

The phase velocity at angle of incidence, 6; was calculated using the

equations (5.6 - 5.9). This algorithm was programmed in MatLab.

5.5.3 Data Representation and Errors

Establishing the compatibility of Schoenberg’s theory with measurements of
direction dependent velocity, to a certain precision, involved the evaluation of first,
the experimental error, and, second, the uncertainty in the predictions. An acrylic
test object was used to verify the processing method of section 5.5.2. The
operation of the MatLab code used to evaluate the Schoenberg predictions was
verified against data of Plona et al. (1987). Both these tests are outlined in
Appendix A.IL

The reproducibility of the experimental results, for one sample, and for
samples of the same porosity, were established. First, phase velocity and angle of
refraction were found from the algorithm of section 5.5.2. However, these
evaluated properties are not independent of one another, that is, for any velocity
there is a unique angle of refraction (as Snell’s Law would suggest). Therefore, it is
not possible to find the distribution, and hence uncertainty, in velocity at one
particular refraction angle using this method. Instead, precision must be evaluated
for another parameter for which a spread in phase velocity may be defined. The
simplest parameter for which this may be achieved is the angle of incidence.

Theory and experiment were to be compared against an apparent angle of
incidence, defined below with respect to the trabecular plate direction, 0° being
perpendicular to the plates. Care is taken here to detail the angular conventions
used throughout this study, since confusion may arise between definitions of angles
with respect to the external and internal structure of samples of differing trabecular

configurations.
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First, two configurations of sample (Parallel and Perpendicular) were tested
to cover the entire range of the angle of refraction, from 0° to 90°. The significance
of the following angles should be noted. First, the angle of incidence, 0, with
respect to the sample face, was controlled in the experiments, and the angle of
refraction, 6,, with respect to the sample face, which was calculated from equation
(5.6). However, the data was to be plotted against the angle of incidence with
respect to the internal trabecular structure. Since Parallel and Perpendicular
samples had differing internal structure, an expression for the experimental
apparent angle of incidence was established for each sample. Specifically, for a
Parallel sample, the apparent angle of incidence, 0;,, equals (90° - 6,), for angle 6;
with respect to the external face; whilst, for a Perpendicular sample, 0;,, is simply
equivalent to 6.

Second, Schoenberg’s theory predicts the angle of propagation, £s, with
respect to the layers in an infinitely extending medium. The theory does not
account for interaction at external boundaries with secondary media, thus no angle
of incidence is specified. To compare experimental results with predictions, the
latter must be plotted versus the angle of incidence (as opposed to the angle of
propagation in figure 5.4). Consequently, the theoretical angle of propagation
through the layers, £s, from equation (5.4), must be re-expressed as an angle of
incidence for an imaginary half-space, where water is the reference medium and 0°
is the trabecular direction (figure 5.7). Using Snell’s Law, a theoretical apparent

angle of incidence, 0,,, may be expressed as,

sind;, :—I{l—_wT.sinés, (5.11)
s

where terms are defined in equations (5.6 - 5.9).

Finally, the angular convention for the Oblique samples should be noted.
These samples were tested at normal incidence, such that the angle of refraction
was equivalent to that of the internal trabecular structure (that is, no additional
refraction occurred). To present the data in terms of the apparent angle of
incidence, equation (5.11) was again used, where the terms |s| and £s were
replaced by ¥, and 0, (which was 45° or 60°), respectively.
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Figure 5.7 - The definition of the angles in representation of theory and data.

As with the studies on Biot’s theory, the error in the predictions of
Schoenberg’s theory owing to uncertainties in the input parameters, may be
represented by the maximum and minimum predicted bounds. Optimisation
methods, introduced in section 2.3.3, may be used to find the extremes for
Schoenberg. First, linearity in the equations for the given limits, was established (as
presented in Appendix A.III), before proceeding with the optimisation.

Upper and lower bounds of the fast and slow wave velocities were
evaluated using equations (5.1 - 5.4), using the values in column three of Table 5.1.
The porosity of the cancellous samples was found in section 3.7.2 as 80.5 £ 2.8 %.
The remaining parameter values were found from literature. If the experimental
data, and its largest uncertainty, liec within the theoretical extremes of Schoenberg’s
theory, it may be said that no discrepancy has been observed at that precision, and
that in this respect propagation in cancellous bone behaves as that in a system of

parallel plates.
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554 Results and Discussion

Figure 5.8 shows computed fast and slow wave phase velocities at 1 MHz
from three Parallel (solid circles, from 30° to 90°) and three Perpendicular samples
(empty circles, from 0° to 25°). Note, the results are plotted versus angle of
refraction, 6,, as found by equation (5.6), and the trabecular direction is at 90°.
Figure 5.8 illustrates the spread in the data. The intersample precision at one angle
had previously been calcuated for these specimens as 6.0 %. The data was re-
expressed against the apparent angle of incidence, and its distribution was
evaluated at each apparent angle of incidence. Figure 5.9 shows the phase
velocities of fast and slow waves versus apparent angle of incidence, 6;,, with the
error bars as the intersample reproducibility.

For measurements taken at non-normal angles of incidence, it was
necessary to ensure that shear waves were not recorded and corrupting the results.
Oblique samples were tested at normal incidence, where shear propagation does
not occur. Figure 4.9 (d) showed that only one mode was observed for these
samples. The velocity of this mode was found to be 3210 m/s for the 30° specimen
(0, found as 76°), and 2805 m/s for the 45° specimen (6;, = 68°). When plotted on
figure 5.9 these velocities give agreement within the bounds of surrounding data,
which supports the assumption that the waves measured as non-normal angles in
other samples were consistent with compressional propagation.

Figures 5.8 and 5.9 clearly demonstrate the reproducible result that fast and
slow wave velocities in canceflous bone depend on direction. The fast wave
velocity is seen to increase, although the slow wave, but for those angles where its
velocity could be calculated, its value remains approximately constant. Figure 5.9
demonstrates that experimental fast and slow wave velocities are consistent with
the predictions of Schoenberg’s theory, to within the specified precision. Therefore,
it may be concluded that ultrasonic propagation in cancellous bone is consistent
with that in a layered system as modelled by Schoenberg’s theory. The origin of the
mode observed from Perpendicular samples the data between 0° and 25° was not
apparent from initial analysis of the data. However, comparison with Schoenberg’s

predictions suggests that the mode observed is the fast wave at these angles.
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Figure 5.8 - Measured phase velocities versus angle of refraction from various samples.
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precision on data points.
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5.5.5 Lateral Shift

The presence of refraction results in a displacement in the measurement
plane of the position of arriving peak pressure. Fast and slow waves, having
different velocities, will refract by different amounts in the y-direction. At high
refraction angles (and high velocities), the lateral shift may cause the peak pressure
to fall outside the sensing surface of the receiver. Such a displacement would cause
signal level to drop, leading to perceived high attenuation or the removal of a
measurable wave. Checks were performed to establish whether signal leakage had
occurred during these tests.

With reference to figure 5.10, the shift in the y-direction, may be
quantified, using simple geometry and Snell’s Law, with knowledge of the angles of

refraction, 0,, and incidence, 0;. The shift, ¥, may be expressed as,

Y= sin(@, -6,), (5.12).

cos@

r

where d is the sample thickness, and 0, and 0O; are angles of refraction and

incidence, respectively, defined in figure 5.10.

Transmitter Specimen

Figure 5.10 - The lateral shift in a wave through a sample tested an a non-normal angle of

incidence.
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Acoustic energy may not fall on the sensing surface if the distance Y is
greater than the radius of the transducer. For these studies, the transducer radius
was 1.25 cm. From equation (5.12), it may be seen that if the angle of refraction
and incidence are approximately equal, or where the wave velocity is close to that
in the reference medium, the shift will be negligible. The velocity of the slow wave
is close to that in water, and the wave is unlikely to experience much lateral shift.
Hence, it will be fully recovered by the sensor. For example, for a Parallel sample of
thickness 1 c¢m, with an angle of incidence of 20°, corresponding angle of
refraction® of 22°, the lateral shift, ¥, in the slow wave, is less than 1 mm. In
contrast, for an angle of incidence of 20°, and angle of refraction of 30° in the same
sample, the fast wave shift Y is 2 mm. The maximum shift in the fast wave
achievable using this set up, is around 2 cm, This occurs at angles of incidence and
refraction of 55° and 79°, respectively.

The bandwidth of the signal may also affect the shift, since the phase
velocity, and hence the angle of refraction, 6,, are functions of frequency. Figure
4.4 (a - b) showed that the slow wave velocity is approximately constant in the
bandwidth 0.8 - 1.2 MHz. Thus, the lateral shift is unlikely to alter over this range.
The fast wave experiences negative dispersion, of around 0.1 % in its value within
the given bandwidth. However, such a change in minor velocity would produce a
negligible variation in shift over these frequencies.

In conclusion, refraction of the fast wave at angles of incidence above 50°
(with respect to external sample dimensions) may result in shifts of the position of
the peak response in the y-direction. In such tests, wave energy may be fall outside
the sensing surface, thus altering measurements of wave properties. However, this
is adequately tackled by the use of both Parallel and Perpendicular samples to each
cover angles of incidence up to 45°, lessening the need for data at high incidence

angles.

? The angles quoted here are given with respect to the external sample dimension, and not the
trabecular direction, as plotted in figures 5.4, 5.8 and 5.9.
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5.6 Summary

During this chapter, a new theoretical approach to modelling the
propagation of ultrasonic waves in cancellous bone has been proposed. This model
assumes that the trabecular structure is a periodic array of parallel fluid-solid layers,
to which Schoenberg’s theory is applied. In vitro investigations of direction
dependent wave velocities in cancellous bone demonstrate two results. First, the
anisotropic response of fast and slow compressional waves is reproducible. Second,
evidence exists that ultrasound in cancellous bone containing a dominant trabecular
structure behaves like that in a stratified array of bone-marrow layers. Qualitative
agreement has been found between theory and experiment to within specified
uncertainties.

The stratified model proposed here is clearly a simplification of the
cancellous architecture. Although it is unable to model viscous effects, which may
be important at ultrasonic frequencies, it uses fewer input parameters than the Biot
model. Therefore, it has the potential to be usefully employed to investigate
ultrasonic propagation in cancellous bone further. It is also able to provide
descriptions of physical and dynamic forces which lead to an anisotropic response
in bone. The following chapter presents a comparison between the Biot and

Schoenberg theories.
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Chapter Six

Comparison of Biot and Schoenberg Theories

6.1 Introduction to Theoretical Study

6.1.1 General Comments

Although both porous media theories of the previous chapters predict the
existence of two compressional waves, they are derived from fundamentally
differing perspectives. Biot considers the motion of fluid and solid separately, and
then coupled. The porous geometry is described through four of the fourteen
parameters. Schoenberg’s use of matrices to relate acoustic field properties in
consecutive periods inherently constructs a layered geometry. Such conceptual
differences mean that Biot perceives cancellous bone as an isotropic matrix of
fused calcified spheres saturated with viscous marrow, whilst Schoenberg sees
calcified plates filled with an ideal fluid. Section 5.3.2 stated that the omission of
pore fluid dynamics by Schoenberg, which are comprehensively incorporated by
Biot, prevents the former from predicting viscous absorption, and restricts its
application to the High frequency region.

The crucial distinction between representations is shown in figure 6.1. The
figure compares the predictions with direction to trabecular alignment from
Schoenberg and the isotropic Biot model, using the parameters in Table 6.1, some

of which are common to both models.
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Table 6.1 Input parameters to a Biot model of marrow-saturated bovine bone at

20°C, and a Schoenberg model, showing coincident terms.

Parameter in Schoenberg Model Value Parameter in Biot Model
Solid Compressional Speed, V 3150 m/s

Solid Shear Speed, V, 1650 m/s
Fluid Speed, V; 1500 m/s
Density of solid, p; 2000 kg/m’ | Density of solid, py
Density of fluid, p, 992 kg/m’ | Density of fluid, py
porosity, B 0.78 porosity, 3

0.266 mm | pore radius, r

22.6 GPa Youngs modulus of solid, E

2.2 GPa Bulk modulus of fluid, X,

0.32 Poisson’s ratio of solid, v;

1.23 Index of power law, »

0.15 Pa.s Viscosity of fluid, n
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Figure 6.1 - Phase velocities of fast and slow waves versus angle of propagation predicted by the

Biot and Schoenberg theories. 0° is perpendicular to the layers in Schoenberg; Biot is isotropic.
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6.1.2 Aim of Theoretical Study

An investigation was undertaken to establish whether the predictions of
phase velocities of Biot and Schoenberg may become equivalent with
modifications. As shown in Chapter 5, the variation with direction of material
properties of a porous medium influences wave propagation. Changes in wave
properties with direction originate from two characteristics of a porous matrix.
First, the compressibility of the frame will depend on direction, thus affecting
propagation through it. Second, the pores may be elongated or skewed, such that
the motion of the pore fluid is angle-dependent. Whilst both details depend on the
porous geometry, they may be analysed separately. Since Biot’s theory
comprehensively includes frame and fluid effects, anisotropy has been introduced
into Biot’s theory on various occasions, not least, by Biot himself (Biot and Willis
1957). The following sections compare Biot’s predictions, where anisotropy is
introduced, to those of Schoenberg. The values in Table 6.1 were used, unless

otherwise stated.
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6.2 Introducing Transverse Isotropy into Biot’s Theory

6.2.1 Transverse Isotropy in Bone

A medium is transversely isotropic if its material properties are consistent
in all directions at right angles to a principle axis or azimuth (see figure 6.2 later).
This condition occurs in many natural media, such as sedimentary rock and the
ocean, which may be treated as a series of layers of varying density and ambient
pressure.

Cortical bone displays a clear transversely isotropic behaviour (Duck
1990). Table 6.2 shows Young’s moduli and Poisson’s ratios for cortical bone. It is
seen that, first, the parameters vary with direction, but also that, since the Young’s
moduli are approximately equal in directions x and y, the medium is transversely
isotropic, where the azimuth as the long axis (shaft) of the bone.

Chapter 5 showed that cancellous bone could be modelled as a
transversely isotropic array of parallel layers. Hence the introduction of transverse
isotropy to the mechanical definitions of Biot’s theory may enable it to

approximate Schoenberg’s stratified model. This is considered next.

azimuth, z

Isotropic in xy-plant?./——+

Figure 6.2 - Co-ordinate system for a transversely isotropic medium, with layers

in the xy-plane having same properties.
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Table 6.2 Anisotropic material parameters for bovine cortical bone” (Duck 1990)

Parameter Value Parameter Value

Young’s Modulus, £, | 10.2 - 13.3 GPa | Poisson’s ratio, v,, 0.30-0.51

Young’s Modulus, E, | 10.2 - 14.6 GPa | Poisson’s ratio, v, 0.11 -0.24

Young’s Modulus, E. | 18.1 -22.6 GPa | Poisson’s ratio, v,, 0.20 - 0.22

Shear Modulus, N,, 34-53GPa Poisson’s ratio, v, 0.38 -0.51
Shear Modulus, N, 3.6-63GPa Poisson’s ratio, V., 0.21-042

Shear Modulus, N, 3.6-7.0GPa Poisson’s ratio, v, 0.22 - 0.40

Shear modulus, Nj;, is the ratio of the shear stress to shear strain for shear in the jj-plane.
Poisson’s ratio,vy;, is the ratio of contraction in the i-direction to expansion in the j-direction.

6.2.2 Theory

The influence of direction on the mechanical properties of a transversely
isotropic porous medium may be considered in a straightforward way. Moduli and
the Poisson’s ratio are generally defined by considering the mechanical response in
one axis, to a stimulus (whether extension or compression) in an orthogonal axis.
For example, as section 2.3.2 stated, the Poisson’s ratio is the quotient of lateral
contraction to longitudinal extension under lateral stress. Thus, it may be expected
that the values of such mechanical properties will vary with the frame of reference
in a transversely isotropic medium.

The introduction of transverse isotropy to the mechanics of a fluid-
saturated porous matrix may be achieved through fundamental relationships
between stress and strain. As discussed in section 2.2.2, the derivation of Biot’s
theory begins by considering these relationships, given in equation (2.1) for an

isotropic system.
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For a transversely isotropic porous medium, the stresses in solid and fluid

(o, and o, respectively) are related to the strains (e and €, respectively),

c.=2Ne, + A(e, +e,)+ Fe, + Mz,
o, =2Ne, + A(e, +e,)+ Fe, + Me,
c,=Ce, +F(e, +e,)+ Q¢,

c,=Le,, o,=Le,, o0,=Ne,

o= M(e, +e,)+0e, +Re. (6.1)

In the isotropic case of equation (2.1), four elastic coefficients, 4, N, O
and R (and P = 4 + 2N), are required to describe the solid frame. However in the
transversely isotropic case of equation (6.1), eight are required: 4, N, FE M, C, O,
L and R (simply, four in the azimuth axis, and four orthogonal to this). The term N
is the shear modulus and parameters 4, Q, and R were previously given in
equations (2.2 - 2.4).

As an aside, the coefficients of the anisotropic case are related by,

F=14, L=IN, M=mQ, C=F+2L, (62)

where the terms f, m, and 1 relate the elastic coefficients in orthogonal directions.
Therefore, if the parameters A, N, O and P were defined for the azimuth direction
in figure 6.1, the terms F, L, M and C would be the equivalent properties,
respectively, defined for the xy-plane. If f = m =1 =1, the material is isotropic,
since the parameters reflect the degree of anisotropy. However, the terms f, m and
1 need not be known for the evaluation of the coefficients, which may be found
instead from real data.

The elastic coefficients of a transversely isotropic porous medium may be
found in a similar way to those in the isotropic case, using properties evaluated for
the relevant axes. Specifically, equations (2.2 - 2.4), (2.26 - 2.28) are used to find
parameters A, N, Q and P, using the Young’s modulus and Poisson’s ratio for the
azimuth direction, whilst 7, L, M and C may be found using those equations and

input values defined for an orthogonal direction. For example, for transversely
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isotropic cancellous bone, the term A, may be evaluated using the Young’s
modulus defined in the azimuth direction, E, = 18.1 - 22.6 GPa. Consequently, F,
orthogonally related to A4 through equation (6.2), will be evaluated with the
Young’s modulus perpendicular to this, E, ~ E, = 10.2 - 14.6 GPa. The remaining
elastic coefficients may be evaluated in a similar way.

Having treated the mechanical properties of a transversely isotropic porous
medium in this way, expressions may be found for wave properties. This is briefly

outlined in the following section.

6.2.3 Phase Velocities in a Transversely Isotropic Porous Medium

Sharma and Gogna (1991) derived equations for the phase velocities of
fast, slow and shear waves, following the derivation of Biot’s theory and using the
stress-strain relations of equation (6.1).

As in the isotropic case, coupled linear equations of motion may be found
for compressional and shear propagation. In the isotropic case there are two set of
coupled equations, with equation (2.5) representing compressional propagation
and equation (2.6) representing shear propagation. In the case of transverse
isotropy, there are three sets of coupled equations, one of which is easily solved
for shear waves. The coefficients of the remaining two sets for longitudinal

propagation may be formed into a four-by-four matrix equation,

1 M
(d+2M)—5+1g°-py  LFrn)  S-pp  Ium
c ¢ c ¢
M q R q
5~ P12 =0 ~— ~ P12 R
c ¢ c ¢ = 0
L 2 q 2 ’
Lr+r —+Ci*-pyy 10 4P0-pn
c c c
%M 4*0-p1y %R 4*R-p)

(6.3)

where ¢ = (V/sin 6) and g = (cos 6/ V), for a wave of velocity, V, propagating at

an angle, 6, with the z-axis. The terms p;;, p22 and p;, were given in equations
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(2.7) and (2.8). With some algebra and matrix transformation, equation (6.3) may

be re-expressed as a cubic equation in terms of velocity, 2, as,

TV ° +<1§2 sin” @+ Ty, cos’ 6’).V4 +<T33 sin* @+ T, sin” Ocos” §+1T;; cos* 9).V2 6.4)
, .

+T34 sin® 0+ s sin® cos® O+ Ty, sin® Ocos* H+ T, cos®0=0

where the values of the coefficients 7}; are given in Table 6.3. Equation (6.4) may
be solved by applying Cardano’s method (Trim 1983), to find an expression for,
the phase velocities of three modes, V, (rn =1, 2 and 3 = fast, slow and shear

respectively), as

V, =y (A, —A4)] 4, , n=1,2,3) (6.5)
where A, = 2@.005(?—121%@;9) and¢ = tan~' (\/m /-G) (6.6)

The term, A = G* + 4B° , where,

G = D,*Dy — 3D,D\D, + 2D,
B=D,D,-Dr*, (6.7)

where the terms D, are functions of angle of propagation relative to the azimuth,

0, as shown in Table 6.3. The terms p;; and p;,; are evaluated from equation (2.7),

whilst p;;, is found from equation (2.8), using the tortuosity, o, of equation (2.22).
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Table 6.3 - Coefficients of eqn (6.4) for the Transversely Isotropic Biot model.

Term Expression
Ty | -(XZ+ppl))
T, | p{@N+L)X + M[Q(F+2L)-CM] + O(MF-AQ) + R[AC-F(F+2L)]
T | (Y+pul)Z
Ty | p1ipua[Q+M -(CH+A+2N)R] - p12 [2MQ-2(F+2L)R] - 2pnLY + 2p50*(L-
N)C + 2p12pn[(CHAF2N)M2(F+2L)Q] + por [F(F+2L)-AC)
Ty | pr{3NX + [AC-(FF2L)F+L(A+2N)-CNIR + (FM-AC)Q + NQ* - LM’ +
(F+2L)MO-CM*}
Ty |-Z°
Ty, | (Y +pnl)Z
Tss | -(XZ+ ppll)
T34 | plX
X |CR-¢
X | (4+2N)R-M
Y pnR + pnC - 2p120
Y1 puR + pn(d +2N) - 2ppM
Z | pupn-pi’
Dy | Ty
Dy | (T21c08’0 + Tpsin’0) / 3
D, (T“cos48 + T5yc08°0 sin®0 + T33sin49) /3
Ds Tocos’0 + T1,c08'0 sin®0 + T 1,c0S°0 sin'0o+ T 34sin46

Table 6.4 - Input parameters for the elastic coefficients for the TI Biot model.

Parameter Value Details

Azimuth Direction Used to find K., K, & N, from eqns

Young’s modulus in z-dir’n, £,

Poisson’s ratio for z-y plane, v,, 0.3

18.0 GPa (2.26 - 2.28), used in eqns (2.2 - 2.4) for
A, Q& R.P=A4+2N, for N=N,,.

Young’s modulus in x-dir’n, E, 12.0 GPa

Poisson’s ratio for x-y plane, v, 0.4

X-Y Plane Used to find K., K;, and N,, from eqn
(2.26 - 2.28). Values of K,, K, and Np,
then used to find F from eqn (2.2) and M
from eqn (2.3). C=F+ 2L , for L = Np,.
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6.2.3 Comparison of the Predictions of TI Biot model with Schoenberg

Phase velocities as functions of the angle of propagation were evaluated
for the transversely isotropic Biot model (which will be called the TI Biot model
for convenience), from equations (6.5 - 7), and the coefficients of Table 6.3, using
the values in Table 6.1 and Table 6.4. Care was taken to evaluate the elastic
coefficients, 4, N, F, M, C, O, L and R, using values of the Young’s modulus and
Poisson’s ratios defined for the relevant direction. The use of their values is
summarised in Table 6.4. Predictions from Schoenberg’s model, were evaluated as
in section 6.1. As an aside, in Schoenberg’s stratified medium, the azimuth is taken
perpendicular to the layers. In real bone, however, this axis is parallel to the
layers, which reflects the fact that much real bone is composed of rods, not plates.

Figure 6.3 shows phase velocities versus angle of propagation as predicted
by two models. The TI Biot model is seen to predict fast and slow wave speeds
which vary with the angle of propagation. Thus, modification of basic equations of
Biot’s theory yields an anisotropic response. The fast wave velocity is seen to
increase with angle, being around 3200 m/s at 0°, rising to 4000 m/s at 90°.
However, although the contour of the TI Biot fast wave velocity resembles that of
the Schoenberg fast wave, its magnitude is twice that of the Schoenberg wave at
0° and a third greater at 90°. Poor knowledge of the input parameters may have
given rise to this discrepancy. The TI Biot model uses orthogonal Young’s moduli
and Poisson’s ratio for cortical bone, and which therefore makes the assumption
that the inherent anisotropy of cancellous bone arises solely from the change in
properties of individual calicifed trabeculae with direction. It is conceivable that
the transverse isotropy in cancellous bone is instead a result of the fabric of its
structure. However, without accurate biomechanical models or data, this cannot
be included into the T1 Biot model.

The slow wave velocity predicted by TI Biot shows little correspondence
to the curvature or magnitude of that from Schoenberg, being around 100 m/s at
0° and 650 m/s at 90°. Significantly, the TI Biot slow wave does not fall to 0 m/s
at 0°, the azimuth direction. In the Schoenberg model, the slow wave velocity is 0
m/s perpendicular to the layers, owing to the absence of a path through the layers

through which a fluid-borne wave may propagate. However, in the TI Biot model,
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the structure is defined by the tortuosity for the case for a structure of fused
spheres (from equation (2.2.2)). Therefore, conceptually, channels will exist
through the porous matrix in the azimuth direction, through which a fluid-borne
wave may propagate and hence, the slow wave velocity is not 0 m/s for the TI
Biot model at this angle.

In conclusion, although the mechanical properties of the solid frame are
accounted for in the TI Biot model, subtleties in fluid flow associated with the
layered structure of Schoenberg’s model are poorly represented by the case of
fused spheres. The following investigation discusses a version of the tortuosity for
a layered structure, which may more closely approximate those inertial effects in

Schoenberg’s theory.
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Figure 6.3 - Phase velocities of fast and slow waves versus angle of propagation predicted by the

TI Biot and Schoenberg models. 0° is perpendicular to the layers (azimuth).
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6.3 Introducing Anisotropic Fluid Effects in Biot’s Theory

6.3.1 Theory

The macroscopic compressibility of the frame of a porous medium,
considered in the previous section, may be related, in part, to the shape of the
microscopic pores. Biot considered both the frame anisotropy (Biot and Willis
1957) and, later, that of the pore fluid motion, by introducing a visco-dynamic
operator matrix, representing viscous and inertial coupling in three dimensions
(Biot 1962). However, for the purposes of approximating a stratified structure,
this operator is neglected here in favour of a simpler and novel approach,
described below.

Section 2.2.4 discussed the representation of the dynamics of the
interstitial fluid by the frequency-dependent tortuosity, a(w), of equation (2.21).
At sufficiently high frequencies, the second term on the right hand side of this
expression, which includes the viscosity, 1, may be neglected, and the tortuosity
may be approximated as the term, o, being purely dependent on the porous
geometry. Strictly, this accounts for the fact that, at high frequencies, viscous
coupling is dominated by inertial coupling.

As mentioned in section 5.3.2, the dependence of velocity on the direction
in a stratified medium reflects the variation in inertial coupling. If the Biot and
Schoenberg models are to become equivalent, it may be assumed that the degree
of inertial coupling at an intermediate propagation angle in Schoenberg’s layered
system is equivalent to that in a fluid with a tortuosity in a Biot model with
anisotropic fluid motion. Therefore, introducing anisotropic fluid effects into
Biot’s theory requires finding an expression for the tortuosity, o, in a stratified

structure as a function of the angle of propagation to the layers, 0.

Such an expression may be obtained by equating expressions for phase
velocity from the two theories: from Biot’s theory in terms of o, and from
Schoenberg in terms of angle, 6. Equation (2.9) relates the phase velocities of
Biot’s theory to the tortuosity, a, through the definition of p,, from equation

(2.8). This may be equated with the inverse of the magnitude of slowness, ||, for
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a wave in a stratified matrix as function of propagation angle, 6 (Schoenberg and

Sen 1983),

{1/K)/(1/ p) 1/2
sin 6+ cos® 6/ {p)1/ p)

Is| = ( ; (6.8)

where <p>=Bps+ (1-B)ps, <1/p>= f/ps+ (1-B)/ps and <l/K>= B/K;+ (1-B)/K,;
and where 6 = 0° for propagation perpendicular to the layers. The calculation may
be substantially simplified if, rather than a fluid-solid system, the case of two fluids
is considered. This allows for the values of the frame bulk modulus, K, and shear
modulus of the solid, V, to be set to zero. The tortuosity as a function of angle,

o(0), can then be found by equating equations (2.9) and (6.1), as,

a(@)=1+(1-B)p,/(p)cot’ 0. (6.9)

Equation (6.9) gives the tortuosity parameter of Biot’s theory as a function of the

angle of propagation to the layering in a stratified structure.

6.3.2 Comparison of the Predictions of AF Biot model with Schoenberg

The angular tortuosity of equation (6.9) was incorporated into Biot’s
theory to model anisotropic fluid effects. (This model will be referred to as the AF
Biot model, for an anisotropic fluid.) Phase velocities of fast and slow waves were
predicted as a function of angle using the AF Biot model, and compared with
those of Schoenberg, using parameters in Table 6.1.

Figure 6.4 shows the predictions of the two theories. The AF Biot model
predicts fast and slow wave properties vary with the angle of propagation. Hence,
as in the TI Biot model, modification of the basic equations of Biot’s theory yields

anisotropic wave properties. The fast wave velocity predicted by the AF Biot
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model increases with angle and follows a similar curvature to that predicted by
Schoenberg. Howeyver, it does not agree in magnitude with the Schoenberg fast
wave, although the discrepancy is less than that of the TI Biot model in figure 6.3.

In contrast, the slow wave velocity predicted by AF Biot model shows
considerable resemblance to the curvature and magnitude of that from
Schoenberg. It is 0 m/s at 0°, increasing to a value of around 1450 m/s at 90°. Its
value is to within 7 % of the Schoenberg slow wave curve at all angles. Such
correspondence is likely to arise since the tortuosity relates to the motion of the

fluid in the pores, through which the slow wave may be considered to propagate.
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Figure 6.4 - Phase velocities of fast and slow waves versus angle of propagation predicted by the

AF Biot and Schoenberg models. 0° is taken as perpendicular to the layers.
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6.4 Discussion

Of the methods investigated in this chapter for incorporating anisotropy
into Biot’s theory, the TI Biot model, concerning frame, is certainly the more
rigorous theoretically. However, the AF model, which incorporates the angular
tortuosity, gives better agreement with Schoenberg’s model in terms of the slow
wave velocity. Total equivalence between the two theories may never be achieved,
because Biot’s theory fundamentally assumes that fluid and solid phases are
interpenetrating and continuous. Strictly, an infinitely extending stratified
geometry has no continuous phase, except at that direction parallel to the plates.
In addition, mechanical moduli cannot be defined for infinite layers with no
boundaries, which limits agreement between the two approaches.

Whilst this chapter has presented a theoretical study aimed at bridging the
gap between the two theories, the relevance to ultrasonic propagation in
cancellous bone should also be discussed. As was previously concluded, the
parallel plate structure is an unrealistic idealisation of the cancellous structure,
since, bone and marrow phase are interpenetrating in all orientations. Furthermore,
as the experiments of section 4.3 show, the properties and dynamics of the pore
fluid are important for propagation. In these respects, Biot’s theory provides a
“truer” model of propagation than Schoenberg, and anisotropic modification is
necessary to find the “ultimate” model.

Figure 6.5 summarises all the propagation models considered in this thesis.
In addition, the two amendments of sections 6.3 and 6.4 are incorporated together
in a third modified Biot model, denoted as the TIAF Biot model (transversely
isotropic - anisotropic fluid model). Devising this final model is easily achieved,
using the angular tortuosity of equation (6.9) in the expression for p,, of equation
(2.8) in coefficients of Table 6.3. For comparison, the data previously plotted in
figure 5.8 against apparent angle of incidence, is replotted here versus angle of
propagation. (Error bars are not shown, since, as explained in section 5.5.3,
uncertainties are only valid for data plotted versus apparent angle of incidence.)

The combined TIAF modification to the Biot model does not significantly
improve agreement to the predictions of Schoenberg. However, the magnitude of

the fast wave is consistently in the order of 1500 m/s greater than the Schoenberg
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fast wave at all angles: that is, it is faithful to the angular curvature. The TIAF
model slow wave velocity gives a poorer match to that of Schoenberg than that

provided by the AF Biot model.
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Figure 6.5 - Phase velocities of fast and slow waves versus angle of propagation predicted by the
AF, TI and TIAF Biot and Schoenberg models. Data from Chapter 5 is shown. 0° is taken

perpendicular to layers.

In conclusion, the unmodified Biot’s theory provides a conceptually
sophisticated model, which is able to predict the presence of fast and slow
compressional waves, and model the phase velocities for propagation in the
trabecular direction. This direction dependence phase velocities of the two waves
at other angles to trabecular alignment may be modelled by Schoenberg’s stratified
theory. Introducing anisotropy into Biot’s theory does not significantly improve its
ability to model wave properties at non-aligned angles. Therefore, whilst Biot is
able to account for many subtle effects, Schoenberg’s theory is likely to be of
greater practical use. The following chapter discusses the usefulness of the models
considered throughout this work, and the relevance of the findings to clinical

analysis in vivo.
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Chapter Seven

Discussion and Future Work

7.1 Conclusions of the Present Study

This thesis has dealt with the theoretical modelling of ultrasonic
propagation in cancellous bone. The conclusions that were drawn from this work

WCErIe:

e Fast and slow compressional waves were observed in bovine cancellous bone in
Vitro;

e The measured phase velocities of fast and slow waves are consistent with
predictions from Biot’s theory, for propagation in the trabecular direction;

e The measured fast and slow wave phase velocities at any angle to the
trabecular alignment may be modelled using Schoenberg’s theory for
propagation in periodically alternating fluid-solid layers;

e Theoretically, the interstitial fluid plays an important role in determining the
nature of propagation at certain frequencies, and thus their effect should be
noted for ultrasonic frequencies;

e Anisotropy may be introduced into Biot’s theory through the definition of a

transversely isotropic frame, or through the use of an angular tortuosity.
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A list of issues were raised in section 1.6.1, to be tackled throughout the
thesis. The first point concerned whether a useful theoretical model may be found
to describe propagation. A useful theory may be defined in this context, as one
having parameters which may be adequately determined, and from which
information about bone condition may be extracted from ultrasonic measurements
by inversion'. Of the theories considered throughout this thesis, the Schoenberg
theory has the potential to be the most useful. This will be discussed later in
section 7.3.3.

The second topic tackled throughout the thesis related to the effect of
frequency on propagation. It has been learnt that the nature of propagation in a
porous solid at a particular frequency is determined by the properties of the
saturating fluid. Theoretical and initial practical evidence here suggests that the
incident frequency may influence propagation in cancellous bone owing to the
frequency-dependent dynamics of the interstitial fluid and the slow wave
frequency window of section 3.3.2. Possible frequency-dependent effects for in
vivo assessment will be discussed in section 7.3.2.

In response to the third issue, the importance of the cancellous structure is
evident in the study of Chapter 5, and will be discussed in greater detail in section
7.2.1. Finally, suggestions are made regarding the improvement of QUS

technology and implications for this work on current systems in section 7.3.3.

! inversion being the process of using a measured parameter to infer the value of the required
parameter through an equation.
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7.2 Ideas for Future Theoretical Studies

7.2.1 Modelling Structural Deterioration

To date, the only acknowledged mechanism by which the structure of
cancellous bone affects ultrasonic measurements is through scattering (Tavakoli
and Evans 1992). However, the present study has provided further theoretical
description of mechanisms through which the cancellous architecture may
influence propagation. In particular, analysis of the Schoenberg model in Chapter
5, and of the AF Biot model of section 6.3, revealed that the direction dependence
of wave properties may be partially attributed to the motion of the pore fluid, and
to dynamic coupling between fluid and solid. Indeed, inertial coupling, and the
related tortuosity parameter, are factors firmly related to structure. This is most
evident in the predictions of the AF Biot model, where the introduction of the
angular tortuosity term of equation (6.9) leads to the prediction of an anisotropic
response. In addition, the geometry of the calcified matrix is likely to influence its
mechanical properties. Appreciation of such mechanisms may assist understanding
the way in which changes in the cancellous structure with the onset of
osteoporosis affect wave properties.

The structural deterioration of cancellous bone with the onset of
osteoporosis was envisaged by Hosokawa et al. (1997) in the way shown in figure
7.1. In healthy bone, the two dimensional structure is highly anisotropic, forming
oriented plates. These gradually erode to a rod-like morphology, as the trabeculae
disintegrate and pore spacing increases. At high porosities, anisotropy is lost, and

the structure tends towards isotropy.

Healthy Osteoporotic
» BVv R
!! — Qi —i
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ANISOTROPIC ISOTROPIC

Figure 7.1 - Schematic of the deterioration of the cancellous structure with the progression of

osteoporosis (after Hosokawa et al. 1997)

148



E R Hubbuck, 2000 Chapter 7 : Discussion and Future Work 149

The geometric transition shown in figure 7.1 may be incorporated into the
structural definition of propagation theories to model wave properties with
pathological changes. Schoenberg’s theory does not permit a change in the
geometry of parallel plates, other than the widening of the fluid layer through
increased porosity. However, the means by which the structure is defined in Biot’s
theory lends itself to this type of investigation. Chapter 6 discussed how the
anisotropy of a porous matrix originates from two elements: the compressibility of
the frame and the motion of the pore fluid. Both elements, rigorously defined in
Biot, would be affected by the erosion of the structure in figure 7.1.

First, using figure 7.1 as a basis for structural erosion, the mechanical
properties of such a system may be analysed. For example, in healthy bone, the
Young’s moduli in orthogonal direction will have significantly differing values. The
erosion model suggests that their values will become closer as the structure
approaches isotropy in osteoporotic bone. Thus, the ratio of Young’s moduli in
orthogonal axes will tend to unity with erosion.

The development of the TI Biot model in section 6.2 showed that the
elastic coefficients, A, N and M are related in orthogonal directions to F, L and Q,
respectively, by parameters f, I and m. These ratios essentially represent the degree
of anisotropy of the porous medium, since f =1=m = 1 for an isotropic medium.
Therefore, finding independent expressions for these ratios, reflecting structural
deterioration, would enable Biot’s theory to model propagation through a
realistically eroding matrix. Such parameters may be functions of porosity, density,
or even a biomedical indication of bone loss.

Second, the motion of the pore fluid will be influenced by the transition in
figure 7.1. As with the AF Biot model of section 6.3, the fluid dynamics may be
represented by an expression for tortuosity to model the erosion. This may be in
terms of, porosity, density, or biomedical indication, which best reflects the
erosion. This tortuosity may be incorporated in Biot’s theory to model

propagation in the eroding matrix.
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7.2.2 The Modelling of Scattering

Scattering, and its effect on wave properties, are generally not included in
porous media propagation theories, such as the Biot and Schoenberg models.
Recently, evidence has accumulated, which supports the novel hypothesis that the
cancellous structure acts as a diffraction grating. A diffraction grating is a periodic
lattice which produces a pattern of interfering forward scattered waves; the
periodicity of which reflects the structural dimensions (pore, or strut widths) of
the grating itself (Leighton 1994).

Previously, the present author (Hubbuck 1995), investigated propagation
around 1 MHz through a bone phantom of a three-dimensional lattice of epoxy
strands. Peaks were observed in the attenuation spectrum, the frequency of which
shifted as the lattice was rotated in the field. It was proposed that the phantom
acted as a diffraction grating, producing a pattern of forward scattered waves. As
the perceived grating spacing altered with the rotation of the lattice, the frequency
producing a particular forward scattered intensity pattern would also shift. This
may correspond to the shifting peak in attenuation with rotation.

Kitamura et al. (1996) modelled forward scattering by considering
cancellous bone as a diffraction grating of regularly spaced cylindrical rods.
Fraunhofer diffraction patterns were predicted for forward scattered waves and
were compared with measurements from synthetic and cancellous samples, giving
reasonable agreement, modelling an arrangement similar to that in figure 7.2.
Figure 7.3 (a) shows the predicted intensity diffraction pattern for a grating of
cancellous bone. The intensity is normalised, where unity is the value of the
intensity without the presence of the grating.

Independently, unpublished results, from a parallel experimental study co-
supervised by the present author, support the diffraction pattern forward scattering
idea (Edwards 1998). Using the system of figure 7.2, fluctuations in measured
attenuation of ultrasonic waves at 1 MHz in bovine specimens, were found when
the receiver was rotated. Figure 7.3 (b) shows the variation in attenuation’ over

angle measured by Edwards, where the scale indicates the difference in attenuation

? taken for a temporal window covering both fast and slow wave arrivals for a no-specimen
reference pulse.
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compared with that at 0°. Figure 7.3 (a) and (b) are plotted on a common angular
scale to indicate the mechanisms by which the presence of a diffraction pattern

may affect the spatial variation in attenuation.
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Transmitter
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Figure 7.2 - Experimental configuration utilised by Kitamura et al. (1996) and Edwards (1998).

o o y

[22] oo -
T 7 T
{ | L

©
S

T
L

©
)

T
i

Normalised Intensit

(dB/cm)
g & 8 38

N
[=]
T

-
(=]
l

Attenuation

-5 0 5 10 15 20
Angle of Receiver (°)

=)

-20 -15 -10

Figure 7.3 - (a) The diffraction pattern predicted by Kitamura et al. (1996); (b) the fluctuations
in attenuation, measured by Edwards (1998). Data points (¢ &= ) are from two arbitrary samples.

0° corresponds to the direction of trabecular alignment.
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With the grating present, the predicted intensity in figure 7.3 (a) is 0° is
normalised to unity and the attenuation in figure 7.3 (b) is normalised to 0 dB at
0°. Between angles 3° and 12° (and -3° to -12°), the predicted normalised
intensity drops, and therefore attenuation, with respect to that at 0°, would be
expected to increase. This is supported by the data in figure 7.3 (b), which shows
an increase in attenuation, particularly clear at angles from -5° to -12°. A peak in
predicted intensity is again seen between 12° and 17° (and -12° to -17°), which
again corresponds to a reduction in attenuation at these angles. Therefore,
comparison of Edward’s data with Kitamura’s predictions provides some evidence
supporting the idea that cancellous bone acts as a diffraction grating.

The significance of this results may be seen by considering the factors
governing the spatial dimensions of the diffraction pattern. For a given frequency,
the periodicity of the intensity pattern emerging from a sample of cancellous bone
will depend on the mean trabecular spacing and thickness. Therefore, accurate
measurement of its periodicity may provide information about the cancellous
structure, and bone health. Future theoretical investigation would benefit from
combining direction-dependent effects in the stratified model with forward
scattering from the diffraction grating idea. Both may be based on the structure of

a regular matrix, the dimensions of which may reffect bone health.
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7.3 Implications of Current Work for QUS Assessment

7.3.1 Introduction

The findings of this thesis may have implications, not only for the
interpretation of the results of previous in vitro studies and current clinical
assessment, but also for the development of future systems. Topics of particular
interest concern the possibility of observing fast and slow waves in vivo, which
has not been reported in the literature to date’, and exploitation of the direction
dependence of wave properties as an indicator of bone health. These issues are

discussed in the following sections.

7.3.2 The Observation of Fast and Slow Waves In Vivo

It is generally assumed that clinical ultrasonic measurements, such as QUS,
only record one wave in bone. To rephrase this, no evidence exists for the
presence of two waves in bone in vivo. Successful observation of the two
compressional modes of Biot’s theory in vivo requires consideration of those
aspects which may influence propagation under such conditions. Some of these,
such as the effect of fluid and structure, have been examined during the in vitro
investigations of this thesis.

The in vivo condition differs in a number of ways from the ir vitro case
studied here. First, the difference in ambient temperature in vivo will alter the
viscosity of marrow, and thus modify viscous coupling and absorption. Next,
anatomical factors, such as the presence of a cortex and trabecular orientation as
accessible sites, is likely to influence the propagation of two waves. Factors such
as the flow of blood and the presence of soft tissue, may alter wave properties, but
would require further modelling. A few of these issues will now be considered.

(a) Frequency Range

* This statement excludes the results of a study in Hosokawa’s doctoral thesis (1997), where two
waves were reported in the radius of osteoporotic patients. However, to the present author’s
knowledge, this work has not subsequently appeared as a journal paper, nor have the waves been
independently identified or verified.
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First, exercising what has been learnt about the influence of frequency on
propagation in porous media, it is possible to speculate on whether fast and slow
waves would be observed in current Quantitative Ultrasound (QUS).

As discussed in section 2.2.3, two waves theoretically propagate above the
critical frequency, ®.;; of equation (2.14). Investigations there showed that, since
critical bandwidths for marrow-saturated healthy and osteoporotic bone at 37°C
were 156 - 341 Hz and 48 - 148 Hz, respectively (Table 2.2), fast and slow waves
will propagate at frequencies in the QUS range. However, the practical and more
useful limit, the viscous frequency, ®yicous, Of equation (2.23), above this two
waves will be easily observed was found to be 2.1 £ 0.7 MHz for healthy bone and
0.9 £ 0.5 MHz for osteoporotic bone (Table 3.1). Figure 7.4 shows these limits,
with respect to the frequency range currently used QUS.

Figure 7.4 shows that the viscous bandwidth for osteoporotic bone
extends over frequencies lower than that covered by healthy bone. For the latter,
this bandwidth is significantly above the BUA range, whilst the bandwidth for
osteoporotic bone extends into the BUA range. Strictly, this suggests that only
one wave may be observed in healthy bone, whilst two may be observed in
severely osteoporotic bone at frequencies in the upper BUA range. If this is indeed
the case, such a change in the waves being sensed at the receiver, may contribute
to the change the gradient of the attenuation spectrum (that is, the BUA value),

during the progression of osteoporosis.
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Figure 7.4 - Frequency limits for above which fast and slow waves may be observed, and the

BUA range.
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(b) The Effect of Structure

The QUS technique performs transmission measurements through the os
calcis along the medio-lateral axis, that is, width-ways across the foot. The
trabeculae in the heel are approximately aligned in the proximo-distal axis (length-
ways), and hence perpendicular to the direction of propagation. With reference to
the stratified model, such an arrangement corresponds to the angle of 0°, where
only the fast wave propagates. Hence, the wave observed in vivo may be the fast
wave at this orientation.

If the stratified model is taken as a reliable approximation to propagation
in os calcis, it may be used to explain the characteristics of propagation through
this site. For example, the velocity through the os calcis in vivo at frequencies in
the BUA range, has been found to be around 1530 m/s (Truscott ef al. 1996). This
is surprisingly low compared with the velocity in cortical bone (3000 m/s), and
closer to the speed in marrow (1450 m/s). However, the stratified theory
demonstrates the fast wave velocity is least for propagation perpendicular to the
trabecular direction. Indeed, predictions suggested a velocity of around 1500 m/s
at this orientation. Hence, not only can the stratified model offer an explanation
for the observation of only one mode in vivo, but it may also explain why the

velocity of that mode is relatively low.

(c) The Presence of the Cortex

Cancellous bone is surrounded by a cortical shell, which constitutes a
sealed boundary to the internal porous bone. As mentioned in section 3.3.2, wave
propagation, and the efficiency with which the slow wave may be generated, are
affected by the presence of such a boundary. The slow wave will not completely
disappear at the cortex, but it is unlikely that a high amplitude slow wave, of the
type observed in figure 4.1, would be observed in vivo, owing to a poor
impedance mismatch between the calcified boundary and the marrow.

Studies on the effect of a cortex in vitro have been limited, but those which
have been performed suggest a shell may not inhibit the production of slow wave

at certain angles of propagation (Hosokawa 1997, Edwards 1998).
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(d) The Effect of Osteoporosis

Cancellous bone supports slow waves effectively in vitro, since an open-
pore boundary exists and the structure is highly permeable. Since the cancellous
architecture deteriorates during osteoporosis, slow waves may propagate more
effectively in the more permeable diseased bone. Hosokawa et al. (1997) showed
that, at porosities of over 80 %, only one mode, believed to be the fast wave, was
observed, the velocity of which decreased significantly to around 1500 m/s, close
to that in water. Propagation under such conditions is likely to be dominated by
motion of the fluid, and may not support a fast wave. Biot’s theory was shown to
break down at high porosities, which may occur because inertial coupling, which
depends on a large surface area to couple the fluid and solid motion, will be no

longer effective at high porosities.

7.3.3 Future Work: Improving QUS

As described in section 1.5.4, current QUS systems, and, in particular,
BUA, have an empirical basis and do not directly provide information about
physical factors of bone, such as density or porosity. The future success of
ultrasonic bone assessment may benefit from the development of systems based on
a direct physical relation between ultrasonic parameters and those indicating bone
strength. A model designated as the basis of a novel QUS system should relate
ultrasonic wave properties to the strength-determining characteristics in a
straightforward way. Regarding the models investigated throughout this thesis,
Biot’s theory demands knowlegde of too many input parameters to be of notable
value. However, the simpler Schoenberg model may be used to evaluate bone
properties from measurements of velocity. The following example demonstrates
one method which may be used to provide information about bone condition from
direction dependent ultrasonic data and use of the Schoenberg model.

Figure 7.5 shows the fast wave phase velocity versus angle of propagation,
as predicted by Schoenberg’s theory for two porosities (healthy, 70 %, and

diseased, 95 %). The change in porosity influences the magnitude of the fast wave
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velocity, as well as a subtle alteration in curvature for the same angular range. For
example, examining the change in fast wave velocities over the angular range® 0 -
40°, it may be seen that, for a porosity of 70 %, the fast wave velocity changes by
around 250 m/s (16 %), whilst for the higher porosity, the velocity change is 300
m/s (20 %). Therefore, the change in ultrasonic velocity over a fixed angular
range, may be directly related to a unique value of porosity through the equations
of Schoenberg. Similar relations may be established for the measurement of bone
density.

The following point should also be noted. In the predictions of figure 7.5,
increased porosity only affects Schoenberg layered geometry by a thinning of the
plates for the same spatial period. However, if, as suggested in figure 7.1, the
layers in the structure of real bone becomes isotropic with erosion, the change in
curvature with increasing porosity from real ultrasonic data may be even more
marked. Such observations could be the basis for a future model-based

measurement system.
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Figure 7.5 - Changes in stratified model with increasing porosity, from 70 to 95%.

* Recall that measurements are currently made at 0°, so it is assumed physically possible to
measure angles up to 40°.
157



E R Hubbuck, 2000 Chapter 7 : Discussion and Future Work 158

An investigation should be carried out into how the change in velocity with
orientation may be utilised to infer the condition of bone in vitro and in vivo. The
change in ultrasonic velocity measured over an angular range around a skeletal site
containing well-oriented cancellous bone could be used to estimate the porosity
from Schoenberg’s theory.

The potential role and subsequent success of a model-based bone
assessment technique relies on its ability to fulfil a number of requirements. First,
any system should provide information about fracture risk from an ultrasonically
derived parameter which is medically beneficial. Research should establish the
clinical usefulness of a porosity index derived from Schoenberg’s model.

Second, section 1.4.2 discussed how the role of a clinical assessment
technique is dependent on its precision, usually defined as a coefficient of variance
(= {std / mean}), with respect to the population distribution: For screening
measurements, the precision should be of a level to infer bone condition from one
test. To detect a change in bone status over time, the uncertainty should be
significantly less than any difference it is trying to distinguish. Ultimately, the
precision of a model-based system will defined its clinical role. It was noted in
section 1.4.2 that the coefficient of variance of a bone densitometry system should
be better than 2 % for screening, and better than 1% for monitoring the response
to treatment (Reid and Stewart 1998). However, these coefficients are relative to
measurement of bone mineral density, and equivalent coefficients for a system
measuring Schoenberg-derived porosity need to be obtained before the role of the
system can be identified.

Since a Schoenberg-based system will require measurement of ultrasonic
velocity, it is worth considering how this parameter changes with time, for the
purposes of longitudinal measurements. The speed of sound (SOS), measured in
one direction, has been observed to change by 1.4 % over a 20 years age range
(Truscott et al. 1996), which is comparable to the coefficients of variance for such
measurements. therefore, it will be vital for any future system to improve on this
performance to be clinically useful. It is suggested here that combining velocity
data taken from different angles may provide a more sensitive measure, and, more
importantly, one that changes significantly with structural changes, than

measurements of SOS in one direction alone.
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The success of such a model-based system would mark a breakthrough in
the utilisation of ultrasound in clinical bone assessment. The ultimate aim of
current research programme is to find a technology that is cheap, easy-to-use,
reliable, accurate, and, eventually, widely available. When this is so, a screening
programme becomes viable. Not only will osteoporosis sufferers be identified and
be available for early treatment, but reassurance can be given to healthy individuals
potentially at risk, improving the quality of life in both groups. An additional
bonus for health care arises from the benefit to budgets that will accrue when the
existing technology is made reliable, and by a reduction in osteoporosis-related
fractures. This thesis has attempted to contribute to theoretical understanding

which may lead to such a development.
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Appendix I

Transducer Characterisation & Acoustic Field Properties

Two 1 MHz-resonant 2.5 cm-diameter transducers were calibrated by an NPL
Beam Calibration Unit, based at Southampton General Hospital. The system evaluates
key parameters of the function of the transducer: maximum and minimum pressure,
beam width, temporally averaged intensity, and total power. The transducer being
tested was submerged in a water-filled cylinder (figure Al). It was coaxially aligned
with the centre axis of the cylinder, so that its beam was directed vertical downwards,
above the membrane receiving hydrophone. The transmitter’s location was measured
in three dimensions. A pulse, centre frequency 1 MHz, 800 mV and amplified 50 dB,
was generated, and the transmitter’s horizontal position was altered until the output
signal was a maximum. The processing unit calculated the field parameters from the

output, and the results are given in Table Al.
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Figure Al - Schematic diagram of NPL calibration equipment.

Table A1 - Properties of Projected Field for a 1 MHz pulse

On-axis P+ P- Beam Pulse Lipea Total
distance mm | kPa | kPa width mm | duration s Wiem’ power WV

80 28.1 | -8.59 12.0 5.04 6.53 3.56

90 36.7 |-31.2 12.0 2.00 13.6 9.37

100 46.1 |-32.8 12.0 2.17 14.7 8.80

110 47.7 |-32.0 12.0 3.67 14.1 8.79

120 48.4 | -32.2 12.0 2.42 14.6 9.19
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Appendix 11
Validating Experimental Method

A2.1 Validating the Refraction Compensation Algorithm

Section 5.3 outlined an algorithm for evaluating the phase velocity of a
refracted wave, which accounts for path lengthening at non-normal angles of
incidence. This routine was programmed in MatLab and, to verify its operation, was
tested with data from a homogeneous test object. It was expected that the phase
velocity of a wave through an isotropic sample is at all angles of incidence and that
calculated speeds may be compared with established values for the medium. The code
was tested, using homogeneous test object of acrylic and the experimental apparatus
described in section 3.5.

The phase velocity with angle of propagation in the acrylic object is plotted in
figure A2, subject to a deviation of 6.0 %, from repositioning. It may be seen that the
measured phase velocity is approximately constant with angle, that is, the mean value
is 2819 m/s, subject to a standard deviation of 58 m/s, or 2.0 %. It is well known that,
as with light, acoustic waves penetrating a homogenous object at non-normal angles
of incidence, will encounter a critical angle, where total internal reflection occurs.
Using the measured mean velocity and Snell’s Law (Leighton 1994), the critical angle
for acrylic was 31.6°. Hence, the data in figure A2 is valid up to angles of 30°.

Since the measured velocities are approximately equal with angle, it may be
concluded that this programme is suitable for use in the experimental analysis of

Chapter 5.
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Figure A2 - Phase velocity versus angle of incidence of a pulse through an acrylic test object.

162



E R Hubbuck, 2000 Appendices 163

A2.2 Validating the Evaluation of the Schoenberg Equations

Section 5.3 discussed the prediction of phase velocities by Schoenberg’s
theory for waves in layers. Equations (5.1 - 5.4) were written in MatLab, and to
check the operation of this code, predicted values were compared with those from
previous authors, such as Plona et al. (1987), who applied Schoenberg’s theory to
Plexiglas layers filled with water.

Plona et al. used an alternative graphical method for portraying wave
properties; namely the slowness surface. The slowness surface is a polar plot of the
components of the slowness vector, s, and it is an established and convenient way to
depict wave direction and energy flow in anisotropic media. In this case, the
component of slowness perpendicular to the layers. s;, is plotted versus that
component parallel to the layers, s;, found from equation (5.1). For porous media,
this plot displays two contours for fast and slow waves.

The co-ordinates of points (s;, s3) along the predicted slowness surface were
extracted from figure 2 in Plona’s paper, by enhancing the image. These were then
plotted on figure A3, along with the predictions from the MatLab code, using the
values in Table A2 for Plona’s system. The data was normalised for fluid speed, that
is, Parallel Slowness = V;.s;, and Perpendicular Slowness = V;s;. The figure shows
significant correspondence between the two curves. It may therefore be concluded

that the MatLab code operated correctly.

Table A2 Parameters for a layered system for Plexiglas and water,

from Plona et al. (1987).

Material | Compressional Speed Shear Speed Density
Water 1490 m/s n/a 1000 kg/nr’
Plexiglas 2700 m/s 1380 m/s 1200 kg/m’
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Appendix 1
The Simplex Method for Optimisation

A3.1 Optimisation and the Simplex Method

To be useful scientifically, a theoretical model must be tested against
observation. Adequate comparison requires quantitative observation of the test
system and mathematical procedures for specifying the model. The input parameters
of theoretical models relate to the physical properties of the system. Such variables
may be accurately known, enabling a straightforward comparison between experiment
and theory. However, often, the input variables are undetermined, or determined to an
insufficient degree, and the behaviour of the model must be estimated. This appendix
discusses the estimation of model response.

If the model input parameters are known with some uncertainty, the
theoretical predictions may take a range of values. The extreme values of the
predictions indicate the degree of inherent uncertainty, found from the appropriate
combination of input values. If the experimental data lies within these bounds, it may
be said that no discrepancy between the system and the model has been observed, at
that precision. Finding the combination of inputs that give the extreme values can be
tackled automatically by computer algorithms that perform optimisation.

Optimisation implies either minimising or maximising a ‘cost’ function, A(x).
However, since the maximum of A(x) occurs at the same place as the minimum of
—h(x), it is possible to consider only minimisation. To find the maximum and minimum
bounds of a theory, the cost function, f{x), is simply the output of the model itself.
There are many numerical optimisation methods, including classic Least Mean
Squares, Chi-squared and Newton’s method (Kincaid and Cheney 1990). Some find
the point at which derivatives are zero, whilst others search for the gradient of
steepest descent. Such methods adjust one input at a time to minimise the cost
function, but are slow for complex problems. More sophisticated methods, such as

genetic algorithms and simulated annealing (Kirkpatrick et al. 1983), change many
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variables at once (Kincaid and Cheney 1990), and allow inputs to be constrained
within set limits. An important class of optimisation problems is that where the
function and the constraints are linear. In such cases, the region containing the
minimum is bounded by straight lines or planes.

The Simplex method uses linear constraints to search a polyhedron (or
‘simplex’) with n+/ corners in n-dimensions. The search starts at one corner and
proceeds successively to other corners, simultaneously monitoring that the value of
the cost function is decreasing all the time. This progresses until the minimum is
found, with respect to some tolerance. The Simplex method is computed using the

Nelder-Mead algorithm (Kincaid and Cheney 1990), programmed in MatLab.

A3.2 Establishing Linearity

Before using the Simplex method to find the bounds of a theory, it is necessary
to establish that the constraints and the cost function are linear. For the theories
considered here, all inputs are limited in the numerical value they can take. Therefore,
the constraints are purely numerical and, so, linear. Next, it must be established
whether the cost function (the equation for velocity) is linear.

Linearity of an equation may be easily established. If the value of an input
parameter, [; is varied within its limits, it causes a change in the output, O, of (AO”).
Similarly, a variation in the value of input, I, (say, Al;) produces (AO”); (Al)
produces (AO”™); et cetera. If the system is linear, when all input variables are
changed simultaneously by the given amount, the independent changes in velocity will
linearly combine to produce a total change of (AO +AO + A0 +...).

If linearity is established, the function may be optimised using the Simplex
method. MatLab command fmins(‘velocity’, [x]) performs a multivariable simplex
minimisation on the function 4(x) = velocity, which contains the model equations. The
vector, x, contains arbitrary starting input values. Once the minimum is reached, the

final input values are recorded. The procedure is repeated to find the maximum, by
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optimising the function -A(x) = -velocity. The maximum and minimum velocities are

then found by inserting the final input values into the model.

A3.3 Evaluating Uncertainties in Biot’s Theory

The values for a model of bovine bone, saturated with marrow at 20°C, where
the pore size and porosity were independently established, were listed in Table 4.2,
where the values for the properties of bone and marrow are taken from literature. Five
Independent and Variable parameters were identified, whose values had a given range
(porosity, fluid and solid densities, Young’s modulus and pore size). The variation of
these parameters within such ranges contribute to the optimisation.

Before performing the optimisation, it is necessary to determine whether the
model is linear, that is, whether equation (2.9) behaves in a linear manner for the
particular medium being considered. Fast and slow wave phase velocities were plotted
against the five inputs, over permitted limits from Table 4.2 (figure A4 (a - ¢)). In all
figures, velocities vary approximately linearly in the limits. Therefore, those mput
values which independently minimise the velocity may be found. For example, in
figure A4 (a), the velocities clearly reach minima at the upper permitted limit of the
porosity. It follows that velocities are maximised for the lower porosity value. In the
remaining graphs, velocities also reach minimum values either at the upper or lower

bound of permitted input limits.
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Figure A4 - Phase velocities of fast and slow waves predicted by Biot’s theory versus (a)

porosity; (b) fluid density; (¢) solid density; (d) Young’s modulus; and (e) pore size.
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Biot’s theory will behave linearly in the conditions of interest, if the sum of
velocity changes, due to independent input variations, equals the total change in
velocity when inputs are changed, by the same amounts, simultaneously. Velocities are
subject to a random error of + 9 m/s, and a quantisation error of = 10 m/s, giving a
quadrature error of £ 22 m/s. Table A3 shows independent changes in velocities, from
figure A4 (a - e), when each input is varied within its range, which, when summed,
result in a change of 440 m/s for the fast wave and 30 % for the slow wave. The
change when all parameters are adjusted simultaneously is 391 m/s and 30 m/s,
repectively. Whilst comparison of these two results for each wave does not appear to
indicate strong linear behaviour, they are in agreement to within the errors, and thus
adequate for the purposes of optimisation using the Simplex method.

Using the MatLab command finins(‘velocity’, [x]), the function velocity, was
optimised, using various starting vectors, to ensure the global minimum was found.
The routine, velocity, is equation (2.9) and relevant definitions, for the fast wave
velocity. The process was repeated for maximum value. The final input values were
substituted into velocity to predict the fast wave velocity extremes, as well as those
bounds for slow wave velocity and absorption. The results are shown in figures 2.5,

2.6,4.4,4.5,4.7 and 4.10.

Table A3 Fast and slow wave velocity changes to individual and combined changes

n input parameters to a Biot model

Parameter Range Change in velocity (m/s)

Istvalue  2nd value Viast A

Porosity, 0.74 0.81 265 10
Solid density (kg/m’) 1900 2000 40 0
Fluid density (kg/m’) 1000 1050 10 20
Young’s modulus (GPa) 20.35 22.6 125 0
pore size (um) 815 1150 0 0
Summed changes 440 30

Combined changes 391 50
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A3.4 Uncertainties in Schoenberg’s Theory

The second model compared with experiment in this work is Schoenberg’s
theory. Since the input properties of bone and marrow are again inadequately
specified, optimisation may be used to find the theoretical bounds. Schoenberg’s
theory uses fewer input variables than Biot’s theory, and these are listed in Table A4.
All parameters, except for the fluid speed, are Independent and Variable, and may be
varied to find the combination of inputs that optimises the cost function.

First, it should be noted that Schoenberg’s theory predicts phase velocities that
change with angle. It is conceivable that, rather than shifting by an absolute amount,
the curves may change shape when inputs are altered. The maximum value at one
angle may arise from a different set of input values from the maximum value at a
second angle. Therefore, one simple approach is to optimise the function at each
angle separately. This will give the bounds for each angle, which may be interpolated
to give a smooth curve over the whole angular range.

It is then necessary to establish whether the cost function and the constraints
are linear. As with Biot’s theory, the constraints are purely numerical, and therefore
linear. The cost function is the equation giving the phase velocity from the inverse of
the modulus of the slowness vector from Schoenberg’s theory (equations (5.1 - 4)).
This approach requires checking the linearity of the equation over 0° to 90°. Figure
A5 shows plots of phase velocity versus angle when the input parameters (porosity,
fluid and solid density, solid compressional and shear speeds) are varied within their

ranges given in Table A4.
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Schoenberg’s theory will behave linearly under the conditions of interest, if the
sum of velocity changes due to independent input variations equals the total change in
velocity when all inputs are changed simultaneously. Table A4 shows independent
changes in velocities when each input is varied within its range, from figure AS (a - ¢),
at 0°, 30°, 60° and 90°, and the summed and combined changes. Whilst there is an
error of 10 - 15 % for each condition in the resulting velocities between independently
and simultaneously adjusted inputs, and therefore no distinct linear behaviour, the two
results are in agreement to within the quantisation and random errors for determining
such changes graphically. Therefore, the function behaves sufficiently linearly in these
conditions to enable Schoenberg’s equations to be optimised using the Simplex
method.

The function, A(x) = velocity, containing the equations of Schoenberg’s theory,
was optimised to ensure the global minimum was found. The process was repeated
for h(x) = -velocity, to find the maximum value. The final input values were
substituted into velocity to predict the fast and slow wave velocity extremes with

angle of propagation. The results are shown in figure 5.9.

Table A4 Changes in velocity of fast and slow waves at various angles, to individual

and combined changes in input parameters to Schoenberg model.

Parameter Range Change in Vi Change in Vg,

1st 2nd (m/s) (m/s)
0° 30° 60° 90° | 0° 30° 60° 90°
Porosity (fraction) 0.804 0.874 0* 0 0 0 0 0 0 0
Solid density (kg/m®) 1800 2000 [ 30 18 o6 0 0 0 0 0
Fluid density (kg/m®) 992 1047 |12 0 0 0] 0 o0 0 0
Solid speed (m/s) 3100 3200 24 201 406 505 0 83 0 0
Shear speed (/s) 1650 1800 0 0 112 166 0 60 0 0
Summed changes 66 219 518 671 0 143 O 0
Combined changes 58 190 430 595 0 120 0 0

* change not detected by resolution of analysis method.
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azimuth
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evanescent wave
High Frequency
Region

in vitro

in vivo

inertial coupling
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Glossary
the loss of acoustic wave energy through viscous friction

the process by which the intensity of an ultrasonic beam is
reduced by a combination of absorption and scattering

the axis orthogonal to isotropic planes
bone consisting of a matrix of trabeculae

statistical index of a random distribution, equalling the
ratio of the standard deviation to the mean

acoustic disturbance where the displacement of particles is
in the same direction as propagation

dense bone pertaining to the nature of a cortex
unless otherwise specified, this term refers to the
macroscopic, or volume density of cancellous bone, rather

than that of an individual trabecula.

the interference of waves from parts of a finite-sized
emitter, resulting in a spatially varying field

a periodic array of scatterers capable of producing a
pattern of diffracted energy

the process where different frequency components of a
complex ultrasonic wave progress at different speeds

reduction in measured intensity by absorption, scattering,
and artefacts such as phase cancellation and diffraction

the bulbous end of a long bone

disturbance which decays as exp(Ax) (as opposed to
exp(jix) ) from a source.

that bandwidth (Biot 1956), where two compressional
waves propagate, the lower limit of which is = 2n/pr2,
where the viscous skin depth equals the pore radius.

in an artificial environment
within the living body

the process where a fluid mass is accelerated by an
adjacent solid.
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isotropy
geometrical
dispersion

long wavelength
regime

Low Frequency
Region

optimisation

os calcis, calcaneum

permeability

phantom

phase velocity

precision

speed of sound,
SOS, group velocity

tortuosity

trabecula
transversely
isotropic
viscous coupling

vorticity

wavefront

Glossary 174

the feature where a medium has the same properties in all
axes.

the effect where the propagation mechanism depends on
the ratio of the wavelength, A, to the sample size, d: Bar
waves occur for (A/d)<<1; bulk waves occur for (A/d)<<1.

the bandwidth where the wavelength is much greater than
the size of discontinuities in a porous medium.

that bandwidth where only the fast wave propagates; the
upper limit of which is, ®c.ir = 2n/pr’, where the viscous
skin depth equals the pore radius.

mathematical process for finding the solution to a
multivariable problem best satisfying given criteria

the heel bone

the property characterising the capability of a medium of
being penetrated by, or allowing the passage of, fluids.

a synthetic object used to simulate biological conditions.

the velocity with which components of the same phase in
propagate a complex wave

engineering: the resolution to which a measurement may
be made (scale gradations, decimal places, etc.)
diagnostics: the coefficient of variance of a measurement
of a clinical technique. The latter is used here.

the speed with which the energy of a wave travels, found
from the transit time of a wave over a known distance.

term describing the twisting of pores, as the ratio of a
winding path length through a pore joining 4 to B, to the
straight length, 4 to B.

a calcified strand in cancellous bone

the property where the characteristics of a medium are
isotropic in all directions at right angles to the azimuth

the process where a fluid moves with the acceleration of an
adjacent solid owing to viscous friction

vector field describing the rotation of fluid particles, which
relates the flow of adjacent layers

a surface connecting points of the same phase

174



E R Hubbuck, 2000 References and Bibliography 175

References

Abendschein W, Hyatt GW, Ultrasonic and Selected Physical Properties of Bone,
Clin Orthop and Related Research, 69: 294-301 (1970).

Allard JF, Champoux Y, New Empirical Equations for Sound Propagation in
Rigid Frame Fibrous Materials, J Acoust Soc Am, 91(6): 3346-53 (1992).

Alvarez-Arenas TEG, De Sarabia ER-F, De Espinosa-Feijo FRM, Observation of
a Very Slow Ultrasonic Bulk Compressional Wave in an Inhomogeneous Porous

Material, Ultrasonics, 32(2): 131-40 (1994).

Alves JM, Ryaby JT, Kaufman JJ, Magee FP, Siffert RS, Influence of Marrow on
Ultrasonic Velocity and Attenuation in Bovine Bone, Calcif Tissue Int, 58: 362-7

(1996).

Anast GT, Fields T, Siegel IM, Ultrasonic technique for the evaluation of bone
fractures, Am J Phys Med, 37: 157-9 (1958).

Antich PP, Ultrasound Study of Bone In Vitro, Calcif Tissue Int, 53(Suppl 1:)
S157-S161 (1993).

Asaba H, Ohdaira E, Masuzawa N, Ide M, Fundamental Study to Develop Bone-
Mimicking Phantom, Jpn J Appl Phys, Pt 1, 38(5B): 3412-3 (1999).

Ashman RB, Cowin SC, Van Buskirk, Rice JC, A Continuous Wave Technique
for the Measurement of Elastic Properties of Cortical Bone, J Biomech, 17(5):

349-61 (1984).

Ashman RB, Rho JY, Elastic Modulus of Trabecular Bone Material, J Biomech,
21(3): 177-81 (1988).

175



E R Hubbuck, 2000 References and Bibliography 176

Attenborough K, Acoustical Characterisation of Rigid Frame Absorbent and
Granular Materials, J Acoust Soc Am, 73: 785-99 (1983).

Attenborough K, On the Acoustic Slow Wave in Air-Filled Granular Media, J
Acoust Soc Am, 81(1): 93-103 (1987).

Bamber JC, Chapter 141: Acoustical Characterisation of Biological Media,
Encyclopaedia of Acoustics, ed. Crocker M, John Wiley & Sons, London (1997).

Beaupre GS, Hayes WC, Finite Element Analysis of a 3-D Open-Celled Model for
Trabecular Bone, J Biomed Eng, 107: 249-56 (1985).

Beaver WL, Sonic Nearfields of a Pulsed Piston Radiator, J Acoust Soc Am,
56(4): 1043-8 (1974).

Berryman JG, Confirmation of Biot’s Theory, Appl Phys Lett, 37: 382-4 (1980).

Biot MA, Theory of Propagation of Elastic Waves in a Fluid Saturated Porous
Solid I. Low Frequency Range, J Acoust Soc Am, 28(2): 168-78 (1956a).

Biot MA, Theory of Propagation of Elastic Waves in a Fluid Saturated Porous
Solid II. High Frequency Range, J Acoust Soc Am, 28(2): 179-91 (1956b).

Biot MA, Willis DG, The Elastic Coefficients of the Theory of Consolidation, J
Appl Mech (Trans ASME), 24: 594-601 (1957).

Biot MA, Generalised Theory of Acoustic Propagation in Porous Dissipative

Media, J Acoust Soc Am, 34(9): 1254-64 (1962).
Bourbie T, Coussy O, Zinszner B, Chapter 2: Wave Propagation in Saturated

Porous Media, Acoustics of Porous Media, Gulf Publishing Company, Editions
Technip, Paris (1987).

176



E R Hubbuck, 2000 References and Bibliography 177

Brekhovskikh LM, Chapter 5, Waves in Layered Media, Academic Press Inc,
Oval Road, London (1981).

Bryant JD, David T, Gaskell PH, King S, Lond G, Rheology of Bovine Marrow,
Proc Instn Mech Eng, 203: 771-5 (1989).

Carter DR, Hayes WC, Compressive Behaviour of Bone as a Two-Phase Porous

Structure, J Bone & Joint Surgery, 59-A(7): 954-62 (1977).

Champoux Y, Stinson MR, On Acoustical Models for Sound Propagation in Rigid
Frame Porous Media and the Influence of Shape Factors, J Acoust Soc Am,
92(2), Pt1: 1120-31 (1992).

Chandler RN, Johnson DL, The Equivalence of Quaisistatic Flow in Fluid-
Saturated Porous Media and Biot’s Slow Wave in the Limit of Zero Frequency, J

Appl Phys, 52(5): 3391-5 (1981).

Chivers R, Measurement of Ultrasonic Attenuation in Inhomogeneous Media,

Acustica, 74: 8-15 (1991).

Clarke AJ, Evans JA, Truscott JG, Milner R, Smith MA, A Phantom for
Quantitative Ultrasound of Trabecular Bone, Phys Med Biol, 39: 1677-87 (1994).

Consensus Development Conference, Diagnosis, Prophylaxis, and Treatment of

Osteoporosis, Am J Med, 94, 646-50 (1993).

Cooper C, Osteoporosis - An Epidemiological Perspective: A Review, J Royal
Soc Med, 82: 753-57 (1989).

Currey J, Comparative Mechanical Properties and Histology of Bone, Amer Zool,
24: 5-12 (1984).

177



E R Hubbuck, 2000 References and Bibliography 178

Croucher PI, Garrahan NJ, Compston JE, Structural Mechanisms of Trabecular
Bone Loss in Primary Osteoporosis: Specific Disease Mechanism or Early

Ageing? Bone & Mineral, 25: 111-21 (1994).

Daily JW, Harleman DRF, Chapter 6: Fluid Dynamics, Addison-Wesley Company,
Massachusetts, USA (1966).

Duck FA, Chapter 5: Elastic Moduli of Bone and Teeth, Physical properties of
Tissue: A Comprehensive Reference Book, Academic Press, University Press,

Cambridge, GB (1990).

Dunn F, O’Brien WD (ed.), Chapter 34: Ultrasonic Biophysics, Hutchinson &
Ross Inc, Pennsylvania (1965).

Edwards J, Study of the Propagation of Ultrasound through Trabecula Bone:
Bridging the Gap Between in vitro and in vivo BUA Measurements, Southampton

University MSc Thesis (1998).

European Foundation for Osteoporosis & Bone Disease, News, 5(2):1 (1998).

Evans JA, Tavakoli MB, Ultrasonic Attenuation and Velocity in Bone, Phys Med
Biol, 35(10): 1387-96 (1990).

Evans JA, Strelitzki R, Clarke AJ, Truscott JG, Ultrasound Bone Measurements -
Difference Between Manufacturers: Why and When? Proc: Bath Conference on

Osteoporosis & Bone Mineral Measurement, 55 (1996).

Fry FJ, Barger JE, Acoustical Properties of Human Skull Bone, J Acoust Soc Am,
63: 1576-90 (1978).

Geertsma J, Smit DC, Some Aspects of Elastic Wave Propagation in Fluid-
Saturated Porous Solids, Geophysics 26: 169 (1961).

178



E R Hubbuck, 2000 References and Bibliography 179

Gibson LJ, The Mechanical Behaviour of Cancellous Bone, J Biomech, 18: 317-
28 (1985).

Gibson LJ, Ashby M, Chapter 11: Cancellous Bone, Cellular Solids: Structure and
Properties, Pergamon Press, Oxford, England (1988).

Gluer CC, Wu CY, Genant H, Broadband Ultrasonic Attenuation Signals Depend
on Trabecular Orientation: an In Vitro Study, Osteop Int, 3: 185-91 (1993).

Greenspan SL, Bouxsein ML, Melton ME, Kolodny AH, Clair JH, DeLucca PT,
et al., Precision and Discriminatory Ability of Calcaneal Bone Assessment

Technologies, J Bone Mineral Research 12(8): 1303-13 (1997).

Hammond JK, Peardon LG, Cepstral Analysis and its Applications, Time Series
Analysis course notes, ISVR (1994).

Hampton L, Section 1, Physics of Sound in Marine Sediments, Plenum Press,

Lower John Street, London (1974).

Hans D, Dargent-Molina P, Schott AM, Ultrasonographic Heel Measurements to
Predict Hip Fracture in Elderly Women: the EPIDOS prospective study, Lancet,
348: 511-4 (1996).

Hill CR, Chivers R, Huggins RW, Nicholas D, Chapter 7: Scattering by Human
Tissue, Ultrasound - Applications in Medicine and Biology I11, ed. Fry FJ, Elsevier
Scientific, Amsterdam (1978).

Hodgskinson R, Njeh CF, Whitehead MA, Langton CM, The Non-Linear
Relationship Between BUA and Porosity in Cancellous Bone, Phys Med Biol, 41:
2411-20 (1996).

Hosokawa A, Otani T, Ultrasonic Wave Propagation in Bovine Cancellous Bone,

J Acoust Soc Am, 101(1): 558-62 (1997).

179



E R Hubbuck, 2000 References and Bibliography 180

Hosokawa A, Otani T, Suzaki T, Kubo Y, Takai S, Influences of Trabecular
Structure on Ultrasonic Propagation in Bovine Cancellous Bone, Jpn J Appl Phys,

36:3233-7, Pt 1, No 5B (1997).

Hosokawa A, A Study on the Propagation Phenomenon of Ultrasonic Waves in

Cancellous Bone, Doshisha University PhD Thesis, Japan (1997).

Hrazdira I, Chapter 34: Direct and Indirect Effects of Ultrasound on Bone
Marrow Cell Suspensions, Ultrasonic Biophysics, ed. Dunn F, O’Brien,WD,
Dowden, Hutchinson & Ross Inc, Pennsylvania (1965).

Hubbuck ER, Use of an Ultrasonic Technique for the Identification of
Microanatomical Bone Structure Dimensions, Southampton University MSc

Thesis (1995).

Hubbuck ER, Leighton TG, White PR, Petley GW, A Theoretical Study of
Factors Affecting the Biot Slow Wave in Cancellous Bone, ISVR Technical
Report No 271 (1998).

Hunt KD, Dean O'Loughlin V, Fitting DW, Adler L, Ultrasonic Determination of
Elastic Modulus of Human Cortical Bone, Med Biol Eng Computing 51-6 (1998).

Jaeger JC, Section 13, Elasticity, Fracture and Flow, John Wiley & Sons, New
York (1964).

Johnson DL, Plona TJ, Acoustic Slow Waves and the Consolidation Transition, J

Acoust Soc Am, 72(2): 556-65 (1982).

Johnson DL, Koplik J, Dashen R, Theory of Dynamic Permeability & Tortuosity
in Fluid-saturated Porous Media, Fluid Dynamics, 176: 379-402 (1987).

Johnson DL, Plona TJ, Kojima H, Probing Porous Media with First and Second
Sound. II. Acoustic Properties of Water-Saturated Porous Media, J Appl Phys,

76(1): 115-25 (1994).
180



E R Hubbuck, 2000 References and Bibliography 181

Kincaid DR, Cheney EW, Chapter 4: Numerical Analysis, Brookes-Coles
Publishing, California (1990).

Kinsler LE, Frey AR, Coppens AB, Sanders JV, Fundamentals of Acoustics, Third
Editions, John Wiley & Sons, Canada (1982).

Kirkpatrick S, Gelatt CD, Vecchi MP, Optimisation by Simulated Annealing,
Science 220 (4598): 671 (1983).

Kitamura K, Pan HT, Ueha S, Kimura S, Ohtomo S, Ultrasonic Scattering Study
of Cancellous Bone for Osteoporosis Diagnosis, Jpn J Appl Phys, Pt 1, 35(5B):
3156-62 (1996).

Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM, The Role of
Three-Dimensional Trabecular Microstructure in the Pathogenesis of Vertebral

Compression Fractures, Calcif Tissue Int, 37: 594-7 (1985).

Lakes RS, Yoon HS, Katz JL, Slow Compressional Wave Propagation in Wet
Human and Bovine Cortical Bone, Science, 220: 513-5 (1983).

Lang SB, Ultrasonic Methods for Measuring Elastic Coefficients of Bone on Fresh
and Dried Bovine Bones, IEEE Trans Biomed Eng, BME-17: 101-5 (1970).

Langton CM, Palmer SB, Porter RW, The Measurement of Broadband Ultrasonic
Attenuation in Cancellous Bone, Engineering in Medicine, 13(2): 89-91 (1984).

Langton CM, Ali AV, Riggs CM, Evans GP, Bonfield W, A Contact Method of
the Assessment of Ultrasonic Velocity and Broadband Attenuation in Cortical and

Cancellous Bone, Clin Phys Physiol Meas, 11: 243-9 (1990).

Langton CM, Ballard PA, Bennet DK, Purdie DW, Maximising the Cost
Effectiveness of BMD Referral for DXA using Ultrasound as a Selective
Population Pre-screen, Technology in Healthcare, 5 (1997).

181



E R Hubbuck, 2000 References and Bibliography 182

Laugier P, Giat P, Berger G, Bone Characterisation with Ultrasound: State of the
Art and New Proposals, Clinical Rheumatology, 13( S1): 22-32 (1994).

Lauriks W, Thoen J, Van Asbroek I, Lowet G, Van der perre G, Propagation of
Ultrasonic Pulses through Trabecular Bone, J de Physique IV, C5:1255-8, (1994).

Lawrence DEP, Don CG, Impulse measurements of impedance and propagation
constant compared to rigid-frame and dual-wave predictions for foam, J Acoust

Soc Am, 97(3): 1477-85 (1996).
Lee CC, Lahham M, Martin BG, Experimental Verification of the Kramers-Kronig
Relationship for Acoustic Waves, IEEE Trans Ultrasonics, Ferroelectrics and

Frequency Control, 37(4): 286-94 (1990).

Lees B, Stevenson JC, Preliminary Evaluation of a New Ultrasound Bone

Densitometer, Calcif Tissue Int, 53: 149-52 (1993).

Leighton TG, The Acoustic Bubble, Academic Press, London (1994).
Lesspessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Viala JF, Benhamou
CL, Anisotropic Measurements Obtained by Fractal Analysis of Trabecular Bone

at the Calcaneus and Radius, Revue du Rhumatisme, 63(5): 337-43 (1996).

Marcus PM, Carstensen EL, Problems with Absorption Measurements of

Inhomogeneous Solids, J Acoust Soc Am, 58: 1334-5 (1975).

McFadyean, Chapter 1, Osteology and Arthrology of the Domesticated Animal,
ed. Hughes HV, Dransfield JW, Bailliere, Tindall & Cox, London (1953).

McKelvie ML, Palmer SB, The Interaction of Ultrasound with Cancellous Bone,
Proc. Ultrasonic Studies of Bone 10P Short Meeting (1987).

182



E R Hubbuck, 2000 References and Bibliography 183

McKelvie ML, Palmer SB, The Interaction of Ultrasound with Cancellous Bone,
Phys Med Biol, 36(10): 1331-40 (1991).

Mellish RWE, Garrahan NJ, Compston JE, Age-Related Changes in Trabecular
Width and Spacing in Human Iliac Crest Biopsies, Bone & Mineral, 6: 331-8
(1989).

Miller PD, Bonnick SL, Rosen CJ, Consensus of an International Panel on the
Clinical Ultility of Bone Mass Measurements in the Detection of Low Bone Mass
in the Adult Population, Calcif Tissue Int 58:207-14 (1996).

National Osteoporosis Society, Osteoporosis: The Silent Epidemic (1998a).

National Osteoporosis Society, The Use of Quantitative Ultrasound in the
Management of Osteoporosis in Primary or Secondary Care, Position Statement

as of 30th June 1998b.

Nicholson PHF, Haddaway MJ, Davie MWJ, The Dependence of Ultrasonic
Properties on Orientation in Human Vertebrae, Phys Med Biol, 39: 1013-24
(1994).

Nicholson PHF, Lowet G, Langton CM, Dequeker J, Van der Perre G, A
Comparison of Time-Domain and Frequency-Domain Approaches to Ultrasonic

Velocity Measurement in Trabecular Bone, Phys Med Biol, 41: 2421-35 (1996).
Njeh CF, Hodskinson R, Currey JD, Langton CM, Orthogonal Relationships and
Material Properties of Bovine Cancellous Bone, ABS Med Eng Phys, 18(5): 373-

81 (1996).

Oppenheim AV, Schafer RW, Digital Signal Processing, Prentice Hall, London
(1975).

183



E R Hubbuck, 2000 References and Bibliography 184

Papadakis EP, Ultrasonic Diffraction Loss and Phase Change in Anisotropic
Materials, J Acoust Soc Am, 40: 863-76 (1966).

Petley GW, Hames TJK, Cooper C, Langton CM, Cawley MID, Comparison
between BUA and SPA of the Os Calcis, Proc Int Symposium on Osteoporosis,
408-9, ed. Christiansen C, Johnsen, JS, Riis BJ, Denmark, (1987).

Petley GW, The Use of Ultrasonic Transmission Measurement for the Assessment
of Properties of Bone in Normal and Diseased States, Southampton University

PhD Thesis (1994).

Plona TJ, Johnson DL, Experimental Study of Two Bulk Compressional Modes in
Water-Saturated Porous Structures, Ultrasonics Symposium, IEEE, 868-72
(1980).

Plona TJ, Winkler KW, Schoenberg M, Acoustic Waves in Alternating Fluid Solid
Layers, J Acoust Soc Am, 81(5): 1227-34 (1987).

Reid DM, Stewart A, Quantitative ultrasound - Clinical Utility, Proc 5th Bath
Conference on Osteoporosis and Bone Mineral Measurement, ed. Ring EFJ,

Elvins DM, Bhalla AK, British Institute of Radiology (1998).

Rich C, Klinkk E, Smith R, Graham B, Measurement of Bone Mass from
Ultrasonic Transmission Time, Proc Soc Exp Bio Med, 123: 282-5 (1966).

Rho JY, Ultrasonic Characterisation in Determining Elastic Modulus of

Trabecular Bone Material, Med Biol Eng Computing, 57-9 (1998).

Royal College of Physicians, Summary of Guidelines for Osteoporosis Care,

Department of Health (1999).

Rytov SM, The Acoustic Properties of a Thin-Layered Medium, Sov Phys
Acoust, 2(1):71-83 (1956).

184



E R Hubbuck, 2000 References and Bibliography 185

Sachse W, Pao Y-H, On the Determination of Phase and Group Velocities of
Dispersive Waves in Solids, J Appl Phys, 49(8): 4320-7 (1978).

Schoenberg M, Wave Propagation in Alternating Solid and Fluid Layers, Wave
Motion, 6: 303 (1984).

Schoenberg M, Sen PN, Properties of a Periodically Stratified Acoustic Half-
Space and its Relation to a Biot Fluid, J Acoust Soc Am, 73(1): 61-7 (1983).

Schwartz L, Plona TJ, Ultrasonic Propagation in Close-Packed Disordered

Suspensions, J Appl Phys, 55(11): 3971-7 (1984).

Seki H, Granato A, Truell R, Diffraction Effects in the Ultrasonic Field of Piston
Source and their Importance in the Accurate Measurement of Attenuation, J

Acoust Soc Am, 38: 230-8 (1956).

Selle WA, Jurist JM, Acoustical Detection of Senile Osteoporosis, Proc Soc Exp
Med, 121:150 (1966).

Sharma MD, Gogna ML, Wave Propagation in Anisotropic Liquid-Saturated
Porous Solids, J Acoust Soc Am, 90(2) Pt1: 1068-73 (1991).

Sherman FS, Viscous Flow, McGraw-Hill Publishing Company, London (1990).

Smith RE, Ultrasonic Elastic Constants of Carbon Fibres and their Composites, J

Appl Phys, 43(6): 2555-61 (1972).

Smith DM, Khairi MRA, Johnston CC, The Loss of Bone Mineral with Ageing
and its Relationship to Risk of Fracture, J Clin Invest 56: 311-8 (1975).

185



E R Hubbuck, 2600 References and Bibliography 186

Smith SW, Phillips DJ, Von Ramm OT, Thurstone FL, Some Advances in
Acoustic Imaging through the Skull, Ultrasonic tissue characterisation II, Nat
Bureau Standards Spec Publ, 525: 209-17, ed. M Linzer, Washgt’n DC US
Government Printing Office (1979).

Stewart A, Reid DM, Risk factors, quantitative ultrasound or a combination of
both - which is the most sensitive and specific for osteoporosis? Proc 5th Bath
Conference on Osteoporosis and Bone Mineral Measurement, ed. Ring EFJ,

Elvins DM, Bhalla AK, British Institute of Radiology (1998).

Stoll RD, Bryan GM, Wave Attenuation in Saturated Sediments, J Acoust Soc
Am, 47: 1440-7 (1970).

Strelitzki R, Clarke AJ, Evans JA, The Measurement of the Velocity of Ultrasonic
in Fixed Trabecular Bone Using Broadband Pulses and Single-Frequency Tone

Bursts, Phys Med Biol, 41:743-53 (1996).

Strelitzki R, Evans JA, On the Measurement of Velocity of Ultrasound in the Os
Calcis using Short Pulses, Eur J Ultrasound, 4: 205-13 (1996).

Strelitzki R, Nicholson PHF, Evans JA, Low-frequency Ultrasonic Velocity
Measurements in Human Calcaneal Trabecular Bone, Physiol Meas, 18: 119-27

(1997a).
Strelitzki R, Evans JA, Clarke AJ, The Influence of Porosity and Pore Size on the
Ultrasonic Properties of Bone Investigated using a Phantom Material,

Osteoporosis Int, 7(4): 370-5 (1997b).

Strelitzki R, Evans JA, Diffraction and Interface Losses in Broadband Ultrasonic
Attenuation Measurements of the Calcaneum, Physiol Meas, 19: 197-204 (1998).

186



E R Hubbuck, 2000 References and Bibliography 187

Strelitzki R, Metcalfe SC, Nicholson PHF, Evans JA, Paech V, On the Ultrasonic
Attenuation and its Frequency Dependence in the Os Calcis Assessed with a

Multielement Receiver, Ultrasound Med Biol, 25(1): 133-41 (1999).

Stremler FG, Chapter 2, Introduction to Communication Systems, Addison-

Wesley Publishing Company, Wokingham UK (1990).

Tavakoli MB, Evans JA, The Effect of Bone Structure on Ultrasonic Attenuation
and Velocity, Ultrasonics, 30(6): 389-95 (1992).

Theismann H, Pfander F, Uber die Durchlassigkeit des Knochens fur Ultraschall,
Strahlentherapie, 80: 607-10 (1949).

Thurston RN, Elastic Waves in Rods and Clad Rods, J Acoust Soc Am, 64(1):1-
31 (1978).

Trim DW, Calculus & Analytic Geometry, Addison-Wesley, USA (1983).

Truscott JG, Lightly D, Smith A, Smith MA, Reference Ranges for Speed of
Sound and Broadband Ultrasonic Attenuation Measured with a Lunar Achilles in
949 Caucasian Women, Proc 4th Bath Conference on Osteoporosis & Bone

Mineral Measurement (1996).

Turner CH, Cowin SC, Dependence of Elastic Constants of an Anisotropic
Porous Material upon Porosity and Fabric, ] Mat Sci, 22: 3178-3184 (1987).

Watkinson KM, Studies of Texture and Elastic Constants of Oriented
Polyethylene, Surrey University PhD Thesis (1977).

Wells PNT, Chapter2, Biomedical Ultrasonics, Academic Press, (1977).

Williams JL, Lewis JL, Properties and an Anisotropic Model of Cancellous Bone
from the Proximal Tibial Epiphysis, J Biomech Eng 104: 50-6 (1982).

187



E R Hubbuck, 2000 References and Bibliography 188

Williams JL, Ultrasonic Wave Propagation in Cancellous and Cortical Bone:
Predictions of Some Experimental Results by Biot's Theory, J Acoust Soc Am,
91(2): 1106-12 (1992).

Williams JL, Grimm MJ, Wehrli FW, Foster KR, Chung H-W, Prediction of
Frequency and Pore-Size Dependent Attenuation of Ultrasound in Trabecular

Bone using Biot's Theory, Mechanics of Poroelastic Media, 263-71 (1996).

Wu JR, Cubberly F, Measurement of Velocity and Attenuation of Shear Waves in
Bovine Compact Bone using Ultrasonic Spectroscopy, Ultrasound Med Biol,

23(1): 129-34 (1997).

Xu W, Kaufman JJ, Diffraction Correction Methods for Insertion Ultrasound
Attenuation Estimation, IEEE Trans Biomed Eng, 40(6): 563-70 (1993).

Yamada H, Chapter 11, Strength of Biological Materials, Williams & Wilkis
Company, Baltimore (1970).

Yoon HS, Katz JL, Ultrasonic Wave Propagation in Human Cortical Bone I,
Theoretical Considerations for Hexagonal Symmetry, J Biomech, 19: 407-12
(1976).

Zwikker C, Kosten CW, Chapter 1, Sound Absorbing Materials, Elsevier
Publishing Company (1949).

188



E R Hubbuck, 2000 References and Bibliography 189

Bibliography

Bourbie T, Coussy O, Zinszner B, Acoustics of Porous Media, Gulf Publishing

Company, Editions Technip, Paris, France (1987).

Brekhovskikh LM, Waves in Layered Media, Academic Press Inc, Oval Road,
London, UK (1981).

Crocker MJ (ed.), Encyclopaedia of Acoustics, John Wiley & Sons Incorporated,
London, UK (1997).

Daily JW, Harleman DRF, Fluid Dynamics, Addison-Wesley Company,
Massachusetts, USA (1966).

Duck FA, Physical Properties of Tissue: A Comprehensive Reference Book,
Academic Press, The University Press, Cambridge, UK (1990).

Dunn F, O’Brien WD (ed.), Ultrasonic Biophysics, Hutchinson & Ross
Incorporated, Pennsylvania, USA (1965).

Fry FJ (ed.), Ultrasound - Applications in Medicine and Biology III, Elsevier
Scientific Publishing Company, Amsterdam, Netherlands (1978).

Gibson LJ, Ashby M, Cellular Solids: Structure & Properties, Pergamon Press,
Oxford, UK (1988).

Hampton L, Physics of Sound in Marine Sediments, Plenum Press, Lower John

Street, London, UK (1974).

Jaeger JC, Elasticity, Fracture and Flow, John Wiley & Sons Incorporated, New
York, USA (1964).

189



E R Hubbuck, 2000 References and Bibliography 190

Kincaid DR, Cheney EW, Numerical Analysis, Brookes-Coles Publishing,
California, USA (1990).

Kinsler LE, Frey AR, Coppens AB, Sanders JV, Fundamentals of Acoustics, Third
Edition, John Wiley & Sons Incorporated, Canada (1982).

Leighton TG, The Acoustic Bubble, Academic Press, London, UK (1994).

McFaydean, Osteology and Arthrology of the Domesticated Animal, ed. Hughes
HV, Dransfield JW, Bailliere, Tindall & Cox, London, UK (1953).

Oppenheim AV, Schafer RW, Digital Signal Processing, Prentice Hall, London
(1975).

Sherman FS, Viscous Flow, McGraw-Hill Publishing Company, London, UK
(1990).

Stremler FG, Introduction to Communication Systems, Addison-Wesley

Publishing Company, Wokingham, UK (1990).

Trim DW, Calculus and Analytic Geometry, Addison-Wesley Publishing
Company, USA (1983).

Wells PNT, Biomedical Ultrasonics, Academic Press, London, UK (1977).

Yamada H, Strength of Biological Materials, Williams & Wilkis Company,
Baltimore, USA (1970).

Zwikker C, Kosten CW, Sound Absorbing Materials, Elsevier Publishing
Company, London (1949).

190



