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The theoretical modelling of ultrasonic propagation in cancellous bone is 
pertinent to the improvement of ultrasonic techniques for diagnosing the bone 
disease osteoporosis. For such techniques to be confidently used in the clinical 
management of osteoporosis, fundamental research is required to establish an 
understanding of how ultrasonic waves travel in porous, or cancellous, bone. 
This thesis concerns investigations into various theoretical models of 
propagation in porous media. These studies are supported by in vitro 
experiments on bovine cancellous bone around 1 MHz. 

Previous applications to bone of established theories, such as Biot's theory 
for fluid-saturated porous media, have enjoyed limited success. This thesis 
begins by considering Biot's theory in more detail than previously reported in 
the literature. Biot's theory predicts that two longitudinal waves travel in 
cancellous bone in response to insonation with a single wave. The existence of 
two waves, known as fast and slow waves, is confirmed, which had not been 
reported in the literature prior to the start of this work. The importance of the 
presence of marrow in the pores on these waves is investigated. 

The phase velocities of fast and slow waves are observed to be strongly 
dependent on direction, relative to the internal cancellous structure. However, 
the isotropic form of Biot is not appropriate for modelling this response. 
Therefore, a second approach is proposed, which uses Schoenberg's theory to 
model propagation in a parallel-plate model of cancellous bone. Direction 
dependent measured velocities are observed to give qualitative agreement with 
the predictions of the Schoenberg model. The two theoretical approaches are 
compared when anisotropic mechanical and fluid motion effects are introduced 
into Biot's theory. 

Finally the findings of this research are discussed with respect to current 
clinical ultrasonic measurements of bone. Recommendations are made for the 
development of a fixture model-based system for bone assessment. 
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Preface 

In recent years, research into the bone disease osteoporosis has 

escalated. Simultaneously, the diagnostics industry has embraced the 

introduction of the technique Broadband Ultrasonic Attenuation, based on the 

potential of the technique to become a cheaper option than x-rays and ideal for 

use in screening programmes. However, after fifteen years, BUA has not 

delivered on those initial expectations, and it is widely acknowledged that 

further research is required before it may be confidently used in the clinical 

management of osteoporosis. If the technology and the industry are to be 

sustained, basic work into the physics of the application is required to improve 

the technology's reputation for reliability and to yield maximum clinical 

information. 

This thesis sets out to describe investigations into the theoretical 

modelling of the propagation of ultrasonic waves in porous cancellous bone, 

with the aim of advancing understanding and contributing to the development 

of ultrasonic bone diagnostics. The work is presented in seven chapters, 

beginning with introductions to the fields of osteoporosis, the modelling of 

propagation in porous media and ultrasonics. The development of two 

theoretical models is described, and results from experimental investigations 

are presented. 

It is hoped that this thesis will in some way contribute to the 

improvement of existing ultrasonic techniques, or to aid the development of 

novel uses of ultrasound to render a better clinical tool than currently exists. 
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Chapter One 

Introduction to Ultrasonic Bone Assessment 

1.1 General Introducdon 

Throughout the development of medical practice, scientists have been 

intrigued by methods for examining the human body without the need for invasive 

surgery. The development of X-Ray technology in the early twentieth century 

marked a vast step forward in this field, and modem tools such as computed 

tomography, MRI and virtual reality have given physicians new means of 

examining patients. 

Non-invasive and non-ionising ultrasonic testing has been used to great 

effect in biomedical diagnostics, in applications such as foetal imaging and 

Doppler techniques for monitoring blood flow. The compressions and 

rarefractions in pressure that accompany acoustic propagation mean that wave 

characteristics closely relate to the mechanical properties of the host medium. 

Such a dependence had previously been exploited in the non-destructive testing of 

mechanical and structural integrity, and the development of diagnostics was 

grounded in the application of ultrasound in engineering environments. 

This thesis is principally concerned with the application of ultrasound to 

the testing of skeletal integrity in vivo, and in the understanding of propagation in 

porous bone, for the diagnosis of the bone disease, osteoporosis. 
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1.2 Osteoporosis 

Osteoporosis is a skeletal disease characterised by low bone mass and 

microarchitecture deterioration of bone tissue, leading to increased fragility and 

fracture risk (Consensus Development Conference 1993). In the UK, around 30 % 

of women and around 8 % of men over 50 years of age are affected by 

osteoporosis (National Osteoporosis Society (NOS) 1998a). Women are exposed 

to a higher risk owing to rapidly declining oestrogen levels after the menopause, 

whilst the occurrence of the disease in men is linked to a lack of testosterone. The 

use of corticosteroids, and lifestyle factors such as smoking or lack of exercise, 

also affect its occurrence, which is increasing by 10 % per year (NOS 1998a). 

Osteoporosis contributes to causing 200,000 fractures in the UK annually 

(NOS 1998a). Around 60,000 of these are hip fractures, which often lead to 

prolonged convalescence and disability. Fractures of the spine and forearm are 

also common. Many patients do not recover sufficiently to allow a return to their 

previous lifestyle, and many die within one year of a hip fracture. Not only does 

the occurrence of fractures significantly affect the quality of life of individual 

sufferers, but it also places a financial burden on public health resources close to 

£1 billion (NOS 1998a). In contrast to risk factors such as the trauma of a fall or 

impaired mobility through other disease, the lack of bone strength constitutes a 

quantifiable and treatable risk factor. 

1.3 The Confutation and Strength of Bone Material 

1.3.1 The ConAgnradon of Bone 

The skeleton provides a rigid framework for the support and protection of 

the anatomy of vertebrates. The bones of the skeleton have adapted in form and 

configuration to give optimal weight bearing capacity with a given amount of 

calcified tissue. Most bones contain two types of calcified tissue: cortical and 

cancellous bone. Cortical bone is dense and compact, with density around 2000 

kg/m^ (Duck 1990). Cancellous bone is a porous cellular network of bony strands 
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called trabeculae (figure 1.1), filled with fatty bone marrow with macroscopic 

density close to 1100 kg/m^ (Duck 1990). 

Long bones, such as the femur pictured in figure 1.2, consist of a hollow 

medullary cavity, with two extremities known as epiphyses. The medullary shaft is 

made of cortical bone, while cancellous bone forms a lining of increasing thickness 

at the ends of the cavity. Marrow fills the medullary cavity and the pores of the 

spongy tissue of cancellous bone. Bone is also highly vascular, with long arteries 

running the length of the femur, and numerous fine vessels and nerve fibres. 

$ 

3.0 cm 

Figure 1.1 - Cancellous bone from the bovine femur. 

Cancellous bone 

Cortical bone 
Medullary cavity 

Epiphysis 

Figure 1.2 - The configuration of bone tissue in the femur. 
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1.3.2 IWEewdiauaicadlSStTeiiglli of Bone Tissue 

Bone strength is predominantly determined by two factors: bone density 

and the spatial distribution of calcified tissue. 

Research on fractures in humans shows that those in the population who 

have less bone, on average sustain more fractures than those with higher mass 

(Smith et al. 1975). Women achieve a lower peak bone mass than men, and the 

period of accelerated bone loss following the menopause is coincident with an 

exponential increase in hip fractures in women around this age (Cooper 1989). 

The breaking stress of bone is a function of the density and Young's 

modulus (Gibson 1985). (Density here relates to the macroscopic or volume 

density of cancellous bone, rather than the density of an individual trabecula.) In 

vitro mechanical loading tests established that the compressive strength of 

cancellous bone varies with the square of density (Carter and Hayes 1977). This is 

discussed Anther in Chapter 2. 

(b) Bone Structure 

The distribution of calcified tissue is determined by its role at a certain site. 

Cortical bone, being denser than cancellous, is found at sites exposed to the 

greatest strain. 

The strength of cancellous bone is determined by the structure of the 

trabecule network. The trabecular arrangement of cancellous bone is optimally 

adapted to provide a large load-bearing area, while minimising the weight of 

tissue. This enables it to withstand the variety of stresses to which it may be 

subjected. Bone material generates an electric potential under stress, which may be 

either a semiconductor or a piezoelectric effect (Lang 1970). This behaviour may 

induce growth along the principal stress trajectories in cancellous bone (Gibson 

and Ashby 1988). 
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Furthermore, the density and symmetry of the cancellous architecture 

depend on the magnitude and direction of the loads it withstands in a particular 

location (Gibson and Ashby 1988). Rod-like structures occur in regions of low 

stress, while plate-like arrangements are seen in areas subject to higher stress. In 

bones where loading is uniaxial, trabeculae are often arranged in a dominant 

orientation with cylindrical symmetry (Currey 1984). If the stress pattern on the 

skeletal site is complex, then the trabecular structure is elaborate and may be 

asymmetric. The same mass of bone is more biomechanically competent when 

arranged in numerous, highly connected thin plates rather than thicker, fewer and 

less connected plates (Kleerekoper et al. 1985). The classification and 

mathematical description of the cancellous fabric will be discussed in further in 

sections 2.3.2 and 5.2. 

At a finer level of structure, cortical bone is composed of a fibrous organic 

matrix (largely collagen) and inorganic calcium compounds. These compounds 

include crystalline hydroxyapatite, whose fibres are partially aligned along the 

length of long bones, providing higher stiShess in certain directions. Highly 

oriented cancellous bone displays relatively high stiffiiess and compressive strength 

in the direction of trabecular alignment, with the stiffiiess in transverse direction 

being as much as ten times lower, for example, in the human tibia (Williams and 

Lewis 1982). 

13 3 Bone Growth and Osteoporosis 

Osteoporosis is associated with an imbalance in the regeneration cycle of 

bone tissue. Bone is constantly being laid down by cells known as osteoblasts and 

resorbed by those called osteoclasts (McFadyean 1953). In healthy humans, these 

processes are balanced, such that there is no overall gain or loss of bone. The 

regeneration cycle is severely disrupted in post-menopausal women as a result of a 

lack of oestrogen, which results in accelerated bone loss. Additional diseases, such 

as liver or thyroid problems, or certain treatments for unrelated illnesses, such as 

corticosteroids for asthma, may also contribute to causing osteoporosis and bone 

loss (Cooper 1989). 
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The large surface area of cancellous bone enables more effective 

metabolism than in cortical bone. Hence, the result from imbalances in the 

regeneration cycle may be observed first in cancellous bone. In particular, 

osteoporosis significantly affects the structure of cancellous bone. The pores 

become larger and the structure becomes more open. Image processing has shown 

that aged or osteoporotic bone has significantly fewer trabeculae, while those that 

remain are reduced in thickness (Mellish et al. 1989, Croucher et al. 1994). 

Changes in the trabecular architecture contribute to changes in bone 

strength (Kleerekoper et al. 1985). The deterioration of the cancellous structure 

has been correlated with fracture incidence in humans. Patients who sustained 

osteoporotic-related fractures had a significantly lower trabecular plate density, 

thickness and connectivity of trabecular elements than control subjects 

(Kleerekoper et al. 1985, Croucher et al. 1994). Therefore, although fractures 

occur in sites containing both bone types, most clinical techniques assess 

cancellous, rather than cortical, bone for early signs of degeneration. 

1.4 Clinical Bone Assessment 

1.4.1 The Tkrgedng of Treatment 

The ultimate aim of current research programmes is to reduce the risk of 

age-related hip fractures and the financial burden they incur. Although factors such 

as the risk of falling and poor diet also contribute to fracture risk, drug treatments 

are available that resist bone loss. The early administration of treatments such as 

Hormone Replacement Therapy (HRT), Calcium and Vitamin D have been shown 

to be effective at reducing fracture risk (NOS 1998a). However, although HRT 

also has cardiovascular benefits, it has been shown to increase the risk of cancer. 

Recently developed synthetic hormones, called Selective Estrogen Receptor 

Modulators (SERMS), reduce fracture risk and heart disease, but do not increase 

cancer rise (NOS 1998a). 

Tackling low bone mass by the prescription of such drags as HRT or 

SERMS, requires identification of those in the population requiring treatment. 
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One approach is to treat the entire population, ensuring that everyone who 

required treatment received it, and reducing a great number of fractures. However, 

in addition to this being an extremely expensive approach, patients would be 

unaware of their true bone status or response to treatment, and may be reluctant 

to comply with such a course. 

An alternative strategy is to target those in the population with low bone 

mass who are at highest risk of fracture. Treatment could then be administered 

where required, providing incentives for patient and doctor to continue treatment 

and monitor its progress. However, for such an approach to be effective, those at 

risk must be identified as early as possible. Identification requires population 

screening using reliable and precise clinical bone assessment techniques. 

1.4.2 The Assessment of Bone Condition 

Bone assessment systems may be designed with two roles; first, the early 

identification of those at highest risk of fracture, and, second, the monitoring of 

bone status during treatment. Achieving these aims relies on techniques satisfying 

various prerequisites. First, the system should provide information about fracture 

risk from a characterising index or parameter that can be measured non-invasively 

and in vivo. Second, that parameter should either significantly alter with the 

disease over time, or should be of a quantitative level to establish bone condition 

from one measurement. Such requirements are strongly dependent on the 

performance of an individual technique, and define its clinical utility. 

General experimental practice says that, for a result to be meaningful, the 

measurement error should be less than the random variability of the parameter 

being investigated. The role of a clinical assessment technique is dependent on its 

precision^ usually quoted as a coefficient of variance (CV or, as a percentage, 

%CV), with respect to the variation in the population (95 % confidence limits, or 

two standard deviations). Figure 1.3 shows the comparison between the variation 

of bone mineral density in the normal population (mean ± standard deviation) and 

' The word 'precision' has varying usage. In engineering it refers to the resolution (decimal 
places, scale gradations) to # u c h a measurement may be made. In clinical research, it is often 
taken as a technique's reproducibility, as mean ± std. The latter definition is used in this thesis. 

7 
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the error (± 95 % confidence limits), for various coefficients of variance in bone 

densitometry of the lumbar region. Coefficients of 1 and 2 % are small compared 

with the distribution, whilst 5 % covers a significant proportion of the range. This 

suggests a system with a %CV of 1 % would have strong discriminatory 

capabilities, whilst that with a %CV of 5 % would not be as beneficial. To be 

useful in unique screening measurements, the %CV of a bone assessment system 

should be better than 2 % (Reid and Stewart 1998). 

If the system is being used to detect a change in a parameter, the 

measurement uncertainty must be significantly less than any difference it is trying 

to distinguish. The magnitude of a change in bone density between two 

measurements depends on the rate of bone loss and the duration of the interval 

between tests. However, to be confident of detecting a change with the technique, 

the percentage loss must also be significantly greater than the precision. A certain 

amount of bone must be lost for a change to be detected, and the delay between 

measurements until this occurs can be very long if the system has poor precision. 

This is clearly unsatisfactory for the patient requiring urgent treatment. Therefore, 

for monitoring the response to treatment, bone densitometers should have 

precision around 1 % (Reid and Stewart 1998). 
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Figure 1.3 - Possible precision values of bone densitometry, with coefficients of variance as 

vertical bars and mean and standard deviation of normal population as dashed lines (Petleyl994). 
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1.4.3 Current Diagnostic Tkchniqnes 

Dual Energy X-Ray Absorptiometry (DXA or DEXA) of the lumbar spine 

is currently the preferred method for identifying fracture risk and monitoring 

response to treatment of osteoporosis (NOS 1998b). An x-ray beam containing 

two energies is passed through the body. Since the interaction of x-rays with bone 

differs from that with soft tissue, it is possible to compensate for the absorption 

from soft tissue and isolate that from the bone. DXA provides high resolution 

images and has a precision better than 1 %. 

Generally used to assess sites such as the lumbar vertebrae, DXA replaced 

Single Photon Absorptiometry, which was applied to peripheral sites. Quantitative 

Computer Tomography was adapted for bone assessment, but is expensive 

(Consensus Development Conference 1993). Although the DXA method is seen 

as being the gold standard in densitometry (Miller et al. 1996), it is relatively 

expensive and not widely available in the UK in comparison to the rest of Europe 

(European Foundation for Osteoporosis and Bone Disease 1998). A national 

screening programme for osteoporosis was recently rejected on the basis that its 

cost could not be justified (Royal College of Physicians 1999). 

Techniques such as DXA examine bone for one indication of osteoporosis: 

reduced mass. However, as stated in section 1.3.2, bone strength also depends on 

its internal micro structure. Therefore, assessment that also evaluates architectural 

changes, may be a better determinant of fracture risk than DXA alone. 

Deterioration of the bone microstructure may potentially be assessed in vivo by 

ultrasonic techniques. 

Quantitative Ultrasound (QUS) has been available since the mid-1980s and 

has experienced rapid development in recent years. It has attracted considerable 

interest since it involves no ionising radiation and can be provided by easily 

portable and inexpensive machines. The development of such systems, and the role 

and performance of clinical QUS are described in the following section. 
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1.5 Ultrasonic Studies of Bone 

1.5.1 Bstoncal Studies 

Ultrasound has been used to characterise the mechanical properties of 

bone in attempts to predict bone strength and resistance to fracture. Studies were 

first reported in 1949 (Theismann and Pfander), and most early work focused on 

cortical bone (for example, Anast et al. 1958, Yoon and Katz 1976). The first 

studies on cancellous bone reported in the late 1970s (Fry and Barger 1978, Smith 

era/. 1979). 

Bone is generally tested at frequencies below 1 MHz, but studies have 

been performed using frequencies up to 15 MHz (Lakes et al. 1983). A wide 

variety of spatial dimensions and organisational levels have been probed, which 

range from the ultrastructural level (dimension <10 fj,m, such as collagen (Yoon 

and Katz 1976)); to the micro structural level (dimension > 10 pm, such as 

trabeculae (Evans and TavakoH 1990)); to the whole organ (Antich 1993). 

The measurement of ultrasonic velocity and frequency-dependent 

attenuation have been most extensively studied. Further factors that have been 

studied include resonance (Selle and Jurist 1966) and a combination of velocity 

and frequency-dependent attenuation, named stiffness (Lees and Stevenson 1993), 

but whose physical significance is not well defined. This parameter is not 

considered Anther here, but the measurement of velocity and attenuation in bone 

is considered below. 

1.5.2 Measnrement of Ultrasonic Velocity 

Two distinct velocities of wave propagation may be defined; group and 

phase velocity. For a plane harmonic wave of angular frequency, m, and 

wavenumber, q (= 2%IX, for wavelength, X), the phase velocity is c - &lq. The 

phase velocity equals the propagation speed if the ratio a/q is constant with 

frequency. If the phase velocity is a ftinction of frequency, the propagation is 

dispersive (Kinsler et al. 1982), which may arise from sources such as scattering, 

10 
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the frequency dependence of material constants, or the dissipation of wave energy 

into heat. The energy of the wave travels at the group velocity, defined as the 

derivative of angular frequency with respect to wavenumber, q (which may be 

complex), d&ldq. 

Group velocity is evaluated from the time taken for a pulse to travel 

through a specimen of known thickness. In a dispersive media, such measurements 

are subject to the definition of pulse arrival time. A principal feature of dispersion 

is that a pulse may not retain its original shape as it propagates through a 

dispersive medium (Sachse and Pao 1978). The group velocity in cortical bone has 

been measured on many occasions (e.g. Abendschein and Hyatt 1970, Ashman et 

al. 1984, Hunt et al. 1998). It has also been measured through cancellous bone 

(e.g. Rich et al. 1966, Ashman and Rho 1988, Nicholson et al. 1994). It is also 

forms an assessment in clinical QUS, where it is known as Speed of Sound, or 

SOS. Studies in cancellous bone have shown that group velocity, calculated from 

a given waveform, varied by 6 %, depending on the choice of zero-crossing point 

(Strelitzki et al. 1996), owing to the presence of frequency dependent dispersion. 

The measurement of phase velocity in cancellous bone has received less 

attention. There is evidence that the phase velocity decreases with frequency, that 

is, it experiences negative dispersion (Nicholson et al. 1994), although later 

research shows evidence of positive dispersion (Strelitzki and Evans 1998). 

1.5.3 Young's Modnlns 

The measurement of ultrasonic velocity has generated much interest owing 

to the relation between velocity and Young's modulus. The velocity, Cbar, of a 

longitudinal wave travelling along a thin rod may be expressed as 

WP (1.1) 

for density, p, and Young's modulus, E. 

The Young's modulus of bone indicates its potential breaking stress 

(Gibson 1985), traditionally found by static loading tests. Such tests permanently 

11 
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alter the specimen and assume a linear relationship between stress and strain, 

which may not exist owing to the visco-elastic nature of bone (Gibson & Ashby 

1988). Ultrasound offers a non-destructive measurement of Young's modulus. 

Equation (1.1) is valid for longitudinal disturbances in a bar, the lateral 

dimensions of which are small comqpared with its length. In such cases, the 

displacement of particles is parallel to its axis and each cross-sectional plane of the 

bar may be considered to move as a unit (Kinsler et al. 1982). In practice, this 

condition may be satisfied by choosing a suitable fi-equency. Propagation in a 

sample of finite size is dependent on the ratio of the wavelength to some 

characteristic length of the sample. In homogeneous media, this effect is known as 

geometric dispersion (Thurston 1978, Ashman et al. 1984). Bar propagation 

occurs if the ratio of the characteristic size to the wavelength is much less than 

unity. If this ratio is much greater than unity bulk propagation occurs. 

Equation (1.1) has been used on numerous occasions to evaluate the 

Young's modulus of cortical bone from measurements of ultrasonic velocity (for 

example, Lang 1970, Carter and Hayes 1977). Since cortical bone is relatively 

homogeneous at the millimetre scale, measurements at frequencies around 2 - 5 

MHz, where the wavelength is of the order of 1 mm, satisfy the bar assumption. 

Ultrasonically derived Young's modulus correlates well with that derived from 

loading tests (Abendschien and Hyatt 1970). 

For studies of inhomogeneous cancellous bone, experimenters have sought 

to satisfy the conditions for bar propagation in two distinct ways. The mode of 

propagation in a cancellous sample depends on the ratio of the wavelength to, 

either, the size of the discontinuity (pore or trabecular width); or, the specimen 

size. Therefore, two possible scenarios emerge: propagation along individual 

trabecula, or propagation through a whole cancellous sample. 

In the first case, Rho (1998) took the trabecular width as the characteristic 

length, and assumed that waves travel along each trabecula. Tests were performed 

at 2.25 MHz, where the wavelength in water is 667 fim, which, for the bar 

equation to be applicable, should be considerably less than the trabecular width. 

However, typically trabeculae are 500 ^m in width (Mellish et al. 1989), so the 

assumption is not strictly valid. Furthermore, this approach neglects the 

12 
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contribution of the marrow in propagation, and the possibility of bulk wave 

propagation at these frequencies. 

The second approach has considered propagation through a whole 

cancellous specimen, typically a few centimetres in width, at lower frequencies. 

Strelitzki et al. (1997a) used pulses of centre frequency 37 kHz (wavelength 

around 4 cm), to ensure the wavelength was greater than the macroscopic 

dimensions of the specimen. The resulting time-of-flight velocity values were 

significantly lower than those observed at higher ultrasonic frequencies, and it was 

suggested that bar propagation was occurring at this frequency. 

Ashman et al. (1984) suggested that bar propagation in cancellous bone 

may transform into bulk propagation as the frequency increases by a geometric 

dispersion effect. The method by which this mode conversion may occur had not 

been thoroughly investigated, nor explained with theory. 

1.5.4 Broadband Ultrasonic Attenuation 

As ultrasonic waves travel through bone, energy is lost. In a lossy medium, 

a plane harmonic wave, of peak amphtude, Po, may be represented as p(x, t) = 

Po.exp(joX - qx), where the wavenumber is complex, q = q - jaa, and where is 

the absorption coefficient (Kinsler et al. 1982). 

Attenuation of ultrasonic waves in bone was first reported by Fry and 

Barger (1978) and Smith et al. (1979) for the measurements of the skull. In 1984, 

Langton et al. generated much interest in the measurement of ultrasonic 

attenuation for bone health assessment. The subsequent technique has come to be 

known as Broadband Ultrasonic Attenuation (BUA) and is the parameter most 

commonly measured in clinical ultrasonic bone assessment today. 

Broadband Ultrasonic Attenuation measurements are taken by passing 

signal with a bandwidth 200 - 600 kHz through the os calcis (the heel bone), often 

performed in a water bath. The os calcis is used because it contains a high 

proportion of cancellous bone, its sides are approximately parallel, and it is easily 

accessible for testing. 

13 
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The assumption is made that when attenuation, is plotted on a decibel scale 

as a function of frequency, / , the plot is linear in the bandwidth 200 - 600 kHz, 

that is. 

(1.2) 

where the gradient is also called the BUA value, in dB per MHz. The BUA value 

is the gradient of the attenuation spectrum in figure 1.4, evaluated by linear 

regression. 

In a relatively small study of sixty women, Langton found that the BUA 

gradient was significantly higher in young healthy women than in those who had 

sustained fractures of the femoral neck. Subsequent studies showing similar 

results, became the basis for BUA as a parameter of clinical utility. 
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Figure 1.4 Linear relationship between attenuation & frequency which is assumed for BUA. 
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1.5.5 The Rok of QUS m Bone Assessment 

Quantitative ultrasound of the heel bone has attracted considerable interest 

as a potential tool in the clinical management of osteoporosis. There are currently 

a number of commercial QUS systems, using either a contact method (McCue 

CUBA, Hologic Sahara, Metra QUS-2), or a water bath technique (Lunar 

Achilles). It is a portable, quick and inexpensive method of bone assessment. 

However, its acceptance as a reliable tool has taken some time, owing to a number 

of uncertainties regarding its performance. 

The potential role of QUS techniques in the management of osteoporosis 

is determined by its clinical precision. The static instrument precision of 

Broadband Ultrasonic Attenuation has been reported as 2 - 3 %, although for 

repositioning, a coefficient of up to 9 % has been measured (Greenspan et al. 

1997, Stewart and Reid 1998). For Speed of Sound, the %CV has been quoted as 

being in the range 0.5 - 0.8 % (Greenspan et al. 1997). Comparing with normal 

population ranges for BUA and SOS of 4.3 % and 1.4 %, respectively (Truscott et 

al. 1996), both techniques do not perform as well as established DXA. 

However, clinical trials have shown QUS is able to predict hip fracture risk 

in the elderly, with and without supporting DXA data (Hans et al. 1996), and, 

alone, it may be a stronger predictor of low bone mass than when combined with 

other factors (Langton et al. 1997). As a result, the National Osteoporosis Society 

recommended that QUS may be used to assess hip fracture risk in elderly women, 

with patients with low results being referred for DXA assessment (NOS 1998b). 

However, its relatively poor precision, combined with the low rate of change in 

BUA and SOS over time, means that the technique cannot currently be used to 

assess response to therapy over a period of time (NOS 1998b). 

Research has aimed to establish which physical factors of bone influence 

QUS measurements. BUA is correlated with bone mineral density, as measured by 

DXA (Petley et al. 1987), although not sufficiently strong to suggest that BUA is 

only affected by density. Indeed, BUA is affected more by the structure of 

cancellous bone than by the density (TavakoH and Evans 1992). 

Factors affecting the precision of BUA measurement have undergone 

investigation. No industrial standards exist, and a large variation in BUA between 

15 
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different makes of commercial system has been reported (Evans et al. 1996). The 

assumed linear relationship between attenuation and frequency, typified in figure 

1.4, has undergone scrutiny, since the attenuation slope varies in different 

frequency ranges (Strelitzki and Evans 1996), or it may be a function of receiver 

size (Edwards 1998). The effect of foot positioning was researched by Petley 

(1994) who proposed a Region of Interest on which to calibrate measurements. 

Laugier et al. (1994) proposed a BUA imaging system to overcome positioning 

problems. 

Bone-mimicking materials have been developed by some commercial 

manufacturers, and by researchers, for testing the precision BUA systems. Such 

materials have been made of a mixture of epoxy resin and gelatin (Clarke et al. 

1994) to simulate the acoustic properties of real bone. The performance of these 

phantoms will be discussed further in section 4.2.6. 

Therefore, although QUS technology may offer complementary 

information about bone condition to radiological data, further research into 

underlying influences is required before it may be used in longitudinal studies. In 

particular, the interaction between ultrasound and cancellous bone is poorly 

understood, and the identities of those parameters that may be optimal for 

assessing bone condition, are not known. 

1.6 Presentadom of Research 

1.6.1 Contnbudons 

The definition of osteoporosis refers to the deterioration of the 

architecture of cancellous bone. Ultrasonic waves are influenced by this structure, 

and may help to indicate the strength of bone and fracture risk. Since the 

interaction between ultrasound and cancellous bone is not fully understood, 

examination of an accurate theoretical model is vital if ultrasound is to be applied 

in an optimal way. It is the aim of this thesis to further the understanding of 

ultrasonic propagation in cancellous bone, and the contributions to the field may 

be summarised as follows: 

16 
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® Biot's theory for propagation in fluid-saturated porous media, previously 

investigated by other authors, is considered here in greater detail, where the 

importance of the pore fluid dynamics is highlighted. 

® The existence of two compressional waves, which are predicted by Biot's 

theory in cancellous bone and which had not been reported in the literature 

prior to the start of this work, is confirmed. Wave velocities are observed to 

depend on trabecular orientation, which Biot's theory is unable to model. 

® A second model is introduced here, which uses Schoenberg's theory for 

propagation in parallel-plates to gain qualitative agreement to experimental 

data. 

® The theories of Biot and Schoenberg are compared. This involves the 

introduction of transverse isotropy and anisotropic fluid eflects into Biot's 

theory. 

Throughout the thesis, a number of issue are tackled, including: 

® Can a useful theoretical model be found to describe propagation? 

® What physical factors of the composition and configuration of cancellous bone 

affect the propagation of ultrasonic waves? 

® Can any suggestions be made regarding the improvement of current clinical 

systems ? 

1.6.2 OnOine 

The research is presented as follows: 

Chapter 2 Biot's theory is discussed in detail, the mechanisms of the 

propagation of two compressional waves are addressed, and the theory is used to 

predict wave properties for a model of cancellous bone. 

17 
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Chapter 3 An experimental plan was designed to investigate the propagation 

of two compressional waves in bovine cancellous bone in vitro. The principles of 

ultrasonic measurement are described, and the methods for evaluating wave 

properties, the experimental immersion system used here and the extraction of 

bone specimens are discussed. 

Chapter 4 Experimental results are presented and discussed. The fast and 

slow compressional waves of Biot's theory are observed and measured wave 

properties are compared with theory. Wave properties are observed to be affected 

by the inclusion of marrow in the pores and to vary with angle to the trabecular 

orientatioiL 

Chapter 5 An alternative propagation model for to Biot's theory is presented 

here which accounts for the direction dependence of observed wave properties. 

Schoenberg's theory for propagation in periodically alternating fluid-solid layers is 

applied to a stratified model of cancellous bone. Experimental results are 

compared with predictions from this second approach. 

Chapter 6 The Biot and Schoenberg theories for modelling ultrasound in 

cancellous bone are compared. Anisotropic fluid and frame effects are introduced 

into Biot's theory, to enable the theory to account for wave properties that change 

with angle. These predictions are compared with the available experimental 

results. 

Chapter 7 The implications of the experimental and theoretical findings of the 

previous chapters for clinical bone assessment is discussed. Various suggestions 

are made regarding areas for future work in both theoretical modelling and clinical 

studies. 

18 
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Chapter Two 

The Application of Biotas Theory to 

Ultrasonic Propagation in Cancellous Bone 

2.1 Introduction 

Whilst many experimental studies of ultrasonic propagation in 

cancellous bone have been undertaken by previous authors, relatively little 

research has been carried out into its theoretical modelling. A thorough 

theoretical understanding of the problem may lead to the most appropriate use 

of ultrasound in diagnostic systems. Theoretical modelling also identifies 

relationships that allow factors indicating bone strength to be inferred from 

measurable parameters. 

This chapter reviews Biot's theory and discusses its application to 

ultrasound in cancellous bone. The derivation of Biot's theory is described, 

and the main influences on propagation are discussed, including important 

practical details. 
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2.2 Biot's Theory for Acoustic Propagation in Porous Media 

2.2.1 Acoustics of Porous Media 

Several approaches for modelling acoustic wave propagation in porous 

media have been proposed. One group is known as Rigid Frame models' 

(Zwikker and Kosten 1949, Attenborough 1983, Allard et al. 1992). These 

consider media where the porous solid component (the matrix or frame) has a 

high density or elastic moduli and its movement can be neglected. Rigid Frame 

models have been used to model acoustic wave propagation in the audio range 

through air-saturated foams for noise control applications (Champoux and 

Stinson 1992). However, for media where the movement of the solid frame is 

elastic and contributes to wave propagation, a more comprehensive theory is 

necessary. 

Biot's theory is widely acknowledged as the most general theory for 

propagation in Quid-solid composite systems. Fluid relates to both liquid and 

gas. The theory has been able to model a broad group of physical problems. 

These include fluid diffusion through a porous matrix (Chandler and Johnson 

1981); dispersion and attenuation due to relative fluid-soUd motion (Stoll and 

Bryan 1970); and the experimental observation of two compressional waves in 

water-saturated porous solids (Fiona and Johnson 1980). It has been used 

extensively in the geophysical world for seismic prospecting of oil saturated 

rocks (Bourbie et al. 1987) and in sediments (Stoll and Bryan 1970). 

Furthermore, it has been shown that predictions for Rigid Frame media and 

Biot's theory are equivalent under certain conditions (Geertsma and Smit 

1961, Attenborough 1983). 

The following sections outline the derivation of the theory and discuss 

the main results of Biot's theory. Equations for wave propagation are given, 

which are used in sections 2.4 and 4.4.2 to predict wave properties in 

cancellous bone. 

' A Rigid Frame medium occurs when the bulk modulus of the frame, Kb, is much greater than 
that of the fluid, Kf, and the bulk modulus of the solid material, Ks is greater than its shear 
modulus, N. 
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2.2.2 Derivation of Biot's Theory 

Biot's theory (1956a, b) considers acoustic wave propagation in porous 

elastic media, saturated with a viscous fluid. The average motions of solid and 

fluid are considered separately, creating two effective media. The theory 

predicts that three waves propagate simultaneously: two compressional waves 

(called waves of the first and second kind, or fast and slow waves), and a 

shear wave. The fast wave is a bulk wave, where the fluid and sohd are locked 

together and move in phase. It usually exhibits negligible dispersion. The slow 

wave corresponds to an out-of-phase motion between fluid and solid and is 

usually highly attenuated. 

A saturated porous medium occurs when both fluid and solid phases 

are continuous. Compressional and shear modes propagate in an isotropic 

elastic sohd, whilst only one compressional wave may propagate in a fluid. 

Therefore, it appears logical that three waves will propagate in a fluid 

saturated porous solid if the fluid and solid are continuous. This is a useful, 

but crude image, since the theory reUes on the motion of fluid and solid being 

coupled. This will be discussed in sections 2.2.3 and 2.2.4. 

The theory assumes that the saturating fluid is compressible and 

viscous, whilst the solid is perfectly elastic (that is, it obeys Hooke's law) and 

impervious to the fluid. Fluid and solid displacements are assumed to be small, 

allowing the linearisation of the equations of motion. The theory is valid for 

frequencies where the wavelength is large relative to the size of the 

discontinuities, to allow the medium to be considered as a homogeneous and 

isotropic continuum. This criterion is common to most continuum porous 

media theories (for example, see Schoenberg's theory of Chapter 5), and is 

called the long wavelength regime. This regime should not be confused with 

the Low and High frequency regions of Biot's theory, introduced in section 

2.2.3, the length-scale of which is defined with respect to the dynamics of the 

pore fluid rather than the discontinuity size. 

An abridged derivation of the theory is presented here to demonstrate 

the physical significance and importance of particular terms, and is also useful 

for understanding the modifications to the theory presented in Chapter 6. 
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Maurice A. Biot derived his theory of porous media in four stages. In 

the first stage, the static deformation of a porous medium containing a fluid is 

considered. Using the fundamental assumption of the theory of elasticity, 

where strain and stresss are proportional (Jaeger 1964), relationships between 

stresses in the sohd, (T,y, and fluid, a; and strains in the solid, e,y, and fluid, s, 

are found to be, 

= 2Ne^ + A(e^ + g ^ + e^) + Qe, 

cr^ = + gy, + e=) + 6 ^ , 

+ gjy + ^zz) + 6 ^ , 

O-y, = O-zr = , CTv = a = Qe + Jis. (2.1) 

with the co-ordinate system shown in figure 2.1. The terms N, A, Q and R are 

known as generahsed elastic coefficients. Constants A and N correspond to the 

Lame coefficients in the theory of elasticity (Jaeger 1964), with the latter 

being the shear modulus. Equations (2.1) are for an isotropic porous medium, 

that is, one whose properties do not vary with direction. 

(a) (b) 

y 

(c) 

Figure 2.1 - Co-ordinates for subscripts in eqn (2.1) (a) 7y-; (b) xz-; and (c) xj-planes, 

such that stresses over the //-plane lead to lateral or shear strain in an orthogonal plane. 

Expressions for A, Q, and R are derived in terms of measurable 

parameters (Biot 1962). These parameters can be determined by "jacketed" 

and "unjacketed" compressibility tests. In the former, the specimen is enclosed 

in an impermeable jacket and subjected to an external pressure. The pressure 
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of the fluid is transmitted to the internal pore walls, and analysis of the 

response yields an expression for the bulk modulus of the solid frame, Kb. The 

unjacketed compressibility test involves immersing a specimen in a pressurised 

fluid. The dilatation of the specimen is measured once the fluid has penetrated 

the pores, and an analysis of compressibility yields relations between the bulk 

modulus of the solid material, K,, and the fluid bulk modulus, K,. Using these 

results, the following expressions for A, Q and R may be found. 

/i — 3 ' 

Q = 

R = 

(2 3) 

C2.4) 

In the second stage of the derivation, Biot considers the dynamics of 

the porous medium. Using the displacement of the solid, U, and the fluid, u, 

the acceleration of the solid and the fluid are related to strain forces and mass 

densities in Lagranian terms. By introducing the operators, div U= e, div u = 

s, curl U - w, and curl u == Q, for compressional strains in fluid and solid (s 

and e, respectively) and shear strains in fluid and solid (vv and Q, respectively), 

dynamic relationships are used to obtain equations of the propagation of 

clastic waves. This results in two sets of coupled wave equations. 

+ /)22^) 

Nv'«' = ^(p„^+pun) 

0 = + 

(2.5) 

(2.6) 

23 



ERHubbuck,2000 Chapter 2 : Biot's Theory 24 

where equation (2.5) represents compressional propagation, whilst equation 

(2.6) represents shear propagation. In the first set, the term P = A + 2N, and 

mass densities, Py, are defined as 

Pii + Pi2 — (l P)p^' Pi2 + P22 — PP/' 

P12 ~ (1 ~ oOPP/' 

(2/% 

(2.8) 

for fluid density pfi solid density, ps, and interconnected porosity, p. The term 

Pi2 is the cross-mass density, which describes the inertial drag that the fluid 

exerts on the solid as the one is accelerated relative to the other. The term, a, 

is the tortuosity and is a crucial parameter in Biot's theory. The significance of 

the cross-mass density and the tortuosity will be discussed in section 2.2.4. 

Finally, equations (2.5) and (2.6) may be solved by assuming a 

harmonic pressure wave, to yield expressions for the complex velocities as. 

Vf, 
A ± 

.1/2 

(2.9) 

(2.10) 

where A = f / ) 2 2 + a p „ - 2 g / ) , 2 . C2 11) 

Equation (2.9) governs the propagation of two compressional waves, known 

as waves of the first and second kind, or fast and slow waves, respectively. 

Equation (2.10) describes shear wave propagation. The real part of the root of 

equations (2.9) and (2.10) provides the phase velocity in metres per second. 

Absorption, in Nepers per metre, due to viscous damping at the fluid-solid 

interface, is found &om the imaginary part of the wavenumber, qfau, sion shear = 

m / Vfast, slow, shear- Viscous drag causes a phase lag between fluid and solid, 

hence an imaginary term, jo?. 

It is often useful to consider that the wave of the first kind propagates 

predominantly in the solid frame. Similarly, it may be imagined that the wave 
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of second kind propagates mainly in the pore fluid, and is influenced by factors 

associated with fluid dynamics in a pore or tube. This approximation is 

generally true of Rigid Frame media, such as air-saturated foam, where the 

densities and moduli of fluid and solid differ by a few orders of magnitude. 

The properties of bone and marrow, however, are of the same order of 

magnitude (shown in Table 2.1, later), but the Rigid Frame propagation 

approximation is still a useful one. The following sections discuss additional 

factors important to propagation. 

2.2.3 Fluid Flow in Porous Media 

During propagation of the compressional wave of the first kind, fluid 

and solid are locked together and move in-phase. This locking arises through 

two dynamic coupling forces: viscous and inertial. The extent of the relative 

motion required for the propagation of the wave of the second kind depends 

on the ability of the fluid to move freely within the pores, and on the 

frequency of the incident wave. Biot's theory assumes for low frequencies, 

that the motion of the pore fluid, relative to the soUd, follows PoiseuiUe flow. 

Poiseuille flow describes the motion of a viscous fluid in a tube,of 

radius, r, and is characterised by a paraboMc velocity gradient, as in figure 2.2 

for flow between parallel plates (Daily and Harleman 1966). Macroscopic fluid 

particles move in imaginary layers in the x-direction. Each layer has a different 

velocity, from zero at the boundary, to a maximum at the centre. 

Solid 

Figure 2.2 - Poiseuille flow in a tube, radius r, of parallel sides; with fluid velocity, u, and 

solid velocity, U . 
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If the wall oscillates harmonically with expij&f), a disturbance will be 

set up in the fluid. In general, at a distance perpendicular from the wall, y, the 

velocity parallel to wall, ii, can be expressed as, 

M exp 
277 / 

y CL12) 

for maximum velocity, 5 shear viscosity, t); fluid density, p/; and angular 

frequency, m (Biot 1956a). Equation (2.12) describes the relationship between 

the flow in adjacent imaginary layers, depicted in figure 2.2, in the ^/-direction. 

Such behaviour has previously been interpreted as a harmonic wave in the y-

direction, the amplitude of which is subject to exponentially decreasing 

damping with increasing distance from the wall. For dilferent profiles of 

viscous flow, boundary layers are often defined by various criteria, such as 

that distance within which the velocity does not exceed a certain percentage of 

its maximum value (Sherman 1990). For the case of Poiseuille flow in a 

porous medium, the characterising boundary layer is known as the viscous 

skin depth, d ,̂ and is expressed^ as. 

d,=(2%/apYy". (2J3) 

Equation (2.13) shows that the viscous skin depth is dependent on frequency. 

Indeed, Poiseuille flow only occurs for frequencies where the viscous skin 

depth, ds, is greater than the pore radius, r. The paraboUc velocity profile 

breaks down where </, = r, which occurs at the critical frequency, 

Therefore, the viscous skin depth may be used as a yardstick for 

acoustic propagation porous media, and its influence on predicted absorption 

^ Strictly, is the distance over which the vorticity decays to zero. Vorticity is a vector field 
describing the rotation of fluid particles, relating the flow of adjacent layers (Sherman 1990). 
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is discussed in section 2.2.4. The critical frequency will be lower for a medium 

with large pores, than one of smaller pores, for the same pore fluid. 

Furthermore, the critical frequency divides propagation into two frequency 

regimes: Low and High. 

Poiseuille flow occurs at frequencies below the critical frequency, 

where the viscous skin depth is large compared with the pore radius, r. The 

viscosity of the fluid causes the fluid motion to lock on to the solid motion, 

enabling the fast wave to propagate. However, since the slow wave involves a 

relative motion of fluid and solid, it becomes over damped, and is described by 

a diffusion equation, rather than a wave equation (Biot i956a)^: 

= (2.15) 

where ^ is a normal mode co-ordinate (of pressure, particle velocity) and Cz> is 

the diffusion constant (Johnson and Fiona 1982). This means the slow wave 

will not propagate below the critical frequency. 

faj High Frequency Range : ds <r; co> cOcrit 

Above the critical frequency, Poiseuille flow breaks down where the 

viscous skin depth is smaller than the pore size. Consequently, relative motion 

of fluid and solid is not impeded by viscous drag, which enables the slow wave 

to propagate. Inertial coupling dominates viscous coupling, and enables 

locking between fluid and soUd for fast wave propagation. Hence, at 

frequencies above the critical frequency, both fast and slow compressional 

waves propagate and may be observed. Figure 2.3 summarises the frequency 

regions. 

^ During difRision, fluid particles Aom high pressure to low, owing to a pressure gradient. 
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Long Wavelength Regime 
A, > a, r A, = a, r A, < a, r 

BIOT'S THEORY 

Low Frequency ] High Frequency 
Region | Region 

I 
ds > r ds = r ds < r 

merit, critical frequency frequency 

Figure 2.3 - Conditions determining the theoretical frequency regions of Biot's theory. 

2.2.4 Inerdal Coupling and Tortuosity 

Inertial coupling, or mass coupling, dominates viscous effects at high 

frequencies, and may be regarded in the following way. When a solid body 

accelerates in a fluid, it drags its own mass plus an additional mass of 

surrounding fluid (Daily and Harleman 1966). The extent of this coupled mass 

win depend on the shape and size of the solid body; or, in a porous solid, on 

the porosity and surface area of the solid matrix. In Biot's theory, the effect is 

represented by the cross mass density, p/2 and the tortuosity, a . 

The tortuosity, a , is a critical parameter in the theory. It is strictly 

defined as the ratio of the length of the winding path through the pores, to the 

length of the path if it were straight. It therefore represents the fractional 

deviation from a straight path, and is always greater than unity. Various 

expressions have been derived for its evaluation in practice, many of which 

relate to the geometry of the matrix. However, other factors may cause a 

deviation in the path of fluid flow through the pores, and hence some 

expressions include factors of fluid motion. 

If the dynamics of the fluid are contained in the definition, they may 

add a frequency-dependent term. Thus, the cross-mass density of equation 

(2.8), may be rewritten as being dependent on frequency. 
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= (2.16) 

where a(m), the frequency-dependent tortuosity, defines the entire dynamics 

of the pore fluid, incorporating inertial and viscous effects. Such effects may 

be analysed by considering fluid motion in a Rigid Frame porous solid. 

For a harmonic pressure gradient, VPoe '""' (constant, Po), applied to a 

porous medium, the linear (small amplitude) equation of motion of fluid in the 

pores is, 

(2.17) 

where u is fluid velocity, P is porosity, p/ is fluid density, and a(m) is the 

frequency-dependent tortuosity. The product, a((o)p/, represents the added 

fluid mass, coupled by inertial effects. Darcy's law states that the rate of flow 

through a porous medium is proportional to the pressure gradient causing that 

flow, 

= (2.18) 
1 

where t] is viscosity and k is the permeability (in m^), which characterises the 

rate of fluid flow. The permeability is related to the tortuosity by 

(Z(a)) = y ^ , (2.19) 
kcop j-

which may be alternatively expressed as. 

= or, + , (2.20) 

where a=„ is tortuosity at the limit of infinite frequency, that is, it only relates 

to geometry. The product, bF(y), governs attenuation, where b = The 
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function, F(y), measures the deviation from Poiseuille flow as a function of 

frequency, and accounts for changes in damping when the skin depth becomes 

less than the pore radius. Its definition also describes the geometry of the 

medium, whilst y depends on the ratio of the pore size to skin depth 

(Attenborough 1987), defined elsewhere. Johnson et al. (1987) evaluated 

equation (2.20) in terms of measurable parameters. 

<z(dp) = or. 1 — /(D/Tf/To, (2: :Z1) 
V y ^ 

where a is the pore diameter; kg is the d.c. permeability (for static conditions 

without a fluid pressure gradient). Equation (2.21) is also known as the JKD-

tortuosity. Berryman (1980) derived a purely geometric tortuosity for a matrix 

of fused spheres, independent of density, and related to a structure factor, S, 

= 1 -.2(1 - 1 / /O = . (2.2:!) 

Equation (2.22) has often been used as the first evaluation of tortuosity in the 

application of Biot's theory (for example, for cancellous bone, Williams 1992). 

An alternative definition of tortuosity for a layered structure, is discussed in 

section 6.3.1. 

In practice, the critical frequency is a transitional bandwidth. Johnson 

and Fiona proposed a rule-of-thumb for a viscous frequency, (osseous, above 

which the slow wave may be experimentally observed (Johnson and Fiona 

1982). This occurs at frequencies where the viscous skin depth, ds, is much 

less than the pore radius, r. 

dPvMcma = (2 2̂ 3) 

for the scaling constant, ^ % 0.01 (Johnson and Fiona 1982). The viscous 

frequency is therefore a number of orders of magnitude higher than the critical 

frequency. 
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2.2.5 Conditions for Slow Wave Propagation 

Biot's theory introduces the propagation phenomenon of the wave of 

the second kind, or slow wave. This wave propagates mainly in the pore fluid, 

and is therefore dependent on those factors relating to fluid flow. The previous 

section showed that the ratio between pore radius and viscous skin depth is a 

crucial factor. The conditions for effective slow wave propagation are: 

• the continuity of fluid and solid phases and a high permeability; 

® a high frequency content of incident wave; 

• a large pore size; 

• a low fluid viscosity. 
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2.3 A Blot Model for Cancellous Bone 

2.3.1 Historical Studies 

McKelvie and Palmer first applied Biot's theory to ultrasound in 

cancellous bone in 1987. Since then, a number of researchers have 

investigated its ability to predict wave properties (McKelvie and Palmer 1991, 

Williams 1992, Lauriks et al. 1994, Williams et al. 1996, Hosokawa and Otani 

1997). Results show that velocity may be correctly predicted when input 

parameters are independently evaluated (Williams 1992, Lauriks et al. 1994, 

Williams et al. 1996, Hosokawa and Otani 1997). However, a discrepancy 

between measured attenuation and predicted absorption has been reported on 

more than one occasion (Williams et al. 1996, Hosokawa and Otani 1997). 

The reasons behind this inconsistency will be discussed at length in section 

3.3. Biot's theory predicted qualitative changes in attenuation gradient with 

porosity (McKelvie and Palmer 1991), but quantitative agreement was poor. 

Lakes et al. (1983) reported observing the two compressional waves in 

cortical bone, although this result has not since been independently verified. 

At the outset of this work, the slow wave had not been observed in cancellous 

bone. This marked a significant omission to the evidence supporting the 

applicability of Biot's theory. Observations detailed in following chapters 

confirm the existence of the slow wave for certain trabecular geometries. First, 

this section describes the estimation of wave properties using a Biot model for 

cancellous bone. 

2.3.2 Model Input Parameters 

The input parameters of a theoretical model generally relate physical 

properties of the system to quantifiable parameters, which allow the practical 

interpretation of experimental data. If these variables are accurately known, a 

straightforward comparison between experiment and theory may be made. 

However, in many circumstances, input variables may be undetermined, or 
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determined to an insufficient degree, and the behaviour of the model must be 

estimated. One method for estimating the predictions of Biot's theory is 

described in section 2.3.3, whilst the evaluation of the input parameters is 

considered here. 

Accurate prediction of the Biot wave speeds and absorption for 

cancellous bone requires knowledge of the properties of the constituents and 

the porous architecture. The values of fourteen parameters must be known. 

The version of Biot's theory applied here uses the JKD tortuosity term of 

equation (2.21), which requires more knowledge of the structure and fluid 

properties than the purely geometric term of equation (2.22), used by previous 

authors (Williams 1992, Hosokawa and Otani 1997). 

(a) Material and Mechanical Properties of Cancellous Bone 

The material properties of cancellous bone have not been as widely 

investigated as those of cortical bone. However, the composition of both types 

is approximately the same at the collagen level, and, therefore, it is widely 

accepted that the properties of individual trabecula are the same as those of 

compact bone (Gibson and Ashby 1988). 

The density of human cortical bone is 1800 - 2000 kg/m^, whilst that of 

individual trabecula average 1820 kg/m^ (from summaries by Gibson and 

Ashby 1988; Duck 1990). A value of 1960 kg/m' for bovine bone has been 

used in previous Biot models (Williams 1992, Hosokawa and Otani 1997). 

Understanding the relationship between density, microstructure and 

strength in cancellous bone is beneficial, first, for fracture risk assessment; 

second, for prosthetic design; and, finally, for determining how stress across 

joints cause damage during osteoarthritis. Furthermore, an appreciation of the 

mechanical behaviour of cancellous bone is useful for predicting its response 

to acoustic waves. Both cortical and cancellous bone are mechanically 

anisotropic, that is, their behaviour under tension and compression varies with 

direction. Anisotropy in cortical bone arises from the alignment of 

hydroxyapatite fibres at the ultra-structural level, whereas in cancellous bone, 

it is mainly due to the trabecular structure. The Young's modulus of human 

33 



E R Hubbuck, 2000 Chapter 2 : Blot's Theory 34 

cortical bone along the longitudinal axes is 18.1 - 22.6 GPa, and perpendicular 

to this, is 10.2 - 11.5 GPa (Gibson and Ashby 1988, Duck 1990). 

A problem arises in modelling propagation, because Blot's theory 

assumes cancellous bone to be isotropic, where realistically, it is not. Previous 

authors have tackled this problem by modelling wave propagation only in the 

direction in which the solid Young's modulus, Es, and the Poisson's ratio, v ,̂ 

are evaluated. The problem of modelling waves in anisotropic media will be 

discussed further in Chapter 5 and 6. 

The mechanical behaviour of cancellous bone is typical of a cellular 

material and was investigated by Gibson (1985). Cell deformation under stress 

depends on three factors: the openness of the cells; the porosity; and the 

properties of the cell walls. Standard techniques for the analysis of synthetic 

foams and honeycombs, have been employed to investigate the mechanics of 

cancellous bone. Gibson showed the relative density of cancellous bone was 

proportional to its relative Young's modulus; 

= C ( p / / ? j \ (2.24) 

for Young's Moduli, E and E^, of the total medium and solid component, 

respectively; densities p and p., of the total medium and solid components, 

respectively; and constant, C. The index, n, takes the value 2 for open cells, 

and 3 for closed cells, and has been evaluated as 1.23 for cancellous bone 

(Williams 1992). The ratio of densities, ( p / p s ) , is equivalent to the volume 

fraction of the solid, or (1-P), for porosity, p. The Young's modulus of the 

cancellous frame, Eb, can therefore be found from equation (2.24) as, 

JS* =.2,(1 (2.:z5) 

Equation (2.25) may be used to evaluate the bulk modulus of the solid, 

Ks (i.e. the material of individual trabecula, taken to resemble cortical bone), 

and the bulk and shear moduli of the cancellous frame, as Kh and Nf,, 

respectively, from standard expressions for an isotropic medium (Jaeger 

1964), as, 
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JE, = E, /3(1 (2.2<S) 

JC* == jS-* /3(1 -2,/»), C2.27) 

TV* =.26 /:2(1 k2i/*), (2.:!8) 

where v, and v* are the Poisson's ratio of the sohd material and frame, 

respectively. Poisson's ratio is the quotient of lateral contraction to 

longitudinal extension under lateral stress (Jaeger 1964), and is therefore 

direction dependent. Along the long axis of in bovine cortical bone its value is 

0.32 - 0.36, whilst it is 0.4 - 0.5 perpendicular to this (Duck 1990). 

Bone marrow is classified as either red or yellow. Yellow marrow fills 

the shafts of cortical bones and is composed principally of fat cells, supported 

by a delicate vascular connective tissue (McFaydean 1953). Its density is 923 -

1027 kg/nf and its amount increases with age. Highly vascularised red 

marrow, containing fewer fat cells, fills the trabecular cavities and its density 

lies in the range 992 - 1047 kg/m\ Its bulk modulus was previously estimated 

as being similar to that of fat at 2.0 GPa (McKelvie and Palmer 1991). 

Little is known of the mechanical properties of bone marrow or its 

response to ultrasound"*. The viscosity of marrow from bovine radii is 

dependent on temperature (Bryant et al. 1989), and its value can vary from 

0.25 at 20°C to 0.05 Pa.s at 37°C. 

(c) Structural Parameters 

Defining the structure of cancellous bone is a complex task. The field 

of biomechanics has proposed several geometric models, some of which will 

be discussed in section 5.2, in addition to a measure of local anisotropy, 

known as the fabric ellipsoid (Turner and Cowin 1987). By contrast, acoustic 

propagation models such as Biot's theory require knowledge of parameters 

Hrazdira (1965) found that ultrasound corrupted marrow cell suspensions by mechanical effects 
and the production of free radicals. An ultrasonic response of this sort is not considered here. 
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unique to dynamics, such as tortuosity and permeability. However, parameters 

such as the porosity and pore size are common for analysis in both fields, and, 

in practice, the assessment of the trabecular micro structure has been 

performed using image processing and topological classification (Melhsh et al. 

1989, Croucher et al. 1994). Such methods evaluate mean trabecular plate 

thickness (MTPT) and separation (MTPS), as well as information regarding 

connectivity. 

The porosity of young healthy human cancellous bone has been 

estimated as around 77 %, rising to around 88 % in older, osteoporotic bone 

(Mellish et al. 1989). It should be noted that it is the pore radius, not diameter 

or plate separation which is considered by Biot's theory, and data on the 

MTPS (that is, pore diameter, a), suggests the pore radius in normal human 

bone may be estimated as 285 ± 50 pm, whilst that of osteoporotic bone may 

be taken as 455 ± 130 pm. 

Williams et al. (1996) established empirical expressions for the 

tortuosity and static permeability of cancellous bone. The authors measured 

the tortuosity of cancellous bone fi-om the electrical conductivity after marrow 

removal. The ratio of conductivity of saline alone to the conductivity of the 

sample saturated with saline, provides a geometrical factor which is 

proportional to the tortuosity, a*. The authors measured the permeability 

using Darcy's law (equation (2.18)) and a gravity-fed permeability chamber. 

Such analysis yielded the expressions, 

cr^=1.2 + (72.6xlO^.M7r^), (2.29) 

=44 9.)?% (2.30) 

where MTPS is the mean trabecular plate separation in microns. 

Evaluating all model parameters for a specific sample of cancellous 

bone, for the purposes of comparing theory with experimental results, is 

problematic. Therefore, established values from literature are used and, since 

many of the parameters in Table 2.1 may take a value within a given range, the 

extreme limits of the behaviour of the model are estimated. The following 

section discusses how the uncertainty in the prediction may be evaluated. 
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Table 2.1 - Input parameters for Biot's theory for a model of propagation in 

marrow-saturated healthy and osteoporotic cancellous bone at 20°C. 

Parameter Value Source and Detail 

yWepeWgMf & 

Density of solid (cortical), 1800- 2000 kg/m^ Gibson & Ashby (1988) 

Density of fluid (marrow), p/ 992 - 1047 kg/m^ Duck(1990); unknown species 

Young's modulus of solid, 18.1 -22.6 GPa Duck(]990) trabecular axis 

porosity, P (a) 0.77 ± 0.05 

(b) 0.88 + 0.03 

female 19-40 yrs 

" 61-90 yrs, Mellish 1989 

pore radius, r (a) 285 ± 50 pm 

(b) 455 ± 130 pm 

female 19-40 yrs 

" 61-90 yrs, Mellish 1989 

Bulk modulus of fluid, ̂  2.2 GPa McKelvie (1991); as water 

Viscosity of fluid, T| 0.15 Pa.s Bryant (1989); bovine at 20°C 

Index of power law, w 1.23 Williams (1992); bovine tibia 

Poisson's ratio of solid, 0.32 Gibson (1988); bovine 

Shear modulus of bone, % 5)und Aom equation (2.28) 

Poisson's ratio of 6ame, Vf, equivalent to v. 

tortuosity, found from equation (2.22) 

permeability, 6)und 6om equation (2.30) 
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2.3.3 Dealing with Uncertainties in Predictions 

If values of the input parameters to a model are all known, subject to 

some error, the simplest method for establishing the uncertainty in the 

prediction is to find the upper and lower bounds that the model can take. 

These extreme values may be found by determining the appropriate 

combination of input values, which may be a complex task if performed by 

hand. In practice, the use of optimisation algorithms simplifies this task. 

Optimisation is part of almost every simulation or modelling situation 

in engineering. It implies either minimising or maximising. Since the maximum 

of a function, h(x), occurs at the same place as the minimum of -h(x), 

however, it is possible to consider only minimisation. In finding the maximum 

and minimum bounds of a theoretical prediction, the function h(x) being 

optimised is the output of the model itself 

Numerical methods that perform optimisation may use the principle 

that derivatives of the function are zero at the minimum, or they may look for 

the steepest gradient of descent towards the minimum (Kincaid and Cheney 

1990). Classic methods, such as Newton's method (Kincaid and Cheney 

1990), adjust one variable at a time. However, they are slow for complex 

problems. Faster and more sophisticated methods, such as genetic algorithms 

(Kirkpatrick 1983), allow many variables to change at once, and may allow the 

input values to be subject certain constraints. 

There are established methods and computer algorithms for those 

problems where both the function and input constraints are linear. One 

example is the Simplex method (Kincaid and Cheney 1990), which is discussed 

further in Appendix A.III. In practice, multivariable optimisation problems can 

be solved using software that represents data as matrices, such as MatLab. 

This method has been programmed in the software package MatLab using 

standard commands. 

Optimisation may be used to evaluate the upper and lower bounds of 

wave properties predicted by Biot's theory. Although there are over a dozen 

parameters in the Biot model, not all of those listed in Table 2.1 will 

contribute to determining the value of the bounds. Only those which can vary 
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within a given range are taken as input parameters. The optimisation searches 

iteratively by varying the inputs and monitoring that the value of the model 

decreases, until the minimum bound is found. 

Parameters headed Variable in Table 2.1, are independent with respect 

to other variables in the theory, and may take a value within the range given. 

These are the fluid and solid densities, p/ and p ,̂ respectively; the Young's 

modulus of the sohd, Ei, the porosity, P, and the pore radius, r. These 

parameters are those which may be varied during optimisation. For those 

parameters listed as Fixed, there is only one value they can take, generally 

because their value is estimated or is the only one quoted in the literature. 

These include the fluid bulk modulus, the viscosity, and the index, n. The 

Poisson's ratio of the frame is assumed that same as that of the solid, and so is 

fixed. Those parameters listed as Dependent may be evaluated from empirical 

or theoretical equations. In this model, sohd and frame moduli and the shear 

modulus are be found from equations (2.25 - 2.28) and the tortuosity and 

permeability are be found from equations (2.22) and (2.30), respectively. 

Therefore, of the original fourteen parameters, only five may be varied within 

the given range to find the bounds of theory. These are fluid and solid 

densities, p/and p.,, respectively; Young's modulus of the solid, Ei, porosity, P; 

and pore radius, r. 

To use the Simplex method to find the bounds of the predictions, it is 

necessary to establish that the function (the equations of Biot's theory) and the 

constraints (input variable limits) are linear. Linearity was established for 

Biot's theory and the method used to establish this is outlined in Appendix 

A.III. Once linearity was established, the Simplex method was used to find the 

bounds of the Biot's theory, allowing the Variable parameters in Table 2.1 to 

alter within the given ranges. 
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2.4 Prediction of Wave Properties for Cancellous Bone 

2.4.1 Mscous Skin Depth and Cridcal Frequency 

Before predictions for wave properties are presented, it is useful to 

consider Biot's defining frequency limits for a model of cancellous bone. In 

particular, it is valuable to calculate the critical frequency, (Ocrit- (the intercept 

of Low and High frequency regions in Biot's theory), since this parameter 

represents the frequency above which two compressional waves will propagate 

in that medium. The critical frequency is the frequency where the viscous skin 

depth equals the pore radius, r. In addition, the presence of a pore size 

distribution in real bone will yield a critical bandwidth. 

Figure 2.4 shows the viscous skin depth, ds, of equation (2.13), versus 

frequency for pore fluids of marrow at 20 and 37°C (for viscosity, t] as 0.15 

and 0.05 Pa.s, respectively), and for water at 20°C (ti = 0.001 Pa.s). The fluid 

density was 1000 kg/m^ for all cases. Figure 2.4 also shows the mean pore 

radii for normal and osteoporotic bone, as given in Table 2.1, with pore size 

distribution given by the error bars. The critical bandwidths and their mean 

values for the three fluid conditions were evaluated from Figure 2.4, and are 

summarised in Table 2.2. 

Clearly, the greater the fluid viscosity, the higher the critical frequency, 

and the greater the critical bandwidth. Osteoporotic bone yields lower critical 

frequencies for the same fluid conditions than healthy bone, although the 

larger pore size distribution in the former does not necessarily give a larger 

critical bandwidth, owing to the curvature of the graphs. Consequently, these 

results provide the frequency limits below which two compressional waves 

will theoretically propagate in cancellous bone with these fluid conditions. It 

may be concluded that the two compressional slow waves will propagate at all 

ultrasonic frequencies (defined as above 20 kHz) in cancellous bone with pore 

radius equal to, or greater than 0.285 mm. It should be noted that, according 

to Johnson's rule of thumb (equation (2.23)), the frequency above which the 

slow wave will be easily observed in practice, will be a few orders of 

magnitude higher than this. 
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Table 2.2 - Summary of critical frequencies for propagation through normal 

and osteoporotic human cancellous bone saturated with various fluids. 

Critical Bandwidth (and Mean) in Hertz 

Normal Osteoporotic 

Water at 20° C 3.3 - 6.9 (4.5) 0.1-2.9 (1.4) 

Marrow at 37°C 156 - 341 (224) 48 - 148 (76) 

Marrow at 20°C 490 - 1042 (705) 143 -451 (231) 

, x10 

Water at 20oC 
Marrow at 37oC 
Marrow at 20oC 
Pore size ; Normal 
Pore size : Osteoporotic 

10 10 

Frequency (Hz) 

Figure 2.4 - Viscous skin depth versus frequency for marrow at 20°C & 37°C, and water at 

20°C, with mean pore radii for normal and osteoporotic bone. 
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2.4.2 Phase Velocities and Attenuation 

Phase velocities and absorption of fast and slow waves were predicted 

using the values in Table 2.1 and equations (2.2 - 2.4), (2.7), (2.9 - 2.11), 

(2.16), (2.21 - 2.22), and (2.25 - 2.28). The model was evaluated for marrow-

saturated cancellous bone at 20°C. Figure 2.5 shows the phase velocities of 

fast and slow waves and Figure 2.6 shows attenuation plotted over a wide 

frequency range. 

The effect of the critical frequency, &crit, may be seen in figures 2.5 (a) 

and (b) and figures 2.6 (a) and (b), which clearly show a bi-phasic response 

over the frequency range. These phase velocity and attenuation curves both 

show a knee between low and high frequency regions. This juncture 

corresponds to the critical frequency, or, rather, to a critical bandwidth. 
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Figure 2.5 - Maximum and minimum phase velocities of fast and slow waves, predicted by 

Biot for marrow-filled cancellous bone at 20°C. 
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Figure 2.6 - Maximum and minimum absorption of fast and slow waves, predicted by Biot 

for marrow-filled cancellous bone at 20°C. 
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2.5 Summary and Conclusions 

This chapter has presented a detailed discussion of the application of 

Biot's theory to ultrasonic propagation in cancellous bone. The equations of 

Biot's theory were presented, and the evaluation of input parameters for a 

model of cancellous bone was described. The effects of frequency, structure 

and mechanical properties on propagation were discussed, and the phase 

velocity and absorption of the two compressional modes were predicted over a 

large frequency range. 

This analysis has lead to the following conclusions regarding the 

practical observation of two compressional waves in cancellous bone at 

ultrasonic frequencies. 

• Theoretically, both fast and slow compressional waves will propagate 

at ultrasonic frequencies in marrow-saturated cancellous bone. 

• The open and permeable structure of cancellous bone will aid slow 

wave propagation at ultrasonic frequencies. 

During the course of the research for this thesis, Hosokawa and Otani 

(1997) reported observing two compressional waves in cancellous bone for 

propagation in the direction of the trabeculae. Their experiments were similar 

to those being carried out for this study at the same time, the experimental 

methods of which are detailed in the next chapter. 
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Chapter Three 

Procedures for the Measurement of 

Ultrasonic Properties in Cancellous Samples 

3.1 Introduction to Experimental Methods 

Whilst the theoretical understanding of ultrasonic propagation has much in 

common with that of acoustic propagation at frequencies below 20 kHz, the 

practical investigation of the phenomenon has a number of distinctive 

characteristics. Ultrasonic transducers utilise materials capable of oscillating at 

high frequencies, and measurements are often performed under water, or using a 

coupling medium. 

Chapter 4 will later present the results of a series of experiments, designed 

to investigate ultrasonic waves in cancellous bone in vitro. This study aims to 

examine the correlation of measured wave properties with predictions from Biot's 

theory, introduced in the previous chapter. A number of established experimental 

and analytical techniques are utilised in the research. 

This chapter first describes the principles of ultrasonic measurement, 

including the generation and reception of high frequency waves, and the causes of 

deviation from ideal acoustic behaviour. The evaluation and interpretation of 

measured attenuation is considered in some detail. Next, attention is turned to the 

evaluation of phase velocity from experimental data using spectral processing. The 

apparatus used in the experimental studies is described, the performance of which 

is characterised in various tests. The chapter concludes by describing the 

preparation and classification of specimens of bovine bone. 
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3.2 Principles of Ultrasonic Measurement 

3.2.1 Piezoelectric Transducers 

Ultrasonic waves are most commonly generated by the conversion of a 

fluctuating electrical signal to mechanical oscillations by a transmitting transducer. 

The process is reversed in the measurement of ultrasound by a receiving 

transducer. Such conversion is often achieved using semiconductor materials that 

exhibit the piezoelectric phenomenon. 

The piezoelectric effect occurs in materials where the application of an 

electric potential causes a mechanical distortion. The phenomenon is reversible, 

such that, if pressure is applied to a sample of such a material, an electrical 

potential arises between its opposing faces. Transducers containing piezoelectric 

elements are widely used to generate and detect ultrasonic waves, being composed 

of materials such as lead zirconate titanate (PZT) and polj^inylidenefluoride 

(PVDF). Applying an oscillating voltage to the faces of such a material produces 

mechanical fluctuations, which, when coupled to a propagation medium, cause 

acoustic waves to be generated. 

The practical performance of piston-type piezoelectric transducers, of the 

type used in these studies, is now discussed. 

3.2.2 Ultrasonic Generation 

In general, acoustic waves in air spread out spherically from a point 

source. However, the sound field from a plane piston oscillator is more complex, 

and has been investigated using Huygen's principle (Leighton 1994). Huygen's 

principle treats each wavefront (the surface connecting points of the same phase) 

as an array of point sources, which radiate secondary spherical wavelets. The 

position of the wavefront at some time later, is the envelope of these secondary 

wavelets. 
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If the size of oscillating source is small compared to the wavelength, the 

sound field is uniform. In practice, however, ultrasonic sources generate fields 

with wavelengths comparable with the source dimensions, and so the acoustic 

field is far more complex. The circular surface of a piston-type transducer can be 

imagined to be an array of point sources, and, &om Huygen's principle, the 

wavelets emerging Irom these distributed sources interfere, producing diffraction. 

Hence, piston transducers project a field that varies spatially, the variation 

of which depends on the transducer geometry and the excitation. For a piston 

transducer in the jg;-plane, the intensity, Iz, of a continuous wave field at a 

position, z, in the on-axis z-direction, relative to the maximum intensity, lo, is. 

In 
- 2 ^ 

sm — (3.1) 

for wavelength, X, and piston radius, Up (Wells 1977). 

Figure 3.1 shows the on-axis field pattern, fi-om equation (3.1), of a piston 

transducer of 2.5 cm diameter at z = 0, emitting a continuous wave at 1 MHz. The 

field contains a series of maxima and minima, whose separation increases with 

distance from the transmitter. The position of the last maximum is taken as the 

transition between the so-called near and far fields, often termed the Fresnel and 

Fraunhofer difiraction regions, respectively. For figure (3.1), the last maximum 

occurs at z = 0.105 m. Whilst the near field (z <0.105 m) is highly complex, plane 

wave propagation may be assumed to occur in the far field (z > 0.105 m). 

m OA 

0.1 0.2 0.3 0.4 
Distance from Transducer (m) 

Figure 3.1 - On-axis beam pattern for a radiating piston of 25 nun-diameter at IMHz. 
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Transient pulses do not produce the same interference pattern as 

continuous waves, and temporal information is required to predict a transient field 

(Beaver 1974). However, it may be assumed that transient excitation affects the 

amplitude variation in the near field more significantly than the far field (Kinsler et 

al. 1982). The on-axis position of the transition between near and far fields for a 

transient response may be approximated as that location predicted in the 

continuous case, by equation (3.1). Section 3.3.2 will consider a case where it is 

beneficial to probe a test object with the far field in practical measurement. 

3.2.3 Ultrasonic Detection 

The voltage output of a piezoelectric receiver is proportional to the 

average pressure over its sensing surface. Transducers of finite size may spatially 

average the pressure of an incident signal. For example, if a receiver is used to 

measure the maximum pressure at a focus smaller in area than the sensing surface, 

it will sense the peak, plus surrounding regions of lower pressure (figure 3.2). This 

variation wiU be averaged over the sensing area, producing a signal output lower 

than the actual peak pressure present (Leighton 1994). The transducer may only 

measure the true peak if that pressure is sustained over the whole sensing surface. 

The averaging of signal properties is considered later in section 3.3.2. 

Pressure 

Transducer 

Sensing element 

Distance 

Figure 3.2 - Source of spatial averaging during measurement (Leighton 1994). 
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3.2.4 Non-Hmear Propagation 

Linear wave propagation assumes fluctuations in particle velocity are much 

smaller than the speed of sound, and fluctuations in density are negligible 

compared to equilibrium density (Kinsler et al. 1982). However, particle 

displacements cause local fluctuations in density in sound fields of sufficient 

amplitude (often termed finite amplitude), such that density and pressure 

variations do not satisfy the linear wave equation. There are two possible sources 

of non-ideal behaviour: convection and material non-linearities (Leighton 1994). 

Convection non-linearities occur if the particle velocity, v, is a significant 

proportion of the wave speed, c. For high peak pressures, parts of the wave wiU 

propagate with the combined speed, (v + c). This causes the peaks to travel faster 

than other parts of the wave, whilst the troughs lag (Leighton 1994), in the 

manner shown in figure (3.3) for a sinusoid. Material non-linearities occur when a 

medium is compressed, causing its bulk modulus to increase locally. This leads to 

an increase in the local speed of sound, which enhances the peak-trough shift. 

Both forms of non-linearity cause the waveform to distort, in the manner 

shown in figure 3.3. As a sinusoidal wave propagates through the medium, local 

effects cause parts of the wave to travel faster than others, skewing the sinusoid. 

The waveform becomes sawtooth at a distance fi-om the source known as the 

discontinuity length. The shock which occurs causes increased absorption by 

redirecting energy from the fimdamental frequency to harmonics, which are 

attenuated more strongly. After the discontinuity length, the amplitude of the 

shock decreases. Further absorption occurs after this {old age), and the waveform 

becomes a small amplitude sinusoid. 
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Pressure Discontinuity 
Lengtli 

f] 

Old Age 

Transducer 

Figure 3.3 - Distortion of a sinusoidal wave due to non-linear propagation (after Leighton 1994). 

The presence of non-linear propagation gives rise to various consequences 

for the practical experiment. Non-linear waveform distortion may interact with 

diffraction eifects, causing a sinusoidal pulse to become non-symmetrical about 

the zero axis: generally, the peak pressure is increased, whilst the trough becomes 

rounded (Leighton 1994). In practice, analysis of the maximum and minimum peak 

pressures may reveal the presence of non-linear propagation. Amplitude scaling 

tests may also be performed. Both are used in these studies, as described in 

sections 3.5.2 and 4.2.2. Linearity may be approximated for small wave 

amplitudes in practice. 

If comparisons are made between a theoretical model based on linear 

propagation, and the results from a practical non-linear case, discrepancies are 

likely to occur. For example, section 3.3.1 wiU later describe the evaluation of 

attenuation based on a linear propagation model, is evaluated as the ratio of 

amplitude spectra of reference and test trace, found using Fourier Transforms. 

Although Fourier analysis may be applied to any signal, it is not strictly valid to 

evaluate their spectral ratio if propagation is non-linear (Stremler 1990). 

Furthermore, non-linear waveform distortion and the absorption of higher 

harmonics may occur to different degrees in test and reference media. This wiU 

lead to differing waveforms in the respective media and may bias attenuation 

measures. 
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3.2.5 Configoradon for Measurement of Bone 

Pulse-echo measurements are commonly used in ultrasonic applications 

such as imaging and Doppler. A single transducer performs both the transmission 

and reception of signals. In this monostatic arrangement, the test pulse traverses a 

site twice, after the direct signal is reflected back at some rear interface. Bone is 

highly absorbent in comparison with soft tissue (Bamber 1997), and thus signals 

may be strongly attenuated over two traverses of a test site. Hence, measurements 

of bone are better suited to transmission techniques, where the test object is 

placed between a transmitting transducer and a receiving transducer. 

Transmission tests may use a contact or a fixed-path arrangement, both of 

which have been applied to QUS bone assessment (for example, in the Lunar® 

Achilles and the Metra QUS-2™, respectively). In the contact method, probes are 

placed against the site surfaces, hence only generating waves normal to the 

surface. In contrast, the fixed-path are often performed under water, which 

provides acoustic coupling. The following sections discuss the evaluation of 

attenuation and phase velocity using transmission systems. 
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3 3 The Measurement of Attenuation 

DeBmidon and Evalnadom 

Attenuation is the reduction in acoustic intensity of a sound field. Intensity 

is defined as the rate of flow of energy through a unit area normal to the direction 

of propagation. The instantaneous intensity, I(t), at time t, is given by, 

f (f)= ;>(()- i<f), (3 2) 

for pressure, p{t\ and particle velocity v(f). For a plane harmonic wave, pressure 

and particle velocity are related by p = PoCv, for ambient density, po, and speed of 

sound, c. So, the intensity at time, t, is, 

/ ( ' ) = (3 3) 

However, intensity is often averaged' over time, by the integral over period, T, 

1 t+T 

f = ;; fjPv.dk. (3.40 

Taking p{x, f ) = Po.exp(-aax).exp(j(jct - qx) in this integral, for a harmonic plane 

wave, the time-averaged intensity is (Kinsler et al. 1982)^, 

7 - ^ = 7(0)6-^^''"', (3.5) 

where 7(0) is the intensity at time f = 0. The pressure amplitude will decay as 

Poexp(-aax), whilst the intensity decays with exp{-2aax). The attenuation 

coefficient, a^, is expressed in Nepers per metre, but may also be quantified in 

^ Output of ultrasonic equipment is often stated as a time-average at the spatial peak of intensity. 
^ Also, rms. pressure and particle velocity may be used for harmonic waves, to give I = Prms'/PoC-
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decibels per metre. Since acoustic intensity is commonly expressed in decibels, 

with respect to some reference, IL = 101og(/ / /re/), attenuation may be evaluated 

as the decrease in measured intensity, with respect to some reference, as, 

JZ,, -jQLz = l()log; . (3.60 

In practice, intensity is not generally measured, and the evaluation of 

attenuation relies on measurements of pressure. As mentioned in section 3.2.3, the 

output voltage from a piezoelectric transducer is proportional to the pressure over 

its surface. From equation (3.3), intensity is proportional to the square of pressure, 

and therefore also related to the square of voltage. Therefore, the reduction in 

intensity of equation (3.6), that is, the attenuation, may be calculated as a function 

of frequency, as the reduction in squared output voltage between two conditions, 

atten{f) = -lOlog 
a r . C / ) : 

(3/0 

where Hi{f) and %(/) are the amplitude spectra of two distinct signals. Ideally, the 

values of Hiif) and H2(f), should correspond to the outputs of the same signal 

being measured internally in a test medium at two different locations. This will be 

discussed further in the following section. However, in the insertion 

measurements, used in clinical QUS and in this research, the values of Hi(f) and 

%(/), correspond to the cases with and without the bone present, respectively. 

Figure 3.4 (a:i - iii) is a flow diagram of the steps involved in evaluation of 

attenuation from two voltage signals (figure 3.4 (a:i)), and is used in the 

experiments of Chapter 4. First, the Fourier spectrum of each signal is evaluated 

by Fast Fourier Transforming (figure 3.4 (a:ii). The attenuation is then found from 

the ratio of the two spcctra, and may be normalised for sample width. Figure 3.4 

also shows the steps involved in the evaluation of phase velocity, which will be 

discussed later in section 3.4. 
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(a) Attenuation (b) Phase Velocity 
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Voltage 
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Figure 3.4 (a) Evaluation of attenuation 
(i) signals through water and target; 
(ii) amplitude spectra of each signal; 
(iii) resulting attenuation. 
(b) Evaluation of phase velocity (i) signals 
through water and target; 
(ii) phase spectra of signals; 
(iii) phases unwrapped for jumps of 27t; 
(iv) the resulting phase velocity. 

(iv) Phase velocity 

Phase velocity 
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3.3.2 Factors Affecting the Measurement of Attenuation 

The accurate evaluation of the attenuation through equation (3.7), depends 

on the ability of the method to quantify intensity. For a piezoelectric sensor, this 

refers to those factors affecting the determination of pressure. The energy incident 

on a receiver's surface may be reduced by factors other than the bulk absorption 

of the test specimen. Several measurement artefacts may be duplicated in both 

reference and test signals (such as quantisation and electronic noise), and 

eliminated by division in equation (3.7). However, the presence of the test medium 

itself win produce increased scattering and reflection losses, and may enhance the 

attenuating function of diffraction, phase averaging, and non-linear propagation. 

These subsidiary factors, and their influence on bone insertion measurements, are 

discussed in the following sections. Of particular importance to the measurement 

of BUA, are those factors that contribute a frequency-dependent attenuation. An 

attenuating factor that increases with frequency will bias the attenuation gradient 

(that is, the BUA value). The BUA value may therefore be too high, thus 

conceivably leading to a poor bone status not being recognised. 

(a) Dijfraction of the Projected Field 

Section 3.2.2 discussed how diffraction influences the spatial variation of 

an acoustic field. Consequently, such effects contribute a frequency-dependent 

factor to the measured signal loss (Seki 1956). Methods of correcting for 

difiraction, pioneered by Papadakis (1966), may be applied to any parameter of 

the acoustic field, to yield a plane wave solution. Whilst several methods exist for 

correcting pulse-echo measurements, few exist for insertion measurements. 

Corrections can often be neglected where the velocities of the reference and test 

media are approximately equal, such as for soft tissue, but, if they are significantly 

different, diffraction loss may considerably add to attenuation, as found for 

immersion measurements on perspex (Xu and Kaufman 1993). However, 

diffraction corrections can make gross assumptions, and their usefulness is yet to 

be proved. 
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Owing to diffiraction and interference, in parts of the field, wavelronts will 

not be planar. The assumption that intensity is related to pressure squared is only 

applicable to plane waves, and hence, the validity with which equation (3.7) can be 

applied may be called into question if diffraction is present. In practice, planar 

propagation within a specimen may be approximated by placing it in the far field, 

thus equation (3.7) may be used. 

The influence of the presence of diffraction on measurements of 

attenuation and BUA in cancellous bone has been studied by previous authors. 

Diffraction loss is frequency-dependent, which may bias BUA gradients, or a 

model of the heel bone, diffraction loss has been estimated as 1.66 - 1.91 dB/MHz 

for insertion techniques, although it was found to be critically dependent on 

whether a contact or immersion technique is used (Strelitzki and Evans 1998). 

Discrepancies may result from contact and immersion measurements using regions 

of a field, such as that in figure 3.1, with differing spatial variations. Contact 

measurements are generally performed on sites of a few centimetres in thickness, 

and are likely to probe with the near field (that is, z < 10.5 cm in figure 3.1). By 

contrast, immersion techniques may operate in, or nearer to^, the far field (z > 10.5 

cm). Measurements will be subject to different diffraction effects and may 

therefore be expected to give significantly differing results. Furthermore, contact 

measurements in the near field will be more sensitive to variations from 

repositioning and site thickness variation than the fixed-path method, where the 

beam profile will be virtually consistent between measurements. 

(b) Phase Cancellation 

If the medium through which a wave propagates has locally varying 

acoustic properties, parts of the wave will travel at different speeds. Spatial 

fluctuations may occur along the wavefront as a result of variations in travel times, 

leading to the distortion of an originally planar wavefront (Marcus and Cartsensen 

1975). If fluctuations are smaller than the receiver size, the different phases arrive 

at the sensor simultaneously and will be spatially averaged across its surface: an 

effect known as phase cancellation. Since the output of a piezoelectric receiver is 

Lunar Achilles has a fixed separation of 9.5 cm, operating at 0.2 to 1.0 MHz. 
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proportional to the average pressure over its surface, it is therefore sensitive to 

phase. Additionally, the phenomenon is proportion to frequency. 

Phase cancellation will only occur during the measurement of propagation 

through an inhomogeneous medium. Therefore, when this is compared with that 

through an isotropic reference medium, it may bias estimations of the true 

attenuation. Since cancellous bone is extremely inhomogeneous, phase 

cancellation is a concern in the measurement of attenuation and BUA, which have 

tended to use isotropic reference media. In particular, since phase cancellation 

increases with frequency, measurements made with large receivers may 

overestimate the BUA value, conceivably resulting in a misdiagnosis. 

Investigations into the effect of phase cancellation, have been carried out 

by contrasting phase sensitive and insensitive measurements made using 

transducer arrays (Petley 1994, Strelitzki et al. 1999). Phase sensitive 

measurements, such as those made using piezoelectric receivers, may be emulated 

by first combining signals from each transducer element in the time domain. The 

Fourier transform is then performed on the averaged signal. In contrast, 

performing the FFT on the time data first, and then averaging their spectra, is 

equivalent to a phase insensitive measurement. Thus, the two methods can be 

compared for the same data set. For measurements of attenuation and BUA in 

cancellous bone, Petley (1994) demonstrated a significant difference between 

phase sensitive and insensitive measurements when focused on a Region of 

Interest. However, in a similar study, Strelitzki et al. (1999) reported no 

significant difference between the two cases. 

An additional factor influencing the extent of phase cancellation is the size 

of the receiver. For a given frequency and field with spatially fluctuating 

wavefronts, a receiver of certain surface area will produce an output subject to 

greater phase cancellation than that from one of smaller area. The consequences of 

receiver size have been studied for measurements of attenuation in bone (Petley 

1994, Edwards 1998). Phase differences of up to 150° have been measured 

through OS calces over a width of 37 mm at 400 kHz (Petley 1994). Such a 

variation is likely to contribute to phase cancellation, influencing estimates of 

attenuation. Indeed, attenuation made at IMHz, measured for receivers of 0.5 

mm- and 25 mm-diameter, were seen to differ by 9 ± 3 dB (Edwards 1998). This 
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gave reasonable agreement with predictions of 12 dB from a simple model 

developed by that author. 

Finally, since the phase difference between components with different 

travel times is proportional to frequency, phase cancellation increases with 

frequency (Petley 1994). Hence, its occurrence may affect the attenuation 

gradient, and, as with diffraction effects, bias the BUA value. 

(c) Reflection Losses 

Losses resulting from the reflection of waves impinging on interfaces will 

also contribute to measured signal loss. Large impedance mismatches between 

reference and test media result in large reflection coefficients. For normal 

incidence, the pressure reflection coefficient, R, may be found using the formula, 

(3.8) 
P2^2 ^ P\^\ 

for density, p/ and sound speed, c, (Kinsler et al. 1982), where i is medium 1 or 2. 

Since the intensity of a harmonic plane wave is related to the square of pressure 

(equation (3.3)), the intensity reflection coefficient is |Rp (Kinsler et al. 1982). 

Equation (3.8) is valid for reflection from the surfaces of isotropic media, 

but the situation is somewhat more complicated for that from the surfaces of 

inhomogeneous media. When a sound wave impinges at normal incidence on a 

porous surface, part of the wave is reflected back into the reference medium, 

whilst part is transmitted into the medium as a fast wave, and part as a slow wave. 

The acoustic properties of a porous boundary are highly sensitive to the state of 

the surface (Johnson et al. 1994). 

Some authors have employed a substitution method, where specimens of 

different widths are used to calculate bulk attenuation (Johnson et al. 1994, 

Hosokawa and Otani 1997). It is assumed that the reflection losses from the 

surfaces of both samples are identical and may be eliminated in dividing their 

spectra. However, for this to be achieved, aU surfaces must display identical 

acoustic properties, which is often impractical for biological specimens. 
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For a water-cortical bone interface, the pressure reflection coefficient is 

0.6 (for speeds in bone and water of 3000 m/s and 1500 m/s, respectively, and 

densities of 2000 kg/m^ and 1000 kg/m^, respectively). That is, the pressure 

amplitude of the reflected wave will be greater than that of the wave transmitted 

into cortical bone. The proportion of the energy that is reflected is approximately 

36 %. Strelitzki and Evans (1998) incorporated dispersion into a prediction of the 

interface losses through a model of the heel bone. Their results suggest that 

frequency dependent losses of this kind could be up to 0.24 dB/MHz. 

Reflection, discussed in the following section, is a form of scattering where 

the structures are much larger than the wavelength. 

Scattering is defined as a change in amplitude, phase, frequency or 

direction of a wave as a result of spatial or temporal irregularities in a medium. 

The effect may be classified as coherent or incoherent (Chivers 1991). Coherent 

scattering is that which simply adds in amplitude to a plane wave such as general 

bulk, or volume. Incoherent attenuation implies that which adds a fluctuating 

intensity, such as specula scattering from distributed irregularities (HiU et al. 

1978). Acoustic propagation in biological tissue is subject to both coherent and 

incoherent scattering (Bamber 1997). The contribution of each depends on how 

randomly multiple scatterers are distributed, and on the ratio of the wavelength to 

the size of the scatterers. If sound is scattered incoherently from randomly 

distributed sources, the scattering pattern contains fluctuations, which may be 

periodic if the tissue has a regular structure on some organisational level (Bamber 

1997). 

Waves propagating in a porous medium may suffer incoherent specula 

scattering from the randomly distributed material discontinuities. The scatterers 

may be taken as the fluid-filled pores, or the solid grains or struts, depending on 

the proportion of each constituent. As described in section 2.2, the slow wave may 

be considered as propagating mainly in the fluid of a porous medium. If a large 

impedance mismatch exists between the solid and fluid components, the fluid-
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borne slow wave is likely to be subject to scattering losses from interactions with 

solid scatterers. 

The slow wave will be subject to scattering when ll\qsiow\ (= for 

slow wave velocity, Vshw) becomes small compared with the diameter of the 

discontinuity, a; that is, where the product, Qshw-a, is equal to or greater than 

unity'̂ . Hence, with knowledge of the scatterer size, a, and wave speed, V̂iow the 

frequency where this scattering sets in may be estimated and is termed the 

Scattering has been examined for cancellous bone (McKelvie and Palmer 

1987; Tavakoli and Evans 1992). Propagation through cancellous bone exhibits 

negative dispersion (Nicholson et al. 1996), which is an observation that is in 

qualitative agreement with predictions from multiple scattering models (Schwartz 

and Plona 1984). Recent work by Kitamura et al. (1996) considered forward 

scattering from cancellous bone by modelling the structure as a diffraction grating. 

This will be discussed further in the Future Work of Chapter 7. Although these 

studies suggest scattering is present for waves in cancellous bone, its contribution 

to attenuation measurements has not been quantified. 

(e) Attenuation of the Slow Wave in Porous Media 

As discussed in section 2.2, the slow wave is highly absorbed owing to 

relative motion between fluid and solid. It may be further attenuated by scattering 

from interactions with solid discontinuities, to the extent that it may not be 

detectable in practice. Johnson and Plona (1982) proposed a frequency window, 

established from practical experience, within which the slow wave may be easily 

observed. This is defined as the bandwidth composed of frequencies greater than 

the viscous frequency, (̂ viscous (from equation (2.23)), but less than the scattering 

frequencgt 0%%*,= (f̂ dbw/a), 

^viscous ^ CO ^s/ow / ^ • (3 .9) 

Using the wavenumber, q, shows that the scattering depends, not only on the ratio of the 
wavelength to the scatterer size, but also on the speed. 
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This is illustrated schematically in figure 3.5 (a). The slow wave wiU be highly 

attenuated by viscous or scattering losses at aU fi-equencies outside this window, 

rendering it difficult to detect in practice. 

(a) 
Slow Wave 

Frequency Window 

(b) 

No Frequency Window 

Scattenng 
Loss 

V i s c o u s 

Loss 
Viscous 

Loss 
Scattering 

Loss 
overlap 

frequency frequency 

Figure 3.5 - (a) The slow wave frequency window; (b) the overlap of viscous and scattering 

frequencies. The rates of loss are arbitrary. 

Since the product {qshw-a) should be greater than unity to avoid significant 

scattering, for a given frequency, ®, the slow wave velocity, Vsiow should be large 

to avoid large scattering losses. Johnson and Fiona (1982) demonstrated that the 

slow wave velocity is proportional^ to the combination of the frame bulk modulus, 

Kb, and the shear modulus, Nb, as {Kb + %%). If the bulk moduli of the fluid and 

of the frame are of the same order, or the medium has a high porosity (see 

equations (2.25 - 2.28) ), the factor {Kb + V îVft), and hence the slow wave 

velocity, will be small. In such cases, the frequency to avoid scattering, must also 

be low, and, crucially, may even be lower that the viscous frequency, (Oviscous- Since 

this is contrary to equation (3.9), the slow wave wiU be subject to viscous and 

scattering losses at all frequencies in media with moduli of the same order. This is 

illustrated schematically in figure 3.5 (b), where the rates of change of loss with 

frequency are arbitrary^. 

' in the form of a bulk wave, for speed, c = {Kb + %%)/p. 
® This analysis does not consider a threshold above which the slow wave may be observable. 
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The slow wave frequency window was investigated for cancellous bone 

saturated with various fluids. Previous work by the current author (Hubbuck et al. 

1998) had shown that the bulk modulus of the cancellous frame (3.2 ± 0.6 GPa), 

is of the same order as that of the marrow (1.2 + 0.5 GPa). This suggested that 

cancellous bone has a relatively weak frame, and may result in no frequency 

window being present for slow wave propagation. 

First, the viscous frequency in Hertz, fviscous, was calculated from equation 

(2.23), using the pore radii and trabecular widths for normal and osteoporotic 

human cancellous bone, estimated from MelMsh et al. (1989). The fluid density 

was varied between 992 - 1047 kg/m^, and the marrow viscosity was taken at two 

temperatures: 0.05 Pa.s at 37°C and 0.15 Pa.s of 20°C from Bryant et al. (1989). 

Next, making the assumption that the fluid-borne slow wave may be 

scattered by interactions with the calcified trabeculae, the scattering frequency, 

fscah was evaluated from fscat = ( f ^ w / "^-ndtrab)- Trabecular thickness, dtrab, was 

taken as 160 ± 40 jum for normal bone and 120 ± 25 fim for osteoporotic bone 

(after Mellish et al. 1989). Slow wave velocities were calculated as in section 2.3, 

using parameters given in Tables 2.1 for normal and osteoporotic human bone, 

taking the mean value at 1 MHz. The resulting slow wave frequency windows are 

summarised in Table 3.1. 

Table 3.1 Slow wave frequency limits for marrow-saturated human bone 

Normal Bone 
(mean ± error) 

Osteoporotic Bone 
(mean ± error) 

Marrow at 20°C 

Viscous Frequency 

Scattering Frequency 

6.3 + 2.3 MHz 

1.4 ±0.4 MHz 

2.6+ 1.6 MHz 

1.7 ±0.4 MHz 

Marrow at 37" C 

Viscous Frequency 

Scattering Frequency 

2.1 +0.7 MHz 

1.4 ±0.4 MHz 

0.9 + 0.5 MHz 

1.7 ±0.4 MHz 

Water at 20°C 

Viscous Frequency 

Scattering Frequency 

425 ± 155 kHz 

1.2 ±0.3 MHz 

195 ± 108 kHz 

1.6 ± 0.3 MHz 
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For marrow-saturated normal bone at 20°C (the in vitro condition). Table 

3.1 shows that the mean scattering frequency is lower than the mean viscous 

frequency. That is, the limits of the slow wave frequency window overlap, and 

therefore the wave will be subject to viscous and/or scattering losses at all 

frequencies, as in figure 3.5 (b). Similarly, for such fluid conditions in osteoporotic 

bone, there is also no window. This suggests that the observation of the slow 

wave may be problematic in cancellous bone in vitro. 

The viscous frequency decreases with increasing temperature in marrow, 

whilst the scattering frequency remains the same (to this accuracy). Consequently, 

whilst no window exists for normal bone at 37°C, a narrow bandwidth of 

frequencies may exist for the osteoporotic case (namely, 0.9 ± 0.5 to 1.7 ± 0.4 

MHz), in keeping with figure 3.5 (a). This suggests that it may be easier to 

observe the Biot slow wave in osteoporotic bone in vivo than in healthy bone. 

Finally, for a pore fluid of water, a window may exist for both bone 

conditions. The influence, or otherwise, of these losses on the slow wave in 

cancellous bone in practice is discussed in section 4.2.5. 

3^.3 The Measurement of Attenuation in a Porous Medium 

The energy of an ultrasonic wave travelling through a porous medium will 

be partitioned between fast, slow and shear waves. The extent of such division will 

be related to the transmission coefficients of the three waves for a porous surface, 

defined with respect to Blot's theory (Johnson et al. 1994). 

Attenuation, as defined in equation (3.7), is stated relative to a reference 

signal. Ideally, the attenuation of a single mode (whether fast, slow or shear) is 

measured by placing two probes inside the specimen at a certain separation, 

enabling the mode to be measured after it has travelled a known distance through 

the medium. The reference signal in this case is the wave recorded at the first 

probe. However, the technique faces practical obstacles, including the fact that the 

presence of the probe itself may alter the properties of the medium. Therefore, 

historic measurements of bone have generally used the substitution method where 

the reference signal is a single pulse recorded without a specimen present (called 
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the no-specimen reference here). However, if this no-specimen reference signal is 

used in the calculation of attenuation of either of the two compressional waves, 

the energy in the incident pulse will be counted twice: once for fast wave 

attenuation and once for slow wave attenuation. 

The studies of Chapter 4 will compare measured wave properties with 

those predicted by Biot's theory. In doing so, it is essential that the same wave 

characteristics are contrasted. In accounting for energy partition, plus the 

additional factors affecting the accurate determination of pressure, the definitions 

of absorption, attenuation and signal loss should be carefully considered. 

The true attenuation of a mode in a porous medium {mode X, where X 

denotes fast, slow or shear), measured with respect to a single pulse using 

substitution, may be expressed as. 

empirical signal 

reference 

subject to 

additional 

partition = + 

. mode X 

(3.10) 

On the right hand side of equation (3.10), predicted absorption refers to the 

internal viscous loss of the wave (whether fast, slow and shear wave) from Biot's 

theory. The preceding sections discussed those additional losses (diffraction, 

scattering and phase cancellation), which are likely to modify the properties of all 

waves. It is worth remarking that these elements may affect each mode to a 

different extent. Indeed, section 3.3.2 already discussed how the slow wave may 

be subject to greater scattering owing to interactions with solid discontinuities and 

its relatively long wavelength at a given frequency. Strictly, the right hand side is 

equivalent to the "attenuation" found by measuring the empirical signal loss with 

respect to a no-specimen reference pulse, to which an energy partition weighting 

has been applied for that specific wave, determined from transmission coefficients. 

It has been common practice in previous applications of Biot's theory to 

cancellous bone (Williams et al. 1996, Hosokawa and Otani 1997) to compare 
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predicted absorption with attenuation, calculated using a single reference pulse 

without allowing for energy partition. Hence, it is not surprising that these authors 

did not find correlation with Biot's predictions. Partition and the additional 

empirical losses must be known for the comparison between theoretical absorption 

and signal loss, measured by substitution with respect to reference in an isotropic 

medium, to be meaningful. Furthermore, it is unlikely, therefore, that measured 

empirical signal loss will provide information about bone properties directly, nor 

give direct agreement with Biot's predictions. Therefore, in seeking agreement 

between theory and observation, the phase velocity is used, the evaluation of 

which is described in the following section. 
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3.4 The Measurement of Phase Velocity 

Previous workers have compared measured time-of-flight velocity (that is, 

group velocity) in cancellous bone with predictions of phase velocity from Biot's 

theory (Williams 1992, Lauriks et al. 1994, Williams et al. 1996). This comparison 

is only valid if propagation is non-dispersive. However, as previously discussed, 

waves in cancellous bone are dispersive, and therefore theory should be compared 

with experimentally determined phase velocity. The most commonly used 

algorithm for evaluating phase velocity in insertion experiments is known as the 

Phase Spectrum Method. 

The Phase Spectrum Method (PSM) was developed by Sachse and Pao 

(1978) to measure the phase velocity in dispersive solids by a transmission 

technique. It was later modified by Lee et al. (1990) for the purposes of 

immersion measurements, and was applied by Alvarez-Arenas et al. (1994) in 

identifying Biot slow waves in porous fabric. The algorithm is only applicable for 

propagation at normal incidence, where no internal refraction occurs^. 

The output signal, after passing through a test specimen, may contain more 

than one waveform, arising from multiple echoes, scattering, or mode conversion 

(discussed further in section 3.6.2). Where a time trace contains more than one 

mode, they may be separated by temporal windowing, where the time axis is 

sectioned into intervals, each containing a single mode. Spectral analysis may then 

be performed on the mode contained in the chosen time interval. When a time 

series is truncated abruptly, errors may be introduced into the calculations because 

only part of the data stream is used. Fourier spectral analysis is based on the 

concept that a signal is the sum of contributions of all frequencies that extend in 

time to infinity (Oppenheim and Schafer 1975). Truncation results in bias errors 

and spectral smearing, reducing the low frequency content of the signal and the 

resolution of the Fourier Transform. To lessen these processing effects, shaped 

temporal windows are used, such as Hanning or Gaussian windows (Oppenheim 

and Schafer 1975). 

^ Section 5.5.2 considers an alternative metbod of evaluating phase velocity at non-normal 
angles. 
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The amplitude and phase of a mode may be computed using a Fast Fourier 

Transform (FFT) algorithm. The phase spectrum of the mode is, 

^(o) = tan"' {/m((o) / i?e((o)), (3.11) 

where Refco) and Imfco) are the real and the imaginary parts of the FFT, 

respectively. The phase velocity, Vp of the mode is then 

. (3.1:2) 
((^)) - aige, (^) + — ((̂  + ) 

The terms ^ef and t̂arget are the phase spectra of the signal with and without the 

test specimen present, respectively. The term, Vw is the speed of sound in the 

reference medium (usually water), and d is the target thickness. The term, 4, 

compensates for the path length through water displaced by the insertion of the 

specimen, which is included in the reference phase, ^ and not present in the 

specimen phase, (̂ target-

Prior to performing the FFT, the peak value of the waveform should be 

aligned with the centre of the window, otherwise the resulting phase will change 

rapidly, providing erroneous results^ The peak of waveform is aligned by adding 

(or subtracting) zeros from the start of the processing window. This is equivalent 

to moving the pulse by a delay equal to the ratio of the number of additional zeros 

to the sampling frequency. This delay is equivalent to tc, in equation (3.12). 

Figure 3.4 (b:i - iii) is a flow diagram of the steps involved in evaluation of 

phase velocity from two voltage signals (figure 3.4 (b:i)), and is used in the 

experiments of Chapter 4. First, the Fourier spectrum of each signal is evaluated 

by Fast Fourier Transforming (figure 3.4 (b:ii)). To ensure a smooth spectrum, the 

phase was unwrapped for jumps of 2n. The phase velocity is then found by using 

the phase spectra in the formula of equation (3.12). 

^ This achieves zero phase (at zero frequency), providing a reference for the subtraction of 
phases in eqn (3.2). Theoretically, zero phase occurs when a signal is symmetric around the time 
origin (Oppenheim 1975), approximated here by aligning the peak at the centre of the temporal 
window. 
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3.5 Experimental System 

3.5.1 Apparatus and Arrangement 

The two compressional waves of Biot's theory may be generated and 

observed in porous media using an impulse method. Fiona and Johnson (1980) 

first reported the observation of fast and slow waves in a porous medium of fused 

glass spheres, using short pulses of ultrasound, which enabled distinct modes of 

differing frequency to be separated in time and observed on an oscilloscope trace. 

The technique was subsequently used by other authors to observe fast and slow 

waves in a variety of porous media (Lakes et al. 1983; Alvarez-Arenas et al. 

1994; Hosokawa and Otani 1997). Therefore, a fixed-path transmission impulse 

technique was used in this study to generate Biot fast and slow bulk modes in 

marrow-saturated cancellous bone through mode conversion at the water-

specimen interface. Water was used as the coupling medium, since its acoustic 

properties are well established, and its attenuating properties may be assumed to 

be negligible compared to bone (Bamber 1997). 

The experimental configuration is shown in figure 3.6 and photographs of 

the apparatus are shown in figure 3.7. Two Panametrics 1 MHz-resonant 25 mm-

diameter piezoelectric transducers were suspended and coaxially aligned in a tank 

filled with degassed water. The water temperature was recorded at the start and 

finish of each test. A single sinusoid, with a centre frequency 1 MHz and a pulse 

repetition frequency of 100 Hz, was produced by a Thurbly Thandar TGI304 

programmable signal generator. This was fed to a ENI RF power amplifier (Model 

240L), which amplified the signal by 50 dB. The amplified signal was fed to the 

transmitting transducer. 

The test specimen was placed in a reflective polystyrene mount, coaxially 

aligned with the transducers, to prevent ultrasonic signal leakage around the side 

of the specimen. The signal passed through the specimen and was acquired by the 

receiver. The received waveform was recorded by a Lecroy 9314L Digital Storage 

Scope, sampling at 10 MHz, above the Nyquist frequency to avoid aliasing 

(Oppenheim and Schafer 1975). The output was averaged over 500 acquisitions to 

lessen the effects of electronic noise and stored on floppy disc. The signals were 
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analysed otF-line on a Hi-Grade 486 PC, by first converting data from binary to 

ASCII format using the software package FGM, and then the MatLab Version 4.0 

data processing package. A Hanning window and 2048 FFT points were used. 

14 cm 

ENI 240L 
Power 

Amplifier 

Water 
Tank 

Sample 

Active 
Element Sample Mount 

50 cm 

Thurlby Thandar 
TG1304 Signal 
Generator 

Trigger 
1 

Lecroy 9314L 
Digital Storage 

Scope 

Figure 3.6 - Schematic diagram of experimental system 

Figure 3.7 - Photographs of 
experimental equipment. 
(a) 1-to-r: signal generator, 
power amplifier, water bath; 
(b) Lecroy oscilloscope; 
(c) coaxially aligned 
transducers, showing active 
element. 
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3.5.2 Acoustic Field Characteristics 

A transducer is generally most efficient when used at its resonant 

frequency. The resonance frequency of the 25 mm-diameter transducers was 1 

MHz, and, from the discussion of section 2.4.2, this frequency was considered to 

be in that range where two Biot waves may be observed. 

The acoustic field produced by the 25 mm-diameter transmitter was 

investigated for a single sinusoidal input pulse of centre-Aequency 1 MHz. Figure 

3.8 (a) shows the voltage output received by the second 2.5 cm transducer 

through water at an on-axis distance of 14 cm. The origin of the time axis is at the 

trigger, taken on the rising edge of the input pulse from the signal generator. The 

waveform is seen to have a prolonged decay, likely to result fi-om both transducers 

being poorly damped at resonance. Such a response was seen to occur to some 

extent for excitations of both impulses and sinusoidal pulses, as expected for 

resonance. The duration of the pulse is around 4.5 ps. Waveforms of the type in 

figure 3.8 (a) were used as the reference signal for the calculations of phase 

velocity and attenuation throughout the experimental work of this thesis. 

Figure 3.8 (b) is the power spectral density of the pulse in figure 3.8(a), 

showing a maximum value around 920 kHz. The -3 dB bandwidth, within which 

the signal-to-noise ratio may be assumed to be good, is roughly 0.85 - 1.02 MHz. 

It should be noted that the spectrum may also reflect the frequency response of the 

other elements of the system, such as the power amplifier. 

The field transmitted by the transducers was characterised using the NFL 

Beam Calibration Unit. The system evaluates key parameters, such as maximum 

and minimum pressures, p* and p' respectively; beam width, temporally averaged 

intensity, Î pta and total power output. Transducers were calibrated with a pulse 

input to the power amplifier of centre frequency 1 MHz, 800 mV peak-to-peak 

input, amplified by 50 dB, used throughout the experiments of Chapter 4 and 5. 

Details of the calibration procedure are summarised in Appendix A.I. 

The maximum and minimum peak pressures of the field were found to be 

48.4 kPa and -32.0 kPa, and the -6 dB beam width was 1.2 cm. This indicated that 

the pulse was not significantly distorted by the interference of non-linear and 
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diflraction interference. Further linearity tests, reported in section 4.2.2, were 

performed on samples of cancellous bone. 
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Figure 3.8 - (a) Waveform through water; (b) its spectral density (in dB/Hz). 
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The test specimen was placed in a reflective polystyrene mount, coaxially 

aligned with the transducers, to prevent ultrasonic signal leakage around the side 

of the specimen. To approximate plane wave propagation, the sample was placed 

in the far field. For a 25 mm transducer, operating at 1 MHz in water, the near-far 

field transition was found in section 3.2.2 to start at 10.5 cm from the transducer 

face. However, the signal had an operational bandwidth of 0.85 - 1.02 MHz, 

which may cause the transition to occur at 8.9 - 10.7 cm from the transmitter. 

Therefore, to ensure the sample was in the far field, it was placed at approximately 

14 cm from the transmitter face, where plane wave propagation could be assumed. 

3.6 Validating the Experimental Method 

3.6.1 Introduction 

At the beginning of an experimental study, the method should be validated 

for the results to be meaningful. The previous section already discussed the 

characterisation of the acoustic field and some tests of the presence of non-linear 

propagation. In addition, the function of the algorithms used to evaluate wave 

properties should be established, using various test objects. 

3.6.2 Mode Separation and Reverberation 

An acoustic wave in a finite-sized specimen may internally reverberate, as 

reflections arise from waves impinges on interfaces with the external reference 

medium. If reflections of the reverberated wave overlap with the direct wave, the 

output signal may be corrupted. 

Figure 3.9 shows the problem for an isotropic medium. A direct signal 

propagates through the medium, and is partly reflected and partly transmitted at 

the rear interface. Some interference may occur between direct and reflected 

signals near this edge of the test object if the pulse duration is long, regardless of 

sample thickness. The first echo inside the sample is reflected a second time at the 
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front boundary, is finally transmitted into the reference medium. Thus the first 

reverberation travels an additional distance of Id. 

(a) 

(b) 

(c) 

(d) 

specimen thickness, d 

interference 

reflected " / 

direct wave 

reflected 
1 ) f ' h 

time delay = 2d/ speed 

pulse length 

Figure 3.9 - Reverberation inside a specimen and the emerging signal. 

To achieve clear temporal distinction between direct modes and echoes, 

the pulse duration should be less than the time delay between arrivals. From figure 

3.9 (d), this delay is twice the thickness divided by the mode speed. Since the 

mode speed is determined by the medium, and the pulse duration is fixed by the 

measurement system, presence of this efiect in practice is established by the 

sample thickness, d. 

The velocity of a direct signal through cancellous bone has been measured 

as approximately 2600 m/s at IMHz (Truscott et al. 1996)\ Since the duration of 

the pulse in figure 3.8 (a) is 4.5 |j.s, reflected and direct signals may overlap in the 

time trace if the sample has a thickness less than 0.585 cm (= (4.5 fis x 2600) 12). 

Therefore, to observe reverberant echoes distinct from the direct arrivals in the 

time domain, it is necessary that samples are thicker than 0.6 cm. 

The scenario is further complicated for a porous medium, owing to the 

presence of more than one propagation mode. The emergent time history will 

' Although not associated with a Biot wave, it is prudent to take the fastest speed available. 
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consist of a fast wave, followed by a slow wave and a sequence of reverberant 

echoes, separated by predictable time delays. The temporal separation between 

arriving modes depends on the thickness of the specimen. 

It is possible to examine whether a signal contains echoes from 

reverberation using spectral analysis. Signal processing methods (known as 

cepstral analysis, or homomorphic filtering (Oppenheim and Schafer 1975)) exist 

for detecting and removing echoes from time series, commonly used in speech 

processing, sonar and seismic studies. If the echo, amplitude Uo, of a fundamental 

signal, s{t), occurs at time to, the resulting signal is, 

= X )̂ + go f (f - fg). (3.13) 

The Fourier transform of this signal gives the spectrum X(f), as 

, (3.1/1) 

where S(J) is the Fourier Transform of s{t), and is the Fourier Transform of a 

pure delay at t„. Using the identity </' = cosQ + j.sinQ, the power spectral density 

may be written as, 

l ^ m r = I w f {1 + + 2a. cos(2;#j}. (3.15) 

The term in parenthesis {...} on the right hand side of equation (3.15) adds a 

sinusoidal ripple to the spectrum at a "frequency" of to (see figure 3.10). 

Therefore, the presence of reverberation in a signal through a test medium may be 

established by examining the power spectral density of the signal. 
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Figure 3.10 - (a) Signal composed of direct wave and echo; (b) schematic of its spectral density 

(Hammond and Peardon 1994). 

3.6^ Testing the Processing Algoritl:ms 

The Phase Spectrum Method for the evaluation of phase velocity, 

introduced in section 3.5, was programmed in MatLab and validated with real 

ultrasonic data. First, the speed of sound in water was evaluated and verified 

against its well-established value. With the transducer separation at 14 cm, a 1 

MHz pulse was transmitted through water and recorded. In this test, the reference 

and test signal are the same (of the type in figure 3.8 (a)). As a result there should 

be no resulting phase change between the signals. It can be seen fi-om equation 

(3.11), that the resulting phase velocity should therefore be equal to the speed of 

sound in the reference medium, 

Figure 3.12 shows the computed phase velocity for a pulse in water, 

compared with its established value of 1480 m/s at 20°C. The speed of sound in an 

acrylic test object of thickness 0.6 cm, was also evaluated, and compared with an 

established value of 2650 m/s (Kinsler et al. 1982). Figure 3.11 shows the 

waveform received with the test object present, whilst figure 3.12 shows its phase 

velocity. At 1 MHz, the measured velocity gave agreement to the established 

values to within 0.5 % in water, and 5 % in acrylic. However, the presence of 

dispersion clearly affects performance at other frequencies. Nevertheless, the 

algorithm can be assumed to be operating correctly at the frequency of interest. 
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Figure 3.11 - Waveform through acrylic test object 
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Figure 3.12- Established and measured phase velocities of pulses through water (fig 3.8 (a)) and 

acrylic (fig 3.11). 
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3.7 Cancellous Bone Specimens 

3.7.1 Sample Preparation 

Tests were performed on samples of bovine cancellous bone, which is 

generally acknowledged as having similar properties to human bone (Gibson and 

Ashby 1988). Bovine tibia and femora were obtained fresh from a local butcher. 

The proximal and distal epiphyses were known to contain regions of cancellous 

bone with a well-oriented trabecular structure. 

The bone was first cleaned of cartilage with boiling water and the cortical 

shell was removed. Samples, of square cross-section 3.0 cm x 3.0 cm, were cut 

under running water, with thickness varying from 0.6 cm to 1.5 cm (+ 0.05 cm). A 

specimen of cortical bone was also cut from the shaft of the tibia. Samples were 

stored in the preservative formalin, and were kept moist at all times. 

Specimens were classified by the orientation of the internal trabecular 

structure. Those samples with trabeculae running parallel to the thickness will be 

referred to as Parallel samples, whilst those with structure normal to this wiU be 

distinguished as Perpendicular samples. Specimens were also prepared with 

internal structure at 30° and 45° to the cross-section, referred to as Oblique 

samples. Typical samples are shown in the photographs of figure 3.14, and figure 

3.13 summarises the naming convention. 

Chemical fixation affects ultrasonic propagation in tissue, since it causes 

linkages between adjacent molecules, producing higher absorption effects (Bamber 

1997). Tissue stored in formalin may exhibit an increase in attenuation, particularly 

at high frequencies (10 % at 1 MHz, 50 % at 7 MHz), and the directional 

dependence of attenuation in tissue such as muscle, may be affected (Bamber 

1997). 
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Figure 3.13 - Location and nomenclature of cancellous bone in the bovine femur. 
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Figure 3.14 - Photographs of cancellous samples, (a) Parallel; (b) Perpendicular and 

(c) Oblique at 45°. 
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After ultrasonic testing, the marrow was extracted from the pores by 

immersing samples in trichloroethylene for a number of hours. Samples were 

cleaned and flushed through with water using a small submersed conduit, then re-

saturated with water using the pipe. When this occurs tiny bubbles may become 

trapped within the pores, which may significantly affect ultrasonic propagation 

through the medium. Therefore, the water-filled samples were left for an hour 

before testing to ensure the surface bubbles were dissolved. However, some may 

have persisted internally, the potential effect of which is considered below. 

The presence of air bubbles in a liquid will modify its bulk modulus, its 

sound speed and its attenuating characteristics (Leighton 1994). Such effects 

depend on the size and population of the bubbles, as well as the driving frequency. 

First, the bulk modulus is defined as the ratio of the change in pressure to the 

relative change in volume. Therefore, for a given change in pressure, the change in 

volume is greater when a bubble is present, than in the bubble-free liquid. It is 

possible to calculate the new bulk modulus (Leighton 1994), with knowledge of 

the bubble size and population, and use the modified value in propagation models 

such as Blot's theory (Alvarez-Arenas et al. 1994). 

In general, a bubble resonates at a natural frequency inversely proportional 

to its radius (Leighton 1994). The ratio of resonant to the incident frequency 

determines whether the presence of a population of bubbles affects the sound 

speed. If their resonant frequency is above the incident frequency, the sound speed 

is reduced. However, large bubbles, with natural frequencies less than the driving 

frequency, tend to have little effect on sound speed (Leighton 1994). In both 

cases, they increase attenuation, with the major effect being scattering, owing to a 

high acoustic impedance mismatch of air-filled cavities with the surrounding water. 

For a typical sample of bovine cancellous bone, it is reasonable to suppose 

that bubbles of radius less than 1 jxm will be flushed from the pores or will 

dissolve rapidly. Hcnce, only those bubbles similar in size to the pore may remain 

in the sample. Whilst such bubbles could have a significant effect on attenuation, 

these relatively large ones are likely to have the least effect on bulk modulus and 

sound speed. 
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3.7.2 Validation of Intersample Comparison 

Tx) c()mpzure thw: aooiKdic inesuits fiDm cUffereait caaiceMoiu; sairqpLes, it is 

necessary to define non-acoustic criteria for stating which samples classify as 

being the same. One factor, which is easy to establish and is required for modelling 

propagation, is the porosity. 

The porosity of cancellous samples was found using Archimedes' 

technique. The volume of a cylinder of water is measured with and without a 

porous sample submersed (psample and V)water, respectively). The difference in 

volume in each case is equivalent to the volume of the solid phase, Msoud in the 

sample. From a knowledge of the total volume of sample, Vcutoid, if the sample is a 

cuboid, the porosity, p, may be found as. 

p—\ ^solid _ I ^sample ^water (3 16) 

^cuboid ^cuboid 

where Xicuhoid = length x breadth x height of specimen (m^). The method measures 

interconnected porosity, rather than due to isolated pores. It is, however, the 

former that is required by Biot's theory. Indeed, isolated pores will not occur in 

any biological tissue, owing to metabolic requirements. 

Equation (3.16) was used to evaluate the porosity of samples of cancellous 

bone in order to classify samples as the same. First, it is necessary to establish how 

great a difference can be distinguished by a non-acoustic measurement of porosity. 

The measurement of porosity using equation (3.16) will have associated 

systematic and random errors. Taking the largest of these (systematic error bar or 

two standard deviations), two samples may be said to have the same porosity if 

their mean or average values are not separated by the error. Their subsequent 

acoustic measurement can be compared. 

The systematic error represents the resolution (or systematic precision) to 

which the evaluation of equation (3.16) can be carried out, given uncertainties in 

input parameters. The sample dimensions were measured with a micrometer to + 

0.5 X 10"̂  m (a fractional error in the order of + 0.1 %), and the water volume can 
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be measured to a systematic precision of ± 5 ml (fractional error of ± 1 %). 

Fractional analysis'" was carried out on equation (3.16) to find the uncertainty in 

the porosity as a result of these errors in the input variables. 

The measurement of porosity may be biased by the presence of bubbles, 

which contribute to the perceived solid volume fraction (1 - P). Although this is 

likely to contribute to the error, it is difficult to quantify without knowing the 

bubble size of their population. The total systematic error in the evaluation of 

porosity from equation (3.16) was found to be no more than ± 1.3 %. The total 

random error in ten measurements was + 3.6 %, which, being the greater of the 

two, was taken as the measurement error. 

Figure 3.15 gives a summary of seven Parallel samples (/ to 7), three 

Perpendicular samples (8 to 10) and two Oblique samples (11 and 12) and their 

porosities, showing the maximum uncertainty in their values". To determine 

whether two samples arc the same, it is necessary to consider whether their mean 

values are separated by more than the measurement error. 

Groups of samples may be assembled from this data. The porosities of 

Parallel samples 7 to 4 do not differ by more than the error (that is, 3.6 %), as 

with samples 5 to 7. Therefore, samples 1 to 4 may be grouped as having a mean 

porosity of p = 74.5 %, with a standard deviation of 2.3 %, whilst Samples 5 to 7 

can also be grouped, with mean porosity p = 80.5 %, standard deviation 2.8 %. 

Perpendicular samples 8 to 10 meet the criterion, such that they may all be 

considered as having the same porosity (mean 81.4 %, standard deviation 2.1 %). 

Oblique samples 11 and 12 give a mean porosity of 80.1 %, standard deviation 

0.9 %. Therefore, the porosities of Parallel samples 4 to 7, Perpendicular and 

Oblique samples, are equivalent to within the measurement error, enabling 

measurements from these samples to be compared. 

' The random error in F(x,y,z.) resulting from errors in x,y,z. is given by (Trim 1983), 

= :L, (VSc)' + (,5y)' 4- (6z)'.... 

Additional samples were tested, but their porosities were not recorded. 
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Figure 3.15 - Summary of porosities of cancellous samples used in experiments. 

3.8 Summary 

This chapter has outlined the principles of ultrasonic measurement and the 

measurement of ultrasonic wave properties. Deviation from ideal acoustic 

behaviour, caused by non-linear propagation, diffraction and additional empirical 

factors, have been discussed in some detail. 

The following chapter outlines in vitro studies carried out to study the 

propagation of the two compressional waves predicted by Biot's theoiy in 

cancellous bone, using the techniques and specimens described here. Owing to 

problems in the precise evaluation and interpretation of measured attenuation, 

agreement with theory is found by comparing phase velocities. 
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Chapter Four 

JF*: Studies of Biot Waves in 

Cancellous Bone 

4.1 Introduction 

This chapter describes in vitro experimental studies compressional wave 

propagation in cancellous bone. The objectives were as follows: 

• To observe Fast and Slow compressional waves in cancellous bone. 

The open and permeable structure of cancellous bone is favourable for the 

propagation of the slow wave in the High frequency region. At the outset of 

this work, the observation of two waves in cancellous bone had not been 

reported. Observation of these modes would give weight to models, such as 

Biot's theory, which predict two waves. 

• To study the effect of the interstitial fluid. 

The viscosity of the interstitial fluid determines the frequency 

above which the slow wave will propagate in a porous medium. Therefore, it is 

predicted that varying the fluid will affect the wave properties of Biot waves. 

® To study the effect of the cancellous structure. 

Applying Biot's theory requires the assumption that cancellous bone is 

mechanically and structurally isotropic. Real bone is highly anisotropic 

however, so the Biot assumption is not strictly valid. Propagation of fast and 

slow waves in anisotropic cancellous bone is likely to be dependent on 

direction. 

83 



E R Hubbuck, 2000 Chapter 4 : Experimental Results 84 

4.2 Validation of Biot's Theory 

4.2.1 The Observation of Fast and Slow Waves 

The first study aimed to examine the existence of fast and slow waves in 

bovine cancellous bone in vitro. The apparatus and methods described in Chapter 

3 were used to test Parallel samples, of mean porosity 74.5 %, and thickness 

varying from 0.6 to 1.5 cm, with the marrow intact. 

Figures 4.1 (a - d:ii) show those waveforms received through samples 

tested at normal incidence. (Figure 4.1 (d:ii) shows the waveform of (d:i) on an 

expanded scale.) The origin of the time axis is at the trigger, taken on the rising 

edge of the input to the amplifier. Compared to the water-only waveform of figure 

3.7 (a), those shown in figures 4.1 (a - d) exhibit a considerable amplitude 

modulation that suggests the presence two distinct wavepackets. Taking the 

arrival time as the first deviation from zero (or, if not clear, the rising edge), the 

separation of the arrival of these wavepackets is seen to vary from roughly 2.5 [is, 

for a sample 0.6 cm thick (figure 4.1 (a)), to 6.0 [j.s, for a sample 1.5 cm thick 

(figure 4.1 (d:i - ii)). Therefore, the delay between wavepackets is dependent on 

sample thickness. Such behaviour may arise for waves propagating through the 

specimen. 

It was believed that the first wavepacket corresponded to the fast wave 

and the second to the slow wave. This assumption will be validated in the 

following sections. Strictly, the waves received are compressional waves in water, 

resulting from the mode conversion of the Biot wave at the rear face of the 

specimen. 
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Figure 4.1 - Waveforms through Parallel samples of thickness (a) 0.6 cm; (b) 1.0 cm; 

(c) 1.2 cm; and (d): (i) 1.5 cm; (ii) on an expanded scale. 
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4.2.2 Linearity Tests 

A scaling method was used to establish whether propagation, and the 

measurement system, were sufficiently linear. As discussed in section 3.2.4, this is 

investigated to determine the validity with which results may be compared with, 

and analysed by, those of linear propagation models. The presence of non-linear 

propagation may also bias estimates of empirical attenuation. Tests were 

performed using Parallel samples, with the marrow intact. 

Figure 4.2 (a - c) shows the output waveforms from a sample 0.6 cm thick, 

for a sinusoidal pulse of 1 MHz. The input voltage to the power amplifier was first 

set at 1 V, and the positive peak amplitudes of fast and slow waves were noted 

from figure 4.2 (a), as 18 mV for the fast wave and 92 mV for the slow wave. 

Next, the input voltage was reduced to 900 mV, and the output amplitudes were 

noted from figure 4.2 (b), as 17 mV and 87 mV for fast and slow waves, 

respectively. Therefore, between the two cases, the input was scaled by a factor of 

0.9, and the output amplitudes were seen to scale by a factor of 0.95 for both 

waves, that is, a linear change to 5 %. Next, the input was reduced to 500 mV, 

and fast and slow wave amplitudes were noted, from figure 4.2 (c), as 8 mV and 4 

mV, respectively. In this case, the input was scaled by 0.5, and outputs by 0.44 for 

each wave: linear to 6 %. 

The presence of discrepancies between controlled and measured scaling 

factors does not constitute a convincing argument for linear propagation. 

However, an additional test may be performed. Section 3.2.4 mentioned that a 

waveform will appear non-symmetrical if the effects of diffraction and non-linear 

propagation interact. Since it may be confidently assumed that diffiaction is 

present, non-symmetrical fast and slow waveforms may therefore indicate non-

linear propagation, or, at least, to its influence in these tests. Study of the 

magnitudes of positive and negative peaks of waves in figure 4.2 (a - c) shows the 

waveforms are relatively symmetrical. Therefore, it may be assumed that 

propagation and measurement system are sufficiently linear for an amplifier input 

of 1 MHz, 800 mV and amplified 50 dB, used throughout these studies. 

Consequently, this enables the application of methods of sections 3.3 and 3.4 for 

the calculation of phase velocity and attenuation. 

86 



ERHubbucKZOOO Chapter 4 : Experimental Results 87 

(a) I V (b) 800 mV 

< -0.05 

85 90 

(M5) 
(a) 500 mV 

< -0.05 

80 85 

Time (us) 

E 
< -0.05 

80 85 90 

Time (us) 

Figure 4.2 - Waveforms through Parallel sample, 0.6 cm thick, for power amplifier input 

amplitudes of (a) IV; (b) 900 mV; (c) 500 mV. 
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4.2.3 Propagation Mode IdendBcadon 

The first arrival observed in the recorded time histories was assumed to 

have travelled the shortest path to the receiver, that is directly through the 

specimen. To determine the origin of the second arrival, attention was turned to 

the influence of reflections fi-om external and internal surfaces. 

The shortest reverberant path to the receiver, from which a second arrival 

may arise, is that of a direct signal reflected irom the receiver casing, to the rear 

face of the sample, and returning to the receiver sensing surface. Such a route 

covers a path length equal to twice the sample-receiver separation. In these 

studies, the sample and receiver were separated by a distance of 2.0 ± 0.05 cm, 

hence, a reverberant wave in water between the two surfaces would arrive 27 ± 3 

{xs after the direct arrival. Such a delay is clearly longer than that between first and 

second arrivals in figure 4.1 (a - d), previously noted as between 2.5 - 6.0 |ns. 

Therefore, the second arrival could not originate as echo from an external surface. 

Attention was turned to internal reverberation as a source of this wave. As 

section 3.6.4 described, the first reflection of reverberation within the sample may 

overlap with the direct wave in samples of certain thickness. In section 4.2.4 it will 

be shown that the speed of the first arrival at 1 MHz is approximately 3000 m/s 

(for porosity 74.5 %). For a reference pulse duration of 4.5 |ns (figure 3.7 (a)), an 

overlap may occur for samples thinner than 0.68 cm (fi-om (4.5 fis x 3000 m/s) / 

2). Therefore, it would be expected that the waveform in figure 4.1 (a), fi-om a 

sample of thickness 0.6 cm, would contain overlapping reverberant waves. 

However, whilst two distinct waveforms remain visible in this case, overlap is 

unlikely to occur in the waveforms of thicker samples of figure 4.1 (a - d). 

In samples of thickness 1.0, 1.2 and 1.5 cm, the first reflection of the 

reverberation of a direct mode of3000 m/s, would be expected to arrive at 6.6 ps, 

8.0 fxs, and 10.0 ps, respectively, fi-om the rising edge of the first arrival. 

However, these predicted delays do not agree sufficiently with measured delays 

through samples of such thickness as 3.5 jiis, 4.0 fis, and 6.0 |LIS, respectively. 

Therefore, there is not sufficient evidence to assuming that the second arrival is a 

reverberant wave using arrival times. Indeed, given that cancellous bone is a 
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dispersive medium, it is unlikely that this issue can be resolved with the use of 

times of flight'. The origin of the second arrival was investigated further. 

As outlined in section 3.6.2, analysis of the spectrum of the waveform may 

be used to establish whether echoes of the direct signal were present in the time 

series of figure 4.1 (a - d). The power spectral density of the whole signal figure 

4.1 (a), shown in figure 4.3, was found using a Fast Fourier Transform. 

xio 

&5 Oa 07 08 09 14 
Frequency (MHz) 

1.05 

Figure 4.3 - Power Spectral density of a typical time series from a Parallel sample. 

The spectrum of figure 4.3 does not clearly demonstrate the ripple effect 

associated with that of a reverberant signal. When processed this way, all the 

signals in figure 4.1 (b - d) exhibited similar spectra. Therefore, it could be 

concluded with reasonable certainty, that the second arrival was not an echo from 

reverberation of the direct signal within the sample. Since no shear wave would be 

generated at normal incidence, the arrivals were assumed to be bulk compressional 

modes. 

^ It is questionable whether a direct signal of relatively low amplitude would give rise to an echo 
of higher amplitude, after attenuation of the initial wave over subsequent traverses of the sample. 
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In porous media acoustics, the first arrival is generally associated with the 

fast wave and the second with the slow wave of Biot's theory. However, this 

should not be automatically assumed. Biot's theory predicts phase velocity (the 

speed of the wavefronts), whilst arrival time is determined by group velocity (the 

speed of energy propagation). In a dispersive medium, phase and group velocity 

are generally not equal. Thus, strictly, speeds derived from arrival times cannot 

reliably be used in identify Biot waves. Under specific conditions in a porous 

medium, the velocity of the slow wave may theoretically be faster than that of the 

fast wave (Lawrence and Don 1996). To classify the modes with respect to fast 

and slow waves of Biot's theory, experimental phase velocities were compared 

with theory. This is described in the following section. 

4.2.4 Phase Velocity and Measured Signal Loss 

Signal loss and phase velocity were evaluated using the methods described 

in sections 3.3 and 3.4. A waveform of the type in figure 3.8 (a) was used as the 

reference signal for the calculations throughout. 

Systematic errors in the measured phase velocity and signal loss arise from 

the measurement of sample thickness (± 0.05 cm), water temperature (± 0.05°C) 

and the effect of temporal windowing. These produce a total systematic error, 

through the equations of the PSM of section 3.4, of no greater than 2 % for 

velocity. It was necessary to establish that the data was representative of the 

general response of Biot waves in cancellous bone. This was established by 

investigating its spread and precision. Reproducibility was examined in a number 

of ways, being evaluated as a coefficient of variance (%CV = {std / mean} x 100). 

Table 4.1 summarises the coefficients of variance for apparatus, positioning and 

intersample precision. 
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Table 4.1 - Reproducibility coefficients of variance for measurement system. 

Parameter 
(at IMHz) 

Apparatus 
Reproducibility 

(%CV) 

Positioning 
Reproducibility 

(%CV) 

Intersample 
Reproducibility 

(%CV) 
Phase Velocity L7 94 3.4% (p = 74.5) 6.0% 

(P = 80.5) 4.5 % 

Signal Loss 2.6% 4J(% (P = 74.5) 8.4 % 

(p = 80.5) 9.7 % 

First, the apparatus precision was established, that is, the reproducibility in 

the measurement of one sample a number of times without repositioning. This 

term reflects the uncertainty in measurements owing to variations in factors such 

as electronic and quantisation noise, and water temperature. It was found by 

testing the same sample ten times without repositioning, and finding the spread in 

the values of phase velocity and signal loss at the centre frequency of 1 MHz. 

Next, the reproducibility in a number of measurements of one sample with 

repositioning was assessed, that is, positioning precision. This coefficient of 

variance will naturally include the above apparatus errors, plus additional 

uncertainties from removing and replacing a sample in position to test. It may be 

expected to be larger than the apparatus coefficient of variance. The same sample 

was tested ten times, being removed from the sample holder and repositioned each 

time. The coefficient of variance was found for velocities and signal loss. 

Finally, the intersample precision was determined; that is, the 

reproducibility between measurement of a number of samples. This uncertainty 

will include both apparatus and positioning errors, but will include an addition 

from variations between samples, and may therefore be larger than the previous 

two coefficients. Samples within the same porosity groups were tested once each, 

and the coefficient of variance found for the data, for each porosity. 

The values in Table 4.1 are consistent with those quoted for commercial 

QUS systems, which range from 1.34 % to 9.44 % (Greenspan et al. 1991). It can 

be seen in Table 4.1 that the measurement of velocity has a higher reproducibility 

than that of signal loss, a trend compatible for BUA and SOS from commercial 
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systems (Greenspan et al. 1997). This is not surprising in the cases of positioning 

and intersample precision, given that the empirical factors that contribute to signal 

loss may vary between cases. 

Figure 4.4 shows the phase velocities of fast and slow waves as fimctions 

of frequency for the two porosity groups ((a) 74.5 + 2.3 % and (b) 80.5 + 2.8 %). 

The solid curves shown are the mean values of all the data in those groups (that is, 

with and without repositioning, for all samples), with error bars in solid lines, 

associated with the largest uncertainty. This convention is used throughout this 

thesis for plotting data. This corresponds to the intersample error of 6.0% for the 

curves of figure 4.4 (a), and 4.5 % for (b). 

Experimental wave properties were compared with predictions by Biot's 

theory. The dashed lines in figure 4.4 show the maximum and minimum 

predictions of phase velocity from Biot's theory, found by the method of section 

2.4. The parameters used for a model of marrow-saturated bovine bone for a 

measured water temperature of 20.0 ± 0.5°C are shown in Table 4.1. Pore size 

was estimated using a scanning microscope to be 815 ± 32 pm, the range arising 

from experimental uncertainties. The value of the Young's modulus of the solid is 

taken in the propagation direction in order that isotropy may be approximated. 

The values in Table 4.1 were used to predict phase velocity and absorption, for 

each porosity group studied. 

Figures 4.5 (a) and (b) give signal loss in dB/m for the two porosity 

groups. The solid lines correspond to the experimentally derived signal loss, 

normalised for sample thickness, for the mean values of all the data in those 

groups (that is, with and without repositioning, for all samples). Solid error bars 

are associated with the largest uncertainty on the data, being the intersample 

uncertainty at 8.4 % for porosity, (3 = 74.5 %, and 9.7 % for (3 = 80.5 %. Dashed 

lines in figure 4.4 show the maximum and minimum predictions of absorption from 

Biot's theory, found by the method of section 2.3.3. The parameters used for a 

model of marrow-saturated bovine are shown in Table 4.2. 
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Table 4.2 - Input parameters to the Biot model for marrow-saturated 

bovine cancellous bone at 20°C. 

Parameter Value 

Density of cortical bone, 1800 - 2000 kg/m^ 

Density of marrow, py 992 - 1047kg/m^ 

Young's modulus of cortical bone, 18.1 -22.6 GPa 

Porosity, P (a) 0.745 ± 0.023 

(b) 0.805 ± 0.028 

Pore radius, r 815 + 32 |Lmi 

Bulk modulus of marrow, 2.2 GPa 

Viscosity of marrow at 20°C, 0.15 Pa.s 

Index of power law, » 1.23 

Poisson's ratio of cortical bone, 0.32 
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4.2.5 Discussion of Experimental Results 

(a) Identification of Fast and Slow Waves 

To identify the origin of the two modes in figures 4.1 and 4.2, 

experimentally determined wave properties were compared with those predicted 

by Biot's theory for a model of cancellous bone. As has been stated already, since 

it is problematic to compare empirical attenuation with predicted absorption, 

waves were classified through the analysis of phase velocities. 

Figures 4.4 (a) and (b) clearly show that the phase velocity of the first 

arrival is consistent with that predicted for the fast wave. Similarly, the phase 

velocity of the second arrival is consistent with that predicted for the slow wave. 

For both porosity groups, experimentally determined fast wave velocities and its 

uncertainty, lie within the limits predicted by theory, although its frequency-

dependence is not predicted. Experimental slow wave velocities lie at the upper 

limits of the predictions. It could therefore be concluded that the fast and slow 

waves of Biot's theory had been observed. The first arrival wiU be referred to as 

the fast wave; and the second as the slow wave for the remainder of this work. 

Finally, these findings contradict the hypothesis in section 3.3.7 that the slow wave 

may be attenuated to the extent that it could not be observed. 

(b) The Effect of Porosity 

Comparison of figures 4.4 (a) and (b) shows that the porosity affects the 

values of both measured and predicted phase velocities. The measured fast wave 

velocity at 1 MHz decreases from 3080 m/s in figure 4.4 (a) to 2640 m/s in (b), a 

reduction of 14 %, subject to the stated error. Such trends are in keeping with 

porosity-dependent decreases in velocity in bone measured by previous authors 

(Tavakoli and Evans 1992, Hosokawa and Otani 1997). 

Two points are made here regarding these results, but not pursued further. 

First, Biot's theory predicts shifts in the extreme bounds of the theory with 
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porosity. A porosity, P = 80.5 % renders bounds which are 5 - 8 % less than p = 

74.5 %. The analysis of whether this is a statistically significant decrease would 

require careful study, outside the scope of this work. Second, it was observed that 

there was a relatively large change in measured velocity with porosity. This may 

imply that the acoustic method is more sensitive than the Archimedes' technique 

(of section 3.7.2) for determining changes in porosity. 

(c) Wave Amplitudes 

The wave amplitudes in cancellous bone display an unexpected behaviour 

compared with the general response of porous media in this frequency range. 

Ordinarily, in cases where Biot fast and slow waves have been observed in 

synthetic and natural porous media, the slow wave amplitude has been much lower 

than that of the fast wave (Fiona and Johnson 1980). Indeed, Biot's theory 

predicts that the slow wave will be subject to greater absorption than the fast 

wave. However, in this study, it appears that the reverse is true, since the slow 

wave is the dominant arrival. In samples thicker than, say 2 cm, the fast wave may 

be attenuated to the extent that it may be undetectable by the system's dynamic 

range. This is the most probable reason for the lack of observation of two waves 

in previous studies of cancellous bone. 

Fiona and Johnson (1980) showed that the slow wave will have a relative 

ampUtude larger than the fast wave for a specific case. This occurs when the 

frequency is close to where scattering sets in, as defined in section 3.3.6. At this 

frequency both viscous and scattering losses are minimal (the former is negligible 

in the High frequency region; and the latter is relatively small owing to qshwCi 

being close to unity) and so do not significantly attenuate the slow wave. Section 

3.3.7 gave the scattering frequency for marrow saturated cancellous bone at 20°C 

as around 0.7 MHz. This is sufficiently close to the incident frequency of 1 MHz 

to render a large amplitude slow wave here. 

The anomalous trend in the relative wave amplitudes possibly arises from 

the boundary conditions, which may assist the setting up of a high amplitude slow 

wave. In Parallel sample, the pores are open to the reference medium (water). 
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There is a good impedance match between water and marrow, since they have 

similar densities (1000 and 970 kg/m^, respectively) and sound speeds (both near 

1500 m/s). Wave motion in the water will effectively couple into the marrow at the 

specimen interface, and hence the slow wave, which may be thought of as 

propagating in the pore fluid. 

(d) Absorption and Measured Signal Loss 

There is a clear quantitative disagreement in measured signal loss and 

predicted absorption in figures 4.5 (a) and (b). This is as anticipated from the 

discussions in section 3.3.3, where it was remarked that the measured signal loss 

of a single mode could be confidently compared with theoretical predictions only 

if energy is partitioned between the modes is included. Such division is not 

incorporated here, and these results are consistent with the findings of previous 

workers who neglected partition (Williams et al. 1996, Hosokawa & Otani 1997). 

The measured signal loss of the slow wave is less than that of the fast 

wave, and such a discrepancy from the predicted trend is significant. It is most 

likely that this inconsistency arises from the neglect of partition and the losses of 

empirical factors. As the above discussion on wave amplitudes has shown, the 

conditions of the porous boundary are crucial to the transmission of waves into 

the medium. Complex models for the transmission coeflicients of porous surfaces, 

based on Biot's theory, do exist (Johnson et al. 1994), but their application is 

outside the scope of this study. 

Some practical factors of empirical signal loss, such as diffraction, phase 

cancellation and bulk scattering, may only contribute to a quantitative constant or 

frequency-dependent signal loss of both fast and slow waves. Such factors will not 

contribute to the error in trend. However, factors that affect the properties of each 

wave to a unique degree, such as specular scattering of the slow wave in section 

3.3.2, may reduce the difference, or reverse the trend in signal loss. Again, whilst 

establishing these contributions may be essential to appreciating the cause of the 

trend, their evaluation is beyond the scope of this work. Owing to these 

confounding problems, which could not be easily rectified without further work, 

subsequent studies focus on measurement of velocity. 
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4.2.6 IlcwieiVIlEilcldbnyglSiiUberials 

Owing to the poor performance of commercial ultrasonic bone assessment 

systems, bone-mimicking materials have been developed for monitoring 

performance (Clarke et al. 1994, Hodgskinson et al. 1996, Asaba et al. 1999). 

Clarke et al. (1994) constructed a phantom from epoxy resin, to mimic calcified 

tissue, and a gelatine/water mixture, to mimic marrow. These materials were 

chosen to have acoustic properties similar to those of the components of real 

bone. The gelatine formed pore-shaped granules, with the porosity controlled by 

the proportion of each component. Other phantoms have been constructed from 

perspex (Hodgskinson et al. 1996) and plaster (Ashaba et al. 1999). 

Velocities and attenuation^ of ultrasonic waves in Clarke's phantom varied 

with porosity. Phase velocities at frequencies around 500 kHz were found to cover 

a higher range than those measured in real bone (1844 to 3118 m/s compared with 

1465 to 2084 m/s for real bone). Attenuation and BUA of the phantom agreed 

reasonably well with those of real bone. Of particular interest, is that attenuation 

and BUA in both media display a parabolic relationship with porosity. A peak was 

observed around 50 % porosity for the Clarke phantom, and at 65 - 75 % for real 

bone (Hodgskinson et al. 1996). It was proposed that this response is caused by 

scattering from the isolated inclusions (fluid filled pores) at low porosities and 

from the continuous phase (solid matrix) at high porosities. 

Whilst propagation in bone phantoms raises interesting questions, the 

frmdamental propagation mechanisms involved are not compatible with those in 

real cancellous bone. The propagation of fast and slow waves relies on the 

assumption that the fluid and solid are interconnecting, which does occur in real 

bone. In a homogeneous medium containing isolated particles, such as Clarke's 

phantom, only one direct compressional wave will propagate and Biot's theory 

cannot be applied. This disparity makes it unfeasible to directly compare the 

results of this study with those for a phantom where only one wave is present. 

In conclusion, bone phantoms display macroscopic properties, such as 

scattering, which mimic real bone, and are therefore useful in monitoring the 

performance of systems measuring attenuation. However, since propagation 

• with respect to a single reference pulse 
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mechanisms differ in the two media, comparisons of the measurement of phase 

velocity should be carefully considered. 

4.2.7 Frequency and ImpHcadons for Historical Mfro Studies 

Section 1.5.2 mentioned the bar equation has been used to approximate 

propagation in cancellous bone within various frequency bands (Strelitzki et al. 

1997, Rho 1998). Ashman et al. (1984) hypothesised that bar propagation may 

transform into bulk propagation as the frequency increases, but this mechanism 

has not been thoroughly investigated. The effect may be equivalent to geometric 

dispersion for homogeneous media. This occurs where the propagation is 

dependent on the product of the specimen length and the wavenumber (Thurston 

1978, Ashman et al. 1984). However, in porous media, there may be another 

cause for the change in propagation mechanisms with frequency, namely, that 

approaching the viscous frequency, (Hvkcous, of equation (2.23), above which fast 

and slow waves will propagate. 

Strelitzki et al. (1997) investigated propagation in os calces at 37 kHz, 

where the continuum assumptions of the bar equation are valid. Measured 

velocities were lower than those at frequencies in the BUA range. For a pore 

radius in human bone of 250 ± 50 fim (Mellish et al. 1989), and a viscosity in 

water of 0.001 Pa.s at 20°C (Kinsler et al. 1982), the viscous frequency, (Hviscous, of 

equation (2.23), is 50 ± 14 kHz. The frequency is close to the 37 kHz used in bar 

propagation investigations by Strelitzki et al. (1997). 

Therefore, rather than being a geometrical dispersion effect, it may be 

postulated that limit of the viscous frequency, (Oviscous, is the point of a suggested 

transition from apparent bar propagation at low ultrasonic frequencies to that bulk 

propagation observed at frequencies near 1 MHz. 
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4.3 Study into the Effect of Pore Fluid 

4.3.1 Introduction and Objectives 

Alves et al. (1996) showed that, at frequencies from 0.5 - 1 MHz, velocity 

in bovine cancellous bone increased by 2 % and attenuation (with respect to an 

isotropic medium) decreased by 6 % when marrow was replaced by water. This 

suggests that the role of the pore fluid is important at ultrasonic frequencies. 

Most previous studies considering Biot's theory in cancellous bone have 

replaced marrow with water before testing (Hosokawa and Otani 1997, Williams 

1992, Lauriks et al. 1994). This displacement will influence wave propagation, 

since the viscosity of water differs from that of marrow substantially (see section 

2.3.2). This is also demonstrated for cancellous bone in the viscous skin depth 

graph of figure 2.4. A reduction in viscosity for the same frequency, will lessen 

viscous coupling, and enhance relative motion between fluid and solid. Therefore, 

propagation in samples saturated with marrow may be expected to differ from 

those with water. 

4.3.2 Method 

The effect of replacing marrow with water in the pores of cancellous 

samples was investigated. The same methods and experimental apparatus of the 

previous study were used. Parallel samples of both porosity groups with marrow 

intact were tested, and the data was processed to evaluate wave properties. The 

marrow was then removed as detailed in section 3.7.1. Samples were re-saturated 

with water, and left before testing to ensure the surface bubbles were dissolved. 

The wave properties of the water-saturated samples were then established. 
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4.33 Results and Discussion 

Figure 4.6 (a - 1) shows the waveforms through cancellous samples with 

marrow and with water in the pores. The results from three Parallel samples are 

shown (Samples 5 - 7 from figure 3.15 with porosity 80.5 ± 2.8 %). 

The presence of different saturating fluids in the pores clearly has an effect 

on the propagation of Biot waves in cancellous bone. Fast and slow modes are 

recognised in figure 4.6 (a), (c) & (e) with marrow intact, as investigated in the 

previous study. The inclusion of water in the pores has the effect of altering the 

appearance of the emerging waveform, as can be seen by comparing figures 4.6 

(b), (d) & (f) with (a), (c) & (e), respectively. Corresponding modes are reduced 

in amplitude, and the second arrival is delayed. Eliminating echoes and 

reverberation, as in section 4.2.3, the modes observed through the water-saturated 

samples were found to have propagated through the specimen as compressional 

waves. 

The phase velocities and signal loss of the waveforms were evaluated for 

the two modes, shown in figures 4.7 (a - b) and figure 4.8 (a - b), respectively. It 

should be noted that the figures 4.7 (a) and 4.8 (a), velocity and signal loss for 

marrow-saturated samples of mean porosity 80.5 %, are the same as figures 4.4 

(b) and 4.5 (b), respectively; reproduced to aid comparison. The intersample 

reproducibility coefficient of variance for the phase velocity of modes in the water-

saturated case was 8.5 %, higher than the coefficients from the previous study in 

Table 4.2. Predictions from Biot's theory are also shown in figure 4.7, using the 

values in Table 4.1, evaluated for two values of viscosity at 20°C: 0.15 Pa.s for 

marrow, and 0.001 Pa.s for water, and a porosity of 80.5 ± 2.8 % 
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Figure 4.6 - Waveforms through Parallel Sample 5 with (a) marrow and (b) water in pores; 
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in pores. 
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Comparison of figures 4.7 (a) and (b) demonstrates that the phase 

velocities of fast and s low waves, in samples of the same porosity, are influenced 

by the interstitial fluid. The fast wave velocity increases with the substitution of 

marrow with water, by roughly 8 %, whilst the slow wave velocity decreases by 

roughly 13 %. In contrast, when the prediction is modified by replacing the 

viscosity value of marrow at 20°C with that for water at this temperature, the 

maximum and minimum velocity bounds do not appear to alter significantly. 

Whilst viscosity is a defining parameter regarding the extent of propagation 

regimes, such a variation in viscosity produces a difference in predicted phase 

velocity at frequencies near 1 MHz of less than 1 %. 

Figures 4.8 (a) and (b) illustrate that the measured signal loss of both fast 

and slow modes is marginally higher for water-saturation than marrow-saturation. 

Unlike predicted velocity, predicted absorption at 1 MHz is seen to change by an 

order of magnitude between the two cases. The increase in signal loss of the fast 

wave, with the insertion of water, may arise from viscous coupling not being as 

effective with a fluid of lower viscosity. In addition, the lower viscosity 

encourages the relative motion associated with the slow wave, which causes 

greater frictional losses'. 

An alternative explanation for the increase in signal loss with the second 

pore fluid, is that the presence of unwanted bubbles within the sample may cause 

increased scattering losses. As discussed in section 3.7.1, air-filled cavities have a 

high acoustic impedance mismatch with the surrounding water and will scatter 

effectively. Such effects will be significant in the slow wave, which has a smaller 

wavelength. Random scattering from varying bubble distributions in each sample 

may account for the poor intersample reproducibility, compared with 

measurements in marrow-saturated bone, in Table 4.2. However, although the 

presence of bubbles may validate the modification of some of the input parameters 

to the Biot model (specifically the fluid bulk modulus), the bubbles likely to be 

contained in the trabecular matrix will be relatively large and therefore unlikely to 

alter its properties significantly. 

^ It is a paradox of Biot's theory that a fluid of lower viscosity, which should instinctively reduce 
viscous lagging losses, enables increased relative motion and actually increases viscous losses 
through such motion. 
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4.4 Study into the Effect of Trabecular Orientation 

4.4.1 Objectives and Method 

Previous applications of Biot's theory in cancellous bone investigated 

propagation in the trabecular direction only (Williams 1992; Hosokawa and Otani 

1997). Isotropy was assumed for propagation in that direction for which the solid 

Young's modulus was defined. Other researchers investigated the effect of 

trabecular orientation on ultrasound. Many authors have reported significant 

differences in measured velocities for three orthogonal axes. Nicholson et al. 

(1994) noted such a result for vertebral bone, whilst Strelitzki et al. (1997) 

studied a similar effect for propagation at 37 kHz in os calces. Njeh et al. (1996) 

noted considerable variance with direction for relationships between velocity and 

Young's moduli. Variations in BUA with orientation have also been demonstrated 

(Hodgskinson et al. 1996). 

The effect of trabecular structure on the propagation of fast and slow 

waves was studied here, using the method and apparatus described in section 3.5. 

Propagation through Parallel samples, of mean porosity 80.5 %, could be 

compared with that through Perpendicular samples, of mean porosity 81.4 %, 

since the difference between mean porosities was less than the error in their 

measurement (section 3.7.2). Samples were tested at normal incidence with 

marrow intact. 

4.4.2 Results 

Figure 4.9 (a) shows a pulse transmitted through a Parallel sample of 

thickness 1.2 cm, at normal incidence. This may be compared with figures 4.9 (b) 

and (c) through Perpendicular samples of varying thickness, and (d) for an Oblique 

sample, all having similar porosity. Trabecular orientation clearly influences the 

waveforms emerging from in cancellous bone. Only one pulse is seen in figure 4.9 

(b - d), compared with two in (a). Eliminating reverberation, as in section 4.2.3, 

the mode observed through the Perpendicular samples was found to have 

propagated through the specimen as a compressional wave. 

107 



ERHubbuck, 2000 Original in Colour Chapter 4 : Experimental Results 108 

0.05 
(a) Parallel Sample 

100 

0.05 
(c) Perpendicular Sample 9 

90 95 

Time (fxs) 
100 

0.05 

(D •a 3 0 

(b) Perpendicular Sample 8 

Q. 

I 
-0.05 

/j 

85 90 100 

0.05 
(d) Oblique Sample 11 

90 95 100 

Time (^s) 

Figure 4.9 - Waveforms through (a) a Parallel sample; (b - c) Perpendicular samples 

and (d) an Oblique sample. 

4500 

4000 

3500 

13000 

.•12500 
0 
>2000 

1 
f 1500 

1000 

500 

Biot Fast 

Biot Slow 

Parallel Waves 

Perpendicular Wave 

T T 

-

i - i i 

-

T T T i 

.T. 

— IT 1 

8 . 8 0.85 0.9 0.95 1 1.05 1.1 1.15 
Frequency (MHz) 

Figure 4.10 - Measured and predicted phase velocities of fast and slow waves from Parallel 

samples, and that of the mode from Perpendicular samples. 

108 



E R Hubbuck, 2000 Chapter 4 : Experimental Results 109 

The lack of discrimination of two modes prevents the temporal windowing 

required to evaluate wave properties for separate fast and slow waves, if indeed 

both modes are present. Such deficiency may occur because the slow wave has 

been attenuated to such an extent that it cannot be distinguished by the dynamic 

range of the system. As a result, it was necessary to analyse the wave from 

Perpendicular samples as a single mode. The results from the Oblique samples are 

relevant to the later studies of Chapter 5 and not studied further here. 

The experimental phase velocities were evaluated and compared with 

those derived from Biot's theory. Attenuation was not studied in this case. Figure 

4.10 shows the phase velocities along with predictions for the wave received in the 

Parallel and Perpendicular samples. The intersample reproducibility in the 

measurement of phase velocity of the Perpendicular mode was found to be around 

4 %, which compared well with measurements in Parallel samples in Table 4.2. 

From figure 4.10, the phase velocity of the single mode does not agree 

with predictions of fast and slow wave velocity. Its value at 1 MHz is roughly 

1700 m/s, and thus wel l outside the error bounds from data or theory for either 

fast or slow wave. Therefore, it was not certain whether the mode was a fast or 

slow wave. Further investigation was required to establish the origin of this wave, 

and some such studies are described in the following chapter. 

4.5 Conclusions 

This chapter has presented the results of an in vitro experimental study into 

some aspects of ultrasonic wave propagation in bovine cancellous bone. The aims 

of the study were to observe the Biot slow wave, and to examine correlation with 

Biot's theory. The influence of marrow and the orientation of the trabeculae were 

also investigated. 

This study has shown that the slow wave does propagate in cancellous 

bone and maye be observed at ultrasonic frequencies. Furthermore, the medium 

appears to support slow waves very effectively under certain conditions. This is 

likely to be because the structure is highly permeable, and, at these frequencies, 

viscous coupling does not significantly impede fluid-solid relative motion. 
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As regards the modelling of wave properties, the phase velocities of fast 

and slow waves may be accurately predicted using a Biot model of propagation in 

cancellous bone for propagation in the trabecular direction. However, as expected, 

significant differences were apparent between measured signal loss and predicted 

absorption, highlighting the importance of other factors contributing to signal loss, 

such as energy partition. Therefore, only phase velocity was thought to be of 

practical use for comparison with theory. In addition, propagation at ultrasonic 

frequencies was predicted, and observed, to be dependent on the properties of the 

pore fluid, such as its viscosity and presence of bubbles. 

Finally, the observation of fast and slow waves is dependent on the 

orientation of the trabecular structure. Both Biot modes are clearly observed in the 

trabecular direction, but are not apparent for propagation normal to this. To 

investigate the effect of trabecular orientation in more detail, further studies of the 

anisotropic response of bone were conducted. The following chapter outlines 

these studies, and introduces an alternative theory of propagation in cancellous 

bone. 
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Chapter Five 

A S t r a t i f i e d M o d e l f o r U l t r a s o u n d i n 

(ZzmcedUkDus B o n e 

5.1 Introduction 

The previous chapter showed that trabecular orientation influences the 

observation of two compressional modes in cancellous bone. Blot's theory, in the 

form discussed in Chapter 2, is unable to model this anisotropic behaviour. This 

chapter presents a new approach to considering cancellous bone, which is able to 

model the anisotropy. Predictions of waves properties in cancellous bone, with 

respect to angle of propagation are compared with data from an in vitro study. 

5.2 Models of the Trabecular Structure 

Cancellous bone consists of a permeable network of osseous strands or 

plates called trabeculae. Historically, devising a suitable simple geometrical or 

mathematical model to describe this complex architecture has been problematic, 

since many representations have been proposed, without consensus. Structural 

characterisation is not only required for propagation models, but also for analysing 

its mechanical behaviour, which, as mentioned in section 2.3.2, is desirable in the 

design of prosthetic bone. Some of the idealisations of the cancellous architecture 

are described below. It is assumed that, since the mechanical properties of 

cancellous bone can be analysed using these models, they may help ultrasonic 

examination. 
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Trabecular models may be categorised, first, as those having a permeable 

cellular matrix; and, second, those imagined to have developed as a pattern through 

mechanical loading. Of those models with a cellular structure, a common version is 

a network of cubes, each containing a spherical void (figure 5.1 (a)). The cubes 

may be staggered (Gibson and Ashby 1988), or vertically stacked, the latter having 

been used in finite element analysis of stress in cancellous bone (Beaupre and Hayes 

1985). A variation is the fabric ellipsoid, found by constructing a characterising 

ellipsoid, whose principal axes as the average pore radii in three orthogonal axes, 

found from image processing (Turner and Co win 1987). Bone texture has been 

analysed using fi-actals (Lesspessailles et al. 1996), 

Gibson and Ashby (1988) presented models of trabecular architecture 

imagined to have developed fi-om either uniaxial or biaxial loading. From loading in 

one direction, an array of prismatic tubes may develop, similar to a honeycomb 

structure (figure 5.1 (b)). From loading in two directions, an array of parallel plates 

separated by thin cross members, may develop (figure 5.1 (c)). These more regular 

geometric models are suitable for use in examining the influence of structure on 

ultrasonic propagation, since they may be most easily analysed mathematically. In 

particular, the layered structure of figure 5.1 (c) is attractive for further analysis 

because there exist well-established theories for acoustic propagation in layers. 

Once such theory, Schoenberg's approach, is investigated for ultrasonic 

propagation in bone in the following section. 

(a) (b) (c) 

Figure 5.1 - Idealisations of cancellous bone: (a) a cell with a spherical void (Beaupre & Hayes 

1985); (b) honeycomb tubes; (c) parallel plate structure (Gibson & Ashby 1988). 

112 



E R Hubbuck, 2000 Chapter 5 : Stratified Model 113 

5.3 Schoenberg*s Theory of Propagation in Stratified Media 

Introduction 

The analysis of wave propagation in periodically layered fluid-solid 

systems was first reported by Rytov (1956) and Brekhovskikh (1981), for 

propagation only in those directions parallel and perpendicular to stratification. 

Later, Schoenberg (1984) studied propagation in alternating fluid-solid layers in 

any direction, which was verified experimentally by Plona et al. (1987). 

Schoenberg's theory has since been used to describe propagation in various natural 

and man-made stratified media, such as geological structures and laminated 

composites. 

5.3.2 Fundamental Equations 

In 1984, Michael Schoenberg published his theoretical study into acoustic 

wave propagation in a medium composed of periodically alternating fluid-solid 

layers. The layering is parallel to the xi and xz directions, with spatial period H in 

the X} direction (figure 5.2), being infinitely extending in all directions (that is, there 

are no external interfaces). In one period of a medium with porosity P, the region 

of 0 < x j < (1 - p)if is occupied by an elastic solid (that is, it obeys Hooke's Law), 

with density p ,̂ compressional speed, Fg, and shear speed, Vg/i. The region (1-P)^ 

<X3<H contains an ideal fluid, of density, p/, and sound speed Vf. 

Ideal fluid behaviour is a valid assumption for frequencies where the 

viscous skin depth, ds, is much smaller than the fluid layer thickness. Schoenberg's 

model is therefore only applicable in the High frequency region of Biot's theory 

(section 2.4,2), where viscosity may be neglected. Furthermore, as with Biot's 

theory, the length scale of the discontinuities is also considered and Schoenberg's 

theory is only valid for the long wavelength regime', that is, the wavelength should 

be long compared to the period, H. This is shown schematically in figure 5.3. 
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Xi 

infinitely 
extending 
layers 

angle of 
propagation 

> 0° 

Period, H 
90° 

Figure 5.2 - Schematic diagram of a system of infinitely extending parallel fluid-solid layers, 

periodically alternating with period, H. The xs-axis is 0° and the xi-axis is 90° . 

Long Wavelength Propagation Regime 1 

X> a, r,H X = a,r,H X<a, r, H 

BioT's THEORY-
LOW Frequency 

Region 

ds> r ds = r 

High Frequency 
Region 

cfc < r 

SCHOENBERG'S 
^ THEORY ^ 

0 ®crit frequency 

Figure 5.3 - The frequency regions within which Biot and Schoenberg theories are valid. 
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Schoenberg's derivation is briefly summarised here, but may be found in 

full in his 1984 paper. Schoenberg derived the dispersion relation for this medium 

by relating continuous acoustic field variables in one period to those in the next by 

propagator matrices. Acoustic wave propagation is expressed in terms of a 

slowness vector, s = (^i, S2, S3). This vector has magnitude equal to the inverse of 

phase velocity, with phase angle equivalent to the angle of propagation through the 

layers relative to stratification^ 

For low-frequency harmonic waves, of exp j(siXi - t), the dispersion 

relation becomes independent of frequency, co. This leaves a relationship between 

the components of the slowness vector, s, such that f;, the parallel component, and 

S3, the normal component, are found from the dispersion relation to be related as 

( 5 , ) 

where <p> is a thickness-weighted average density, equivalent to 

and Vpi represents the speed of extensional waves in an elastic plate. 

P ; , = 2 ( l - p - ) ' " . F „ (5.2) 

as given by Fiona et al. (1987). From equation (5.1), expressions for the magnitude 

and phase of the slowness vector, s, may be found as, 

|s| = V [ Si" + 8,2], (5.3) 

Zs = tan"' ( S3 / S] ). (5.4) 

The magnitude of the phase velocity may then be found as a function of angle, Zs, 

in a stratified medium as the inverse of the magnitude of slowness, l/|s|. The angle 

' The slowness vector is an established convenient way of representing propagation in anisotropic 
media. 
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Zs corresponds to the angle of propagation through the layered structure, with 

reference to the direction of those layers. 

Equations (5.1 - 5.4) predict two compressional waves that are equivalent 

to the waves of the first and second kind of Biot's theory. The waves have a 

direction dependence, with both waves propagating for all angles, except for 

propagation perpendicular to the plates, where there is only one mode. 

Viscosity is omitted from the model. The phase velocity is purely real, and, 

since the absorption coefficient is usually found from the imaginary part of the 

complex phase velocity, Schoenberg does not therefore predict absorption. 

Furthermore, viscous coupling neglected in this model. 

The direction dependence of the two propagation modes may be explained 

by considering inertial coupling in this system. For propagation perpendicular to the 

layers, inertial coupling is large and the motion of fluid and solid are fully locked 

together. Only the fast wave propagates, since relative motion associated with the 

slow wave is impeded. Inertial coupling decreases as the angle of propagation, with 

respect to xs, increases, causing relative motion to occur, and allowing the slow 

wave to propagate. Parallel to the layers, the inertial coupling is zero. This means 

no coupling occurs between fluid and solid, and their respective motions are 

independent. Section 6.4.1 will later describe a tortuosity term (and hence inertial 

coupling), which may be found for a system of parallel plates that is a function of 

angle to the layering. 
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5.4 A StradOed Model for Cancellous Bone 

Equations (5.1 - 4) were used to plot phase velocity against angle of 

refraction for a layered model of cancellous bone, using the values in the second 

column of Table 5.1. The resulting prediction is plotted in figure 5.4. 

Figure 5.4 shows two distinct phase velocity contours (coloured lines) 

when plotted versus angle of propagation, with respect to X3. These contours 

correspond to two compressional mode speeds, analogous to the Biot fast and slow 

compressional waves (Fiona et al. 1987). The fast wave corresponds to the upper 

curve, and its velocity varies significantly with angle of propagation, being greatest 

parallel to the layering at 90°. In contrast, the slow wave phase velocity varies little 

with angle, such that it is approximately constant at angles close to the direction of 

layering. 

The response is clearly symmetrical around 90°. This is owing to the 

theoretical layers being infinitely extending in two dimensions: there are no external 

boundaries to the medium. The response of the system may be thought of as arising 

fi-om the coupling of an anisotropic fluid mode with an extensional plate mode 

(Fiona et al. 1987). The velocity curves are bounded by two asymptotes, shown in 

figure 5.4, to which the curves display limiting behaviour. The first asymptote 

represents the solid plate mode of equation (5.2). The second limit corresponds to 

an anisotropic fluid mode, which may be found from the relation between 

components of the slowness vector, written in the form of an ellipse, as. 

Pf 

Fiona et al. (1987) noted that the principle axes of this ellipse (and therefore the 

shape and value of the fluid asymptote) were govern by the ratio between porosity 

and density of the layers. Therefore, the asymptotes provide a physical explanation 

to the shape of the velocity curves predicted by Schoenberg. 
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Table 5.1 - Input parameters to a Schoenberg model of propagation in oriented 

cancellous bone for the figures 5.4 and 5.8. 

Parameter Value for Fig 5.4 Range for Fig 5.8 

Density of solid bone, 2000 kg/m^ 1800 - 2000 kg/m^ 

Density of fluid, p/ 992 kg/m^ 992- 1047 kg/m^ 

Porosity, P 0.8 0.804 ± 0.028 

Solid compressional speed, 3150 m/s 3100-3200 m/s 

Fluid compressional speed, P} 1500 m/s 1500 m/s 

Shear speed, 1650 m/s 1650- 1800 m/s 

Schoenberg Fast 

—— Schoenberg Slow 

Plate Asymptote 

Fluid Asymptote 

o1500 

j=1000 

120 140 160 180 

Figure 5.4 - Predicted phase velocities of fast and slow waves versus propagation angle for 

layered bone system, for 90° parallel to layers. Plate asymptote from eqn (5.2) and fluid asymptote 

from eqn (5.5) are shown. 
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5.5 In Vitro Study into the Effect of Trabecular Orientation 

5.5.1 Objective and Method 

Figure 5.1 (c) illustrated that the cancellous geometry may be considered as 

an array of bone-marrow layers. Therefore, Schoenberg's theory may be 

appropriate in understanding the anisotropic response of cancellous bone to 

ultrasound. Since Schoenberg's theory omits fluid viscosity, it may be applied to 

propagation at frequencies around 1 MHz, where viscous eficcts may be neglected. 

Investigations were undertaken to establish whether Schoenberg's theory 

was compatible with measurements of direction dependent velocity, to a certain 

level of precision. The immersion and acquisition systems described in section 3.5 

were used, with the addition of a revolving specimen holder. This mechanism 

allowed samples to be rotated manually about a pivot coaxially aligned with the 

fixed transducers. The angle of incidence was indicated on an angular scale, and the 

output was acquired after each 5° ± 0.5° increment in the sample position. Three 

Parallel, three Perpendicular and two Oblique samples were used, with marrow left 

intact. 

When samples were rotated, care was taken to ensure that the beam width 

was covered, to avoid signal leakage around the sample. An erroneous output may 

arise if a direct wave is measured. Calibration tests, described in Appendix A.I, 

showed that the width of the beam was 1.2 cm at 1 MHz. From figure 5.5, a 

sample, of width 3 ± 0.05 cm, could be tested at angles of incidence from 0° - 60° 

before signal leakage occurred. Therefore, Parallel and Perpendicular samples of 

such width could be tested to cover the an angular range 0° - 90°. 

Sample 
idth 3 cm 

Transducer 

A 

Beam 
width 1.2 

1 
I 

/ 1 

/ 1 Pivot Ultrasonic Beam 

Figure 5.5 -Rotation of a sample in an ultrasonic beam. 
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5.5.2 Evalnadng Phase Vdocity for Re&acted Waves 

The Phase Spectrum Method, described in section 3.5.1 for evaluating 

phase velocity, is only applicable to propagation in samples tested at normal 

incidence. At non-normal angles of incidence, the diiference in the velocities of test 

and reference media causes refraction to occur at a fluid-porous solid interface. For 

an isotropic sample, the path length of the wave wUl always be greater at non-

normal angles of incidence than at normal angles. Rotating a sample from normal 

incidence, the wave is bent away from the normal in all cases, for any velocity in 

the sample. A longer path length will cause the pulse to arrive later, appearing as if 

its velocity has decreased with angle^. An alternative method for determining phase 

velocity overcomes this by accounting for refraction, and is outlined below. 

The phase velocity of a refracted wave may be calculated using a 

technique developed by Smith (1972), and later modified by Fiona et al. (1987) for 

ultrasonic immersion tests. This algorithm accounts for the fact that the path 

through the sample lengthens by an amount dependent of the angle of refraction. 

The group velocity of a dispersive wave (introduced in section 1.5.2) is 

generally different from the phase velocity, hence the latter will be refracted at a 

different angle. Figure 5.6 shows an ultrasonic beam is incident at the target at an 

angle 8, in the jz-plane. The phase velocity component makes an angle, 9r with the 

normal to the sample face, whilst the group velocity makes an angle, 8g. In a non-

dispersive medium, the angles, and Qr will be the equal. 

Incident Wave 

^ Path of Group Velocity 

^ Path of Phase Velocity 

Figure 5.6 - Refraction through a finite-sized sample, for angle of incidence, 6,; and the angles of 

refraction of group and phase velocities, 9g and Br, respectively. 

^ An apparent increase in velocity, where the wave arrives earlier than at normal incidence, only 
occurs if the properties of the specimen are anisotropic. No increase is observed if the specimen's 
properties are the same as those of the reference medium. 
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Using trigonometry and Snell's law (Leighton 1994), the angle of 

refraction, 0r may be found in terms of the known quantities: specifically, the angle 

of incidence, 9,; the phase difference between a pulse with and without the 

specimen present (that is, the time difference between group velocities in each 

case); the speed of sound in the reference medium, and the sample thickness, d. 

For an angle of refraction, Gy, where, 

tan =sin0r(cos9, -g), (5.6) 

the phase velocity, can be e^qiressed as 

^3, W) = f'w / (l + cos (5.7) 

where is the velocity in water and, 

g = (5 8) 

where d is the thickness of the target. The term <|)ft(cD) is the phase difference 

between pulses with and without the target present. If i?e(co) and Imim) are the real 

and imaginary parts of the Fourier Transform of a signal, respectively, the phase 

may be evaluated as (t>((o) = tan"'(/m(o)) / Re{(Si)). The phase difference can be 

expressed in degrees as 

^6 ( / ) - argef ) + 360^2,^. (5.9) 

In equation (5.9), the frequency, / , is in Hertz. The phases, in degrees, of pulses 

received with and without the target present are t̂arget and r̂ef, respectively. The 

term Lq is a time-compensating distance, which accounts for the phase change 

present in the reference signal as a result of a section of water displaced by the 

insertion of the target. At normal incidence, equation (5.7) reduces to, 

= (5.10) 
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In a dispersive system, the phase velocity will vary with frequency, and thus 

it may be expected that each frequency component will refract at a different angle. 

By substituting equation (5.8) into (5.6), that the angle of refraction, 0r, is 

frequency dependent. Hence, the processing algorithm utilises the fact that different 

frequencies will refract at different angles, thus allowing for bandwidth. 

The phase velocity at angle of incidence, 0, was calculated using the 

equations (5.6 - 5.9). This algorithm was programmed in MatLab. 

5.5.3 Data Representation and Errors 

Establishing the compatibility of Schoenberg's theory with measurements of 

direction dependent velocity, to a certain precision, involved the evaluation of first, 

the experimental error, and, second, the uncertainty in the predictions. An acrylic 

test object was used to verify the processing method of section 5.5.2. The 

operation of the MatLab code used to evaluate the Schoenberg predictions was 

verified against data of Fiona et al. (1987). Both these tests are outlined in 

Appendix A. II. 

The reproducibility of the experimental results, for one sample, and for 

samples of the same porosity, were established. First, phase velocity and angle of 

refraction were found from the algorithm of section 5.5.2. However, these 

evaluated properties are not independent of one another, that is, for any velocity 

there is a unique angle of refraction (as Snell's Law would suggest). Therefore, it is 

not possible to find the distribution, and hence uncertainty in velocity at one 

particular refraction angle using this method. Instead, precision must be evaluated 

for another parameter for which a spread in phase velocity may be defined. The 

simplest parameter for which this may be achieved is the angle of incidence. 

Theory and experiment were to be compared against an apparent angle of 

incidence, defined below with respect to the trabecular plate direction, 0° being 

perpendicular to the plates. Care is taken here to detail the angular conventions 

used throughout this study, since confusion may arise between definitions of angles 

with respect to the external and internal structure of samples of differing trabecular 

configurations. 
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First, two configurations of sample (Parallel and Perpendicular) were tested 

to cover the entire range of the angle of refraction, from 0° to 90°. The significance 

of the following angles should be noted. First, the angle of incidence, By, with 

respect to the sample face, was controlled in the experiments, and the angle of 

refraction, Or, with respect to the sample face, which was calculated from equation 

(5.6). However, the data was to be plotted against the angle of incidence m'th 

respect to the internal trabecular structure. Since Parallel and Perpendicular 

samples had differing internal structure, an expression for the experimental 

apparent angle of incidence was established for each sample. Specifically, for a 

Parallel sample, the apparent angle of incidence, 0/a, equals (90° - 0,), for angle 0, 

with respect to the external face; whilst, for a Perpendicular sample, 0^, is simply 

equivalent to 0,. 

Second, Schoenberg's theory predicts the angle of propagation, Zs, with 

respect to the layers in an infinitely extending medium. The theory does not 

account for interaction at external boundaries with secondary media, thus no angle 

of incidence is specified. To compare experimental results with predictions, the 

latter must be plotted versus the angle of incidence (as opposed to the angle of 

propagation in figure 5.4). Consequently, the theoretical angle of propagation 

through the layers, Zs, from equation (5.4), must be re-expressed as an angle of 

incidence for an imaginary half-space, where water is the reference medium and 0° 

is the trabecular direction (figure 5.7). Using Snell's Law, a theoretical apparent 

angle of incidence, 0^, may be expressed as. 

sin6',-̂  = - ^ ^ . s i n Z s , (5.11) 

where terms are defined in equations (5.6 - 5.9). 

Finally, the angular convention for the Oblique samples should be noted. 

These samples were tested at normal incidence, such that the angle of refraction 

was equivalent to that of the internal trabecular structure (that is, no additional 

refraction occurred). To present the data in terms of the apparent angle of 

incidence, equation (5.11) was again used, where the terms |s| and Zs were 

replaced by Vp and 0̂  (which was 45° or 60°), respectively. 
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Perpendicular Sample Parallel Sample 

90°- 8, 

Schoenberg's Theory 

. \ \ 
^ Infinite layered 

medium in half-space 

Oblique Sample 

water 

8, = 45° or 60° 
in eqns (5.6 - 7) 

Figure 5.7 - The definition of the angles in representation of theory and data. 

As with the studies on Biot's theory, the error in the predictions of 

Schoenberg's theory owing to uncertainties in the input parameters, may be 

represented by the maximum and minimum predicted bounds. Optimisation 

methods, introduced in section 2.3.3, may be used to find the extremes for 

Schoenberg. First, linearity in the equations for the given limits, was established (as 

presented in Appendix A.III), before proceeding with the optimisation. 

Upper and lower bounds of the fast and slow wave velocities were 

evaluated using equations (5.1 - 5.4), using the values in column three of Table 5.1. 

The porosity of the cancellous samples was found in section 3.7.2 as 80.5 ± 2.8 %. 

The remaining parameter values were found from literature. If the experimental 

data, and its largest uncertainty, lie within the theoretical extremes of Schoenberg's 

theory, it may be said that no discrepancy has been observed at that precision, and 

that in this respect propagation in cancellous bone behaves as that in a system of 

parallel plates. 
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5.S.4 Results and Discussion 

Figure 5.8 shows computed fast and slow wave phase velocities at 1 MHz 

from three Parallel (solid circles, from 30° to 90°) and three Perpendicular samples 

(empty circles, from 0° to 25°). Note, the results are plotted versus angle of 

refraction, 9 ,̂ as found by equation (5.6), and the trabecular direction is at 90°. 

Figure 5.8 illustrates the spread in the data. The intersample precision at one angle 

had previously been calcuated for these specimens as 6.0 %. The data was re-

expressed against the apparent angle of incidence, and its distribution was 

evaluated at each apparent angle of incidence. Figure 5.9 shows the phase 

velocities of fast and slow waves versus apparent angle of incidence, 9^, with the 

error bars as the intersample reproducibility. 

For measurements taken at non-normal angles of incidence, it was 

necessary to ensure that shear waves were not recorded and corrupting the results. 

Oblique samples were tested at normal incidence, where shear propagation does 

not occur. Figure 4.9 (d) showed that only one mode was observed for these 

samples. The velocity of this mode was found to be 3210 m/s for the 30° specimen 

(9ia found as 76°), and 2805 m/s for the 45° specimen (9^ = 68°). When plotted on 

figure 5.9 these velocities give agreement within the bounds of surrounding data, 

which supports the assumption that the waves measured as non-normal angles in 

other samples were consistent with compressional propagation. 

Figures 5.8 and 5.9 clearly demonstrate the reproducible result that fast and 

slow wave velocities in cancellous bone depend on direction. The fast wave 

velocity is seen to increase, although the slow wave, but for those angles where its 

velocity could be calculated, its value remains approximately constant. Figure 5.9 

demonstrates that experimental fast and slow wave velocities are consistent with 

the predictions of Schoenberg's theory, to within the specified precision. Therefore, 

it may be concluded that ultrasonic propagation in cancellous bone is consistent 

with that in a layered system as modelled by Schoenberg's theory. The origin of the 

mode observed from Perpendicular samples the data between 0° and 25° was not 

apparent from initial analysis of the data. However, comparison with Schoenberg's 

predictions suggests that the mode observed is the fast wave at these angles. 
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Figure 5.8 - Measured phase velocities versus angle of refraction from various samples. 
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Figure 5.9 - Measured and predicted phase velocities of fast and slow waves versus apparent 

angle of incidence. Curves show bounds of Schoenberg theory; error bars show intersample 

precision on data points. 
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5.5.5 Lateral Shift 

The presence of refraction results in a displacement in the measurement 

plane of the position of arriving peak pressure. Fast and slow waves, having 

different velocities, wiU refract by different amounts in the y-direction. At high 

refraction angles (and high velocities), the lateral shift may cause the peak pressure 

to fall outside the sensing surface of the receiver. Such a displacement would cause 

signal level to drop, leading to perceived high attenuation or the removal of a 

measurable wave. Checks were performed to establish whether signal leakage had 

occurred during these tests. 

With reference to figure 5.10, the shift in the ^-direction, may be 

quantified, using simple geometry and Snell's Law, with knowledge of the angles of 

refraction, 9 ,̂ and incidence, 0/. The shift, 7, may be expressed as. 

Y = 
d 

COS0, 
(5.12). 

where d is the sample thickness, and 0̂  and 0; are angles of refraction and 

incidence, respectively, defined in figure 5.10. 

Transmitter Specimen 
Receive 

# 1 msi 

2.5 cm 

Figure 5.10 - The lateral shift in a wave through a sample tested an a non-normal angle of 

incidence. 
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Acoustic energy may not fall on the sensing surface if the distance Y is 

greater than the radius of the transducer. For these studies, the transducer radius 

was 1.25 cm. From equation (5.12), it may be seen that if the angle of refraction 

and incidence are approximately equal, or where the wave velocity is close to that 

in the reference medium, the shift will be negligible. The velocity of the slow wave 

is close to that in water, and the wave is unlikely to experience much lateral shift. 

Hence, it will be fully recovered by the sensor. For example, for a Parallel sample of 

thickness 1 cm, with an angle of incidence of 20°, corresponding angle of 

refraction' of 22°, the lateral shift, V, in the slow wave, is less than 1 mm. In 

contrast, for an angle of incidence of 20°, and angle of refraction of 30° in the same 

sample, the fast wave shift 7 is 2 mm. The maximum shift in the fast wave 

achievable using this set up, is around 2 cm. This occurs at angles of incidence and 

refraction of 55° and 79°, respectively. 

The bandwidth of the signal may also affect the shift, since the phase 

velocity, and hence the angle of refraction, 9r, are functions of frequency. Figure 

4.4 (a - b) showed that the slow wave velocity is approximately constant in the 

bandwidth 0.8 - 1.2 MHz. Thus, the lateral shift is unlikely to alter over this range. 

The fast wave experiences negative dispersion, of around 0.1 % in its value within 

the given bandwidth. However, such a change in minor velocity would produce a 

negligible variation in shift over these frequencies. 

In conclusion, refraction of the fast wave at angles of incidence above 50° 

(with respect to external sample dimensions) may result in shifts of the position of 

the peak response in the ̂ /-direction. In such tests, wave energy may be fall outside 

the sensing surface, thus altering measurements of wave properties. However, this 

is adequately tackled by the use of both Parallel and Perpendicular samples to each 

cover angles of incidence up to 45°, lessening the need for data at high incidence 

angles. 

^ The angles quoted here are given with respect to the external sample dimension, and not the 
trabecular direction, as plotted in figures 5.4, 5.8 and 5.9. 
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5.6 Sunmiary 

During this chapter, a new theoretical approach to modelling the 

propagation of ultrasonic waves in cancellous bone has been proposed. This model 

assumes that the trabecular structure is a periodic array of parallel fluid-solid layers, 

to which Schoenberg's theory is applied. In vitro investigations of direction 

dependent wave velocities in cancellous bone demonstrate two results. First, the 

anisotropic response of fast and slow compressional waves is reproducible. Second, 

evidence exists that ultrasound in cancellous bone containing a dominant trabecular 

structure behaves like that in a stratified array of bone-marrow layers. Qualitative 

agreement has been found between theory and experiment to within specified 

uncertainties. 

The stratified model proposed here is clearly a simplification of the 

cancellous architecture. Although it is unable to model viscous efiects, which may 

be important at ultrasonic fi-equencies, it uses fewer input parameters than the Biot 

model. Therefore, it has the potential to be usefully employed to investigate 

ultrasonic propagation in cancellous bone further. It is also able to provide 

descriptions of physical and dynamic forces which lead to an anisotropic response 

in bone. The following chapter presents a comparison between the Biot and 

Schoenberg theories. 
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Chapter Six 

Comparison of Biot and Schoenberg Theories 

6.1 Introduction to Theoretical Study 

6.1.1 General Comments 

Although both porous media theories of the previous chapters predict the 

existence of two compressional waves, they are derived from fundamentally 

differing perspectives. Biot considers the motion of fluid and solid separately, and 

then coupled. The porous geometry is described through four of the fourteen 

parameters. Schoenberg's use of matrices to relate acoustic field properties in 

consecutive periods inherently constructs a layered geometry. Such conceptual 

differences mean that Biot perceives cancellous bone as an isotropic matrix of 

fused calcified spheres saturated with viscous marrow, whilst Schoenberg sees 

calcified plates filled with an ideal fluid. Section 5.3.2 stated that the omission of 

pore fluid dynamics by Schoenberg, which are comprehensively incorporated by 

Biot, prevents the former from predicting viscous absorption, and restricts its 

application to the High frequency region. 

The crucial distinction between representations is shown in figure 6.1. The 

figure compares the predictions with direction to trabecular alignment from 

Schoenberg and the isotropic Biot model, using the parameters in Table 6.1, some 

of which are common to both models. 
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Table 6.1 Input parameters to a Biot model of marrow-saturated bovine bone at 

20°C, and a Schoenberg model, showing coincident terms. 

Parameter in Schoenberg Model Value Parameter in Biot Model 

Solid Compressional Speed, F, 3150 m/s 

Solid Shear Speed, 1650 m/s 

Fluid Speed, Vf 1500 m/s 

Density of solid, p., 2000 kg/m^ Density of solid, p, 

Density of fluid, p/ 992 kg/m^ Density of fluid, p/ 

porosity, P 0.78 porosity, p 

0.266 mm pore radius, r 

22.6 GPa Youngs modulus of solid, 

2.2 GPa Bulk modulus of fluid, Kf 

0 3 2 Poisson's ratio of solid, v, 

1.23 Index of power law, n 

0.15 Pa.s Viscosity of fluid, r\ 

(0 
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Angle of Propagation (°) 
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Figure 6.1 - Phase velocities of fast and slow waves versus angle of propagation predicted by the 

Biot and Schoenberg theories. 0° is perpendicular to the layers in Schoenberg; Biot is isotropic. 
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6,1.2 Aim of Theoretical Study 

An investigation was undertaken to establish whether the predictions of 

phase velocities of Biot and Schoenberg may become equivalent with 

modifications. As shown in Chapter 5, the variation with direction of material 

properties of a porous medium influences wave propagation. Changes in wave 

properties with direction originate from two characteristics of a porous matrix. 

First, the compressibility of the frame will depend on direction, thus affecting 

propagation through it. Second, the pores may be elongated or skewed, such that 

the motion of the pore fluid is angle-dependent. Whilst both details depend on the 

porous geometry, they may be analysed separately. Since Biot's theory 

comprehensively includes frame and fluid effects, anisotropy has been introduced 

into Biot's theory on various occasions, not least, by Biot himself (Biot and Willis 

1957). The following sections compare Biot's predictions, where anisotropy is 

introduced, to those of Schoenberg. The values in Table 6.1 were used, unless 

otherwise stated. 
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6.2 Introducing Transverse Isotropy into Biot s Theory 

6.2.1 Transverse Isotropy in Bone 

A medium is transversely isotropic if its material properties are consistent 

in all directions at right angles to a principle axis or azimuth (see figure 6.2 later). 

This condition occurs in many natural media, such as sedimentary rock and the 

ocean, which may be treated as a series of layers of varying density and ambient 

pressure. 

Cortical bone displays a clear transversely isotropic behaviour (Duck 

1990). Table 6.2 shows Young's moduli and Poisson's ratios for cortical bone. It is 

seen that, first, the parameters vary with direction, but also that, since the Young's 

moduli are approximately equal in directions x and y, the medium is transversely 

isotropic, where the azimuth as the long axis (shaft) of the bone. 

Chapter 5 showed that cancellous bone could be modelled as a 

transversely isotropic array of parallel layers. Hence the introduction of transverse 

isotropy to the mechanical definitions of Biot's theory may enable it to 

approximate Schoenberg's stratified model. This is considered next. 

azimuth, z 

r 
Isotropic in xy-plane 

Figure 6.2 - Co-ordinate system for a transversely isotropic medium, with layers 

in the xy-plme having same properties. 
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Table 6.2 Anisotropic material parameters for bovine cortical bone* (Duck 1990) 

Parameter Value Parameter Value 

Young's Modulus, 10.2-13.3 GPa Poisson's ratio, 0.30-0.51 

Young's Modulus, Ey 10.2 -14.6 GPa Poisson's ratio, 0.11 - 0.24 

Young's Modulus, 18.1 -22.6 GPa Poisson's ratio, (120-(122 

Shear Modulus, N̂ y 3.4 - 5.3 GPa Poisson's ratio, Vŷ  (138-(151 

Shear Modulus, N̂ z 3.6 - 6.3 GPa Poisson's ratio, (121-(142 

Shear Modulus, Nŷ  3.6-7.0 GPa Poisson's ratio, (122-(140 

Shear modulus, Njj, is the ratio of the shear stress to shear strain for shear in the ij-plane. 
Poisson's ratio,Vy, is the ratio of contraction in the /-direction to expansion in the /-direction. 

6.2.2 Theory 

The influence of direction on the mechanical properties of a transversely 

isotropic porous medium may be considered in a straightforward way. Moduli and 

the Poisson's ratio are generally defined by considering the mechanical response in 

one axis, to a stimulus (whether extension or compression) in an orthogonal axis. 

For example, as section 2.3.2 stated, the Poisson's ratio is the quotient of lateral 

contraction to longitudinal extension under lateral stress. Thus, it may be expected 

that the values of such mechanical properties will vary with the fi-ame of reference 

in a transversely isotropic medium. 

The introduction of transverse isotropy to the mechanics of a fluid-

saturated porous matrix may be achieved through fundamental relationships 

between stress and strain. As discussed in section 2.2.2, the derivation of Biot's 

theory begins by considering these relationships, given in equation (2.1) for an 

isotropic system. 
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For a transversely isotropic porous medium, the stresses in solid and fluid 

(ay and a, respectively) are related to the strains (e and s, respectively), 

+ + Mg, 

+ Me, 

+ Qg, 

^yz ~ ^^yz'> ^zx ^xy ~ ^^xy> 

- (̂ 5 1) 

In the isotropic case of equation (2.1), four elastic coefficients. A, N, Q 

and R (and P = A + 27V), are required to describe the solid frame. However in the 

transversely isotropic case of equation (6.1), eight are required: A, N, F, M, C, Q, 

L and R (simply, four in the azimuth axis, and four orthogonal to this). The term N 

is the shear modulus and parameters A, Q, and R were previously given in 

equations (2.2 - 2.4). 

As an aside, the coefficients of the anisotropic case are related by, 

, JL = lAf, ,!:(), (:== 5̂.2) 

where the terms f, m, and 1 relate the elastic coefficients in orthogonal directions. 

Therefore, if the parameters A, N, Q and P were defined for the azimuth direction 

in figure 6.1, the terms F, L, M and C would be the equivalent properties, 

respectively, defined for the xy-plane. If f = m = 1 = 1, the material is isotropic, 

since the parameters reflect the degree of anisotropy. However, the terms f, m and 

1 need not be known for the evaluation of the coefficients, which may be found 

instead from real data. 

The elastic coefficients of a transversely isotropic porous medium may be 

found in a similar way to those in the isotropic case, using properties evaluated for 

the relevant axes. Specifically, equations (2.2 - 2.4), (2.26 - 2.28) are used to find 

parameters A, N, Q and P, using the Young's modulus and Poisson's ratio for the 

azimuth direction, whilst F, L, M and C may be found using those equations and 

input values defined for an orthogonal direction. For example, for transversely 
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isotropic cancellous bone, the term A, may be evaluated using the Young's 

modulus defined in the azimuth direction, E^= 18.1 - 22.6 GPa. Consequently, F, 

orthogonally related to A through equation (6.2), will be evaluated with the 

Young's modulus perpendicular to this, Ey= 10.2 - 14.6 GPa. The remaining 

elastic coefficients may be evaluated in a similar way. 

Having treated the mechanical properties of a transversely isotropic porous 

medium in this way, expressions may be found for wave properties. This is briefly 

outlined in the following section. 

6.2.3 Phase Velocities in a Transversely Isotropic Porous Medium 

Sharma and Gogna (1991) derived equations for the phase velocities of 

fast, slow and shear waves, following the derivation of Biot's theory and using the 

stress-strain relations of equation (6.1). 

As in the isotropic case, coupled linear equations of motion may be found 

for compressional and shear propagation. In the isotropic case there are two set of 

coupled equations, with equation (2.5) representing compressional propagation 

and equation (2.6) representing shear propagation. In the case of transverse 

isotropy, there are three sets of coupled equations, one of which is easily solved 

for shear waves. The coefficients of the remaining two sets for longitudinal 

propagation may be formed into a four-by-four matrix equation, 

c c 

c" 

—(F + z,) —G 
C c 

— M (i^Q-p\2 —^ (}^R-P22 

0, 

(6 3) 

where c = {V I sin 0) and q = (cos 8 / F ) , for a wave of velocity, V, propagating at 

an angle, 9, with the z-axis. The terms p//, P22 and p/2 were given in equations 
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(2.7) and (2.8). With some algebra and matrix transformation, equation (6.3) may 

be re-expressed as a cubic equation in terms of velocity, V̂ , as, 

4 n\ pr2 ^1^^ +(^2 +(% sin'* <9+% cos'' 6*). 

+T^4 sin^ d + Tj-i sin"* ^cos^ 9+ sin^ ^cos'' 0+Tq COS^ 0 = 0 
(6.4) 

where the values of the coefficients Tij are given in Table 6.3. Equation (6.4) may 

be solved by applying Cardano's method (Trim 1983), to find an expression for, 

the phase velocities of three modes, F„ (« = 1, 2 and 3 = fast, slow and shear 

respectively), as 

r. = - ,4,) / y4o , (» = 1, 2, 3) (6.5) 

where = 2 c o s ( ^ ^ — — ) and^ = tan ' / - G ) (6.6) 

The term, A = + 45^, where. 

G = - 3DoZ)iD2 + 2D,", 

a = D o D 2 - D i \ (6.7) 

where the terms i)„ are functions of angle of propagation relative to the azimuth, 

0, as shown in Table 6.3. The terms py/ and P22 are evaluated from equation (2.7), 

whilst P12 is found from equation (2.8), using the tortuosity, a , of equation (2.22). 
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Table 6.3 - Coefficients of eqn (6.4) for the Transversely Isotropic Biot model. 

Term Expression 

Tn - {XZ + P22LY) 

Tn 

T2X (:r-h Ft2jC)2: 

T22 piip22[G^+A^ -(C+V4+27V);;] - pi2^[2Mg-2(F+2I)j;] - 2p22ir+ 2p22\z-
AOC + 2p,2P22[(C+v4+27V)M-2(F+2I)G] + p22^[f(F+2I)-v4C] 

T23 P22{3m"+ [v4C-(F+2Z)F+Z(.4+27V)-GV]j; + (FA/-v4C)6 + + 
(F+2I)M6-CM^} 

^3, 

Tn ( r + p22z)z 

T33 - ( ^ z + p22ir) 

T,4 P22LX 

X CTg-g" 

T (v4 + 27V);; -

Y p]ii? + P22C - 2pi2Q 

r Pn^ + p22(^ + 27V) - 2p]2-M 

z 2 
PnP22 - P12 

Do TM 

D, (TlziCOŜ e + T^zsin^G) / 3 

D2 (riicos^e + Tlzzcos'e sin^e + nssin'e) / 3 

D, 7^cos^8 + r]2Cos'̂ 8 sin^G + TlzgCoŝ G sin'̂ G + 7^4sin''G 

Table 6.4 - Input parameters for the elastic coefficients for the TI Biot model. 

Parameter Value Details 

Azimuth Direction 

Young's modulus in z-dir'n, 

Poisson's ratio for z-)/ plane, 

18.0 GPa 

0.3 

Used to find from eqns 

(2.26 - 2.28), used in eqns (2.2 - 2.4) for 

= v4 + 2//,fbr^=.^^. 

X-Y Plane 

Young's modulus inx-dir'n, 

Poisson's ratio for x-y plane, 

12.0 GPa 

0.4 

Used to find Ks„ K,,̂  and %% from eqn 

(2.26 - 2.28). /̂alues of and 

then used to find F from eqn (2.2) and M 

from eqn (2.3). C = f + 2Z,, for Z = 
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6.2.3 Comparison of the Predictions of TI Biot model with Schoenberg 

Phase velocities as functions of the angle of propagation were evaluated 

for the transversely isotropic Biot model (which will be called the TI Biot model 

for convenience), from equations (6.5 - 7), and the coefficients of Table 6.3, using 

the values in Table 6.1 and Table 6.4. Care was taken to evaluate the elastic 

coefficients. A, N, F, M, Q Q, L and R, using values of the Young's modulus and 

Poisson's ratios defined for the relevant direction. The use of their values is 

summarised in Table 6.4. Predictions from Schoenberg's model, were evaluated as 

in section 6.1. As an aside, in Schoenberg's stratified medium, the azimuth is taken 

perpendicular to the layers. In real bone, however, this axis is parallel to the 

layers, which reflects the fact that much real bone is composed of rods, not plates. 

Figure 6.3 shows phase velocities versus angle of propagation as predicted 

by two models. The TI Biot model is seen to predict fast and slow wave speeds 

which vary with the angle of propagation. Thus, modification of basic equations of 

Biot's theory yields an anisotropic response. The fast wave velocity is seen to 

increase with angle, being around 3200 m/s at 0°, rising to 4000 m/s at 90°. 

However, although the contour of the TI Biot fast wave velocity resembles that of 

the Schoenberg fast wave, its magnitude is twice that of the Schoenberg wave at 

0° and a third greater at 90°. Poor knowledge of the input parameters may have 

given rise to this discrepancy. The TI Biot model uses orthogonal Young's moduli 

and Poisson's ratio for cortical bone, and which therefore makes the assumption 

that the inherent anisotropy of cancellous bone arises solely from the change in 

properties of individual calicifed trabeculae with direction. It is conceivable that 

the transverse isotropy in cancellous bone is instead a result of the fabric of its 

structure. However, without accurate biomechanical models or data, this cannot 

be included into the TI Biot model. 

The slow wave velocity predicted by TI Biot shows little correspondence 

to the curvature or magnitude of that from Schoenberg, being around 100 m/s at 

0° and 650 m/s at 90°. Significantly, the TI Biot slow wave does not fall to 0 m/s 

at 0°, the azimuth direction. In the Schoenberg model, the slow wave velocity is 0 

m/s perpendicular to the layers, owing to the absence of a path through the layers 

through which a fluid-bome wave may propagate. However, in the TI Biot model, 

139 



E R Hubbuck, 2000 Original in Colour Chapter 6 : Comparing Biot & Schoenberg 140 

the structure is defined by the tortuosity for the case for a structure of fused 

spheres (fi-om equation (2.2.2)). Therefore, conceptually, channels will exist 

through the porous matrix in the azimuth direction, through which a fluid-bome 

wave may propagate and hence, the slow wave velocity is not 0 m/s for the TI 

Biot model at this angle. 

In conclusion, although the mechanical properties of the solid frame are 

accounted for in the TI Biot model, subtleties in fluid flow associated with the 

layered structure of Schoenberg's model are poorly represented by the case of 

fused spheres. The following investigation discusses a version of the tortuosity for 

a layered structure, which may more closely approximate those inertial effects in 

Schoenberg's theory. 
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Figure 6.3 - Phase velocities of fast and slow waves versus angle of propagation predicted by the 

TI Biot and Schoenberg models. 0° is perpendicular to the layers (azimuth). 
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6.3 Introducing Anisotropic Fluid Effects in Biot's Theory 

6.3.1 Theory 

The macroscopic compressibility of the frame of a porous medium, 

considered in the previous section, may be related, in part, to the shape of the 

microscopic pores. Biot considered both the frame anisotropy (Biot and Willis 

1957) and, later, that of the pore fluid motion, by introducing a visco-dynamic 

operator matrix, representing viscous and inertial coupling in three dimensions 

(Biot 1962). However, for the purposes of approximating a stratified structure, 

this operator is neglected here in favour of a simpler and novel approach, 

described below. 

Section 2.2.4 discussed the representation of the dynamics of the 

interstitial fluid by the frequency-dependent tortuosity, a((o), of equation (2.21). 

At sufficiently high frequencies, the second term on the right hand side of this 

expression, which includes the viscosity, r\, may be neglected, and the tortuosity 

may be approximated as the term, am, being purely dependent on the porous 

geometry. Strictly, this accounts for the fact that, at high frequencies, viscous 

coupling is dominated by inertial coupling. 

As mentioned in section 5.3.2, the dependence of velocity on the direction 

in a stratified medium reflects the variation in inertial coupling. If the Biot and 

Schoenberg models are to become equivalent, it may be assumed that the degree 

of inertial coupling at an intermediate propagation angle in Schoenberg's layered 

system is equivalent to that in a fluid with a tortuosity in a Biot model with 

anisotropic fluid motion. Therefore, introducing anisotropic fluid effects into 

Biot's theory requires finding an expression for the tortuosity, a , in a stratified 

structure as a function of the angle of propagation to the layers, 6. 

Such an expression may be obtained by equating expressions for phase 

velocity from the two theories: from Biot's theory in terms of a , and from 

Schoenberg in terms of angle, 6. Equation (2.9) relates the phase velocities of 

Biot's theory to the tortuosity, a , through the definition of p/2 from equation 

(2.8). This may be equated with the inverse of the magnitude of slowness, |s|'', for 
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a wave in a stratified matrix as function of propagation angle, 8 (Schoenberg and 

Sen 1983), 

sin ^ + c o s 

where <p> = Pp/+ (l-P)p^, <l/p> = p/p/+ (1-P)/Pi and <IIK> = ^IKf+ (1-P)/^; 

and where 0 = 0° for propagation perpendicular to the layers. The calculation may 

be substantially simplified if, rather than a fluid-solid system, the case of two fluids 

is considered. This allows for the values of the frame bulk modulus, Kh, and shear 

modulus of the solid, N, to be set to zero. The tortuosity as a function of angle, 

a(9), can then be found by equating equations (2.9) and (6.1), as, 

dr(6) = 1 + ((1 . (6.9) 

Equation (6.9) gives the tortuosity parameter of Biot's theory as a function of the 

angle of propagation to the layering in a stratified structure. 

6.3.2 Comparison of the Predictions of AF Biot model with Schoenberg 

The angular tortuosity of equation (6.9) was incorporated into Biot's 

theory to model anisotropic fluid effects. (This model will be referred to as the AF 

Biot model, for an anisotropic fluid.) Phase velocities of fast and slow waves were 

predicted as a function of angle using the AF Biot model, and compared with 

those of Schoenberg, using parameters in Table 6.1. 

Figure 6.4 shows the predictions of the two theories. The AF Biot model 

predicts fast and slow wave properties vary with the angle of propagation. Hence, 

as in the TI Biot model, modification of the basic equations of Biot's theory yields 

anisotropic wave properties. The fast wave velocity predicted by the AF Biot 
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model increases with angle and follows a similar curvature to that predicted by 

Schoenberg. However, it does not agree in magnitude with the Schoenberg fast 

wave, although the discrepancy is less than that of the TI Biot model in figure 6.3. 

In contrast, the slow wave velocity predicted by AF Biot model shows 

considerable resemblance to the curvature and magnitude of that from 

Schoenberg. It is 0 m/s at 0°, increasing to a value of around 1450 m/s at 90°. Its 

value is to within 7 % of the Schoenberg slow wave curve at all angles. Such 

correspondence is likely to arise since the tortuosity relates to the motion of the 

fluid in the pores, through which the slow wave may be considered to propagate. 
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Figure 6.4 - Phase velocities of fast and slow waves versus angle of propagation predicted by the 

AF Biot and Schoenberg models. 0° is taken as perpendicular to the layers. 
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6.4 Discussion 

Of the methods investigated in this chapter for incorporating anisotropy 

into Biot's theory, the TI Biot model, concerning frame, is certainly the more 

rigorous theoretically. However, the AF model, which incorporates the angular 

tortuosity, gives better agreement with Schoenberg's model in terms of the slow 

wave velocity. Total equivalence between the two theories may never be achieved, 

because Biot's theory fundamentally assumes that fluid and solid phases are 

interpenetrating and continuous. Strictly, an infinitely extending stratified 

geometry has no continuous phase, except at that direction parallel to the plates. 

In addition, mechanical moduli cannot be defined for infinite layers with no 

boundaries, which limits agreement between the two approaches. 

Whilst this chapter has presented a theoretical study aimed at bridging the 

gap between the two theories, the relevance to ultrasonic propagation in 

cancellous bone should also be discussed. As was previously concluded, the 

parallel plate structure is an unrealistic idealisation of the cancellous structure, 

since, bone and marrow phase are interpenetrating in all orientations. Furthermore, 

as the experiments of section 4.3 show, the properties and dynamics of the pore 

fluid are important for propagation. In these respects, Biot's theory provides a 

"truer" model of propagation than Schoenberg, and anisotropic modification is 

necessary to find the "ultimate" model. 

Figure 6.5 summarises aU the propagation models considered in this thesis. 

In addition, the two amendments of sections 6.3 and 6.4 are incorporated together 

in a third modified Biot model, denoted as the TIAF Biot model (transversely 

isotropic - anisotropic fluid model). Devising this final model is easily achieved, 

using the angular tortuosity of equation (6.9) in the expression for pn of equation 

(2.8) in coefficients of Table 6.3. For comparison, the data previously plotted in 

figure 5.8 against apparent angle of incidence, is replotted here versus angle of 

propagation. (Error bars are not shown, since, as explained in section 5.5.3, 

uncertainties are only valid for data plotted versus apparent angle of incidence.) 

The combined TIAF modification to the Biot model does not significantly 

improve agreement to the predictions of Schoenberg. However, the magnitude of 

the fast wave is consistently in the order of 1500 m/s greater than the Schoenberg 
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fast wave at all angles: that is, it is faithful to the angular curvature. The TIAF 

model slow wave velocity gives a poorer match to that of Schoenberg than that 

provided by the AF Biot model. 

Fast Waves 
- Schoenberg Theory 

- AF Biot Theory 

- Tl Biot Theory 

- TIAF Biot Theory 

• Data 

4500 

4000 

3500 

E3000 

2500 

Slow Waves 
1500 

1000 

500 

10 20 70 80 90 30 40 50 60 
Angle of Propagation (°) 

Figure 6.5 - Phase velocities of fast and slow waves versus angle of propagation predicted by the 

AF, TI and TIAF Biot and Schoenberg models. Data from Chapter 5 is shown. 0° is taken 

perpendicular to layers. 

In conclusion, the unmodified Biot's theory provides a conceptually 

sophisticated model, which is able to predict the presence of fast and slow 

compressional waves, and model the phase velocities for propagation in the 

trabecular direction. This direction dependence phase velocities of the two waves 

at other angles to trabecular alignment may be modelled by Schoenberg's stratified 

theory. Introducing anisotropy into Biot's theory does not significantly improve its 

ability to model wave properties at non-aligned angles. Therefore, whilst Biot is 

able to account for many subtle effects, Schoenberg's theory is likely to be of 

greater practical use. The following chapter discusses the usefulness of the models 

considered throughout this work, and the relevance of the findings to clinical 

analysis in vivo. 
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Chapter Seven 

Discussion and Future Work 

7.1 Conclusions of the Present Study 

This thesis has dealt with the theoretical modelling of ultrasonic 

propagation in cancellous bone. The conclusions that were drawn from this work 

were: 

• Fast and slow compressional waves were observed in bovine cancellous bone in 

vitro-, 

• The measured phase velocities of fast and slow waves are consistent with 

predictions from Biot's theory, for propagation in the trabecular direction; 

• The measured fast and slow wave phase velocities at any angle to the 

trabecular alignment may be modelled using Schoenberg's theory for 

propagation in periodically alternating fluid-solid layers; 

• Theoretically, the interstitial fluid plays an important role in determining the 

nature of propagation at certain frequencies, and thus their eifect should be 

noted for ultrasonic frequencies; 

• Anisotropy may be introduced into Biot's theory through the definition of a 

transversely isotropic frame, or through the use of an angular tortuosity. 
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A list of issues were raised in section 1.6.1, to be tackled throughout the 

thesis. The first point concerned whether a useful theoretical model may be found 

to describe propagation. A useful theory may be defined in this context, as one 

having parameters which may be adequately determined, and from which 

information about bone condition may be extracted from ultrasonic measurements 

by inversion'. Of the theories considered throughout this thesis, the Schoenberg 

theory has the potential to be the most useful. This will be discussed later in 

section 7.3.3. 

The second topic tackled throughout the thesis related to the effect of 

frequency on propagation. It has been learnt that the nature of propagation in a 

porous solid at a particular frequency is determined by the properties of the 

saturating fluid. Theoretical and initial practical evidence here suggests that the 

incident frequency may influence propagation in cancellous bone owing to the 

frequency-dependent dynamics of the interstitial fluid and the slow wave 

frequency window of section 3.3.2. Possible frequency-dependent effects for in 

vivo assessment will be discussed in section 7.3.2. 

In response to the third issue, the importance of the cancellous structure is 

evident in the study of Chapter 5, and will be discussed in greater detail in section 

7.2.1. Finally, suggestions are made regarding the improvement of QUS 

technology and implications for this work on current systems in section 7.3.3. 

' inversion being the process of using a measured parameter to infer the value of the required 
parameter through an equation. 
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7.2 Ideas for Future Theoretical Studies 

7.2.1 Modelling Structural Deterioration 

To date, the only acknowledged mechanism by which the structure of 

cancellous bone affects ultrasonic measurements is through scattering (Tavakoli 

and Evans 1992). However, the present study has provided further theoretical 

description of mechanisms through which the cancellous architecture may 

influence propagation. In particular, analysis of the Schoenberg model in Chapter 

5, and of the AF Biot model of section 6.3, revealed that the direction dependence 

of wave properties may be partially attributed to the motion of the pore fluid, and 

to dynamic coupling between fluid and solid. Indeed, inertial coupling, and the 

related tortuosity parameter, are factors firmly related to structure. This is most 

evident in the predictions of the AF Biot model, where the introduction of the 

angular tortuosity term of equation (6.9) leads to the prediction of an anisotropic 

response. In addition, the geometry of the calcified matrix is likely to influence its 

mechanical properties. Appreciation of such mechanisms may assist understanding 

the way in which changes in the cancellous structure with the onset of 

osteoporosis aflTect wave properties. 

The structural deterioration of cancellous bone with the onset of 

osteoporosis was envisaged by Hosokawa et al. (1997) in the way shown in figure 

7.1. In healthy bone, the two dimensional structure is highly anisotropic, forming 

oriented plates. These gradually erode to a rod-like morphology, as the trabeculae 

disintegrate and pore spacing increases. At high porosities, anisotropy is lost, and 

the structure tends towards isotropy. 

Healthy Osteoporotic 

ANISOTROPIC ISOTROPIC 

Figure 7.1 - Schematic of the deterioration of the cancellous structure with the progression of 

osteoporosis (after Hosokawa et al. 1997) 
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The geometric transition shown in figure 7.1 may be incorporated into the 

structural definition of propagation theories to model wave properties with 

pathological changes. Schoenberg's theory does not permit a change in the 

geometry of parallel plates, other than the widening of the fluid layer through 

increased porosity. However, the means by which the structure is defined in Blot's 

theory lends itself to this type of investigation. Chapter 6 discussed how the 

anisotropy of a porous matrix originates from two elements: the compressibility of 

the frame and the motion of the pore fluid. Both elements, rigorously defined in 

Biot, would be affected by the erosion of the structure in figure 7.1. 

First, using figure 7.1 as a basis for structural erosion, the mechanical 

properties of such a system may be analysed. For example, in healthy bone, the 

Young's moduli in orthogonal direction will have significantly differing values. The 

erosion model suggests that their values wiU become closer as the structure 

approaches isotropy in osteoporotic bone. Thus, the ratio of Young's moduli in 

orthogonal axes will tend to unity with erosion. 

The development of the TI Biot model in section 6.2 showed that the 

elastic coefficients. A, Nand Mare related in orthogonal directions to F, L and Q, 

respectively, by parameters f, 1 and m. These ratios essentially represent the degree 

of anisotropy of the porous medium, since f = 1 = m = 1 for an isotropic medium. 

Therefore, finding independent expressions for these ratios, reflecting structural 

deterioration, would enable Biot's theory to model propagation through a 

realistically eroding matrix. Such parameters may be fiinctions of porosity, density, 

or even a biomedical indication of bone loss. 

Second, the motion of the pore fluid wiU be influenced by the transition in 

figure 7.1. As with the AF Biot model of section 6.3, the fluid dynamics may be 

represented by an expression for tortuosity to model the erosion. This may be in 

terms of, porosity, density, or biomedical indication, which best reflects the 

erosion. This tortuosity may be incorporated in Biot's theory to model 

propagation in the eroding matrix. 
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7.2.2 The Modelling of Scattering 

Scattering, and its effect on wave properties, are generally not included in 

porous media propagation theories, such as the Biot and Schoenberg models. 

Recently, evidence has accumulated, which supports the novel hypothesis that the 

cancellous structure acts as a diffraction grating. A difiraction grating is a periodic 

lattice which produces a pattern of interfering forward scattered waves; the 

periodicity of which reflects the structural dimensions (pore, or strut widths) of 

the grating itself (Leighton 1994). 

Previously, the present author (Hubbuck 1995), investigated propagation 

around 1 MHz through a bone phantom of a three-dimensional lattice of epoxy 

strands. Peaks were observed in the attenuation spectrum, the frequency of which 

shifted as the lattice was rotated in the field. It was proposed that the phantom 

acted as a difli"action grating, producing a pattern of forward scattered waves. As 

the perceived grating spacing altered with the rotation of the lattice, the frequency 

producing a particular forward scattered intensity pattern would also shift. This 

may correspond to the shifting peak in attenuation with rotation. 

Kitamura et al. (1996) modelled forward scattering by considering 

cancellous bone as a difiraction grating of regularly spaced cylindrical rods. 

Fraunhofer diffraction patterns were predicted for forward scattered waves and 

were compared with measurements from synthetic and cancellous samples, giving 

reasonable agreement, modelling an arrangement similar to that in figure 7.2. 

Figure 7.3 (a) shows the predicted intensity difiraction pattern for a grating of 

cancellous bone. The intensity is normalised, where unity is the value of the 

intensity without the presence of the grating. 

Independently, unpublished results, from a parallel experimental study co-

supervised by the present author, support the difiraction pattern forward scattering 

idea (Edwards 1998). Using the system of figure 7.2, fluctuations in measured 

attenuation of ultrasonic waves at 1 MHz in bovine specimens, were found when 

the receiver was rotated. Figure 7.3 (b) shows the variation in attenuation^ over 

angle measured by Edwards, where the scale indicates the difference in attenuation 

^ taken for a temporal window covering both fast and slow wave arrivals for a no-specimen 
reference pulse. 

150 



E R Hubbuck, 2000 Chapter 7 : Discussion and Future Work 151 

compared with that at 0°. Figure 7.3 (a) and (b) are plotted on a common angular 

scale to indicate the mechanisms by which the presence of a diffraction pattern 

may affect the spatial variation in attenuation. 

^ Receiver 

Transmitter 

1 # ^ 
14.0 cm Specimen / 

Mount 

Figure 7.2 - Experimental configuration utilised by Kitamura et al. (1996) and Edwards (1998). 

= 0.4 

-10 -5 0 5 10 15 20 
Angle of Receiver (°) 

figure 7.3 - (a) The diffraction pattern predicted by Kitamura et al. (1996); (b) the fluctuations 

in attenuation, measured by Edwards (1998). Data points (• &«) are from two arbitrary samples. 

0° corresponds to the direction of trabecular alignment. 
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With the grating present, the predicted intensity in figure 7.3 (a) is 0° is 

normalised to unity and the attenuation in figure 7.3 (b) is normalised to 0 dB at 

0°. Between angles 3° and 12° (and -3° to -12°), the predicted normalised 

intensity drops, and therefore attenuation, with respect to that at 0°, would be 

expected to increase. This is supported by the data in figure 7.3 (b), which shows 

an increase in attenuation, particularly clear at angles from -5° to -12°. A peak in 

predicted intensity is again seen between 12° and 17° (and -12° to -17°), which 

again corresponds to a reduction in attenuation at these angles. Therefore, 

comparison of Edward's data with Kitamura's predictions provides some evidence 

supporting the idea that cancellous bone acts as a diffraction grating. 

The significance of this results may be seen by considering the factors 

governing the spatial dimensions of the diffraction pattern. For a given frequency, 

the periodicity of the intensity pattern emerging fi-om a sample of cancellous bone 

will depend on the mean trabecular spacing and thickness. Therefore, accurate 

measurement of its periodicity may provide information about the cancellous 

structure, and bone health. Future theoretical investigation would benefit from 

combining direction-dependent effects in the stratified model with forward 

scattering from the diffraction grating idea. Both may be based on the structure of 

a regular matrix, the dimensions of which may reffect bone health. 
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7.3 Implications of Current Work for QUS Assessment 

7.3.1 Introduction 

The findings of this thesis may have implications, not only for the 

interpretation of the results of previous in vitro studies and current clinical 

assessment, but also for the development of future systems. Topics of particular 

interest concern the possibility of observing fast and slow waves in vivo, which 

has not been reported in the literature to date^, and exploitation of the direction 

dependence of wave properties as an indicator of bone health. These issues are 

discussed in the following sections. 

7.3.2 The Observation of Fast and Slow Waves In Vivo 

It is generally assumed that clinical ultrasonic measurements, such as QUS, 

only record one wave in bone. To rephrase this, no evidence exists for the 

presence of two waves in bone in vivo. Successful observation of the two 

compressional modes of Biot's theory in vivo requires consideration of those 

aspects which may influence propagation under such conditions. Some of these, 

such as the effect of fluid and structure, have been examined during the in vitro 

investigations of this thesis. 

The in vivo condition differs in a number of ways from the in vitro case 

studied here. First, the difference in ambient temperature in vivo will alter the 

viscosity of marrow, and thus modify viscous coupling and absorption. Next, 

anatomical factors, such as the presence of a cortex and trabecular orientation as 

accessible sites, is likely to influence the propagation of two waves. Factors such 

as the flow of blood and the presence of soft tissue, may alter wave properties, but 

would require further modelling. A few of these issues will now be considered. 

(a) Frequency Range 

' This statement excludes the results of a study in Hosokawa's doctoral thesis (1997), where two 
waves were reported in the radius of osteoporotic patients. However, to the present author's 
knowledge, this work has not subsequently appeared as a journal paper, nor have the waves been 
independently identified or verified. 
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First, exercising what has been learnt about the influence of frequency on 

propagation in porous media, it is possible to speculate on whether fast and slow 

waves would be observed in current Quantitative Ultrasound (QUS). 

As discussed in section 2.2.3, two waves theoretically propagate above the 

critical frequency, (Sicnt of equation (2.14). Investigations there showed that, since 

critical bandwidths for marrow-saturated healthy and osteoporotic bone at 37°C 

were 156-341 Hz and 48 - 148 Hz, respectively (Table 2.2), fast and slow waves 

will propagate at frequencies in the QUS range. However, the practical and more 

useful limit, the viscous frequency, co„scohs, of equation (2.23), above this two 

waves will be easily observed was found to be 2.1 + 0.7 MHz for healthy bone and 

0.9 ± 0.5 MHz for osteoporotic bone (Table 3.1). Figure 7.4 shows these limits, 

with respect to the frequency range currently used QUS. 

Figure 7.4 shows that the viscous bandwidth for osteoporotic bone 

extends over frequencies lower than that covered by healthy bone. For the latter, 

this bandwidth is significantly above the BUA range, whilst the bandwidth for 

osteoporotic bone extends into the BUA range. Strictly, this suggests that only 

one wave may be observed in healthy bone, whilst two may be observed in 

severely osteoporotic bone at frequencies in the upper BUA range. If this is indeed 

the case, such a change in the waves being sensed at the receiver, may contribute 

to the change the gradient of the attenuation spectrum (that is, the BUA value), 

during the progression of osteoporosis. 

QUS 
Bandwidth 

Healthy bone: 
viscous bandwidth 

Osteoporotic bone: 
viscous bandwidth 

0 200 500 600 900 1400 2100 3800 frequency (kHz) 

Figure 7.4 - Frequency limits for above which fast and slow waves may be observed, and the 

BUA range. 
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(b) The Effect of Structure 

The QUS technique performs transmission measurements through the os 

calcis along the medio-lateral axis, that is, width-ways across the foot. The 

trabeculae in the heel are approximately aligned in the proximo-distal axis (length-

ways), and hence perpendicular to the direction of propagation. With reference to 

the stratified model, such an arrangement corresponds to the angle of 0°, where 

only the fast wave propagates. Hence, the wave observed in vivo may be the fast 

wave at this orientation. 

If the stratified model is taken as a reliable approximation to propagation 

in OS calcis, it may be used to explain the characteristics of propagation through 

this site. For example, the velocity through the os calcis in vivo at frequencies in 

the BUA range, has been found to be around 1530 m/s (Truscott et al. 1996). This 

is surprisingly low compared with the velocity in cortical bone (3000 m/s), and 

closer to the speed in marrow (1450 m/s). However, the stratified theory 

demonstrates the fast wave velocity is least for propagation perpendicular to the 

trabecular direction. Indeed, predictions suggested a velocity of around 1500 m/s 

at this orientation. Hence, not only can the stratified model offer an explanation 

for the observation of only one mode in vivo, but it may also explain why the 

velocity of that mode is relatively low. 

(c) The Presence of the Cortex 

Cancellous bone is surrounded by a cortical shell, which constitutes a 

sealed boundary to the internal porous bone. As mentioned in section 3.3.2, wave 

propagation, and the efficiency with which the slow wave may be generated, are 

affected by the presence of such a boundary. The slow wave will not completely 

disappear at the cortex, but it is unlikely that a high amplitude slow wave, of the 

type observed in figure 4.1, would be observed in vivo, owing to a poor 

impedance mismatch between the calcified boundary and the marrow. 

Studies on the effect of a cortex in vitro have been limited, but those which 

have been performed suggest a shell may not inhibit the production of slow wave 

at certain angles of propagation (Hosokawa 1997, Edwards 1998). 

155 



E R Hubbuck, 2000 Chapter 7 : Discussion and Future Work 156 

(d) The Effect of Osteoporosis 

Cancellous bone supports slow waves effectively in vitro, since an open-

pore boundary exists and the structure is highly permeable. Since the cancellous 

architecture deteriorates during osteoporosis, slow waves may propagate more 

effectively in the more permeable diseased bone. Hosokawa et al. (1997) showed 

that, at porosities of over 80 %, only one mode, believed to be the fast wave, was 

observed, the velocity of which decreased significantly to around 1500 m/s, close 

to that in water. Propagation under such conditions is likely to be dominated by 

motion of the fluid, and may not support a fast wave. Biot's theory was shown to 

break down at high porosities, which may occur because inertial coupling, which 

depends on a large surface area to couple the fluid and solid motion, will be no 

longer effective at high porosities. 

7.3.3 Future Work: Improving QUS 

As described in section 1.5.4, current QUS systems, and, in particular, 

BUA, have an empirical basis and do not directly provide information about 

physical factors of bone, such as density or porosity. The future success of 

ultrasonic bone assessment may benefit from the development of systems based on 

a direct physical relation between ultrasonic parameters and those indicating bone 

strength. A model designated as the basis of a novel QUS system should relate 

ultrasonic wave properties to the strength-determining characteristics in a 

straightforward way. Regarding the models investigated throughout this thesis, 

Biot's theory demands knowlegde of too many input parameters to be of notable 

value. However, the simpler Schoenberg model may be used to evaluate bone 

properties from measurements of velocity. The following example demonstrates 

one method which may be used to provide information about bone condition from 

direction dependent ultrasonic data and use of the Schoenberg model. 

Figure 7.5 shows the fast wave phase velocity versus angle of propagation, 

as predicted by Schoenberg's theory for two porosities (healthy, 70 %, and 

diseased, 95 %). The change in porosity influences the magnitude of the fast wave 
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velocity, as well as a subtle alteration in curvature for the same angular range. For 

example, examining the change in fast wave velocities over the angular range"̂  0 -

40°, it may be seen that, for a porosity of 70 %, the fast wave velocity changes by 

around 250 m/s (16 %), whilst for the higher porosity, the velocity change is 300 

m/s (20 %). Therefore, the change in ultrasonic velocity over a fixed angular 

range, may be directly related to a unique value of porosity through the equations 

of Schoenberg. Similar relations may be established for the measurement of bone 

density. 

The following point should also be noted. In the predictions of figure 7.5, 

increased porosity only affects Schoenberg layered geometry by a thinning of the 

plates for the same spatial period. However, if, as suggested in figure 7.1, the 

layers in the structure of real bone becomes isotropic with erosion, the change in 

curvature with increasing porosity from real ultrasonic data may be even more 

marked. Such observations could be the basis for a fiiture model-based 

measurement system. 
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Figure 7.5 - Changes in stratified model with increasing porosity, from 70 to 95%. 

Recall that measurements are currently made at 0°, so it is assumed physically possible to 
measure angles up to 40°. 
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An investigation should be carried out into how the change in velocity with 

orientation may be utilised to infer the condition of bone in vitro and in vivo. The 

change in ultrasonic velocity measured over an angular range around a skeletal site 

containing well-oriented cancellous bone could be used to estimate the porosity 

from Schoenberg's theory. 

The potential role and subsequent success of a model-based bone 

assessment technique relies on its ability to fulfil a number of requirements. First, 

any system should provide information about fracture risk from an ultrasonically 

derived parameter which is medically beneficial. Research should establish the 

clinical usefulness of a porosity index derived from Schoenberg's model. 

Second, section 1.4.2 discussed how the role of a clinical assessment 

technique is dependent on its precision, usually defined as a coefficient of variance 

(= (std / mean}), with respect to the population distribution: For screening 

measurements, the precision should be of a level to infer bone condition from one 

test. To detect a change in bone status over time, the uncertainty should be 

significantly less than any difference it is trying to distinguish. Ultimately, the 

precision of a model-based system wiU defined its clinical role. It was noted in 

section 1.4.2 that the coefficient of variance of a bone densitometry system should 

be better than 2 % for screening, and better than 1% for monitoring the response 

to treatment (Reid and Stewart 1998). However, these coefficients are relative to 

measurement of bone mineral density, and equivalent coefficients for a system 

measuring Schoenberg-derived porosity need to be obtained before the role of the 

system can be identified. 

Since a Schoenberg-based system wiU require measurement of ultrasonic 

velocity, it is worth considering how this parameter changes with time, for the 

purposes of longitudinal measurements. The speed of sound (SOS), measured in 

one direction, has been observed to change by 1.4 % over a 20 years age range 

(Truscott et al. 1996), which is comparable to the coefficients of variance for such 

measurements, therefore, it will be vital for any future system to improve on this 

performance to be clinically useful. It is suggested here that combining velocity 

data taken from different angles may provide a more sensitive measure, and, more 

importantly, one that changes significantly with structural changes, than 

measurements of SOS in one direction alone. 
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The success of such a model-based system would mark a breakthrough in 

the utilisation of ultrasound in clinical bone assessment. The ultimate aim of 

current research programme is to find a technology that is cheap, easy-to-use, 

reliable, accurate, and, eventually, widely available. When this is so, a screening 

programme becomes viable. Not only wiU osteoporosis sufferers be identified and 

be available for early treatment, but reassurance can be given to healthy individuals 

potentially at risk, improving the quality of life in both groups. An additional 

bonus for health care arises from the benefit to budgets that will accrue when the 

existing technology is made reliable, and by a reduction in osteoporosis-related 

fractures. This thesis has attempted to contribute to theoretical understanding 

which may lead to such a development. 
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Appendix I 

Transducer Characterisation & Acoustic Field Properties 

Two 1 MHz-resonant 2.5 cm-diameter transducers were calibrated by an NPL 

Beam Calibration Unit, based at Southampton General Hospital. The system evaluates 

key parameters of the function of the transducer: maximum and minimum pressure, 

beam width, temporally averaged intensity, and total power. The transducer being 

tested was submerged in a water-filled cylinder (figure Al). It was coaxially aligned 

with the centre axis of the cylinder, so that its beam was directed vertical downwards, 

above the membrane receiving hydrophone. The transmitter's location was measured 

in three dimensions. A pulse, centre frequency 1 MHz, 800 mV and amplified 50 dB, 

was generated, and the transmitter's horizontal position was altered until the output 

signal was a maximum. The processing unit calculated the field parameters fi-om the 

output, and the results are given in Table Al. 

Transmitter 

Membrane Receiver 

Water Tank 

Po\ 
Amf 
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jlifier 
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External 
Analysis 
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Figure Al - Schematic diagram of NPL calibration equipment. 

Table A l - Properties of Projected Field for a 1 MHz pulse 

On-axis P+ P- Beam Pulse I s p t a Total 
distance mm kPa kPa width mm duration s power W 

80 2&1 -&59 1 2 . 0 5^4 6.53 156 
90 36.7 -3L2 12.0 2.00 L16 9J7 
100 4&1 -32.8 12.0 2JJ 14.7 8.80 
1 1 0 4%7 -32.0 12.0 3.67 14^ 8.79 
120 4&4 -32.2 12.0 2.42 14.6 9^9 
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Appendix II 

Validating Experimental Method 

A2.1 Validating the Refraction Compensation Algorithm 

Section 5.3 outlined an algorithm for evaluating the phase velocity of a 

refracted wave, which accounts for path lengthening at non-normal angles of 

incidence. This routine was programmed in MatLab and, to verify its operation, was 

tested with data from a homogeneous test object. It was expected that the phase 

velocity of a wave through an isotropic sample is at all angles of incidence and that 

calculated speeds may be compared with established values for the medium. The code 

was tested, using homogeneous test object of acrylic and the experimental apparatus 

described in section 3.5. 

The phase velocity with angle of propagation in the acrylic object is plotted in 

figure A2, subject to a deviation of 6.0 %, from repositioning. It may be seen that the 

measured phase velocity is approximately constant with angle, that is, the mean value 

is 2819 m/s, subject to a standard deviation of 58 m/s, or 2.0 %. It is well known that, 

as with light, acoustic waves penetrating a homogenous object at non-normal angles 

of incidence, will encounter a critical angle, where total internal reflection occurs. 

Using the measured mean velocity and Snell's Law (Leighton 1994), the critical angle 

for acrylic was 31.6°. Hence, the data in figure A2 is valid up to angles of 30°. 

Since the measured velocities are approximately equal with angle, it may be 

concluded that this programme is suitable for use in the experimental analysis of 

Chapter 5. 
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Figure A2 - Phase velocity versus angle of incidence of a pulse through an acrylic test object. 

162 



ERHubbucKZOOO Appendices 163 

A2.2 Validating the Evaluation of the Schoenberg Equations 

Section 5.3 discussed the prediction of phase velocities by Schoenberg's 

theory for waves in layers. Equations (5.1 - 5.4) were written in MatLab, and to 

check the operation of this code, predicted values were compared with those from 

previous authors, such as Fiona et al. (1987), who applied Schoenberg's theory to 

Plexiglas layers filled with water. 

Fiona et al. used an alternative graphical method for portraying wave 

properties; namely the slowness surface. The slowness surface is a polar plot of the 

components of the slowness vector, s, and it is an established and convenient way to 

depict wave direction and energy flow in anisotropic media. In this case, the 

component of slowness perpendicular to the layers. 53, is plotted versus that 

component parallel to the layers, S[, found from equation (5.1). For porous media, 

this plot displays two contours for fast and slow waves. 

The co-ordinates of points (si, S3) along the predicted slowness surface were 

extracted from figure 2 in Fiona's paper, by enhancing the image. These were then 

plotted on figure A3, along with the predictions from the MatLab code, using the 

values in Table A2 for Fiona's system. The data was normalised for fluid speed, that 

is. Parallel Slowness = Vf.Si, and Perpendicular Slowness = Vf.s3. The figure shows 

significant correspondence between the two curves. It may therefore be concluded 

that the MatLab code operated correctly. 

Table A2 Parameters for a layered system for Plexiglas and water, 

from Fiona et al. (1987). 

Material Compressional Speed Shear Speed Density 

Water 1490 m/s n/a 1000 kg/m^ 

Plexiglas 2700 m/s 1380 m/s 1200 kg/m^ 
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Figure A3 - Slowness surfaces of fast and slow waves for a system of Plexiglas-water layers, showing 

predictions by the authors, and those taken from Fiona et al. (1987). 
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Appendix III 

The Simplex Method for Optimisation 

A3.1 Optimisation and the Simplex Method 

To be useful scientifically, a theoretical model must be tested against 

observation. Adequate comparison requires quantitative observation of the test 

system and mathematical procedures for specifying the model. The input parameters 

of theoretical models relate to the physical properties of the system. Such variables 

may be accurately known, enabling a straightforward comparison between experiment 

and theory. However, often, the input variables are undetermined, or determined to an 

insufficient degree, and the behaviour of the model must be estimated. This appendix 

discusses the estimation of model response. 

If the model input parameters are known with some uncertainty, the 

theoretical predictions may take a range of values. The extreme values of the 

predictions indicate the degree of inherent uncertainty, found from the appropriate 

combination of input values. If the experimental data lies within these bounds, it may 

be said that no discrepancy between the system and the model has been observed, at 

that precision. Finding the combination of inputs that give the extreme values can be 

tackled automatically by computer algorithms that perform optimisation. 

Optimisation implies either minimising or maximising a 'cost' function, h{x). 

However, since the maximum of h(x) occurs at the same place as the minimum of 

-hix), it is possible to consider only minimisation. To find the maximum and minimum 

bounds of a theory, the cost fiinction, f[x), is simply the output of the model itself. 

There are many numerical optimisation methods, including classic Least Mean 

Squares, Chi-squared and Newton's method (Kincaid and Cheney 1990). Some find 

the point at which derivatives are zero, whilst others search for the gradient of 

steepest descent. Such methods adjust one input at a time to minimise the cost 

function, but are slow for complex problems. More sophisticated methods, such as 

genetic algorithms and simulated annealing (Kirkpatrick et al. 1983), change many 
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variables at once (Kincaid and Cheney 1990), and allow inputs to be constrained 

within set limits. An important class of optimisation problems is that where the 

function and the constraints are linear. In such cases, the region containing the 

minimum is bounded by straight lines or planes. 

The Simplex method uses linear constraints to search a polyhedron (or 

'simplex') with «+i comers in n-dimensions. The search starts at one comer and 

proceeds successively to other comers, simultaneously monitoring that the value of 

the cost function is decreasing all the time. This progresses until the minimum is 

found, with respect to some tolerance. The Simplex method is computed using the 

Nelder-Mead algorithm (Kincaid and Cheney 1990), programmed in MatLab. 

A3.2 Establishing Linearity 

Before using the Simplex method to find the bounds of a theory, it is necessary 

to establish that the constraints and the cost function are linear. For the theories 

considered here, all inputs are limited in the numerical value they can take. Therefore, 

the constraints are purely numerical and, so, linear. Next, it must be established 

whether the cost Amotion (the equation for velocity) is linear. 

Linearity of an equation may be easily established. If the value of an input 

parameter, // is varied within its limits, it causes a change in the output, O, of (AO'). 

Similarly, a variation in the value of input, h (say, A/2) produces (AO"); (A/j) 

produces (AO'"); et cetera. If the system is linear, when all input variables are 

changed simultaneously by the given amount, the independent changes in velocity will 

linearly combine to produce a total change of (AO + AO + AO + ...). 

If linearity is established, the function may be optimised using the Simplex 

method. MatLab command fminsCvelocity\ [x]) performs a multivariable simplex 

minimisation on the function h(x) = velocity, which contains the model equations. The 

vector, X, contains arbitrary starting input values. Once the minimum is reached, the 

final input values are recorded. The procedure is repeated to find the maximum, by 
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optimising the function -h{x) = -velocity. The maximum and minimum velocities are 

then found by inserting the final input values into the model. 

A3.3 Evaluating Uncertainties in Biot's Theory 

The values for a model of bovine bone, saturated with marrow at 20°C, where 

the pore size and porosity were independently established, were listed in Table 4.2, 

where the values for the properties of bone and marrow are taken from literature. Five 

Independent and Variable parameters were identified, whose values had a given range 

(porosity, fluid and solid densities. Young's modulus and pore size). The variation of 

these parameters within such ranges contribute to the optimisation. 

Before performing the optimisation, it is necessary to determine whether the 

model is linear, that is, whether equation (2.9) behaves in a linear manner for the 

particular medium being considered. Fast and slow wave phase velocities were plotted 

against the five inputs, over permitted limits from Table 4.2 (figure A4 (a - e)). In all 

figures, velocities vary approximately linearly in the limits. Therefore, those input 

values which independently minimise the velocity may be found. For example, in 

figure A4 (a), the velocities clearly reach minima at the upper permitted limit of the 

porosity. It follows that velocities are maximised for the lower porosity value. In the 

remaining graphs, velocities also reach minimum values either at the upper or lower 

bound of permitted input limits. 
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Figure A4 - Phase velocities of fast and slow waves predicted by Biot's theory versus (a) 

porosity; (b) fluid density; (c) solid density; (d) Young's modulus; and (e) pore size. 
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Biot's theory will behave linearly in the conditions of interest, if the sum of 

velocity changes, due to independent input variations, equals the total change in 

velocity when inputs are changed, by the same amounts, simultaneously. Velocities are 

subject to a random error of + 9 m/s, and a quantisation error of ± 10 m/s, giving a 

quadrature error of ± 22 m/s. Table A3 shows independent changes in velocities, from 

figure A4 (a - e), when each input is varied within its range, which, when summed, 

result in a change of 440 m/s for the fast wave and 30 % for the slow wave. The 

change when all parameters are adjusted simultaneously is 391 m/s and 30 m/s, 

repectively. Whilst comparison of these two results for each wave does not appear to 

indicate strong linear behaviour, they are in agreement to within the errors, and thus 

adequate for the purposes of optimisation using the Simplex method. 

Using the MatLab command fmins{\elocity\ [%]), the function velocity, was 

optimised, using various starting vectors, to ensure the global minimum was found. 

The routine, velocity, is equation (2.9) and relevant definitions, for the fast wave 

velocity. The process was repeated for maximum value. The final input values were 

substituted into velocity to predict the fast wave velocity extremes, as well as those 

bounds for slow wave velocity and absorption. The results are shown in figures 2.5, 

2.6, 4.4, 4.5, 4.7 and 4.10. 

Table A3 Fast and slow wave velocity changes to individual and combined changes 

in input parameters to a Biot model 

Parameter Range Change in velocity (m/s) 

1st value 2nd value f̂ast Vslow 

Porosity, p 0J4 &81 265 10 

Solid density (kg/m^) 1900 2000 40 0 

fnkud(k;nsiby(Tkg/ro )̂ 1000 1050 10 20 

Young's modulus (GPa) 20J5 22.6 125 0 

pore size (pm) 815 1150 0 0 

Summed changes 440 30 

Combined changes 391 50 
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A3.4 Uncertainties in Schoenberg's Theory 

The second model compared with experiment in this work is Schoenberg's 

theory. Since the input properties of bone and marrow are again inadequately 

specified, optimisation may be used to find the theoretical bounds. Schoenberg's 

theory uses fewer input variables than Biot's theory, and these are listed in Table A4. 

All parameters, except for the fluid speed, are Independent and Variable, and may be 

varied to find the combination of inputs that optimises the cost function. 

First, it should be noted that Schoenberg's theory predicts phase velocities that 

change with angle. It is conceivable that, rather than shifting by an absolute amount, 

the curves may change shape when inputs are altered. The maximum value at one 

angle may arise irom a different set of input values fi-om the maximum value at a 

second angle. Therefore, one simple approach is to optimise the function at each 

angle separately. This will give the bounds for each angle, which may be interpolated 

to give a smooth curve over the whole angular range. 

It is then necessary to establish whether the cost function and the constraints 

are linear. As with Biot's theory, the constraints are purely numerical, and therefore 

linear. The cost function is the equation giving the phase velocity from the inverse of 

the modulus of the slowness vector from Schoenberg's theory (equations (5.1 - 4)). 

This approach requires checking the linearity of the equation over 0° to 90°. Figure 

A5 shows plots of phase velocity versus angle when the input parameters (porosity, 

fluid and solid density, solid compressional and shear speeds) are varied within their 

ranges given in Table A4. 
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Figure AS - Phase velocities of fast and slow waves predicted by Schoenberg versus angle of 

propagation, for changes in; (a) porosity, (b) solid density; (c) fluid density; (d) solid 

compressional speed and (e) shear speed. Changes in input parameters are given in Table A4. 
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Schoenberg's theory will behave linearly under the conditions of interest, if the 

sum of velocity changes due to independent input variations equals the total change in 

velocity when all inputs are changed simultaneously. Table A4 shows independent 

changes in velocities when each input is varied within its range, from figure A5 (a - e), 

at 0°, 30°, 60° and 90°, and the summed and combined changes. Whilst there is an 

error of 10 - 15 % for each condition in the resulting velocities between independently 

and simultaneously adjusted inputs, and therefore no distinct linear behaviour, the two 

results are in agreement to within the quantisation and random errors for determining 

such changes graphically. Therefore, the function behaves sufficiently linearly in these 

conditions to enable Schoenberg's equations to be optimised using the Simplex 

method. 

The function, h{x) = velocity, containing the equations of Schoenberg's theory, 

was optimised to ensure the global minimum was found. The process was repeated 

for h{x) = -velocity, to find the maximum value. The final input values were 

substituted into velocity to predict the fast and slow wave velocity extremes with 

angle of propagation. The results are shown in figure 5.9. 

Table A4 Changes in velocity of fast and slow waves at various angles, to individual 

and combined changes in input parameters to Schoenberg model. 

Parameter Range 
Ist 2nd 

Change in V&s, 
(m/s) 

0° 30° 60° 90° 

Change in 
(m/s) 

0° 30° 60° 90° 
Porosity (faction) 0.804 0.874 0* 0 0 0 0 0 0 0 

Solid density (kg/m )̂ 1800 2000 30 18 0 0 0 0 0 0 

992 1047 12 0 0 0 0 0 0 0 

Solid speed (m/s) 3100 3200 24 201 406 505 0 M 0 0 

Shear speed (m/s) 1650 1800 0 0 112 166 0 M 0 0 

Summed changes 66 219 518 671 0 143 0 0 

Combined changes 58 190 430 595 0 120 0 0 

' change not detected by resolution of analysis method. 
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absorption 

attenuation 

azimuth 

cancellous bone 

coefficient of 
variance 

Glossary 

the loss of acoustic wave energy through viscous friction 

the process by which the intensity of an ultrasonic beam is 
reduced by a combination of absorption and scattering 

the axis orthogonal to isotropic planes 

bone consisting of a matrix of trabeculae 

statistical index of a random distribution, equalling the 
ratio of the standard deviation to the mean 

compressional wave acoustic disturbance where the displacement of particles is 
in the same direction as propagation 

cortical bone 

density 

diffraction 

diffraction grating 

dispersion 

dense bone pertaining to the nature of a cortex 

unless otherwise specified, this term refers to the 
macroscopic, or volume density of cancellous bone, rather 
than that of an individual trabecula. 

the interference of waves from parts of a finite-sized 
emitter, resulting in a spatially varying field 

a periodic array of scatterers capable of producing a 
pattern of diffracted energy 

the process where different frequency components of a 
complex ultrasonic wave progress at different speeds 

empirical signal loss reduction in measured intensity by absorption, scattering, 
and artefacts such as phase cancellation and diffraction 

epiphysis 

evanescent wave 

High Frequency 
Region 

in vitro 

in VIVO 

inertial coupling 

the bulbous end of a long bone 

disturbance which decays as exp{%jc) (as opposed to 
expijXx) ) from a source. 

that bandwidth (Biot 1956), where two compressional 
waves propagate, the lower limit of which is (Sicru= 2r\lpr, 
where the viscous skin depth equals the pore radius. 

in an artificial environment 

within the living body 

the process where a fluid mass is accelerated by an 
adjacent solid. 
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isotropy 

geometrical 
dispersion 

long wavelength 
regime 

Low Frequency 
Region 

optimisation 

the feature where a medium has the same properties in aU 
axes. 
the elfect where the propagation mechanism depends on 
the ratio of the wavelength, X, to the sample size, d: Bar 
waves occur for (A,/J)«l; bulk waves occur for ('k/d)«l. 

the bandwidth where the wavelength is much greater than 
the size of discontinuities in a porous medium. 

that bandwidth where only the fast wave propagates; the 
upper limit of which is, oocnr = 2r|/pr^, where the viscous 
skin depth equals the pore radius. 

mathematical process for finding the solution to a 
multivariable problem best satisfying given criteria 

OS calcis, calcaneum the heel bone 

permeability 

phantom 

phase velocity 

precision 

speed of sound, 
SOS, group velocity 

tortuosity 

trabecula 

transversely 
isotropic 

viscous coupling 

vorticity 

wavefront 

the property characterising the capability of a medium of 
being penetrated by, or allowing the passage of, fluids. 

a synthetic object used to simulate biological conditions. 

the velocity with which components of the same phase in 
propagate a complex wave 

engineering: the resolution to which a measurement may 
be made (scale gradations, decimal places, etc.) 
diagnostics: the coefficient of variance of a measurement 
of a clinical technique. The latter is used here. 

the speed with which the energy of a wave travels, found 
from the transit time of a wave over a known distance. 

term describing the twisting of pores, as the ratio of a 
winding path length through a pore joining A to B, to the 
straight length, A to B. 

a calcified strand in cancellous bone 

the property where the characteristics of a medium are 
isotropic in all directions at right angles to the azimuth 

the process where a fluid moves with the acceleration of an 
adjacent solid owing to viscous friction 

vector field describing the rotation of fluid particles, which 
relates the flow of adjacent layers 

a surface connecting points of the same phase 
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