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STABILITY AND PERFORMANCE OF ACTIVE VIBRATION ISOLATION SYSTEMS 

By K. A. Ananthaganeshan 

Active vibration isolation techniques can be used to avoid some of the compromises inherent 

in using a passive system to isolate delicate equipment from base vibration. In active control, 

a secondary force, which can be proportional to equipment acceleration, velocity or 

displacement, is introduced between the base and the equipment to reduce the overall 

response by destructive interference. In this thesis the stability and performance of active 

vibration isolation of equipment using acceleration, velocity or displacement feedback 

control with a decentralised control strategy is investigated. 

Previous experimental work on active vibration isolation systems has shown that the gain in 

the feedback loop is limited because of the stability of the system. However, theoretical 

analyses of these systems showed that they are unconditionally stable. These discrepancies 

are investigated in this thesis and it is demonstrated that the instrumentation plays a crucial 

role in the stability and performance of an active isolation system. A holistic analysis of 

decentralised vibration isolation control systems integrating (a) the structural dynamics (b) 

the signal conditioning devices and (c) the actuators, to assess the stability and performance 

of the systems is adopted. In addition, the effect of losing control of one of the decentralised 

loops is also investigated. 

In the stability analysis two frequency regimes are identified; (a) a low frequency regime and 

(b) a high frequency regime. In the low frequency regime, the phase advance of the high-

pass filters, which are inherent in the control system, causes the instability. In the high 

frequency regime instability is caused by time delay, or phase lag (from low-pass filters). 

Simple formulae are derived for simplified systems, which give the frequencies at which the 

systems become unstable and the maximum gains that can be applied to each system. These 

formulae can be used as simple rules of thumb for the analysis of stability of more complex 

systems. 
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Considering the three control strategies, it is established that the acceleration feedback 

control system has the lowest maximum gain, and velocity and displacement feedback 

control systems have good low frequency stability. With time delay in the feedback systems, 

the displacement feedback control strategy is the most susceptible to instability. Similarly, 

with low-pass Alters in the system, the displacement feedback control strategy is again the 

most susceptible. Thus velocity feedback control is proven to be most attractive. 

Uncertainty due to component failure is also investigated in a two-chatmel velocity feedback 

system and it is found that failure does not affect the stability of the system, but it does 

degrade the performance significantly. It is observed that in a system with failure, only a 

small improvement on performance is possible from the system with no control. Thus, with 

respect to component failure, increasing gain in a system with failure does not cause the 

system to become unstable but does not improve the performance significantly. 
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Chapter 1 

Introduction 

1.1 Background 

All structures possessing mass and elasticity are capable of vibrating. Among the various 

problems and issues associated with this vibration, the isolation of a piece of equipment from 

a vibrating base is a common one in the field of mechanical engineering [1-3]. Often, very 

little can be done to reduce the vibration of the base, which in general has complex dynamics 

and is subject to design constraints [4], Traditionally, engineers have solved the problem of 

vibration isolation by designing passive systems based on compliant materials, such as 

rubber, to decouple the equipment dynamics from the base dynamics [5], Typically the base 

vibration has an unpredictable waveform and the passive isolators have to deal with 

broadband excitation spectra [1,6]. However, the conventional passive form of isolation is 

generally a compromise between (a) high frequency isolation, which requires low values of 

damping, and (b) limited excitation of rigid body modes that requires high values of isolator 

damping [7-12]. This inherent trade-off in performance of a passive isolation system can be 

enhanced by coupling an active system to a passive isolation system [13,14]. 

The essential components of an active system are (a) sensors (to detect the vibration), (b) an 

electronic controller and the associated signal conditioning devices and (c) actuators 

[13,15,16]. Sensors and actuators, together with associated signal conditioning equipment, 

play an important role in active vibration (isolation) control and often introduce limitations 

on the performance of the system [15,16]. The problem is further aggravated by the stability 

problems, (inherent in control systems), which are often difOcult to identify by analysis. 

Because of these reasons, performance and stability are two crucial factors found in the 

general literature on control systems [17,18]. However, there is a necessity for a holistic 

analysis integrating (a) the structural dynamics (b) the dynamics of the sensors (c) the signal 

conditioning devices and (d) the dynamics of the actuators, to assess the stability and 

performance. The main aim of this thesis is to investigate this performance and stability in 

feedback active isolation systems integrating structural dynamics, dynamics of signal 

1 



conditioning devices and actuators. In addition, a system under control could perform 

unexpectedly and affect the system to be isolated when one of the active channels fails. This 

uncertainty in performance due to a component failure is an associated issue and therefore 

investigated with the main aim of the thesis. 

1.2 Literature review 

Published literature on active vibration isolation discusses (a) the methods (b) control 

strategies, (c) applications and (d) analysis of performance and stability. This can be 

structured for easy comprehension in the manner shown in Figure 1.1 

Layer 1 

Passive 

Layer 2 

Vibration isolation 

Active Hybrid Semi-active 

Strategies Applications 

Feed-forward 
control 

Feedback 
control 

Layer 3 

Layer 4 

Performance Stability Factors affecting 
stability and 
performance 

Actuators 
and 
sensors 

Figure 1.1 Overview of vibration isolation methods in the literature 

Layer 1 in Figure 1.1 consists of the different methods used for vibration isolation. In the 

recent literature the terms active and hybrid are used synonymously. Layer 2 shows 



strategies and applications. The control strategies can either be feed-forward or feedback, 

and should be considered in conjunction with the applications. Layer 4 describes the 

components of feedback control with respect to performance and stability. The following sub 

sections describe the elements of Figure 1.1 in some detail. 

1.2.1 Vibration isolation methods 

Isolation of sensitive equipment from the base structure to which it is attached is a common 

problem that arises in several application areas [3]. As shown in layer 1 in Figure 1.1, there 

are four types of vibration isolation methods, which can be adapted to this kind of problem. 

They are passive [3,5], fully-active [19], hybrid [20] and adaptive-passive (or semi-active 

control) [21]. Figure 1.2 illustrates the characteristics of these methods. 

Passive control devices impart forces that are developed in response to the motion of the 

base structure by means of resilience and energy dissipation [3]. These control devices 

cannot supply energy to the system (which includes the structure and the passive devices). In 

addition a passive system does not make any real-time changes in the system and hence 

cannot destabilise a conservative system. The conventional passive system consists of 

compliant mounts (with stiffness and damping properties) positioned between the base and 

the equipment to be isolated. This can provide good isolation at high frequencies, above the 

resonance caused by the mass of the equipment and stiffness of the mount [22]. Thus, a 

passive system, although stable, has an inherent drawback in performance. An active system 

can be coupled to a dynamic system to enhance the performance of the passive system 

[13,14]. 

The way in which an active control system works is to reduce the overall response of a 

system by destructive interference using an external secondary vibration source [13]. An 

active system is constructed to give performance, which is not possible by passive means. In 

the past this was not greatly explored due to its inherent cost and complexity. However, with 

the development of computers fast enough to run control algorithms in real-time and more 

'smart' materials such as piezo ceramics and shape memory alloys, active control of 

vibration has become prevalent in the last two decades [23]. 

A Hybrid isolation system combines the benefits of both passive and active isolation. In a 

hybrid isolation system, active control may be used to supplement and improve the 



performance of a passive scheme or alternatively, a passive control system may be added to 

an active scheme to decrease its energy requirements [20]. 

Secondary dynamic force 

Equipment 
(Receiver) 

Mounts 

Base 
(Source) 

Passive mounts 
properties are changed at 
design stage 

(a) faj'j'fvg 

Equipment 
(Receiver) 

Transmi-
ssion path 

Base 
(Source) 

No passive mounts 
only a transmission 
path 

(6) Acnvg 

Secondary dynamic force 

Equipment 
(Receiver) 

Mounts 

Base 
(Source) 

Passive and active 
system combined 

Equipment 
(Receiver) 

Mounts 

Base 
(Source) 

Mount properties are adjusted to 
optimise the internal dynamics 
of the system 

Fzgwre 7.2 (fzagroTTZJ zjo/afion mgfAoaff. 

It should be noted that the major difference between an active and a hybrid isolation scheme 

is generally the amount of external energy used to implement control. A hybrid isolation 

system can sometimes alleviate some of the limitations that exist in either a passive or active 



isolation system alone. For example, in the event of a power failure, the passive element in 

the hybrid system still offers some degree of protection. Since a hybrid system consists of an 

active element, many researchers generally refer to it simply as an active system. 

Semi-active isolation is essentially equivalent to a passive system with variable mount 

properties. One type employs an energy dissipating mechanism by means of a controllable 

damper [24-27] and another type employs stiffness control [21]. A semi-active system is 

generally considered less costly compared to an active system and its performance is better 

than a passive system [28,29]. However, it requires some switching mechanisms or 

modulated dissipating elements to adjust the mount properties [27]. Although semi-active 

systems require only signal processing and low-level power supplies (thus suitable for 

earthquake applications where power failure is a common phenomenon), they are generally 

non-linear and their performance is generally not as good as an active system [29]. 

1.2.2 Control strategies 

In active isolation, an external source supplies the power to control actuator(s) that apply 

force(s) to the structure. These forces, generally referred to as control or secondary forces, 

are applied in a prescribed manner. The prescribed manner, in this context, is deOned as the 

control strategy. These strategies are applied to a physical system with the objective of 

keeping the output, (force, acceleration, velocity, displacement etc) at a specified set of 

locations within the structure, below a specified level in the presence of any disturbances 

[21]. In control theory these physical systems are categorised in two groups (a) without 

mathematical models and (b) with mathematical models. 

In the Rrst group one can choose structural and control design parameters intuitively and try 

them on a physical system. This is generally referred to as intelligent control. Two main 

methodologies related to intelligent control have been well developed. They are (a) artificial 

neural networks and (b) Fuzzy logic control; they have recently been applied to dynamic 

structures for vibration control, for example Kwak and Sciulli [30] and Kidner [23]. 

However, since they are rule based, there could be a number of solutions to the physical 

design problem and the designer has to choose one intuitively. 

The second class of problems (i.e. with mathematical models) mathematical models of the 

physical system and its control environment are constructed. Hovyever most of the problems 



have to be mathematically idealised for investigation. This gives a set of mathematical 

models (equations), which can only approximate the actual dynamical behaviour of the 

physical system. Due to lack of available mathematical techniques, mathematical idealization 

of a physical system is, in general, only possible if the system is linear [20]. There are many 

strategies proposed by researchers for this class of problem and there are several methods in 

which these strategies can be classified: open-loop and closed-loop control [17,31], analogue 

[32] and digital control [33], feedback and feed-forward control [34] etc. Most closed-loop 

systems can be broadly classified into feedback and feed-forward control systems. Feed-

forward control has generally been used for harmonic disturbances, where a reference signal 

can easily be obtained. Feedback control is generally used for random disturbances where 

reference signal is not available [34] or in situations where it is not possible to sample the 

incoming disturbance soon enough for a feed-forward control system to be effective. Since 

typical base vibration has an unpredictable waveform, with broadband random excitation 

[1,6], feedback control is favoured in this project. 

There are two other terminologies commonly found in control literature, which are (a) 

optimal control, for example Sungsoo et al [35] and Khulief [36] and (b) robust control, for 

example Damaren et al [37]. In this context optimal feedback control means minimising or 

maximising a performance measure and robust control focuses on the issues of performance 

and stability in the presence of uncertainty. Optimal control gives more consideration to 

performance while the robust control gives more consideration to stability 

Although an active isolator can be constructed by feeding back the full state variables as seen 

in references [37-40], a more straightforward and simple way may be direct output feedback 

control. Although the output can be acceleration, velocity, displacement, force etc, most of 

the work of this kind tends to favour velocity feedback [2,6,34,38,41,42]. The advantage of 

using velocity feedback control is that for collocated force actuators and sensors, a 

multichannel control system is proven to be unconditionally stable [41,43], In multichannel 

feedback control system of this type, the decentralised velocity feedback control technique, 

where each actuator is operated independently by feeding back the equipment velocity 

response at the same location, has been shown to be effective [2,6,31,44]. 

For mathematical convenience, most of the structures can be modelled as a discrete 

parameter system or a continuous (or distributed parameter) system [9]. Although velocity 

feedback control is widely used in discrete systems for its simplicity and stability 



characteristics, it has some problems for distributed parameter systems. Distributed 

parameter systems such as large space structures have a very high number of vibration 

modes. The presence of un-modelled modes within the bandwidth of a closed-loop system 

results in the phenomenon of spillover, which could potentially destabilise the system 

[45,46,47,48]. Balas [41] showed that collocated direct velocity feedback control provides a 

stable system, which is insensitive to spillover. However the system could be destabilised by 

the inclusion of actuator dynamics [46, 47], which are essential components in the control 

system. Goh and Caughey [47] proposed positive position Feedback (PPF) as a viable 

alternative. In situations, where the structure does not have a high enough roll-off or if a 

finite bandwidth actuator/ sensor is used, the system could potentially become unstable [48]. 

Under these circumstances PPF can be used, and stability (it is not unconditionally stable 

[46]) can be guaranteed by considering only the stiffness properties of the structure [45]. 

1.2.3 Applications 

Applications of active vibration control found in the literature are summarised in this section. 

Active control of vibrations has been growing interest for applications to aircraft and 

helicopters [19,49,50], space structures [41,46,47, 51, 52], automobiles [53,54], ships [55], 

band saw [37] etc. Pearson et al [49] identified that active vibration control in a helicopter 

can be applied in three main areas (a) at the rotor, (b) at the main gear box to the fuselage 

interface (active isolation) and (c) within the fuselage itself. The main source of interior 

noise in a helicopter is due to the gearbox. Maier et al [50] applied active vibration control to 

isolate the fuselage from the gearbox using smart gearbox struts in-order to reduce the 

interior noise. They used peizoceramic patches, which were glued onto the conventional 

gearbox struts and were used as actuators. Sutton et al [19] considered the active isolation of 

multiple structural waves on a helicopter gearbox support strut. They identified that tonal 

vibration due to the meshing of gear teeth in the main drive unit is the main source of high 

frequency noise in the fuselage and used magnetostrictive actuators clamped to the strut to 

introduce the required secondary forces. 

Vaillon et al [52] used active (micro) vibration isolation to isolate micro-vibration from 

equipment through the primary structure of a satellite to sensitive payloads. They achieved 

this by incorporating active elements in all struts of the satellite. Thus isolation of the 

payload from the source was achieved. 



Successful noise control often depends on effective isolation of vibrating machine from its 

support structure. Jenkins et al [56] used active feed-forward control techniques for the 

isolation of periodic machinery vibrations. The requirement of a reference signal in feed-

forward control was achieved by sensing the rotation of the machine. They showed that the 

kinetic energy of the machine could be reduced at harmonics of the firing frequency of the 

test engine. 

Esmailzadeh and Fahimi [53] studied active suspensions for a car. They compared the 

available passive and active suspension and concluded the performance of active suspension 

is much superior than that of passive system. They discussed that this superior performance 

can be achieved when the actuators are controlled with optimal full state-vector feedback. 

Winberg et al [55] showed that the sound level in the cabin of a ship could be minimised by 

actively isolating the hull from the engine. Nevala and Jarviluoma [57] considered active 

isolation for driver's seat for off-road vehicles. They showed that the performance of an 

active system is better in comparison with a passive system. 

General-purpose vibration isolation tables, which are intended to isolate a payload from floor 

motion (base excitation), find application in optica] experiments, semiconductor 

manufacturing, scanning probe microscopes, commercial interferometers, electro-physiology 

recording, precise measurement etc. Erin and Wilson [58] proposed a pneumatic vibration 

isolator employing active controller for the vibration isolation purposes. 

Although this review on the applications of active isolation is not comprehensive, it shows 

the wide range of applications available for active vibration isolation. In addition a brief 

survey of commercial companies producing active isolation system and solutions is given in 

appendix A (based on Internet search). 

1.2.4 Performance and related issues 

The primary objective in active isolation is the reduction of the vibratory response or kinetic 

energy of the structure considered, and is often referred to as the performance (or objective) 

of the system in the active control literature. Although stability is a prerequisite for good 

performance, it is not necessarily true that all stable systems exhibit good performance [59]. 



In this section, methods to access the performance of active control systems, which are found 

in literature, are discussed. 

The effective evaluation of an active control system depends on the choice of the 

performance measure and how well the parameter(s) used as a performance measure(s) 

represent the actual physical vibration [60]. Sometimes the most meaningful performance 

measure can be calculated in a theoretical model, but may be difficult to measure directly in 

practice, and hence a compromise often is required. To a certain extent this also depends on 

the type of structure. These performance measures include total kinetic energy [2,19, 60] 

where the structure is generally considered rigid, minimising highest modal energy [61] 

where the structure is a large flexible one, power transmission or power flow [62-64], 

flexural energy level [65], sum of squares of translational velocity components [60,66], 

magnitude of velocity or point mobility [67], vibration amplitude [68] etc. Although there is 

no obvious criterion for the choice of performance measure, it is the complexity and nature 

of the vibration of the structure, which determines the performance measure. The most 

commonly found performance measures are summarised in Table 1.1. 

Performance measure Limitations 

Magnitude of velocity 

per unit disturbance, 

vibration amplitude 

This can be applied to systems that can be modelled as 

single degree of freedom system [67,68] or lumped mass-

spring-damper systems. The advantage is that the cost 

function is easy to measure. 

Total kinetic energy 

(i.e. the sum of kinetic 

energy in heave, pitch 

and role motion) 

This is applicable for systems that can be modelled as rigid 

bodies for example [2,19]. Most distributed systems can 

only be modelled as rigid bodies at low frequencies [69] 

Power transmission Minimisation of power transmission is a good strategy [70]. 

However the difficulty in measuring such parameter and the 

effects produced by flanking paths makes this approach 

practically difficult. 

Sum of squares of 

translational velocity 

components 

If the structure being controlled is flexible then it is difficult 

and inappropriate to consider total kinetic energy or point 

mobility etc. Under theses circumstances this method has 

proven to be good [60,66]. 



Another important term, which has some similarity with the performance measure in the 

active vibration control literature, is the parameter being controlled. This is sometimes 

referred to as the cost function. This parameter can sometimes be used as the performance 

measure as well, for example magnitude of velocity can be the cost function and the 

performance measure. The cost function must reflect the nature of the dynamic system for 

active control to be a success [60]. Brennan et al [64] compared three cost functions to 

control flexural vibration on a beam namely (a) suppression of the incident propagating 

wave, (b) maximizing the power absorbed by the secondary force and (c) minimizing the 

total power supplied to the beam. They used power as the performance measure to evaluate 

these strategies and concluded that the power minimization strategy was the most appropriate 

for their application. 

Gardonio et al [70] considered a rigid mass acting as a source and a receiver plate connected 

through a pair of active mounts to study the effectiveness of different control strategies. They 

considered (a) cancellation of velocities at the receiver junctions, (b) cancellation of forces at 

the receiver junctions, (c) power due to out-of-plane velocities and forces measured at the 

receiver junctions and (d) sum of squared out-of-plane velocities and weighted sum of 

squared out-of-plane forces at receiver junctions. They compared the strategies against the 

benchmark of minimization of total power transmission and used total power as the 

performance measure to evaluate the strategies. They concluded that the cancellation of 

velocity or force and minimising axial power generally gives poor results compared with the 

benchmark, whereas minimisation of sum of squared out-of-plane velocities and weighted 

squared out-of-plane forces at receiver junctions gives a better result which is comparable 

with the benchmark. Anthony and Elliott [60] considered a similar comparison for a 

lightweight cantilever beam (2D cantilever beam-like truss structure). They considered (a) 

total vibrational energy (b) the flexural vibration energy level, (c) sum of squares of 

translational velocity components and (d) weighted sum of all velocity components (i.e. 

translational and rotational) and used total vibrational energy to evaluate the other three and 

concluded that weighted sum of all velocity components was more suitable. These analyses 

thus show that the strategies are system dependent and should be considered carefully. 
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1.2.5 stability and related issues 

Stability of a feedback control system can be judged using several methods such as the root-

locus method, Nyquist stability criterion, gain and phase margin etc [18, 31]. For a multi-

input multi-output system the Nyquist criterion states that a control system is stable if and 

only if none of the eigenvalue loci of the corresponding open-loop system enclose (-1,0) in 

the Nyquist plane [31]. The advantage of using this criterion is that, in a feedback control 

system the open-loop response can be measured and easily compared with mathematical 

predictions [2]. 

As mentioned previously, the characteristic difference between passive and active control is 

that passive control does not make any real-time changes in the system and hence cannot 

destabilise a conservative system [20]. There can be un-modelled dynamic characteristics 

(which are difficult to capture in a model), which could make the behaviour of the real 

system fall short of the designed active system. In control theory this kind of error is 

categorised into four groups (a) parameter error (b) errors in model order (c) neglected 

disturbance and (d) neglected nonlinearities. No single control theory can treat all four types 

of errors [59]. 

Balas [41] showed that for collocated actuators and sensors, a multi-input and multi-output 

system is unconditionally stable. Such stability guarantees fall short in practice, in the 

presence of real hardware and non-negligible dynamics of actuators and sensors. Thus, even 

an error-free design poses serious problems when it comes to practice. In addition, 

unavoidable time delays frequently appear in controlled structural systems [71]. The 

characteristic equation of a linear system with time delays is a transcendental equation 

involving exponential functions and potentially has an infinite number of roots [13, 71]. 

Thus stability analysis of a multi-degree of freedom system with time delay is usually 

difficult. 

1.2,6 Factors affecting stability and performance 

As mentioned in section 1.2.5 sensors and actuators together with associated signal 

conditioning equipment and time delay affect the stability and performance. In this section 

additional factors affecting the performance and stability of active vibration isolation are 

reviewed in conjunction with them. 
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When a secondary force is created that is proportional to absolute velocity of the equipment, 

the system will control the basic resonance without compromising high frequency 

performance. This is termed 'skyhook damping' [72]. Elliott et al [67] pointed out that this 

'skyhook' phenomenon can be practically realised using two actuator arrangements (a) 

reactive actuator and (b) inertial actuator. In these cases the secondary force generated by the 

actuator must either (a) react off the base structure or (b) react off an inertial mass. They 

showed that the stability of the reactive system is tolerant of the additional contribution to 

the plant response from the reactive force. However for an inertial configuration to be stable 

with high feedback gain, the natural frequency of the actuator must be well below that of the 

equipment on its resilient mount. 

Most practical structures are multi-degree of freedom systems and they require more than 

one sensor-actuator pair to control their vibration. The overall performance of an active 

control system can be greatly improved by choosing proper sensors and sensor positions 

[73]. However the robustness of such an optimal system for uncertainties is not guaranteed. 

Kashani and Kiriczi [74] considered unstructured and structured uncertainties of an active 

suspension system and showed that robust stability of an active suspension system could be 

obtained. In addition to these uncertainties there exists a class of uncertainty due to 

component failure in an active system and this is an area that requires further research. 

As mentioned previously, time delay in the controller is another parameter, which could 

affect the performance and stability. Most of the analyses of the stability of feedback systems 

with time delay establish some necessary and sufficient conditions for stability for example 

[71,75], However these conditions do not show any explicit relationship between the time 

delay and the system parameters for a stable system. 

In practice there exists another difficulty due to the inability to generate control forces 

exactly as desired due to the non-ideal characteristics of the components in the control 

system. Ren et al [33] analysed the effect of phase lag introduced by A/D and D/A 

converters and electromagnetic actuators. They argued that in a velocity feedback system, 

phase lag of a little over ninety degrees could potentially cause instabilities. However in an 

active control system there are other components such as an integrator, high-pass filters, low-

pass filters, time delays etc in addition to A/D, D/A converters and actuators. For a thorough 

analysis they also have to be investigated. 
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1.2.7 Sensors and actuators in active isolation 

An active vibration control system consists of actuators, sensors and an electronic controller 

together with signal conditioning devices. Although there have been significant advances in 

controller design, in terms of software, hardware and control algorithms, the developments in 

the design of transducers have not matched in pace [76]. The ability to stabilise the active 

isolation system and achieve performance objectives using feedback control is highly 

dependent on the location, quality, type and number of control actuators and sensors. This 

section presents a brief survey on sensors and actuators used in active vibration isolation that 

can be found in the literature. 

Garcia-Bonito et al [76] summarise the type of actuators and their relative merits and 

demerits as follows. Actuators used in active control, in general employ four mechanisms. 

They are (a) electromagnetic (b) hydraulic (c) piezoelectric and (d) magnetostrictive. 

Electromagnetic vibration actuators work on the solenoid principle. They are normally cheap 

and quite large for the amount of force they generate. Hydraulic actuators can provide very 

high force but are expensive, heavy and inefOcient at high frequencies. On the other hand, 

the vibration actuators based on piezoelectric or magnetostrictive elements are small, 

compact and produce comparatively large forces. This leaves a requirement for a selection 

criterion for actuators. This is achieved by (a) matching the stiffness of the actuator to the 

stiffness of the external load or (b) the actuator should be able to generate enough force to 

produce a free displacement equal to or greater than the source displacement [76]. 

Accelerometers together with electromagnetic actuators are generally used as sensors and 

actuators for active vibration isolation, for example [2,6]. Malowicki and Leo [78] used a 

peizoceramic actuator for active isolation of automotive seats. They showed that pre-

stressed, curved peizoceramic actuators with feedback control techniques can be employed to 

achieve the force and displacement levels required for active isolation of automotive seats. 

One of the basic requirements of actuators for active isolation in space applications is that 

they are lightweight. This requirement renders electromagnetic actuators largely redundant 

for space applications. Bohannan et at [79] investigated the use of a piezoelectric polymer 

actuator for active vibration isolation in space applications. This actuator employs a leaf-

spring configuration and the electromechanical properties can be adjusted to meet the 

requirements for isolation by changing the number of layers (or leafs). 
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Most of the piezoelectric actuators used in smart structure applications are either stiff-stacks, 

which produce high force and small deflections or compliant benders, which produce small 

force and high displacement. This leaves a mid operating range; Garcia-Bonito et al [76] 

designed a high displacement piezoelectric actuator, which essentially uses a PZT (lead 

Zirconate/titanate) ring as an active component driving a piston hydraulically. 

Piezoelectric materials can transform mechanical energy into electrical energy and vice 

The first property allows one to use it as a sensor, as described for example by Yang et 

al [77], while the other property allows it to be used as an actuator, as described for example, 

by Baz et al [61]. 

1.3 State of the art within the scope of the project 

The technologies available to tackle vibration isolation have been briefly reviewed in the 

preceding sections. Figure 1.1 shows how the various facets scattered in the literature can be 

structured within the perspective of this project. In this section each layer of Figure 1.1 

discussed in the proceeding sections are assessed. 

In layer one, methods of vibration isolation are given and briefly reviewed in section 1.2.1. 

As pointed out by Ungar [22], there is an inherent problem associated with good high and 

low frequency isolation with passive systems. This problem can be overcome by coupling an 

active system to the passive system [14] known as a hybrid (or sometimes as an active 

system). The advantage of this method is that it not only eliminates the inherent problem 

associated with passive methods but also reduces the external power requirement if only 

active methods are to be used. In addition it gives some additional protection in the event of 

power failure, which is not available with a purely active system. Thus this hybrid active-

passive system is the one studied in this thesis. 

Considering the strategies given in layer 3, feedback control is considered appropriate for 

vibration isolation since typical base vibration has an unpredictable waveform with 

broadband random excitation [1,6]. Performance and stability are two main issues with the 

design of a control system. Both of these criteria have to be analysed separately. 
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All active systems consist of sensors, actuators and an electronic controller together with 

signal conditioning devices, which often place limitations on the available performance as 

pointed out by Brennan et al [15]. Thus using decentralised feedback control in this thesis, is 

an holistic analysis of a vibration isolation system integrating (a) the structural dynamics (b) 

signal conditioning devices and (c) actuators, to assess the stability and performance of the 

system. In addition uncertainty due to component failure is also analysed. 

1.4 Objective and contribution of the thesis 

The feasibility of active vibration isolation using decentralised velocity feedback control 

techniques was investigated on a two-mount system by Serrand and Elliott [6] and on a four-

mount system by Kim et al [2]. They showed that there is a significant difference between 

theoretical prediction and measurement due to low frequency phase advance introduced by 

external instruments. As discussed by Brennan et al [15], sensors, actuators and signal 

conditioning devices, which are essential components in active vibration isolation, often 

place limitations on the available performance. The objectives of this thesis are to, 

# Investigate the performance and stability of an active isolation system, which uses 

decentralised acceleration, velocity and displacement feedback control strategies. 

• Investigate the stability limitations on the above three control strategies by 

integrating (a) structural dynamics (b) signal conditioning devices (c) actuators and 

(d) time delay in the feedback loop. 

® Identify the sources, which have significant effect at (a) low and (b) high frequencies, 

and derive simple formulae for the maximum gains for a stable system and identify 

the best strategy among acceleration, velocity and displacement feedback control 

strategies. 

# On the chosen strategy, investigate the performance due to the uncertainty arising 

from component failure. 

The main contributions of this thesis are, 

• The sources of instability at low frequencies have been identified, and the limitations 

they place on the stability have been established by integrating their characteristics 
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together with the structural dynamics. Simple formulae for maximum gain have been 

derived for all three-control strategies. 

# The sources of instability at high frequencies have been identified and their limitation 

on the stability has been established by integrating their characteristic together with 

structural dynamics. Simple formulae for maximum gain have also been derived for 

all three strategies. 

# The limitation on performance due to component failure in a decentralised feedback 

control has been established. 

Additionally two analytical derivations relating the stability of (a) a base excited single 

degree of freedom system and (b) a multi-input-multi-output system have been established. 

They are, 

# Base excited SDOF system for the three control strategies - Appendix B 

# Stability of a MIMO system on a rigid foundation for the three control strategies -

Appendix F 

1.5 Layout of this thesis 

To conduct a theoretical and experimental study on active vibration isolation, a two-mount 

(active/passive mount) system is considered throughout this thesis. Following this 

introduction, active vibration isolation using decentralised acceleration, velocity and 

displacement feedback control strategy is investigated for its performance and stability in 

Chapter 2. In this Chapter, isolation of a two-mount system from both a moving inelastic and 

a flexible base is investigated. A clamped-free-clamped-free (CFCF) base is considered as 

the flexible base. The predictions provided by the idealised model are compared with 

measured data in this chapter, where a large discrepancy between predicted and observed 

behaviour is noted. This discrepancy requires modification of the idealised model, and is 

described in Chapter 3 and 4. In addition Chapter 3 describes the stability issues at low 

frequency in all three control strategies. Simple formulae for maximum gain integrating 

structural dynamics, and characteristics of signal conditioning devices are derived in this 

Chapter. Theoretical models are validated by experimental work. Chapter 4 describes the 

stability issues at high frequencies. Simple formulae are also derived for maximum gain with 

time delay for acceleration, velocity and displacement feedback control strategies. In Chapter 
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5, the performance of the active isolation system with uncertainty due to component failure 

(in a single loop) is investigated. The theoretical models are validated by experimental work. 

Finally conclusions are sunmiarised and further work is suggested in chapter 6. Nine 

appendixes have also been included to support the main body of the thesis. 
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Chapter 2 

The concept of active vibration isolation and decentralised 

feedback control 

2.1 Introduction 

As discussed in Chapter 1 conventional passive vibration isolation systems, which consist of 

compliant mounts positioned between the base and the equipment to be isolated, can provide 

good isolation at high frequencies, above the resonance frequency of the system [6]. In order 

to achieve this high frequency performance, damping present in the mounts must be small, 

which degrades the low frequency performance. One way to overcome this problem is to 

introduce an active element into each existing passive mount [13,14]. The active system 

considered in these papers involves feeding back the full state variables, as commonly seen 

in work on active suspensions [53, 54]. However a more simple and straightforward way 

may be to use direct output feedback [2,6]. In this approach the required secondary force is 

proportional to the output, which, can in general, be acceleration, velocity or displacement of 

the equipment. 

The work in this thesis describes a theoretical and experimental investigation into an active 

isolation system with two-mounts in which electromagnetic actuators are installed in parallel 

with each passive mount. These active/passive mounts are placed between a piece of 

equipment (such as the instrument boxes in aeroplanes and telescopes in satellites etc.) and a 

vibrating base. As discussed in Chapter 1, feedback control is the best control strategy for 

this kind of problem, where the base vibration is often random. Each actuator is operated 

independently by feeding back the signal proportional to the corresponding output 

(acceleration, velocity or displacement) at the same location [2]. This is generally known as 

decentralised feedback control with collocated sensors and actuators [31]. 

In general, equipment is three-dimensional in nature and is supported on four active/passive 

mounts. These mounts are placed close to the four geometric corners of the equipment in 

18 



such a way to maintain static balance. Kim et al [2] studied such a four-mount system, which 

had a decentralised feedback control strategy. They encountered instability at about IHz (for 

a high gain) using velocity feedback control. 

Because the two-mount isolator system is relatively simple compared to the four-mount 

system, it has the advantage of being able to give more insight into the stability and 

performance issues and factors affecting them (rather than the effect by the structural 

dynamics). Acceleration, velocity and displacement feedback control strategies are applied 

and assessed. 

The objectives of this chapter are to: 

• Describe the concept of active vibration isolation using a base excited SDOF system 

and feedback control strategy. 

• Describe the concept of decentralised feedback control using a two-mount system. 

• Establish that there is a considerable discrepancy between the system that is 

commonly used for closed-loop performance and stability analysis, and a real system 

(using acceleration, velocity and displacement feedback control). 

The inherent stability issues related to the feedback control systems are also studied for the 

SDOF system model and presented in Appendix B. An analytical study on stability and 

performance of a two-mount feedback control system is compared with some experimental 

work and finally conclusions are given. 

2.2 Concept of active vibration isolation 

Consider an active vibration isolation system shown in Figure 2.1a, where an equipment 

structure of mass m is supported upon a single mount with stiffness k and damping c. A 

controller with frequency response function H(^j(o) is used to produce the required 

secondary control force, which can be proportional to acceleration, velocity or displacement 

of the equipment. This control force is applied between the base and the equipment in such a 

way to give negative feedback control. The impedance method described by Kim et al [2] is 

used for the analysis of the system. 
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A simplified impedance representation of the system is shown in Figure 2. lb, where Zg is the 

impedance of die unconnected equipment and = — + c represents the impedance of the 

mount. Similarly Zf, is the impedance of the base at the mount location. The equipment 

velocity = is related to the mount force = ^ ^ 

follows, 

(2.1) 

where is the force generated by the mount (both active and passive) and is given by, 

= (2.2) 

where X; (f) = is the control force and ^ ) is the velocity of 

the base at the location of the mount. The base velocity can be expressed as, 

(2.3) 

where is the collocated disturbance force. (Note that the effect of any non-collocated 

force can be transferred as an equivalent collocated force using =Z(,}^ where is 

the transfer mobility between the disturbance force and the mount location and Fp is the 

primary force). From equations (2.1), (2.2) and (2.3), in the absence of the disturbance force, 

the equipment velocity is related to the control force by, 

y = (2.4) 
Z ^ + Z , + Z ^ % 

Now consider Figure 2.1c, which describes the typical feedback control block diagram 

representation of a single-input (for example disturbance force) and single-output (for 

example velocity of the equipment) system. In the absence of the primary force (i.e. Fp,n = 0), 

the secondary/control force is related to the equipment velocity Vg by [6], 

= (2.5) 

where G ( jw) is the plant frequency response function, which from equations (2.4) and (2.5) 

is given by, 

G ( # ) = (2.6) 
^ Z ,+Z^ + Z ^ % 

The control forces for acceleration, velocity and displacement feedback control are given by 

and f]. = — r e s p e c t i v e l y , where ga, and g j are the feedback 

gains for acceleration, velocity and displacement feedback control respectively. Comparing 
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the control forces and Figure 2.1c the feedback frequency response functions for 

acceleration, velocity and displacement feedback control can receptively be written as, 

^ = 7 % (2.7a) 

= (2.7b) 

= (2.7c) 

The open-loop and closed-loop frequency response functions are given by 

and —— = — \ : — - respectively. 

2.2.1 stability and performance of the active isolation system 

Feedback control systems are susceptible to instability and hence need assessment. The 

Nyquist criterion is generally used for stability analysis [59], which states that a closed-loop 

feedback control system is stable if and only if the plot of the real part against the imaginary 

part of the open-loop frequency response function does not enclose the critical point (-1,0) 

on the Nyquist plane [59]. For a single input and single output (SISO) system this can be 

interpreted as; when the imaginary part of open-loop frequency response function is zero 

(i.e. Im^G (jco)H (j(jo)j= 0^ the real part of the open-loop frequency response function is 

greater than - 1 ^i.e. Re{G(_/a))^(yA;)}>-l) then the system is stable. It is said to be 

unconditionally stable, when the imaginary part is zero, and the real part is greater than or 

equal to zero ^i.e. Re-[G {jco)H (i<y)}> 0^. 

A stability analysis of a SDOF isolation system with acceleration, velocity and displacement 

feedback control is given in the Appendix B. Active isolation using acceleration, velocity 

and displacement feedback control system is unconditionally stable when the equipment is 

mass-like. 

The closed-loop responses for acceleration, velocity and displacement feedback control are 

give. by, i = i = 
F„. \ + jm.G{ico) F,„, l + g.G{jo,) F„„ i+JLLG(jm) 
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respectively. It should be noted that the feedback gains are always positive and appear in the 

denominator. These equations suggest that as the gain is increased to a very large value (say 

infinity) the equipment velocity tends to zero. Thus the equipment is dynamically decoupled 

from the base and hence is isolated in all three cases. 

2.2.2 Simulations 

Some simulations are presented in this section in-order to illustrate the stability and 

performance of the active isolation systems discussed above. For simplicity consider a SDOF 

system on a moving inelastic base. Equations (2.1) and (2.2) give, 

Z .y ,=F.+Z. (V, . -V, ) (2.8) 

Since the base has a prescribed motion, the primary disturbance is the prescribed motion of 

the base. Thus in the absence of primary disturbance ((.g = O) the control force is 

related to the equipment velocity as. 

Thus the plant frequency response function is given by, 

G(im) = - ^ (2.10) 

where Z^ = . 

From equation (2.10), substituting for Zg and Z î the plant frequency response function can be 

written as, 

= - . (2.11) 
k-co m + ]0)c 

[ F c 
Substituting 6) = J— and — 1 = (System natural frequency and damping ratio) into 

V 2VfMA: 

equation (2.11) and writing in non-dimensional from gives, 

where O = — , is the forcing frequency normalised by the natural frequency of the system. 

Letting the controller frequency response function be H ( /Q) the non-dimensional closed-

loop frequency response is given by: 
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% (;^) z_ 
V ^ y 

C2 13) 

From equations (2.7a), (2.7b) and (2.7c), feedback frequency response functions are given 

by, for acceleration feedback control y O — f o r velocity feedback control 
m 2^ 

H = — and for displacement feedback control / / ( j O ) : 
yn A: 2^ 

where 

/M 
and ~ are the normalised feedback gains. Substituting for G{jQ.) and the 

appropriate into equation (2.13), the non-dimensionalised closed-loop frequency 

response function can be derived for acceleration, velocity and displacement feedback 

control: 

ACCELERATION FEEDBACK CONTROL 

l + y 2 ^ 

1- 1+^ 
(2.14) 

n " + ; 2 ^ 

VELOCITY FEEDBACK CONTROL 

1 + ; 2 ^ 

1 — + y 2̂ X2 1 + -

(2.15) 

DISPLACEMENT FEEDBACK CONTROL 

K M l + ; 2 ^ 

1 + 
(2.16) 

n " + ; 2 ^ 

Figure 2.2a shows the closed-loop non-dimensional transmissibility for acceleration, velocity 

and displacement feedback control as a function of non-dimensional frequency for non-

dimensional gain of 10, and a damping ratio of 0.05. It can be seen that acceleration 

feedback reduces the response at the original resonance frequency and produces a resonance 

frequency lower than that of the original system. Thus acceleration feedback control 

effectively adds mass to the system. It can also be seen from Figure 2.2a that velocity 

feedback effectively adds damping to the system, and that displacement feedback effectively 

adds stiffness to the system [13]. It is also noted that acceleration and displacement feedback 

tend to reduce the damping in the system, which results in narrower peaks. The reason for 
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this is evident from the expression for the damping ratio given by ^ , because if 

either m or k is increased the damping ratio is reduced. 

To assess the overall performance of the control strategies the mean-square response of the 

system normalised to the mean-square response in the absence of control is plotted for the 

three control strategies. Figure 2.2b shows this for the frequency range 0 < O < 100. It can be 

seen that there is little difference in the performance of the three control strategies for non-

dimensional gains up to 60. 

The Nyquist plot for acceleration, velocity and displacement feedback control are shown in 

Figure 2.2c. It can be seen that none of the plots crosses the negative real axis and therefore 

does not encloses the critical (-1,0) point. In addition, for acceleration feedback control 

when O tends to infinity, the real part tends to — . For velocity feedback control, the 
m 

Nyquist plot is completely in the right half of the Nyquist plane, and thus the system is 

unconditionally stable. It crosses the real axis when the real part of the open-loop response is 
p 

zero and — . Unlike acceleration feedback control, when Q tends to infinity the real and 

c 

imaginary parts of the open-loop frequency response function tend to zero. The Nyquist plot 

for the displacement feedback given in Figure 2.2c shows that displacement feedback control 

strategy gives a stable system. When Q tends to infinity the real and imaginary parts of the 

open-loop frequency response function tend to zero. 

2.2.3 Summary 

A SDOF system with acceleration, velocity and displacement feedback control has been 

considered to explain the concept of active vibration isolation. Acceleration, velocity and 

displacement feedback control strategies give a stable system (as shown in Appendix B). For 

the systems on moving inelastic base, the Nyquist plots for all three strategies begin at the 

origin and follow a clockwise direction back to or closer to the origin as the frequency is 

increased. In the acceleration feedback control strategy, the critical point (-1,0) is closer to 

the low frequency part of the plot. For velocity feedback control the entire Nyquist plot lies 

far away from the critical point (-1,0). In displacement feedback control the critical point is 

closer to the high frequency part of the plot. 
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It can be seen that all three strategies reduce the resonance peak response of the original 

passive system. Their overall performance is also comparable. 

Thus all the three strategies considered, which provide a stable system with comparable 

performance, can dynamically decouple/isolate the equipment from the base. 

2.3 Decentralised feedback control for vibration isolation 

Consider a two-mount system modelled as a lumped mass-spring-damper system with 

independent (decentralised) feedback control applied as shown in Figure 2.3a. Two-control 

forces and^^2 act between the equipment and the base in parallel with the passive mounts. 

The control system employs a direct negative output feedback control such that the signal 

measured by each sensor mounted on the equipment is used to generate a control force at that 

mount location. These forces are produced via the controllers, which have equal gain and are 

proportional to output (acceleration, velocity or displacement) at the mount. In this chapter 

the performance and stability of this system is investigated and compared with measurement. 

Two situations are considered, namely the two-mount system (a) on a moving inelastic base 

and (b) on a flexible base. In-order to ensure that the system on a moving inelastic base 

behaves as a two-degrees-of freedom system an asymmetric equipment structure is 

considered as shown in Figure 2.3a. 

2.3.1 Impedance representation of the two-mount system 

Figure 2.3b shows the impedance representation of the physical system shown in Figure 

2.3a, where Ze is the impedance matrix of the unconnected rigid equipment and Zm 

represents the impedance matrix of the mounts. Similarly Zy is the impedance matrix of the 

base. The vector of velocities of the equipment Ve is related to the vector of mount forces as 

follows, 

= (2.17) 

where fm is the mount force vector (both active and passive) and is given by, 

(2.18) 
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where the impedance matrix Z^is diagonal, whose diagonal terms are the impedance of each 

mount, which are given by = — + c. In addition fc is the vector of control forces and vy 

is the vector of velocities of the base at the location of mounts. 

-fpm " L 

Z.+Zm -Zm ' fc 

-Zm z , + z ^ _ 

The base velocity vector can be written as, 

(2.19) 

where fp^ is the vector of collocated disturbance forces. If the disturbance force(s) are non-

collocated force(s) then their effect can be expressed in terms of equivalent collocated forces 

as, 

f p m = Z b V p (2.20) 

where Y|,p is the transfer mobility of the base between the locations of mounts and the vector 

of primary forces fp. Combining equations (2.18), (2.19) and (2.20) give the compact 

description of the system in terms of impedances. 

1 r f 1 
(2.21) 

From equation (2.20) and in the absences of primary forces (i.e. the equivalent 

collocated primary disturbance vector fpm = 0. The equipment velocity and control force can 

then be related by, 

v , = [ Z , + Z ^ + Z ^ Y , Z j ' f , (2.22) 

where = Z"' 

Similar to the single mount system. Figure 2.3c, describes a typical feedback control block 

diagram representation of a multi-input (for example disturbance forces) and multi-output 

(for example velocity at mount locations) system. The secondary/control force vector fc is 

related to the mount location velocity vector Ve by, 

v , = G W f , (2.23) 

From equations (2.22) and (2.23) the plant frequency response matrix is given by, 

G ( j ® ) = [Z. + Z . + Z „ Y . Z j ' (2.24) 

which is a compact impedance representation of the plant. 
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2.3.2 Formulation of performance measure 

So far little or no attention is paid specifically to the type of feedback (i.e. acceleration, 

velocity or displacement). For analytical simplicity the output of the block diagram is kept 

as velocity. This means that the plant response matrix can be expressed in terms of mobility 

or impedance, which is relatively easy to interpret [83]. 

The feedback frequency response matrix can be adjusted so that acceleration, velocity and 

displacement feedback control can be achieved as desired (similar to the single mount case 

considered previously). These give three formulations for the feedback frequency response 

matrix. They are, y o 
g . 0 

0 g . 
H W = 

gv 0 

0 g. 
and H(/'<«) = — 

g . 0 

. 0 

for acceleration, velocity and displacement feedback control respectively. 

Considering Figure 2.3c, the closed-loop velocity vector Ve (i.e. velocity vector in the 

presence of the primary disturbance) can be written as, 

v . = [ I + G(,/ffl)H (;<»)]" 

where I is the identity matrix of size (2 x 2) 

(2.25) 

Letting the velocity vector at the mass centre be a : 
V 

and Q be the transformation 

matrix which transforms the mount location velocity vector Ve to the mass centre velocity 

vector a, then these velocity vectors are related as, 

Vg = Qa and hence a = (2.26a,b) 

Thus using equation (2.26b) the velocity vector at the mass centre can be found provided Zg, 

Zm and Q are known. As discussed in Chapter 1, since the equipment is rigid, the kinetic 

energy of the equipment mass may be used as the performance measure. This is given by, 

1 
K = - a " J a (2.27) 

where a" is the Hermitian transpose of velocity vector a and J is the inertia matrix of the 

equipment, which is given by, 

m 0 

0 
J_ 

e 

(2.28) 
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where 7 is the moment of inertia about the mass centre. 

Using equation (2.27) the kinetic energy that may be used to investigate the closed-loop 

performance of a two-mount isolation system can be found. The stability of the system can 

be studied using the Nyquist criterion. For a multi-input-multi-output (MIMO) system the 

Nyquist criterion states that a closed-loop MIMO system is stable if and only if none of the 

eigenvalue loci of the open-loop frequency response matrix G(/6))H(/(W) encloses the critical 

(-1,0) point in the Nyquist plane [31]. 

2.4 Simulations 

Simulations and experiments are carried out on a physical system (shown in Figure 2.4) 

whose main properties are given in Table 2.1 [4]. The system shown in Figure 2.4 is a 

symmetric system, where an aluminium plate (which represents some rigid equipment and 

behaves as a rigid body at frequencies up to IkHz [4]) is supported on two-rubber mounts 

placed beneath the plate. Two electromagnetic shakers are also installed in parallel to the 

passive mounts to produce the control forces. The main properties given in Table 2.1 are 

used for simulations. 

2.4.1 Two-mount system on a moving inelastic base 

In this section the two-mount system on a moving inelastic base with acceleration, velocity 

and displacement feedback control is considered. Both stability and performance are 

discussed. When a moving inelastic base is considered, the disturbance is the prescribed 

motion of the base. Thus the plant response function is modified. From equation (2.17) and 

(2.18) 

Z , v , = f , + Z J v , - v J (2.29) 

In the absence of primary disturbances (i.e. = O), the equipment velocity vector can be 

related to control force vector as, 

Ve = [ Z , + Z , . r ' f , (2.30) 

Similar to the previous definition, from (2.30) the plant response matrix is given by, 

G( j f f l )=[Z. + Z „ r ' (2.31) 
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The open-loop frequency response matrix is G(_/o)H(y6D)and the closed-loop response is 

given by, 

V. = [ l + G(;®)H(,/ to)J 'G(,yffl)Z„Vj (2.32) 

Setting Vy = [l l]^ (because bo± the mounts experience the same velocity on a moving 

inelastic base) equation (2.32) becomes, 

i = [ l + G ( , ; f f l ) H ( . / f f l ) J ' G ( » Z j l i f (2.33) 

Substituting equation (2.33) in equation (2.26b) the mass centre velocities can be found. 

Since the two-mount system shown in Figure 2.4 is a symmetric, on a moving inelastic base 

this system would behave as a SDOF system. In this case a decentralised feedback control is 

not required (A single input and single output control is sufficient in this case). Thus a mass 

of 0.69 kg is lumped on one of the shakers so that the system becomes asymmetric. 

Simulations and experiments for the moving inelastic base case are done using this 

asymmetric system. In this case the mass centre is at rl from the left end of the mount where 

I is the distance between the mounts and r (= 0.404) is the ratio of the lengths between the 

left hand end of the mount and mass centre to the length between the mounts. 

2.4.1.1 Acceleration feedback control 

The closed-loop response and corresponding mass centre velocities can be obtained from 

equations (2.31) and (2.26b) respectively provided Q, Z^, and are known. From 

equation (2.27) the total kinetic energy can also be determined to investigate the 

performance. Similarly these matrices are also required to find the plant response function 

given in equation (2.31) and hence to And the open-loop frequency response matrix. The 

feedback frequency response matrix for acceleration feedback control is given by 

6 g 0 

0 

= jcom 
0 

0 gn 
where is the normalised gain for 

acceleration feedback control. The matrices Q, Z, and Z^ are derived in Appendix C for 

1 —r 
the system considered and are given by, Q = 

1 1 - r 
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(l-r)A7M-
J 2 J 

r m + — 

and Z^ = 
Zm 0 

0 z_ where Z = H c. For the 

system considered (i.e. when a mass of 0.69 kg is lumped on the left end of one of the 

control shakers) r = 0.404. 

Figure 2.5 shows the simulations for active vibration isolation using acceleration feedback 

control. In Figure 2.5a the open-loop plot of eigenvalues are given for a normalised gain 

g 
— = 5. One eigenvalue is given by the solid line and other by the dashed line. It can be seen 

m 

from this figure that the eigenvalues do not cross the negative real axis and thus the system is 

unconditionally stable. Figure 2.5b shows the total kinetic energy of the equipment mass for 

normalised gains of 0, 5, 10 and 15. It can be seen that when the gain is increased the 

performance at the original resonance peaks improve. However the peaks appear at lower 

frequencies. Although active vibration isolation using acceleration feedback control gives a 

narrower peak with higher magnitude than the original system, the overall performances, 

which is measured by the change in the kinetic energy of the equipment mass integrated over 

a frequency range (O < Jreg < 250 Hz) shows that the overall performance improves as the 

gain is increased. The change in kinetic energy, shown in Figure 2.5c is defined as the ratio 

of area of total kinetic energy curve for a specific band of frequencies 

(e.g 0 < < 250 Hz) when the gain is some value g to the area when the gain is zero. 

Considering the total kinetic energy as well as the change in kinetic energy, the isolation of 

the two-mount system using acceleration feedback control strategy gives a stable system 

with reasonable performance. 

2.4.1.2 Velocity feedback control 

Similar to the system with acceleration feedback control, open-loop eigenvalues, total kinetic 

energy and the change in kinetic energy plots are considered for velocity feedback control. 

The feedback frequency response matrix for active isolation using velocity feedback control 

is given by H (_/&)) = , 
0 

c 

0 
c 

= c 
0 

0 
, where gnv is the normalised gain for 
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velocity feedback control. Figure 2.6 shows the simulations for active isolation using 

velocity feedback control. The open-loop eigenvalue plots for a normalised gain — = 5 are 
c 

given in Figure 2.6a. One eigenvalue is given by the solid line and other by the dashed line. 

It shows that the plots do not cross the negative real axis and are entirely on the right half of 

the Nyquist plane. Thus the system is unconditionally stable. Figure 2.6b shows the total 

kinetic energy of the equipment mass. It can be seen from this figure that as the gain is 

increased the resonance peaks improve while low and high frequency parts of the plot remain 

largely unchanged due to the sky-hook damping effect. The overall performance is judged 

using the change in kinetic energy of the equipment mass integrated over a frequency range 

(0< ^ g ^ < 2 5 0 H z ) . This is shown in Figure 2.6c where it can be seen that the system 

continued to improve as the gain is increased. Thus isolation using velocity feedback control 

also gives a stable system with reasonable performance. 

2.4.1.3 displacement feedback control 

In this section simulations for active isolation using displacement feedback control are 

presented. The feedback frequency response matrix for displacement feedback control is 

given by = ^ 
0 

0 ' k 
0 

k 0 ' 

0 
0 

0 
k _ 

, where gnd is the normalised gain for 

displacement feedback control. Figure 2.7a shows the simulations for the open-loop 

eigenvalue plots for the system with normalised gain — = 5. One eigenvalue is given by the 

k 

solid line and other by the dashed line. It can be seen that these plots also do not cross the 

negative real axis and hence give an unconditionally stable system. Figure 2.7b shows the 

total kinetic energy of the equipment mass for various gains. It can be seen that as the gain is 

increased the response at the original resonance peaks reduces considerably, however the 

peaks appear at a higher frequency. In addition Figure 2.7c shows that the displacement 

feedback control system also gives a reasonable overall performance. The simulations reveal 

that active vibration isolation using displacement feedback gives a stable system with 

reasonable performance. 
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2.4.2 Two-mount system on a flexible base 

In this section the two-mount system on a clamped-free-clamped-free (CFCF) flexible base 

with acceleration, velocity and displacement feedback control is considered. Both stability 

and performance of these systems are discussed. If the base mobility matrix is known, the 

closed-loop velocities at the mount location can be calculated using equation (2.25). The 

collocated mount location disturbance force vector is given by equation (2.20). Note that the 

vector fp becomes a single force if the excitation is only a point force. Once the closed-loop 

velocities at the mount locations are determined the mass centre velocities can also be found 

using equation (2.26b). From equation (2.27) the total kinetic energy can also be calculated. 

2.4.2.1 Clamped-free-clamped-free (CFCF) flexible base 

A flexible base structure with a pair of opposite edges are free and other pair is clamped (a 

clamped-free-clamped-free - CFCF) was considered. This base structure is relatively easy to 

realise in practice. Figure 2.8 shows a schematic diagram of the flexible base and the 

position of the mounts of the two-mount system. Figure 2.9 shows the physical CFCF base. 

The geometric and martial properties are given in Table 2.2. The coordinate system 

considered for the geometric properties is also shown in Figure 2.8. 

The mobility of the base plate is derived in Appendix D and is given by, 

" F(x. ,y . ) + 

where, 7^ is the mobility of a CFCF base described by the ratio of velocity at (%„ y,) to the 

force at (;î , ))). The integers m and » are number of modal lines. is called the normalising 

factor and is the mass per unit area. 

In addition, 6{x) and ^y) are characteristic beam functions in the x and j directions 

respectively. These functions are chosen to satisfy the plate boundary conditions in the 

direction they represent. The factors and 6)^ are the damping ratio and the natural 

frequency corresponding to mn"' mode respectively. A validation of this model is given in 

Appendix E. 
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2.4.2.2 Acceleration feedback control 

The properties of the two-mount system considered previously are used for the simulations. 

The plant response matrix of the system is given by equation (2.24), which includes the base 

structure mobility. Using the base mobility given by equation (2.34) and the same feedback 

response matrix used for the corresponding case in the moving inelastic base, the open-loop 

frequency response matrix can be found. The excitation point on the base and the mounts 

location are given in Table 2.2. The stability of the system can be assessed using the Nyquist 

criterion for a MIMO system discussed previously. 

The open-loop eigenvalue plots for a normalised gain — = 5 are given in Figure 2.10a. One 

m 

eigenvalue is given by the solid line and other by the dashed line. It can be seen that the 

eigenvalues of the open-loop frequency response matrix do not cross the negative real axis 

and hence the system is unconditionally stable. The effects of base dynamics can also be 

seen in the eigenvalue plots. Total kinetic energy of the equipment mass for normalised gains 

0, 5, 10 and 15 are given in Figure 2.10b. It can be seen that the kinetic energy of the 

equipment mass at the original resonance frequency reduces considerably while the peak 

appears at lower frequencies, which is similar to the moving inelastic base case. Similar to 

the SDOF system discussed previously, the acceleration feedback control system effectively 

adds mass and hence attenuates the response at higher frequencies. The change in kinetic 

energy of the equipment mass integrated over a frequency range (O < < 250 Hz) is 

given in Figure 2.10c. It shows that as the gain is increased the overall performance of active 

isolation with acceleration feedback continued to improve and thus provides a system with 

reasonable performance. 

2.4.2.3 Velocity feedback control 

Simulations of active vibration isolation using velocity feedback are given in Figure 2.11. 

The open-loop eigenvalue plot is given in Figure 2.1 la, where one eigenvalue is given by the 

solid line and other by the dashed line. It can be seen that the system is unconditionally 

stable. The kinetic energy (of the equipment mass) plot is shown in Figure 2.11b for 

normalised gains 0, 5, 10 and 15. It shows that as the gain is increased the kinetic energy at 

the resonance peak reduces. Figure 2.11c shows the change in kinetic energy of the 
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equipment mass integrated over a frequency range (O < < 250 Hz) plot as a function of 

gain. It shows as the gain is increased the system continued to improve. 

2.4.2.4 Displacement feedback control 

Figure 2.12a shows the open-loop eigenvalue plots for a normalised gain — = 5 of an active 
k 

isolation system using displacement feedback control. It can be seen that the system exhibits 

unconditional stability. Figure 2.12b shows the plot of kinetic energy of the equipment mass 

for normalised gains 0, 5, 10 and 15. It can be seen that as the gain is increased the kinetic 

energy at the original resonance reduces while the resonance peak appears at higher 

frequencies as seen in the SDOF system considered previously. A displacement feedback 

control system effectively adds stiffness to the system and hence alters the dynamic 

characteristics of the system. Figure 2.12c shows the plot of change in kinetic energy of the 

equipment mass integrated over a frequency range (O < < 250 Hz). It shows that as the 

gain is increased the system improves. 

2.4.3 Summary 

A two-mount system with acceleration, velocity and displacement feedback has been 

considered for active isolation from a moving inelastic base and from a CFCF flexible base. 

The simulations show that the system is unconditionally stable in all three cases. The 

performance of the system has been assessed considering kinetic energy of the equipment 

mass, which shows that in all three strategies the kinetic energy reduces at the original 

resonance frequency of the passive system. The overall performance assessed by considering 

the change in kinetic energy of the equipment mass integrated over a frequency range shows 

that all three strategies give a reasonable overall performance. 
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2.5 Experiments 

Some experimental work was conducted to validate and evaluate the theoretical findings 

presented in section 2.4. The two-mount system considered for the simulations was 

considered for the experimental investigation as well. Two situations were considered similar 

to the previous cases: 

(a) Two-mount system on a moving inelastic base 

(b) Two-mount system on a CFCF flexible base 

These are described in the following sections. 

2.5.1 Two-mount system on a moving inelastic base 

Figure 2.13 shows the two-mount system described earlier on a moving inelastic base (A 

large shaker provides the moving inelastic base - Derritron vibrator type VP4). As 

mentioned previously a mass of 0.69kg was lumped on one of the shakers to give an 

asymmetric system. A decentralised feedback arrangement used for the experimental 

investigation is shown in Figure 2.14 and a list of instruments used is given in Table 2.3. 

Two accelerometers (B&K type 4375) attached to the equipment, close to the centre of the 

mounts were used to sense the acceleration of the equipment. The outputs of these 

accelerometers were conditioned separately by two charge ampliRers (B&K type 2635). 

These charge amplifiers also provided single and double integration required to produce 

velocity and displacement signals. Thus the signals required for acceleration, velocity and 

displacement feedback control could be obtained. A two-channel power amplifier (type 

V200 Mos Fet) was used as a controller. The outputs of the charge amplifiers were used, as 

the inputs to the power amplifier. The outputs of the power amplifier were fedback to the 

secondary shakers so as to produce decentralised negative feedback control. The outputs 

from the charge amplifiers were also connected to the HP analyser (Hewlett Packard type 

35650) for data collection (a frequency resolution of 0.5 Hz was used). Two different 

configurations were used for open-loop and closed-loop measurements. 

The following approach was used measure the open-loop frequency response matrix; in the 

absence of primary force the control force is related to the equipment velocity by equation 

(2.23). If the closed-loop is opened then the velocity, which is now the open-loop velocity 

35 



and the secondary force can be related as Vg(,=G(_/(w)H(yo))f^(Note that controller 

frequency response matrix also included and v,, andf^ represent the open-loop velocity 

vector and corresponding control force vector). This can be expanded for a two-mount 

system to give, 

(2.35) 
_̂ eo2_ 

where and represent open-loop velocities at mount locations 1 and 2. Similarly 

and the secondary forces of the control shaker when the loop is opened. GTfn, 

etc represent the elements of open-loop frequency response matrix. When the system is 

excited only by the control shaker at mount location 1 equation (2.35) 

becomes, Aoi - Similarly when the system is excited by the 

shaker at mount location 2, equation (2.35) becomes, ,̂̂ 2 = (^^22/702 

Thus, the elements of open loop frequency response matrix can be found by exciting them at 

mount locations (by the control shaker), and measuring the response per unit disturbance of 

the control shaker. (Property of reciprocity can be used to reduce the number of 

measurement i.e. GjY,; = (^^21)-

Using this approach, the elements of open-loop frequency response matrix were measured 

and the open-loop frequency response matrix was constructed (random signal was used too 

excite the secondary shaker). Figure 2.15a shows the open-loop eigenvalue plots for 

acceleration feedback control with a power amplifier gain 0.06. In Figure 2.15a one 

eigenvalue is given by the solid line and other by the dashed line. It can be seen that these 

eigenvalue plots enclose the Nyquist critical point (-1,0). Thus, the acceleration feedback 

control system becomes unstable for a relatively low gain. 

For closed-loop measurements a rigid plate attached to a large shaker (Derritron Vibrator 

type VP4) was used as moving inelastic base. A signal from a third accelerometer attached to 

the moving inelastic base was used as the reference signal for closed loop measurements. A 

schematic diagram of the experimental set-up is given in Figure 2.14. The kinetic energy can 

be obtained from closed-loop velocities in a similar manner considered for simulations. From 

measured closed-loop mount location velocities, mass centre velocities can be calculated 

using equation (2.26b). Using equation (2.27) the kinetic energy can be found. The kinetic 

energy thus obtained is given in Figure 2.15b. The plot shows the kinetic energy of the 
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equipment mass with no control and with a power amplifier gain 0.02. Only a small 

reduction in kinetic energy (or improvement in performance) can be seen from these 

measurements (Also note that increasing next gain step (which is amplifier gain 0.06) in the 

power amplifier makes the system unstable -Figure 2.15a, which includes the critical point). 

These two plots show that the acceleration feedback control system becomes unstable with a 

small gain and the performance is also very poor compared the corresponding simulations. 

This is a considerable deviation from the findings of simulations. 

The open and closed-loop velocities of the two-mount system with velocity feedback control 

were measured in a similar maimer to acceleration feedback control. Figure 2.16a shows the 

open-loop eigenvalue plots of the two-mount system with velocity feedback control. A 

power amplifier gain of 0.12 was used. It can be seen that the system exhibits good stability 

characteristics compared to acceleration feedback control. The total kinetic energy plot for 

various gains of the power amplifier is shown in Figure 2.16b. It can be seen that as the gain 

is increased the system gives a better performance than acceleration feedback control. It can 

also be seen in Figure 2.16c, that as the gain is increased the system improves. 

Figure 2.17a shows the open-loop eigenvalue plots of the two-mount system with 

displacements feedback control for a power amplifier gain 0.12. Although the system 

exhibits relatively better stability compared to the other two strategies, the performance is 

not so as seen in Figure 2.17b. 

The power amplifier gain used can be non-dimensionalised by dividing them by mass, 

damping and stiffness. However, the true non-dimensional gain depends on gains introduced 

by other instruments such as charge-amplifier, shaker etc,. In addition the non-dimensional 

gain thus obtained would differ from each other because of different denominator (i.e. mass, 

damping and stiffness). Hence for easy comparison the power amplifier gain was used. 

Measurements show that acceleration feedback control becomes unstable with a small gain; 

displacements feedback control exhibits poor performance. 
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2.5.2 Two-mount system on a CFCF flexible base 

The two-mount system on the CFCF base structure is shown in Figure 2.9. The base was 

excited by a random signal at the excitation point shown in Figure 2.8 (and the co-ordinates 

are given in Table 2.2) and the two-mount system was placed in the position shown in Figure 

2.8 (the co-ordinates are given in Table 2.2). The experimental set up was similar to the one 

discussed for the moving inelastic base and is shown in Figure 2.18. The acceleration 

measured at each mounts location fed in to a two-channel power amplifier after conditioning 

by a charge amplifier so as to produce acceleration feedback in a similar way to that 

described previously. 

The elements of the open-loop frequency response matrix were measured in a similar way to 

that described in section 2.5.1. From the measurements the open-loop frequency response 

matrix was constructed and the eigenvalues were calculated. The open-loop eigenvalue plot 

for acceleration feedback control is shown in Figure 2.19a for a power amplifier gain of 0.02, 

where one eigenvalue is given by the solid line and other by the dashed line. It can be seen 

that the Nyquist plot encloses the negative real axis for a small gain and thus the system does 

not have good stability characteristics. It was observed during the measurement that as the 

gain was adjusted from zero to the next available gain step (0.02) in the power amplifier, the 

system became unstable, which is evident from Figure 2.19a. Since this is the smallest non-

zero gain available in the power amplifier (V200 Mos Fet) used, the closed-loop response 

could not be measured. Thus, although the system showed good stability and performance 

for simulations with a flexible CFCF base, when implemented the stability and performance 

with acceleration feedback is very poor. 

Figure 2.20a shows the open-loop eigenvalue plot of the two-mount system with velocity 

feedback control for a power amplifier gain 0.12. The open-loop frequency response matrix 

was constructed from measurement in a similar way to that described previously. It can be 

seen that the eigenvalue plot includes the negative axis closer to the origin. As the gain is 

increased it could potentially grow to include the critical (-1,0) point and becomes unstable. 

Figure 2.20b shows the total kinetic energy of the equipment mass for various gains. Figure 

2.20c shows the change in kinetic energy as a function of power amplifier gain. It shows as 

the gain is increased the overall performance improves. It can also be seen that the velocity 

feedback control give better stability and better performance compared to the acceleration 

feedback control. However even velocity feedback control system, which showed 
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unconditional stability in the simulations is susceptible to instability when implemented on a 

flexible base. 

Figure 2.21a shows the open-loop eigenvalue plots of the two-mount active isolation system 

with displacement feedback. It can be seen that the system includes the negative real axis 

closer to the origin. However it shows better stability than the other two systems considered. 

However the performance shown in Figure 2.20b suggest that although there is a little 

improvement in performance at the original resonance frequency, the improvement is not 

significant. 

2.5.3. Summary 

Measured open-loop and closed-loop characteristics of a two-mount system have been 

presented in the preceding sections. The open-loop characteristic of acceleration feedback 

system showed that the system becomes unstable with a small power amplifier gain (for both 

moving inelastic and flexible CFCF bases). The performance of acceleration feedback 

system is also not significant. Thus, stability and performance characteristics of acceleration 

feedback system are insignificant compared to the simulations for the same cases. 

Although the measured open-loop eigenvalue plot for velocity feedback control system 

exhibits reasonable stability property with moving inelastic base, it crosses the negative real 

axis closer to the origin for the CFCF base case. Thus, for CFCF case as the gain is increased 

this system potentially becomes unstable, which is against the conclusion arrived at based on 

the simulations. 

Although the measured open-loop characteristics of displacement feedback control system 

exhibited better stability characteristics compared to the other two strategies, the 

performance is not very good. This is again contradicts the conclusions arrived at based on 

simulations. 
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2.6 Conclusions 

In this chapter the concept of active vibration isolation has been described using a SDOF 

system. This concept was applied to a two-mount system using decentralised feedback 

control. Simulations and measurements were conducted on this two-mount system. 

Simulations show that all three strategies provide a stable system and a better performance 

than the original passive system (which are evident from the change in kinetic energy plots). 

Two base conditions were considered and the stability analyses (Nyquist plots) showed that 

they are all unconditionally stable. However the measurements show that all three strategies 

provide an active system, which is only conditionally stable. 

Hence there is a difference between the simulations and measurements of the system in terms 

of its stability and performance characteristics. In active isolation using the velocity feedback 

technique, this discrepancy is minimal compared to the other two. 

Thus, the conventional analytical tool is inadequate in judging the performance and 

especially the stability of active isolation systems. This demands an improvement in the 

analytical model incorporating structural as well as the sensor, signal conditioning devices 

and actuator dynamics into the analytical models. This improved analytical model by 

including the characteristics of electrical instruments, sensor and actuator dynamics is 

discussed in the next two chapters. 
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Mass of the equipment plate - /Mp (kg) 1.08 

Mass of each shaker - /»: (kg) 0.91 

Plate length - /p (mm) 200 

Distance between mounts - 1 (mm) 134 

Axial stiffness of each mounts (N/m) 2.4e'̂  

Damping of each mounts (My/M) 18 

External diameter of the mount (/Mm) 60 

Internal diameter of the mount (mm) 40 

Height of the mount (mm) 60 

2.7 q/fAg 0̂-/M0WMf acf/ve MoZaA'o/z 

Density of the base plate 7800kg/m^ 

Young modulus 207x10" Nm'^ 

Poisson's ratio 0.3 

Dimensions of plate (2% f) 520 mm, 700 mm, 2 mm 

Damping ratio 0.01 

Excitation point 410 mm, 200 mm 

Location of mount 1 184 mm, 312 mm 

Location of mount 2 296 mm, 385 mm 

7a6Zg 2.2 Ggomefnc o/W mafgriaZ propg/ffgf q/̂ f/zg CFCF fpofg 
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Name Type Serial number or 

Department serial number 

Accelerometers 

(3 Numbers) 

B&K4375 987173, 987169 and 

1760059 

Single channel 

power amplifier 

TPA 50-D (H/H 

Electronics) 

3633 (Dept. No.) 

Two channel power 

amplifier 

V2(X) Mos Fet 4493 

Charge amplifiers 

(3 Numbers) 

B&K 2635 0782, 2688 and 943130 

(Dept. No.) 

Force gauge B&K 8200 688893 

Large shaker 

(Derritron vibrator) 

Type VP4 325 

Analyser 

(HP analyser) 

Hewlett Packard 

35650 

2911A02485 

2.^ wjecf in f/ig acfivg iaoZofion gxpgrimenff 
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m 

'fc 

(a) Physical representation 

Rigid equipment 

Mount 

(b) Impedance representation of a single mount system 

(c) Block diagram representation 

Figure 2.1 Single mount active isolation system 
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Non-(jQmensk)nal frequency n 

(a) yrg^wg/zcy rgapoMJ'g gam 10 ancf â7M/)mg raA'o 
^ = 0.05 ) No coM r̂oZ; , accgZeraffonygg^acA:.' , yg/oczfy 

yggcf^ac^.' (/(j^pZacemgnf^gcf^acA:.' 

20 30 40 
Non-dmensmnal gain 

CAangg in mean ^gware rea^pofMe in f/ieyregwenc); range 0 < O ^ 100 ; 
(̂ (̂ ampmg rafzo ^ = 0.05 j veZocffy^e<^6ac/:.' - —, acceZerafzon aW 
^;jpZace/Mgnf^e(/6acA^.' 

Re(Q(A])H(fl)] 

(cj Open-Zoop^e^wency reĵ pona^e (cZamprng rafzo ^ = 0.05 j; acce/erafzon 
^e(f6ac^.' , veZoc;Z)'yee<Z6acA;.- , (ffjpZacemenf 
yee(Z6act.' 

Figure 2.2 SDOF system response with acceleration, velocity and displacement 
yee(i6acA: confroZ. 
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Mass centre 

Mount! Mountl i Base 

(a) Physical representation of two-mount system with decentralised feedback control 

'm 

Rigid equipment 

Mounts 

Base 

(b) Impedance representation of the two-mount system 

Plant frequency response 

Figure 2.3 

Feedback path frequency response 

(c) Control block diagram representation 

Two-mount active isolation system with decentralised feedback control 
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Electromagnetic actuators 

Supports 

tinger (thin rod) 

Aluminium plate 

Rubber mounts 

luminium discs 

Figure 2.4 Two-mount active isolation system 
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Clamped 

3̂  

\ \ 
\ 

\ \ 
\ 

Free edge 

Mount2 

Mou^ 

Excitatiorv dSr 

/ 

z 
/ 

/ 

700 

I 

520 

Figure 2.8 Schematic plan view diagram of the flexible base and mount positions 
(Co-ordinates of mounts location and excitation are given in parenthesis - all 
dimension are in mm,) 

Clamped 
edges 

Figure 2.9 Two-mount active isolation system on CFCF flexible base structure 
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2 3 4 5 
Re (elg [GOk)H(/m)D 

(oj Opg/z Zoop gfggMvaZwe pZofj^^r a normaZf̂ geZ gam — = 5 
c 

Frequency (Hz) 

(6j TbfaZ gMergy, normaZî ecf gam 0.\ _,normalised gain 5: 
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20 30 40 
Normajised gain 
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w 

Additional mass 

Isolation system 
Equipment plate 

Inelastic base 

Shaker 

Figure 2.13 Two-mount active isolation control system on a moving inelastic base 

(A large shaker- Derritron vibrator type VP4 provides the moving inelastic base) 

Accelerometen 

Moving 
inelastic base 

Charge 
Amplifier 

Charge 
Amplifier 

Charge 
Amplifier 

HP Analyser 

CA2 ch; cw 

Two channel 
power amplifier 

Figure 2.14 Experimental set-up for feedback control of a two-mount system on a 

moving inelastic base with decentralised feedback control applied. 
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Accelerometerf 
Force gauge 

Flexible base 

Primary shaker-
Charge 
Amplifier 

Charge 
Amplifier 

Charge 
Amplifier 

HP Analyser 

Ch2 Chi Ch3 

Two channel 
power amplifier 

CA7 CA2 

Figure 2.18 Experimental set-up for feedback control of a two-mount system on a 

CFCF flexible base with decentralised feedback control applied. 
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0 .5 1 1.5 

Re(G(f))HCb))) 

(oj g/ggMvaZwg - jpow/gr a/M^p/f^gr gam 0.72 

Frequency (Hz) 

(b) TofaZ A:me^c gnergy - Power ompZ^er gna= 0 
—0.12 gfia =0.25 

=0.06 

0.1 0.15 

Power ampBfier gain 

(d) Change in kinetic energy - 4 < freq < 200 Hz 

Figure 2.20 Active isolation of a two-mount system from a CFCF flexible base using 

veZoc;(yyge6f6acA: coMfroZ (MeaJwremeMfj 
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Chapter 3 

Low frequency instabilities in feedback control 

3.1 Introduction 

In Chapter 2 it was shown that there have been considerable discrepancies between the 

simulations and measurements of active vibration isolation systems for acceleration, velocity 

and displacement feedback control. The simulations showed that an idealised SDOF system 

is unconditionally stable when these control strategies are applied. However the experimental 

results showed that the system is only conditionally stable. The difference between the 

idealised system and the experimental system is that there are sensors, actuators, signal 

conditioning devices with integrators and power amplifiers in the experimental system. The 

characteristics of these devices were assumed to be ideal in the analytical model. These 

devices are an essential part of an active vibration isolation system. 

Accelerometers are generally used as the sensing devices in vibration testing and active 

vibration control [85]. These devices often use piezoelectric sensing elements to achieve a 

certain design natural frequency, weight and sensitivity characteristics [85, 86]. They are 

charge-generating devices, which require high input impedance signal conditioning 

instruments to interface between them and other instrumentation [85]. These signal-

conditioning devices such as charge amplifiers convert the generated charge into voltage and 

often also have filters to rqect unwanted signals [87]. Two kinds of filters are commonly 

found in these devices, which are high-pass filters and low-pass filters. These filters 

introduce extra phase shift at certain bands of frequencies, which are some times critical to 

the system stability [2]. 

The power amplifier, which controls the gain in the feedback system, often has a high-pass 

filter incorporated. One other important device in the active control system is the actuator. 

The characteristics of all these devices generally deviate from the ideal and hence the 

performance of a realistic system is often quite different from the ideal. 
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The aim of this chapter is to establish the low frequency sources of instabilities and to 

quantify their influences on the stability of the feedback control systems. A simple model of 

a vibration isolation system is considered and later the analysis is extended to a more general 

multi-input-multi-output system. 

3.2 Problem formulation 

Consider a simple model of a vibration isolation system as shown in Figure 3.1a. In this 

model (a SDOF system is set on a moving inelastic base) a passive mount with stiffness A; 

and damping coefficient c supports a rigid mass m. It is assumed that the mounts are mass-

less. A control f o r c e i s also installed between the mass and the base structure in parallel 

with the passive mount to achieve a reduction in the response of the mass. The control 

system uses direct negative feedback control. This control force, which can be proportional 

to acceleration, velocity or displacement, is generated via a controller. 

Figure 3.1b, shows a SDOF system set on a rigid foundation. Both of the physical 

arrangements shown in Figures 3.1a and 3.1b have the same plant frequency response 

function, which is given by equation (2.6). Since the base is rigid or has a prescribed motion, 

the base mobility (i.e. = 0) is zero. Thus the plant frequency response function is given by, 

= (3.1) 

k 
where and = — + c. 

Since the systems in Figures 3.1a and 3.1b have the same frequency response function (and 

hence the same open-loop frequency response function), the analysis and subsequent 

experimental validation are performed on the SDOF system on a rigid foundation (Figure 

3.1b) for convenience. 

The sources of instabilities for the active isolation system considered in this thesis cause 

problems at either low frequencies or high frequencies [84]. Thus, two regimes are 

considered, a low frequency regime and a high frequency regime. In this Chapter, sources of 

instabilities at low frequencies are identified and their effects on stability and performance 
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are investigated and compared with an ideal system. The theoretical predictions are 

subsequently validated by some experiments. 

3.3 Stability and performance of an ideal SDOF system on a rigid 

foundation 

In this section the stability and performance of an ideal system is investigated. An ideal 

system is where an integrator is represented by — , the control amplifier by a pure gain and 

signals do not require to be filtered. Because such a system is simple, velocity per unit 

disturbance force is used as the performance measure. 

3.3.1 Performance of ideal system 

From equation (3.1) the plant frequency response function can be written as, 

G ( # ) = (3.2) 

(jtt>) k — 0)m+ jcoc 

where Z (ya?) and (ya))are the velocity and secondary or control force respectively, 

(i.e. and 
l~k c 

Substituting (W;, = — and — 1 = (System natural A-equency and damping ratio) into 
V /M 2V/MA 

equation (3.2) gives, 

X ( \ ( iirmm ^ 
(3.3) 

A),-6) +;2^A),<W 

Equation (3.3) can be non-dimensionalised to give, 

where O = — , is the forcing frequency normalised to the natural frequency of the system. A 

block diagram representation of the physical system is given in Figure 3.1c. Letting the 

controller frequency response function be which includes the integrators if 

required, the non-dimensional closed-loop frequency response (mobility) is given by: 
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f / y n ) 1 + G ( ; 0 ) # ( ; n ) 
(3.5) 

where is the primary disturbance. 

From Figure 3.1c ± e controller frequency response function can be defined as, 

(yO) ' ^ \ a c c e l e r a t i o n feedback control = y O — — , for velocity 
c X ( j O j • ™ T/' 

feedback control ^ = — and for displacement feedback control ^ (yO) = J _ A . J L 
A: 2^ 

where, as before, — , and — are the normalised feedback gains. Substituting for 
m c k 

G ( y n ) and the appropriate /f (yO) into equation (3.5), the non-dimensionalised closed-

loop mobility can be derived for acceleration, velocity and displacement feedback control: 

ACCELERATION FEEDBACK CONTROL 

c % ( y n ) _ 

1-
r 

V 

1 + - ^ n " + ; 2 ^ 

VELOCITY FEEDBACK CONTROL 

1 — + j2^Q, 1 + -

V ^ y 

DISPLACEMENT FEEDBACK CONTROL 

c X ( ; Q ) _ ; 2 ^ 

1 + Sd 

(3.6) 

(3.7) 

(3.8) 

Figure 3.2a shows the closed-loop non-dimensional mobility for acceleration, velocity and 

displacement feedback control as a function of non-dimensional frequency for non-

g o O 
dimensional gains —s. ^ ^nd — of 10, and a damping ratio of 0.05. As discussed in 

m c A; 

Chapter 2, it can be seen that acceleration feedback reduces the response at the original 

resonance frequency and produces a resonance frequency lower than that of the original 

system. Acceleration feedback control effectively adds mass to the system. It can also be 

seen from Figure 3.2a that velocity feedback effectively adds damping to the system, and 
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that displacement feedback effectively adds stiffness to the system [13]. It is also noted that 

acceleration and displacement feedback tend to reduce the damping in the system, which 

results in narrower peaks. The reason for this is evident from the expression for the damping 

ratio given by ^ = — 1 = , because if either m or t is increased the damping ratio reduced. 

To assess the overall performance of the control strategies the mean-square response of the 

system normalised to the mean-square response in the absence of control is plotted for the 

three control strategies in Figure 3.2b for the frequency range 0 < 0 < 1 0 0 . It can be seen 

that there is little difference in the performance of the three control strategies for non-

dimensional gains up to 60. 

3.3.2 Stability of the ideal system 

As mentioned in Chapter 2 the Nyquist criterion is used for stability analysis. For a single 

input single output (SISO) system it states that the system is stable if and only if the Nyquist 

plot of the open-loop frequency response function G(jQ.)H (jQ.) does not enclose the 

(-1,0) point in the Nyquist plane [59]. Thus the stability of the system can be studied by 

considering the magnitude of the open-loop frequency response function when it crosses the 

negative real axis in the complex G(jQ)H (jQ.) plane. This occurs when the imaginary part 

of G(jQ)H ( jQ.) is equal to zero. Substituting G( jO)and the appropriate H ( j Q ) , into 

the open-loop frequency response function for acceleration, velocity and displacement 

feedback control can be obtained. 

3.3.2.1 Acceleration feedback control 

The non-dimensional open-loop frequency response function for acceleration feedback 

control becomes. 

-a 2 

( l - Q ' + y 2 ^ ) 

which can be rearranged into real and imaginary parts to give, 

(3.9) 
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G ( j Q ) ; f ( j n ) = if 2 ^ ' 

j I ( i - n ' ) ' + ( 2 ^ ) ' - ^ ( i - o ' ) ' + ( 2 ^ ) ' j 

The frequency at which the imaginary part of this open-loop response function is zero can be 

determined by setting the imaginary part to zero and solving for Q. This frequency is called 

as critical frequency and is denoted by From equation (3.10), solving for critical 

frequency gives Oc = 0 and the corresponding magnitude of the real part is also zero 

(i.e Re{C(_/0^)E^(;nj} = 0). Thus the system is 

The Nyquist plot for acceleration feedback is shown in Figure 3.2c. It can be seen that it does 

not cross the negative real axis and therefore does not encloses the (-1,0) point. In addition, 

p 
when O tends to infinity, the real part tends to — . 

m 

3.3.2.2 Velocity feedback control 

With velocity feedback control, the open-loop frequency response function is given by. 

G ( j o ) f ^ ( j n ) = 
2 ^ , 

V ^ A 
( l - n ' ) + ; ( 2 ^ ) y 

(3.11) 

which can be arranged into real and imaginary parts to give: 

G ( j Q ) A ' ( j n ) = 
2 ^ " 

+ j-
n ( i - o " ) 

( i - n " ) + ( 2 ^ y 0 - ^ ^ ) + ( 2 ^ ) ' 
(3.12) 

When the imaginary part of this equation is zero, Qc = 0 or Ac = 1. The corresponding real 

parts are Re{G( j n ^ ) ^ ( j 0 j } = 0 or Re{G( j O J ^ ( j n j } = — respectively. Since this is 
c 

either zero or positive the velocity feedback control system is A more 

general proof of the unconditional stability of a multi-mount system with multi-channel 

collocated decentralised feedback control is given in appendix F. 

The Nyquist plot for velocity feedback is shown in Figure 3.2c, where it is evident that the 

Nyquist plot is completely in the right half of the complex plane, and thus the system is 

unconditionally stable. In addition it crosses the real axis when the open-loop response is 

67 



zero and — . When Q tends to inGnity the real and imaginary parts of the open-loop 

frequency response function tend to zero. 

3.3.2.3 Displacement feedback control 

For displacement feedback control, the open-loop frequency response function is given by: 

Y 1 

k 

which can be arranged into real and imaginary parts to give: 

(3.13) 

G ( j Q ) / f ( j O ) = 
( l - O ' ) ( 2 ^ ) 

- + J- (3.14) 
j ( i - n " ) + ( 2 ^ y ( i - n " y - p ( 2 ^ y 

Setting imaginary part to zero gives, Oc = 0 and the corresponding real part is 

A . 
k 

is also 

Re{G( jQg)^ ( j O g ) } = - ^ . Since this is positive the displacement feedback control system 

The Nyquist plot for the displacement feedback is also shown in Figure 3.2c. When Q tends 

to infinity the real and imaginary parts of the open-loop frequency response function tend to 

zero. 

3.3.2.4 Summary 

It is evident that the ideal system is unconditionally stable for acceleration, velocity and 

displacement feedback control strategies. All three plots begin at the origin and follow a 

clockwise direction back to or closer to the origin as the frequency is increased. In the 

acceleration feedback control strategy, the critical point (-1,0) is closer to the low frequency 

part of the plot. For velocity feedback control the entire Nyquist plot lies far away from the 

critical point (-1,0). In displacement feedback control the critical point is closer to the high 

frequency part of the plot. 
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3.4 Identification of low frequency instability sources 

In this section, the characteristics of the components of a real system are described, and the 

ways in which they differ from the ideal system are discussed. As mentioned previously, 

accelerometers are generally used to obtain the response of a real system. The output can be 

integrated once or twice for velocity and displacement signals respectively. Conditioning 

amplifiers such as B&K charge amplifiers can be used to convert the output charge into 

voltage and to match the measurement instrumentation sensitivity to that of the 

accelerometer output. This conditioning amplifier together with the power amplifier (which 

is used for the feedback gain) contains high-pass filters. 

The frequency response function of a high-pass filter has the form o f — — and 
0 + 7 ^ ^ 4 

electronic integration has the form of r [89, where the constants f . and f are time 
(1+;Y,A)) 

constants. Their inverses are called the -3dB corner frequencies i.e. 6)̂  = — and C0-=~. 

Now considering the model of a high-pass filter Ap (/A)) = where Ap denotes 

high-pass filter and substituting for 0 = — , where 6)̂  is the resonance frequency of the 

system and a = — {a is the ratio of natural frequency of the system to the corner 

frequency of the high-pass filter) gives. 

The characteristic of a high-pass filter is shown in Figure 3.3a (for a = 1), which shows that 

it introduces a considerable phase advance at low frequencies. In addition it attenuates the 

signal at low frequencies. Therefore it generally introduces a low frequency problem. 

Considering a model of the integrator /yif(_/a)) = ^ r , where /wf denotes the integrator 

and substituting for O = — and = — gives, 
6), A), 
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In terms of non-dimensional frequency an ideal integrator frequency response can be written 

as —^—. Thus from equation (3.16) the real integrator can be considered as an ideal 

integrator when Q » 1 . 

The characteristic of an integrator is shown in Figure 3.3b, (for |3 = 1) which shows that it 

introduces a considerable phase advance with respect to the ideal integrator at low 

frequencies. In addition it attenuates the signal with respect to the ideal integrator at low 

frequencies. Therefore it also generally introduces a low frequency problem. A real 

integrator can be described by a combination of a high-pass filter and an ideal integrator as, 

(For simplicity or = is considered here.) 

f . _ \ 

(1 + jctO) 

r 1 
(3.17) 

^ / \ 
gain high-pass filter ideal integrator 

Thus the analysis can be confined to the analysis of number of high-pass filter components in 

the feedback loop rather than considering the integrator and high-pass filters separately. For 

example a velocity feedback system with a real integrator can be considered as a system with 

one high-pass filter and an ideal integrator. Similarly a system with a real integrator and an 

amplifier can be considered as a system with two high-pass filters (one each from the real 

integrator and power amplifier) and an ideal integrator etc. In this model a can be used as a 

measure of the separation of the comer frequency of the high-pass filter to the natural 

frequency of the plant. 

3.5 Low frequency instabilities 

The methodology used to assess the instability is similar to that described in section 3.2. That 

is the imaginary part of the open-loop frequency response function is set to zero and the 

resulting equation solved to determine the frequency at which the system becomes unstable 

(critical frequency). This frequency is then inserted into the real part of the open-loop 

frequency response function; if this is positive then the system is unconditionally stable and 

if it is negative then the real part is set to - 1 and solved to give the maximum gain that can 
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be applied before the system becomes unstable. For simplicity it is assumed that each high-

pass filter has the same comer frequency and is of first order. 

3.5.1 Acceleration feedback control 

A system with acceleration feedback control and a single high-pass filter is considered first. 

The open-loop frequency response function is given by (Note that only a high-pass filter 

component is added to the open-loop frequency response function for acceleration feedback 

control given in equation (3.9)), 

f „ \ 
G(;n)7f ( ;Q) = 

A 

- a 

1 — - i - 1-1- io£l 
(3.18) 

which can be written in terms of its real and imaginary parts as. 

( 

m ((l - Q")" + ( 2 ^ y -H 

(3.19) 

Setting the imaginary part to zero gives the critical frequency as . Substituting 

this into the real part and equating to - 1 gives the maximum gain as, 

2 ( 
= — ( 2 ^ + 6 y ^ + l ) (3.20) 

m or 

For low damping i.e. (, « 1 and for a high-pass filter corner frequency much less than the 

resonance frequency of the plant i.e. a » 1 equation (3.20) becomes, 

8a 

7M 
= 2^(y (3.21) 

ybr wzf/z Zovy f.g. ^ « 1, maxzmMTM gam zf .ymaZZ .ymcg 

Figure 3.4 shows the Nyquist plot of the acceleration feedback isolation system with one 

high-pass filter component. It can be seen that the Nyquist plot includes the critical point (a 

non-dimensional gain 5 is used). Thus it becomes unstable as the gain is increased. 
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3.5.2 Velocity feedback control 

Now consider a velocity feedback control system with a single high-pass Alter, the open-loop 

response is given by (A high-pass filter component is added to the open-loop frequency 

response function given in equation (3.11)), 

f 

1 + 
(3.22) 

which can be arranged into real and imaginary parts: 

^ ^ ( 2 ^ + ( ^ y - l ) ) Q^(2^+or(l-(y)) 
-+y-r ; rr 

( 1 - 0 ^ ) ^ ( 2 ^ ) ' ^ ( l - ^ y ) \ ( 2 ^ y j ( l + ( f ^ ^ ) 

(3.23) 

Setting the imaginary part to zero and solving for critical frequency gives ^ . 
a 

Substituting this into the real part of equation (3.23) gives, 

Re{G ( 2 ^ ) positive, the Nyquist plot 

does not cross the negative real axis and so M ffoAZg. 

Figure 3.4 shows the Nyquist plot of the velocity feedback isolation system with one high-

pass filter component. It can be seen that the Nyquist plot does not include the critical point 

and hence the system is unconditionally stable. 

3.5.3 Displacement feedback control 

Similarly for a displacement feedback system with a single high-pass filter the open-loop 

response is given by (A high-pass filter component is added to the open-loop frequency 

response function given in equation (3.13)), 

G ( ; n ) ^ ( ; a ) = A . 
k ^l-Q^^4- j2^Q. 1 + Jc£l 

(3.24) 
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which can be expanded into its real and imaginary parts: 

( 

J 

- + 7 
( i - Q " ) + ( 2 ^ n ( i + « ' n ' ) ( i - n " ) + ( 2 ^ n ( i + ( f n ' ) 

(3.25) 

Following a similar procedure for a displacement feedback control system gives a critical 

. Since this frequency of and R e { G ( M ) / / ( M 

is also positive fAg ff 

Figure 3.4 shows the Nyquist plot of ± e displacement feedback isolation system with one 

high-pass filter component. It can be seen that the Nyquist plot does not include the critical 

point and hence the system is unconditionally stable. 

3.5.4 Effect of increasing the Number of high-pass filters 

The analysis of the systems with up to four high-pass filters can be carried out in a similar 

manner to that discussed above and the results are shown in Table 3.1 for the approximations 

of ^ « 1 and (%»1 and the corresponding critical frequencies are given in Table 3.2. 

(Details of the derivations are given in appendix G). It is evident from Table 3.1 that the 

maximum non-dimensional gain for the acceleration feedback control system is small 

compared with the corresponding maximum non-dimensional gains for velocity and 

displacement feedback control. Thus velocity and displacement feedback control have larger 

stability limits. 

The Nyquist plots for acceleration, velocity and displacement feedback control are given in 

Figure 3.5, for a - 2 (for clarity), ^ = 0.05. This figure shows how the number of high-pass 

filters components influences stability in each case. It can be seen that with one high-pass 

filter component the Nyquist plot for acceleration feedback encircles the (-1,0) point and 

hence this system is only conditionally stable. Conversely with one high-pass filter 

component the Nyquist plots for velocity and displacement feedback control do not cross the 

negative real axis and hence the systems are unconditionally stable. As the number of high-

pass Alter components increases, the system becomes only conditionally stable. 
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The closed-loop response for the real systems can be calculated by substituting for 

given in equation (3.4) together with the appropriate into equation (3.5). The 

closed-loop mobilities for acceleration feedback control systems with one and two high-pass 

filters respectively are plotted in Figure 3.6a and 3.6b for 99.9% of the respective maximum 

gains. Similar plots for velocity feedback are given in Figures 3.6c, 3.6d for systems with 

two and three high-pass filters respectively for 99.9% of the respective maximum gains. 

Figures 3.6e and 3.6f show the displacement feedback system with three and four high-pass 

filters. The closed-loop mobilities with no control and for the ideal systems with realistic 

maximum gain are also plotted for comparison. The frequencies at which the systems 

become unstable are evident by narrow peaks and are tabulated in Table 3.2. It is clear from 

Figure 3.6 that acceleration feedback control is not a realistic practical option as it has a 

limited effect before it becomes unstable with a single high-pass filter. Displacement 

feedback introduces a second resonance peak at the critical frequency. It seems that velocity 

feedback control is, however, a robust and realistic control strategy. To compare the three 

strategies the mean-square response of the system normalised to mean-square response of the 

system in the absence of control is plotted for the three control strategies in Figure 3.7 for the 

frequency range 0 < Q < 100. It is evident from this graph that velocity feedback is the best 

control strategy. 

3.5.5 Summary 

With one high-pass filter in the open-loop frequency response function, acceleration 

feedback control becomes potentially unstable. It was noted that the critical point is closer to 

the low frequency part of the Nyquist plot in an ideal acceleration feedback system (section 

3.3.2.4). Thus adding one high-pass filter, which is a low frequency source of instability, the 

unconditionally stable acceleration feedback system becomes a conditionally stable system. 

The velocity feedback control system becomes conditionally stable with two-high-pass filters 

and the displacement feedback control becomes conditionally stable with three high-pass 

filters. 

With no high-pass filters, the Nyquist plot for acceleration feedback control is in the upper 

half of the Nyquist plane. It can be seen that as the high-pass filter components are increased 

one by one, the low frequency part of the plot crosses the other quadrant of the Nyquist plane 

in the counter-clockwise direction. However the high frequency part of the plot remains in 
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the same quadrant as the ideal system. This is because of the 90-degree phase advance 

introduced by the high-pass Alter component, which is dominant at low A-equencies. This 

phenomenon can also be seen in velocity and displacement feedback control as well. 

3.6 Experimental work 

To validate some of the theoretical predictions, experimental work was carried out on a 

single-degree-of-freedom system set on a rigid foundation. The system considered is the 

same as the one shown in Figure 2.4. Since it was a symmetric system with respect to the 

mass centre of the aluminium plate (representing some equipment), it was possible to treat 

the system as a single-degree-of-freedom system. Both electromagnetic shakers were driven 

by the same control signal measured at the mid span of the aluminium plate. The aluminium 

plate had previously been shown to behave as a rigid mass up to 1000 Hz [4], which is well 

above the maximum frequency of interest in this experimental study. 

In principle the aluminium plate will vibrate under the influence of a primary force that will 

be counteracted by the secondary force generated by the actuators. Therefore, eventually the 

aluminium plate will experience the difference of the primary and secondary forces. Hence 

in this experimental work, the actuators were set to generate both the primary and the 

secondary forces [4] by exciting them with the difference between the primary and feedback 

signal as shown in Figure 3.8. A summing box, designed by Serrand [4] was connected as 

shown in Figure 3.8 to produce the difference between the signals (negative feedback). The 

output signal from an accelerometer (B&K type 4375) placed in the centre of the plate was 

fed into the charge amplifier (B&K type 2635), which was again fed through the power 

amplifier 2 (H/H electronic TP A 100-D) into the summing box ensuring negative feedback. 

A list of instruments used in the experiments in given in Table 3.3. 

The experiments were conducted with the following objectives 

• To compare the open-loop and closed-loop responses of acceleration, velocity and 

displacement feedback control of a single-degree-of-freedom system with theoretical 

analysis. 

• To compare the experimental open-loop and closed-loop response with predictions 

based on the characteristics of the electrical instruments. 
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# To investigate the effect of the high-pass filter comer frequency (cc) setting in 

feedback control. 

3.6.1 Characteristics of electrical components 

Figure 3.8 shows the experimental set-up of the feedback control system. It consists of a 

summing box, power amplifier 1, two shakers, an accelerometer, a charge amplifier and 

power amplifier 2 (model and serial numbers are given in Table 3.3). The accelerometer has 

a unity gain up to 10 kHz. The shaker gain (gs) is defined as the force generated by the two 

actuators per unit input voltage. This information was taken from Serrand's work [4]; which 

is 0.91 N/V. An attempt was made to study the characteristics of the rest of the 

instrumentation used in the active feedback control of the single-degree-of-freedom system. 

These results were used to obtain the mathematical models. 

White noise from the analyser was fed into the summing box and the output was normalised 

by the input signal, in a simple experiment to measure the gain (gt) of the summing box. A 

pure gain of about 0.67 was observed. Details of the experiments and the technique used to 

model the characteristics of power amplifier 1, power amplifier 2, the charge amplifier in 

integration mode with 1 and 10 Hz cut-off frequencies and the charge amplifier 

characteristics with double integration are given in appendix H. Since the frequency range of 

interest in this experimental work was 0 to 200 Hz, the characteristics were measured in this 

range. The low-pass filter of the charge amplifier does not have influence in this frequency 

range hence it is not included in the mathematical model. The mathematical models are 

given below. 

Power amplifier 1 

# Power amplifier 2 

= ;0.2775A) 

(l + ;0.0633a)) 

f 7 (3 26b) 
(l + ;0.0633o))^ 

where = [0.002, 0.0045, 0.0075, 0.0131, 0.0162, 0.02]. 
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Equation (3.26b) shows the characteristics of power amplifier 2, which is the controller in 

this experimental work. The gain can take a range of discrete values, hence allowing an 

increase in the gain in the feedback system. It is seen that it has a second order high-pass 

filter. 

# The charge ampliOer with 1 Hz and 10 Hz cut-oE frequencies with single integration, 

off frequency of 1 Hz. (3.27a) 

+ At cut off frequency o f l O Hz. (3.27b) 

It was discussed previously that the greater the value of a (ratio of natural frequency of the 

system to the comer Arequency of the electrical components) the better the closed-loop 

performance of the system. Equations (3.27a) and (3.27b) give the charge amplifier 

frequency response functions at two cut-off frequencies. It is seen that they are considerably 

different from each other. This allows the investigation of the effect of the magnitude of a as 

discussed previously. 

a The charge amplifier frequency response function with double integration 

Ca (f, = — — X 1 ^ frequency of 1 Hz (3.28) 
(1 + ;0.159G)) (l + ;0.17576))" 

Equation (3.28) shows the characteristics of the charge amplifier with double integration, 

which can be used for displacement feedback control. 

3.6.2 Experiments and simulations 

Simulations were performed using the measured integrator and high-pass filter characterises 

and compared with the measurements of the acceleration, velocity and displacement 

feedback control. The simulated and measured Nyquist plots are shown in Figures 3.9a-d. It 

can be seen that for acceleration feedback control the Nyquist plot crosses the negative real 

axis for a very small gain. In Figures 3.9b and 3.9c, it can be seen that for velocity feedback 

control as the cut-off frequency of the charge amplifier is increased the maximum gain that 

can be applied is reduced. This is in-line with the prediction given in Table 3.1. In Figure 
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3.9d it can be seen that with displacement feedback control there is better low frequency 

stability. 

In Figure 3.10 the theoretical and experimental closed-loop responses for the system with 

velocity feedback are plotted for charge amplifier cut-off frequencies of 1 Hz and 10 Hz. The 

maximum gain applied in these plots is the gain just before the system becomes unstable. It 

is clear from this Figure that the cut-off frequency of the charge amplifier has a profound 

effect on the maximum gain and hence the performance, as discussed previously. 

Figure 3.11 shows the theoretical and experimental closed-loop responses for acceleration 

and displacement feedback control systems. It can be seen that they exhibit poor 

performance. 

3.7 Multi-input-multi-output system 

As mentioned previously most mounted equipment has more than one mount and hence 

generally they cannot be modelled as a SDOF system. Thus the analysis presented above 

needs to be extended to a general system. In this section a more general system is considered. 

Consider a multi-input-multi-output (MIMO) system whose plant frequency response matrix 

is given by G^jco). This plant response function can be expressed in terms of non-

dimensional frequency normalised by its first resonance frequency as G ( / I I ) . For a 

decentralised feedback control system with equal gains in each loop and identical 

instruments (i.e. all instruments in each loop are of same type and have the same frequency 

response function), the feedback frequency response matrix in non-dimensional frequency 

takes the form = H , where H (jQ) is same as that in the single-degree-of-

freedom system considered previously. The vector of closed-loop frequency responses of the 

system can be written as, 

V = [ I + G ( ; Q ) H ( G ( ( 3 . 2 9 ) 

This can be expressed as [91], 

Thus the condition for stability can be written as [31] (noting that H ( y O ) = ^ ( y ^ l ) l ) , 
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det[l + G ( ; Q ) f f ( ; n ) ] ; ^ 0 (3.31) 

Letting the eigenvalues of G(yO)be - Jl). ] , equation (3.31) can be written as, 

det [ I + G (yO)] = (i+;i,;7 ( ; n ) ) ( i + ( ; n ) ) . . . ( 1 + ( ; n ) ) # o 

(3.32) 

Thus for stability, the plots of the real part against the imaginary part of 

( ; 0 ) etc. should not enclose (-1,0) point. It is shown in Appendix F that a 

multi-channel collocated (i.e. systems wi± an inelastically moving base or systems on a rigid 

base) decentralised velocity feedback control is unconditionally stable 

(f.e. Re{/^,,,^, - etc}>0). Thus the stability of the system is similar to a SDOF 

system and depends on the feedback frequency response function as discussed previously. 

The feedback frequency response function is given by for acceleration feedback control 

/f = y O — — , for velocity feedback control ^ = — 
1 + jo£l 

displacement feedback control H (jQ?) = 

c 

Y 

jo£l Y 
and for 

y 

1 + jo£l 

1 + jcxQ, 

, where n is the number of high-
y n A: 

pass filters (Note that the real integrators are treated as high-pass filters with ideal 

integrators). 

Thus the analytical solutions obtained for the SDOF system can be readily applied to the 

MIMO system provided collocated decentralised feedback control techniques are applied and 

the base is inelastic. The condition of collocation cannot be achieved if the base is flexible, 

which is the subject of further research. 

3.8 Conclusions 

In this Chapter sources of instability have been investigated. The control strategy used is 

analogue feedback control. An ideal system (i.e. system with perfect instruments) is found to 

be unconditionally stable for acceleration, velocity and displacement feedback. When real 

components are connected, however, it (a real system) becomes only conditionally stable for 

acceleration, velocity and displacement feedback control. Considering the three 

conHgurations, the acceleration feedback control system exhibits the lowest maximum gain. 
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The velocity feedback control system would be unconditionally stable with one high-pass 

filter (or with a real integrator) and displacement feedback control system would be 

unconditionally stable for up to two high-pass filters. Addition of one more high-pass filters 

makes the system only conditionally stable and when more and more high-pass Alters are 

added the attainable maximum gain reduces. In comparison with velocity feedback, the 

displacement feedback control system has a higher maximum gain. However the 

performance, when judged using the attenuation for a given gain, is poor in a realistic 

displacement feedback system. 
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Number of 
high-pass filters 

Acceleration 
feedback 

Velocity feedback Displacement 
feedback 

0 Unconditionally Unconditionally 

1 

m 

Unconditionally 
stable 

Unconditionally 

2 

7M 

S V _ max ^ 

c ~C 

Unconditionally 
stable 

3 
-

8v_max 4 CX 

c 9 ^ 
S d _ max o 

k 

4 
- -

6̂f_max ^ 
k 

?. 7. Mw/M êr̂  c^AzgA-pajj 
yiZfer^ a » 1 & ^ « 1 

Number of 
high-pass filters 

Acceleration 
feedback 

Velocity feedback Displacement 
feedback 

0 [/MCOMcf/AomaZZy 

O, 
1 

•yjl + 2^C)C 

[/ncomiifionaH)' C/ncoM /̂ifionaZZ)' 

O, 
^Jl+^ 

n . j_ 
a 

a 
O, 

1 

4 J_ 
a 

Table 3.2. Non-dimensional critical frequencies for different numbers ofhigh-
a » I & ^ « 1 
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Name Type Serial number 

Accelerometer B&K4375 1760059 

Power amplifier 

(Power amplifier 1) 

H/H electronic TP A 50-D 14415 

Power amplifier 

(Power amplifier 2) 

H/H electronic TPA 100-D 15397 

Charge amplifier B&K 2635 1446895 

Analyser Hewlett Packard 

(HP type 35650) 

Analyser C 

(2911A02485) 

Shakers Ling dynamic systems ltd 

Model VI01 

40326.21 

J. gjcpenmenf^ 
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V 

m [ 

c, ^.f' 

(a) SDOF system on moving inelastic base 

fp 
V„ 

m 

k fc 

(b) SDOF system on a rigid base 
fp 

i 

G(ja>) 

fc 

(c) Block diagram representation 

Figure 3.1 Feedback control of a single-degree-of-freedom (SDOF) system 
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Chapter 4 

High frequency instabilities in feedback control 

4.1 Introduction 

In Chapter 3 instabilities that are dominant at low frequencies were discussed. In this 

Chapter instabilities that are dominant at high frequencies are investigated. It was shown in 

Chapter 3 that sources of low frequency instability have little or no influence in the high 

frequency regime. The sources of instabilities that could affect the high frequency regime are 

(a) time-delay, (b) low-pass filters, (c) secondary or control actuators and (d) sensor 

dynamics. 

Time-delay exists in feedback control loops due to transducers (such as hydraulic actuators) 

and the computation process in a digital control. Pure time-delay in the frequency domain 

can be represented by [13], where T is the delay time. Generally the presence of time-

delay affects the feedback frequency response function and hence open and closed-loop 

frequency response functions. From the model of time-delay considered, it can be seen that it 

has a magnitude of one ^i.e. e~-'® ĵ = l j and has a phase lag of coT ^i.e. 

This phase lag, which is a function of frequency, becomes dominant as the frequency is 

increased. Hence time-delay is generally a high frequency source of instability. 

Low-pass filters could be present in the signal conditioning devices such as charge amplifiers 

to reject the unwanted signals at high frequencies. (Note that a real integrator also takes the 

form of a low-pass filter. The difference, however, is that a real integrator has a low corner 

frequency while a low-pass filter has a higher corner frequency) A first order model of a 

low-pass Alter is given by [89], where is the time constant. This can be 

expressed in-terms of its magnitude —==i==and phase as ^ = - t a n ^ ' F r o m the 
^ l + r V 

magnitude and phase expressions it can be seen that as frequency tends to zero the 
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magnitude and phase become one and zero respectively. Similarly as the frequency tends to a 

large value the magnitude reduces and introduces a phase lag 90-degree. Thus as the 

frequency is increased the magnitude reduces at the same time as an increasing phase lag, 

and hence a low-pass filter introduces a high frequency problem. 

Actuators are an integral part of active vibration isolation systems. Although there are a 

variety of actuators such as electromagnetic, hydraulic, piezoelectric, magnetostrictive etc, 

the type of actuator considered in this thesis is an electromagnetic actuator. Ren et. al. [33] 

showed that the electrical characteristics of an electromagnetic actuator can be represented 

by the mathematical model ^— (where is the gain and T is the time constant), 

which is the same as a first order low-pass filter. Thus an electromagnetic actuator could also 

cause instabilities at high frequencies. 

Sensors are also important components in an active vibration isolation system. Similar to 

actuators, there are a variety of sensors available as discussed in Chapter 1, however the type 

of sensor considered in this thesis is an accelerometer. An accelerometer is an 

electromechanical transducer, which outputs a voltage or charge that is proportional to the 

acceleration [85] of the object to which it is attached. It is the most widely used vibration 

measurement transducer due to its small size, range of sensitivities and large working 

frequency range. An accelerometer can be modelled as a single-degree-of-freedom system, 

whose resonance frequency is usually very high. It is generally possible to choose an 

accelerometer whose resonance frequency is well above the frequency range of interest. 

The effects of these sources of instabilities on a SDOF system are investigated in the 

subsequent sections and later generalised to a MIMO system. 

4.2 Time-delay 

For simplicity the effect of pure time-delay on the feedback control of a single degree of 

freedom system is considered in this section. The time-delay is represented in the frequency 

domain as where Q. = ~{co^ is the resonance frequency of the SDOF system), 
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T 
T = —and 7% is the natural period. The method of analysis to determine the critical 

frequency, at which the system becomes unstable, is similar to the one described in 

Chapter 3. First consider time-delay introduced into a system with acceleration feedback 

control. 

4.2.1 acceleration feedback control with time-delay 

The open-loop frequency response function of an ideal acceleration feedback control system 

with time-delay can be written as (Note that delay term appears in the open-loop frequency 

response function given in equation 3.3), 

m J ( l - a ' + 

Equation (4.1) can be rearranged in terms of its real and imaginary parts to give, 

G(yn)^(yn)= 
(^^ -1) cos(2;Fzn) -2^nsin(2Ml . (!^ -1) sin(2;nO) 4-2^[lcos(2M^ 

(4.2) 

To determine the relationship between the critical frequency Qc ^t which the system goes 

iLO. 
unstable, the imaginary part is set to zero which results in tan(2^-zf2^.) = — j . 

This can be written in alternative form as, 

/ ( Q j = t a n ( ; r - 2 ; r ^ J = - ^ ^ (4.3) 
1 — 

For low damping, i.e. when ^ > 0; tan - 2;r70g) —> 0 which gives, 

Qg = — (4.4) 

2 T 

The Nyquist plot given in Figure 4.1a shows that the critical frequency is the second 

frequency at which the plot crosses the real axis. This critical frequency depends on the 

damping ratio ^and non-dimensional time-delay f a s given in equation (4.3). A graphical 

representation of solutions to this equation is shown in Figure 4.2a for r = 0.1. Figure 4.2a 

shows two solutions of equation (4.3). However the second frequency is of importance in-

terms of stability (As mentioned previously when discussing Figure 4.1a). Figure 4.3a shows 

the critical frequency as a function of damping ratio and non-dimensional time-delay. It is 
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evident from this Agure that the dependence of the critical frequency on the time-delay is 

much greater than for the damping ratio. Thus for low damping, the approximation given in 

equation (4.4) can be used. Figure 4.4a shows this approximation graphically together with 

the numerical solutions to equation (4.3) for damping ratios 0.01, 0.05 and 0.1 respectively 

(Note that all curves overlay and hence can not be distinguished individually). It can be seen 

that for a time-delay 0<T <0.15 and damping ratio 0 < ^ <0 .1 the approximation given 

by equation (4.4) is in good agreement with the numerical solutions. 

Substituting the approximate critical frequency given by equation (4.4) into the real part of 

equation (4.2) and equating to -1 to And the maximum non-dimensional gain — , before the 

system becomes unstable gives, 

^ ^ ^ = l - 4 f " (4.5) 
m 

It is evident from equation (4.5) that the maximum attainable non-dimensional gain is less 

than unity. Figure 4.5a shows the closed-loop performance for the acceleration feedback 

control strategy. For comparison purposes three graphs are plotted in Figure 4.5a. They are 

the original system with no control applied, the system that has a non-dimensional time-

delay of 0.1 with 99.9% of the corresponding maximum gain and thirdly the system with no 

time-delay but has 99.9% of the maximum gain, corresponding to a non-dimensional time-

delay of 0.1. It can be seen that there are many additional resonance frequencies in the 

system with acceleration feedback control, making this control system impractical for a 

system that has a reasonably large time-delay in the control system. 

4.2.2 Velocity feedback control with time-delay 

The open-loop frequency response function with velocity feedback control given in equation 

(3.5) could be extended for the velocity feedback system with time-delay. This is given by. 

Equation (4.6) can be rearranged into real and imaginary parts to give. 

(4.6) 
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rj •nxut •n\ fSv\n/r\\(2ff^cos(2;rzO)-(Q^-l)sin(2;nO .(ff —1)cos(2;rzQ)+2^sin(2;rzO) 
G(,Q,H0«)=(^- •' 

(4.7) 

To determine ± e relationship between the critical frequency at which the system goes 

unstable, and the time-delay, the imaginary part is set to zero. Setting 

Im{G(70) i / (70)}= 0 results in, 

/ ( n j = tan(2;rzaj = l ^ (4.8) 

Equation (4.8) can be written in the following form, 

2^2. 
tan 

^ TV ^ 
2;Fzn, 

v2 

When ^ > 0, tan —-2;rzQ_ 
2 y 

1 - ^ : 

—> 0 which results in. 

(4.9) 

(4.10) 

Equation (4.9) shows that the critical frequency for velocity feedback control depends on the 

non-dimensional time-delay and damping ratio. The open-loop Nyquist plot is given in 

Figure 4.1b for the velocity feedback control system with a damping ratio 0.05 and non-

dimensional gain 1 for various time-delays. The plot shows that the critical frequency for 

velocity feedback control is the second frequency at which the plot crosses the real axis. A 

graphical solution for equation (4.8) is shown in Figure 4.2b. In Figure 4.3b the critical 

frequency as a function of damping ratio and non-dimensional time-delay is shown. 

It is seen from Figure 4.3b that the critical frequency is influenced much more by the time-

delay than the damping ratio. Figure 4.4b shows the approximate critical frequency given by 

equation (4.10) and the numerical solutions to equation (4.8) for damping ratios 0.01, 0.05 

and 0.1 respectively (Note that all curves overlay and hence can not be distinguished 

individually). It can be observed that for a time-delay 0 < T <0.15 and damping ratio 

0 < ^ <0.1, the approximation given by equation (4.10) is in good agreement with the 

numerical solutions. 

To determine the maximum gain, the real part of the open-loop response function given by 

equation (4.7) should be set to - 1 and the frequency set to the critical frequency. This gives, 
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(4.11) 
C COS (2;rzn,)+ ( l - )sin (2 ; r7n, )} 

When T <0.15, Q.̂  ~ — and equation (4.11) reduces to 
4T 

64T^^^ + (l6Y-^-iy 
(4.12) 

For ^ « 1 this becomes, 

(1-16T") 

c 

which for a small time-delay, T « 1 reduces further to, 

<?v_max 1 

C ST^ 

(4.13) 

(4.14) 

It is evident from equation (4.14) ±at the maximum attainable non-dimensional gain is 

reasonably large for small damping and small delay. Figure 4.5b shows the closed-loop 

performance for the velocity feedback control strategy. For comparison purposes three 

graphs are plotted in Figure 4.5b. They are the original system with no control applied, 

system that has a non-dimensional time-delay 0.1 with 99.9% of the corresponding 

maximum gain and thirdly the system with no time-delay but has 99.9% of the maximum 

gain corresponding to non-dimensional time-delay of 0.1. It can be seen that the resonance 

peak appears at higher frequencies while the response at the original resonance frequency 

reduces considerably. This resonance peak is the undesirable effect of the time-delay. 

However the effect is less compared to the corresponding case for acceleration feedback 

control shown in Figure 4.5a. 

4.2.3 Displacement feedback control with time-delay 

The open-loop frequency response function given in equation (3.7) can be extended to the 

displacement feedback system with time-delay. It can be written as. 

G ( ; n ) H ( ; 0 ) = — 7 — r (4.15) 
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Equation (4.15) can be rearranged into real and imaginary parts to give, 

'^(^^ -l)cos(2;rzO)-2^sin(2/FzO . (i^ -l)sin(2;rzn)+2^cos(2;nn) ̂  

4^"n"+(n ' - l )" 4 ^ ^ ^ + ( ^ - l ) " 
G ( ; n ) ^ ( ; n ) = ^ 

k 
J 

(4.16) 

To determine the relationship between the critical frequency at which the system goes 

unstable and the time-delay, the imaginary part is set to zero. Setting Tm-^(yQ)ff(jO)}= 0, 

results in. 

/ ( ^ l J = t a n ( 2 ; n n j = - : ^ ^ (4.17) 
1 - K 

Figure 4.1c shows the open-loop Nyquist plot for displacement feedback control. It should 

be noted from Figure 4.1c that the critical frequency for displacement feedback control is the 

first frequency at which Nyquist plot crosses the real axis. This is in contrast to the 

acceleration and velocity feedback control systems discussed in sections 4.2.1 and 4.2.2. A 

graphical solution to equation (4.17) is shown in Figure 4.2a with a non-dimensional time-

delay of 0.1 and for various damping ratios. 

Figure 4.3c shows this critical frequency (first crossing frequency) as a function of time-

delay and damping ratio. It can be seen that the critical frequency is influenced much more 

by the time-delay than the damping ratio. In addition it is also evident that the critical 

frequency is much lower than for acceleration and velocity feedback control discussed 

previously. Hence for a small time-delay equation (4.17) can be approximated to, 

tan(2;rznj = (4.18) 

From equation (4.18) the approximate critical frequency can be written as. 

—1 + - ^ (4.19) 
m 

Unlike acceleration and velocity feedback control this approximate critical frequency 

depends on both the time-delay and damping ratio. Figure 4.4c shows the numerical 

solutions and approximate estimations of critical frequency for damping ratios of 0.01, 0.05 

and O.I respectively. For time-delay 0 < f <0.15 and damping ratio 0 < ^ <0.1 the 

approximation given by equation (4.19) is in reasonable agreement with the numerical 

solutions. Substituting the approximate critical frequency given by equation (4.19) into the 
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real part of equation (4.16) and equating to - 1 the maximum non-dimensional gain — can 
k 

be found. This gives, 

= (4 20) 
k m 

Figure 4.5c shows the closed-loop performance for the displacement feedback control 

strategy. For comparison purposes three graphs are plotted in Figure 4.5c. They are the 

original system with no control applied, the system that has a non-dimensional time-delay of 

0.1 with 99.9% of the corresponding maximum gain, and thirdly the system with no time-

delay, but has 99.9% of the maximum gain corresponding to a non-dimensional time-delay 

of 0.1. It is clear that the maximum gain that can be applied with displacement feedback 

control is very small and hence the benefit of this system is negligible. Therefore 

displacement feedback control is very sensitive to time-delay. 

4.2.4 Summary 

It can be seen that there are many additional resonance frequencies in the system with 

acceleration feedback control, making this control system impractical for reasonably large 

time-delays in the control system. The velocity feedback control response has similar 

characteristics to the low frequency instability, but with the critical frequency occurring 

above the original resonance frequency. Finally it is clear that the maximum gain that can be 

applied to the displacement feedback system is very small, and hence the benefits of this 

system are negligible. 

4.3 Low-pass filters and control actuators 

As mentioned previously, low-pass filters could be present in the signal conditioning devices 

such as charge amplifiers to reject the unwanted signals at high frequencies. A first order 

model of low-pass filter is given by - — ; [89]. Similarly actuators, which are used to 

produce the control force, could also affect the stability, and can also be represented as a first 

order low-pass filter [33]. Thus in an active isolation system there could be up to two low-

pass filters, one each from the signal conditioning equipment and the actuator. However if 
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either one of them is equivalent to a second order low-pass filter, then the effects can be 

studied by considering three first order low-pass filters. Thus, an investigation of 

acceleration, velocity and displacement feedback control systems with up to three low-pass 

filters, is carried out. This is described in the subsequent sections. 

4.3.1 Effect of low-pass filters on acceleration feedbacic control 

With a low-pass filter incorporated the open-loop frequency response function for a SDOF 

system given in equation (3.9) can be extended to give. 

where ,0 is the ratio of the natural frequency of the system to the comer frequency of the low-

pass niter. Equation (4.21) can be written in terms of its real and imaginary parts as. 

(i - n " ) ' + ( 2 ^ y ) (i -H ) f(i - a " y + ( 2 ^ ) ' ) ( 1 + ) 

(4.22) 

Adopting a similar procedure as that described in Chapter 3, when the imaginary part is set 

2^ 

to zero the critical frequencies are found to be = 0 or = 1 + ~ and the corresponding 

real parts are given by , 

Re{G(;n, ) / / ( M ) } = 0 and R e { G ( y R ) H ( j Q , ) } = ^ ^ . • 

Since the real parts are either zero or positive, the system with a single low-pass Alter is 

Mziximum gains and corresponding critical frequencies for up-to three low-pass filters are 

given in Table 4.1 and 4.2 respectively. Figure 4.6a shows how the increasing number of 

low-pass filters affects the stability of acceleration feedback control system. It can be seen 

that that acceleration feedback control system becomes unstable with three first order low-

pass filters incorporated. The closed-loop performance given in Figure 4.7a shows that with 

a low-pass filter incorporated, an additional peak appears at a higher frequency. Thus, low-

pass filter in the system gives poor performance than the ideal system. 
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4.3.2 Effect of the low-pass filter on velocity feedback control 

With a low-pass filter incorporated the open-loop frequency response function for a SDOF 

system for velocity feedback control given in equation (3.11) becomes, 

f 1 

c ; ( l - n " + ; 2 ^ ) ( l + y , m ) 

Equation (4.23) can be written in terms of its real and imaginary parts as. 

(4.23) 

( l - ^ ) +(2^y)(l+yg"^^) +(2^y)( l+ / )"Q ' ) 

(4.24) 

Applying the Nyquist criterion, when the imaginary part is zero, the critical frequencies are 

found to be = 0 or the corresponding real parts are given by 

R e { G ( ; Q j / f ( ; a J } = O o r R e { G ( ^ 

are either zero or positive the velocity feedback control system with a single low-pass filter 

The maximum gains and corresponding critical frequencies for up-to three low-pass filters 

are given in Tables 4.1 and 4.2 respectively. Figure 4.6b shows how the increasing number 

of low-pass filters affects the stability of the velocity feedback control system. It can be seen 

that the velocity feedback control system becomes unstable with two first order low-pass 

filters. The closed-loop performance given in Figure 4.7b shows that with a low-pass filter 

incorporated, a peak appears at a higher frequency. Thus, low-pass Alter in the system gives 

poor performance than the ideal system. 
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4.3.3 Effect of the low-pass filter on displacement feedback control 

With a low-pass filter, the open-loop frequency response function for a SDOF system for 

displacement feedback control given in equation (3.13) becomes, 

G(ja)H{jn)= ' f l . . j " ' (4.25) 
( l - n " + ; 2 ^ ) ( l + y / m ) 

Equation (4.25) can be written in terms of its real and imaginary parts as. 

(4.26) 

2<r 

When the imaginary part is zero as before = 0 or = 1 + and corresponding real 

parts are given by 
R e { C ( A ) « ( A ) } . l or R e { G ( A ) } = - y /?' +1)' 

— - - (4.27) 

Generally the corner frequency of the low-pass filter is very high and hence P = — is very 

small. Thus for ^ « 1 and /) « 1 ± e above equation (4.27) can be simplified to give, 

= ^ (4.28) 
yg 

Thus the displacement feedback control system with a single low-pass filter is only 

conditionally stable. 

The maximum gain and corresponding critical frequencies are given for up to three low-pass 

filters in Tables 4.1 and 4.2 respectively. Figure 4.6c shows how the increasing number of 

low-pass filters affects the stability of displacement feedback control system. It can be seen 

that displacement feedback control system becomes unstable with just one first order low-

pass filter. The closed-loop performance given in Figure 4.7c shows that with a low-pass 

Alter incorporated, a strong peak appears at a higher frequency. Thus, low-pass filter in the 

system gives poor performance than the ideal system. 
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4.3.4 Summary 

Systems with an electromagnetic actuator will effectively have a low-pass filter incorporated 

into the system. This makes the maximum gain attainable in displacement feedback control 

small. Thus displacement feedback becomes less attractive compared to acceleration and 

velocity feedback control. Increasing the number of low-pass Alter (or the order of the low-

pass filter such as the one in the signal conditioning devices) makes velocity feedback 

control become conditionally stable rather than unconditionally stable. However the 

inclusion of the damping ratio in the denominator gives a large gain margin for systems with 

low damping. The closed-loop performance of the three strategies shows that inclusion of a 

low-pass filter deteriorates the closed-loop performance from ideal system. 

4.4 Effect of sensor dynamics 

In this section the effect of sensor dynamics on the stability of the feedback systems is 

considered. An accelerometer modelled as a single degree of freedom system [85] is shown 

in Figure 4.8. For vibration isolation systems, it is assumed that the accelerometer has a 

negligible effect on the system (i.e. the equipment is much heaver than the accelerometer) 

and hence it does not change the dynamics of the system. The equation describing the motion 

of the seismic mass ( m j can be written as, 

( 0 = ( 0 - ( 0 ) + ( 0 - (0 ) 

Substituting, = = 6)̂  = — a n d = — 7 ^ = in equation (4.29) and 

simplifying gives, 

K_ i+JHA 

V ( i - n ; + ; 2 C n „ ) 
(4.30) 

where = — , which can be written as, = — , where p = — . From Figure 

4. 9 the open-loop frequency response function of the system with accelerometer dynamics 

can be written as, 

G„ (jQ)H an) = G ( j a ) .H(jn) (4.31) 
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where (_/Q) refers the frequency response function in the forward path of the block 

diagram shown in Figure 4.9 , which includes the frequency response functions of the plant 

and accelerometer. Substituting for G ( j O ) from Chapter 2, equation (2.12), and the 

appropriate (yO), the open-loop frequency response functions for acceleration, velocity 

and displacement feedback control can be obtained. 

For velocity feedback control the modified forward path frequency response function is 

given by (Note that in velocity feedback control, the feedback fi-equency response function is 

only a gain and hence does not alter the phase characteristics. Hence it is considered first), 

0 ' " ) = ( i _ n ( I - A V + S A ) 

The phase range of each function can be written as. 

f \ 

- > Z 
2 

; 2 ^ 

V 
1̂ — Q + j2^Q^ 

f . \ 
> - — and 0 > Z 

2 
> -;r. Thus the phase range 

y 

of the forward path frequency response function is given by (Note that if the complex 

numbers are multiplied the phase is added), 

^ (4.33) 

This phase range shows that the forward path frequency response function includes the 

negative real axis. The feedback frequency response function for acceleration feedback 

control is given by, (yQ)= j O — T h i s adds a phase of ^ to the open-loop frequency 

response characteristic of the velocity feedback. Thus considering equation (4.33), the phase 

range for acceleration feedback control is given by, 

( ; a ) ( ; n ) > (4.34) 

This suggests that the accelerometer dynamics does not cause any instability in acceleration 

feedback control. The feedback frequency response function for displacement feedback 

control is given by, H - This adds a phase of - y to the open-loop 

frequency response characteristic of velocity feedback. Thus considering equation (4.33), the 

phase range for displacement feedback control is given by, 

0 > / G ^ (yn ) > -2;r (4.35) 
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This suggests that the accelerometer dynamics does affect the stability of displacement 

feedback control. 

For systems, which have high frequency roll-off characteristics such as the single-degree-of-

freedom-system considered, the effect of accelerometer dynamics would be minimal. This is 

because a high frequency roll-off characteristic gives the system a large gain margin 

provided that the natural frequency of the accelerometer is much greater than the natural 

frequency of the plant. 

In summary, from the analysis presented above, the accelerometer causes instability in 

velocity and displacement feedback control systems. The acceleration feedback control 

system is less susceptible to instability problems due to sensor dynamics. 

4.5 IVIulti-input-multi-output system 

For a decentralised feedback control system with equal gains in each loop and identical 

instruments, the feedback frequency response matrix in terms of non-dimensional frequency 

takes the form ( j Q ) I . Here / / ( j Q ) is same as that in the single degree of 

freedom system considered previously. Thus, the sources of instabilities at high frequencies 

affect the MIMO system in a similar manner to that discussed for low frequency instabilities 

in Chapter 3. Hence applying the same principle to that in Chapter 3, the analysis presented 

for a SDOF system can be applied readily to a MIMO system provided collocated 

decentralised feedback control techniques are applied. 

It is shown in appendix F that the MIMO system considered in Chapter 3 is unconditionally 

stable. Thus the eigenvalue plots of the open-loop response matrix are entirely on the right 

half of the Nyquist plane. This means that the phase range of eigenvalues can be written as 

y (G > - y . Considering the forward path frequency response function similar 

to the one given in equation (4.32), it can be shown that the forward path frequency response 

function for the MIMO system with velocity feedback control has a phase range 

This shows that the accelerometer affects the stability of a 

MIMO system similar to the SDOF system discussed previously. In a similar manner 
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described previously for the SDOF system, the argument can be extended to acceleration and 

displacement feedback control strategies. 

4.6 Conclusions 

The sources of high frequency instabilities have been investigated in this chapter. It has been 

shown that although the displacement feedback control strategy exhibits good low frequency 

stability, with time-delay and low-pass filters in the feedback loop, it exhibits poor 

robustness. It has also been shown that among the three strategies the acceleration feedback 

control system gives excellent stability characteristics. However the closed-loop performance 

of the acceleration feedback control system with time-delay gives poor performance. Thus, 

considering the high frequency stability and performance characteristics, velocity feedback 

control is the most attractive strategy. 
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Chapter 5 

Performance of a two-channel feedback control system 

with the failure of a single channel 

5.1 Introduction 

The effects on the stability and performance of a feedback control system of signal 

conditioning devices, actuator and sensor dynamics at low and high frequencies were 

discussed in Chapters 3 and 4 respectively. Velocity feedback control was found to be more 

attractive as it is more robust to low and high frequency instabilities. However the stability of 

a perfectly working system is not the only concern when it comes to robustness. Other 

considerations include sensor and actuator failures, uncertainties (disturbance as well as 

model uncertainties), etc. In this chapter the effect of losing control of a channel (sensor or 

actuator failure) is considered. An analytical study of a two-channel feedback control system 

is conducted and supported by some experimental work. 

5.2 Problem formulation 

The same two-mount system considered in Chapter 2 is used for the analysis and subsequent 

experimental work. A description of the system is given in this section for convenience. 

Consider a two-degree of freedom system (2D0F) modelled as a lumped mass-spring-

damper system with two-channel decentralised feedback control applied as shown in Figure 

2.3a. Two passive mounts with equal stiffness k and damping coefficient c support a rigid 

plate (representing some equipment) of mass /Mp and length (the distance between the 

mounts is Z). Two shakers are also installed directly on top of the mounts, and each produces 

a control force between the base and the rigid plate. Small masses can be lumped on top of 

the shakers so that the mass centre can be moved from the centre of the plate. The combined 

mass of the shaker at mount 1 and the mass lumped on top of that shaker is mi, and similarly 
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the total mass at mount! is /»2 as shown in Figure 2.3a. The masses are chosen such that 

/Mm = '"i + ^ - ThG total mass of the system is m and is assumed to be unchanged 

throughout the analysis in this chapter. It is also assumed that the masses mi and mz are point 

masses. Thus the system inertia properties can be described by its total mass m and moment 

of inertia / about its mass centre. If the distance between mount 1 and the mass centre is rZ, 

then the distance between mount! and the mass centre is consequently r(l-Z), where 

r = . ^ ^ (Derivation is given in appendix C). 

The two-control forces and ^2 act between the plate and the base in parallel with the 

passive mounts. The control system is a decentralised direct negative velocity feedback 

control such that the signal measured by each sensor mounted on the plate is used to produce 

a control force at that mount location. These forces are produced via the controllers, which 

have equal gain and are proportional to velocities at the mount locations. The system, where 

both controllers are working and set to produce control forces proportional to the 

corresponding velocities, is referred to as the perfectly working system. The system where 

one of the controllers, actuators, sensors or any other component in a single feedback loop 

fails to work is referred to as the defective system or system with failure. In this chapter the 

performance of this system is investigated. As before, two situations are considered, namely 

the two-mount system (a) on a moving inelastic-base and (b) on a flexible base. For 

simplicity only ideal situations are considered i.e. the electrical instrumentation is considered 

to be perfect with no unintentional phase shift, if it is working. 

5.3 Two-mount system on a moving inelastic-base 

Figure 5.1 shows the impedance representation of the physical system shown in Figure 2.1. 

From equation (2.24) the vector of equipment velocities at the mount location is given by, 

V. = [I + G G ( » Z „ V j (5.1) 
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where, G(. /®)=[Z, + Z , r ' , Z , = 
Z.. 0 

0 z_ 
, 2^=- ;—+ c , (From Appendix C) 

Zg =_/6) 
o" 

, H W = c c 
= c 

0 ^ 
c_ 

0 
and Pnv is non-

dimensional gain. 

The translational and rotational velocities at the mass centre of the plate are given by 

V and ^ as described in appendix C. The velocity vector at the mass centre is a 
V 

10 
and Q 

is the transformation matrix, which transforms the velocity vector at the mount locations to 

the velocity vector at the mass centre. The elements of Q are given in appendix C. The 

velocity vector at the mount location can be related to the velocity vector at the mass centre 

by equation (2.26b). Combining equations (5.1) and (2.26b) and substituting Vy =[l 

the mass centre velocity vector can be written as, 

: Q ' [ I + G ( jm)H ( j a ) ] ' ' G ( j®)Z„ [1 i f (5.2) 

Equation (5.2) gives the mass centre velocity vector a when both the active mounts are 

working. When one of the active mounts fails (mount 2 for example), the control force 

produced at that mount becomes zero, which gives (yo)): c 
0 

0 0 
. By substituting 

H, (,/®) into equation (5.2) the mass centre velocity vector corresponding to the system 

with single channel failure can be found. 

As discussed in chapter 2 the total kinetic energy of the equipment is used as the 

performance measure. In addition the change in the total kinetic energy is also considered as 

an overall performance measure, which is used to judge the effectiveness of the control 

system over the frequency bandwidth considered (e.g. 0 < freq < 250 Hz). The first 

performance measure can be used to judge the performance of an active isolation system at 

troublesome frequencies, while the other is used to judge the system over a frequency band. 
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From equations (2.27) and (2.28) the total kinetic energy is given by, 

^ a " j a 
1 

m\v\ +J (5.3) 
2 2 

Note that 7 is the moment of inertia of the equipment and attached masses about the mass 

centre of the system and m is the total mass of the system. The moment of inertia is derived 

in appendix C and is given by, 

(5.4) 

where, 7 
12 

(1-2/-) / 2 r2 

In the system with a single channel failure (failure in the active part of mount2), if the gain 

of the working mount is increased to a sufficiently large value (say to infinity), then the 

corresponding mount can be considered to be a pinned support. The system with zero gain 

(ie there are only passive mounts) and the system with a pinned support can be considered 

limiting cases of performance of the system with a single channel failure. Figure 5.2 shows 

the later case. The kinetic energy of this system is given by, 

1 
(5.5) 

where 7 
12 v2y 

(applying the parallel axis theorem to the plate and the 

moment of inertia of mass mi about the pinned end) Considering the dynamic moment 

balance about the pinned mount (i.e. Mount 1) gives, 

( 0 ) ^ = 0 (5.6) 

where Xb{t) is the displacement of the base at mount2. Assuming simple harmonic motion 

equation (5.6) can be simplified to give, 

6 _ kl + jcocl 

where it can be seen that the resulting system has a resonance frequency at = 

(5.7) 

2;r \ j 

In the following section simulations are presented on a practical system and experimentally 

validated in the subsequent section. 
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5.3.1 Simulations 

In this section simulations performed on a two-mount system set on a moving inelastic-base 

are presented. The performance measure used is total kinetic energy calculated using closed-

loop velocity per unit base velocity as given in equation (5.3). The properties of the system 

considered for simulations and subsequent experiments are given in Table 5.1. 

The simulations are done for the following purposes, 

1. To compare the performance of a system with single channel failure with the 

corresponding perfectly working system. 

2. To study the relative importance of the working actuators in a two-mount system, 

where the system is not necessarily symmetric. 

Three cases of differing mass centre of the system shown in Figure 2.3a are considered, 

which are the mass centre (a) at the geometric centre of the equipment (i.e. mass centre at 

0.5Z), (b) at 0.404Z from left hand end of the mount (i.e. from mount 1 in Figure 2.1) and (c) 

at 0.596/ from left hand end of the mount. These mass centres are chosen for convenience. 

Although under perfectly working conditions, both 0.404Z and 0.596/ mass centre cases give 

the same behaviour they are helpful in the investigation of the relative importance of 

working actuator when one of them fails. In addition a general system could be either 

symmetric or asymmetric, thus the three cases considered cover a general system. Both a 

perfectly working system and a system with a single channel failure are compared. The total 

kinetic energy plots for all three differing mass centre cases are given in Figure 5.3 for both 

perfectly working and single channel failure conditions. For convenience, simulations are 

performed for non-dimensional gains 0, 20, 30 and 50. The total kinetic energy can be 

considered as the sum of kinetic energies of translational motion and rotational motion at 

mass centre. 

In appendix I the kinetic energy plots for translational and rotational motion at the mass 

centre are given. For the symmetric system (i.e. mass centre is at 0.5Z), it should be noted that 

only translational motion is excited at the mass centre and hence the total kinetic energy is 

equal to the kinetic energy in translational motion at the mass centre (Figure IIa in appendix 

I). However when the system is non-symmetric both translational and rotational motion are 

excited at the mass centre (Figures l ie and l id in appendix I). 
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Only one peak can be seen for the symmetric system i.e. mass centre - 0.5Z (Figure 5.3a) and 

two peaks can be seen for asymmetric system i.e. mass centre - 0.404/ or 0.596Z (Figure 5.3b 

or 5.3c). Figures 5.3a, and 5.3b (or 5.3c) show that the active part of the mounts effectively 

isolates the system as the gain is increased. The magnitudes of the peaks are reduced because 

of the 'skyhook' damping effect in velocity feedback control [6,29]. Figures 5.3a and 5.3b 

(or 5.3c) show that the system is controllable at both resonance peaks irrespective of the 

position of the mass centre. 

Figures 5.3d, 5.3e and 5.3f show the total kinetic energy of ± e system when the active part 

of mountZ has failed for differing mass centre cases 0.5Z, 0.404Z and 0.596Z respectively. In a 

symmetric system when one of the active channels fails, it becomes asymmetric and hence 

rotational motion also presents [Figure l ie - Appendix I, it should be noted that there is no 

line corresponding to zero gain in Figure lie]. In these systems (i.e. with failure), as the gain 

corresponding to the working active mount is increased, the equipment becomes virtually 

pinned at this position. Figures 5.3d, 5.3e and 5.3f also show the infinite gain cases (or 

pinned cases). The passive system (zero gain in both channels), and pinned system (i.e. 

infinite gain) can be considered as the limiting cases of performance measure for a system 

with single channel failure. It can be noted from Figures 5.3d, 5.3e and 5.3f that between 

these limiting cases only a small reduction in the peak response is achievable. 

It is interesting to note from Figures 5.3e and 5.3f that in an asymmetric system with failure, 

as the gain is increased there is a considerable reduction in one of the peaks while the other 

peak largely remains unaffected. These two figures show that as the gain is increased the 

system changes from a 2DOF system to a SDOF system. It should be noted that when the 

mass centre is closer to the working mount it is the first peak that is controlled while it is the 

second peak when the mass centre is further away from working mount. When the system is 

transformed from a 2DOF system to a SDOF system, the translational movement at the 

working mount (i.e. mount 1 in this case) is gradually being reduced. When the mass centre is 

closer to the working mount this has a considerable influence in the heave mode, while it has 

less influence when it is further away from the working mount. 

The uncontrollable mode is determined by the SDOF system whose resonance frequency is 

given by ' i s. when the system changes from a 2DOF to SDOF the 

uncontrollable mode is the natural frequency closer to the pinned SDOF mode. 
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It can be seen from Figure 5.3 that when both active mounts are working the system 

effectively controls both peaks and loses control over a peak when one of the channels fail. 

In addition, the common feature in Figures 5.3d, 5.3e and 5.3f is that as one of the loops fails 

the reduction in peak kinetic energy falls considerably even in the peak that is controlled. 

Systems with very large gain (a non-dimensional gain of 5000 is used) is also plotted in 

Figures 5.3d, 5.3e and 5.3f. 

Figure 5.4 shows the change in total kinetic energy in a given frequency band as a function 

of gain. The frequency band considered is 0 < < 250Hz , where denotes the 

frequency. Three cases with mass centres at 0.5/, 0.404Z and 0.596Z are shown in Figures 

5.4(i), 5.4(ii) and 5.4(iii) respectively. In each case both perfectly working and single 

channel failure cases are shown. In the perfectly working system, it can be seen that as the 

overall performance (Figures 5.4(i)a, 5.4(ii)a and 5.4(iii)a) of the system continues to 

improve under active control. In the system with single channel failure, this improvement in 

performance is very poor as seen in Figures 5.4(i)b, 5.4(ii)b and 5.4(iii)b. It can be seen that 

as the gain is increased the kinetic energy reduces until a certain gain is reached. This is 

because as the gain is increased the system changes from a 2DOF system to a SDOF system 

and the performance that can be achieved between these limiting cases is poor as discussed 

previously. The initial reduction in the change in total kinetic energy of the system with 

failure is attributed to the reduction in one of the peaks in total kinetic energy as discussed 

previously. 

In Figures 5.4(i)b, 5.4(ii)b and 5.4(iii)b the change in translational and rotational kinetic 

energies are also shown together with the total kinetic energy. It can be seen that while 

translational kinetic energy reduces, the rotational kinetic energy increase. This is because 

as, the failure occurs the system becomes more asymmetric where rotational motion becomes 

dominant (Also refer Figures l ie, I2e, I3e in Appendix I). 

In summary, the simulations carried out in this section reveal two things, which are (a) when 

one of the active mounts fails, the overall performance of the system degrades and (b) this 

does not improve even if the gain is increased to inOnity in the working active mount. In 

addition, when the gain is increased from zero to infinity the system changes from a 2D0F 

system to a SDOF system, meaning that while one of the peaks is effectively controlled the 
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other peak remains largely unaffected. Some experiments were carried out to support these 

findings and are described in the next section. 

5.3.2 Experiments 

Figure 2.13 shows a schematic diagram of the experimental set-up of the active isolation 

system on a moving inelastic base. The decentralised control arrangements are also shown in 

Figure 2.13. Two accelerometers (B&K type 4375) were attached on the top surface of the 

equipment plate close to the centre of each mount location. Measured acceleration signals 

from the accelerometers were integrated and conditioned to give velocity signals by charge 

amplifiers (B&K type 2635). The output of each of the charge amplifiers was fed into a two-

channel power amplifier (type V200 Mos-Fet) and to a Hewlett Packard (HP) analyser for 

data collection (velocities Vgi and Ve2 mentioned in section 5.3). The power amplifier outputs 

were fedback into the corresponding control shakers to produce the necessary control forces. 

Accelerometer signals were fed back to the control shakers on the same side as the 

accelerometer, and hence decentralised feedback control was achieved. A 180° phase change 

at the output of the power amplifier was introduced so that negative feedback control was 

applied to the system. 

An accelerometer was attached on the moving inelastic base between the mounts. This signal 

was also converted into velocity signal by means of a charge amplifier and was used as a 

reference signal to the analyser (velocity Vb mentioned section 5.3). 

A large rigid plate attached to a large shaker was considered in the experiment as the moving 

inelastic base. A two-mount system designed by Gardonio [4] was used for the experimental 

work. This isolation system on a rigid plate attached to a shaker is shown in Figure 2.12. 

The large shaker was excited by a broadband random signal from the analyzer (Not shown in 

Figure 2.13) and thus the motion of the inelastic base was achieved. A list of the instmments 

used in the experimental work is given in Table 2.3. 

The measurements give the velocities at the mounts with reference to the base velocity 

. Applying equation (2.26b), the corresponding mass centre velocities can be 'i.e. 2^ ' 

found. These mass centre velocities and equation (5.3) can be used to calculate the measured 

total kinetic energy. The values of m and 7 as well as the matrix Q were the same as those 
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used in the simulations. The information given in the calibration chart of accelerometers was 

assumed to be true. This means that the accelerometers have a flat frequency response up to 

lOkHz. In addition no phase shift is introduced by the accelerometers within this frequency 

range. 

Figures 5.5a and 5.5b (or 5.5c) show the symmetric (i.e. mass centre is at 0.5Z) and 

asymmetric systems (i.e. mass centre is at 0.404Z or 0.596Z) when both the cannels are 

working perfectly. The measurements are shown for power amplifier gains 0, 0.02, 0.06 and 

0.12. In the control system the power amplifier provides variable gain, but the charge 

amplifier and the shakers are also provide gains (which are fixed). Letting the charge 

amplifier, shaker and the power amplifier gains be gc, gs and gp then the normalised 

g g g 
experimental gain gg is given by g, = ^ . (The purpose of these experiments was to 

c 

qualitatively support the theoretical simulations; the corresponding normalised gains are 

given by 0, 0.748, 2.43, 8.1 and 15.46.) 

Figures 5.5a and 5.5b (or 5.5c) show that when both shakers work the total kinetic energy in 

system is reduced considerably (approximately 15 dB at the peak). Similarly when one of the 

channels fail (i.e. second channel), the attenuation achieved reduces considerably. In 

addition, as predicted theoretically, in a system with single channel failure, there is only a 

reasonable control of one of the peaks. From Figures 5.5e and 5.5f it can be seen that when 

the mass centre is closer to the working mount only one peak is controlled and there is little 

or no control in the other peak. The total kinetic energy plots for a perfectly working system 

and a system with failure show that in general there is reasonable agreement with the 

simulations. 

In Figures 5.6a, 5.6b and 5.6c the changes in total kinetic energy are shown for system with 

mass centre at 0.5Z, 0.404/ and 0.596/ respectively. These figures show that for a perfectly 

working system as the gain is increased the change in total kinetic energy reduces 

considerably and hence the overall performance improves. However with a single channel 

failure the rate of reduction falls considerably. This confirms the theoretical predictions. 
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5.3.3 Summary 

Simulations and experiments performed on a two-mount system have shown that when a 

single channel failure occurs the performance of the active isolation system deteriorates. The 

overall performance also deteriorates considerably. Considering the original passive system 

and the pinned case (or the system with large gain), between the limiting cases (i.e. no gain 

and infinite gain) there is only a small improvement in the performance. 

5.4 Two-mount system on a flexible base 

The active vibration isolation of a two-mount system from a moving inelastic base described 

in section 5.3, does not include the base dynamics in the analysis. However most of the 

isolation problems are strongly influenced by the base dynamics, which is included in the 

plant frequency response function/matrix [88]. As discussed in Chapter 2 a simple flexible 

clamped-free-clamped-free (CFCF) base is considered for the investigation of the influence 

of the base structure. The stability of this system has been discussed in Chapter 2. A CFCF 

base is relatively easy to realise in practice and the analysis can be readily verified [2]. 

The impedance representation of a two-mount system on a flexible base is given in Figure 

2.3b. The plant (the term plant represents the frequency response function or matrix of the 

mechanical system when excited only by the secondary forces [4]) frequency response 

matrix for flexible base excited system is given by (From equation (2.24)), 

G ( 7 f f l ) = [ Z , + Z . . . + Z „ Y . Z j ' (5,8) 

The feedback frequency response matrix is given by, H(y(y) = , where I is the identity 

matrix of size (2 x 2). The closed-loop vector of equipment velocities Vg (i.e. velocity in the 

presence of primary disturbance) can be written as (From equation 2.25)), 

V. = ( l + G ( ; f f l ) H ( ; f f l ) f ' ( 5 . 9 ) 

where the vector fpm is the collocated vector of primary disturbances/excitation on the base. 

Applying equation (2.17b) the mass centre velocity vector can be found and is given by, 

a = Q-' + (5.10) 

where fpm can be written in terms of disturbance forces vector fp on the base structure as, 

fpm=ZbY^fp (5.11) 
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where Ybp is the mobility matrix of the uncoupled base due to the primary force vector 

Thus the velocity vector at the mass centre can be found, provided Zg, Zm, Yy and Q are 

known. Substituting equation (5.11) in equation (5.3) the total kinetic energy can be found. 

The model of a simple clamped-free-clamped-free (CFCF) base structure discussed in 

Chapter 2 is used for simulations. 

5.4.1 Simulations 

Simulations for active vibration isolation from a CFCF flexible base are discussed in this 

section. Location of mounts and excitation on the plate with respect to the coordinate system 

considered are given in Figure 2.8. The same three different equipment structures with 

differing mass centres at 0.5Z, 0.404/ and 0.596Z from left hand end of the mount are 

considered. The total kinetic energy plots for these systems are shown in Figures 5.7a, 5.7b 

and 5.7c. It can be seen from these that the active isolation system is as effective as in the 

corresponding moving inelastic base cases. It can also be seen that in comparisons with 

Figures 5.3a, 5.3b and 5.3c that apart from first two peaks all others correspond to the 

dynamics of the base structure. 

When one of the active mounts fails (mount!) the performance deteriorates, similar to the 

moving inelastic-base cases. These are shown in Figures 5.7d, 5.7e and 5.7f. It was observed 

in the moving inelastic base cases (with a single channel failure) that as the gain of the 

working mount is increased the system performs better than the corresponding passive 

system at any frequency. Due to the closeness of the system resonance frequency and the 

first resonance frequency of the base (it is at 42.11 Hz Table E l in Appendix E), it exhibits 

worse behaviour between these frequencies (Figures 5.7d, 5.7e and 5.7f). 

Figures 5.7d, 5.7e and 5.7f also show the total kinetic energy for the system with large gain 

(a non-dimensional gain of 5000 is used) in the working mount. It can be seen from these 

figures that although there are some improvements at the original resonance frequency, the 

peak appears elsewhere. This gives a poor performance of the system. For the limiting cases 

(i.e. the system with no control and system with pinned end or infinite gain) only a small 

improvement can be seen. 

The change in kinetic energy plots for the three cases considered are given in Figures 5.8(i), 

5.8(ii) and 5.8(iii) for a frequency band 0 < / r e^ < 250Hz. Both perfectly working and 
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system with single channel failure are shown in these figures. The overall performance of the 

system on the flexible base also improves as the gain is increased. However when one of the 

channels fail the system becomes largely ineffective as shown in Figures 5.8(i)b, 5.8(ii)b and 

5.8(iii)b apart from a small improvement at low gains. Some experiments were conducted to 

support the flexible base cases and are described in the next section. 

5.4.2 Experiments 

Experiments were conducted to support the theoretical predictions and are described in this 

section. Figure 2.18 shows a schematic diagram of the experimental set-up, which is similar 

to the one described for the moving inelastic base. In the inelastic base case, the prescribed 

velocity of the base was considered as the reference signal, which eliminates the base 

dynamics from the plant response. However in the flexible base case the base velocity is 

dependent on the location and is hence unsuitable for a reference. Here the primary force 

applied to die base structure is used as the reference, which was measured by a force gauge. 

From the measurements total kinetic energy was calculated in a similar manner to that 

described in section 5.3.2. 

The primary excitation and mount positions are given in Table 2.2 and in Figure 2.8 

respectively. Instruments used for the measurements are tabulated in Table 2.3. A primary 

shaker placed at the excitation point, (the coordinates are given in Table 2.2) excited the base 

structure. Two accelerometers measured the acceleration at the top of the equipment plate, 

one each close to each mount centre. Outputs of the accelerometers were conditioned and 

integrated by charge amplifiers to produce velocity signals. These velocity signals were then 

passed through a two-channel power amplifier and fed into the control shakers. The velocity 

signals were also fed into the input terminal of HP analyser for data collection. 

Figure 5.9 shows the isolation system and the base structure used for the experimental work. 

Two additional mass of equal weight shown in Figure 5.9 were used to change the mass 

centre by placing them on the control shakers. When both weights are on the left shaker the 

mass centre is at 0.404/, and both are on right the shaker the mass centre is at 0.596/. 

Figures 5.10a, 5.10b and 5.10c show the plots of total kinetic energy for a perfectly working 

system. It can be seen that under perfectly working conditions a reduction of total kinetic 

energy greater than 15 dB at the first peak can be obtained for all three cases. In summary 

the results show a good agreement with theoretical predictions. 
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However when one of the channels fails as seen in Figures S.lOd, S.lOe and 5.10f only a 

small reduction in kinetic energy is achieved. Although, as predicted in the simulations, the 

degradation in overall performance of the isolation system at some frequencies is not clearly 

visible, the measured performance shows that the system becomes less effective. 

Figures 5.1 la, 5.1 lb and 5.1 Ic show that the change in total kinetic energy for systems with 

mass centres at 0.5Z, 0.404/ and 0.596f respectively. It can be seen that as the gain is 

increased the overall performance reduces to about half the performance of a perfectly 

working system. This implies that the system becomes less effective when one of the active 

mounts fails. 

5.4.3 Summary 

Simulations and experiments performed on a two-mount system on a CFCF flexible base 

show that when a single channel failure occurs the performance deteriorates (i.e. the 

attenuation on total kinetic energy is small). The overall performance (i.e. change in kinetic 

energy) also deteriorates considerably. Considering the original passive system and the 

pinned case (or system with large gain), between the limiting cases there is only a small 

improvement in its performance (i.e. attenuation in kinetic energy) as seen when the moving 

base was inelastic. 

5.5 A general two-mount system 

The general agreement between the simulations and experiments motivates a further study of 

the system. In the system considered so far, the shaker masses are considerably large 

compared to the mass of the equipment. Thus it is possible that the shaker masses dominate 

the system behaviour giving two nearly SDOF systems weakly coupled by a beam. Thus in 

this section a system with dominant equipment mass as described in Appendix C is 

considered. Similar to previous cases three differing mass centre cases are considered. 

Figure 5.12 shows total kinetic energy of the two-mount system on a moving inelastic base. 

Three differing mass centres of the system are considered similar to the previous cases. 

Figures 5.12d, 5.12e and 5.12f show that the behaviour deteriorates when one of the channels 
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fails. The improvement between the limiting cases (i.e. the original passive system and the 

system when the gain is increased to a very large value in working mount and other being 

failed) is very poor. The overall performance shown in Figure 5.13 reveals that the overall 

improvement of a system with failure is very poor and similar to the previous cases. Figures 

5.14 and 5.15 show the corresponding cases for the system on a CFCF base structure. They 

also support the main finding of the corresponding cases considered previously. 

5.6 Conclusions 

A perfectly working two-mount active isolation system and a two-mount isolation system 

with single channel failure has been investigated in this Chapter. A moving inelastic base 

and a CFCF flexible base were considered. The first does not include the base dynamics in 

the analysis or experiments and hence helps to identify weaknesses of the system alone when 

a failure occurs. The latter helps to confirm the findings and to draw general conclusions. 

The simulations and experiments carried out on a moving inelastic base show that, 

# The perfectly working system controls both resonance peaks of the system and gives 

a better overall performance. 

« The perfectly working system also improves (i.e. the resonance peaks corresponding 

to the system continue to reduce) as the gain is increased. 

• When one of the channels fails, the system loses control over one of the resonance 

peaks. The uncontrollable peaks depend on the closeness of the working mount to the 

mass centre. 

• In addition, when one of the channels fails, after a certain small value of gain the 

overall performance of the system does not improve. 

# The improvement in the performance of the system is poor even if the gain is 

increased to infinity in a system with single channel failure. 

The simulations and experiments carried out with a two-mount system on a CFCF flexible 

base structure supports most of the findings of the moving inelastic base cases. As the gain 

of a two-mount system with single channel failure is increased from zero to infinity the two-

mount system becomes a 2DOF system to a SDOF system. When one of the channels fails, 

the performance of the two-mount system does not improve considerably from its passive 

behaviour as the gain is increased. 
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Masses (^g) 

r = 0.404 OT] =1.6 mz = 0.91 mp =1.08 m = 3.59 

Masses (^g) 

r = 0.50 mi = 1.255 m2 = 1.255 nip =1.08 m = 3.59 

Masses (^g) 

r = 0.596 m\ = 0.91 m2 = 1.6 mp =1.08 m = 3.59 

Moment of 

Inertia 

r = 0.404 ym = 0.0105 Jpg = 0.0038 7 = 0.0143 7pin = 

0.0248 

Moment of 

Inertia 

r = 0.50 /ni = 0.0062 /pg = 0.0036 7 = 0.0098 Tpin = 

0.0259 

Moment of 

Inertia 

r = 0.596 Jm = 0.0105 Jpg = 0.0038 7=0.0143 7pin = 

0.0372 

Plate length Zp (mm) 200 

Distance between mounts 

Z (mm) 

134 
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'm 

Rigid equipment 

\fc Mounts 
Vb 

Figure 5.1 Impedance representation of the two-mount system on a moving inelastic base 

Mass centre 

Mountl pinned 

e 
(l-of 

Mountl Base 

Figure 5.2 Two-mount system with active mount 2 failed and mount 1 pinned (infinite gain) 

134 



w
 

3 § 

3 i"
 

. 
Oq

 
G

 

I %
 a.
 a 

&
 

g 
3"

 D
 

(%
 ^ 

' a S"
 

KJ
 

o s
 

I t i'
 

S»
 

'S
 

">1
 

Ĉ
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;ŝ
 

\o
 

.o
 

>
 

%
 I I 

C
h

a
n

g
e 

in
 m

e
a

n
-s

q
u

a
re

-r
e

s
p

o
n

s
e 

(d
B

) 



^ 
5.

 III
 tl On
 

:g
 

f 
I n 

5"
 5

" 

n 
^ O

-
K

'S
 

?r
 kO

 II ?l
 

C)
 U

] 
^ 

(%
 

It
 S-

o s CO
 

c (B
 

CD
 

N
 O
 

M
o

b
il

it
y 

(d
B

 r
ef

 1
 m

/N
s

) 

M
o

b
il

it
y 

(d
B

 r
ef

 1
 m

/N
s

) 

(D
 

O)
 

(/)
 

d m
 i o X
 

N
 O
 

O
 

a
. 

C
O

 
3"

 
cz

 
S

i 
o M

 
O

 

i 

M
o

b
il

it
y 

(d
B

 r
ef

 1
 m

/N
s

) 

6 
5 

c 
5 

3
: cp
 I S

i 
o

" I o
 

IE
 

N
 O
 

o 

M
o

b
il

it
y 

(d
B

 r
ef

 1
 m

/N
s

) 



b I O
 

A
. 

o 

N
on

-d
em

en
si

on
al

 c
rit

ic
al

 fr
eq

ue
nc

y 
n 

-L
 

-J
. 

M
 

tV
p 

cn
 

o 
cn

 
o 

(n
 

CO
 

0
0 

I 5'
 

o D
 

w
 C)
 

R
 

r&
 

I I i § I I'
 o o b I Q
 

O
 

N
on

-d
em

en
si

on
al

 c
rit

ic
al

 fr
eq

ue
nc

y 

0
) 

0
0 



I i I 

s -b
. 

8 f § § I n I §- 2 §'
 

s-

&
 n G

 
•i

- R
 

re
 

N
on

-d
em

en
si

on
al

 c
rit

ic
al

 fr
eq

ue
nc

y 
Q

. 

8-
° 



w
 

3 § 

3 i"
 

. 
Oq

 
G

 

I %
 a.
 a 

&
 

g 
3"

 D
 

(%
 ^ 

' a S"
 

KJ
 

o s
 

I t i'
 

S»
 

'S
 

">1
 

Ĉ
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Figure 5.9 Two-mount isolation system with additional masses on CFCF flexible base 

structure 
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Chapter 6 

Conclusions and recommendations for further woric 

This thesis has described an investigation carried out on the a/W 

using acceleration, velocity and displacement 

feedback control with a decentralised control strategy. This chapter summarises the 

conclusions of this thesis and suggests some areas of further research on this topic. 

6.1 Conclusions 

The concept of active vibration isolation was described in Chapter 2 using a SDOF 

system. This concept was applied to a two-mount system with decentralised feedback 

control strategies. Simulations and measurements were conducted using this two-

mount system. Although, the simulations presented in Chapter 2 showed that all three 

strategies provide a stable system with a better performance than the original passive 

system the measurements showed that all three strategies are only conditionally stable 

in practice. It was shown that this discrepancy between the simulations and the 

measurements in terms of stability and performance is due to instrumentation. 

In Chapter 3 the sources of instability (that causes the discrepancy) at low frequencies 

have been investigated. It was shown that low frequency sources of instability could 

be treated as high-pass filters. Considering the three configurations, the acceleration 

feedback control system exhibited the lowest maximum allowable gain. The velocity 

feedback control system is unconditionally stable with one high-pass Alter (or with a 

real integrator) and displacement feedback control system is unconditionally stable for 

up to two high-pass filters. Some simple formulae for the maximum allowable gains 

for these systems and corresponding frequencies at which these systems become 

unstable (critical frequencies) were derived. It was shown that although displacement 

feedback gives better stability at low frequencies, its closed-loop performance is poor. 
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On the other hand, however, velocity feedback control system gives a stable system 

with better closed-loop performance. 

In chapter 4 the sources of high frequency instabilities were investigated. It was 

shown that although the displacement feedback control strategy exhibited good low 

frequency stability, with time-delay and low-pass filters in the feedback loop, it 

exhibits poor stability characteristics. It was also shown that among the three 

strategies the acceleration feedback control system has excellent high frequency 

stability characteristics. However the acceleration feedback control system with time-

delay gives poor closed-loop performance. Thus considering the high frequency 

stability and performance characteristics together, velocity feedback control is the 

most attractive control strategy. Simple formulae were derived for the maximum 

allowable gain with high frequency sources of instabilities for all three strategies. 

Considering low and high frequency sources of instabilities, velocity feedback control 

strategy was thus established as be more robust and hence most attractive for 

vibration isolation. Based on this conclusion the two-mount system with velocity 

feedback control was further investigated for the uncertainty due to component failure 

in Chapter 5. It was found that that the failure does not affect the stability of the 

system (Appendix F) but it does deteriorate the performances significantly. It was 

observed that in a two-mount system with a single channel failure only a small 

improvement in performance is possible when the gain in the working mount is 

increased from zero to infinity (a large gain). 

Thus, overall, this thesis has presented an investigated the stability and performance 

integrating (a) structural dynamics (b) signal 

conditioning devices and (c) actuators and sensors. Further it also has investigated 

into the uncertainty due to component failure. 
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6.2 Design Guidelines 

A velocity feedback control system exhibits better stability than either a displacement 

or acceleration feedback system at both low and high frequencies, and hence is 

recommended as the most attractive control system for vibration isolation 

applications. An acceleration feedback system has a maximum gain proportional to 

the damping ratio in the mount due low frequency instabilities (Table 3.1, page 81), 

and hence may have only a small maximum gain. Similarly the maximum gain for 

displacement feedback control is proportional to the damping ratio in the mount due 

to high frequency instabilities (Table 4.1, page 108), and hence may also have only a 

small maximum gain. The maximum feedback gain for velocity feedback is however 

proportional to the inverse of the damping factor for both low and high frequency 

instabilities, and so this can be large if the system is lightly damped before control. 

For a velocity feedback control system, lowering the cut-off frequency of the real 

integrator (and high-pass filters) improves the stability. However most piezoelectric 

accelerometers are not capable of a true DC response and can only produce a charge 

when acted upon by dynamic forces. In addition to obtain a low sensitivity of the 

accelerometer to environmental effects also demands a reasonable cut-off frequency 

of the integrator. Thus the choice of cut-off frequency is always a compromise 

between the stability of the system and the sensitivity of the accelerometer. 

With present technology it is easy to measure acceleration response. Velocity and 

displacement signals can be obtained by integration. An ideal integrator has a 

frequency response given by ^ - a n d hence at zero frequency (and near zero 

frequencies) it would give unacceptably high velocity (or displacement) signals. Thus 

it is essential to have a reasonable cut-off frequency of the integrator. It is therefore 

recommended that the characteristics of accelerometer and the importance of low 

frequency response should be considered in the design of the feedback controller. 

Amplifiers and practical dynamics of integrators act as high-pass filters. It was shown 

in this thesis that increasing the number of high-pass filters reduces the maximum 
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gain available. It is therefore recommended that the number of high-pass filters should 

be minimised and the cut-ff frequency also should be kept as low as possible. 

The accelerometer should also be selected in such a way that the accelerometer 

resonance frequency is well above that of the frequency range of interest. The number 

of low-pass filters in the control system should also be reduced for high frequency 

stability. For improved stability the cut-off frequency of the low-pass filters should be 

set well above the system resonance frequency. Another important factor is the time 

delay in the system, which causes high frequency instability. To maintain reasonable 

stability, steps must be taken to reduce the time-delay in the system. 

6.3 Recommendations for further work 

The work presented in this thesis considers active vibration isolation from random 

base vibration. However isolation of a piece of equipment from shock, which is a 

transient excitation is an important area. Although this transient will die out 

eventually, the piece of equipment may be damaged (or malfunction) due to shock. 

Thus the stability and performance of the active vibration isolation systems 

considered here should be investigated for shock. 

The investigation carried out assumes that the base is not moving in space 

significantly but has a random vibration. It is possible to have a vibrating base, which 

moves in space. Dynamically decoupling delicate equipment from such a moving base 

some times must be accomplished under the restriction of suspension rattle space. 

Even if the delicate equipment is actively isolated, damage can occur due to the base 

movement. Thus the limitations, stability and performance of the active vibration 

isolation systems considered here should be investigated for this case accomplishing 

the restriction of suspension rattle space. 
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Appendix A 

Commercial active vibration isolation solution providers 

In this appendix a brief survey of commercial active vibration isolation equipment 

manufactures and solution providers are given base on an Internet search. The corresponding 

Internet address is given in parenthesis. 

Technical Manufacturing Corporation (TMC^^) produces active vibration isolation tables 

(http://www.techmfg.com/Products/LabTables TableTops/20SRRTRS.htm) for general 

purpose high precision applications such as (a) Atomic Force Microscopes, (b) Scanning 

Probe Microscopes, (c) Commercial Interferometers, (d) Electro-Physiology Recording and 

(d) Semiconductor Inspection Equipment. They use a tailor made actuator unit (STACIS™ 

2000 - US Patent No 5660255), which is essentially an active/passive mount and is mounted 

in each leg of the table. These piezoelectric actuators receive information on disturbances 

through absolute velocity sensors. This information from the sensors causes the actuators to 

expand or contract as demanded by a feed-forward controller. 

Lord Corporation use active engine mounts in-order to isolate the engine of a rotary-wing 

aircraft developed by Bell™/Agusta Aerospace Company from the rest of the structure and 

thus reduce the cabin noise and vibration. 

fhttp://www.lord.com/news/2001/lord corporation selected to provide active vibration co 

ntrol.htm). The active/passive mounts, consisting of actuators, are driven by small power 

ampliHers in response to an adaptive control system in order to dynamically decouple the 

engine from airframe. 

Planning system incorporated- Melbourne controls Group, have produced an active isolation 

fitting (AIF), which is essentially an actuator with a controller. The Controller works on a 

feedback control technique with non-adjustable (or pre assigned) gain. This product hence 

requires an external sensor. It is claimed that it provides 20 - 30 dB of wide band vibration 
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isolation (http://www.psi-controls.com/aif.htm) and could be used for precision pointing 

devices. 

Herzan (TittpV/www.herzan.com/herz 15 .htm) introduces active vibration isolation technology 

(they call it the AVI series) that senses vibration levels and counteracts them via an inertial 

feedback technique. The potential applications include: (a) measuring equipment mounts (b) 

microscope mounts (c) mounts for inspection stations etc. A similar product is manufactured 

by CSA Engineering, Inc (http://www.csaengineering.com/semicon/elite.shtml) for original 

equipment manufacturer (OEM) products and they call it ELITE-3. It works at 1 Hz, which 

is the resonance frequency of the table. A feedback control loop works on digital control 

principles of activates piezoelectric actuators. Electrodynamic inertia! sensors are used as 

sensors. 

Although the number of commercial companies given above is few, it can be seen that there 

is a wide range of vibration isolation applications for which active isolation techniques are 

used. 
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Appendix B 

Stability of a base excited single-degree-of-freedom 

(SDOF) system 

B1 Plant frequency response 

From equation (2.6) (in Chapter 2) the plant frequency response function of a base excited 

SDOF system can be written as, 

G(_/Vy) = (Bl) 
^ z + z _ + z y z 

f m m O f 

where =-^—t-c is the impedance of a single mount. The mobility of the base and the 

impedance of the equipment are Y}, and Zg respectively. Expanding the equipment impedance 

and base mobility in terms of their real and imaginary components gives. 

Z, = Z,, + yZ,, and (B2, B3) 

where Zg,., and Zg/, are the real and imaginary parts of the equipment impedance respectively, 

and Yhr and Yu are the real and imaginary parts of the base mobility respectively. The terms 

Zer and Ybr are always positive or zero [3,93]. Substituting equations (B2) and (B3) into 

equation (Bl) gives, 

G(jff l )= ^ (B4) 

(Z„ + j z M — + c (1 + R , + A , ) ( Z „ + ./Z„)) 

Lettmg A + jS = (4+, ,T,„)(Z, , + jZ„) , where A = ft,Z„S = (4Z, ,+S; ,Z„ ), 

equation (B4) can be written as, 

G( ;®) = ^ (B5) 

)+ ^ + (l + A + yB) 
/ 

Letting, 
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G{Jm) = 
(P, + jP.) 

f 

where P = 
V 

c(l + A ) + — + 
CO 

( 
and p. = c B -

A:(l + A) 
+ Z. 

0 

rewritten in terms of its real and imaginary parts to give, 

G(;A))= 
P. 

-J-

(B6) 

, equation (B6) can be 

(B7) 

B2 Acceleration feedback control 

The feedback frequency response function of an ideal system with acceleration feedback 

control is given by H . Thus the open-loop frequency response function can be 

written as, 

G ( » « ( . , = + (B8) 

Applying the Nyquist criterion gives Q) = 0 ox P^ = 0. (The imaginary part of equation (B8) is 

equated to zero and the resulting condition is substituted into the real part of the equation 

(B8). If the real part is positive then the system is unconditionally stable. If it is negative the 

real part is equated to - 1 and solved for the maximum gain.) 

Thus, when the imaginary part of the equation (B8) is zero, (U = 0 = 0 . When 6) = Othe 

real part is also zero. Letting the frequency at which = 0 be 6)̂  (i.e. critical frequency), 

then the real part of the open-loop frequency response function can be written as (i.e. 

substituting forf). = 0 and in equation (B8)), 

Equation (B9) can be written as, 

Re(G{jw^)H{M)) = 6). 

6). 

(B9) 

(BIO) 

Substituting for A = ) and B ) in equation (BIO) gives, 
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(BID 

Case 1: The equipment is mass-like 

If the equipment is mass-like then = jcom^ and hence = 0 & Z .̂ = com .̂ Substituting 

these quantities in equation (B11) gives, 

Re{G(jco,)H(ja,,)) = - (B12) 

Now considering = 
\ 

c{l + A)+— + Z, 
01, J 

= 0 at (0 = 0)̂  and substituting for A and B gives, 

(B13) C(1 + y,,2„ -F.,Z„)+ — (F„Z„ + Y„Z„.)+Z„ = 0 

Substituting for = 0 & Z ,̂ = 6);?%̂  in equation (bl3) and rearranging gives, 

c 

Substituting (B14) in equation (B12) gives, 

Re(G(j0),)H{j0l,)) = 

C6) 
V " y 

(B14) 

(B15) 

m 

Since >0[3,93] and all other parameters such as g^,^,c,A)g etc (in equation (B15)) are 

also greater than zero the real part of the open loop frequency response is positive when the 

open-loop frequency response plot crosses the real axis. Hence the system is unconditionally 

stable irrespective of the nature of the base mobility. 

Case 2: The equipment is stiffness-like 

k k 
If the equipment is stiffness-like then Z_. = - y — , and hence Ẑ ^ = 0 and Ẑ ^ = — ^ 

a 0) 

Substituting these quantities in equation (Bl 1) gives, 
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Re{G{jm,)H{jw,)) = 
& 
% 

A . 
% 

^ A: ^ + & A). 

(B16) 

Now substituting for = 0 and Z,, = —^in equation (B13) and rearranging gives, 
Q) 

= _ ^ y 
CO)? 

(B17) 

Substituting (B17) in (B16) gives, 

Re{G(jo>,)H{Ja,^)) = 
/ J 2 \ 

(B18) 

c + —^ 
CA) 

V '• y 

+ -

Since >0[3,93] and all other parameters are positive, the real part is always negative 

irrespective of the nature of the base mobility. The maximum gain can be obtained by 

equating the real part to -1. This gives. 

J _ 
% 

rr 
c + 

w 

/ , \ 

& 
6)̂  + -

0),. 
(B19) 

(Note that if the system critical frequency is small then it has a large gain margin) 

Special case 1: Base is either mass-like or sti^ness-like 

1 CO 
This gives = - y or = y— where and are mass and the stiffness of the base. 

For both of these cases = 0 and from equation (B19) 

»a_n]ax 2 
(B20) 

Equation (B20) gives the maximum gain when the base behaves as either a stiffness or a 

mass and the equipment behaves as a stiffness. 

B3 Velocity feedback control 

The feedback frequency response function of an ideal system with velocity feedback control 

is given by (yA)) = . Thus the open loop frequency response function can be written as. 
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(B21) 

Applying the Nyquist criterion gives / ^ = 0 , (The imaginary part of equation (B21) is 

equated to zero and the resulting condition is substituted into the real part of the equation 

(B21). If the real part is positive then the system is unconditionally stable. If it is negative the 

real part is equated to - 1 and solved for the maximum gain.) 

From equation (B21) when f , = 0 the real part of open-loop frequency response function 

becomes, 

= ^ (B22) 

{ kB ^ 
U s i n g c ( l + A ) + — + and substituting for A = and 

I 6) ^ 

B ) equation (B22) can be written as, 

Re{G(ja,,)H{Jl0,)) = ^ (B23) 
c{i + Y„Z„ + 4 Z „ ) + Z , , 

Now consider the following cases, 

Case 1: The equipment is mass-like 

When the equipment behaves as a mass (i.e. = jcom, thus Z,^ = 0 andZ^,. = corn) equation 

(B23) reduces to, 

fe(G(jffl,)i/(M)) = f (B24) 

Now considering = 
CO 

& Ẑ ^ = 0 and Z ,̂ = (Wm and rearranging gives, 

= 0 , substituting for A, B 

+ (B25) 

Substituting equation (B25) in equation (B24) gives, 
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^ ^ ( i + c 4 ) + t e , i ; , 

CB26) 

Since > 0 for any base mobility [3,93], the real part of the open-loop frequency response 

function given in equation (B26) is positive when it crosses the negative real axis. Hence the 

isolation system with velocity feedback control is unconditionally stable irrespective of the 

base mobility. 

Case 2: The equipment is stiffness-like 

jk A: 
When the equipment behaves as a stiffness (i.e. Z ^ = - y — , thusZ =OandZ^, = — 

CO CO 

equation (B22) reduces to, 

Re(G{jo>,)H{jo,,)) = - gv 

0),. 

7 , \ 

Y 
2 hr 

(B27) 

A). 

Now if the base is also stifAiess-like then 1% = and hence -

Substituting these quantities in equation (B27) gives, 

fe(G(M.)g(M))= 

C 1 + ^ 

I 

(B28) 

Thus if the bzise also behaves as a stiffness then the system is unconditionally stable. 

If the base is mass-like then K 
1 

these quantities in equation (B27) gives, 

Re(G(ja>,)H(jm,)) = 

and hence = . Substituting 

(B29) 

1 — 

Thus if the base behaves as a mass then the system is only conditionally stable. 
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B4 Displacement feedback control 

The feedback frequency response function of an ideal displacement feedback control system 

is given by / / (yG)) = . The open loop frequency response function can be written as, 

+ _ (B30) 

As before when the imaginary part is zero = 0 and the corresponding real part can be 

written as, 

(B31) 

Using 7̂  = 

written as. 

A) 
and substituting for A and B the equation (B31) can be 

8d 

(B32) 

Case 1: The equipment is mass-like 

If the equipment is mass-like then Z, = jcom^ and hence = 0 & Z .̂ = 0)1% Substituting 

these quantities in equation (Bll) gives. 

Re{G(jm,)H(jo>,)) = - Sd (B33) 

6). - — 0 - )+ 

Substituting from equation (B14) for ) = i n equation (B33) gives, 

^ 2 ' 

C + : 
CO) 

\ " y 

(B34) 

m 

Since 1̂ ^ oAer parameters such as etc (in equation (B34)) are also 

greater than zero the real part of the open-loop frequency response is positive when the open-
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loop frequency response plot crosses the real axis. Hence the system is unconditionally stable 

irrespective of the nature of the base mobility. 

Case 2: The equipment is stiffness-like 

If the equipment is stiffness-like then. - j , and hence = 0 and Z ,̂ = — ^ 
0) 

Substituting these quantities in equation (B32) gives, 

1 

A) 

Re(G{joi^)H(}a,^)): 

V 

i + - ^ y 

Now substituting (B17) in equation (B35) gives. 

V 
6). 

(B35) 

/ 
A). 

\ + cY, + 

(B36) 

V y 

Since - 0 [3,93], the real part is always positive irrespective of the nature of the base 

mobility. The maximum gain can be obtained by equating the real part to -1 . This gives. 

(B37) 

(Note that if the system critical frequency is small then it has a large gain margin) 

Special case 1: Base is either mass-like or stiffness-like 

This gives j ^ or )& = for both of these cases 1̂ ;. = 0 and from equation 

(B37) 

(B38) 

Equation (B38) gives the maximum gain when the base behaves as either a stiffness or a 

mass and the equipment behaves as a stiffness. 
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Appendix C 

Formulation of transformation matrix, equipment 
impedance and moment of inertia 

In this Appendix the transformation matrix Q, equipment impedance matrix Ze and moment 

of inertia of the equipment about it mass centre V, which are required to analysis the two-

mount system considered in chapters 2 and 5 are derived. 

C1 Transformation matrices 

From Figure 2.2a mass centre velocities a = 

Vgi and Vg2 by, 

V 

/a 
are related to the mount location velocities 

V,, = V - (CI) 

where / is the distance between the mounts and r is the ratio of the distance between the left 

hand mount and the mass centre to the distance between the mounts. Equations (CI) and 

(C2) can be written in matrix form to give, 

' v / "l - r " V 

7,2. 1 1 - r Zg 
(C3) 

Thus the transformation matrix Q that relates the vector of velocities at the mass centre to the 

vector of velocities at the mount positions is given by, 

Q = 
1 - r 

1 l - r 
and hence Q = 

1 - r r 

- 1 1 
(C4, C5) 
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C2 Equipment impedance matrix 

Letting the mount forces on the equipment at locations 1 and 2 in Figure 2.2a b e ^ i a n d j ^ 

respectively, then the equations of motion in the frequency domain can be written as, 

-/"K,! + (1 - /-) ̂ ^ 2 = ^ 

where J is the moment of inertia of the equipment about its mass centre. 

Equations (C6) and (C7) can be rearranged to give the matrix equation, 

(C6) 

(C7) 

/ml 
7M ( 1 - r ) - 2 

I' 

e 

V 

Equations (C3) and (C8) can be combined to 

(C8) 

where, v_. = » fm — 
/ml 

A,2J 
and Zg is given by. 

Z, = 

/Mr(l-7-j—^ mr + — 

(C9) 

Since the mounts are assumed to have equal properties, the impedance matrix of the mounts 

can be written as. 

Z_ = 
Z . 0 

0 z_ 
(CIO) 

where Z ,̂ = 1- c. 

C3 Approximate method of finding the equipment moment of 

inertia 

For the system discussed in chapters 2 and 5, the total mass and length between mounts Z 

is assumed to be constant, but the centre of gravity is at position rl from the left hand end of 

the mount. The system used in the experimental work in Chapter 5 consists of an aluminium 

plate with two shakers and movable masses, which can be lumped on shakers so as to move 

the mass centre. A schematic diagram is shown in Figure CI . The masses mi and mi 
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represent the masses of control shakers and any additional masses lumped on them. It is 

assumed that masses m\ and mi are point masses and hence the moment of inertia of these 

point masses about the neutral axis trough mass centre of the system is negligible. 

mi Mass centre 

— • ^ f " 
• 

< -

rl a-r}l 

w 

— • 

Figure CI Schematic diagram of the system with shakers and additional masses. 

The plate is assumed to be symmetric and the moment of inertia about its centre of gravity is 

m 

given by J w h e r e Jp , mp and Ip are the moment of inertia, the mass and the length 

of the plate respectively. 

Using the parallel axis theorem the moment of inertia of the plate about the mass centre of 

the system can be written as [81], 

/ 
12 

2 f 
+ m 

(l-2r)l V 

\ 

(CIl) 

where Jpg is the moment of inertia of the plate about the mass centre of the system. 

Now the moment of inertia of the masses with respect to the mass centre of the system can 

be written to give, 

J^=n \ rH^+m2{\ - r )^ f ' (CI 2) 

The total moment of inertia is the sum of moment of inertias given in (CI 1) and (CI2) and is 

given by, 

(C13) 

Letting m^=m^+m2 and taking moments about the mass centre gives. 

n\rl = m rl 
v2 y 

+ ^2 ( l - r )Z (C14) 
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From equation (CI 4), the ratio r a s a function of the masses is given by r = 
2/712 + nij, 

C4 Approximate model of the system considered in Chapter 5 

In-order to represent a system with dominant equipment mass, which is also consistent with 

the experimental work and simulations in pervious Chapters, the total mass m, length 

between mounts I are assumed to be constant. Hence for analytical purpose the actuators are 

assumed to be mass less. Similar to the previous cases the mass centre is considered to be at 

rl from the left-hand mount. Mass of the equipment to the left of the mass centre is mi and to 

the right of the mass centre is ma. 

Mass centre 

mi mt 

rl a-r)i 

Figure C2 Schematic diagram of the distributed system 

Considering total the mass and moment about its mass centre, masses mi and m^ can be 

written as, m, = (l - r)m and m^ = rm. Two plates can be combined to represent an off mass 

centre equipment. Thus moment of inertia about the mass centre of the equipment can be 

written as, 

7 = 
(rlf 

4- m. 
12 

+ mn 

This can be simplified to give, 

m 

(C15) 

(C16) 
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Appendix D 

Input and transfer mobilities of a clamped free clamped 

free (CFCF) base 

In-order to study the effectiveness of active control of a base excited system, a CFCF base 

structure was chosen as a flexible base. A CFCF boundary conditions of a base structure is 

relatively easy to realise in practice. Figure D1 shows a layout of a CFCF base structure and 

the physical co-ordinate system. Thin plate theory in conjunction with Warburton's method 

[82] is used to describe the dynamics of the CFCF base structure. 

The governing equation for undamped plate vibration [9] is given by, 

Where D= —, E is Young's modulus, h is the thickness of the plate, v is Poisson's 
12(1 -1 / " ) 

ratio and V = — r + 
ay" ' 

Letting and = )')g '̂™and substituting in equation (Dl) 

gives, 

W ( z , y) - A:,V(jc,),) = (D2) 

Where ^ 4 _ 
D 

Applying Warburton's method [82] where beam functions are used to describe the plate 

modes (m, nj, the amplitude of the out-of-plane displacement can be represented as a 

sum of an infinite number of structural modes. 

W(%.)') = Z Z ^ ' . A , W A ( ) ' ) (D3) 
m=2 n=o 
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where and are the characteristic beam mode shapes in the % and y direction 

respectively which are chosen to satisfy the plate boundary conditions in the direction they 

represent and Bm;, is the complex amplitude of the mfi'* mode. Since the clamped boundary 

conditions are regarded as modal lines m > 2 is assumed. Although there are an infinite 

number of modes, which contribute to the vibration response of a plate, in practice a Onite 

number of modes must be used, and equation (D3) can be written aa, 

M 
V{x.y) = YY^B^,W..U.y) (D4) 

m=2 yi=o 

where = 

Multiplying both side of equation (D2) by y/pqix.y) and integrating over the whole area of the 

plate gives, 

06 4 a 
j j [ W ( % , y) - ^ V(%, (%, y)6Wy = -^ j j (:(, y)(Wy (D5) 

where a,b are the length and width of the plate (in the x and y direction respectively) 

The orthogonality of any two modes gives, 

j j = 0 for 

0 0 

= for 

where is called a normalising factor. 
Because of the orthogonality conditions, equation (D5) reduces to. 

j jVV(%, (%, = - 1 j (x, (D6) 
D D 

00 ^ ^ 0 0 

The natural frequencies are obtained by solving equation (D6) after setting the force 

component to zero. (Since the natural frequencies correspond to the modes m, n, they are 

denoted by 

g 6 7̂ n ^ 
j j W ( ; c , ( X , = 0 (D7) 
00 ^ 

From equations (D6) and (D7), 

o 6 
j j f (%, (%, 
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For a point force excitation (such as that generated by a shaker) the forcing function can be 

represented using the delta function [8]. If the force is applied at position (jcj.yj) then, 

= (D9) 

The RHS of equation (D6) then becomes, 

a 6 
j J F(z, (z, ) (DIO) 
0 0 

From equations (DIO), (D8), (D4), substituting for y/pg(%o,)'o) and including the damping 

coefficient gives, 

x;(%, y): 
f;, ^ f (^) 

(Dll) 
(G)l - A)" + 

It is now possible to calculate the mobility at a point due to the force applied at 

This is given by the following equation. 

y, 
F ( i . , y . ) + ;%0)^a) ) 

(D12) 

The relevant beam functions are given by the following equations, 

# Free-free beam, 

1 form=0; 

2;c' 
a(;c)= 1 

^(x) = cos X 

Where = -

0(x) = sin y 

a 
For m=l; 

JC 1 

a 2 
+ ^ cosh / 

X 1 

a 2 
For m=2,4,6.. 

sin(y / 2) 

sinh(// 2) 
and tan(x / 2) + tanh(y / 2) = 0. 

% 1 

a 2 
+ ^ s i n h y 

z 1 

a 2 
For m=3,5,7... 

Where A/ = ^ and tan (y^2 ) - tanh ( y / 2 ) = 0 
' s i n h ( / / 2 ) ^ ^ 

(D13) 

# Clamped-clamped beam 

= cos y 
V 

2 _ 1 
6 2 

+ ^2 cosh y 
J \ 

2 _ 1 
6 2 

For m=2,4,6... 

J 

Where = ——^7^7^ and tan (y/2)+tanh (y/2) = 0 
sinh (y/2) 

175 



= sin y 

Where k'o 

2_1 
6 2 

+ A:2 sinh X 2 _ 1 
6 2 

For m=3,5,7... 

s i n ( / / 2 ) 

sinh ( / / 2 ) 
and tan ( / / 2 ) - tanh ( / / 2 ) = 0 (D14) 

Equation (D12) can be used to calculate the theoretical mobility, provided the natural 

frequencies and beam mode functions for free- free and clamped-clamped conditions are 

known. The natural frequencies are given by [82], 

= 

48/7(1-1/ ) 

where is given by [82], 

(D15) 

(D16) 

Where / c & Jy for a non-square plate with clamped-free-clamped-free 

boundary conditions are given in Table D1 [82] 

m or M 0 1 2 3,4,5... 

G, - - 7.506 

H, - - (m - 0.5)^ [1 - 2/{(m - 0.5);:}] 

Jx - - (m-0.5)"[ l -2/{(m-0.5);z:}] 

Gy 0 0 

Hy 0 0 (M-0.5)"[ l -2 /{(»-0 .5) ; r}] 

Jy 0 12/;;^ (n-0 .5)^[ l + 6/{(M-0.5);F}] 
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Appendix E 

CXamped-free-clamped-free (CFCF) base structure model 

validation 

The agreement between the simulation and experimental results for the CFCF base structure 

presented in Chapter 2 depends on the validity of the model of the base structure. Thus it is 

useful to check on the validity of the model of the base structure. Three checks were 

performed for this purpose. 

1. Comparison of receptance (stiffness) with a beam model. 

2. Comparison of calculated and measured accelerance. 

3. Comparison of resonant frequencies and mode shapes with measurements. 

In the following sections these are discussed. 

E1 Comparison of receptance with a beam model 

Figure El shows the point receptance of the base CFCF base structure calculated at the 

centre of the plate (x=260 mm and y=350 mm - with reference to Figure 2.7). Equation 

(D12) (in appendix D) gives the mobility of a CFCF base structure. The receptance can be 

found from the mobility by considering the relationship Y.j = JcdR^j , where Rjj denotes the 

receptance at (Xi,);:) due to a force at (.)̂ ,){,). The beam functions and modal frequencies 

required to calculate the receptance of the CFCF base structure are given in equations (D13). 

(D14), (D15) and (D16). From Figure El , the receptance at low frequency (which is 

approximately constant) is given by, 103.8 dB (dB ref Im/N), which is 6.457e"® m/N. The 

stiffness is given by 1/Receptance and so the stiffness is 1.55e5 N/m. 
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10 10' 

Frequency (Hz) 

Figure El Receptance plot of the CFCF base structure (simulation) 

The stiffness obtained from the simulations was compared with a beam of clamped-clamped 

boundaries to confirm the order of magnitude of stiffness. The stiffness at the mid span of a 

clamped-clamped beam with length I is given by [9], 

Stiffness =192E7/Z^ (El) 

Where E is the Young's modulus and / is the second moment of area of the cross section of 

the beam about its neutral axis. It is given by I Where b and t are the width and the 

thickness of the beam respectively. A beam of length 0.52 m, width 0.7 m and thickness 1.9 

mm with Young modulus 2.06el 1 Pa, the stiffness is given by, 

Stiffness = 1.27 gJ N/m. 

Although there is reasonable agreement with the beam model, the actual magnitudes differ 

from each other. This is because of the beam model assumes that the thickness and width are 

small in comparison with the length. But here the width is greater than the length. 

Note that the stiffness of a plate is given by 
192Er 

which does not inlude the boundary 
12( l -v^) 

conditions. Hence for comparison a beam model is chosen which reflects the bounday 

conditions. 
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E2 Comparison of calculated accelerance with measurement 

Equation (D12) gives the mobility of the CFCF base structure at (x,, y j f o r a unit excitation 

at The accelerance can be calculated from mobility using . Figure E2 shows 

simulated accelerance calculated at the centre of the base plate. Similarly accelerance can be 

obtained by measuring acceleration at the centre of the base structure per unit excitation at 

the centre of the base structure. 

Figure E2 shows the simulated and measured accelerance of the CFCF base structure. It can 

be seen that, although they do not match exactly, there is reasonable general agreement. At 

low frequencies the simulation shows the first peak at a higher frequency than that of the 

measured accelerance. One possible reason is that the simulation considers perfectly 

clamped-clamped boundary conditions for one pair of edges while it is only bolted at equal 

spacing in the real base used. This means that the base is predicted to be stiffer than it 

actually is. 

Q) 10 

O - 1 0 

10 
Frequency (Hz) 

Measurement:, 
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E3 Comparison of resonant frequencies and mode shapes withi 

measurements 

A comparison of the measured and predicted first six natural frequencies of the CFCF base 

structure is given in Table El . Natural frequencies can be calculated using equation (D15) 

given in Appendix D. Measured natural frequency given in Table El was extracted from the 

measured accelerance given in Figure E2. 

Calculated 
Frequency (Hz) 

Measured 
(Hz) 

2,0 42.11 32.5 

2,1 46.33 37.0 

2,2 62.77 62.0 

2,3 84.33 93.0 

3,0 116.04 116.0 

3,1 121.9 121.0 

A comparison of mode shape was also made. Dividing the mobility given in equation (D12) 

gives the receptance of the base structure. For each natural frequency receptance can be 

calculated at various points of the base structure. For first four natural frequencies, 

receptance was calculated at a 30 x 20 grid points and mode shape were plotted from 

magnitude and phase information, which are given in Figures E3a, E3c, E3e and E3g. 

A 10 X 7 grid was marked on the CFCF base structure. The receptance at these positions was 

measured by placing an accelerometer on each grid point on the base structure for a 

broadband excitation at the centre of the base. The required magnitude and phase 

information for each mode was then extracted and the mode shapes were plotted. It can be 

seen from Figure E3 that the first four measured and simulated mode shapes are generally in 

good agreement. 
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Clamped-damped Free-free edge Clamped-damped 0.1 Free-free edge 

Ffgwrg EJ 5'(7Mw/â e<̂  oncf meâ ywrĝ / q/̂ fAg CFCF jfrwcfwrg. 

E4 Concluding remarks 

The first method described in section El is a simple check for low frequency behaviour of 

the physical and the mathematical model. The second check given in section E2 compares 

the two (the physical and the mathematical model) over a band of frequency. In addition, it 

can be used to compare the agreement between damping used for the mathematical model 

and the damping present in the physical model. First two methods are based on a single point 

on the base structure and the third method includes entire surface of the base structure. All 

these three methods show that the mathematical model is generally in good agreement with 

the physical model. 
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Appendix F 

Stability of a multi-input-multi-output (MIIVIO) system on a 
rigid foundation 

In this appendix proof of the unconditional stability of a MIMO vibration isolation system on 

a rigid foundation is presented. Figure F1 shows a multi-input (n secondary forces or control 

forces) and multi-output {n co-located equipment velocities) system in the form of a block 

diagram. From Chapter 2 it can be seen that the plant response matrix is the mobility matrix 

of the system when excited by the vector of control forces in the absence of the primary 

disturbance. 

The output velocity vector is related to the input control force vector through mobility matrix 

by, 

v , = Y f , (Fl) 

where Vg, fc and G (jo)) = Y denote the velocity vector, control force vector and mobility 

matrix respectively. The concept used to prove unconditional stability is briefly stated below. 

The stability criterion for an MIMO system states that the system is stable if and only if none 

of the of the open-loop eigenvalue plots includes the critical (-1,0) point of the Nyquist plane 

[31]. In other words the system is stable when the imaginary parts of the eigenvalues are zero 

and the real parts are greater than -1 . The system is unconditionally stable if the real parts of 

the eigenvalues are greater than zero (i.e. Re ( ^ ) } - )-
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According to Maxwell's reciprocity theorem Y = (So the mobility matrix is symmetric). 

Applying the Schur decomposition [90] of Y gives, 

Y = QrTQ, (F2) 

where T = +N and A^ = diag ) are the eigenvalues of Y, and N is strictly 

upper triangular and Qs is the transformation matrix which can be chosen so that eigenvalues 

Ani appear in any order along the diagonal A^ [90]. The superscript H denotes the conjugate 

transpose. 

The power supplied to the system by the control actuators 11 is given by [93], 

n = l R e { f > , } = i R e { f . " Y f J (F3) 

Substituting for Y from equation (F2) into equation (F3) gives, 

n = i R e { f « Q « T Q . f J (F4) 

Letting p = , equation (F4) can be written as, 

n = i R e { p " T p } = i 2 l K r R ' :R,}+:^Re{p"Np} (F5) 
6 ^ f = l ^ 

Equation (F5) can be written to give, 

which can also be written as 

n = j Z | p ; r R 4 A . } + ^ R e { ( p " N p ) + ( p " N p ) " } (F6) 

n = 7 2 ; | f t r R e R , } + : ^ p " D p (F7) 

N + N" 
where D = — - — . S i n c e D is a Hermitian matrix it can be diagonalised to give, 

D = Q"AjQ^, where A^ = diag At,) is the transformation matrix. Also 

letting s = Q^p, equation (F7) can be written to give, 

n = | S | A r R e R , } + i s " V (F8) 
Z ,-̂ 1 z 

Equation (F8) can be written as, 

n = j l l m r R e K } + ; Z k , r ( 4 ) (F9) 
^ f=l f=I 

Since D is a Hermitian matrix, the eigenvalues of D are real (but not necessarily positive). 

Since the power supplied must be equal to or greater than zero for all frequencies, equation 
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(F9) must hold for all frequencies so. Re ^ 0 - Thus the system is unconditionally stable 

with velocity feedback control. 

Since acceleration or displacement feedback control system only add a 90-degree phase 

advance or lag to the above system, they are also stable. 
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Appendix G 

Analysis of maximum gain of a SDOF system 

In Chapter 3 maximum gain corresponding to different number of high-pass filters are 

derived. Acceleration, velocity and displacement feedback control system with no high-pass 

filter (ideal system) and one high-pass filter are discussed in Chapter 3. 

Consider an acceleration feedback control system with two first order high-pass filters. The 

open-loop frequency response function is given by, 

A . 

V 

1 + 
(Gl) 

Equation (Gl) can be arranged into real and imaginary parts as follows, 

^ ( 4 ( 0 0 ' + ( 1 - n " ) ( a ' n " - 1 ) ) 

7M 

Applying the Nyquist criterion as described in Chapter 3 gives, 

For systems with <% » 1 and ^ « 1 , the critical frequency is given by, 

(G5) 

Substituting the critical frequency into the real part of the open-loop frequency response 

function given by equation (2) and equation to - I gives the maximum gain as. 

= (G6) 
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Now consider velocity feedback control system with two high-pass filters. The open-loop 

Irequency response function is given by, 

( l - n ' ) + ; 2 ^ 1 + jctQ 
(G7) 

Equation (G7) can be arranged into real and imaginary parts as follows, 

Re{G( ;0) j : f ( ;n )}= 
1 - n " y + ( 2 ^ y j ( i -H or'Q" y 

2^ + (l - -1 ) ) 

(G8) 

(G9) 
(l - n " ) + ( 2 ^ ) j ( l + or 'a") 

Applying the Nyquist criterion and considering a » \ and ^ « 1 gives the critical frequency 

as, 

a 
(GIO) 

Substituting the critical frequency into the real part of the open-loop frequency response 

function given by equation (G8) gives (for <% » 1 and ^ « 1 ) , 

a 

7 
(Gi l ) 

Now consider velocity feedback control system with three first order high-pass filters. The 

open-loop frequency response function is given by, 

jO. 

( l - n ' ) - H ; 2 ^ 1 + yaO 
(G12) 

Equation (G12) can be arranged into real and imaginary parts to give, 

Re{G(;n)/7(_/^l)}= 

Im{C(;0)y7( ;n)}= 

- 3 ) 4 - - 1 ) ) 

1 - a " ) \ ( 2 ^ y )(l + y 

^ a' (2^ -1)+or (1 - - 3)) 

(G13) 

(G14) 

Applying the Nyquist criterion and considering a » 1 and ^ « 1 gives the critical frequency 

as. 

188 



a. S 
0315) 

Substituting the critical frequency into the real part of the open-loop frequency response 

function given by equation (G13) gives (for o r » 1 and ^ « 1 ) , 

(G16) 

Now consider displacement feedback control system with two first order high-pass filters. 

The open-loop frequency response function is given by, 

f \ 
g j 1 

1 + jc£l 
(G17) 

J 

Equation (G17) can be arranged into real and imaginary parts as follows, 

\ n " 4- (i - Q") - 1 ) ) 
R e { G ( ; n ) ^ ( ; a ) } : 

I m { G ( ; Q ) ^ ( ; n ) } = 
V ^ y 

1 - n " ) \ ( 2 ^ y ) (l -h ) ' 
(G18) 

(G19) 
( l - n " ) + ( 2 ^ ) 

Applying the Nyquist criterion and considering o r » 1 and ^ « 1 gives the critical frequency 

as, 

O, 
1 

V i + ^ 
(G20) 

Substituting the critical frequency into the real part of the open-loop frequency response 

function given by equation (G18) gives. 

R e { G ( ; a ) ^ ( ; Q ) } = 
^ j ^ + 4 ^ 4-1 )4- +1)) 

Which is positive and hence the system is 

(G21) 

Now consider displacement feedback control system with three first order high-pass filters. 

The open-loop frequency response function is given by. 

1 

1̂ — ^ 4- J 2^0 + 
(G22) 

Equation (G22) can be arranged into real and imaginary parts as follows. 
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R e { C ( ; n ) ^ ( ; 0 ) } = 
k 

\ y 

n " - l ) + o r ( n " -l)(Qr"n" - 3 ) ) 
(G23) 

I m { G ( ; n ) ^ ( ; n ) } = 
V ^ y 

- 3) + (l - ) (3ar^Q^ -1) ) 
(G24) 

^ 1 — + ( 2 ^ n ) j ^ i+a"O^J 

Applying ± e Nyquist criterion and considering a r » 1 and ^ « 1 gives the critical Aequency 

as. 

n 
1 

V3, a 
(G25) 

Substituting the critical frequency into the real part of the open-loop frequency response 

function given by equation (G23) gives (for « » 1 and ^ « 1 ) , 

Sd_ 8̂ (G26) 

Now consider displacement feedback control system with four high-pass filters. The open-

loop frequency response function is given by, 

gd 1 

( l - 0 ' ) + ; 2 ^ 1 + yoil 
(G27) 

Equation (G27) can be arranged into real and imaginary parts as follows, 

n g or" - 1 ) + (n" - - H l ) ) 
(G28) 

I m { G ( ; n ) 7 f ( ; n ) } = -
2a" +1) -H 2(% (1 - Q") - 1 ) ) 

1 - n " y + ( 2 ^ y j ( i + y 
(G29) 

Applying the Nyquist criterion and considering o r » 1 and ^ « 1 gives the critical frequency 

as. 

1 

a 
(G30) 

Substituting the critical frequency into the real part of the open-loop frequency response 

function given by equation (G28) gives (for a r » 1 and ^ « 1 ) , 

Sd_ (G31) 
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Appendix H 

Analysis of instruments used in active control 

An attempt was made to study the characteristics of each instrument used in this 

project and to mathematically model their characteristics that were obtained 

experimentally. 

HI Power AmpliGers 

A simple experiment, as depicted in Ogure HI, was conducted to measure the 

frequency response of the power amplifiers. White noise from a Hewlett Packard 

analyser C (Type 35650 serial No 2911A02485) was fed into the power amplifier and 

the output was normalised by the input white noise signal. Figure H2 shows the 

measured characteristic of power amplifier 1 (H/H electronic TP A 50-D, S.No 

14415), which was used in the experiment discussed in Chapter 3. 

It can be seen that the phase of the system tends to zero above 100 Hz. In addition at 

low frequencies the phase trends to 90 degrees. It suggests that the power amplifier 

contains a high-pass filter of first order, and a mathematical model can take the 

following form in the frequency domain. 

— , where g is the gain of power amplifier 1 and is the time constant. 

This function can be expressed as magnitude and phase. The magnitude is 

f A1 = , and the phase is ^ = 9 0 - t a n " \ r , , 6 ) ) . 

From measurement of power amplifier characteristics, the phase angle (j); and the 

magnitude PAl, are known for each frequency points f; in the range 0-200 Hz. Where 

i goes from 1 to the number of frequency lines in the measurements n. Using the 
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phase relationship above, the time constant be calculated for each frequency 

point fi . ^ becomes, 

(HI) 
CO-

Now using magnitude relationship and equation (HI), the coefficient g ,, can be 

calculated for each frequency point. It becomes, 

g„„= ^ ^ (H2) 
A). 

An estimate of the time constant and gaing^, are the average of ^ and 

over the frequency range. Since it takes into account the measurement over the 

frequency range considered, they are considered to be reasonable estimate. They can 

be expressed as follows, 

(H3) 
n 

(H4) 

The frequency response function of the power amplifier 1 then becomes, 

_/0.2775A) 
Pow ampl = (H5) 

" (1 + ;0.06336)) 

Figure A2.2 also shows the Bode magnitude plot and phase plot for this model. It can 

be seen that this plot is in good agreement with the measured characteristic of power 

amplifier 1. 

Since power amplifier 2 (H/H electronic TP A 100-D, S.No 15397) was used as a 

controller all available gains were measure and are shown in Figure H3. The phase 

difference between the low and high frequency of the power amplifier characteristics 

suggests that it contains a high-pass filter of order 2. Hence the frequency response 

function can be written as, 
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= r (H6) 

where is the gain and 7^^ is ± e time constant of power amplifier 2. Similar to 

power amplifier 1, equation (H6) can be simplified to obtain the time constant 7^^ 

and ± e gaing^^. 

From the phase relationship the coefficient T at each frequency point becomes, 

C). "i 
tan 90—— 

(H7) 

Now using magnitude relationship, 

<„8) 

where PA2i and (j)i are measured magnitude and phase at each frequency points. 

Now the time constant 7^^ and gain can be calculated using equations (H3) and 

(H4) with appropriate modifications. Repeating the procedure for each gain settings, 

g 2 foi" Gach gain can be found. The frequency response function for the power 

amplifier 2 then becomes, 

,2 

0.063 

Where gp2 = [0.002, 0.0045, 0.0075, 0.0131, 0.0162, 0.020]. 

Pow amp2- (H9) 
- (1+ ;0.06336))" 

The mathematical model is plotted in the form of Bode magnitude plot and phase plot 

as shown in Figure H3. It can be seen that these plots are in good agreement with the 

measured characteristic of the power amplifier. Due to poor quality of the 

measurement at very low frequencies, the measurement of power amplifier 1 and 2 is 

not shown at very low frequencies. It is also interesting to note that the phase is 

independent of gain. This is because the characteristics of power amplifier are linear. 

Small peaks at frequencies 50 Hz and 150 Hz are due to the line effect. 
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H2 Charge Amplifier with integrator module 

As discussed in Chapter 3, a charge amplifier was used to integrate the accelerometer 

output so that the output is proportional to the velocity or displacement. Hence 

velocity or displacement feedback control can also be studied. Kim et el. [88] 

measured the characteristic of a single integrator of charge amplifier using the 

following approach. 

In the frequency domain acceleration and velocity are related by, 

X = j(oX 

This can be rearranged to give, 

Z 1 

Where X and X denote acceleration and velocity respectively. Therefore dividing 

the velocity response measured at a point by acceleration response measured at the 

same point. 

gives the integrator characteristics. Similarly dividing the displacement response 

measured at a point by acceleration response measured at the same point gives 

characteristics of the double integrator. 

The B&K (type 2635) charge amplifier was used for this purpose. It contains a high-

pass filter and an integrator module. For velocity and displacement response the high-

pass filter can be set to a cut-off frequency of IHz or lOHz. Signal from an 

accelerometer (B&K type 4375, S. No- 987173) attached to large shaker was fed into 

the channel 2 of Hewlett Packard analyser as shown in Figure H4. A random signal 

from the analyser, which was amplified by a power amplifier ( H/H electronic TP A 

50-D S.No 14415) excited the large shaker as shown in Figure H4. 

The measured characteristic of single integrator is shown in Figure H5. Due to the 

low sensitivity of the actuator and sensor at low frequencies, the responses at low 

frequencies are not shown. Even with a IHz cut off frequency there is a small phase 

advance at very low frequencies. However the phase approximately tends to -90 

degree at high frequencies. 
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The integrator module in the charge ampliOer performs integrations of the filtered 

signals electronically. It is assumed that the integrator module and high-pass filter can 

be represented separately in a mathematical model. 

Therefore the charge amplifier together with its high pass filter can be modelled as, 

cha _ampl = — (HIO) 

where gc is the gain of the charge amplifier and l/Xc and l/T, are the corner frequency 

of the high pass filter and integrator respectively. 

There are three unknown in equation (HIO), only two can be found using magnitude 

and phase information. Hence one of the coefficients has to be fixed to a suitable 

value. The most appropriate is to fix the time constant Xc to the setting of the charge 

amplifier cut-off frequency. The time constant Xc can be related to the cut-off 

frequency of the charge amplifier by = —-—, where fc is the cut-off frequency. For 

1 Hz and 10 Hz cut-off frequencies Xc is 0.159 and 0.0159 respectively. 

Therefore the overall mathematical model of the charge amplifier becomes, 

Cha amp\ = x (HI 1) 
- (1-h ;0.159(0) + 

Cha_amplO = % (HI 2) 
(1 + _/0.0159A)) (1 + yT,26)) 

Using a similar approach to the power amplifier, the charge amplifier characteristics 

can be written as. 

At cut-off frequency 1 Hz 

CAa ampl= ;4.1539G) ^ 1 (H13) 
(I + ;0.159A)) (1 + ;0 .25W) 

At cut-off frequency 10 Hz 

CAa amflO= ^ 1 
" (l + ;0.0159a)) (l + ;0.0333(y) 
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H3. Charge Amplifier with double integrator module 

Figure H6 shows the charge amplifier characteristic at double integration. A cut-off 

frequency of 1 Hz was used. Therefore, it can be assumed that the high-pass model in 

equation (HI 1) is unchanged. Thus, a mathematical model for the charge amplifier at 

double integration can be written as, 

Cha _ amp _ double •• - X -
(l + ;0.159a)) 

Using the phase and magnitude relationship and applying a similar argument 

presented for power amplifier, the double integration model can be expressed as. 

(H15) 

CAa _ amp _ : 
;5.07526) 

- X -
1 

(1 + ;0.1596)) (1 + ;0.1757a))^ 

Figure H5 also shows the Bode plot of this mathematical model. It can be seen that 

the representation up to about 3Hz does not reflect the measured characteristic 

exactly. However apart from that it is a reasonable representation. One reason may be 

the inaccuracy of the measured response at low frequency. As mentioned above at low 

frequencies the accelerometer has low sensitivity. 

(H16) 

Analyser 

Power amplifier 
White noise 
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10^ 

mathematical model 
measured 

10 ' 

Frecpjency (Hz) 

Fzgwrg ̂ 2 marAgy/mffca/ mô ZeZ q/f/zg q/^povfgr 

ampZ^gr 7 

mcreasHig gain 

malhemabcal model 
measured 

10 ' 

Frequerxv (Hz) 

mathematical model 
measured 

10 ' 

Frequency (Hz) 

Fzgwrg o/W mafAemaficoZ /MO<̂gZ q/'fAe cAaracfgn^fic empower 

amplifier 2 

(Each curve in the magnitude plot corresponds to the gain settings in the power 

ampliGer from its lowest position. As the gain increased the plots shifts upwards in 

the direction shown. Corresponding gains are [0.002, 0.0045, 0.0075, 0.0131, 0.0162, 

0.020]) 
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Charge amplifier 

Power amplifier 
Shaker 

HP Analyser 

Output Chi Ch2 

Figure H4 the arrangement for measuring frequency response function of charge 

amplifier. 

mathematical model 
measured 

frequmcyCHz) 

mathematical model 
measured 

10 Hz cut-off 

1 HlcuMm 

&equency (Hz) 

Figure H5 Measured and mathematical model of charge amplifier characteristics at 1 

Hz and 10 Hz cut-off frequencies. 
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Appendix I 

Simulated and experimental results of a perfectly working 
system and a system with failure 

18.44 Hz 

Frequency (Hz) 

gfyecfZy wortmg 

18.81Hz for one endpWied 

18.44 Hz & 1 9 ^ Hz 

Frequency (Hz) 

(6) TbfaZ gMgrgy 

Frequency (Hz) 

(cj /(ofafiOMoZ mofioM af cenfre 

wifA r̂mgZg cAa»MgZ^(Zwrg) 

Frequency (Hz) 

(dj rraM^ZafionaZ mofion of cenfrg 

Figure II Kinetic energy plots for the two-mount system on a moving inelastic base - mass 

centre is at 0.51 (simulations). Non-dimensional gain 0: non-dimensional gain 20: — 

, non-dimensional gain 30: non-dimensional gain 50: infinite 

gam." 
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\ \ 

10 Frequency (Hz) Frequency (Hz) 

(a) f gr^cfZ); wifA ^mg/g cAamMg/̂ fZwrg 
(Translational motion at mass centre) 

10 Frequency (Hz) Frequency (Hz) 

(6) f g^cfZy wor^Mg (gj ̂ );^fgm yvffA ^mgZg c/wM»gZ^fZwrg 
(Rotational motion at mass centre) 

17.14 Hz & 21.08 Hz 

10 Frequency (Hz) 

17.17 Hz for Mie end Mined 
17.14 Hz & 21.08 Hz 

10 F r e q u e n c y - H z 

(c) Perfectly working system ( f ) System with single channel failure 
(TbfaZ gTzgrgy) 

Ffgwrg JTmg^c g»grgy p/ofj' /or fAg fwo-mowMf jyffgm OM a moving mgZâ yffc 6a<yg -

centre is at 0.5961 (simulations). Non-dimensional gain 0: non-dimensional gain 

20: , non-dimensional gain 30: non-dimensional gain 50: 

z/̂ Mzrg gam." 
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Frequency (Hz) Fret^jency (Hz) 

(aj feTyecf/y worhng wzY/; ^mgZg cAaMMg/̂ iZwrg 
(Translational motion at mass centre) 

Frequmcy (Hz) Frequency (Hz) 

(2?) f gf/gcfZ); fyjfg/M (gj wffA â mgZe cAa»/;g/^iZurg 
TMOfzoM of cgMfrg^ 

Frequency (Hz) Frequency (Hz) 

(c) f gyyecfZ); wor^ng (/) wffA .ymg/e cAan^gZ^fZwrg 
(TbfaZ tmgffc gngrgy) 

Figure 19 Kinetic energy plots for the two-mount system on a CFCF flexible base - mass 

ceMfrg af 0. J96Z (^frnw/afzoM^j. A/bn-̂ /irngMffOMaZ gam 0." gam 

J- ^ /zoM-(f;mgMjzoMaZ gam 70; gam 7^.' »<?»-

(f/mgn^foMaZ gam JOOO; 
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