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ABSTRACT 

FACULTY OF ENGINEERING AND APPLIED SCIENCE 
INSTITUTE OF SOUND AND VIBRATION RESEARCH 

Doctor of Philosophy 

ON THE ROLE OF LONGITUDINAL STRING VIBRATIONS 
IN THE GENERATION OF VIOLIN SOUND 

by Nigel Harris 

The `primary' source of longitudinal string vibration (LSV) is the non-linear 
stretching of the transversely vibrating string. `Secondary' LSV is generated 
by the dynamic activity of the body. The effect of a periodic variation of 
string tension on violin dynamics and sound is examined. 

A qualitative structural analysis of the static forces on the body from string 
tension suggests that the difference between back and belly arching shape 
affects the magnitude and direction of the deformation of the body. The 
static deformation of the violin body caused by an increase in string 
tension is measured and shown to approach that of a `Nullstrahler» or 
simple source radiator. Parameters are developed that largely define the 
arching shape of the plates and the relationship between the front and 
back plate shapes. Five violins are made exhibiting controlled differences 
only in these parameters. 
Using a shaker to excite the open G string at resonance, a series of 
dynamic tests are done to investigate the effect of different bridge and 
string termination mobilities on the transverse string vibration (TSV) 
displacement, and the LSV developed in the string. The effect of arching 
shape on the TSV, LSV and the radiated sound are investigated. 
Complementary evidence is gained from reciprocal excitation of the violin 
by a reverberant room sound field. 

Above 1500Hz, the radiated sound pressure is dependent on the choice of 
the geometric parameters that relate the front and back plate shapes to 
each other. The spectrum of the radiated sound pressure is more closely 
related to the LSV spectrum than the spectrum of the TSV displacement. 
Below 1500Hz the radiated sound pressure varies as the inverse of the 
height of the belly cross arches in the end bouts. Some of the TSV energy 
entering the violin is transformed into secondary LSV energy. This 
combines with the primary bellying LSV. The modal responses to the LSV 
force in the string apparently contribute significantly to the radiated sound. 
The violin shows a different spectrum of radiated sound pressure per unit 
transverse force on the bridge from the string than published spectra of 
radiated sound pressure per unit of external force applied to the bridge. 

The admittances of a violin bridge to forces applied directly by a vibrating 
string are estimated at 196Hz intervals. The admittance to transverse force 
from the string is estimated to have a quite different spectrum from that 
found by others who applied an external force to the bridge of a violin with 
damped strings. The estimated bridge pseudo-admittance to LSV force is 
found to be significantly higher than the admittance to transverse force. 
The powers exchanged between the string and the bridge via both LSV and 
TSV are estimated and compared with the radiated sound power. 
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Chapter 1 

INTRODUCTION 

1.1 Historical development 

The violin first appeared about 1525, and apart from gaining its fourth 

string by 1550, has remained essentially unchanged; although changes 
have been made to the way in which it is set up for playing, in order to 

adapt it to modem conditions. The lack of an apparent evolutionary period 

can be explained by the fact that it was the amalgamation of the best 

features of three of the instruments in use at the time. The characteristic 
hourglass outline and the arched front and back came from the lira da 

braccio. 

Within the confines of what constitutes a violin, there is scope for 

individual makers to bring their own ideas to the shaping of the parts, the 

graduation of the thickness, and to the varnishing. Most successful in 

these matters were the Italians Andrea Amati, Nicolo Amati, Antonio 

Stradivari, Giuseppe Guarneri Del Gesu, and the Tyrolian, Jacob Stainer. 

These makers, whose work was done between 1580 and 1740, were the 

trendsetters, each having made a considerable break from the style of their 

training to establish the highest reputation for the sound of their 

instruments. The vast majority of violinmakers, then and now, are simply 

content to copy the models of these masters. The old master patterns may 

easily be identified by the characteristic shape shown in the outline, and in 

the shape of the arching of the plates. A violin maker who wished to 

emulate the sound of a particular master's instruments would reproduce, 
by faithful copying, the outline and plate arching characteristic of the 

works of that master. This is done in the belief that these features are 

responsible for the sound quality of the instrument. The writer has been 

unable to find any published scientific material that might explain the 

connection between these features and the tone quality of the instrument. 

The developmental process employed by the old masters must have been 

one of make it, play it, think about it, and then try a change to see what 
happens. Indeed the instruments left by these makers do show a more or 
less continuous process of experimentation. The great difficulty with this 



process is that the tonal differences involved in the many very small 

changes being tried, are themselves very small, and it requires a very 

experienced and trained ear to audit them. Furthermore the changes tried, 

or experiments run, must carefully be thought out and form part of an 

overall conception, perhaps led by a hypothesis or a guessed insight. The 

necessary personal attributes for this work are given to few rare individuals 

in the history of the craft. 

1.2 Future development 

Many believe that the violin is now fully evolved to perfection and cannot be 

improved further. Certainly there has not been any change to the 

instrument since the early part of the 19th century. Others would say that 

today we are not able to make violins that are as good as those made by the 

great makers of the past. We live in an age where the scientific method is 

applied to problem solving. In 1819 Felix Savart confidently wrote "It is to 

be presumed that we have arrived at a time when the efforts of scientists 

and those of artists are going to unite to bring to perfection an art which 

has for so long been limited to blind routine" (Savart, 1819). The problem 
has proved surprisingly intractable and despite hopes being raised several 

times, blind routine has still not been replaced. 

What contribution can the scientist make to the violin? To be of use to the 

violinmaker, science based studies must ultimately address the following 

matters. 

" The relationship of the shape and thickness of the principal parts of the 

violin to its tonal quality. 

"A specification of the physical and mechanical properties required of the 

surface coating. 

" An objective means of assessing the sound of a violin. 

"A method of accelerating the time it takes for a violin to reach tonal 

maturity. 

To make progress in these areas it is necessary that we must first achieve a 

comprehensive picture of how a violin works. This project attempts to add 

to this picture. 

2 



1.3 The author's background 

The author offers the following biographical sketch, to indicate what 
disciplines are being brought to the subject. 

"I was born in New Zealand, and as a child learned to play the violin. After 

completing a degree in civil engineering at the University of Canterbury, I 

practised as a structural engineer. During the 1970s, I began to take a 

close interest in the published research material on violin acoustics. It 

became apparent to me that, the obvious fact that the front and back 

plates of violins were of a different shape had not been explained in any of 
the literature. Indeed contemporary violinmakers only made these 

differences because they appeared in the classical examples that they used 

as models to copy. I then produced a simple structural analysis of the 

static deformation of a violin body under the tension of the strings, and this 

led me to realise that the resulting deformations of the body were likely to 

be very dependent on the shape differences between the front and back. To 

find the degree to which the tone of the violin depended on these 

differences, I began making violins with controlled variations in plate 

shapes, and listening carefully to the resulting tone. This led in time to my 
learning Italian and going to Italy, mainly to study the Italian varnishing 
tradition, and finally to my becoming a full time violinmaker in 1981. 

Subsequently, in 1984, I moved to England and continued to experiment in 

a systematic way. I eventually felt the need to support my research with 

scientific measurement, and so I approached ISVR and was accepted as a 

part time postgraduate research student. 

This work results then from a strongly interdisciplinary study. In order 

gain the insight presented in this thesis I have drawn on knowledge 

acquired as a violin player, a violin maker, a structural engineer and a 

scientific researcher. ' 

1.4 Scope of the research 

The principal focus of attention in this project is the contribution made by 

longitudinal string vibration to the radiated sound of a violin. The 

abbreviation LSV is used henceforth to denote `longitudinal string 
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vibration', meaning a periodic change in the tension of the string, or the 

group of four strings. 

The presentation begins with a qualitative static analysis of the forces and 
deformations of the violin body under string tension. The analysis is 

extended to suggest that classic violin arching shapes might enhance those 

body deformations that would be most likely to radiate sound. The initial 

static analysis is supplemented by measurement of the deformation caused 
by static string tension on a violin. The generation of LSV by `string- 

bellying' is demonstrated both theoretically and experimentally. The modal 

vibration of the body also generates LSV. One of the many modal motions 

that generate LSV is `bridge-rock' and this is demonstrated both 

theoretically and experimentally. The possibility that the arching shape 

would affect the radiated sound of a violin had been investigated 

systematically by making a number of violins (about 220) with small 
differences in the arching of the plates. This was done in the course of the 

writer's work as a violinmaker and was outside the supervised PhD 

programme. However since the conclusions reached by this make and play 

testing are relevant to the project, they are presented. From this and the 

qualitative theoretical static analysis, dimensional parameters that control 

the shape of the plates were identified as being likely to have an effect on 
the effectiveness with which the LSV forces can drive the violin to radiate 

sound. 

Five violins were specially made to exhibit variations in the dimensional 

parameters 'EAR' and `deviation' (later defined). These parameters largely 

control the arching shapes of the back and belly. Tests were also done on 

strings and bridges mounted on artificial supports providing differing 

mobilities. A number of special purpose measurement instruments were 

made. Using each violin the G string was driven to a standard first 

harmonic transverse displacement and the LSV force generated at the 

tailgut and the radiated sound were measured. The results were examined 
to see if there was a link between the radiated sound and the arching 

parameters and a link between the radiated sound and the magnitude of 
the LSV developed. 
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The admittance of the violin bridge to internal forces caused by a vibrating 

string is estimated and compared to the admittance found by others to an 
externally applied force. The power flow from the string to the violin 
through the bridge and the saddle is estimated and this is compared with 
the sound power radiated by the violin. 
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Chapter 2 

BACKGROUND 

2.1 Previous work 

2.1.1 Introduction 

Felix Savart was perhaps the first acoustics researcher to write about the 

violin, and laid down his understanding of the primary action that drives it 

[Savart, 1819]. This has remained to this day the widely accepted 

explanation of how a violin is driven, and is fully described by Lothar 

Cremer in his book, "The Physics of the Violin" [Cremer, 1983]. The bow 

sets up transverse vibrations in the string, which are in turn imparted to 

the bridge. The bridge sits on the violin and is supported on its bass side 

by the bass bar and on its treble side by the dose proximity of the sound 

post. The sound post extends to the back plate and provides a rather more 

rigid support than the bass bar. The impulse from the transverse vibration 

of the string causes the bridge to move largely in its own plane in a manner 

that can best be understood as a rotation about a point. 

This point is not fixed, due to the frequency dependent variation of the 

impedance of the body under the bridge feet. However, throughout much 

of the range it is located between the bridge feet, rather loser to the more 

rigid sound post side. This movement of the bridge lifts the bass bar and 

with it a large part of the front, and to a lesser extent, depresses the sound 

post and with it part of the back; and then reverses the action. The 

alternate moving apart and together of the plates initiates a limited 

breathing action in the body. Cremer presents a theoretical evaluation of 

the magnitude of these forces and the expected bridge rotation. 

These actions are centred at the bridge area, which is at a point remote 
from the widened plate areas (called the "end bouts"). It has been assumed 

that body resonance must play a significant role in enabling the small 
forces generated in the bridge area to move the end bout plate areas. These 

areas are reported to move rather more than the bridge area in the range 

up to 3000Hz [Moral and Jansson, 1982]. 
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2.1.2 The vibration of the strings 
The vibrations of the strings have been closely examined. Helmholtz made 

the notable discovery of the stick-slip action of the bow on the string and 

the resulting travelling kink and saw tooth waveform. Further notable 

contributions were made by Raman. The body of knowledge related to the 

string is comprehensively presented by Cremer. Of particular relevance to 

this thesis is that longitudinal resonances in the string have been 

demonstrated [Lee and Rafferty, 1983]. The possibility that longitudinal 

vibrations would be set up in a vibrating string as the result of its length 

changing throughout the cycle has been mentioned by several writers. 
Most have expected the resulting tension vibration to be an octave above 

the transverse vibration although Woodhouse has suggested they are 

mistaken [Woodhouse, 1977]. While the possibility that longitudinal string 

vibration might contribute to the radiated sound has been recognised, 

there is no published work on the subject. 

2.1.3 The vibration of the bridge 
The translation, twisting and bending motions of the bridge were 

experimentally measured [Minaert and Vlam, 1937]. The motions of the 

top of the bridge were also investigated dynamically by Boutillon and 
Weinreich and the mobilities were found to be of the same order (Boutillon 

and Weinreich, 1999). 

The violin bridge has been shown to have resonance frequencies at 3000Hz, 

which involved a top half rotation, and 6000Hz, which involves vertical 
bounce (Reinicke, 1973). The ability of the bridge to transfer force to a rigid 
base was shown to increase significantly at the 3000Hz resonance but not 

noticeably so at the 6000Hz resonance. In 1998, experiments were 

reported that showed that the bridge on a real violin behaves as a rigid 
lever at all frequencies within the range 0 to 5 kHz, there being no 

resonance within it [Runnemalm, Molin and Jansson, 19981. There must 

of course be elastic deformation in the bridge but this research reported 
that the resonance shown in a bridge mounted on a rigid base did not 

occur when it was mounted on a real violin. 
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2.1.4 Experiments in total loudness 

Spectra of the total loudness of the violin were examined by sounding all 

the notes on the violin. In 1937, Saunders used hand bowed excitation 
[Saunders, 1937]. He concluded that the perfect violin should be even on 

all notes, although none of the violins he tested came near this. 

Similar spectra were produced by Raman, Meine!, Rohloff and Pasqualini, 

but these all used mechanical bowing [Raman, 1920: Meine!, 1937: Rohloff, 

1940: Pasqualini, 1938-39]. Meinel compared many violins with a Strad. 

and concluded, unlike Saunders, that the total sound should be low 

between 1000 and 2000Hz to avoid a nasal tone, strong from 2000Hz to 

3000Hz to get brightness, and strong at low frequencies to get carrying 

power. How such detailed conclusions were reached from the total 

loudness without spectral analysis is not clear. Total sound measurement 

and no easy means of spectrally analysing the result limited progress. 
Later, sine wave excitation by driving the bridge electromechanically 

eliminated the need to spectrally analyse the result. 

2.1.5 The radiated sound spectrum 
By using swept sine wave electromagnetic excitation of the bridge, radiated 

sound spectra can be produced. By this means Saunders produced 

radiation response curves for a number of Stradivari violins, and 
instruments by contemporary makers [Saunders, 1946]. Despite attempts 
to identify characteristic differences that would distinguish those of 
Stradivari from those of the other makers, no consistent differences were 
found. 

Dunnwald produced radiated sound spectra and by comparing the result 
for Italian violins with others, he suggested that certain features of the 

shape of the response curve could be objective indicators of tonal quality 
[Dunnwald, 1985]. 

Langhoff measured the radiated sound spectrum of a number of violins and 
devised a 3D system for their presentation [Langhoff, 1994]. Attempt was 

made to relate the 3D presentation to the tonal quality of the instruments. 

Using the principal of acoustic reciprocity, Arnold and Weinreich placed the 

violin in a sound field measured the resulting string vibrations and sound 

8 



pressure inside the body [Arnold and Weinreich, 1982]. From the data 

collected, they were able to produce spectra of resonance in the lower 

frequency range. 

Considerable similarity of shape exists between the spectrum of bridge 

admittance produced by Jansson and the radiated sound spectrum 

produced by Dunnwald [Dunnwald, 1982: Jansson, 1997]. Both 

experiments were done by the excitation of the bridge by electromagnetic 
drivers. This similarity was also demonstrated by Cremer who reproduced 

curves (after Beldie) of bridge admittance and sound pressure level in a 

reverberant room. In terms of received wisdom about how the violin works 

these experiments could be said to show that violin radiation varies as the 

bridge admittance, and therefore depends on body resonance. 

2.1.6 The bridge admittance 
The spectrum of variation of bridge admittance with frequency has been 

investigated. The bridge has been driven with electromagnetic drivers and 
its movement recorded. The admittance of the body and the position of its 

resonances were inferred from these data. Moral and Jansson swept the 

bridge with a sine wave excitation and measured the bridge admittance. 
The modal shapes corresponding to the main resonances were found by 

interferometry [Morral and Jansson, 1982: also Jansson, 1994: Saldner, 

Molin and Jansson, 1996]. The bridge admittance has also been inferred 

by exciting the violin by impacting the bridge with a pendulum. 

Dunnwald compared the admittance spectra of ten Italian master violins, 
ten fine modern violins, and ten cheap factory violins [Dunnwald 1985]. 

The main difference lay in the range above 2kHz. The fine modem violins 

responded more strongly in this area than the old Italians and the factory 

violins were weaker in this area than the old Italians. Generally, the 

spectra of bridge admittance are more variable than the spectra of total 
loudness. This is simply the result of the averaging effect of many 
harmonics being included in the total loudness spectra. 

Boutillon and Weinreich, proposed a new method for measuring the 

admittance of the bridge, but perhaps more significantly showed that the 
bridge has admittances of comparable order in the three coordinate 

9 



directions [Boutillon and Weinreich, 1999]. They also showed that a force 

applied in one of the coordinate directions produced movement in the other 

two directions. In this thesis, dose attention is given to those components 

of string vibration that would excite vertical and out of plane bridge 

movement. Boutillon and Weinreich's work is highly relevant to this. 

Although the admittance of the bridge to an external force has been well 

studied there does not appear to have been any work done on the 

admittance of the bridge to transverse force from a vibrating string. 

2.1.7 The shape of body modes 
The shape of some individual single frequency modes has been 

investigated. As early as 1931, Backhaus showed that at about 685Hz a 

good violin radiates as a monopolar or simple source radiator, called in 

German a "Nullstrahler" [Backhaus 1931 ]. Below that frequency, the 

modal shapes form bipolar radiators. As the frequency rises above 700Hz 

there is an increasing tendency for the surface to break up into smaller 

radiating areas. Backhaus concluded that the ability to form a Nullstrahler 

at 685Hz was a characteristic of good Italian violins. Schelleng drew 

attention to the need for some explanation for Backhaus's observation that 

good violins radiated as a Nullstrahler at about 650 to 700Hz [Schelleng, 

1968]. The problem was that there is no natural body resonance at that 

frequency. It lies between strong resonances at 500 and 750Hz. This 

interesting point is addressed in the work of this thesis. 

A comprehensive modal analysis of the violin was done by Marshall 

[Marshall, 1985]. The mathematical process of modal analysis was believed 

to have eliminated the effect of modal overlap. Modal overlap causes the 

operating shape at any frequency to have substantial contributions from 

more than one mode. Of particular relevance to this thesis is that he 

identified a Nullstrahler (breathing in the whole body) at 69011z and 

additionally breathing in the lower bouts only, at 478Hz and in the upper 
bouts only, at 930Hz. Jansson tested 25 violins of soloist quality and 
found that a common factor was a dominant C3 mode. He described this 

as a major parameter of high quality violins. The C3 mode is the same 

mode referred to by the Americans as the B1 mode. It is the monopole or 
Nullstrahler mode. This mode dominated the violin's response in the range 
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500-600Hz. The position of this resonance was found to be a matter of the 

stiffness of the back and the magnitude was found to relate to the position 

of the sound post [Jansson, Niewczyk and Fryden, 1996]. 

The modal shapes of the many modes that make up the spectrum have 

been investigated [Marshall, 1985: Jansson, Molin and Saldner, 1994]. The 

resonances have been categorised as wood or body resonances, air 

resonances, and bridge resonances, and all have been fairly exhaustively 

examined [Hutchins 1990,1998: Shaw, 1990]. 

It is recognised that of the many modes identified (something like 35 in the 

range up to 1300Hz), only a few of them may be significant sound 

radiators. Arnold and Weinreich have suggested that, at any forcing or 

driven frequency, a violin moves in a combination of four basic normal 

modes [Arnold and Weinreich, 1982]. These are a breathing motion when 

the violin expands and contracts and so inhales and exhales, a bending 

motion, a Helmholtz motion when the air vibrates in and out of the sound 

holes, and an internal air sloshing motion. In this thesis, the causes of the 

breathing and bending components are studied in some detail. 

Violins with and without sound posts have been studied by exciting the 

violin both directly at the bridge and reciprocally in a sound field [Saldner, 

Molin and Jansson, 1995]. The modal shapes were examined by 

holography. This showed that at some frequencies several modes 

contribute substantially to the response. 

2.1.8 The air modes 
Jansson examined the air modes within the body cavity of a violin and on a 
body immobilised by encasing it in plaster [Jansson, 1973]. In addition to 

the well-known Helmholtz mode that radiates through the sound hole, 

there are a number of other modes. At least one of these is coupled to the 

top plate vibrations. 

By changing the body holes on a violin, the effect on the radiated sound 

spectrum of varying the air modes was examined [Hutchins, 1990]. 
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2.1.9 The relative position of the principal modes 

After trying radiated sound spectra, Saunders returned again to the 

loudness curves and pointed out that the relative position of the air mode 

and the principal wood modes may be a simple and important determinant 

of violin tonal quality [Saunders, 1953]. He was again guided by his 

conviction that a uniform loudness spectrum was desirable. 

This idea was taken up by Hutchins, who measured the response curves 

for many violins and discussed tonal preferences with the owners. From 

this she concluded that the frequency gap between the principal air mode 

Al and the principal body mode B1 determined what sort of player would 

like the violin. Soloists seemed to prefer a 65 to 80Hz gap and chamber 

music players preferred a gap some 20Hz smaller. The gap could be 

widened by the maker tuning the free top plate to a higher resonant 

frequency. 

2.1.10 Damping and varnish 

The damping effect of varnish was investigated by Meinel and shown to give 

a modest reduction in the amplitude of his loudness curve [Meine!, 1957]. 

His experiments on strips of varnished wood showed that hard varnishes 

had a greater damping effect at higher frequencies. 

Conversely, Schelleng found the damping effect of varnish to be 

independent of frequency [Schelleng 1968]. He claimed that the varnish 

reduced the tonal volume of a violin by 2 to 5 dB across the whole 

frequency spectrum. He also found that a detached belly could be damped 

three times as much as a detached back. 

The effect of varnish on the long and cross grain stiffness and damping has 

been studied, and the resulting effect on the modal shape found [Schleske, 

1998]. The effects varied considerably with the varnish and in general 

reduced modal displacements by 2.6db. No measurement of the effect on 

radiated sound was reported. 

The damping effect on the radiating modes has given rise to a consensus 

among many scientists that varnish is necessary for the preservation of the 

instrument but the less applied the better. The conviction held by many 

makers that the varnish is responsible for the supremacy of certain Old 
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Italian violins is dismissed as unlikely by most scientists [Gough, 2000]. 

The effect of varnish on the radiated sound of a bowed violin does not 

appear to have been measured. 

2.1.11 Desirable tonal qualities 
The harmonic content of played notes on the violin has been analysed to 

investigate the subjective effect of spectrum shape. Rohlhoff suggested that 

good Italian violins produce a tone that is strong in the 6th and 11th 

harmonics [Rohlhoff, 1950]. 

It has been mentioned that Meinel reported what to do to avoid a nasal 

tone. Emil Leipp says a nasal sound is a quality of good Italian 

instruments [Leipp, 1969]. This conflict is typical of the subjective nature 

of what constitutes good sound. 

2.1.12 Acoustic properties of the components 
The violin is assembled from parts and it is not unreasonable to assume 

that if the two principal parts, the back and the front, are closely 
investigated it may be possible to write a prescription for them, such that 

when assembled they would produce a good violin. Accordingly, the 

resonances of the detached plates have received much attention. This has 

been related to achieving control by adjusting the thickness of the plates. 

In the 1830s, Savart examined the detached plates of a number of 
Guarneris and Stradivaris, and using the method of Chladni, mapped the 

modal shapes and recorded their frequencies. This is the only recorded 
information on detached plates that we can be reasonably sure would make 

a fine violin. The value of these violins today makes it unlikely that the 

opportunity will occur again. 

Beldie, in 1969, mapped all the free plate modes of the back and belly, both 

with and without the bass bar and using various holding and tapping 

places [Beldie, 1976]. 

Hutchins et. al. from the 1950s have concentrated on establishing 

recommended eigenmode shapes and frequencies for detached backs and 
fronts such that when assembled into an instrument the tonal result will 
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be good and predictable [Hutchins, 1962]. This does involve "make and 

play " testing with its inevitable subjective judgements. 

Hutchins' recommendations have been refined over the years, and involve 

the placing of three of the natural plate modes at predetermined 
frequencies [Hutchins, 1998]. Hutchins also used hologram interferometry 

to map the free plate modes and developed a system for altering wood 

thicknesses to achieve ideals of modal shape. How these ideals were 

established was not made clear. 

2.1.13 The arching of the front and back 
Nearly all the violins made by the old masters show a pronounced 
difference between the arching shape of the front and back plates [Sacconi, 

1972]. It has been suggested by some that there should not be any such 

difference, and that where there is, it is the result of long-term creep in the 

wood [Leipp, 1969]. Most violinmakers find this explanation unconvincing 

and so they reproduce the arching shapes of classical examples. There 

does not appear to be any published work that suggests why this difference 

should exist. 

Cremer modelled the arched plates as a stiff hat with a flexible brim. The 

mass of the stiff hat and the flexibility of the brim were seen as the 

significant variables that determined the plates performance. He was not 

alone in having this concept. It has been suggested by a number of people 

that the reason a violin gets better with age is that the glue on the purfling 

weakens, and the "hat" becomes more flexible in its brim. 

Some work has been done to see if high arched violins show different bridge 

admittance spectra to moderately arched violins [Jansson, Benedykt and 
Niewczyk, 19971. It was tentatively concluded that the 500-600Hz peak 
(Nullstrahler) was more easily achieved in violins of moderate arch height. 

2.1.14 The function of the sound post 
The acute sensitivity of violin sound to the placing of the sound post is well 
known to makers and players alike. Work has been done in this field, 

which has shown that the violin's modal shapes and their resonance 
frequencies are very insensitive to the position of the sound post, and even 
insensitive to the difference between a violin with a sound post or without a 
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soundpost. [Schelleng, 1971: Bissinger, 1995,1998: Saldner Molin and 
Jansson, 1995]. This has left the acute sensitivity of a violin's tone to the 

position of the sound post without explanation. 

A concise summary of existing wisdom is provided by Colin Gough [Gough, 

2000]. 

2.2 Comments and observations on received wisdom 

The violin is seen then as being excited by the transverse vibrations of the 

string, and this excitation engages a host of natural resonances in the 

body. The art of violinmaking is the art of placing these resonant peaks at 

appropriate points in the frequency spectrum. If this is the art of violin 

making, expressed in terms of received scientific wisdom, then immediately 

we have a problem. There is no common factor in the location of resonant 

modes in the frequency spectrum, which is exclusive to violins of fine tone. 

If the object of this placement is to ensure that they fuse together to form a 

continuous even response, then it should be noted that the resonant 

response spectra of great classical violins come nowhere near achieving 

this. If the object of the placement is to establish formants, it should be 

noted that the radiated sound spectra of fine violins do not show sufficient 

consistency for an ideal formant to be found. Early experimentation was 
done with a bowed excitation. This was replaced with direct bridge 

excitation. With the availability of fast Fourier analysis, there would seem 
to be no reason not to return to bowed excitation. 

The literature often confuses the difference between a modal shape and an 

operating shape. The shapes determined by experimental method can 

rarely be identified as arising from an individual resonance. At low 

frequencies, some widely separated modes could perhaps be excited in 

isolation. Studies of violin modes are usually based on the modes 

established in a violin that is excited by some means other than string 

swinging. It is suggested in this thesis that these modes may not be 

representative of the modes excited in the bowed violin. 

The placing of the resonant peaks is to be controlled simply by the 

graduation of the thickness of the front and back plates. The effect on the 

sound caused by the shape of the arching of the plates is not understood 
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rationally and so traditional classical models are followed. Believing that 

plate arching played no significant part in the driving of a violin, Savart 

designed a simplified violin that had completely flat plates like a guitar. It 

did not catch on. 

No case has been made that the position of the body resonances is a 
determinant of tonal merit. That is not to say that it is without effect on 

the sound. The amount of wood left in the plates dearly affects the mass 

and stiffness of the excited modes. However, having suitable mass and 

stiffness available does not mean the violin will adopt the best operating 

shapes and optimise the sound quality. 

Hutchins claims that there is some tonal benefit in controlling the plate 

thicknesses to place the eigenfrequencies of some of the principal modes in 

certain relationships. Good violins have been made in compliance with 

these recommendations, and in contravention of them. There is no reason 

to believe that these criteria bestow any benefit. To correctly place these 

eigenmodes, it may be necessary to place certain limitations on the arching 

shape that can be used, and would therefore act as a control on the shape 

of the plate as well as its thickness. If so, then it would be up to the 

violinmaker to find these restrictions. In practice, violinmakers would only 

use the eigenm odes as a control on plate thickness, not shape. She writes, 
"in an analytical sense the eigenmodes and eigenfrequencies of the parts, 
fully define those parts". In principle, one cannot disagree with that, but to 

really fully define those parts may require the defining of so many 

eigenmodes that it becomes impractical to describe it in that way alone. If 

one were to define the arching shape and two of the principal 

eigenfrequencies, the definition becomes much sharper and the 

violinmaker would know how to go about making it. The mass and 

stiffness are not defined by the eigenfrequencies, but it could be assumed 
that the use of what is traditionally recognised as good wood would ensure 
that appropriate values are obtained. 

Most violinmakers of today are all well aware of the plate tuning 

recommendations made to them by scientists who believe that correctly 

placed resonant peaks are the main determinant of good tone. Most 

violinmakers who have tried this have found it to be irrelevant and 
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disregard it. The wide variation in the plate thicknesses found in classical 

violins would indicate that there is a considerable variation in the 

eigenfrequencies between these violins. 

There is no published work that seeks to identify the relative importance of 

stiffness, mass, and resonance frequency as determinants of tonal 

consistency in violin plates. All three of these are, or have been, used by 

violinmakers. The writer uses the plate flexural stiffness for this purpose 

and is not aware of there being any other makers who do (see Appendix E). 

The writer has satisfied himself that a much greater degree of consistency 
between violins can be achieved by working to fixed relationships of plate 

stiffness rather than plate resonance frequencies. 

Hutchins suggestion that the frequency gap between the AO mode (the 

Helmholtz air mode) and the 131 mode (the first body mode) may be 

important is a restatement of what violinmakers have always known. The 

resonance frequency of the AO mode is proportional to the square root of 
the ratio of the area of the sound holes to the volume of the body. The 

sound hole area and the body volume vary little between violins and the 

square root further reduces the variation in the AO modal frequency. The 

gap between the AO mode and the 131 mode is largely a matter of the 

position of the B1 mode. The 131 modal frequency is sensitive to the 

thickness of the wood. It should be noted that the flexural stiffness of the 

plate is also sensitive to the thickness of the wood. Therefore, in adjusting 
the wood thickness one is altering the plate flexural stiffness and the 
frequency gap between the AO and B1 mode. Should one work to criteria of 
resonance, or perhaps flexural stifness? Violinmakers have always known 

that the more wood one leaves in the body the more it will appeal to the 
heavier player. Hutchins found that the greater the frequency gap between 

the AO and B1 mode the more the violin will appeal to stronger players. 

It is the writer's belief that the variation in radiated sound between old 
violins, new violins and factory violins as shown by Dunnwald, may reflect 
certain 20th century tendencies in lutherie. Factories over-thin violin plates 
to get a bland inoffensive but weak sound, while makers of fine violins have 

reacted against this tendency by leaning the other way and, more often 
than not, leaving too much wood in the plates. Had the three groups of 
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violins all contained violins of the same weight, the spectra produced might 

have looked much the same. 

The failure of existing theories to explain such basic things as the 

sensitivity of the sound post, and why the plates of a violin are arched 

upwards, does suggest that these basics need to be re-examined. 

One would expect that if the sound radiation of a violin were highly 

dependent upon structural resonance then the sound would alter audibly if 

the plates were damped. In fact, the violin is surprisingly insensitive to 

damping. It is possible to touch firmly with the fingers almost anywhere on 

the vibrating plate surface without making much audible difference to the 

radiated sound. One would also expect the tone quality and volume of 

sound to vary from one note to another on the violin as various resonances 

are excited. There is indeed considerable variation note to note, but these 

are nowhere near as great as would be consistent with typical modal 

quality factors. 

There is a belief widely held among experts and connoisseurs of old violins 

that the superior sound of Cremonese violins is due to the varnish [Hill, 

1901]. The research done to date does not account for this. Those with 

confidence in science would say that the superiority of Cremonese violins is 

unlikely to be due to the varnish. Those who sympathise with the 

prevailing opinions of violin experts would say that the contribution of 

varnish to violin tone is not fully understood scientifically. For example, 

the writer has found that it makes a clearly audible difference to the sound 

whether the varnish penetrates into the wood slightly, or if it is not allowed 
to penetrate at all. There is no obvious reason why this should be so since 
it cannot be explained by changes in damping or in the mass/stiffness 

relationship. In this thesis some evidence is presented that would suggest 
that the radiated sound spectrum of a violin could be considerably changed 
in shape by varnishing. 

There is no tonal quality that has been universally agreed to be superior. 
While the German, Meinel, has advised us how to ensure that the tone is 

not nasal, the Frenchman, Liepp, is telling us that the Italian tone is 

always nasal. It seems that the Italian sound is all things to all men. The 

German who likes a hard sound, the Frenchman who likes a nasal sound 
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or the Englishman who likes a mellow sound all find the old Italian violin to 

be the embodiment of these preferences. It is notable that pianos, organs 

and singers all follow these national tonal preferences, which arguably 

stem from the quality of the spoken language, which for most of us is our 

earliest musical experience. It would appear that if the tone has it all, the 

listener could take from it what they will. 

Tests have been done on many occasions over at least 200 years, where 

several violins of contrasting age and value are played solo to a discerning 

audience. They were asked to rank them in some way. These tests 

invariably produce results that show no strong consensus and often put a 

cheap violin ahead of a fine Stradivarius. Players continue to make great 

sacrifices to buy antique violins made by makers of high reputation. Either 

the players are wrong in thinking that some violins are better than others, 

or the testing system of playing violins solo to an audience is unable to 

highlight the significant difference. Since the science of violin acoustics 
has been unable to account for significant differences in violin tone quality 

and rather idealised tests made with audiences have not established a clear 

superiority for any violins, some scientists have concluded that there is no 
difference. This viewpoint was argued by Beament [Beament, 1997]. To 

uphold this view requires more confidence in science than the collected 

consensus of players and listeners accumulated over several centuries. 
Madntyre and Woodhouse have suggested that the evidence for the 

superiority of some violins is probably present in all the data that has been 

collected but that it lies camouflaged. The human ear and brain can 

recognise auditory patterns that are undetectable when seen visually as 

scientific data [Madntyre and Woodhouse, 1978]. 

The writer believes that there is such a thing as a superior violin, and that 

they are sufficiently rare and sufficiently better as to create the high prices 
they bring. The main distinguishing attribute they have is their ability to 

produce a quality of tone that can be heard when played with a 

considerable number of competing musicians. The violin concerto is the 

classic situation. This is not likely to be a matter of being simply louder. 

There has been very little done scientifically to identify if there is a band in 

the quality of the tone produced, which helps this communication with the 

audience. It could be argued that if there were such a band it would show 
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up in the swept sine wave radiated sound spectra (with external excitation 

of the bridge) as a formant. 

2.3 The Starting Point for this project 

The sound radiation from a violin arises through the excitation of 

vibrational modes. Each mode may be excited at resonance by a string 
harmonic, or may be forced at a frequency above or below resonance. 
When operated below its resonance frequency, a mode does not normally 

contribute significantly to the radiated sound. The modes excited at any 

one frequency will depend also on the disposition of the forces applied to 

the body. It could be argued that the shape of the violin body has evolved 

to provide an optimum palette of modes for excitation. It would follow then 

that any change to the shape of the body would result in a change in 

radiated sound because of a change in the modal shapes and frequencies. 

The writer will endeavour to show that certain back and belly shape 

characteristics are capable of determining the driving forces on the plates. 
Alteration of these shape characteristics favour co-operation between string 

and body modes and hence have an important influence on radiated sound 
level and quality. They may also influence playability. It is suggested that 

any such influence is through the effect on the driving force on the plates 

rather than the change in the geometry per se. 

To date, consideration of the driving forces on the body of a violin stops at 

some estimate of the transverse forces on the bridge from the vibrating 

string. In this thesis the driving forces at the three entry ports to the body 

are considered, and going beyond the ports into the body itself, a static 

analysis is made of the internally developed forces within the body. In 

addition to the forces arising from the transverse vibration of the strings, 

consideration is given to the forces arising from the longitudinal vibration 

of the strings. 

It is obvious that the magnitude of the static force on the box is very large 

compared with the small bridge rocking forces generated by the transverse 

vibration of the strings. Since longitudinal string vibration is to be 

abbreviated to LSV, it seems logical to call transverse string vibration TSV, 

henceforth. Most violinmakers are aware that the body does deform under 
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the action of the static forces. This is most easily observed when the 

strings are brought up to full tension. Violin plates, which previously 

conformed to the shape of a template, show significant movement when the 

strings are tightened. If there were any variation in the static forces on the 

body, there would be a consequential change to the shape of the body. 

Such variations could come from periodic vibrations in the string tension 

(LSV). 

Most of the previous work done on the violin has been based upon 

measurement of the response of a violin when excited externally, by 

electromagnetic or impact excitation of the bridge. The work of this project 

suggested that the contribution of some of the LSV could be lost if the 

bridge was excited externally, so a repeatable means of string swinging 

excitation of the violin was developed. Violins with various arching shapes 
both with and without varnish were tested. 
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Chapter 3 

LONGITUDINAL STRING FORCE AND BODY MOTION 

3.1 Introduction 

The body of the violin has an input from the vibrating string through three 

ports. These are the bridge, the saddle (the ebony insert over which the 

tailgut passes), the stopped end of the string (or if the string is open, the 

nut at the end of the finger board). More energy probably enters the body 

through the bridge than the other input ports, but in this chapter 

qualitative consideration is given to the input at all three ports. The bridge 

input is widely understood to arise from the transverse force at the top of 

the bridge (TSV force), but this thesis investigates the role of longitudinal 

string vibration (LSV). In this chapter, the forces applied to the ports from 

string vibration are assessed and a qualitative static analysis of the body 

deformations caused by a static application of these forces is presented. 

When the strings on a violin are brought up to tension, forces are applied 

to the body, which must cause it to deform. Any action that causes a 
fluctuation in the tension of the strings must also cause a fluctuation of 

the body shape. We begin by looking at ways in which the string tension 

might fluctuate. 

3.2 Origin of longitudinal string vibrations 

LSV can arise from the stretching of the string as it swings, and from the 

relative movements of the bridge, the nut and the saddle. The resulting 
LSV vibrations may be reinforced by the natural longitudinal resonances of 

the string, and resonances of the tailpiece. 

3.2.1 String-bellying longitudinal string vibrations 
Consider a string stretched between rigid a support, which has been set in 

transverse resonant vibration in a single mode. Each time the string swings 

away from the straight-line position, it must stretch, and on its return, it 

will shorten again. For every cycle of transverse vibration, there must be 

two such lengthening and shortenings, with two consequential fluctuations 

in string tension. Thus, every transverse vibration of the string would 

appear to induce an LSV in the string of double the frequency. This will be 
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referred to as the `string-bellying longitudinal string vibration' or `bellying 

LSV'. The magnitude of this vibration increases non-linearly with the 

amplitude of transverse vibration. 

The amount by which the string stretches can be calculated for each string 

mode as follows. 

aQ ay 
ax 

X ax 
329mm 

STRING LENGTH 

The deformed shape of the string is taken as being a sine curve. This 

assumption is only valid if the increase in string tension as the string 

stretches is ignored. If that effect is included the calculation becomes more 

complex and it is found that a number of higher harmonics are introduced. 

Since the predominant effect of string bellying is to introduce a string 

tension vibration of twice the frequency the complication of the higher 

order harmonics has been omitted. 
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AL(t)= nn " Cos2nrvlt 

Let us assume that the string extends from a fixed tailpiece, 

over a bridge to the playing length and then to a fixed point 

at the other end of the playing length. Then the total length 

from the tailpiece to the other end will be able to stretch. 
AL 

- Then, AT = k,, (L where k, is the spring stiffness of the string, (L +L1 
i 

is the length of the string from the nut to the tailpiece, and L1 

is the length from the bridge to the tailpiece. 
Thus the amplitude of the LSV force in the string is given by, 

Fbeuyh, g csv =k 
n2 ýr 2a2 

rt gL L+ L1 at twice the frequency of the n`h harmonic ........... »....... (3.1) 

If the string is assumed to be vibrating simultaneously in an 

arbitary number of modes, each at its natural frequency w,,, 
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The cross terms within the integral disappear because of orthogonality. 
This equation can be simplfied to give the string extension, 

2 

AL= 8L Enn2an2 [1-COS2(C t+ýnJl 

2 

So, AT= 
k'`ý 

E. n2aý[1-cos2(w. t+o�)] 
8L L+L1 

Taking the time - varying part only gives, 
i 

AT(t) =- 8L L' 
E"n2a2Cos(2w�t+o�), which is the sum of the time dependent 

tensions in each mode ............................................ (3.1 a) 

24 



The analysis given above assumes that the string tension is the same on 

both sides of the bridge. This would certainly be true as we consider this 

as a static model. It was shown dynamically by Boutillon and Weinreich 

that the bridge does move considerably normal to its plane [Boutillon and 

Weinreich, 1999]. It would of course only require microns of movement of 

the tip of the bridge to justify the assumption. If the bridge were to make 

this accommodation it would require bending of the bridge, as has been 

shown to happen by Minaert and Vlam, or a bridge tilt which seems very 

possible if the belly wood between the sound post and the bridge foot 

should flex [Minaert and Vlam, 1937]. 

The bellying LSV force can be evaluated as a function of amplitudes of 

string displacement and for vibration at various harmonics. Fig. 3.1 shows 

the result for an open third string (Thomastic Dominant mittel gauge). 

Example: For a first harmonic vibration of third string measuring 6mm 

(peak to peak): an=3mm. Vibrating string length L=328mm. Extra string 

length involved in stretching Li=55mm. ksc= 2213N (from Appendix B) for a 

third string. 

Fbeurng = 2213 x 1000 
12 712 32 

=196. lmN 
8x 328 x 383 

500 
450 
400 
350 

oz 300 
250 
200 
150 

vý 100 
50 

0 

Fig. 3.1. Theoretical string tension caused by bellying, 

shown for a "Dominant" D string. 

String-bellying LSV is the only significant cause of LSV that is directly due 

to string vibration, in the sense that it arises in the string itself. 
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3.2.2 Longitudinal resonances in a string 
In longitudinal vibration, the straight tensioned string behaves like a bar, 

and therefore would have resonance frequencies corresponding to each 
harmonic of longitudinal vibration. In assessing these resonance 
frequencies one is at once confronted with a very complex mathematical 

model. The end restraint conditions must have certain mechanical 
impedances that certainly are not known to us. Then there is the factor of 
the change in direction of the string as it crosses the bridge. This may 

cause some of the longitudinal wave to be reflected at the bridge while 

permitting the remainder to continue. 

We might consider the simple case of a bent string of length L with rigid 

end fixings and ignore the effect of the bend and any inertial forces arising 
from out of plane bridge deformation. 

L 

NUT BRIDGE TAIL PIECE 

From Kinsler, Frey, Coppens and Sanders, for longitudinal vibrations in a 
bar rigidly fixed at both ends [Kinsler, Frey, Coppens and Saunders, 19821. 

E 
c= I- 

P 

where c= phase speed 
E= modulus of elasticity 
p= density of material 

The elastic modulus E =stress _TxL strain ax SL 

where T= string tension 
L= string length 

ax = cross sectional area 
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A small change in string tension ST is related to a small 

change of length SL by ST = ket xL 

where kt = the spring constant (the force required to 

stretch a 1m long string by 1m. ) 

Therefore E= 
kst 
ax 

and hence c= 
Fk. 

t 

but axp =m (mass per unit length) 

Therefore c= 
k=` 

m 
and the resonance frequency of a string of length L fixed at both ends 

is given by f= nc 

or f -- 
n Fý, 

----------(3.2) 2L 

Using the values of string spring constant and mass per unit length, 

determined as described in Appendix B, we find the resonance frequencies 

(in Hz) to be as follows: 

1st string, 5209 10418 

2nd string, 1976 3952 5928 7904 9880 

3rd string, 1821 3642 5463 7284 9105 

4th string, 1313 2626 3939 5252 6565 7878 9191 

It must be stressed that these figures have a very tenuous connection to 

the reality of a real violin, but do perhaps at least indicate the order of 

magnitude of the longitudinal resonance frequencies and their density. 

We are interested in violin behaviour in the range 150 to 10,000Hz and it is 

quite clear that there are a considerable number of possible longitudinal 

resonance frequencies within that range. It is not known to what extent 

these resonances would modify the LSV on a violin. 

It is well known that longitudinal resonance frequencies can be excited by 

bowing at an acute angle to the string, as is frequently done by beginners. 

The writer found that bowing at an angle to the string did not excite the 

longitudinal and transverse resonances at the same time. Attempts to find 

a bowing angle that might do so resulted in an oscillation from transverse 
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to longitudinal. A bow apparently can only execute one stick slip frequency 

at a time. Lee and Rafferty experienced the same difficulty with the bowed 

excitation but they were able to excite both vibrations simultaneously by 

plucking the string [Lee and Rafferty, 19831. They measured the 

longitudinal resonance frequencies of the third string at 2700Hz, and the 

fourth string at 1350Hz. They also showed that the Q of these resonances 

was higher than that of the TSV. The type of string used was not specified 

in the report. 

There would appear to be no reason why longitudinal resonances should 

not be excited when the LSV resonance frequency of a string coincides with 

a particular LSV excitation. In the experimental work of this project, no 

evidence was found that would point to the excitation of longitudinal string 

resonance. This may be a consequence of having sampled the spectrum at 
intervals of 6Hz, which may be wide in comparison with the high Q 

resonance peaks found by Lee and Rafferty. 

3.2.3 Bellying LSV force compared with TSV force 
The bellying LSV and TSV forces are both related to the amplitude of the 

transverse displacement of the string. It is therefore possible to find the 

relative magnitudes of their components acting in the plane of the bridge. 

The LSV force in the string from bellying has been shown to be given by: 
2 

(2) ra2n/2 
Bellying LSV force= kd at the frequency of harmonic n. 8L(L + L, ) 

The static vertical force on the bridge from a string tension T is 0.37T (see 

section 3.3.1). Therefore, the vertical vibrational force on bridge from 

bellying LSV is given by; 

( 2I l2 
r2aýi2 

FIu LSV = k. 
ý 

0.046 
\( I 

at the frequency of harmonic n. L(L + Ll ) 

The force on the bridge from the transverse vibration of the string should 

now be found. Imagine a sinusoidally curved string of mean tension T, and 

modal displacement amplitude a,,. The displacement y at any point 
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distance x from the end is given by: 

x 
y=an sinn; rL 

The slope 
-= 

an 
Lnx 

cos 
L 

At x=0, the slope = an. 9 
"n= 

transverse force F: Sv 
L string tension T 

Therefore the horizontal force on the bridge from the transverse 

vibration of the string is; 

FTSV =Ta 
wr 

L 

and 
FB. nyi,, gi. sv k. 

z nn (a,. 
2 
)z 

FTsv 87T (L + L, ) a. 

At the odd numbered harmonics, there can be no contribution from a�, 2, 

so the ratio is zero. The ratio of vertical bellying LSV force on the bridge to 

TSV force on the bridge is dearly non-linear. The contribution of the 

bellying LSV force to the transverse force on the bridge is negligible 

compared with that due to the mean string tension. 

By taking equation 3.3 and leaving out the constants we can write that, 

F 1I Lsv oc n 
(a, /2 

aý 

)z 

FTSV . In the case of the bowed string the value of an 

declines as the inverse of n (saw tooth wave). Therefore for the bowed 

string all the even numbered harmonics have a ratio 
FB°11'"`gLSv 

, which is a FTsv 

constant. At all the odd numbered harmonics, the ratio is zero. 

As an example, the ratio of vertical bellying LSV force to TSV force on the 

bridge can be evaluated for the second harmonic of a bowed open G string. 

If the string is strongly bowed, the transverse displacement in the first 

harmonic might realistically be. 0015m. If the assumption is made that an 
declines as the inverse of n, then second harmonic displacement is 

0.00075m. So 

k. t =2804, T=40N, (L+LI)=0.383m, n=2, and an=0.00075m, a,, /2=0.0015. 

This gives the ratio 
LSVb� force 

= 0.043. 
FTsv 
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Later in the thesis, the ratio of the LSV force in the string to the TSV force 

on the bridge is LSV force is frequently quoted. The ratio of the LSV force 

in the string to the transverse TSV force on the bridge for the bowed G 

LSVb, IIy;,, g 
force 0.043 

string is found by, _=0.116 . TSV force 0.37 

It is shown later that the bowed string does not simply produce a bellying 

LSV of double the frequency, but rather a mix of the same frequency and 

double the frequency. 

It would appear from these figures that the contribution to the force on the 

bridge from bellying LSV is smaller than that of the TSV. The relative 

contribution could be investigated more meaningfully by comparing the 

associated power exchanged. This is discussed in Chapter 12. It is also 

shown experimentally that the LSV force in string is somewhat higher than 

that found by the theoretical analysis of string vibration given above. This 

is in part due to LSV being developed as part of the modal response of the 

structure. One such response is `bridge-rock LSV'. 

3.2.4 Bridge rocking longitudinal string vibrations 

There are four strings on a violin. The first and second strings divert to the 

right (the violin upright and viewed towards the belly) as they pass over the 

bridge and the third and fourth strings divert to the left as they pass over 

the bridge. All the strings have different tension in them and different 

spring stiffnesses. It will be helpful in understanding what is to follow if 

one imagines all the strings being replaced with one single string, which 

combines the tensions of each of the four strings, and runs on a line that 

follows the centroid of the group of four strings. Since the 1st and 2nd 

strings have a combined tension which is greater than the combined 

tensions of the 3rd and 4th strings, the replacement single string will run a 

little to the right of the centre of the bridge. This one string will be called 

the `combined string'. 

Fig. 3.2 shows a cross section through the belly of the violin immediately 

behind the bridge. The four strings and their replacement `combined 

string' are shown on the bridge. The movement of the bridge relative to the 

violin is a rotation about a point. The centre of rotation of the bridge is 
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shown located on the surface of the belly between the centreline and the 

sound post. (In fact, the movement of the bridge is rather more complex 

COMBINED STRING 
A 

---C 
-ü 

CEN'I'I2E OF N(YI'A'I'ION 

i 
Fig. 3.2. Bridge rocking analysed. 

than a rotation about a point; this matter is examined in greater depth in 

Chapter 12. ) The line of action of the combined string is shown as AB, B 

being located close to the centre of the violin and at the underside of the 

front plate. When the bridge rotates about its centre of rotation, the 

combined string will move in an arc whose tangent EW runs at right angles 

to a line extending from the combined string position to the centre of 

rotation. 

This displacement may be split into two components; a component which 

runs in the line AB, which shall be called the V component because it is 

close to vertical, and an H or horizontal component which runs at right 

angles to the V component. As the bridge rocks, the V component 

periodically stretches and shortens the combined string and therefore 

creates in the combined string a vibration of string tension. The frequency 

of this tension vibration is the same as that of the rotation of the bridge. 

This vibration will be referred to frequently as the `bridge-rocking 

longitudinal string vibration' or `bridge-rock LSV'. 

The H component of the combined string motion does require the string to 

stretch. Each time the combined string moves sideways away from its 

neutral position it must be stretched and allowed to shorten on its return. 

For every cycle of bridge rotation there must be two cycles of tension rise 

and fall in the combined string, so the frequency of the consequent 
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combined string tension fluctuation must be an octave above the frequency 

of rotation. By inspection of the geometry, the magnitude of the combined 

string vibration caused by the H component displacement is very small and 

may reasonably be disregarded. 

It is clear to all who have handled a violin that the treble side of the bridge 

is much more rigidly supported by the sound post, than the bass side is by 

the bass bar. If the edges of the centre bouts of a violin were held from 

moving, a force applied at the sound post foot would cause little movement 

at the point of force application compared with a similar force applied at 

the bass bar foot of the bridge. A rocking bridge would act like a cam and 

would alternately push down on the sound post foot (taking the centre 
bouts down with it) and up on the combined string (taking bass bar up 

with it) and then reverse the action. 

The effect of the cam action in prising the violin and strings apart will be to 

do work on both. There will therefore be an energy input into the violin at 
the bridge foot and into the strings at the bridge top. (This is true for the 

application of static forces being considered here. In the dynamic situation 

energy can only enter the string and body if there is a loss by damping, 

which will be shown to be so. ) The rotation of the bridge alternately raises 
the tension in the strings and bends the violin in its length, and then 

reduces the string tension and allows the violin to straighten in its length. 

It is similar to an archer drawing an arrow, the arrow being like the bridge. 

Modal analysis of the violin has identified many bending modes in the body 

[Marshall, 1985]. 

Bridge-rock LSV is obviously not developed by the string motion itself, but 

is the result of violin bridge movement that alters the string length. The 

energy input from TSV is stored in the body through twist of the bridge 

platform and through LSV by putting tension in the string and bending the 
body in its length. Bridge-rock LSV uses some of the energy that goes into 

the violin as TSV energy. Bridge-rock LSV is a conversion of part of the 
TSV energy. Why should we make this distinction between energy entering 
the violin from TSV and that from LSV? It will be suggested that the body 

may be moved by the LSV forces in a different way from the TSV force; and 
that these movements give rise to sound radiation. 
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We can assess the relative magnitude of the TSV force on the bridge and 

the bridge-rock LSV force on the bridge. The transverse force on the bridge 

from the transverse vibration of the string is given by; TSV force =TL a� , 

where T is the string tension, and a� is the amplitude of the transverse 

displacement of the string in the nth harmonic. Now consider a bridge 

rocking about a treble foot that is held from movement by the sound post. 
The transverse force on the bridge (TSV force) will cause the top of the 

bridge to move with a velocity v=Yx (TSV force) where Y is the bridge 

admittance in the bowing direction in the plane of the bridge. 

The corresponding displacement amplitude is given by 

x=v=Y. T nx 
a. 

I= YTa� 

WL2, r f, n 2Lf, 

Since the horizontal distance from the G string notch to the sound post foot 

of the bridge is approximately the same as the vertical distance from the G 

string notch to the sound post foot, the vertical displacement amplitude of 

the bridge at the G string notch is approximately equal to x also. 

If the G string notch rises vertically by x, but is permitted to also move in 

the direction of the string by a small amount to equalise the string tension 

each side of the bridge the increase in string length is given by, 

AL=2xSin0 

where 9 is the angle of rise in the string from the nut to the bridge, which 
is assumed to be equal to the angle of rise in the string from the tailpiece to 

the bridge. The corresponding rise in string tension each side of the bridge 

is given by; AT = ka 
(LA ), where L is the length of the string from the 

i 

nut to the bridge and Ll is the string length from the tailpiece to the 

bridge. 

By substitution AT = 2ktSin9. 
YTa. 

2Lf1(L+LI 

F�., j. jbmP = 4k. Sin'B. 
YTa" 

2Lf1(L+L, ) 

The ratio of the vertical component of the bridge-rock LSV force on the 
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bridge to the transverse force on the bridge is; 

Fvervcal bridgerock _ 4ktSin2B. 
YTa" L 

TSV force 2Lf1(L + Ll) * Tnnran 

Fvefticalbridgerock 
_ 2k. 

tSin20. 

Y 

TSV force nnfl (L +L 1) 

This can be evaluated for a typical bow excited first harmonic vibration of 

the open G string. Much published data suggests that at a body 

resonance the bridge admittance in the lower frequency modes might be 

about 0.1 s/kg. A rise of the G string notch by lunit lifts the G string by 1 

unit, the D string by 2/3 units, A string by 1/3 units, and does not lift the 

E string at all. The effective spring stiffness of the group of four strings can 

be taken as that of the G string, plus 2/3 of the D string stiffness, plus 1/3 

of the A string stiffness. From Appendix B, the effective combined string 

spring stiffness is K.,, = 2804 + (0.67 x 2213) + (0.33 x 1711) = 4849N 

0 =11.5°, Y=0.1 s/kg, L --0.328m, L, =. 055m, 

For the open G string; 

Foervced biidge k_ 2x 4849 x 0.1 x Sin211.5° 

TSV force 1940.328+. 055)n ;r 

Fvertioel bridgerock 
_ 0.164/ n. 

TSV force 

To find the ratio of the LSV force within the string to the TSV force acting 

on the bridge we divide the above ratio by 2Sin O. 

LSVbridge 
ock 

force 

_ . 413/n. 
TSV force 

The above calculation assumes that the violin is rigid throughout the cycles 

of bridge rotation. Clearly there would be some bending in the length of the 

instrument and this would reduce the amount of string stretch required to 

accommodate the bridge movement. Also the ratio is inversely dependent 

on the harmonic number so the relative force from bridge-rock LSV would 
decline with rising harmonic number. The above calculation tells us that it 

is likely to be significant in the lower harmonics. 

3.2.5 Primary and secondary LSV 

The primary cause of forces and motions in the bowed violin is the 

interaction of the bow and the string and all the motions of the strings and 
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body could be seen as effects. In this model, the forces in the strings and 

those acting on the body would be regarded as internal forces and not as 

primary driving forces; as effects rather than causes. This is a valid way of 
looking at the violin. 

Alternatively, we could see the vibrating length of the string as the driver of 

the violin and could analyse the forces and motions applied to the body at 

the bridge and the ends of the string. One might conclude from this that 

the most important force applied by the vibrating string to the body is a 

transverse force at the bridge, and so set out to investigate how the violin 

responds to that driving force. In this model, the forces imposed on the 

body by the string are seen as primary driving forces and all forces and 

motions that occur beyond the ends of the vibrating length of the string are 

seen as responses or secondary forces. 

It is apparent that we can choose an interface within the whole system of 

the bowed violin and say that the forces or motions crossing that interface 

are driving forces and put energy into the other part of the system. It is 

convenient to call the forces crossing the interface to drive the system 
`primary forces'. The system responds to these primary forces by 

undergoing motions, which will induce internal forces. These `secondary' 

or response forces and motions will involve the structures both sides of the 

chosen interface. 

In this study, the chosen interface is the tail gut, the underside of the 

bridge feet and the nut at the entry to the peg box. This interface divides 

the body into two substructures, the driving substructure (bridge string 

and tailpiece) and the body. The forces arising within the driving 

substructure will be called primary forces. The application of these forces 

across the interface will excite a response in the violin as a whole. This 

response will excite forces in both the driving and the driven substructures. 
These response forces will be called secondary forces. 

Consider the driving structure on a rigid base. The TSV force on the bridge 

will apply equal and opposite vertical forces at the bridge feet. ATSV force 

will also be applied at the nut. Bellying LSV will apply a force at both feet 

of the bridge and a tension at the nut and tail gut. Dynamically, there 

could be resonances within the driving substructure, which alter the 

relative values of the forces applied to the blocked base of the driving 

substructure. These resonances could come from the strings, the tailpiece 
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and the bridge. The forces applied to the blocked base by the driving 

substructure are called `primary' driving forces. 

If we now release the bass bar foot of the bridge from the blocked base, the 

TSV force at the bridge can rotate the bridge about the sound post foot and 

bridge-rock LSV can be generated. The rotating bridge has a cam action 

and widens the gap between the blocked sound post foot and the strings. 

This results in bridge-rock LSV. Bridge-rock LSV is, by the definitions 

given in this discussion, not primary LSV but happens as part of the 

violin's response to the driving force. It is therefore secondary LSV. 

Bridge-rock LSV is potentially capable of driving the violin. Part of the 

'primary' driving by TSV force has been transformed into `secondary' 

driving by LSV force. 

The position of the interface between the driving substructure and the 

remainder of the violin is an arbitrary matter and there can be no right or 

wrong choice. The choice is made to best clarify the concepts being 

investigated. In our case, the concept is LSV and the writer has chosen an 
interface that enables bridge-rock LSV to be seen as a response that is 

capable also of being a driver. The experimental work that is presented 
later will show that the amount of LSV force in the string is greater than 

that due to primary LSV alone. The question of whether secondary LSV 

can drive the violin will be shown to be an important issue in the role of 

LSV in the generation of violin sound. 

In order to explain these principles it has been necessary to talk about the 

violin in a cause and effect way. The bowed violin assumes a steady state 

that involves a combination of steady vibrational modes. These modes 
involve periodic variation in string tension and LSV force. That LSV force 

cannot be separated into primary and secondary parts. The dynamic 

interaction between the driving substructure and the body is examined 
both experimentally and theoretically in Chapter 10. 

3.2.6 The deformations of the bridge 
As the bridge rises, it will stretch the combined string on both sides of the 

bridge (ie, the playing length and the short length that goes to the 

tailpiece). The playing length of the string will stretch more, so that as the 

bridge rises it will not rise perfectly vertically but the top of the bridge will 
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move slightly. This will actually cause the bridge to bend backwards rather 

than just lean, because the feet of the bridge are wide enough to be 

effectively fixed to the belly (the vertical reaction must lie within the middle 

third of the base so no part of the contact area goes into tension). The 

reverse will happen when the bridge drops. It could be predicted that the 

top of the bridge will bend backwards and forwards normal to its own 

plane. Furthermore, the belly between the bridge foot and the sound post 

would bend as the load on the sound post is increased and this would 

rotate the bridge foot normally to its plane and put a bending moment in 

the bridge. Consider what happens if the combined string is replaced with 
its four constituent strings. When the bridge rises, the tension in the first 

string is increased because its diversion from the centre line of the violin is 

increased and we have shown that this would cause a backward bending of 
the bridge. The same would apply to a lesser extent to the second string. 
The third and fourth strings would have their diversion from the centre line 

of the violin reduced and so would undergo a reduction in tension and the 

bridge would bend forward. The bridge would be caused to twist, and when 
the translation of the bridge reverses, the twist will go in the opposite 
direction. Note that the frequency of this twisting action is that of the TSV, 

like the corresponding bridge-rock LSV vibration. 

In 1937, Minnaert and Vlam published what has been regarded as the 

definitive work on the measured movements of the violin bridge [Minnaert 

and Vlam, 1937]. They reported a strong rotational movement in the plane 

of the bridge, a flexure of the vertical axis at the same frequency as the 

fundamental, and a twisting action of the same frequency. The relative 

strengths of the translational, flexing and twisting vibrations varied with 
frequency. They did not advance any theory to account for their observed 
bridge movements but the preceding analysis is entirely consistent with 
their findings. 

In a static situation, the tension in the string will be the same each side of 
the bridge. In a dynamic situation, the bridge may be required to move 
laterally to maintain equal tensions each side of the bridge. There may be 

enough inertial resistance offered by the bridge to this motion to induce 

small inequalities of tension each side of the bridge and this will show up 
as LSV. Is this primary or secondary LSV? Since it arises within the 
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driving substructure, it is primary LSV. Any small effect it may have would 

be to moderate the relative magnitude of the LSV forces going into the body 

at the saddle and the nut. It should be noted that on a real violin the 

platform of wood on which the bridge sits must undergo a considerable 

amount of flexure. Flexural motions that would move tilt the bridge normal 

to its plane would also moderate the LSV, but since this flexure is on the 

driven side of the interface, the LSV induced by it is by our definition 

secondary. 

3.3 Deformation of a violin body under string tension 

If the forces and displacements set up in a violin caused by the static 

tension in the strings were understood, it would give a helpful start to 

understanding how a violin might move under string tension vibrations. Of 

course, as the frequency rises inertial effects become increasingly 

significant, and the simple static approach becomes less relevant. It will, 

however, be shown that this approach provides strong clues as to how the 

violin might radiate sound and good reason for some of the important 

design features of the violin. 

The static analysis of a complex shell structure like a violin is perhaps 

most accurately undertaken by finite element analysis. However the simple 

method given here has the virtue of providing a much dearer appreciation 

of how the violin supports the strings, than getting an answer from the 

rather 'black box' finite element method. In particular, the interaction of 

the opposing effects of the long and cross arch support systems is brought 

out. 

3.3.1 The violin as a plane frame 

The literature contains several attempts to represent the violin as a two- 

dimensional plane frame [Leipp, 1969], but these have been, at the best, 

unhelpful. It is for this reason that the rationale behind the developing of 

the structural model that is used will be set out in some detail. 

Fig. 3.3 shows a block of wood about 50mm square in section and about 
500mm long. On it is mounted a bridge BD and ABC is a tensioned string. 
The forces applied to the block by the string are shown below: (a) shows a 
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bending affect and (b) shows a compression down the length of the block. 

This is not a very helpful breakdown. Because the compression is applied 

eccentrically to the centroid of the block, it also induces bending in the 

block. Consider now fig. 3.4. If we drill a hole in both ends of the block of 

wood and insert a dowel, and keeping the string on exactly the same line fix 

B 

n 

(a) lbl 

Fig. 3.3. Wrongly separating bending from direct compression. 

it to the dowels at A' and C', then as shown in (b), we are now applying the 

compression down the centroidal axis where it will not induce bending. 

3.4(a) then, fully describes the bending induced in the block, which is 

greater than that shown in 3.3(a) because it includes the bending shown in 

3.3(b). 
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Fig. 3.4. Correctly separating bending from direct compression. 

Consider now fig. 3.5. Replacing our block with a violin and adding the 

appropriate dowels we can present the problem as a box with a 

compression down the length of its centroidal axis, combined with a 

transverse force applied at the bridge line causing the instrument to bend. 
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Fig. 3.5. Towards a separation of bending and compression is a violin. 
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Fig. 3.6. The violin as a plane frame. 

(The position of the centroidal axis varies throughout the length of the body 

but a calculation can produce a realistic estimate of its location such that a 

compression applied on this line will not induce bending in the body. ) 

Consider now fig 3.6. Remove the dowels, put in the sound post, replace 

the single line compression force down the length with a force in the belly 

acting towards the bridge and a force in the back acting towards the 

bottom of the sound post. We have now reduced the structure of the violin 

to that shown in fig. 3.7. ABC represents the string, ADC represents the 

upper and lower belly, AEC represents the upper and lower back, BD 

B 

A 

E 
Fig. 3.7. The plane frame. 
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Fig. 3.8. The force vectors in a violin. 

C 

the bridge and DE the sound post. In fig. 3.8 the forces set up in the 

system, caused by a tension in the string AB of 1 unit, is shown. These 

forces were calculated by assuming a force of 1 unit in the string and 

calculating the forces in the all the other members by static analysis. This 

analysis is not given here. The geometry of the model is not shown here 

but it assumes the dimensions of a fairly standard "Strad" model violin. 

Although the forces shown have been accurately calculated for the model 

shown in fig 3.7 it is accepted that the model itself greatly simplifies what 
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is undoubtedly a very complex structure. The analysis does show an 

approximation of the relative magnitude of the forces in the main 

components of the violin and shows that the sound post functions as an 

essential member in the supporting truss that carries the string force. 

This analysis shows that: 

1. The strings push down on the bridge with a force of about 37% of the 

tension in the strings. 

2. The sound post carries only about 1/5 of the bridge force the remaining 
4/5 being carried by the compressive force in the belly, which tends to 

make the plate buckle upwards. 

3. The load in the sound post is resisted by a tension in the back of the 

instrument, which is only about 1/3 as great as the compression in the 

belly. 

The above analysis and its conclusions apply to each of the four strings, 
but only concern the overall stability of the instrument. There would be 

additional internal forces caused by the sound post and the strings not 
being located on the centreline of the body. These forces have been 

considered by the writer but to present them here would not contribute to 

understanding the essential issues. 

3.3.2 The forces in the front and back plates 
Consider a plate like a violin belly but with no sound holes. Imagine it 

placed upon a table and supported around all its edges on small marbles 
(no friction between the plate and the table) and on top of it a load is 

applied in a direction normal to the belly in the bridge position. This is 

shown in fig. 3.9. The edges of the plate are free to move in any horizontal 

direction but not in a vertical direction. Predictably, the load would cause 

the crown of the plate to sag, and some horizontal movement of the plate 

edges. If we now apply a horizontal force at both ends of the plate, equal 
but opposite in direction, the sag in the crown can be reversed to some 

extent. The force P at the crown can be carried either on the 'long arch" 
ABC, or on the "cross arch" DBE. In fact what happens is that the long and 

cross arches both share in the support, the proportion being carried by 

each depending on the relative stiffness of the two systems. Let us call the 
load carried on the cross arch system, C, and that on the long arch L. 
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Fig. 3.9. The bridge load splitting into the long arch and the cross arch. 
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Fig. 3.10. The forces and movements is the long arch. 

Such that P= C+L. Considering first the long arch support system. Fig. 

3.10 shows a long section through the plate carrying a load L at the bridge 

resisted by a horizontal reaction at the ends. A line of action of the thrust 

at the ends is shown going in a straight line to the bridge. This line of 

thrust is eccentric to the line of the wood and this eccentricity will induce 

in the wood an upward buckling. Clearly then, the result of carrying a load 

on the long arch alone is to cause the crown of the end bouts cross arches 

to rise, and the plate edges in the end bouts, to pull in. Consider now the 

cross arch support system. 

Fig. 3.11 shows a violin belly with a cut made across the plate at the end 

bouts cross arches. The load C at the bridge is carried on the centre bouts 

cross arch to the two side arches. The sound holes intervene in the most 

direct path to the side arch but the forces can spread out and get around 

the sound hole. To support the abutments of the side arches will require a 

horizontal force, which can be split into two components H and X. Force H 

can be provided by the end thrusts at the neck and saddle, but not without 

42 



H 
HC 

X 
uuI 

H II 
H 

x/ ii 

\c 1)) ý 'lll 

Fig. 3.11 The forces in the cross arch support of the bridge. 

requiring an additional horizontal force Y in the same direction as X. Thus 

the end bouts must be cross-tied to provide the forces X+Y necessary to 

hold the system together. The end bouts of a violin are of course cross tied 

by the end bouts cross arches, and the force X+Y tending to spread the end 

bouts must pull the crown of the end bouts cross arches down. 

Where does this lead to? There are two support systems for the bridge 

load, both acting in parallel. The bridge load P will split between the two 

systems in proportion to their relative stiffness. The component going into 

the long arch system is L and that into the cross arch system is C. 

Component L lifts the end bouts cross arch (EBX arch), and component C 

lowers the EBX arch. Does it go up or does it go down? That depends on 

the height of the EBX arch. If the EBX arches were very low compared to 

the centre bouts cross arch (CBX arch), they would approach the line of 

thrust of the long arch in fig. 3.10, and the upwards buckling tendency in 

the long arch would be very weak. Although the downwards buckling 

tendency caused by the spreading of the EBX arches in fig. 3.11 would also 

be weakened, it would not be weakened to the same extent since the EBX 

arch would have to go completely flat to reduce the downwards buckling 

tendency to zero. It can be seen then, for the plate in our example, that if 

the ratio of the EBX arch height to the CBX arch height is low the EBX 

arch will drop and the end bouts will widen. If this ratio is high the EBX 

arch will rise and the end bouts will narrow. It follows then that there 
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must be a ratio of EBX/CBX arch height, such that the EBX arch height 

remains unmoved. This ratio will be shown to be of considerable 
importance and will often be referred to. For convenience, it will be called 

the 'balanced end arch ratio' or simply the BEAR. 

Now consider the back plate. If one ignores the fact that the sound post is 

off centre, in all other respects the plate is loaded in the same way as the 

belly, except that the direction of the load is reversed and the reaction at 
the ends of the plate is a tension rather than a compression. It can then be 

seen that it behaves in exactly the same way as the belly but with all the 

forces and movements being reversed in direction. Note then that if the 

ratio of EBX/CBX arch height is higher than the BEAR, the EBX arch 
height will drop, and of course, if it is lower than the BEAR, it will rise. 
This is the exact opposite to what happens in the belly. 

3.3.3 Shaping the plates to increase the static deformation 

There now exists the possibility of controlling the direction of movement of 

the plates by adjustment their arching shapes. If a plate can be designed 

that can deform in one direction, or in the opposite direction or not at all, 

one could consider how best to maximise the static deformation of the 

body. 

To maximise the radiated sound it is necessary to maximise plate 

movements. The type of plate movement to be encouraged is that which 

results from the TSV force acting on the bridge, the lifting of the bass bar 

on one side of the body and the depressing of the sound post on the other. 
When a transverse vibration lifts the bridge on the left side (as viewed 

normal to the belly) it has been shown that the back and the belly move 
further apart and the violin breathes in. The lifting of the bridge also 
increases the tension in the string. It is necessary then to design a belly 

and a back that move apart when the string tension is increased. The belly 

EBX arch will lift if it is built higher than the BEAR and the back EBX arch 

will lift if it is built lower than the BEAR. So if this were done, the violin 

would breathe in and out, in phase with the bridge rocking induced 

breathing, using energy available from string tension vibrations. While we 

are considering the body deformations under string tension it clear that in 
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addition to the breathing action, the body will bend in its length as the 

back is stretched and the belly is shortened. 

The forces causing these plate movements are generated in the end bouts 

where the plate surface areas are broad, and in that sense, they could be 

said to be on target. It is hard to see the upper and lower back of a violin 

being effectively driven by the sound post, or even the upper and lower 

belly being strongly driven by the flexible ends of the bass bar. From the 

earliest times, violins have been made with the arching shaped in this way. 

This could not have happened if the experiments with small changes in 

arching shape had not been rewarded with perceptible tonal results. The 

belly tends to rise more steeply into the long arch at the ends than the 

back, and has a longer flat area in between. The back long arch is 

somewhat more pointed. For convenience the amount by which the EBX 

arches are built either above or below the BEAR will be referred to as "the 

deviation", because it creates a deviation in the line of the long arch. In the 

discourse that follows, reasons are advanced to support the contention that 

the BEAR, and to a lesser extent the deviation, affect the sound of the violin 

and need to be carefully controlled in violin making to ensure tonal 

consistency between violins. 

3.3.4 Synchronising plate edge movements 
The plates discussed above were assumed to have edges that were free to 

move in a horizontal plane. In a real violin the edges are glued to the sides, 
but this need not be a restraint to the free movement of the plate edges 

provided the back and the belly both tend to move the plate edges in the 

same direction and by the same amount. Under these conditions, the sides 

would simply move sideways normal to their surface and offer no resistance 

to the plate. If a violin were built with arching showing a large deviation in 

the back and a small deviation in the belly, in other words the arching is 

low in the ends compared to the centre, the back will be strongly driven, 

the belly weakly driven and the back will tend to induce larger edge 

movements than the belly. Under these circumstances, work will be done 

in inducing non-radiating rib twisting movements, and there will not be a 
harmonious edge movement. One might call this a "back driven" arching. 
Similar lack of harmony in plate edge movement would occur if the belly 

had a large deviation and the back had a small deviation, a 'belly driven" 

45 



arching. The use of inappropriate deviations could also cause unwanted 

movement of the neck as a cantilever. 

Careful choice of deviations could enable the two plates to work in harmony 

with the ribs and with each other. In the centre bouts, such harmony 

seems less possible. The side arches in the back are in tension to resist the 

pull from the CBX arch, while the side arches in the belly are in 

compression to support the load of the bridge from the CBX arch. This 

conflict is resolved by the presence of the sound holes, enabling the centre 
bouts sides to move with the back. The bridge load being spread along the 

belly by the bass bar can find its way to the plate edges beyond the sound 
holes. 

The above argument leads to the expectation that the choice of the correct 
BEAR and the correct deviation from it, may be important determinants of 

relative plate forces and movements and therefore of the modes excited and 

their shapes. 

3.3.5 The EAR of a violin 

Ideally, when building a violin one should begin by knowing what the BEAR 

should be, and then making the belly higher than that and the back lower 

than that, by the deviation. There would be different figures for the upper 

and lower bouts. In assessing the built violin it would be possible to 

measure the cross arch heights and assuming the deviation is the same for 

the back and belly calculate the BEAR. What we actually are calculating is 

an "end arch ratio", but there is no way of knowing if it is the "balanced 

end arch ratio". This "end arch ratio" will be much referred to in this thesis 

and will be abbreviated to the EAR of a violin. It is a property of the 

geometry of a violin (while the BEAR is a property of a detached plate). The 

EAR, or end arch ratio, is defined as the average of the ratio of the rise of 
the EBX arch to that of the CBX arch, for the back and the belly. It will be 

different for the upper and lower bouts. The amount, by which the belly is 

higher than this and the back lower, is called the Deviation. It will be 

different for the upper and lower bouts. Using this newly introduced 

terminology, we can see that a violin of high EAR would tend to be belly 

driven, and a violin of low EAR would tend to be back driven. 
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Fig. 3.12 shows a side view of 3 violins by noted classical makers. The 

Stainer violin has a higher arch height than the other violins, which is 

characteristic of the work of this maker. It will be shown in Chapter 4 that 

when the arching height is increased the BEAR is higher. By comparison 

with the other violins shown it is possible to see that the EAR has been 

made higher in the Stainer. The Stainer also has a large deviation. This is 

also a feature of many of Stainer's violins. The Stradivari shows a lower 

EAR as is required by a violin with a lower arch height. The deviation of 

this violin is still high. The Guarneri has an arching height about the same 

t 

Jacob Stainer, 1672. Stradivari, 1702. Guarneri Del Gesu, 

Ashmoleum Museum. ex David pistrakh, 1742. ex Paganini. 

Fig. 3.12. Side view of three classical violins, showing the back and belly long arch. 
The variation in deviation can be seen. 
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as that of the Strad., and so has a similar EAR. The deviation is lower than 

that of the Strad., particularly so in the upper bouts. The tonal effect of all 

these design features can be predicted in the light of information presented 

later in this thesis. 

3.3.6 The relevance of the EAR and deviation parameters 

In the broadest sense, the above discussion leads to the possibility that the 

geometry of violin plates may affect the sound radiated by the violin. From 

an experimental point of view, it is impractical to test every possible nuance 

of variation in violin plate geometry. The qualitative analysis given above 

does suggest that the two parameters, EAR and deviation, might have an 

effect on the response of the violin. This is supported by both the 

qualitative analysis and the fact that classical violin models consistently 

exhibit differences in front and back plate shapes that can be defined by 

the parameters EAR and deviation. Furthermore, anecdotal evidence is 

presented in Chapter 5 that the author has been able to optimise the tone 

of violins by use of these descriptors of violin geometry. This suggests that 

they must have some relevance to violin dynamics. 

3.4 Conclusions 

" When a string on a violin is set in transverse vibration (TSV), a 
longitudinal vibration (LSV) of twice the frequency is induced in the 

string. This we call `bellying LSV'. Bellying LSV is an extra form of 
input energy into the violin in addition to the TSV energy input. The 

magnitude of bellying LSV varies non-linearly with the TSV, and the 

ratio LSV force/TSV force increases with the transverse displacement of 
the string. 

" The TSV of the string causes the bridge to rock in its own plane. This 

rocking motion induces periodically a tension in the strings (LSV). We 

call this bridge-rock LSV'. The bridge-rock LSV is not an extra input of 

energy but a conversion of some of the TSV energy. Bridge-rock LSV 

will be of the same frequency as that of the bridge motion. 

" Violin strings have a considerable number of longitudinal resonance 
frequencies. Theoretically, these could appear in the LSV spectrum. 
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" The strings, tailpiece and bridge have arbitrarily been defined as a 
`driving' substructure of the violin. Forces and motions that originate in 

this substructure are seen as driving the body as a whole. The driving 

energy comes from the TSV force on the bridge and the bellying LSV 

force. The LSV that originates in the driving substructure is called 
`primary LSV'. 

" LSV will also arise as a consequence of body motions and this LSV has 

been called `secondary LSV'. Bridge-rock LSV is an example of 

secondary LSV and is capable of driving the violin using energy 
transformed, or redistributed, from TSV. 

" When the static tension in the strings is increased, the violin bends in 

its length. 

" In addition to bending, the body shape will alter. The increased bridge 

load can be resolved into two components, one carried on the `long 

arch', and the other on the various arches comprising the `cross arch 

support system'. The forces in the belly long arch will act to lift the 

belly EBX arch. The forces in the belly cross arch will act to lower the 

belly EBX arch. The direction of these predicted movements are 

reversed for the back. 

" The net movement of the EBX arch depends on the height of the EBX 

arch compared to that of the CBX arch. In the belly, if the ratio of the 

height of the EBX/CBX is high, the arch will rise. If it is low, the arch 

will drop. In the back, the reverse is the case. 

" The EAR, or end arch ratio, of a violin is defined as the average of, the 

ratio of the rise of the EBX arch to that of the CBX arch, for the back 

and the belly. Violins have two EAR, one for the upper bouts and one 
for the lower bouts. The deviation is the amount by which the belly is 

higher than this, and the back is lower than this. Thus, the belly EBX 

arch height is the belly CBX arch height multiplied by the EAR, plus the 
deviation. The back EBX arch height is the back CBX arch height 

multiplied by the EAR, minus the deviation. 

" There may be a value of EAR that will optimise the radiated sound of 
the violin. 

49 



Much of the above is based on an unconfirmed qualitative static analysis, 

but it is presented at this stage to give the reader some understanding of 

the purpose of the experimental work that is presented. 
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Chapter 4 

MEASUREMENT OF THE DEFORMATION OF THE BODY 

BY STATIC STRING TENSION 

4.1 Introduction 

In order to check the theoretical predictions about the deformation of a 

violin body by static string force, the deformation of a violin was actually 

measured. This work was carried out at the National Physical Laboratory, 

Twickenham, London, with the assistance of NPL technical staff. The 

machine used was a co-ordinate measuring machine, Zeiss UPMC 550. 

The violin used for this purpose was the medium EAR violin 156 and was 

unvarnished. 

4.2 Method of measurement 

The points where measurement was required were marked on the surface 

of the violin. The position in space of all these points was measured first 

with all the strings on at normal tension, and again with the string tension 

released. 

A reference origin for all the measurements had to be selected. The 

theoretical considerations that have been presented leads one to expect 

that with increasing string tension the violin will bend in its length, and 

certain distortions will take place within the arch of the front and back 

plates. It was decided to define a reference plane. 

To do this polished steel balls were attached with sealing wax to the belly at 

each of four points. These points were located on the surface of the belly, 

close to the edge at the widest point of the lower and upper bouts. These 

points would not necessarily lie in a common plane but the machine's 

computer established a best-fit plane. Within this datum plane, aY axis 

was established for body length measurements and aZ axis for body width 

measurements. Normal to the plane, an X axis was established for plate 

rise and fall measurements. When the violin deforms the balls will all move 
differently but the computer would redefine a new best-fit plane. 
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The deformation of each point is given in relation to the best-fit plane 

through the steel balls. The location of the balls was chosen to coincide 

with points that are not likely to move much themselves. If the violin 

bends it is likely that the ends would come up and the middle go down, 

leaving the ball locations unmoved. If the end bout plate areas should 

move apart it is likely that the plate edges, where the balls are, would not 

move much (except within the datum plane rather than normal to it). The 

position chosen for the steel balls would also provide a datum for 

discovering any change in the end bouts cross arch heights. 

The machine probed each point with a pressure of 0.05N, and any 

deformations resulting from this were common to the readings both with 

and without string tension. Once the machine has been shown the 

location of the points it will robotically return to take fully automated 

readings. For each of the two set-ups the machine took three series of 

readings and processed the average and standard deviation. The machine 

was started and left running after working hours had finished. 

The violin was held in the testing apparatus for a week to fully stabilise the 

moisture content of the wood to the unvarying 45%, relative humidity of the 

room. After the string tension had been altered the clamps were released 

to permit the violin to move to a new shape without any restraint. The 

measurements were made to a precission of 0.0001mm. The standard 

deviation for these measurements does justify them being quoted to 
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0.001mm. Fig. 4.1 shows the violin being held for measurement with the 

steel balls 

attached. The probe is located near the tailpiece and extends horizontally 

towards the violin from the vertical shaft. The violin was unvarnished. 

4.3 The measured deformation 

Fig. 4.2 shows a view from the outside looking at the back and belly. 

Positive measurements denote a movement away from the surface pictured 
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Fig. 4.2. Static deformation caused by raising string tension 

from zero to normal playing tension, in mm. 
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towards the reader. Negative measurements denote the opposite. It should 
first be noticed that the violin bends in its length, both the back and the 

belly centre bouts moving in the same direction. The length of the back 

increases and the belly shortens. The end bouts cross arches of both the 

back and the belly lift, as predicted by the qualitative analysis. It was not 

possible from the qualitative analysis to make any prediction as to what 

outline changes may take place. The measurements show that the violin 

widens in the upper bouts, the centre bouts and the lower bouts of both 

the back and the front, and that there is fairly close agreement between the 

movement of the back and belly. ie, the edges move synchronously with 
little rib twisting being involved (except at the centre bouts where the 

sound holes allow for a difference between the back and belly movements). 
That the length of the back increases, and that of the belly reduces, is the 

inevitable consequence of the bending. 

The dotted lines added to the diagrams of the back and front separate 

areas of outwards movement from areas of inwards movement in the 

plates. By definition the line of zero movement had to pass through the 

balls and the choice of ball position was only guessed to be relevent to a 

nodal line, in dynamic terms. None the less the dotted line shown must at 
least represent something reasonably close to a nodal line in a slow 
bending vibration cycle. 

It will be noticed that because it was impossible to make a single 

measurement on the centre line of the belly, two measurements were made 

each side of the fingerboard, the bridge and the tailpiece. From the 

measurements each side of the bridge it is possible by interpolation to 

calculate measurements at each of the bridge feet. The calculated 

measurements have been shown in red in the diagram. The movement of 
the treble foot of the bridge is a little more than that of the sound post on 
the back. This would be due to the bending of the wood between the bridge 

foot and the sound post. 

A fortunate consequence of having pairs of measurements down the length 

of the belly is that it reveals that there is a considerable twist at the bridge, 

and a smaller twist in the opposite direction in the end bouts cross arches. 
Clearly what is happening is that the bass bar is resisting bending of the 
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violin in its length. Since the stiffness of the bass bar influences the 

twisting at the bridge, it seems likely that the amount of bridge-rock LSV 

may be directly dependent on the stiffness of the bass bar. This is 

investigated in Chapter 12. 

4.4 Discussion of results 

The fact that substantial areas of the back and belly move apart from each 

other was predicted by the qualitative analysis, but it was a surprise to find 

that the sides of the body also move apart from each other over nearly all 

the periphery. This may have particular significance in the case of a cello, 

its sides being proportionately much deeper than those of the violin and 

viola. The deformation of the body was not measured at enough pionts to 

be able to conclude that its internal volume increases and 'breathes in, 

but this does seem to be possible. In a violin the rise in string tension 

which would produce the deformations measured here would be associated 

with a rotation of the bridge causing an additional lift at the bass bar foot 

of the bridge and an additional depression at the sound post foot. This 

would extend further the area of outward movement of the belly, to the 

point where all but a small area around the soundpost foot of the bridge 

would be involved in the outwards, or breathing, action. This form of 

operating shape must correspond with the Nullstrahler action first reported 
by Backhaus, but as Weinreich pointed out this can not radiate well below 

the frequency of the Helmholtz resonance because air will be sucked in and 

out of the sound hole. [Backhaus, 1931, Weinreich G]. 

Deformation under static forces can not be assumed to be a predictor of 
dynamic behaviour. But it would have validity at very low frequency. It 

has been demonstrated by others that the violin forms breathing modes but 

the driving mechanism for this was assumed to be that of the rocking 
bridge lifting the bass bar and depressing the sound post [Marshall, 1985]. 

It has been shown here that a periodic variation in string tension, without 

any bridge rocking can also induce breathing. Since one of the principal 

causes of periodic variation in string tension is the rocking of the bridge, 

both these breathing inducing actions will apply simultaneously. 
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The fact that the end bouts cross arches simultaneously rise in arch height 

and widen in arch width is notable. This can only happen if the wood is 

stretched normal to its grain and/or the reverse curve in the arch 

straightens. In order to encourage these deformations it would be logical to 

build the arch in a shape that deviates away as much as possible from a 
direct line of thrust from the centre to the edge, so that the forces in the 

arch can pull it straight. Violin arches are built this way. 

4.5 Conclusions 

" Static tension causes bending in the length, an increase in the rise 

of all four end bouts cross arches and apart from an inwards 

movement of the belly edge in the area near the neck and tail saddle, 
it is probable that all other parts of the periphery of the belly and the 

back move outwards. 

" These movements can be combined with the static displacements 

caused by a bridge rotation. Then the the violin body enlarges by 

outward movement in every part, except a small area at the ends of 
the belly and an area of the belly centred on the sound post. 
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Chapter 5 

MAKE AND PLAY TESTING PROGRAMME. 

After the author had developed the ideas presented in Chapter 3 they were 

tested first by applying the principles to the making of violins. This chapter 

presents the methods of applying the principles to violin making and the 

tonal results achieved. This work was done before the supervised PhD 

programme and is not claimed to exhibit the standards of rigour and 

objectivity normal to PhD research. It has been included to demonstrate 

the method of application of the principles and an indication of the sort of 

tonal effect that results from variation in the EAR and deviation. 

5.1 Introduction 

The violin appeared in about 1550 and from that date exhibited plate 

shapes with differences between the front and back that are apparently 

capable of encouraging breathing modes. The apparent lack of any 

developmental move towards this can be explained by the violin being an 

amalgamation of several other instruments in use at the time. The 

evolution of differences in plate shape between the back and front may 
have taken place in the precursors to the violin such as the lira da bracio. 

Varying the plate shapes must have an audible tonal effect or this evolution 

would not have happened. Since the birth of the violin, many makers have 

experimented with the effect of varying the shape of the front and back 

plates. However, the differences referred to above have survived. 

The writer has tested the effect of these plate shape differences by building 

instruments with careful control of the EAR and deviation to find if they 

affect the sound in a consistent way and to see if it was possible optimise 

tone by controlling their value. There now follows a description of the 

methods used. Much of this concerns practical methods and matters of 

experimental control. About 200 instruments have been made and played 

and the relevant constructional details have been kept in a record book. 

These details include all the arching shape details, the EAR, the deviation, 

the plate thicknesses, the resonance frequency of the free plates in the ring 

mode and X mode, and the weight of the plates. Additionally, notes were 
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made about the playing and tonal characteristics of the instrument. It is 

accepted that some of the evidence is anecdotal, but it is considered 

relevant to the question of the influence of EAR on the sound of a violin. 

5.2 Practical matters 

When making a violin plate, the optimum EAR and the deviation must first 

be known. First, it must be decided where in the length of the body are the 

centres of the end bouts. (i. e., the points at which the EBX arch heights 

are measured) Consider a plate of fairly standard violin proportions, such 

as is shown in fig. 5.1. One could, by inspection, pick a sort of acoustic 

centre of the upper and lower bouts. In 1976 when the writer began this 

study, a point was chosen 20% of the distance from the top edge for the 

upper bouts, and the lower bouts 79% from the top edge. This has been 

used since then. The actual position is not critical but it is sensible to 

choose a point where it would be appropriate to place an arching template 

during the shaping process. 
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Fig. 5.1. Dimensions of violin analysed. 

If one could chose a value for the EAR such that it equalled the BEAR (the 

balanced end arch ratio), the deviation would then induce the same forces 

in the front and back plates and presumably give compatible edge 
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movements. It must not be forgotten that the BEAR is the ratio of the 

height of the EBX arch to the height of the CBX arch, such that the 

buckling force in the end bouts from the long arch is balanced by the 

opposite pull of the EBX arch. The BEAR must then depend on the ratio of 

the force in the long arch, to the force in the cross arch support system, (ie) 

the C/L ratio. If the plate shown in fig 5.1 were simplified to make the end 

bouts the same width, and a load were placed at the central bridge 

1.0 

0.8 

0.6 

4 0.4 

0.2 

0.0 

Fig. 5.2. Relationship between the balanced end arch ratio, BEAR, and the C/L ratio. 

position, it is possible to derive a relationship between the BEAR and the 

C/L ratio. Fig. 5.2 shows this relationship graphically. It can be seen that 

when the C/L is zero (i. e. C is zero), the BEAR would be 0.4, which means 

the long arch would go in a straight line to the ends because there would 

be no EBX arch force to counter. At the other extreme, as the C/L gets 

high the EBX arch force becomes so big that the long arch must depart a 

long way from the straight line to balance it. This shows how the BEAR 

varies with the C/L ratio. Now how is the C/L ratio (and hence the BEAR) 

affected by the general shape of the violin? 

Fig. 5.3 shows a number of springs (each representing an arch), 

interconnected in a network representing a violin plate. The bridge load P 

is split into two components C and L. L goes through a spring representing 

the long arch. C goes first through a spring representing the CBX arch, 

then splits into two springs representing the side arches, then through the 

end arch springs. The side and end arch springs are cross-tied through the 

EBX arch spring. The C/L ratio and hence the BEAR, depends on the 

relative stiffness of all the springs in each system. A reasonable 

assessment of the relative stiffness of the various arches in the violin can 

59 

012345 



P (BRIDGE LOAD) 

C IL 

C13X 

'SIDE 
ARCH 
EBX 

C7 
z 

END 

PI REACTION AT NECK 
AND SADDLE 

Fig. 5.3. The long and cross arch support systems, representing the arches as springs. 

be made. Since arch stiffness is generally closely related to the dimensions 

of the arch, it is possible to build up, by calculation, a picture of how the 

BEAR varies with changes in the outline shape and the arching height. 

The results of these calculations have two uses. They can be used to 

estimate how much to alter the EAR by when a change in the geometry of 

the instrument is being made. They can also be used to make an intelligent 

Effect on the BEAR 
of a 5% increase 

Effect on the BEAR 
of a 5% decrease 

Width of centre 0.992 1.008 

Width of end bouts 0.986 1.014 

End arch rise 1.014 0.986 

Side arch length 0.967 1.034 

Side arch rise 0.992 1.008 

Arching height 0.980 1.020 

Deviation of the CBX 
arch 

0.996 1.004 

Combining the CBX 
deviation and the 
arching height. 

0.976 1.024 
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decision about whether a change is likely to be beneficial. Supposing in 

the violin shown in fig. 5.1, it was decided to widen the centre by 5% and 
lower the arching by 5%, the change in BEAR could be found. 

The change to BEAR caused by widening the centre 5%, is given by the 

chart as 0.992. 

But widening the centre reduces the side arch rise. 

The change in side arch rise = 109 x 0.05/2 = 2.725mm. 

The change inside arch rise as a percentage = 2.725 x 100 / 38.8 = 7% 

Therefore the change in BEAR= 1+ 0.008 x7/5 (1.008 from the chart) 

= 1.0112 

Change in BEAR caused by lowering the arching, including the change in 

the CBX arch deviation, (from the chart) = 1.024 

The total change to the BEAR is therefor: 0.992 x 1.0112 x 1.024 =1.027 

It has been shown how the BEAR varies with the C/L ratio, and with the 

geometry of the instrument, but not how to find a value for it. Any thought 

of finding a value for the EAR by calculation is out of the question since the 

mathematical model would be too idealised to get an answer of the 

accuracy required. To calculate the figures shown in the table above did 

require calculating the BEAR for each geometric change, but while the 

relative values are useful, the actual value is not good enough. What sort 

of accuracy is required? The results of the tests made showed that if the 

optimum EAR was say 0.61, then any variation beyond the range ± 0.008 

(i. e., ± 1.3%) has an audible effect on the sound. The deviation, on the 

other hand, is not at all critical. The deviation is the amount by which the 

belly is built above the EAR and the back below the EAR. The best way to 

find the optimum EAR is to make and test violins until finally an EAR is 

found which suits the maker's tonal objectives. 

5.3 Tonal evaluation in relation to the EAR 

As instruments of varying EAR were made and the tone carefully audited, it 

soon became clear that being able to make instruments in a way that 

ensured that the EAR was the same every time was essential in achieving a 
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consistently good tone. Tonal criteria were found by which to judge if the 

violin has been built with the optimum EAR. 

1. The EAR of the lower bouts strongly (and almost exclusively) affects 

the sound of the 4th string. There is however some influence on the 

3"" string. 

2. The EAR of the upper bouts most strongly affects the 2nd string, 

again with some influence on both the 3rd string and the 1st string. 

3. If the EAR is too low, the sound is woolly, fuzzy, and muffled. A 

player would say that it is not open. The term "open" is an 

expression much used by players and is readily understood by all 

who play, even a little. A further consequence of the EAR being too 

low is that the tone is impure and identifiably hollow in quality. (It 

sounds as though the sound is emanating from the inside of a large 

tank. ) 

4. If the EAR is too high, the sound is thinner, edgy, cold, astringent 

and perceptibly nasal. 

5. As the EAR is raised from a low starting point, the characteristics in 

(3) above gradually fade away until a point is reached where, quite 

sharply, the characteristics in (4) above appear. The change from, 

low EAR, to medium EAR, and to high EAR tonal characteristics, are 

quite sharp. 

To assist in judging the tonal results additional tests can be made. In fig. 

5.4 the centre bouts cross arch of a belly is shown. It shows that if an 

unusually narrow bridge is put on; an eccentricity is created between the 
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sound post and the bridge foot, and the bass bar and the bridge foot. 

These eccentricities induce bending moments in the belly, which tend to 

lower the arch height. This makes the arch behave as though it is more 
flexible than it really is, thus lowering the C/L ratio by transferring bridge 

load from the cross arch to the long arch system. 

An alternative way of achieving the same effect is to move the sound post 

out closer to the side of the instrument thus creating a similar eccentricity. 
Now that the instrument has had its C/L lowered, it would require a lower 

EAR. If the EAR was previously right or too high, the tone will now be 

made worse and will have the characteristics of EAR too high. If the EAR 

was previously too low, the tone will have been improved. The converse of 
this is that if the sound post is put nearer to the centre of the instrument 

the arch becomes stiffer, attracts load on to the cross arch system, and 

raises the C/L ratio. This means that the instrument needs a higher EAR. 

If the EAR was previously right or too low, the sound will get worse. If the 

EAR was previously too high, the tone will now improve. There is sufficient 
information here to determine if the EAR of an instrument is either too high 

or too low, in each of the upper and the lower bouts. It is widely known 

that the width of the bridge and distance of the soundpost from the centre 

of the instrument affects the tone. By understanding the means by which 
it affects the tone, we can use it as an aid in finding a suitable EAR. 

Who is to say what is wrong and what is right, tonally? This is the maker's 

choice. The writer does not wish to assert in this thesis that any particular 

tone is better or worse than any other (although he has strongly held 

personal opinions), as the experience of others would suggest that there is 

unlikely to be agreement between listeners in these matters. The writer 
does assert that the choice of EAR in both the upper and lower bouts does 

certainly affect the tonal quality in a consistent and predictable way. 

The writer's instruments are all made with an EAR designed to produce a 
tone that is just on the verge of moving into the tonal characteristics in (4) 

above. At this point, the tone is open, clear, pure, and untainted. The 

strings feel firm under the bow, and the instrument has a feeling of power. 
This is, of course, the writer's subjective opinion and is included to 
illustrate the tonal aspects that can be influenced by the choice of EAR. 
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Violin tonal quality is very sensitive to the EAR. It is therefore necessary to 

exercise very refined control of the arching of the instrument to achieve the 

same tonal result every time. These refinements involve taking into 

account the effect of the wood thickness and the effect of the arching shape 

on the EAR. A presentation of how this was done is given in Appendix F. 

5.4 The effect of varnish 

The writer has experimented extensively with varnishes. It is not intended 

to include the results of these experiments in this thesis. There is one 

observation that does have relevance to the propositions advanced in the 

thesis. On several occasions, the writer had cause to entirely remove the 

varnish from a violin. This was done on two violins made by the writer and 
two old violins of different makers. The varnish was removed by solvents. 
In each case, the varnish was removed while the violin was set up for 

playing. The varnish was removed in stages as follows. The sides, the 

back, the belly not including the area between the sound holes or under 

the finger board and tail piece, and finally the area between the sound 
holes including around the bridge. After the last stage the violin strings, 

tailpiece and fingerboard were removed and the area under the tailpiece 

and fingerboard was stripped. Between all stages, the violin was played by 

the writer and any effect on the sound noted. 

The conclusion reached in every case was that there was no significant 

effect on the sound until the area between the sound holes and around the 

bridge was stripped. The effect on the sound was quite definite when this 

area was stripped. It is accepted that this evidence may be subjective but 

it was thought to be of sufficient interest to be worth including. 

5.5 Evaluation of the results 

It was suggested that the traditional shape of the violin could only have 

evolved if variations in the EAR affected the sound. The writer has satisfied 
himself that the sound of a violin varies considerably with the EAR. It 

shows little sensitivity to the deviation. The writer found that there is an 

optimum value for the EAR, which gave the best tonal attributes. No claim 
is made that the subjective judgement involved would produce the same 
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choice of EAR regardless of who was auditing the tonal result. It is claimed 

though that it is unlikely that anyone would like the tonal result produced 
by violins of extreme values of EAR. It follows that consistency of tonal 

quality can be assisted by building violins to a repeatable value of EAR. 

This has been confirmed by the writer. The tone of a low EAR violin 
becomes metallic and hollow in quality. The tone of a high EAR violin 
becomes thin and edgy. 

5.6 Conclusions 

" The tone of a violin has been perceived by the author to be very 

sensitive to the EAR but less sensitive to the deviation. 

" The EAR of the lower bouts of a violin affects the tone on the fourth 

string with some influence on the third string. 

" The EAR of the upper bouts of a violin affects the tone on the second 

string with some influence on the first and third strings. 

" The feeling that a good violin is firm in the string implies that the 

transverse vibration of the string is influenced by the vibration of the 

body that it is on. 

" The tonal effect of applying varnish may be limited to the area between 

the sound holes. 
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Chapter 6 

EXPERIMENTAL PRELIMINARIES 

6.1 The experimental programme 

The experimental programme had several objectives. 

1. To demonstrate experimentally the different causes of LSV and 

investigate their relative contributions. 

2. To investigate the influence of EAR and deviation on the spectrum of 

transverse vibration of the string, the LSV, and the radiated sound. 

3. To investigate the relative importance of TSV and LSV in driving the 

violin. 

4. To see if there is evidence of LSV influencing the modal responses. 

In the course of the work, some interesting experimental results were found 

concerning the effect of varnish on violin behaviour. These results raise 
issues that require further research, but it was thought that they were of 

sufficient interest to be included as an appendix to the thesis. 

The remainder of this chapter deals with the design of the basic apparatus 

used, the calibration of the test equipment and the finding of suitable 
instruments for testing. 

6.2 Properties of the violins and strings 

6.2.1 The violins 
Violins used for testing had to incorporate the differences in arching that 

were to be examined, while being as similar as possible in all other 

respects. Violin tone varies with the nature of the wood used (no two 

pieces being completely identical), the shape of the arching, the graduation 

of the thickness of the plates, the sealers and varnishes used, the 

dimensions of the bridge and adjustment of the soundpost. It also varies 

with its age, and the temperature and humidity of the room in which it has 

recently been. It is common experience among violinists that the sound of 

a violin varies considerably with the way it has been played, which leaves a 
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semi permanent change in the sound. Although this has not been 

explained scientifically, and therefore may not be accepted by some, there 

is justification for being cautious and excluding this as a factor in 

comparing violins. The solution to these problems was to make new violins 
for testing. 

Three violins were made from wood cut from adjacent positions in the same 
board. That the wood was substantially the same was confirmed during 

the graduation of the plate thickness, when the same thickness gave close 
to the same free plate modal frequencies in the three main modes. The 

violin arching shapes were of the same basic shape except as necessary to 

achieve the different EAR and deviations. Some of the tests were carried 

out before varnishing and some after. The same bridge was used on all the 

violins and the writer, working to the same criteria, did the adjustment of 
the soundposts. 

The three violins are numbered as follows. The EAR plus or minus the 

deviation is shown. The deviation is also shown as a percentage of the 

EAR. If the centre bouts arch height is H, the belly end bouts arch height 

is Hx (EAR+deviation), and the back end bouts arch height is Hx (EAR - 
deviation). 

V158LD Normal EAR Low deviation. 

Upper bouts. 0.604 plus or minus 0.051 8.4% 

Lower bouts. 0.622 plus or minus 0.065 9.7% 

V156 Normal EAR Average deviation. 

Upper bouts 0.605 plus or minus 0.080 13.2% 

Lower bouts 0.621 plus or minus 0.089 14.3% 

V 157I Normal EAR High deviation. 

Upper bouts 0.606 plus or minus 0.108 17.3% 

Lower bouts 0.622 plus or minus 0.131 21.0% 
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The term "normal EAR", means the violin is made with an EAR that the 

writer has determined gives the tone that he most likes, and always uses. 

It should be noted that the deviation of the high deviation violin is about 

double that of the low. 

By temporarily interchanging the fronts of V 157 and V 158, two more 

violins were made, which with V156 again, gave the following. The % 

variation in EAR is shown taking the normal EAR as being 100%. 

V157LE Low EAR Average deviation. 

Upper bouts 0.576 plus or minus 0.078 95% 

Lower bouts 0.587 plus or minus 0.095 

V156 Normal EAR Average deviation. 

Upper bouts 0.605 plus or minus 0.080 100% 

Lower bouts 0.621 plus or minus 0.089 

V158HE High EAR Average deviation. 

Upper bouts 0.633 plus or minus 0.805 105.3% 

Lower bouts 0.657 plus or minus 0.096 

It should be noted that the variation in the EAR is comparatively small and 
in fact, many violins are made, and have been made, with an EAR much 
lower than the low EAR violin tested, and much greater than the high EAR 

violin tested. 

Since violins of low or high EAR would be tonally unacceptable to the 

writer, it was important that they could be remade easily into good violins. 
The instruments were always kept together in the same room and were 

played only by the writer. One of the violins was used in a manner later 

described as a "detached body". This was V156. 
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6.2.2 The strings 
The strings used in all the research were a plain steel E string and the 

other strings were 'rhomastic Dominant mittle gauge". It is perhaps the 

most commonly used violin string today. For various reasons, it was 

necessary to know the spring stiffness of the strings. The spring stiffness 

is defined in this thesis as the force required to stretch a lm long string by 

lm (it is therefore independent of the string length in the same way as 

other properties such as Young's modulus and the density). It has the 

units N/(m/m), or simply N. The method used for finding this is described 

in Appendix B. The accuracy shown represents a 95% chance that the 

error would be less than the tolerance quoted. The strings were also 

weighed to find their mass per unit length. 

The properties found are as follows: 

IBt string, stiffness kt 6688 N +or- 15.5%, 

2nd string, stiffness k8t 1711 N +or- 32%, 

3rd string, stiffness k8t 2213 N +or- 12%, 

4th string, stiffness k8t 2804 N +or- 19%, 

6.3 Apparatus 

0.00041 g/mm +or- 5%. 

0.00075 g/mm +or- 5%. 

0.00114 g/mm +or- 5%. 

0.00279 g/mm +or- 5%. 

The equipment and measuring devices that were made are described below. 

The calibration of these devices and the derivation of the conversion factors 

used in the processing of the results are given. 

6.3.1 Test bed 

Nearly all of the tests conducted were carried out on a rig built on a heavy 

steel and timber laminated base, designed to minimise the possibility of 

vibration transmission. The violin scroll and peg box was securely glued 

and screwed to the base, and the other attachments were damped on as 

and where required. A rigid welded steel anchor was made up to form a 
fixing point for the end of the string opposite the peg box, and attached 

with G cramps to the bed, where required. See fig. 6.1. 
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Fig. 6.1. Non conductive base. 
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6.3.2 Driving the string 
In some of the experimental work, the string was driven by a shaker. To do 

this a fine wire stinger was attached to the shaker and, bent to form a 

notch over the string at the other end. This is shown diagrammatically in 

fig. 6.2. The stinger was bent so that when lowered on to the string until it 

was straight it applied a small downward pressure on the string to ensure a 

firm fit. The position of the stinger on the string was 3mm from the end in 

the experiments presented in Chapters 7,8 and 9. The experiments in the 

higher harmonics presented from Chapter 10 onwards were all done with 

stinger contacting the string 8mm from the end. The string was driven at 

the end remote from the bridge. This was a precaution to eliminate the 

possibility of the shaker drive having some influence over the bridge motion 

other than via the string vibration. See fig. 6.3. Hacklinger has also 

suggested that a force could be applied to the bridge by using a shaker to 

Fig. 6.2. Stinger for driving the string, shown on and off the string. 
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Fig. 6.3. Shaker driving a string. 

drive the string, but he had the string damped [Hacklinger, 1978]. 

A detailed discussion of the repeatability of driving the string with a shaker 

is given in section 10.2.1. 

6.3.3 Spectral analysis 
A real time fast Fourier analyser type DI-2200 serial number 951215 was 

used to record and spectrally analyse the detected signals. 

6.3.4 Measurement of the transverse displacement of the string 
The force exerted on the bridge by the vibration of the string could have 

been measured directly by small transducers located at the string notches. 

However in this work there was a need to distinguish between the TSV 

force on the bridge and the LSV force on the bridge. In order to make this 

distinction it was decided to infer the TSV force on the bridge from 

measurements of the transverse displacement of the string. 

The strings are built of a Perlon (German for Nylon) core wrapped in a 

spiral of metal, and are therefore electrical conductors. To measure the 

transverse velocity of the string, strong ferrite magnets were placed to 

create a magnetic field around the string at any point where it was required 

to detect the motion of the string. The movement of the string induced an 

EMF in the string, which was picked up by clipping on wires, outside the 
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playing length of the string. The peak-to-peak transverse displacement at 

the centre of the string length was measured with a simple scale (to a 

precision better than ± 0.3mm). 

lines 
EMF at analyser oc 

time tme 
displacement 

a 
time 

cx displacementj 

and therefore the displacement a 
EMF 

f 

For some of the experiments the magnets were positioned in several 

locations in the length of the string so that all the harmonics could be 

Fig. 6.4. Magnet locations for measuring the amplitude of transverse displacement, 

or of vertical displacement, of the 4th string. 

detected. The magnets were positioned 50 mm from the bridge end of the 

string. The set of magnets near the bridge was oriented to create a field 

that would pick up horizontal motion. By setting magnets at the other end 

of the string oriented to detect vertical movement, it was found that the 

vertical component of movement was very small. The set up is shown in 

fig. 6.4. 
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It was not possible to locate the magnet so that it would record all the 

harmonics in equal proportion to their amplitudes. Therefore, the recorded 

signal was divided by Sin( nL°I, 
where L is the string length and x° is the 

distance from the end to the magnet position, and n is the harmonic 

number. This factor tends to zero every 1280Hz and gives an 

unrealistically high correction at harmonics close to these frequencies. The 

fact that the magnet had an appreciable width would round off the 

correction at these points. A sensible allowance was made for this. 

Additionally a correction was made for the sinc effect due to the magnet 
being relatively wide in relation to the wavelengths of the higher harmonics. 

The recorded signal was divided by Sind nL I, where 2a is the effective 

width of the magnetic field, which was taken as 12 

These factors are derived as follows. The average string velocity at over a 

magnet width of 2a, centred at xo from the end of a string vibrating at 

frequency w, whose displacement amplitude is given by y= Asin L is, 

(nnx 
V. _-f 

jwA'ofa Sinl\ 
2a L so-a 

= jwAL 
n; za 

Sin( 
L 
n7m)xSn( nL'"ý 

The factored analyser voltages were then all divided by the frequency. This 

gives a figure proportional to the displacement amplitude. Then the 

displacement amplitude at the centre of the string length in the first 

harmonic was compared to the measured string displacement amplitude 

and all the analyser voltages were scaled accordingly. The error involved in 

measuring the centre amplitude with a scale is not significant in relation to 

the dynamic range of the spectrum, which was displayed on a log scale 
through several orders of magnitude. 

6.3.5 Measuring LSV. 

Several devices were used for measuring LSV force. 
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The force gauge A standard force gauge, B&K 803120, type 8200, was 

used with a charge amplifier with a gain of . 01 V/pC and an amplification 

of 30dB i. e. 31.7. The force gauge produced 3.9 pC/N. 

Analyser output = LSV force x 3.9 x. 01x 31.6 

LSV force = Analyser output (Volts) x 0.8088, Newtons. 

String anchor transducers In order to measure the LSV force on a violin 

set up in playing condition with four strings on it, a standard violin 

tailpiece was fitted with a small piezoelectric transducer at each string 

anchor. The transducers were described as type PZT-3A, B/N 00992, and 

measured 10mm by 5mm by 2mm. To make a smooth path for the nylon 

chord that passes around the transducers, they were ground with a water 

stone to have aD end as shown fig. 6.5. 
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HOLE IN ANCHOR 

ALUMINIUM 
ANCIIOR 

I O 
---- TERMINAL 

III BRACKET 
RUBBER 
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IN METAL FOIL AND EARTHED 

TO TERMINAL BRACKET 

Fig. 6.5. Long section of tailpiece, showing tranducers at string anchors. 

Several versions of the tailpiece where made and tested and several 

methods were used for its calibration. The details of the calibration of 
these transducers are given in Appendix C. The calibration figures are 

shown as positive if a tension increase gave a positive charge. The 

calibrations are: 

ist string, transducer sensitivity k,,, +36 pC/N +or- 77%. 

2" string, transducer sensitivity k1,, -20 pC/N +or- 77%%, 

3rd string, transducer sensitivity k,,, +45 pC/N +or- 86% 

411, string, transducer sensitivity kct, -50 pC/N +or- 62% 

This tailpiece was used with a charge amplifier that produced 0.01 V/ N and 
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amplified by 20dB. 

Analyser output = LSV force x k« x 0.01 x 10 

LSV force = Analyser voltage x 10 /k« 

Fig. 6.6 shows the finished tailpiece. The metal foil wrapping was found to 

be necessary in order to avoid interference from the ambient electrical field 

in the room. 

Fig. 6.6. Tailpiece showing transducers at string anchors. 

Tailgut transducer Two standard violin tailpieces were fitted with a 

transducer under the anchor point for the tail gut, in such a way that it 

would be subject to the tension force in the tail gut. This is shown 

diagrammatically in fig. 6.7, and in the photo in fig. 6.8. The area 

surrounding the transducer was covered with metal foil shielding. Two 

versions of this were used, and the details of the calibration of each one is 

given in Appendix D. 

The calibrations are: Mark 1, +43.1 1? C/N +or- 52% 

Mark 2, +23.3 p C/ N +or- 20% 
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Fig. 6.7. Diagram of transducer at the tall gut anchor. 
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Fig. 6.8. Photo of the tailpiece with the transducer at the tail gut. 

Mark 1 was used with a charge amplifier that produced 10 mV/pC, and 

amplified by 20db. The analyser voltages were converted to LSV as follows: 

LSV force =Analyser voltage/ (43.1 x. 01 x 10) 

=Analyser voltage x 2.32 Newtons 

Mark 2 was used with a charge amplifier that produced 100 mV/pC. 

LSV force =Analyser voltage/ (23.3 x 0.1) 

=Analyser voltage x 0.429 Newtons 

6.3.6 Measurement of movement 
The movement of the violin surface was calculated from the measured 

acceleration at the point. The accelerometer used was an Endevco Mod. 

25B S/N BL 43. The calibration of the accelerometer is given by the 

manufacturer at 4.912 mV/EU. This was used with a signal conditioner in 
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which the sensitivity was set to the calibration of the accelerometer. The 

output scaling was set at 500mV/EU 

The acceleration is given by: a =2 x 9.81 x Analyser volts, m s-2 

a= 19.62 x Analyser volts, m s"2 

To convert the accelerations to displacements they were divided by (2; r f) 2, 

to give a displacement in metres. 

The polarity of the accelerometer had to be determined. This was done by 

holding the accelerometer in the hand, and bringing the hand swiftly 
downwards. The acceleration was seen on the screen of the oscilloscope, 

and the direction of movement, which gave a positive voltage output, was 

noted. 

Vertical movement at the top of the bridge was calculated from the velocity 

at the point. The velocity was recorded by a laser Doppler velocimeter, 
LDV. The LDV, ISVR No. 1585787 has a sensitivity of 6.24V/ms-1. This 

was used without further amplification. To convert the velocity to 

displacement it was divided by (2, r 1). 

6.3.7 Measurement of radiated sound pressure level 

The radiated sound pressure level was measured by a microphone, B&K '/2 

inch free field, type 4191, SN 1838444. The signal was amplified. 
Generally, the results are comparative only and no attempt was made to 

calibrate the measurement system. The microphone was suspended on a 
2m long string from a beam. It was made to swing through a wide arc 
during recording. The data was acquired by the analyser during 15 

averages. The mean square pressure in a reverberant space excited by a 

pure tone exhibits large spatial variation because of the interference effect 

caused by reflections from the enclosure boundaries. Spatially averaging of 
the sound field by traversing the microphone is routinely employed in 

standardised methods for estimating the spatial average mean square 

reverberant sound pressure that is proportional to the sound power 

radiated by the source. In the absence of a mechanised device, swinging 

was employed as a practical means of achieving a spatial average. The 

distance from the violin to the microphone was set at about 2 metres, but 

this would vary during the swing motion. Since the microphone was 
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positioned within the reverberant field, its distance from the violin was not 

critical. 

The recorded radiated sound of the violin included the sound radiated by 

the shaker that was used to drive the string. Therefore, it was necessary 

separately to record the noise coming from the shaker. It was difficult to 

measure this sound because when the stinger was removed from the string 

the unloaded shaker increased its amplitude and emitted more sound. 

However each time the sound radiated by the violin and shaker was 

measured the stinger was removed from the string while still running and 

the sound emitted by the shaker alone was measured. When analysed, the 

sound of the shaker alone was much stronger in the first few harmonics 

and weaker in the upper harmonics compared with that of the violin plus 

shaker. After some consideration, it was decided that '/a of the recorded 

shaker rms sound pressure be subtracted from the recorded sound of the 

violin and shaker together. If as much as '/2 was subtracted, parts of the 

resulting spectrum became negative (not at the harmonic peak frequencies 

but in the noise areas between the harmonic peaks). By subtracting '/a of 

the shaker sound more plausible results were achieved. This reduced the 

first four harmonics of each string by respectively about 20%, 2%, 6%, and 

4%. Clearly, the greatest possibility for inaccuracy is in the first harmonic. 

The error in the upper harmonics is not of significance. The results of all 

these experiments are comparative and any error involved being common to 

all results would not affect the validity of the comparison. Effort was made 

to reduce the sound radiated by the shaker with some success. 
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Chapter 7 

STRING-BELLYING LONGITUDINAL STRING 

VIBRATIONS 

7.1 Introduction 

In Chapter 3 we drew a distinction between the driving substructure and 

the rest of the violin. Bellying LSV is the principal source of LSV within 

the driving substructure. It is possible separately to generate and examine 

string-bellying LSV. This was done on a blocked base. To reduce the 

amount of LSV arising from tailpiece resonance, the tailpiece was replaced 

by a force gauge. A third string of normal playing length and tension was 

passed over the centre of a bridge and anchored to the force gauge. The 

bridge was of the size of a normal violin bridge, but had no piercing in it to 

make it rigid in its own plane. See fig 7.1. 

7.2 With a single frequency input 

7.2.1 Method 
First, a single frequency excitation was applied and a steady vibration 

established. This was done by driving the string at its resonance frequency 

by a shaker located about 3mm from the end of the string remote from the 

bridge. To detect most of the lower harmonics present, the magnet was 

placed at 1/5 of the string length from the bridge. The traces show that 

the first harmonic is much stronger than the upper harmonics. See fig. 

MAGNETS MOVED TO FORCE GAUGE 
VARIOUS POST IONS BRIDOEL 

nýý 

PACKING 11 BLOCK WOOD 

Fig. 7.1. Apparatus for generating and measuring string bellying LSV. 
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7.2. The EMF generated by the string motion was related to the amplitude 

of transverse displacement of the string by measuring the peak-to-peak 

transverse displacement at midlength of the string with a scale. 

The computer used by the writer at the time of processing the experimental 

results presented in this chapter was severely limited in hard disc space. 

To limit the amount of graph drawing data that was stored in the computer 

the analyser was set to sample the spectrum at 20Hz intervals. The peaks 

that were picked up were depressed and broadened by the averaging 

process adopted by the analyser. However, since the excitation was 

sustainable over time it was possible to zoom in and increase the number 

of lines to achieve a more precise figure. The peak values found this way 

were noted and the graph drawing data held in the computer was scaled 

up to these values. The resulting peaks shown in the graphs are correct 

for peak heights but are somewhat exaggerated in width. 
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Fig. 7.2. Sting displacement and LSV, shaker driven string, high amplitude. 
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7.2.2 Results 
The graphs should be read as representing a single frequency excitation. 

The pair of spectra shown in fig. 7.2 shows first the string transverse 

displacement followed by the corresponding LSV force. These results show 

that by driving the string with a shaker it is possible to set up a 

predominantly first harmonic transverse vibration in the string. They also 

show that the resulting LSV is an equally dominant doubling of the 

frequency. Fig. 7.2 shows the result for the maximum amplitude of 

transverse displacement tested. Four other amplitudes were also tested 

and the results of all five tests are shown in fig. 7.3. 

Fig. 7.3 shows the string amplitudes and LSVs, plotted on the theoretically 

derived graph, previously shown in fig. 3.1. 
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Amplitude of transverse vibration of string, mm. 

Fig. 7.3. Bellying LSV, experimental and theoretical. 

7.2.3 Discussion of results 
The experimental result is consistently higher than the theoretically 

derived result, by about 35%. It will be shown in subsequent experimental 

work that the LSV force established in the string is always greater than 

that predicted theoretically. In this case the reason may be the 

contribution to the LSV made by vibration of the force gauge and by out of 

plane movement of the bridge (see section 3.2.5). 

The apparatus used for the determination of the spring constant of the 

strings, which is shown in Appendix B, is similar to that used in this 

experiment. In the determination of the spring constant, the bridge was 

placed symmetrically in the centre of the string length, with the intention 
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of discouraging the bridge from vibrating normal to its plane. By 

inspecting the coherence of the transfer function, it was concluded that the 

resulting spectra of LSV force were free of the effects of parasitic vibration 

up to about 600Hz. The LSV force in all four strings rose from about 

700Hz to a strong peak at 980Hz, the height of which was 10 to 62 times 

the base level LSV force amplitude. The frequency of this vibration was 

constant and therefore independent of the string characteristics. Attempts 

to ascertain the cause failed. Evidence is presented at several points in the 

thesis that there is a considerable amount of resonance within the driving 

substructure that increases the measured LSV in proportion to that 

predicted theoretically. LSV generated within the driving substructure is 

`primary LSV' and is capable of driving the violin. 

7.3 With a bowed string 

7.3.1 Method 
In order to find if a bowed string is capable of generating a similar 

doubling of frequency, the same apparatus was used and the string was 

bowed. In order to pick up the harmonic content of the transverse 

vibration of the string, the magnet was positioned in several places. 

At mid length, to pick up the let, 3rd, 5th, 7th, and 9th harmonics. 

At the ' point, to pick up the 2nd, 6th, 10th harmonics. 

At the 3/8 point, to pick up the 4th harmonic. 

There had to be three independent data sets, one for each magnet location. 

The mid length peak to peak amplitude of string vibration was estimated at 

3.5 mm by using a simple scale. It is interesting to note that it would be 

close to impossible to bow a string to such a high transverse displacement 

if it were on a real violin. The analyser was set to trigger a bowed stroke at 
50% and the output was the average of 12 strokes. This was found 

reasonably reproducible. It was possible to discard any data sets where 

the bowing was at a level that did not match the others by inspection of the 

string tension trace on the analyser, which was independent of the magnet 

position. Any small differences were adjusted by scaling the data in the 

computer to make the three LSV traces converge. The voltages recorded by 
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the analyser representing the LSV, were checked for precision by zoom, 

which proved more difficult because of the unsustainable signal. Here 

again it was found that the recorded traces were an underestimate. The 

recorded figures were scaled up to reach the figure found by zoom. 

7.3.2 Experimental result 
The spectra shown in fig. 7.4 are for a strong bow stroke close to the 

bridge. The correct maximum value at any harmonic is the greatest of 

those shown in the graph. For the reason stated in section 7.2.1, while the 

peak heights are correct the peak widths are exaggerated. The harmonic 

content of this stroke (shown in fig. 7.4) is fairly typical of published bow 

strokes near to the bridge and shows the classic 1 /n dependence of a saw 

tooth wave [Pickering, 1991 ]. The resulting bellying LSV is shown in fig. 

7.5. 
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Fig. 7.4. RMS displacement, bowed string. 
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Fig. 7.5. Bellying LSV, bowed string. 
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A number of similar traces were produced, with bowings of various 

strengths and position, and these showed relatively little variation from the 

above graph. The significant feature is the marked weakness in the let 

harmonic and a marked strengthening of the 2nd harmonic. 

7.3.3 Theoretical prediction 
It is possible to make a theoretical prediction of the bellying LSV generated 

by a bowed string. Woodhouse has suggested that the bowed string would 

not give an LSV of double the frequency [Woodhouse, 1977]. If it were 

possible to bow the string at the normal point of bow contact, in such a 

way that there was no permanent transverse displacement of the neutral 

position of the string, the familiar Helmholtz motion would be set up. 

There is a kink in the string with straight lines between, which cycles from 

end to end within the curved envelope. This is shown in the top diagram of 

fig. 7.6. 

-- 

Fig. 7.6. String shape combining Helmholtz motion and bellying. 

This can be resolved into a number of simple sinusoidal harmonics. 

Consider any one harmonic. In that harmonic, the string would have its 

shortest length when it passes through the straight-line position. Either 

side of this, the length and tension increases. This is a symmetrical 
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displacement and clearly produces an LSV of double the transverse 

frequency in that harmonic. In practise, it is not possible to set up a 

vibration that is fully symmetrical about the straight-line position of the 

string because the bow must introduce a permanent transverse 

deformation [Woodhouse, 1977]. This shifts the line of symmetry to the 

bent shape shown in the second diagram of fig. 7.6. The combined string 

shape and envelope of motion is shown in the bottom diagram. The string 

length will still vary equally both sides of the bent line of symmetry. 

The string transverse displacement can be expressed as the sum of a static 

and a dynamic function of the distance along the string as follows; 

nnx 
y=A(x)+E. 

[a�Sin 

L . Cosnwltl 

The slope = A' (x) +LZ. 
I 
a�Cos 

n= Cos nwlt 

The change in string length is given by 

`Ts-jJOL 1+2I 
&2 

) 

r 12 
The nth term of the expansion I&I can be written, 

2l [A' 
(x) +LX 

7r Ea. Cos L Cos ncý1tJA'(x)+ L 
EmamCos L Cosmwlt] 

= [A' (x)]2 + A' (x) 
L 

LE�a�Cos nL Cos nw, t+ Em amCos 
L Cos mwl tj + 

()2 ... XZm... 
} 

The first term is independent of time and derives from the static 

deformation. The second and third terms are dynamic, the second being 

linear and the third being non-linear. Without any knowledge of the 

bowing force, we cannot proceed further with the theoretical evaluation of 

8s or of the LSV. Because of orthogonality, after integration the third 

l 
term only contains terms of the form 

(? L)2 {Ea2Cosz L Cosz nwlt}. The 

second term would give an LSV of the same frequency as the transverse 
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wave, and the third term an LSV of double the frequency of the transverse 

wave. Theoretically then, the bowed string will not produce an LSV of 

entirely doubled frequency. The experimental result shown in fig. 7.5 was 

for a strong bow stroke fairly close to the bridge. It is interesting to note 

that since A appears in the linear term the position of the bow must affect 

the ratio of linear to nonlinear LSV. Bowing closer to the bridge will raise 

the ratio of second harmonic to first harmonic in the LSV of the bowed 

string. The writer found some evidence of this during the experimental 

work. 

The experiment conducted above was not on a real violin with four strings 

fitted. There is some indication from experimental work presented later 

(Section 13.6.3) that the amount of string bellying LSV in a actual violin 

does not vary much at each harmonic. If there was a complete doubling of 

frequency, the bellying LSV would only exist at the even numbered 

harmonics. 

If the whole of the first harmonic TSV transverse displacement of 1.75mm 

were to cause a second harmonic LSV, then the resulting LSV force would 

be 66.6 mN. The experimental result of 85.7 mN, is some 28% higher than 

the theoretical figure. While this discrepancy is a little less than that of the 

shaker driven string, it cannot be assumed that all the first harmonic TSV 

produces second harmonic LSV. There is again evidence of the effect of 

resonances within the driving substructure having reinforced the LSV 

vibration. 

7.4 Conclusions 

. The bowed string generates bellying LSV. 

The LSV developed is largely of double the frequency of the first 

harmonic of the transverse vibration but there is some LSV of the 

same frequency as the first harmonic of the transverse vibration. 

" The magnitude of the LSV developed has a non-linear relationship to 

the TSV, and broadly follows the relationship predicted theoretically 

in Chapter 3. 
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. The the LSV arising from bellying has been reinforced by resonances 

within the driving substructure. This has contributed to the 

`primary LSV'. 
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Chapter 8 

BRIDGE-ROCK LONGITUDINAL STRING VIBRATIONS 

8.1 Experimental method 

In an attempt to model the generation of LSV from the rise and fall of the 

bridge, it was again necessary to create an idealised set up. Using the 

stringing geometry of a real violin, the body was replaced by the rubber- 

mounted bridge used in the determination of the spring constant. This 

bridge support is described in Appendix B. It contrives to enable the 

bridge to move vertically at the bass foot, to move vertically very much less 

at the treble foot and to be restrained from any horizontal movement at the 

base. The bridge is restrained at the base from tilt normal to its plane by 

the `belly' on which it is mounted, as is the bridge on a violin. The tailpiece 

that was used was the one fitted with transducers at the string anchors 

and so it was possible to measure the LSV at each string. The bridge was 

driven horizontally by a wire stinger attached to a shaker. The shaker was 

driven with broadband random noise. The bridge base was restrained 

from horizontal movement and the dissimilar elasticity of the rubber base 

mountings caused the bridge to rotate about a point located somewhere 

between the bridge feet somewhat nearer the first string side. The set up is 

shown in fig. 8.1. An LDV recorded the magnitude of the velocity of the 

vertical motion of the bridge at a point immediately adjacent to the string 

groove. The transverse vibration of the strings was damped with foam 

plastic. Various levels of damping were tried with little difference in the 

result. The final recorded traces were done with a light level of damping, to 

suppress any string bellying. 

With one string on the bridge at a time, mounted at the centre of the 

bridge, the following transfer function was recorded: 
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Fig. 8.1. Apparatus for generating and measuring bridge-rock LSV. 

Tail force transducer output TF. = 
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where k,, =Tail transducer sensitivity in pC/N 
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8.2 Theoretical result 

The experimental result is shown with the theoretical result on the same 

graphs, (figs 8.2 to 8.5 inclusive). The theoretical result is the LSV force 

induced by unit bridge rise due purely to the stretching of the string. 
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Referring to fig. 8.1, the string to the left of the bridge is L long and slopes 

upwards H and the string plus tailpiece to the right of the bridge is 1 long 

and slopes upwards }y 

The base lengths each side of the bridge are respectively, 

L2-H2 and 12-h2 

If the bridge rises by 1 unit, and the other terminations do not move, the 

new length of string = (L2 - H2) + (H + 1)2 + (12 - h2) + (h + 1)2 

Change in string length= r L2 + 2H + 1- L] + 
[, [12 

+ 2h + 1-1 ] 

Using actual figures gives a change in length due to 1mm bridge rise of, 

=[ 3302 + (2 x 47.25) +1 - 330] + 
[1752 

+ (2 x 41.25) + 1-175] 

=0.383 mm. 

Strain = 
Change in length 

_ 
0.383 

Original length 385 

where, 385=string length not including tailpiece. 

Force in string due to stretching =k, t x 
0.383 N. 
385 

For list string, force=6.648 N/mm of bridge rise. 

For 2nd string, force=1.700 N/mm 

For 3rd string, force=2.199 N/mm 

For 4th string, force=2.787 N/mm 

8.3 Results 

The graphs show for each string, the tension force in the string for 1mm 

rise in the bridge. 
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Fig. 8.2.1t string. LSV force/unit bridge rise. 

Bridge-rocked by shaker driving with broadband noise. 
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Fig. 8.3.2nd string. LSV force/unit bridge rise. 

Bridge-rocked by shaker driving with broadband noise. 
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Fig. 8.4.3rd string. LSV force/unit bridge rise. 
Bridge-rocked by shaker driving with broadband noise, 

5000 
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Fig. S. S. 4th string. LSV force/unit bridge rise. 

Bridge-rocked by shaker driving with broadband noise. 

The experiment was repeated a number of times and the result varied with 

each repeat. The results shown are typical. 

8.4 Discussion of results 

The experimental result is many times higher than the theoretical 

prediction based on a purely elastic response to the bridge rise. The 

average of the experimental result exceeds the theoretical result for the 

E, A, D and G strings by 21,29,25 and 10 times respectively. The 

experimental result only approaches the theoretical figure at the troughs. 

It is possible that LSV has been generated by the resonances of the 

combined string, tailpiece and tailgut system. It can be expected that 

considerable dynamic effects will arise from the asymmetry of the bridge 

position, the introduction of the tailpiece, using only one string at a time, 

and driving the bridge by a shaker. 

There was some evidence in the string bellying experiments presented in 

Chapter 7 of secondary LSV caused by the bridge not being centred on the 

string length. In Appendix B, the graphs are shown for the determination 

of the spring stiffness of the strings. To avoid inducing LSV by bridge 

movement normal to its plane, the set-up was made symmetrical. There 

was no tailpiece either so the capacity for added resonance was reduced. 

The resulting curves for LSV force per unit bridge rise showed no 

resonance at all in the range up to 600 to 700Hz, but there was a peak at 

980Hz, which was from 10 to 62 times higher than the base LSV force. It 
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is apparent from this that the asymmetry of the bridge position introduces 

secondary LSV. 

There has dearly been an additional and very substantial increase in the 

LSV caused by introducing the tailpiece into the experimental set-up. 

There was only one string on the bridge and tailpiece in each test, and this 

may have left the tailpiece much less restrained against translational and 

torsional movement than that of a tailpiece with four strings on it. At each 

of the three string anchors that did not have a string attached, there was a 

loosely held transducer and an aluminium eye. These were free to vibrate. 

These random vibrations would have a non-linear relationship to the 

bridge rise, but a linear relationship is assumed in the graphs presented. 

The output of transducers at these unattached anchors was measured and 

found to be of the same order as the anchor that was holding the string. 

Reciprocally, the output from the transducer that was holding the string 

may well have picked up the vibration of the unattached anchors at the 

other string positions. For these reasons the experimental result would 

almost certainly not be representative of real violin behaviour. The 

experiments presented in Chapters 6 and 7 and in Appendices A and B, all 

show that resonances within the driving substructure are capable 

considerably reinforcing the primary LSV generated by string bellying and 

the secondary LSV generated as a response to the modal action of the 

body. 

Boutillon and Weinreich point out that the admittance of the bridge on a 

violin is of a similar order in the three coordinate directions x, y and z, and 

so any slight tendency of the bridge driver to have a component normal to 

the plane of the bridge would excite dynamics normal to the bridge 

[Boutillon and Weinreich, 1999]. 

Results are presented later of experiments done with four strings on the 

tailpiece and with the string driving the bridge rather than the bridge being 

driven by a shaker, and the results are presented in Chapter 9. 
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8.5 Conclusions 

" LSV was developed in the string by rocking the bridge. 

9 The bridge-rock LSV was submerged in a large amount of secondary 

LSV arising from the system dynamics. 
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Chapter 9 

LSV IN THE LOWER HARMONICS 

Having looked at bridge-rock LSV and bellying LSV separately, it is now 

necessary to compare the relative magnitudes and therefore the importance 

of the two causes of LSV. 

9.1 Single string 

9.1.1 Experimental method 
We begin with the simple case of only one string on the bridge. If this 

string were mounted on a violin, it would become part of the structure of 

the instrument and would be subject to the influence of the body 

dynamics. Input from the body could enter the string at the nut and 

saddle. This would make it difficult to say that the LSV is due to bridge- 

rock and/or bellying. If an elastic bridge support such as mounting it on 

rubber were used, it would not be representative of a real violin unless the 

actual bridge foot mobilities were reproduced. The method followed was to 

mount the bridge on a violin, but the string ends at the nut and tailgut 

were taken to supports that were independent of the violin body. This gave 

Fig. 9.1. Use of the "detached body". 

95 



the bridge the correct mobility, permitted bridge-rock interaction with the 

body at the bridge but eliminated the complication of interaction with the 

body at the string ends. The violin used in this way is referred to as a 

"detached body". The body chosen for this had been made with the normal 

EAR used on all the violins made in our workshop. The body was mounted 

on a sponge rubber block under the button at the top end of the back and 

the other at the bottom end of the back near the endpin. There were rigid 

supports under the sponge rubber blocks. The static force of the strings on 

the bridge was transmitted through the body to the blocks. The load of the 

body on the blocks would have compressed the rubber and made the 

support more rigid. The violin was thus able bend in its length in response 

to this static force. The strings and bridge were placed to comply with 

normal violin geometry. See fig. 9.1. The violin mounted in this way would 

still be able to respond to LSV forces applied at the bridge but the need for 

a reaction applied at the mountings must have had a modifying effect on 

the body dynamics. 

9.1.2 With a single frequency input 

The single frequency input has the virtue that any higher harmonics that 

appear must be due to bellying LSV. With only a third string on, the string 

was driven by a shaker at the end remote from the bridge and at differing 

amplitudes. As before the zoom was used to improve the accuracy of the 

recorded peaks. 
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Fig. 9.2. Shaker driven 311a string. Harmonic content of transverse displacement at a 
displacement of 3.75mm. Nate, band width is shown much wider than actual. 
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Fig. 9.3. LSV, detached body, single 3rd string , shaper driven. 

Again, this spectrum (fig 9.2, the width of the signal peak is incorrectly 

shown, see section 7.2 for reason) shows that the shaker can produce close 

to a sinusoidal input. The string was driven to various displacements and 
the resulting LSV was noted. From this data, fig. 9.3 was produced. 

At the lowest amplitude, the correspondingly low LSV shows negligible 

second harmonic, but as the amplitude rises there is an increasing 

proportion of second harmonic in the mix. The only possible reason for 

there being first harmonic present is bridge-rock LSV, and the only possible 

reason for the second harmonic being present is bellying LSV. Fig. 9.3 

therefore presents bridge-rock LSV in blue and bellying LSV in red. The 

third and fourth harmonics are probably the result of their small presence 

in the shaker drive. 

Since bridge-rock LSV has a linear relationship to the string displacement, 

it could be expected that the blue line showing the bridge-rock LSV force 

should be straight. The reason it is not straight may be due to some non- 
linear secondary LSV. In going from a string displacement of 0.8 mm to 

4.25 the ratio of bridge-rock LSV to string displacement has increased by 

1.63 times. 

The LSV force from string bellying can be compared with the theoretical 

LSV force caused by string bellying, which is shown in brown in fig. 9.3. 

Here again the LSV not only exceeds the theoretical figure considerably but 

does so nonlinearly in that the divergence increases with rising string 
displacement. In going from a string displacement of 0.8mm to 4.25 mm, 

the ratio of experimental LSV to theoretical LSV has increased 1.65 times. 
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The close agreement between the amount by which the bridge-rock LSV 

and the bellying LSV exceed the theoretical figure supports the view that 

they are both influenced by a common factor. 

From these figures, we can estimate the total LSV force at the second 

harmonic if the string had been bowed. At a first harmonic string 

displacement of 1.15mm the LSV force is 53mN in be second harmonic and 

the bridge-rock LSV would be 47mN giving a total LSV of 100mN. We will 

now look at the results for a bowed string to see how they compare. 

9.1.3 With a bowed input 

Using the same apparatus, the string was then bowed at five different 

levels. The relative amplitude of the transverse displacement of the string 

was spectrally analysed and is shown in fig. 9.4. The relative harmonic 

content of the transverse amplitude did not vary significantly with the 

bowing level. 
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Fig. 9.4 Transverse string displacement in each harmonic, single Std string, bowed. 
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Fig. 9.5 LSV force, detached body, single 39d string, bowed. 
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The harmonic content of the resulting LSV (shown in fig. 9.5) shows a 

movement towards a progressive strengthening of the second and fourth 

harmonics. It cannot be said that the entire second harmonic is due to 

bellying LSV because some of it must be due to second harmonic bridge- 

rock LSV. In section 9.1.1 we calculated from the experimental results that 

the LSV in bowed string at the second harmonic frequency would be 

100mN. In fact, the experimentally found result shown in fig. 9.5 is an LSV 

force of 271mN. This was contributed to approximately equally by bellying 

LSV and by bridge-rock LSV. Experimental results for shaker driven string 

and the bowed string were related to each other on an equal basis a 

number of times in the course of this research and in all cases, the bowed 

string produced higher LSV. 

9.2 With four strings on 

To get closer to a real violin we now look at four strings over the bridge. 

9.2.1 With a single harmonic input 

It is useful to begin again with the single harmonic transverse vibration, so 

that it can dearly be seen what harmonic content arises in the LSV. The 

string was driven by a shaker located 3mm from the end of the string 

remote from the bridge, at the first harmonic of the open string. Three 

separate runs were needed to record the four strings, with a two-channel 

analyser. The transfer function of the LSV of the driven string over that of 

each of the other three strings was recorded. The results were slightly 

scaled to normalise on a standard LSV for the driven string. From these 

transfer functions the actual LSV in all the strings was found and is shown 
for each driven string in figs. 9.6 to 9.9. 

It should be remembered that the excitation is almost entirely of first 

harmonic frequency of each open string. The introduction of the second 
harmonic is due to the bellying LSV. The bellying LSV would arise in the 

string that is being driven, but as the increase in tension presses down on 
the bridge, it would usually rotate the bridge thus transferring the LSV to 

the other strings. These charts begin to show the complexity of the violin. 
One could have expected to get the greatest strengthening of the second 
harmonic in the string that was being driven. While this did happen in the 
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Fig. 9.6. LSV, detached body, single frequency s1' r driven 1+t string. 
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Fig. 9.8. LSV, detached body, single frequency shaker driven 3rd string. 
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Fig. 9.9. LSV, detached body, single frequency shaker driven 4th string. 

first and fourth strings, it was not so for the second and third. The strong 

presence of the second harmonic testifies to the strong bellying LSV effect. 

The appearance of some third and fourth harmonics can only have come 

from the very small higher harmonics in the driving being reinforced by 

resonances in the system. 

Violins V 157LE, V 156 and V 158HE (varying EAR) were all tested by driving 

the third string with a shaker. The violin was mounted in the same way as 

the detached body with a sponge rubber block under the button at the top 

end of the back and the other at the bottom end of the back near the 

endpin. The body was very lightly held down onto these blocks with rubber 

bands. There was very little compression of the foam rubber blocks and it 

is believed that this mounting did not present a constraint to body 

dynamics that was significantly different from the normal support provided 

by a violinist. 

The first second and fourth strings were related to the third by transfer 

functions. There was very little difference between the three violins in their 

response. From this the actual LSV was found. The graphs shown in fig. 

9.10 are typical of all three. It will be seen also that they were not very 

different from the detached body third string shown in fig. 9.8. This a little 

surprising and perhaps arises from the fact that the excitation was by 

shaker and not by the bow. It could of course mean that there is no link 

between the LSV developed in a violin (at least in the lower harmonics) and 

the EAR. 

101 

1st string 2nd string 3rd string 4th string 



300 -------- 

0 
0 1st harm 133A. txt ; 

25   2nd harm 
z O 3rd harm 200 

04th harm 

w 
150 

100 

50 

0 

1st string 2nd string 3rd string 4th string 

Fig. 9.10. LSV, V156, single frequency shaker driven 3rd string. 

9.2.2 With a bowed input 

The bowing is the average of 12 strokes recorded with the analyser 

triggered at 50%. An experienced violinist did them and by constantly 

watching the transverse displacement amplitude, a good degree of 

reproducibility was achieved. Any slight variation in bowing strength was 

compensated for by normalising on the LSV of the bowed string. The bow 

stroke was a strong one. The detached body was used first. The LSV for 

each string is shown in figs. 9.11 to 9.14. Again, this shows a similar 

picture to the single harmonic input but it does reflect the more 

harmonically rich input from the bow. There is also a reduction in the 

relative strength of the second harmonic of the bowed string due to the 

string transverse displacement amplitude being less for the bowed string 

than for the shaker driven string. 

Figs. 9.15 to 9.18 shows the result for the same experiment on V 156. There 

are differences between the results from the detached body and the real 
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Fig. 9.11. LSV, detached body, bowed lit string. 
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Fig. 9.12. LSV, detached body, bowed 2nd string. 
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Fig. 9.13. LSV, detached body, bowed 3M string. 

violin. It would appear that the LSV in the string being bowed is similar for 

both violins. The difference arises in the non-bowed strings but it is 

difficult to make a valid general comment. This does point to the possibility 

that there would be a clearer difference in the amount of bridge rocking. 
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Fig. 9.14. LSV, detached body, bowed 4th string. 
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Fig. 9.15. LSV, V156, bowed 1d string. 
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Fis. 9.16. LSV, V156, bowed 2M string. 

300 

250 

200 

150 

100 Iq 
50 

0 

Fig. 9.17. LSV, V156, bowed 3rd string. 
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Fig. 9.18. ISV, V156, bowed 4th string. 

That is looked at later. All that could be concluded is that a violin behaves 

differently if it is complete and not detached. 

The third string was bowed, when it was on a detached body, and on 

violins of low EAR, normal EAR and high EAR. The LSV for all the strings 

is shown respectively in figs. 9.13 (repeated), 9.19,9.17 (repeated) and 

9.20. Look first at the LSV set up in the third string. Again, partly because 

the bow stroke was strong, there is a very strong peak at the second 

harmonic, caused by the dominance of the bellying LSV. While this peaks 

at 219mN on V 158HE, and 143mN on V 157LE, it is only 90 on V 156, and 

53mN on the detached body. One could speculate on the explanation for 

this but at this stage, there is just not enough information to draw any 

conclusion. When discussing the shaping of the plates it was pointed out 

that violin plates are shaped to make the movements of the plates, induced 

by LSV, reinforce the movements induced by the rocking of the bridge. 
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Fig. 9.13. (repeated) LSV, detached body, bowed 3rd striag. 
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Fig. 9.19. LSV, V157LE, bowed 3' string. 
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Fig. 9.17. (repeated) LSV, V 156, bowed 3zd string. 
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Fig. 9.20. LSV, V 158HE, bowed 3M string. 

If we look now at the fourth string, violin V 156 has an LSV about five times 

greater than V 157LE and ten times greater than V 158HE. The other 

noticeable difference is the low LSV carried by the first string of V 157LE. It 

would seem logical to look next at the rocking of the bridge. 
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9.3 LSV and bridge movement 

9.3.1 Total LSV at the tailgut 
At this stage, the tailpiece was replaced with one containing a transducer 

at the tail gut. All subsequent readings are for the LSV of the combined 

group of strings. The violin was supported on the test bed by foam rubber 
blocks at the extreme upper and lower ends of the back (as previously 

described in section 9.2.1). Rubber bands were attached to hold the violin 
down on to the blocks. The violin was bowed while in this position. This 

was not necessary in the case of the detached body, which was held down 

by the string pressure. Seven notes were selected to cover the low and 

middle range of the instrument. These were A and C on the fourth string, 

E and G on the third string, B and D on the second string and F sharp on 

the first string. Each note was bowed to about 6 to 8 strokes sufficient to 

achieve the required number of process averages on the analyser. The 

output from the tail transducer was converted to an EMF and fed to the 

analyser. The analyser was set to record the LSV at the tailgut. The 

recorded harmonic peaks were noted for the first three harmonics. 

The LSV was processed as follows. 

String tension vibration, LSV = 
EMF analyser 

transducer sensitivity x .O1x 10 

where the charge amplifier calibration is 
0.01 v/pC and the amplification is 20dB. 
Analyser EMF, V 

LSV =. inN 
4.31 pC/N 

= Analyser EMF in Vx0.232 N. 

Figs. 9.21 to 9.24 show the LSV developed in each of the first three 

harmonics for the detached body and the low, normal and high EAR 

violins. Generally, the lower notes tend to be weaker in the first harmonic 

and stronger in the second and third than the upper notes, which are 
dominated by the first harmonic. The only other point is that V156 

maintains a higher average LSV than the others, and the detached body the 
lowest. There are not any major differences. 
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Fig. 9.21. LSV at tailgat, detached body, bowed string. 
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Fig. 9.22. LSV at tailgut, V157LE, bowed string. 
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Fig. 9.23. LSV at taugut, V156, bowed string. 
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Fig. 9.24. LSV at tailgat, V158HE, bowed string. 

9.3.2 Bridge movement 

The above experiment was repeated, this time recording the vertical velocity 

of each side of the top of the bridge in turn by using the LDV. The 

magnitude and phase of this movement was related to that of the LSV and 

was recorded as a transfer function LDV/LSV. The LSV was recorded on 

the second channel. The transfer function was processed as follows, to give 

the amplitude of the bridge movement. 

LDV output TFaý _ (Transducer output) x (Amplification) 

where TF,,,, = Analyser recorded transfer function 

LDV output =vx6.24 Volts 

and v=azf where a= bridge displacement. 

Therefore the LDV output = 2a xfx6.24 Volts. 

Therefore TFgr, = 
2a . ir fx6.24 

LSVx43.1x. 01x10 

1 43. lx. O1x10x106 
a= TFan x LSV xfx 

2ir x 6.24 
in microns. 

Figs 9.25 to 9.28 show the displacement amplitude for each side of the 

bridge, and for each note, on each instrument. 

There are differences here. V158HE shows a generally lower level of bridge 

movement than the others do. V156 shows a more uniform and marginally 

stronger bridge movement than the others do. Most interestingly the 

movement of the treble and bass sides of the bridge are not as different as 
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is generally supposed. Indeed, in some cases, the treble side moves more 

than the bass side. 
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Fig. 9.25. Vertical displacement at bridge top, detached body, bowed string. 
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Fig. 9.26. Vertical displacement at bridge top, V157LE, bowed string. 
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Fig. 9.27. Vertical displacement at bridge top, V 156, bowed string. 
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Fig. 9.28. Vertical displacement at bridge top, V158HE, bowed string. 

The recorded phase of the bridge movements also showed that the 

movement of each side of the bridge was not separated by a neat 180 deg. 

phase difference. Indeed the phase differences showed a very large range of 

variation, in some cases coming close to both sides being in phase with 

each other. The widely held concept that the bridge rocks about the sound 

post is still a valid concept for motion relative to the top of the sound post 
but of course, the top of the sound post is not fixed. The absolute 

movement of the bridge feet is a rather more complex affair. The bridge 

movement and phase for a much larger range of harmonics was measured 

at the base of the bridge and this is presented in Chapter 12. 

9.4 Conclusion 

" In nearly every note played, the LSV of the second harmonic was 
disproportionately high compared to its strength in the spectrum of 
the amplitude of transverse displacement of the string. It is clear 

that string-bellying LSV makes a significant contribution to the total 

LSV, in the second harmonic. 
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Chapter 10 

EXPERIMENTS USING SHAKER EXCITATION 

10.1 Introduction 

In the experiments described in Chapter 9, the LSV force was measured 

separately for each string at the string anchors. The qualitative analysis 

presented in Chapter 3 suggested that the total LSV force of the four 

strings combined was the significant factor in the driving of the violin. In 

this Chapter, the experiments concern the total LSV force in the group of 

four strings, as measured at the tail gut. 

In Chapter 9, the results were presented of experiments designed to 

investigate the relative contributions of string bellying and bridge-rock to 

the total LSV in the lower harmonics. The results failed to produce any 

consistent evidence that might point to differences in the LSV in violins of 

different EAR. 

Violin tone is harmonically very rich and the timbre and carrying power is 

thought to be dependent on the upper harmonics. In this chapter, the 

results of experiments concerning the LSV developed over an extended 

frequency range are presented. All the experiments reported henceforth 

cover a frequency range extending from zero to 10kHz. 

10.2 Excitation over an extended range 

In Chapters 11 to 13 of this thesis, the results of tests are presented which 

were made to investigate any differences that may exist in the effect of 

different shapes of arching on the generation of LSV and radiated sound. 

These tests required a sustained excitation, so that several spectra could be 

recorded. String-bellying LSV originates from the string motion and acts 

on the violin at three ports. The spatial disposition of the input forces from 

the driving substructure to the body may have a significant effect in 

determining the relative degrees to which modes are excited. Therefore, it 

is necessary to involve the swinging of the string in the excitation of the 

violin. 
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Considerable effort was put into an unsuccessful attempt to find the 

operating shape of the violin while the open G string was hand bowed, by 

using a small volume velocity transducer. This experience showed that for 

most experiments it was not practical to hand bow the string because of 

the difficulty of repeating accurately, and sustaining, the excitation. 

Bowing machines have been made in some research establishments but 

they are not simple pieces of equipment, and the excitation is still very 

dependent on the bow pressure and velocity, and the position of the bow on 

the string. 

10.2.1 Driving by shaker 

Excitation by driving the string with a shaker has the main disadvantage of 

not producing a typical bowed spectrum, in that it is weak in harmonic 

content. On the other hand, it is sustainable and repeatable. 

By adjusting the driving frequency to be slightly off the resonance 

frequency of the string, it is possible to introduce a rich harmonic content 

into the transverse vibration of the string. Unfortunately, driving off 

resonance was not found to give easily repeatable results. It was found 

that a certain amount of harmonic content was introduced by driving at 

resonance and this was found to be a repeatable condition. 

Following the presentation of an earlier version of this thesis it was 

suggested that all the results obtained by shaker excitation of the open G 

string at resonance are unreliable because of the extreme sensitivity of the 

response to combinations of the driving frequency and driving force. It was 

suggested that it is possible in the testing of only one violin to produce all 

the differences seen between the various test violins. This sensitivity was 

clearly recognised at an early stage in the project and the assistance of Dr. 

DJ Thompson (Dynamics Group, ISVR, University of Southampton) was sought 

for a theoretical explanation, since he had developed models and 

computational analyses of point-excited string vibration. His study did 

indeed reveal that if the driving frequency should drift either side of the 

string resonance frequency there is a rapid increase in the dynamic 

stiffness of the string. Thus the force required to drive the string at a 
frequency slightly above or below the resonance frequency would greatly 
increase, resulting in a larger kink being formed in the string at the driving 
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point. This kink could generate harmonics in the string by non-linear 

stretching action. At resonance the kink is small enough to be a negligible 

source of harmonics. (A personal communication from Dr. Thompson) A study 

was made to identify the cause of the higher harmonics in the TSV 

spectrum of the driven string. Three potential causes were examined: the 

shaker, the kink in the string and the non-linear stretching of the string. 

The source of the harmonic content set up in the string vibration when it is 

driven by a shaker could come in part from the harmonic impurity inherent 

in the displacement of the shaker. This was measured and it was found 

that the relative content of the higher harmonics in the shaker 

displacement compared to the fundamental was very much less than that 

set up in the string (when the string was driven to a 3.25mm displacement 

amplitude). The resonant response of the higher modes to unit 

displacement excitation should not differ significantly from that of the 

fundamental except in regard to shaker position. The harmonic content in 

the TSV from this cause would predictably be sensitive to the position in 

the length of the string of the point of application of the driver. It was 

found experimentally that the harmonic content was not perceptibly 

sensitive to the position of the point of the driver, which is consistent with 

the shaker not directly being the source of the higher harmonics. It was 

concluded that the shaker drive was not the source of the higher harmonic 

content in the vibrating string. If there had been non-linearity in the 

shaker driving of the string it would be dependent on the magnitude of the 

shaker coil excursion rather than the magnitude of the driving force. Since 

the string was driven at a point 8 mm from the end, the excursion of the 

coil would be small (about 0.17mm). Furthermore, since the fundamental 

mode displacement was held the same in all the tests the excursion of the 

coil would have been close to the same in all cases. It was concluded that 

the contribution to the harmonic content from the shaker was probably 

small, but whatever it was it would not vary with each excitation. 

Dr. Thompson's analysis showed that provided the string is driven at 

resonance, the force applied to the string is very small, the resulting kink 

in the string is small and any harmonic content in the string resulting from 

stretching by the kink would also be very small. The kink in the string 
from the shaker does not propagate along the string and so no harmonics 
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are introduced by this means (unlike the bowed string). Fig. 10.0 shows 

how the increase in string length varies with the excitation frequency when 

the string is driven to a constant harmonic displacement of 6.5mm peak to 

peak over a range of frequency (provided by Dr. Thompson). 
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Fig. 10.0. Change is length of aG string when driven to a constant transverse 

displacement of 6.5mm peak to peak, by a transverse force applied by a shaker at a 

point ßmm from the end of the string. The change is lowest at the string harmonic 

frequencies and rises each side of them. 

We are only concerned with the first harmonic shown in fig. 10.0 at 196Hz. 

At the trough there is a narrow frequency band where apparently the 

frequency can drift slightly with little effect on the string length, and hence 

the harmonic content. However, experimentally the sensitivity was found 

to be greater than this graph would suggest. This is an indication of the 

complex behaviour of this non-linear system. 

Simple sinusoidal transverse vibration of a string can only be realised if the 

static string tension does not vary throughout the cycle. This ideal is 

approached only at very small transverse displacement amplitudes. In our 

experimental work, the string was always driven to a transverse 

displacement amplitude of 6.5 mm (peak-to-peak) measured at the centre 
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of the string length. At a displacement this large, the variation in string 

tension throughout the cycle will produce odd harmonics of the TSV. The 

experimental results show that the shaker established in the string a broad 

spectrum of harmonics in the transverse displacement of the string. These 

spectra generally showed an overall declination with rising harmonic 

number, and showed greater strength in the higher harmonics if the string 

was on a real violin rather than less dynamically active rigs. The means by 

which these broad spectra of harmonics are generated is far from clear. It 

is widely accepted in the literature that the non-linearity in the string 

tension caused by relatively large transverse displacements must generate 
higher harmonics but a full study of these effects does not appear to have 

been made. 

Dr Thompson has shown that a tensioned string held between immovable 

supports and driven in a pure first harmonic excitation will, through non- 
linearity, generate a third harmonic but this will be in the first harmonic 

mode shape and is therefore non-resonant. A limitation was placed on this 

theoretical investigation by having to make simplifying assumptions to find 

the roots of an intractable differential equation so it was not possible to 

confirm that higher odd numbered harmonics are generated in the same 

way. However, a physical approach to the problem can be helpful. A single 
frequency wave in a string would show a sinusoidal variation of the string 
displacement with time. In the case of a non-linear relationship between 

the string tension and the string transverse displacement the sinusoidal 

variation would become squashed, by the flattening of the top of the peaks. 
This tendency would be slight but the ultimate extension of this tendency 

would be to approach a square wave. This tendency towards a squaring of 

the wave would add the odd numbered harmonics to the first harmonic. Dr 

Thompson's analysis also showed that a second harmonic LSV acting on a 
bridge with a TSV motion in the first harmonic would produce a component 

of force on the bridge at the third harmonic. This has been confirmed 

experimentally and theoretically by others [Legge and Fletcher, 1984]. 

Bridge flexibility in the string direction can, in principle, enable the LSV at 
the even numbered harmonics to induce TSV in the string via parametric 

excitation. One view that recurs in the literature is that support mobility 
has a significant effect on the formation of the TSV in the string from non- 
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linear variation of string tension. The effects of alterations in support 

mobility on both the TSV and the LSV are examined experimentally later in 

this chapter. It is not possible to provide a rigorous theoretical basis for 

the establishment of the TSV spectra in the shaker driven string, but the 

experimental evidence that it does happen is presented. 

It is believed that the main source of the harmonics in the string vibration 

is the non-linear stretching of the string coupled with the motion of the 

bridge and terminations. Vibrations that arise this way are independent of 

the position of application of the driver. 

Given the sensitivity of the excitation to the setting of the controls of 

frequency and shaker current it is conceded that a failure to apply 

appropriate measures to monitor and control string resonance could allow 

unpredictable amounts harmonic content to be introduced by the string 

kink (the second cause mentioned above). This would make the excitation 

variable and would seriously compromise any conclusions drawn from the 

experimental results. 

As a result of this dear indication of the need to exercise extreme care in 

checking that steady state conditions were maintained, a constant watch 

was kept on the shaker current (or input force), string amplitude and the 

envelope of the TSV harmonic spectrum. All tests and observations were 

subject to repetition in order to ascertain that resonance could be achieved 

and maintained using the above-stated monitoring measures. It was found 

that by fixing the shaker current and varying the frequency, there were up 

to three resonance conditions that produced maxima in the first harmonic 

displacement. These corresponded to a node in the string in front of the 

bridge by about 3mm, behind the bridge by about the same amount and at 
(or at least very close to) the bridge. Of the three conditions it was decided 

to use the one where the node was at the bridge (or very dose to it). This 

was determined by lifting the stinger from the string and plucking the 

string and then setting the shaker frequency to match that of the plucked 

string. The final fine-tuning was made by adjusting the driving current and 
frequency to give the required first harmonic string displacement with the 

minimum driving current (force). This also gave the lowest response in the 

upper harmonics of the TSV. If during the time required to record the 
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experimental data there was any straying from the initial setting, as could 

be most sensitively observed by loss of string displacement in the fast 

harmonic, the measurements were discarded and the setting readjusted for 

a new beginning. At all times that the shaker was driving the violin while 

measurements were being made there were two people involved. The writer 

constantly monitored the string first harmonic displacement and the TSV 

displacement response spectrum as shown on the screen of the analyser in 

order to ensure that there was no straying from the original settings. The 

writer's violin-making partner Roger Sheldon, who has a degree in physics, 

controlled the instrumentation to enable the recording of the various data. 

These included the TSV (as indicated by the string velocity in the magnet 

gap), the LSV force, radiated sound, the acceleration at each bridge foot in 

turn and the acceleration at the saddle. 

Tests were done on three groups of violins. The first group consisted of 

strings mounted on non-violin test rigs designed to investigate the 

differences in TSV and LSV due to variations in bridge mobility and string 

termination mobility. These showed appreciable differences in TSV in the 

higher harmonics (the fundamental having been standardised). This result 
is consistent with the important role that support mobility plays in the 

generation of non-linear TSV in the string. The second group consisted of 

three violins that differed only in the EAR. These showed much closer 

agreement in the TSV. The last group was three violins that differed only in 

deviation. These showed only small differences in TSV. It is clear that 

where there was very little difference in the violins, the TSV induced by the 

shaker drive was almost the same. This supports the contention that the 

excitation and the associated response were adequately repeatable (all the 

TSV spectra in these three groups are shown in Chapters 10 and 11). 

There is no reason to doubt that the differences in behaviour in the rigs 

tested in the first group are not due to differences in the excitation. 

Certain phenomena were observed in the spectra of the string velocity at 
the magnet gap as indicated by the current generated in the string. There 

was always a periodic rise and fall in the spectral peak heights similar to a 

scalloping effect. It was not appreciated at the time of conducting the 

experiments that some form of scalloping was to be expected in these 

spectra as the result of the magnet not being located at the same point in 
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the wavelength of the all the string modes (see section 10.2.2 for a full 

discussion of this). The scalloping was thus regarded as some sort of 

systematic error and an effort was made to minimise it. It was shown in 

Chapter 6 that a correction should be applied to the string velocity at the 

magnet, which would apply a counter form of scalloping and even out the 

spectrum. 

It was also noted that there was a dropping out of the lower order even 

numbered harmonics in two of the nine magnetically transduced velocity 

spectra (and hence the TSV spectra) shown in the thesis. Where this 

happened it was found to be consistently repeatable and impossible to 

eliminate. It was concluded that this phenomenon was not due to a 

systematic error but was a real behavioural characteristic of the structure 

when excited by a shaker (a suggested explanation for it is given in 

Chapt. 12). 

10.2.2 Derivation of the transverse displacement of the strings. 

In section 6.3.4, the method of measuring the transverse velocity of the 

string was described. 
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Fig. 10.1 A. Indicated rms string velocity at the point of location of the magnet, 
shaker driven G string, V157HD varnished. 

As an example, fig. 10.1 A shows the rms string velocity at the magnet 

(averaged over the width of the magnet) for a shaker driven G string on 

violin V157 varnished. If we ignore the effect of the magnet position 

relative to the mode shapes, the string transverse displacement is found by 

dividing the velocities by the angular frequency and scaling the result to 

give a first harmonic displacement of 3.25mm. The transverse 

displacement of the string found in this way is shown in fig. 10.1 B. 
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Fig. 10.1 B. Amplitude of transverse displacement, shaker driven G string, V 157HD. 

Calculated with no correction for magnet position or width. 

The above assumption is dearly not justified. The relation between the 

mode displacement amplitude and transverse string velocity at the magnet 

position varies with the mode order. Accordingly, two corrections were 

applied, one for the position of the magnet in the length of the string and 

the other for the width of the magnet in relation to the wavelengths of the 

modes. 

The correction for the position of the magnet in the length of the string has 

the effect of relatively raising the amplitudes in a periodic way (see fig 

10.1 C), previously called scalloping (in section 10.2.1). Clearly, this 

correction is quite sensitive to the magnet position but the magnet position 

was maintained accurately during the work. The theory behind this 

correction assumes that the string has a node exactly at the bridge position 

in all modes. This clearly cannot be so, although one would not expect the 

node to be very far from the bridge, but this could be a further source of 

error. Any error resulting from the magnet position not being accurately 

known in relation to the mode shapes would become progressively greater 

at the higher harmonics. This correction appears to have introduced a rise 

in amplitude at frequencies near 2500. This is too low a frequency to be 

explained by inaccuracy in the magnet position. If the TSV spectra derived 

from the magnet velocity spectra are to be free of the scalloping effect then 

there should be reversed scalloping in the measured magnet gap velocity 

spectra. It was mentioned in section 10.2.1 that scalloping was observed in 

the magnet gap velocity spectra but this was erroneously thought to be a 

systematic error at the time, and so an effort was made to eliminate it. It is 
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now clear that had this scalloping been admitted the applied correction 

may have countered it. As it is, the applied correction has apparently, in 

the higher harmonics of some spectra, introduced more scalloping than it 

has countered. We therefore must accept that the corrected amplitudes 

become progressively more inaccurate with rising harmonic number. The 

question arises, is the scalloping in the higher harmonics of the TSV a real 

physical phenomenon, or is it due to some error in the method used to find 

the TSV spectrum, which used the magnet and an applied theoretical 

correction? The fact that the scalloping does not appear in the 

corresponding LSV spectra does suggest that the real TSV spectra should 

not show this scalloping either. It is therefore concluded that the 

scalloping in the higher harmonics of the TSV probably arises as the result 

of the method of inferring the TSV spectra from the string velocity in the 

magnet gap. However in the absence of any other rational means of the 

deriving the TSV spectra from the string velocity spectra the method 

presented here has been followed in all the TSV spectra presented in 

Chapters 10 to 13. 
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Fig. 10.1 C. Amplitude of transverse displacement, shaker driven G string, V157HD. 

Calculated with correction for magnet position but not corrected for magnet width. 

Fig. 10.1 D shows effect of applying a correction for the width of the magnet 

in relation to the wavelength only. This has the effect of progressively 

raising the amplitudes in the higher harmonics. This correction would 

appear to be justified although the result does give surprisingly high 

amplitudes at the higher harmonics. Bowed spectra of transverse 

displacement do not show such a relatively high top end response but the 
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excitation by shaker causing harmonics from non-linear stretching may do 

so. 
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Fig. 10.1 D. Amplitude of transverse displacement, shaker driven G string, V157HD. 

Calculated with correction for magnet width but not corrected for magnet position. 
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Fig. 10.1 E. Amplitude of transverse displacement, shaker driven G string, V157HD. 

Calculated with cacrectian for magnet position and width. 

Fig. 10.1 E shows the string displacement amplitudes calculated using 

both corrections. In the example given here, the corrections do appear to 

have introduced irregularities but also in some cases to reduce them. In 

some other strings, the corrections appear to have resulted in a reduction 

of irregularity. 

It was decided that since these corrections are theoretically required they 

should be applied and so this has been done in all the results presented. 

10.2.3 Experiments with a non-linear system 

Because the harmonic content of a shaker driven string is weak, it was 
found to be very easy to drive it to a higher amplitude of transverse 
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displacement than that normally achieved by bowing. This meant that the 

first harmonic was larger than that of a bowed string, and the higher 

harmonics were progressively lower than those of a bowed string. A basic 

assumption in much violin research has been that the instrument, with its 

strings on, is a linear system. This was a fundamental assumption of 
Marshall's work and he satisfied himself of its validity [Marshall, 1985]. It 

is also a fact that much violin research is conducted with excitations other 

than that involving the swinging string (the strings usually being damped) 

and non-linearity is not introduced from string bellying. We have 

demonstrated that the string bellying LSV force varies non-linearly with the 

TSV force. Since the experiments described in this thesis do involve the 

swinging string there must be a degree of non-linearity in the dynamic 

response. Comparisons in behaviour between instruments are valid in a 

non-linear system if the spectra of the excitation level are the same for all 
the compared violins. For this reason the level of the first harmonic 

transverse displacement of the string was held at a constant value. Despite 

this precaution, there was some difference in the amplitude of the 

transverse displacement in the upper harmonics. Had the system been 

linear it would have been reasonable to compare the level of LSV force 

generated in each harmonic by dividing it by the TSV force. This cannot be 

done in a non-linear system, unless the degree of non-linearity is small. 

The degree of non-linearity can be estimated. Since the main source of 

non-linearity is string-bellying LSV, some estimate of its relative 

significance should be helpful. The LSV force generated in the string arises 
in part from the primary bellying LSV in the string and in part from the 

secondary LSV arising from the modal activity in the violin. This modal 

activity is driven by the two primary causes of the string TSV force and 

string LSV (bellying) force acting on the body. The string LSV (bellying) 

force has a non-linear relationship to the string TSV force. By finding the 

ratio of the string LSV (bellying) force to the string TSV force we have an 
indication of the degree of non-linearity in the total LSV developed in the 

string. 

The ratio of the in-plane forces on the bridge from bellying LSV and TSV 

can be evaluated using the following formula derived in section 3.2.3; 
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where n is the harmonic number of the TSV. This can be evaluated for the 

transverse string displacements for the driving of violin V 157 varnished. 

This is shown in fig. 10.2. 

Because it was impossible to show zero on a logarithmic scale this is shown 

as 0.00001. It will be noticed that since all the odd numbered harmonics 

have no bellying LSV the contribution is zero. The ratio of bellying LSV 

force/TSV force in the second, fourth and sixth harmonics is respectively 
0.4,0.1 and 0.07. 
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Fig. 10.2. Ratio of estimated bellying LSV force on bridge to TSV force on the bridge. 
Shown for typical shaker driven string. 

In the case of the bowed string, it was shown in section 3.2.3 that the ratio 

of bellying LSV force to TSV force is 0.043, if all the LSV fully doubles in 

frequency. The tests on the bowed string in Chapter 7 showed that not all 

the LSV is double the frequency of the TSV. Therefore, the ratio of 0.043 

may be an overestimate. It could argued that the total LSV in the string 

comprises the primary belling LSV plus the secondary LSV resulting from 

the modal response of the body caused by the primary bellying LSV and the 

TSV. In which case the bellying LSV should be weighted to make a greater 

contribution. So the ratio bellying LSV force/ TSV force would 

underestimate the degree of non-linearity. However in this case the ratio is 

still low. This argument would only apply to the LSV in the string; the non- 
linearity in the body would be represented by the ratio of bellying LSV force 

to TSV force. 
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The assumption is made that for the shaker driven string the relative 

contribution from the non-linear source is small in the higher harmonics. 

The procedure adopted in the thesis of comparing violin behaviour by 

comparing ratios of LSV force to TSV force assumes that the LSV varies 
linearly with TSV. Fig. 10.2 shows that the contribution to the LSV from 

the non-linear source is theoretically very small above the second harmonic 

so the LSV as a whole is not significantly non-linear. Had the experiments 
been done with a bowed excitation the non-linearity would have been 

greater. It is accepted that the degree of non-linearity is not precisely 
known. 

Since certain components of LSV are inherently non-linear, the selection of 

a fixed amplitude of TSV fundamental can be criticised as producing 

results that are specific to that state of vibration and are not generic. It is 

also a fact that to eliminate string bellying entirely, as is normally done, 

would produce results that could not be generic. This is the first 

experimental investigation of the role of LSV in violin dynamics and sound 

radiation and is therefore a pioneering investigation. Motivated by 

extensive personal experience of the effects body shape variations it was 
decided to test a number of the effects of LSV and limitations on time and 

resources made it impossible investigate these phenomena at differing 

levels. Although the results are specific to the chosen level of excitation, 

the work is seminal in raising many questions that offer motivation for 

further research. 

10.3 Transfer of energy from the string to the body by LSV 

The vibrations of the violin string have been thoroughly examined by others 
(Cremer, 1983). In this section, the interaction of the string and body is 

examined in some detail. The need to do this arises from experimental 

evidence presented in sections 10.4 and 10.5 that the vibrations of the 

body on which the string is mounted determine to some extent the 

spectrum of the transverse displacement of the string. 

10.3.1 The variability of the rate of string energy loss 

A string held between rigid supports can only lose energy by acoustic and 

viscous loss to the air and damping caused by the slightly non-elastic or 
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hysteretic behaviour of the string. When the string is put on a violin, there 

is an additional loss caused by the transverse movement of the bridge, and 

other support movements. If one plucks the open string of a violin the 

displacement of the string dies away within a few seconds. By moving the 

bridge closer to or further from the sound post by a very small amount, say 

0.25mm, the rate of decay of the string vibration can be altered very 

noticeably. The rate of vibration decay may now vary from extremely fast to 

surprisingly slow. It is also quite usual to see a plucked string quickly 

decay in vibration, reaching zero displacement in less than 0.5 seconds, 

and then revive and decay again at a slower rate (several seconds). Clearly, 

a small change in the elastic behaviour of the body can make a very 

significant difference to the rate at which the string loses energy to the 

body. It is also apparent that there is a transfer of energy from the string 

to the violin and from the violin back into the string. This may be due to 

the effect of coupled oscillators but the point of significance is that the rate 

of energy transfer, and therefore the dynamic coupling, can vary from fast 

to slow with only a small movement of the sound post. 

At a wolf note, the string loses energy at such a fast rate that there is 

insufficient reflection to sustain a periodic vibration. The string will form a 

node a little in front of or behind the bridge and accordingly sound a note 

of higher and lower pitch than that intended, or commonly oscillate from 

one to the other. It is not known if the loss of energy from the string at a 

wolf note is due to excess bridge movement alone or if it is contributed to 

by energy loss through LSV at the ends of the string. The mechanisms of 

energy transfer are discussed in the following sections. 

10.3.2 The loss through in-plane movement of the bridge 

At every cycle of string vibration, there is an input of energy from the stick- 

slip action of the bow and losses to the body by the TSV force on the bridge 

and the velocity of the string notch in the direction of the force. At any one 
harmonic the loss into the bridge is dependent on the product of the square 

of the string force on the bridge (which is proportional to the string 
displacement), and the real part of the admittance at the bridge. 

In the steady state at any one harmonic the energy inflow from the bow into 

the string must equal (after certain losses) the loss from the string to the 
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body. If the real part of the bridge admittance at a particular harmonic 

were high, the energy balance would require that the string displacement 

amplitude in that harmonic be relatively low resulting in a low transverse 

force on the bridge to compensate for the high admittance. The strength of 

any TSV harmonic will depend to some extent on the bridge admittance at 

that frequency. If the input power from the bow were independent of the 

amplitude of the TSV harmonic (which it is not) a higher real part of the 

bridge admittance would be expected to result in a lower TSV amplitude. 

There is a large and greatly variable difference in admittance between the 

transverse movement of the string and that of the bridge. Consequently 

the loss at the bridge, per cycle, has been reported to be small, the wave 

amplitude reflection coefficient at the bridge being not less than 0.94. (This 

figure was given by Prof. Woodhouse, Cambridge, England, in a personal 

communication to Prof. Fahy of Southampton, England. He obtained it by calculation 

from measured input admittances. Prof. Woodhouse added that the figure found, 

was the result of a very brief investigation. ) This figure is not entirely 

consistent with the very fast loss from the string in certain conditions (as 

shown in section 10.3.1). It is possible that under some conditions the 

reflection coefficient is rather less, but it is also possible that the string 

loses energy to the body not only by the transverse motion of the bridge but 

also by motions driven by the LSV force in the string. Generally, in the 

case of the bowed string, the reflection coefficient must at least be high 

enough to maintain the periodic vibration of the string. 

10.3.3 The loss through yield of the end supports 
Cremer suggested that the string could be considered as being fixed at one 

end and attached to a transversely mounted dashpot representing the 

bridge, at the other. This idealisation may have overlooked the possibility 
that the energy loss by movement at both supports in the direction of the 

string's length could be significant. This could be represented as a dashpot 

at each end of the string, lying in the line of the string. If LSV were 
important in actively driving the violin, the string must lose energy by end 

support movement in line with the string. If the string end supports have a 

small amount of give in the direction of the string tension, energy will be 

taken out of the transverse vibration of the string. It is probable that the 
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main cause of end support give is in the vertical movement of the bridge, 

which lengthens or reduces the string length. 

Lee and Rafferty observed that the time rate of decay in the height of the 

resonance peaks of a plucked string was noticeably faster for the 

longitudinal resonance than for the transverse resonance (Lee and Rafferty, 

1983). This could indicate that the longitudinal vibration is more closely 

coupled to the body than the transverse vibration. The admittance of a 
transversely vibrating infinite string is high in relation to that of the bridge 

and the coupling between the string and bridge is low. The admittance of a 
longitudinally vibrating infinite string is one order lower, and the coupling 
between the longitudinal string vibrations and the body of the violin may be 

considerably stronger. 

1 The admittance of a transversely vibrating string is given by Yt,,, = 
mT 

The admittance of a longitudinally vibrating string is given by Ylong =1 4K_ , 

Each of the four strings will be vibrating with different LSV forces and at 
different relative phases, but the group of four strings must have a 

combined net LSV force and phase. Again we can use the concept of a 
`combined string' that replaces the four strings with one string located at 
the centroid of the group and with properties that represent those of the 

group, the admittance YCombined 
string 

is given by; 

1 
=Eý. 

Ycombined 
string 

YO 
string transverse EV Km 7.174 

The admittance ratio, = 21.47 
. Ycombined 

string 
jm0T0 0.334 

Thus, a group of 4 strings in LSV has an admittance 21 times lower than 

that of single string in transverse vibration. It will be shown in Chapter 12 

that the admittance of the bridge to an LSV force applied in the plane of the 
bridge is higher than it is to transverse force from TSV. These examples 
have been presented to support the suggestion that the coupling between 

the LSV and the body may be somewhat stronger than that between the 
TSV and the body. 
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10.3.4 Contribution of body resonances to LSV 

Because of the admittance mismatch between the string vibrating 

transversely at resonance and that of the bridge, the vibrations of the body 

have a relatively small effect on the resonant modes of the string. The TSV 

force applied to the body results largely from the resonant response of the 

string. The equivalent resonant response in the string to LSV does not 

apparently make a significant contribution to the driving of the violin (so 

far as we have been able to observe). But resonance does play a significant 

role in determining the magnitude of the LSV force established in the 

string. If there were a closer coupling between the string and the body in 

LSV response, than there is to the TSV response, many of the resonant 

body modes would produce significant strains in the string tension. We 

would therefore expect that as the modal density increases with rising 

frequency up to a constant level at 2000Hz, the magnitude of the LSV force 

would be contributed to increasingly up to 2000Hz and beyond from body 

resonances. The experimental results presented in Chapters 11 and 12, 

show a ratio of LSV force to TSV force (transversely on the bridge) of about 

0.25. The theoretical analyses of the ratio LSV force/TSV force, shows; 

LSV force/TSV force from bridge-rock is 0.413/n. When n is odd there is 

an additional contribution from string bellying in the even numbered 

harmonics of 0.41 at the 2nd, 0.11 at the 4th, 0.08 at the 6th, 0.03 at the 8th 

and 10th, and 0.002 at the 12th harmonic. The theoretical prediction and 

the experimentally measured result do not show great disagreement in the 

lower harmonics, but there is a much greater disparity at the higher 

harmonics. Above 2000Hz there would appear to be an increasing 

contribution from body resonances that alter the string length by means 

other than by bridge-rock. 

10.4 TSV and LSV in the driving substructure with different 

support mobilities 

The literature suggests that support mobility can have a significant effect 

on the generation of string harmonics from the non-linear stretching of the 

string. The support mobilities could also be expected to have a significant 

effect on any energy loss from the string to the body through LSV coupling. 
The assumption that the TSV established in the string is largely 
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independent of the support mobilities does not appear to have been 

examined experimentally. 

A series of tests were made with progressive changes to the support 

mobilities. A string was placed first on a body that provided rigid 

terminations at the nut and saddle ends. The bridge support was given 

various degrees of freedom. Finally the effect of permitting mobility at the 

nut and saddle supports was examined. 

10.4.1 TSV and LSV with a rigid bridge 
The first of the series of experiments was done with the four strings passing 

over a bridge supported on a rigid block. The bridge was of normal violin 
bridge dimensions except that all the normal piercing was omitted to make 

the bridge rigid in a transverse direction and free to move in a direction 

normal to its plane. The fixed bridge is described in section 7.1. The 

geometry of the system was the same as that of a real violin. The strings 

were attached to a tailpiece and the tail gut was attached to a rigid support. 

The apparatus was similar to that shown in fig. 7.1 but included a tailpiece 

in place of the force gauge. This apparatus closely replicates the driving 

substructure described in Chapter 3. 

The frequency range used in this and all the following tests was 0 to 10kHz. 

The analyser was set to the maximum available resolution of 1600 lines in 

10,000Hz, which gave a frequency resolution of 6.25Hz. In the first group 

the open 4th string was driven (196Hz. ). This gave the possibility of 

showing up to 52 harmonics. The level of excitation was a transverse 

displacement of 6.5 mm peak to peak, measured at the mid length of the 

string. All the experimental results reported in this thesis from here on 

relate to a level of string transverse displacement of 6.5mm peak to peak. 
(unless otherwise stated) 

Fig. 10.3 shows that amplitude of the transverse displacement of the string 

and fig. 10.4 shows the corresponding LSV force recorded at the tail gut 

position. In areas of low response, the results fell outside the range of the 

analyser. It is important to note that by altering the range of the analyser 
(and applying compression to the strong peaks) it was observed that there 

was a response at every harmonic number in both the TSV and LSV. 
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Because the bridge was not able to move in its own plane we see the first, 

third and fifth harmonics of the LSV are heavily depressed relative to the 

even harmonics. There is a band from about 4,500Hz to 7,000Hz where 

the LSV is fairly strong, and again at above 8,500Hz. The source of these 

bands of stronger response is not known. 
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Fig. 10.3 String displacement. Sher driven G string an a fixed bridge. 
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Fig. 10.4. LSV force, shaker driven G string on a fixed bridge. 

10.4.2 TSV and LSV with a rubber mounted bridge 

The apparatus was changed to replace the bridge with a normal violin 

bridge and the bridge mounting was changed to the rubber mounting 

described in section 8.1. The results are shown in figs. 10.5 and 10.6. 

These can be compared with the results for the strings on the rigid bridge. 

The string displacement in the first harmonic may have been slightly 

affected by the change in the bridge mounting but the driving force from 

the shaker was adjusted to make it the same. We can say that the string 
displacement in the higher harmonics declines in strength relative to the 

first harmonic with rising harmonic number. 
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Fig. 10.5 String displacement. Shaker driven G string on a rubber mounted bridge. 
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Fig. 10.6. LSV force, : halter driven G string on rubber mounted bridge. 

The LSV force harmonics exhibit a sudden decline above the ninth 

harmonic as they did in fig. 10.4. The decline with rising frequency is more 

rapid than in fig. 10.4. The LSV force is about the same in the second 

harmonic but the odd numbered harmonics have strengthened now that 

bridge-rock is permitted. The bands of strong response in the higher 

frequencies have become less defined but there are some intermittent 

strong peaks. 

10.4.3 TSV and LSV with the detached body 

The apparatus is changed again to replace the rubber bridge mounting with 

the detached body. This set-up was described in section 9.1. This model 

most closely replicates the theoretical model of the driving substructure 

with permitted bridge foot movement to enable the generation of bridge- 

rock LSV. The generation of string bellying LSV and bridge-rock LSV are 
demonstrated. Since the string terminals are detached from the body 
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Fig. 10.7 String displacement. Shaker driven G string an a detached body. 
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Fig. 10.8. ISV force, shaker driven G string on a detached body. 

secondary LSV cannot be attributed to vibration of the body at the string 

terminations. 

Figs. 10.7 and 10.8 show the results. In comparison with the two previous 

cases there is a further drop in the strength of the upper harmonics of the 

transverse displacement relative to the first harmonic. The LSV spectrum 

is not unlike that of the rubber mounted bridge up to the sixth harmonic. 

The ninth harmonic is also very similar in value. However, the upper 

harmonic spectrum is more densely filled than in fig 10.6. 

10.4.4 TSV and LSV with a real violin 
The strings and tailpiece are now transferred to a real violin, V156 normal 

EAR. The results are shown in figs. 10.9 and 10.10. The string 

displacement amplitudes return again to levels comparable with the rigid 

bridge, although there is more variation and the higher harmonic range is 

more extended. The LSV force amplitude has dropped in the first three 

harmonics but in the higher harmonics is generally higher and becomes 
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Fig. 10.9 String displacement, shaker driven G string on a real violin (V156). 
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Fig. 10.10. LSV force, shaker driven G string on V156. 

more even with rising frequency. The two high frequency bands of strong 

response that were observed when the bridge was on artificial mounts have 

now disappeared or become `absorbed' by the filling in of the weak areas 

between. The reinforcement of the higher harmonics is probably body 

driven and the fall in the strength of the lower harmonics may be caused by 

the flexibility of the string termination associated with resonances of the 

lower order body modes. 

10.4.5 Discussion of results 
The relative variation in the strength of the TSV and LSV for the four 

different test rigs can conveniently be expressed as the ratio of LSV force to 

the string transverse displacement. Fig. 10.11 shows the ratio of the LSV 

force to the string transverse displacement. This has been multiplied by 

the frequency to make the magnitude comparable at all frequencies. That 

the ninth harmonic is high is common to all the curves and may relate to a 

resonance within the string-tailpiece coupling. 
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Fig. 10.11. Ratio LSV force to string transverse displacement (muliplied by 

frequency). Shaker driven G string on various bases. 

The effect of increasing the bridge mobility. The first three graph lines 

show the effect of the bridge mobility alone, as the bridge goes from being 

immobile in its own plane, to rubber mounted and then mounted on a 

violin body. There is a progressive rise in the ratio of the LSV force to the 

TSV string displacement. This is in part due to the filling in of the even 

numbered harmonics of the LSV force as bridge motion is permitted. But 

also, by a drop in the TSV displacement in the higher harmonics relative to 

the fundamental. When the bridge was close to rigid in its own plane it 

could not drain energy via the TSV force and, however the TSV harmonics 

were generated, they were largely undamped. The spectrum so established 

was relatively richer in the higher harmonics than those found for a more 

mobile bridge. It must be remembered that the first harmonic 

displacement was set, so any effect that the bridge mobility might have had 

on this would not be demonstrated. We simply do not have enough 
information about the dynamics of the test rigs to do any more than 

speculate on the possible cause of the relative drop in the strength of the 

higher harmonics of the TSV as the bridge mobility increases. The 

experimental result must simply stand as an unexplained observation. The 

rise in ratio of LSV to TSV with increasing bridge mobility does accord with 

the effect of bridge-rock LSV. 

Effect of coupling the string terminations to the violin body. 

This may be a demonstration of the suggestion made in section 10.2.1 that 

the relative strength of the upper harmonic generation in the TSV spectrum 
(from the non-linear stretching of the string) depends on support mobility. 
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The increased mobility has certainly been accompanied by a relative rise in 

the higher harmonics of the TSV and the LSV. 

The effect on the TSV and LSV force of connecting the string terminals to a 

violin body (to make a normal violin) can be considered qualitatively from 

another point of view. If we assume the body to be driven at the nut and 

saddle via the string acting as a pure spring a simple model of a single- 
degree-of-freedom oscillator (a body mode) driven through a spring shows 

that both below and above oscillator resonance the LSV force is little 

affected by oscillator response and therefore is much the same as when 

connected to rigid terminals. However, the spring force drops at oscillator 

resonance, the degree of drop increasing with decrease of oscillator 
damping (see first three harmonics in fig. 10.10). On the other hand, if the 

oscillator is independently driven (by say a TSV force) the LSV will be small 

off body resonance and rise sharply at resonance. If we see the LSV 

peaking near well-known low order body resonances on a complete violin 

compared to a detached body, the body is probably driving the string. If 

the LSV falls around these frequencies it may well be driving the modes. 
Comparing figs. 10.8 and 10.10 there seems to be a reduction in the LSV 

force at the first, second, third and seventh harmonics, suggesting that the 

body may be being driven through the string. This reasoning would also 

suggest that the infilling of LSV at the higher harmonics shows that the 

body is driving the LSV. The LSV thus becomes a by-product of body 

motion. However all these speculations are only valid if we assume no 

effect of the change in TSV on the generation of LSV. But since there is a 

significant change in TSV in going from the detached body to the violin we 

cannot eliminate this effect. 

10.4.6 Confirmation on other strings 
In order to check that these tendencies could apply to other strings than 

the fourth the experiment was repeated on the third string. Figs. 10.12 to 
10.14, show the TSV and LSV force for a rigid bridge and a detached body, 

when the open D string is driven. The fundamental mode amplitude was 
4.25mm peak to peak. This shows that the phenomena observed for the G 

string are not as clearly exhibited when we look at the D string. This may 
in part be due to our inability to drive the string to such a high transverse 
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displacement amplitude. Also since the harmonics are further apart than 

those of the G string some of the lower order body modes may have been 

missed. The harmonic content of the excitation has changed a little with 

the changed "body", but the LSV has risen more significantly. 
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Fig. 10.12. String displacement, shaker driven D string an a fixed bridge. 

1. E-02 

1. E-03 

1. E-04 

ä 
1. E-05 

' 
1. E-06 

LE-07 

1. E-08 

Fig. 10.13. String displacement, shaker driven D string on a detached body. 
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Fig. 10.12. LSV force, shaker driven D string an a fixed bridge. 
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Fig. 10.14. LSV force, shaker driven D string an a detached body. 

10.5 Bowed LSV, real violin compared with rubber mount 

To find how much richer the LSV content of a bowed system is, the 

comparison of the rubber mounted bridge and the real violin was repeated 

but with a bowed excitation. Three notes were bowed on each "instrument" 

and the spectrum of the LSV was analysed. 

10.5.1 Results 

The results are shown in figs. 10.15 to 10.20. 
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Fig. 10.15. LSV force, 4 strings on rubber mounted bridge, bow B3 (4th string). 
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Fig. 10.16. LSV force, V156, bow B3 (4th string). 
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Fig. 10.17. LSV force, 4 strings on rubber mounted bridge, bow D4 (3rd string). 
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Fig. 10.18. LSV force, V156, bow D4 (3d string). 
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Fig. 10.19. LSV force, 4 Strings on rubber mounted bridge, bow G4 (3rd string). 
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Fig. 10.20. ISV force, V156, bow ß4 (3M string). 

10.5.2 Discussion of results 

It can be seen that LSV is present in all the possible harmonics in the 

range, there being 40 harmonics for the lowest note. The magnitude of the 

upper harmonics is much stronger than those excited by shaker driving. 

All the notes bowed on the rubber-mounted bridge showed the tendency to 

respond more strongly in the 5 to 6kHz band, and in the 8.5 to 10kHz 

band, as was found when it was shaker driven. When the mobility of the 

end fixing of the string is altered by going to a real violin the response 

becomes more uniform. The response becomes still more even if the violin 

is varnished (see Chapter 13). There is no consistent pattern of the LSV 

force being stronger in the even numbered harmonics. The change in form 

of the envelope of the LSV force spectrum when changing to a complete 

violin demonstrates unequivocally that coupling between the string and the 

end supports substantially affects the generation of LSV. 
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There is a tendency for the bowed spectral peaks of LSV to be sharper if the 

string is on a real violin rather than on a rubber-mounted bridge. This 

difference is apparently not caused by damping since there is not a 

sufficient difference in peak heights. It has been suggested that the 

difference may be due to a difference in instrumentation. There was no 
difference in the instrumentation used and the same spectral estimation 

parameters were used on all spectral estimates. Pure periodic excitation 

can only produce spectral lines at intervals of the inverse of the 

fundamental period. If a line falls between two of the Fourier analysis 
frequencies (set by the analyser parameters), a proportion of the line energy 

will be allocated to each of the lines, apparently `broadening' the 'peak, but 

only the two embracing analysis lines will be affected. This is clearly not 

the case here. Consequently, the `broadening' can only be attributed to a 
degree of inharmonicity in the string response. 

The data was collected and averaged in bands 6.2Hz wide. The number of 
6.2Hz bands within the half power band width (0.707 of the peak rms 

amplitude) can be measured for the rubber mounted bridge peaks and the 

real violin. By dividing one by the other the ratio of the width to the height 

of the harmonic peaks can be evaluated. The quality factor of a peak is 

also calculated in this way but the Q value is normally associated with 
damping which as previously stated is not believed to be the reason for the 

difference. To emphasise that we are not dealing with a damping 

phenomenon the width to height ratio found in this way will be called the 

`peak-width ratio'. This was done for the first ten harmonics of each of the 

three notes. The result was very consistent in every harmonic but the 
figures following are for the average ratio taken over the first ten 

harmonics. 

The `peak-width ratio' for the real violin peaks over that for the rubber 

mounted bridge peaks was for the note of B3,2.04; for D4,2.52; and for 

G4,2.32. 

In the absence of further research we can only speculate as to the cause of 
the difference in peak-width ratio. Had we measured the peak widths of 
the TSV spectra there is no doubt that there would have been a similar 
difference. It is significant that the shaker-driven spectral peaks show no 
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such apparent widening, which implies that the inharmonicity indicated by 

the widening is essentially associated with bowed excitation. A possible 

cause is that the body response through LSV has affected the periodicity of 

the Helmholtz wave somehow and sharpened the stick-slip mechanism that 

generated the vibration of the string and `focused' it. It would appear that 

this focusing is enhanced by the LSV in the dynamic system of not just the 

string but also the complete violin. 

10.6 Conclusions 

"A broad spectrum of LSV force has been observed both with shaker and 

bowed excitation. The bowed spectrum is much richer in high 

harmonics relative to the fundamental than the shaker-driven 

spectrum. This is to be expected since in the latter case the harmonics 

are fortuitously excited by non-linearity in the stretching of the string, 

whereas the bow excitation directly induces a harmonically rich 

response spectrum of both TSV and LSV. 

" The spectrum of transverse displacement established in a string by a 

shaker depends on the dynamic properties of the bridge supports and 

string terminals. 

" The shape of the envelope of the LSV force spectrum is substantially 

affected by connection to the nut and saddle and is made more even. 

" The bowed LSV spectrum shows sharper spectral peaks if the string is 

mounted on a violin rather than some other sort of flexible mounting. 

This suggests that the inharmonicity of the string motion is dependent 

upon communication between the string and the body of the violin, 

possibly (at least partially) through the agency of LSV. This 

phenomenon was not seen to any significant degree with the shaker- 
driven string. 

" There was no observable evidence of longitudinal string resonance in 

the LSV spectra. 
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Chapter 11 

EFFECT OF BODY SHAPE ON TSV AND LSV 

11.1 Introduction 

In the last chapter, we compared the TSV and LSV developed in strings on 

artificial supports with strings on a real violin. In this chapter the TSV and 

LSV generated in violins of differing body shape is examined. The test 

violins were first assembled as violins of differing EAR. The bellies were 

then removed and interchanged to make violins of the same EAR but 

different deviation. These were all tested while still unvarnished. Finally, 

the three violins of different deviation were varnished and retested. 

11.2 Unvarnished violins of differing EAR 

11.2.1 Method used 

The TSV and LSV developed in three violins of different EAR were 

compared. Each violin was laid on foam-lined blocks, one at the top of the 

back near the button and the other at the bottom of the back near the 

lower edge. The violins were lightly held in position by a rubber band, but 

very little restraint was needed. The fourth string was driven by a shaker 

in the manner described in Chapter 10, and the transverse displacement of 

the string and the LSV were measured. All the violins tested were driven to 

a mid string length transverse displacement of 6.5mm, peak to peak. The 

spectra of string transverse displacement are shown if figs. 11.1 to 11.3. 
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Fig. 11.1 Amplitude of transverse displacement of shaker driven G string, V157LE. 
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Fig. 11.2 Amplitude ä transverse displacement of shaker driven G string, V 156. 

1. E-02 

1. E-03 
8 
- 1. E-04 
8 
p, 1. E-05 
by 

go1. E-06 
tai 

1. E-07 

1. E-08 

Fig. 11.3 Amplitude of transverse displacement of shaker driven G string, V 158HE. 
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Fig. 11.4 Transverse displacement of shaker driven G string, 

violins of low, medium and high EAR. 

To make the comparison of figs. 11.1,11.2, and 11.3 easier, the peak 

heights were plotted as a continuous spectrum. This is shown in fig. 11.4. 

The results recorded above 6500Hz were measured at the limit of the 

analyser's range and are therefore intermittent and unreliable. For this 

reason they are omitted in fig. 11.4. 
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11.2.2 LSV, violins of different EAR. 

The LSV force for the three violins of different EAR that was recorded 

simultaneously with the string displacements shown above, are shown in 

figs. 11.5,10.10 (repeated) and 11.6. 
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Fig. 11.5 LSV force, shaker driven G string, V157LE. 
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Fig. 10.10 (repeated) ISV force, shaker driven G string, V156. 
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Fig. 11.6 LSV force, shaker driven G string, V 158HE 
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Fig. 11.7 LSV force, shaker driven G string, unvarnished violins of differing EAR. 

11.2.3 Discussion of results 

Fig 11.7 shows the spectrum of the harmonic peaks of the LSV force. The 

drop out above 5,200Hz is due to the inability of the analyser to handle a 

wide dynamic range. Very clear differences are apparent. The first and 

second harmonics are noticeably higher in the low EAR and high EAR 

violins, than in the medium EAR violin. It was suggested (section 10.4.5) 

that the drop in these low harmonics was due to energy loss at the tail gut 

and string ends. That further implies that the saddle of the medium EAR 

violin may be more responsive to LSV. Above the bottom quarter of the 

range, the violins of low and high EAR develop less LSV force than the 

violin of medium EAR. V157LE shows a little recovery in the top end but 

falls off even faster at the low frequencies. If the example of the simple 

oscillator presented in section 10.4.5 is considered, it could argued that the 

drop in LSV in the lower harmonics in the medium EAR violin shows that 

LSV force it is likely to be driving the body at those harmonics, and the 

higher LSV in the medium EAR violin in the higher harmonics could 

indicate that the body is driving the string. These differences in LSV force 

arise from quite small differences in the EAR. In Chapter 12, these LSV 

force spectra are shown normalised on the same string transverse 
displacement at every harmonic. 

The effect of the EAR on the string transverse displacement spectra has 
been small. Between the third and the eighth harmonics the medium EAR 

violin is stronger. This is apparently not due to a reduction in the bridge- 

rock LSV force in this area, so must remain unexplained. 
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Fig. 11.8 LSV force, V156, bowed ß string. 

It must be remembered that the LSV force shown in all these examples is 

that resulting from a shaker driven string. While this is useful for 

comparative purposes, the level of LSV is well below that which would be 

produced by a bowed string. To demonstrate this the LSV spectrum for a 
bowed fourth string of the medium EAR violin is shown in fig. 11.8. 

11.2.4 Confirmation with other strings 

A similar comparison is made between the same three violins with the D 

string driven. In this case, it was not possible to drive the string to the 

standard first harmonic transverse amplitude of 3.25mm. The actual first 

harmonic amplitudes are stated in the captions. The excitation amplitudes 

are given in figs. 11.9 to 11.11. The corresponding LSV force spectra are 

given in figs. 11.12 to 11.14. 
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Fig. 11.9. Amplitude of transverse displacement of shaker driven D string (first 

harmonic 2.5 mm), V157LE. 
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Fig. 11.10. Amplitude of transverse displacement of shaker driven D string (first 

harmonic 1.5 mm), V156. 
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Fig. 11.11. Amplitude of transverse displacement of shaker driven D string (first 

harmonic 2.5 mm), V 158HE. 
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Fig. 11.12. LSV force, shaker driven D string (la harmonic 2.5mm), V157LE. 
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Fig. 11.13. LSV force, shaker driven D string (Ist harmonic 1.5mm), V156 med. EAR. 
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Fig. 11.14. LSV force, shaker driven D string (id harmonic 2 mm), V158HE high EAR. 

The difference in the first harmonic of the transverse displacement has 

resulted in a difference in the strength of the upper harmonics of the TSV 

displacement spectrum. Because of this the medium EAR violin shows a 

harmonically less rich TSV spectrum. Despite this, it shows a 

harmonically richer LSV force spectrum. This is consistent with the results 
found for the tests on the G string. 

11.3 Unvarnished violins of differing deviation 

The comparison was then made between three violins of the same EAR but 

varying deviation. 

11.3.1 Results 

The excitation spectra are given in figs. 11.15 to 11.17. The corresponding 

LSV force spectra are given in figs. 11.18 to 11.20. 
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Fig. 11.15. Amplitude of transverse displacement of shaker driven G string, V 158ID. 
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Fig. 11.16. Amplitude of transverse displacement of shaker driven G string, V 156. 
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Fig. 11.17. Amplitude of transverse displacement of shaker driven G string, V 15714D. 
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Fig. 11.18. LSV force, shaker driven G string, V157LD. 
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Fig. 11.19. LSV force, shaker driven G string, V156. 
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Fig. 11.20. LSV, shaker driven G string, V157 HD. 

11.3.2 Discussion of results 

There are some differences in the spectra of the transverse string 

displacement, but these are small and do not show a consistent pattern. 

The strong response in the third to the seventh harmonics shown by the 

medium EAR violin (fig. 11.4) and not shown for the low and high EAR 
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violins, is now exhibited by all the violins, thus confirming it is 

characteristic of all medium EAR violins. It is clear that the amount of LSV 

force developed depends on the EAR. The three violins all of medium EAR 

all show a strong LSV force compared to that of the high and low EAR 

violins. The high deviation violin clearly develops more LSV force than the 

medium and low deviation violins. The reason for the drop out of the 

second, fourth and sixth harmonics in the spectrum of the high deviation 

violin is discussed in section 12.3.6. 

11.4 Varnished violins of differing deviation 

11.4.1 Transverse displacement of the string 

The amplitude of the transverse string displacement of the shaker driven 

string is shown for the three violins of different deviation in figs. 11.21 to 

11.23. Fig. 11.24 shows the spectra of the harmonic peaks. This shows 

that the transverse displacement spectra are substantially the same. The 

drop out of the second harmonic is discussed in Chapter 12. 
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Fig. 11.21. Amplitude of transverse displacement of shaker driven G string, V158LD. 
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Fig. 11.22. Amplitude of transverse displacement of shaper driven G string, V156ä®- 
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Fig. 11.23. Amplitude of transverse displacement of shaker driven G string, V157HD. 
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Fig. 11.24 Transverse displacement of shaker driven G string, 

violins of low, medium and high deviation. 

11.4.2 LSV, violins of differing deviation 

The LSV force corresponding to the above excitation of the three violins is 

shown in figs. 11.25 to 11.27. Fig 11.28 shows the harmonic envelope 

spectrum. It will be seen that the high deviation spectrum is clearly higher 

than the low deviation spectrum, and that of the medium deviation violin 
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Fig. 11.25. LSV force, shaker driven G string, V158LD. 
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Fig. 11.26. LSV force, shaker driven G string, V156MD. 
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Fig. 11.27. LSV force, shaker driven G string, V157HD. 
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Fig. 11.28. Spectral envelope of LSV, shaker driven G string. 
Shown for 3 violins of differing deviation. 

generally lies between the other two. The varnished violins do appear to 
have a smoother variation in the LSV force spectral envelope than the 

unvarnished violins. 
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11.4.3 Discussion 

The qualitative analysis reasoned that the force on the EBX arches is 

proportional to the deviation. The spectrum for the high deviation violin is 

higher than that of the low deviation violin. If the LSV established in a 

violin string is a reflection of the dynamic activity of the violin it would 

appear that the dynamic activity of the violin is related to the EAR and the 

deviation and the force on the EBX arches. This is more fully analysed in 

section 12.1.4. 

11.5 Repeatability of experimental results 

At this point consideration is given to the repeatability of the experimental 

results and hence the reliability of the conclusions. This consideration 

applies not only to the results presented in this chapter but includes all the 

experimental results given Chapters 10,11,13 and 14. 

The first issue is, can the experimental results be attributed exclusively to 

the intended physical differences between the violins being tested? That is, 

to the differences in the EAR and the deviation. In the past tests have been 
done where wood is removed to reduce the thickness of violin plates with 

tonal testing at various stages. It is possible that when the plate 

thicknesses are altered, this could have altered the resonance frequency, 

the EAR, the deviation, the plate flexural stiffness and its mass. But the 

tonal result was attributed entirely to only one of these aspects, usually the 

effect of change in the plate resonance frequency. This is a fundamental 

weakness in many of the experiments that would support "plate tuning? as 

a means of optimising violin tone. The writer has been careful to avoid 

these pitfalls. The violins made for testing being of the same wood, have 

close to the same mass and resonance frequencies. However there must 
inevitably be differences other than in the EAR and deviation. For example 

the belly end bouts cross arch height has to be different in these violins. 
The possibility has to be considered that experimental differences could 

arise from that cause alone and have nothing to do with the EAR and 
deviation. In fact, it will be shown later that some aspects of violin 
behaviour are attributed to that cause. Having reduced the violin 
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differences to only those differences that are being tested, one can only 

remain alert to the possibility of other factors. 

The second issue is that of a small sample size. It would have been very 

nice to have five examples of every type of violin, low EAR, medium EAR, 

high EAR, and various deviations. That could have been achieved within a 

limited range of deviation, but at only one EAR, by testing violins made by 

the writer previously. However, a group of violins such as this would all 
have been of different wood with different thickness, mass and plate 

resonances. It was just not possible to build and test a large number of 

violins that only showed differences in EAR and deviation. The 

interchanging of body parts to make several violins for testing acts as extra 
insurance against the experimental result being affected by differences 

between the plates other than those intended. Generally, the differences in 

experimental result between violins of different EAR and deviation are 

sufficiently dear for them to be in little doubt. 

The third issue is that of repeatability of experimental measurement. The 

actual ability of the measuring equipment to record highly repeatable 

readings in successive runs was not in doubt, having been constantly 

tested. 

The fourth issue is that of setting up the same test with the same excitation 
for different violins. To test a violin involved establishing a sustainable and 

repeatable excitation. This is discussed in section 10.2.1. The contention 

that repeatability of this excitation was acceptable is supported by fig. 

11.24. The variation that does exist between the curves in fig. 11.24 would 
be due in part to small differences between the violins being tested. The 

corresponding spectral envelope of LSV shown in fig. 11.28 also shows a 
high degree of repeatability the main difference being fully consistent with 

the expected effect of the difference in deviation. Severe failure of 

repeatability would not have allowed such close correspondence between 

these spectral envelopes. 

Finally, in the processing of the results the conclusions are drawn from 

considering the results as ratios. For example, we do not just compare the 

sound radiated by three violins; we compare the sound per unit TSV or 

sound per unit LSV. This precaution compensates for differences there 
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may be, in the level of excitation or within the spectrum of the excitation. 

The validity of drawing conclusions from such ratios when the system is to 

some extent non-linear is justified in section 10.2.3. 

11.6 Conclusions 

" Compared with the high and low EAR violins, the medium EAR violin 

showed a lower LSV force in the first two harmonics, and a generally 

higher level of LSV force in the harmonics above 2kHz. This may be 

an indiction of a generally higher level of dynamic activity at all 

harmonics. 

0 The variation of LSV force with deviation showed that the LSV was 

monotonically linked to the deviation over most of the frequency 

range. 
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Chapter 12 

FORCES, MODES, ADMITTANCE AND POWER 

12.1 The forces on the body 

12.1.1 Transverse force on bridge, TSV force 

The velocity of the string at the location of the magnet was measured 

directly by analysing the EMF induced in the string. Fig 12.1 shows the 

rms velocity of the string at the magnet location for the open G string on 

violin 157, which has normal EAR and high deviation 

Frequency0 
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0.1 

ab 
0.01 

0.001 

2000 4000 6000 8000 10000 

Fig. 12.1. Indicated rms string velocity at the point of location of the magnet, 

shaker driven G string, V157 varnished. 

From the rms string velocity we can estimate the rms force on the bridge as 

follows; 

nir nma T 
FTsv j' m where r= 

LL 

w Sin n, rxo Sin nna 
LL 

v, 
� =indicated velocity in the magnet gap (space averaged) 

2a =the effective width of the magnetic field at the magnet gap measured in 

the direction of the string length 

x0= the distance from the centre of the magnetic field to the end of the 

string. T=40N, L=328mm., n=fn/ 196 
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Fig. 12.2 shows the force on the bridge calculated from the transverse 

vibration of the fourth string for V 157 varnished. 

Fig. 12.3 shows the TSV force on the bridge for the three unvarnished 

violins of different EAR. The data collected above 6500Hz was intermittent 
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Fig. 12.2 Force on the bridge from the TSV of the string, 

shaker driven G string, V157 varnished. 

and unreliable and has been omitted from fig. 12.3. As we shall see later, 

the "lumpiness" of the curves is characteristic of the spectra of 

unvarnished violins. 
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Fig. 12.3 Force on bridge from TSV, shaker driven G string. 
Shona for unvarnished violins of differing EAR. 

Fig. 12.4 shows the force on the bridge for the three varnished violins of 
differing deviation. It is clear that the shape of the curves in fig. 12.4 is 

quite different from those in fig. 12.3. This comes from there being a 
different harmonic content in the transverse displacement of the string. 
(See Appendix A for discussion of the effect of varnish on string 
displacement. ) This force is applied approximately horizontally at the top 

of the bridge. The bridge height is about 32mm and the distance between 
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Fig. 12.4 Force on the bridge from TSV, shaker driven G string. 
Shown for varnished violins of differing deviation. 

the feet is also about 32mm so taking moments about the bridge feet (and 

disregarding the inertial effect of the bridge) would give an upward or 
downward force at the bridge feet of about the same magnitude as the 

transverse force. 

12.1.2 Vertical LSV force on the bridge 

Shaker driven string 
We now look at the vertical force on the bridge from the LSV in the string. 
The actual LSV force in the strings was measured at the tail gut 

transducer. This could variously underestimate or overestimate the LSV at 
the bridge, since it is possible that there is some attenuation of the LSV 

between the string and the tail gut, and between the tail gut and the string 
(depending on the direction of travel of the TSV waves), due to the mass of 
the tailpiece. Since any attenuation of the LSV would be common to all the 
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Fig. 11.7 (repeated) LSV force, shaker driven G string, 
shown for unvarnished violins of differing EAR. 
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violins tested, it would not invalidate conclusions reached on a comparative 

basis. 
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Fig. 11.24 (repeated) LSV force, shaker driven G string, 

shown for varnished violins of differing deviation. 

Above 5500 Hz, the LSV for the high and low EAR violin was too low to be 

reliably recorded by the analyser and is therefore not shown. 

The static analysis shows that the vertical force on the bridge is about 0.4 

of the LSV force. This force will be split approximately equally between 

both bridge feet. This would give a vertical force at each bridge foot of 

about 0.2 of the LSV force. Figs. 11.7 and 11.24 show the LSV for various 

violins and are repeated again here. The variation of LSV with EAR and 

deviation has been discussed in Chapter 11. 

Bowed string 
The LSV produced by a shaker driven string at the TSV amplitudes 

employed, is much lower than that of a bowed string. 
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Fig 12.5. LSV, shown for violins of differing deviation, 

excited by hand bowing the G string. 
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The three violins of differing deviation were fitted with the tailpiece 

containing the tailgut transducer. The open G string was bowed strongly 

and as continuously as possible while the LSV and the radiated sound were 

recorded. The sampling was spread over about 5 bow strokes. There was 

no means of ensuring the same level of excitation each time but there is 

reasonably close agreement in the lower harmonics of the LSV force. There 

are considerable differences in the magnitude of the LSV in the range 1500 

to 3500Hz, but elsewhere there is a closer agreement. In Chapter 13, the 

corresponding radiated sound is presented. 

12.1.3 LSV per unit TSV, violins of different FAR 

In order to compare the LSV developed in violins of different EAR and 

deviation with some precision, the LSV spectra should first be normalised 

on the input transverse displacement amplitude of the string. However, to 

do so would produce a curved line since the transverse displacement 

amplitude is proportional to the transverse force divided by the frequency. 

It was therefore decided to normalise the LSV force on the TSV force. 

The LSV force spectrum for each violin (figs. 11.7 and 11.24) was divided 

by the TSV force spectrum (figs. 12.3 and 12.4) and the results are shown 

in figs. 12.6 and 12.7. Fig. 12.6 shows that from 3000Hz to 5000Hz, the 

medium EAR violin produces somewhat more LSV force per unit TSV force 

than the violins of low and high EAR. Below 3000Hz there is little 

consistent difference with EAR. 
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Fig. 12.6. The ratio ISV force/TSV force. 

Unvarnished violins of differing EAR. 
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12.1.4 LSV per unit TSV, violins of different deviation 
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Fig. 12.7. The ratio LSV force/TSV force. 

Varnished violins of differing deviation. 

Fig. 12.7 shows that for a varnished violin the range of variation in LSV 

force/TSV force is rather less than it was for the unvarnished violins. 

There is some evidence that the LSV per unit TSV increases with the 

deviation, which is to be expected since we have seen that it also shows 

dependence on the EAR. The average from 1500 to 10,000Hz is 0.22 for 

the low deviation violin, 0.245 for the medium deviation and 0.30 for the 

high deviation, the variation being in the ratio of 1 to 1.1 to 1.36. The 

difference in deviation between these violins is in the ratio 1 to 1.5 to 2. 

The deviation determines the force on the end bouts cross arch, this 

determines the amount of movement of the EBX arches that would be 

caused by LSV. If all the dynamic activity of the body had been caused by 

LSV, the LSV force/TSV force ratio should be 1: 1.5 : 2, provided that it is 

all related to the force on the end bouts cross arches which may not be so 

since some must be due to the body bending. The actual ratio of 1: 1.1 : 

1.36, suggests that the dynamic activity might be about one third caused 

by LSV, but because of the body bending effect the LSV contribution is 

probably higher. 

12.1.5 Effect of varnish on LSV/TSV 

Comparing fig. 12.6 with fig. 12.7 shows the LSV force/TSV force has been 

lowered and made spectrally more uniform by applying varnish to the 

violin. The medium deviation violin in fig. 12.7 is the same violin as the 

medium EAR violin of fig. 12.6 except that it has been varnished. 
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Fig. 12.8 Ratio LSV force/TSV force, for a varnished violin divided by that of an 

unvarnished violin. 

Fig. 12.8 shows the LSV force/TSV force ratio for violin 156 varnished 

divided by that of the unvarnished violin. Above 1500Hz, there is mostly a 

lowering of the LSV force per unit of TSV. Below 1500Hz the LSV 

force/TSV force has increased. 

The forces acting on the body excite modes. It is now time to consider the 

body modes. 

12.2 The spectrum of body resonances 

12.2.1 Theoretical assessment of modal density 

The violin body can be considered approximately as comprising doubly 

curved, orthotropic plates. It is possible to make some theoretical 

prediction of the frequency distribution of the modal frequencies in curved 

plates. 

In flat plates, the modal density of the flexural modes is independent of 
frequency. The effect of plate curvature is to introduce membrane stresses 
to the flexural waves. These in general increase wave speed and radiation 

efficiency, but lower the modal density below the ring frequency fR. The 

modal density rises with frequency to a peak at fR and above it the modal 
density is unchanged by the effects of curvature and is independent of 
frequency. The ring frequency of a singly curved shell of radius of 

curvature r is given by: fR = where C. = longitudinal wave 

speed in the material. 
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For doubly curved shells of different radii of curvature in opposite 

orthogonal planes, there are two ring frequencies. 

The top plate of a violin has an average radius of curvature of about 

250mm in the transverse direction and 1300mm in the longitudinal 

direction. Taking Ce longitudinal 6300 m/s; and Ce transverse 1400 

m/s, the ring frequencies are respectively about 900Hz and 740Hz. The 

top plate was modelled as a rectangular, simply supported, orthotropic, 

doubly curved shell. Using Statistical Energy Analysis Software 
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Fig. 12.9 Modal density, modes per 1kHz band. 
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Fig. 12.10 Modal density, modes per 100Hz band. 

"AUTOSEA2", a plot of the modal density was produced. This is shown in 

fig. 12.9. Every point on this graph shows the number of modes contained 

within a 1kHz wide band, centred on that point. 

Generally, the modal density increases with rising frequency, becoming 

uniform above 2500Hz. Fig. 12.10 shows the number of modes within a 

100Hz band, which is of course more variable. The modal density is very 
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low below 380Hz. There is small increase at 380Hz, bigger peaks at 870, 

1480,1800, and 2360Hz and above 2360Hz, the modal density becomes 

more uniformly high. This is not a spectrum of body resonances. 

12.2.2 Theoretical assessment of the spectrum of body resonances 

A plot of the admittance of the body to an external force, applied at any 

mobile point on the violin body, against the frequency for a single isolated 

violin mode would rise with increasing frequency reaching a maximum at 

resonance and then fall. The half power bandwidth of a mode A, which is 

in the range of frequency over which it makes a dominant contribution to 

response is given by Af = ifo , where fo is the resonance frequency, and j7 

is the loss factor, which is twice the damping ratio. 

Consider now a harmonic excitation force at frequency w. The admittance 

at the bridge of the violin to this harmonic will depend on the proximity of 

its frequency to a resonance. Below 800Hz, the modal density of the top 

plate is low and the half power bandwidth is narrow. Bissinger gives a total 

loss factor of about 0.03 at 1000Hz. (A personal communication, 2001, to FJ 

Fahy, Southampton University, from G Bissinger, East Carolina University. ) This 

would give a half power bandwidth of 30Hz. In most structures the half 

power bandwidth varies as the half power bandwidth at 800Hz is 

about 27Hz. The violin will only show high admittance to excitation very 

near the isolated locations of the resonant modes. Because peak modal 

admittance is inversely dependent on wo, and since wo is low, the modal 

admittance will be high at these peaks. As w rises above 800Hz it enters a 

zone of higher modal density, but the half power bandwidth, although 

increased, is still relatively narrow. With further rise in frequency, the half 

power bandwidth rises. An applied harmonic excitation is able to excite 

say a mode at resonance plus the tails of adjacent modes. This tendency to 

overlap more than one mode increases as w moves further into the zone of 

higher modal density that began at about 800Hz. At 2500Hz, the half 

power bandwidth reaches 50Hz, and the modal separation is 60Hz. Once 

the modal overlap factor exceeds unity, individual admittance peaks will 

not be evident and the admittance will not vary as 1/ wo but will tend to 

become dependent on the modal density. This is approximately at 2500Hz. 
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With further increase in frequency beyond this point, the admittance would 

not increase. Moreover, with increasing modal overlap a multimode system 

tends to that of a modeless system. It is therefore reasonable to expect the 

admittance to rise with rising frequency above 800Hz and asymptote to a 

rather uniform value at higher frequencies. 

12.2.3 Measured spectra of body resonances 

If the body is excited by an external force at any one frequency, applied at 

any mobile point on the violin body, a number of modes will be excited. 

The admittance to an external force applied at the bridge is thought to be 

indicative of modal behaviour that will have significance in the bowed 

instrument. The admittance at the bridge is the transfer function of the 

transverse in-plane velocity at the top of the bridge divided by the external 
driving force. The admittance spectrum is commonly found by driving the 

bridge at all frequencies, with electromagnetic drivers, and recording the 

velocity of the bridge,. or by impact excitation of the bridge. Fig. 12.11 

shows the admittance at the bridge to a transverse force applied externally 

to a fine concert violin by Stradivari. The presence of the peaky zone below 

1kHz, and a rise to a maximum at 2000Hz followed by a decline, was 

predicted by theoretical argument based on the theoretical distribution of 

modal density. In most literature, the broad hill is referred to as the bridge 

hill, because of earlier suggestions that it might be caused by bridge 

resonance. It was noted in Chapter 2 that later research showed that the 

bridge behaved as a semi-rigid lever at all frequencies. Our analysis shows 

that the hill coincides with a zone of high modal overlap. If it is true that 

the high frequency admittance reflects the average modal density and half 

power bandwidth of the body, then the shape of the high frequency 

admittance curve would be much the same regardless of where on the body 

the force was applied and the admittance measured. 

The power transferred to the bridge per unit external force is proportional 

to the magnitude of the admittance multiplied by the cosine of the phase. 
It will be noticed that at the resonance peaks the phase passes through 

zero, enabling a maximum transfer of power. In the many areas where the 

phase moves towards +or- 90 degrees the power transfer per unit force is 

greatly reduced. At +or- 90 degrees, the power would go in at one part of 
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the cycle and out at the other. There are also anti-resonances where the 

phase is 0 degrees but the power transfer is small because the admittance 
is low. The value of curves showing the magnitude of the admittance is 

limited by the inconvenience of not embracing the phase and therefore 

telling us something about the power inflow to the body. The real part of 

the admittance does give a more direct indication of the power flow into a 

violin. 
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Fig 12.11 Frequency response (velocity/force) of a violin by Stradivari 1709. 
(0 db corresponds with 2 s/kg) (Janson, 1994) 

The admittance at the bridge is that resulting from the application of an 

external force. Because the admittance varies with the frequency, the 

power per unit force entering the body varies with the frequency. In a 
bowed violin, the string admits the external force. If an external force is 

applied directly to a string the admittance of the string would show very 

pronounced harmonic peaks but the envelope of harmonic peak heights 

would vary smoothly with the harmonic number. The string would accept 

a very different spectrum of input power from a unit external force than the 
bridge would. The power in the string then passes into the body, but not 
only through transverse excitation of the bridge. The admittance of the 
bridge to both transverse and vertically applied forces from the vibrating 
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string is examined in section 12.3. The transfer of power to the body is 

also considered. 

12.3 The admittance and power transferred at the input ports. 

12.3.1 The experimental method 

If the transfer function of velocity and the force (admittance) at any input 

port is known, the power input per unit force can be derived. The TSV 

force can be calculated from the measured string velocity. The LSV force is 

measured at the tail gut transducer. In order to calculate the pseudo- 

admittance of the bridge to LSV the assumption is made that the LSV in 

the group of four strings is the same as that in a single combined string 

placed at the centroid (see concept of the combined string introduced in 

section 3.2.4), and that it is the same as that measured at the tail gut. 

This may be so up to the first string longitudinal resonance. The 

assumption is reasonable off longitudinal resonance. We have not 

discovered any evidence that longitudinal resonance in the string is 

significant. The acceleration in the direction of the string can be measured 

at both the saddle (over which the tailgut passes) and the nut (at the 

entrance to the peg box). This was done at the saddle but not (regrettably, 

with the benefit of hindsight) at the nut. By measuring the vertical 

acceleration at each foot of the bridge, it is possible to calculate the velocity 

in the both the transverse and vertical directions of the centre of the top of 

the bridge. This assumes that the bridge behaves as a semi-rigid lever 

[confirmed by, Runnemalm, Molin and Jansson, 1998] and that there is 

little horizontal movement of the bridge feet compared to the vertical 

movement. 

An accelerometer was placed immediately in front of each bridge foot in 

turn (on the bow side) (see Chapter 6 for details of the accelerometer used). 

In addition to recording the output from the accelerometer, the LSV was 

measured, and the transfer function acceleration/LSV force was analysed. 
This enabled the phase difference between the two bridge feet to be 

determined. The bridge was assumed to have two degrees of freedom: 

rotation about the centre point of its base and vertical translation. The 

experimental results give information from which the displacement of the 
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bridge feet, the admittance of the bridge to TSV, LSV, and the power 

exchanged between the string and the body at the bridge and the saddle 

can be inferred. 

The open G string was driven to a displacement amplitude of 3.25mm. 

The measured data was as follows. 

The rms spectrum of the LSV force at the tailgut. 

The rms spectrum of the string velocity at the magnet location. 

The following transfer functions, 

(A+jB) where, 

A= Rj { al }, real part TF, accel/LSV force, at bass bar foot. 
1Fisvcau J 

B=I4 
Fisvcam, JJJ 

imaginary part TF, accel/LSV force, at bass bar foot. 

(C+jD) where, 

C=Re j a2 }, real part TF, accel/LSV force, at sound post foot. 
lFcsv c8u JJJ 

D=Im j a2 } 
' , imaginary part TF, accel/LSV force, at sound post foot. 
LSVCý JJJ lF 

(G+jH) where, 

H= Im{ i-}, imag. part, accel/vel. of string at the magnet, at bass bar foot. 

G=Re{ 
_al 

}, real part, accel/vel. of string at the magnet, at bass bar foot. 
lVm JJJ 

G was not measured. 
(K+jL) where, 

L=Im j a2 1, 
imag. part, accel/vel. of string at the magnet, at sound post lVm 

foot. 

K=R 
{. }' 

real part, accel/vel. of string at the magnet, at sound post foot. 

K was not measured. 
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Ja, 
imaginary part, accel/LSV force, at saddle. R= Im l 

l FLSV rsn 

The LSV force, FLsv ti, is the LSV force in the string as measured at the 

tailgut. (The data was originally collected with another purpose in mind, 

which did not require G and K to be measured. ) The following formulae 

were derived to convert the data to the information below. The derivation of 

the formulae is given in Appendix D. The formulae include the variables 

E, F, M, and N. These are parts of transfer functions as follows. 

E+jF, the transfer function of the acceleration of the bass bar foot of the 

bridge over the TSV force on the bridge from the string. 

M+jN, the transfer function of the acceleration of the soundpost foot of the 

bridge over the TSV force on the bridge from the string. 
These variables are related to the measured transfer functions as follows; 

E=-H/r, F=G/r, M-L/r, and N=K/r. (see Appendix D) 

T nit nira 

where r= 
LL 

w Sin nnxo Sin nua 
LL 

The rms vertical velocity of the centre top of the bridge, 

V� =F ij (B+D)2 +(A+C)2 

The rms horizontal velocity of the centre top of the bridge, 

0.37 x FLrv tm1 h2 

ýw 
Vt = D)2 +(C-A)The 

magnitude of the bridge pseudo-admittance to LSV, 

lY"I 
0.37x2rv 

(B+D)2 +(A+C)2 

and the corresponding phase, Oo = Cos"' 
(B + D) 

(V(B+Dy+ 

+Cff 

F and N are related to the unmeasured variables G and K They can be 

estimated as; F=S Sin( Cos-1 S' where S= A2 +B2 
Fv 

S ))) FTSv 

and N=T Sind Cos"I T) 
, where T= C2 + D2 

IFýI 
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The magnitude of the bridge pseudo-admittance to TSV, 

IYt I=w (E - M)2 + (F - N)2 

and the corresponding phase, Pt = Cos-1 
(F 

- N) [(E 

-M)2+(F-Ny 

The power to bridge from LSV, WLSV - 
0.37 F sv 

, $; i (B + D). 
2w 

The power to bridge from TSV, 

The power to saddle from LSV, 

2h 
(F 

-N) 
w 6) 

2R W. 
- 

F'LSV 
tail - 

F BE-AF 
The relative phase of LSV and TSV, 

Fýv 
Tan1 

Lsv 

[ 

AE + BF] 

12.3.2 The displacement of the bridge feet 

The vertical movement of the bridge feet was found. The results show no 

discernible consistent difference between the three violins of different 

deviation, and so the graph for one violin only (V 158LD) is shown. The 

fig. 12.12 shows the displacement of the bass bar foot of the bridge, and 

fig. 12.13 that of the sound post foot. These very small displacements were 

not measured directly but were derived from the measured accelerations by 

dividing by the square of the frequency. It is not easy to compare figs. 

12.12 and 12.13 to see the relative magnitude of the bridge foot movement. 

To facilitate the comparison, fig. 12.14 shows the peak displacement values 

of each bridge foot as a continuous line. 
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Fig. 12.12 Displacement of bass bar foot of bridge, shaker driven G string, V 158. 
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Fig. 12.13 Displacement of sound post foot of bridge, shaker driven G string, V158. 
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Fig. 12.14 Bridge foot displacement compared, V158. 

At the first harmonic, the bass bar foot moves 25% more than the sound 

post foot. At the fourth harmonic, the bass bar foot moves ten times as 

much as the sound post foot. The bridge movement can be seen as a 

combination of two basic movements. These are a rotation about the 

centre of the base, and a vertical translation. It would be helpful to take 

the displacements shown in fig 12.14 and separate them into bridge 

rotation and bridge translation. However it cannot be assumed that the 

movements shown in the two curves of fig. 12.14 have a frequency- 

independent phase relationship. 

12.3.3 The phase of the bridge foot movement 

The transfer function of the acceleration/LSV force was recorded for each 
foot. From this, it was possible to calculate the phase of movement of each 
foot in relation to the LSV, and from this the relative phase of one foot to 

the other. This is shown in fig. 12.15 for V 158. The other violins tested 
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showed similar variation. Each spot represents the phase of a harmonic at 

the frequency at which it is positioned on the graph. 

The phase difference can be anything from -180 to + 180 degrees. If the 

phase difference were 180 degrees, we would have a rocking bridge. In the 

first harmonic, the phase differences are not far from 180 degrees but there 

is a progressive movement away from this at the second and third 

harmonics. 
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Fig. 12.15 Phase difference between bridge feet, V158LD. 

12.3.4 Velocity of the top of the bridge 

Using the formulae given in 12.3.1, the transverse and vertical velocity of 

the centre top of the bridge was found. Fig 12.17 shows that the trend of 

the ratio is to be less at the low frequencies and to increase with rising 
frequency. 
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Fig 12.16. Transverse and vertical velocity magnitudes of the centre top of the 
bridge, shaker driven G string, V157 HD. 
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Fig 12.17. Ratio of the vertical velocity of the centre top of the bridge to the 

transverse, V157HD. (linear trend line shown) 

12.3.5 The admittance of the bridge 

The admittance of a body to a force should properly be the velocity arising 
from a single force divided by that force. This is easily measured in the 

case of an external force applied to the bridge. What we want to know is 

what is the admittance of the bridge to the forces from a vibrating string. 

These are internal forces because the string is part of the vibrating system. 

We can estimate the transverse force acting on the bridge from the string, 

together with the transverse motion of the bridge. We can also find the 

vertical LSV force acting on the bridge, together with the vertical motion of 

the bridge. We can therefore find the admittance of the bridge to these 

forces. However, the admittances found in this way are not fully 

independent of each other. When the transverse force is applied, the 

measured velocity is that resulting from that transverse force and from all 

other forces applied to the body by the string at the same time. Similarly, 

when the vertical force is applied the resulting velocity is that resulting 
from that force and from all other forces on the body. The main scope for 

interference is between the transverse and vertical motions of the bridge. 

In recognition of this insurmountable problem, the admittances found in 

this way will be referred to as `pseudo-admittances'. Fig. 12.18 shows the 

magnitude and fig. 12.19 the phase, of the pseudo-admittances of the 

bridge to TSV and LSV forces. The admittance to vertical force is higher 

than that to the transverse force, and the difference increases with rising 
frequency. 
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Fig 12.18 Magnitude of the pseudo-admittance of the bridge to TSV forces and ISV 

forces, V157HD. 
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Fig 12.19. Phase of the pseudo admittance of the bridge to TSV forces and LSV forces, 

V157HD. 

This difference reflects the difference in bridge top velocities shown in 

fig. 12.17, together with the fact that the LSV force is lower than the TSV 

force. Interestingly, the TSV phase variation corresponds quite closely with 

that shown in fig. 12.11 but with an additional factor of 7r. The string 

swinging excitation must have produced lower bridge top translations than 

the external force. 

Above 600Hz the magnitude of the pseudo-admittance of the bridge to a 

transverse force from the string as presented here is far smaller than that 

of the admittance to an external force found by others. It appears that 

there is some mechanism by which the free transverse vibration of the 

string that is not present in the direct measurements of admittance 

suppresses the transverse bridge velocity induced by TSV. The author has 

considered this matter carefully and cannot find a simple explanation. 

Inspection of the measured deformation of a violin body under string 

tension shown in Chapter 4 reveals that when the tension in the `combined 
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string' is increased the bridge drops more on the sound post side than it 

does on the bass bar side. Thus it can cause a horizontal translation of the 

top of the bridge. The bellying component of the LSV takes its phase from 

a TSV harmonic of half the frequency and we do not have any information 

about the phase relationship. However, depending on the phase 

relationship, the TSV rotation of the bridge could either be reduced or 

increased by bellying LSV. If, as seems to be the case, the phase 

relationship caused the TSV rotation to be countered by the LSV rotation, 

then the bridge top translation would be reduced and the admittance 

reduced. The inter-harmonic phase relationships of a shaker driven string 

will not be the same as those of a bowed string where the harmonic content 

comes from the Helmholtz wave, in which case the pseudo-admittances 

found here would not apply to the bowed violin. However, there is some 

reason to doubt the assumption that the bridge admittance to an external 

force would be the same as to a transversely vibrating bowed string. 

Clearly more work should be done on this using a bowed string excitation. 

If it were confirmed that the LSV-induced bridge movements were counter 

to those caused by the TSV, it would explain certain observations. All good 

violins feel to the player to be very firm in the string under the bow. As the 

LSV response increases, it reduces the bridge movement, and since the 

string firmness is sampled very near the bridge it would be influenced by 

the bridge movement. 

The interdependence of the admittances must happen in a violin. If at a 

particular harmonic the TSV force is high and the LSV force low the 

velocity resulting from the TSV force will move the bridge a large amount 

and may increase its apparent admittance to the low LSV force. The 

reverse may also happen. The effect of this interdependence would be to 

even out the power exchange from TSV and LSV. 
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12.3.6 The real part of the admittance. 
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Fig. 12.20. Real part of the pseudo admittance of bridge to TSV and LSV, 

V157HD. 

Fig. 12.20 shows the real part of the pseudo-admittances of a bridge to the 

forces applied by the strings. This represents the effectiveness of unit 

applied force as a means of transferring power. The TSV `input' is always 

positive although it drops to very low values at some frequencies. The LSV 

`input' can be positive or negative. The algebraic sum of the power input is 

shown later in fig. 12.24. 

The second harmonic makes a very interesting study. At the second 

harmonic the transverse displacement of the string and the TSV are 

surprisingly low (see fig. 12.3). Fig. 12.18 shows that the magnitude of the 

bridge admittance to the TSV is very high at the second harmonic. At most 

harmonics the bridge is driven to rotate by the TSV force and this may be 

resisted by the bridge-rock LSV. Bellying LSV comes from the first 

harmonic and has a phase related to that. The very high admittance of the 

body to the second harmonic would suggest that the bellying LSV and the 

TSV are not far out of phase and combine to drive the bridge to a large 

transverse displacement. We have no means of confirming this since we 

only have phase information about the combined bridge-rock and bellying 

LSV, but the bellying LSV force was shown in fig. 10.2 to be of the same 

order as the TSV force and would have a considerable influence on the 

phase of the total LSV. Fig. 12.25 does show a total LSV phase to near that 

of the TSV. The pseudo-admittances shown in fig. 12.18,12.19, are not 
independent of each other. Thus if a TSV force is applied to the bridge, and 

the resulting transverse movement is added to by that resulting from the 

bellying LSV, then the admittance will be high to that TSV force. This will 
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only happen at harmonics that have a strong bellying LSV contribution, i. e. 

the second and fourth, and can only happen if the phase relationship 

between the bellying LSV and the TSV is suitable. This may be the case at 

the second harmonic. These studies were made on a shaker driven string. 

If the string were bowed, the phase relationship between the harmonics 

could be different and so the very low even numbered harmonics in the 

transverse displacement spectrum and the high admittance at the second 

harmonic may not apply. The very high admittance to TSV is real enough, 

since it has resulted in a very low string displacement in the second 

harmonic. In the next Chapter, it will be shown that these phenomena 

have little effect on the radiated sound. 

Fig 12.18 presents a very different picture to fig. 12.11. In making a 

quantitative comparison 6db should be added to the values in fig 12.11 to 

bring it to the same units as 12.18. Fig. 12.18 was drawn from data 

collected at 196Hz intervals. Despite the fact that this is only pseudo- 

admittance, it is apparent that an external force applied to a violin with 

damped strings excites a different array of internal forces. 

12.3.7 Power per unit force 

The time-average power exchanged at the input ports is the time-average 

product of force and velocity, or (for harmonic vibration) the real part of the 

admittance times half the square of the magnitude of the input force. The 

power exchanged was found for TSV driving the bridge transversely, LSV 

driving the bridge vertically, and for LSV driving the saddle in the direction 

of the string. The power exchanged at the nut (peg box end) in the 

direction of the line of the string was not measured. The power found in 

this way is not pseudo, but is the real power exchanged at the port. The 

three graphs presented in this section show the power divided by the 

square of the force. By dividing by the square of the force, the graphs 

represent the effectiveness with which unit force can transfer power at the 

port. The actual power is shown in section 12.3.8. 

Fig. 12.20 shows the power divided by the square of the TSV force, entering 

the bridge from the string. Relative to the other inputs of power from the 

string the TSV contribution is high up to about 3500Hz. After that there 

are a number of frequencies where the power input (always positive) falls to 
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a very low figure. There is a general decline in the high harmonics. A TSV 

force applied at the second harmonic would take a large amount of power 

out of the string and input a large amount of power to the bridge. This 

reflects the high magnitude of the admittance and a phase of zero degrees. 

The TSV would also input quite effectively at the ninth harmonic. 
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Fig 12.20. Power per unit TSV farce squared, exchanged between the string and the 

bridge, V157HD. (mW per N2) 
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Fig 12.21. Power per unit of LSV force squared, exchanged between the string and the 

bridge, V157HD. (mW per N2) 

Fig. 12.21 shows the power divided by the square of the LSV force, 

exchanged between the bridge and the string. Compared to the TSV the 

LSV power exchange is higher at the low frequencies and in general falls off 
less with rising frequency. Most obviously the power flow is more generally 

out of the bridge into the string. This is entirely consistent with the 

principle of bridge-rock LSV, where the rocking bridge does work on the 

string. At the second harmonic the LSV is predominantly developed from 

string bellying and this would explain why energy is put into the body from 

the string. 
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Fig 12.22. Horizontal component of the power per unit LSV force squared, 

exchanged between the tailgut and the saddle, V157HD. (mW per N2) 

Fig. 12.22 shows in the same way the power exchanged between the tailgut 

and the body at the saddle. Power is put into the body at some frequencies 

and taken out at others. 

12.3.8 Power exchanged at the ports 

We now look at the absolute powers exchanged at the bridge and saddle. 

This is shown in fig. 12.23. All very low power levels are shown in the 

graph as being 1.00E-10 mW. 
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Fig. 12.23. Power exchanged at the bridge and saddle, V157HD. (mW) 

Consider first the power exchanged at the bridge. At all harmonics, the 

TSV puts power into the bridge. At most harmonics, the LSV takes power 

out of the bridge. This is as one might expect it to be. The reason LSV 

puts power in at the second harmonic is that it is dominated by bellying 

LSV that has a different phase (see section 12.3.6). The very small TSV 

force at the second harmonic has met a very high admittance and the 
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resulting energy input is comparable with the adjacent harmonics. 

Generally the power input through TSV is higher than that through LSV, so 

unless the LSV excites more efficiently radiating modes than the TSV it is 

unlikely to make a significant contribution to the radiated sound. The 

radiated sound is examined in chapter 13. 

12.3.9 Other avenues of power input 

If an external force is applied directly to a string the admittance of the 

string would show very pronounced harmonic peaks but the envelope of 

harmonic peak heights would vary smoothly with the harmonic number. 

Thus the power supplied to a violin by a bow (or even by a shaker), at the 

string harmonics, must smoothly decline from low to high harmonic 

number. The envelopes of the sound spectra radiated by a violin are 

presented in the next chapter and these fairly smoothly decline with rising 

harmonic number. The power imparted to the string must pass through 

the violin to radiate. It follows that if the input to the violin is smooth and 

the output is smooth, then the power supplied to the body by the string 

must be fairly smooth and not show significant peaks. Fig. 12.24 shows 

the algebraic sum of the power supplied to the violin by the string (at the 

bridge and the tailgut only), and the sound power radiated by the violin. 

The radiated sound power is not calibrated and it has been shown with an 

arbitrary reference to make it the same as the string to body power at the 

seventh harmonic. 
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Fig 12.24. Algebraic an- of the power exchanged between the string and the body 

(mw), compared to the sound power radiated by the violin (arbitrary units), v157HD. 

Adjusted arbitrarily to agree at the seventh harmonic. 
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The purpose of this exercise is to see if the string is likely to be putting 

power into the body in a significant way at other ports. We have included 

in the algebraic sum the TSV and LSV power from the string to the bridge. 

We have included the power going in at the tailgut. What is not included or 

measured was the power going in at the nut from LSV in the direction of 

the string and the transverse force at the nut (or stopping finger) from the 

TSV. The transverse component caused by TSV at the nut is not thought 

to be significant because of poor admittance matching. However the 

pseudo-admittance may be larger than is generally supposed, since it is 

quite possible that some of the body modes might involve quite significant 

transverse displacements at the neck. This would give a TSV force applied 

at the neck a high admittance. Such displacements could result from the 

'yawing' modes that have been identified [Marshall, 1985]. The component 
in the string direction at the nut could be as significant as the component 
in the string direction at the tailgut. 

The algebraic sum of the power transferred to the body is low or negative at 

the third harmonic and between about 3000Hz and 4500Hz. There must 
be some other transfer of energy from the string to the body in these bands. 

At the third harmonic, it is possible that the string transfers energy to the 

body by vertical translation of the nut, caused by body bending modes. In 

Chapter 13 some evidence is given which would suggest that above 2000Hz 

the violin is largely LSV driven. Fig. 12.24 does not include any 

contribution there may be from driving power from TSV or LSV applied at 

the nut. This points to the possibility that the violin is being driven in this 

band by LSV applied at the nut. This band may be important for the 

carrying power of an instrument. The radiated sound curve was adjusted 

arbitrarily to agree at the seventh harmonic. If it were adjusted to agree at 
the second harmonic, for example, there would be reason to expect a 

greater and more continuous input of power through LSV through nut and 

saddle vertical movement. 

It is significant to note that the good match between the power into the 

string and the sound power radiated enables us to estimate how the 

radiation efficiency varies with the frequency. 
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Now the radiation efficiency, r= rad. = 
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a= radiation efficiency, s= radiating area, 
M= mod al mass of radiating part of structure, which is approximately constant. 

17mech. tends to vary as f -"Z (according to Bissinger) 
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This is more or less what Bissinger finds (a personal communication with Fj 

Fahy). The experimental finding that the radiation efficiency of a violin 

varies as the square root of the frequency is therefore consistent with the 

findings of Bissinger. 

12.3.10 The relative phase of TSV and LSV 
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Fig. 12.25. Relative phase of TSV force and LSV force, (violin 157HD). 

The difference in phase between the TSV force and the LSV force is shown 
in Fig. 12.26. 

12.4 Conclusions 

" In the bowed violin the total LSV varies from one harmonic to 

another, does not consistently strengthen the even numbered 
harmonics, and varies non-linearly with the TSV. 
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" The ratio of LSVforce/TSV force, from 3000Hz to 5000Hz, is higher 

for the medium EAR violin. Below 3000Hz there is little consistent 

difference with EAR. 

" The LSV force per unit TSV force in a varnished violin throughout 

the spectrum generally shows a monotonic dependence on the 

deviation. 

" The LSV force per unit TSV force for a varnished violin divided by 

that of an unvarnished violin shows that the effect of varnish was to 

lower the LSV/TSV ratio at harmonics above 1500Hz, and increase it 

below 1500Hz. 

0 The ratio of bridge vertical velocity to bridge transverse velocity 

shows a tendency to rise with rising frequency. 

" The high frequency spectrum of the bridge admittance to an 

externally applied transverse force shows a relationship with the 

theoretical spectrum of the modal overlap of the body. 

" The bridge pseudo-admittances to internally applied forces from the 

string, transversely and vertically, show a regular declination with 

rising frequency. There is an exceptional peak of admittance at the 

second harmonic. This may be peculiar to the only string tested, 

which was aG string, and may not appear in the bowed violin at all. 

The pseudo-admittance to LSV force is a little higher than that to 

TSV force at lower harmonics but with rising frequency, the gap 

widens to 15 or 20db. 

" The validity of these admittances must be questioned until 

confirmed by tests on a bowed string, but they are supported by 

having a consistent relationship to the radiated sound power. The 

degree to which these results are typical of all violins can only be 

determined by doing more tests on other violins. 

" The difference in the admittance of the bridge to internal and to 

external forces may be an indication that bellying LSV significantly 

affects which modes are excited. The modal difference may come 
from the super-resonance excitation of modes compatible with the 

force regime. 
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" The power transferred from the string to the bridge is dominated by 

TSV at low frequencies. In the range 3000 to 4500Hz, the TSV 

contribution is minor. It is possible there is another significant 
input of energy from the string to the body. This may be LSV-driven 

through movement at the nut, or TSV driven at the stopped end of 

the string. 

186 



Chapter 13 

EFFECT OF BODY SHAPE ON RADIATED SOUND 

PRESSURE 

13.1 Introduction 

The radiated sound pressure was recorded together with the amplitude of 
transverse displacement of the string and the LSV. The amplitude of 

transverse displacement of the string and LSV have been presented and 
discussed in Chapter 12. 

The violin was supported at the lower and upper extremities of the back on 
foam-lined blocks. See fig. 6.4. The violin was excited by driving the string 

with a shaker. The mid length transverse displacement of the string was 
3.25 mm. The microphone was caused to swing while recording the sound 

as described in Chapter 6. For each set up the mean distance from the 

microphone to the violin was set at 2m. The sound radiated by the shaker 

mechanism was measured alone and subtracted from the sound recorded 
for the violin and shaker together. (See chapter 6 for details. ) The 

magnitude of the sound pressure was uncalibrated. The tests were 

conducted in a room about 80 cubic metres in volume, with plasterboard 

walls and a timber floor. The room contained benches but no soft 
furnishings. The room may be considered moderately reverberant. 

13.2 Unvarnished violins 

13.2.1 Violins of differing EAR 

The radiated sound pressure for three unvarnished violins of differing EAR 
is shown in figs. 13.1 to 13.3. 

13.2.2 Discussion 

To facilitate the comparison of the three graphs, the harmonic peak values 
have been joined in fig 13.4, to form continuous lines. The medium EAR 

violin generally radiates more strongly than the high and low EAR violins. 
The difference becomes more apparent above 1500Hz. The radiated sound 
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Fig. 13.1. Sound pressure radiated, low EAR violin. V157LE 

Shaker driven G string. 

1.0000 

0.1000 

0 
9 

0.0100 
C 

0.0010 

0.0001 

Fig. 13.2. Sound pressure radiated, medium EAR violin. V 156. 

Shaker driven G string. 
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Fig. 13.3. Sound pressure radiated, high EAR violin. V 158M. 

Shaker driven G string. 

pressure of the high EAR violin has a weak second harmonic, it falls off 

rapidly after the first harmonic and is weak around 4kHz. The radiated 

sound pressure of the low EAR violin is nearer that of the high EAR violin 
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throughout much of the range. At the second harmonic the medium EAR 

violin radiates strongly with the high EAR violin being the weakest and the 

low EAR violin being in between. 
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Fig. 13.4. Sound pressure radiated, equal first harmonic string displacement. 

Shaker driven G string. Shown for unvarnished violins of differing EAR. 

13.2.3 Violins of differing deviation 

Figs. 13.5,13.2 and 13.6, show the radiated sound pressure for violins of 

normal EAR, but different deviation. 

13.2.4 Discussion 

These violins all have a normal EAR. There is too much minor variation in 

shape between these curves to conclude reliably that the sound radiated 
increases with the deviation. It was found later that the LSV developed is 

affected by the age of the string. The three violins were tested at different 

times and some string ageing had taken place between testing. Later tests 

on the same violins after varnishing (section 13.3.1) were made on the 

same day with the same strings and a small but consistent variation with 

deviation was found. It will also be noted that all the violins show a second 

harmonic somewhat higher than the first and third, where it was about the 

same, and that they all show a strong sixth harmonic. 
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Fig. 13.5. Sound pressure radiated, low deviation violin. V158LD. 

Shaker driven G string. 
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Fig. 13.2. (repeated) Sound pressure radiated, medium deviation violin. V 156. 

Shaker driven G string. 
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Fig. 13.6. Sound pressure radiated, high deviation violin. V157HD. 

Shaker driven G string. 
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13.3 Varnished violins 

13.3.1 Violins of differing deviation 
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Fig. 13.7. Sound pressure radiated, low deviation violin. V158LD. 

Shaker driven G string. 
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Fig. 13.8. Sound pressure radiated, medium deviation violin. V 156. 

Shaker driven G string. 
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Fig. 13.9. Sound pressure radiated, high deviation violin. V 157HD. 

Shaker driven G string. 
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After the three violins of normal EAR and differing deviation were 

varnished, they were again tested to compare their radiated sound. The 

results are shown in figs. 13.7 to 13.9. 

13.3.2 Discussion 

It is noticeable that there is a considerable rise in the `floor' of the sound 

spectra compared with that of the unvarnished violins already presented. 

This could be certainly partly attributable to the tests being conducted at a 

time of the day when the background noise level was higher than it had 

been in the earlier tests. It is possible that this is the sole reason. There 

was however some reason to suspect that the violins were for some reason 

behaving differently. Experiments were also done on unvarnished violins of 

abnormal bass bar and bridge-heights. These also showed marked 

differences in spectral floor, which certainly could not be attributed to 

differences in ambient noise in the room. A corresponding level of 

background vibration was also found in the LSV force spectra. The reasons 

for the difference in spectral floor were not understood and since it was the 

peak heights that were germane to the main purpose of the experiments an 

exhaustive investigation of the reasons for the spectral floor variations was 

not pursued. Further research would be needed to gain more 

understanding of this phenomenon. 

To facilitate comparison between these spectra and comparison with those 

of the unvarnished violins, fig. 13.10 shows the peak level of the three 

spectra. 
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Fig. 13.10. Sound pressure radiated, equal first harmonic string displacement. 

Shaker driven G string. Shown for varnished violins of differing deviation. 
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In all the varnished violins, the peaks at the second and sixth harmonics 

project above those of the adjacent harmonics. Up to approximately 

1000Hz, the difference in deviation has little effect on the radiated sound 

pressure. Above 1600Hz there is a clear difference between the low and 

high deviation violins, with the medium deviation violin for the most part 

being somewhere in between. It may be significant that in the first 

harmonic the low deviation violin radiates slightly more sound than other 

violins. We have shown that all the test violins have close to the same 

spectrum of transverse displacement of the string, yet the spectrum of 

radiated sound varies. There is on the other hand a compelling 

relationship between the spectrum of the LSV in the string and the radiated 

sound spectrum (see sections 13.6.1 and 13.6.2). 

13.3.3 With bowed excitation 
The three varnished violins of differing deviation were bowed as described 

in section 12.3.2 and the spectral peaks of the radiated sound spectra are 

shown in fig 13.11. This corresponds with the LSV shown in fig 12.4. The 

spectra are not significantly different and this accords with the report in 

Chapter 5 that violins of the same EAR but different deviation do not 

exhibit any consistent difference in radiated sound. 
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Fig 13.11 Sound pressure radiated, excited by bowing the G string. 
Shawn for varnished violins of differing deviation. 

13.4 Super-resonance modal excitation 

The difference between the bridge admittance to an external force and an 
internal force suggests that there may be different modal combinations 
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excited in each case. The difference may he in the excitation of modes at 

super-resonant frequencies. 

13.4.1 Radiation of modes at super-resonance frequencies 

The sound pressure radiated by a vibrating surface depends directly on the 

acceleration of the surface expressed by the Kirchhoff-Helmholtz Integral 

[Fahy, 2001]. Consider again our single frequency excitation. When W 

considerably exceeds w., the modal acceleration amplitude is given by; 

a, � sw M 
where F. is the amplitude of the modal excitation force and M. is 

M. 

the modal mass. The modal acceleration is independent of the excitation 
frequency. The violin can radiate strongly by operating modes at 
frequencies well above resonance (super-resonance excitation). In fact, a 

mode that does not radiate well at resonance may be able to radiate 

comparatively well at frequencies well above resonance. 

However, the total acceleration response at any point does not increase to 

infinity as the frequency increases because each mode has its response 

maxima and minima at different positions with nodal lines in between; and 
the phase of each modal response switches through 180 degrees as one 

moves across nodal lines. The excited modal accelerations may be of 

opposite phase and some mutual cancelling out would occur. In addition, 

although vibrational surface acceleration is the physical cause of density 

changes in the air contiguous with the surface, the efficiency of radiation of 

sound energy per unit of mean square modal acceleration tends to be more 

or less constant up to a frequency determined by the size of the radiator. It 

is important to note that the responses of modes that are excited super- 

resonantly are independent of damping. 

13.4.2 The super-resonance excitation of modes in the violin 
With rising driving frequency, there will be an increasing number of lower 

order modes that, given the right conditions, could be excited super- 

resonantly. 

A crucial factor in determining which modes, if any, are excited, is the 

magnitude and spatial distribution of the applied forces. The driving forces 

will be most effective in exciting modes that have large displacements in the 
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regions of the application of the forces and in the direction of the forces. To 

excite a mode at resonance it would normally be sufficient to apply a 

periodic excitation force at the resonance frequency at any point other than 

a nodal point. The excitation of a mode super-resonantly would be 

favoured by the application of the periodic excitation forces at a number of 

points applied in the direction and relative phase consistent with that of 

the mode. Under these conditions, both strongly and weakly radiating 

modes may be excited both resonantly and super-resonantly. 

The body of the violin is acted on by the TSV force on the bridge and the 

stopped end of the string, and forces arising from LSV, which are applied at 

the bridge, nut and saddle. It was shown in Chapters 3 and 4 that if these 

forces were applied statically the body would deform in a way that 

approximates to operating shapes that are likely to be strongly radiating. It 

does not follow in the dynamic situation that these forces would be applied 
in the required relative phases to encourage the super-resonance excitation 

of modes that would equate to these operating shapes, but it is possible 

that at some frequencies or frequency bands this happens. 

13.5 The mix of modes excited at any harmonic 

The resonant excitation of the body modes by an external transverse force 

applied to the bridge will best excite those modes that have the greatest 
displacement at that point and in that direction. When the swinging string 

excites the body, forces are applied directly at the ports from TSV at the 

bridge and the stopped end of the string, and from LSV at the bridge, nut 

and saddle. There is therefore a very different force regime on the body to 

that applied by a single external force to the bridge, which produces forces 

at the ports indirectly. It was shown in section 12.3.5 that the pseudo.. 

admittance of the bridge to a single external force was significantly different 

to its admittance to the TSV force applied by a string vibrating at 

resonance. This supports the conclusion that the forces at ports applied 
directly by the vibrating string have excited different modes than those 

excited by an external force. 

Our analysis of the deformation caused by static string tension showed 
that it was of a similar shape to the Nullstrahler. Is it conceivable that a 
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good violin will operate as a Nullstrahler throughout much of the frequency 

range and superimposed on top of this would be the shapes caused by the 

modes that are resonant at or near any frequency? Under these 

circumstances, the Nullstrahler shape would dominate the operating shape 

at frequencies where there is a resonance of the Nullstrahler mode, or at 
frequencies that are well away from those of other resonant modes. Could 

it be present and underlie other superimposed modes throughout much of 

the range? Saunders observed that the violin operated as a Nullstrahler at 

685Hz, and Schelleng noted that this frequency was well away from a 

natural frequency. Weinreich considered the violin as an effective 

monopole source and found that its radiation efficiency would level off to 

unity at 1000Hz [Weinreich, G]. Bissinger (in a personal communication to FJ 

Fahy), measured the radiation efficiency of a violin and found it was lower 

than one at 1000Hz and kept on climbing as the square root of the 

frequency above 1000Hz. This could be evidence that the violin is not 

radiating from the Nullstrahler. The question remains unanswered. 

13.6 Radiated sound as a function of input force 

13.6.1 Violins of differing EAR 

Fig. 13.12 shows the radiated sound pressure divided by the TSV force, for 

the unvarnished violins of differing EAR. Above about 1500Hz the medium 
EAR violin radiates about 3 times more sound per unit TSV than the high 

and low EAR (about 9 times greater sound power per unit TSV, or an 

approximate doubling of the subjective loudness). 

Fig. 13.13 shows the radiated sound pressure divided by the LSV force. 

The LSV force spectrum used to make this graph came from fig 11.7 which 
has no recorded LSV shown for the high and low EAR violins in the range 

above 5300Hz. Between 2000Hz and 5300Hz there is little consistent 
difference in the radiated sound pressure per unit LSV force with the EAR. 

Above 2000Hz the sound pressure per unit LSV force is much more 

constant than sound pressure per unit TSV force. These factors taken 

together could either be evidence that the radiated sound in this range is 

related more to the LSV force than to the TSV force, or that they are both 

products of a common cause. 
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Fig. 13.12. Sound pressure per unit TSV force, unvarnished violins of differing EAR. 
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Fig. 13.13. Sound pressure per unit LSV force, unvarnished violins of differing EAR. 

All the data on these graphs were sampled at harmonic intervals of 196Hz, 

therefore certain peaks and troughs could have been missed in the area 

below 1500Hz, where the values are changing rapidly. In the range 0 to 

1500Hz the sound radiated per unit TSV force and per unit LSV force both 

vary considerably. There is no more variation with the TSV than with the 

LSV. This may be an indication that the violin relies on a combination of 

the TSV and LSV forces to drive the body to radiate in this band. 

13.6.2 Violins of differing deviations 

Fig. 13.14 shows the radiated sound pressure divided by the TSV force for 

the three violins of differing deviation. Fig. 13.15 shows the radiated sound 

pressure divided by the LSV force for the same violins. Again, the average 

sound pressure per unit TSV force curve declines with rising frequency but 

the sound pressure per unit LSV force is more constant. The variation 

from the average is less than in the unvarnished violins, indicating a more 

uniform radiative efficiency in varnished violins or more damping of modes. 
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There is an obvious difference between the graphs for the varnished and 

unvarnished violins. This is considered in more detail in Appendix A. 

Certain variations with deviation are apparent but these are not as 

pronounced as those produced by violins of the different EAR. That is 

because the EAR affects the LSV and sound more than the deviation does. 

The trends shown in figs. 13.14 and 13.15 are more clearly seen by 

applying some averaging. The averaging used was to take each point as the 

average of that point plus the two points above plus the two points below. 

The graphs with the averaging applied are shown in figs. 13.16 and 13.17. 

Fig 13.16 shows that above about 2000Hz, there is a variation in sound 

pressure/TSV force with the deviation, the high deviation violin being on 

average 1.4 times higher than the low deviation violin. In fig. 13.17 the 

sound pressure/LSV force is lower for the high deviation violin than the low 

deviation violin by a factor of 0.82 on average. 

We can draw some tentative conclusions from this. Comparing the low and 
high deviation violins only. If the radiated sound were a product of the TSV 

with no contribution from the LSV, the sound pressure/TSV force would 

not vary with the deviation. Fig. 13.16 shows the high deviation violin 

generated 1.35 times more sound pressure in the range above 2000Hz. 

The sound pressure /LSV force should have decreased by a factor of 
1/ 1.36, because the LSV force/TSV force was shown in section 12.1.4 to 

have increased by 1.36. Fig. 13.16 shows the sound pressure/LSV force 

did fall by a factor of 1/ 1.22 (above 2000Hz, on average). Taken together it 

would appear that the sound is not the product of the TSV alone. 

If, on the other hand, the radiated sound were entirely a product of the LSV 

force, the sound pressure /TSV force for the high deviation violin, should 
be greater than that of the low deviation violin by a factor of 1.36 (because 

it was shown in section 12.1.4 that the ratio of LSV/TSV is 1.36 times 

greater for the high deviation violin). We have seen in fig. 13.16 that it was 
in fact 1.35 times greater. The sound pressure /LSV force should have 

been the same for all violins, but the high deviation violin was lower than 

the low deviation violin by a factor of 1/ 1.22. Taken together it would 

appear that TSV is contributing to the radiated sound to some extent, but 

there is a closer relationship to the LSV. The graphs for violins of different 

EAR shown above did give more compelling evidence that the radiated 
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evidence points to the LSV having made the greater contribution in the 

range above 2000Hz. 

That the radiated sound is more closely related to the LSV than the TSV 

could be said to be only because they are both the result of some common 

cause, and that this common cause may be responsible for the sound 

radiation. That possibility cannot be ruled out entirely. But the variations 

in radiated sound with EAR and deviation, and the variations in the LSV 

force/TSV force ratio with EAR and deviation, can all be explained 

reasonably in terms of the mechanism of sound radiation proposed for LSV. 

No other mechanism has been found that explains the experimental 

evidence. The link between LSV and radiated sound stands as a 

hypothesis that is consistent with a considerable amount of experimental 

evidence. 
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Fig. 13.14. Sound pressure per unit TSV force, varnished violins of differing 
deviation. 
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Fig. 13.15. Sound pressure per unit LSV force, varnished violins of differing deviation. 
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Fig. 13.16. The curves shown is fig 13.14 with some averaging applied. 
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Fig. 13.17. The curves shown is fig 13.15 with some averaging applied. 

However, in figs. 13.16 and 13.17, below 1500Hz there is a tendency for 

the radiated sound pressure per unit TSV force to vary inversely with the 

height of the belly end bouts cross arch. The lower the belly end bout cross 

arch is, the greater is the radiation. This is both explainable and 

demonstrable. The explanation is that a wide low belly end bouts cross 

arch is easier to move normal to its surface than a narrow higher end bouts 

cross arch. (It is known to many makers that keeping the belly EBX arches 

low, gives a fatter fuller sound "under the ear" (a violinists expression which 

means "to the player"). In fact, many cheaper factory violins are built this 

way. To build a violin this way usually requires a low EAR and low 

deviation, and so a price is paid tonally in loss above 2000Hz, which 

probably would reduce the projection of the violin. However, even the great 

Guarneri Del Gesu flirted with this tendency in his later instruments. The 

result is that although they have a huge fat sound under the EAR, many 

players have found that they do not project as well in a big hall as a 
Stradivari, although the Strad may sound "thinner" under the ear. ) 
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Some tentative conclusions were drawn in section 12.3.9 about the 

radiation efficiency of the violin. It was shown that the radiation efficiency 

approximates to being proportional to the square root of the frequency. 

From Fig. 12.20, the real part of the pseudo-admittance to TSV declines by 

a factor of 100 times from 100Hz to 10,000Hz. Fig. 13.16 shows that the 

radiated sound per unit TSV force declines by a factor of 10 times from 

100Hz to 10,000Hz. This gives an increase in the radiation efficiency over 

the range of 10 times which agrees with the dependence of the radiation 

efficiency on the square root of the frequency. Similarly there is a fall in 

the real part of the pseudo-admittance of the bridge to the LSV of about 10 

times and no fall in the radiated sound. 

13.6.3 The bowed violin 
Fig 13.18 shows the radiated sound pressure divided by the LSV force for 

the three varnished violins of differing deviation. This is equivalent to fig 

13.15, when the violins were shaker driven. 
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Fig 13.18 Sound pressure per unit LSV force, varnished violins of differing deviation. 
Excited by bowing the fourth string. 

Because there was no way of ensuring equal excitation of these violins the 

result is of little interest as an indicator of the effect of deviation on the 

radiated sound per unit LSV. It does indicate that in a bowed violin the 

sound radiated per unit of LSV is lower in the lower frequencies and higher 

in the higher frequencies than that of the shaker driven violin. This could 
be explained by a non-linear variation of the radiated sound with the 

amplitude of transverse vibration of the string, in that a bowed string has a 
lower amplitude in the low harmonics and a higher amplitude in the high 
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harmonics than does a shaker driven string. The bowed string would 

therefore contribute less bellying LSV to the total LSV in the lower 

harmonics and more bellying LSV to the total LSV in the higher harmonics 

than the shaker driven violin. For this to have produced the difference 

between figs 13.15 and 13.18, the bellying LSV must be making a 

significant contribution to the radiated sound. 

13.6.4 The contribution of LSV to the radiated sound 

In Chapter 12 it was shown that the power input to the body from the 

string is contributed to by LSV. Except in the frequencies above 8500Hz 

and between 3000 and 4500Hz, LSV does not appear to make a greater 

contribution than TSV. In section 13.6, evidence was presented that the 

sound above 2000Hz is largely LSV driven. This suggests that the LSV 

operated modes have a relatively higher radiating efficiency. Such a finding 

would be consistent with the predictions made in Chapter 3. 

13.7 Radiated sound on a comparative basis 

13.7.1 Published radiated sound spectra 

Spectra of the sound pressure level radiated per unit force excitation 

applied transversely at the bridge have been published. Fig 13.19 shows 

eleven such spectra all for old Italian master violins. The shape of this 

spectrum is similar in form to that of the square of the magnitude of the 

admittance spectrum. The admittance spectrum corresponds to a uniform 

force spectrum but a very irregular power input. The sound spectrum 

resulting is that due to a constant force but similarly uneven power 

excitation. Since the admittance curve and the radiated sound curve are of 

approximately the same form it suggests that if we had a constant force 

and constant power excitation the response would be much flatter. The 

force and power into a bowed or shaker driven violin string at resonance 
have a fairly constant relationship. The force and power from externally 

applying a force to the bridge do not. Fig. 13.19 is therefore of limited 

value, by itself but if it were divided by the spectrum of the square of the 

magnitude of the admittance it would give an indication of the radiative 

efficiency. 
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Fig 13.19 Sound radiated per unit of external transverse farce at the bridge, 

by 11 master Italian violins. (from Dunwald, 1982) 

13.7.2 Radiated sound spectrum as found in this research 

Fig 13.20 is a radiated sound spectrum. This is fig 13.14 with the vertical 

scale changed to decibels (with an arbitrary reference) through a range of 

60dB. 
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Fig. 13.20. Sound radiated per unit of transverse farce on the bridge. The transverse 

force generated by vibrating the G string at resonance. Shown for 3 varnished violins, 

of differing deviation. 

The traces are not uniform throughout the range, but above 1 kHz they do 

show a steady decline with frequency. The main reason for the lack of 

uniformity is that the sound is not caused only by TSV but it shows a 

closer relationship to the LSV spectrum. This is for the note G (the open G 

string), which has 52 harmonics in the frequency range shown, and 

samples the response of the violin at intervals of 196Hz. The excitation 

was by driving the string with a shaker. From the evidence we have seen, 

907.04B - Low dev. 
- Med. dev. 

High dev. 

Frequency ý, 
j 

203 



the bowed string would have a higher response in the upper frequencies 

(because of the non-linearity of the bowed string) and the spectrum would 

not decline with rising frequency. The low end of the range may be 

unreliable because it is made from data collected at intervals that are too 

far apart properly to sample this characteristically peaky area. 

The very low value at the first harmonic and the very high value at the 

second harmonic, are not caused by differences in the radiated sound but 

rather in the TSV force. The TSV force is very high in the first harmonic 

and very low in the second. The admittance of the bridge to these forces is 

the reverse of this order. In fig. 13.20 the low first harmonic and high 

second harmonic is due to a very uneven admittance to these forces. The 

only reason that spectra in fig. 13.20 are not a straight line from 20db to 

0db (apart from minor fluctuations) is that we have normalised them on the 

TSV force on the bridge. This gives us a constant force excitation, but 

since the admittance of the bridge varies this is not a constant power 

excitation. 

If fig. 13.20 is compared with fig. 12.18 it can be seen that the spectrum of 

radiated sound per unit transverse force on the bridge is not greatly 
different in shape to the spectrum of the bridge admittance. Similarly by 

comparing fig. 13.19 with fig. 12.11 it can be seen that there is a similarity 
in shape. The connection in each case is the radiation efficiency of the 

body. Since fig. 13.19 relates to 12.11 in a similar way to the relationship 
between fig. 13.20 and 12.18, if there were any significant error in the 

shape of the curve in fig. 12.18 then the cause of that error must have 

similarly affected fig. 13.20. The only common factor to both curves is the 

TSV force, which has been inferred from the transverse displacement of the 

string. It is hard to see that there can be a significant error in this simple 

calculation. This supports the validity of the pseudo-admittance spectra 
found in this research for a shaker driven string. 

The close relationship between the shape of the admittance curves and the 

radiated sound per unit force curves indicates that the violin has smoothly 

varying radiation efficiency. The power input from the bow to the string at 
its resonance harmonics also varies smoothly. So if the input is smooth 

and the efficiency is smooth the output must be smooth. That is not the 
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impression given by fig 13.19, and indeed figures such as this are often 

misinterpreted. Several writers have, with recourse to spectra like that 

shown in fig 13.19, explained why the radiated sound spectrum must be 

that shape and have suggested that various features avoid shrillness, 
dullness and a nasal tone. 

13.8 Conclusions 

" Above 2000Hz, the medium EAR violin radiated more sound per unit 

TSV force than the violins of low and high EAR, and the spectra 
declined with rising frequency. There was no consistent variation 

with the EAR in the sound radiated per unit of LSV force. This 

indicated that the radiated sound is more closely related to the LSV 

than the TSV in this range. It is unlikely that the LSV force is 

simply reflecting the dynamic activity of the radiating modes, since 

this would not explain the dependence of the radiated sound on the 

EAR. 

" Above 1500Hz, the sound radiated per unit TSV force varied with the 

deviation, and the spectra declined with rising frequency. There was 

a small contrary variation in the sound radiated per unit of LSV 

force, but the radiated sound was more closely related to the LSV 

force than the TSV force. Again it is unlikely that the LSV force is 

simply reflecting the dynamic activity of the radiating modes since 
this would not explain the variation of the radiated sound with the 

deviation. 

" The sound radiated per unit TSV force below 1000Hz varies inversely 

with the height of the belly end bouts cross arch. 

" The difference in spectral envelope of the radiated sound per unit 
LSV between bowed and shaker driven violins indicates that bellying 

LSV may be making a significant contribution to the radiated sound 

of the bowed violin. 

" The relationship between the spectral envelope of the radiated sound 

per unit of TSV force at the bridge and the real part of the 

admittance of the bridge to TSV force is consistent with a radiation 

efficiency that varies as the square root of the frequency. 
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Chapter 14 

RECIPROCAL EXCITATION 

14.1 Introduction 

Multi-mode vibroacoustic reciprocity for a structure in an enclosed sound 

field (which can be assumed to be diffuse) says that the harmonic response 

at any point on the structure, to a given harmonic sound pressure in an 

excitation field, is reciprocal with the space-average radiated sound 

pressure by the vibration of the structure when excited mechanically at 

that point. More generally, it says that good radiators are good responders. 

This is because the response of a structure to an incident diffuse sound 
field is proportional to its radiation efficiency, and the sound power 

radiated by a given structural vibration is proportional to the radiation 

efficiency. To employ this principle, a violin could be immersed in a sound 

field and the movement of the bridge or the LSV force could be measured. 

The measured result would be an indication of the radiative effect of a 

movement of the bridge or of the LSV. 

However, a little thought leads one to conclude that there must be some 
limitations to the extent of the reciprocal action. If a violin were immersed 

in a sound field, the most efficient radiating modes would be excited most 

strongly. These modes of vibration would not necessarily be those of a 

violin driven by a bow at the same frequency. The bowed violin would best 

excite those body modes, not necessarily at resonance, which are compliant 

with the forces imposed on it. Reciprocity must also exclude the effects of 

the non-linear string vibration and so any LSV force that is measured must 

come from the linear response of the body to excited modes. 

If the modes that are excited by the LSV system can be excited reciprocally, 
it is entirely possible that this would give an LSV as measured at the tail 

gut transducer. By reciprocal excitation then, it may be possible to check if 

the LSV system is closely coupled to the sound radiating body motions. It 

may be possible to find what effect the arching and bass bar stiffness, have 

on the involvement of LSV in sound producing modes. 

206 



14.2 Method 

The violins were in turn placed 1.5m from a loudspeaker, which was fed 

with broadband random noise. The violin was supported on foam rubber 

mountings at the extreme ends of the back. The sound path from the 

speaker to the violin was made indirect by the violin being mounted on a 

table top above the level of the speaker. The violin would have been located 

within the reverberant sound field. The sound level in the room was of the 

order of 75 dB. The sound pressure in the room was measured by a 

microphone (B&K Y2 inch free field) located 3m from the source, in the 

manner described in section 6.3.6. In order to eliminate, as much as 

possible, the effect of variations in the uniformity of the radiated noise 

spectrum and acoustic variations in the room, the results were recorded as 

the transfer function of the LSV/field sound pressure. These were 

spectrally analysed for presentation. 

14.3 Results 

14.3.1 Method of presentation of results 
Fig. 14.1 shows the spectrum of LSV/field sound pressure for violin 156 

medium EAR, unvarnished. All the tests gave spectra that looked 

something like this and the "hairy" nature of the line made it difficult to 

compare them with each other. However, it was noted that all violins 

showed a deep trough at a frequency close to 1500Hz. Others have 

observed that a similar trough is present in the bridge admittance of the 

violin. 

To facilitate comparison, the line was smoothed by making each point the 

average of all points in the range 125Hz below and 125Hz above. The 

results shown below have all been smoothed in this way. The smoothed 

version of fig. 14.1 is shown in fig. 14.3, as the medium EAR curve. The 

repeated recording of spectra produced results that were very dose to each 

other. 
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Fig. 14.1 Transfer function, LSV/field sound pressure, violin 156. 

14.3.2 Violins of differing deviation 

Fig. 14.2 shows our three varnished violins of normal EAR but differing 

deviation. 
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Fig. 14.2 Transfer function of LSV force/field sound pressure, 

varnished violins of same EAR and differing deviation. 

This shows that LSV can be excited reciprocally. There is dose agreement 

between these three violins and one would conclude that they are the 

same. There is no variation with deviation. In direct excitation, there is a 

small but discernable dependence of the radiated sound pressure on the 

deviation. 

14.3.3 Violins of varying bass bar stiffness 

Tests were conducted on violins V 197Brq, and V 198Mod. Both violins have 

the same EAR. There is a small difference in the deviation but it was 

shown in section 14.3.2 that this would not result in any difference in the 

LSV induced. Both violins are unvarnished. The essential difference 
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Fig. 14.3 Transfer function of LSV force/field sound pressure, 

violins of the same EAR and differing bass bar size. 

between these violins is in the stiffness of the bass bar. Fig. 15.3 shows 

the transfer function LSV over field sound pressure for both violins. 

From about 800Hz to 5000Hz, the violin with the small bass bar produces 

a higher LSV force. 

14.3.4 Violins of differing EAR 
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Fig. 14.4 Transfer function of LSV force/field sound pressure, 

unvarnished violins of differing EAR. 

Fig. 14.4 compares three unvarnished violins of differing EAR. The three 

spectra in fig. 14.4 are all of the same form; the difference lies in the 

magnitude. It seems reasonable to conclude that the three violins all 

radiate from the same modes, the difference being due to the magnitude of 
the force driving the modes. 

Below 1000Hz, the medium EAR violin produces less LSV than the others. 

From 1000Hz to 2000Hz, the three violins produce the same LSV and from 

2000Hz to 8500Hz, the medium EAR violin produces more LSV than the 
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others. In section 13.6.1 it was shown that the sound radiated by a violin 

per unit of LSV was independent of the EAR in the range 2000Hz to 

5000Hz. 

14.4 The role of LSV in the radiated sound of the violin 

The evidence presented in this chapter concludes all the evidence that is 

available to draw any conclusions from. By looking at all the evidence 

presented some assessment can be made of the role of LSV in the radiated 

sound of the violin. 

Bellying LSV is capable of driving the violin rather efficiently. In the case of 

the bowed violin it was shown that the ratio of radiated sound per unit LSV 

was much lower than that of the shaker driven violin when the string 

displacement was less and much higher than that of the shaker driven 

violin when the string displacement was greater. This indicates that belling 

LSV is capable of making a significant contribution to the radiated sound. 

This seems an entirely reasonable conclusion given that bellying LSV is a 

primary source of driving energy for the violin. 

For the shaker driven violin, at all harmonics up to the 10kHz investigated 

there was a total LSV force in the string which averaged about 0.25 of the 

TSV force acting on the bridge. It was shown that for the shaker driven 

violin, the bellying LSV force in the string is very small compared with the 

TSV force acting on the bridge. It follows that most of the LSV in the string 

in the higher harmonics is secondary LSV. Secondary LSV is a product of 

modal action. Can secondary LSV play any part in the radiated sound? 

Above 1500Hz the envelope of the spectrum of the radiated sound in six 

different violins always shows a closer relationship to the envelope of the 

spectrum of the LSV than that of the TSV. Reciprocity indicated that the 

most efficient radiating modes involve LSV. The obvious conclusion from 

these observations is that the modal action that generates the radiated 

sound also generates the LSV. 

However, it has been shown experimentally that the radiated sound (above 

1500Hz) varies with the EAR and the deviation, in a way that is consistent 

with the body responding to an LSV force in the string as shown by the 

qualitative static analysis introduced in chapter 3. It was found that the 
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amount of LSV developed by reciprocal excitation was dependent on the 

EAR. These observations suggest that the LSV might `drive' the body to 

radiate sound, rather than be a consequence of the modal actions that 

cause the sound. 

But is that possible? It is important to understand in what way secondary 

LSV might `drive' the body to radiate sound. Secondary LSV arises from 

the modal actions of the violin as whole. The TSV force and the primary 
bellying LSV force drive these modal actions. Almost all these motions 

could, to some degree, alter the string tension and put LSV in the string. 

However, we have seen that one such modal action can certainly give rise 

to LSV and we have called that bridge-rock LSV. It is worth looking again 

to see what contribution bridge-rock LSV might make to the radiated 

sound. 

A TSV force applied transversely at the top of the bridge will cause the 

bridge to rotate about the sound post. The TSV driven action might do no 

more than to raise and lower the bass bar relative to the rest of the violin. 

But, we have seen that this action also effectively increases the distance 

from the centroid of the group of four strings to the top of the sound post. 

That increases the string tension while at the same time pushing down on 

the sound post and bending the violin in its length. Rather like an archer 
drawing the string on his bow. The qualitative static analysis and 

experimental measurements showed that the internal forces generated by 

this action would raise the end bouts cross arches in both the back and the 

belly. The static analysis suggested that any sound that might be radiated 
by this action would be dependent on the EAR and the deviation. 

The first part of the action in twisting the belly at the bridge was a direct 

consequence of TSV action. The establishment of the LSV in the string was 

an additional effect of the TSV. The movements of the end bouts cross 

arches are the response to the LSV in the string but the energy driving the 

motion was from TSV. To summarise, secondary LSV does drive the violin 
to radiate sound but uses energy from TSV to do it. It can be seen as 

redirecting TSV energy to drive efficiently radiating modes. 

Now, it could still be argued that the modal action that drives the body and 

puts LSV in the string, by some means puts in an amount of LSV that 
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varies with the EAR and the deviation. That the modal action moves the 

EBX arches and this movement induces the LSV in the string. But, can 

movement of the arches put LSV in the string? The reciprocity experiment 

shows that it can. But the LSV put into the string in this way was shown 

to be dependent on the EAR but not the deviation. Since the radiated 

sound is dependent on both it would appear that the LSV is not a by- 

product of the modal action that is causing the radiated sound. 

14.5 Conclusions 

" LSV can be excited reciprocally, by immersing the violin in a sound 

field. This implies that the most efficiently radiating modes of a 

violin involve LSV. 

" The LSV excited reciprocally showed a higher response for the 

medium EAR violin but was independent of the deviation. 

" Above 1500Hz the shaker driven violin radiates largely using TSV 

energy. Some of this energy is redirected as LSV, to which the body 

responds. The resulting motions are controlled by the EAR and 

deviation. We might say that the violin is driven by energy from 

TSV, but the radiated sound is contributed to significantly by modal 

responses to the LSV in the string. 

" Below 1500Hz there is no dear evidence of the radiated sound being 

dominated by TSV or LSV, and the dependence on the arching is 

more a matter of the height of the belly end bouts cross arches. 
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Chapter 15 

CONCLUSIONS 

When a string on a violin is set in transverse vibration (TSV) by the bow, a 

longitudinal vibration (LSV), in part of the same frequency and in part of 

twice the frequency, is induced in the string. This is called bellying LSV 

and it has a non-linear relationship with the TSV. It is also called primary 

LSV and is capable of driving the body. 

The primary bellying LSV force and the TSV force both act on the body and 

together they excite vibrational modes. The body including the strings 

takes part in these modes with the consequent generation of secondary 

LSV in the strings. Secondary LSV is a response to body motions. An 

example of secondary LSV generation is from bridge rock. The motions of 

the bridge in its own plane are very complex but that component of the 

motion that is a rotation about the sound post puts LSV in the strings. In 

this way some of the TSV driven motion transforms some of the TSV to 

LSV. This is one of many mechanisms where LSV functions as a channel 

for the redistribution of TSV energy. This transformation may be 

significant in that body modes may be excited by LSV that cannot be 

excited by TSV. The total LSV force (primary and secondary) acting 

vertically on the bridge is of the same order as the TSV force acting 

transversely on the bridge. That part of the total LSV force that arises from 

string bellying has a non-linear relationship with the TSV force. 

The TSV force is applied to the body transversely at the bridge and 

transversely at the stopped end of the string. The LSV force is applied to 

the body vertically at the bridge and in the direction of the string at the nut 

and saddle. 

A qualitative static analysis and experimental measurement suggested that 

an increase in the static tension in the string causes bending in the length 

of the body, an increase in the rise of all four end bouts cross arches and 

apart from an inwards movement of the belly edge in the area near the 

neck and tail saddle, it is probable that all other parts of the periphery of 

the belly and the back move outwards. If these movements are combined 
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with the static displacements caused by a bridge rotation, then the violin 

body enlarges by outward movement in every part, except a small area at 

the ends of the belly and an area of the belly centred on the sound post. 

The analysis indicated that the direction of static deformation would 
depend on two arching shape parameters called the `EAR' and the 

`deviation'. 

The sensitivity of the tonal quality to variations in these parameters was 
informally tested and anecdotally reported. This report encouraged the 

idea that an experimental programme might be undertaken to investigate 

the role of LSV in the sound radiation of the violin, using violins purpose 

made to exhibit controlled variations in the arching parameters, EAR and 
deviation. 

Most of the experiments were done with an open string driven transversely 

at resonance using a shaker. The driving was at single frequency but the 

large transverse displacement of the string introduced a non-linearity that 

generated an extended spectrum of harmonics in both the TSV and the 

LSV. Although the relationship between TSV and primary LSV is always 

non-linear, above the second harmonic of vibration of the shaker driven 

string the contribution from the non-linear source decreased significantly 

and there was some justification for assuming that the influence of the 

non-linearity was not significant in reaching conclusions from the 

experimental results. Further work would be needed to test this 

assumption thoroughly. Had the string been bowed the non-linearity 

would have been greater and may have been a concern. It is accepted that 

this is to some degree a non-linear system and that the results obtained at 

any one level of excitation cannot be assumed to be generic. Limitations on 

time and resources precluded experiments at varying levels of excitation. 

Three violins of different EAR showed little difference in the TSV spectrum 
excited by the shaker. Above 1500Hz the medium EAR violin radiated 
more sound per unit TSV than the violins of high and low EAR. The 

radiated sound per unit TSV varied with the EAR but the radiated sound 

per unit LSV did not. The radiated sound and the LSV could both have 

been the result of the modal action that produced the sound. But, the 
dependence of the radiated sound on the EAR suggests that the LSV was 
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causing the radiated sound. Below 1500Hz the picture was less clear but 

there was some evidence that the radiated sound in this range varied as 

the inverse of the height of the end bouts cross arch. 

Three violins of varying deviation again showed that above 1500Hz there 

was a closer relationship between the radiated sound and the LSV than 

between the radiated sound and the TSV, and the sound showed some 

dependency on the deviation. The radiated sound and the LSV could both 

result from a common cause, but the dependence on deviation suggests 

that the LSV was causing the radiated sound. Again, below 1500Hz the 

radiated sound varied inversely as the height of the belly end bouts cross 

arch. 

By measuring the LSV induced in a violin when it was immersed in a 

broadband sound field it was shown that the most effectively radiating 

modes are associated with LSV forces in the string. The reciprocally 

excited LSV was dependent on the EAR but not the deviation. This 

indicated that when a violin is directly driven (by shaker or bow) the LSV is 

driving the end bouts cross arches rather than the reverse. 

The pseudo-admittance of the violin bridge to a transverse force applied by 

a vibrating string was found to be very different to that found by others for 

an externally applied transverse force. The difference must be due to the 

added bellying LSV and possibly the TSV applied transversely at the 

stopped end of the string. This difference seriously questions the common 

assumption that the violin is predominantly driven by the transverse 

motions of the bridge, and that this can be modelled by applying an 

external force to the bridge. The pseudo-admittance of the bridge to the 

vertical force applied by the LSV force in the string was found to be higher 

than that due to the transverse force by about 10dB at I. kHz increasing to 

20 dB at 10kHz. 

The power exchanged at the bridge showed that the TSV force put power 
from the string into the bridge at most harmonics but there were a number 

of bands where the power input was small. The LSV force at the bridge put 

power into the violin from the string at some harmonics but took power 
from the bridge at others. The power exchanged at the saddle also showed 

that the flow was into the violin from the string at some harmonics and the 
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reverse at other harmonics. The envelope of the spectrum of the net power 
flowing into the violin from the string (to the extent that it was known) was 

shown to be very similar in shape to the envelope of the spectrum of the 

radiated sound power from the violin. This indicated a radiation efficiency 
that varied as the square root of the frequency. 

The envelope of the spectrum of the radiated sound per unit TSV force on 
the bridge was similar in shape to that of the real part of the admittance of 
the bridge to the TSV force, except that it declines at a slower rate with 

rising frequency. A similar difference was noted between the radiated 

sound per unit LSV force and the real part of the admittance to the bridge 

to the vertical LSV force. In both cases the difference was consistent with a 

radiative efficiency that varied as the square root of the frequency. 

The difference in spectral envelope of the radiated sound per unit LSV 

between bowed and shaker driven violins indicates that bellying LSV makes 

a significant contribution to the radiated sound of the bowed violin. 

Above 1500Hz the shaker driven violin radiates using TSV energy. Much of 
this energy is transformed by modal action and is redistributed as LSV 

energy in the string. The motions of the body that respond to this LSV are 
dependent on the EAR and deviation. The radiated sound shows a closer 

relationship to the LSV than the TSV and shows dependence on the EAR 

and deviation. The conclusion is that the violin is driven by energy from 

TSV, but the radiated sound is contributed to significantly by modal 

responses to the LSV in the string. 
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Chapter 16 

RECOMMENDATIONS FOR FURTHER RESEARCH 

16.1 Repeating the experiments with bowed excitation 
The use of a two-channel analyser is a source of limitation. In order to 

make a number of readings it is necessary to find a sustainable and 

repeatable excitation. For this reason the string was shaker driven. The 

results achieved from a shaker driven string will not necessarily be the 

same as those that would come from research using a bowed string (as 

indicated by the even number harmonic drop outs in the TSV spectrum). 

The answer is to use a multi channel analyser. This would enable 

excitation by bow strokes with a number of windows of data averaging 

during the stable or non-transient part of the stroke. Various levels of 

bowing could be used to make some assessment of the effects of non- 

linearity. 

The same type of tail gut transducer could be used and a nut transducer 

should be designed and built to measure LSV within the vibrating length of 

the string, and enable power transfer calculations to be made with some 

accuracy at the nut. It should be possible to find a better way of recording 

the transverse amplitude of the string. More accelerometers (or optical 

methods) could be put on the violin, in addition to those at the bridge feet, 

the nut and saddle in two component directions. 

16.2 Modal analysis 
If repeating the experiments using a bowed excitation should confirm the 

conclusions reached in this thesis, the next step would be to do a modal 

analysis. Modal analysis has been done on a violin. The method of 

excitation has been that of striking the bridge with a pendulum. The body 

motion at a number of points on its surface has been recorded. From these 

data, the shape and resonance frequency of the important modes has been 

inferred. Since this method does not involve string swinging it may be 

subject to the errors that possibly exist in traditional methods of measuring 
bridge admittance by external excitation. The violin should be modally 

analysed when excited preferably by bowing the string. 
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If the violin were driven by bowing the open G-string by a shaker, there 

would be approximately 50 harmonic frequencies excited between zero and 

10kHz. The gaps between these frequencies could be filled in by exciting 

other notes. The motion of the body at a number of points on its surface 

could be measured and from these data, the operating shape could be 

determined at each harmonic frequency. This would give a much more 

realistic impression of how the violin moves to radiate sound. 

16.3 The effect of varnish on the radiated sound. 
It was concluded in Appendix A that the only meaningful measure of the 

effect of varnish on the radiated sound of a violin is the sound radiated per 

unit bow stroke. A start has been made by the author to do this. Two 

violins were tested first unvarnished, and will be tested again when 

varnished. A professional player was asked to bow each violin (all four 

open strings) as strongly as possible, using a bow stroke of 4 seconds 
duration. The bowing is continued until 20 process averages of the 

radiated sound have been taken and analysed. This is repeated six times 

for each note. The standard deviation will be found and the repeatability 

assessed. After the instruments are varnished, the test will be repeated. 

16.4 The timbre of violin sound 
In this research, it was noted that the low EAR violin sounded hollow in 

tone and showed a different pattern in the first few harmonics. It should 
be possible to take a number of notes from existing commercial recordings 
of violins and spectrally analyse them to find the relative strengths of the 
first ten harmonics. This information could be related to the perceived 
tonal quality, as described by informed listeners. 

16.5 Carrying power 
There is some evidence that certain high frequency bands may determine 

the carrying power of the sound. To properly identify which bands are 
important would be very useful, but may also be difficult. It would be 

essential to listen to the violin against a background of competing sound. 
The ideal situation is that of a solo violin playing a concerto with an 
orchestra. It may be possible to record the orchestra alone (available on 
Music Minus One records) and play it to the soloist through earphones 
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while he plays and records the solo part. (It may be that a major recording 

company has such a separate recording of orchestra and soloist and would 
be prepared to make it available for this research and perhaps a financial 

grant also. ) The solo tape could then be digitally modified to remove certain 
bands selectively and then recombined with the orchestra. The modified 

recordings could then be played to a panel of auditors who could rank 

them for the audibility of the soloist. 

Alternatively, a solo violin could be listened to against a background of 

white noise. The effect on audibility of removing certain frequency bands 

could be investigated. This may make a useful preliminary study for the 

violin concerto test. 
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Appendix A 

THE EFFECT OF VARNISH ON THE TSV, LSV 

AND THE RADIATED SOUND 

Some interesting observations related to the effect of varnish on the TSV 

LSV and radiated sounds were made during the course of the research. 

Further research may be required to reach a conclusion in these matters 
but the interim results are presented in this Appendix. 

A. 1 Introduction 

In the experimental results presented, we have discussed two groups of 

violins, those of differing EAR and those of the same EAR but differing 

deviation. It will be noticed that there are significant differences in the 

spectra of results between these groups. These differences are because the 

violins of differing EAR were unvarnished and those of differing deviation 

were varnished. Violin 156 (medium EAR and medium deviation), was 

common to both groups tested so we have results for this violin both 

varnished and unvarnished. 

A. 2 Effect on TSV 

Fig. Al shows the spectrum of transverse displacement set up in the string 

when both strings are driven to the same first harmonic displacement. Fig. 
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Fig. Al. Transverse string displacement for V156, varnished and unvarnished. 
Normalised on equal first harmonic displacement. 
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Fig. A2 Transverse string displacement for V156, varnished over unvarnished. 
Normalised on equal first harmonic string displacement. 

A2 shows the spectrum for the varnished violin divided by that of the 

unvarnished violin. The difference is variable, it increases by an average of 

10.2 times above 1500Hz and below 1500 Hz it reduces by 2.2 times. 

It is interesting to note that the transverse string displacement is reduced 
in the second, fourth and sixth harmonics. This suggests that the reason 
for the difference in transverse displacement generally is related to LSV. If 

the varnished violin was able to respond more to LSV forces, then the 

pseudo-admittance of the second harmonic would increase and the string 

displacement would reduce. (see section 12.3.6) 

A. 3 Effect on LSV 

Fig. A3 shows the spectrum of LSV set up in the string when both strings 

are driven to the same first harmonic displacement. Fig. A4 shows the 

spectrum for the varnished violin divided by that of the unvarnished violin. 

The ratio is very variable but averages two times. The LSV has not 

increased in proportion to the increase in the TSV. This is consistent with 

the expected effect of damping. Research done by others has shown that 

varnishes generally have a damping effect on bridge admittance. 

The increase in LSV in the first four harmonics is fairly constant at about 
three. This confirms that the big drop in string transverse displacement in 

the even numbered harmonics is not due to variations in the LSV but to 

variations in the ability of the LSV to cause body motions. 
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Fig. A4. ISV far V156, varnished over unvarnished. 

Normalised on equal first harmonic string displacement. 

A. 4 Effect on radiated sound with the same first harmonic 

Fig. A5 shows the spectrum of sound pressure radiated by the violin when 

both strings are driven to the same first harmonic displacement. Fig. A6 
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Fig. A5. Radiated sound pressure for V 156, varnished and unvarnished. 
Normalised on equal first harmonic string displacement. 
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Fig. A6. V 156. Radiated sound pressure, varnished violin over unvarnished. 
Normalised on equal first harmonic string displacement. 

shows the spectrum for the varnished violin divided by that of the 

unvarnished violin. The ratio is variable but averages about 2.5 times. 

There is little difference between a varnished and an unvarnished violin at 
1800,5000 and over 8500Hz. 

There does not appear to be any consistent relationship between the effect 

of varnish on the sound, and its effect on the TSV or the LSV (comparing 

figs. A6, A4 and A2. ). Since the violin is a linear system, this is an 

indication that the change due to varnish must arise from a change in the 

functioning of the radiating system. That is, varnished and unvarnished 

violins assume different modes. 

A. 5 Radiated sound change related to driving forces 

A. 5.1 Effect on the sound radiated per unit of TSV 

Fig. A7 shows the sound pressure radiated per unit of TSV force by violin 

156 before and after varnishing. To facilitate comparison of these spectra, 

fig A8 shows the ratio of the two spectra. 

It is apparent from fig. A8 that below 1500Hz the amount of sound radiated 

per unit TSV is increased and above 1500Hz, it is reduced. These changes 

are considerable and irregular, which suggests that the sound is not closely 

related to the TSV. 
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Fig. A. 8 Sound pressure radiated per unit TSV force, varnished over unvarnished. 

A. 5.2 Effect on sound radiated per unit of LSV 

Figs. A9 and A10 show that the sound radiated per unit of LSV force has 

been rather less affected by the varnish than was the sound radiated per 

unit TSV. Broadly speaking, the sound radiated per unit of LSV is little 

changed. This suggests again that the change in the LSV caused by the 
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Fig. A9. Sound pressure radiated per unit LSV force, varnished and unvarnished. 
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Fig. AI O. Sound pressure radiated per unit LSV force, varnished over unvarnished. 

varnish is matched by a similar change in the radiated sound. This is 

consistent with the observation made elsewhere in this thesis that the 

radiated sound and LSV force are closely related. 

A. 6 Comparative sound spectra 

When a violinist compares two violins, he plays them with a bow and 

listens to the sound, and feels the behaviour of the string and bridge 

through the bow. If we wish to be more objective about the comparison we 

could Fourier analyse the sound and compare the spectra. Such accuracy 

of comparison of the sound calls for an equivalent accuracy of 

measurement of the bow stroke. 

The input power from the bow depends on the bowing force and velocity. 

These are difficult to measure. A further complication is that there is no 

reason to believe that different violins extract the same energy from a given 
bow stroke. The input power due to a "standard bow stroke" could vary 

with the properties of the violin. It is possible that if a violin takes less 

power from a given bow stroke, the player instinctively bows harder. He 

might not think of this violin as being less powerful but as being harder to 

play. This may in fact be an advantage since many soloists like a violin 

that can be "played hard". More research would need to be done to find a 
basis for comparison that a violinist would recognise as producing valid 
indications. 

It would be logical to compare violins based on sound output per unit of 

power input from the bow. However, that is too difficult. Published spectra 

of radiated sound usually present the sound radiated by a violin when the 
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Fig. All. Sound pressure level radiated per unit of TSV force. 

V 156 varnished and unvarnished. Shown on a decibel scale 

bridge is driven by a constant force. Our equivalent of this is shown in fig. 

All. 

This is a misleading comparison because it fails to take into account that 

the transverse force on the bridge is less if the violin is unvarnished. By 

looking again at fig. Al we know that the shaker established a very 

different transverse displacement spectrum in the string, depending on 

whether the violin was varnished or unvarnished. We clearly need to find a 

more realistic basis of comparison between violins. 

Probably the best option is to compare radiated sound pressure based on 

equal first harmonic transverse displacement of the string. Fig. A5 shows 

such a comparison. A presentation such as this only has meaning on a 

comparative basis, since if there were only one curve on the graph it would 

tell us very little. If on the other hand we divided the curve by the TSV 

force, we would get something approaching a horizontal line. It is much 

easier to relate things to a horizontal line. Then of course we have come 

back to the traditional SPL/TSV curve, with the shortcomings mentioned. 

The problem seems to be insoluble. 

A graph that gives a realistic picture of the effect of varnish on the 

SPL/TSV of a violin has been arrived at by the following means. If we take 

the graph in fig. A11 and divide the spectrum for the unvarnished violin by 

the increase in TSV caused by varnish (fig. A2), we get a truer comparison 

between the spectrum for a varnished violin and that for an unvarnished 

violin. The varnished violin spectrum is fairly uniformly higher than that of 

the unvarnished violin, the difference averaging 6.4dB. 

60 
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Fig. A12. Sound pressure level radiated by V156 varnished, per unit of TSV force on 

the bridge. Also shown is the same spectrum for the violin unvarnished, reduced by 

the ratio of the TSV force on the bridge for the unvarnished violin over that of the 

varnished violin. This is a device to give an effective comparison of spectra, 

varnished and unvarnished, of radiated sound per unit of string displacement. 
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Fig. A13. Sound pressure level radiated by V156 varnished, per unit of ISV force in 

the string. Also shown is the same spectrum for the violin unvarnished, reduced by 

the ratio of the LSV force in the string for the unvarnished violin over that of the 

varnished violin. This is a device to give an effective comparison of spectra, 

varnished and unvarnished, of radiated sound per unit of L5V force. 

Fig. A13 shows a similar presentation of the sound radiated per unit of 

LSV. The greater uniformity of the sound radiated per unit LSV does 

support the view that the change in radiated sound brought about by the 

varnish is more closely coupled to the LSV force than the TSV force. The 

difference averages 6.5dB, and is not due to more sound being radiated per 

unit LSV (see fig. A10), but more LSV radiating the same sound per unit of 

LSV. 

The evidence presented up to this point suggests that the increase in the 

radiated sound caused by the varnish is LSV driven. 
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A. 7 Reciprocal excitation 

The red curve in fig. 14.2 is for the same violin as the red curve in fig. 14.4, 

except that it was unvarnished in fig. 14.4. 
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Fig. A13. LSV face developed by reciprocal excitation in a broad band sound field. 

Fig. A13 shows the ratio of the LSV developed reciprocally in a broadband 

sound field of a varnished violin over an unvarnished violin. Taken on 

average across the whole range the LSV developed has been reduced by the 

varnish to 0.85. At some bands, there is an increase. 

A. 8 The role of damping 

Some discussion of the effects of damping may have relevance. Let us 
define the body's loss factor i is the sum of mechanical loss factor and a 

radiation loss factor. The mechanical loss factor is i7,,, =1 / Qm which relates 

the stored vibration energy to that dissipated into heat, and the radiation 

loss factor is 77r =1 /Qr which the stored vibration energy to that radiated as 

sound (where Q�1 and Qr are the corresponding quality factors). If E is the 

time-averaged vibrational energy of the body, then the mechanical and 

radiated time averaged power losses are respectively: 17,,, co,, E and 17, wo E. 

Consider an excitation at an isolated structural resonance 0)0 by a given 

force F on the bridge. The input power = the power dissipated by 

mechanical loss + the radiated power. 

z 
Thus 2 

IFI Re {Yb }_ (rim + fir) wo E= tot o)o E, where Yb is the admittance of 

the bridge. 
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So, E= 
1IP1 Re{Yb)/O)O(71m+tlr) 

:. Radiated power Wr= 
12 IP12 Ra{Yb}. 

elm 
17r 
+ y%r ----------------------------- 

(A. 1) 

But Yb is a function of the loss factor lhotca . 

For a single mode, the modal velocity at any frequency is given by: 

M. (O [i( w- wo Vm = Fm + ýlcotQl 
o 

where Fm is the modal force and Mm is the modal mass. 

At resonance w= wo 

So Vm, = Fm /Mm &0 t7total 

Or Ym Vm / Fm =1 /Mm wo 17totw =Rc {Ym } 

Substituting in equation 5.1 gives: 

Wr=1 IFI2.1 2' 
2 M,. W O77wroi 1ltoaat 

-lI"'I2.1 
it 

2 Mmwo (Tlm +11r 

Broadband modal excitation As w moves above 1000Hz, the excitation 

will include modes off resonance. Under these circumstances a broad band 

formula which allows for a mixture of excitation, close to resonance, and off 

resonance, would be required. Fahy (in a personal communication) proposes 

that an appropriate formula would be, 

w__ 
1 IPI 2.1 it 

r2 Mm DO (17m + l%r 

The radiation loss factor at any frequency wo is given by; 

p0ea 
where po = the density of air =1.2 kg/m3 ýl r- MOM 

c= the speed of sound in air = 343 m/sec. 
m= mass per unit area of top plate 

= 400kg/m2 x 
2$ 

=1.12 kg/m2 
1000 

a= the radiation efficiency 
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1.2x343x6 
_58.5x 

a 
17r = 2. rf x 1.12 f 

A personal communication (to FJ Fahy, Southampton University, 
, 
fr-Om, G 

Bissenger, East Carolina University, 2001) gives modal-average values of the 

radiation efficiency, of some of the resonant modes of a violin. From these 

figures, the value of the radiation loss factor 17,. can be found. Bissenger 

also gives r7m as approximately 0.02 at 500Hz and 0.008 at 4000Hz. By 

interpolation 1m can be found for 1000 and 2000Hz. 

F l1r 71m 

1000Hz 0.2 0.012 0.018 

2000Hz 0.3 0.0088 0.014 

4000Hz 1.0 0.015 0.008 

7r )7r 
Nr+ 1%m )2 (ir +'7m ) 

-9.7% -5.8% 

-9.9% -5.7% 

-6.7% -3.4% 

The above tabulation shows for a particular frequency, the radiation 

efficiency, the radiation loss factor and the mechanical loss factor. The last 

two columns show the percent change in the radiated sound power arising 
from a 10% increase in the mechanical loss factor, as calculated using the 

factors shown at the head of the column. Where the radiation comes from 

modes at resonance, as may be the case below 1000Hz, a 10% increase in 

the damping would result in a similar loss in the radiated sound power. 
Using the broadband excitation formula that would apply increasingly 

above 1000Hz, the effect of damping on the radiated sound power is 

halved. The effect of damping on the power radiated by a super-resonant 

mode would be nil. 

The violin does not appear to be sensitive to damping. This is 

demonstrated by the fact that one can touch the violin almost anywhere on 
its surface with little audible effect on the radiated sound. The violin's 

apparent low dependence on damping suggests that the modes that 
dominate the radiation are either super-resonantly excited or of high 

radiation efficiency. Touching may, and probably does, damp the non- 

radiating modes, but since they are non-radiating there is little audible 

effect on the sound. 
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A. 9 Comparison with received wisdom 

The writer has been unable to find any report of the effect of varnish on the 

radiated sound of a violin when it is excited by driving the string. There are 

reports of the effect of varnish on modal shapes, displacement and 

damping of a violin excited by direct excitation of the bridge. There are 

reports of the radiated sound resulting from swept sine wave excitation of 

the bridge. From these experiments, the presumption has been made by 

many that the effect of varnish on sound can only be to diminish it, 

Although the evidence produced here would show that the sound per unit 

of string displacement has increased, the production of that string 

displacement may have required a greater power input if the violin was 

varnished. It is therefore recognised that normalising on string 

displacement may not be relevant. The only fact that matters is the sound 

radiated per unit of bow stroke. To measure that would seem to be a 
logical next step. 

The effect of varnish may be to slightly reduce modal displacements. A 

secondary effect may be to damp bridge rotation, thereby somehow 

transferring power from TSV driven modes to the more efficient LSV driven 

modes thereby increasing the radiated sound. 
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Appendix B 

DETERMINATION OF THE SPRING CONSTANT OF THE 

STRINGS 

B. 1 Introduction 

In order to make any comparison between theoretical prediction and 

experimental results, it is necessary to determine the spring stiffness of 

each string. The stiffness of the string may be influenced dynamically by 

visco-elastic effects. For this reason it was decided to that it should be 

determined dynamically, and at the static tension and frequency 

approximating to the range of application. The method employed had to 

involve vibrating a string in tension. 

B. 2 Method 

LO 

VIOLIN FRONT PIECE - 

' 
OTHER 207.51y 

HER SIDE 7 f,. SAMI: 

Fig B1. Apparatus for determining the spring constant of the strings. 

The apparatus used is shown in fig. B1. The string passes from the peg 

box, over the bridge and is attached to a force transducer, which is in turn 

anchored by a thick but flexible nylon ligament to the anchor. The string 

was tensioned to normal playing tension. This was determined by plucking 

it and adjusting the tension to get a note appropriate to its free length. The 

bridge is mounted on a section of violin front (approx. 60mm by 70mm). 

This is supported by a rubber strip under the wood on the line of each 

bridge foot. The two rubber strips are of very different stiffness thus 

enabling the bridge to rotate about a point close to the first string foot, in a 

manner very similar to that on a real violin. The wood violin front piece is 

constrained by matchstick sized wood struts that extend to a rigid steel 
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surround, in such a manner as to eliminate horizontal movement while not 

restricting vertical movement. The bridge is driven by a shaker to rotate in 
its own plane, thus causing the crown of the bridge to rise and fall. All the 

strings being tested were located in what is normally the position of the 
third string. The length of string each side of the bridge was made equal in 

order to eliminate the complication of bridge flexure. The velocity of the 

vertical movement of the bridge at the point where the string contacts it 

was measured by an LDV. 

B. 3 Processing of results 

The analyser recorded a transfer function of 
force 

velocity 

Analyser EMF = 
output from force gauge 

output from laser 
Tom� x3.9x10x10 

mV/mV 
vx 6240 

where TLs, = string tension vibration in N. 

v= bridge velocity in m/sec. 
3.9 = force transducer calibration in pC/N 
10 = charge amp. calibration in mV/pC 
10 = charge amp. amplification (20 dB). 

6240 = laser calibration in mV/m/sec. 

but v=2; rRf 

where 2R = bridge rise in m. 
The force induced in the string per unit rise of the bridge is given by; 

T° 
= analyser EMF x 'f x 

6240 
R 3.9x10x10 

= analyser EMF xfx 100.5 

in N/m. 

spring stiffness kt =force required to stretch a lm long string by im. 
L 

=TLSvx 

= 
T`sv 

x . 2075 x 
207.5 

R 46.5 
= Force per unit bridge rise x 0.9259 N/m/m, or simply N. 
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B. 4 Results 

The results probably show the influence of longitudinal string resonance. 
There was only a narrow frequency range from 0 to 500 or 700 Hz where 

there was a simple linear relationship between the displacement of the 

bridge and the resulting increase in string tension. To estimate the spring 

constant of the string the transfer function used was that found in the 

simple linear relationship. The experimental results and the calculation of 

the spring constant are shown in the following pages. The tolerance given 

with the result is such that there is a 90% probability that the error will be 

less than the tolerance. The figure of 90% has been used in both National 

and International Standards in acoustics and forms a recognised basis for 

comparing tolerances. 
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First string spring constant 
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Fig B2. First string, transfer function of force/displacement. 

Average transfer function 100 to 700Hz is 7224 stdev 560. 

Spring constant =7224 x 0.9259 = 6688 N+ or- 15.5% (90% probability). 
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Fig B3. First string, coherence. 
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Fig B4. First string, phase. 
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Second string, spring constant 
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Fig B5. Second string, transfer function force/displacement. 

Average transfer function 100 to 560 Hz is 1848 stdev 301. 

Spring constant = 1848 x . 9259 = 1711 N +or- 32% (90% probability). 
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Fig B6. Second string, coherence. 
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Fig B7. Second string, phase. 
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Third string, spring constant 
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Fig B8. Third string, transfer function force/displacement. 

Average transfer function 100 to 530Hz is 2390 st dev 148. 

Spring constant = 2390 x 0.9259 = 2213 N +or- 12% (90% probability). 
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Fig B9. Third string, coherence. 
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Fig B 10. Third string, phase. 
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Fourth string, spring constant 
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Fig B 11. Fourth string, transfer function farce/displacement. 

Average transfer function 100 to 550 Hz is 3029 stdev 291. 

Spring constant = 3029 x 0.9259 = 2804 N +or-19% (90% probability). 
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Fig B12. Fourth string, coherence. 
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Fig B 13. Fourth string, phase. 
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Appendix C 

CALIBRATION OF THE STRING ANCHOR AND TAILGUT 

TRANSDUCERS 

C. 1 The string anchor transducers 

Several versions of the tailpiece where made and tested and the calibration 

of the final version is given here. Great difficulty was experienced in 

narrowing the range of variability in the calibration data. This was later 

discovered to a consequence of the very lively dynamic properties of the 

tailpiece and string combination. The tolerance given with the result is 

such that there is a 90% probability that the error will be less than the 

tolerance. Several methods were used for its calibration. The final method 

used was to put the transducer tailpiece at one end of the string and put a 
force transducer at the other. The string was passed through a 50mm long 

pointed post which it was able to grip by the friction caused by a small 

change in direction at the hole and with the assistance of rosin powder on 
the string. The top of the post was driven by a shaker and this imparted an 

equal and opposite string tension to the two ends of the string. The 

outputs from the two ends were taken to a charge amplifier and then to an 

analyser. The analyser produced a transfer function, which was used to 

calibrate the tail transducers. The set up is shown in fig Cl. 

SHAKER 

STINGER 

TRANS 
% 

DUCER 
III 

J IIýC 
PEG 

- FORCE GAUGE 

ANCHOR 

I 
WOOD BLOCK 

Fig Cl. Apparatus for calibrating the transducers at the string anchors. 

The output from the transducer and from the force gauge where both put 
through a charge amplifier with the same amplification and then to the 

analyser where the transfer function was recorded. The calibration of the 
force transducer (B&K No. 803102) is -3.9OpC/N. The minus sign denotes 
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that a tension on the force gauge produces a negative charge. Our 

convention is that tension is positive. 

Transfer function TFAf 
Transducer output 
Force guage output 

_ 
Force x Calibration 

Force x (-3.9) 

Calibration = TFA,, x (-3.9) 

C. 2 Results 

First string anchor transducer 

, %)AM 

15.00 
wm 

10. (X) 

cd ý 

5.00 

0. (X) 
Frequency O 1000 2000 3000 4000 5000 

Fig C2. First string transducer, transfer ! unction. 

By averaging the transfer functions over the range of frequencies above 

1000Hz (where the coherence is good), a transfer function of 9.38 is found. 

The method of excitation used should produce signals 180deg. out of 

phase. In this case, the signals are in phase therefore the transfer function 

is positive. 
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Fig C3. First string transducer, coherence. 
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Fig C4. First string transducer, phase. 
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Fig C5. First string transducer, channels 1&2. 

The calibration of the first string tail transducer is therefore 3.9 x (- 

9.38)=+36pC/N +or- 77%% (90% probability). Fig C5 shows trace for the tail 

transducer and that of the force transducer multiplied by 9.38. 

Second string, anchor transducer 
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0 
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Fig C6. Second string transducer, transfer function. 

By averaging the transfer functions at the whole range of frequencies, a 

transfer function of 5.05 is found. The method of excitation used should 
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produce signals 180deg. out of phase. In this case, the signals are in 

phase therefore the transfer function is negative. The calibration of the 

second string tail transducer is therefore 

3.9 x (5.05)=-19.69pC/N +or- 77% (9(Y% probability). 
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Fig C7. Second string transducer, coherence. 
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Fig C8. Second string transducer, phase. 

5000 

5.05* Force transducer. 

-Tail transducer. 

I'le(luclnc)() 10(X) 2000 3000 4000 5000 

Fig C9. Second string transducer, channels 1&2. 

Fig C9 shows the trace for the tail transducer and that of the force 

transducer multiplied by 5.05. 
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Third string, anchor transducer 
For this string, the calibration was repeated at three different amplitudes in 

order to see if it was amplitude dependent. It was concluded that the 

results were not amplitude dependent. 
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Fig CIO. Third string transducer, transfer function. 

By averaging the transfer functions at the whole range of frequencies, a 

transfer function of 11.64 is found. The method of excitation used should 

produce signals 180deg. out of phase. In this case, the signals are out of 

phase therefore the transfer function is positive. The calibration of the 

third string tail transducer is therefore 

3.9 x (-1 1.64)=45.4pC /N +or- 86% (90% probability). 

Fig C 13 shows the trace for the tail transducer and that of the force 

transducer multiplied by 11.64. 
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Fig C 11. Third string transducer, coherence. 
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Fig C12. Third string transducer, phase. 
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Fig C13. Third string transducer, channels 1&2. 

Fourth string, anchor transducer 

30 

25 

20 
8 

cc 

S mgý 15 

w 1(1 

5 (13. p! 

0 
IYegIu9R () 1(X)0 2000 3000 4000 5000 

Fit C14. Fourth string transducer, transfer function. 

By averaging the transfer functions at the whole range of frequencies, a 

transfer function of 12.03 is found. The method of excitation used should 

produce signals 180deg. out of phase. In this case the signals are in phase 

therefore the transfer function is negative. The calibration of the 4th string 
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tail transducer is therefore 

3.9 x (12.03)=-46.92pC/N +or- 62% (90 % probability). 
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Fig C15. Fourth string transducer, coherence. 
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Fig C16. Fourth string transducer, phase. 
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Fig C17. Fourth string transducer, channels 1&2. 

Fig C 17 shows the trace for the tail transducer and that of the force 

transducer multiplied by 11.62. 
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C. 3 The tailgut transducers 

The device for measuring the LSV vibration entering the tail gut is 

described in Chapter 6. Two such tailpieces where made and tested and 

several methods were used for their calibration. The method used was 

similar in principle to that used for the calibration of the string anchor 
transducers as described in Appendix C. The difference was that the tail 

gut was attached to the force gauge; the tailpiece was attached to one end 

of the string and the other end of the string as taken to an anchor. The 

string was passed through a 50mm long pointed post which it was able to 

grip by the friction caused by a small change in direction at the hole and 

with the assistance of rosin powder on the string. The top of the post was 
driven by a shaker and this imparted an LSV to the tailpiece and then 

through it to the force gauge. 

The output from the transducer and from the force gauge where both put 

through a charge amplifier with the same amplification and then to the 

analyser where the transfer function was recorded. The calibration of the 

force transducer (B&K No. 803102) is -3.9OpC/N. The minus sign denotes 

that a tension on the force gauge produces a negative charge. Our 

convention is that tension is positive. 

Transfer function TF, = 
Transducer output 
Force guage output 
Force x Calibration 

Force x (-3.9) 

Calibration = TFM x (-3.9) 
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C. 4 Results 

Calibration of tailgut transducer Mk1 
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Fig C18. Tailgut transducer, transfer function. 

1.0 

0.8 

ti 
p 0.6 

ö 0.4 

0.2 

0.0 
Frequency 500 

180 

120 

*b 
60 

V 

a -60 

12C 

18C 

Fig C19. Tailgat transducer, coherence. 
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Fig C20. Tailgat transducer, phase. 

The transfer function was taken as the average over the range that showed 

good coherence. This range is shown by the red line on the transfer 

function graph. The transfer function so found was 11.05. The method of 
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excitation should produce signals that are in phase. In this case, the 

signals are out of phase so the transfer function is negative. The calibration 

of the tailgut transducer is therefore, 

- 3.9 x (-11.05 = 43.1 pC /N +or- 52%. 

Calibration of taugut transducer Mkt 
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Fig C21. Tailgat transducer, Transfer function. 

By averaging the transfer function over the range 0 to 1700Hz, which 

remains stable, the transfer function is found to have a value of -5.98. The 

calibration of the tailgut transducer is therefore, 

- 3.9 x (-5.98) = 23.3 pC/ N +or- 20%. 
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Fig C22.1ailgat transducer, coherence. 
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Fig C23. Tailgut transducer, Phase. 
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Appendix D 

DERIVATION OF BRIDGE MOVEMENT FORMULAE 

DA Given data 

The following data was derived directly from the experiment using the 

calibration and amplification conversion factors given in Chapter 6. 

The rms spectrum of the LSV force at the tailgut. 

The rms spectrum of the string velocity at the magnet location. 

The following transfer functions, 

(A+jB) where, 

A= Re { a, } , real part TF, accel/LSV force, at bass bar foot of bridge. 
l tsv W JJJ F 

B=Im { a' 1 
, imaginary part TF, accel/LSV force, at bass bar foot. 

1 Fýsv W1 

(C+jD) where, 

C= R. { a2 1 
, re al part TF, accel/LSV force, at sound post foot of bridge. 

lFsv wl 

D= Im { a2 
, 

imaginary part TF, accel/LSV force, at sound post foot. 
lFLSv rsn 

(G+jH) where, 

H=IM{ imag. part, accel/vel. of string at the magnet, at bass bar foot. 

G= Re { al }, real part, accel/vel. of string at the magnet, at bass bar foot. 
lVm JJJ 

G was not measured. 

(K+JL) where, 

L= Im 
{}' 

imag. part, accel/vel. of string at the magnet, at sound post 

foot. 

21 K=R. 
j, '. 

, real part, accel/vel. of string at the magnet, at sound post foot. 

measured. K was not 
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R= Im {a}, imaginary part, acceleration in the direction of the 
lF'LSV rýý JJJ 

longitudinal axis of the violin/LSV force, at saddle. 

D. 2 Transformation of measured data 

The transfer functions (G+jH) and (K+jL) are defined with respect to the 

EMF generated by the movement of the string in the magnetic field. 

EMFoc number of lines cut 
velocity of string at the magnet location. 

time 

So the transfer functions relate to Vmthe average string velocity over the 

width of the magnetic field. For convenience these transfer functions can 

be transformed to relate to the TSV force on the bridge, Frsv. 

The string displacement yX in the nth string mode, at any point distance x 

from the end of a string of length L, is given by y,, = Asin L, 
where A is 

the maximum displacement. The velocity at the same point would be 

vR = jwy.. The average velocity of the string over a magnet of width 2a, 

placed xo from the end of the string is given by, 

Vm=](D2 

xo+a 
$ Sin X 

xp-a 

_j 
wAL Sinn7ca Sin nnxo 
niza LL 

Frsv =TAL (for small angles of string displacement) 

FTsv 
= TA nor nna 1 

vm LL jaA Sin L Sin n L° 

F my = jr -------------------------------------------------------------(1) 

T nir nna 

where r=LL 
w Sinn, zxo Sin nua 

LL 

The transfer function al al V,,, (G+ jH)(j) jG-H 
F; V V. FTsv rr 
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and the transfer function a2 
-=a2 

v, 
_ 

(K+ jL)(j) 
_ 

jK-L 
F. rsv V. F. rsv rr 

So the transfer function of bass bar foot acceleration over Frsv, can be 

written as (E+JF), where E=-H/r, and F=G/r: and the transfer function of 

the soundpost foot acceleration over FTsv, can be written as (M+jN), where 

M=-L/r, and N=K/r. 

D. 3 Preliminary 

Viewing the bridge from the tailpiece side, the TSV force and displacements 

are positive right to left. The vertical displacements are positive 

downwards. The vertical bass bar foot and soundpost foot displacements 

xl and x2, are given by, xi=xc+ 
2, 

and x2=xc- 
2, 

where 0 (the angle of 

bridge rotation) is small, xc is the vertical crown displacement, and w and h 

are the width and height of the bridge. 

From this xc = (xl +x2)/2 ------------------------(2) 

By similar argument xt = (x1-x2Xh/w) 
------------------------(3) 

where xt is the transverse crown displacement. 

D. 4 To find the vertical bridge admittance re LSV 

The bass bar and soundpost foot transfer functions re LSV are; 

F 

l=A+jB 

and IFa2 J =C+jD 
[ 

tsvalGait JL tsv tail 

Vv 
_ 

jwxe 
__ 

jw(x1 +X2) (al +a2) 
Yv __ - FLSV bridge 0.37 FLsv to 0.37 x2 FLsv ta 0.37 x2j wFLsv tit 

_ 
[(B+D)- j(A+C)] 

0.37x2w 

The magnitude of the admittance, IY�I = (B + D)2 + (A + C)2 ------(5) 0.37 -x2 w 

The phase of the admittance, (Pyý = Cos-1 
(B + D) 

]---------(6) (B+Dy +(A+C)2 

The computer will only return a phase from 0 to ; r. This will be the 

correct phase unless (A+C) is positive, in which case the phase should be 

multiplied by -1. (By consideration of a phase diagram. ) 
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D. 5 To find the transverse bridge admittance re TSV 

The admittance of the bridge can first be expressed in terms of the 

measured LSV transfer functions. 

The admittance of the bridge Yt = 
vt 

= 
vt Fv`, 

i1 
FTsv FtavrBij FTSv 

Yt = 
jw(XI -X2) h Ftsvtw1 

= 
(a, 

-a2) h FLsvtw1 
FLsv ten w FTsv j co. Fl. sv ta w FTsv 

_ 
(A+ jB-C- jD) h Fvt;, 

Y` 
jCv w Frsv 

_(B-D)+j(C-A)hFLsv l 
r0 w Frsv 

The phase relationship between Fisv and Frsv is unknown so equation 6 

can not be evaluated. However, the magnitude of the admittance can be 

evaluated. 

The magnitude of the admittance, IY, I 
(B 

- D)2 +(C - Ay h (FLsy 
tail 

1 
=w IFTsv I 

From this we can find the unmeasured functions E and M. 

D. 6 Procedure to find the unmeasured terms F and N (or G and K) 

By definition 
Frsv =E+ jF 

Now, 
I al 

= A2+B2. 
IFLsv'j I= 

E2+F2 
Frsv FTSv 

so F=S Sint Cos-1 SJ, 
where S= A2 +B2. 

I F. Vv' 

Similarly N=T Sin( Cos-' 
MT 

J, where T= C2 + D2 .IF FTsv 

However, the signs of F and N have been lost. The signs cannot be 

recovered by any mathematical process, but if one has regard to the 

physical outcome, sensible signs can be given to F and N. 

Assuming the bridge is effectively rigid in its own plane and executes only 

one body mode. If E is of the opposite sign to M, the bridge must be 

rocking so F and N must be of opposite sign. Putting these requirements 
together, if E and M are of opposite sign make F positive and N negative. 
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If E and M are of the same sign, the bridge is bouncing, so F and N are of 

the same sign. The TSV must be putting power in so F-N must be positive 

(see equation (13)). To make (F-N) positive we must apply the following 

conditions. If E and M are of the same sign and F>N then both must be 

positive: and if F<N then both must be negative. These criteria for selecting 

the signs of F and N were followed in the graphs presented. 

We can now find a direct expression for Yt, in terms of the TSV transfer 

functions. 

Y vt 
_(al-a2)h 

(F-N)+j(M-E) h) 

FTSV jug FTsv www 

The magnitude of the admittance, IYt I=h1 (E 
- M)2 + (F - N)2 ------(10) 

w CA) 

and the corresponding phase, pt =Cos-1 
(F-N) 

______(11) (E-My+(F-NY 

This will be the correct phase unless, (E-M) is positive in which case the 

phase should be multiplied by -1. 

D. 7 The velocity of the top of the bridge 

From equation (4), v� = IY� IFLsv 
bridge =F 2ý,, jj V(B + D)2 + (A + C)2 

From equation (7), vt= IYt IFTsv = 
0.37 x FLsv tail h (B 

- D)2 + (C 
- A)2 

CA) w 

where all the velocities and forces are rms values. 

D. 8 To find power into bridge from LSV 

wi. sv =2R. 
{csvb 

dgcv;, 
}, 

where v*, is the complex conjugate of the velocity. 

0.37 l 
Wtsv =2Re 'Isv tanv, 1 

(We 
have shown that v;, =F'tsvtai 

(B+D)+j(A+C) 

2. ßa 

Therefore WLsv = 
0'2 7 

R, { IFLsv 
ta 

12 
(B + D) + j(A + C)l 

2ra 

and so W 
0.37 FL2sv cri lB +D. ---------------------- 12 Lsv = 2w 
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D. 9 To find power into bridge from TSV 

wrsv =2 Rý ýrsvvc 
}, 

where v*, is the complex conjugate of the velocity. 

We have shown that 

Therefore 

and so 

vi = F'ýtsv 
(F-N)- j(M-E) h 

w 

wTsv =1R. 
{IF. 

rsv 
12 

(F-N)- j(M-E) h 
2w w} 

wTsV -F Vh(F-N 13 

D. 10 The relative phase of TSV/LSV 

C11 
=A+ jB 

Fisv 
al 

=E+jF FTSv 

al FTsv 
-A+jB_(A+jBXE-jF) Fuse al E+jF F2+E2 

FTsv 
-1 

BE - AF 
Phase of = Tan ---------------------------------------(1 4) 

FLsv AE + BF 
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Appendix E 

PLATE FLEXURAL STIFFNESS AS A MEANS OF 

ACHIEVING CONSISTENCY IN VIOLIN PLAYABILITY 

Violinmakers have to use some criterion for deciding how thick to make the 

front and back plates. Some simply make them to fixed dimensions for all 
instruments. Others have advocated weighing the plates and making all 
the fronts to a certain weight and the backs to another. Since the 1960s 

much work has been done in a quasi scientific way (Saunders and 
Hutchins) to define detached plate eigen modes which would produce a 

violin with a smooth continuous spectrum of response. Later Hutchins 

proposed that the appeal of an assembled violin varied with the frequency 

difference between the Al (air mode) and the B1 (body mode). Chamber 

music players preferred instruments with a small difference, and soloists 

preferred a big difference, with the orchestral players in between. The 

frequency of the Al mode of a violin does not move much being largely a 
function of the dimensions of the body. The B1 mode (and the difference 

between it and the Al) depends on the flexural stiffness and mass of the 

body. 

In the past, the writer has made a number of violins with plates of fixed 

modal resonance frequencies. These violins were found to give inconsistent 

results from one to the other. Violins that achieved the resonant frequency 

with lightweight plates felt to the player very different to those with heavier 

plates. The actual thickness of the plates as a dimension made no 
discernible difference. It seemed that both the frequency and weight 

needed to be involved. 

It has often been suggested that the old Cremonese makers may have 

tested their plates by bending and twisting them in the hands, and then 

thinning them until a certain flexibility had been achieved. A way had to 
be found of measuring the stiffness with greater control. Analysis shows 
that there is a simple solution to the problem. 

If a plate is flexed by holding the edges in the fingers and pressing the 
thumbs into the middle, the deflection of any strip is given by: 
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Deflection 8 oc 
PEI3 

where E is Young's modulus and I is the second 

moment of area of the cross section of the strip. 

The stiffness K is the force P required to produce unit deflection 6. 

:. Ka 
s L 

The resonance frequency f of the strip as a beam, is given by: 

Where A, t = static deflection of the strip under its own weight. f=1 
F-t 

27r 

But 05 
WL3 

st = 384 EI 

2 EI 
.. f xg. WL3 

:. f2 a 
W. L3 

But f2xw 

.. Koc Wf2 

It will be seen that this formula is independent of length and therefore can 

be used for a violin, a viola or a cello. This simple formula can be used 

easily and precisely. The ring mode and the X mode of the plate taken 

together, involve bending over a large part of the plate. By holding the 

plates loosely with the fingers on a nodal line and tapping the plates with a 

knuckle at an antinode, each of these modes can separately be excited and 

their frequencies found. The plate is then weighed. 

For the back, the ring mode frequency is kept one octave above the X mode 
frequency. This gives a constant relationship between the cross grain 

stiffness and the long grain stiffness in the plate. To lower the ring mode 

wood is removed in the end bout areas. To lower the X mode wood is 

removed in the centre bouts. For the belly, the wood thickness is made 

more or less uniform in thickness and the ring and X modes found. 
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The combining of the two modes into one formula makes it simpler. The 

average of the two modal stiffnesses is found. 

1 
K- wfringmode 

+fXmode 
2 

2 JI 

This is a weighted average because the X mode frequency is usually near 
half of the ring mode frequency. This is very satisfactory because it 

recognises what the writer has found from experience, that a violin is 

approximately twice as sensitive to the ring mode stiffness as the X mode 

stiffness. 

It was found by many trials that a good stiffness K for the back is 

7,250,000 g, and for the belly 4,250,000 g (the unit grams has been shown 
to indicate that these figures have been arrived at taking the weight of the 

plate in grams). The same figures apply to viola and cello plates. This was 

using a weight in grams and the frequency in Hz. The equation derived is 

an empirical equation and not an analytical one. The calculated result is 

not an absolute stiffness but a figure (in grams) that has proportionality to 

stiffness. 

The result of using this method to achieve a constant flexural stiffness in 

the plates of the instruments was that a very desirable uniformity was 
found between one violin and another despite the wood varying widely. 

Although all these violins had the same feel of response to the player, there 

were differences in the brightness of the sound. When the violin is new, 

plates that achieved their stiffness from a high resonant frequency and a 
low weight do sound brighter than those with plates that achieved the 

stiffness with more weight and low resonant frequency. After the violin had 

been played for a while this difference became much less noticeable. If the 

K of a violin is low, the violin is easily driven and would appeal to a lighter 

player (perhaps a chamber music player) and a violin with a high K would 

appeal to a heavier (soloist) player. Because the stiffness does not affect 
the mobility selectively but applies right across the frequency range, it does 

not in itself affect the quality. However because a stiff violin demands to be 

played harder it probably will be bowed closer to the bridge and a different 

string vibration spectrum will be produced, which will of course feed 

through to the radiated sound. 

258 



Determining the amount of wood in the body can be done using resonance 

criteria or stiffness criteria. This research shows that stiffness gives results 

that are much more consistent. This again would support the concept of a 
driven mode as the principal sound generator in the violin, rather than a 
dependence on resonance. 
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Appendix F 

METHOD OF CALCULATING THE EAR 

F. 1 The shape factor of the arching 

After making some violins using simple methods of calculating the EAR it 

became apparent that the violin is so sensitive to the EAR that more refined 

methods had to be used. It was necessary to take into account the arch shape 

and the wood thickness. 

The way in which an arch behaves structurally depends not only on its crown 
height but also on its shape. In order to be able to take this into account a 

system of 'arching shape factors' was developed. The standard for 

comparison for arches is the actual line taken by the forces in the arch. This is 

called the line of thrust. 

O 1O 
(a) 

. -- 

. 'ýl ýHh 
``` 

ýýY 

N) 

Fig Fl. Centre belly arch shape compared to the line of thrust, to derive shape factors. 

Fig. F1 (a), shows the line of thrust in a belly centre bouts cross arch, of a 
bridge load on the arch (the sound post contribution having been deducted). 

It will be seen then that the line of thrust is the simplest structure that can 

support the load in direct force without any bending. For the purposes of 

calculating the EAR the plate will behave as though the top of the CBX arch 

was the height of the line of thrust. But what is the height of the line of 
thrust? A useful approximation can be made as shown in (b). Draw the CBX 

arch, and over it draw the line of thrust such that the sum of the two areas 
"a' is equal to the area ", ß'. The shape factor for the arch is the height of the 

line of thrust divided by the height of the arch. s= H/h or H= sh 
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In fig F2 (a), the line of thrust of a back centre bouts cross arch is shown, and 
for simplicity, shift the load to the centre to produce the symmetrical line of 

thrust shown in (d) (the resulting final error is surprisingly small). In (e) the 

actual arch is drawn, and the line of thrust superimposed on it such that the 

areas cut off above the line equal the areas cut off below the line. The back 

CBX arch will behave as though it were of height H and this we can find by 

multiplying the arch height h by the shape factor s. 

IN (b) k) 

Fig F2. Centre back arch shape compared to line of thrust, to derive shape factors. 

The EBX arches do not have simple point loads like the CBX arches, but have 

distributed loads. If the load were uniformly distributed the line of thrust 

would be of a parabolic form. It is not know exactly how the load is 

distributed but it must have a bias towards the centre of the span given that it 

arises from an interaction with the long arch. If the loading distribution is 

taken to be parabolic, the resulting line of thrust will be a third degree 

equation. By making a drawing of the shape of the end bouts cross arch and 

superimposing on this a line of thrust which is a third degree equation, such 

that the areas cut off above the line of thrust are equal to the areas cut off 

below the line of thrust, the shape factor as given by H/h can be found. 

The shape of the arch is, from a structural point of view, the shape of its 

centre line. When a violin plate is made it is the outside surface of the plate 

that is shaped, but in calculating the effect of that arch the it must be 

regarded as being lower than it is built by half the wood thickness. 

The method used for calculating the EAR is best demonstrated by a specimen 

calculation for a specific example. A calculation such as this was done for 

every instrument made. The example given here is violin number 132 and is 

taken from the record book. 
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OVERALL 
THICKNESS ARCH HEIGH'] 

2.60 12.50 

2.95 15.38 

2.60 12.70 

OVERALL 
ZCH HEIGHT THICKNESS 

10.50 3.00 

14.38 4.50 

10.46 3.20 

Fig F3. Arch heights and wood thickness used in specimen calculation of EAR. 

tl 

t2 

Fig F4. Effective arch height. 

The effective arch height is the actual arch height minus half the thickness at 

the crown minus half the thickness at the edge multiplied by the shape factor. 

Upper belly Upper back 

(12.50-1.3-1.625) 0.858 =8.22 (10.50-1.5-1.625) 0.803 =5.92 

Centre belly Centre back 

(15.38-1.475-1.625) 0.960=11.79 (14.38-2.25-1.625) 1.099=11.54 

Lower belly Lower back 

(12.70-1.3 -1.625) 0.878 =8.58 (10.46-1.6-1.625) 0.823 =5.95 

Now divide the upper and lower bouts affective arch heights by the centre 
bouts effective height. 

Upper belly, 0.6969 Upper back, 0.5130 
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Lower belly, 0.7280 Lower back, 0.5158 

Now average the upper belly and upper back figures to fmd the upper bouts 

EAR and the deviation. 

(0.6969+0.5130)/2 = 0.6049 +or- 0.0919 for the upper bouts 

(0.7280+0.5158)/2 = 0.6219 +or- 0.1061 for the lower bouts 

The deviations are usually near 0.1, being a little higher in the lower bouts 

than the upper, although as has been said before the amount of deviation 

does not seem to be particularly tonally significant. The arching shape factors 

used, all work out at less than 1, except for the centre back arch where the 

line of thrust projects outside the line of the arch. The EAR values given here, 

describe an arching of the tonal quality believed to be most acceptable to 

players. Virtually all the experimentation needed to find a good value for the 

EAR, was been done by making violins. When a viola, which may be 

proportionately wider than a violin, particularly across the centre, and may be 

proportionately lower in arching height, was made, the violin EAR values were 

modified by the factors given in section 6.2. 

F. 2 Getting the EAR right every time 

The violins made in the writer's workshop use unvarying outline shapes, and 

arching templates, therefore the individual instrument calculation only needs 

to take into account variations in the wood thickness. It will be apparent that 

there is a problem here. The arching is formed before the plates are hollowed 

out and the final plate thickness is determined. To overcome this problem the 

following method is used. 

The outside of the back is made to standard templates, and then the wood is 

given thickness appropriate to the wood, using criteria outside this thesis. 

Realistic estimates are made of the likely wood thickness for the front. The 

above data are fed into a simple computer program, which calculates the front 

arching heights at the centre and at the end bouts. The front is made and 
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during the graduation of its thickness, the thickness at the centre of the plate 
is adjusted to bring the EAR to the required figure, by again using the 

computer program. 
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