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ABSTRACT 

FAf%%JnrOFI%Ka^%%%^NGVU^D/JTLDaD SCIENCES 
SCHOOL OF ENGINEERING SCIENCES 

Doctor of Philosophy 

Photonic Crystal Modelling using Finite Element Analysis 

By Ben Hiett 

This thesis presents an efficient finite element method for computing spectra of photonic band 

gap materials. These periodic dielectric crystals exhibit a photonic band gap analogous to the 

electronic band gap present in semiconductors. Photons in the frequency range of the band gap 

are completely excluded so that atoms within such materials are unable to spontaneously absorb 

and re-emit light in this region. Photonic band gap devices offer enormous potential in the 

development of highly efficient narrow band lasers, integrated optical computing and high-

speed optical communication networks, particularly in the production of purely optical circuits 

for dense wavelength division multiplexing. 

Computational modelling of photonic band gap devices has traditionally been approached using 

plane wave expansion techniques. These have the disadvantages of being expensive in terms of 

computation and memory. By contrast, the finite element method is considerably more efficient 

since the eigensystem matrices are very sparse and the discontinuous dielectric constant is 

handled in real space. We have developed finite element software and used it to compute the 

band structure for a variety of common photonic crystal structures along with more novel 

structures such as the 12-fold symmetric quasicrystal. 

We compare our results with those obtained from other sources, including plane wave 

expansion techniques, finite difference methods and experimental data. The performance of the 

algorithm is analysed in terms of memory and computational cost confirming the 0{n) problem 

scaling. Photonic band gap device optimisation is performed via multi-dimensional 

minimisation algorithms and the analysis of a canonical set of lattice arrangements. High-

performance grid-enabled compute resources were utilised due to the computationally intensive 

nature of the process. This research has ascertained those crystal structures that produce the 

largest, most robust photonic band gaps with the best being the simple triangular lattice with a 

high filling fraction. 
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1 Introduction 

1.1 Photonic Crystals - An Overview 

Photonic Band Gap (PBG) Structures exhibit a photonic band gap analogous to the electronic 

band gap present in semiconductors. A band gap arises due to destructive interference from 

Bragg like diffraction of waves through the crystal. Photons in the frequency range of the band 

gap are completely excluded so that atoms within such materials are unable to spontaneously 

absorb and re-emit light in this region (Yablonovitch 1987) (Yablonovitch 1993). The electric 

permittivity of a PBG structure varies periodically on a scale comparable to the wavelength of 

the forbidden photons. Figure 1-1 is a photo of a photonic crystal (PC); note the periodic 

structure with the rods and cavities having different dielectric constants. 

PBG devices offer enormous potential in the development of sharp angle wave guiding, highly 

efficient single mode lasers, integrated optical computing and high-speed optical 

communication networks, particularly in the production of purely optical circuits for DWDM 

(Dense Wavelength Division Multiplexing) (Parker and Charlton 2000) (Yablonovitch 2000). 

The construction of integrated optical circuits would allow the revolutionary shift from 

optoelectronic to photonic technology to take place (Yablonovitch 1994). This step is widely 

viewed as the 'holy grail' in communication technology. 

Manufacturing PBG materials that operate in the visible region of the electromagnetic spectrum 

requires fabrication techniques with a resolution of approximately 5 nm. This is both time 

consuming and expensive, especially when precise control over the variation in permittivity is 

required. Hence, it is vital that one can accurately and efficiently model such structures; this 

allows investigation and optimisation of PBG structures to be performed while keeping 

manufacturing costs to a minimum. We have developed a library of Finite Element Method 

(FEM) code to compute the electromagnetic modes of propagation in these structures. 



Figure 1-1 Photo of a photonic crystal - courtesy of Martin Charlton et al (Southampton microelectronics 

research group). 

The propagation of light in a photonic crystal is governed by the geometry and permittivity of 

its constituent dielectric materials. Hence, in order to model a crystal's optical properties, a 

numerical method is needed as illustrated in Figure 1-2. Traditionally, plane wave expansion 

has been used as the numerical method (Villeneuve and Piche 1994); this approach has 

produced successful results but has disadvantages such as slow convergence and high demands 

for computing power and memory (Villeneuve and Piche 1991). Finite Difference (FD) methods 

have also been employed with the benefit of yielding transmission information but they 

generally require structured meshes and produce a discrete rather than continuous solution over 

the problem domain. A comprehensive review of these methods is provided by (Taflove and 

Hagness 2000). 

Inputs: 

Crystal geometry 
Material properties 

Numerical 
method 

Outputs: 

Mode frequencies 
Mode fields 

Figure 1-2 Computational modelling of photonic crystals. 

The use of finite elements as the numerical method addresses these problems. The finite element 

formulation gives rise to eigensystems described by sparse matrices; this leads to significant 

reductions in processor and memory requirements over the dense matrices produced using plane 

wave techniques. The sharp discontinuities in dielectric constant characteristic of many PBG 

materials are easily and more importantly exactly represented using the finite element method 

whereas plane wave techniques suffer from Gibb's phenomena at material boundaries. The 



unstructured mesh representation of the crystal structure simplifies the construction of regions 

of arbitrary shape and also simplifies the application of adaptive mesh refinement allowing 

concentration of computational resources on key regions of the domain. The advantages of finite 

elements are discussed in further detail in chapter 2.13. 

Various commercial software packages are available for performing photonic crystal analysis. 

These are typically less specialised and capable of modelling a range of devices all under the 

umbrella of computational electromagnetics. Ansoft's HFSS (Ansoft 2002) offers second order 

vector finite elements for modelling complex geometries in radio frequency and optoelectronic 

design. The package includes a visual mesh development environment, adaptive mesh 

refinement and solution visualisation. However, whilst it has a number of features that make it 

well suited to PC modelling (Remski 2000), it is not specifically targeted at PBG devices and 

generating, for example, a density of states graph requires results from a number of different 

simulations to be combined. This makes it less efficient than code targeted directly at this 

problem, which may incorporate the optimisations described in this thesis. Concerto 

(VectorFields 2002) incorporates a finite difference time domain (FDTD) method. This allows 

transmission information to be computed but not the band structure of the photonic crystals. 

FEMLAB (Comsol 2002) is an interactive environment running under MATLAB and used for 

modelling and simulating scientific and engineering problems based on partial differential 

equations. FEMLAB has an electromagnetics module that allows simulation of wave 

propagation and AC-DC electromagnetics in 2 and 3 dimensions. RSoft have recently released 

BandSolve (BandSOLVE 2002) based on the plane wave method it is designed to automate and 

simplify the calculation of photonic band structures for photonic crystal (PC) devices. The tool 

handles a wide range of PC components, including 2D and 3D PC slabs and waveguides, 2D 

and 3D cavity problems, and photonic crystal fibres. RSOFT also offer BeamPROP 

(BeamPROP 2002) and FullWAVE (FullWAVE 2002); two packages designed for optical 

waveguide modelling based on the beam propagation and finite difference time domain method 

respectively. 

The quality of these products is very good and they provide an excellent set of tools for 

electromagnetic computation. However, none of them are designed primarily and specifically 

for the analysis of photonic band gap devices. For this reason we have decided to develop a 

bespoke set of software tools from scratch based on the finite element method. It is also 

important to note that many of these commercial tools were not available at the time this 

research commenced. Their subsequent release provides strong evidence that this area of 



research is a vibrant one with significant commercial as well as purely academic interest 

involved with it. Our research group is concurrently developing a suite of highly optimised 

eigenvalue solvers designed specifically for band-gap modelling to be used in conjunction with 

the finite element code. This highly specialised approach allows the use of problem specific 

optimisations to be made. This will allow our software to be tuned to obtain a degree of 

performance that will allow new avenues to be explored including band-gap design optimisation 

and the exploration of complex 3 dimensional structures. 

1.2 Physics Overview 

Investigating the propagation of light in photonic crystals requires the use of Maxwell's 

equations; these can be stated in their differential, macroscopic form as: 

SI Units Guassian Units 

V B = 0 V .B = 0 

V • D = yC V • D = 47rp 

V x H = J + — V x H — = — J , 
% c 

where H and E are the magnetic and electric fields, B and D are the magnetic and electric flux 

density, J is the electric current density and p is the electric charge density. These equations can 

be simplified for the case of electromagnetic propagation in photonic crystals. These crystals are 

composite materials of different homogeneous dielectric materials. There are no free charges or 

currents therefore J = /? = 0 . 

We assume the materials behave linearly and are isotropic with respect to light propagation 

hence the electric field and the electric flux density obey the following constitutive 

relationships, D = g(r)E where s(r) is the relative permittivity. A similar relation exists 

between the magnetic flux density and the magnetic field, B = //(r) H , but for the majority of 

dielectric materials, certainly those of interest, the magnetic permeability is very close to unity 

hence we can use B = H. 

The dielectric materials are assumed to be lossless hence the permittivity is a real number as 



opposed to the complex dielectric constants used when absorption is an issue. The frequency 

dependence of the permittivity s(r) is considered to be constant appropriate to the frequency 

range of the light being modelled. These conditions allow Maxwell's equations to be re-

expressed as: 

V- H(r,/) = 0 

V.g(r)E(r,r) = 0 

(1.2) V x E ( r . O + i ^ 5 M . 0 
c % 

V x H ( r . O - ^ ^ 5 ( ^ = 0. 
c dt 

The time dependence, t, of the magnetic and electric fields can be separated from the spatial 

dependence via expansion into a set of harmonically oscillating modes of single frequency. 

These modes can be expressed as the product of a static field and a complex exponential; 

H(r,r) = H(r)g'*" 

E(r,f) = E(r)e'*", 
(13) 

where co represents the angular &equency. Suppressing the complex exponential allows the 

harmonic modes to be written as: 

V x E ( r ) + — H ( r ) = 0 
c 

V x H ( r ) - — g ( r ) E ( r ) = 0 
c 

(14) 

(15) 

dividing by s(r) and then taking the curl gives: 

1 
V x 

jr(r) 
V X H(r) — V x E ( r ) 

c 
(16) 

Equation (1.5) can be used to eliminate E(r) to give an equation entirely in terms of H(r): 

1 
V x 

6r(r) 
V x H ( r ) 

\ c j 
H(r) (1.7) 

Equation (1.7) is an eigenvalue problem. Solving this equation for a given photonic crystal, 

described by s(r) gives the frequencies, co, and fields H(r) of the allowable modes of 



propagation. The divergence condition, V • H(r) = 0, must also be enforced. Substituting 

equation (1.5) back into (1.7) allows one to recover the electric field, E(r); 

- ic 
E(r) = 

#2" (r). 
]B[(r) (1.8) 

1.3 Finite Element Overview 

The finite element method is a mature numerical technique for solving boundary value 

problems. It dates back to the 1940s, originally being used to solve problems in the field of 

structural mechanics. The first application of finite elements to an electrical engineering 

problem was made in the late 1960s and since then the technique has been applied to an ever-

increasing range of scientific and engineering problems in the domain of computational 

electromagnetic s. 

The finite element method involves breaking down the problem domain, in this case the 

photonic crystal structure, into many small elements of simple shape (e.g. triangles in two 

dimensions, tetrahedra in three dimensions). Elemental equations are derived from Maxwell's 

equations that approximate the electromagnetic field over an element. This approximation of the 

field is expressed as an interpolation function coupled with its coefficients. The choice of 

interpolation function is a compromise between quality of approximation and the number of 

function coefficients, also known as the number of degrees of freedom. A high order 

interpolation function may give a good approximation to the true solution but will require a 

large number of degrees of freedom thus increasing the computational and storage costs of the 

simulation. Once the interpolation function is chosen, the function coefficients must be 

computed for every element, these are stored as elemental matrices. These matrices are 

subsequently assembled into global matrices by mapping local to global interpolatory node 

numbers. These global matrices form an eigensystem of sparse matrices. This system of 

equations is then solved using a subspace iterative technique, the resulting eigenvalues being the 

frequencies of the allowable modes and the corresponding eigenvectors representing the field 

strength at the nodes (Pagan 1992) (Zienkiewicz and Taylor 1989). The process can be broken 

down into steps as illustrated in Figure 1-3. 



The crystal geometry is discretised into a 
finite number of elements. 

Domain Discretisation 

The crystal structure is defined 
geometrically. 

Geometry Definition 

The interpolation function determines how 
the solution can vary over an element. 

Interpolation Function Selection 

Assembly of the System of Equations 

The individual elemental matrices are 
computed and combined to create a 

global system of equations. 

The elemental equations are derived from 
the governing equation describing the 

physical system. 

Derivation of the Elemental Equations 

The global system of equations is posed 
as a generalised eigenvalue problem. It 
can be solved using various numerical 

methods. 

Solution of the System of Equations 

The resulting eigenvalues and 
eigenvectors are presented as band-gap 
diagrams, density of states charts and 

field surface plots. 

Visualisation 

Figure 1-3 Breakdown of the finite element method. 



1.4 Contributions 

The main contribution of this work has been the creation of a finite element software library 

specifically designed to model the optical properties of photonic band gap devices. At the time 

of conception of this project, finite element codes capable of computing the band structure of 

photonic band gap devices were not available, since then commercial packages have emerged 

but none are, as yet, optimised specifically for photonic band gap device modelling. In this 

respect we have produced a novel and genuinely useful product. This thesis presents a detailed 

description of the finite element method and its application to photonic band gap device 

modelling; this is essentially the problem of solving Maxwell's equations subject to periodic 

boundary conditions. 

The software has been tested extensively, including comparison with analytical results, results 

produced from other numerical methods including plane wave expansion and finite difference 

time domain and experimental results. Algorithm performance has been investigated, 

specifically the relationship between solution accuracy, mesh granularity, interpolation order, 

computation time and memory requirements. 

The finite element software has been used to model novel crystal geometries including the 

twelve-fold symmetric quasicrystal. This structure possesses a high degree of rotational 

symmetry and has been proposed to exhibit a photonic band gap for low filling fractions and 

low dielectric contrast between the constituent materials. The validity of these claims is 

explored. 

The development of the finite element code has allowed other new contributions to be made 

including the investigation into the effect of fabrication tolerances on the band structure of 

photonic band gap devices. Also, design optimisation of photonic band gap structures with 

respect to maximising the resultant photonic band gap. This involved a brute force approach in 

which the best of a large selection of randomly generated crystal lattices were subsequently 

optimised. The other approach involved the investigation of a canonical set of lattices such that 

all possible rod-based lattice structures were broken down into a set of groups, with the most 

promising groups then being optimised. 

A number of papers have presented theoretical photonic crystal geometries and subsequently 

computed their band structures. It is often the case that these structures bear little resemblance to 



what is actually possible to fabricate. For example, it is well known that crystal structures with a 

high filling fraction are likely to produce large band gaps, however, this can result in very thin 

areas of substrate material which would be vulnerable to collapsing when fabricated thus 

destroying the crystal structure. We investigated the effect of fabrication tolerances on the 

resulting band structure of PBG devices, this has not been presented before in the literature and 

we feel that it has an important bearing upon how one interprets the results from the various 

numerical models with regard to actually fabricating these devices. 

The finite element code has been incorporated into a design optimisation process that attempts 

to find the crystal geometry that maximises the size of the photonic band gap. This involved 

implementing a minimisation algorithm to explore the crystal structure parameter space in an 

attempt to find the optimum crystal structure. The optimisation code was run on a Windows 

based commodity cluster of workstations. The computationally intensive nature of the 

optimisation process would have been unfeasible without the utilisation of this grid-enabled 

computational resource. 

The work in this thesis has contributed in part or full to the following publications: 

e Hiett, BP, Generowicz, J.M, Cox, S.J, Molinari, M, Beckett, D.H, and Thomas, K.S. 

(2002). Application of Finite Element Methods to Photonic Crystal Modelling. lEE. 

Proc.-Sci. Meas. Technol., Vol. 149, No. 5, p293-296, September 2002 

» Hiett, BP, Generowicz, JM, Beckett, DH, Molinari, M, Cox, SJ, Thomas, KS (2002) 

Photonic Band Gaps in 12-Fold Symmetric Quasicrystals. 4th International Conference 

on Materials for Microelectronics and Nanoengineering. Espoo, (Finland, June 2002). 

® Thomas, KS, Cox SJ, Beckett, DH, Hiett, BP, Generowicz, JM, Daniell, GJ, (2001) 

Eigenvalue Spectrum Estimation and Photonic Crystals. Lecture Notes in Computer 

Science. Proceedings of Euro-Par 2001 Conference, p.578-586 (Manchester 28-31 Aug 

2001). 

» Hiett, BP, Generowicz, JM, Cox, SJ, Molinari, M, Beckett, DH, Parker, GJ, and 

Thomas, KS (2001) Finite Element modelling of Photonic Crystals. Proc. PREP 2001 

EPSRC Conference p.87-88. (Keele University, April 9-11 2001) 



» Generowicz, JM, Hiett, BP, Beckett, DH, Molinari, M, Charlton, MDB, Parker, GJ, Cox 

SJ. (2000). Modelling Photonic Crystals using Finite Elements. NATO Advanced Study 

Institute. Photonic Crystals and Light Localization, (Crete. June 19-30, 2000). 

® Generowicz, JM, Hiett, BP, Beckett, DH, Parker, GJ, Cox SJ. (2000). Modelling 3 

Dimensional Photonic Crystals using Vector Finite Elements. Photonics 2000 (EPSRC, 

UMIST, Manchester, 4-5 July 2000). 

1.5 Outline of Thesis 

Chapter 1 - Introduction. This chapter introduces the concept and principles behind photonic 

band gap devices along with a number of potential applications. The finite element method is 

introduced along with a short recap on the history of its development. The basic steps involved 

in the procedure are outlined along with some of the technical issues specific to using the finite 

element method to solve electromagnetic problems. 

Chapter 2 - The Finite Element Method. The various stages of the finite element method are 

examined in detail. These include domain decomposition; the process of dividing the crystal 

structure into a number of smaller sections of simple geometry. The elemental equations are 

derived based upon the governing differential equation, the periodic boundary conditions and 

the chosen interpolation functions. These elemental equations can then be applied to each 

element. The resulting elemental matrices are assembled according to the mesh topology to give 

the global matrices that comprise a generalised eigenvalue problem. The eigenvalue solver we 

developed is discussed, with the focus on the problem specific optimisations that we 

implemented to increase the performance. 

Chapter 3 - Results. In this chapter we test the accuracy of our two-dimensional finite element 

code by comparison with an analytical solution for free-space. A number of commonly 

modelled structures are modelled and subsequently compared with results found in the literature 

produced with other numerical methods including plane wave expansion and finite difference 

methods. Finally, we compare our results with actual experimental data to confirm that a two-

dimensional model can accurately model a real device. 

Chapter 4 - Performance. The accuracy and convergence of the finite element code is analysed. 

Also the relationship between solution accuracy, computation time and memory usage is 
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examined with respect to mesh granularity and interpolation order. We discuss the programming 

paradigms and design decisions that were taken during code development. Also the use of high 

performance, grid-enabled computing facilities is discussed. This was necessary due to the 

computationally intensive nature of the research, particularly the creation of gap-map data and 

design optimisation. 

Chapter 5 - The 12-Fold Symmetric Quasicrystal. The 12-fold symmetric quasicrystal has been 

proposed as a novel new crystal structure that exhibits a complete band gaps at low filling 

fractions and low dielectric contrasts. Also, its high degree of rotational symmetry should make 

it highly inhomogeneous to the angle of incoming light. We investigate these claims by 

modelling a number of these structures for various crystal configurations, filling fractions 

substrate materials, etc. and present the results and draw our conclusions. 

Chapter 6 - Optimisation. We created a photonic crystal design optimisation code, the aim 

being to automate the process of designing a photonic crystal with a large band gap. This 

required building a front-end code capable of converting a high-level crystal structure definition 

into a low level description in a format understandable by the meshing software. We also had to 

build code to analyse the resulting set of eigenvalues to ascertain the presence and size of any 

band gaps. We finally implemented a minimisation algorithm to perform the optimisation. This 

iteratively sought the design parameter set that produced the largest band gap. 

Chapter 7 - Conclusions and Future Work. We summarise and conclude the work that has been 

carried out and also explore areas of possible further research. 
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2 The Finite Element IVIethod 

2. i Domain Discretisation 

Many domain discretisation software packages are available, for example, GEOMPACK (Joe 

2001), Easymesh (Niceneco 2000), NETGEN (Schoberl 2001) and Triangle (Shewchuk 1996). 

Each package has its own proprietary format for the input of the domain geometry and other 

parameters including the type of element (triangle, rectangle, etc.), the number of elements 

(granularity of discretisation), the dimensionality (2D, 3D), element material properties 

(dielectric constant) and domain boundary conditions. The software processes this input data 

and computes the domain discretisation and outputs the vertex coordinates, topology and 

material properties of the constituent elements. Examples of two-dimensional and three-

dimensional domain discretisations (or meshes) are shown below in Figure 2-1. 

( # (b) 

Figure 2-1 Periodic domain discretisation examples in two dimensions (a) and three dimensions (b). 

The meshing software is used to generate a unit cell of finite elements. This represents the 

'building block' of the PC structure: a PC of infinite extent can be recreated by periodically 

tiling the unit cell as shown in Figure 2-2. The implementation of the periodic boundary 

conditions is covered in detail in chapter 4.4. 
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(a) (b) 

Figure 2-2 Unit celi (a); Periodic tiling (b), showing 9 unit-celis tiled together 

Each element also stores a material marker, as can be seen by the grey and white triangles in 

Figure 2-2. This mesh is a two-dimensional representation of a triangular lattice of circular rods 

in a substrate material. The material markers are substituted with the relevant material 

permittivity values when the mesh is read into the finite element software. 

2.2 Interpolation Functions 

Interpolation functions are used to approximate a continuous solution over an element. These 

functions are most easily developed in terms of simplex coordinates (see Appendix B.l). These 

coordinates are local to an element and remain unchanged under any translation or rotation in 

Cartesian space; therefore, general element equations need only be generated once for a 

prototypal simplex. 

The interpolation functions can be constructed using a family of auxiliary polynomial {n, 

where n is the degree of the polynomial. The m"^ member of R is defined as follows: 

m-l P_lrlyj 1 W-l 

(2 1) 
Ro(n,^) = l 
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For a simplex element of dimensionality, D, the number of interpolatory nodes, M, for a 

Lagrange interpolation polynomial of order n is defined as follows; 

A ^ = 7 ^ n ( ' ' + ' ) . (2.2) 
1=1 

Figure 2-3 shows a triangular element with interpolatory nodes corresponding to a cubic (third 

order) interpolation polynomial describing the unknown field quantity across its area. The 

triangle vertices are labelled 1, 2 and 3. Each node is labelled with its natural and singular index 

node number. The natural node number corresponds to the i,j, k in equation (2.3). The singular 

index node number corresponds to the m in equation (2.5). 

Figure 2-3 Triangular element with cubic interpolation. 

The interpolation function for each interpolatory node in two-dimensions is calculated using 
equation (2.3). 

f 1 (M, ̂ 2 ) & A ), / + y + A: = » . (2D) (2.3) 

In three dimensions, using tetrahedral elements, an extra natural node index is needed to deal 

with the additional simplex coordinate. 
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Figure 2-4 Tetrahedral element with quadratic interpolation. 

Hence, the formulation of the interpolation functions requires an extra term: 

2̂ ) & (M, ̂ 3 (M, ̂ 4 ), z + y + A + Z = M . (3D) (2.4) 

The solution over an element is expressed as a combination of the interpolation function (also 

commonly called the basis function) and the value of the unknown quantity at the interpolatory 

nodes; 

M 

(2.5) 
m=l 

where ^ is the approximate solution over an element, M is the number of interpolatory nodes 

for an element (calculated using (2.2)), is the value of the solution y/at the node m, and 

a„, is the basis function associated with the node m. 
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Figure 2-5 Linear and quadratic interpolation functions. 

Figure 2-5 illustrates the difference between using a linear polynomial and a quadratic 

polynomial. There is a computational trade off between the order of the interpolation 

polynomial that is used and the accuracy of the solution, a quantitative analysis of this 

relationship is presented in chapter 3.7. 

2.3 Governing Mathematical Equations 

The fundamental problem to be solved is as follows. Given the physical structure and material 

properties of a photonic crystal, what are the resulting allowable mode frequencies? If we define 

the photonic crystal by the function &(r) and the allowable mode frequencies are represented by 

0), the problem can be stated simply as: 

5(r) => 6) 

We need to provide the means to get from e(r) to co. The governing equations that bind these 

properties can be derived from Maxwell's equations (Halliday, Resnick et al. 1992) to give the 

formulae for modelling monochromatic electromagnetic waves in a periodic dielectric 

waveguide, equation (2.6); 

1 
V x 

y H ( r ) = 0 

V x H ( r ) 
a ' " " (2.6) 

H represents the magnetic field intensity, g(r) represents the dielectric constant (or the electric 

permittivity) as a function of the spatial position, r. co is the frequency of the electromagnetic 
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wave and c is the speed of light. 

A feature of equation (2.6) is that there is a simple relationship between the scale of the crystal 

structure and the frequency of the harmonic modes. Contraction or expansion of a structure, 

£(r), by a factor, 6', to give the structure g'(r) = g(r/s) leads to inverse scaling of the resultant 

harmonic mode frequencies, e.g. co' = cos. Thus the equation solution at one scale effectively 

determines the solutions for all scales. This fact has implications for data visualisation and in the 

measurement of photonic band gap frequency ranges that are discussed later in chapter 2.12. 

2.4 Two-Dimensional Scalar Case 

If the waveguide structure is periodic in two dimensions and constant with respect to the third 

dimension (e.g. Figure 1-1) and only waves propagating in the plane of periodicity are to be 

considered then the vector equation can be split into two scalar equations (Axmann and 

Kuchment 1999) (Dobson 1999) representing the transverse magnetic (TM) and transverse 

electric (TE) modes: 

TE Mode Polarisation: - V- j , Vy/ = Ai//, (2.7) 

TM Mode Polarisation: - = s{v)Xy/. (2.8) 

The fact that (2.7) and (2.8) are periodic problems (e.g. g(r) varies periodically) allows the 

application of the Floquet-Bloch theory (Kuchment 1993). This states that the eigenfunctions of 

the wave function for a periodic potential are the product of a plane wave times a function 

Wj. (r) with the periodicity of the crystal lattice. Thus, the wave function can be represented as 

= e''^M(r), (2.9) 

where k is the wave vector and u(r) is the value of the eigenfunction at position r. Substituting 

equation (2.9) into equation (2.7) gives: 

(V+ ik)-—^{y+ ik)u = Au . (2.10) 
g(r) 
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It remains to find a solution to the above differential equation given the periodic boundary 

conditions. This can be done using a weighted residual (Galerkin's) method [see Appendix A:] 

to approximate the true solution of the boundary-value problem. This gives the following 

integral equation; 

(V + ik)u • (V + zk)v dx = X [uvdx. (2.11) 
s(r) •' 

Representing u = where y/jis the unknown field amplitude at the node and OTyis 

the f ' basis function and choosing the weighting function v to be equal to the basis function 

gives the generalised eigenvalue problem: 

A ( k ) ^ = A B y / , (2.12) 

where the assembled matrices are formed from the elemental piecewise functions; 

A., = + -(y + ik)a,dx 

By, = 

Expanding the integral that comprises the A matrix gives; 

(2T3) 

(V + zk)Qry (V + z k X 

= (voTy + ilia J )• (VoT; + ika^) 

(2.14) 

J J. 
VoTy + VcKy - fkor, + zkcKy Vor, 4- zkor. - zkor, 

4- zk(v<%y - or, -I- cKy - Vor,) - > 4- 7^.) 

Hence, from the following integral equations base solely on the interpolation functions we can 

construct the eigensystem matrices; 
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(2.1fO 

Pji = ^ajWaidQ. 

For the TE Mode polarisation: 

A(k) = - L [ s + z k . P - A : ' T l 
^ J 0U6) 

B = T 

For the TM polarisation the A and B matrices are defined as: 

== jjr(r)(2\cr;66c. 

(2 17) 

Hence, the eigensystem matrices can be expressed in terms of the interpolation function 

integrals as follows: 

A(k) = S + i k . P - A : " T 

The full derivation for the integral equations in equation (2.15) can be found in Appendix C:. 

The T (metric) matrix is independent of element size and shape and therefore can be stored in 

tabulated form and used for all elements. The S (Dirichlet) matrix and the P matrix can be 

calculated in terms of D (Appendix B.4) and T matrices and the element geometry. 

2.5 Three-Dimensional Vector Case 

A logical progression is to extend the two dimensional model to treat the full three-dimensional 

case. This removes the constraint that the dielectric structure must be constant in the third 

dimension, thus providing the freedom to explore the properties of fully three-dimensional 

periodic crystals (Bossavit and Verite 1982; Yablonovitch, Gmitter et al. 1992; Campbell, Sharp 

et al. 2000). The additional dimension necessitates the computation of a vector rather than scalar 
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approximation to the electromagnetic field therefore the FEM must be modified accordingly 

and, as will be explained later in this chapter, a radically new type of finite element is needed. 

A naive approach would be to continue using Lagrange (scalar) interpolation functions, one for 

each component of the vector field, e.g. three functions for each node, one for each dimension. 

There is however, an immediately apparent problem with this approach. This is because the 

Lagrange interpolation functions ensure continuity at material interfaces; each component of the 

vector field will therefore be continuous. This does not satisfy Maxwell's equations that enforce 

tangential but not normal continuity of the electric and magnetic field at material interfaces. 

There is also a more subtle problem with the application of Lagrange elements in the 

computation of vector fields; the phenomena of spurious modes (Jin 1993; Silvester and Ferrari 

1996; Salazar-Palma, Sarkar et al. 1998). These are numerical approximations to non-physical 

solutions, e.g. solutions that do not satisfy Maxwell's equations and the imposed boundary 

conditions. The result is that the computed spectrum of correct allowable electromagnetic 

modes is contaminated with these incorrect solutions. 

These spurious solutions originate from the fact that using the finite element method with 

Lagrangian interpolation functions does not enforce the divergence condition as defined in 

Maxwell's equations: 

(/YH)==: 0, (2.19) 

(61%)== 0, (2.:20) 

for the magnetic and the electric fields (in a source free region) respectively. The spurious 

solutions are found to have substantial non-zero divergences. This flaw appears because only 

the interpolation functions and not their derivatives are required to be continuous. 

Attempts have been made to eliminate the problem of spurious modes when using Lagrange 

elements. Interpolation functions with continuous derivatives (Csendes and Wong 1987; Wong 

and Csendes 1988; Sun, Manges et al. 1995) have been applied to enforce the zero divergence 

condition. The disadvantage is that these functions are more complex and therefore harder to 

implement. Another approach is to introduce a penalty term to the functional (Rahman, 

Fernandez et al. 1991). This has the effect of pushing eigenvalues relating to the spurious 
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solutions up into a higher frequency region out of the range of the propagation modes of 

interest. 

2.6 Curl-Conforming Elements 

A more fundamental approach is to use curl-conforming elements where the interpolation 

functions are of a vector rather than scalar nature. This approach uses vector based interpolation 

functions such that the tangential component of the field is zero at all element boundaries except 

one. At this boundary, the tangential component is defined solely by the shape and orientation 

of that boundary. This approach ensures the desired continuity of tangential component of the 

field but allows the normal component to be discontinuous. It is from this property that the 

name, 'curl-conforming' is derived in that the continuous tangential component is the required 

condition for defining the curl of the vector variable (Nedelec 1986). The non-continuous 

normal component means that the divergence operation may not be defined for the vector 

variable hence the elements are not 'div-conforming'. Spurious solutions still occur with the use 

of curl-conforming elements but they are associated only with zero eigenvalues as opposed to 

the correct physical solutions that have strictly positive eigenvalues. In this way, spurious 

modes can be easily distinguished and disregarded. Figure 2-6 illustrates a curl-conforming 

vector basis function for a two-dimensional triangular element (for ease of visualisation over a 

three-dimensional element). The key features of interest are the constant tangential field 

component on the edge between vertices one and two and the zero tangential components on the 

remaining two edges. 

Zero tangential component of the 

vector interpolation function along 

t h e s e e d g e s 

Constant tangential component of the 

vector interpolation function along 

this e d g e 

Figure 2-6 A curl-conforming vector interpolation function. 
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Equation (2.5) now becomes equation (2.21) for the vector FEM. T(r) represents the 

approximation of the E or H field vector (electric or magnetic respectively) at spatial position r. 

is the unknown nodal coefficient of the vector interpolation function . In order to use 

this approximation for the field vector the vector interpolation functions, x , must be developed 

such that they exhibit the tangential and normal continuity requirements between elements as 

discussed previously (Webb 1993; Webb and Forghani 1993). 

T(r) = (r) (2 21) 

The development of these vector interpolation functions is most easily demonstrated using first 

order elements. These are also known as edge elements because there is a one to one mapping 

between interpolation functions and edges. The procedure can be broken down into the 

following steps: 

1. Define a standard tetrahedral element mapping edges to vertices. 

2. Develop three-dimensional simplex coordinates. 

3. Use the simplex coordinates and gradients of the simplex coordinates to formulate vector 

functions that satisfy the continuity requirements. 

4. Derive the elemental matrix equations via integration of the vector basis functions. 

5. Compute the three-dimensional elemental matrices. 

6. Assemble and then solve the resulting system of equations. 

In order to use edge elements it is necessary to define a standard mapping between edges and 

vertices as detailed in Table 2-1. 

Vertex i. Vertex i? 

Table 2-1 Edge to vertex mapping for a tetrahedral element. 

This information can be visualised as in Figure 2-7 with the arrows representing the directions 

of the edges running from vertex ij to 
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Figure 2-7 Edge and vertex definition for a tetrahedral element. 

The three-dimensional simplex coordinates are derived as explained in appendix B.3. The 

gradients, V^. , of the simplex coordinates are vector functions with several properties that 

make them suitable for the construction of vector basis functions: 

[O i ^ j and i ^ k 

I ± 1 i = j ovi = k 
= 1 , 1 (2^2) 

1. is a constant vector, the magnitude of which is defined by the coordinates of the 

tetrahedral vertices. 

2. Vi^- is perpendicular to the face opposite vertex i. 

3. The tangential component of V^. along an edge with i as a vertex is dependent only 

upon the geometry of that edge, e.g. the two vertex coordinates. 

4. The tangential component of across a face with vertex i is dependent only upon the 

geometry of that face, e.g. the three vertex coordinates. 

Any scalar function of ^ s multiplied by the vector will possess the same tangential 

continuity characteristics hence it remains to specify a combination of ^ and that are 

suitable for use as a vector interpolation function. The necessity is that the interpolation 

functions be linearly independent of one another. First order vector interpolation functions Tj to 

Tg with the required linear independence have been proposed by (Nedelec 1986) and (Bossavit 

and Verite 1982) and have therefore been named Nedelec-Bossavit edge elements. These curl-

conforming vector interpolation functions can be expressed as: 

23 



(223) 

where i, is the edge number and ij and 12 are the vertices at either end of that edge (see Table 

2-1). N,- is the f* vector basis function, /,• is the length of edge i and is the simplex coordinate 

corresponding to vertex 4. 

2.7 Maxwell Vector Wave Equation 

In treating the fully 3D photonic crystal simulation the governing Maxwell equations can no 

longer be broken down into two scalar equations for each polarisation. Instead the full vector 

equation must be given the Floquet-Bloch treatment and subsequently discretised into a form 

suitable for finite elements. The first step is to substitute Bloch's theorem into the governing 

equation: 

V x 
. f ( r ) 

V x # ( r ) 
\ ^ / 

ff(r) (2.24) 

Block's theorem is used to describe an electromagnetic mode propagating through a periodic 

dielectric, it states that the allowable modes can be expressed as a plane wave modulated by a 

function, Uk(r), which has the same periodicity as the crystal lattice. So the modes can be 

described the wave vector, k, and the periodic function Uk(r), r represents a spatial position: 

(2.25) 

Combining equations (2.24) and (2.25) gives the following eigenvalue equation: 

V x V x g ' ( k r ) 
Uk&O (2.26) 

This can be rearranged to give the vector wave equation for a periodic dielectric as: 

(zk + v)) 
r(r) 

(zk + V)x (r) 
_ r w ( k y 

(2.27) 
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2.8 Approximation of the Differential Equation 

The differential equation is approximated using a weighted residual method. This yields an 

approximation to the true solution via minimisation of an integral over the domain. The 

differential operator on u(r) is defined as follows: 

3 : = (zlk + \7 ) X 
1 

f ( r ) 

afwl 

(;k + \7)) 

(2.28) 

An approximation of the solution will therefore produce a residual, e.g. 

r = 3 M (r) - lu{r) 0 (2 .29) 

The best approximation of w(r) is that which reduces the residual, r, to the least value at all 

points over the domain Q . The weighted residual method enforces the condition: 

Ri = £ w-r dCi = 0 (2 .30) 

In this case the weighting function, w,-, is chosen to be the same as the vector interpolation 

function, N,-. Hence the residual and subsequently, the integral of the weighted residual, are 

defined as follows; note the wave vector has been omitted at this stage for clarity: 

^ = V x 
/ 1 ^ 

—r^Vxw(r) -Au(r)^0 
J 

(2 31) 

= L 

V x 
j \ 

— ^ V X w(r) - A w(r) 
V 

V x 
V V 

V X w(r) - Ny • Au(r) 
s [ r j J J 

dQ. — 0 

(2J2) 
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Using the vector identity: 

C.(Dx(AxB)) = (AxB).(CxD), (233) 

One can rearrange (2.32) to give: 

^ V X w(r)j . (V X Ny ) - - ;i«(r) 

f=I 

/ 
1 

r(r) 
VX N; 

\ 

, ( v x N j •Ny/l N;M,. dd = 0. 

(2.34) 

Substituting the wave vector terms back in at this stage leaves the integral equation that must be 

solved using finite elements: 

L"' 
1 

r(r) 
[V + z k ] x N j . ( i v + zk]xN ) do. — •u.dfl=0. (2.35) 

Equation (2.35) is rearranged into the form of a generalised eigenvalue problem. The material 

permittivity term, l/s(r), and frequency term, X, are constant factors and can therefore commute 

outside their respective integrals: 

1 

r(r) 
J^M,[-([v + zk]xN,.)-([V + zk]xN^.)]<iQ = ;iJ^M,.[N^. (2.36) 

The right hand side of equation (2.36) is clearly a simple product of the metric or T matrix, the 

3D derivation of which is detailed in Appendix F.2. The left hand side must be simplified into 

component matrices. This is performed via the following steps: 

26 



[ - ( v + zk) X N J . [ ( v + zk) X Ny ] 

[V X N. + zk X N,. ] . [ v X N .̂ - fk x N .̂ ] 

(V X N, ) . (v X N J + (zk X N,.). (v X N J 

- (zk X N J . (V X N,.) + (k X N j . (k X ) 
(2.37) 

( V x N , ) . ( V x N j - > S 

+ zk. [(N,. X V X N J - (Ny X V X N.)] zk - P 
V / \ V 

+ A:"N,-N^. 

- ( k . N , X k N j ^ k ^ J k 

We can now formulate the generalised eigenvalue equation in terms of the wave vector, k, and 

the component matrices, S, P, T and J. 

A(k)x = A Bx 

A(k) = S + zk .P + A:"T-k^Jk (2.38) 

B = T 

Hence, in generating the eigenvalue equation we need to perform the integration presented in 

equation (2.39) to generate the necessary elemental matrices. The equations can all be integrated 

numerically; for the complete derivations of these matrices, see Appendix F: 

7;. = | ^ N , . N , d n 

^ = [ (VxN, . ) . (VxN, . ) (^Q 
r / \ \ (239) 

^ (N, x V X N J - X V X N,. 

- ' , = i ( k - N , X k - N , ) d Q 

2.9 Assembly of the System of Equations 

The elemental matrices have to be assembled into a set of global matrices, taking the solution 

over single elements and combining them to give the solution over the entire domain. This can 

be described mathematically as 
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K ^ l K - (2.40) 
e=l 

Where K is the global matrix, e refers to the global element number, M is the total number of 

elements in the domain and is the elemental matrix. This matrix summation requires a 

mapping between global and local node numbers so the elements of K® can be inserted into the 

correct position in the global matrix K. 

Local Node 

Numbering 

Global Node 

Numbering 

Figure 2-8 Global and local node numbering. 

Figure 2-8 illustrates the link between an individual element and its position in a mesh. For each 

element, we store the local to global node number mappings as illustrated in Table 2-2. 

Local Node Number Global Node Number 

1 23 

2 28 

3 27 

Table 2-2 Local to global node map. 

Therefore when the elemental matrix K® is assembled into K, element is summed into 

element (̂23,23) and so on as depicted in Figure 2-9. 
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-̂ (23,23) •̂ (23,28) -̂ (23,27) 

^(2,2) ^(2.3) -̂ (28,23) -̂ (28,28) -̂ (28,27) 

-̂ (3,2) l^e -̂ (27,23) ^(27,28) -̂ (27,27) 

Figure 2-9 Local to global matrix elements. 

The structure of the global matrices is therefore highly dependent on the global numbering 

scheme. It is beneficial to number nodes such that their difference in an element is minimised. 

This reduces the bandwidth of the resulting diagonal matrices thereby increasing the efficiency 

with which the resulting eigenvalue problem can be solved (Fagan 1992). 

2.10 Reciprocal Lattice Space and the Brillouin Zone 

The periodicity of the crystal lattice allows us to model a crystal of infinite extent by 

considering only the unit cell, an area bounded by the lattice vectors, as illustrated in Figure 

2-10. 

• • • • 
(b) 

Figure 2-10 A two-dimensional crystal lattice (a) and the corresponding unit cell (b). The lattice vectors, ai 

and 32 are highlighted with arrows. 

A crystal can be described by the function s(r) which represents the permittivity at spatial 

position r. The crystal's periodic structure means it is invariant under any translation equal to an 

integral multiple of the lattice vectors. This periodicity can be stated mathematically as: 

£-(r) = ^(r + ma^ + , 

where and a; are the lattice vectors and m and n are integer values. 

(2.41) 

It is the periodic nature of the crystal lattice that allows the application of Bloch's theorem 

29 



(Equation (2.25)). This states that the allowable electromagnetic modes can be represented by a 

plane wave modulated by a function, u, which has the same periodicity as the lattice. This 

theorem introduces the wave vector, k, as a parameter for the magnetic field intensity. The set 

of these wave vectors exist in reciprocal lattice space, a concept that is fundamental to solid 

state physics (Kittel 1986). 

Reciprocal lattice vectors define reciprocal lattice space in the same way that real-space lattice 

vectors define the crystal lattice. The reciprocal lattice vectors (e.g. bi and 5%) are computed as a 

function of the real-space lattice vectors (e.g. a j and sii) according to equation (2.42). The 

direction of the reciprocal lattice vectors is dictated by the Kronecker-delta operator that dictates 

ai and are orthogonal as are 82 and bi. 

a i h j = 2 7 r S y . (2.42) 

The magnitude of the reciprocal lattice vectors can be computed simply as, 

where 0 is the angle between the lattice vectors. The crystal lattice and its reciprocal are 

illustrated in Figure 2-11. 

• • t 
b2 

bi 

(a) (b) 

Figure 2-11 Lattice vectors in real space (a) and reciprocal lattice space (b). The direction and magnitude 

of the reciprocal lattice vectors are governed by equations (2.42) and (2.43) respectively. 

The periodicity of the crystal lattice allows us to consider only the unit cell when modelling a 

crystal of infinite extent. In the same way, we need only consider the set of k-vectors that are 

contained within the 'unit-cell' in reciprocal lattice space. This set is said to lie within the 1®' 

Brillouin zone in reciprocal lattice space, a region in which all wave vectors are unique and 
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cannot be reached via translation by an integer product of the reciprocal lattice vectors. Hence, 

when computing the allowable modes as a function of the wave vector we need only consider 

values of k that lie within the T' Brillouin zone. 

The Brillouin zone can be constructed by extending lines between a reciprocal lattice point and 

its nearest neighbours. The perpendicular bisectors of these lines are then taken with the area 

enclosed by these bisectors being the 1®' Brillouin zone. The presence of symmetries within the 

Brillouin zone allows the domain of k to be reduced further to avoid redundant k vectors that 

produce degenerate modes. Thus we form an irreducible Brillouin zone that cannot be 

subdivided by the lines of symmetry. The Brillouin zone construction and irreducible Brillouin 

zone are shown in Figure 2-12 (a). The dimensions of the Brillouin zone are given in Figure 

2-12 (b) as a function of the real-space lattice pitch length, a. 

Irreducible 

Brillouin Zone 
1 Brillouin Zone 

(a) (b) 

Figure 2-12 Brillouin zone construction for a triangular lattice (a) Dimensions of the Briliouin zone in terms 

of the real-space lattice pitch length (b). The 1st Briliouin zone is highlighted in grey with the Irreducible 

Brillouin zone cross-hatched. 

So in order to solve the original generalised eigenvalue problem as a function of k, the domain 

of k is the irreducible Brillouin zone. Wave vectors within this area will produce unique (non-

degenerate) solutions, the set of which formulate the spectrum of the photonic crystal, hi 

practice, one can sample a discrete number of points along a path describing the perimeter of 
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this irreducible Brillouin zone or a sample distribution of points can be taken from the area. 

For each position in reciprocal lattice space (e.g. each wave vector, k) we can compute n bands 

of ascending frequency, as these are the lowest n eigenvalues. This allows the modes to be 

classified by their wave vector, k, and the band number, n, i.e. H(k, «). 

Let A„(b) be the n"' eigenvalue at a given wave vector, k. A plot of these eigenvalues as one 

moves around the Brillouin zone produces a band diagram (see 2.12 Data Visualisation), 

effectively the spectrum of the original problem. 

When dealing with a true unit cell, defined to be a cell of the smallest area possible necessary to 

describe that crystal structure, we can choose a set of k-vectors that describe a path around the 

irreducible Brillouin zone as described previously. However, for cases in which a true unit cell 

is not used, for example when investigating super-cells incorporating defects and cells without 

nice symmetries, a convenient Brillouin zone path is not always easily available. In these cases 

we can choose the set of k-vectors in a quasi-random fashion from the area contained within the 

first Brillouin zone. A Sobol sequence (Press, Teukolsky et al. 1999) is utilised to ensure that 

the chosen vectors are evenly distributed within the prescribed area, as shown in Figure 2-13 

(a). The vectors are subsequently sorted such that adjacent vectors as found in the file are also 

adjacent in reciprocal lattice space as highlighted in Figure 2-13 (b), this ensures that the 

similarity of adjacent solutions can still be exploited in the eigenvalue solver. In this way, one 

can reconstruct the spectra of a PC without having to construct a path in reciprocal lattice space. 
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fiffilf 
(a) (b) 

Figure 2-13 A Sobol sequence; a quasi-random distribution of points (a) and the linl<ing of adjacent points 

highlighting their close proximity (b). 

2.11 Solution of the System of Equations 

Assembly of the elemental matrices gives rise to a generalised eigenvalue problem. This is 

solved using a subspace iteration technique to determine a given number of least dominant 

eigenvalues, along with their corresponding eigenvectors. The method is based on a 

combination of the power method (Jennings 1977), where several vectors are iterated upon 

simultaneously, and the properties of the Rayleigh quotient (Bathe and Wilson 1976; Sehmi 

1989). Conversion to the standard eigenvalue format is not required, so full advantage can be 

taken of the sparsity and symmetries of the matrices. Using this method, a number of simple but 

effective optimisations can be employed. 

o Calculation of only the physically relevant eigenvalues: typically, the pertinent information 

is contained in the lowest 10 eigenvalues and the vast majority need not be found. 

® Exploitation of the similarity of adjacent solutions: When calculating band diagrams, a 

series of similar eigensystems needs to be solved. By feeding in the solution of one 

eigensystem as the initial guess for the subspace search of the next system, the number of 

iterations required for convergence is significantly reduced. 

® Searching a larger subspace than strictly necessary: The subspace iteration converges 

rapidly to the most dominant eigenvectors in the subspace but struggles to find the least 
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dominant ones. This difficulty in converging to the last components can be avoided by 

searching a slightly larger subspace and neglecting to find the final, difficult, eigenvectors. 

2.12 Data Visualisation 

Having assembled the A and B matrices and then solved the resulting eigensystem, equation 

(2.9), as a function of the wave vector, k, we are left with a set of eigenvalues and 

corresponding eigenvectors that need to be visualised. 

==,l]B;c (2.9) 

The subspace iterative eigenvalue solver allows a specific number, n, of the least dominant 

eigenvalues to be computed for each k vector in reciprocal lattice space. Hence we have 

« X k eigenvalues and their eigenvectors, which can be categorised as follows; 

The values of interest are the frequencies of the allowable electromagnetic modes. Due to the 

scaling properties of Maxwell's equations as discussed previously in chapter 2.3, these 

frequencies are presented in dimensionless units, (x)a/2%c, where co is the frequency, a, is the 

length of the unit cell and c is the speed of light. This normalises the spectra for a given 

photonic crystal irrespective of its scale. The conversion from eigenvalue to dimensionless 

frequency is straightforward: 

Ok) = [Jv, Ok)]: . (2.11) 

The 'band structure' is contained in this data set. If the discrete set of wave vectors has been 

chosen such that they form a coherent path around the irreducible Brillouin zone the band 

structure can be plotted as a band diagram, also known as a dispersion relation (Figure 2-14). 

The normalised frequencies of the modes are plotted against the wave vector. If a photonic band 

gap exists for the photonic crystal being modelled this will be seen as a frequency range that is 

not intersected by any of the bands. 
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Photonic Band Gap 

Path around Biillouin Zone 

Figure 2-14 Example of a band diagram for a photonic crystal. The frequency range that none of the bands 

intersect is highlighted, this represents a photonic band gap. 

The mode frequencies can also be visualised as a density of states diagram, an example of 

which is presented in Figure 2-15. This is a histogram of the frequency density of eigenvalues 

against the normalised frequency, e.g. coa/lnc is plotted along the x-axis with the frequency 

density along the jv-axis. This is a useful data representation as it clearly shows any band-gaps. 

These are simply frequency ranges where the density drops to zero. 

Density of states diagrams are particularly usefril when modelling crystal structures for which a 

true unit cell is not used, for example when investigating super-cells incorporating defects or 

cells without symmetries. In these cases a convenient Brillouin zone path is not always easily 

constructed and instead a 'Monte-Carlo' approach (Newman and Barkema 1999) to wave vector 

selection is taken, for example, the quasi-random selection of vectors based on a Sobol 

sequence. The discontinuity in k prevents the band diagram from being a useful representation 

of the data hence a density of states diagram is the preferred method of presentation. 
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TE Mode 
TM Mode 

0.5 1 
foa / 2nc 

1.5 

Figure 2-15 Example of a density of states diagram for a photonic crystal. The frequency range for which 

the density of states drops to zero represents a photonic band gap. 

For many photonic crystal structures band gaps appear only for a specific range of filling 

fractions; thus by varying the rod radius (r) whilst keeping the pitch (a) constant one can 

determine where the band gaps exist in the form of a 'gap map', see Figure 2-16. The rod to 

pitch ratio (r/a) is represented on the x-axis and the normalised frequency, (i)a/2nc, is 

represented on the )/-axis. The presence of TE and TM band gaps are then plotted on to these 

axes. The benefit of visualising the band structure in this way is that it clearly highlights where 

any complete band gaps appear and where their size is greatest. 

OJ &4 
Radius (r/a) 

Figure 2-16 Example gap-map for a triangular lattice plotting the band-gap frequency ranges for both the 

TE(dashed) and TM (solid) modes against the rod radius. 
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For each eigenvalue, there is a corresponding eigenvector. Each eigenvector represents an 

allowable mode of propagation through the photonic ciystal. The values that comprise the 

eigenvector are proportional to the field intensity at the corresponding node positions in the 

mesh, e.g. for the eigenvector x in equation (2.9) the value, represents the field intensity at 

the node in the mesh. Hence, for two-dimensional meshes, the modes of propagation can be 

visualised as a surface plot of the eigenvectors based on the mesh representation of the crystal, 

e.g. Figure 2-17. 

Figure 2-17 Example of a field intensity plot. The magnitude of the field is plotted at mesh node points. 

2.13 Comments on the FEM 

The FEM has several advantages over traditional plane-wave expansion techniques and FD 

methods. 

• The photonic crystal unit cell is represented by a two-dimensional triangular or three-

dimensional tetrahedral mesh. This simple and intuitive representation of the domain 

allows arbitrary and complex crystal structures to be modelled more directly than the 

Fourier transform representation used in the plane wave method. 

• Each triangle (element) stores its dielectric constant. Hence, the inherent discontinuities 

in the dielectric constant between materials can be expressed accurately. This is not the 

case in the plane wave method where Gibbs phenomena associated with the truncated 
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Fourier representation of £(r) can affect the accuracy of the computation (Villeneuve 

and Piche 1994). 

o The domain discretisation need not be regular as opposed to the meshes most usually 

used in FD methods. This allows irregular meshes to be used that may well model the 

detailed physical PC structure more naturally. 

® The FEM gives a piecewise continuous solution rather than the point-wise counterpart 

generated from FD techniques. This means that the way in which the solution varies 

over an element is an integral part of the FEM as opposed the discrete point based 

solution provided by FD methods. 

« Self-adaptive mesh refinement (Thompson, Soni et al. 1999; Molinari, Cox et al. 2001) 

enables the mesh quality to be improved in areas of high relative error. This can 

significantly increase the solution accuracy for minimal additional computational cost. 

This is far harder to perform using FD methods, where commonly the whole domain 

discretisation has to be refined to improve the solution quality. 

® The FEM can be adjusted for the three-dimensional vector case. This has the advantage 

of enforcing the correct continuity requirements between elements so that spurious 

modes are avoided; this is covered in more detail later in this report (Section 2.5). 

® The A and B matrices in the resultant eigenvalue problem are sparse, allowing memory 

and processor requirements to scale with 0(n) rather than 0(2n'^) {d is the number of 

dimensions) for plane wave expansion techniques. This sparseness arises from the 

topology of the mesh, with each node connected to, on average, six other nodes in two 

dimensions. This leads to only six values per matrix row. This is not the case in the 

plane wave method where dense matrices store the coefficients of the Fourier expansion 

terms. Each matrix value holds a coefficient thus the resulting matrices are dense. This 

is the major advantage of the FEM, making modelling of complex 2-dimensional and 

particularly 3-dimensional PEG structures feasible (Pissanetsky 1984). Figure 2-18 

clearly depicts the sparsity of the assembled global matrices. It represents an 800 x 800 

A matrix (Equation (2.17)) with dots representing the non-zero elements. 
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Figure 2-18 Sparse Global Matrix: 800 x 800 = 640, 000 elements. 12460 non-zero elements gives a 

sparsity of approximately 2%. 

The accuracy of solution produced by the FEM is closely related to the number of interpolatory 

nodes in the model. Increasing the number of interpolatory nodes improves the quality of 

solution, but at the expense of increased computational cost. The number of interpolatory nodes 

can be controlled in two ways. Firstly, and most trivially, the domain can be subdivided into a 

greater number of smaller elements; this is known as /z-refinement. Computing the solution over 

a smaller element will give a better approximation to the true solution since the 'resolution' of 

the solution is improved. 

(a) (b) 

Figure 2-19 h-refinement for a triangular lattice unit cell. Mesh (a) is composed of 200 elements, mesh (b) 

is composed of 1000 elements. 

Secondly, the order of interpolation can be increased, increasing n where an degree 

polynomial is being used to approximate the solution over an element. This is also known as p-

refinement. A greater flexibility in the interpolation function comes at the cost of an increase in 
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the number of interpolatory nodes and hence an increase in the number of interpolation 

functions. In 2-dimensions, the number of interpolation functions for a given interpolation order 

increases as the triangular numbers, e.g. 3, 6, 10, 15 for orders 1, 2, 3, 4 (see Section 2.2). For 

good quality meshes the ratio of number of interpolation nodes to the total number of elements 

in the mesh for an interpolation order p, is approximately p^/2. The relative benefits and costs of 

h and p refinement, in the context of a two dimensional treatment of photonic crystal modelling, 

are investigated later in this report (see Section 4.2). In the next chapter we use the code we 

have developed to compute the band structure for a variety of common photonic crystal 

structures and we compare our results with those obtained from other sources, including plane 

wave expansion techniques, finite difference methods and experimental data. 
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3 Results 

In order to validate the FE code it is necessary to perform analyses of dielectric structures that 

can be compared with other results presented in the literature. These results can be either 

theoretical or experimental. The theoretical results can be further divided into true (analytical) 

and approximate (numerical) solutions. This section presents FE solutions for comparison with 

those structures that can be represented and solved analytically, and for several other common 

structures that have been examined numerically using other techniques, for example, plane wave 

expansion and finite difference methods. FE analyses are also presented for comparison with 

experimental data. 

3.1 Comparison with Analytical Results 

The propagation mode frequencies for free-space can be calculated analytically according to 

equation (3.1). The frequency, X, is computed as a simple function of the wave vector, k, and 

the reciprocal lattice vector, G. The derivation of this equation can be found in Appendix D:. 

A = [ z ( G 4 - k ) P = ( G - h k ) \ (3.1) 

This result can be used to verify that the FE code is producing a good approximation to the 

correct solution in this case. 

The unit cell representation for free-space is arbitrary so long as periodic boundary conditions 

are enforced and the dielectric constant for all elements is set to one (Sair=I). For simplicity, a 

square unstructured triangular mesh representation is used as shown in Figure 3-1. 

Figure 3-1 Unstructured triangular mesh representation of a square free-space unit-cell. 
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The FE and analytical band diagrams are presented in Figure 3-2. The band frequencies range 

between 0 and 2 on a normalised frequency scale and the wave-vector, k, is sampled from a 

path circulating the irreducible Brillouin zone (see chapter 2.12). Overall, the band diagrams 

show excellent agreement; slight inconsistencies are present but these are to be expected due to 

the approximate nature of the FE solution. 

r X 
K-Vector Path 

r X 
K-Vector Path 

(a) (b) 

Figure 3-2 Analytical, (a), and Finite element, (b), free-space band diagrams. 

3.2 Comparison with Numerical Results 

Many photonic crystal structures have been examined theoretically using other numerical 

methods (see chapter 1.1) (Axmann, Kuchment et al. 1999). Further validation of the FE code 

can be made by comparing analyses of equivalent structures to those found in the literature. 

Photonic crystals that are invariant in one dimension and periodic in the remaining two are 

commonly based on an arrangement of cylindrical rods in a substrate as shown in Figure 3-3. 
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Figure 3-3 A typical two-dimensional photonic crystal structure consisting of cylindrical rods arranged 

periodically in a substrate material. 

Two such arrangements that have been well studied are the square and triangular lattices, the 

geometries of which are shown in Figure 3-4 and Figure 3-6 respectively. Circular rods are 

arranged in a background material such that their centres are positioned at the lattice points. The 

unit-cell can be derived from the lattice as the area bound by the lattice vectors. This is the 

maximum area after which the structure repeats periodically. The unit cell structure is 

approximated with an unstructured triangular mesh representation. Figure 3-4 and Figure 3-6 

show these unit-cells and examples of how the unit-cells are tiled to recreate the crystal 

structure, note that the mesh boundary vertices must be periodic in order for the cells to tile 

correctly. 

32 

ai 
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(c) (d) 

Figure 3-4 Square lattice rod arrangement (a) and the square lattice geometry (b). Single (c) and tiled (d) 

unit-cells for a square crystal lattice of rods in a substrate material. 

The band structure for a square lattice of alumina rods in air with a filling rod to pitch (r/a) of 

0.2 was computed using the FE code and can be seen in Figure 3-5. Comparison with the 

equivalent analysis as presented in (Joannopoulos, Meade et al. 1995) shows excellent 

agreement. The key feature of the diagram is the large band gap in the TM mode between the T' 

and 2°^ bands. A complete band gap does not appear for this structure. This result also agrees 

with the plane wave calculation and experimental transmission data as presented in (Xiangdong, 

Zhao-Qing et al. 2001). 

K-Vector Path 

(a) (b) 

Figure 3-5 Photonic band structures produced by (a) the finite element code code with the solid and 

dashed lines representing the TM and TE modes respectively and (b) reproduced courtesy of 

Joannopoulus et al. for a square lattice arrangement of alumina rods (b=8.9) in air with a relative rod 

radius, r/a, of 0.2. 
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The triangular lattice was modelled for air rods in a gallium arsenide (GaAs) substrate material. 

Gallium arsenide is a widely used material in optoelectronics and for this simulation, the 

permittivity is considered constant at 11.4. The rod radius to pitch length ratio was 0.48. The 

resulting band diagram (see Figure 3-7) exhibits a large band gap in the TE polarisation between 

the 1®' and Z™' bands stretching between 0.33 and 0.51. There is also a band gap in the TM 

polarisation between the 2°'̂  and 3'̂ '̂  bands from 0.42 to 0.51. The frequency ranges of these gaps 

overlap hence the crystal produces a complete photonic band gap in both polarisations. The size 

of the band gap can be given but this is not a meaningful value due to the scaling properties of 

the underlying Maxwell equations, therefore the band gap is best described in terms of the ratio 

of the size of the gap to the mid-gap point, Leo!coq- This quantity is invariant under scaling of the 

unit cell and for this photonic crystal structure it is 0.09/0.465 = 0.19. 

(a) 

|aj = |a21. 0 = 60° 

(b) 

(c) (d) 

Figure 3-6 Triangular lattice rod arrangement (a) and the triangular lattice geometry (b). Single (c) and tiled 

(d) unit-cells for a triangular crystal lattice of rods in a substrate material. 

A similar structure was analysed for comparison with the result presented in (Villeneuve and 

Piche 1994). Air rods with a filling fraction of 83% set in a substrate with refractive index 3.5. 

For a direct comparison, a different path around the reduced Brillouin zone was used. 

Comparison of the two band diagrams again shows excellent agreement (see Figure 3-8). 

45 



K-Vector Path 

(a) 

FWonlc Bond Gop 

(b) 

Figure 3-7 Photonic band structures produced by (a) the finite element code with the solid and dashed 

lines representing the TM and TE modes respectively and (b) reproduced courtesy of Joannopoulus et al. 

for a triangular lattice arrangement of air rods with a relative radius, via, of 0.48 in a substrate material, 

e=13. 

K-Vector Path K r M K 
(a) (b) 

Figure 3-8 Finite element analysis (a) and plane wave analysis courtesy of Villeneuve et al. (b) of a 

triangular lattice of air rods (filling fraction = 80%) set in a substrate with a refractive index of 3.5. The solid 

and dashed lines represent the TM and TE modes respectively. 

A further comparison can be made with the plane wave analysis presented in (Charlton, Parker 

et al. 1999). The crystal structure was a triangular lattice of air rods in silicon nitride, but with a 
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lower filling fraction of only 30%. This reduction in the rod radius effectively closes the 

photonic band gap. The results of the FE analysis, presented in Figure 3-9, show excellent 

agreement with the plane wave analysis of the same system. 

K-Vector Path 

Figure 3-9 Band diagram for a triangular lattice of air rods in silicon nitride, dielectric constant = 4.0804, 

filling fraction = 30%. 

Another photonic crystal structure commonly presented in the literature is the square array or 

'woodpile'. This structure is composed of a square grid of dielectric veins as shown in Figure 

3-10. The band diagram was computed for a square array of alumina (s = 8.9) veins in air. The 

filling fraction (ratio of vein to substrate area) was 36%. The result is shown in Figure 3-11. No 

band gap is present for the TM polarisation but a large gap opens up in the TE polarisation 

between the and 2"̂  bands with gap to mid-gap ratio, AcoIcoq = (0.41-0.33) / 0.37 = 0.22. 

(a) 
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(b) (c) 

Figure 3-10 (a) Square array or 'woodpile' photonic crystal structure; A square grid of dielectric veins is set 

in a substrate material, (b) The unit cell mesh representation and (c) an example of 4 unit cells tiled 

periodically. 
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Figure 3-11 Photonic band structures produced by (a) the finite element code with the solid and dashed 

lines representing the TM and TE modes respectively and (b) reproduced courtesy of Joannopoulus et al. 

for a square grid lattice of alumina (=8.9) in air, filling fraction equals 36%. 

The results of our investigation into commonly modelled photonic crystal structures concur with 

the general rules governing the existence of band gaps as presented in (Joannopoulos, Meade et 

al. 1995). The key points are as follows: 

• Crystal structures with disconnected areas of high dielectric constant favour band gaps 
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in the TM mode polarisation, as can be seen in Figure 3-5 where the crystal structure 

consists of disconnected rods of alumina, £=8.9. 

• Crystal structures with connected areas of high dielectric constant favour band gaps in 

the TE mode polarisation, as can be seen in Figure 3-11 where the crystal structure 

consists of a square array of connected areas of alumina. 

In order to create a crystal with a complete band gap, where there is a frequency range for which 

both polarisations are excluded we need to combine both these characteristics. They would seem 

to be mutually exclusive but a compromise between the two in which a structure has areas of 

high dielectric constant connected by narrow veins can exhibit the desired complete photonic 

band gap. The obvious example of this is the triangular lattice of air rods in a high dielectric 

substrate, e.g. Gallium Arsenide, £=11.4. Figure 3-12 illustrates these points for the triangular 

lattice. 

Narrow connection Area of high dielectric 

constant joining areas of high 

dielectric constant 

Low dielectric 

constant substrate 

High dielectric 

constant substrate 

Figure 3-12 Example of a triangular lattice of air rods in a high dielectric constant substrate. Note the 

highlighted areas of high dielectric constant (shaded red) connected by narrow veins of substrate material 

(highlighted green). 

3.3 Comparison with Experimental Results 

Photonic crystal structures have been examined experimentally using fabricated devices and 

lasers (Charlton and Parker 1998; Charlton, Zoorob et al. 2000). It is important to compare 

experimental data with that produced using the FE code, as ultimately, if the code is not 

delivering an accurate representation of what is actually happening when these crystals are 

being used then it is of very limited real value to researchers in the field. 

Transmission through a triangular lattice of air rods in gallium arsenide with a filling fraction of 

80% (similar to that illustrated in Figure 3-13) has been measured, the result of which can be 

seen in Figure 3-14 (a), note the frequency running along the x-axis has been normalised to 
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allow comparison with the FEM output. 

20KV WD 7MM 000 P 0 9 0 8 9 

Figure 3-13 Bridge waveguide structure (pitch=300nm) courtesy of Martin Charlton, Southampton 

Microelectronics Research Group. 

A FEM analysis of the same PC (same material and structural parameters) yields a density of 

states diagram also shown in Figure 3-14 (b). Comparing the transmission and density of states 

diagrams one can see the same key features, namely a sharp attenuation in the transmission 

intensity and a corresponding decrease in the density of states around a normalised frequency of 

0.42. This is further proof that the FE code is providing a good approximation to the real 

physical system. 

TE Mode 
TM Mode 

— TM MODE 

— TEMODE B 60 

o 50 

52 40 

8 0^ 0̂ ^ 
Normalised frequency (a/X) 

04 oa oa 
ma /2?rc 

(a) (b) 

Figure 3-14 (a) Transmission diagram for a triangular lattice PC consisting of air rods in a GaAs substrate 

with a filling fraction of 80%. (b) FEM analysis of the same structure. A triangular lattice unit cell mesh of 

circular rods was used. The rod material was air(£=1) and the substrate material was GaAs (£=11.4). 

3.4 Band Gap Maps 

Several square and triangular lattice meshes were generated with rod radii to pitch length ratios 
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ranging from 0.06 to 0.50 in 0.02 increments. The spectra for each of these meshes were 

computed for air rods in a gallium arsenide (GaAs) substrate. The lowest 20 eigenvalues were 

computed using second order interpolation functions at 30 k-vectors sampled from a path 

describing the irreducible Brillouin zone. These are presented in Figure 3-15. They show 

excellent agreement with the equivalent data presented in (Joannopoulos, Meade et al. 1995). 

For the square lattice arrangement of GaAs rods in air (Figure 3-15 (a) ) there are several TM 

mode gaps but no TE mode gaps. The largest gap, also the lowest in frequency starts at an r/a of 

0.1 reaches its maximum frequency width at 0.2 then disappears at 0.4. The other main gaps 

follow a similar pattern but they are reduced in size and shifted to the top-right of the diagram. 

All the gaps have disappeared when the r/a reaches 0.5, corresponding to the point at which the 

rods become connected. The square lattice of air columns in a GaAs subsfrate (Figure 3-15 (b)) 

yields both TE and TM modes gaps but for a significantly larger rod radius. Again, there is no 

complete band gap present. 

The triangular lattice of GaAs rods in air exhibits similar but slightly larger gaps in the TM 

mode as were seen for the equivalent square lattice. However, this structure also has two gaps in 

the TE mode although these do not overlap with the TM mode gaps to give rise to a complete 

photonic band gap. The triangular lattice of air rods in GaAs a significant band-gap for the TE 

mode emerges at r/a = 0.2 up to 0.5. An overlapping band-gap for the TM mode gives rise to a 

complete band-gap from r/a = 0.42 to 0.5, so both polarisations are excluded in this frequency 

range for this photonic crystal structure. Several other smaller gaps can be seen in the 

normalised frequency range above 0.6 (£)a/2%c. 
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Figure 3-15 Band gap maps for photonic crystal structures: (a) square lattice of GaAs rods in air (b) square 

lattice of air rods in a GaAs substrate (c) triangular lattice of GaAs rods in air (d) triangular lattice of air 

rods in a GaAs substrate. TE polarisation band gaps are highlighted in red, TM polarisation band gaps are 

highlighted in blue and complete band gaps are highlighted in yellow. 

3.5 Three Dimensional FE Analysis 

The development of the three-dimensional vector finite element code proved to be highly 

problematic. The formulation of the elemental matrices is made more complex and there are 

four rather than three elemental matrices to consider. This arises from having to model the full 

vector wave equation rather than simplifying it into two scalar components. Also, the edge 

based interpolation functions are more difficult to formulate than their scalar counterparts, 

particularly for higher interpolation orders. 

Enforcing continuity of scalar values at the nodal points forms the basis of the two-dimensional 

scalar finite element method. The analogous requirement in the three-dimensional vector finite 

element method is to enforce tangential continuity across an elements edge, hi order to 

implement this correctly it is necessary to consider the orientation of adjoining edges and also 

adjoining faces when assembling the global matrices. These additional constraints coupled with 

the inherent difficulty of visualising a three-dimensional object in a two-dimensional format 

made testing and debugging the code an extremely difficult and time-consuming procedure. 

Section 3.6 presents a detailed discussion of the progress that has been made towards a working 

version of a three-dimensional vector finite element code. 

52 



The primary purpose of this research is to provide accurate and efficient finite element 

modelling software. This was a novel approach to the task of modelling photonic crystals, which 

at the time the research commenced, had not been well investigated. However, the widespread 

interest in photonic band gap devices has led to a number of companies releasing commercial 

vector finite element codes with a focus on photonic device modelling since the inception of this 

work. Rather than view this in a negative light it confirms that our initial motivation to begin the 

research was well founded and particularly valid. 

The availability of such 'off-the-shelf packages led to the move in focus from the development 

of the three-dimensional vector finite element code to photonic crystal design optimisation. This 

allowed the exploration of a new area of research whilst at the same time exploiting the highly 

optimised two-dimensional code we had already developed. It is hoped that the progress made 

so far can be used as the basis for further academic research. 

3.6 Free-space Propagation at the Gamma Point 

The solution to the vector wave equation (1.7) can be solved analytically for the case of 

propagation through free-space (see Appendix D:). This analytical solution is further simplified 

if one considers modes of propagation at the gamma point only, where the wave-vector, k, 

equals zero. The mode frequencies are proportional the square root of X as shown in equation 

(3.2). 

(3 J ) 
I c y 

G represents the set of vectors emanating from the gamma point outwards to the reciprocal 

lattice points. Figure 3-16 is a graphical representation of this set of vectors travelling from the 

gamma point, highlighted by the blue dot, to the other reciprocal lattice points, highlighted in 

red. This set is stated mathematically in equation (3.3); m and n are integers and bi and b2 are 

the reciprocal lattice vectors. This is for the two-dimensional case; the three-dimensional case 

would require an additional integral multiple of the third reciprocal lattice vector. 

G = /Mb, + Mb 2. (3.3) 

The value of X is equal to the square of the magnitude of the corresponding vector G. Inspection 

of Figure 3-16 reveals that the vectors, G, can be grouped into those of equal magnitude. 
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Clearly these are going to produce equal values of X. 

Figure 3-16 The first 20 G-vectors in reciprocal lattice space correspor)ding to a square unit-cell 

representation of free-space. 

Table 2-1 gives the values of and the number of times that they occur, n. Plotting these 

values in order of ascending magnitude would give a series of discrete steps of length n. The 

values of X correspond to the eigenvalues computed by the finite element code. Therefore, 

plotting the eigenvalues computed for a mesh representation of free-space at the gamma-point in 

ascending order should give us approximately the same pattern of discrete steps. 

(G)' n 

0 1 

1 4 

2 4 

4 4 

5 8 
8 4 
9 4 

Table 3-1 The values of A (reciprocal lattice vector magnitude squared) and the number of times, n, that 

value occurs. 

This data is shown in Figure 3-17. The lowest 30 eigenvalues were computed for a 200 element 

square unit-cell mesh with the permittivity of all the elements, s = 1 corresponding to that of 

free-space. The agreement between the analytical data presented in Table 3-1 and the plot is 
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excellent with distinct discrete steps in X with the number of times that they occur being as 

expected. 

12 

10 

0 10 15 20 
Eigenvalue Number 

25 30 

Figure 3-17 A plot of the lowest 30 eigenvalues (a) computed for free-space at the gamma point (k = [0 0]) 

and the corresponding mesh representation offreespace (b). 

An analogous approach can be employed for initial testing of the three-dimensional code. The 

set of G reciprocal lattice vectors can be constructed according to equation (3.4) 

G = mb, + Mb; + ph^ (3/1) 

These can be visualised by constructing the 3D reciprocal lattice space, as shown in Figure 

3-18, figure (a) highlights the first 6 reciprocal lattice vectors of the shortest magnitude; figure 

(b) highlights the next group of 12 reciprocal lattice vectors of the same magnitude. The next 

group of eight reciprocal lattice vectors of equal magnitude extend to the eight comers of the 

reciprocal lattice space shown. Therefore, the lowest 125 eigenvalues are grouped as shown in 

Table 3-2. 
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(G)' n 

0 1 

1 6 

2 12 

3 8 

4 6 

5 24 
6 24 
8 12 

9 24 

12 8 

Table 3-2 The values of A (reciprocal lattice vector magnitude squared) and the number of times, n, that 

value occurs. 

Figure 3-18 Reciprocal lattice space for a cubic unit cell, (a) represents the first 6 reciprocal lattice vectors 

of equal magnitude (b) represents the next 12 reciprocal lattice vectors of equal nnagnltude. 
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Figure 3-19 Plot of the analytical solution at the gamma-point for free-space in three-dimensions. 

Three-dimensional mesh representations of free-space were generated using a number of public 

domain meshing algorithms. These consisted of cubic unit-cells composed of tetrahedral 

elements. These meshes were used as input to a beta version of the vector finite element code. 

The eigenvalues for three such meshes of increasing granularity are plotted in Figure 3-20, 

Figure 3-21 and Figure 3-22. Although the results do deviate from the exact analytic solution 

(see Figure 3-19) it is clear that as the granularity of the mesh increases the numerical solution 

is converging towards the correct solution. 

We were unable to produce such accurate results for wave vectors other than the gamma point. 

This was due to errors still present in the formulation of the elemental matrices. 

A(k)% = AB(%) 

A(k) = S + ;k .P - i -A ; 'T4-k^Jk 

B = T 

(3.5) 

The fact that the correct results can be obtained at the gamma point indicates that the Dirichlet, 

S, and metric, T, matrices are being computed correctly therefore suggesting that the remaining 

bugs lie within the formulation of the P and J matrices. 

To summarise, we have developed a vector finite element code capable of understanding 

various 3D input formats produced by popular public domain meshing algorithms, the necessary 
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periodic boundary conditions have been implemented and the correctness of the S and T 

matrices has been verified. Work remains to be done to correctly compute the P and J matrices. 
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Figure 3-20 A plot of the lowest 74 eigenvalues, (a), for a three-dimensional mesh representation of free-

space consisting of 106 vertices and 310 tetrahedral elements, (b). 
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Figure 3-21 A plot of the lowest 195 eigenvalues, (a), for a three-dimensional mesh representation of free-

space consisting of 225 vertices and 822 tetrahedral elements, (b). 
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Figure 3-22 A plot of the lowest 230 eigenvalues, (a), for a three-dimensional mesh representation of free-

space consisting of 260 vertices and 958 tetrahedral elements, (b). 

The problem of spurious modes is clearly apparent from the 3D eigenvalue plots. The analytic 

solution produces one zero eigenvalue corresponding to the reciprocal lattice vector, G = (0, 0, 

0). Our numerical result produces far more zero eigenvalues, with the exact value being equal to 

the number of internal vertices (those vertices not lying on the unit-cell boundary) in the mesh. 

This is clearly a problem in terms of efficiency as to compute the lowest n eigenvalues of 

interest we actually have to compute n + w eigenvalues, where w represents the number of 

internal vertices. For example, Figure 3-22 shows that for a 958-element mesh there are 162 

internal vertices, therefore to compute 60 eigenvalues that correspond to real solutions we have 

to compute the lowest 222 eigenvalues with 162 of those corresponding to non-physical 

solutions. An alternative eigenvalue solver has been written to solve this problem, based on the 

Implicitly Restarted Lanczos method, (Golub and Van Loan 1996), (Calvetti, Reichel et al. 

1994), it can be used to filter out the zero eigenvalues as they converge by removing them from 

the sub-space. 

3.7 Fabrication Constraints 

It is vital to consider real world constraints when investigating numerical models. In the case of 

modelling photonic band gap devices one must consider the errors involved in the fabrication 
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process. We may have an accurate model but variations in the fabrication process may result in 

actual devices based on our theoretical results having significantly different optical 

characteristics. 

Typically, we are interested in photonic devices that exhibit a band gap in the visible light 

region of the electromagnetic spectrum. For diffraction to occur the feature size of a photonic 

crystal must be comparable to that of the wavelength to which it is intended to operate, hence 

we need to have a feature size in the order of 10"®m. Triangular lattice arrangements of air rods 

in a substrate material have been chemically etched with a pitch length (distance between rod 

centres) of 310nm (Charlton and Parker 1998), (Campbell, Sharp et al. 2000). The absolute error 

for this distance is ±15nm. The absolute error for a rod radius of lOOnm is +5nm. This 

corresponds to a relative error of 5% for both the rod position and the rod radius. 

(a) (b) 
Figure 3-23 The error associated with(a) the rod radius and (b) the rod position. 

It is important to understand the implication of these tolerances on the resulting band structure 

of the photonic band gap device. In order to investigate this we designed an experiment 

allowing us to observe the effect of random fluctuations in both rod position and radius. A nine 

rod rhombic unit-cell was used as the basis of the experiment as can be seen in Figure 3-24. 250 

meshes were generated in which the rod radii could vary by up to ±5%, representing the current 

fabrication tolerance. This was repeated in decreasing integral increments down to 1% to 

illustrate how the situation would change if fabrication tolerances were to improve. In every 

case, the relative error in the rod position was fixed at 4.8%. Each of the 1250 meshes were 

analysed using the finite element code. The material parameters used corresponded to air-rods in 

GaAs. 
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Figure 3-24 A rhombic unit-cell containing nine rods. The radius of these rods vary randomly within a 

prescribed percentage error constraint. 

The resulting eigenvalues were post-processed to produce Figure 3-25. This presents the mean 

upper and lower normalised frequency values for a given % error in the rod radius. The error 

bars represent ± one standard deviation away from the mean. 

1.5r 
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1 2 3 4 5 6 

% Error in Rod Radius 

Figure 3-25 A plot of the upper and lower bounds of the band gap against the relative error In the rod 

radius. The error bars represent one standard deviation either side of the mean. 

The large number of randomly generated meshes resulted in the lower and upper bounds of the 

frequency ranges having a normal distribution. This allowed us to compute the probability of 

our nine rod triangular lattice crystal would exhibit a band gap within a given fabrication 

tolerance. Figure 3-26 shows the distribution functions of the upper and lower frequency values 

for a 1% relative error in the rod radius (a) and a 5% relative error (b). The probability of a 

photonic crystal not exhibiting a band gap is equal to the area in which the upper and lower 

frequency distribution functions overlap. For a 1% rod radius tolerance the overlap is small, 

hence the probability of fabricating a photonic crystal with a robust band gap is good. Increasing 

the rod radius tolerance to 5%, that which we expect from current fabrication techniques, has a 
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dramatic effect. The overlap of the lower and upper frequency limits is far greater resulting in a 

probability of a device exhibiting a band gap of only 0.42. The probabilities of fabricating a 

device that exhibits a photonic band gap are given in Table 3-3. 

1.3 1.35 
(oa /23CC 

1.45 1.3 
coa / 2xc 

(a) (b) 

Figure 3-26 The normal distributions of the positions of the lower (red) and upper (blue) bounds of the 

photonic band gap frequency range for a relative error in the rod radius of (a) 1 % and (b) 5%. 

Relative Error (%) Probability of a Band Gap 

1 0.99 

2 0.92 

3 0.81 

4 0.59 

5 0.42 

Table 3-3 The probability of a triangular lattice photonic crystal exhibiting a photonic band gap for a given 

relative error in the rod radius. 

The equivalent experiment was performed varying the error in the rod position while keeping 

the error in the rod radius constant. 250 meshes were generated for relative errors of 1,2, 3 and 

4%. This data was combined with that generated previously in Table 3-3 where the rod position 

error was 4.8% corresponding to the current relative error in the lithography process at the 

University of Southampton. The results from these analyses are presented in Figure 3-27. The 

probability of the photonic crystal (see Figure 3-24) exhibiting a photonic band gap is plotted 

against the relative error in the rod position. The various lines correspond to variations in the 

rod radius error. 
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Figure 3-27 Probability of the photonic crystal exhibiting a band gap for various relative errors in the rod 

position. Each line corresponds to a different relative error in the rod radius as explained in the legend. 

From Figure 3-27 it can be seen that the error in position of the rods makes little difference to 

the probability of there being a band gap. The probability values vary by relatively small 

amounts as the error in the rod position increases, there is also no obvious trend in the values as 

the positional error increases, the values simply oscillate around the mean. This is in stark 

contrast to the effect of error in the rod radius. Thus we can conclude the most important factor 

in the fabrication of photonic crystals is the filling fraction. It is vital that this value is controlled 

within as low a relative error as possible if the numerically modelled and fabricated counterpart 

are to exhibit the same photonic band gap. 

Analysis of the triangular lattice structure with the finite element code showed the optimum 

filling fraction to be 83%. This corresponds to a radius to pitch length (r/a) of 0.48. Multiplying 

by a pitch length of 310nm gives us an actual rod radius of 148nm. Considering a worst-case 

scenario, this rod radius could be 5% larger at 155.4nm. This gives a rod diameter that is greater 

than the pitch length; hence the substrate material would become disconnected and is likely to 

collapse rendering the device useless. 

To summarise, we are left with a situation in which the accuracy of the numerical model 

exceeds that of the fabrication technique. Investigation into the effects of errors in the 

fabrication process, particularly with regard to rod-radius and therefore the filling fraction, has 

shown that a large variation from the desired behaviour is probable with current fabrication 

techniques. It is vital therefore, that current techniques are refined or new techniques developed. 
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4 Performance 

4.1 Accuracy and Convergence 

Since the FEM computes an approximation to the true solution for a given spectral problem, it is 

important to estimate the accuracy of a given solution and the rate at which the approximate 

solution converges to the true solution (Villeneuve and Piche 1994). 

The spectrum for free space can be computed using the FEM and compared with the analytical 

solution as explained in chapter 3.1. This calculation can be repeated for varying mesh 

granularities to ascertain the rate of convergence. 

Highest Eigenvalues 

Lowest Eigenvalues 

10 " 

Mesh Granularity (No. of Elements per unit cell) 

Figure 4-1 Convergence of the FEM for free-space. The maximum relative errors for the lowest 9 

eigenvalues are plotted against mesh granularity. 

Figure 4-1 demonstrates that FEM eigenvalues converge to the correct answer as the mesh 

granularity is decreased. A series of 2-dimensional FEM analyses of propagation of 

electromagnetic waves in free space were performed, using increasingly fine meshes; in each 

case, the lowest nine eigenvalues were compared to corresponding analytical solutions of the 

system. The maximum relative error in each of the eigenvalues is plotted against the number of 

nodes in the mesh. The maximum relative error is computed using the following formula: 
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relative error = 
approx eigenvalue - true eigenvalue 

true eigenvalue 

The maximum relative error refers to the eigenvalue for a given mesh (for each mesh, nxk 

eigenvalues are computed where n is the number of eigenvalues computed at each k-vector and 

k is the number of ^-vectors sampled) that has the greatest relative error. The diagram also 

shows that the lower eigenvalues tend to be significantly more accurate than higher ones. 
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Figure 4-2 Convergence of the FEM for a triangular Lattice. The maximum relative errors for the lowest 

nine eigenvalues are plotted against mesh granularity. 

The same procedure was performed with a triangular lattice. As the analytical solution is not 

available for this system, the exact eigenvalues were estimated by extrapolation of the modelled 

data and plotted in Figure 4-2. 

Both figures have a gradient of approximately minus one; as both axes are logarithmic, doubling 

the mesh density for a unit cell halves the relative error. 

4.2 Optimising 2D Algorithm Performance 

The first step is to check that the cost in terms of memory and computation for various 
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interpolation orders does scale linearly as the theory of the FEM suggests. Secondly, the 

relationship between the quality of the solution, the mesh size and the interpolation order needs 

to be investigated. To do this, a number of triangular lattice meshes were created with the 

number of elements ranging from 25 to 4000 elements. The filling fraction was kept constant at 

50%. These meshes were run through the FEM code for first to fourth order interpolation. The 

lowest 10 eigenvalues were computed for 50 k steps taken from the Brillouin zone. The 

computation time and the resulting eigenvalues were recorded. The relative error was computed 

via comparison to a pseudo-exact solution (4000 element mesh with fourth order interpolation). 

Plotting computation time against mesh size (Figure 4-3) showed a linear relationship for all 

four interpolation orders confirming the 0(«) scaling of computation cost. 
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Figure 4-3 Comparison of computation time with mesh size (no. of elements) for interpolation orders one to 

four. 

Analysis of the relationship between mesh size (number of elements) and the number of non 

zero values in the resulting eigensystem matrices (Figure 4-4) also revealed an exactly linear 

relation for all interpolation orders. This confirms that the memory cost of the algorithm also 

scales with 0(«) as the memory requirement of the algorithm is that of the sparse matrices 

stored. 

66 



.x10 

S 6 

> 

0 

- o 

h009 O oo O o oo O o o 

o 1st order 
X 2nd order 
+ 3rd order 
o 4th order 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 
Mesh Size (no. of elements) 

Figure 4-4 Comparison of no. of non zero matrix values with mesh size (no. of elements) for interpolation 

orders one to four 

Having confirmed that memory and computation scale with 0(«), the performance of the 

algorithm must be investigated, i.e. how can we achieve the best possible solution with the 

minimal effort in terms of memory and computation. 

Plotting relative error against the number of non-zero matrix values exposes the interpolation 

order that will yield the most accurate solution for a given memory cost. This is true as the 

number of non-zero matrix elements is directly proportional to the memory cost of the 

algorithm. The interpolation order that is closest to the bottom left comer of the figure 

(representing the ideal of minimum memory for lowest error) is the one that gives the optimal 

solution quality for the minimum memory cost. Figure 4-5 shows that there is little to choose 

between interpolation orders two and three with fourth order appearing marginally worse. It is 

clear that first order does not perform as well. 
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Figure 4-5 Comparison of relative error with the no. of non zero matrix values for interpolation orders one 

to four. 

A plot of relative error against computation time (Figure 4-6) reveals similar results, optimal but 

indistinguishable performance for second and third orders, marginally worse for fourth order 

and significantly worse for first order. 
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Figure 4-6 Comparison of relative error with computation time for interpolation orders one to four. 
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Bearing this in mind it seems that using second or third order interpolation gives optimal overall 

performance. However, it is important to bear in mind that for a given number of non-zero 

matrix values the mesh size will be larger for the lower interpolation orders as there are less 

interpolatory nodes. This leads to the fact that the actual dielectric structural representation will 

be more accurate for lower interpolation orders for a given memory cost. This issue could make 

second order interpolation a better choice for very complex crystal structures. 

4.3 Object-Oriented Software Approach 

This section outlines the software engineering side of the project. 

The finite element analysis software has been developed using C++ (Stroustroup 1997), Python 

(Lutz 1996) and Matlab (The Math Works 1999). Python and Matlab were used primarily as 

rapid prototyping tools. The fact that they are scripting languages makes them particularly 

suitable for this purpose. The code was then converted to C++ for the performance gain of a 

compiled, rather than interpreted language. 

Python and C++ combine well as they are both strongly object-oriented languages hence 

converting between the two is relatively simple. Matlab excels in matrix based computation and 

data visualisation. This has been useful for verification of portions of the code, e.g. the 

eigenvalue solver, and for visualisation of the band diagrams, electric and magnetic fields. 

The object oriented programming paradigm encapsulates data and methods together into 

objects. These objects can communicate via message passing. A message can invoke a method 

presented in an objects interface. This arrangement allows objects to hide their functionality and 

merely present services to other objects via well-defined interfaces. 

This arrangement allows complex software systems to be built up in a modular fashion from a 

number of objects, each object offering a range of related services. This approach increases 

productivity and gives scope for greater reusability of code. The FEMLBB software class 

structure is as follows: 
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Figure 4-7 FEM class structure. 

4.4 Classes and Interfaces 

The main classes and their structure are depicted in Figure 4-7. These classes along with their 

constituent methods and data members are described in Appendix G:. The mesh geometry data 

is produced by Easymesh and output into a number of separate files. These files are processed 

by FEMLIB to produce an object-oriented representation of the mesh. In the 2D case, this 

involves producing an e lement , s i d e and v e r t e x object corresponding to each one in the 

mesh. This idea can be extended to higher dimensions with the introduction of higher order 

simplexes. The objects must contain the relevant information describing the structure of the 

mesh. For example, a v e r t e x object must contain its position in space, a s i d e object must 

know the vertices at each of its ends and an e l e m e n t must know from which sides it is 

constructed. 

This connectivity between objects is achieved by implementing vectors of pointers to objects 

e.g. a s i d e has a vector of pointers to v e r t e x objects and an e lement has a vector of pointers 

to s i d e objects. 

A mesh object uses the same principle. It has a vector of pointers to every e lement , s i d e and 

v e r t e x in that mesh. This is illustrated in Figure 4-8. 
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Figure 4-8 Pointer based mesh storage structure. 

This approach to the mesh structure facilitates the enforcement of the periodic boundary 

conditions. Figure 4-9 illustrates that corresponding vertices on either side of the bounding 

parallelogram are essentially the same vertex under periodic boundary conditions, e.g. x and y 

are the same vertex. This is represented by having the two vector elements that represent x andy 

point to the same vertex object. In the special case of the comers of the bounding parallelogram, 

four vector elements, a, b, c and d all point to the same vertex object. The same technique is 

used for sides that lie on the boundary. 

Figure 4-9 Periodic boundary conditions. 

The e l e m e n t class contains methods to calculate the elementary matrices. These are stored as 

m a t r i x objects. These m a t r i x objects are then assembled into global matrices by the mesh 

class. These global m a t r i x objects are then passed to the eigenvalue solver. 

A m a t r i x object stores the data elements and provides several methods. These include element 

extraction, matrix-scalar operations, matrix-vector operations, matrix-matrix operations, 

similarity transforms, Cholesky decomposition and reduction to tri-diagonal form. 
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The z o n e p a t h class defines the path of the quasimomentum vector, k, around the Brillouin 

zone. Its methods allow specification of the number of legs the path has, the step size for each 

leg and the Cartesian coordinate of each comer of the path. 

4.5 Computing Resources 

This section details the computational resources that were utilised to run the software that we 

developed. 

The increase in performance achieved by desktop PCs over the last few years has been 

accompanied by a growth in the use of such computers in numerically intensive scientific 

applications. Various 'Beowulf projects (Beowulf 2002) have used the convergence of mid-

range proprietary workstations and desktop PC's to produce commodity super-computers. The 

basic idea is to connect together a number of headless PCs via a network whether it be simple 

Fast Ethernet or a more specialised interconnect and using the flexibility of the operating system 

create an environment wherein the individual workstations, appear to the user, to behave as one 

multi-CPU computer. Since all of the components in such a machine are off-the-shelf and mass-

produced the cost benefits of such an approach are considerable. 

Whilst the finite element code is efficient, it is still computationally intensive. This is especially 

true when modelling complex crystal geometries requiring many thousands of elements and 

high order interpolation functions. This coupled with the sheer number of photonic crystals that 

have been analysed necessitated the use of high performance computing facilities provided by 

the University of Southampton. 

Initial computation was performed on the Linux Beowulf cluster, DGL. Iridis, a substantially 

larger Linux Beowulf cluster, superseded this in December 2001. The optimisation software was 

tied to the Windows operating system due to the third party meshing algorithm; hence 

computation was performed on a test-bed Windows cluster. The technical specifications of these 

computing facilities are as follows. 

4.6 Iridis: The Beowulf Cluster 

Iridis is a Linux Beowulf cluster maintained by the University of Southampton computing 
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services department (Iridis 2002). It has the following specification: 

® 550 processors; consisting of 292 lOOOMhz Intel Pentium Ill's; 80 ISOOMhz Intel 

Pentium IV's and 32 ISOOMhz Intel Pentium IV's 

® 192Gb of memory 

® 8.5Tb of local disk storage 

® 2.8Tb on RAID5 disk array 

It is capable of 484 billion floating-point calculations per second. Jobs are submitted via a 

master node running the EASY job scheduler (EASY 2002). This is a bespoke scheduler 

developed by the University of Southampton. It is specifically tuned to the target-users to 

provide fair resource allocation. 

4.7 Iridis: The Windows Condor Cluster 

A small number of the PC's bought for the Iridis project have been used to create a test-bed 

Windows cluster. It has the following specification: 

® 16 Single Processor Intel Pentium IV's 

» 8.2 GB of memory 

» 600 GB of local disk storage 

The cluster is grid-enabled using Condor (Condor 2002), This is a software system that creates a 

High-Throughput Computing (HTC) environment by harnessing the power of a cluster of 

workstations on a network. Although Condor can manage a dedicated cluster of workstations, a 

key appeal of Condor is its ability to utilise non-dedicated, pre-existing resources in a 

distributed ownership setting such as machines sitting on people's desks in offices and labs. 

Condor provides a framework to harness idle compute cycles within a network of computers. 

The structure is that of a pool of resources (networked workstations) managed by a Central 

Manager workstation. The user submits jobs to the pool from his/her workstation. The Central 

Manager matches resource requests with resources available within the computing pool. 

4.8 DGL: The Beowulf Cluster 

DGL is a small Linux Beowulf cluster maintained by the High Perfonnance Computing Group, 

Department of Electronics and Computer Science, University of Southampton. It has the 
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following specification: 

e 8 Single Processor AMD Athlon 600 MHz 

» 2 GB of memory 

» 180 GB of local disk space 

Jobs are submitted via a master node running the MAUI job scheduler (MAUI 2002). This is a 

well known and respected scheduling algorithm maintained and developed at Brigham Young 

University, Utah. Maui is an open source project and may therefore be freely downloaded, 

modified, and distributed. It is also supported by the Department of Energy, the Pacific 

Northwest National Laboratory, the Centre for High Performance Computing at the University 

of Utah, the National Centre for Supercomputing Applications and many others. 

The availability of these high-performance computing resources has been vital to this research, 

particularly the design optimisation process where large numbers of crystal structures had to be 

analysed. Without the high throughput that these commodity clusters provide, much of the work 

would have been unfeasible due to the increase in the amount of time required. Also, the move 

towards grid-enabled computing, as demonstrated by the Windows cluster running Condor, 

allows the user to move away from the paradigm where one has to specify where and when the 

code should run. The grid-enabled paradigm allows the user to and work at a higher level of 

abstraction avoiding the low-level detail. Hence the user can concentrate on the code and 

subsequently the computed results, it is the computer system that decides where and when the 

code should run. 
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5 12-fold Symmetric Photonic Quasicrystais 

It is desirable in some cases to maximise the band gap while minimising the contrast in 

dielectric constant (Villeneuve and Piche 1994). One way of achieving this is to experiment 

with novel crystal geometries. One such promising structure is the 12-fold symmetric 

quasicrystal (Zoorob, Charlton et al. 2000). This crystal structure shows great potential as a 

novel photonic band gap material exhibiting a band gap for relatively low filling fractions and 

dielectric contrasts. The band gaps are highly homogeneous with respect to the angle of 

incidence of the incoming light due to the crystals high degree of rotational symmetry. These 

crystals have been analysed using the finite element method developed specifically for 

modelling PBG structures. We present and discuss quasicrystal structures and their optical 

properties. 

5.1 Quasicrystal Configurations 

The quasicrystal structure proposed in (Zoorob, Charlton et al. 2000) is based on a dodecagon 

composed of an inner hexagon consisting of six equilateral triangles surrounded by a ring of 

squares and equilateral triangles. The two fundamental quasicrystal structures are the 'square-

square' and 'triangle-triangle'. The descriptions highlight the way in which the dodecagons are 

joined to form the lattice. Examples of each are shown in Figure 5-1, with the unit cells outlined 

in bold. Anisotropics can also be introduced to the lattice by rotation of the dodecagons to 

produce 'square-triangle' arrangements, however, these structures require larger unit cells to 

reproduce the anisotropy when periodically tiled. 

(a) (b) 

Figure 5-1 12-fold symmetric quasicrystal configurations: (a) 'Triangle-Triangle' and (b) 'Square-Square'. 
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Figure 5-2 shows unstructured triangular mesh representations of the 'triangle-triangle' and 

'square-square' configurations. The circular rods are centred on the vertices of the quasicrystal 

structure. 

Figure 5-2 Unstructured triangular mesh representations of the rhombic unit-cells: (a) 'triangle-triangle' and 

(b) 'square-square' configurations. 

Several meshes were produced, in both configurations, with rod to pitch length ratios (r/a) 

varying from 0.1 through to 0.5 in 0.01 increments. These meshes were used with the FE code 

with various material parameters including air-rods in gallium arsenide, silicon nitride and glass 

and vice versa, e.g. gallium arsenide rods in air. The set of k-vectors were sampled from a path 

describing the irreducible Brillouin zone, K ^ F -> X -> K, as illustrated in Figure 5-3. 

bij 
Irreducible Brillouin 
Zone Path 

1 Brillouin Zone 

Figure 5-3 The irreducible Brillouin zone path, K ^ r X ^ K, used in the analysis of the quasicrystal 

photonic band-gap devices. 

5.2 Results 

Dispersion relations are presented in Figure 5-4 for both the 'triangle-triangle' and 'square-

square' crystal configurations with a rod radius to pitch length ratio (r/a) of 0.5 for air rods in 

silicon nitride (SiN, s = 4.1) and gallium arsenide (GaAs, s= 11.4). A complete band gap is 

evident between 0.48 and ^.Slcoa/2nc for GaAs, whereas SiN only exhibits a small gap in the 

TM mode centred at 0.31>cm/27rc. In all cases, 'triangle-triangle' and 'square-square' 

configurations produced almost identical spectra. The mirror symmetry shown between 

76 



dispersion relations as one moves along K-r and F-X in reciprocal lattice space proves that a 

crystal rotation of 30° produces the same band structure. This supports the claim that 

quasicrystals are highly homogeneous with respect to the angle of incidence of incoming light. 

r X 
K-Vector Path 

r X 
K-Vector Path 

(a) (b) 

r X 
K-Vector Path 

r X 
K-Vector Path 

(c) (d) 

Figure 5-4 Dispersion relations for: (a) 'triangle-triangle' configuration of air rods in SiN substrate; (b) 

'triangle-triangle' configuration of air rods in a GaAs substrate; (c) 'square-square' configuration of air rods 

in SiN; (d) 'square-square' configuration of air rods in a GaAs substrate, r/a = 0.5 for all crystals. The solid 

and broken curves correspond to the transverse electric (TE) and transverse magnetic (TM) polarisations 

respectively. 

A similar analysis was made for both quasicrystal configurations, but with a significantly 

smaller r/a of 0.3. The resulting density of states diagrams (Figure 5-5) allow direct comparison 
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with the results presented in (Zoorob, Charlton et al. 2000). The diagrams are similar in their 

key features, namely the presence of two band gaps in the TM mode centred at 0.22 and 0.275 

(X)a/2nc. The gap width to mid gap ratios of these gaps in Figure 5-5 (a) are 9% and 4% for the 

lower and higher gaps respectively. In Figure 5-5 (b), the gap width to mid gap ratios are 

significantly different at 4.5% and 8%. In addition, there is a pronounced peak in density of 

states in the TE mode in Figure 5-5 (a) across the lower frequency band gap that is not present 

in Figure 5-5 (b) and a significant reduction in the density of states for the TE mode within the 

higher fi-equency gap in Figure 5-5 (b) that is not present in Figure 5-5 (a). 

200 

0̂ )5 0.1 
aa/2«c 

0# 04 

(b) 

Figure 5-5 Density of states diagrams for triangie-triangle (a) and square-square (b) quasicrystal 

configurations. Air rods in a gallium arsenide substrate, dielectric constant = 11.4, r/a=0.3. The solid and 

broken curves correspond to the transverse electric (TE) and transverse magnetic (TM) polarisations 

respectively. 

It has been proposed that complete band gaps exist for 12-fold symmetric quasicrystal PCs 

consisting of air rods in substrate materials with a dielectric constant as low as 2.1 

(corresponding to glass) (Zoorob, Charlton et al. 2000). FEM analyses of the equivalent PC 

structures presented in that paper were computed, the density of states diagrams are shown in 

Figure 5-6. Diagram (a) corresponds to a quasicrystal with an rod radius to pitch length ratio of 

0.3 (corresponding to a filling fraction of 30%) and a background dielectric constant of 4.1, 

equal to that of silicon nitride, a common material in opto-electronic components (Netti, 

Charlton et al. 2000). Diagram (b) corresponds to a quasicrystal with an r/a of 0.3 and a 

background dielectric constant of 2.1, equal to that of glass, again a commonly used opto-
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electronic material. The FE analysis does not produce a complete band gap in either of these 

cases. A small band gap centred at 0.355 was present in the silicon nitride case for the TE 

polarisation. However, this is in agreement with a recent publication examining the spectral 

properties of these structures using the multiple scattering method (Xiangdong, Zhao-Qing et al. 

2001). The absence of a complete band gap for air holes in silicon nitride suggests that air holes 

in glass will not possess such a gap either, as the dielectric contrast between rod and background 

material is further reduced. Figure 5-6 (b) confirms this prediction with no band gaps in either 

TE or TM modes although there is a significant reduction in density of states in both modes at 

0.42 (X)a/2nc. 

• TM Mode 

• TE Mode 

o 80 

0.15 0 ^ 0.25 0.3 O a s 0.4 0.45 O j 0 5 5 0 ^ 

roa f2-nc 

TE Mode 

TM Mode 

OJ OJ 
me 
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Figure 5-6 Density of states diagrams for a triangie-triangle quasicrystal configuration with r/a = 0.3: (a) 

substrate dielectric constant = 4.1 (silicon nitride) (b) substrate dielectric constant = 2.1 (glass). 

The agreement of Figure 5-6 (a) with the equivalent analysis presented in (Xiangdong, Zhao-

Qing et al. 2001) prompted further comparison with their results. Figure 5-7 (a) is a density of 

states diagram for a quasicrystal with a filling fraction of 75% and a background dielectric 

constant of 8.9. This diagram shows excellent agreement with a robust TM mode band gap 

centred at 0.38 coa/iTtc and a complete band gap at 0.49 coa/iTtc. The gap width to mid-gap ratio 

of the complete band gap is 61%. Figure 5-7 (b) is a density of states diagram for a quasicrystal 

with a filling fraction of 54% and a background dielectric constant of 11.4. This corresponds to 

Figure 6 in (Xiangdong, Zhao-Qing et al. 2001) and also shows excellent agreement, 

particularly in the complete band gap centred at a normalised frequency of 0.5. 
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Figure 5-7 Density of states diagrams for (a) air-rods in a substrate material of dielectric constant = 8.9, r/a 

= 0.47 (b) air-rods in a substrate material of dielectric constant = 11.4, r/a =0.40. 

Band gap maps of the normaHsed frequency range of TE and TM mode band gaps plotted 

against the filling fraction are displayed in Figure 5-8. Hence, one can easily observe the filling 

fraction that produces the optimum PBG. The results are shown in Figure 5-8. While band-gaps 

do appear in both the TE and TM modes for a substrate material with a permittivity as low as 

4.1 there is no overlap, hence no complete PBG. Increasing the dielectric contrast does result in 

a complete band gap as can be seen for air rods in GaAs with an r/a between 0.39 and 0.5. The 

maximum frequency range of the gap is 0.47 to 0.55 <m/27ic. Swapping the dielectric materials 

so that we have GaAs rods set in air increases the range of rod radii that produce a complete gap 

to between 0.21 and 0.46 r/a with the maximum frequency range also increasing at 0.32 to 0.58 

cm/lnc. 
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Figure 5-8 Gap-maps for various quasicrystais: (a) 'triangle-triangle' configuration of air rods in SiN. (b) 

'triangle-triangle' configuration of air rods in GaAs, (c) 'square-square' configuration of air rods in GaAs. (d) 

'triangle-triangle' configuration of GaAs rods in air The filling fraction is expressed as the ratio of rod radius 

to the pitch (da). 

Validation of our results can be made through comparison with other tried and tested numerical 

methods and experimental data. Figure 5-9 compares the results of our FEM code (a) with the 

equivalent analysis using a finite difference time domain code (b) and actual experimental data 

(c). The PBG device in each case was a 'triangle-triangle' configuration 12-fold symmetric 

quasicrystal of consisting of air rods etched into a silicon nitride substrate. The filling fraction, 

r/a, was set at 0.23. All three diagrams show strong attenuation in the normalised frequency at 

0 . 3 5 (m/27tc. 
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Figure 5-9 Comparison of results for a 'triangle-triangle' configuration quasicrystal of air rods in silicon 

nitride, filling fraction = 30%. (a) Finite Element Method, (b) Finite Difference Time Domain courtesy of 

Majd Zoorob, (c) Experimental Data courtesy of Martin Charlton, Caterina Netti, Greg Parker and Jeremy 

Baumberg, ECS and Physics Dept. University of Southampton. 

5.3 Introduction of Crystal Defects 

The effect of introducing a defect into an otherwise highly ordered PC structure has prompted 

much interest. The defect could be a variation in the dielectric constant of a rod, alteration of a 

rods diameter or complete removal of a rod or rods (see Figure 5-10). The effect of these defects 

can then be ascertained from the FEM output. The aim is to use defects to control the frequency 

and range of photonic band-gaps. 

The introduction of defects into a crystal structure can cause a single mode or closely spaced 

modes to propagate that have a frequency within the range of the band gap. In this case the 

defect induced mode cannot propagate through the crystal as it has a frequency within the 

forbidden range hence the light is localised and cannot escape, the mode is effectively 'pinned' 

by the defect (Joaimopoulos, Meade et al. 1995). 

The effect of introducing a localised defect to the quasi-crystal unit cell is presented in Figure 

5-10. The defect is constituted by the removal of the central rod. The resulting density of states 

diagram however, does not show any significant differences when compared with the standard 

quasi-crystal. 
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Figure 5-10 Quasicrystal with a central rod defect; mesti and density of states diagram; r/a = 0.3, substrate 

dielectric constant = 11.4. 

5.4 Conclusions 

The 12-fold symmetric quasicrystal does produce complete band gaps but not for especially low 

dielectric contrasts, e.g. air rods in SiN or glass. Complete band gaps appear as the dielectric 

contrast increases, and as the rod radius to pitch length increases. Swapping rod/substrate 

materials such that the PC consists of high dielectric rods in a low dielectric substrate also 

increases the frequency range of the band gaps. In comparison with a standard triangular lattice, 

there is little advantage in the band gaps produced in using a quasicrystal rod arrangement. 

There is however the increased order of rotational symmetry (6 to 12), which makes the 

structure less sensitive to the angle of incidence of the incoming light resulting in a more 

homogeneous band-gap. 

Comparison of results produced with the finite element code show excellent agreement with 

those produced using other numerical methods, including finite difference time domain and also 

with experimental data. The accuracy of the finite element code coupled with its efficiency, both 

in terms of computation and memory requirements make it a very attractive approach to 

photonic crystal modelling. 
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6 Photonic Crystal Design Optimisation 

The objective so far has been to accurately model a photonic crystal's band structure. However, 

as stated previously in chapter 5, it is desirable to design a photonic crystal that exhibits a large 

band gap. There are two approaches to fulfilling this design brief. The first is to analyse the 

results from a selection of judiciously chosen meshes. By coupling this information with an 

understanding of the underlying physics one can formulate a hypothesis as to what properties 

constitute a photonic crystal structure that exhibits a large photonic band gap. 

The second approach is to design and implement an optimisation procedure that does its best to 

find the crystal structure that produces the largest band gap. Essentially, optimisation involves 

simply finding the parameter set that produces a maximum or minimum value of a function. In 

this case the parameter set is the photonic crystal definition, the function is the FE code and the 

value we are aiming to maximise is the size of the photonic band gap. 

Implementation of the optimisation procedure involves coding additional software modules to 

work in conjunction with the FE code. These include an automatic mesh generator capable of 

producing a domain discretisation from a photonic crystal geometry definition file, a post 

processing code used to detect and measure the size of any band gaps in the band structure, and 

a minimisation algorithm to search the parameter space attempting to find the crystal with the 

largest band gap. The integration of these modules with the FE code constitutes the optimisation 

procedure. A schematic of this process is shown in Figure 6-4. 

The optimisation procedure may need to iterate over many crystal designs in order to converge 

to a maximum, hence this approach is only feasible subsequent to the development of the FE 

code which provides a fast and efficient numerical algorithm for photonic crystal modelling. 

6.1 Automated Mesh Generation 

The optimisation process requires a mesh generation code that can create a domain 

discretisation from a high-level photonic crystal definition. Matlab functions were developed to 

act as a front end to the meshing algorithm, Geompack90 (Joe 2001). These allow the 

specification of crystal structures using a higher level of abstraction, e.g. the structure can be 

expressed in terms of the lattice vectors that describe the unit cell and the coordinates and radii 

of the rods within that cell. The code converts this information into the necessary input format 

for Geompack90. Geompack90 then produces the desired mesh representation of the photonic 
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crystal. The code also performs any periodic mapping that is necessary for materials that 

overlap the unit cell boundaries. The mesh generation is not limited to rods in a substrate, any 

polygonal material structure can be specified within a quadrilateral unit cell. An example of an 

input file for the automated mesh generation can be seen in Figure 6-1. 

% mesh name 

hexuni t_ne_5 0 0_f f_8 3 

% lattice vectors 

% [x y] 

1 0 

0 . 5 0 . 8 6 6 0 2 5 4 0 3 8 

% rod configuration 

% [ x y r ] 

0 . 0 0 0 . 0 0 0 . 4 7 

Figure 6-1 Example photonic crystal geometry definition file. 

The data in the file is read and subsequently all photonic crystal features are analysed to see if 

they intersect the unit-cell boundary. If this occurs (as shown in Figure 6-2) the sections of an 

intersecting feature are divided and moved to the relevant position on the opposing boundaries 

to represent tiling of the unit-cells. 

Figure 6-2 Imposition of periodic boundary conditions upon the photonic crystal structure. 

Once the periodicity of the structure has been enforced and all features lie within the unit cell 

the features are discretised into sets of points. These points represent element vertices at the 
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material boundaries. The number of these points is computed as a function of the total desired 

number of elements in the final mesh representation. Blue dots represent the vertices along the 

unit-cell boundaiy with red dots representing 'cookie-cutter' outlines of the features within the 

cell. Material markers can be set for regions that are enclosed by a set of points that can 

subsequently use to specify different material properties in the FE code. 

Figure 6-3 Point based representation of the crystal structure and subsequent unstructured triangular 

mesh based representation of the structure. 

The information generated is saved as three separate files; the required input format for 

Geompack90. These are distinguished by their file extension, *.m2, *.rg2 and *.cs2. The 

*. m2 file is the initial input file for Geompack90. It specifies the type of meshing operation to 

be performed, e.g. 2D, 3D, surface mesh, volume mesh, tetrahedral, hexahedral etc. It also 

specifies the names of the relevant *. rg2 and *. cs2 files. A number of other parameters are 

specified that control factors such as the number of elements and the geometrical properties of 

those elements. A detailed explanation can be found in ' Geompack90 Meshing Operations'' (Joe 

2001). The *.rg2 file contains all the boundary vertices information including their spatial 

coordinates, material properties, enclosed region properties and feature topology (a clockwise 

description of all the points that constitute a feature). The *. cs2 file describes the edge 

topology and associated edge properties. A detailed explanation of these two file types can be 

found in ^Geompack90 File Formats for Regions and Meshes'" (Joe 2001). The output from 

Geompack90 consists of a single *. mh2 file which lists all the element vertices and their 

material markers along with the mesh topology detailing the connectivity of those vertices. This 

output file can be visualised as shown in Figure 6-3. Note that the ' 2 ' in these file extensions 

refers to the fact that we are dealing with two-dimensional meshes. Geompack90 can also 

produce three-dimensional meshes with the relevant files being replaced by their '3 ' extension 

counterparts, e.g. * .m3, * . rg3, * . cs3 and * .mhs. 
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6.2 Eigenvalue Analysis 

It is necessary to detect and measure the presence of any band gaps from the set of eigenvalues 

produced by the FE code. This is achieved by concatenating the set ofnxk eigenvalues into one 

vector. This vector is then sorted into values of ascending order. Subsequently, the difference 

between adjacent values is computed. The maximum of these values corresponds to the absolute 

size of the largest band gap, equation (6.1). 
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Largest photonic band gap = max \d^ d j ( i x n ) - l , 

Comparison of the frequency ranges of photonic band gaps can be misleading due to the scaling 

properties of Maxwell's equations (see chapter 2.3). For example, simply scaling up a crystal 

structure's dimensions will increase the frequency range of the band gap. So, to restate our 

optimisation goal of producing the largest band gap, all we need do is increase the dimensions 

of the crystal structure. In practice, although the bandwidth of the gap increases, the frequency 

range in which the gap exists drops. In order to make useful comparisons between photonic 

band gap devices we need to characterise the gaps in terms independent of scale. This can be 

done by simply dividing the band gap width, Aco, by the mid-point of the gap, a)o,to give the gap 

to mid-gap ratio, Aa>/cOo. This measure of the band gap is constant, regardless of scaling issues. 

6.3 Function Minimisation: The Downhill Simplex Method 

To complete the optimisation procedure we need to implement the maximisation algorithm that 

will attempt to find the crystal with the largest band gap. Although we are trying to maximise 

the band gap size we actually implement a minimisation algorithm. In reality, the difference 

between maximisation and minimisation algorithms is a trivial one, as a funct ion , / could just as 

easily be posed as the function, -f. Our objective is to maximise the normalised frequency range 

of the photonic band gap hence we aim to minimise the reciprocal of the band gap size. The 
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independent variables are the values specified in the photonic crystal structure configuration 

file. The downhill simplex method (Nelder and Mead 1965) is a multidimensional minimisation 

algorithm allowing one to find the minimum of a function with more than one independent 

variable. The algorithm is an obvious choice for this purpose, as it requires only function 

evaluations and not their derivatives. Although not the most efficient of approaches its relative 

simplicity does allow rapid implementation allowing results to be computed quickly and easily, 

hence it is particularly suitable when the computational cost is low. 

The algorithm takes an initial guess vector, v, of length n as input. The vector values v,, ,... 

v„ contain the photonic crystal definition parameters as contained in the definition file (see 

Figure 6-1), e.g. the rod radius values and their centre coordinates. The algorithm then iterates 

through an n-1 dimensional space attempting to find the vector v that gives the maximum sized 

photonic band gap. The algorithm terminates when the convergence tolerance is reached. 



Initial guess: vector v, of 
length n contairtng the 

photonic crystal geometfy 
definition parameters. 

Mesh representation of 
photonic crystal structure Interpolation Order 

iai Parameters 

Set of Xn(k) eigenvalues 

Band gap size 

Convergence criteria not met. 
Output: Next iterafion of the 
crystal definition vector, v. 

FE Code 

Automated Mesh Generator 

Eigenvalue Analysis 

Optimisation Procedure: 
Downhill Simplex Method 

Convergence criteria met. 
Output: Optimal photonic 

crystal structure. 

Figure 6-4 Schematic of the photonic crystal optimisation process. 

The initial-guess crystal definition is fed into the automated mesh generation module. This 

produces a mesh representation of the structure in a format that can be input into the FE module. 

Additional parameters are given including the dielectric constants of the constituent materials 

and the desired number of eigenvalues and the interpolation order. 

The material permittivity parameters are not included in the PBG device definition for two 

reasons: 

1. Whilst the geometry parameters may be varied continuously, the permittivity takes on 

discrete values corresponding to the physical properties of actual materials; hence 

optimisation of the material dielectric constants cannot be practically applied to the 
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manufacturing process. As a general heuristic, the size of the photonic band gap will 

increase with the dielectric contrast between the constituent materials. In practice, as the 

permittivity of the materials increases they become more lossy, thereby reducing 

transmission through the device. Therefore, our model, which is based on the 

fundamental assumption that we are dealing with lossless materials, becomes less 

applicable. 

2. Permittivity is a difficult property to measure or specify because it depends not only on 

the intrinsic properties of the material itself but also on the test method, the test 

frequency and the conditioning of the samples before and during the test. 

Therefore, in our analysis, the photonic crystal geometry is optimised but the material properties 

are chosen to be commonly used optoelectronic materials, for example, silicon nitride and 

gallium arsenide. 

The band structure is computed giving the set of eigenvalues, A,„(k). This data is processed by 

the eigenvalue analysis module which detects and measures the size of any photonic band gaps. 

This band gap information is fed back into the downhill simplex method algorithm. This then 

generates another photonic crystal definition vector in an attempt to improve the band gap. If the 

algorithm has reached a minimum, e.g. the convergence tolerance has been reached, the process 

terminates and the resulting crystal structure is a local optimum. 

6.4 PBG Device Optimisation: Brute Force Approactj 

The optimisation procedure needs an 'initial-guess' photonic crystal definition from which to 

start the function minimisation. The number of iterations necessary before the downhill simplex 

method converges can be significantly reduced if this initial guess is a good one, e.g. the crystal 

structure already exhibits a reasonably sized photonic band gap. A brute force approach was 

used to obtain this initial guess; one thousand unit-cell meshes were generated with random 

arrangements of rods and random rod radii. Twenty crystal structures exhibiting the largest gap 

to mid-gap ratios were selected from the initial 1000 and subsequently used as initial guesses for 

the optimisation procedure. 

Table 6-1 presents the optimisation results. The initial and final band gap measurements are 

given along with the percentage improvement produced by the optimisation procedure. The data 

clearly shows that in almost all cases the optimisation has significantly improved the size of the 
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band gap. The best improvement was seen for rand__mesh_2_0.9_28 with an improvement in the 

band-gap to mid-gap ratio of 264.3%. The mean improvement was 70.3%. 

Mesh Name Initial Aco/con Final Am/mn % Improvement 
quasi_mesh_1_1.7_1 0.118 0.182 53.7 

quasi_mesh_3_1_9 0.105 0.157 49.5 

quasi_mesh_3_1_12 0.101 0.157 55.9 

quasi_mesh_3_1_11 0.109 0.157 43.6 

quasi_mesh_3_1_22 0.112 0.156 39.4 

quasi_mesh_3_1_38 0.108 0.156 44.3 

q u as i_m es h_3_1 73 0.106 0.156 47.6 

quasi_mesh_3_1_25 0.106 0.156 46.6 

quasi_mesh_3_1_13 0.110 0.154 40.1 

quasi_mesh_1_1.1_1 0.109 0.110 1.2 

rand_mesh_2_0.9_168 0.015 0.053 241.6 

rand_mesh_2_0.9_149 0.016 0.051 216.8 

rand_mesh_2_0.9_28 0.014 0.051 264.3 

rand_mesh_2_1_5 0.037 0.049 33.1 

rand_mesh_2_0.9_79 0.022 0.048 120.8 

rand_mesh_2_1_37 0.039 0.046 17.0 

rand_mesh_4_0.6_132 0.024 0.038 60.0 

rand_mesh_4_0.6_52 0.024 0.038 57.9 

rand_mesh_2_1_39 0.036 0.037 3.6 

ra n d_m es h_2_0.9_2 0.011 0.012 9.1 

Table 6-1 Band-Gap optimisation results for the top twenty meshes. 

The two meshes exhibiting the largest band gaps were quasi_mesh_l_1.7_l and 

quasi_mesh_3_ 1 _ 12. Further data for these two meshes can be seen in Figure 6-5 and Figure 

6-7 respectively. The density of states diagrams for the crystal structures are plotted before and 

after the optimisation procedure. This clearly indicates the change in size and position of the TE 

and TM mode band-gaps. The convergence of the minimisation algorithm is presented by 

plotting the gap to mid-gap ratio against the number of iterations. There is oscillation in the 

quality of the band gap through each iteration but the clear trend is that of convergence to an 

optimum sized band-gap. 
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Figure 6-5 Optimisation results for the randomly generated mesh, quasi_mesh_1_1.7_1. The density of 

states is plotted for the crystal before optimisation (a) and after optimisation (b). The convergence of the 

minimisation algorithm is shown by plotting the band-gap to mid-gap ratio against the number of iterations 

(c). The initial (above) and final (below) meshes are shown in (d). 

The meshes from before and after the optimisation process are shown and it is clear that they are 

very similar, the position of the rod centres remains virtually unchanged with the only 

difference being a slightly increased rod radius for the post-optimisation mesh. This same 

characteristic is true of the other twenty meshes. Thus we can conclude that slight alterations in 

the input mesh can lead to large apparent improvements in the size of the resulting photonic 

band gaps. This could have important consequences in the fabrication of photonic band gap 

devices. If such small alterations in the crystal geometry lead to large changes in the band 

structure it is clear that the highly accurate fabrication techniques must be employed if the 
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resulting crystal is to have the desired optical properties. 

It is also of interest that both meshes are very similar in geometry to that of the triangular lattice 

as presented previously in 3.2. This is the structure that allows the largest filling fraction to be 

achieved; therefore it seems sensible to propose the heuristic that the size of the photonic band 

gap increases with the filling fraction of the crystal structure. 
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Figure 6-6 Optimisation results for the randomly generated mesh, quasi_mesh_3_1_9. The density of 

states is plotted for the crystal before optimisation (a) and after optimisation (b). The convergence of the 

minimisation algorithm is shown by plotting the band-gap to mid-gap ratio against the number of iterations 

(c). The initial (above) and final (below) meshes are shown in (d). 
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Figure 6-7 Optimisation results for the randomly generated mesh, quasi_mesh_3_1_12. The density of 

states is plotted for the crystal before optimisation (a) and after optimisation (b). The convergence of the 

minimisation algorithm is shown by plotting the band-gap to mid-gap ratio against the number of iterations 

(c). The initial (above) and final (below) meshes are shown in (d). 

6.5 PBG Device Optimisation: Canonical Forms Approach 

The geometric arrangement of rods in a substrate can be considered simply as dot patterns if one 

ignores the rod radius. It can be stated that there exist two infinite families of types of non-

trivial finite dot patterns, each depending on a positive integer n, seven types of strip dot 

patterns, and thirty types of periodic patterns (Griinbaum and Shephard 1987). Analysis of these 

fundamental arrangements of rods has been performed to ascertain if any show particular 

potential as a basis for a photonic band gap device. This approach increases the efficiency of the 

generation of the 'initial guess' by significantly reducing the number of analyses that need to be 
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performed prior to the optimisation procedure. In the same way as the brute force approach, 

those structures that exhibit the largest photonic band gaps are then further examined using the 

optimisation codes. 
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Figure 6-8 Examples of the types of periodic dot 

Shephard 1987). 

DPP49 

patterns, reproduced courtesy of (Grunbaum and 

Meshes of varying rod radii were generated for each canonical form. They ranged from 0.06 

upwards in 0.02 increments until the rods overlapped. These measurements were relative to a 

unit cell with lattice vectors with a magnitude of 1. Considering air rods in a GaAs substrate 

each mesh was analysed using a 1000 element mesh and 2"̂  order interpolation functions. This 

allowed the generation of band gap map data sets for each canonical form. Two of these data 

sets are presented in Figure 6-9. They highlight the rod radius corresponding to the largest 

photonic band gap and also highlight the difference in maximum potential filling fractions for 

different canonical form geometries. 
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Figure 6-9 Gap-maps for (a) DPS11 and (b) DPP27 canonical forms. The vertical dashed lines represent 

the maximum rod radius before the rods overlap and the substrate becomes disconnected. 

The gap map data for each canonical form was analysed and the ten meshes that produced the 

largest bad gaps were selected for optimisation, the results of which can be seen in Table 6-2. 

Mesh Name Initial Am/(On Final Aco/con % Improvement 
DPS11_ne_500_r_0.42 0.042 0.110 158.8 

DPP47_ne_500_r_0.12 0.071 0.071 0.0 

DPP27_ne_1000_r_0.12 0.030 0.070 131.6 

DPP49_ne_500_r_0.22 0.060 0.061 0.3 

DPP23_ne_500_r_0.14 0.060 0.060 0.0 

DPP48A_ne_500_r_0.14 0.055 0.055 0.0 

DPP21 _ne_500_r_0.22 0.034 0.039 16.0 

DPP42_ne_500_r_0.14 0.032 0.038 19.4 

DPP30_ne_500_r_0.18 0.013 0.018 45.2 

DPP39_ne_500_r_0.18 0.010 0.016 61.2 

Table 6-2 Optimisation data for the top-ten canonical forms. 

The optimisation procedure has been far less effective with these canonical forms than it was 

with the bmte force approach. Four of the ten optimisations resulted in very little noticeable 

improvement, less than ± 5%. Three canonical forms showed a significant degradation in the 

size of band gap with it being reduced by approximately a third in size in each case. However, 

there were two meshes, DPP27 and DPS 11 that did show a large improvement of 132% and 

159% respectively. 

Further data for the three photonic crystal configurations exhibiting the largest band gaps can be 
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seen in Figure 6-12, Figure 6-10 and Figure 6-12 respectively. The 'pre' and 'post' optimisation 

density of states diagrams are compared. The convergence of the optimisation procedure is 

shown by plotting the band gap to mid gap ratio against the number of iterations of the 

optimisation loop. Finally the 'pre' and 'post' optimisation crystal meshes are shown so for 

comparison. 
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Figure 6-10 Optimisation data for canonical from DPS11. The density of states is plotted for the crystal 

before optimisation (a) and after optimisation (b). The convergence of the minimisation algorithm is shown 

by plotting the band-gap to mid-gap ratio against the number of iterations (c). The initial (above) and final 

(below) meshes are shown in (d). 
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Figure 6-11 Optimisation data for canonicai from DPP47. The density of states is plotted for the crystal 

before optimisation (a) and after optimisation (b). The convergence of the minimisation algorithm is shown 

by plotting the band-gap to mid-gap ratio against the number of iterations (c). The initial (above) and final 

(below) meshes are shown in (d). 
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Figure 6-12 Optimisation data for canonicai from DPP27. The density of states is plotted for the crystal 

before optimisation (a) and after optimisation (b). The convergence of the minimisation algorithm is shown 

by plotting the band-gap to mid-gap ratio against the number of iterations (c). The initial (above) and final 

(below) meshes are shown in (d). 

DPP44 and DPP27 are similar in their geometry therefore it is unsurprising that they exhibit a 

similar band structure with a similar sized photonic band gap. DPS 11 is effectively the 

triangular lattice as investigated in chapter 3.2. The band gap to mid gap ratio of this structure at 

0.110 is approximately 60% larger than the other two canonical forms. Thus we can conclude 

that the straightforward triangular lattice exhibits a far superior band gap than all the other more 

exotic canonical form structures. Referring back to chapter 3, the reasons for this are that 

complete photonic band gaps favour crystal structures in which there are areas of high dielectric 

constant connected by narrow regions of dielectric. 
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6.6 Optimisation for a Homogeneous Filling Fraction 

Collating the data produced from the optimisation research into groups of meshes with equal 

filling fractions (Table 6-3) allows one to see which geometries produce the largest band-gaps 

independently of the filling fraction. 

Mesh No. No. of Rods Rod Radius Aco/coO Filling Fraction 

70 7 0.5 0.0108 0.4558 

26 7 0.5 0.0097 0.4558 

43 7 0.5 0.0096 0.4558 

36 7 0.5 0.0091 0.4558 

90 7 0.5 &0075 0.4558 

92 7 0.5 0.0071 O J ^ M 

60 7 0.5 0.0062 0.4558 

88 4 0.7 a0279 0.5105 

60 4 0.7 &0272 0.5105 

7 4 0.7 &0235 0.5105 

58 4 0.7 0.0228 0.5105 

5 4 0.7 a0200 0.5105 

54 4 0.7 0.0167 0.5105 

52 4 0.7 0.0165 0.5105 

6 4 0.7 0.0106 0.5105 

3 4 0.7 0.0092 0.5105 

1 4 0.8 0.0630 0.6668 

6 4 0.8 0.0417 0.6668 

4 4 0.8 0.0328 0.6668 

5 4 0.8 &0281 &6668 

3 4 0.8 0.0158 0 6668 

2 4 0.8 0.0125 0.6668 

Table 6-3 The set of randomly generated meshes that exhibit a photonic band gap grouped into those of 

equal filling fraction. 

Clearly, as the filling fraction increases, the mean band gap to mid-gap ratio also increases. If 

we look at the top three meshes for each filling fraction as presented in Table 6-3 then we can 

also see that as the filling fraction and therefore the band-gap sizes increase, we do indeed see a 

convergence towards the geometry of the triangular lattice. This is shown in Figure 6-13, Figure 

6-14 and Figure 6-15. Looking back at the optimised meshes exhibiting the largest photonic 

band-gaps (Figure 6-5 - Figure 6-7) it is clear that they are all examples of the triangular lattice 

with a high-filling fraction. 
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Figure 6-13 The three meshes exhibiting the largest band gaps for 4 rods in a rhombic unit cell with a filling 

fraction of 0.46; (a) mesh 70: Aa/caO = 0.0108, (b) mesh 26: Aco/aO = 0.0097, (c) 43: Aco/coO = 0.0096. 
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Figure 6-14 The three meshes exhibiting the largest band gaps for 4 rods in a rhombic unit cell with a filling 

fraction of 0.51; (a) mesh 88: Aco/aO = 0.0279, (b) mesh 60: Aa/coO = 0.0272, (c) 7: Aco/coO = 0.0235. 
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Figure 6-15 The three meshes exhibiting the largest band gaps for 7 rods in a rhombic unit cell with a filling 

fraction of 0.67; (a) mesh 1: Aco/coO = 0.0630, (b) mesh 6: Aco/coO = 0.0417, {c) 4: Aco/coO = 0.0328. 

6.7 Conclusion 

The brute-force and canonical form approaches to photonic crystal design optimisation has 

highlighted a number of clear trends. First and foremost is that the probability of a certain 

crystal geometry exhibiting a band-gap increases with the filling fraction. Secondly, the 

triangular lattice arrangement of rods is still the most successful design when trying to maximise 

the size of the band-gap. These two points are closely related as if one is to achieve a filling 

fraction in excess of 78.5% (the maximum filling fraction for a square lattice) then the geometry 

has to be that of a triangular lattice or at least a very close approximation. The optimum 

structures produced by the brute force approach and the canonical form approach both 
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converged to that of the triangular lattice with a relatively high filling fraction. Considering 

crystal geometries with a homogeneous filling fraction further reinforces this heuristic with the 

most successful crystal lattices as presented in chapter 6.6 all tending towards the triangular 

lattice geometry. 
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7 Conclusion 

7.1 Summary 

This thesis investigates the application of finite element methods to the modelling of photonic 

band gap devices. Their physical properties and potential applications are discussed along with 

the motivation for developing software capable of modelling these devices. The underlying 

physics governing the propagation of light through these crystal structures is presented and the 

process of applying the finite element method to the set of governing equations has been shown 

in detail. The differences between the two-dimensional and three-dimensional models are 

highlighted and the necessary modifications to the finite element method are explained. 

The primary contribution of this work is the library of finite element code and associated 

optimised eigenvalue solvers. Unlike other computational electromagnetic software packages, 

this library has been created specifically for the analysis of photonic band gap devices. This has 

allowed many problem specific optimisations to be incorporated into the design resulting in an 

accurate and efficient numerical method. 

The secondary contribution of this work has been to utilise the library of finite element 

software. We have studied the effect that fabrication tolerances have on the band structure of 

photonic crystals and the design optimisation of photonic crystal structures in order to maximise 

the size of their photonic band gap. Further work has also been carried out including 

investigation of the properties of a number of commonly modelled photonic crystal structures, 

along with more exotic, novel structures such as the twelve fold symmetric quasicrystal. The 

performance of the finite element code is investigated; the accuracy and convergence is 

examined along with the computation and memory requirements. 

As explained in chapter 1.1, a photonic band gap device excludes photons of certain energies, in 

other words, the propagation of a certain electromagnetic frequency range is prohibited. This 

phenomena arises due to Bragg like diffraction caused by the structure of the photonic crystal, 

typically a periodic structure composed of two dielectric materials of different permittivity. This 

photonic band gap can be thought of as the luminary analogue of the electronic band-gap found 

in semiconductors. 

One has only to consider the impact of semiconductors in the field of electronic engineering to 
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appreciate the interest that photonic band gap materials generate in the field of optical 

engineering. Perceived applications for photonic band gap devices include sharp angle wave-

guides, highly efficient single mode lasers, integrated optical circuits and high-speed optical 

communication networks. 

Photonic crystals must have a feature size comparable to the wavelength light they are designed 

to work with. Therefore if a photonic crystal with a band gap in the spectrum of visible light is 

required the feature size must be of the order of approximately 100 nm. Accurately fabricating 

these devices on such a small scale is very costly; therefore software capable of accurately and 

efficiently modelling the behaviour of these crystals is highly desirable. 

Modelling the propagation of light involves solving Maxwell's equations given the correct 

boundary conditions. The specific application to wave propagation through a photonic crystal 

allows the equations to be refined to give the governing equation as shown in equation (2.6). As 

we are dealing with a crystal structure, e.g. one that varies periodically through space, we must 

apply periodic boundary conditions to the governing differential equation. For all but very 

simple scenarios, such as wave propagation through free-space, one cannot solve the governing 

equation analytically; thus a numerical method is needed to approximate the true solution. It has 

been the focus of this research to use finite elements as this numerical method. 

The finite element method is based upon a straightforward 'divide and conquer' approach; 

divide the problem domain into a finite number of sub-domains of simple geometry. 

Approximate the solution over each of these sub-domains. These approximations are usually 

based on simple polynomial functions, their coefficients being the unknown variables. These 

approximations are integrated numerically to give the local elemental matrices. The local 

matrices are assembled according to the finite element topology to yield the global system of 

equations. Solving this system of equations gives the unknown parameters corresponding to the 

approximate solution of the problem. Thus repeatedly performing a number of simple 

calculations on small portions of the problem and then combining those results gives the 

solution to a complex problem. Computers are ideal for performing large numbers of simple 

calculations, hence the wide spread use of finite element software. 

In the case of photonic crystal modelling, the governing differential equation is posed as an 

eigenvalue problem. Allowable electromagnetic modes satisfy the condition that the double curl 

operation on H(r) is equal to the product of H(r) and a scalar constant. When this is true, H(r) 
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is an eigenvector representing the magnetic field pattern of an allowable mode and the scalar 

constant is an eigenvalue proportional to the squared frequency of that mode. The finite element 

method discretises and approximates this eigenvalue problem such that the problem is 

represented by matrices, equation (2.17), which can be solved using our optimised eigenvalue 

solver. 

Prior to applying the finite element method the crystal structure must be discretised into simplex 

elements (triangles in 2D, tetrahedra in 3D). As crystals are periodic structures we need only 

consider the unit-cell, e.g. the area bound by the crystal lattice vectors. Periodic boundary 

conditions mean that opposing vertices on the boundary of the unit cell effectively represent the 

same vertex and therefore must meet if the mesh were wrapped on to a torus. A number of 

public domain third party meshing algorithms were used for this purpose, predominantly 

Geompack90 but also other packages such as Easymesh, Netgen and Triangle (see chapter 2.1). 

The output format of these packages varied but the common core information of interest 

included the coordinates of the element vertices, the topology of the elements and material 

markers for the elements. These are later used to specify the electrical permittivity of the 

individual elements. 

When formulating the elemental equations, it is necessary to select a suitable interpolation 

function. This describes how the solution can vary over an element. This is one way in which 

the quality of the solution can be controlled. In our FE code the end-user can specify a 

polynomial interpolation function of any order. Using a simple interpolation function leads to 

small elemental matrices but a coarse representation, a more complex interpolation function 

generates larger elemental matrices but gives a finer solution. The optimum balance between 

computational cost and quality of solution with respect to interpolation function complexity was 

analysed in chapter 4.2 with the conclusion being that 2"̂  order interpolation functions produced 

the best performance with 1®' order interpolation producing the worst performance by a 

significant margin. 

In order to generate the elemental matrices, elemental equations are derived as a function of the 

chosen interpolation order and the governing differential equation and boundary conditions. 

Deriving these equations involves enforcing the periodic boundary conditions on the differential 

equation. This is done via the application of Floquet-Bloch theory (Kuchment 1993). The 

differential equation is then formulated in variational weak integral form and approximated 

using a weighted residual (Galerkin's) method leaving an equation consisting of integrals that 
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can be computed numerically. 

Using mesh data as input, the elemental matrices are computed and subsequently assembled 

according to the mesh topology. This generates the global matrices that constitute the 

generalised eigenvalue problem. This eigensystem is then solved using our eigenvalue solver. 

The resulting eigenvalues correspond to the frequency of the allowable modes of propagation. 

The corresponding eigenvectors describe the field intensity over the crystal for those modes. 

An optimised eigenvalue solver was developed using a subspace iterative technique (Beckett 

2002). This method allows a number of simple but effective optimisations to be made. For 

example, only the physically relevant eigenvalues are computed; typically the pertinent 

information is contained in the lowest 10 eigenvalues and the vast majority need not be found. 

Also, when computing the band structure of a photonic crystal a series of similar eigensystems 

needs to be solved for adjacent k vectors. The similarity in the solution for eigensystems with 

similar k vectors can be exploited by feeding in the solution of one eigensystem as the initial 

guess for the subspace search of the next system. This significantly reduces the number of 

iterations required for convergence. The subspace iteration converges rapidly to the most 

dominant eigenvectors in the subspace but struggles to find the least dominant ones. This 

difficulty in converging to the last components can be avoided by searching a slightly larger 

subspace and neglecting to find the final, difficult, eigenvectors. 

Traditionally, plane wave techniques have been applied to photonic crystal modelling. These 

have the disadvantages of being slow to converge. They are also computationally and memory 

intensive. The motivation for applying finite element techniques to the computation of photonic 

crystal spectra is to allow for flexible, efficient and accurate modelling of crystal structures. 

Flexibility is provided by the use of a discrete mesh to model the PC structure. Many public 

domain and commercial packages are available for producing quality meshes making it 

relatively easy to generate the mesh representations of the photonic crystal structures. This 

approach also has the advantage of providing an intuitive, real-space representation of the 

geometry that is easy to work with. Additionally, the meshes allow the sharp discontinuities in 

dielectric constant inherent in PBG materials to be modelled accurately. 

As a direct consequence of the node connectivity of the mesh, the resulting assembled system of 

equations governing the propagation of light through the PC is very sparse. This results in 

computation and memory costs of order 0(n), e.g. the complexity scales linearly with problem 
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size. This is opposed to O(n^) scaling for the plane wave method, where d is the dimensionality 

of the problem domain. It is this fundamental difference in the way that the method scales that 

opens up the possibility of modelling complex two-dimensional and even three-dimensional PC 

structures. 

The FEM code has been developed to compute the modes of propagation for two-dimensional 

and three-dimensional input meshes. In order to test the validity of the results produced by the 

finite element code a finite element analysis of free-space was computed and compared with the 

corresponding analytical solution. The results showed excellent agreement with the true 

solution. Common photonic crystal structures have been modelled including square and 

triangular lattice arrangements of rods and the 'woodpile' structure. The computed band 

diagrams agree with those found elsewhere in the literature. The results of our investigation into 

commonly modelled photonic crystal structures gives further evidence that crystal structures 

with disconnected areas of high dielectric constant favour band gaps in the TM mode 

polarisation and crystal structures with connected areas of high dielectric constant favour band 

gaps in the TE mode polarisation. A complete photonic band gap, where there is a frequency 

range for which both polarisations are excluded, is exhibited for a crystal structure that 

combines both of these characteristics. At a first glance it seems the first structural criteria 

excludes the second and vice versa, however, a compromise between the two in which a 

structure has areas of high dielectric constant connected by narrow veins can partially satisfy 

both criteria and such a structure can exhibit a complete photonic band gap. The obvious 

example of this is the triangular lattice of air rods in a high dielectric substrate. 

The performance of the two-dimensional algorithm has been tested with respect to mesh 

granularity and interpolation order. The results confirm the linear scaling with problem size in 

memory requirements and computation time. It was also clear that higher order interpolation 

functions (2"*̂ , 3"̂  and 4̂ ') gave a better solution accuracy for a given computation time than 1®' 

order. 

The novel twelve-fold symmetric quasi-crystal has also been modelled. It has been suggested 

that this structure has a complete band-gap for very low contrasts in dielectric constant and its 

high order of rotational symmetry favours the opening of photonic band gaps and also gives the 

structure very similar propagation characteristics for all angles of incidence. The computed band 

diagrams for these structures do exhibit band gaps but not for materials of low dielectric 

contrast, e.g. silicon nitride and glass. 
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The extension of the code from two to three dimensions requires a significantly different 

numerical approach. Naively incorporating an additional coordinate into the interpolation 

functions leads to incorrect continuity of fields at dielectric boundaries. This results in the 

generation of incorrect (spurious) solutions. The implementation of edge-based elements and 

vector basis functions addresses the problem of divergent solutions and incorrect continuity of 

fields at dielectric boundaries. This approach uses vector based interpolation functions along 

each edge such that the tangential component of the field is zero at all element boundaries 

except one. At this boundary, the tangential component is defined solely by the shape and 

orientation of that boundary. This approach ensures the desired continuity of tangential 

component of the field but allows the normal component to be discontinuous. This alternative 

formulation of the elemental interpolation functions coupled with the full vector form of 

Maxwell's equations leads to the derivation of completely different elemental equations. 

However, the key advantages of the FEM remain, e.g. the simple mesh-based input and the 

resulting sparse eigenvalue matrices. 

Whilst we did not produce a fully working version of the three-dimensional vector finite 

element code. Significant progress towards this goal was made. A front-end capable of reading 

several popular public-domain meshing algorithm formats was developed, along with the ability 

to enforce periodic boundary conditions by wrapping opposing external nodes. The correct 

computation of the Dirichlet, S, and metric, T, matrices was completed allowing the eigenvalues 

to be computed at the gamma-point in reciprocal lattice space. Unfortunately, bugs remain in the 

generation of the P and J elemental matrices, and when computing the global matrices for k-

vectors other than the gamma-point. 

The decision was taken to halt further development of the vector FE code as the debugging 

process was taking far longer than expected. The effort was redirected towards using the 

existing scalar FE code to explore photonic crystal design optimisation and the effect of 

fabrication tolerances on the band structure of photonic crystals. The recent availability of 

commercial vector finite element software packages for computational electromagnetics 

targeted at photonic device modelling further strengthened this decision. 

The problem of spurious mode pollution of the eigenspectrum is still present, although the 

vector FEM can identify the spurious modes correctly (those with a zero eigenvalue) there are 

still many of these modes present in the spectrum, exactly one for every non-boundary node in 
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the mesh. Therefore computing the pertinent eigenvalues also requires the computation of many 

redundant spurious solutions. This puts a penalty on the computation that is proportional to the 

number of non-boundary nodes in the mesh. This is clearly a highly undesirable situation. The 

development of a new eigenvalue solver based on the Lanczos method has eliminated the need 

to compute these spurious modes when trying to generate the eigenvalues of interest 

corresponding to real physical solutions. 

A number of papers have presented theoretical photonic crystal geometries and subsequently 

computed their band structures. It is often the case that these structures bear little resemblance to 

what is actually possible to fabricate. For example, it is well known that crystal structures with a 

high filling fraction are likely to produce large band gaps, however, this can result in very thin 

areas of substrate material which would be vulnerable to collapsing when fabricated thus 

destroying the crystal structure. We investigated the effect of fabrication tolerances on the 

resulting band structure of PBG devices as this has an important bearing upon how one 

interprets the results from the various numerical models with regard to actually fabricating these 

devices. 

It was surprising just how significant the fabrication tolerance was with respect to the band 

structure of the PBG device. A relative error of 5% in the rod radius led to a probability that the 

fabricated device would exhibit a band gap of only 0.42; the corresponding probability for a 

relative error of 1% is 0.99. Hence a reduction in the relative error of 4% increases the 

probability of a band gap existing by 50%. This confirms the fact that it is technically difficult 

to fabricate PBG devices that operate in the visible spectrum. Clearly, current fabrication 

techniques need to be refined or new techniques developed that can provide the lower tolerances 

necessary to achieve a reasonable probability of creating a PBG device with a band structure 

equivalent to that of its numerically modelled counterpart. 

Using the finite element method over traditionally used plane wave expansion techniques 

reduces the computational cost and memory requirements for photonic crystal modelling. This 

makes the application of photonic crystal design optimisation a feasible proposition. The FE 

code has been successfully combined with additional software components to create an 

optimisation tool that attempts to produce a photonic crystal structure that has a photonic band 

gap of the maximum frequency range. Further benefits of an optimisation tool are that it allows 

the end user to generate materials with photonic band gaps engineered as required and also 

alleviates the user from having to produce mesh representations of the crystal structures. The 
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desired structure is output and then fabricated. This required the creation of additional software 

modules to be used in conjunction with the finite element code (see chapter 6). An automated 

mesh generation tool was built to convert a high-level description of the crystal structure into a 

low-level description that can be understood by the third party public domain meshing software. 

It also has to enforce the periodic boundary conditions upon the mesh, e.g. if any feature 

overlaps a unit cell boundary it must be re-mapped on to the opposing boundary (see chapter 

6.1). A post-processing tool was also built to analyse the set of eigenvalues produced by the FE 

code and detect the presence and size of any band gaps. 

One component of the optimisation software is the minimisation algorithm. The chosen 

algorithm was first proposed by (Nelder and Mead 1965) and is known as the downhill simplex 

method. While it is not the most efficient minimisation algorithm available it is relatively simple 

to implement and can also deal with multiple optimisation parameters. This was a vital 

consideration as our input parameters are essentially the geometric description of the crystal 

structure, each rod radii and position is a separate parameter. The minimisation algorithm aims 

to minimise the reciprocal of the band gap to mid gap ratio and that maximises the band gap 

size, hence the computation of the objective function requires the combination of the automated 

mesh generator, the FE code and the eigenvalue analysis code. The function input is the crystal 

structure description (see Figure 6-1) and the output is the band gap to mid gap ratio. The 

optimisation procedure involves repeatedly running the FE code, each time with a hopefully 

superior crystal structure. This is clearly a computationally intensive task hence the optimisation 

code was executed on various dedicated commodity cluster computers capable of performing 

the volume of computation within a reasonable time-scale. 

The research into photonic crystal optimisation for both the brute force and canonical form 

approach has consolidated the conclusions drawn in chapter 3. Namely that the necessary 

characteristics of a photonic crystal exhibiting a complete photonic band gap are areas of high 

dielectric constant connected by narrow veins of substrate material. The investigation into many 

thousands of different photonic crystal structures has not produced band gaps any better than 

those exhibited by the common triangular lattice, in fact, the largest band-gap we computed had 

a gap to mid-gap ratio, A®/®o, of 0.19. This was exhibited by a triangular lattice of air rods in a 

GaAs substrate with a rod to pitch length ratio, r/a , of 0.48. The formula is simple - large 

dielectric contrast plus a high filling fraction equals a large photonic band gap. For a two-

dimensional crystal the arrangement of rods that allows the highest filling fraction is the 

triangular lattice, hence it is not surprising that this structure provides the largest photonic band 
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gap. 

7.2 Future Work 

The difficulty in implementing the 3D vector based FE code has left scope for further work to 

take place in the investigation of fully three-dimensional structures. The formulation of the 

elemental equations for the three-dimensional vector finite elements is significantly more 

difficult than the two-dimensional case and as a result we have not generated correct 

eigenvalues for k vectors other than the gamma point. It would be of interest to compare the 3D 

analogues of the 2D structures so that the resulting density of states and dispersion relations can 

be compared. In addition, more interesting structures that are fully periodic in 3 dimensions 

could be investigated. 

The construction of three-dimensional meshes is significantly more difficult than those in two-

dimensions, hence the development of an easy to use iront end in which one can specify 

common geometries at a high level of abstraction, as has been built for two-dimensional 

meshes, would be a very useful. It is common in the field of finite element modelling that the 

majority of time taken to perform a simulation is spent in the production of a quality input 

mesh. An intuitive and easy to use front-end to a three dimensional meshing package would 

save considerable time for the end user of the software. 

The implementation of a more sophisticated minimisation algorithm as a basis for the 

optimisation process may well lead to performance gains in this area. There are two other main 

families of algorithms for multi-dimensional minimisation that could be investigated; these are 

the conjugate gradient methods (Polak 1971) and the variable metric methods (Gill, Murray et 

al. 1981). The optimisation code could also be coupled to commercially available photonic 

device design codes as these currently provide only limited optimisation features. 
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Appendix A: Galerkin's IVIethod 

Boundary-value problems (EVP's) arise in the mathematical modelling of physical systems and 

their solution has long been a major topic in mathematical physics. 

A EVP is typically defined by a governing differential equation in a domain Q: 

•S(j) = / , (A.l) 

where: 3 differential operator 

(j) unknown quantity 

/ forcing function 

Together with boundary conditions on the boundary F that encloses the domain. 

Galerkin's method approximates the true solution of a EVP. It is used for problems of practical 

importance that cannot be solved analytically. This is a weighted residual method, which seeks 

the solution by weighting the residual of the differential equation. Assume (f) is an approximate 

solution to equation (A.l). Substitution of (j) for (j) in equation (A.l) results in a non-zero 

residual. 

f if 0 . (Vl.2) 

The best approximation for (j) is that which reduces the residual r to the least value at all points 

in the domain Q. The weighted residual method enforces the condition 

Ri = w.r dQ. = 0 . (A.3) 

Ri is the weighted residual integral and w, is the weighting function. In Galerkin's method, the 

weighting function is chosen to be the same as the expansion of the approximate solution. 

Hence, if (j) is approximated by the expansion 
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(A.4) 
V=1 

where vj are the expansion functions and cj are the coefficients to be determined, then the 

weighting functions are selected as 

w.=v. i = 1,2,3..., JV. 0L5) 

Therefore equation (A.3) becomes 

R c/Q = 0 i = \,2,'i...,N . (A.6) 

This can be broken down into the form Ax = b where 

4 = (A.7) 

6, = (A.8) 

(A.9) 

This resulting expression can be solved as a simultaneous linear equation. 

120 



Appendix B: Simplex Elements 

A simplex element in //-dimensions is defined as the minimal possible non-trivial geometric 

figure in that space having N+1 vertices. 

1-D Simplex 2-D Simplex 3-D Simplex 

Figure B-1 N-dimensional simplex elements. 

ELY 

The position of any point P in a simplex element can be expressed in terms of simplex 

coordinates such that 

(B. l ) 

where ^ is the simplex coordinate, (j(S) is the size of the simplex and cr(S^) is the size of a 

sub-simplex, e.g. in Figure B-2, the simplex coordinate, o f f = a{S^)/a(S) . 

3 

Figure B-2 Simplex coordinates. 

The size of a simplex element is defined as 
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XI) 

X, 
(1) 

Nl 

1 % .-(1) 

X. 
(2) 

A'+l 
r(2) 
'-A'+l 

X (Af) 

03 2) 

''w+i 

Where iV is the dimensionality of the simplex and the elements are the positions of the vertices. 

The subscripts denote the vertex number and the superscripts denote the spatial direction. 

6.2 2-Dimensional Cartesian-Simplex Conversion 

Using (2.5) global Cartesian coordinates can be converted to local simplex coordinates by 

calculating the determinant of the sub-simplex divided by the determinant of the simplex. For 

example, if a point P lies within a 2-simplex (triangle) with Cartesian coordinates ,_%) the T' 

simplex coordinate can be calculated as 

f 1 -

1 X 

1 ^ 2 .^2 

1 X3 

1 X , yi 

1 X2 yi 

1 X3 y3 

OB 3) 

expansion of the determinants for all three simplex coordinates gives the following conversion 

equation 

1 

" 2 , 4 

J^2 -ys X3 - X ; ~r 

# 2 

1 

" 2 , 4 
-yi X i - X 3 X 

1 

" 2 , 4 

yi -yi X2 - x , _ _y_ 

(B.4) 

where each simplex coordinate has the linear form +b^^x + c^^y .A represents the area 

of the simplex and can be computed using equation (B.2). 
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B.3 3-Dimensional Cartesian-Simplex Conversion 

a, «2 a. a. 1 

1 bi bi 64 X 

c, Ci C3 C4 y 

^4. d, ^2 ^3 d,_ z 

03 5) 

Where: 

1 2 3 4 

a 1 1 1 1 

b X, X2 X3 X4 

c yi y2 ys y4 

d Zl Z3 Z4 

Table B-1 3-climensional simplex coordinate coefficients 

In order to compute the coefficients, a,, 6;, Cj, etc., using Table B-1, take the determinant of 

the remaining values after the relevant row and column have been excluded, e.g. 

^2 X3 X4 
a, = - 4 ' + / x 3̂ 2 3̂ 3 3̂ 4 

^2 ^3 ^4 

1 1 1 

yx >̂3 74 

Z3 ^4 

(B.6) 

03 7) 

i and j represent the row and column number respectively. The volume is computed from the 

tetrahedral vertices as shown below 

F = -
6 

1 1 1 1 

^ 2 X3 ^ 4 

yi 3^2 3^3 3^4 

^ 2 Z3 Z4 

(B.8) 
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B.4 Differentiation in Simplex Coordinates 

If the approximate solution across an element is represented as 

- 08.9) 
/ M = ] 

The X directed partial derivative can be represented as 

== - (I). 10) 
8% /M=l 

Where is the value of at interpolation node m. If the nodal values are represented 

by the vector ^ ^ and the nodal values similarly represented as 

^(.i) ~ 'y^(x)2--¥(x)M then the differentiation operator didx can be replaced by a matrix 

D such that . 

It remains to calculate the matrix D . This is performed via the following steps. Starting with the 

formal differentiation 

the derivative on the right can be rewritten as 

6k (3% 

d^- /fix: is a constant and can be written as 

8% 2 ^ 2 ^ 

and likewise, the y-directed derivative can be written as 

(B..2) 

03 13) 
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2 ^ 2 ^ ^ 

hence the derivative of the polynomial is now expressed with respect to simplex coordinates. It 

remains to calculate the D matrix such that 

(B.15) 
^5; * 

the elements of D are found by performing the formal differentiation of the basis function with 

respect to a given simplex coordinate at every nodal point P. e.g. 

0&16) 

therefore to evaluate an x-directed derivative it is necessary to piece together (B.14) and (B.15) 

as follows 

Ac ^ 

IT TT 4 2 * * 

M 3 ^ 

I ry J ^ ink^k ' 
m=) 1=1 k 

this can be simplified into matrix form 

8.5 Integration in Simplex Coordinates 

Deriving the elemental equations involves integration of the basis functions. The use of simplex 

coordinates allows the use of integration formulae to perform this calculation. It is necessary to 
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evaluate the definite integral 

(B.19) 

Providing the Jacobian of the coordinate transformation allows the area element to be written in 

whatever coordinates that may be convenient 

03^0) 

2D simplex coordinates are related to Cartesian coordinates via the following equations 

= ( a , + 

#2 =(^2 +62J: + C2;/)/2^ 
08 21) 

Where A is the simplex area, the Jacobian can be evaluated thus 

^ 1 

^2 ^2 

J _ 
2^4 0322) 

The integral I(I,j,k) may therefore be written as an iterated integral 

Hi. j,k) ^2 I P 0323) 

Integrating by parts, one obtains 

7 + 1 
03 24) 

Therefore 
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/ ( z , = 7 1 ^ ^ - ^ 0 ' , ; + 1 , ^ - 1 ) . (B.25) 
U + A ) ! 

Repeated application of (B.25) results in 

/ ( z , ) , ' (B.26) 
0 + ^)! 

and 

,'t /It! 
/ 0 , ; ,A: )= /(0,z + ; + A:,0). (B.27) 

0 + ; + ^)! 

But only one of the simplex coordinates appears in the integral l(0,i+j+k,0) . Evaluation is 

therefore straightforward, yielding 

z!y!^!2! 

The method extends to three dimensions with tetrahedral elements with the addition of a fourth 

simplex coordinate and substituting 2! for 3! (2! in the above equation can effectively be 

replaced by d\ where d is the dimensionality), i.e. 
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Appendix C: 2D Elemental IVIatrices 

C.f Der/yaf/on of 

It was shown in chapter 2.2 how to formulate the interpolation polynomials in terms of simplex 

coordinates. Appendix B.5 demonstrated how to compute the integral of simplex coordinates. 

Combining these two techniques gives all the tools necessary to compute the T (or metric) 

matrix. For example, in two dimensions, the T matrix for a triangular element of order 1 can be 

computed as follows 

m̂n " j'^m ' „dO. . (C.l) 

For 1®' order the interpolation functions are equal to the simplex coordinates, 

fz, = (C.2) 

hence. 

From (B.28) we know that 

therefore the 1®' element in the matrix can be calculated as 

1̂1 - ^a^a^dQ. - dQ. - ^ , (C.5) 

and the 2 nd 
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7̂ 2 = ^oc^a^dQ. = = 
%x%x2! 1 

(1 + 1 + 2)! 12 
0=6) 

The remaining elements of T can be calculated in the same fashion, the resulting matrix being 

as follows 

"2 1 
1 

T = — 1 2 
12 

1 1 

(CJ3 

It is important to note that the integral is independent of element size or shape as it is expressed 

purely in simplex coordinates. Therefore, T matrices for various interpolation orders need only 

be computed once. It is for this reason that FEMLIB stores the T matrices in tabulated form in a 

data-file. 

C.2 Oer/yaf/on of 

The S or Dirichlet matrix is defined as the following integral 

The integrand can be written out in terms of Cartesian coordinates 
" j 

(C.8) 

(C.9) 

and using the chain-rule of differentiation the partial derivative of the basis functions with 

respect to x can be recast as 

ok ^ ck 

the derivative of the simplex coordinate can be expressed in geometrical terms, thus 

(C.IO) 
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a% 2̂  
( C l l ) 

combining (C.IO) and (C.l l ) adding the derivatives with respect to the y component allows 

(C.9) to be stated in terms of simplex coordinates 

4 ^ ' 
(C.12) 

The integral above can be evaluated by using the differentiation matrices as described 

previously in Appendix B.4. 

k I 
(C13) 

The bracketed quantity is the T matrix, hence S can be expressed as 

(C.14) 

The double summation can be reduced to a single if the following identities are used 

6,.6 . +c,.c = -2v4cot^^ z # y (C15) 

6,!̂  - -2y4(cot^y + c o t ^ ^ ) (C.16) 

The proof of these identities can be found in (Silvester and Ferrari 1996), p.458. 

Substituting (C.15) and (C.16), expanding then collecting terms, the double summation is 

reduced to a single summation, thus 

k=l 

2am dO. 

-1 J 2v4 
(C17) 
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the integral above is dimensionless involving quantities expressed in terms of simplex 

coordinates. Therefore, S can be written as 

.Sm, OC.lg) 
* = ! 

where Q is defined as 

elf -A!."') - ^ r" ) 
t J 

or in matrix form 

(C.19) 

Q w = 1 ) T - D'*-')) (C.20) 

C.3 Derivation of j a„ya„ciQ 

The derivation of this elemental matrix is performed as follows: 

f l . = 0C.21) 

the integral is split into its Cartesian components 

the derivative of the basis functions can be restated using the chain rule, hence allowing the 

derivative to be expressed with respect to a simplex coordinate multiplied by a value based 

purely on the geometry of the element 
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8c 6^,. 5^,. 2/4 

the equivalent process for the ^/-directed derivative 

ay 2 ^ 

0 :23) 

(C.24) 

differentiating a basis function with respect to a simplex coordinate is equivalent to the sum 

over k of the product of the D matrix and the basis function 

((125) 
5^,-

bringing this together, (C.22) can be expressed as 

substituting (C.25) into the equation gives 

p.. = ^ + « j i (c.27) 
*=1 

this can be split into two separate integrals 

(C.28) 
2V( J " t f 2 ^ k=\ k=\ 
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3 . 6. 
—— can commute outside the integral as it is simply a constant; to give 

t=] 2v4 
(C.29) 

^a^aj^dQ. is a common factor in both the left and right parts of the above summation, hence 

(C.29) can be reduced to 

r 3 
P... (C.30) 

recognising that is simply the T matrix the equation can be rewritten as (C.32) 

'^mk " (C31) 

P ~ 
m/f 

T. (C.32) 

dropping the explicit ^ notation and switching to Einstein's summation convention gives 

P =• 
m/1 /?:A CC33) 

therefore in matrix form 

P = + iD(')T-^ 
2^1 2 ^ 

OCJW) 

this is then easily computed from the already defined D and T matrices and the element 

geometry. 
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Appendix D: Analytical Solution in Free-space 

Working from the scalar form of Maxwell's equations, the permittivity coefficient can be 

removed ( e of air equals 1) 

= /l%/ QD.l) 

As stated in chapter 2.3, Floquet-Bloch theory permits the following expression 

Where u(x) is a function with the periodicity of the crystal lattice, " has the required 

periodicity, where G represents a reciprocal lattice point, therefore 

Combining (D.2) and (D.3) and the summing and factorising the indices gives 

( y = = g ' ( G + k ) X 

Differentiating the wave function twice gives 

y 2 g , ( G + k ) x ^ ^ g , ( G + k ) . % ^ [ y ( G ( D . 5 ) 

This can then be substituted back into (D. 1) as follows 

[z(G + k) ] ' X _ ;{ .̂(G+k) X ^ g) 

The terms on both sides of the equation cancel to give the analytical solution 

; i = [ z ( G + k ) ] " = ( G + k ) ' ( D . 7 ) 
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Appendix E: The Levi-Civita Tensor 

The Levi-Civita Tensor (totally anti-symmetric tensor) is defined as follows 

=< 

+1 if ijk are different and in order (cyclic permutation) 

- 1 if ijk are different and in order (anti - cyclic permutation) 

0 if z = j, i = kor k = j 

(ET) 

It can be used to represent the determinant of a set of vectors as shown below. 

CI2 ci^ 

6, 62 63 

C, C3 

0E2) 
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Appendix F: 3D Elemental Matrices 

In order to evaluate these integrals firstly we restate the linear Lagrange interpolation functions 

in their Cartesian form. 

A - ^ + 6,% + c,.}; + - — (a,. + c / ) ( F l ) 

The equation on the right uses Einstein's summation convention over j with the vector, c, 

representing the b, c and d coefficients. The grad of 2 can be written as follows. 

CF2) 

Combining equations (F.l) and (F.2) gives an alternate representation of the vector basis 

function. It is important to note that i now represents the i"' edge, with ij and 12 representing the 

vertices at either end of that edge (in (F.l) i represented a vertex). Using equation (F.l) and 

(F.2) in (2.23) yields: 

N, = I, ( A VZ,_ - A. V i , ) = 

1 
(R3) 

The curl of the vector basis function can now be evaluated analytically as follows, where s 

represents the Levi-Civita tensor (see Appendix E:) and e represents the unit vector in each 

dimension. The I /6F term is taken outside the brackets to give l / (6F)^and the partial 

derivative is taken with respect to . 

V x N , 

0F4) 

(6r ) 

b e b . 
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This equation can be reduced to: 

21 21 
c, xc,. = ' 

" (6F) 
X 

2 ' 

X, = c,. X c,. ' h h 

(F.5) 

The last step of the derivation is based on the following equality. 

X C J (F.6) 

This can be proven by expanding the left hand side of (F.6) for cyclic permutations of a, b and 

1 *1 

^ f, ^ c. 

2 3 3 2 
e C/, -C;, C;, 

= + e 

+ e 

CF7) 

which is clearly equal to c. x c- . The anti-cyclic permutations of the tensor yield the same 
' 1 h 

result hence the factor of 2 is introduced 

F. f Oer/yaf/on of (v x ) (V x N ) (fQ 

The body of the integral can be equated to: 

S , = ( V x N , ) . ( v x N , ) = ^ X , . X , . CF8) 

Computing the integral with respect to the element volume yields equation (F.9). Using this a 

six by six elemental matrix is computed with the subscripts i and j corresponding to the element 

edge numbers. 
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CF9) 

F.2 Derivation of Ĵ N. N JQ 

The body of the T matrix integral can be expressed as follows. 

7 .̂ =#.-TV^. = 4/; 

(6ry 

4 4 , C „ ' C A 

- 4 4 , C , ' , -C;, 

+ A , 4 , c , , - c , , / 

CFIO) 

Using the integration formula as described in chapter B.5 the linear interpolation functions can 

be integrated to give, 

( F l l ) 

Hence Ty can be computed as follows: 

20(6F) ' -(1+4 X-
+(i+<5;-)c 

ji 

c 

Ji 

ii h 

CF12) 

R 3 O e r / y a f / o n o f (N, x v x N J - (N^ x v x N,. 

The Py matrix is formulated and integrated as shown in equations (F.13) through to (F.14). 

4 = ( N , x V x N ) - ( N . x V x N , . ) CF13) 
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= - ( i . e . - i y c J x X , ] 

j j j W, X V X N J - (N .̂ X V X N,. r 

M V [(c. - c J x Z . - ( c ^ . ^ - C y J x Z , ] 
10(6ry '^" " (F14) 

10(6Fy 
" ^ [d . X X . - Z) . X X ] where B. = ĉ  — c 

L I J J I 1 I <2 'l 

R 4 D e r / y a f / o n o f j^(k. N . Xk )cfQ 

The fourth elemental matrix, J, is derived via the following steps: 

let 4 = N,Xk (F.15) 

Substituting the Lagrange interpolation function formulation of the vector interpolation 

functions gives: 

= I . (k / , ( i , Vi,_ ) ) ( k . / j ( i , Vi^_ - 4 V i , , ))dn (F.16) 

The grad L terms are replaced with the c notation: 

= -Z ,^cJ ] [k . zX4 ,CA (F.17) 

Multiplying out the values within the parenthesis allows the constant factors to commute outside 

the integral. This leaves integrals in terms of only the Lagrange interpolation functions: 
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hh • <̂2 

- V / k 6/n 

+ A4(k c,. Xk c .J^Z,/^.^ dQ 

OF 18) 

P7,Vy 

20 

These integrals can be evaluated numerically using the formula presented in Appendix B.5 to 

give: 

- (k 'C,-Xk-c^.^Xl + ^ j : ) 

+ (k-cJk-CyJl + ̂ H 

(F.19) 

Thus we can compute the matrix, I, for each element. However, having k as a term within the 

matrix necessitates re-computation of the elemental matrices for each k step. This is clearly 

inefficient, and avoidable if one judiciously rearranges the initial equation as shown in equation 

(F.20). 

(a - bXa - c) = = a,. (6,.c )a = a, (6 (S) a . = J a CF20) 

Therefore we can restate I as; 

I = k / J k , (F21) 

where: 

J = b ® c (F.22) 

This formulation allows the elemental matrix, J, to be computed only once. I can subsequently 

be computed by simply post-multiplying J by k and its transpose. J can be explicitly stated as: 

20 - C 

+ c 

, (2)c, ( l -h^ 
h Ji \ 
„ » c j i + s 

CF^S) 

Note that the operation, c, ® , results in a matrix, hence J is a matrix-valued matrix or matrix 

of matrices. 
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Appendix G: FEIVILIB Class Diagrams 

A short description if each class including its data members and methods, laid out as shown 

below 

Class Name 

Encapsulated Data: 

® Etc. 

Encapsulated Methods; 

# lac. 

Element 

® Element geometry data 

® Element material data 

® Elementary Dirichlet, metric and Ben matrix calculation 

® Specification of interpolation polynomial order 

» Mapping of local and global node numbers 

Side 

» Reference to sides element and vertex objects 

® Boundary marker 

® Node numbers 

® Generate global node numbers 

» Map local to global node numbers 

Vertex 

» Position object (stores Cartesian coordinate of vertex) 

® Node number 

® Boundary marker 
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® Specification of interpolation polynomial order 

® Generation of global node numbers 

» Mapping of local to global node numbers 

® Boolean equality operator to compare two vertex objects 

Position 

• Cartesian coordinate (stored as a vector of floating point numbers) 

® Tolerance, used in relation to the equality operator 

« Addition, subtraction, multiplication, division and equality operators 

» Specification of the tolerance value 

Mesh 

» References to element, side and vertex objects that comprise the mesh 

® Number of nodes 

® Interpolation order 

® Nodes per element 

* Set the interpolation order 

» Assemble the global matrices for the mesh 

MeshDoc 

» References to element, side and vertex objects that comprise the mesh 

* Read in mesh data from files 

» Map mesh geometry on to a torus, e.g. enforce periodic boundary conditions 
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Matrix 

» Matrix Elements 

® Number of rows and columns 

Element extraction via (x,y) row, column format 

Matrix multiplication, division, addition and subtraction 

Similarity transform 

Cholesky decomposition 

Reduction to tridiagonal form 

# 

Zonepath 

® Definition of the path of the quasimomentum vector k around the Brillouin zone 

Specification of the number of legs the path has 

Specification of the step size for each leg 

Calculation of the k vector at each position along the path 
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