
University of Southampton

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

Content Based Image Retrieval Using Scale

Space Object Trees

David Paul Dupplaw

A thesis submitted for the degree of

Doctor of Philosophy

September 2002

Supervisor: Dr. P. H. Lewis

University of Southampton

ABSTRACT

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

A thesis submitted for the degree of

Doctor of Philosophy

Content Based Image Retrieval Using Scale Space Object Trees

by David Paul Dupplaw

Semantic extraction from images is of growing interest in the field of content based re-
trieval. Classical algorithms are mainly limited to the use of features such as colour or texture
estimated globally over the whole image, or the use of shape description for clearly extractable
object boundaries. There is little provision for the searching of images based on any semantic
notion, other than by the use of matching keywords which are manually associated with the im-
ages. We believe that it is the combination of a number of image properties, estimated locally
for individual regions rather than globally, that will create the ability to recognise objects, and
from there we can work towards bridging the semantic gap.

Using recent advances in scale-space decomposition techniques, it is possible to transform
images into trees in scale space, which represent the topology of regions within the image.
Using a sieve mechanism we can decompose an image into a discrete scale-space based on the
pixel area of regions within the image. Extrema within the image are merged to create new
extrema. The merge operations are represented by branches in a tree. The tree then represents
the topology of extrema in an image.

We propose that complex objects can be found in the trees using a combination of sub-
graph isomorphism testing and conventional feature matching and hence provide a vehicle for
achieving content-based retrieval and navigation for complex objects in images.

Explanations are given for the subgraph isomorphism techniques, and how they can be
supplemented with feature matching to produce scores for feature-topology matches of images.

Finally, we will explain how the scale-trees could be used in combination with a semantic
layer to achieve semantic recognition of scenes, by recognition of parts of the topology of a
scale-tree as particular objects.

Acknowledgements

The author is grateful to the Engineering and Physical Sciences Research Council (EPSRC) for

the support of a research studentship to undertake this work.

Also, I would like to extend my thanks to ail the help my supervisor has given me through-

out the degree, and also to my parents and my girlfriend for being so supportive.

Contents

1 Introduction 1

1.1 Introduction 1

1.2 Research Objectives 2

1.3 Thesis Structure 3

Literature Review 4

2.1 Current Content Based Retrieval Systems 4

2.1.1 QBIC 4

2.1.2 eVe 5

2 1 3 5

2.1.4 Virage 5

2 1 ^ R a n e ^ ^ V ^ e 5

2L6 6

2 L 7 Cok^VmSE 6

2.1.8 Photobook 6

2.1.9 Blobworld 6

2.1.10 Image-MINER 7

2.1.11 MARS 7

2.1.12 Other Systems 7

2.1.13 Summary 7

2.2 Feature Extraction and Retrieval Techniques 8

2 2 ^ TheCd^MPH^^^mn 9

2.2.1.1 Histogram Intersection 10

2.2.1.2 Histogram Back-projection 10

2.2.1.3 Quadratic Match 11

2.2.1.4 Colour Coherence Vectors 12

2.2.1.5 Colour Correlograms 13

2.2.2 Illuminant Invariance 14

2.2.3 Matching with Colour Layout 14

2 2 3 ^ GndMbkhm^ 14

2.2.3.2 Quad-tree Matching 15

Contents m

2 2 3 3 C^@^#pmgGnd 16

2.2.4 Shape 16

2.2.4.1 Segmenting Images To Extract Shape 18

2.2.4.2 Representing and Matching Shapes 19

2.2.5 Scale Space 23

2.2.6 Trees for representing images 24

2.2.6.1 Quad-trees and T-pyramids 24

2.2.6.2 Containment Trees 25

2.2.6.3 Shock Trees 25

2.2.6.4 Watershed and Critical Lake Trees 25

2.2.6.5 Min- and Max-trees 25

2.2.6.6 Binary Partition Trees 26

2.2.7 Graph Matching for Image Retrieval 26

2.3 Summary 27

3 Preliminary Work on Feature Extraction for Image Matching 28

3.1 Colour Matching 28

3.1.1 Manhatten and Euclidean Histogram Matching 29

3.1.2 Quadratic Histogram Matching 29

3.1.3 Spatial Colour Matching using a Grid 32

3 T ^ 36

3.1.5 Histogram Experimentation 38

3.1.6 Summary 42

3.2 The "Lower Palaeolithic Technology, Raw Materials and Population Ecology"

Project 43

3.2.1 Feature Extraction 44

3.2.2 Measurements 45

3.3 Summary 52

4 Content Based Retrieval with Scale-Trees 54

4.1 Introduction 54

4.2 Decomposition 54

4.2J TMeSkve 55

4.3 Scale Trees 59

4.3.1 Scale Tree Creation from the Granularity Domain 59

4.3.2 Scale Tree Creation During the Sieve Process 61

4.3.3 Pruning Scale Trees 61

4.4 Graph Matching and Subgraph Isomorphism Testing 63

4.4.1 Definitions 64

IV

4.4.2 Network Algorithm 65

4.4.2.1 The Network Algorithm: An Example 65

4.4.2.2 The Network Structure 70

4.4.2.3 Matching using the Network Algorithm 72

4.4.2.4 Matching using the Inexact Network Algorithm 73

4.4.3 Graph Matching for Scale Trees 75

4.4.4 Inexact Graph Matching with score filtering 78

4.5 Summary 79

5 Evaluation of Matching Algorithms 80

5.1 Introduction 80

5.2 Configuration 80

5.3 Matching Experiments 82

5.3.1 Creating a tree from the granularity domain 83

5.3.2 Noise and Blurring 88

5.3.3 The Graph Matching 103

5.4 Discussion 125

5.4.1 Decision Trees 129

5.5 Summary 130

6 Future Work and Summary 132

6.1 Future Work 132

6.1.1 Object Trees and Semantic Networks 132

6.1.2 Learning 134

6.1.3 Discussion of Extensions to the Decomposition Process 135

6.1.4 Implementation Issues 137

6.1.5 Application Integration 138

6.2 Summary 139

List of Figures

2.1 Quadratic form histogram matching; each bin is weighted against all other bins

to reduce the arbitary selection of the equivalence function 11

2.2 Matching using the mutiscale overlapping grid mechanism with CCVs as the

matching algorithm. Figures 2.2(d), 2.2(e), 2.2(f) show pseudo-colour repre-

sentations of the match space at a fine, medium, and coarse resolution. Note

the best matches (the red colours) are at the points where the flowers occur in

the original image 17

3.1 Single-colour images and their histograms, showing how very similar colours

can be placed in adjacent histogram bins due to the equality criterion. This can

be partially overcome with the quadratic histogram match 31

3.2 An image divided into an 8 x 8 grid 33

3.3 The interface allows selection of grid elements or painting into grid elements. . 34

3.4 An example quad-tree overlaid on a real image using colour as the homogeneity

criterion 37

3.5 An example quad-tree and the leaf code designations 37

3.6 The results of histogram retrieval using L\ distance. The first image is also the

query image 39

3.7 Recall vs. precision graphs for L\ and Lj histogram matching for a particular

query 41

3.8 The hand-axe feature extraction includes a set of measurements and generation

of the nearest symmetrical shape 46

3.9 The process of reflecting a point about the line of reflection to generate a sym-

metric pair of points to calculate the a-symmetric shape for the CSM 47

3.10 The unrolled shape signal, as a (8,.y) signal, of the shape in figure 3.8 49

3.11 Reconstruction of a shape at various scales using Fourier descriptors 50

3.12 Fourier signatures for the signals given in Figure 3.10 51

4.1 Using the sieve to generate a scale-space 56

4.2 The graylevel view of the image in 4.2(a), and its decomposition through scales

4.2(b)-0; 4 .2(c)-4; 4.2(d)-16 58

List of Figures vi

4.3 The granules removed at scale 4.3(b) - 4; 4.3(c) - 8; 4.3(d) - 16; 4.3(e) - 88;

4.3(f) - 2(X) from the original image in 4.3(a) 58

4.4 A scale tree generated from the sieve decomposition of the image in Figure

4.3(a) 60

4.5 Blurring causes long chains of nodes to be generated in the scale tree space. . . 62

4.6 4.6(a) A model graph with two vertices which have different labels, 4.6(b) A

model graph with live vertices where some labels are the same 66

4.7 A network built with the graphs from Figure 4.6, a) and b). The dotted lines

represent the different layers in the network: (from the top), the input node,

the 1-vertex-checkers, the E-subgraph-checkers, and the m-model-nodes. The

graph on the left has been input into the network, and the local memories of the

network nodes are shown. The grey memories are ones which are removed as

the memories Glter through the network, the black memories are those left at

completion of the network algorithm. Three subgraph isomorphisms are found

between the new input graph, and the two graphs in the database 66

5.1 The simple test harness 83

5.2 Sieve test: Simple image to ensure the region labelling and region merging

took place correctly. Figure 5.2(c) shows the scale-tree visualisation harness. . 84

5.3 The region merging throughout the sieve process on a simple block image

(scales 0,4,8,16,88,200) 85

5.4 A simple block image and its scale-tree 86

5.5 A simple block image and its scale tree 87

5.6 A simple block image and its scale tree 87

5.7 A simple block image and its scale tree. This tests the merging of surrounding

non-extrema blocks 87

5.8 The region merging throughout the sieve process on a simple image with 4%

salt and pepper noise (scales 0, 1,2, 3, 4, 1575) 88

5.9 Speckled noise is easily removed from images using high-pass sieve - as the

noise is nearly always extrema and of high frequency. Here the noise merges

to the main elliptical region and to the background region causing two cone

shaped structures 89

5.10 The region merging throughout the sieve process on a simple image with ran-

dom amplitude noise added in Photoshop (scales 0, 2, 3, 5, 20, 500) 90

5.11 Blurred edges within images caused by the resolving power of the capture de-

vice 91

5.12 The region merging throughout the sieve process on a simple blurred object

(scales 0, 24, 28, 32, 34) 91

5.13 Blurred images cause long chains of nodes in the scale tree 92

List of Figures vii

5.14 An image and its 2300-node scale-tree, showing blurring near the root of the

tree 92

5.15 An image with salt and pepper noise, and its scale tree, and after noise pruning

of the tree with 128 and 256 level threshold 93

5.16 An image with Gaussian noise, and its scale tree, and after noise pruning of the

tree with a threshold of 15, and 30 pixels 95

5.17 This image has noise introduced by dithering. Default value noise pruning

removes the dither effectively 96

5.18 This image, which has small detail, loses detail when the noise pruner is set at

a threshold to remove enough noise from the large regions so that they become

single nodes in the tree 97

5.19 This simple image undergoes blurring which is then pruned from the tree . . . 98

5.20 Here, the objects merge under blurring, but are clearly separate after blur prun-

ing 98

5.21 A smooth shadow on an object appears as a gradient, which, like blurring,

produces long chains of nodes that can be pruned by the blur pruner. 99

5.22 Alias pruning of a snooker photograph 100

5.23 Noise pruning before blur pruning can cause problems. Figure 5.23(a) shows

blur pruning only, at default levels, and figure 5.23(b) shows noise and blur

pruning of the image at default levels. Figure 5.23(c) shows a closeup of Eg-

ure 5.23(a), while figures 5.23(d) and 5.23(e) show a closeup of the image (in

colour and grey scale) of the image after noise pruning and before blur pruning. 101

5.24 Setting the noise size threshold high to remove many details, and the blur size

threshold low to avoid regions merging that should not be, we can get a better

segmentation of the image 101

5.25 a) An illustration of a scale space tree built from the simple image; b) An-

other illustration of a scale space tree built from an image, where the image

has subgraphs in common with the image in a); c) The network when both of

these graphs &om a) and b) have been inserted. It is possible to see the shared

subgraph representing the car 104

5.26 Insertion of the simple graph in figure 5.26(a) into an empty network, results

in the network in Ggure 5.26(b) 106

5.27 Insertion of the graph in figure 5.27(a) into the network from figure 5.26(b),

results in the network in figure 5.27(b) 106

5.28 Insertion of the graph in figure 5.28(a), containing new, unseen labels, into the

network from figure 5.27(b), results in the network in figure 5.28(b) 107

5.29 Matching the graph in figure 5.29(a) to the previously generated network (fig-

ure 5.28(b), gives the results shown in figure 5.29(b) 108

List of Figwes viii

5.30 Matching the graph in Hgure 5.30(a) to the previously generated network (fig-

ure 5.28(b), gives the results shown in figure 5.30(b) 109

5.31 Simple image used to test feature-based graph matching and the graph repre-

sentation of its scale-tree 110

5.32 Simple image used to test feature-based graph matching and the graph repre-

sentation of its scale-tree 110

5.33 Network built from the two graphs in figures 5.31(b) and 5.32(b) I l l

5.34 Simple image used to test feature-based graph matching and the graph repre-

sentation of its scale-tree I l l

5.35 Network from figure 5.33 with the graph from figure 5.34(b) inserted 112

5.36 Network built from the three above graphs using only colour for the feature

matching 113

5.37 Results from querying the network in figure 5.33 with the image from Ggure

5.31(a) 114

5.38 Simple image used to test feature-based graph matching and the graph repre-

sentation of its scale-tree 115

5.39 Results from querying the network in figure 5.33 with the image from figure

5.38 115

5.40 Simple image used to test feature-based graph matching and the graph repre-

sentation of its scale-tree 116

5.41 Results from querying the network in figure 5.33 with the image from figure

5.40 116

5.42 Simple image used to test feature-based graph matching and the graph repre-

sentation of its scale-tree 117

5.43 A network built containing the image from figure 5.42. The ESubgraphChecker

marked 'A' contains the object subtree 118

5.44 Selection of a subtree from an existing image and using that subtree as a query

to the network in figure 5.43, the results of which are shown in figure 5.44(c),

and the location of the best match in figure 5.44(d) 119

5.45 Results from querying a network containing the image in figure 5.42(a) and a

vertically flipped version of the image, with the sub-tree from figure 5.44(b). . . 120

5.46 Searching in a network containing an images with scaled and rotated instances

of the query object 121

5.47 Images and their scale-trees used as models for topology matching test 122

5.48 Results of querying a network built with the images from figure 5.47, with the

image from figure 5.42(a) 123

5.49 Set of model images 124

5.50 Pruned set of model images from Bgure 5.49 124

5.51 Results of performing a query with ± e image in figure 5.51(a) on a network

built with the trees of the images from figure 5.50 124

5.52 Set of model images from a database of American road signs 125

5.53 Results of performing a query with the image in figure 5.53(a) on a network

built with the trees of the images from figure 5.52 125

5.54 Reconstructions of decompositions based on different channels of the original

image in figure 5.54(a). All decompositions used 32 levels of quantisation, and

noise and blur pruning 126

6.1 Illustration of an object tree, where recognised objects are replaced by associ-

ations with concepts in a semantic layer. Concepts will be linked in a network

to other concepts (dotted lines) 133

6.2 Illustration of a composite concept in the semantic layer with attributed multi-

instance relationships and a logical relationship between the two relationships. 134

6.3 Using edges to limit scale-space decomposition to avoid mutations 136

6.4 Using edges to limit scale-space decomposition to avoid mutations 136

6.5 The normal decomposition of the tree is shown in figure 6.5(a), and the ex-

pected output of the edge-limited decomposition is shown in figure 6.5(b). . . . 137

Chapter 1

Introduction

1.1 Introduction

Computer technology is becoming more pervasive in our everyday lives. With this trend and

the strong visual sense of humans, computer interfaces have been moving towards graphical

and image manipulation interfaces. Also, with the fast growing capacity of storage devices

and network connections and the ease of acquisition of images via digital cameras and cheap

desktop photo scanners, the abundance of images available to any one person is becoming

overwhelming. Surveys(23) have estimated that world-wide 2,600 new images are created per

second (80 billion per year) with an estimated 10 billion of which are available on the internet.

Finding the correct image has become an expensive problem.

Because market forces have made image acquisition and storage relatively cheap only

within the last few years, there has been limited time for search algorithms to develop. There

has been work on the recognition of images, from retrieval of particular images from a large

database, to recognising faces from digitised images. But, the main problem with most of the

current techniques is that they are very feature oriented. Typical algorithms involve primitive

features (colour, texture and shape) estimated globally and though these features may allow

fast searching, their usefulness is limited by their simplicity.

Typically a user would not search for something of a particular colour, nor something of

a particular shape, but of a particular object, or set of objects. Systems which attempt to solve

this problem are few and far between, and, as yet, there are no systems that extract semantics

from images in general. The pre-requisite of searching in the object domain is the problem of

attempting to decompose an image in a way in which objects, as opposed to features, can be

retrieved. This may involve using a hybrid of the primitive features.

1

i.2. j(esearcA Ot^ecfives

The range of image retrieval systems is quite great. At the simplest it can involve text

matching which finds images based on keywords removed from the text which surrounds them,

such as the Google image search engine (http://images.google.com/). Natural language under-

standing, where users use phrases to ask for certain images, provides better context to keyword

searches. However, relying on the relationships between images and their textual context is

unreliable, because it cannot be guaranteed that an image is associated with nearby text due

to formatting, or page decoration by the author. Therefore, matching image content is likely

to be an improvement on assuming a textual relationship between an image and its context or

keywords. Using colour, texture and shape primitives is the first step into content based image

retrieval. Systems like QBIC, and Virage implement this type of content-based retrieval. Ob-

ject retrieval is more complex and could possibly be achieved using combinations of primitive

features to move towards object based retrieval; e.g. "find a bus". eVision's Visual Engine

(eVe) claims it can achieve object recognition with its unsupervised object segmentation algo-

rithm, and matching, but using only low-level features it is unlikely to be successful in most

cases. Scene matching (e.g. "find London") is the simplest form of semantic matching, before

moving on to touch (e.g. "find something rough"), and emotion (e.g. "find a happy scene").

The intellectual distance between simple feature based matching or object recognition and full

semantic recognition is called the semantic gap and it is currently gaping.

Much of the well documented research is based on the matching of single sets of image-

wide features to retrieve similar images. There have been attempts to find more localised simi-

larities within image, and a few have used the adjacency of regions within the image applied to

content based retrieval. However, new scale space techniques allow us to decompose the image

across scales, and allow us to find regions over various scales. Adjacency between scales be-

comes important for the topology of the image - within which there may be the topology of one

or more objects. From the scale-space domain, trees can be built. Matching these trees, and

sub-trees thereof, allows for object based retrieval. Retrieval within a knowledge base would

allow for object recognition. All of the recognised objects within an image could be aggregated

into a scene graph, which could be matched against semantic concepts in the knowledge base.

We have not seen these ideas presented elsewhere, even without the application of content

based retrieval.

1.2 Research Objectives

The broad aim of our research is to improve feature representation for content based image

retrieval and navigation by extracting, from images, features which are more relevant than

those currently in use.

An initial objective was to improve colour based image retrieval with a spatial representa-

tion of the colour of an image, and associated matching technique.

As research progressed, a second objective emerged which is to improve general image

http://images.google.com/

i.3. Tlbesis Structure

retrieval by extracting the topology of an image using scale space techniques and using the

topology as a representation for objects in the image and their relationship. It should then

be possible to develop schemes for matching topology and sub-topologies in order to locate

objects.

1.3 Thesis Structure

This thesis presents how, using trees generated from scale-space decompositions of Images, it

is possible to search for object topologies, and therefore locate similar objects.

Chapter 2 gives an overview of the current commercial and research content based image

retrieval systems, and describes the current state of the content based retrieval community's

work on colour, and shape retrieval. The chapter also describes other ways that have been

developed to build scale-space trees.

Chapter 3 describes our initial work into improving the content based retrieval techniques

currently used, describing some partly new work into spatial colour histogram retrieval. Finally,

the chapter describes some related work, on extraction of particular objects (Hint hand-axes)

from images using well known techniques. The extraction is primarily used for measurements,

rather than retrieval, but is new within its field.

Chapter 4 and chapter 5 describes our novel work into providing a new approach to content

based retrieval using scale-space trees.

Chapter 4 briefly describes how, with a semantic layer idea, the new image representations

can be used to work towards object recognition.

Finally, in chapter 6 we summarise the thesis and bring together conclusions from chap-

ter 5. We also explain further work that could improve the approach we have presented.

Chapter 2

ILiter%ituixs]Rkrvievy

The state of the art in the field of content based retrieval is changing rapidly. From the mid-80s

when content based retrieval emerged as a possibility the field has grown to include various

different fields of research, from colorimetry, to subgraph isomorphism detection.

In this chapter we will briefly explain some of the content based retrieval products that are

on the market, and then some of the techniques that are used to achieve content based retrieval

and feature extraction.

2.1 Current Content Based Retrieval Systems

This section describes some of the products which are available on the market to achieve con-

tent based retrieval on images, and other multimedia. There are far too many content based

techniques and systems to be able to describe them all here so we also point the reader to re-

views of the field that can be found in (69; 22; 64; 78). What follows is a brief description of

some of the well known and well regarded systems in the field.

2.1.1 QBIC

IBM's QBIC System (25; 54; 55) is probably the most well known content-based retrieval

engine for video and images. The image feature extraction engine uses colour, shape, and

texture. The use of colour in QBIC was originally limited to the overall colour histogram of

an image, or percentages of colour within an image, however, more recent versions of QBIC

have included a widget which allows queries based on the spatial colour layout of images

to be created (query by sketch). This system is based on a grid mechanism similar to that

2. i. Cumenf Cojifent Based RetnevaJ Systems

described in Section 2.2.3.1. The shape features consist of area, circularity, eccentricity, major

axis orientation, and a set of algebraic moment invariants.

2.1.2 eVe

eVe (the eVision Visual Engine) (23), is a commercial product developed by eVision, LLC

Technologies. The engine uses automatic segmentation techniques applied to colour, texture,

shape, and visual and text meta-tag searching. It attempts automatic segmentation by grouping

pixels based on pixel similarity and labels the clusters as objects. Although they profess that

this fo rAe commgrciaZ w o r W many of their examples

contain objects on white background, and those which do not are poorly segmented. The query

engine is query-by-example only. This helps with their visual tagging system, where all the

objects in the catalogue are pre-clustered based on visual similarity. Users can add metadata

to the clusters of images based on certain features (i.e. only the shape, or colour) allowing the

searching process to return results quickly based on the clusters.

2.1.3 PicToSeek

PicToSeek (28) is a content-based image search system, designed for use on The Web by the

Intelligent Sensory Information Systems research group, at the University of Amsterdam. The

system uses a colour model that is colour constant - that is, it is independent of the illumination

colour, shadows, and shading cues. PicToSeek, however, is only concerned with the whole

image histograms, and does not allow spatially oriented queries.

2.1.4 Virage

Virage (6; 31) is a system produced by Virage Inc. that performs content-based retrieval on

video and images, using colour, texture, composition (colour intensity distribution), and struc-

ture (shape layout). It also allows for combinations of the above to be used in a single query,

unlike QBIC (64). Weights can be varied for each feature type according to the user's needs.

The framework was also extended to include domain specific features (such as face detection),

as well as the general features (colour, texture, etc.).

2.1.5 RetrievalWare

RetrievalWare is a commercial system developed by Excalibur Technologies Corp. that, among

other things, uses colour, shape, texture, brightness, colour layout and image aspect ratio in a

query-by-example paradigm to match images. Like Virage, it allows combinations of these

features to be used.

2.j. Curreat ConkafBasedRefnevaJ Sysfems

2.1.6 VisualSEEk

VisualSEEk (70) is a content based search engine designed at the Center for Image Technology

for New Media, at Columbia University, New York. The system uses colour set back-projection

to extract regions of colour from images. Colour back-projection is a way of automatically ex-

tracting salient regions, by quantizing the image based on the 'colour sets' - which are thresh-

olded histograms. Because colour sets are binary, the histogram matching functions can be

reduced which allows efficient indexing. VisualSEEK allows spatial-colour retrieval based on

a query built from areas of solid colour, and semantic relations between those areas. The sys-

tem also includes a wavelet based texture feature. WebSEEk is a web-based version of the

VisualSEEk engine that supports queries on both keywords and visual content.

2.1.7 Color-WISE

Color-WISE (67) is an image similarity retrieval system which allows users to search for stored

images using matching based on the localized dominant hue and saturation values. It uses a

cunning fixed segmentation of overlapping elements to ensure that the matching is slightly

fuzzy. The system computes separate histograms for hue, saturation, and intensity, and reduces

their size by finding their area-peak - basically removing noise that is small amounts of isolated

colours. Color-WISE uses Microsoft Access to perform the database functions, and uses a

similarity metric based on IBM's QBIC system. Querying in Color-WISE is achieved with

query-by-image.

2.1.8 Photobook

Photobook from MIT consists of a number of "subbooks" which allow shapes, textures and

faces to be extracted from images. Users can query based on the features in each of the sub-

books. Later versions allowed human authors to help annotate images, based on "models of

society" that reflect the particular domain and set of users.

2.1.9 Blobworld

The Digital Library Project (26) taking place at the University of Berkeley, California, has de-

veloped a system called Blobworld which uses low-level grouping techniques to create "blobs

of stuff", which can be texture, colour, or symmetry. The blobs can be matched against their

content, and their position, and it is possible to use high-level techniques to analyse the seman-

tics of the blobs (such as where they are in relation to other blobs), and conclude what they

might represent.

2. j. Curren f Coafeaf Based j(etnevaj Sysfema

2.1.10 Image-MINER

Image-MINER (5) is an image and video retrieval system developed by ± e AI group at the

University of Bremen. Their colour indexing system for images uses local histograms in a

fixed grid geometry. Further grouping of the fixed elements occurs to get 'color-rectangles',

which are signatures for their input images. The colour based segmentation module, is part

of the larger Image-MINER system which includes video retrieval methods, including shot

detection and subsequent 'mosaicing'.

2.1.11 MARS

MARS (Multimedia Analysis and Retrieval System) (63) is a multimedia retrieval system, that

is designed to retrieve text, images and video. The image retrieval engine they use is based

upon colour and texture. Colour histogram intersection and colour moments are used to match

whole images, as weU as co-occurance matrix and wavelet based methods of texture analysis.

2.1.12 Other Systems

ART MUSEUM(36) is one of the earliest content based image retrieval systems, developed in

1992. Some other systems include IMatch by mwlabs which uses colour, texture, and shape

for content based retrieval, DART by AT&T which also uses colour, texture, shape, as well

as locally smooth regions, Netra using colour, texture, shape and spatial location information,

with a neural net based automatic image thesaurus construction.

2.1.13 Summary

There are many content based retrieval systems which have been developed within the last

decade using relatively simple matching techniques. As described above, most of these systems

use colour, and texture, and some have basic spatial location retrieval. However, few of them

access the semantics of the image and therefore fail to allow retrieval within the semantic

domain. Very recently in the literature, semantic retrieval is becoming an active research topic.

For example, Wang et al., in (80), propose a semantic retrieval technique based on region

saliency, within the image and of itself, along with texture details. This may be a way to

achieve certain semantic-type queries ("find me sky and grass"), but is unlikely to be able to

achieve object matching, as objects may consist of a number of regions as a particular topology.

The authors in (42) use the topology of outline shape, but fail to use other low level region

properties, such as colour and texture.

2.2. pGafure Exfracdoa and RetnevaJ Tecfmigues

2 . 2]Feadi»M;I&KtractH)n:anKi]tetrH^yalTRMdhnjq^ies

Currently, low level feature matching is the underlying method of any content based retrieval

system, and it is unlikely to change for the foreseeable future. Therefore it is necessary to have

techniques for matching low level features of images, which are robust and, to some extent,

useful on their own.

However, for applications which have to identify objects within real world scenes, single

low level features alone are inadequate, and it is often usual to combine low level features, and

their matching techniques, to present a more complex, and potentially more discriminating,

representation of an image. By combining the strengths of a number of features, objects may

be able to be identified in the scene where any of the single features used might fail.

Most feature matching techniques will return a similarity, or conversely a distance mea-

sure, which represents how similar the two considered are. This alleviates the need to

arbitrarily pick some domains into which the things can be classified into, allowing for a con-

tinuous measurement. However, without selective retrieval by indexing techniques, it requires

that all possible known instances be considered against the unknown, or query, thing. This will

be time consuming for a system with a large database of known instances, so often, during

indexing, certain groups of instances are disregarded as being too dissimilar from the query to

contribute to the results. This increases the precision of the match, and, in a good indexing

system, does not affect recall.

Of the low-level features, colour is the most readily identifiable property, and as such,

much of our everyday world is based around colour; for example, in the western world red

means stop and green means go, and often if the identity of an object is unknown it is referred

to instictively by its colour (e.g. "what is the green thing over there?"). Indeed, many objects

are only distinguishable by their colour, which is why colour-blindness is still considered a

problem.

Early feature techniques disregarded colour as a valid feature for recognition, maybe due

to the earlier expense of colour camera systems. Many also believed that colour, as well as

texture, were only secondary roles in primal access, and that the geometric, and volumetric

shape of an object were the only efficient access to representations of objects. Swain and

Ballard pointed out in their famous paper on colour indexing (73), that "for routine behavior,

... w/zgrgmyamfZzar org wzYA rgpgargcfZ)?, coZor rnm); 6g morg

iWgA:iMg /gafwrg."

Having pointed this out, there are many instances in which colour is a misleading feature,

in particular when there are coloured lights involved. Even under normal room lighting, cap-

tured images tend to take on a yellow hue if not corrected, which can cause problems when

searching for similar objects. It may have been the lack of good algorithms to conquer this

problem that also led to colour being disregarded early on. However, there has been much

work on finding illumination invariant colour features which we will explain later.

2.2. Fsafure Exfracdoa and RetnevaJ TecWgues

Below we describe the colour histogram - a method for storing an image's colour data and

for matching images based on colour. We will describe how the histogram can be augmented

to find the position of certain colours in the image.

2.2.1 The Colour Histogram

The colour histogram is a representation of the colour content of an image. It counts the

frequency of each colour in the image which fall into "bins" in a quantised colour space.

The colour axis of the colour space can be of any type, and most commonly RGB (red,

green, blue) histograms are generated due to the ease of acquiring the data from the raw image

pixels. Often HSB/V (hue, saturation, brightness/value) histograms are used as they provide

better separation of the chromaticity from the luminance while also being relatively easy to

compute. Another system which also separates chromaticity and luminance is the Opponent

Colour Space, where the axes arerg = r — = —r — = where the axis

then represents the luminance. The problem with colour spaces that separate luminance from

colour, is that there are no longer single bins representing white and black. For example, when

saturation in HSBA/̂ space is 0 (grey scale) hue is undeGned. In a 3 x 3 x 3 HSV space, there

would be 3 bins for every level of grey, with 9 black bins. In which bin should a black pixel

be placed? By distorting the quantisation a little one can overcome the problem by merging all

grey bins into single bins, giving an asymmetric histogram.

Directly observing the data in the histogram can allow the simplest form of filtering pos-

sible, by returning those images with a certain proportion of colour in them, for example, 75%

red.

The simplest form of matching two histograms is to use the sum of the absolute differences

of the bins (Li-distance) or the sum of the squares of the differences of the bins (/g-distance).

So, the most similar image M to the query image Q will be the histogram, Hm most similar to

the histogram of the query image, Hq. Given n bins in the histograms, the most simlar image

is that image minimising the Li-distance (Manhatten or City Block measure):

IÎ G - II = Z (2.1)
;=i

or the l2-distance (Euclidean distance measure):

ll'̂ e - II = E [;] - W)". (2.2)
;=i

where is the bin of the histogram

Matching using the Euclidean or Manhatten metric is not ideal, because the quantisation of

the histograms into bins causes aliasing of the histogram data; where two colours may be close

in colour space they may be placed into opposite ends of neighbouring bins by the equivalence

function. The crude quantisation of the bins could be overcome by using overlapping bins.

2.2. Feature Extraction and j<etnevaJ IbcWgues 10

or by associating a Gaussian probability with the colour of the bin, so that colours nearer the

edges of a bin would be less likely to belong to the bin they are in, and more likely to belong

to the neighbouring bin. A technique which achieves this is described in Section 2.2.1.3.

Walcott and Ellis in (79) give an algorithm which searches for objects based on their

colour. They use a segmentation to find model colour cues within the image. They segment out

the model colours using a region growing algorithm. They match the model colours using a

variation on the histogram intersection metric. The technique outperforms many colour based

algorithms on their test set, but doesn't take into account the topology of the image and is still

based on an illumination dependent technique.

The matching techniques described here work on a simple set of pixels. This can be used

to find similar colour images, or with image decomposition, can be used to find similar colour

image-parts. Often these images are combined into a histogram on which the matching takes

place.

2.2.1.1 Histogram Intersection

Histogram intersection, as defined by Swain and Ballard in 1991(73), finds the number of

pixels from the model image that have similar colour pixels in a match image. Given a pair of

histograms, 1 and M, each containing n bins, the normalised histogram intersection is defined

= (2.3)

where Ij is the bin of histogram /.

Swain and Ballard extend the technique to allow for efficient indexing to a large database

with their Incremental Intersection. This basically uses the largest value bins in the model and

query histograms to find an approximate match. Then it uses the other bins to get better, more

accurate results. Because histogram intersection is somewhat insensitive to the number of bins

used in the histograms, the computation can give reasonable results back after the initial stage.

Although the histogram intersection calculation is fast, and Swain and Ballard prophe-

sied that it could be used in real-time systems with hardware acceleration, the examples given

show that it only works well, when objects are already segmented, and for automated image

classification and recognition the results would be less acceptable due to extraneous pixels.

Swain and Ballard went on to explain how the best match in an image can be found using

histogram techniques, in particular, their method called Histogram Back-Projection.

2.2.1.2 Histogram Back-projection

Swain and Ballard's paper (73) describes the histogram back-projection technique, which lo-

cates the position of the best colour match of pixels, using histogram intersection, by con-

volving a disc subtending the expected area of the final object with an image which has been

2.2. Feature Extraction and Retrieval Techniques 11

Frequency

Figure 2.1: Quadratic form histogram matching: each bin is weighted against all other bins to reduce
the arbitary selection of the equivalence function.

back-projected with a ratio histogram.

Given histograms I and M, the bin of the ratio histogram, is defined by;

Ri = mm I — , 1 (2.4)

This is analogous to the circular Hough transform; the final image contains a match score

for each position in the image for the colour of the subtended circle against the colour of the

query object. However, convolution is a relatively expensive operation, so Swain carried out

the convolution on reduced resolution images. This traded efficiency in the algorithm, against

accuracy in the final results. For their intended robotic vision application they felt this was an

acceptable compromise.

Histogram back-projection was used to detect flaws in products on a production line with

a special colour-profile in (20). The colour profile is built up from a training set of images,

and rather than creating a ratio histogram which is back projected, a representative histogram

containing those colours which are flaws in the product is created. Back projection of this onto

the images of the products produces easily seen areas which are due to flaws.

2.2,1,3 Quadratic Match

The quadratic matching approach was developed by IBM for their QBIC (Query By Image

Content) system(54; 25; 55). They found the quadratic match to more closely correspond to

the human judgment of colour(29) than Swain and Ballard's. A particular advantage is that

using the quadratic match, the bins in the histogram influence each other during the match

by an amount dependant on their distance from each other in colour space (see figure 2.1).

This means that the problem of similar colours being placed in neighbouring bins due to the

equivalence function is partially overcome.

2.2. Feature Extraction and j(e(nGvaj7bc6mgues 12

In QBIC the colour features(54) are based on a 256 cell Munsell colour space using the

Mathematical Transform to Munsell (MTM), although it can be used with any colour space and

quantisation. An inverse table of colour to cell number is produced which allows fast indexing

to a histogram bin from the RGB colour space. The histogram is built and normalised so that

it sums to unity.

To match two histograms, H and M, the bin by bin difference is calculated into a vector,

Z.

(2.5)

A symmetric similarity matrix, A, is calculated with:

= (2.6)

where c,- and cj are the z* and bin's colour coordinates in the chosen colour space,

d{ci,cj) is the distance in the colour space between those two colours, and is the maximum

distance between any two colours. The match value is then given by:

||Z|| = Z^AZ (2.7)

The advantage of this over the histogram intersection is that the weighting between bins is

implicit in the matching. The similarity matrix combines the weights between every bin with

every other bin, so that the match of a particular bin is affected by those nearby, going some

way to alleviating the problem of pixels falling in between two bins, then being placed in one

arbitrarily.

The main problem with this method is the calculation cost, which can become prohibitive

in a large database, with high resolution histograms. In (29) they describe a method to increase

the response which uses a cheap distance measure to filter a large fraction of the database

without incurring any misses. Then the more expensive quadratic matches can be used on the

remaining database.

Of course, these methods share disadvantages with the Swain and Ballard method. For

example, it only works well when objects are already segmented, and would not be accurate

for automatic image classification or recognition because the results would be affected by ex-

traneous pixels.

2.2.1.4 Colour Coherence Vectors

Colour coherence vectors (CCVs)(58) classify pixels on whether or not they are coherent -

that is, part of a "sizable", approximately homogeneous region. The colours in the image are

quantised into their histogram bins, and connected sets determined from the quantised pixels.

The pixel count of each connected set is taken, and those sets which are smaller than a pre-

defined threshold, 0, are considered incoherent. The coherence pair (c^, Pj) for the colour

2.2. feature Extraction and Retrieval TecWgues 13

quantised colour represents the number of coherent pixels, a , and the number of incoherent

pixels, (3. The coherence vector is a set of coherence pairs - one coherence pair per quantised

colour: ((a,, P ,) , { a j , Pj)). The vectors for images I and I' are matched by using the sum of

differences approach, but for each of the pairs individually:

--(%;)-t- (P, - Pj)! (2 8)
7=1

Using successive refinement of the histogram. Pass and Zabih also classify the pixels based on

their inclusion in a centre zone - the centre 75% of pixels. Their results suggest that successive

refinement of the CCV provides better results than an unrefined CCV. Refining the histogram

not only makes finer distinctions between pixels but functions as a statistical filter for succes-

sive refinements.

Although CCVs are a useful extension to the histogram technique, they are, in essence,

very similar, and suffer from the same problem of aliasing, and lack of spatial information.

2.2.1.5 Colour Correlograms

Correlograms(35) are probability functions which gives the probability distribution of colour

from any pixel in the image, by distance from that pixel. So, although they don't explicitly en-

code spatial locations of objects, they encode the relationship, or correlation, between colours

within an image. This provides a local spatial correlation of colours and the global distribution

of this spatial correlation. The size of the correlogram is 0{ni-d), where m is the number of

colours, and the resolution of the correlogram. Given two colours, q and Cy in an » x »image

/ and a fixed distance attribute d e [n], a correlogram is defined as the probability of pixel p{

of colour Q being distance d from pixel p2 of colour cj:

(/) ^ f r E 4;I |pi - P2I ^ (2.9)

The autocorrelogram captures the spatial correlation between identical colours only, and has

the size 0 (W) . The autocorrelogram is defined as:

a l ') (/) - Y S (/) (2.10)

The distance between correlograms is given by the Z4 -distance (the sum of absolute value of

differences) which is statistically more robust to feature outliers.

z iY&(/)-&(ni (2.11)

The Colour Correlogram certainly improves on the basic histogram retrieval performance,

but is still, fundamentally, a colour based algorithm, lacking any understanding of the image

content.

2.2. Feafure Extraction and j^GfrzevaJTechnigues 14

2.2.2 l l l i iminant Invariance

There has been a significant amount of research dedicated to illumination-independent image

matching. The colour of a pixel in a captured image is dependant on a number of factors; the

spectral reflectance of the viewed object, and the spectral distrubution, intensity, and relative

position of the illumation. There are two ways to overcome these effects: alter the image pixels,

or extract features which are invarient.

The former uses a colour-constancy algorithm (assuming reflected light undergoes no

spectral or intensity deformations) to estimate the prevailing lighting conditions of the scene

and colour-correct the image (24; 73). However, these seem to be unable to deliver accurate

enough estimates for good indexing. Of course, colour-constancy is often not a possible sce-

nario in non-experimental situations where the assumption fails.

The second is to extract colour invariant features directly from an image and use these to

index. For example, (81), creates a new chromaticity histogram with scaled colour channels.

The features are matched using histogram intersection. Matas, et al. (45) store their models as

colour patches, where the colour of the patches have been made invariant to illumination.

Of course, illuminant invariant searching can be counter-intuitive, as in certain circum-

stances we are often searching for particular lighting conditions; for example, night images, or

sunsets. This is not only the downfall of using colour-invariants as a feature, but if the intended

object can be any colour, for example, a car, then colour becomes more or less useless.

2.2.3 Matching with Colour Layout

Following Swain and Ballard's early study of colour indexing extensions to colour matching

were developed such as including the location of the colour in the match, for example their

Histogram Backprojection. In this section we discuss some colour layout matching algorithms

for content based retrieval purposes.

2.2.3.1 Grid Matching

Simple histogram matching might be quick, but the lack of any spatial cues in the matching is a

downfall. The most obvious way of achieving a spatial matching might be to divide the image

into regions and match those separately. Dividing the image into a grid of equal sized area may

seem trivial, but it is surprisingly effective at achieving spatial matching (21; 41).

Each grid element consists of a rectangular part of the original image, which itself can be

treated as an image, and matched using any of the colour matching techniques explained in the

section above.

The image can be matched partially by applying the match to only some of the grid ele-

ments. A spatial whole-image match can be achieved by matching each element with elements

in the same position in the database image, which is more effective at finding similar images

2.2. Feature Extraction and Retrieval Techniques 15

than simple histogram matching. The smaller areas means searching for an area of a particular

colour is more effective than a standard histogram match when a single element is matched

against all elements in the database image.

Some problems arise due to the coarseness of the segmentation using the grid method, and

a number of techniques have been employed to attempt to overcome this. Sethi et. al (67) use

a set of grid elements all which overlap slightly which allows a certain amount of fuzziness to

be incorporated into the spatial match. They use a nonlinear function based on the average hue

and saturation values in each grid elements to perform the colour match.

An alternative to overcoming problems with histogram matching on grids, is to create

features which overcome the problem, using a different segmentation algorithm.

2.2.3.2 Quad-tree Matching

The main shortcoming of using the simple grid method - namely the coarseness of the segmen-

tation causing extraneous background noise to appear in the elements - can be overcome using

a segmentation based on the quad-tree (71).

Using an image decomposition method based on the quad-tree (71) (see Section 2.2.6.1)

it is possible to achieve spatial colour matching. Our experiments with using quad-trees to

increase the accuracy of spatial colour matching is presented in Chapter 3.

The quad-tree method divides an image based on the content of the regions, and so each

region is reasonably homogeneous, assuming the correct homogeneity criterion is used. This

means that an uneven grid of regions is created, again, each of which can be taken as an image

and matched using a colour histogram matching technique. Because the regions are approx-

imately homogeneous, very low resolution histograms can be utilised, to increase response

times. However, the matching becomes more interesting as the sizes of the corresponding re-

gions may not be equal. The matching can be achieved using a leaf code identity for each

quad-tree element and making some assumptions about the content of the nodes. This tech-

nique is described in detail in Chapter 3.

Leung and Ng (41) use a multiresolution quad-tree approach, although they do not merge

elements with homogenous content. When matching the histograms, rather than directly match-

ing, or scaling (normalising) the histograms, they use techniques called padding and reduction.

Padding increases the size of the query image block to the size of the database image block,

by adding to it a number of "desired" pixels - those pixels which will minimise the histogram

Euclidean distance. Reduction is the opposite - the "least desired" pixels are removed, thereby

keeping the histogram distance to a minimum. They match through the multiresolution tree

using the Euclidean distance on the padded or reduced histograms and keep the finest scale im-

ages with the smallest distances. They keep proceeding until the distance value at a particular

scale is too large to be a good match or the finest scale is reached.

2.2. FeaAireExtracdoDandj^eCnevajTecAnjgues 16

2.2.3.3 Overlapping Grid

The idea in overlapping the grid elements is to avoid the problem of the arbitary grid segmen-

tation which may cause the objects in the grid elements to be divided in such a way that the

retrieval will fail. Overlapping the grid elements introduces a certain amount of fuzziness" to

be incorporated into the spatial distribution of the colour.

The Color-WISE system (67) uses the mechanism where each grid element is feathered

around the edges by 50% thereby giving elements which overlap the 8 surrounding elements.

They use the histogram intersection method to provide matching in the elements.

The technique employed in the Artiste project (14), an environment for fine art retrieval,

allows the users to find the original painting from a section removed from the painting - some-

thing single-scale techniques would not achieve. An advantage is that the the technique can

be used with any low level feature matching technique, while also adding the advantages of

mutliscale respresentations.

The image is rendered at a number of resolutions. At each resolution a "window" is

placed on the image and a CCV, Histogram or other technique's feature is generated from the

pixels within the area. The window is a Gxed size for the application, and Bxed across scales.

The windowed area overlaps previous areas by half, to give more accurate feature location.

Matching takes place over the whole set of features across the scales and the best match gives

the location of the best sub-image by scale and location. In Figure 2.2 the image is converted

into a multiscale-CCV which is stored in whatever database is being used. The image part

which is to be queried is then converted into a CCV, and CCV matching takes place over the

multiscale-CCV representation of the original image. The best matches can be seen at the finest

scale at the positions where similar flowers appear. The coarser the scale becomes the worse

the matches become.

2.2.4 Shape

A major problem with colour is that it cannot distinguish between different objects of the same

colour, obviously, and in many applications colour is simply not important. Another of the

important aspects of an object is its shape. For example, a settee is very different from a table,

but the colour of either object is not of consequence to the type of object it is. The shape of

objects has also been used to advantage in waste recycling (72).

There are problems with shape as a feature. In comparison to colour features, the extrac-

tion of shape features from an image is a far more difficult task, and there are many techniques

which attempt to get shape features from images in noisy circumstances, some with more suc-

cess than others. Another problem is that objects, other than a sphere, look different from

different angles. This means that if you search for an object based on one particular angle,

the results are unlikely to include the object from other angles. This is a drawback of using

only shape as an index into a database of objects, and why most systems will use other features

2.2. Feature Extraction and Retrieval Techniques 17

%

(a)

The database image which we are

matching against.

(b)

The coherent histogram colour repre-

sentation of the image, after the colours

in the image are represented by their

coherent histogram bin colour.

(c)

The image-part we are looking to lo-

cate in the database image.

(d)

Fine-scale pseudo-colour representa-

tion of the match score (red is a good

match, blue is a bad match)

(e) (f)

Medium-scale pseudo-colour image of Low-scale pseudo-colour image of the

the match score. match score.

Figure 2.2; Matching using the mutiscale overlapping grid mechanism with CCVs as the matching
algorithm. Figures 2.2(d), 2.2(e), 2.2(f) show pseudo-colour representations of the match space at a
fine, medium, and coarse resolution. Note the best matches (the red colours) are at the points where the
flowers occur in the original image.

2.2. feature Extraction and RetnevaJTecAmgues 18

along with shape. Another way around this is to use a 'semantic layer' and associate different

representations of an object with a concept representing an object. MAVIS-2 (19; 18) contains

such a device called the Multimedia Thesaurus (74; 75).

2.2.4.1 Segmenting Images To Extract Shape

Extracting shapes from images can be relatively easy for images which contain an object on a

single colour background. For 'real-world' images, segmenting objects from the background

can be far more difficult.

For objects on a single colour background, segmentation is a case of using an edge detec-

tion algorithm and a boundary tracing algorithm to convert the pixels in the edge image into a

useful format. We used this technique in a system used for making measurements on ancient

flint tools which were going to be digitised in a controlled environment against a dark backdrop.

Biliary image masks are often used in cases where images are overlaid based on the shape of

object, such as in video post-production. The mask can be automatically generated from seg-

menting the objects from the single colour backdrop. This is the basis of chroma-keying (or

blue-screening). Traditionally chroma-keying has been done on blue or green background be-

cause the human skin texture does not contain much blue or green - it is mainly red tones.

Segmenting in this situation is performed, on the whole, by thresholding. With an object on

a black or white background, the thresholding can take place on the grey-level value. For

chroma-keying type applications thresholding takes place on the blue or green channel of the

RGB signal. Chroma-keying techniques are based on thresholding but have been developed far

beyond this.

Segmenting images in noisy "real world" images can be more difficult. Edge detection

and boundary tracing is usually only useful on images which have a single colour, high contrast

background, like the thresholding example. The Canny edge detector will always give a closed

boundary and is useful if a boundary tracing algorithm is to follow the detection.

Region based segmentation has the ability to work in noisy images, because it does not

rely on the object explicitly. The image is decomposed until the regions are all homogenous, for

example with the split and merge algorithm which repeatedly splits the image into a quadrants

until the region inside a quadrant is homogeneous to some homogeneity criterion. The problem

is that in richly textured images, or images with alot of aliasing, the homogeneity criterion is

very important to avoid the number of regions that are generated becoming large, and the

regions becoming pixel-sized.

Hybrid techniques like seeded region growing and watershed algorithm combine region

and boundary information but have problems with blurred edges. Finding starting points for

the algorithms also becomes a difficult task to automate successfully.

2.2. Feature Extracdoa and RetrzevaJTecWgues 19

2.2.4.2 Representing and Matching Shapes

Deformable models are used to represent either a class of objects of differing shape, or objects

which change shape. Active Contour Models (or Snakes) are deformable models using energy

minimisation splines that hone their shape to the contour of an object from an initial estimate

of the shape of the object.

The energy minimisation function is a combination of internal and external forces which

deform the position of a point on the estimated contour:

^snake ~ J {Einternal^i,^^ ^imaged^constraintV(s^) .ds (2.12)

where is the spline energy caused by stretching and bending, jS/nage is the measure

of attraction of image features such as contours, Ef:onstraint is the external constraints generated

by higher level functions, such as prior knowledge, or user-based energies (for example to avoid

nearby objects affecting the minimisation procedure). v(j) is the parametric representation of

the contour: v(&) = (x(5),y(s)), where) and j (j) is the coordinates of the position at distance

g along the curve (normalised so the length of the curve is 1, i.e. 0 < a < 1).

ACMs can be made multiscale by using a pyramid of images - where the ACM algorithm

is ran over a range of resolutions from low to high resolution giving a set of ACMs. Of course,

the ACM is only a method for extracting shape from an image, a solid representation of the

shape for matching needs to be generated.

The simplest measurements which can be taken on a shape are length, and breadth, and

an aspect ratio can be calculated. The area of the shape and the length of the perimeter are also

easily calculated. Compactness is defined as • Elongation is a measurements of the

ratio of the length of the longest chord of the shape to the longest chord perpendicular to it.

The Euler number is defined as E = C - H where C is the number of connected components

of a shape, and H is the number of holes. These are all very simple descriptiors but can all

be useful in separating simple shapes. Matching is a simple subtraction calculation to give a

distance.

Moments (76) have long been the cornerstone of shape matching due to their ease of cal-

culation - assuming one has a binary image to work from! Calculating moments from other

shape representations can be more difficult. Moments require the knowledge of which pixels in

an image lie within the shape. The method was stumbled upon by a student called Sigfried writ-

ing a thesis on character recognition after taking the advice of a lateral thinking methodology

book and randomly browsing his library for ideas(76).

The two dimensional moment is dehned generally as:

(2.13)

For simplicity, taking the pixels to be of binary value (black = 0, white =1) , the definition

2.2. Feature Extraction and Retrieval Techniques 20

of moments becomes:

= (2.14)
A

Moments are then combined to provide suitable shape features. is the area of the

shape, in pixels. The centre of gravity is given by:

=Si
Furthermore, the skew of the shape is given by:

and kurtosis given by the third order descriptor.

Equation 2.19 can be used to make moments invariant to translation and scale.

Hu defined a set of 7 invariant moments(34) which are sufficient to successfully match

shapes, and they are all translation and rotation invariant. They are based on the central mo-

ments, which are given by:

1 N M

x=ly=l

The moments are defined as such:

^1 = (/̂ 20 + /4)2) (2.21)

Ml = + (2.22)

M3 = (/X30 — 3^12)^ + (3^21 — ^33)^ (2.23)

M4 = (f(30 + A2)^4-(Af2i+/4)3)^ (2.24)

^ 5 = (/̂ 30 —3/li2)(Ai30 + A2)[(/^30 + f^l2)^-3(;^21+f4)3)^] (2.25)

+ (3%1 —A)3)(/i21 +A)3)[3(f^30 + /̂ 12)̂ — (̂ (21 +/4)3)^]

^ 6 = (/i20 —A4)2)[(%0 + Â 12)̂ —(fi2l+/^3]+4;ill(/l30 + fil2)(/i21+/4)3) (2.26)

^7 = (3/i21—/4)3)(f^30 + A2)[(/^30 + A2)^ —3(/i21+/4)3)^] (2.27)

— (f̂ 30 — 3fii2)(f(l2 + Al03)[(A(30 + /̂ I2)̂ — (^2 + /4)3)^]

These can be made scale invariant by normalising them to the size of the blob or edge

bounday, using the radius of gyration of a planar pattern: r =\ /jU^ + Ai20' The 6rst scale

2.2. FeahireExfracdonandRefnevaJTbcADigues 21

invariant moment requires a measurement of camera to observed object, B, and can be ignored

for simple shape matching. The moments that are rotation, translation and scale invariant (RST

invariant) are given by:

= rg (2.28)

Ml
(2.29)

M3
(2.30)

M4
(2.31)

M5
(2.32)

Me
(2.33)

7 2
(2.34)

(2.35)

Comparing the moments using only Euclidean measures will allow shape differentiation,

but the result will be scale dependant. For these features to be comparable, they can be nor-

malised by the mean and standard deviation of the zth moment.

==3. (2.36)

This is the squared pattern distance measure and it is based on the relative distances of

each moment from the mean moment from the set of model shapes. To calculate the distance

requires the mean and variance of a dataset to be calculated. This is only possible in a dataset

where there is a limited number of possible classifications (for example, in optical character

recognition where there are 26 letters, and a known number of extra characters).

Moments of perimeter are computed in a similar way to moments of area but using only

pixels which lie on the boundary. Computing the moments of a differentiated (edge detected)

image, where pixels represent edge magnitude, we can obtain the moments of the perimeter.

They are calculated as:

fMpg = y [g' (;(,y)] (fxd); (2.37)

The more moments that are generated for a shape, the more accurate the representation

becomes. However, its very hard to reconstruct and manipulate the shape in this format. This

isn't a problem for matching, of course, but the difficulty in understanding what each of the

desciptors actually stands for has repercussions on the usability of such a method. Moments

are also fairly computationally intensive, and are sensitive to noise.

Fourier coefficients (61; 77; 71; 3; 4) have some similar properties to moments of perime-

ter, representing the boundary information of a shape rather than the region. They encode the

harmonics of a shape-boundary in the same way the Fourier transform encodes the harmonics

2.2. Feafure Exfracdoj] and j(etnevaj 7ec6nigues 22

of a signal. This means that from the shape descriptors the original shape can be rebuilt to

varying levels of resolution. Both moments and Fourier descriptors are lossless representations

if an infinite number of descriptors are taken.

There are two methods to calculate the Fourier descriptors. The first, closed-form Fourier

descriptors, is to "unroll" a shape into a one-dimensional signal domain, and perform a normal

Fourier transform on the resulting signal. The unrolling is achieved by an expansion of the

periphery radius as a function of the angle about the centre of gravity of the shape. This

technique has been used for archeological artifact recognition in (27), although it can only be

used on convex shapes.

The second technique for calculating the Fourier descriptors extracts elliptic Fourier de-

scriptors from a shape boundary(71). Travelling along a curve in a complex plane at a constant

speed, a complex function z{t) is obtained, where t is a time variable. If the speed is chosen

such that the perimeter of the shape is I n a periodic complex function is obtained. Given the

length of the curve, L, and the curve distance, s, the Fourier descriptors, are then given by:

7; = y (2.38)
L' vo

The first 15 or so descriptors are enough to describe a shape, such that a rebuilt shape with

the first 15 or so harmonics is barely distinguishable from the original. The higher harmonics

are important for shapes which are very similar, or have sharp edges (such as a square), and

they therefore cannot be ignored. Indeed, to represent a comer, within a continuous signal,

with Fourier descriptors requires an infinite number of them.

The resulting descriptors of either Fourier method can be made invariant to rotation, scale,

and translation. Ignoring the phase of the descriptors makes them rotation independent, nor-

malising to the size of the second descriptor makes them scale independent, and ignoring the

first descriptor makes them translation independent. However, it is important to note that ignor-

ing the phase can result in objects which look significantly different being given a close match

score. The phase of the harmonics are more useful if they are relative to each other - thereby

preserving the shape, but not the original rotation of the shape.

In our MAVIS-2 shape signature module we use a quadratic histogram matching tech-

nique, as described in Section 2.2.1.3 for colour, to match the Fourier descriptors, rather than

the L\ - or L2- distance between equivalent bins. This reduces the effect of arbitary assignment

to bins due to noise in the original signal; whether that is a colour signal, or a shape signal.

Because we ignore phase to make the descriptors rotation invariant, we are left with a one-

dimensional feature space. It is possible to use the quadratic match technique which takes into

account frequencies from nearby bins, thereby making the match more fuzzy. This is described

in more detail in Chapter 3.

The Fourier shape matching is in effect a multi-resolution function, and the histogram

matching matches between and within different levels of scale of the shape. Scale is a very

2.2. Feafure Exfracdoa and Tecfuugues 23

important variable in matching functions. Many techniques are developed to avoid the issue of

scale, and make them invariant to it. However, the relativity of scale can be a useful property.

Matching shapes by using scale-space techniques is a relatively recent advance. A de-

scription of scale-space can be found in Section 2.2.5.

Abbasi and Mokhtarian (1; 2; 53) have used the curvature scale space (CSS) image to

achieve shape matching. They generate a CSS image (u,o) by plotting against scale o, which

is the size of the Gaussian smoothing kernel used, the position of the maxima in the normalised

boundary u. They match the CSS images by finding the maximum point of a contour in the

query CSS image and shift-rotating the it along the u axis so that it matches the tallest contour

in the model CSS image. Then they find the nearest maximum in the model CSS image most

similar to the second maxmium in the query CSS image, and so on through all the maxima

of the query CSS image. The match distance is the summation of the Euclidean distances

between all the corresponding maxima. If there are more maxima in the model image then

for each unmatched contour the scale a is added to the score. Before matching they filter out

highly dissimilar shapes using eccentricity and circularity features.

In (1) they go on to explain how the CSS mutates with regard to affine deformations in

the original shape, and how these mutations don't give a large errors in the matching results -

although the use of eccentricity as a pre-filter becomes impossible as, for example, skew alters

the eccentricity of the shape.

2,2.5 Scale Space

Scale space is a relatively new concept in signal decomposition. The main idea is that many

elements of varying scales make up a single signal and as such they can be decomposed into

their component parts - very similar to what the fourier transform does for a signal, but based

around morphological constructs and characterised by the extrema.

Andrew Witkin in his early paper 'Scale Space Filtering' (84; 85) explained the principle

of signal decomposition using scale-space. He uses a Gaussian kernel convolved with varying

standard deviations (a) over a one-dimensional signal because he believed the Gaussian kernel

preserved scale-space causality. As CT is decreased continuously, beginning at a coarse scale,

two distinct effects on the extrema are noticed. Firstly, the extrema that are already present

are constantly in motion along the signal axis. This is due to the Gaussian blurring effect, and

is a problem when using this method for region segmentation in images, as we will explain

later. Secondly, at finer scales, new extrema will appear. This second observation is the main

principle behind scale-space causality: that "new extrema must not be created in the scale-

space representation when the scale parameter is increased." Koenderink, in (39), derived the

two-dimensional scale-space based on the assumptions of causality, homogeneity and isotropy,

and shows the diffusion equation provides the functionality. The idea in 2D scale-space is that

each greyscale pixel at a coarse scale can be traced back to its origins in a finer scale. Diffusion,

2.2. feafure Exfracdon ajid j(etnevaj TbcWgues 24

being isotropic, means extrema in the image do not wander, but edges in the image do. More

recently Lifshitz and Pizer (62) found that the diffusion equation did not, after all, adhere to the

scale-space causality principle - it was not "well-behaved" - because, in certain instances, new

extrema vverg generated. An example situation would be the image which contains two large

extrema connected by a small isthmus. The Gaussian kernel will reduce the isthmus more than

the two extrema, and causes a new extrema (minima) to come into existence in between the

two.

Another difficulty with using the Gaussian kernel is that the contours (edges) of the re-

gions in the image are distorted by the blurring. Based on anisotropic diffusion, Perona and

Malik formulated a scale-space method (59; 82) which encourages intra-regional blurring, and

attenuates inter-region blurring, to try to preserve the edges between regions. However, an im-

age that has been diffused to a particular scale will contain regions of many different scales.

Also, this approach still uses blurring as a method for removing extrema, and as it has already

been seen that blurring can introduce extrema, thereby failing the scale space causality axiom.

A new technique built on the idea of morphology was developed by Bangham et.al. (8;

9; 11; 10; 33). The technique uses connected sets of pixels as regions, and therefore does not

affect the contours of the image as the decomposition takes place. Using this technique for

content-based retrieval has been introduced in (7) and we explain how we use the technique for

content based retrieval with graph matching in Chapter 4.

The reader is pointed to the comparison given in (32) for examples of the differences

between these techniques.

2.2.6 Trees for representing images

Trees can be useful for representing images because they explicitly encode the topology based

on the decomposition used. Once a tree has been constructed, manipulation of the image is

achieved by performing edits to the trees. In this section a description of some of the common

types of tree representations will be given.

2.2.6.1 Quad-trees and T-pyramids

T-pyramids and quad-trees are explained in (71). Quad-trees and T-pyramids both decompose

an image by splitting the image into quadrants and details of each quadrant is stored. Unlike

T-Pyramids, Quad-trees do not store data at every node, only at the leaves. If the four children

of a node contain the same value, then there is no need to store them. Stopping construction

at homogenous regions makes the representation less expensive, particularly for images such

as line art, or logos. Quad-trees may not be balanced whereas a T-pyramid is always balanced.

Unfortunately, under very small changes in the image, the quad-tree can change drastically.

Also, it is not invariant to rotation, scale, and shifting. The quad-tree can be made RST-invariant

by using a normalised shape-of-quad-tree respresentation, in which quad-trees are only created

2.2. Feature Extracdon and j(etneva7 TecAnigues 25

for the individual objects in the scene. One is then faced with the problem of finding the objects

in a scene, which as we have already described is difficult.

2.2.6.2 Containment Trees

Containment trees represent which regions in an image are contained within other regions. This

is a crude type of topology tree. The nodes of the tree would contain the contour information of

the regions. Such a simple tree method would lead to the same representation being given for

many different images. The topology of the tree could be used for preliminary search and the

contours at the nodes used for a more precise match, as was achieved in the pictorial retrieval

system that used containment trees (38).

2.2.6.3 Shock Trees

Shock trees(68) are a tree representation of a shape based on shock measurements of the bound-

ary. The shock points are singularities in the closed curves, measured by variation of the radius

against the medial axis. First order shocks occur at protrusions in the shape, while second order

shocks occur at necks in the shape. In either direction from a second order shock are two first

order shocks. Third order shocks occur where the sides are parallel either side of the medial

axis. A fourth order shock occurs when the medial axis is a point - in the centre of a circle.

2.2.6.4 Watershed and Critical Lake Trees

Critical lake trees are generated by the watershed algorithm. Starting at the minima, the signal

is "fiooded" to make "lakes". As two lakes merge a node is generated in the critical lake tree

with the two minima from which the lakes were generated being children. This visualisation

of the algorithm can be understood when the signal is viewed as a topographic relief with the

height as the intensity. Nodes can contain information about the pixels as well as depth, area,

and volume of lake properties.

2.2.6.5 Min- and Max-trees

Min and Max-trees (65) are connected set operators; the nodes in the tree all contain connected

sets. A threshold is used to convert the input signal into a binary output, where 0 is below the

threshold, and 1 is above. Starting from a minima, the threshold is increased, and for every

pixel, if the binary output of the threshold is 0 the pixel is left, and if the binary output of the

threshold is 1 it is moved to a child node. The threshold is then increased, and the process

re-applied. In the re-application at some nodes, all pixels may be moved from one node to a

new node, and the old node must be removed. The tree that is created is oriented towards the

maxima of the image - the maxima are at the leaves - hence the name max-tree. Min-trees are

created by starting at the maxima and lowering the threshold so that the tree is oriented towards

2.2. Feature Extraction and j^efnevaJ Tbchiugues 26

the minima of the image. The leaves of the tree will contain information about the connected

sets, and the leaves may not necessarily contain connected Sat zones. Connected sets can be

removed from the images without altering the other regions in the image by moving the data in

one node into its parent.

2.2.6.6 Binary Partition Trees

A binary partition tree is a structured representation of the regions that can be obtained from

an initial parition of an image. With the correct segmentation algorithm, they can deliver

multi-scale representations of the image which are easy to filter and manipulate. Salembier

and Garrido in (65) use max-trees to decompose an image into regions then they merge those

regions based on a colour homogeneity criterion into a binary tree, until there is only one region

left in the image. In their paper, they explain how the trees can be used to aid simple object

recognition (e.g. circle detection), a simple coding technique and a Altering algorithm.

2.2.7 Graph Matching for Image Retrieval

Now that graphs and trees are becoming more important in image analysis, due to the more

complex and higher level decomposition algorithms that are appearing, visual information re-

trieval becomes a matter of graph or tree matching. Graph matching is a very powerful tech-

nique but its main drawback stems from the fact that it belongs to the class of NP-complete

problems. In the worst case the problem of matching one graph to another grows exponen-

tially, and out of computational tractability, for subgraph isomorphisms.

The problem is to match an object represented by a graph to a model graph representing

some image or another object. An exact match of graphs is called a graph isomorphism. How-

ever, this is often too strict a matching technique to be used in image matching applications,

due to noise and variances in the image structure.

A graph isomorphism occurs if, given two graphs Q = (y],Ei) and Gz = (^2,^2) there

is a one-to-one and onto mapping, / , between and V2 such that an edge connecting any

pair of nodes, v, V E V], there is an edge E2 connecting / (v) and / (V) . Also, for the match to

be an isomorphism, the constraint that if / (v) and / (V) are connected in G2 they must also be

connected in Gi.

It is, in fact, not known whether graph isomorphism is NP-complete as there is no proof

that it is not, despite there being no algorithm other than NP-complete algorithms to search for

graph isomorphism. However, subgraph isomorphism and double subgraph isomorphism (all

subgraph isomorphisms of Gi and G2) are known to be NP-complete.

Lenaghan et al(40) use association graphs to reduce the problem domain when matching

graphs generated from tracing handwriting outlines. Association graphs contain nodes which

contain all possible pairings of nodes from the graphs to match. This is still too computationally

expensive to be of use for image matching.

jSummajy 27

Park et al. (57) used a modifiction of the region adjacency graph to create a modified

colour adjacency graph (MCAG) which represents the colours in an image by their adjacency.

They create a large 2 dimensional matrix representing the fully connected graph with the nodes

of the graph representing histogram bins. To avoid having to do graph matching they effectively

turn it into a histogram matching using histogram intersection but on the graph representation.

A generalised inexact graph matching technique that, with a little modification, could be

used for image matching, is the A* algorithm. The A* algorithm developed by Nillson (56;

48) is a simple tree search graph isomorphism algorithm. From the set of vertices in the input

graph the first level of the search tree is generated by compiling a list of pairs of nodes from the

model graph with the same labels. Then, the search tree node with the least cost (in the exact

case nodes are taken in a random order) is expanded. Again, all the pairs from the remaining

vertices with the same vertex labels are compiled into a list and the lowest cost expanded. This

continues until the lowest cost isomorphism is found.

Although the above algorithms may work well to increase the efficiency of finding iso-

morphisms of graphs, their main drawback for an information retrieval role is their lack of

indexing: they work with one graph against another. In the literature the prime technique for

graph and subgraph isomorphism detection between one graph and a set of graphs was devel-

oped by Messmer and Bunke (47; 46; 50; 49; 48; 51) and uses a network of shared subgraphs to

achieve less-than intractible (in the best case), while also optimal, results. We use the Network

Algorithm for our work, and we have extended the idea to include feature matching and feature

score propogation, which can be seen in Chapter 4. More recently Bunke has developed the

technique to use decision trees (52; 13).

2.3 Summary

This chapter explained some of the techniques available to match images for content based

retrieval that are related to the novel work contained herein. Of course, it is impossible to

cover every possible content based retrieval system and technique here, due to the vast amount

of research that has taken place in this field. The features which all of these, and most other,

algorithms return can be used as label representations in the topology tree which is built from

the scale-space decomposition of an image. Although some of the techniques would be less

useful than others due to the way in which the image is decomposed — for example, the colour

matching at the nodes can be less complex than many of the algorithms as the decomposition

is based on the luminance of the colour signal, and therefore the regions at the nodes are

approximately homogenous in colour. To begin with, we plan on using the fourier shape, and

a simple colour distance measure at the nodes of the topology tree, and when the idea has been

evaluated move onto different algorithms as necessary.

Chapter 3

Preliminary Work on Feature Extraction for

Image Matching

The content based retrieval research area is growing rapidly and there are many techniques

which could be combined in an attempt to achieve the goal of an object recognition system.

In investigating the state of the art of content based retrieval we performed some tests and de-

veloped some extentions to implementations of some other content based retrieval techniques.

This allowed us to identify what their abilities are for matching images and sub-images with

the aim of facilitating object recognition. This chapter describes the matching techniques we

investigated and the improvements we made. We also indicate why they are, in themselves, not

accurate enough for object recognition. In the next section we describe the work we undertook

in colour matching to make them more useful for image searching. In the section following,

we discuss some work undertaken on the application of shape matching techniques to a real

world problem, in this case concerned with archaeological artefacts.

3.1 Colour Matching

Colour is certainly the most commonly used method of image retrieval by content due to its

simplicity and effectiveness. To test how effective it is, we began by investigating colour his-

togram matching.

A colour histogram stores the frequency of colours within an image. Usually the number

of colours in the image is reduced, because a natural photographic image may have many

thousands, even millions of coloured pixels. Matching is faster the smaller the number of

histogram bins - there are less calculations to do - but due to the smaller number of colours, the

28

3J . CoJourMatcMng 29

less discnminating the histograms are, and the less accuracy the results wiU have. The number

of bins a histogram contains is a compromise between result accuracy and speed of matching.

3.1.1 Manhatten and Euclidean Histogram Matching

Simple colour histogram matching consists of taking the value of the frequency in bin j of the

query histogram, HQ, and comparing it with the frequency in bin j of the match histogram, EM-

The most common method for doing this calculation is the sum of the absolute differences, h -

or Manhatten (city block) distance, defined as:

(3.1)
;=i

or the square root of the sum of the squares of the differences, Zg- or Euclidean distance,

defined as:

(3.2)

where n is the number of bins in the histograms HQ and HM- The most similar histogram HM

to HQ would be the histogram minimising \\HQ - HM\\.

This type of histogram matching is useful for images which contain large proportions of

solid colours, or images which are characterised by large areas of certain colours (e.g. sunsets).

In Section 3.1.5 we discuss the performance of the Manhatten and Euclidean histogram match-

ing techniques. The results were generally poor for real-world images and we considered fuzzy

histogram matching.

3.1.2 Quadratic Histogram Matching

To investigate if this result is a consequence of the Z4- or I2-distance measures being affected

by the equality criterion which quantises the histogram into bins, we can use the quadratic his-

togram match that will allow for fuzzier colour matching. The way it achieves this is by weight-

ing all the bins against each other dependant on the distance of their representative colours in

colour space.

A single bin of a histogram will subtend a volume in colour space. A single colour which

represents that bin could be taken arbitrarily in the centre of the volume, or at any comer of

the volume. Any pixel which falls into that volume will become equated to the single colour

which now represents that bin. The distance between the representative colours, in the chosen

colour space, will give the distance between the two clusters of pixels. This distance can affect

a weighting on the bin matching process.

A matrix. A, containing the weightings between every pair of bins is generated which will

have dimensions mxn, where m and n are the number of bins in the histograms HQ and HM,

which must be equal. The weightings are given by the Euclidean distance between the points

3J . CoJoufMatching 30

in the colour space which represent the colour bins, q and cj. In an RGB colour space this

would be:

= y ((n - + (g, - (3.3)

where C] = (ri ,gi ,6i) , C2 = (/'2,g2,62), and so on, are ± e colours representing the two his-

togram bins.

The distances for each pair of histograms are then compiled into a weighting

matrix, where d^x is the largest distance between any two bins:

"" = ' " A

A

/ (̂ 11

2̂1 <322

\ ^ml ^m2

^\n \
'Z2n

/

(3.4)

(3.5)

The histograms HQ and HM are then represented as one dimensional matrices and sub-

tracted to give the difference matrix Z:

z, =

Zl Z2 Zn

(3.6)

(3.7)

The similarity between the two histograms is then calculated using the quadratic formula:

||Z|| = (3.8)

Matching in this way is slower than the Li- or L;-distance because for every histogram

match there are M x n calculations, compared to n calculations, that is, the complexity of the

operation is O(n^). In (30) Hafner et al. describe the use of a low resolution filtering mechanism

to reduce the number of expensive calculations that need to be done.

A way to decrease the matching time is to effectively pre-calculate the weightings and

encode them into the histogram by applying a filter to new entries into a histogram bin. When

a new pixel is inserted into a bin the distance between the surrounding bins is weighted by the

new pixel and added to the surrounding histogram bins. Performing the intensive calculations

during histogram generation then allows simple Manhattan or Euclidian distance to be used

during the match. For this test, speed comparisons are not as important as the quality of the

matches that are being measured. However, should the histogram technique be required for

matching in an application, the response time is important, and this technique would certainly

have to be used should the Zg distance match prove unreliable.

Matching using fuzzy techniques can allow matching of images which should match well

but do not due to the equality criterion of the histogram bins. Figure 3.1 shows how the his-

togram technique places colours which are very similar into different bins of the histogram. The

3.1. Colour Matching 31

Histogram

0.6
Frequency

0.4

(a) Green Image (b) Green Histogram

Histogram

0.6
Frequency

0.4

(c) Magenta Image (d) Magenta Histogram

Histogram

0.8 -

0.6
Frequency

0.4

(e) Magenta Image (f) Magenta Histogram

Figure 3.1: Single-colour images and their histograms, showing how very similar colours can be
placed in adjacent histogram bins due to the equahty criterion. This can be partially overcome with
the quadratic histogram match.

3.j. (7ak)urjMa&%ku]g 32

colour in Figure 3.1b is visually identical to that of 3.1c but has been placed into a different

bin of the histogram because of a very small difference in the colomr. Matching these images

using the Li-distance, for example, which only matches equivalent bins, the green image in

Figure 3.1a matches equally well with the magenta in Figure 3.1b to the Figure in 3.1c with

a normalised distance of 2. The quadratic histogram match effectively blurs the boundaries of

the histogram bins, allowing the two magenta images to match better (because the bins are near

to each other in colour space). With the quadratic histogram match the magenta images have a

match score of 1.154 while the magenta and green image still match with a score of 2.

Although you will always get this bin assignment problem due to the simple histogram

model, it can be reduced by using this quadratic matching technique.

So despite the quadratic histogram matching being obviously useful for reducing the ef-

fects of the arbitrary bin assignment during histogram creation, the recall and precision mea-

sures while matching our dataset (see Section 3.1.5) were not much better than using the

quicker L]- or -distance measures. By making the match fuzzier, the range of potential

matches increases and therefore the amount of possible false hits also increase.

It seems part of the problem with the histogram matching techniques we used above is

that they take a match based on the whole colour content of the image. The images of the

cars we have been using have a definite distribution of colour. The background of the images

changes little, and generally consists of grass, tarmac and a yellow sign (although obviously

specific to this dataset). This implies that the focus of the image, the car, is in the centre region

of the image. This is in contrast to the firework images that are randomly distributed, and are

retrieved better.

We can impart a restriction on the matching by applying a spatial dimension to the match-

ing process and specifically matching the colour layout of the images, and not just the general

distribution. The most pragmatic way to achieve this is with an overlaid grid.

3.1.3 Spatial Colour Matching using a Grid

Whole-image histogram matching might be quick, but the lack of any spatial cues in the match-

ing is a downfall. A naive way to introduce a spatial dimension might be to divide the image

into equally sized regions and match those separately. Dividing the image into a regular grid

may seem trivial, but it is surprisingly effective at achieving spatial matching (21; 41).

Each grid element consists of a rectangular part of the original image, which itself can

be treated as an image, and matched using any of the colour histogram techniques explained

above.

For example, dividing an image, 7, into an 8 x 8 grid gives ^ .. .764: & number of sub-

images which can be considered as single images in their own right. The image which these

parts will be matched against, M, is also divided into an 8 x 8 grid. It is worth mentioning that if

M is of a different aspect ratio or of different dimensions, the aspect ratio or dimensions of the

3.1. Colour Matching 33

Figure 3.2; An image divided into an 8 x 8 grid

elements Mi.,m will not be equal to those of / i . . .64. To search for features which are similarly

spaced, dividing the image into an equal number of grid elements is preferable to dividing the

image based on equal sized grid elements. Dividing the images based on equal sized elements

gives the problem of the scale dependant location feature. Equally divisioned images allow the

size and aspect ratio to be irrelevant in the match. This is, generally, the most desirable type of

feature.

Figure 3.2 shows an example image segmented into an 8 x 8 grid. Table 3.1 shows the

histogram data for the last four elements in the grid using an HSV histogram of dimensions

3 x 3 x 2 . The summation of each histogram (each line in the table) gives the number of pixels

in each grid element (17,649 in this example). It can be seen that the data of the third-from-last

element's histogram how the saturated red bin contains many pixels, representing the bright

reflection of the sunset.

The score, s, of spatial matching a whole image would be achieved by matching each

element in I with the equivalent element in M:

(=1
•HmiI (3.9)

A database of r pre-segmented images can be compared returning the sorted results, 4..^.

Si gives the most similar image to image I using the spatial match where each grid element is

taken into account. It may be desirable to ensure the final distance score is within the range of

3.1. Colour Matching 34

Red Green Blue

Si Sm Sh

D L D L D L

2311 0 10281 0 2582 0 62 0 24 0 5 0 281 0 1907 0 196 0

216 0 2173 0 5401 7995 11 0 10 0 13 0 50 0 696 0 1084 0

192 0 3967 0 8278 3751 2 0 8 0 0 0 151 0 666 0 634 0

1740 0 6798 0 1002 0 16 0 15 0 6 0 2033 0 5106 0 933 0

Table 3.1: Histogram data for the last 4 elements of the image in Figure 3.2.

Colour Otshibulion S«lec(ni

Select AN

Deselect A#

Create Fealure Vector

Image Viewer

Cok)urSelecl]or

Figure 3.3: The interface allows selection of grid elements or painting into grid elements.

the individual distance scores by averaging the results:

11̂ .' ~ (3.10)
' i=i

A weighting may be applied to each of the match scores for certain situations where the

application needs to assume something about the images. For example, while searching for

portrait images (images of faces) the assumption might be that the face will be in the centre

and the surrounding material is less relavant. A weighting for the grid elements can be applied:

1
(3J[1)

1=1

where y, is the weighting for element i, and k is the sum of all the weightings (ELoT;)-

If binary weightings of only 1 or 0 were considered, the elements could be matched se-

lectively - only match the grid elements with a weighting of 1 and ignore those elements with

3.1. Colour Matching 35

a weighting of 0. This will hasten the matching process by decreasing the number of the his-

tograms to be matched against. So, for example, when searching for image portraits (images

of faces) we might just ignore the elements around the edge and near the top where the hair

might be. Specifying which grid elements should be matched could be fixed by the application

(e.g. not edge elements), or could be the decision of the user via a query by example or query

by sketch user interface such as that we created for our testing shown in Figure 3.3.

The selective spatial match might be defined as in the equation below.

Yn

: if element n not selected

: if element n selected

^ = 7 iy,11/:^/,-//%!! (3.12)
^ i=i

This allows searching through the database for images which have only certain properties

(for example, sky at the top of a landscape photograph, or skin in the middle of a portrait

photograph) while ignoring all irrelevant spatial locations.

An extra level of functionality afforded by the grid mechanism is to match every selected

grid element in I with every element in M to provide basic sub-image matching functionality

by finding images which contain similar colours anywhere in the image — but without being

affected by inconsequential colours(21).

= Y Z (3.13)

Without any indexing system, the match times are increased proportionally by the amount

of grid-elements, or selected grid-elements, 0{n). Pre-filtering the results could be achieved

by using low resolution histograms for either every grid element, or for each whole image in

turn as described in (29).

Despite the advantages that using the grid method affords, the simplicity of the image

segmentation can also cause inaccurate results. If, for example, the part of the query image one

wished to search for was too small for a single grid element, then selecting that region would

include unwanted pixels in the colour match. Overcoming this requires a higher resolution

grid or a different segmentation technique. It's also quite likely that the area of interest is not

boundary aligned with the grid borders, also causing background information to invade the

match.

Sethi et. al (67) use a grid where all the elements overlap slightly which allows a certain

amount of "fuzzy-ness" to be incorporated into the spatial match. They use a nonlinear function

based on the average hue and saturation values in each grid elements to perform the colour

match.

Leung and Ng (41) use histogram distance estimation techniques over a grid to avoid

the matching of background image data, and to improve the calculation time. The histogram

Colour Matching 36

estimation is provided by enlarging or reducing sub-image queries until the histograms are

of a comparable size. 'Padding' is increasing the query region size to fit a grid element at

a particular resolution with pixels that will minimise the histogram distance. 'Reduction' is

reducing the grid element size to the size of the query region by only choosing pixels from the

matching block which minimise the distance.

An alternative to overcoming problems with histogram matching on grids, is to create

features which overcome the problem, using a different segmentation algorithm. Leung and

Ng (41) also considered this and discuss a multi-resolution quad-tree based idea. We also

investigated a similar idea, which is discussed below.

3.1.4 Quad-tree Matching

Using an image decomposition method based on the quad-tree (71) (see Section 2.2.6.1) it is

possible to achieve more accurate spatial colour matching than the grid based method affords.

We experimented with using quad-trees to increase the accuracy of spatial colour matching in

our paper (21).

The quad-tree method divides an image based on the content of the regions. A homogene-

ity criterion is used to divide the image into regions containing a level of homogenous content.

This may be based on colour, texture or any region-based feature. An un-even grid of regions

is created, again, each of which can be taken as a self-contained image and matched using a

colour histogram or feature matching technique. Because the regions are approximately homo-

geneous, very low resolution histograms can be utilised to increase response times. Indeed, the

distance between representative colours for the region can be employed. Often, the use of this

algorithm involves merging homogenous regions which are adjacent to one another. However,

this loses information, in particular, it loses spatial information, which would defeat the object

of segmenting the image. So, for quad-tree matching, the nodes in the tree are left as separate

and an example image decomposition is shown in figure 3.4.

Once the image is divided into the quad-tree elements, matching can take place. How-

ever, the method for comparing two images requires an extra level of sophistication due to the

equivalent elements in the query image, / , and the match image, M, having the possibility of

being different sizes.

The matching takes place sequentially over the leaves of the quad tree, using an in-order

traversal. The traversal strategy is largely irrelevant so long as every node in the tree is visited.

At each leaf node, IL,i, matching takes place with the equivalent leaf node in the match image,

However, it is possible that for/Zf, in the tree for /, there may be no equivalent leaf node in

the tree for M. The nearest leaf node may be at a lower or higher level than 74 in the tree for 1.

By converting the nodes of the tree into leaf-codes we can recognise quickly those nodes which

are able to be matched as proposed by Sonka et al. in (71). Leaf codes are strings of numbers

3.1. Colour Matching 37

Figure 3.4: An example quad-tree overlaid on a real image using colour as the homogeneity criterion.

Root Node

Figure 3.5: An example quad-tree and the leaf code designations.

representing the location of nodes in the tree, where each number represents the branch of the

quad-tree to traverse. Quadrants of the image (and branches of the quad-tree) are numbered

from 1 to 4 left to right and top to bottom. Each subsequent division is numbered similarly and

concatenated to the previous directions, until a leaf node is encountered, as shown in Figure

3.5. This allows every node in the quad-tree to be represented by a unique code, the length of

which, #LM„, is the depth in the tree at which the node resides.

Traversing the quad-tree, we select the leaf nodes, Lin, and match them with their nearest

equivalent by selecting the nearest leaf-code - that is, the lexigraphically nearest. If the nearest

leaf-code has the same length (that is the leaves are at the same level), we can immediately

match the histograms stored at those leaves.

If the nearest leaf-code in the match image, is not a leaf node, then it means the

match image is segmented more finely at that point. To perform the match, the histograms

3.]. 38

of all the nodes below the node identified in the match image are summed to give a single

histogram representing the same relative area as Lin- The histograms are then matched as

usual.

If LMn is shorter in length, then the query element is smaller than the element in the match

image which is closest. Rather than trying to reduce the size of the histogram represented in

LM„, the pragmatic approach suggests that the smaller query area, L^, can be directly matched

with LMn from the database. This would seem reasonable because for the match image, M, to

be segmented in this way, the features must be close to homogenous, and further division of

LMn would barely effect the normalised histogram data represented there.

Given n leaf nodes, the spatial quad tree matching process can be defined by:

Hlmi =

J == W (3.14)
/—I

In a similar method to the non-spatial grid segmentation matching, the quad-tree's leaf

nodes can be used to search through the nodes of the match tree to find sub-images which

match the selected elements in the query image. So given n leaf nodes in I and m leaf nodes in

M, the functionality is defined as:

= T E (3 15)
. m

3.1.5 Histogram Experimentation

In a simple test, we selected a small set of 76 colour images, taken from a collection of images

of touring cars at the Brands Hatch circuit. The images are not artificially generated and have

qualities that one would associate with photographic images (cf. graphic images) - that is,

they contain noise and colour variances. Most, but not all, of the photos have one focal object

(usually a car) which has distinct colours. This means that we can ground-truth this dataset

to derive a quantitative accuracy for the algorithms. However, ground-tru thing datasets is a

difficult process, hence the limited size of the dataset.

The dataset has been subjectively classified into two categories. There are green cars, and

there are green Renault Lagunas. The second classification includes all the cars from the same

racing team which have the same colours. The first classification includes other green cars

from the racing field which are green, but do not have exactly the same colours and decals.

Classification 2 is a subset of classification 1. Of the 76 images 17 are of classification 1 (green

cars) and 10 are of classification 2.

Our tests of the Z,] - and Z/2-distance matching on the whole image proved to be fairly poor.

Taking an example image from classification 2, we generated an RGB histogram with 6 bins

3.1. Colour Matching 39

' ISielF BLEND

(a)

e iF Blend x"®--
i/ . •

(b)

(e) (9

Figure 3.6: The results of histogram retrieval using L i distance. The first image is also the query image.

in each dimension (6^ = 216 bins in total) and matched it against histograms generated for the

rest of the dataset using L\ and L2 distance measures. During the tests, the query image was

given as the best rank (1), unsurprisingly, with a distance of 0. Both the h distance and the la

distance retrieved a similar car in rank 2. Figure 3.6 shows the top 6 images of the match for h

histogram matching showing 3 relevant retrievals for classification 2, and 4 relevant retrievals

for classification 1.

A well regarded method of quantitatively measuring the effectiveness of a retrieval algo-

rithm is the recall and precision measures. We can define recall and precision as follows;

CoJourMafc/mig 40

^ . . Number of Relevant Objects Retrieved |A(g)n/((g)|
Precision = - p = ^ ^ ' (3.16)

Number of Returned Objects for a Query |A(g) |
Number of Relevant Objects Retrieved lAfo)

Rec3̂ 11 = y \ 1 / \ 17)
Number of Relevant Objects In Database |i?(g) |

where A{q) is the set of retrieved results, and R{q) the set of relevant images from the

dataset.

Of course, the precision means nothing when the simple test returns every object in the

database because the number of relevant objects retrieved, \A{q) ni?(g) | , will always be all of

them! It is artificial to truncate the results, and by doing so we may either never get a recall

of 1, or we would end up equating recall and precision (if \A{q) \ = |i?(g)|). However, we are

able to plot the precision against the recall for the entire match process. The graph in Figure

3.7 shows a recall vs. precision graph of the Li match. It shows that the precision was 1.0 for a

recall of upto about 0.2. This means, that the first 20% of the returned results were relevant. As

false hits are retrieved the precision falls sharply. At a recall of 1.0, we have retrieved all of the

relevant images, and the precision is then the ratio of false hits to relevant images. A perfect

precision-recall graph would be straight, horizontal line, where precision is 1.0 at all values of

recall.

For classification 1, for both the Li-distance measure and the Zg-distance measure, the

recall returned a poor r = -^. For classification 2 the recall on both measures was r = | . These

results are not exceptional with the false hit rate higher than the retrieval rate. The main reason

is that the background data of the images contains so much information, which is also getting

matched and skewing the results.

Li and L2 colour histogram matching is useful for situations where the colour defines

the scene, for example, a sunset, or fireworks. For example, f rom a different image dataset

containing a mix of graphics, photos, and textures we have 13 images of fireworks from 9908

images. If we ran a test across this dataset using an image of a firework as the query (mainly

black with about 10%-20% of yellow/red) we find that the recall rate increases dramatically.

For the Euclidean distance, the recall becomes r = g (notably better thanr = j) . However, the

results are still not acceptable even when the colour defines the scene. The likelihood is that the

quantisation of the histogram is causing errors in the matching. The coarser the quantisation

the bigger the errors will be. These type of errors can be minimised by applying a weighting to

the bin matching process, which is what the quadratic histogram matching algorithm does.

For the test on the dataset containing images of racing cars, the quadratic match gave a

recall measure for classification 1 of r = ^ , and for classification 2 r = | , which is still quite

poor.

It seems part of the problem with the histogram matching techniques we used above is

that they take a match based on the whole colour content of the image. The images of the

cars we have been using have a definite distribution of colour. The background of the images

Colour MafcMag 41

recaiypfBdsion chart

(a) For Li

recall/precision chart

(b) For 2,2

Figure 3.7; Recall vs. precision graphs for Li and 1% histogram matching for a particular query.

3.1. Colour Matching 42

changes little, and generally consists of grass, tannac and a yellow sign (although obviously

speciBc to this dataset). This implies that the focus of the image, the car, is in the centre region

of the image. This is in contrast to the firework images that are randomly distributed, and are

retrieved better.

If we apply this full-image spatial match to our previous test, containing the images of

the green cars, we find that the spatial match alone gives little improvement - again, due to the

irrelevant colour information stored in the background being matched. Recall that for the k ,

L2 and quadratic forms of the spatial match the recalls were ^ and 1, for classification 1 and

2, respectively.

If we apply the selective spatial match to our test set of racing cars, we can see the im-

provement immediately. By matching a selection of 9 sub-images in the centre of the image,

where we may expect a car to be, we increase the recall from ^ to jy for classification 1, and

I to I with the selective spatial L\ match.

During experimentation we found that the quad-tree algorithm performed no better, but no

worse, than the simpler, and faster, grid element decomposition for spatial matching. Indeed,

from our dataset of 40 images, the precision and spatial accuracy of the two algorithms were

almost identical. The notable difference was that the quad-tree algorithm is more computation-

ally intensive, due to the higher number of histogram matches that need to be calculated merely

due to the higher granularity of the segmentation.

The matching of quad-trees without regard to the spatial location of the elements being

matched is achieved in the same manner as the grid method - every element is compared against

the query element(s). Due to the higher granularity, it is likely there will be more elements to

match, meaning the time taken to match the same database could be longer. The quad-tree

method could, however, have an advantage over the grid-based method, by using the multi-

resolution features implicit in it's structure. By traversing the tree using a pre-order traversal,

it is possible to decrease the match time, by discounting a set of histograms from the match.

Pre-order traversal visits the nodes of trees first, so, by performing histogram matches at the

nodes, it can be decided whether or not it is worth traversing the branches of that tree. This

could not only accurately detect sub-images within images, but also decrease the response time

of the system, by reducing the number of histogram matches that need to be executed.

3.1.6 Summary

In this section we have discussed some of the work that we originally investigated with regard

to content based image matching. Desipte their widespread use, colour histogram techniques

alone are not flexible enough to be of use in most situations. Quadratic histogram matching al-

low fuzzier matching to be applied to colour matching, and as the number of bins in a histogram

increase, the more this becomes an issue. We described some of the work we investigated with

regard to spatial matching of images based on colour. The grid mechanism affords cheap and

3.2. The %owGrfa7aeoji(Aic](aw MatenaJs and fopWafion Ecology" frq/ecM3

reasonably reliable spatial matching, particularly with regard to selective spatial matching. The

extra execution time cost of the quad-tree algorithm limits the use of the quad-tree for selective

(one-to-one) and whole-image spatial matching. For sub-image queries, the quad-tree is ideal,

because it can avoid lengthly brute force matching of all of the elements, by subjectively dis-

missing subtrees for matching. However, despite allowing sub-image matching, the quad-tree

method is still based wholly on the underlying histogram matching, which is, of course, only

based on colour. Should an object in an image appear in various images with differences in the

colour the object would not be found - even with the quadratic histogram matching. Something

more sophisticated is required, and our work into scale-tree matching is discussed in the next

chapter.

3.2 The "Lower Palaeolithic Technology, Raw Materials and Pop-

ulation Ecology" Project

As an example of feature extraction for image matching in a particular application domain,

some work on the representation of archaeological artefact images is presented. The Lower

Palaeolithic Technology, Raw Materials and Population Ecology project, to which this work

contributed, was funded by the Arts and Humanities Research Board (A.H.R.B) between 1999

and 2001. It was directed by professors Clive Gamble of the Department of Archaeology

at Southampton, and Derek Roe of the Baden Powell Institute for Palaeolithic Research in

Oxford. Employed on the project was Dr.Gilbert Marshall from the Centre for the Archaeology

of Human Origins (C.A.H.O) at Southampton.

The initial aim of the project was to generate a large virtual archive of Lower Palaeolithic

bifacial artefacts (worked on both faces) from across the Acheulian world. The Lower Palae-

olithic or Acheulian refers to a period from approximately 1.5 million to 250 thousand years

ago, during which bifacial artefacts were being made from northern Europe to the southern tip

of Africa, and across to eastern India. For a comprehensive discussion of the Acheulian, its

technology and Hominid evolution see (37), Chapter 5. With the image archive in place and

the characteristics of the artefacts measured and described, attributes such as the effect of raw

materials, location, and temporality (where between 1.5 million and 250 thousand years) are

being assessed. By taking a continental scale view of variability it is hoped that differences can

be identified within the Acheulian, a period which until now has been considered as the first

convincing evidence for successful global scale proto-human colonisation.

The database is to be hosted by the Arts and Humanities Data Service (A.H.D.S) based at

the University of York, from where it is envisaged that it will provide a useful resource for re-

search and teaching. It is also hoped that the archive and ways of using it will evolve as images

from new excavations from across the Acheulian world are added. The database current con-

tains no content based matching functionality although the provision is there, and is likely to be

3.2. The "Lower PajaeoJitAic TbchnoJogy, Raw MafenaJs and fopujafioa Ecology" Prq/ecf 44

implemented in ± e future. It is available on ± e Web at

To achieve the functionality required, features are extracted from the digitised images of

the flint artefacts and stored in a database along with meta-data about the artefact. Much of

the meta-data we extract has been given elsewhere in the literature, however, before now, it has

not been automated and incorporated into a system to an extent that will allow access to all the

data from one application in a way which archaeological archivists would want to use.

Much of the feature extraction we perform is based on shape measures of the objects,

because their colour is largely irrelevant in determining the type of object. Images of the

artefacts are taken by a calibrated rostrum camera and digitised directly to computer where

they can be processed by the feature extraction software.

3.2.1 Feature Extraction

It is fortunate that the images which are to be used in the system are easily removed from their

background due to the fact that the object (the flint axe heads) are laid upon a black backing

for photographing. The images are all 960x720 pixels saved as JPEGs. The feature extraction

process starts by isolating the boundary of the object using Marr-Hildreth edge detection. The

technique involves convolving a Laplacian of Gaussian operator with an image, fP, to give the

gradient image, Q-.

^ = (3.18)

The Laplacian of Gaussian operator, with kernel size a, is given by:

= (3.19,

The Laplacian of Gaussian operator is derived from the Laplace operator, which approx-

imates the second derivative thereby giving the gradient magnitude. This means edges occur

at zero crossings rather than extremum and are easier and more precise to detect. The problem

is that the Laplace operator is susceptible to noise. The Gaussian kernel effectively smoothes

the image to avoid the response to noise. The Gaussian kernel is used because it optimises the

compromise between the smoothing and the accuracy of the edge detection. The Laplacian

of Gaussian is the basis of the Marr-Hildreth operator which detects the zero crossings in the

convolved image to give closed edge borders, which is very useful when we are going to be

tracing the boundary of the object. Other edge detection algorithms, such as Sobel or Canny,

do not guarantee to give closed edges. Although the Gaussian operator has potential problems

with edge wandering these do not affect the measurements made with the system to a degree

which is unacceptable.

Edges occur at large intensity gradients in the image. Because this process relies on

the contrast between the background and the foreground there is the potential for errors, for

example on objects which are dark, photographed on the black backdrop. To avoid erroneous

edge detection the image is thresholded. The thresholding maximises the contrast and is biased

3.2. The "Lower PaiaeoJitfuc Tbchnojogy, Raw MaferzaJs and fqpu7an'on Ecology" frq/ec(45

towards black; that is, anything over a certain percentage black is blackened and everything

else is whitened. There is the ability to alter the percentage at which the threshold operates for

testing purposes. By maximising the contrast, the edges become strong and are detected more

accurately.

Before the edge detection takes place, any erroneous noise picked up in the background

during the threshold is removed with a Gaussian blur and the image is re-thresholded. A con-

nected set operator, such as the sieve (see section 4.2.1), may provide a better means to remov-

ing this noise, as well as extracting the object shape. The edge detection is then performed and

a closed boundary of the artefact is available in the edge detection image. These extra blurring

and thresholding functions, along with the blurring built into the edge detector, gives the best

resilience to noise.

It is still possible that edge detection errors can occur, and these are primarily due to areas

within the foreground artefact which are similar to the background colour; a common problem

being black lettering, for instance the artefact accession number. This is not a problem when it

is within the piece as the edge tracing algorithm can only start from an outer edge. However,

when located along the edge it becomes included in the trace. It is very difficult to automatically

detect these situations, but they can be discovered by means of the symmetry measure, which

we will describe later, and then manually altering the blackness thresholding and running again.

We convert the boundary from pixels in an image to coordinates based on the centre of

gravity. The centre of gravity, (x,y), is found by the average of all the pixels in the binary

image; this technique is called the first order moment as we described in Section 2.2.4.2. The

image is scanned for a pixel that is not black. The assumption is that the edge image will

contain only edges which belong to the artefact. Once a pixel is found we follow the edge,

knowing that the Marr-Hildreth operator gives us closed edges. We can trace the edge to find

its length - the perimeter of the object, I. In order to transform the image pixels into a polygon

with N points, the edge is traced and every n = -̂ pixels along the boundary we save the point as

(x~x,y-y} coordinates which will make up the polygon delimiting the shape of the artefact.

Now there are four domains in which we can perform measurements: the original image,

the binary image, the edge detected image, and the polygon points delimiting the shape.

3.2.2 Measurements

The measurements are mainly taken from the polygon points representing the shape, because

this requires less processing. Figure 3.8(a) shows these measurements overlaid on an ex-

ample artefact trace. The bounding rectangle delimited by top-left and bottom-right, BR =

(min(A:),min()'),max(%),max(y)), is easy to compute and gives us the simplest measurements:

length and breadth and and consequentially aspect ratio, R = ^ . In the same way

as Brande in (12), the width of the artefact at 20%, 50% and 80% of its length from the front

of the axe head (Bg, respectively) is measured. Measurements of the height from

3.2. The 'Lower f l e c h n o J o g y , j(aw AiafenaJs and Pqpu7adon Ecology" Prqyecf 46

PBMi

ll mdLiW

(a) Measurements taken on the

hand axe images

(b) The CT-symmetrical

shape for the hand-axe

shown in Figure 3.8(a)

Figure 3.8: The hand-axe feature extraction includes a set of measurements and generation of the
nearest symmetrical shape.

the front of the axe to where it touches the sides of the enclosing rectangle (fBM and

and the height and width of the widest part of the axe (Li and LiW) are taken. We can find the

length of the perimeter, c, by adding the length of all the lines adjoining the points which make

up the boundary, and the area is provided during the calculation of the first order moment - the

number of pixels within the boundary.

These measurements are all based on the orientation of the tool imposed by the archivist.

It is possible to detect the longest axis or find the minimum enclosing rectangle and base the

measurements on these computed orientations. The minimum enclosing rectangle can be found

by calculating the enclosing rectangle while rotating the points which make up the shape. The

rotation need only continue to 90 degrees, because of the symmetry. The angle of the enclosing

rectangle with the minimum area gives the minimum enclosing rectangle (and the points of the

shape which make it). The longest axis is a useful property extracted using the symmetry

measure described below.

A symmetry measure of a shape is not a very useful metric in itself, as it is unlikely

that objects can be classified simply by means of their symmetry, unless the application is

very specific and the objects being identified have a strong symmetry, for example, finding

imperfect plates on a production line. However, it can be used as an extra metric to classify

objects more accurately. The technique has been used for classifying ancient flint hand-axes in

3.2. The "Lower fajaeojifbic Tbc^noJogy, JRaw MatenaJs and fopu7a(ion Ecology" Prq/ecM7

Pi

Pi

(a) Two points {P\,P2) about a line of

reflection

Pi
o

f lO
o

Pz

(b) Point P2 reflected to point P2 and the

average of Pi and Pg gives Pj

P2

f i o 0^2

(c) Point Pi reflected back to give

point ^2-

Figure 3.9: The process of reflecting a point about the line of reflection to generate a symmetric pair of
points to calculate the a-symmetric shape for the CSM.

(86; 66) and we also use it for supplementing our measurements taken on flint hand-axes. A

symmetry distance measure is often referred to as chirality, which derives from the chemistry

term 'chiral', meaning the lack of symmetry in an object; a symmetrical object being 'achiral'.

A bilateral symmetry measure such as the Continuous Symmetry Measure (CSM) gives

the minimum distance between the actual shape, and an average symmetric shape, called the

(T-symmetnc(66), and sometimes G-symmetric(86), shape.

A o-symmetric shape is generated by taking the average of pairs of points around the

boundary. The boundary of the shape is split into two, and pairs of points, are taken

from relative locations either side of the line of reflection (Figure 3.9(a)). Point ^ is reflected

about the line of rejection to give and the average of and is taken to give f] (Figure

3.9(b)). P\ is then reflected back to give a pair of symmetrical points, {P\, Pj), about the line of

reflection dividing the two point sets (Figure 3.9(c)). The distance between (/ | , P2) and (Pi, P2)

gives the symmetry distance for those points about that particular line of reflection. The sum

of all the pairs of points gives the distance measure for that particular symmetrical shape about

3.2. The 'ILower Pa7aeo7j(Aic TecAnoJogy, w MafenaJs and fopuVafion Ecology" frq/ecf 48

that line of rejection. The o-symmetric shape is the symmetrical shape which minimises the

distance between itself and the original shape for all the possible lines of reflection.

An example of a a-symmetric shape is shown in Figure 3.8(b), which is the cr-symmetric

shape of the hand axe shown in the accompanying figure.

The general definition of a CSM, given n boundary vertices of the original configuration

in point Pi, and a symmetry group G, is:

= (3.20)
'̂ 1=1

where Pi are the corresponding points in the nearest o-symmetric shape. To avoid scale effects,

the size of the structure is normalised to the distance between the centre of gravity and the

furthest vertex.

The resultant value is a measure of an object's chirality - that is it's distance from being

symmetrical.

As a side-effect of calculating the symmetry measure, we also have the best axis for the

shape (defined by the best line of bilateral symmetry). The angle and length of this can be

calculated.

Although all these measures are very useful both for making distinctions between artefacts

and for lightening the workload of the archaeological archivist, none of them give a precise

(reconstructable) definition of the shape, which could be matched against.

For this we use the Fourier series to decompose a shape into its harmonic constituents.

The Fourier descriptor method of artefact similarity measurement has been used before, for

example in (27), however it was used to try to provide a classification of artefacts, rather than

the ability to find or match similar ones algorithmically.

The Fourier transform converts a signal into its harmonic constituents. Once we have a

shape signal extracted from the original image we are able to pass it into a Fourier transform.

The shape of the artefacts in the system are represented simply as a set of (x,j) pairs. We

unroll the shape into two 1-dimensional signals, (x,6) and {y,Q), as in Figure 3.10, and use the

Fourier transform on both to get two sets of Fourier descriptors. From the angle, 8, and the x

dimension, it is of course possible to work out the y dimension. However, at certain asymptotic

points in the signal y becomes undefined. By using both, we can avoid those situations. To use

the radix 2 fast Fourier transform the size of the window has to be a power of 2, so as we unroll

the shape we also scale 9 into 256 points:

271:

^(8) = y(;c2+y2) (3_21)

The signals can be passed through a discrete Fourier transform (DFT) process which re-

turns the amplitudes and phases of each of the sinusoidal signals which combine to create the

3.2. The '(Lower fa/aeoJiduc TecAnoJogy, j(aw MatenaJs and fopuJaCiOD EcoJogy" Prq;ecM9

Unrolled X-plot

250

(a) Unrolled X-plot

^(8)

UnroUed Y-plot

250

(b) Unrolled Y-plot

Figure 3.10: The unrolled shape signal, as a {Q,s) signal, of the shape in figure 3.8.

original signal. Fourier descriptors are fully invertible and reversing the process through a

inverse discrete Fourier transform (IDFT) returns the descriptors to the signal they represent.

This means that manipulation can also take place in the descriptor domain.

Knowing that the descriptors represent certain frequencies the values of the descriptors

can be altered to alter the original shape. The descriptors represent at what amplitude and

at what phase a sine wave of » cycles combine to the signal, for descriptor Removing

descriptors will simplify the original shape. For example, creating the shape using only the

first n descriptors gives the ability to show the shape at different resolutions. Figure 3.11 shows

a shape at various resolutions by setting to zero descriptors above the desired scale. The shape

at scale 2 is the simplest and is due to only large scale harmonics being combined. It can be

seen from Figure 3.12 that descriptor 3 has a relatively large magnitude, and the effect can be

3.2. The "Lower PaiaeoJitAic Tbchnoiogy, Raw Materiafs and PopuJadoa Ecoiogy" Project 50

(a) 2 (b)3 (d)5 (e)6 (f)7

(g)8 (h)9 0)10 0) ^ 00 20 0)128

Figure 3.11: Reconstruction of a shape at various scales using Fourier descriptors.

seen between the two reconstructed shapes of Figures 3.11(b) and 3.11(c).

For matching, invariant descriptors are preferred. Fourier descriptors are made invariant

through a number of simple processes. For a Fourier descriptor jF (n) = %):

% = i

= 0 (3.22)

The phases are effectively ignored to give rotation independence. This can have consequences

on the result, because although the shape becomes rotation independent, every constituent har-

monic also becomes independent of every other harmonic. This effectively allows the ob-

ject to be various shapes, although they will all share characteristics. The magnitudes are all

normalised to the size of the second descriptor, which makes the descriptors scale inde-

pendent. The first descriptor's magnitude, is zeroed to make the descriptors translation

independent. Figure 3.12 shows the set of invariant magnitude descriptors for the shape in

Figures 3.8, 3.10 and 3.11.

The invariant Fourier descriptors are very good for finding similar shaped artefacts. We

3.2. Tbe '(Lower faJaeojitbic lecAnoiogy, w MatenaJs and PopWadon Ecology" frq/ecf 51

HistogTcim

Frequency

(a) X data Fourier descriptors

Histograjn

0.6
Frequency

0.4

n,n n

(b) Y data Fourier descriptors

Figure 3.12: Fourier signatures for the signals given in Figure 3.10.

are able to make the analogy between a set of Fouriers, and (such as those in Figure

3.12) and a colour histogram. Matching of Fourier descriptors can take the form of Zi-distance

(Equation 3.23) or Lz-distance (Equation 3.24) measures, where the distance between a pair of

normalised magnitudes from equivalent Fourier descriptors, ^ [j] and is taken:

11% — .%f|
7=1

y=i

(3.23)

(3.24)

However, in the same way that the frequencies of pixels in certain bins in the colour

histogram can be affected by wayward noise in the capturing process, the magnitude of de-

U . 52

scriptors may also be affected by noise in the digitisation process of the shape. A slight vari-

ation in colour during the creation of the histogram, may cause one pixel to be added to the

neighbouring bin. In a similar way, any variation in the boundary of a shape may cause the

harmonic representing part of the boundary to be made stronger thus affecting the descriptors.

So, in the same way we can reduce the effect of such noise in colour histogram matching us-

ing the quadratic histogram match, we can employ the same technique for Fourier descriptor

matching. Neighbouring bins in a colour space represent colours which are very similar, and

similarly, neighbouring descriptors in Fourier space represent harmonics which are very simi-

lar in wavelength. However, where the weighting would normally be based on the distance in

colour space between the two colours representing the two colour bins, the distance for Fouri-

ers is undefined. As a simple weighting value for the matrix A, we can use a 2-D Gaussian

curve (Equation 3.25). The match characteristics can then be affected by altering the standard

deviation of the Gaussian kernel used (i.e. more or less fuzzy).

2^ (3 25)

As for colour histograms, jTg and ^ are then represented as one dimensional matrices

and subtracted to give the difference matrix Z:

% = (3 26)

== (Z1 Z2 ") (3 2:7)

The similarity between the two sets of Fourier descriptors is calculated using the quadratic

formula:

||Z|| = ZT'AZ (3.28)

Something to be aware of is that, with shapes, the distance score is not as concrete as the

distance score for colours. For example, one might consider black to be as far from white as

possible, and for shapes, one might consider a square to be as far from a circle as one could get,

however, the fourier decompositions both share some similarities. This means that for shape

matching with Fourier, the range of the distance measure will be smaller than that of the colour

histogram using the same matching algorithm due to the fourier representation of the shapes.

3.3 Summary

In this chapter we have described some of the work we have done in facilitating better content-

based retrieval using colour and spatial colour. In particular we discussed the possibility of

using a spatial colour segmentation using a grid, and a quad-tree representation and the asso-

ciated matching techniques for matching sub-images with the foresight to matching objects.

However, the techniques, even the quad-tree technique, are too limited to allow matching of

U . 53

particular objects due, primarily, to their dependence on colour. What is required is a seg-

mentation and matching technique that is both dependent on the content (compared to the grid

methods which are imposed on the content) yet independent of the matching techniques used

to compare them. We have seen that multi-scale algorithms, such as the quad-tree, are useful

in representing the structure of the image, allowing selective matching to be performed on the

image. With an algorithm-independent, content-based segmentation, the representation will be

matchable by both feature and structure allowing more flexibility and the possibility of object

matching and recognition. We describe such an algorithm in the next chapter.

In this chapter, we have also described some on-going work with the Department of Ar-

chaeology at Southampton to archive and facilitate matching on ancient flint hand-axes. This

work is novel in its field, bringing together many measurement and matching techniques into

the digital domain for the annotation and indexing of the artefacts. This project is still under-

way, and the hope is to provide content based retrieval of archaeological artefacts over the web

to other archaeologists. The feature extraction performed in this project can be used for shape

extraction and matching in the novel work we are undertaking, which is described in the next

chapter.

Chapter 4

Content Based Retrieval with Scale-Trees

4.1 Introduction

The aim of this thesis is to present a new algorithm for achieving content based retrieval with

images, that will work towards bridging the semantic gap between low level feature based

retrieval and high level semantic based retrieval. The idea revolves around building a topology

structure of regions within an image, and using the topology structure along with low level

features to match objects. The assumption is that an object has a particular topology of features,

and, by using subgraph isomorphism techniques we can search for this topology within a set

of graphs and hence find similar objects. It is of course a rather limiting assumption, as many

objects do not have particular topologies (e.g. the sky). However, there is the possibility of

using this content based retrieval system to find objects which D O have specific topologies,

and using those objects to make some postulation about the scene and hence move towards

bridging the semantic gap.

The following sections explain how we decompose an image to create a graph, and then

how that graph is matched against similar graphs to achieve retrieval.

4.2 Decomposition

As humans, we tend to look at images and, without explicit conscious thought, see what the

subject is, and make postulations about the semantics. Currently, in computing, there is no

foreseeable way for semantics to be extracted from images without the need to first decompose

the image into features which we understand. Indeed, it is thought that the brain actually

does decompose the views we see below our higher-level thoughts. The premise is that if we

54

4.2. Decoznposidon 55

can decompose the image into regions, from the relationship between features that we can

understand, we conjecture about what they represent at a higher level. If such a technique

works, then higher level algorithms need only work with semantics much in the way a human's

brain does.

The decomposition of images can be achieved in many ways, and we use the sieve idea to

decompose an image into an initial scale-space representation from which a topology scale-tree

is built. In the following section we describe the sieve and how we use it to build scale trees.

4.2.1 The Sieve

The sieve(9) is a morphological scale space operator developed by the University of East An-

glia's School of Information Systems^ The sieve has the effect of locating intensity extrema

and, using region merging, removes the region at a particular scale to produce a multi-resolution

version of the image. The discussion, in section 5.4, explains the use of different intensity

scales for extrema detection.

One of the advantages of using the sieve for scale space decomposition, compared to other

scale-space techniques, is that the contours of the image are not altered. Also, unlike Gaussian

blurring, the sieve preserves scale space causality - the axiom that states that no new extrema are

created when moving to a coarser scale. Gaussian scale space decomposition techniques can

break the scale space causality axiom by creating multiple extrema from a single extremum in

anomalous situations. A well known example of this is that which Lifshitz and Pizer found (62)

- the two regions connected by a thin isthmus. Gaussian blurring weakens the isthmus more

than the regions which it connects, creating two maxima and a minimum in between - three

extrema from one.

The sieve is also fully invertible, meaning the original image can be re-produced exactly

from the scale space decomposition. An example of a scale space decomposition is shown in

Figure 4.1. In Figure 4.1(b) the image is sieved to scale 1000 which means any extreme region

of area less than 1000 is merged into the image and the sieved image will contain only extreme

regions of area (scale) greater than 1000. Many of the small details are removed - although the

contours of the remaining shapes in the image are unaltered.

The sieve operates on connected set graphs (33; 9). The array of pixels in the image can

be represented as a connected graph (4- or 8-connected for images) G = where V is the

set of vertices and E is the set of pairs describing the edges. We define the Q{G) function to

give the set of connected subsets of G with r elements containing pixel x:

CXG,%) = { ^ e Q (G) | ; c E ^ } (4.1)

Morphological operations can be carried out using these connected sets. Morphological

opening is achieved by taking the minimum value of every grey-scale value in Q{G.x) and

Ŝegmends Ltd. hold the patent [o the sieve (8),

4.2. Decomposition 56

(a) Original Image

(b) 1,000 (c) 3,000

(d) 7,000 (e) 10,000

Figure 4.1: Using the sieve to generate a scale-space.

then taking the maximum of those minima. Closing, conversely, takes the maximum of every

grey scale value, and then the minimum of those maxima. The compact definition of opening,

\|/r, and closing, Yr, is given in equations 4.2 and 4.3.

Vr/(-^) = max minf(u)

yrf{x) = min maxfiu)

(4.2)

(4.3)

Openings remove maxima in the signal, and closings remove minima. The fAf and 9{!

operators are defined respectively as an opening followed by a closing and, a closing followed

by an opening both of which remove all extrema - maxima and minima. The results of the

9/L'' and 9^^ operators are different and to ensure consistency in, for example, an image de-

composition, only one of these should ever be used. It is the M and 9{̂ operators that define a

sieve.

= Y r ¥ r , (4 . 4)

4.2. Decomposition 57

= (4.5)

The regions that are being removed by the sieve at any particular scale are called groMuZef.

A granule of scale s is removed by a sieve of scale 5 + 1 (see Figure 4.3). These granules

can be moved into the granularity domain - a discrete scale space for the sieve. Addition of

all the granules in the granularity domain will return the original image - an example of the

invertibility of the sieve.

The output at scale r is defined as:

/ i = (T / , ^ 6)

where Q, is one of y, V, or which means is the identity function: / = QV- That

is, a sieve of scale r is a sequence of sieves from scale 1 up to scale r. The complete sieve

function, given by CS{f), is a function of sieves of all scales that yield granules.

Because only the extreme part of the grey-scale value regions in the image are removed,

they are effectively merged into the original image. The effect is to 'slice off' those peaks

and troughs (see Figure 4.2 for an example visualisation), always leaving only larger regions

in the image - preserving scale space causality. This implies that all granules have 'parent'

granules into which they are merged when they are sieved. This is ideal for transferring into

a tree structure, such as that in Figure 4.4 where the links between the granules are explicit,

facilitating easier manipulation in the scale-space domain.

We use the sieve operator for the image decomposition within our image matching al-

gorithm because of the properties which elevate it above normal scale-space decomposition,

which are:

o Contour Preservation

It is quite important that the contours of an image are preserved when the intention is to

use them for matching. The Gaussian scale-spaces round sharp comers, and the edges

of objects move around over scales. Anisotropic scale-spaces help to overcome this

problem, but the fact remains that still the blurring alters the object boundary - making

it somewhat difficult to decide the actual location of it without backtracking. The sieve

gives regions with sharp boundaries, and removes the whole region at once, giving well

defined regions in the granularity domain, suitable for matching.

• Scale-Space Causality Preservation

Scale-space causality is an important concept when working in the scale-space domain.

The sieve preserves scale-space causality which means that no new extrema are generated

as the decomposition moves towards coarser scales. Using this scale-space to build a tree,

will ensure that the branches in the tree are consistent and have meaning with regard to

the underlying structure. It also allows tracking through the scale-space to find original.

4.2. Decomposition 58

(a) (b)

(c) (d)

Figure 4.2: The graylevel view of the image in 4.2(a), and its decomposition through scales 4.2(b) - 0;
4.2(c) - 4; 4.2(d) - 16.

(a) (b) (c)

(d) (e) (f)

Figure 4.3: The granules removed at scale 4.3(b) - 4; 4.3(c) - 8; 4.3(d) - 16; 4.3(e)
from the original image in 4.3(a).

3; 4.3(f) - 200

4.3. ScaJe Trees 59

fine detail features, which, had the scale-space not preserved scale-space causality, would

not be possible because a final extrema may have been an anomaly. It is important that

larger scale regions are actual image regions to make the assumption that a sub-tree may

represent an object topology.

o Scale-Tree Construction

Due to the way in which the sieve operates, construction of a tree from the decomposi-

tion becomes relatively simple; the decomposition is a region merging operation yielding

children and parents. The tree could be built directly during the scale-space decomposi-

tion to avoid the extra overhead of storing a granularity domain.

Our implementation uses an initial segmentation of the image into regions by luminance

value. The regions in the image are sorted based on luminance and extremity, and then merging

occurs as the morphological sieve would do - merging small extremum to larger regions. At

each meige a new node in the scale-tree is created containing the region which is merged. At

the end of the algorithm, the scale tree is complete. Although this initially makes our version

slower to sieve than the original sieve, it would seem to be more flexible for other types of

sieve decomposition. The decomposition need not be based on luminance, but could be based

on anything that would generate local extrema (for example, saturation, or a mixture of both

saturation and luminance). Aggregations of various types of image decomposition could be

combined to generate an initial segmentation from which the scale tree is built.

4.3 Scale Trees

A scale tree is built from the decomposition by using the way that the regions merge into each

other to define the relationships between nodes in the tree. The nodes of a scale tree represent

the regions in the image at various scales. Regions at the leaves are absolute in the image,

and regions at lower levels represent composite regions generated from merging of regions

at higher levels. The branches in a scale-tree represent the merging operations. A particular

branch will join a node representing a smaller region at a lower scale to a node representing the

a larger scale region into which the smaller node was merged. An example scale tree is shown

in Figure 4.4.

Building a scale tree is relatively simple, although rather costly. In the following sections

we describe how it is possible to build a scale tree from the granularity domain, and how we

build one directly during the sieving process.

4.3.1 Scale Tree Creation from the Granularity Domain

From a granularity domain a corresponding scale tree can be constructed. By traversing the

granularity domain through the scales from the smallest scale to the largest, nodes are created

4.3. Scale Trees 60

Figure 4.4: A scale tree generated from the sieve decomposition of the image in Figure 4.3(a).

corresponding to granules.

For each granule gsi at scale s, a node, is created. It is temporarily linked to a dummy

node which represents all the other points in the image. At the next scale, i , another granule,

gs',, is encountered and the node is created to represent that granule.

The father relation, jF, is given by Equation 4.8. [«,m] represents an edge, or branch,

between nodes n and m, and E represents the set of edges in graph, or scale tree, 'l (n) represents

the distance from the root of the tree to the node n - or the level at which the node resides. So,

a father relation exists between n and m if, and only if, there is an edge between the nodes in

the tree, and they are 1 level apart, with node m closer to the root.

!F{n) =m iff<
[n,m] e E

W = i
(4.8)

So, if the the node is at a smaller scale and is a subset of the node in the granularity

decomposition, a father relation is created between the nodes 1%. and A{/,.

f < g
(4.9)

The decomposition continues like this until there are no more granules left in the granu-

larity domain. If there are dummy edges left they are all joined to a single root node containing

the plane from which the image is rooted.

ScakrHees 61

4.3.2 Scale Tree Creation During the Sieve Process

The method we use of scale tree building is very similar to the granularity domain decompo-

sition, except that the initial segmentation of the image is generated by region labelling. From

the region labelling we perform a sieve-like operation to generate the scale tree, skipping the

generation and overhead of the granularity domain stage.

The region labels are generated by numbering each of the connected sets within the image.

The sets are stored along with their size and value within the chosen feature space. A sorted

list of the regions is generated based on their scale, and their extremity.

The regions are then merged in order of the list until there is only one region left in the

list, which will be neither a maximum nor a minimum. Because the merging is explicit and

not generated by an overall image filter, it is possible to create two scale tree nodes for each

region involved in the merge process, and an edge (father relationship) between them, during

the decomposition process. The regions can then be associated with the nodes without the need

to have an extra processing step. Due to the sorted list, this, of course, preserves scale-space

causality.

4.3.3 Pruning Scale Trees

A typical scale tree will contain thousands of nodes which is very costly to match using any

tree or graph matching technique - some of the best algorithms are still quadratic. The solution

is to compress the tree into a smaller number of nodes which are more easily used in a matching

situation, while still retaining relevant information.

The compression technique compares child and parent, and sibling nodes in the tree. If the

distance between the features of any two nodes is small - below some threshold - then the nodes

can be merged into one single node representing the larger of the two regions. The larger of

the regions becomes the result to ensure that the simplified image contains the same contours.

Generally, noise and blurring in the image cause distortions in the scale tree which are

relatively simple to detect.

Noise can occur in two main forms, both of which have distinctive signatures in the scale

tree. If there are many child nodes which have small area and have similar colour to their

parents, then they are most likely noise on the signal, and can be removed. If a child node is

almost the same as it's parent, in size, shape, and colour, then it is most likely a product of

blurring within the image, and the child can be merged into the parent. Choosing a threshold

for the features is something we discuss in the following sections on matching scale trees.

The most common form of noise is due to interference and inaccuracies in the electronic

circuits and storage medium of the capture device. This noise is generally on a very small scale

(usually no more than one or two pixels) and occurs as variations in the colour and intensity

of the pixel compared to its surroundings. This makes it a very weak extremum. This type

of noise causes randomly positioned nodes to appear in the scale tree, although almost always

4.3. Scale Trees 62

Figure 4.5: Blurring causes long chains of nodes to be generated in the scale tree space.

around the smallest level. They can be detected with a very tightly bound threshold about the

parent node. The node ni is removed if the feature value of the node, fv{ni), is within specified

limits, % and y, of the feature value of the parent node and the scale of the node (area of region

represented at the node), t n, is very small (of less than t). Equation 4.10 shows this formally.

f fv{ni)>fv{no)-x

merge{no,ni) iff < fv{ni) < fv{no)+y (4.10)

I t («i) < t

Aliasing in the image, that is smoothing of edges, is caused by overlapping of the signals

from nearby pixels, in a CCD, for example. This blurs edges in the image, which causes chains

of connected nodes in the tree. Figure 4.5 shows an exaggerated example of blurring. The

figure shows the scale tree of a blurred white box on a black background using grey-level as

the basis function of the sieve. The chain of nodes are caused as each successive extrema, at

the brightest centre spot, are merged into the next grey-level below.

Chains of nodes can be tested by comparing a node at level o, ly, with its child node,

If they contain similar regions with respect to some feature matching function and their

scales are similar, the process is applied again, comparing — 1) with its child n(o-2)- This

process continues until the feature vector of 1%, fv{ni), is not within the upper and lower simi-

larity threshold limits, x and y, or the scale of the region represented by node n, f («;), is not

within the scale threshold, t, of or the number of children of the node rii, #children{ni), is

greater than one. If n,- has more than one child it can only be at the end of a chain representing

a blur. All nodes are merged into Ug. rig receives the properties (colour or greylevel)

and children of the most extreme node that was merged (nj). Equation 4.11 shows the merging

criteria formally.

merge{no,nj) iffVo<i< j,<

#children{ni) < 1

t {^i)- t t

Another way to decrease the number of nodes a scale tree has, is to eliminate some of

the regions before they are even assigned to scale tree nodes - effectively filtering the image

before performing the sieve decomposition, or while building the tree representation. The

4.4. Graph Matching and Subgraph Isomorphism Testing 63

sieve is generated from the greyscale representation of the image in some feature space. This

grayscale representation can be quantised to a pre-set number of bands. For example, rather

than using 256 greyscale values, the image can be quantised to, say, 64 grayscale values. This

reduces the number of regions that are initially given to the sieve operator, and therefore less

nodes are initially generated, increasing both the speed of the decomposition and the speed of

the pruning operations. A quantisation method will not alter the contours of the image, and

it therefore ensures accuracy of the decomposition, unlike a blurring operation, for example.

Causality is preserved, although it is possible that regions that would otherwise have been in

the scale-tree (even after noise and blur tree pruning) will get lost. This compromise may be

necessary to allow the graph matching to proceed efficiently.

A well known technique for noise removal on images is that of the median filter. It is a

specific instance of the general rank filtering techniques that order a set of pixels in a neigh-

bourhood into a sequence. The result of the pre-processing is some statistic on these values,

of which the median is one possibility. The median filter takes the middle value of the neigh-

bourhood set. However, simple median filtering does not preserve edges. Different shaped

neighbourhoods can be taken to preserve different features in the image. By taking all possible

shaped neighbourhoods, of a certain size, edge contours are preserved.

4.4 Graph Matching and Subgraph Isomorphism Testing

Graphs are used in many applications for representation of objects and concepts, due to their

generality and the power which these data structures provide. They have many invariance

properties perfect for fuzzy problems. A graph under transforms such as rotation, translation,

or mirroring is still the same graph in the mathematical sense, making them well-suited to

modelling complex objects or scenes.

When graphs are used in a content based retrieval role, the problem becomes one of graph

matching - determining a similarity score between two or more graphs. Typically, vertices

in a graph would represent parts of an object, which, in image matching, are likely to be

regions of pixels. The edges between vertices would be defined relationships between the

pixel regions. Matching the graphs requires matching both the data at the vertices and the

relationships between the data.

The main problem with using graphs in content based retrieval situations, is that the find-

ing of graph and subgraph isomorphisms has combinatorial growth - that is, it is NP-complete.

In the worst case of a fully connected graph, the algorithm will require at least 0 (l f) for graphs

with y and [/ vertices respectively. There are known ways of addressing an NP-complete prob-

lem, using stochastic methods like simulated annealing and genetic algorithms, however these

methods do no guarantee an optimal solution. Currently any algorithm designed to find an

optimal solution will be intractable in the worst case and this applies to the algorithms below,

but in the general case, they are faster than a simple graph search.

4.4. GrapA MafcMng and Subgraph IsomoipAism Ibsting 64

Of the few subgraph/subtree isomorphism techniques we decided to use the Network Al-

gorithm developed by Messmer and Bunke (see section 4.4.2) as it has the functions we require.

Even though it is somewhat redundant having graph matching when we are sure that the struc-

tures are trees, it overcomes the need to find an efficient indexing mechanism for the subtree

isomorphism algorithms which are designed to only find subtrees between two single trees.

This has none of the indexing properties which are necessary in large searchable databases.

Indexing is very important when the technique is designed to search for similarities be-

tween a number of models. Without indexing a brute force approach is required - that is,

performing a match between the query and every model in the database. This can take consid-

erable time in a database which could contain thousands of representations. Indexing basically

reduces the possible number of matches by reducing the dataset during the match based on the

query feature. This can be implicit in the data structures used or achieved by literally filtering

before hand, as the improved colour histogram quadratic match from QBIC(30).

The Network Algorithm contains both indexing with the binary network, and efficient

matching by sharing of common data structures between model graphs. This is due to the

design of the special network structure. It is least efficient with highly unbalanced trees, but

these are unlikely to occur in scale-trees - only certain blurred subjects causing the feature.

The Inexact Network Algorithm stores edit costs along with instance matches. The edit

costs determine how the instances are filtered through the network. STOP lists act as buffers

which prevent high cost instances from being forwarded through the network.

The following sections describe in detail the network algorithm which will find a subgraph

isomorphisms between one graph and a set of graphs.

4.4.1 Definitions

This section presents some definitions to allow the description of the graph matching algorithms

to be more easily understood.

Graphs are the basis of the algorithm, and a description for graphs needs to be introduced.

A graph, G, is the union of the set of edges, E, and a set of vertices, V.

(3 = (4.12)

1/:= (4.13)

^ = (VA,V8),(VC,VD),... (4.14)

A label, represents some value which is stored at the vertex, in a graph. For

vertices which are derived from scale tree nodes these labels will be the attributes of the re-

gions. For example, /x(vi) = RedCirde, 100,100,20, might represent a circle at coordinates

(100,100) at scale 20. It is also possible that the edges will have labels, At((%, vg)), represent-

ing the relationship between the two vertices. For example, an edge ^((x, V2)) = may

represent the relationship that vertex vj is contained within The edges could store redundant

4.4. GrapA AtafcAing and Subgraph Tesdng 65

information to increase the speed of the match. For example, pruning speed could be increased

by having an edge attribute which was the scale difference between the two nodes.

When comparing two graphs we are effectively looking for a function / : y ^ which

maps each vertex v e V onto a vertex V G V". For graph monomorphisms (instances within

graphs with missing edges), v = V for all v G y , and (v,,Vy) G E =) E E'. For subgraph

isomorphisms (instances within graphs which are the same), the definition is the same as graph

monomorphism, with additionally for an edge (v(-, v^) G £ ' = (v,-, vj) e E - that is, all the edges

are the same with no missing and no extra edges. Double subgraph isomorphism testing, finds

subgraphs of G\ in G2 and subgraphs of Gz in G\. It is no more computationally intensive than

subgraph isomorphism testing.

4.4.2 Network Algorithm

Messmer and Bunke have developed a graph matching technique called the Network Algorithm

which allows matching of an unknown input graph to a number of pre-registered model graphs

(48; 51; 13; 52). The graph matching algorithm only works on graphs where the vertex label

matching is exact. We have extended the algorithm to allow complex, inexact matching at the

vertices.

The network algorithm attempts to speed up the intractable graph matching problem by

sharing common subgraphs, thereby cutting down the number of matches that have to be per-

formed. The main requirement in image matching is that one often needs to find sub-images

within a set of images. In the graph world, this translated to finding subgraphs within a set of

model graphs. It is possible that the set of models will all share some subgraphs, whether they

be the ones being queried or whether they are merely a property of the dataset. The subgraphs

which are shared between the models are then only represented once in a network structure,

thereby requiring only one match to find all the models in which that subgraph exists.

Matching is performed by inputting the query graphs into the network which shares the

common subgraphs between the set of model graphs. The queries filter through the network

leaving instances of subgraphs at the nodes within the network representing those subgraphs.

The graph matching at the nodes is all based on the connectivity of (or properties of the edges

between) the graph vertices and the properties (or evaluations, or attributes) of the vertices.

The following section gives a simple description of how the network algorithm works,

before section ... which gives more detail on the nodes in the network.

4.4.2.1 The Network Algorithm: An Example

To provide an insight into the idea behind the network algorithm we present here a simple

example of the network algorithm in use. In this example we will use images as the origin

for the graphs we are matching, for this will show how we are using the network algorithm

for content based image retrieval. The basic premise is that we will convert two images into

4.4. Graph Matching and Subgraph Isomorphism Testing 66

-H b

(a) (b)

Figure 4.6: 4.6(a) A model graph with two vertices which have different labels, 4.6(b) A model graph

with five vertices where some labels are the same.

1 2

a)

-K a

INPUT NODE

m o d e l b I m o d e l a I [12]
[42]

[342]

Figure 4.7: A network built with the graphs from Figure 4.6, a) and b). The dotted lines represent the

different layers in the network; (from the top), the input node, the 1-vertex-checkers, the E-subgraph-

checkers, and the m-model-nodes. The graph on the left has been input into the network, and the local

memories of the network nodes are shown. The grey memories are ones which are removed as the

memories filter through the network, the black memories are those left at completion of the network

algorithm. Three subgraph isomorphisms are found between the new input graph, and the two graphs in

the database.

4.4. Graph Matching and Subgraph Isomorphism Testing 67

graphs and add the graphs into a network which will share common subgraphs. The network

then represents the database, and the graphs in the database represent the image which we will

be able to perform matches against.

The following sequence describes the process of adding a graph to a new network, adding

a graph to an existing network, and then matching that graph to find isomorphisms taking

advantage of the structure of the network to reduce the time for matching.

Here we assume that the image shown has been decomposed into the accompanying graph.

This is the graph we shall be inserting into the network, and which will become one of the

model graphs which we will be able to match against. We first identify the vertices in the

graph, by numbering them. This allows us to trace each vertex through the network.

The entrance to a network is always the input node. There is only one of these per network.

The network we are building is empty, and so only contains this one node.

nput
[1 [2]

The first layer below the input node consists of an array of nodes, called IVertexCheckers,

of which there is one of which for every vertex, with different features, in all the models. What

constitutes a vertex with different features is based upon the feature vector matchers that are

used to match the vertices' features. In this example we are using greylevel to differentiate the

vertices, and so we add two IVertexCheckers: one for the black vertex and one for the white

vertex. The corresponding vertices from the input graph, which are labelled '1' and '2' are

stored at the node to which they match, in the node's local memory. At this point there are no

more vertices to farm to the input node from the input graph, and a model node has not been

created, so it is clear the adding of this input graph has not been completed.

4.4. Graph Matching and Subgraph Isomorphism Testing 68

nput

[2]

[12]

A new network node is created, called an ESubgraphChecker, which stores a subgraph

of a model. In this case, the instances stored in the IVertexCheckers are used to determine

that vertices '1' and '2' are connected in the input graph, therefore this subgraph is stored in

this ESubgraphChecker. An ESubgraphChecker only has two inputs, so if there were more

instances in IVertexCheckers they would be used in other ESubgraphCheckers.

nput

[2] o

• - 4

X- 1

I V I o d e l 1

The size of the subgraph instance stored in the ESubgraphChecker's local memory is the

same size as the input graph, and it is clear this represents the whole input graph. Therefore

we create a model node to represent this input graph. There is only one model node per input

graph.

Next, a new image is re-represented as a graph so that we can add this to our existing

network. The image clearly has a common subgraph with our previous image (now represented

in model node 1), as well as a vertex which is different from those in the network.

4.4. Graph Matching and Subgraph Isomorphism Testing 69

Input
V

U] g [2]
V

O [3]
i

[12]
Hi

Model 1

Firstly the input graph vertices are farmed out to the existing IVertexCheckers and the

appropriate network nodes populate their local memories with the instances of the input graph;

this includes a subgraph match at the ESubgraphChecker between vertices '1' and '2'. A

new IVertexChecker is generated for the input graph vertex which has no representation in the

current network.

Mode 1

Model 2

Again, there are instances still spread across the network, so it is clear the process is not

complete. The two smallest unused instances are taken (the instance in the ESubgraphChecker

and the instance in the new IVertexChecker) and checked to see if the instances form a sub-

graph of the input graph. Because, in this case, the vertices do form a subgraph a new ESub-

graphChecker is created to represent this. This new ESubgraphChecker then fully represents

the second graph, and is assigned a new model node.

4.4. Graph Matching and Subgraph Isomorphism Testing 70

Input

• •

Model 1

Mode 2

Matching is achieved in a very similar way to the network building process. For example,

an attempt to match the first image that was put into the network, with the current network

the above situation is reached. Vertices '1' and '2' filter through to the ESubgraphChecker

which is linked to the model node 1, as expected, showing we have a graph isomorphism

with model 1. However, through the link to the second ESubgraphChecker it is also possible to

determine, without any extra calcuation, that there is a subgraph isomorphism in model 2 of the

input graph. This is made possible because common subgraphs are shared during the network

building stage.

In the next section we explain in greater detail the roles of the various network nodes.

4.4.2.2 The Network Structure

A network is arranged into four layers. Each layer contains a specific type of node with a

specific function in the matching process. The top layer consists of a single Input Node, the

second layer an array of IVertexCheckers, the third layer an array of ESubgraphCheckers and

the final layer consists of a number of Model Nodes, one for each of the models in the database.

Each of the nodes which represent a subgraph (IVertexCheckers, ESubgraphCheckers, and

mModelNodes) contain a memory, called the local memory, which stores the instances of an

input graph which match their stored representation.

The following list describes each of the network nodes and their function.

• Input Node

The input node resides at the top of the network and there is only ever one. It is the entry

point into the network, and it receives any inputs which are to be filtered through the

network. Its purpose is to farm out instances of individual vertices in the input graph to

4.4. Graph MafcAmg and Subgraph isomorpfusn] Testing 71

the next layer of IVertexCheckers. We required some extra functionality in this node to

achieve feature matching, and this is described in section 4.4.3.

« IVertexCheckers

The second layer of the network consists of an array of IVertexCheckers, which are

network nodes representing single vertices. There is an IVertexChecker for every vertex

label in all the model graphs. The local memory will contain the vertices from the input

graph which match the vertex label stored in this IVertexChecker. Every instance of

a vertex from the input graph is sent on to the next layer of ESubgraphCheckers, or

possibly mModelNodes (if all models are single vertices).

o ESubgraphCheckers

The ESubgraphCheckers contain representations of subgraphs which are from at least

one model. They only ever have two parents in the network, which are either IVertex-

Checkers or other ESubgraphCheckers. During matching they test whether the inputs

from the two parents are disjoint, and whether they would join to give the representation

which the node contains. If the instances give the same graph as the representation an

instance of the represented subgraph exists in the input graph, and it is placed in the lo-

cal memory. Each composite instance is forwarded to each of the outputs of the network

node. The outputs maybe to other ESubgraphCheckers or to the final layer containing

mModelNodes.

9 mModelNodes

An mModelNode represents a model which has been placed into the network. It takes its

representation and local memory from the single ESubgraphChecker which is its parent.

There is one model node for each of the model graphs in the network. If an instance

appears at an mModelNode during matching, then a match (graph or subgraph isomor-

phism) has been found between a database image and the query image.

Building the network is based on the matching algorithm, that is, a match is performed

and if no model is found, the network is augmented to include the new model based on the

isomorphisms which were found. So, a new model is input into the network, the same way a

query graph would be, to find the instances which match subgraphs in the previously entered

model nodes (the exact matching process is explained in section 4.4.2.3). At this point new

IVertexCheckers may need to be created to take account of new graph vertices which do not

already occur in the network. Once the Altering is complete, if the largest instances in the net-

work do not belong to mModelNodes (i.e. the new model did not already exist in the network)

new network nodes (ESubgraphCheckers) are created until a new mModelNode is created for

the new model. The order in which the new ESubgraphCheckers are created is important to

achieving a balanced network, with the most useful setup of distinct subgraphs. The network

4.4. GrapA and Subgraph JsofnoipMsin Testing 72

algorithm does not generate an ESubgraphChecker for every possible subgraph in a graph, so it

is very important to have a balanced network so that as many subgraphs are created as possible.

There are two versions of the matching algorithm. The exact network algorithm finds

exact graph monomorphism, and subgraph or graph isomorphisms - where no edits need to be

made to the graph to &nd those matches. The inexact network algorithm finds inexact graph

isomorphisms, by applying edits to a distorted input graph, until the input graph matches a

model graph with the minimal cost. The following sections describe these two algorithms in

more detail.

4.4.2.3 Matching using the Network Algorithm

The exact graph matching algorithm finds graph and subgraph isomorphisms of a query graph

within the model graph dataset, where there are no distortions in the graph.

To match a graph with the database, it is used as an input to the network algorithm (NA),

and it filters through the network. At the completion of the NA, the network node with the

largest instance in its local memory contains the largest subgraph detected in the models.

Should a model node be a subgraph isomorphism of the input graph, then the largest subgraph

will appear at an mModelNode.

Matching is entirely based on the similarity of the vertex and edge labels. While this

may, at first, seem inflexible due to there being no explicit topology matching, it is the most

pragmatic way to achieve matching, particularly for applications such as content based image

retrieval. It is quite unusual that an application would require the matching of topology only

- as opposed to the matching of the topology of certain types of objects. In content based

retrieval the properties of the regions stored at the vertices is as important as the topology of

the vertices - for example, to match an eye ball, a black region within a white region is correct,

whereas a red region in a blue region is not.

The input graph will consist of a number of vertices connected by edges. The vertices

will contain information stored in the scale tree nodes. This will include information about the

regions - shape, colour, x and y coordinates, and possibly the texture or a histogram.

The graph is initially passed to the processing function of the InputNode, which is the

entrance to the network. This node distributes the vertices of the input graph to the IVertex-

Checkers based on the labels of the vertices only. This occurs by sending each vertex in turn to

the IVertexChecker's processing function.

The IVertexChecker has stored within it a label for the vertex which is represents. It

matches this label against the incoming vertex. This is an expensive cost, as it may require

a number of feature matches to occur - one for each of the features associated with a vertex

label. If the matches are within some thresholds and the vertex is considered to match, it is

placed in the local memory of the IVertexChecker. Before processing any more vertices, the

IVertexChecker will send the vertex on to the following ESubgraphChecker. If the vertex is

4.4. GrapA MafcAing and Subgraph fsomozpAism Ibsfing 73

considered to not match the label represented at the IVertexChecker, then it is discarded.

Once all the vertices have been processed the InputNode checks which vertices have been

accepted by IVertexCheckers and for those which have not, it creates new IVertexCheckers.

When an ESubgraphChecker receives a vertex from an IVertexChecker it checks in its

other parent network node (the node from which the vertex was not received) to see if the vertex

passed through will make a union with a vertex in the other parent to create an instance of the

subgraph which this ESubgraphChecker represents. More generally, the ESubgraphCheckers

check whether an instance graph which is passed through will make a union with an instance

graph in the other parent network node to create an instance of the subgraph which it represents.

This involves checking the edges between the nodes of each of the instances, and is the most

costly part of the network algorithm, other than the feature matching at the nodes. It is here

the edge matches take place (feature matching of the edge labels) and also feature matching

of the vertices at each end of the edges. To avoid performing excessive feature matching, the

vertices can be marked as belonging to a particular IVertexChecker (because an IVertexChecker

only represents one label), and the match can then become class instance matching, rather than

feature matching.

When an instance is correctly identified in each ESubgraphChecker the instance is passed

through to the following node. This may be another ESubgraphChecker which will attempt to

match a new graph, or else it may be an mModelNode, in which case the instance is stored as

an isomorphism of the model represented by the mModelNode.

In the best case (i.e. the graph or super-graph of a model graph is tested) the instances

will flow directly through the graph, ending up at an mModelNode representing the model and

input graph. In any other case a model graph will not be found. However, the largest exact

subgraph instance will be found and can be detected by checking the network for nodes which

contain instances. The largest graph (most number of nodes) represented by a network node

which also has at least one instance associated with it will represent the largest exact match.

Inexact matching allows the matching of graphs where the labels do not match (but have

the same topologies), where the topology varies, or both. In the next section we explain the

matching process using the inexact network algorithm.

4.4.2.4 Matching using the Inexact Network Algorithm

The methods used for creating the input graphs is very likely to be affected by noise in the

image. This will cause distortions in the input graph, changing the topology, or the vertex

labels of the vertices representing the required object. To overcome this, an inexact network

algorithm (INA) has been designed which finds inexact subgraph isomorphisms. The algorithm

forces the input graph to be an isomorphism of one of the pre-defined model graphs by label

substitution and edge removal, addition or substitution.

An inexact subgraph isomorphism between two graphs G and G consists of a series of edit

4.4. Graph MafcAmg and ^ubgrapA IsomofpAism Tbstmg 74

operations A applied to G to give a subgraph isomorphism between A(G) and An inexact

subgraph isomorphism is optimal if there is no other sequence A' such that there is a subgraph

isomorphism between A'(G) and G' and the costs of A' are lower than those of A.

The algorithm begins, as with the NA, by the input node farming the vertices from the

input graph to the IVertexCheckers. Every IVertexChecker gets an instance of every vertex in

the input graph as well as a "dummy" vertex - a vertex which is not in the input graph, and is

marked uniquely to identify it as such (usually signified by $). The labels of the vertices are

checked against the label stored at the IVertexChecker and for vertices which do not have the

same label, a cost is acquired by that instance of that input vertex - the cost of changing the

label. If the input vertex was the dummy vertex, the substitution is equivalent to the deletion

of the vertex from the model node and therefore acquires a cost associated with deletion of the

vertex.

If all the new instances were passed on, the growth rate would once again become combi-

natorial, so a new structure is introduced to each network node, called the STOP list. This list

hides instances from propagation through the network. We now call the local memory the GO

list, which is the list from which instances are allowed to propagate. The decision of which list

to place an instance in, is made by the cost of that instance. Costs of more than a particular

threshold are put into the STOP list. The first time through the algorithm the threshold is 0

cost. This makes the INA behave in exactly the same way as NA because only instances with

zero cost propagate through the network. This stage is then, identical to NA except inexact

instances are stored in STOP lists, so we call this algorithm NA.

At each ESubgraphChecker the two incoming instances are checked for disjointedness. If

they are disjoint, they are assumed to be an inexact instance of the graph represented by the

ESubgraphChecker. However, the cost of the new instance may need to be updated. Firstly, the

instance will have at least the cost of the two incoming instances. Secondly, any edit operations

that would need to be performed on the edge structure of the new instance have to be included in

the cost of the instance. Edges may need to be inserted, deleted, or have their label substituted,

in a similar way to the vertices in IVertexCheckers. If the cost of the new instance is above the

global network threshold it is added into the STOP list of the ESubgraphChecker, otherwise it

is added into the GO list and allowed to propagate through to the next network node.

After NA has completed, if an instance is available in a model node, then the algorithm

stops because an exact instance has been found. However, if no model nodes contain instances,

then the algorithm goes back to look at the instances which have acquired a cost through edit-

ing. The network node with the lowest cost instance in its STOP list is revisited. To make this

step fast the STOP lists with instances are stored in a list called the OPEN list in order of the

lowest cost in the STOP lists. The top of the OPEN list is always the network node containing

the STOP list with the lowest cost. The new threshold for the network becomes the cost of this

instance (currently the lowest cost in the network). The instance is passed on to the next net-

work node in the network in the same manner as with the NA, with that instance being moved

4.4. Graph Matching and Subgraph Isomorphism Testing 75

into the GO list. If the network node receiving the instance is unable to find another instance

to join with the incoming instance, or the union of the instances gains a cost and is put into the

STOP list, then the inexact network algorithm then goes back to the network node containing

what is now the lowest cost in the network, sets the threshold, and moves the instance to the

GO list to be passed on through the network. This continues until a model node has an instance

in it that has a cost lower than all the other instances in the network, and that instance will be

the optimal, lowest cost isomorphism of the input graph to the model graphs.

The point at which the edited instance, filtering through the network with INA, has the

same number of nodes as the input graph will define the optimal subgraph isomorphism of the

input graph within the model graphs which have a path in the network to that point.

4.4.3 Graph Matching for Scale Trees

Conversion of the scale tree representation of an image into a graph representation of an image

is a relatively simple task. A tree is simply a specific form of a graph - a directed, non-cyclic

graph. Allowing the matching of a scale tree in the network algorithm environment is possible

by creating, or trans-coding, a scale-tree representation into the graph representation that the

network algorithm uses. Here we describe the extensions we made to the inexact network

algorithm to provide scale-tree matching.

However, there are some extra considerations required for the matching of scale-trees with

the network algorithm. The most important of these is raised by the label matching that is used

to determine vertex equality. This matching is largely ignored in papers on the subject, with

vertex labels assumed to be a simple label such as a number or a letter which are easily tested

for equality. But, matching scale-trees requires the matching of the nodes within the tree, which

become the vertices in a graph, and these contain image features and region descriptions. The

matching of region descriptions is carried out by other feature matching modules - such as

colour, or shape matching. This implies the network algorithm needs to recognise and allow

the ability to match region representations. To avoid the network having to deal with different

features and their associated matching technique, feature matchers are programmed as modules

conforming to a simple communication interface. A broker is then used to abstract the modules

from the network.

The feature broker deals with the brokering of feature matching operations to relevant

feature matching modules on behalf of the network algorithm. When the network algorithm

requires two vertex labels to be matched they are passed to the feature broker which knows

of all the possible feature modules available to perform matches. The labels are distributed

from the broker to the active modules which perform a match if they are able to do so. An

aggregated score or an aggregated boolean equality result is returned from the feature broker

to the network.

Features from the various feature matching methods will return various scores based on

4.4. Graph Matching and Subgraph Isomorphism Testing 76

their view of the image feature (the shape, texture, or colour, for example). To get an overall

feature score from the modules, the set of returned scores needs to be aggregated. Feature

score or equality aggregation can be a very complex subject and is often application dependant,

however, the feature broker uses a very simple algorithm to return aggregate results. Feature

modules generally would return an unbounded distance measure, which would be incomparable

between features, but to allow aggregation in this manner, the feature modules have to return

normalised scores (for example, between 0 and 1) otherwise any particular feature module

may dominate the results. The broker then aggregates the scores using the mean score of the

individual scores returned by each feature module. This bounds the final aggregate score to

the same range as any individual normalised feature score. So, for N feature modules, each

returning a score 5, from a matching process, an aggregated score, s, is given by:

J = (4J.5)

where, st is the normalised score from feature module i, and N is the total number of feature

modules. Normalisation could not be achieved by using any kind of rank-based score normali-

sation, because each region representation is matched in isolation. Weighted scores could also

be used to vary the domination of certain types of feature. Weights could be given to each

feature module prior to initiating a query. Each score from a module will be pre-multiplied by

the weighting coefBcient to give a weighted score:

N

N
(4.16)

1 = 0

where w/ is a weight coefficient for the feature module i.

Equality matches are also aggregated in the most simple way; a match occurs between

two vertex labels only if there is a consensus among the feature modules that the labels match.

Each feature module is responsible for deciding whether a particular distance score between

two vertex labels is a match or not. This thresholding could also be application dependant and

altered by the user prior to engaging a query.

Thresholding is necessary in the exact Network Algorithm, where a label has to be clas-

sified as the same or completely different to another label to determine whether the instance is

propagated. Deciding what value the threshold should take is application dependent, because

which of the features is the most important largely depends on the subject matter. Thresholding

could take place pre- or post-score aggregation. Aggregating the scores, then thresholding is

simple to achieve, but one becomes limited to how the thresholds can be altered for a query.

Altering weighting of the score of a particular feature score, then subsequently thresholding

is equivalent to altering the thresholds for each feature beforehand, then combining the truth

values, but will affect an extra processing cost on the feature modules for score normalisation

before aggregation. This latter technique was used successfully in MAVIS-2 (19). Thresh-

olding each of the individual features affords more flexibility, although requires some boolean

4.4. Graph Matching and Subgraph Isomorphism Testing 77

logic operations on the resulting truth values. We use this technique because it allows each

feature module to define the truth values for a pair of features.

It is worth noting that the more feature modules we use to match the image labels, the more

discriminating of labels the network becomes. This means, that the more feature modules that

are activated, the more IVertexCheckers will be generated at the first layer of the network, due

to the labels being considered less similar because of the better discrimination. This, of course,

means that there are less likely to be shared subgraphs! It is therefore important, that the feature

modules are not overly discriminating between labels, otherwise there will only ever be a single

IVertexChecker for every label ever encountered by the network, and there will never be shared

subgraphs. Feature modules should ideally be rotation, scale and translation (RST) invariant,

so that a similar region, under these transforms, will be considered the same.

The problem with feature matching is that it is relatively expensive, and there are a num-

ber of speed-ups we can make by ensuring that the feature matching is performed as little as

possible. During the running of the network algorithm labels are matched regularly to test for

label equality, and edge equality and if the labels needed to be matched each time with a fea-

ture matching algorithm the matching process would take a very long time. What is required is

a global representation of a feature that can be referred to, and matched inexpensively, rather

than the actual feature representation.

The network algorithm already supplies such structures in the form of the IVertexCheck-

ers. So, we generate an IVertexChecker-graph representation of the input graph, where each

node in the input graph is now represented by the IVertexChecker to which its label matches.

Equality of IVertexCheckers is a matter of address equality, and not feature based, and can be

done at speed. The extra step to create the IVertexChecker-Graph is performed in the input node

of the network, which transforms the input graph into an IVertexChecker-graph before farming

the new IVertexChecker-graph vertices to the IVertexCheckers. The main problem with using

this technique is that information is lost - the information about the scale and location of the

label. For example, an IVertexChecker may represent the set of labels that are black squares.

By replacing the actual labels with IVertexChecker references, all black squares, of any scale,

and from anywhere within the image, are represented by a single representation. This means

that an instance that arrives at the bottom of the network is not accurately reconstructible, un-

less we store some extra information. At the mModelNodes we store the locations of each of

the IVertexGraph-vertices so that sub-tree matches can be back-traced to the mModelNode and

highlighted for user feedback.

Another speed-up we can make is to introduce a feature cache which stores which vertex

labels have already been matched and what their score was. This avoids the network algorithm

having to perform expensive feature matching when the result has already been calculated.

The inexact graph matching allows us to find which models contain the input graph, or

which models are contained within the input graph. However, because of the common subgraph

sharing, certain attributes of the vertices of the subgraphs are lost (purposely to allow them to

4.4. GrapA MafcAmg and Subgraph fsomofpAism Tbsting 78

become common); the location of one subgraph is almost certain to be different to that subgraph

in a different model and likely to be at a different scale, however, they will be represented by

exactly the same subgraph representation. This property makes it very awkward to detect where

in the model graphs the matching subgraphs from the input node occur. To allow location

retrieval the ESubgraph checkers are augmented with a mapping that maps the original image

file, from which the graph was constructed, onto a set of a mappings from subgraph node to a

rectangular area (location and size) containing the region the node represents. This allows the

application to find where the sub-image represented by any partial subgraph match is located

in the model graphs in which that match appears. This is imperative to ensure we are getting

correct matches.

4.4,4 Inexact Graph Matching with score filtering

The inexact graph matching, proposed by Messmer and Bunke, allows the matching of input

graphs to model graphs when the input graph is a mutation of a model graph. One of the

problems with this system is that the costs that are applied to the edits made on the input graph

are fixed by the user before the matching takes place. For example, a vertex substitution may

incur a cost of 1, and an edge insertion a cost of 2. That is, when vertex label substitution occurs

the cost that is incurred is not related to the label that is being substituted or the label it is being

substituted with. This means a label being replaced by a very similar label will incur the same

cost as a label being replaced by a completely different label, and this means that instances

which are very unlikely to produce optimal results will be filtered through the network.

The extension we have implemented is to use the feature distance, produced by the feature

matching modules, as the cost associated with label substitution. Substituting a label by a

similar label will then incur a cost less than that of substituting a label with a dissimilar label.

Both vertex and edge label substitution can incur costs in this way.

Edge addition and deletion can also incur costs based on the similarity of the vertices at

the end of the edges, or the similarity between the edge labels, again. This score-based filtering

is less important than vertex label substitution score filtering. Edge deletion means there was

an edge in the input graph that was not in the model graph and needs to be deleted.

The feature scores are produced once again by an aggregate score-based on the distribution

of the match over a number of feature matching modules, as described in the previous section.

The mean of the weighted scores gives the final score.

The introduction of score filtering will still generate optimal results, because only the

instances with the lowest cost, smallest distance in feature terms, will appear at the model

node&

Experimentation with inexact graph matching with score filtering for scale-trees is given

in chapter 5.

4.5. Swnmmy 79

4.5 Summary

In this chapter we have described in detail novel work towards a content-based image retrieval

approach that is based on the topology of images with mining provided by graph matching.

The hope is that this system moves some way towards providing a semantic based approach to

image searching. In the following chapters we describe experiments carried out on a prototype

system implementing this retrieval approach, and we described a method for extending the

image decomposition and matching algorithm to provide a semantic layer into which the data

is linked.

Chapter 5

Evaluation of Matching Algorithms

5.1 Introduction

In the previous chapter we described our work on extending the graph matching algorithm to

provide matching of scale-trees generated from a sieve decompositions of images. In this chap-

ter we show experiments we have performed on a prototype content based retrieval system that

incorporates the scale-tree decomposition and inexact graph matching, for both the topology

of the graph and the vertex label representations.

It is important that, as well as being indexed, to increase the speed of the match the system

itself is implemented efficiently. Graph matching, in particular, is known to be NP-complete in

the worst case, and with thousands of nodes in a possible scale-tree this has to be considered.

This section explains the way graph matching might be used alongside feature matching

to provide content based retrieval based upon the prototype we have implemented. We begin by

showing that our implementation of the sieve decomposition gives the correct results, before

showing some simple graph matches using exact node matching. In section 5.3.2 we show

the pruning of the scale-trees, and in section 5.3.3 the graph matching of scale-trees is shown.

Experiments will be presented showing how a graph-based image representation affords new

searching possibilities. In section 5.4 a discussion is presented on the experiments, which also

details some of the problems with our particular prototype implementation of the system.

5.2 ConAguradon

Configuring the prototype system is important to the overall success of the experimentation.

The amounts of tree pruning, feature matchers, and the feature matcher's attributes all con-

80

5.2 Con%uradoD 81

tribute to the match.

The system is set up with 6ve low level features to allow matching of regions. They are all

relatively basic features but should be adequate for matching of the simple regions decomposed

using the sieve. They are chosen mainly for their speed as well as their relative inability to

differentiate very similar regions which aids common subgraph sharing.

The simplest of the metrics measures the monochrome value associated with the region.

The regions are generally homogeneous and therefore only have one brightness value. The

absolute difference between the grey scale value of region i, \{, and the grey scale value of

region j, vj, returns the score (normalised to a value between 0 and 1). So, given the maximum

greyscale value of TV, the score is given by:

(5.1)
N

The colour difference module returns the colour distance in HSV colour space between

the two representative colours of the regions. Each region has associated with it a colour - the

region's mean colour. These colours are compared and the distance normalised by the maxi-

mum possible distance in the colour space. Given two colour values Si, and {Hj,Sj,Vj),

the distance is given by the Euclidean distance in colour space:

y + (%. - y,.)2) (5.2)

This can be extended to allow full histogram matching at each node. Although this may

be unnecessary because the regions are generally very homogeneous. This matching technique

uses the QBIC quadratic matching technique. The QBIC histogram matching technique is

described in 2.2.1.3.

Although Hu moments were also implemented for matching in the tests, a very simple

shape matcher was used which provided a very basic method for distinguishing between shapes.

It uses the ratio between the area of the enclosing rectangle, w x h, and the actual area of the

region, a. The difference is squared to accentuate the range.

(5.3)

A rectangular region will fill the enclosing rectangle (and have a ratio of close to 1), whereas

a circle would fill it less. The smallest value would be achieved by a diagonal line. This is

simple measure is invariant to scale (and unconstrained ratio scaling, i.e. different width and

height scaling), quarter rotations (or very small rotations), and translation. However, w and h

are dependant on the camera orientation, and this measure is not fully rotation invariant. For

the equality match we can statistically generate a threshold value. A circle is to be considered

different to a square. If the square has an area m^, a circle fitting within that square will have

area Tt The score for the circle will therefore be If we take w to be 1, the area

^1. 82

ratio becomes = 0.79. This implies the threshold should be no more than 0.21 to ensure

circles and squares are differentiated.

The string matcher is used for matching those nodes which are not regions. The edge la-

bels are stored as string labels and require a matching algorithm. The score is 0 or 1 depending

on the boolean equality match performed by a string compare.

Tests will be made to show the differences that different algorithms apply to the match,

and how the match is altered with multiple matching algorithms activated and to test that the

more algorithms that are used the more discriminating the results will become - and the bigger

the network should be.

The pruning algorithm is switchable so that the tests can be performed with and with-

out pruning. The pruning variables are alterable before a match takes place, and during the

experiments notes will be made of the values of the variables when pruning is activated.

The network is configurable to allow inexact matching to be performed, or not, depending

on the application. At first, the network algorithm will be used in its exact mode, and then

experiments on the inexact network will take place.

The pre-Altering of images will be disabled for most of these tests, but in the instances

where it is activated, a note will be given, stating the value of quantisation used to pre-filter the

image. This is only required in the more complex images.

The implementation we give is based on a Java platform. This allows it to be highly

portable among hardware platforms and provides a good base for prototyping. Also, the final

intention at the beginning of the project was to integrate this with the image search platform

called Mavis-2 (see section 6.1.5) which required the implementation to be Java. The downside

to using Java as prototyping platform was the issue of speed - Java is interpreted and run within

a virtual machine meaning that it runs much slower than natively compiled code. This issue is

of less concern here as the implementation is primarily a proof of concept.

5.3 Matching Experiments

To ensure the integrity of the system we need to apply experiments at each level so that we

can be sure that the final result is due to all parts working correctly. This section will provide

descriptions and examples of how the system provides content based retrieval, and provide

some examples of its abilities.

We have a test harness that allows us to examine the results of tests, and visualise the

scale-trees. It also allows adjustment of the parameters used within the network algorithm.

Figure 5.1 shows the control panel of the harness.

5.3. Matching Experiments 83

ĵ B̂SSESCSSil BCir:
feabgeWokberm
IK jLeweJft^artcher

'fiS HSVHistogramMafGher

^ COkurM(Aer
M S(rm#Wcher

Mamemt̂ M̂atehCT
f W e s t a fee networked

defaultiwt

Add

F e a t o e WWch* Info

Wb
Info

&tfo
MO

Wo
Files to be matched

Remove

View ScaleAee
View Sea tetree

M e * Image

Vhwhwoe
Create SuMree Makh- .

T0#MmM8NKiA
Id Perform Noise f^umng

Noi»eSlzeThm*oW(»#*)

Show 3D Tf#e V&BW

I sQ Perform Alias Pnmmo

Qo Use Inexact Network Algwitkn

IK N a w Size m P k e k

0 5 1 G t 5 2 0 % 3 0 % 4 G 4 5 @ 0 5 5 6 0 @ S 7 8 7 5
N a s e Level ThremhqW

9 5 #8 95 I W

v „ — o —

0 32 64 96 128 160 192 224
Aftas a z e Thre^t f ld (%)

0 25
ASas Level IhreshoM

0 32 64

D Save Network [defaultnet

50

«8

75 IW

Ex*

192

Perform Match

Figure 5.1: The simple test harness.

5.3.1 Creating a tree from the granularity domain

The sieve is the basis of the image decomposition algorithm and to test this we use some

images to test that our implementation works in the way the theory and the original tests state

they should.

First, the simplest types of images are tested, because incorrect results can easily be de-

tected. Small block images are the correct type of image to test the basic functionality of

the sieve, in particular, to test that in this implementation of the sieve the regions are merged

correctly - into the correct region, and at the correct scale.

A single block at a specific scale on a black background shows that the region labelling,

and scale removal works correctly.

Figure 5.2 shows the first simple test case for the sieve. A white box on a black background

is decomposed into a scale-tree with 2 single nodes - one representing the white box, and

another representing a black box (the background with the white box merged into it). The

white box has an area of scale 12, as shown in figure 5.2(a). The 3D view of the tree is shown

5.3. Matching Experiments 84

(a) (b)

Hi

(c)

Figure 5.2: Sieve test: Simple image to ensure the region labelling and region merging took place
correctly. Figure 5.2(c) shows the scale-tree visualisation harness.

5.3. Matching Experiments 85

(a) (b) (c)

(d) (e) (f)

Figure 5.3: The region merging throughout the sieve process on a simple block image (scales
0,4,8,16,88^00).

in figure 5.2(b). As in all the following figures, scale is further away from the base of the 3D

graph, with the base representing the size of the image. The node representing the white box is

offset due to the white box being offset in the image, and the nodes are placed in 3D space at the

centroid of the region they represent. Figure 5.2(c) shows the test harness interface. The three

images at the top are the original image, the image rebuilt from the scale tree up to the scale

given by the slider, and the third image shows the granules that have been removed (effectively

the scale tree down from the leaves to that scale). At scale 13 a new granule appears in that

image and disappears from the rebuilt image showing the region of scale 12 is removed at scale

13. This basic test shows that, for the simplest of images, the sieve works.

A more complex image is used to test that the sieve merges regions correctly and that the

scale tree is built correctly. It is still a simple block image so that errors can be easily detected.

With a more complex image, we first ensure that the sieve decomposition still works

correctly. Figure 5.3 shows the decomposition of this more complex, yet still another simple

block, image. The scales shown are scale 0 (the original image), followed by sieves of scale

5, 9, 17, 89, and 201 — the scales at which granules are removed. The granules of size 16, at

the left and right of the image, are correctly removed at scale 17 and merged into the region

below, which is the large grey area in the centre. It is possible to see that at scale 89, a region

that should possibly be considered the background, is merged into the object, as it is a minima

of scale 88 in the image. This is expected as, indeed, it is a minima. This begs the question

whether the image should always be invisibly padded around the edges with zero values. The

problem arises in deciding what should be considered a zero value, so that regions of the image

5.3. Matching Experiments 86

Figure 5.4: A simple block image and its scale-tree

that are relevant are given priority, that is, it is only prudent to pad with zeros if the background

of the image is made up of zero values. Images that are photographs could feasibly have no

discernible background colour and should probably not be padded at all. However, with this

anomaly considered, the sieve merging operations appears to work correctly for this image with

no padding. Because the intention is to use this system with a variety of images, we cannot

rely on using padding, and therefore the remainder of the experiments run with no padding.

The tree for this image should have 8 nodes. The nodes for the two regions at the left and

right should be joined by a branch in the scale tree to the node representing the larger grey area.

Also, the anomalous background node will also be joined by a branch to this node. All other

nodes merge into the final background region, and they will all be connected by branches to

the node representing the background region. Figure 5.4 shows the tree for this image, and the

connections described above.

The scale-tree should be built correctly for images with large amounts of pixels as well as

small ones. Indeed, the same image scaled to a larger number of pixels should return the same

scale-tree (assuming no anti-aliasing was applied during the re-scale). Tests show the trees are

identical despite the larger image being of a different aspect ratio and containing nearly 100

times the pixels, which is as expected. The downside is that there is longer execution time for

the region labelling stage due to the extra pixels which need to be searched and labelled.

Other simple block images are tested, also, and the correct decompositions and scale-

trees are built, giving reasonable evidence that the sieve and scale-tree creation algorithms are

working correctly for, at least, simple block images. Figures 5.5 to 5.7 show some examples of

other tests designed to test the sieve and scale-tree, where the first image is the original image

with an overlaid grid to delineate the pixels, and the second image is the constructed scale-tree

angled to show the important features in the tree.

Figure 5.7 tests the merging of surrounding non-extrema blocks. The white block on the

right of the image gets merged into the grey block surrounding it. Similarly the three white

5.3. Matching Experiments 87

it8f3iti8iii

::::::::
(a) (b)

Figure 5.5: A simple block image and its scale tree.

(a) (b)

Figure 5.6: A simple block image and its scale tree.

V f

(a) (b)

Figure 5.7: A simple block image and its scale tree. This tests the merging of surrounding non-extrema

blocks.

5.3. Matching Experiments

Figure 5.8: The region merging throughout the sieve process on a simple image with 4% salt and pepper
noise (scales 0,1,2, 3,4,1575).

blocks get merged to the darker grey block which surround them. The grey block is eventually

merged into the darker grey block. However, a separate darker grey block to the far right will

also be merged in at this point. This block will not have a scale-tree node created for it, for

it is not a minimum nor a maximum, but merely gets merged into the final grey block. Many

similar tests were carried out to ensure other such situations were handled correctly.

5.3.2 Noise and Blurring

Once it is clear the sieve decomposition is correctly removing regions from simple images, and

the scale-tree is being correctly generated, we can be fairly confident that for more complex

images the decomposition will be carried out correctly. To ensure it is, we conduct some tests

on slightly more complex images which contain image features associated with inaccuracies in

capture devices. The inaccuracies in the circuitry of capture devices mutate the signal slightly

creating noise or blurring in the images. These features will create extra nodes within the

scale-tree. These tests ensure the scale-tree is generated consistently.

Figure 5.8 shows an image with a large amount (4%, 169 pixels) of salt and pepper noise

(digital noise) on a very simple image. A property of the sieve makes this noise very easy to

remove. Because salt and pepper noise is caused by spikes in the signal the regions created by

this noise are always extrema - black or white (hence the name salt and pepper). It is possible

to see that a sieve of scale 1 removes most of this noise and almost restores the image to its

original noise-free state. These granules that are removed by the sieve will appear as leaves in

the tree at scale 1. It is therefore a matter of pruning the tree for nodes which are of scale 1,

to remove these regions. From the example, it is possible to see that a final noise-free image

is generated only at a sieve of scale 4, and the tree would therefore need to be pruned for

leaves below scale 4, to return this particular image back to the original. Looking closely at

the final noise-free image reveals that the shape of the circle is very slightly altered where the

5.3. Matching Experiments 89

/

Figure 5.9: Speckled noise is easily removed from images using high-pass sieve - as the noise is nearly
always extrema and of high frequency. Here the noise merges to the main elliptical region and to the
background region causing two cone shaped structures.

merging criteria of the sieve merged the granules, at, but outside, the edge of the circle, to the

next lowest region which was the circle, thereby creating small errors in the contour of the

shape. Providing our feature matching modules are robust to small changes in shape, these

errors should not adversely affect the matching of trees and even if it does, the nearest shapes

will filter through the network first.

Figure 5.10 shows a simple image with some random amplitude noise added in Photo-

shop, similar to the noise that affects CCD devices generated by small variances in the electric

currents flowing through the circuits, and similar to the compression artefacts caused by JPEG

compression. This noise is not clearly defined like the spike generated noise, and is more diffi-

cult to remove. It affects the whole image, and therefore not able to be fully removed without

affecting the image detail level. The noise manifests itself as small variances in the brightness

level, and colour, of a pixel in the image creating many small extrema in the image. When

viewed from normal viewing distances, the image will look unaffected, but it is possible to see

the variances if looking closely. If we sieve to different scales, we see the sieve slowly remove

the noise from the image, but it will also begin to remove detail. The problem is that some

different variances of the actual region colour will merge into larger regions each of slightly

different colours/levels giving a large number of subtree elements. It is only near the removal

of the object from the image that the object is cleaned of noise - it is now effectively a silhou-

ette of the object. Again, the noise reduction causes small alterations in the shape of the object

when noise falls near the edge of the object. In tree-pruning terms, this type of noise is much

more difficult to remove. As seen with the sieve, much of the noise is removed by scale 20,

5.3. Matching Experiments 90

4 ?

Figure 5.10: The region merging throughout the sieve process on a simple image with random ampli-

tude noise added in Photoshop (scales 0, 2, 3, 5 ,20,500).

and a similar noise pruning effort to the spike generated noise removal can be used - simply

removing leaves, or subtrees, from the scale-tree where the root node has a scale of less than

20, for example.

Aliasing is another image feature which is generated by capture devices being unable to

accurately reproduce the detail of the real world. Aliasing is when the details in the image are

fuzzy due to the resolving power of the capture device being less than that needed to accurately

reproduce the detail. It is most noticeable on edges within the image which when viewed

closely seem to straddle a number of pixels and the actual location of the edge is difficult to

locate. This makes the size of the object difficult to measure. Figure 5.11 shows a closeup

of an blurred edge within an image showing blurring on the edge between the object and the

background, as well as blurring on details within the object. The blurring causes the particular

object or detail to be apparent over a number of scales which is expected with an object whose

size is not accurately measurable. Figure 5.12 shows a simple blurred object being sieved at

various scales, and how the object is removed over a number of scales. The object appears to

change over a number of scales, but which is considered the correct scale is an issue that we

discussed in section 4.3.3 - Pruning Scale Trees.

Aliasing causes chains of nodes in an image. This is because each maximum is merged to

the next lowest region - which is a very small distance away, and almost of the same size, due

to the blurred edges. This causes the scale tree node to appear at almost the same location, and

at almost the same scale as the parent region. Figure 5.13 shows an example of a deliberately

blurred image to illustrate the effect. The tree contains a long chain of nodes where each

node represents a region very similar to the region of its parent and child. Figure 5.14 shows a

photographic image and its scale tree. Notice in the scale tree how the two large regions (nearer

to the root of the tree) are composed of chains of nodes showing that the object is blurred and

is appearing across a number of scales. The sieve of this image can be seen in Figure 4.1 and

it can be seen how the object is persistent, even when all details are removed from within it

5.3. Matching Experiments 91

Figure 5.11: Blurred edges within images caused by the resolving power of the capture device

Figure 5.12: The region merging throughout the sieve process on a simple blurred object (scales 0,24,
28,32,34).

5.3. Matching Experiments 92

Figure 5.13: Blurred images cause long chains of nodes in the scale tree.

(a) (b)

Figure 5.14: An image and its 2300-node scale-tree, showing blurring near the root of the tree.

(between scale 7000 in figure 4.1(d) and scale 10000 in figure 4.1(e)).

The pruning of these trees is important for making the graph matching practicable. Un-

fortunately, despite advances in graph matching techniques, the speed of the algorithms is still,

at best, exponential. Because the blur and noise features are relatively easily detected within

the images, we can use the techniques described in section 4.3.3 to remove nodes from the

scale-tree which are contributing little to the overall semantics of the image.

Firstly, we use our simple test-case images shown above to test the tree pruning algorithm.

Figure 5.15 show a simple circle image which has "salt and pepper" noise added to it to

simulate signal spikes. Its scale tree has 165 nodes. The noise pruning algorithm is executed

over the tree to reduce the number of nodes by attempting to remove the noise from the image.

The configuration is set to remove noise regions which are less than or equal to 4 pixels in size

(from our original test using the sieve) and to consider them as noise if they are less than or

equal to 256 brightness levels (i.e. the whole brightness range) away from the region to which

it is connected. This last condition ensures that the salt and pepper noise is considered noise

and not details. Figures 5.15(a) and 5.15(b) show the original image and tree. Using the default

settings for the noise pruning algorithm, the noise that is greater than 128 levels apart would

not be removed (see figures 5.15(c) and 5.15(d)) but using the maximum 256 level threshold

5.3. Matching Experiments 93

Original image with its 164 node tree

Pruned with the default values, the very extreme noise is not removed.

(0

Using the maximum 256 level threshold, all noise is removed.

Figure 5.15; An image with salt and pepper noise, and its scale tree, and after noise pruning of the tree
with 128 and 256 level threshold.

5.3. Matching Experiments 94

all the noise is removed in figures 5.15(e) and 5.15(f). The final tree has just 7 nodes where

there is slight blurring around the circle.

Salt and pepper noise is not very common, and is very unlikely to occur to such an extent

as on the previous example. To test a more likely situation we have added some false Gaussian

noise to the same image of the circle. This type of noise is much less conspicuous than salt and

pepper noise and therefore more difficult to remove. The original scale tree has 2099 nodes (see

figure 5.16). The noise pruning algorithm is configured such that the size of region considered

noise is less than 15 pixels and, because of the type of noise we could set the brightness range

to a small value, in this case it is 128, to avoid removing other details that are not, in fact,

noise. Figures 5.16(a) and 5.16(b) show the original image and its tree, and figures 5.16(c)

and 5.16(d) show the pruned image along with the pruned tree. In this case the final pruned

tree still has 65 nodes. This is due to the merging process. The noise is not merged into a

region representing the circle, as it is with the salt and pepper noise, but is merged into a region

slightly larger than the noise. This region in turn is then merged into other regions until finally

there is a single region representing the circle or the background. However, the regions further

along this process will no longer meet the requirements for the region to be noise (e.g. less

than 15 pixels) and so will not be pruned from the tree. This effect can be demonstrated by

increasing the pixel threshold under which regions are considered to be noise. If the threshold

is increased to double its original amount, of 15, to 30, the number of nodes in the final scale

tree reduced from 65 to 52. This scale tree and its resulting image is shown in figures 5.16(e)

and 5.16(f).

We can test the method on more complex images to consider the result of the noise pruning

algorithm on details within images. Figure 5.17(a) shows an image of a sign. The dithering of

the graphic has introduced some noise around the edges of the image, which will be removable

by the noise pruning algorithm without altering the overall structure of the image. Figure

5.17(c) and 5.17(d) shows the pruned image and its tree. Note how the pruned image is almost

indistinguishable from the original, but for the removal of the noise. The details in this image

are large enough to be untouched by noise pruning.

Figure 5.18(a) shows another image of a sign. Again it is a graphic and not a photograph

and therefore only has dither noise, however, some details in the image (the lettering) are small.

Figure 5.18(c) and 5.18(d) shows a final representation of the image and tree after the noise

pruning has taken place. Parts of the details of the image (the lettering) have been removed

during the noise process. This means the object (the text) has been altered, and may not match

well with other similar objects, due to changes in shape and colour. The problem with images

with very small details is that the distinction between noise and details becomes blurred. In this

case, we can remove the noise, and not the text, by setting the range at which noise can appear,

and the size at which noise can appear to be very small. However, this would, most likely, not

be the best setting for every image.

The inability for the noise pruner to differentiate between noise and small image details

5.3. Matching Experiments 95

(a) (b)

(c) (d)

(e) (f)

Figure 5.16: An image with Gaussian noise, and its scale tree, and after noise pruning of the tree with
a threshold of 15, and 30 pixels.

5.3. Matching Experiments 96

(a) (b)

(c) (d)

Figure 5.17: This image has noise introduced by dithering. Default value noise pruning removes the

dither effectively.

makes it clear that if we are required to prune images, to ensure that the number of vertices in

the graph are compatible with the graph matching algorithm, we are going to have to compro-

mise detail finding; that is, small details are going to be removed f rom images.

We can test the blur pruning similarly, by purposely blurring some well-defined objects

and examining the result of the pruned tree. We blur the image using a Gaussian blurring kernel

- exactly the sort that would be used for Gaussian scale-space decomposition. The larger the

kernel that is used to blur the image, the longer the chain of nodes will be in the scale-tree.

Figure 5.19(a) shows a basic image. The small square in the centre of the image undergoes

a Gaussian blurring with a kernel of size 5 to give the image in figure 5.19(b). The tree of the

blurred image is shown in figure 5.19(d). Notice the short chain of nodes which occupy the

5.3. Matching Experiments 97

(a) (b)

(c) (d)

Figure 5.18: This image, which has small detail, loses detail when the noise pruner is set at a threshold
to remove enough noise from the large regions so that they become single nodes in the tree.

feature space between scale 5 and scale 1568. These are pruned using the blur pruner. Each

region is only a small difference in size and colour from the region that is its parent and so it

is marked to be pruned. The tree is traversed until this condition does not hold and the marked

nodes are removed. This gives the final tree in figure 5.19(e) and the reconstructed image in

figure 5.19(c). The unpruned tree has 158 nodes and the pruned tree has 3 nodes. The size

of the region effectively becomes larger (compare figure 5.19(a) to figure 5.19(c)) due to the

blurring altering the region's properties to be that of the maximum level. This ensures that

scale-space causality is not broken, and that no "gaps" appear in images with multiple objects

after pruning. For example, figure 5.20(a) shows an image containing a set of shapes. They are

blurred using a Gaussian kernel of size 5. With this blurring the shapes become intertwined.

Figure 5.20(b) shows the blurred image, and figure 5.20(d) shows the scale-tree of this image.

Using the standard blur pruning parameters, the tree is reduced from 324 nodes to 9 nodes.

The tree is shown in figure 5.20(e) along with the reconstructed image in figure 5.20(c). Notice

how the objects are now separate, and lack the blurring and are approximately the same as the

original shapes. The surrounding region in the pruned reconstruction is the outer-most, almost

invisible region caused by the blurring which, again, has been made visible by the alteration of

5.3. Matching Experiments 98

(a) (b) (c)

(d) (e)

Figure 5.19: This simple image undergoes blurring which is then pruned from the tree

(a) (b) (c)

(d) (e)

Figure 5.20: Here, the objects merge under blurring, but are clearly separate after blur pruning.

5.3. Matching Experiments 99

(a) (b)

(c) (d)

Figure 5.21: A smooth shadow on an object appears as a gradient, which, hke blurring, produces long
chains of nodes that can be pruned by the blur pruner

the region properties during the pruning.

Alias pruning is also useful for removing other image-based features. For example, shad-

ing over a smooth object will generate chains of nodes in the tree as blurring would, and for

the same regions. For example, figure 5.21(a) and figure 5.21(b) shows a gradient pattern and

its tree which, run through the blur pruning mechanism, reduces the image to two individual

colours and the tree to two node (figures 5.21(c) and 5.21(d)). In the next example we use the

blur pruning to remove both shading and blurring.

Figure 5.22(a) shows a photograph of a some snooker balls. This image contains many

possibilities for simplification of the tree. As it stands, the image has 4421 nodes. Most of these

are noise generated through the capture process, and the compression of the image. Some are

image details, but details that are not pertinent to the matching process (for example, the nap

of the baize). Ideally, we would want the balls, the hand and the table to each have their own

scale-tree node (not necessarily a leaf node), which would aid in our goal to build an object

scene-tree. Applying the tree pruner to remove blurring from this image results in the image

shown in figure 5.22(b). The most obvious pruning which takes place is due to the shading

on the balls. Figure 5.22(c) shows a closeup of the original image, and figure 5.22(d) shows

5.3. Matching Experiments 100

(a) (b)

(c) (d)

Figure 5.22: Alias pruning of a snooker photograph

a closeup of the pruned image, showing that the blurring around the edge of the balls due to

digitisation has also been removed. However, the pruned tree still has 2230 nodes, which is far

too many to be useful in our graph matching environment. Increasing the fuzziness of the blur

thresholding (to remove more nodes) lowers the node count to 2044.

We can use a combination of noise and blur pruning to lower the node count of trees

more. For example, if we noise-prune the tree before we blur prune the tree, we are not only

removing more nodes, but more likely to get regions which can be merged during blur pruning.

For example, using just blur pruning the snooker photograph's tree was reduced to 2230 nodes,

and with just noise pruning the number of nodes was reduced to 1394. Using both the methods

together our tree was reduced to 142 nodes, however, the consequences to the reconstructed

image (which gives an indication of the accuracy of the regions within the scale-tree) are great.

In figure 5.23(c) the noise that is effectively providing a barrier between the ball and the cloth

5.3. Matching Experiments 101

(a) (b)

(c) (d) (e)

Figure 5.23: Noise pruning before blur pruning can cause problems. Figure 5.23(a) shows blur pruning
only, at default levels, and figure 5.23(b) shows noise and blur pruning of the image at default levels.
Figure 5.23(c) shows a closeup of figure 5.23(a), while figures 5.23(d) and 5.23(e) show a closeup of
the image (in colour and greyscale) of the image after noise pruning and before blur pruning.

(a) (b)

Figure 5.24: Setting the noise size threshold high to remove many details, and the blur size threshold
low to avoid regions merging that should not be, we can get a better segmentation of the image.

5.3. MafcAmgExperimeak 102

(caused by JPEG artefacting) allows the items to remain separate during blur pruning. How-

ever, if we prune this noise before blur pruning, the cloth becomes a constant level colour, at

approximately the same level as the slight blurring that is evident around the edge of the ball

(see figures 5.23(d) and 5.23(e)). This means that when the tree is pruned for blurring, the re-

gion outside of the ball is considered within the size and brightness threshold and is merged to

the ball, creating the large extraneous connected region and altering the shape of the ball object

(compare figures 5.23(a) and 5.23(b)). Altering the thresholds so that the regions considered to

be blurring are only within 2% of the size of the father region allows the pruning algorithm to

disregard the cloth as part of the ball object. However, this also increases the node count back

to 524, because other parts of the image are no longer pruned. This is, of course, partly due to

the way in which the scale-tree is built only upon the grey scale values of the image. The green

cloth and the blurring around the edge of the ball all lie very close to each other in the greyscale

feature space. With the blurring threshold at 2% the number of nodes increased dramatically,

but the number can be cut down to 142 nodes by increasing the size of region considered to be

noise (figure 5.24), which will, of course, remove many details from the image, which in this

case is required, but would, most likely, not be commutable to other images.

The noise and blur pruning algorithms are very efficient and even on large trees (in excess

of 4000 nodes) the pruning time is negligible, and under 1 second even in the prototype.

The region labelling that occurs before the sieve decomposition is an ideal time to cut the

amount of calculations that need to be done in the sieve and scale-tree calculation and pruning.

There are a few "pre-pruning" methods we can use in this stage. For example, we can remove

noise at this position as we know the size of the regions. Pruning of regions of area less that a

certain threshold at this point will not be equivalent to pruning the tree for regions of a certain

threshold, because the tree contains scale-space (merged) regions, whereas the region labelling

structure contains actual image regions. To achieve this, however, the removal of the region will

require it to be merged into the appropriate region to avoid leaving a "hole" in the representation

of the image. Because this is outside of the scale-tree representation, whether the appropriate

region is the next highest level region in the surrounding area, or the next lowest, is a matter of

taste. Indeed, the area where this will most affect the scale-tree will probably be at the edges of

objects in the blurring. Noise pruning of the tree does not remove these regions because they

are not extrema - they are between a background region and an object region. Pruning before

this restriction is implied will allow these regions to be removed saving execution time at the

costly decomposition and tree building stage, and it is therefore pragmatic to assume that they

should be merged into the object which, although not in all cases, is usually a maximum.

The other method for pre-pruning the image is to quantise the image into a set number of

bands. This has the effect of grouping together regions which are similar in feature space, and

separating those which are more different. This means there will be less regions overall in the

image before scale-space decomposition starts, both increasing the speed of the decomposition

and the number of final nodes in the scale-tree.

5.3. MafcjimgExperimenk 103

Both the above pre-pruning methods need to be used with care. As with tree-pruning, and

maybe even more so, pertinent objects could be removed from the image and because we are

removing regions directly from the image, there is the possibility that the properties of regions

could be altered in such a way that they are no longer representative of the object.

Despite many attempts to lower the node count of high-node-count images, the results

have been mixed. On some images we are able to get a relatively good final segmentation that

should aid our graph matching process, but others are problematic. This is partly to do with

the sieve mechanism generating scale-space for greyscale images only which causes conflicts

between two regions which, although obviously separate in the colour image, become one

in greyscale. However, pruning the image and scale-tree to a low number of nodes is very

important to achieve image matching using a graph matching paradigm. Graph matching is still

an active research topic because it has obvious advantages for structural matching, however, it

is still also a highly complex subject and the best algorithms are still slow. The next section

describes matching these scale trees.

5.3.3 The Graph Matching

Section 4.4 details the algorithm used to perform graph and subgraph isomorphism testing that

we use to prototype a topology based matching algorithm. Here we demonstrate this algorithm

and the advantages and disadvantages of using the network based algorithm.

A copy of the graph matching toolkit written originally by Bruno Messmer is available

from his homepage (46). The toolkit is written in C and includes the ability to ran a number of

different graph matching techniques on graphs represented in ASCII, with labels consisting of

strings. Unfortunately, this toolkit proved too difficult to adapt to our image matching needs,

mainly because it was written in C, which would have been time consuming to integrate with

our intended test bed, Mavis-2, because of lack of documentation for the toolkit, and because

the feature matching modules we had available were written in Java. It was decided to imple-

ment a native Java version of the graph matching toolkit that would allow for vertex labels to be

of any type (not just strings) although this raised a few problems that solutions were designed

for (for example, the IVertexChecker-Graph described in section 4.4.3). Our implementation

was tested for correctness using strings against the GUB toolkit and against examples in their

papers, for example (48; 51; 13; 52).

Figure 5.25 gives an illustration of a network built using features, rather than strings. The

structure of the network is identical, except that the vertex labels are now representing regions

from nodes within the scale tree.

To test the graph matching, as with the sieve process, we first use very simple images,

before building up to more complex images. Also we have two querying methods to consider.

The only way to query the network is by example, however the example may be a whole image

or a part of an image. The first method is where the user finds an image to which they want

5.3. Matching Experiments 104

trunk window2 window2 windowl windowl

car body

b) _Vlmag8 mnage

INPUT

Figure 5.25: a) An illustration of a scale space tree built from the simple image; b) Another illustration
of a scale space tree built from an image, where the image has subgraphs in common with the image in
a); c) The network when both of these graphs from a) and b) have been inserted. It is possible to see the
shared subgraph representing the car.

5.3. MafcAmgExperimenk 105

to find similar images and submit this as a query. Any matching sub-trees in the query image

will be found in any of the models in the database, and the model images with the largest

matching subgraph may look similar to the query image. The second method of querying is to

submit a specific object which one would like to find in the model database. This query could

be generated in two ways. An image of an object could be found and submitted as a query

image, as in the first method. If the object is well segmented (i.e. on a nondescript, smooth

background) there will be a sub-tree of the image representing the object to find. Any matches

in the model database will be found. The second way is to generate a subtree by interactive

segmentation of an object, using something like GIF (60) for which a segmented object has

a tree generated, or by selecting nodes within a scale-tree to select a sub-tree representing an

object. This sub-tree representing an object is then used as a query to the network. Both query

by whole-image and query by sub-tree methods are tested here.

Before testing matches can take place, the network for a scale-tree has to be correctly

generated. Using simple images as inputs into the network algorithm it is possible to display

the final network and test the network generation. Only when the networks for trees are being

correctly generated can we perform match tests.

It seemed sensible to perform network tests using strings for vertex labels to begin with.

This would ensure the network algorithm was working adequately without the extra complica-

tion of feature matching introducing fuzzy matches. Because our system is able to use vertex

labels of any kind, this is not a problem, and we are able to use the same code to test simple

vertex label matching with complex vertex label matching. This allows us to be relatively con-

fident that if the network algorithm works correctly for graphs with strings as vertex labels, it

will perform similarly for feature based labels, and we can concentrate on the results.

The following example shows the construction of a network containing a single graph.

The graph contains vertices that have labels that are strings. Figure 5.26(a) shows an illustration

of the graph and figure 5.26(b) shows an illustration of the network generated from this single

graph.

Figure 5.27(a) shows a new graph, also using strings at the vertices. It is plain to see that

the graph shares a subgraph with the graph in figure 5.26(a). When we build the network we

can expect this subgraph to be shared between the two models in the network. Figure 5.27(b)

shows an illustration of the network after the insertion of the graph from figure 5.27(a). This

shows how the network algorithm builds networks and shares the common subgraphs between

models.

If we insert a new graph that contains a new vertex label (shown in figure 5.28(a)) into

this network we see (in figure 5.28(b)) that a new IVertexChecker is created to store that label,

and that the model is built correctly, also sharing the common subgraph.

We can perform a simple query by allowing the graph shown in figure 5.26(a) to filter

through the network. Obviously, we expect a match at the model node representing that model,

which is the result we get. The graph shown in figure 5.29(a) is a mutation of the graph in figure

5.3. Matching Experiments 106

Input

A

(a)

A K H B

Model!

(b)

Figure 5.26; Insertion of the simple graph in figure 5.26(a) into an empty network, results in the network
in figure 5.26(b).

(A B

Input

/ V) — T s l

/̂1odê ^

Modeiz

(a) (b)

Figure 5.27: Insertion of the graph in figure 5.27(a) into the network from figure 5.26(b), results in the
network in figure 5.27(b).

5.3. MafcAingExperimeafs 107

A

£
(a)

I ® i

Input

® l

1

(b)

A-48)

Figure 5.28: Insertion of the graph in figure 5.28(a), containing new, unseen labels, into the network
from figure 5.27(b), results in the network in figure 5.28(b).

5.26(a), where one of the nodes has a different label. If a query is performed with this graph we

can still expect the best match to be at the model node representing the graph shown in figure

5.26(a). However, there should be a default cost associated with vertex label substitution. The

default value for label substitution is set to 0.1 for non-feature-based labels, therefore the cost

associated with any matches will be 0.1 - the substitution of label "B" with label "D". Figure

5.29(b) shows the results window from the harness. The three models in figures 5.26(a), 5.27(a)

and 5.28(a) are labelled l.gph, 2.gph, and 3.gph respectively in the example network. The best

match appears at model l.gph, as expected. The results window also shows sub-graph matches

in all the models which share subgraphs containing instances. This query finds that, with the

same cost of 0.1, there are matches in the other models (2.gph, and 3.gph). This shows the

main advantage of the network algorithm approach: matching subgraphs in many models can

be found from a single query process, avoiding the need to perform three graph matches.

The above example query demonstrated matching a subgraph within the models. It is

also possible for the input graph to be a larger graph in which we can find instances of the

models. Figure 5.30(a) shows a larger graph than those that are stored in the network structure

as models. There are subgraph isomorphisms of both the graphs shown in figure 5.26(a) and

figure 5.27(a). The test harness window, in figure 5.30(b), shows the results of the query using

this graph as an input. The isomorphisms of both models are found within the network. This

incurs the slowest execution time (without using inexact matching) because the input graph

has to filter down to whichever of the matching model nodes contain matches (which may be

many). Inexact graph matching using this larger-query-graph paradigm will also take longer

than inexact graph matching of sub-tree queries for this reason (without taking into account the

time needed for the node label matchers to generate a distance measure for the inexact match).

Although this test is not conclusive, other tests can be run to show that our network al-

gorithm implementation correctly generates and matches simple, string-based graphs in the

5.3. Matching Experiments 108

(a)

C;CocteitaexactPhD*graphsMt.8ph

Results

9 C:\CocleSnexactPhD\graphs\1.gph

Cost: [value; 0.1]

9 Subtree Match (2 nodes) in C;£ode\inexactPhD\graphst1.gph

Cost: [value: 0.1]

®- Subtree Match (2 nodes) in C:CotlelinexactPhDlaraphs\2.gph

^ Subtree Match (2 nodes) in C:CodetinexactPhD\graphs\3.gph

©- Single Node Match

©" Single Node Match

®- Single Node Match

©- Single Node Match

^ Single Node Match

®- Single Node Match

©- Single Node Match

View Selected ResWt Image

(b)

Figure 5.29: Matching the graph in figure 5.29(a) to the previously generated network (figure 5.28(b),
gives the results shown in figure 5.29(b).

5.3. Matching Experiments 109

5
(a)

-lOtj

C:Co(teiinexactPhDiBraphsj6.aph

Results

©• Subtree Match (3 nodes) in C:lCodeiinexactPhD\graphs\2.gph

©• C:'CodelinexactPhDtaraphsV2.gph

®- C:\CodelinexactPhD'araphst1.gph

®- Subtree Match (2 nodes) in CilCodetinexactPhD^raphsXI .gph

©• Subtree Match (2 nodes) in C:\Code1nexacfPhD\graphsV2.gph

©• Subtree Match (2 nodes) in C;lCodeSnexactPhDlaraphs\3.gph

Single Node Match

^ Single Node Match

©• Single Node Match

0- Single Node Match

Single Node Match

©• Single Node Match

®- Single Node Match

We«» Selected Result Image

(b)

Figure 5.30: Matching the graph in figure 5.30(a) to the previously generated network (figure 5.28(b),
gives the results shown in figure 5.30(b).

5.3. MafcAingExpenmeak 110

(a) (b)

Figure 5.31: Simple image used to test feature-based graph matching and the graph representation of
its scale-tree.

(a) (b)

Figure 5.32; Simple image used to test feature-based graph matching and the graph representation of
its scale-tree.

expected manner, such as the example above. Note, that the graphs shown above are trees,

proving that the network algorithm works with trees.

We can effectively convert the above example graphs into very simple images from which

we are able to test the feature-based graph matching. For example, the vertex label "A", can be

directly mapped onto a black box, and "B" onto a white box. This means that our mapping of

the graph in figure 5.26(a) becomes the image and graph shown in 6gure 5.31. Because one

of the features used to match vertex labels is based on colour, it becomes nonsense to allow

a vertex to be connected to a vertex with the same label - the region in question would be

invisible (although this is allowable if shape is the only feature used, for example). So, we

map the graph in figure 5.27(a) to the image and graph shown in figure 5.32 and build a new

network with the two graphs, shown in figure 5.33. As before, a third graph with a new vertex

label (figure 5.34(b)) is inserted into the network that contains the scale-tree representation of

the image shown in figure 5.34(a). Because, for this experiment, both colour and shape are

being used, the new region appears to the network as a completely new vertex label and has a

new IVertexChecker generated for it. The figure 5.35 shows the network with the graph for this

5.3. MafcAingExpenmeak 111

Input

Model

Models

Figure 5.33: Network built from the two graphs in figures 5.31(b) and 5.32(b).

(a) (b)

Figure 5.34: Simple image used to test feature-based graph matching and the graph representation of
its scale-tree.

5.3. MafcAingExpenmeafs 112

Modeij

Figure 5.35: Network from figure 5.33 with the graph from figure 5.34(b) inserted.

image (from figure 5.34(b)) inserted. As in the case of the strings, the common subgraph is

shared between the models, although feature matching (colour and shape) provided the equality

matching functions.

It is worth noting here, that the types of features that are used to match vertex labels

will determine the number of IVertexCheckers. It is always assumed in content-based image

retrieval that the more features one has representing a region, the better it is for matching be-

cause the more discriminating the matching process becomes, and therefore it will find objects

nearer to the query object. However, in the case of the network algorithm, having too many

features to represent regions can cause a problem. If we extrapolate the idea to the furthest pos-

sible extreme, so that every region that enters the network is considered different, we find that

every region that ever entered the network has its own IVertexChecker (there wHl be the same

nmnber of IVertexCheckers as there are vertices in every model in the network), and therefore

every subgraph that is represented in the network will have its own ESubgraphChecker. This

means that no subgraphs will ever get shared. It also means that every incoming query region

will need to be compared against every other region in every other database image. Of course,

this extreme should never happen, but applying too many discriminating matching algorithms

to the network algorithm will actually degrade its performance. Instead, matching algorithms

need to be chosen carefully to balance the discriminating power of the region matching against

the complexity, and therefore number of shared subgraphs, of the generated network. As an

example, compare the final network again, generated for the graphs in figure 5.31(b), figure

5.32(b) and figure 5.34(b). The network in Sgure 5.36 uses only colour to distinguish between

regions, therefore the triangular region from the graph in figure 5.34(b) is considered equal to

the square region from the other graphs. The 3-node common subgraph then becomes com-

mon between models 2 and 3 (a black region connected to two white regions). It is only if

shape is also used that the correct network (shown in figure 5.33) is generated. However, the

shape matching algorithm needs to be fuzzy enough to allow any triangular region to match.

5.3. MafcAiagExpenmeafs 113

Input

i Models

Figure 5.36: Network built from the three above graphs using only colour for the feature matching.

otherwise too many IVertexCheckers will be created (one for every type of triangle). It would

be ideal to allow the user to decide the fuzziness of the feature matching functions, however

because network generation is a relatively slow process, these decisions would have to be made

prior to the matching.

In this section a query was constructed using strings and matched against an example

network, a feature-based version that we have generated here. Therefore, analogous to the

previous example, we can perform a match on this feature-based network using an image as the

query term. For example, using the image in figure 5.31(a) as the query term, we should expect

results at the model node representing that image, and sub-graph matches for the other models

(which share that common subgraph). Figure 5.37 shows the result window after performing

this query. The correct match is found (shown at the top of the list) and sub-matches are shown

in decreasing size.

We can mutate one of the graph labels to show how with feature matching the correct

models can be found. Figure 5.38(a) shows an image, and the graph of the scale-tree of the

image, which contains a single mutated node label. Rather than the white square in model 1,

there is a grey circle. The network will edit the input graph, substituting the grey circle for

the appropriate region, and adding an appropriate score based on the feature measures. Figure

5.39 shows the results for a query run with this node. Notice how the cost associated with

the instance that reached the model node is generated from the feature matching (the average

distance between the query and match region for each of the features).

Again, mimicking the small tests performed with the string-based graphs, a larger graph

can be input into the network to determine which models fall within the given graph. Figure

5.3. Matching Experiments 114

m

image1a.png

Results

image 1a.png

Cost: [value: 0.0]

© -

© -

Subtree Match (2 nodes) in imagela.png

Subtree Match (2 nodes) in imagelb.png

Subtree Match (2 nodes) in image le.png

©• Single Node Match

Single Node Match

Single Node Match

Single Node Match

Single Node Match

Single Node Match

Single Node Match

\fiew Selected Result Image

Figure 5.37: Results from querying the network in figure 5.33 with the image from figure 5.31(a).

5.3. Matching Experiments 115

(a) (b)

Figure 5.38: Simple image used to test feature-based graph matching and the graph representation of
its scale-tree.

alBUU
Results

imagesir.png

image la.png

Cost: [value: 0.17478781268877625]

Subtree Match (2 nodes) in image la.png

Subtree Matcli (2 nodes) in imagelb.png

Subtree Matcii (2 nodes) in imagele.png

Single Node Match

View Selected Result Image

Figure 5.39: Results from querying the network in figure 5.33 with the image from figure 5.38.

5.3. Matching Experiments 116

(a) (b)

Figure 5.40: Simple image used to test feature-based graph matching and the graph representation of
its scale-tree.

Results

imaneic^mg

_iajx|

Subtree Match (3 nodes) in imagelb.png

Cost: [value: 0.0]

Cost: [value: 0.0]

image Ib.png

image la.png

Subtree Match (2 nodes) in image la.png

Subtree Match (2 nodes) in image Ib.png

Subtree Match (2 nodes) in image le.png

__SuialfiiJndB Match. _
View Selected Result Image

Figure 5.41: Results from querying the network in figure 5.33 with the image from figure 5.40.

5.3. Matching Experiments 117

(a) (b)

Figure 5.42: Simple image used to test feature-based graph matching and the graph representation of
its scale-tree.

5.40 shows an image and the graph of its scale-tree containing four nodes, three of which, as a

sub-tree, form model 2 from figure 5.32(b). By using this graph as a query, we should expect

to find an exact sub-graph match at the model node representing model 2, and indeed, figure

5.41 shows the results from this query showing this to be the case.

So far we have shown that the network algorithm can be used to find the most similar

images to a query image. One of the main novelties of the technique we present here is the

ability to match topologies within the scale-tree. In the next example, it is shown how the

topologies and sub-topologies of the trees can be matched. For example, figure 5.42 shows an

image and the graph of its scale-tree. The image contains an object consisting of more than one

node. Again, to demonstrate the idea, it is comprised of simple blocks - a grey block containing

a white block and a white triangle. The network generated for this image is shown in figure

5.43. Note how the ESubgraphChecker (marked 'A') represents the object segmented from the

background. We can search for this object by supplying a tree, as a query, which represents

only this object.

Our test harness allows selection of scale-tree nodes from a 3D representation of the scale-

tree, and it is possible to use the selected node as the root to a scale-tree query. Figure 5.44(a)

shows the harness and selection of a node. The image in the bottom left highlights the regions

in the original image that are represented by the node that has been selected in the tree. Figure

5.44(b) shows the graph for the scale-tree query. Figure 5.44(c) shows the results of performing

a query with this tree. Figure 5.44(d) shows the image with the matched region highlighted,

showing that the best match was found in the original image in the correct position.

Figure 5.45 shows the test results of searching for the sub-tree in figure 5.44(b) after a

transformed image (vertically flipped) has been input into the network as a second model. The

network structure shows that the feature matching provided enough accuracy to correctly match

the transformed regions, by the fact that the network is identical to that in figure 5.43, but for

an extra model at the model node. The results show that the sub-tree was found within both

5.3. Matching Experiments 118

Input

(SHg)

A

Model!

Figure 5.43: A network built containing the image from figure 5.42. The ESubgraphChecker marked
'A' contains the object subtree.

models.

In figure 5.46 scale dependency is tested. Another model is added to the previous network.

The model consists of an image with two translated instances of the object, as shown in figure

5.46(a); one is scaled down, and the other scaled down and rotated at 45 . Neither the shape

matching, nor the colour matching are scale-dependant and so the query should provide good

results. However, the shape matching is susceptible to rotation. For this test, because the

rotation and scaling process caused blurring in the images, both the noise and blur filter were

used to reduce the number of nodes. The original image, in figure 5.46(a), had 282 nodes, and

has been reduced accurately to 7 nodes by the tree pruning for the match. The results for the

match with the sub-tree representing the object, from figure 5.44(b), is shown in figure 5.46(b).

The previous results are returned along with the new result representing the partial match of

the new model. One issue to note is that there is only one instance returned from the query for

the new model, when there are plainly two instances of the object in the model. Examining the

network constructed for the models reveals that the rotated square, in the lower right instance in

the model, is not matched with the squares from the other models, and is considered similar to

the triangle by the simple shape matcher, allowing this subgraph to be represented by a separate

ESubgraphChecker in the network. The subgraph would have been returned as an instance with

a small cost (the cost of replacing this rotated square with the un-rotated square), had no exact

instances been found.

The next test shows an example of the feature-based network algorithm providing match-

5.3. Matching Experiments 119

DoQuwy- (I Caneal "|

Regtm PToporties: Scale: 11974, VakiK 153,(104.5,92)

(a) (b)

Res(4t8

9 SuMree Match (3 nodes) in topollpng

Cost [value: 0.01

Subtree Match (2 nodes) lntapol1.pna

^ Single Node Match

Single Node Mzrtch

Single Node Match

Mew Selected Hesuit image

jJnJjcj

(c) (d)

Figure 5.44: Selection of a subtree from an existing image and using that subtree as a query to the
network in figure 5.43, the results of which are shown in figure 5.44(c), and the location of the best
match in figure 5.44(d).

5.3. Matching Experiments 120

..siflLiy
Results

lopoH.png

Subtree Match (3 nodes) in topoH.png

Subtree Match (3 nodes) intopol2.png

Subtree Match (2 nodes) in topoH.png

Subtree Match (2 nodes) in topol2.png

Single Node Match

View Selected Result Image

Figure 5.45: Results from querying a network containing the image in figure 5.42(a) and a vertically
flipped version of the image, with the sub-tree from figure 5.44(b).

ing of images which are only similar in topology. The models that are used to build the network

are shown in figure 5.47(a) and figure 5.47(c). The face image has 8 nodes and the house image

also has 8 nodes. These images do not share any subgraphs, and occupy different chains of net-

work nodes in the network. This will ensure that the topology is an important factor in the test.

Using the image shown in figure 5.42(a) as the query image, it is possible to see that it looks

more similar to the face (figure 5.47(a)) due to the topology of its features. No exact matches

are found during the querying process and the inexact graph matching takes over, which causes

the match to take considerably longer. Figure 5.48(a) shows the final results for the match.

Notice that the query matches only a part of the model (a subtree is returned rather than the

model). Although inexact instances are being propagated through the chain of nodes towards

the model of the house (figure 5.47(c)) the face model propagates with much less cost, and so

is returned as the best match.

Figure 5.49 shows a set of images which are used as models for the database. They're

simple road sign images and some have noise and blurring of the pixels. Some of the trees

after pruning with the default values had over 170 nodes, so to ensure the network does not

grow too large, the noise threshold was raised to the maximum range so that all small regions

below scale 50 are removed from the trees. As a comparison figure 5.50 shows the actual

pruned images that are used as models. The models are chosen to vary across a range of styles

so that the results of the query are clear. Figure 5.51(a) shows the query image that is used -

another sign image which does not appear in the database. The final network has 59 network

5.3. Matching Experiments 121

(a)

.inlxi

topol1.png

Results

0- Subtree Match (3 nodes) in topol 1 .png

Subtree Match (3 nodes) in topol2.png

©• Subtree Match (3 nodes) in topol3.png

©• Subtree Match (2 nodes) in topol 1 .png

© -

&•

& •

I Subtree Match (2 nodes) in topol2.png

Subtree Match (2 nodes) intopol3.png

Subtree Match (2 nodes) in topol3.png

View Selected Result Image

(b)

Figure 5.46: Searching in a network containing an images with scaled and rotated instances of the query
object.

5.3. Matching Experiments 122

(a) (b)

(c) (d)

Figure 5.47: Images and their scale-trees used as models for topology matching test.

nodes. Figure 5.51(b) shows the results of the query. In the results, it is possible to see that

the most similar sign has been found as the best match, while a similar sign (with a similar

topology) has been given as another good match. The other signs are not retrieved, as one

would expect. Note that the results are exact (there are no inexact results returned if exact

matches are found) implying that the shape matcher has considered the red regions to be the

same shape.

The following experiment shows the system operating in a more realistic environment -

that is, with a photographic image as query. The database contains a set of signs, shown in

figure 5.52. Some of the database images are duplicated, as they appear in the original road

sign database, and this will not affect the match. The query is shown in figure 5.53(a) and is

a photograph of a sign similar to the final one in the database. This experiment utilises lumi-

nance and saturation as the greyscale colour space for the image (as explained in the following

discussion in section 5.4). The results of the query are shown in figure 5.53(b). The results

show that the best match was the expected model, returning the shield shaped road name sign,

the cost being the edits to the graph to change the colour of the sign and remove one of the

numbers.

These tests have been selected to show how the network algorithm can be used with fea-

5.3. Matching Experiments 123

m

topol1.pnfl

-Inix

Results

m Subtree Match (4 nodes) in facel.png

Cost: [value: 1.538748212901007J

Subtree Match (3 nodes) in face1.pny

Cost: [value: 0.9644797900477051]

Cost: [value: 0.9818692145029687]

Subtree Match (2 nodes) in facel.png

Single Node Match

View Selected Result Image

(a)

(b)

Figure 5.48: Results of queiying a network built with the images from figure 5.47, with the image from
figure 5.42(a),

5.3. Matching Experiments 124

G ZONE

II Hmax ih II

Figure 5.49: Set of model images.

G / H
ii

Figure 5.50: Pruned set of model images from figure 5.49.

(a)

-Inix
Results

9 SubtrM Match (4 nodes) in signeo.gif

Cost: [value; 0.0]

; ®- X X siBneagir

siBn67jlf

A
A Subtree Match (2 nodes) in signfiO-glf

f w J Subtree Match (2 nodes) In slgn37.gif

View Selected Result Image

(b)

Figure 5.51: Results of performing a query with the image in figure 5.51(a) on a network built with the
trees of the images from figure 5.50.

5.4. Discussion 125

4 5

<6A> < 0 A > <yi#

S -<)
SHARE
THE :

ROAD

SHARE
THE

ROAD t • •
• ^ H

Figure 5.52: Set of model images from a database of American road signs.

(a)

US_97.jpi»'

Results

Cost; [value 1.2994153818557471

View Selected Result Image

(b)

Figure 5.53: Results of performing a query with the image in figure 5.53(a) on a network built with the
trees of the images from figure 5.52.

ture based matching to provide image and subimage matching. The next section provides some

thoughts on the tests, in particular, the problems that were encountered during the testing pro-

cess, and some of the pitfalls of using the network algorithm, and the sieve for topological

image matching.

5.4 Discussion

Although the tests presented above show the idea behind graph matching in order to provide

a means for finding objects is sound, there are problems involved with the specific way in

which we have chosen to implement this prototype. However, these issues could be overcome

with extra development in both topology based segmentation algorithms, and graph matching

techniques.

The sieve technique relies on the pertinent regions within the image being extrema within

the image domain. Although this is a pragmatic assumption to make, it is often not the case

within images. There are few reasons that extreme regions are not necessarily pertinent objects.

Firstly, most pertinent objects consist of many regions, some which will be extrema, others

that will not, and, maybe more importantly, background image data will also consist of regions

5.4. Discussion 126

Humps for
3 0 0 yds

(a) Original Image
(b) Mean

Greyscale

(c) HSB Bright-

ness

(d) HSB Satura-

tion

(e) HSB Saturation

X Brightness

(f) HSB Thresh-

olded Saturation x

Brightness

Figure 5.54: Reconstructions of decompositions based on different channels of the original image in
figtire 5.54(a). All decompositions used 32 levels of quantisation, and noise and blur pruning.

of which some will be extrema and others not. The sieve process will then merge regions in a

way which is not conducive to an object matching process.

In complex images mutations of the graph are often caused by background image data.

Often background image data can have detrimental effect on the pertinent objects in the scene,

in particular, when it comes to the merging of regions through the sieve process. Regions of

background images can affect the shape, colour and texture of pertinent objects in the scene

by being merged into the object simply because of their relative greyscale level (see figure

5.23(b)).

Using a different greyscale colour space could provide a simple solution. Using lumi-

nance from the CIELab colour space would provide a perceptually uniform greyscale, provid-

ing a more realistic distinction between the different regions. Obviously, this still does not

account for the colour channel (i.e. two regions of the same perceptually uniform brightness

will still merge in scale-space). Using saturation allows colour variations to provide an input

5.4. Discussion 127

to the decomposition (combined with luminance gives an input from both). Figure 5.54 shows

the reconstructed image from a decomposition of the photographic image in figure 5.54(a) us-

ing different methods of greyscale generation. Figure 5.54(b) shows a reconstruction of the

decomposition of the model based on the mean greyscale value (calculated b y ^ ^ j i ^) , while

figure 5.54(c) shows the luminance from the HSB model. Both techniques suffer from incor-

rect segmentation, causing the red triangle identifying the sign to be broken (and therefore

unmatchable). Figure 5.54(d) shows the reconstruction of the decomposition of the model

based on the saturation of the image, while figure 5.54(e) shows the product of luminance and

saturation. Saturation allows the red triangle to be segmented better, however, due to saturation

being undefined for greyscales (including white and black), the centre of the sign is corrupted.

By using a combination of both saturation and luminance a better segmentation is achieved,

however, the centre portion of the sign, which differentiates the sign from other warning signs,

is obscured. By thresholding the saturation (to avoid the undefined values), a reasonable seg-

mentation is given. Figure 5.54(f) shows a decomposition using saturation thresholding at 10%.

However, these still make it possible for certain distinct regions to merge into each other in the

new colour space. Mapping the colour to the colour spectrum provides a linear distribution of

the colour that can be applied to the image allowing a greyscale representation of the colour to

be used, although the idea of extrema then becomes redundant (e.g. why is red less extreme

than blue? or more importantly, why is green not considered extreme?). Therefore, spectral

mapping of the image colour does not lend a simple solution. However, in any of these cases, it

is still possible for incorrect merging to occur because there is a loss of data in the conversion

to a greyscale colour space.

There are certain ways to overcome simple instances of incorrect merging, such as using

the quantisation technique before sieving. The idea behind the quantisation filter is to provide

a flatter image on which to perform the sieve so that it could foreseeably provide a better

segmentation, however, this filter is a brute-force approach, and causes artefacts (the banding,

causing larger, but not new, extrema where there should not have been). However, using the

sieve there is no guaranteed way to segment a pertinent object from a scene without human

validation, and if necessary, intervention. This effect is due, on the whole, to the way the sieve

process decomposes an image.

Any incorrect merging will cause mutations in the graph which, although overcome to

some extent by inexact graph matching, cause other objects which are not similar to the query to

be matched, albeit with a high score. Altering the inexact graph matching weightings of costs of

graph edits (insertion and removal of nodes) versus feature edits (e.g. vertex label substitution),

could possibly go some way to overcoming this. This makes the algorithm dependant on the

weightings of these costs. For instance, relatively weighting, say, feature scores more heavily

than graph insertions and deletions would cause the new nodes to be inserted and deleted from

graphs more readily, allowing unlike objects to be matched more easily. But if we were to

weight graph edits highly, features would be the discriminating factor causing the mutated

5/4. I)iscussioQ 128

nodes to match badly allowing unlike objects to match each other and slowing the matching

process. A solution is to allow the user to decide at match time which is the correct weighting

for the various variables, however this begins to remove the possibility of creating a fully

automatic object matching system. Of course, the assumption has been that the user would be

wishing to search for pertinent objects, of which there is no guarantee. Although all regions

appearing in images that would usually be considered background are encoded by the sieve

process into the scale-tree, due to the effect described above, they are not necessarily extrema

and represented by their own nodes within the tree, therefore the objects themselves are not

searchable, only the agglomeration of a few regions is available to match against. The ideal

solution would be to avoid the mutations before tree-creation, i.e. extend the decomposition

to provide a better segmentation. In section 6.1.3 we describe a possible method for providing

better segmentations based on the sieve.

As well as problems with the sieve method, there are problematic areas with the network

algorithm approach. It is, of course, a useful approach for sets of data that share subgraphs.

However, the main problem with the network algorithm, is that it does not share all possible

subgraphs. Take our earlier examples and the graph in figure 5.27(a). The network, in figure

5.27(b) shares the small two node subgraph from vertex labelled "A" to the vertex labelled

"B", however, it fails to contain anywhere within it, the subgraph from vertex labelled "A" to

the other vertex labelled "A". This is a serious drawback to the network algorithm as it relies

on the network building, and sharing, subgraphs that are to be searched upon, which will not

be known in advance. The network algorithm we have implemented uses certain heuristics

to attempt to pick those subgraphs that will most likely be searched upon. For example, it

will choose nodes representing small regions over nodes representing large regions, and nodes

with a high edge degree over nodes with a low edge degree, from which to construct an ESub-

graphChecker. However, this in itself is not enough to ensure the choosing of the most likely

subgraphs. Indeed, there is no automatic way specific subgraphs could be constructed without

prior knowledge of the application domain.

Another problem with the network algorithm is that image data is very diverse and rarely

contains sub-topologies (from scale-trees) that are identical. This leads to having to use the

inexact network algorithm, which is considerably slower than the exact network algorithm,

making matching of large sized trees computationally very expensive. The tree pruning algo-

rithm attempts to overcome this problem by reducing the number of nodes in the tree, while

preserving pertinent image data. However, such a small number of nodes is required to allow

inexact graph matching, that the tree pruning algorithm tends to damage pertinent image data.

Recently in the literature, the developers of the network algorithm have developed a new

matching algorithm that overcomes many of the pitfalls of the network algorithm. This algo-

rithm is faster than the network algorithm (the time complexity is independent of the number

of graphs in the database), and it also stores a representation for every subgraph of a model.

An algorithm such as this could provide a better basis for graph matching of image topologies

JDwcusaion 129

than the network algorithm. However, the technique described in (13) does not have any error

correcting mechanism. It is based on decision trees and it is described in the following section

5.4.1.

The final problem revolves about the speed and resource usage of the prototype. Although

prototype systems generally are slower and more resource hungry than a final system, the pro-

totype that has been built suffers particularly badly. In fact, it has made it impossible to provide

results for all the tests we wanted to run. This is partly to do with the prototype system being a

Java application, but also to do with the simple way in which the sieve decomposition has been

implemented. The larger the number of regions in the image the slower the decomposition

gets. Precision and recall were introduced at the beginning of this chapter as a possible way

to provide quantitative measures for the effectiveness of the algorithm, but due to the memory

problems no more than about 10 mid-complexity images can be put into the network algorithm

at any one time, which would make precision and recall measures less accurate. However,

if the system were to be implemented in a native, compiled language, such as C++, and the

original patented version of the sieve(8) that uses a recursive-median filter to achieve the same

result was used the system would probably produce results in an acceptable time, using less

resources. This said, the prototype has proved, with the tests that have been run, that graph

matching for content based retrieval is both a worthy and attainable goal.

5.4.1 Decision Trees

Like the network algorithm, a number of model graphs are added into a structure which is used

for matching. However, rather than using a network, a compact representation of a decision tree

is constructed using the adjacency matrices to represent subgraphs(13). Again the main idea

of this decision tree approach is to aid retrieval of similar graphs from a database of graphs, as

opposed to finding a similarity score between only two graphs.

The adjacency matrices give the structure of the graph. Two nodes IJL,VEV are said to be

adjacent (denoted by /x ~ v = true) if they are connected by an edge. The adjacency matrix is

defined as:

' " r ' : (5.4)
[fjii ~ Vj otherwise

The adjacency matrix M is not unique for any graph G, because if M represents G then

any permutation of M will also be a valid representation of G.

At compilation time, all possible permutations of the adjacency matrix are computed and

transformed into a decision tree. At run time the adjacency matrix of the input graph is used to

find those adjacency matrices in the decision tree that are identical to it.

The permutation matrix is a bijective (one-to-one and complete mapping) function that

maps the vertices of one graph to another such that, for the adjacency matrices M and M2 of

graphs Gi and G2 respectively:

Afz (5.5)

5^. Swnmmy UO

That is f{vj) ~ v,, i f f n i i j = 1. P and / are both graph isomorphisms between Gi and Gj-

So the graph isomorphism problem becomes a matter of finding a permutation matrix that fits

the equation.

denotes the ^ x m matrix given by deleting rows A: up to and including n, and

deleting columns m up to and including n. Subgraph isomorphism can now be given in terms of

the adjacency matrices. Graphs Gi and G2 with adjacency matrices Mi and M2 of dimensions

mxm and nxn where m<n, there is a subgraph isomorphism from Q to G2 if there is a w x n

permutation matrix such that:

(5.6)

So, similarly the problem of finding a subgraph isomorphism becomes a matter of finding

a matrix P which fits the equation. The set of adjacency matrices can be arranged as a decision

tree to help find the matrix P which fits the equation. The decision tree is built according to the

row-column elements of each adjacency matrix Mp E A{G). The root of the tree is a dummy

node, but the first level classification is achieved by comparing the first row-column element of

the input graph to the first row-column element ai of each matrix Mp € A(G). The element a\

represents the label of the first vertex in each matrix A (G) so we're simply checking whether the

label of the first vertex appears in the input graph. On the second level the second row-column

element, of each matrix is used for the classification. So we're checking if the label and

edge occurrences between the first and second vertex of the input graph appear in any model

graphs. This continues throughout the decision tree. At each node in the tree, a permutation

matrix is stored, and each leaf represents one of E A(G).

So far, the method only allows matching of a single graph against another single graph,

using a decision tree. To overcome the brute force method of just matching every graph against

every other graph, the decision trees can be combined into a network, in a similar way to that of

the network algorithm. The sets of adjacency matrices for all the model graphs can be treated as

if they all belonged to a single graph and hence built into a single decision tree. However, these

decision trees may contain some subgraphs which are duplicated - depending on the number

of isomorphisms of the graph to itself (auto-morphisms). These can be associated with each

other using a redirection pointer creating an interconnected tree - similar to the network in the

network algorithm.

5.5 Summary

In this chapter we have shown some experimentation performed on the prototype system built

for content based image retrieval using scale-trees. In section 5.3 experimentation is given that

shows how the topology of query objects can be found within a set of model graphs generated

from model images even if these images are not entirely similar using inexact graph matching.

A discussion was presented in section 5.4 about the overall ability of the system, and why it

failed at times.

.Summary 131

We have shown that graph matching the topology of images is a useful step toward im-

proved image matching and recognition and may help in efforts to bridge the semantic gap.

Chapter 6

Future Work and Summary

This chapter provides details of possible future directions for the work, and summarises the

approach for content based retrieval given in chapters 4 and 5.

6.1 Future Work

Currently, the prototype system is able to show some of the advantages of graph based match-

ing, and is implemented using features that provides examples of the concept of feature based

graph matching. However, as the implementation stands, it is not practicable to apply the pro-

totype as a content based retrieval system in a real application. To attain the goal where such a

system may be available would require extra development, which is described below.

6.1.1 Object Trees and Semantic Networks

Working towards a semantics-based content based image retrieval engine is a very enticing

goal. If the semantic gap was bridged effectively enough to allow such a retrieval system, the

way we search for images could change dramatically. However, the ability to search by image

topology is not enough to provide usable semantics that allow the results of a search to be made

semantically relevant.

If we were able to elevate the tree matching to a stage where we could assume that this

tree retrieval system was accurately retrieving objects based on their image topology, we could

move forward and build possibly the next pier to support our semantic gap bridge: object trees.

We do not see extraction of emotion-based semantics as being attainable. However, the

semantics of a scene based on the objects within a scene could be possible, at least semi-

132

6.1. Future Work 133

modeii

Figure 6.1: Illustration of an object tree, where recognised objects are replaced by associations with
concepts in a semantic layer. Concepts will be linked in a network to other concepts (dotted lines).

automatically.

Object trees specify what objects are where within the scene, and the relationships be-

tween them. Sub-trees within graphs of images which represent objects could be replaced with

concept annotations. The transformation of an image into an object tree would require a prede-

fined knowledge base of model tree representations, for known objects, each linked to one or

more semantic labels in a semantic network, perhaps similar to the Multimedia Thesaurus idea

used in Mavis-2 (74). The illustration in 6.1 shows an annotated graph. Using a multi-layered

knowledge base would allow abstract as well as concrete concepts to be directly or indirectly

linked to image data.

Querying using these simple object trees could occur with a semantic (concept) based text

query in a similar vein to keyword searches, except the annotations were made automatically.

Because any retrieved concepts are lead-ins to subgraphs of image graphs, the realisation of

that concept, potentially from any view, can be located within images, also.

From the presence of certain objects in the scene and the relationship between them, it

should be possible to give some higher level semantics about the scene in general. For exam-

ple, a street scene of London may contain red buses, black taxis, and people. Various logical

operators and semantic network relationships could be used to fully specify this "composite

concept", such as "concept contains", or multiple instance relationships. For example, for a

scene to match the London composite concept, it must have 2 or more taxis that were black

and at least one red bus, which could all be encoded in the relationship information. Figure 6.2

shows an illustration of a semantic layer containing composite concepts.

This networked knowledge base would then allow some relatively high level semantic

retrieval. Searching for "London", for example, would find those images containing at least 2

black taxis and a red bus (by image content), which have been matched at previous levels with

the tree matching algorithm.

There are a number of ways a semantic layer based retrieval system could be used, which

are briefly described below:

TEXT QUERY: The query could be a text based query - such as "find picture of London" -

6J. Fufure Work 134

/ \ : Hock
^ taxi London

Figure 6.2: Illustration of a composite concept in the semantic layer with attributed multi-instance

relationships and a logical relationship between the two relationships.

which would find those images that are associated with the composite concept "London". This

concept will have been populated by semi-automatic content-based annotation.

IMAGE QUERY: The query could be an image which contains a London scene for clas-

sification. Due to the classification of the objects within the image, any red buses and black

taxis will be identified. From the knowledge layer these concepts are both associated with the

composite concept "London", which will return all associated images.

RELEVANCE FEEDBACK: Relevance feedback becomes possible by allowing the user to

refine a search by using other related trees of the stored images to match a selection from the

preliminary results of a query.

So far, the idea of the object tree semantic layer is very appealing, however, it requires the

creation of associations between new models and the concepts they represent. The following

subsection describes learning and how object trees might help to achieve unsupervised learning.

6.1.2 Learning

The gaining of knowledge is always based on learned material. A computer has no "built in"

knowledge, and so everything it learns must be taught to it - usually by the manual annotation

of data from a computer operator (the teacher). However, it is possible that such a knowledge

base could be built automatically by use of a pre-existing engine that uses meta-data, such

as Google image search. Relationships between images and text generated by humans and

spidered from the web can be used to guide annotations of the images. Results would need

dLj. j^ufufe 135

human validation (the teacher examines the result of the learning process, just like school).

It is also possible to see that the integration with the knowledge layer could go one step

further - every new object introduced to the system which has been matched to a concept can

be automatically inserted into the knowledge layer as a representation without the necessity for

the user to explicitly create the association (unsupervised learning). In this way, the knowledge

base gathers more information over time, making the results more accurate (because there are

more representations of the same concepts, there is more chance that a query image will match

well with one of the representations).

6.1.3 Discussion of Extensions to the Decomposition Process

The sieve is a very useful tool for image decomposition, due to its scale-space causality preser-

vation, and its contour preservation. This gives both hard rules for manipulation of structures

based on the decomposition and accurate matching of regions. However, with developments, it

could potentially be better for decomposing images into objects.

The main problem with the sieve is its inability to distinguish what is a probable object,

to background noise. This causes problems with the merging operation which, due to working

only in the greyscale image domain, may allow non-object regions to be merged into an object

region, and cause some inconsistencies in the object contours and colours. Once the merging

operation is performed, it cannot be overcome by tree manipulation. So, the only way to avoid

these pitfalls is to alter the sieve process.

We need to be careful when altering the decomposition process that it does not affect the

attributes of the sieve decomposition that are useful to the image matching process (scale-space

causality and contour preservation). However, the decomposition needs to be generated in a

manner which is more conducive to generating trees for objects.

A possible way to achieve this is to limit the decomposition to regions within the image

by using an edge detection on each of the channels of the image (RGB or HSV), merging the

results, and limit the decompositions to areas bordered by strong edges. This differs from the

sieve in that the image is effectively pre-segmented and the sieve only provides topology for

the segmented objects rather than the whole image.

For example, hgure 6.3(a) shows an image and Agure 6.3(b) shows the corresponding

edge detected image. By using a technique similar to that described in the preliminary work

section on archaeological tool extraction (section 3.2) it is possible to obtain an edge detected

image that has continuous edges (and therefore closed borders around regions). A thresholded

edge image ensures that only the strong edges are visible within the edge image. The highest

level regions (regions which are only within the background region) can be taken as the root

of an object tree. The original image can then be masked by each image region in turn and

the decomposition process occurs as normal within this image mask area. Figure 6.3(c) shows

the highest level region mask in the example image. The scale-tree is built for that region and

6.1. Future Work 136

(a) (b) (c)

Figure 6.3: Using edges to limit scale-space decomposition to avoid mutations.

(a) (b) (c)

Figure 6.4: Using edges to limit scale-space decomposition to avoid mutations.

linked to a default background region.

However using only the largest bordered regions would cause problems with certain im-

ages such as that shown in figure 6.4(a). The blue segment-shaped regions within the larger red

circular region become the same colour under greyscaling. Figure 6.5(a) shows the scale-tree

for the image using the normal decomposition process; all the regions are merged during the

greyscaling process into one, and therefore only one node appears in the scale-tree. So rather

than using just the outer regions, the strong internal regions are also used. Thresholding the

edge image will determine which edges are considered strong enough to represent pertinent

regions. Starting from the smallest internal region, decomposition takes place within that re-

gion, and works outward through larger regions. Each outer region will see only the region

represented by the root node of the scale-trees for the internal regions. This allows a topology

to be recorded for images which merge in greyscale but actually have objects within real im-

age space. It also avoids the noise around the edges of objects, such as that caused by JPEG

compression, from merging into the regions (because the edges for the artefacts will be very

weak, suppressed by thresholding, and therefore will not contribute to the mask). However,

this makes it possible for a scale-tree node to be connected to a node that represents a region of

6.1. Future Work 137

(a) (b)

Figure 6.5: The normal decomposition of the tree is shown in figure 6.5(a), and the expected output of
the edge-limited decomposition is shown in figure 6.5(b).

the same level as the one being represented at that node. This does not create new extrema in

the image, however, and the child node will always be at a smaller scale than that of the father

node.

This kind of image decomposition is analogous to anisotropic Gaussian scale-space filter-

ing, where the filtering is confined to avoid mutations to unconnected areas of the image.

6.1.4 Implementation Issues

The current implementation is 100% Java, and as such suffers to some degree. The decision

was made originally to implement the prototype in Java so that it could be used with other

tools we use in the Southampton Lab, as well as the extra facilities it has built-in for image

loading and manipulation, and system prototyping. To use this graph-based matching system

in a real-world environment would require some redevelopment of the software, to increase its

response time, and make it have a smaller footprint when running. This could be achieved by

reimplementation into C++, or a similar natively compiled language.

The graph matching is currently based on the network algorithm developed by Messmer

and Bunke. Although this method provided a good basis on which to base a new feature based

graph matching algorithm, a different graph matching technique may be more appropriate. In

particular, a new algorithm by those authors, described in section 5.4.1, provides total subgraph

coverage, while also providing fast graph matching based on shared common subgraphs.

The features used in this project were relatively simple, and although this would seem a

disadvantage, it is probably not worth making the features used to match vertex labels more

complex. Providing discriminating feature modules would compromise the graph matching

speed, while also being slower to calculate features for regions. Keeping the features simple

allows larger common subgraphs to be shared, while also ensuring the speed of matching is

fast. The best extension to this system would be to include a shape matching module that was

discriminating between various shapes, yet fuzzy enough to provide matches between similar

shapes. The shape matching integrated into the current system is too basic to accurately dis-

tinguish between detailed shapes, whereas the moment based matching only allowed distance

6.1. Future Work 138

calculations between a query and a known set of shapes.

6.1.5 Application Integration

At the beginning of this project, the idea was to integrate the new content based image retrieval

system with Mavis-2. Mavis (Multimedia Architecture for Video Image and Sound) (83; 44)

was a research programme undertaken in the University of Southampton to bring generic links

into non-text media. Separate modules were responsible for dealing with the processing of a

particular media type and as new modules are developed they may be added to the architecture.

Mavis-2(19; 17; 43; 74), a follow-up to the Mavis project, was funded by the EPSRC and intro-

duced the "multimedia thesaurus", and a portable Java implementation to the ideas developed

in the Mavis project.

Mavis-2 is an ideal test bed for new content based retrieval techniques. Because of the

architecture, new algorithms can be added to the system and tested alongside other content

based retrieval algorithms, and compared to them. Also, there is the ability to make use of the

multimedia thesaurus, which In the long run, the MMT could be used as the knowledge layer

to represent scene concepts for object tree recognition, as described in section 6.1.1.

Integration with MAVIS requires the building of a signature module with the correct in-

terface to communicate with MAVIS. It registers itself as a module that is able to match images

with the MAVIS broker, which distributes queries and database items to the registered modules.

The module is expected to return a list of match distances between the query image and each

match image.

The module functionality is not integrated with the other functions of MAVIS, in particular

the semantic layer, but affecting other modules from a signature module can be achieved if an

appropriate API to other modules is available (such as the semantic layer API).

Although the MAVIS-2 project finished a few years before this thesis, the integration of

this system may provide a useful tool for other users. However, it would require that this system

still be implemented in Java, which has shown to be too slow for general use.

Other potential applications into which a faster implementation of the system could be

integrated include the projects the lAM Group at Southampton are partners in: Artiste (an

integrated art analysis and navigation environment) (15), or Sculpteur (Semantic and content-

based multimedia exploitation for European benefit) (16). Both projects have a high degree

of content-based image analysis functionality. Artiste has goals which allow for sub-image

retrieval, something that a graph matching system may make far more intuitive. Sculpteur

has goals for semantic retrieval and meta-data augmentation of images and 3D models from a

database, which is planned to be achieved with web crawling of trusted web sites. It is possible

that using a semantic layer approach with graph based representations of images particular

meta-data augmentation could be achieved semi-automatically, while also having the ability to

provide sub-image, and object matching. Unfortunately this work culminated too late in the

&2 Smnmay 139

Artiste project for it to be integrated, while the majority of work in Sculpteur is now moving

towards 3D-model based matching.

Of course, a system such as this can also be useful within its own right - providing client

based image matching on personal image collections, or on web-based images.

6.2 Summary

During the development of a new technology, the very first method devised for using it often

persists until innovative research can provide a more adequate solution; take the motor car as an

example. That was originally controlled using a joystick device, before the development of the

steering wheel. The sudden growth in image manipulation on computers occurred due to the

speed and inexpensive new silicon technologies, however, despite over a decade of affordable

computer image manipulation, most of the search algorithms that are available are still based

on the idea of query by example using colour and texture feature vectors. Of course, the

research field is under-going rapid changes, but until a truly useful, and workable, solution to

image searching is developed, the colour and texture features will continue to be the foremost

technique.

In this thesis we sought to move from simple feature based retrieval to the use of structured

objects in the form of scale-trees. Semantics are very important to users of an image retrieval

system. Searching by concept is a far more intuitive way of information mining than query-

by-example, particularly if the user does not have an example to hand, or there is no specific

example case. Some of the systems already available achieve this with simple textual metadata

terms associated with database images, which all have to be inserted manually. Google image

search is the only automatic meta-data augmentation system, however, it does not provide

content-based image retrieval; it relies on surrounding text in web pages to provide possible

meta-data terms which is, of course, no use for simple image databases with no associated

textual data.

The idea presented here overcomes problems with simple low level feature matching of

images by providing a topology structure representing regions within the image over different

scales. It seemed a reasonable assumption that certain objects will always have a similar topol-

ogy of regions within the image - it is what gives them their appearance - and so by encoding

this we could search for the topology within the topology of other images.

In chapter 4 we provide the basis for a novel system, using a filtering mechanism called

the sieve to generate a tree structure for an image, and using a graph matching algorithm, called

the network algorithm, to provide isomorphism testing between tree structures.

The sieve is a scale-space Glter that generates a tree structure based on the scale and

inclusion of regions during a defined scale-based merging operation. In the literature the tree is

built after the sieve is complete, but we combine the two processes by providing a new way to

decompose the image (yet still adhering to the sieve functionality). The advantages of using the

& 2 Smnmay 140

sieve are that the generated structure has definite rules by which it can be manipulated. The tree

structure always moves towards smaller regions at the nodes, and allows detection and removal

of noise and blurring relatively easily. The enforced structure means that we are able to match

trees without any transformations. The trees that are generated are relatively invariant to scale,

rotation and translation, and are therefore ideal for object matching where target objects are

not guaranteed to be in any particular position. During the testing of the prototype system, we

found that the enforced rules of the decomposition can cause problems during the matching

process - in particular, when objects get merged into background regions. In section 6.1.3 an

overview is given of a possible way to suppress the effect.

The network algorithm is an attempt at providing graph matching without having the very

expensive cost of brute force graph matching (which is NP-complete). It is also advantageous

by allowing matching against a set of model objects, unlike other graph and tree matching

algorithms that only operate on a one-to-one basis. It avoids being NP-complete and provides

a speed-up (other than in the worst case) by using a network of common subgraphs of the set of

models. This assumes that the models will share some common subgraphs. To allow matching

of the topology of regions, the network algorithm incorporates some low level feature matching

algorithms. This is a weakness in the algorithm, as if the algorithms are not accurate enough the

network can become too large (or too small), and topologies incorrectly matched. However, an

inexact network algorithm allows graph edits to be made that are based on the feature scores,

allowing the nearest, yet different topology to be matched best. The main weakness with

the network algorithm is its lack of coverage of the subgraphs in the models; that is, it does

not encode every subgraph in every model. Although this was originally not seen as a major

problem because it was foreseen that the inexact network algorithm would allow editing of the

graph to allow models to match, it turns out that it can be particularly cumbersome in certain

circumstances. A new decision tree approach to graph matching appeared in the literature

during the execution of this thesis, and has been described in section 5.4.1.

The experimentation in chapter 5 showed that graph matching for object retrieval is a pos-

sibility. We described how the tree structures can be pruned and the effects it has on the images,

and also explained how the graph matching can be used to find similar topology images. In

section 5.4 we discussed the problems with the method, generally associated with the use of

the sieve and the network algorithm.

Matching tree topologies is not enough to bridge the semantic gap, however. Concept

retrieval is the ultimate goal, where concepts can be retrieved directly from a semantic net-

work. Of course, such a network would need to be built manually, effectively copying parts of

the semantic network that is built into the network author's brain. However, once active and

interconnected with a database of subgraphs, it could be used to automatically detect objects

from scenes, retrieving meta-data about those objects. If the semantic network is augmented

in with composite concepts, whole scenes from images could be automatically annotated. An

illustration of this process was explained in this section.

6.2. Summafy

From the success of the preliminary results presented in chapter 5 it is believed that topol-

ogy matching of objects in images is a worthy goal towards the semantic retrieval of images.

Using a semantic layer it is possible that a system based on topology matching could bridge

the semantic gap. With continued development in this new field of graph matching of topology

trees, techniques for better segmentation and graph matching could provide the object tree ideal

presenting an exciting range of new possibilities for image matching.

References

[1] S. Abbasi and F. Mokhtarian. Robustness of shape similairity retrieval under affine trans-

formations. In CAaZZgrnge (C/R'PPj, pages 41-

50, Newcastle, UK, February 1999.

[2] S. Abbasi, F. Mokhtarian, and J. Kittler. Reliable classification of chrysanthemum leaves

through curvature scale space. In f q/" f/ze '97

pages 284—295, Utrecht, Germany, 1997.

[3] A.S. Aguado, M.E. Montiel, and M.S. Nixon. Extracting arbitrary geometric primitives

represented by Fourier descriptors. In f mcgg<imgĵ /MfgrnafioMaZ Cof^rgncg on Azf-

tern Recognition ICPR '96, volume B, pages 547-551, Vienna, 1996. IEEE.

[4] A.S. Aguado, M.S. Nixon, and M.E. Montiel. Parameterising arbitrary shapes via

Fourier descriptors for evidence-gathering extraction. CVGIP: Image Understand-

mg, 69(2):202-221, 1998.

[5] P. Alshuth, Th. Hermes, J. KreyB, et al. Image-MINER - intelligent retrieval for im-

ages and videos. In A.W.M. Smeulders and R. Jain, editors, Image Databases and

'̂garcA, pages 241-251, 1997.

[6] Jeffrey R. Bach, Charles Fuller, Amarnath Gupta, Aran Hampapur, Bradley Horowitz,

Rich Humphrey, Ramesh Jain, and Chiao-Fe Shu. Virage image search engine: An

open framework for image management. In ^'foragg a/wf ^g^ngvaZ ybr /magg aW

VWgo Dafa^ojgf pages 76-87, 1996.

[7] J. A. Bangham, K. Moravac, R.W. Harvey, and M.H. Fisher. Scale-space trees and appli-

cations as filters, for stereo vision and image retrieval. In 10th British Machine Vision

Conference (BMVC99), Nottingham, UK, 1999.

[8] J.A. Bangham. U.S. patent for Data processing method and apparatus, June 1999. Appli-

cation Number: 875055.

[9] J.A. Bangham, R. Harvey, P.D. Ling, and R.V. Aldridge. Morphological scale-space

preserving transforms in many dimensions. yowmaZ q/'Efgc^mnzc //Magmg, 5(3):283-

299, July 1996.

142

143

[10] J.A. Bangham, J.R. Hidalgo, and R. Harvey. Robust morphological scale-space trees. In

pages 133-139, Glasgow, July 1998.

[11] J.A. Bangham, J.R. Hidalgo, R. Harvey, and G. Cawley. The segmentation of images

via scale-space trees. In Proc. British Machine Vision Conference 1998 (BMVC'98),

pages 33-43, Southampton, September 1998.

[12] S. Brande and I Saragusti. A morphometric model and landmark analysis of acheulian

handaxes from northern Israel. Advances in Morphometries, pages 423-435, 1996.

[13] H. Bunke. Error correcting graph matching; On the influence of the underlying cost

function. ZEEE franaacfiong onpaKem onoZygis wwf mac/iine infgZZigence, 21(9):917-

922, September 1999.

[14] S. Chan, K. Martinez, R Lewis, C. Lahanier, and J. Stevenson. Handling sub-image

queries in content-based retrieval of high resolution art images. In Proceedings of

ICHIM, volume 2, pages 157-163, Milan, 2001.

[15] Artiste Consortium. ArA'ffg frq/gcf." Am /MfggmW Arf

Website: http://www.artisteweb.org/, 1999-2002.

[16] Sculpteur Consortium. The Sculpteur Project: Semantic and Content-Based Multimedia

Exploration for European Benefit. Website: http://www.sculpteurweb.org/, 2002-2005.

[17] M Dobie, R. Tansley, D. Joyce, M. Weal, P. Lewis, and W. Hall. A flexible architecture

for content and concept based multimedia information exploration. In Proceedings of

the Challenge of Image Retrieval (CIR'99), pages 99-110, Newcastle, UK, February

1999. Also available from http://www.iam.ecs.soton.ac.uk/publications.

[18] Mark R. Dobie, Robert H. Tansley, Dan W. Joyce, Mark J. Weal, Paul H. Lewis, and

Wendy Hall. A flexible architecture for content and concept based multimedia infor-

mation exploration. In David J. Harper and John P. Eakins, editors. The Challenge

o/'/fMagg 7(gfngvaZ, Ngw/cojfZg, 7999, pages 1-12. University of Newcastle, February

1999.

[19] Mark R. Dobie, Robert H. Tansley, Dan W. Joyce, Mark J. Weal, Paul H. Lewis, and

Wendy Hall. Mavis 2: A new approach to content and concept based navigation.

In fmcgg(fmg.y q/̂ Âg ZEE on MfEG-7, vol-

ume 99, pages 9/1-9/5, London, UK, January 1999.

[20] N. Duffy and G. Lacey. Colour profiling using multiple colour spaces. In Proceedings of

f/zg BrifiaA MacAmg Co/^rgncg, volume 1, pages 245-255, Southampton, UK,

1998.

http://www.artisteweb.org/
http://www.sculpteurweb.org/
http://www.iam.ecs.soton.ac.uk/publications

References 144

[21J D. Dupplaw, P. Lewis, and M. Dobie. Spatial colour matching for content based

retrieval and navigation. In fAe CAaZZengg /ynagg

(CIR'99), pages 129-131, Newcastle, UK, February 1999. Also available from

http://www.iam.ecs.soton.ac.uk/publications.

[22] J. Eakins and M. Graham. Content-based image retrieval: A report to the JISC technol-

ogy applications programme. Technical Report JTAP-039, Institute for Image Data

Research, University of Northumbria at Newcastle, January 1999.

[23] eVision Global. A new vision for internet search - a technical white paper from eVision,

Technical report, Available from http://www.evisionglobal.com/, July 2001.

[24] G. Finlayson and Gui Yun Tian. Colour indexing across illumination. In Proceedings of

the Challenge of Image Retrieval (CIR'99), pages 127-128, Newcastle, UK, February

1999.

[25] M. Flickner, H. Sawhney, W. Niblack, et al. Query by image and video content: The

QBIC system. Co/Mpwfg/-, 28(9):23-32, September 1995.

[26] D. Forsyth, J. Malik, and R. Wilensky. Searching for digital pictures. Scientific American,

pages 72-77, July 1997.

[27] J. Gero and J. Mazzullo. Analysis of artifact shape using Fourier series in closed form.

yoMT-fiaZ q/'FzgMArcAgoZogy, 11:315-322, 1984.

[28] T. Gevers and A.W.M. Smeulders. PicToSeek: A color invariant retrieval system. In

A.W.M. Smeulders and R. Jain, editors, Image Databases and Multimedia Search,

pages 25-37, 1997.

[29] J. Hafner, H.S. Sawhney, W. Equitz, M. Flickner, and W. Niblack. Efficient color his-

togram indexing for quadratic form distance functions. In IEEE Transactions on Pat-

fg/71 AMaZyaz.; aWMacAmg /MfgZZiggMcg, volume 17, pages 729-736, July 1997.

[30] James Hafner, Harpreet Sawhney, Will Equitz, Myron Flickner, and Wayne Niblack. Effi-

cient color histogram indexing for quadratic form distance functions. In IEEE Trans-

OM AnoZyfif aW MacAme /MfgZZiggMcg, volume 17, pages 729-736,

July 1995.

[31] A. Hampapur, A. Gupta, B. Horowitz, et al. Virage video engine. In I.K. Sethi and R.C.

Jain, editors, 5'foragg ^(gfngvaZ/magg W(fgo V, pages 188-197,

1997.

[32] R. Harvey, J.A. Bangham, and A. Bosson. Some morphological scale-space filters and

their properties. In ..., November 1996.

http://www.iam.ecs.soton.ac.uk/publications
http://www.evisionglobal.com/

145

[33] Javier Ruiz Hidalgo. The representation of images using scale trees, 1998. Master Thesis.

[34] M.K Hu. Visual pattern recognition by moment invariants. In Trangacfiona on

mation Theory, volume 17-8, pages 179-187, Feburary 1962.

[35] J. Huang, S.R. Kumar, M. Mitra, W.J. Zhu, and R. Zabih. Image indexing using color

correlograms. In Computer Vision and Pattern Recognition 1997 (CVPR97), pages

762-768,1997.

[36] T. Kato. Database architecture for content-based image retrieval. In SPIE, volume 1662,

pages 112-123, 1992.

[37] R.G. Klein. The Human career: Human Biological and cultural origins, second edition.

University of Chicago press, Chicago, 1999.

[38] Michael Kliot and Ehud Rivlin. Invariant-based shape retrieval in pictorial databases.

CoTMpwfgr /magg CV7[/, 71(2): 182-197, 1998.

[39] J.J. Koenderink. The structure of images. Biol. Cyb., 50:363-370.

[40] A. Lenaghan, R. Malyan, and G.A. Jones. Matching structural descriptions of handwrit-

ten characters using heuristic graph search. In Proceedings of lEE Third European

OM pages 10/1-10/4, Brussels,

July 1998.

[41] K-S. Leung and R. Ng. Multiresolution subimage similarity matching for large im-

age databases. In f . ^ f o r a g e omaf /magg

W, volume 3312, pages 259-270, San Jose, California, US, January 1998.

[42] Man-Wai Leung and Kwok-Leung Chan. Object-based image retrieval using heirarchical

shape descriptor. In Proceedings of CIVR 2002, pages 165-174, London, July 2002.

Springer

[43] P.H. Lewis, H.C. Davis, M.R. Dobie, and W Hall. Using image content for retrieval and

navigation. In Journal of History and Computing, volume 10, pages 112-119, 1999.

[44] PH Lewis, HC Davis, SR Griffiths, W Hall, and RJ Wilkins. Content based retrieval

and navigation with images in the microcosm model. In on

Multimedia Communications, pages 86-90, 1995.

[45] J. Matas, R. Marik, and J. Kittler. Illumination invariant colour recognition. In Proceed-

ingf MocAzng Co^rg/icg, Birmingham, September 1995.

[46] B. Messmer and H. Btmke. 7%g GmpA MafcAmg Available at

http://www.iam.unibe.ch/ fki/projects/GraphMatch.html, 1 9 9 6 .

http://www.iam.unibe.ch/

References 146

[47] Bruno T. Messmer. Efficient Graph Matching Algorithms. PhD thesis, University of Bern,

Switzerland, 1995.

[48] Bruno T. Messmer and H. Bunke. A network based approach to exact and inexact graph

matching. Tech. Rep. JAM 93-021, Institut fiir Informatik, Universitat Bern, Switzer-

land, September 1993.

[49] B.T. Messmer and H. Bunke. Subgraph isomorphism in polynomial time. Technischer

Bericht JAM 95-003, Institut fur Informatik, Universitat Bern, Schweiz, 1995.

[50] B.T. Messmer and H. Bunke. Fast error-correcting graph isomorphism based on model

precompilation. Technischer Bericht IAM-96-012, Institut fur Informatik, Universitat

Bern, Schweiz, 1996. Filed: no, PSFile: no.

[51] B.T. Messmer and H. Bunke. A new algorithm for error-tolerant subgraph isomor-

phism detection. /EEE franfacfiOMj OM AnaZyfi.; a/W MacAing /mfgZZzgeMCg,

20(5):493-503, May 1998.

[52] B.T. Messmer and H. Bunke. A decision tree approach to graph and subgraph isomor-

phism detection. Pattern Recognition, 32:1979-1998, 1999.

[53] F. Mokhtarian and J. Abbasi S., Kittler. Robust and efficient shape indexing through

curvature scale space. In f o/'f/ze jixfA gnhjA MacAmg

on Multimedia Computing and Systems, pages 53-62, Edinburgh, UK, 1996.

[54] W. Niblack, R. Barber, W. Equitz, et al. The QBIC project: Querying images by content

using color, texture, and shape. Computer Science, RJ9203, February 1993.

[55] W. Niblack, Z. Xiaoming, J.L. Hafner, et al. Updates to the QBIC system. In I.K. Sethi

and R.C. Jain, editors, ybr /magg ancf V, pages

150-161,1997.

[56] Nils Nilson. Principles of artificial intelligence. Tioga Publishing Co., Palo Alto CA,

1980.

[57] I. Park, I. Yun, and S. Lee. Color image retrieval using hybrid graph representation. In

IVC, volume 17, pages 465—474, 1999.

[58] G. Pass, R. Zabih, and J. Miller. Comparing images using color coherence vectors. In

f q/ fAg fbwrfA ACM /MfgmaOOMoZ Com/ergMce on '96, pages

65-73, Boston, MA, US, November 1996.

[59] P. Perona and J. Malik. Scale space and edge detection using anisotropic diffusion. IEEE

on /nfgZZfgeMce, 12(I):629-639, 1990.

j^e/erences 147

[60] S. Perry and P. Lewis. Novel image viewer providing fast object delineation for content

based retrieval and navigation. In on /(grrzgvaZ /or

Image and Video Databases VI., volume 3312, pages 436-445. SPIE, January 1998.

[61] E. Persoon and K. Fu. Shape discrimination using Fourier descriptors. In IEEE Transac-

OM Mom, aW volume 7, pages 170-179, 1977.

[62] S. Pizer and L. Lifshitz. A multiresolution, hierarchical approach to image segmenta-

tion based on intensity extrema. IEEE transaction on Pattern Analysis and Machine

WgZZiggMcg, 12(9):529-540, 1990.

[63] Kriengkrai Porkaew, Michael Ortega, and Sharad Mehrotra. Query reformulation for

content based multimedia retrieval in MARS. In ICMCS, Vol. 2, pages 747-751,

1999.

[64] Yong Rui and Thomas S. Huang. Image retrieval: Current techniques, promising direc-

tions, and open issues. Journal of Visual Communications and Image Representation,

10:39-62, 1999.

[65] P. Salembier and L. Garrido. Binary partition tree as an efficient representation for image

processing, segmentation, and information retrieval. In IEEE Transactions on Image

f volume 9, pages 561-576, 2000.

[66] I. Saragusti and I. Sharon. Quantitative analysis of the symmetry of artefacts: Lower

paleothic handaxes. Journal of Archeological Science, 25:817-825, 1998.

[67] I.K. Sethi, I. Coman, B. Day, et al. Color-WISE: A system for image similarity retrieval

using color. In I.K. Sethi and R.C. Jain, editors. Storage and Retrieval for Image and

Video Databases V, pages 140-149, 1997.

[68] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, and W. Zucker. Shock graphs and shape

matching. In o/i Co/Mpwfgr pages

222-229, Bombay, India, 1998.

[69] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image

retrieval at the end of the early years. In /EEE TroMfacfionj on foAgm A/iaZyfZf

MocAiMg /nrgZZfggMCg, volume 22, pages 1349-1360, December 2000.

[70] J. Smith and S. Chang. VisualSEEk: A fully automated content-based image query sys-

tem. 7996, pages 87-98, November 1996.

[71] Milan Sonka, Vaclav Hlavac, and Roger Boyle, /magg aW MacAing

Vision. Thompson Computer Press, 1996.

148

[72] G. Spiigg (ed.). Fourier transform and waste recycling, /magg f mcgffing Ewmpg, pages

30-32, March/Apnl 1999.

[73] Michael Swain and Dana Ballard. Color indexing. International Journal of Computer

WfWM,7(ll):ll-32,1991.

[74] Robert Tansley. The Multimedia Thesaurus: Adding A Semantic Layer to Multimedia

Information. PhD thesis. University of Southampton, August 2000.

[75] Robert Tansley, Colin Bird, Wendy Hall, Paul Lewis, and Mark Weal. Automating the

linking of content and concept. In Proceedings ACM Multimedia 2000, pages 445-

448, New York, 2000. ACM Press.

[76] G. Toussaint. Introduction to Pattern Recognition. Available on the web from

http://cgni.cs.mcgill.ca/ godAied/teaching/pr-notes/, 1997.

[77] T.Pavlidis. A review of algorithms for shape analysis. In Proceedings of Computer Graph-

frocgfamg, volume 7, pages 243-258, 1978.

[78] C. Venters and M. Cooper. A review of content-based image retrieval systems. Technical

Report JTAP-054, JISC Technology Application Program, 2000.

[79] P. Walcott and T. Ellis. A colour object search algorithm. In Proceedings of the British

Machine Vision Conference, volume 1, pages 296-305, Southampton, UK, 1998.

[80] Wei Wang, Yuqing Song, and Aidong Zhang. Semantics-based image retrieval by region

saliency. In Pmcgge/mgj q/'C/VR 2002, pages 29-37, London, July 2002. Springer.

[81] J. Wei, M. Drew, and Z. Li. Illuminant invariant video segmentation by heirarchical

robust thresholding. In Proceedings of SPIE: Storage and Retrieval for Image and

W, volume 3312, pages 188-201, San Jose, California, US, 1998.

[82] J. Weickert and B. Benhamouda. Why the Perona-Malik filter works. Technical Report

DIKU-TR-97/22, Department of Computer Science, University of Copenhagen, 1997.

[83] RJ Wilkins, S Griffiths, PH Lewis, W Hall, and HC Davis. The mavis microcosm ex-

tensions for content based navigation and retrieval. In f rocgedings f/ie L/RM

ternational Workshop on Hypermedia Design, pages 77—80, Montpelier, France, June

1995.

[84] Andrew P. Witkin. Scale-space filtering. In Proceedings of 8th International Conference

OM /nfeZfiggncg, pages 1019-1022, Germany, August 1983.

[85] Andrew P. W^tkin. Scale-space filtering, from Pccg/f fo f rg^fzcafgf, pages 5-19, 1986.

http://cgni.cs.mcgill.ca/

j^eferences 149

[86] H. Zabrodsky and D. Avnir. Continuous symmetry measures: Chirality. Journal American

CAemzjfry 5'oczef)', 117:462-473, 1995.

