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ABSTRACT 

Faculty of Engineering 

Department of Electronics and Computer Science 

Doctor of Philosophy 

Antenna Diversity-Assisted Adaptive Wireless Multiuser OFDM Systems 

by Matthias Miinster 

Single-user decision-directed channel estimation for OFDM is known to deliver potentially more accurate 

channel transfer factor estimates than pilot-assisted schemes, when benefitting from error-free symbol de-

cisions. However, the estimates' accuracy is degraded in the context of rapidly fluctuating channels, since 

the channel transfer factor estimates produced during the previous OFDM symbol period are employed for 

the frequency-domain equalization of the most recently received OFDM symbol. Hence, the employment of 

Wiener prediction filtering was shown to be an effective countermeasure for mitigating the effects of channel 

transfer function variations imposed by higher Doppler frequencies. Two techniques were compared against 

each other, namely a scheme, which was insensitive to the shape of the CIR encountered and an adaptive 

prediction filtering. Furthermore, the joint effects of employing decision-directed channel prediction and 

adaptive modulation were demonstrated. 

Based on the philosophy of a decision-directed channel estimator designed for single-user scenarios, a 

parallel interference cancellation assisted channel estimator was proposed for multi-user scenarios, or more 

generally for OFDM systems employing multiple transmit antennas. This was motivated by the observation 

that the utilization of the most prominent subspace-based least-squares channel estimator is restricted to 

scenarios, where the number of users supported is lower than or equal to the number of OFDM subcarriers 

normalized to the number of significant CIR-related taps to be estimated. An iterative procedure was proposed 

for the off-line optimization of the estimator's coefficients. Alternatively, an adaptive approach based on the 

recursive least-squares (RLS) algorithm was proposed for updating the channel estimator coefficients on an 

OFDM symbol-by-symbol basis. 

Furthermore, a suite of detection techniques to be employed in a multi-user SDMA-OFDM scenario 

was compared against each other. Specifically, least-squares detection (LS), minimum mean-square error 

(MMSE) detection, sucessive interference cancellation (SIC), parallel interference cancellation (PIC) and 

maximum likelihood detection (ML) were studied. Detailed investigations were conducted with respect to the 

effects of error-propagation potentially occuring across the different SIC detection stages. Various strategies 

designed for improving the standard SIC detector's performance based on tracking multiple symbol decisions 

from each SIC detection node were compared against each other. An improved soft-bit metric, which takes 

into account the effects of error propagation was proposed for a system employing both SIC detection and 

turbo-decoding. Investigations conducted for a system employing PIC-detection and turbo-decoding demon-

strated that potentially the same performance as that of the SIC-detection assisted turbo-decoded system can 

be achieved, although at a lower complexity. 

Finally, the performance of the low-complexity MMSE- or PIC detection aided systems was further im-

proved by employing adaptive modulation or Walsh-Hadamard Transform based spreading, with the aim of 

exploiting the wideband channel's diversity potential in the detection process. 
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Introduction 

1.1 Historic Background 

Orthogonal Frequency Division Multiplexing (OFDM) was discovered by Chang in his pioneer-

ing paper in 1966 [1], The basic idea is that dispersive transmission media can be rendered non-

dispersive, if the transmission channel is subdivided in a high number of parallel, low-rate, non-

dispersive channels [2], Given the propagation environment, irrespective, whether it is a wire-line, 

stationary or mobile wireless scenario, the increased dispersion associated with increased transmis-

sion rates can always be avoided by increasing the number of subchannels. This is equivalent to 

increasing the memory of the channel equaliser in conventional equalised serial modems [2]. Since 

its discovery, this technique has fascinated researchers [l]-[3], but due to its implementational com-

plexity its applications have been scarce until quite recently. Recently, however, it has been adopted 

as the new European digital audio broadcasting (DAB) standard [4] and it is also a strong favourite 

for digital terrestrial television broadcast (DTTB) in Europe [5]. Its recent revival was heralded by 

Hirosaki [6], Schussler and his colleagues at Erlangen University [7]-[8], Cimini's impressive con-

tribution [9] and Kalet's work [3]. Of particular note are a range of further contributions for example 

from the impressive state-of-art collection of works edited by Fazel and Fettweis [10], including the 

research by Fettweis et al. at the University of Dresden, Rohling et al. at the University of Hamburg, 

Vandendorp at the University of Loeven, Ruber et al. at the University of Erlangen, Lindner et al. 

at the University of Ulm, Kammeyer et al. at the University of Bremen and Meyr et al. [11, 12] at 

the University of Aachen, but the individual contributions are too numerous to mention. In the USA 

it has also been advocated for asymmetric digital subscriber loop (ADSL) applications. In Europe 

it has been proposed for high-rate applications, such as 155 Mbps Wireless Asynchronous Transfer 

Mode (WATM) local area networks. These wide-ranging applications underline its significance as 

an alternative technique to conventional, channel equalisation assisted serial modems [2] in order to 

combat signal dispersion [l]-[3]. 

1 



CHAPTERS avnaaDUCTKHV 2 

1.2 Outline of the Thesis and Novel Contributions 

In this section we will provide an overview of the novel contributions presented in the context of 

this thesis. Specifically, Section 1.2.1 highlights the novel contributions provided in the context 

of decision-directed single-user channel estimation in Chapter 2. Furthermore, Section 1.2.2 sum-

marizes our novel contributions provided during our discussions of decision-directed multi-user 

channel estimation in Chapter 3. Finally, a range of advances in the field of multi-user detection 

techniques designed for SDMA-OFDM in Chapter 4 are summarized in Section 1.2.3. 

1.2.1 Chapter 2: "Decision-Directed Channel Est imat ion for Single-User O F D M " 

As it will be argued in the context of our description of the single-user OFDM receiver in Sec-

tion 1.3.1.4, a prerequisite for performing coherent detection of the different subcarriers' symbols 

at the receiver is the availability of a reliable estimate of each subcarrier's channel transfer fac-

tor. The channel transfer factor estimation strategies known from the literature can be divided into 

pilot-assisted- and decision-directed approaches. Various frequency-domain interpolation methods 

applicable to both pilot-assisted and decision-directed approaches, such as linear-, polynomial- and 

Wiener filter based interpolation techniques have been investigated in the literature. Wiener filtering 

is regarded as the conceptually most elegant solution. The importance of the Wiener filtering based 

solution is also manifested by its application in the context of channel transfer factor prediction as 

well as in the linear multi-user detection techniques to be discussed in Chapter 4. 

While the purely pilot-assisted channel transfer factor estimator is known to operate reliably even 

at low SNRs, its MSB performance suffers in the context of sparse pilot patterns. Furthermore, in 

the context of the more effecient 2D-pilot patterns - compared to ID-pilot patterns - the processing 

at the receiver is performed on a block-by-block basis, where a single block typically contains sev-

eral OFDM symbols. Besides the increased storage requirement imposed, also the processing delay 

is increased, which might become unacceptable for example in voice-based communications ser-

vices. These disadvantages can be addressed with the aid of the decision-directed channel estimator 

(DDCE), which employs the remodulated subcarrier symbol decisions as pilots. 

• Our discussions in Chapter 2 commence by reviewing the concepts of ID- and 2D-MMSE 

based DDCE contrived for single-user OFDM, which was analysed for example by Edfors et 

al. [13, 14, 15], Sandell [16] and Li et al. [17]. Based on the observation that in the con-

text of DDCE the most recently received OFDM symbol is equalized based on a potentially 

outdated channel transfer function estimate, which was generated during the previous OFDM 

symbol period, the CIR-related tap estimation filters invoked by the 2D-MMSE DDCE pro-

posed by Li et al. [17] are substituted by CIR-related tap prediction filters. For this config-

uration we derive the channel predictor's average a priori estimation MSB observed in the 
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frequency-domain, as it will be shown in Section 2.2.4.6. In the context of our performance 

assessments provided in Section 2.3 two methods are compared against each other for evalu-

ating the Wiener prediction filter's coefficients, namely the robust approach as advocated by 

Li et al. [17] and the adaptive approach as proposed by Al-Susa and Ormondroyd [18], based 

on the Burg-algorithm known from speech coding. As a third- and most promising alterna-

tive, the RLS algorithm could be employed, as proposed in the context of our discussions in 

Chapter 3. 

• Following our in-depth performance assessment of the CIR-related tap prediction assisted 

DDCE, both in the context of uncoded and turbo-coded scenarios, combining channel transfer 

factor prediction-assisted DDCE with AOFDM is proposed in Section 2.4. As a result of the 

channel transfer factor prediction, AOFDM is rendered attractive also in scenarios having 

a relatively high OFDM symbol-normalized Doppler frequency. These contributions were 

published in [19] and [20]. 

1.2.2 Chapter 3: "Decision-Directed Channel Es t imat ion for Multi-User SDMA-

O F D M " 

In the context of a single-user OFDM system, where the mobile user is equipped with a single 

transmit antenna, the generation of initial channel transfer factor estimates is rather simple. More 

specifically, the signal received in a subcarrier has to be divided by the associated transmitted sym-

bol. The channel transfer factor estimates acquired could then be further enhanced for example 

by Wiener filtering. By contrast, in the multi-user SDMA-OFDM scenario to be outlined in Sec-

tion 1.3.2 the signal received by any of the receiver antenna elements in a specific subcaiTier is 

constituted by the superposition of the different users' transmitted - and independently faded - sig-

nals. Hence, the task of identifying the different users' associated channel transfer factors is less 

straightforward. 

• Chapter 3 commences in Section 3.3 with an in-depth discussion of Li's Least-Squares (LS) 

assisted DDCE, which was contrived for space-time coded OFDM systems [21], or more gen-

erally for OFDM systems employing multiple transmit antennas encountered in the context 

of multi-user SDMA-OFDM scenarios. Our contribution in this section is the provision of 

a sophisticated mathematical description, which provides the standard LS-related solution of 

the associated estimation problem. In the context of these discussions a necessary condition 

for the existence of the LS-channel estimates is identified. In contrast to Li's discussions in 

[21], which provided an expression for the estimation MSE based on sample-spaced CIRs, 

here we also derived expression for the estimation MSE assuming the more realistic scenario 

of a non-sample-spaced CIR. 
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• Motivated by the potentially excessive complexity of the LS-assisted DDCE [21] and by its 

limitation in terms of the number of users- or transmit antennas supported, we focused our at-

tention in Section 3.4 on the investigation of Parallel Interference Cancellation (PIC) assisted 

DDCE. We found that the PIC operations can either be performed in the CIR-related domain 

- as proposed by Li [22] - or in the frequency-domain as proposed by Jeon et al. [23]. Specifi-

cally the frequency-domain PIC appears more advantageous in terms of its lower complexity. 

In contrast to the contributions of Li [22] and Jeon et al. [23], in Section 3.4 we provide 

an in-depth mathematical analysis with respect to a number of key points. Based on identi-

fying the estimator's recursive structure, expressions are derived for the a posteriori- and a 

priori estimation MSB and conditions are provided for the estimator's stability. Furthermore, 

an iterative procedure is devised for the off-line calculation of the a priori predictor coeffi-

cients. In order to provide an improved flexibility for the PIC-assisted DDCE with respect to 

variations of the channel's statistics and in order to increase its resilience to impulsive noise 

imposed by the erroneous symbol decisions that may be encountered in the DDCE, the RLS 

algorithm is adopted for the task of predictor coefficient adaptation. Part of this work was 

published in [24] or it was accepted for publication [25]. 

1.2.3 Chapter 4: "Uplink Detection Techniques for Mul t i -User SDIVIA-OFDM" 

As it will be argued in the context of our portrayal of the multi-user SDMA-OFDM scenario in 

Section 1.3.2, instead of performing frequency-domain equalization of the channel transfer factors, 

followed by demodulation as in the single-user OFDM scenario to be outlined in Section 1.3.1, a 

multi-user detector has to be employed at the receiver for detecting the different users' transmitted 

symbols. 

In Chapter 4 various linear- and non-linear multi-user detection techniques are compared against 

each other in terms of their applicability to the problem of detecting the subcarrier-based vectors 

of the L different users' transmitted symbols encountered in a multi-user SDMA-OFDM system. 

Specifically, the Least-Squares Error (LSE) and Minimum Mean-Square Error (MMSE) schemes 

are studied in Section 4.2, while the Successive Interference Cancellation (SIC) scheme and its 

derivatives, such as M-SIC and partial M-SIC, as well as the Parallel Interference Cancellation 

(PIC) and the Maximum Likelihood (ML) detection algorithms are considered in Section 4.3. These 

sections include the different techniques' mathematical derivation, as well as their performance and 

complexity analysis. 

• Specifically, in the context of SIC detection our investigations of the effects of error propa-

gation occurring through the different detection stages should be emphasized. Motivated by 
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the results of these investigations an improved metric is proposed for the generation of soft-

bit values suitable for turbo-decoding. Furthermore, our contributions contrived for hard-

decision based turbo-decoding assisted PIC for SDMA-OFDM should be mentioned here, 

which were published in [26]. 

• Based on the observation that SIC detection as the second-best performing detection approach 

after ML detection exhibits a potentially high complexity, further investigations are conducted 

in Section 4.4 for the sake of enhacing the performance of both MMSE- and PIC detection. 

Specifically, in Section 4.4.1 we discuss the employment of adaptive modulation in the con-

text of an SDMA-OFDM scenario, which is hence termed as SDMA-AOFDM. This scheme 

will be shown to be effective in the context of an almost 'fully-loaded' system, where the L 

number of users supported approaches the P number of reception antennas employed at the 

basestation. This novel scheme was disseminated in [27]. 

• However, the employment of the SDMA-AOFDM scheme is restricted to duplex transmis-

sion scenarios having a reverse link, such as those in Time Division Duplexing (TDD). An 

enhancement of the MMSE- and PIC-assisted detection schemes' performance was achieved 

with the aid of orthogonal Walsh-Hadamard spreading codes, which will be investigated in 

Section 4.4.2. These advances were published in [20]. 

1.3 Outline of the OFDM System 

Our discussions commence in Section 1.3.1 with an overview of the OFDM system and its com-

ponents in a single-user, single-reception antenna scenario. This scenario is then extended in Sec-

tion 1.3.2 to the case of multiple users and multiple reception antennas, which follows the concept 

of an SDMA-OFDM system. 

1.3.1 Single-User, Single Reception Antenna Assisted O F D M Scenario 

The further structure of this section is as follows. Based on a portrayal of the principles of Frequency 

Division Multiplexing (FDM) in Section 1.3.1.1, the principles of Orthogonal Frequency Division 

Multiplexing (OFDM) and its associated advantages are described in Section 1.3.1.2. The structure 

of the associated OFDM transmitter and receiver is then described in Section 1.3.1.4. Finally, in 

Section 1.3.1.5 we will outline a range of pivotal OFDM-related topics, which have been the subject 

of intensive research. For further reading on OFDM we refer to [16, 14, 28, 29, 30, 31, 32, 33, 34]. 
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1.3.1.1 Principles of Frequency Division Multiplexing 

Recall that the philosophy of OFDM [1, 3, 9] originates from Frequency Division Multiplexing 

(FDM) systems, where different modulated symbols are transmitted in parallel on neighbouring 

subcarriers, which are separated from each other by a frequency guard band. As a consequence 

of the frequency division, the signalling rate associated with each of the parallel subcarriers is a 

fraction of the system's total signalling rate. To be more explicit, while in a single-carrier system 

the individual modulated symbols are transmitted at a rate of 1 /T^ symbols per second, where Ts 

denotes the sampling period duration, in the FDM system the signalling rate on each subcarrier 

is l / K T s symbols per second, under the simplistic assumption that no frequency guard bands are 

employed. In other words, the transmission of a single frequency-domain subcarrier symbol is 

stretched over the entire length of K sampling periods of duration Ts in the time-domain. As a result, 

a high resilience is achieved against impulsive noise incurred in the time-domain. While a couple 

of time-domain signal samples might be affected by this impulsive noise, which potentially results 

in erroneous decisions of the corresponding symbols in the context of conventional single-carrier 

transmission systems, by contrast in the frequency-domain its effects are spread over the K number 

of subcarriers thus mitigating the impact on each single transmitted symbol. A typical example 

of such impulsive noise is the Inter-Symbol Interference (ISI) between consecutive FDM symbols, 

which is due to receiving delayed replicas of the transmitted symbols over the multipath channel 

assumed here. A further advantage of the FDM system is that upon neglecting the ISI between 

consecutive OFDM symbols, the channel equalization can be simply implemented as a division of 

each received subcarrier symbol by the channel's effective transfer factor at this frequency. This 

one-tap frequency-domain equalization is typically less complex, than employing Finite Impulse 

Response (FIR) or Infinite Impulse Response (IIR) filters for time-domain equalization. 

1.3.1.2 Principles of Orthogonal Frequency Division Multiplexing 

However, the FDM scheme also exhibits a number of disadvantages, namely a relatively low band-

width efficiency owing to the employment of frequency guard bands, as well as having a relatively 

cumbersome implementation based on a bank of separate modulators and demodulators assigned to 

the different subcarriers. Furthermore, the frequency-domain effects of the residual time-domain ISI 

impose a serious limitation on the system's achievable BER. Potential solutions to these problems 

will be discussed in the following. Specifically, in Section 1.3.1.2.1 we will discuss the employment 

of orthogonal subcarrier signalling functions instead of using frequency guard intervals, as in case 

of FDM. This allows us to perform the modulation of the different subcarriers with the aid of the 

IFFT, as will be outlined in Section 1.3.1.2.2. Furthermore, the ISI between the consecutive OFDM 

symbols is avoided even in the context of a multipath channel scenario, with the aid of a guard 

interval- or cyclic extension, as it will be discussed in Section 1.3.1.3. 
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Figure 1.1: Sinc-shaped subcarrier spectra shown here for the subcarrier located at the center of the 
frequency-band and its nearest neighbours, which are separated by AF = l/KTg. The en-
tire OFDM spectrum is constituted by the superposition of the sinc-shaped subcarrier spectra, 
which are modulated by the symbols s[k], k = 0,... ,K transmitted. Note that for simplicity 
we have defined K = K — 1. 

1,3.1.2.1 Maintaining a High Bandwidth Efficiency Using Orthogonal Signalling Functions 

As suggested by the terminology, in OFDM we employ a set of K orthogonal signalling functions. 

These signalling functions are constituted by the harmonically related set of complex exponentials 

given by: 

1 
(1.1) 

where we have = — y - l - l , . . . , y and —oo<t<oo. Corresponding to the set of K number of 

time-domain signalling functions, we have a series of K number of Dirac impulses in the frequency-

domain at frequencies of kAF. Note that the different Dirac impulses are spaced apart from each 

other by AF = 1 / K T s . This corresponds to the division of the available frequency band of width 

1/Ts into K equal-width subbands. However, as a result of the signal's temporal limitation in 

the time-domain to a number of K sample periods of duration Ts each, which can be described 

as the multiplication of the complex exponential signalling functions with a rectangular windowing 

function, the series of frequency-domain Dirac impulses is convolved with the rectangular window's 

spectrum, namely the sinc-function. This is portrayed in Figure 1.1 for the subcarrier located at the 

center frequency /c and for its nearest neighbours, where the individual sinc-shaped subcarrier 

transfer functions have to be weighted with the complex modulating symbols A: = 0 , . . . , K — 

1 that have been transmitted. Most importantly, we note that the sinc-shaped spectrum of a specific 

subcarrier intersects the frequency-axis exactly at those frequencies, which are associated with the 
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remaining subcarriers. This can be directly inferred from the spectral representation W { f ) of the 

rectangular window w{t), namely from: 

= r e c t ( ' ^ : r ) ' s inc(7rj( ' l^/) , (1.2) 

where sine (a:) = sin(a;)/s. Observe that for the set of frequencies / = kAF, k e {—y + 

1 , . . . , y } \ {0} we have W { f ) = 0. Hence, no interference occurs between the symbols modu-

lating the different subcarriers in the absence of ISI and upon assuming perfect frequency synchro-

nization. Note that due to the signals' time-frequency duality, the orthogonality of the subcarrier 

transfer functions observed in Figure 1.1 in the frequency-domain corresponds to the orthogonal-

ity of the signalling functions - represented by the complex exponentials of Equation 1.1 - in the 

time-domain. More specifically, for the complex exponential signal functions of Equation 1.1 it is 

straightforward to show that we have: 

i . (1.3) 
L 0, /Ci ^ /C2 

Note that as a result of the overlapping nature of the sine-shaped subcarrier transfer functions, the 

bandwidth efficiency of the OFDM scheme is increased compared to that of non-orthogonal FDM 

capitalizing on 'wasteful' frequency guard bands. 

1.3.1.2.2 Fast Fourier Transform Aided Reduced Complexity Implementation A further 

significant advantage of OFDM compared FDM is that the modulation of the different subcarri-

ers can be efficiently implemented with the aid of the Discrete Fourier Transform (DFT) or its low 

complexity implementation, namely the Fast Fourier Transform (FFT). Recall that the OFDM trans-

mitter's output signal during the n-th OFDM symbol period is constituted by the superposition of 

the K number of modulated subcarrier signalling functions, namely by: 

!'•(».«) = si". + E (1.4) 

where the first term is associated with the positive frequencies, while the second term with negative 

frequencies in the OFDM signal's baseband representation. In the context of a digital implementa-

tion, the time-discrete equivalent of Equation 1.4 is given by: 

tr[n,n] = s[n,k]e^'^'^^'^, (1.5) 

where we have exploited that _ Qj2wkn ^ Apart from a normalization 

factor, Equation 1.5 describes the IDFT of the K number of subcarrier symbols to be transmitted. 

In the context of a digital implementation the signal samples, which are located between the time 
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cyclic prefix 
K 

(cyclic postfix) 

Figure 1.2: Generation of the cyclic prefix- and postfix in the time-domain. The cyclic prefix is generated 
by replicating the last Kg number of IFFT output samples at the front of the OFDM symbol. By 
contrast, the cyclic postfix is generated by copying a number of IFFT output samples from the 
beginning to the end of the OFDM symbol. 

instants of t = riTg, n = 0,... ,K - 1 are generated by lowpass filtering. Similarly, following 

sampling of the time-continuous signal, demodulation at the receiver can be implemented with the 

aid of the DFT. 

1.3.1.3 Inter-Symbol Interference Reduction Using a Guard Interval 

The ISI potentially affects the first few samples of an OFDM symbol in the time-domain'. How-

ever, as a result of the DFT-based demodulation at the OFDM receiver this problem is mitigated 

by spreading its effects across the K different subcarriers in the frequency-domain. Nonetheless, a 

persistent performance degradation is observed, when encountering a multipath channel scenario, 

opposed to an ISI free pure AWGN channel scenario. This problem is addressed in the context of 

the OFDM system with the aid of a guard interval or cyclic prefix, which is generated in the time-

domain by replicating the last Kg number of IFFT output samples. As illustrated in Figure 1.2, these 

samples a copied from the back to the beginning of the OFDM symbol. Upon appropriately choos-

ing the number of guard interval samples, namely by ensuring that we have Kg > \TmlTs'\(^), 

where is the multipath spread of the channel and by assuming furthermore perfect synchroniza-

tion, namely that the start of the FFT window coincides with the first arriving multipath components, 

the FFT window will only contain cyclically shifted, but weighted^ replicas of the original OFDM 

symbol transmitted. Hence, no ISI is incurred between the consecutive OFDM symbols. As a result 

of employing the guard interval- or cyclic prefix portrayed in Figure 1.2, effectively the OFDM 

symbol transmitted is cyclically convolved with the CIR. 

Hence, when viewing the corresponding operations in the frequency-domain, after FFT-based 

'This is correct under the assumption of perfect synchronization with respect to the first arriving multipath component. 
^The Gauss brackets f] denote the smallest integer, which is not less than the original argument enclosed in brackets. 
^The weighting is due to the multiplication of each replica with the specific path's time-variant complex transfer 

factor. 
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Figure 1.3: Simplified illustration of the OFDM transmitter and receiver, which are linked via the trans-
mission channel. The time-domain signal generated in the OFDM transmitter seen at the top 
is conveyed over the transmission channel, which is characterized by the time-variant impulse 
response h{t, T) plus the AWGN contribution n{t), to the OFDM receiver.Note that K = K — 1. 

demodulation at the receiver, each subcarrier symbol was multiplied by the complex channel trans-

fer factor encountered at this frequency. This renders the frequency-domain equalization process 

computationally inexpensive compared to conducting the equalization in the time-domain. In or-

der to render the OFDM system furthermore insensitive against imperfections of the FFT window 

synchronization, namely against a delayed positioning of the FFT window, also a cyclic postfix can 

be appended to the OFDM symbol by copying signal samples from the beginning to the end of the 

OFDM symbol. We note however, that the redundancy introduced by the guard interval implies a 

decrease of the system's bandwidth efficiency. This bandwidth efficiency reduction can be com-

pensated by increasing the K number of subcarriers, although unfortunately at the same time this 

results in increasing the system's sensitivity against frequency offsets between the transmitter's and 

receiver's local oscillator frequencies. 

1.3.1.4 Structure of the OFDM Transmitter and Receiver 

In this section we will briefly review the typical structure of the O F D M transmitter- and receiver 

employed in a single-user, single reception antenna scenario. A simplified block diagram of these 

components is portrayed in Figure 1.3. Specifically, the OFDM transmitter is shown at the top, while 
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the OFDM receiver at the bottom of Figure 1.3. Furthermore, a simplified model of the transmission 

channel, constituted by its time-variant impule response h{t, r ) and the Additive White Gaussian 

Noise (AWGN) contribution n{t) is shown at the right-hand side of Figure 1.3. 

1.3.1.4.1 OFDM Transmitter Specifically, in the OFDM transmitter seen at the top of Fig-

ure 1.3 the incoming bit-stream is optionally subjected to channel coding followed by the mapping 

of blocks of log2 Mc number of consecutive bits to one of the Mc number of constellation points 

associated with the M^-ary modulation scheme employed ("Cod.&Mod."). The serial stream of 

symbols is then transformed into blocks of K parallel symbols each ("S/P") for forming the OFDM 

symbol. Each of the symbols contained in a block then modulates one of the K subcarriers, which 

is achieved with the aid of the IFFT, as highlighted in Section 1.3.1.2.2. Based on the block of K 

parallel IFFT output samples, a serial stream of time-domain signal samples is generated ("P/S") 

and the guard interval ("Add Guard") is concentrated at the beginning of this block in order to render 

the transmitted OFDM symbol insensitive against the dispersion effects of the multipath channel, 

as alluded to in Section 1.3.1.3. Then the binary, time-discrete representation of the signal to be 

transmitted is converted to an analogue, time-continous representation with the aid of a Digital-to-

Analogue (D/A) converter followed by lowpass filtering ("D/A&Lowp."). Next the High-Frequency 

(HF) stage of Figure 1.3 is encountered, which includes up-conversion to the carrier frequency /c 

and power-amplification ("HF Upconv."). 

The signal is then conveyed over the AWGN-contaminated multipath transmission channel, which 

can be described as a convolution with the channel's time-variant CIR h{t, r ) , followed by an addi-

tive perturbation with the Gaussian noise process n{t). 

1.3.1.4.2 OFDM Receiver The OFDM receiver which is illustrated at the bottom of Figure 1.3 

exhibits a structure, which is almost symmetric to that of the transmitter depicted at the top of 

Figure 1.3. After HF down-conversion ("HF downc."), followed by sampling and Analogue-to-

Digital (A/D) conversion ("Sample&A/D") the guard interval is removed ("Remove Guard") under 

the control of the synchronization unit ("Sync."). This implies deciding upon the start of the FFT 

window. Furthermore, the synchronization unit also generates a signal for performing the correction 

of the frequency-offset potentially incurred between the transmitter's and receiver's local oscillators. 

This is necessary, since a frequency offset results in a loss of orthogonality between the sinc-shaped 

subcarrier transfer functions of Figure 1.1. This is known to inflict inter-subcarrier interference, 

with the effect of degrading the effective SNR in the different subcarriers. Again, similarly to the 

processing at the transmitter, based on a serial-to-parallel conversion ("S/P"), blocks of K signal 

samples are transformed to the frequency-domain with the aid of the FFT, resulting in a set of K 

subcarrier signals, a;[n, k], k = ... — I. As argued in Section 1.3.1.3, in case of an ISI-

free scenario, in the frequency-domain the effects of the multipath channel manifest themselves as 
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the multiplication of each subcarrier symbol with the channel's transfer factor at this frequency-

position, plus an AWGN contribution, which can be expressed as: 

x[n, k] = s[n, k] • H[n, k] -|- n[n, k], (1.6) 

where the channel transfer factor H[n, k] is given by: 

A;] = (17) 

and Tf = (K + Kg)Ts represents the OFDM symbol duration. Furthermore, !FT{} denotes the 

Fourier Transform. Note that Equation 1.7 is based on the simplified assumption that the CIR 

is time-invariant for the duration of an OFDM symbol period. For the case of the more realistic 

scenario of encountering a CIR, which is time-variant during the transmission of a specific OFDM 

symbol it can be shown that the effective subcarrier channel transfer factors are given as the Fourier 

transform of the complex CIR tap values, which have been averaged over the duration of the OFDM 

symbol period. In addition, Inter-Subcarrier Interference (ICI) would be observed as a consequence 

of the loss of orthogonality between the different subcarrier transfer functions. In order to facilitate 

the correct detection of the different users' transmitted symbols in the case of coherent detection, 

the effects of the channel must be removed from the signal x[n, k] associated with the K different 

subcarriers k = 0 , K — 1. This is the task of the equalizer block ("Ch. Eq.") of Figure 1.3, 

which performs a normalization of the signal received by each subcarrier with its associated channel 

transfer factor estimate. This results in a linear estimate s[n, k] of the symbol transmitted on the 

/c-th subcarrier in the following form: 

H[n, k] 

where we have fc = 0 , . . . ,K — I. Following again a parallel-to-serial ("P/S") conversion as seen 

in Figure 1.3, the linear symbol estimates are demodulated and potentially channel-decoded ("De-

mod.&Decod."). A prerequisite for obtaining linear symbol estimates according to Equation 1.8 

is the availability of the channel transfer factor estimates H[n, k], k = ,K — I, which are 

generated within the channel estimation block ("Ch. Est.") of Figure 1.3. Various approaches 

are known from the literature for performing the channel estimation task, namely pilot-assisted-, 

decision-directed and blind methods. While in the pilot-assisted case the channel estimation is per-

formed based on a number of dedicated subcarriers, which employ pilot symbols known both to the 

receiver and the transmitter, in the decision-directed case the symbol decisions are remodulated and 

then employed as 'pilot symbols'. The process of remodulating the subcarrier symbol-decisions is 

represented by the box at the bottom of Figure 1.3, which is enclosed in dashed lines. In the next 

section we will summarize some of the main design aspects of O F D M systems, which have been 

addressed by researchers. 
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1.3.1.5 Design Aspects of OFDM Systems Adressed by Research 

Before we embark on outlining the structure of multi-user SDMA-OFDM systems in Section 1.3.2, 

here we summarize some of the main aspects of OFDM systems, which have been addressed by re-

searchers over the past few decades. These are local oscillator frequency- and timing-synchronization. 

Peak-to-Average Power Ratio (PAPR) reduction, multiple-access concepts, channel estimation, chan-

nel coding and adaptive modulation of Sections 1.3.1.5.1, 1.3.1.5.2, 1.3.1.5.3, 1.3.1.5.4, 1.3.1.5.5 

and 1.3.1.5.6, respectively. 

1.3.1.5.1 Frequency- and Time-Synchronization Recall from Section 1.3.1.4 that two impor-

tant tasks to be performed at the receiver are the local oscillator frequency- and time-sychronization 

[35, 36]. A residual frequency offset results in a loss of orthogonality between the different sub-

carriers' transfer functions with the effect of imposing frequency-domain ICI and consequently 

reducing the effective subcarrier SNR. Furthermore, accurate timing-synchronization is necessary 

for correctly determining the start of the FFT window [35, 36]. Again, an inaccurate timing-

synchronization potentially results in ISI, with the consequence of reducing the effective subcar-

rier SNR. These effects can be reduced by increasing the length of the cyclic prefix- and postfix, 

however, at the cost of also reducing the bandwidth available for data transmissions. 

1.3.1.5.2 Peak-to-Average Power Ratio and Power Amplifier Non-Linearities A further as-

pect of OFDM systems which has to be appropriately dealt with is that of a potentially excessive 

Peak-to-Average Power Ratio (PAPR) [36] measured at the IFFT output described by Equation 1.5, 

which is associated with the OFDM transmitter seen at the top of Figure 1.3. Depending on the set 

of subcarrier symbols to be transmitted, the modulated signal's peak amplitude might become exces-

sive for some time-domain samples due to a constructive superposition of the different subcaiTiers' 

associated time-domain signal functions. Hence, the power amplifier employed at the transmitter 

is required to cater for peak-power values, which might substantially differ from the average power 

output. A further aspect is that hence the power amplifier is required to be as linear as possible, 

which is particularly difficult to achieve for the potentially large range of amplitudes to be sup-

ported. Hence often linear class-A amplifiers have to be used, which have a low power-efficiency. 

Otherwise the amplifier non-linearities result in high out-of-band emissions due to the harmonic 

distortions generated. Therefore, substantial efforts have been made by researchers for reducing the 

PAPR of OFDM symbols [37, 38, 39, 40,41, 42, 43, 44, 45, 46, 47, 48, 49, 50]. 

1.3.1.5.3 Multiple-Access Concepts: TDMA/FDMA/CDMA/SDMA Various multiple-access 

approaches are known from the literature of single-carrier communications systems for support-

ing the transmissions of a multiplicity of users in mobile communications environments. The most 

common schemes are Time-Division Multiple Access (TDMA) [51], where each user is assigned the 
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entire available bandwidth for a limited time-duration, as well as Frequency-Division Multiple Ac-

cess (FDMA) [51], where the different users are assigned different portions of the frequency-band, 

which supports their simultaneous communications. Furthermore, Code-Division Multiple Access 

(CDMA) [52] may be employed, where the different users share the entire available frequency-band, 

while their separation at the receiver is facilitated with the aid of unique user-specific spreading 

codes. Finally, in recent years Space-Division Multiple Access (SDMA) [53], where the different 

users share the same frequency-band, while their separation at the receiver is facilitated with the aid 

of their unique spatial signature in the context of employing an array of antennas at the receiver, has 

gained popularity. The suitability of these techniques for an application in the context of OFDM 

has been investigated in a variety of publications. 

1.3.1.5.4 Channel Estimation As argued in the context of single-user OFDM systems in Sec-

tion 1.3.1.4 one of the prerequisites for employing coherent subcarrier symbol detection at the re-

ceiver is the availability of the different subcarriers' channel transfer factor estimates. The channel 

estimation strategies can be separated into three categories, namely pilot-assisted, decision-directed 

and blind approaches. 

In the context of pilot-assisted channel estimation [54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64] the 

channel's transfer function is estimated based only on the initial transfer factor estimates provided 

by dedicated pilot subcarriers, whose associated transmitted symbols are known both to the receiver 

and to the transmitter. By contrast, in the context of decision-directed approaches [65, 66, 13, 67, 

68, 17, 15, 18, 69] the sliced symbols available at the receiver's output are remodulated and then 

employed as 'pilots'. The decision-directed approach will be further elaborated on in the context 

of our discussions in Section 2. As a third alternative, blind approaches [70, 71,72, 73] are known 

from the literature. 

1.3.1.5.5 Channel Coding Besides employing standard channel coding schemes, such as con-

volutional coding and turbo-coding [74, 36] in the context of OFDM, investigations have also been 

conducted with respect to employing coded modulation, namely Trellis-Coded Modulation (TCM) 

and Turbo Trellis-Coded Modulation (TTCM). Furthermore, the employment of Residual Number 

Systems (RNS) based codes has been investigated [75, 76]. 

1.3.1.5.6 Adaptive Modulation In the context of employing OFDM in a wide-band channel 

scenario, where the channel transfer function's amplitude is known to fluctuate significantly across 

the different subcarriers, an effective approach for reducing the BER while keeping the system's 

throughput constant, or for increasing the throughput while keeping the BER constant, is provided 

by adaptive modulation [36, 77, 78, 3]. The strategy common to both schemes is to assign a more 

robust, lower throughput modulation mode to low-quality subcarriers in terms of their SNR, while 
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Figure 1.4: Simplified illustration of the SDMA-OFDM scenario. The L different users, each equipped 
with a single transmit antenna are linked to the BS receiver, which employs P number of an-
tenna elements, via the L x f-dimensional MIMO channel. The output signal of each receiver 
antenna element is separately subjected to FFT-based demodulation, which results in the subcar-
rier signals Xp[n,k], p = 1 , . . . ,P, k = 0 , . . . , AT — 1. This is followed by subcarrier-based 
multi-user detection with the aim of obtaining the sliced symbols k], I = 1,... ,L, k = 
0 , . . . ,K—1. Based on these sliced symbols and on the received subcarrier signals, a priori es-
timates Hapr,p[n, k] of the channel transfer factors encountered during the next OFDM symbol 
period are generated. 

a less robust, higher throughput modulation mode to higher-quality subcarriers. A prerequisite for 

the employment of AOFDM is the knowledge of the channel's transfer function associated with the 

following transmission timeslot, for which the modulation mode assignment has to be performed. 

This can be efficiently provided with the aid of channel transfer function prediction approaches, as 

it will be demonstrated in the context of our discussions in Chapter 2. 

1.3.2 Mult i -User Mult ip le Recept ion Antenna O F D M S c e n a r i o 

In Section 1.3.1 we have outlined the basic principles of OFDM and the associated transmitter- and 

receiver structure in the context of a single-user single-reception antenna assisted scenario. Specifi-

cally, in Section 1.3.1.5.3 we argued that employing Space-Division Multiple Access (SDMA) is a 
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viable approach for supporting the transmissions of multiple users in a mobile OFDM-based com-

munications environment. More specifically, the L different users' transmitted signals are separated 

at the receiver with the aid of their spatial signature, namely based on the knowledge of their unique 

set of channel impulse responses or transfer functions associated with each user's transmit antenna 

and the P different BS receiver antenna elements. This SDMA-MIMO channel scenario is shown 

at the right-hand side of Figure 1.4. 

While in the multi-user SDMA-OFDM scenario the same OFDM transmitter design can be em-

ployed as in the single-user scenario, the SDMA-OFDM receiver shown at the left-hand side of 

Figure 1.4 exhibits important changes compared to the single-user, single-reception antenna based 

receiver of Figure 1.3. Besides the simplifications, namely that of removing the time-domain FfF 

down-conversion-, analogue-to-digital conversion-, synchronization-, serial-to-parallel and parallel-

to-serial conversion- as well as the demodulation and decoding blocks explicitly shown in the single-

user receiver of Figure 1.3, we have substituted the single FFT block by separate FFT blocks for the 

different receiver branches. At the FFT blocks' outputs the different reception branches' frequency-

domain subcarrier signals Xp[n,k], p = 1,... ,P, k = 0,... ,K — 1 become available. 

Furthermore, the channel equalizer- and demodulator blocks of Figure 1.3 have been substituted 

by the multi-user detector block as seen in Figure 1.4. At the output of the multi-user detector 

each of the L different users' sliced symbols [n, k], 1 = 1,... ,L, k = Q,... ,K — 1 become 

available. As it will be shown in Section 4 for the case of the so-called linear detectors, namely the 

Least-Squares (LS)- and the Minimum Mean-Square (MMSE) based detectors, the detection pro-

cess constituted by the signal combining- and classification process is sequentially performed, which 

is equivalent to the channel equalization- and demodulation processes performed in the context of 

the single-user receiver of Figure 1.3. By contrast, in the context of the more effective detectors, 

namely Successive Interference Cancellation (SIC), Parallel Interference Cancellation (PIC) and 

Maximum Likelihood (ML) detection, a priori knowledge of the other users' transmitted symbols 

is required at each subcarrier position for the identification of a specific user's transmitted subcarrier 

symbol. 

The multi-user detection process is based on estimates Hp\n, A] of the channel transfer fac-

tors Hp\n, k], I = 1 , . . . ,L,p = 1 , . . . ,P,k = 0 , . . . ,K — 1, associated with the K different 

subcarriers of the L • P number of MIMO channels. Hence, the channel estimator of Figure 1.3 

designed for estimating a single set of K number of channel transfer factors has to be substituted by 

a multi-channel estimator, as shown in Figure 1.4. While in general both pilot-assisted- as well as 

decision-directed approaches could be employed as in the single-user scenario of Figure 1.3, in Fig-

ure 1.4 we have portrayed the scenario of decision-directed channel estimation. More specifically, 

the channel transfer factor estimates generated during the current OFDM symbol period - after de-

tection of the different users' symbols - are employed in the detection stage during the next OFDM 

symbol period. Two of the most promising estimation approaches are the LS-assisted DDCE and 



the PIC-assisted DDCE, which will be detailed in Section 3. 



Decision-Directed Channel Estimation for 

Single-User OFDM 

2.1 Introduction 

In recent years numerous research contributions have appeared on the topic of channel transfer func-

tion estimation techniques designed for employment in single-user, single transmit antenna assisted 

OFDM scenarios, since the availability of an accurate channel transfer function estimate is one of 

the prerequisites for coherent symbol detection at an OFDM receiver. The techniques proposed in 

the literature can be classified as pilot-assisted, decision-directed (DD) and blind channel estimation 

(CE) methods. 

In the context of pilot-assisted channel transfer function estimation a subset of the available sub-

carriers is dedicated to the transmission of specific pilot symbols known to the receiver, which are 

used for 'sampling' the desired channel transfer function. Based on these samples of the frequency 

domain transfer function, the well-known process of interpolation is used for generating a transfer 

function estimate for each subcarrier residing between the pilots. This is achieved at the cost of a 

reduction of the number of useful subcarriers available for data transmission. The family of pilot-

assisted channel estimation techniques was investigated for example by Chang and Su [64], Hoher 

[54, 56, 57], Itami et al. [58], Li [60], Tufvesson and Maseng [55], Wang and Liu [62], as well as 

Yang et al. [59, 61, 63]. 

By contrast, in the context of Decision-Directed Channel Estimation (DDCE) all the sliced and 

remodulated subcarrier data symbols are considered as pilots. In the absence of symbol errors 

and also depending on the rate of channel fluctuation, it was found that accurate channel transfer 

function estimates can be obtained, which are often of better quality in terms of the channel transfer 

function estimator's mean-square error (MSE), than the estimates offered by pilot-assisted schemes. 

This is because the latter arrangements usually invoke relatively sparse pilot patterns. 

18 
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Year Author Contribution 

'91 Hoher [54] Cascaded ID-FIR channel transfer factor interpolation was 
carried out in the frequency- and time-direction for frequency-
domain PSAM. 

'93 Chow, Cioffi and 

Bingham [79] 

Subcarrier-by-subcarrier based L M S related channel transfer 

factor equalization techniques were employed. 

'94 Wilson, Khayata 

and Cioffi [65] 

Linear channel transfer factor filtering was invoked in the 
time-direction for DDCE. 

'95 van de Beek, Ed-

fors, Sandell, Wil-

son and Borjesson 

[66] 

DFT-aided CIR-related domain Wiener-filter based noise-

reduction was advocated for D D C E . The effects of leakage 

in the context of non-sample-spaced CIRs were analysed. 

'96 Edfors, Sandell, 
van de Beek, 
Wilson and 
B6rjesson[13] 

SVD-aided CIR-related domain Wiener-filter based noise-

reduction was introduced for D D C E . 

Frenger and Svens-

son [67] 

MMSE-based frequency-domain channel transfer factor pre-

diction was proposed for DDCE. 

Mignone and 

Morello [68] 

FEC was invoked for improving the DDCE's remodulated ref-

erence. 

'97 Tufvesson and 

Maseng [55] 

An analysis of various pilot patterns employed in frequency-

domain PSAM was provided in terms of the system's BER 

for different Doppler frequencies. Kalman filter-aided channel 

transfer factor estimation was used. 

Hoher, Kaiser and 

Robertson [56, 57] 

Cascaded ID-FIR Wiener filter channel interpolation was uti-

lized in the context of 2D-pilot pattern aided PSAM 

'98 Li, Cimini and Sol-

lenberger [17] 

An SVD-aided CIR-related domain Wiener filter based noise-

reduction was achieved by employing CIR-related tap estima-

tion filtering in the time-direction. 

Edfors, Sandell, 

van de Beek, Wil-

son and Borjesson 

[15] 

A detailed analysis of SVD-aided CIR-related domain 

Wiener-filter based noise-reduction was provided for DDCE, 

which expanded the results of [13]. 

Tufvesson, 
Faulkner and 
Maseng [80] 

Wiener filter-aided frequency-domain channel transfer factor 

prediction assisted pre-equalization was studied. 

Itami, Kuwabara, 

Yamashita, Ohta 

and Itoh [58] 

Parametric finite-tap CIR model based channel estimation was 

employed for frequency-domain PSAM. 

Table 2.1: Contributions on channel transfer factor estimation for single-transmit antenna assisted OFDM. 
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Year Author Contribution 

'99 Al-Susa and Or-

mondroyd [18] 
DFT-aided Burg-algorithm assisted adaptive CIR-related tap 

prediction filtering was employed for DDCE. 

Yang, Letaief, 

Cheng and Cao 

[59] 

Parametric, ESPRIT-assisted channel estimation was em-
ployed for frequency-domain PS A M . 

'00 Li [60] Robust 2D frequency-domain Wiener filtering was suggested 
for employment in frequency-domain PSAM using 2D pilot 
patterns. 

'01 Yang, Letaief, 

Cheng and Cao 

[81] 

Detailed discussions of parametric, ESPRIT-assisted channel 

estimation were provided in the context of frequency-domain 

I)Sy\A4[59]. 
Zhou and Gian-

naJds [70] 
Finite alphabet-based channel transfer factor estimation was 

proposed. 

Wang and Liu [62] Polynomial frequency-domain channel transfer factor interpo-

lation was contrived. 

Yang, Cao, and 

Letaief [63] 

DFT-aided CIR-related domain one-tap Wiener-filter based 

noise-reduction was investigated, which is supported by vari-

able frequency-domain Manning windowing. 

Lu and Wang [71] A Bayesian blind turbo receiver was contrived for coded 

OFDM systems. 

Li and Sollen-

berger [69] 

Various transforms were suggested for CIR-related tap estima-

tion filtering assisted DDCE. 

Morelli and Men-

gaH[82] 

LS- and MMSE based channel transfer factor estimators were 

compared in the context of frequency-domain PSAM. 

'02 Chang and Su [64] Parametric quadrature surface based frequency-domain chan-

nel transfer factor interpolation was studied for PSAM. 

Necker and Stiiber 

[73] 

Totally blind channel transfer factor estimation based on the 

finite alphabet property of PSK signals was investigated. 

Table 2.2: Contributions on channel transfer factor estimation for single-transmit antenna assisted OFDM. 

The family of decision-directed channel estimation techniques was investigated for example by 

van de Beek et al. [66], Edfors et al. [13, 15], Li et al. [17], Li [69], Mignone and Morello [68], 

Al-Susa and Ormondroyd [18], Frenger and Svensson [67], as well as Wilson et al. [65]. 

Furthermore, the family of blind channnel estimation techniques was studied by Lu and Wang 

[71], Necker et al. [73], as well as by Zhou and Giannakis [70]. The various contributions have 

been summarized in Tables 2.1 and 2.2. 

In order to render the various DDCE techniques more amenable to employment in scenarios as-

sociated with a relatively high rate of channel variation expressed in terms of the OFDM symbol 

normalized Doppler frequency, linear prediction techniques well-known from the speech coding lit-

erature [83, 84] can be invoked. To elaborate a little further, we will substitute the CIR-related tap 
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estimation filter - which is part of the two-dimensional channel transfer function estimator proposed 

in [17] - by a CIR-related tap prediction filter. The employment of this CIR-related tap prediction 

filter enables a more accurate estimation of the channel transfer function encountered during the 

forthcoming transmission timeslot and thus potentially enhances the performance of the channel es-

timator. We will be following the general concepts described by Duel-Hallen et al. [85] and the ideas 

presented by Frenger and Svensson [67], where frequency-domain prediction filter assisted DDCE 

was proposed. Furthermore, we should mention the contributions of Tufvesson et al. [80, 29], 

where a prediction filter assisted frequency domain pre-equalization scheme was discussed in the 

context of OFDM. In a further contribution by Al-Susa and Ormondroyd [18], adaptive prediction 

filter assisted DDCE designed for OFDM has been proposed upon invoking techniques known from 

speech-coding, such as the Levinson-Durbin algorithm or the Burg algorithm [83, 86, 87] in order 

to determine the predictor coefficients. 

Chapter 2 has the following structure. In Section 2.2 the philosophy of the CIR-tap prediction 

filter assisted DDCE will be described, while its performance will be studied in Section 2.3, in the 

context of both the MSE and the BER. In Section 2.4 a system will be described and characterized, 

which combines decision-directed channel prediction^ with adaptive modulation since the efficiency 

of adaptive modulation critically depends on the quality of channel prediction. Our conclusions will 

be offered in Section 2.5. 

2.2 Description 

Let us commence our discourse by outlining the structure of Section 2.2. In Section 2.2.1 the con-

cepts of DDCE are outlined with an emphasis on generating the initial a posteriori least-squares 

channel transfer function estimate on the basis of the sliced and remodulated subcarrier symbols. 

Furthermore, in an effort to improve the initial a posteriori least-squares channel estimate, in Sec-

tion 2.2.2 the concepts of the Karhunen-Loeve Transform (KLT) based ID-MMSE estimator pro-

posed by Sandell and Edfors et al. [13, 16, 14, 15] will be discussed. Based on the structure of this 

estimator, a 2D-MMSE estimator was proposed by Li et al. [17], which potentially capitalizes on 

the availability of an infinite number of previous initial a posteriori channel estimates associated 

with past OFDM symbols. These concepts will discussed in Section 2.2.3. The improved a posteri-

ori channel transfer function estimate calculated for the current O F D M symbol is employed as an a 

priori channel estimate during the demodulation of the OFDM symbol received in the next timeslot. 

Due to the potentially considerable decoirelation of the channel transfer function incurred between 

consecutive OFDM symbols, which critically depends on the O F D M symbol normalized Doppler 

frequency, it was found beneficial to directly obtain an a priori estimate of the channel transfer 

4n the following we will refer to channel transfer function prediction simply as channel prediction. Furthermore, note 
that the set of K different subcarriers' channel transfer factors is referred to here as the channel transfer function. 
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Figure 2.1: Stylized illustration of the OFDM receiver employing decision-directed channel estimation- or 
prediction. Following FFT processing, the complex frequency-domain signal x{n, fc] associated 
with each of the K subcarriers fc = 0 , . . . , if — 1 is equalized based on the a priori channel 
transfer factor estimates generated during the previous OFDM symbol period for employment 
during the current period. As a result, the linear estimates s[n,k] of the transmitted signals s[n, k] 
are obtained. These estimates are classified with the aid of the Maximum Likelihood (ML) 
approach, yielding the complex symbols s[n, k] that are most likely to have been transmitted. 
These classified symbols s[n,k] are then employed together with the received subcarrier signals 
x[n,k] for generating a priori channel transfer factor estimates for employment during the (n -t-
l)-th OFDM symbol period. The specific structure of the channel transfer function estimator- or 
predictor, which is indicated by the stylized illustration at the bottom left corner, will be detailed 
in the context of Section 2.2. Note that in the above illustration the subcarrier index k has been 
omitted from the different variables for the sake of visual clarity. 

function for the next OFDM symbol upon invoking the MMSE prediction techniques to be detailed 

in Section 2.2.4 instead of the related MMSE estimation techniques of Section 2.2.3. Hence, in 

Section 2.2.4 we will explicitly compare the Finite Impulse Response (FIR) Wiener filter based 

estimation- and prediction techniques. A prerequisite for the application of Wiener filtering [87] 

in the context of channel transfer function estimation or prediction along the time-direction is the 

availability of an estimate of the channel's statistics in form of the spaced-time correlation function. 

Note that the various representations of the channel's statistics are outlined in Figure 6.2. In Sec-

tion 2.2.5 two different approaches are invoked for providing these estimates. Specifically, robust 

Wiener filtering employing a uniform, ideally support-limited scattering function will be contrasted 

to a block-adaptive estimation of the channel's statistics, which is combined with the calculation of 

the Wiener filter coefficients. Numerous techniques are known in the literature for solving the latter 

problem, such as the Levinson-Durbin algorithm [84] or the Burg algorithm [86, 83]. We will use 

the latter one. 
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2.2.1 Decis ion-Directed A Posteriori Least -Squares C h a n n e l Est imation 

The following discussions are with reference to the decision-directed channel transfer function 

estimation- or prediction block seen at the bottom of Figure 2.1, which is the stylized illustration of 

an OFDM receiver. 

An a posteriori least-squares estimate Hapt[n-,k] of the actual channel transfer factor H[n,k] 

of the fc-th subcarrier in the n-th OFDM symbol is obtained upon dividing the complex received 

OFDM symbol x[n, k] by the subcarrier's sliced symbol s[n, k] [17], yielding: 

&] == & = 0,-- - , -- 1 
s[n,K\ 

where H[n, k] denotes the complex Gaussian-distributed channel transfer factor having a variance 

of a'jj, which is unity. Furthermore, s[n,k] represents the complex OFDM symbol transmitted, 

which exhibits zero mean and a variance of cr^, and finally n[n, k] is the additive noise contribution 

having a mean value of zero and variance of The total noise variance cr^ is constituted by 

the sum of the AWGN process' variance CT̂ WGN plus the variance of the Gaussian noise-like inter-

subcarrier interference (ICI) contribution cr,^ [88], The latter component can be neglected in fading 

channels exhibiting a low OFDM symbol normalized Doppler frequency Fd,k^- However, under 

high-mobility channel conditions - which may be encountered in worst-case scenarios - an estimate 

of cr,Q has to be provided [88]. Upon assuming error-free symbol decisions, where we have s[n, k] = 

s[n,k], the a posteriori least-squares channel transfer factor estimate of Equation 2.1 is simplified 

to: 

Hapt[n, k] = H[n, k] + | ' J , (2.2) 
s[n,k\ 

which has a mean-square estimation error of: 

- a - (2.3) 

In Equation 2.3 the so-called "modulation-noise enhancement factor" a = E{\l/s[n,k]\'^} [89] 

depends on the modulation mode employed in the A-th subcarrier. For M-PSK modulation for 

example, we have Om-psk = 1, while for 16-QAM Ois-qam = 17/9 [89, 15]. 

In order to further reduce the a posteriori channel transfer factor estimation error, a one-dimensional 

(ID) minimum mean-square error (MMSE) channel estimator, which capitalizes on the a posteriori 

În the context of quantifying the effects of ICI a definition of the OFDM symbol normalized Doppler frequency 
according to FD,K = foKTs - which is related to the FFT window's duration denoted by KTs - is more appropriate, 
than its conventional definition expressed as Fd = f o i K + Kg)Ts [88]. This conventional definition is rather used for 
characterizing the channel's correlation in the context of investigating channel transfer function estimation schemes. 
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least-squares channel transfer factor estimates extracted from each O F D M symbol was proposed by 

Edfors et al. [13, 14, 15] as well as Sandell [16]. Its concepts will b e outlined in Section 2.2.2. This 

channel estimation approach was later extended by Li et al [17] to two dimensions, where the a 

posteriori least-squares channel transfer factor estimates of both the current and the previous OFDM 

symbols are invoked for obtaining an improved a posteriori channel transfer function estimate for 

the current OFDM symbol. The concepts of this estimator will be outlined in Section 2.2.3. 

2.2.2 E n h a n c e m e n t of the A Posteriori Least -Squares C h a n n e l Transfer Factor Esti-

mates by One-Dimens ional M M S E Est imat ion 

A one-dimensional (ID) minimum mean-square error (MMSE) channel estimator, which exploits 

the channel's correlation in the frequency direction was proposed by Edfors et al. [13, 14, 15] 

and Sandell [16], for inferring improved a posteriori channel transfer factor estimates Hapt[n,k] 

from the initial a posteriori least-squares channel transfer factor estimates Hapt[n,k], {k,k} = 

0 , . . . , — 1. Note that this estimator - in the absence of a rank-reduction, which will be further 

explained in Section 2.2.2.1 - is the time-domain related dual of a ID-FIR Wiener filter, which in-

vokes all the K least-squares channel transfer factor estimates available in a specific OFDM symbol. 

The specific structure of this estimator is outlined in Section 2.2.2.1 with reference to Figure 2.2, 

where the 'Channel Estimator' block of Figure 1.3 is replaced by this schematic. Furthermore, 

an expression for the estimator's MSE valid under mismatched channel conditions is provided in 

Section 2.2.2.2. 

2.2.2.1 Structure of the ID-MMSE Channel Estimator 

In a first step the vector Hopi[n] G of K correlated a posteriori subcarrier channel trans-

fer factor estimates k], k = 0 , . . . ,K — I associated with the K subcarriers of the n-th 

OFDM symbol is subjected to a unitary linear inverse transform specifically the Karhunen-

Loeve Transform (KLT) [16, 15], where the matrix used by the KLT is determined from the 

channel's spaced-frequency correlation matrix This transforms the frequency domain least-

squares channel transfer factor estimates to a time-domain related domain. As a result, the vector 

hapi W E of K uncorrelated CIR-related taps, hapt[n, /], / = 0 , . . . , iT — 1 is obtained. In 

matrix notation this can be expressed as: 

(2.4) 

3The Eigenvalue Decomposition (EVD) of the Hermitian spaced-frequency correlation matrix R'-''' = £ 
qKxk ^ where H g is the vector of the different subcarriers' channel transfer factors, is given by = 

where is unitary, and A'-''' G exhibits the form of = diag(X\(\ ... , A^Li)-
The diagonal elements of A'-̂ ' are refeired to as the eigenvalues of R'-̂ ^ [87]. 



CtL4j)T2iR 2. Z)DCEjPOR <%]VaLjE-[%yf%R CkRCMVf 25 

CIR-related taps 

Figure 2.2: ID-MMSE channel estimator design proposed by Edfors et al. [13, 14, 15] replacing the 
'Channel Estimator' block of Figure 2.1. The set of a posteriori least-squares channel trans-
fer factor estimates Hapt[n,k], k — 0 , . . . - 1 of Equation 2.1 is subjected to an in-
verse unitary linear transform which generates a set of uncorrelated CIR-related taps 
hapt[n, I],I = 0 , . . . ,K - 1. Only the first Kq coefficients are retained, the rest of them are 
set to zero. Each of the Kq coefficients is subjected to time-direction one-tap Wiener filtering 
using the coefficients Cest[0, Z], 1 = 0,... ,K -1 given by Equation 2.5. Finally, a unitary trans-
form IjW is applied for conveying the filtered CIR-related taps hapt[n,l],l = 0 , . . . , jT - 1 back 
to the frequency-domain, which yields the set of improved a posteriori channel transfer factor 
estimates Hapt[n, k], t = 0 , . . . ,K -1. Note that the unitary transform matrix is associ-
ated with the EVD of the channel's spaced-frequency correlation matrix 
For notational simplicity we have defined in the schematic Ko = Kq — 1 and K = K — 1. 

In a second step linear one-tap Wiener filtering is performed separately for those CIR-related taps 

hapt[n, /], for which the variance is significant. The specific value of the /-th CIR-related tap's filter 

coefficient is given by [15]: 

Cest [0,1] 
/ = 0 , . . . , Kq — 1 

I = Kq , . . . , K — 1 
(2.5) 

where is the /-th eigenvalue associated with the Eigenvalue Decomposition (EVD) of the chan-

nel's spaced-frequency correlation matrix R ^ . Since for the set of practical multipath intensity 

profiles considered the variance E{\hapt[n, /]|^} usually decreases along with increasing the delay 

index I, a standard complexity reduction procedure [89, 15] is to perform time-direction filtering 

individually for each of the CIR-related taps associated with the Kq number of lowest values of I, 

while setting the CIR-related taps associated with higher delay or dispersion indices to zero. Again, 

this reduces the estimator's complexity at the cost of a certain M S E performance degradation due 

to removing some of the CIR-related taps conveying useful signal components. The filter operation 

can also be expressed in matrix notation, namely as: 

hapi [n] •'est P]h(jpt[; n (2.6) 
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where hapi[n] E is the vector of filtered CIR-related tap values and the diagonal-shaped filter 

matrix Cgat̂ O] E is given by: 

Ceat[0] = dmg(Ce3t[0, 0], . . . , Cggf̂ O, - 1]). (2.7) 

In a last step the vector hapt[n] of filtered CIR-related tap values hapt[n, I],I = 0 , . . . ,K — 1 

is transformed back to the OFDM symbol's frequency-domain representation with the aid of the 

unitary linear transform U M , yielding the vector 6 of MMSE channel transfer 

factor estimates. Again, this can be formulated in matrix notation as: 

== (2.8) 

The ID-MMSE channel estimator's structure is further illustrated in Figure 2.2. 

2.2.2.2 Estimator MSE for Mismatched Channel Conditions 

In practice the estimator's spaced-frequency correlation matrix and its associated EVD, RM = 

U[ / ]AWUW^, as well as the EVD of the channel's spaced-frequency correlation matrix RW, 

namely RW — are typically different. We often refer to this scenario as a mis-

match between the channel statistics assumed and those encountered. For this scenario Edfors et al. 

[15] derived an expression for the MSE of the rank-i^o estimator seen in Figure 2.2: 

i i : H"(i - ^ e 
1=0 l=Ko 

where Cest[0, Z], / = 0 , . . . , — 1 is the set of filter coefficients following the philosophy of Equa-

tion 2.5. We note that the coefficients /], I = 0 , K q — 1 axe based on the potentially 

imperfect estimate R ^ of the channel's spaced-frequency correlation matrix R ^ and on the es-

timate SNR of the true SNR measured at the reception antenna. Furthermore, in Equation 2.9 the 

variable denotes the l-th diagonal element of the decomposition associated with the channel's 

spaced-frequency correlation matrix R ^ with respect to the unitary transform matrix U M instead 

of U M , which is formulated as Also note that if f j W = I jW holds, 

we have . 

2.2.3 Enhancement of the A Posteriori Least-Squares C h a n n e l Transfer Factor Esti-

mates by Two-Dimensional M M S E Est imation 

Based on the ID-MMSE channel estimator proposed by Edfors et al. [13, 14, 15], which was out-

lined in Section 2.2.2, a two-dimensional (2D) MMSE channel estimator exploiting the channel's 

correlation both in the frequency direction as well as in the time direction was proposed by Li et 

al. in [17]. The objective of Li's design was to infer improved a posteriori channel transfer fac-

tor estimates ^apt[n, k] from the initial a posteriori least-squares channel transfer factor estimates 
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Hapt[n, k], {k,k} == 0 , . . . ,K — I. This can be achieved by capitalizing not only on the most re-

cent a posteriori estimates Hapt[n^ k], k = 0,... ,K — 1, but also on the a posteriori least-squares 

channel transfer factor estimates Hapt[n — n, fc], n = 1 , . . . , ivj^^ — 1, = 0 , . . . , - 1 of the 

{Nf}p — 1) number of past OFDM symbols, where — 1) denotes the order of the associated 

estimation filter. Note that in the absence of a rank-reduction, such as conducted by the scheme por-

trayed in Figure 2.2, this estimator is the time-domain related dual of a frequency-domain 2D-FIR 

Wiener filter, which invokes all least-squares channel transfer factor estimates available in a specific 

block of TVjgp number of OFDM symbols. 

Our further discourse in Section 2.2.3 evolves as follows. In Section 2.2.3.1 we outline the 

difference between Li's 2D-MMSE estimator [17] and Edfors's ID-MMSE estimator, which was 

the topic of Section 2.2.2. Furthermore, Section 2.2.3.2 highlights Li's discussions on the 2D-

MMSE estimator's MSE performance under mismatched channel conditions, with an emphasis on 

the concepts of robustness or resilience against mismatched channel conditions. Finally, the idea 

of employing time-direction prediction filtering instead of time-direction estimation filtering"^, as 

advocated by Li et al. [17], will be augmented in Section 2.2.3.3. 

2.2.3.1 Structure of the 2D-MMSE Estimator 

As it was demonstrated by Li et al. [17], the two-dimensional channel transfer factor estimation 

problem can be readily separated into two one-dimensional estimation tasks, which is motivated by 

the separability of the channel's spaced-time spaced-frequency correlation function originally intro-

duced in Figure 6.2. As noted before, instead of carrying out the channel transfer factor estimation 

in the frequency domain, the philosophy of rank-reduction in the CIR-related domain, portrayed in 

Figure 2.2 is used, which results in a reduced complexity. 

The structure of Li's 2D-MMSE channel estimator shown in Figure 2.4 is identical to that of the 

ID-MMSE channel estimator proposed by Edfors et al. [13, 14, 15], as outlined in Section 2.2.2, 

with the sole difference that iv|*p-tap estimation filters are invoked in the CIR-related domain in-

stead of one-tap filters. More explicitly, filtering of the specific Z-th CIR-related tap in the time-

direction is performed by capitalizing on the current value haptin, I] and on the (iv|fp — 1) previous 

values haptin — n,l]. This process is illustrated in Figure 2.3. As a result, in the case of estimation 

filtering [17] an improved a posteriori estimate hapt[n, I] of h[n, I] is obtained. By contrast, in case 

of prediction filtering, which will be the topic of Section 2.2.4 an a priori estimate hapr[n 4-1, Z] of 

/i[n + 1, /] is obtained. 

''The basic difference of time-direction channel prediction- and estimation filtering is that in the former an a priori 
channel transfer function estimate for the next OFDM symbol is obtained, while in the latter an improved a posteriori 
channel estimate for the current OFDM symbol. 
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estim. 

Figure 2.3: Stylized illustration of the estimation and prediction filter, both operating in the CIR-related 
domain using number of previous a posteriori CIR-related tap estimates. In the context 
of estimation filtering improved a posteriori tap estimates are generated for the current OFDM 
symbol period, while in the context prediction filtering a priori tap estimates are computed for 
the next OFDM symbol period. 

2.2.3.2 Estimator MSE for Mismatched Channel Statistics 

The salient contribution of Li et al [17] was the investigation of the channel estimator's MSE un-

der mismatched channel conditions, where the spaced-time- spaced-frequency correlation function 

defined in Figure 6.2 and assumed in the calculation of the channel estimator coefficients actually 

differed from those of the transmission channel. Note that these investigations were conducted un-

der the assumption of employing the a posteriori least-squares channel transfer factor estimates 

Hapt[n — ^], n = 1 , . . . , DO, k = 0,... , K — 1 associated with an infinite number of past 

OFDM symbols in the 2D-MMSE estimation process. Let us summarize now the most significant 

associated aspects: 

1. MMSE Upper Bound for Channels Band-Limited to ujd = 27r/_D [17]. From the set of all 

possible channels band-limited to Jd the channel estimator exhibits the worst MSE for trans-

mission over a channel having an ideally band-limited spaced-time correlation function, with 

associated Doppler-power spectral density function of: 

SH,unif{fd) 
2% ,̂ < / O 

0, otherwise. 
(2.10) 
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In this case the MMSE averaged over the K subcarriers is given by [17]: 

/ \ 

l=Q 1 + ttA 
\ I wap j / 

(211) 

In Equation 2.11 Wf, is defined as u d — SttFd, where F n is the OFDM symbol normalized 

Doppler frequency. Furthermore, the variable p is defined as the reciprocal of the average 

SNR, namely as p = 1/SNR, and I G ( 0 , . . . ,K - 1} denotes the l-th eigenvalue^ of 

the EVD of the spaced-frequency channel correlation matrix R M . Please also note that in 

contrast to [17] here the first subcarrier is denoted by the index zero. 

2. Spaced-Time Correlation Function Mismatch [17]. Let us assume that the spaced-frequency 

correlation function f ^ [AA:] of the channel estimator matches that of the channel r^[AA:] 

and that the spaced-time correlation function f g [An] of the channel estimator is ideally band-

limited to f o having a PSD function of SH,unif{fd)- Assume furthermore that the spaced-

time correlation function [An] of the channel is associated with an arbitrary PSD function 

band-limited to / g . Then the estimator's MSB is given by 

3. Spaced-Frequency Correlation Function Mismatch [17]. Let us assume that the spaced-time 

correlation function [An] of the channel estimator matches that of the channel, namely 

f g [An]. Assume furthermore that the eigenvectors of the channel estimator's spaced-frequency 

correlation matrix R M - which constitute the column vectors of the unitary transform matrix 

- are identical to those of the channel's spaced-frequency correlation matrix Rt-̂ ^ - which 

constitute the column vectors of the unitary transform matrix Under these assumptions 

for a channel estimator having spaced-frequency correlation matrix related eigenvalues of 

[17]: 

for 0 <: Z jfo -- 1 . . . 

fc,r j % 0 f -- 1 

the estimator's MSE is identical for all channels having spaced-frequency correlation matrix 

related eigenvalues of = 0 for iCo < I < K — 1 and A^^ = i f .Note that these 

conditions can be directly derived from Equation 2.9 associated with the ID-MMSE channel 

estimator. As shown in [15, 17], the assumption of is reasonable, since both the 

^Note that in contrast to Li's discussions [17], where the Z-th eigenvalue is denoted by d;, here we follow the conven-
tional notation and denote the Z-th eigenvalue by 
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transform matrices UM and can be approximated by the DFT matrix W given by [17]: 

/ 1 1 1 \ 
g-j(2,r/;;r) . . . g-;(2,r(A'-l)/Ar) 

w = ^ (113) 

The average MSE of the robust estimator is hence given upon substituting the associated 

eigenvalues Q <l < K — I given by Equation 2.12 into Equation 2.11, yielding [17]: 

/ 

1 wjT I . (2.14) 

The implications of the above assumptions on the estimator's design are illustrated more 

explicitly in Figure 2.4. 

Li et al. [17] demonstrated furthermore that the MSE degradation incurred by a robust estimator 

having a spaced-time spaced-frequency correlation function (seen in Figure 6.2) associated with 

a uniform, ideally support-limited scattering function as stated in paragraphs 2) and 3) above is 

marginal compared to a relaxed-specification estimator, which only assumes a spaced-frequency 

correlation function associated with an ideally support-limited multipath intensity profile, as out-

lined in paragraph 3) while exactly matching the actual Doppler PSD of the channel. 

We emphasize that in the context of the above-mentioned robust estimator design identical CIR-

related domain filters are employed for filtering all the different Kq number of CIR-related taps. 

We note that the associated estimation filtering could also be performed in the frequency-domain by 

capitalizing on the same set of filter coefficients. Hence again, the disadvantage of performing K in-

dividual time-direction filtering operations related to the different subcarriers, instead of Kq number 

of time-direction filtering operations for the first Kq CIR-related taps is the associated higher com-

plexity. The assumption of employing an infinite number of previous a posteriori channel transfer 

function estimates in order to obtain an improved a posteriori channel transfer function estimate for 

the current OFDM symbol is unrealistic. Hence, Li et al. [17] also proposed a time-domain filter 

estimator, employing a finite number of previous CIR-related tap estimates. As expected, the MSE 

of this scheme is lower-bounded by the MSE of an estimator using an infinite number of previous 

CIR-related tap estimates, which was given in Equation 2.11. 

2.2.3.3 Motivation of Time-Direction Channel Prediction Filtering 

In [17] the improved a posteriori channel transfer factor estimates Hapt[n, k], k = 0 , . . . ,K — 1 

were employed as a priori decision-directed channel transfer factor estimates for the demodulation 

process during the (n + l)-th transmission timeslot. More explicitly, we have Hapr[n + 1, = 
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Hapt [^! 0] 
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Hapt\p^: 

CIR-related taps 
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Figure 2.4: 2D-MMSE channel estimator design proposed by Li et al. [17] replacing the 'Channel Estima-
tor' block of Figure 2.1. In contrast to the ID-MMSE channel estimator design of Edfors et 
al. [14, 15], portrayed in Figure 2.2, the 2D-MMSE channel estimator employs ClR-domain 
related estimation filters having a filter order higher than zero, potentially capitalizing on the a 
posteriori least-squares channel transfer factor estimates of several previously received OFDM 
symbols. In the lower half of this figure, the implications of the assumptions of robustness on 
the estimator design are illustrated. Specifically, the unitary matrix associated with the KLT 
and hosting the eigenvectors associated with the channel's spaced-frequency correlation matrix 

is substituted by the DFT matrix W of Equation 2.13. Furthermore identical filters having 

an impulse response c[n], n 

eigenvalues A'/' 

0 , . . . , TV, [i] 
tap 1 are employed in the context of the identical 

K 
Ko'- I = 0 , . . . ,Ko associated with the robust design instead of individual 

CIR-related tap-specific filters having different impulse responses Cest [n, /], n = 0 , . . . , Nl^p - 1 , 

1 = 0,... , i?o in the context of the individual eigenvalues I = 0,..., Kq associated with 
the optimum design. For notational simplicity we have defined in the schematic Kq = Kq — 1 
and K = K — 1. 



CfL4jDTER2. I)DCE.POR <%]VGLjS-[%)f%R CWRCWVf 32 

FD 0.007 0.01 0.05 0.1 

MSEjec,j|jB -30.14 -27.05 -13.07 -7.05 

Table 2.3: Approximate MSB according to Equation 2.19 induced by the channel's decorrelation observed 
between two successive OFDM symbols in the context of Jakes' model - as a function of the 
OFDM symbol normalized Doppler frequency Fd = f n T f . 

Hapt[n,k], k = 0 , . . . ,K — 1, which implies the assumption that the channel transfer function 

has not changed between the n-th and the (n + 1) — th transmission timeslot. The associated 

decorrelation-related mean-square channel transfer factor estimation error incurred by this assump-

tion can be quantified for any of the K subcarriers as: 

MSEdec[M, 

2 + 1, k]|2} - + 1, A:]}}) (2.15) 

(2.16) 

Assuming that the channel's Doppler power spectrum obeys Jakes' model [90], the spaced-time 

channel correlation function is given by j[An] = Jo{AnuJD) [17], where Joix) is the zero-

order Bessel function of its first kind, which can be approximated by [86, 91]: 

Jo(%) ^2 , 37 <K 1. (2.17) 

Hence, in the context of Jakes' model we obtain for the channel decorrelation-related estimation 

error: 

MSEdec,j[n, A] = 2(1 - JO(wd)) 

1 2 

(2.18) 

(2.19) 

Equation 2.19 has been evaluated for different values of the O F D M symbol normalized Doppler 

frequency of Fd = f o T j , which is related to by Wj) = 2'n:FD- The corresponding results 

are summarized in Table 2.3. We observe from Table 2.3 that depending on the value of Fd the 

channel-decorrelation-related estimation error associated with the assumption of Hapr[n + 1, A] = 

Hapt[n,k], k = 0,... , K - 1, may become excessive. This was the motivation for Tufvesson 

[80,29] as well as Al-Susa and Ormondroyd [18] to employ prediction filtering instead of estimation 

filtering along the time-direction. The specific structure of the time-direction prediction filter will 

be contrasted against that of the time-direction estimation filter of [17] in the next section, namely 

in Section 2.2.4. The stylised estimation and prediction process was portrayed in Figure 2.3. 
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2,2.4 M M S E A Priori Time-Direction Channel Prediction Filtering 

In the previous section estimation filtering of the CIR-related taps was employed for enhancing 

the performance of the decision-directed channel transfer function estimator using the schematic of 

Figure 2.4. By contrast, in this section we will highlight the structure of the MMSE a priori channel 

predictor, which operates along the time-direction [92, 18, 85, 87]. Initially we will not impose any 

of the robustness-related constraints, which were proposed in [17] and summarized in Section 2.2.3 

in the context of the two-dimensional channel estimator. Hence, the optimum design in the sense of 

a minimum channel prediction MSB obeys again the structure seen at the top of Figure 2.4. Most 

notably, different CIR-related tap prediction filters having coefficients of c[n, I], n = 0,... , iv£p—1 

for each of the l-th CIR-related taps, / e {0 , . . . , Kq — 1} axe. invoked for exploiting the correlation 

of the CIR-related taps along the time-direction. In contrast to the discussions of Section 2.2.3, the 

filters considered here are of finite order. We note that in the context of an optimum channel transfer 

function predictor design based on the unitary transform matrix U M seen in Figure 2.4, which 

hosts the eigenvectors of the spaced-frequency correlation matrix it would be incorrect to refer 

to the filtering along the time-direction as CIR tap filtering, since by definition the CIR is related to 

the 'frequency-continuous' channel transfer function by the Fourier Transform (FT). By contrast, 

in the context of the estimator considered here, a finite set of channel transfer function samples is 

transferred to a CIR-related domain by means of the unitary transform matrix UM. However, there 

is an exceptional case, where the CIR is obtained by subjecting the set of K number of channel 

transfer factors to the unitary matrix UM. This is when the CIR is sample-spaced^. Here we will 

employ the more general terminology of CIR-related tap prediction filtering, rather than CIR tap 

prediction filtering. 

The structure of Section 2.2.4 is as follows. In Section 2.2.4.1 the predicted a priori value for 

a specific CIR-related tap is expressed as a linear combination of past a posteriori CIR-related tap 

values. In Section 2.2.4.2 we define the a posteriori CIR-related tap values' auto-correlation matrix 

and cross-correlation vector, which are then employed in the context of Section 2.2.4.3 for deriving 

the Wiener equation with the aid of two different methods, namely the gradient approach [87] and 

the orthogonality principle [87]. The Wiener equation allows for a direct solution with respect to the 

desired vector of predictor coefficients, which will be outlined in Section 2.2.4.4. In the same section 

we also present an expression for the predictor MSB in the CIR-related domain under perfectly 

matched channel conditions, where the channel statistics invoked in the calculation of the predictor 

coefficients are identical to those of the channel encountered. Furthermore, in Section 2.2.4.5 the 

predictor's MSB under mismatched channel conditions will be considered. Finally in Section 2.2.4.6 

an expression for the average channel prediction MSB in the frequency-domain will be derived. 

^Note that in this case the unitary KLT matrix is identical to the DFT matrix W . 
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2.2.4.1 Linear Prediction of the CIR-Related Taps 

An a priori estimate hapr[n + 1, /] of the Z-th CIR-related tap for the (n + l)-th timeslot is given by: 

+ 1, /] = ^ ^ Cpfe\p>-̂  /] • (2.20) 
n = 0 

where 1 = 0,... , jfo --1. In Equation 2.20 the variable Cpre[n, /] denotes the n-th coefficient of the 

A/j^p-tap CIR-related tap predictor and hapt[n — n, I] represents the a posteriori estimate of the l-th 

CIR-related tap in the (n —n)-th timeslot, which is related to the a posteriori least-squares estimates 

Haptin — n,k], k = 0,... , i f — 1 of the channel transfer factors by the unitary transform matrix 

UM, as shown in Equation 2.4. Equation 2.20 can also be expressed in vector notation as; 

+ !,(] = Z], (2.21) 

where Cpre[l] E is the vector of CIR-related tap predictor coefficients: 

upreL == (c;rc[0,Z], c;rc[l,/], . . . , c;rc[;vigl , (2.22) 

and /] E is the sample vector containing the current and the previous - 1) a 

posteriori tap estimates at the /-th tap position: 

^apt\P'il\ — {j^apt\P'Tl\ihapt\P' i^apt^^tap • (2.23) 

The complex error between the true value /i[n + 1, /] of the /-th CIR-related tap with respect to the 

unitary transform matrix UM and its predicted value hapr[n + 1,1] can be expressed as: 

epj.g\n -J- 1, /] = h\n + 1, /] — [n, + 1, /]. (2.24) 

The two most prominent methods of inferring the vector of optimum CIR-related tap predictor coef-

ficients ^ are constituted by the gradient approach [92, 87] and the application of the orthogonality 

principle [92, 87]. 

2.2.4.2 Definition of the CIR-related Taps' Auto-Correlation Matrix and Cross-Correlation 

Vector 

It is convenient to define the auto-correlation matrix G of the CIR-related a 

posteriori tap estimates as well as the cross-correlation vector [Z] 6 ^^ between the 'true' 

'Unless otherwise stated, for the sake of conciseness we will refer to the CIR-related tap predictor coefficients simply 
as predictor coefficients. 
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CIR-related tap in the {n + l)-th timeslot and the CIR-related a posteriori tap estimates of the 

number of previous timeslots at the l-ih. tap position in advance. M o r e specifically, we have: 

:= J? (2.2:5) 

== 4- p i (2.26) 

== + f , I . (2.27) 

In Equation 2.26 = i ?{h [n , / ]h^ [n , / ] } 6 C^Lp^^Lp denotes the /-th CIR-related tap's 

spaced-time auto-correlation matrix of the 'true' CIR-related taps as hosted by the vector h[/] G 

By contrast, RM [Z] of Equation 2.27 denotes the normalized spaced-time auto-correlation 

matrix^, where the normalization has been performed with respect to the /-th eigenvalue of 

the spaced-frequency correlation matrix RM. Furthermore, the cross-correlation vector E 

M + (2.28) 

= rMm (2.2% 

= (2.30) 

In Equation 2.29 = E {h*[n + l,l]h[l]} 6 denotes the /-th CIR-related tap's 

spaced-time cross-correlation vector. By contrast, in Equation 2.30 rW[/] G denotes the 

/-th CIR-related tap's normalized spaced-time cross-correlation vector^. 

The difference between the CIR-related tap predictor considered here and the CIR-related tap 

estimator advocated by Li et al. [17] resides in the structure of the cross-correlation vector. Specif-

ically, as seen in Equation 2.28, the a priori predictor for the /-th CIR-related tap of the (n + l)-th 

transmission timeslot capitalizes on an estimate of the cross-correlation between the CIR-related 

tap expected during the (n + l)-th transmission time-slot and that of the current, namely the n-th, 

as well as the {Nf}^ — 1) previous transmission time-slots. By contrast, the improved a posteriori 

estimator for the /-th CIR-related tap of the current, namely the n-th, transmission time-slot capi-

talizes on the cross-correlation between the CIR-related tap expected during the n-th transmission 

time-slot and that of the n-th as well as the — 1) previous transmission time-slots. In the next 

paragraph Equations 2.27 and 2.30 will be invoked for deriving the optimum predictor coefficients 

with the aid of the gradient approach and by applying the orthogonality principle. 

^Note that = (1/A(^^)R(^^[Z]. As a result of the normalization the main diagonal elements of are unity. 
In case of channels having a separable spaced-time spaced-frequency correlation function r g ( A f , A / ) = r g ( A t ) • 
r / / ( A / ) as outlined in Section 6,2,6, the different CIR-related taps' normalized spaced-time correlation matrices are 
identical, namely = . , . = R''J[j£r — 1] and specifically they contain the samples of the normalized 

spaced-time correlation function r g ( A f ) . Specifically we have (AnTf), An = m — ng. 
' i n case of channels having a separable spaced-time spaced-frequency correlation function r g (A(, A / ) = r g ( A f ) • 

r ^ r ( A / ) as outlined in Section 6.2.6, the different CIR-related taps' normalized spaced-time cross-correlation vectors 
are identical, namely [o] = . , . = — 1] and specifically they contain the samples of the normalized 

spaced-time correlation function r n i A t ) . Specifically we have rMjni = r g ' ( ( l -t- n i ) T / ) . 
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2.2.4.3 Derivation of the Wiener Equation using the Gradient Approach or the Orthogonal-

ity Principle 

2.2.4.3.1 Gradient Approach Upon invoking the complex estimation error expression e\n+l,l] 

of Equation 2.24 the squared estimation error is formed, and its mean value is given by: 

J{Cpre[l]) = MSE(CpreM) (2.31) 

= + (2.32) 

= + 

+ MCpreM- (2.33) 

Recall that the auto-correlation matrix and the cross-correlation vector were defined 

by Equations 2.25 and 2.28. Furthermore note that = E{\h[n + 1, Z]p}. 

The vector Cpre[l]\opt of optimum predictor coefficients is identified by minimizing the value of 

the cost-function J{cpre[l])- Hence the gradient of J{cpre[l]) given by Equation 2.33 with respect 

to the conjugate complex vector of predictor coefficients is set to zero, which is expressed 

as: 

ac, preL 

= 0. (2.34) 

-preltjlopt 

Hence, upon invoking Equation 2.34 together with Equation 2.33 the set of number of Wiener-

Hopf equations [92, 93, 87] is obtained in vector notation as; 

— ^aptm '^^apt[^]^pre[l]\opt — (2.35) 
Cpre [̂ ] |opi 

from which the vector Cpre[l]\opt of optimum predictor coefficients can be inferred. 

2.2.4.3.2 Orthogonality Principle The orthogonality principle of MMSE optimization implies 

that the inner product related norm of the difference- or error vector between any vector contained 

in a vector space S and its projection onto a sub-space spanned by a specific number of data vectors 

is minimized in the sense of the expectation value, provided that the error vector is orthogonal to 

the above-mentioned sub-space [87]. Hence, in the context of the optimization problem considered 

here we obtain a set of equations: 

E |epre[w + 1, -I- n, / ] | = 0, n = — + 1) • • • , 0- (2.36) 

Equation 2.36 can be readily transferred into the form of Equation 2.35 by capitalizing on the 

definition of the tap prediction error signal epre[n + 1 J ] given by Equation 2.24 as well as on that 

of the predicted signal given by Equation 2.20 while invoking the definition of the auto-correlation 
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matrix R^ptf^] that of the cross-correlation matrix given by Equations 2.27 and 2.30, 

respectively, yielding: 

+ '^aptm^pre[l]\opt = 0. (2.37) 

2.2.4.4 Optimum Predictor Coefficients and Minimum CIR-Related Domain Predictor MSE 

Provided that the inverse of the auto-correlation matrix RapJ/] exists, which requires that R^pJ/] is 

of full rank [87], Equations 2.35 or 2.37 can be uniquely solved with respect to the vector Cpre[l]\opt 

of optimum predictor coefficients associated with the /-th CIR-related tap: 

CpreMlopt = (2.38) 

Hence by substituting the vector Cpre Ml opt of optimum predictor coefficients into the MSE expres-

sion of Equation 2.33, an equation is obtained for the minimum M S E (MMSE): 

MMSEapr M = MSEgpr MI (cpre M |op() (2.39) 

== -- (Z.'IO) 

2.2.4.5 Optimum Predictor Coefficients for Mismatched Channel Statistics 

In the context of deriving the vector Cpre[l]\opt of optimum predictor coefficients given by Equa-

tion 2.38 we have implicitly assumed perfect knowledge of the specific spaced-time correlation 

function associated with the /-th CIR-related tap, which appeared in the form of the auto-correlation 

matrix R[*] [/] in Equation 2.27 and in the form of the cross-correlation vector rM [/] in Equation 2.30. 

We also assumed perfect knowledge of the spaced-frequency correlation matrix R M , namely the 

knowledge of its EVD-related representation RW = associated with the unitary 

transform matrix and the diagonal matrix hosting the eigenvalues Ap^, / = 0 , . . . ,K — 1. 

Normally this knowledge is not explicitly available and hence the optimum coefficients are based 

on the corresponding "estimates" RW[/], fM[/] and RW, where R ^ can be decomposed according 

to RI-̂ 1 = We also need the estimates of the auto-correlation matrix R , ) ^ ^ o f the a 

posteriori CIR-related taps, which can be formulated by following the philosophy of Equation 2.27, 

yielding: 

== 4- pi, (2.41) 

where also a potentially imperfect estimate p of the reciprocal value p = 1/SNR of the SNR 

measured at the reception antenna has been invoked. Similarly, the cross-correlation vector of 

a posteriori CIR-related tap estimates can be expressed following the philosophy of Equation 2.30: 

W [;) = AWfl'Ipj. (2,42) ^apt 
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According to Equation 2.38 the vector Cpre[l]\opt of sub-optimum predictor coefficients is hence 

given by; 

^pre[l]\opt = M- (2.43) 

Furthermore, the CIR-related domain MSE achieved by this predictor in the context of an arbitrary 

vector CpreM of coefficients is given similarly to Equation 2.33 by: 

= 1.,'" - " 'CA^lSWvin + 

+ Cpre MK-Lx W lul/l 1 (2.44) 

where the auto-correlation matrix R-Qpt[Z]|u[/] of the l-th CIR-related tap conditioned on employing 

the unitary transform matrix is defined similarly to Equation 2.27 by: 

(2-45) 

By the same token the cross-correlation vector is defined similarly to Equation 2.30 by: 

WItjI/]- (2-46) 

The variable was defined earlier in Section 2.2.2.2 as the variance of the /-th CIR-related tap, 

which can be expressed as the /-th diagonal element of the decomposition of with respect 

to the unitary transform matrix LjW, namely as = (UW-^RWUW)[; ;]. Again, note that if 

t j f / ] = u M holds, we have Clearly, the predictor's MSE in Equation 2.44 is equal 

to or higher than the MMSE of Equation 2.40, since the latter assumes perfect knowledge of the 

channel statistics in the calculation of the predictor coefficients, yielding: 

A4SlEapr[Z]|(cr.[;]|.P,) ^ A/DVISEoprM. (2:47) 

Note again that the predictor MSE values delivered by Equations 2.40 and 2.44 for the cases of 

matched- and mismatched channel statistics, respectively, are valid for the CIR-related domain, 

observed on a per tap basis. In practice, the average predictor M S E evaluated in the frequency 

domain is however of more importance for the system's BER performance. 

2.2.4.6 Average Channel Predictor MSE in the Frequency-Domain 

Following the notation of [15], below we will characterize the O F D M system's symbol-averaged 

frequency-domain a priori estimation MSE. A rank-i^o predictor is used, where only the first Kq 

CIR-related tap values are retained as shown in Figures 2.2 and 2.4, while the CIR-related tap values 

associated with a higher index are set to zero for the sake of reducing the predictor's computational 

complexity. The corresponding MSE is given by: 

MSEoprlA-Q = ^Trace (E{Epre[M+l]|j<roB^g[n+l]|A'o}) , (2.48) 
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where the vector 'Epre[n+l]\Ko 6 of frequency-domain transfer factor error signals was 

generated with the aid of the KLT-matrix from the vector epre[n+l] \Ko G of CIR-

related domain error signals as follows: 

I A'o — ' (2.49) 

Recall that U M G is the matrix of eigenvectors associated with the EVD of the spaced-

frequency correlation matrix invoked in the calculation of the predictor 

coefficients. The individual components of the vector epre[m-t-l]|jCQ of CIR-related domain error 

signals were given in Equation 2.24, as the difference between the 'true' CIR-related tap values 

with respect to the transform U M and its predictions, where again, in the context of a rank-iiTo 

predictor, the predicted CIR-related taps fox I — KQ, ... ,K — 1 are set to zero. Upon substituting 

Equation 2.49 into Equation 2.48 we obtain: 

1 
k o = ;^Trace (2.50) 

1 
^Trace (^{epre[n+l]|Aroepre[n+l]ko}) , (2.51) 

where in Equation 2.51 we have exploited that Trace ( U A U ' ^ ) = Trace(A) for any unitary matrix 

U [15, 94]. Note that the first KQ diagonal elements of the matrix £ '{epre[«+l] |K'o®^e["+l]l^o} 

are equal to the CIR-related tap predictors' MSE values given by Equation 2.44, while the diagonal 

elements associated with a higher index are equal to the CIR-related tap values' variances - condi-

tioned on employing the unitary transform matrix U M . This is, because for these taps associated 

with indices I = KQ ... , i f — 1 the a priori predictions hapr [m4-1, Z] are not available and therefore 

we have 1, Z]l^} = /]|^} = Hence, Equation 2.51 can be reformulated 

as: 

^ ATO-L . K-L 

MSEaprlfTo ^ 
/=0 1—Kq 

Since in general perfect knowledge of the channel statistics is not available, we will highlight in 

Section 2.2.5 the philosophy of a number of potential strategies that can be invoked for providing 

estimates of the channel statistics, including Li's approach [17] for rendering the predictor as robust 

as possible. 

2.2.5 Channel Statistics for A Priori Time-Direct ion C h a n n e l Predict ion Filtering 

As we observed in Equation 2.43, evaluating the l-th CIR-related tap's prediction filter coefficients 

requires estimates R|^[Z] and of this tap's auto-correlation matrix and cross-correlation vec-

tor, respectively. To elaborate a little further, these correlation-related quantities could be calculated 

according to Equations 2.27 and 2.30 upon stipulating the availability of an estimate of the spaced-

frequency correlation matrix's /-th eigenvalue of the reciprocal of the SNR p = 1/SNR at the 
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reception antenna, and that of the channel's spaced-time correlation function, These esti-

mates will be provided in Section 2.2.5.1 upon invoking again the concepts of robustness to channel 

statistics variations, as discussed by Li et al. [17] in the context of DDCE. On the other hand, the 

/-th CIR-related tap's auto-correlation matrix and cross-correlation vector could also be assembled 

from the auto-correlation function of this tap, which can be estimated on the basis of Mg number 

of CIR-related tap values. Before continuing our discourse we note that these issues will be further 

detailed in Section 2.2.5.2. 

2.2.5.1 Robust A Priori Time-Direction Channel Prediction Filtering 

While in Section 2.2.5.1.1 we will briefly revisit the fundamental concepts of a robust channel 

estimator introduced by Li et al. in [17], in Section 2.2.5.1.2 we will offer a number of conclusions 

assisting in the design of a robust channel predictor. 

2.2.5.1.1 Review of Robust Channel Estimation In Section 2.2.4 we highlighted the concept 

of a robust channel estimator as proposed by Li et al. [17]. The conclusion was that an improved a 

posteriori channel transfer function estimator, which capitalizes on an infinite number of previous 

initial a posteriori channel transfer function estimates can be rendered insensitive to the exact chan-

nel statistics. Arriving at such a robust design requires first of all that the spaced-time correlation 

function f g [An] assumed in the calculation of the channel transfer function estimator's coefficients 

derived for the time-direction filter is ideally limited to the frequency-band of wg. Secondly, it was 

required that the spaced-frequency correlation matrix of the channel transfer function estimator 

can be eigen-decomposed, such that r W = where the matrix t j W of eigenvectors 

is identical - with tolerable leakage [17] - to the exact matrix of eigenvectors associated with 

the "true" spaced-frequency correlation matrix of the channel. We note here that both of the 

matrices and are unitary and can in turn be approximated by the DFT matrix W as we 

already argued in the context of Section 2.2.3.2. Furthermore, it is assumed that the diagonal matrix 

AM hosts KQ identical eigenvalues of = K/KQ found in the first KQ diagonal positions of 

the matrix, while the remaining {K — KQ) number of eigenvalues are equal to zero. Under these 

conditions the channel estimator's MSE performance is invariant for all channels, which have a 

spaced-time correlation function r^^[An] that is limited to the frequency-band of UD but not neces-

sarily ideally low-pass shaped and with an arbitrary spaced-frequency correlation function r^[AA:], 

provided that the related spaced-frequency correlation matrix R M can be eigen-decomposed such 

that the energy conveyed by the channel is mapped to the KQ lowest eigenvalues In this case the a 

posteriori channel estimator's MSE is given by Equation 2.11. It was furthermore demonstrated in 

'"Note that in the context of employing the DFT matrix W of Equation 2.13 as the unitary transform matrix this 
is only true for sample-spaced CIRs 
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[17] and also argued in Section 2.2.4 that in a robust estimator design identical sets of predictor co-

efficients" are associated with the different CIR-related taps' time-direction filters. The schematic 

of the corresponding channel estimator was shown at the bottom of Figure 2.4. This also implies 

that the estimation filter associated with each CIR-related tap is designed for the same maximum 

Doppler frequency. 

2.2.5.1.2 Design of the Auto-Correlation Matrix and Cross-Correlation Vector of a Robust 

Channel Predictor The same concepts of robustness can also be applied to the a priori chan-

nel predictor advocated here, although in contrast to the a posteriori channel estimator of [17] an 

estimate of the channel transfer function is obtained for the (n + l ) - th timeslot instead of generat-

ing an improved estimate for the current timeslot, namely for the n- th timeslot. More specifically, 

as highlighted above, identical eigenvalues of = K/KQ, I = 0 , . . . , — 1 are employed 

in the calculation of the Kq number of CIR-related taps' predictor coefficients. Furthermore, the 

maximum Doppler frequency associated with each of the CIR-related taps' spaced-time correla-

tion functions [An] is assumed to be identical. Hence identical sets of predictor coefficients are 

obtained for the different CIR-related taps, which allows us to drop the index I of the specific CIR-

related tap considered. Based on Equation 

CIR-related tap estimates is thus given by: 

related tap considered. Based on Equation 2.41 the auto-correlation matrix of a posteriori 

+ Pl- (2,53) 

In Equation 2.53 the auto-correlation matrix RW|ro6 of CIR-related tap estimates is defined in the 

absence of noise on the basis of the spaced-time correlation function r | | [An] |ro6 associated with 

an ideal low-pass shaped PSD having a cut-off frequency of LOD , which results in the sinc-shaped 

correlation function of; 

(2.54) 

= sinc(An • a;£)), (2.55) 

where A n — ng — n i and UJD = SttFd. We note that in the case of a slot-by-slot TDD system each 

downlink transmission timeslot is followed by an uplink transmission timeslot and vice versa. Hence 

the effective temporal distance between consecutive OFDM symbols is doubled in comparison to 

that of a scheme having bursts of multiple consecutive downlink timeslots. This has to be considered 

in the evaluation of the predictor-related correlation matrices with the aid of Equation 2.55. Upon 

substituting and i^apt\rob = rM|ro6 into Equation 2.43 the set of predictor coefficients 

associated with the robust CIR-related tap predictor is obtained. 

" a prerequisite was the separability of the channel's spaced-time spaced-frequency correlation function, which was 
discussed in Section 6.2.6. 
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We note furthermore that in case of the finite-order predictors as considered here, the properties 

of robustness with respect to the specific shape of the channel's Doppler power density spectrum -

as highlighted for the case of an infinite-order estimator - are only approximately valid. This will be 

further elaborated on during our performance assessment of the various techniques in Section 2.3. 

2.2.5.2 Adaptive A Priori Time-Direction Channel Prediction Filtering 

In the absence of any a priori knowledge concerning the channel's statistics, such as for example 

the maximum Doppler frequency of the channel, the CIR-related tap predictors' coefficients must 

be calculated on the basis of a finite set of for example Mg number of past OFDM symbols' a 

posteriori CIR-related tap estimates hapt[i^ — n, I], n — 0 , . . . , Mg — 1,1 = 0 , . . . ,K — I. An 

intuitive method of determining the f-th CIR-related tap's correlation values [An, I] const!-
"opt 

tuting the auto-correlation matrix R|^pjn,/] and the cross-correlation vector r | fp jn , / ] defined in 

Equations 2.25 and 2.28, respectively, is given by [86]; 
2 Ms—An 

^ M - An E [(" - (2 56) 

n=0 

where the calculation is performed for the n-th transmission timeslot on the basis of the a posteriori 

CIR-related tap samples of the current plus the previous Ms — 1 timeslots. 

From the literature of predictive speech coding [83] for example, its known that the accuracy of 

linear prediction is extremely sensitive to the method of estimating the correlation values f^ ' [An, /]. 

A number of algorithms have been proposed in the literature for determining the predictor coeffi-

cients, such as the Levinson-Durbin algorithm and the related Burg algorithm [86, 83]. The em-

ployment of these algorithms in the context of channel transfer function prediction for OFDM has 

also been investigated by Al-Susa and Ormondroyd in [18]. In the context of employing an adaptive 

predictor instead of updating the CIR-related tap predictors' coefficients on a block basis, they could 

also be updated on an OFDM symbol-by-symbol basis with the aid of the RLS-algorithm [87]. This 

approach will be investigated in the context of PIC-assisted DDCE designed for multi-user OFDM 

systems in Section 3.5. Let us now embark in the next section on the characterization of both the 

robust- and the adaptive channel transfer function predictor in terms of their MSE performance. 

2.3 Performance Assessment of Decision-Directed Channel Prediction 

Assisted OFDM with Fixed Modulation 

In the context of our performance assessment presented here the indoor WATM channel- and system 

model of Section 6.1.1 is invoked. Specifically, due to the sample-spaced nature of the indoor 

WATM channel's associated CIR, the DFT can be employed for perfectly decorrelating the least-

squares channel transfer factor estimates with respect to the frequency-direction. To elaborate a little 
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KQ, KQ 

Fn, Fn 

Sampling period duration normalized multipath spread 

OFDM symbol normalized Doppler frequency 

Reciprocal of the SNR 

Length- or range of the CIR-related tap prediction filter 

Number of subcarriers per OFDM symbol 

Table 2.4: Summary of the parameters influencing the MSE performance of the robust decision-directed 
channel predictor, which follows the concepts of the robust decision-directed channel estimator of 
Figure 2.4. Error-free symbol decisions and the absence of ICI is assumed in the corresponding 
experiments. The parameters associated with the channel predictor are distinguished from those 
of the channel by (). 

further, the Eigenvalue Decomposition (EVD) of the sample-spaced channel's spaced-frequency 

correlation matrix given by is such that the EVD-related unitary transform 

matrix u M is identical to the DFT matrix W of Equation 2.13 and the eigenvalues found on the 

main diagonal of AM are given by the CIR tap variances. 

The structure of Section 2.3 is as follows. In Section 2.3.1 we will assess the MSE performance 

of a decision-directed channel predictor, which adopted the philosophy of the robust approach pro-

posed by Li et al. in [17], while in Section 2.3.2 its MSE is contrasted to that of the adaptive 

decision-directed channel predictor proposed by Al-Susa and Ormondroyd in [18]. Furthermore, in 

Sections 2.3.3 and 2.3.4 the robust channel predictor's MSE performance, as well as the associated 

BER performance will be evaluated in the context of a system using no channel coding, upon invok-

ing sliced and hence potentially error-prone symbol decisions in the process of decision-directed 

channel prediction. By contrast, in Section 2.3.5 we will evaluate the BER performance of a turbo-

coded system, which employs robust decision-directed channel channel prediction. 

2.3.1 M S E Performance of a Robust Dec is ion-Directed C h a n n e l Predictor in the 

Context of Error-Free Symbol Decis ions 

As a consequence of the sample-spaced nature of the indoor WATM channel model's associated 

CIR employed here, according to our arguments presented concerning the robust channel estimator 

in Sections 2.2.3.2 and 2.2.5.1.1, an identical MSE performance is expected for any other sample-

spaced CIR, provided that the multipath delay spread of the CIR normalized to the sampling period 

duration, namely KQ = T^/Tg is lower than that employed in our simulations. This is because 

for a sample-spaced CIR all of the channel's energy is mapped to the KQ number of significant 

CIR-related taps' output by the inverse unitary linear transform employed for generating these taps 

from the frame of frequency domain channel transfer function samples. By contrast, this is only 

approximately valid for non-sample-spaced channels, as will be demonstrated in the context of our 

investigations of DDCE for multi-user OFDM in Section 3. 
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In the context of the simulation results presented in Section 2.3.1 a spaced-time correlation func-

tion [An] as given by Equation 2.55, which follows the concepts of robustness outlined in Sec-

tion 2.2.5.1.2 was associated with the channel predictor, while a spaced-time correlation function 

obeying Jakes' model [90] was associated with the specific transmission channel actually encoun-

tered. 

The further structure of Section 2.3.1 is as follows. Our M S E performance assessment com-

mences in Section 2.3.1.1 by considering a scenario, where the normalized multipath spread Kq = 

Tm/Ts and the OFDM symbol normalized Doppler frequency FD , as well as the inverse of the SNR 

at the reception antenna, namely p, associated with the channel predictor are identical to that of the 

channel, namely to KQ, FJJ and p, respectively. By contrast, in the context of our investigations 

to be outlined in Section 2.3.1.2 the OFDM symbol normalized Doppler frequency FD associated 

with the channel predictor, was fixed, while that associated with the specific channel encountered, 

namely, FD, was varied across a range of values. Furthermore, in Section 2.3.1.3 the effects of 

a mismatch between the inverse of the SNR, p, associated with the channel predictor, and that of 

the channel, namely p are investigated. In Section 2.3.1.4 we continue our discourse by studying 

the effects of a misadjustment between the normalized multipath spread, KQ, which is associated 

with the channel predictor, and KQ, associated with the specific channel encountered. Finally, in 

Section 2.3.1.5 we offer some conclusions. 

In Table 2.4 we have summarized again the specific parameters, which influence the MSE perfor-

mance of the robust decision-directed channel predictor in the context of idealized error-free symbol 

decisions and in the absence of ICI. Our results related to potentially erroneous, sliced symbol de-

cisions will be presented at a later stage in Section 2.3.3. 

2.3.1.1 MSE Performance under Matched Channel Conditions 

Initially we will assume employing "robust" prediction filter coefficients, which are perfectly matched 

to the specific channel conditions encountered. More specifically, the SNR experienced at the recep-

tion antenna is identical to that assumed in the calculation of the predictor coefficients, expressed in 

terms of the effective noise variance as p = p. Furthermore, the OFDM symbol normalized Doppler 

frequency assumed in the coefficients' calculation was identical to that of the channel, namely we 

had = Fj:t. 

In Figure 2.5 we have portrayed the MSE exhibited by the a priori channel predictor as a func-

tion of the SNR recorded at the reception antenna and experienced in different propagation scenarios 

characterized by their specific OFDM symbol normalized Doppler frequency denoted by Fj). Var-

ious CIR-related tap prediction filter lengths ranging between one and 64 taps were invoked. We 

observe that with the aid of a modest prediction filter length of approximately four to eight taps 

already most of the channel's correlation in the time-direction can be exploited. Hence, an even 
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Figure 2.5; Mean-Square Error (MSE) exhibited by the robust decision-directed a priori channel pre-
dictor, which follows the philosophy of Figure 2.4, as a function of the Signal-to-Noise Ratio 
(SNR) at the reception antenna. Error-free symbol decisions and prediction filter lengths of up 
to 64 taps were used in the "frame-invariant" fading indoor WATM channel environment of 
Figure 6.1 at OFDM symbol-normalized Doppler frequencies of F o = 0 . 1 (top left), 0.05 (top 
right), 0.01 (bottom left) and 0.007 (bottom right); the variance of the AWGN was = 2; 
the CIR window size was Kq = 12 taps. The results were evaluated from Equation 2.52. 
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Figure 2.6; Mean-Square Error (MSE) exhibited by the robust decision-directed a priori channel pre-
dictor, which follows the philosophy of Figure 2.4, as a function of the OFDM symbol normal-
ized Doppler frequency FD • Error-free symbol decisions and prediction filter lengths of up 
to 64 taps were used in the "frame-invariant" fading indoor WATM channel environment of 
Figure 6.1 at Signal-to-Noise Ratios (SNRs) of 7.5dB (top left), 15.0di? (top right), 22.5dB 
(bottom left) and SO.OdB (bottom right); the variance of the AWGN was cr̂  = 2; the CIR 
window size was Kq = 12 taps. The results were evaluated from Equation 2.52. 
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further increase of the prediction filter's length results in no substantial additional channel predic-

tion gain, only in further noise mitigation. This is because a higher-order prediction filter produces 

its output based on a higher number of input samples and hence averages the additive noise sam-

ples more efficiently, which results in a reduced noise variance. This phenomenon is reflected by 

the parallel nature of the MSB curves corresponding to a relatively high number of CIR-related tap 

prediction filter coefficients. 

Similar conclusions can be drawn from Figure 2.6, where we have portrayed the MSB exhibited 

by the predictor as a function of the OFDM symbol normalized Doppler frequency for specific 

values of the SNR. Again, CIR-related tap prediction filter lengths ranging between one and 64 

coefficients were invoked. At higher SNRs, where the Wiener filter based predictor is only required 

to compensate for the decorrelation of the channel, rather than mitigating the receiver's residual 

AWGN, a tremendous beneficial impact is observed even in conjunction with prediction filters of a 

relatively low number of coefficients. 

2.3.1.2 MSE Performance under Mismatched Channel Conditions with Respect to the Doppler 

Frequency 

So far the robust channel predictor's a priori MSB performance has been investigated in the spe-

cific scenario, where its design parameters have been perfectly matched to the channel conditions 

encountered, as outlined at the beginning of this section. Let us now investigate the impact of a 

mismatch between the OFDM symbol normalized Doppler frequency F u observed on the channel 

and that assumed in the calculation of the predictor coefficients, namely Fo ju t e r — FD- Hence in 

Figure 2.7 we have portrayed the MSE of the channel predictor as a function of the OFDM symbol 

normalized Doppler frequency of the channel, while employing predictor coefficients optimized for 

a specific OFDM symbol normalized Doppler frequency FD , that was potentially different from that 

of the channel encountered. For comparison we have also plotted the MSB performance in the con-

text of employing the optimum "robust" CIR-related tap prediction filter coefficients, which match 

the channel conditions in terms of both the OFDM symbol normalized Doppler frequency and the 

SNR measured at the receiver antenna. A fixed CIR-related tap prediction filter length of four taps 

was assumed. The simulation results have additionally been parameterized with the SNR measured 

at the receiver antenna, which was assumed to match the SNR employed in the CIR-related tap's 

prediction filter coefficient calculation. As expected, in Figure 2.7 an MSB degradation is observed 

in case of encountering mismatched channel Doppler frequencies. An important characteristic of 

these MSB curves, which motivated the introduction of the terminology of "robust" estimator by Li 

et al. [17] in the context of infinite-order channel estimators is that only a marginal MSE degrada-

tion is observed under channel conditions, where the associated OFDM symbol normalized Doppler 

frequency FD is lower, than the Doppler frequency F ^ assumed in the CIR-related tap prediction 
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Figure 2.7: Mean-Square Error (MSB) exhibited by the robust decision-directed a priori channel pre-
dictor, which follows the philosophy of Figure 2.4, as a function of the channel's OFDM symbol 
normalized Doppler frequency Fn. The results were recorded for different values of the Signal-
to-Noise Ratio (SNR) at the reception antenna, using error-free symbol decisions and a CIR-
related tap prediction filter length of 4 taps in the "frame-invariant" fading indoor WATM 
channel environment of Figure 6.1. Fixed OFDM symbol normalized Doppler frequencies of 
FD,filter = FD of 0.1 (top left), 0.05 (top right), 0.01 (bottom left) and 0.007 (bottom right) 
were assumed in the calculation of the CIR-related tap predictor's coefficients; the variance of 
the AWGN was = 2; the CIR window size was KQ = 12 taps. The results were evaluated 
from Equation 2.52. 
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Figure 2.8: Mean-Square Error (MSE) exhibited by the robust decision-directed a priori channel predic-
tor, which follows the concepts of Figure 2.4, as a function of the Signal-to-Noise Ratio (SNR) 
at the reception antenna. A fixed OFDM symbol normalized Doppler frequency of Fn = 0.1, 
error-free symbol decisions and a CIR-related tap prediction filter length of 4 taps was used in 
the "frame-invariant" fading indoor WATM channel environment of Figure 6.1. Fixed SNRs 
were assumed in the calculation of the predictor coefficients, regardless of the SNR encountered 
on the channel (left) and for perfectly matched conditions as a function of the CIR window size 
KQ (right); the variance of the AWGN was = 2; in the former case characterized in the 
left-hand-side illustration the CIR window size was Kq = 12 taps. The results were evaluated 
from Equation 2.52. 

filter's coefficient calculation, compared to the ideal case, when FD matches FD. We note that 

in the context of the finite-order prediction filters considered here, the insensitivity of the MSE to 

the Doppler frequency encountered is only approximate due to the filters' imperfections imposed by 

their finite order, which manifests itself in terms of a less selective frequency domain representation. 

By contrast, if the Doppler value F ^ associated with the channel encountered exceeds the specific 

F u value associated with the predictor design, an MSE degradation is observed in comparison to the 

case, when both values are identical. This is, because significant spectral components are removed 

from the fading signal's frequency domain representation associated with each of the CIR-related 

taps. 

2.3.1.3 MSE Performance under Mismatched Channel SNR Conditions 

In the previous paragraph we investigated the influence of a mismatch between the Doppler fre-

quency FD assumed in the calculation of the CIR-related tap prediction filter's coefficients and the 

actual Doppler frequency FD observed on the channel. Similarly, an MSE degradation is observed. 
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if the SNR assumed in the coefficient calculation differs from that measured at the reception an-

tenna. As an example, the MSE degradation incurred has been analytically evaluated for a scenario 

associated with an OFDM symbol normalized Doppler frequency of FD = 0.1 observed on the 

channel, which was also assumed in the filter calculation. A filter length of 4 taps was used. The 

SNR at the reception antenna was varied between OdB and 40dB, while the SNR invoked in the filter 

calculation was fixed to specific values. The corresponding results are portrayed in the left graph of 

Figure 2.8. In order to justify and interpret the evolution of the different curves please recall from 

Section 2.2.4 the mechanisms associated with the operation of the Wiener prediction filter. More 

specifically, a trade-off has to be found between the mitigation of the AWGN and the error incurred 

as a result of the decorrelation of the channel between the transmission of two consecutive OFDM 

symbols. If the SNR actually measured at the reception antenna is lower than the SNR assumed in 

the CIR-related tap prediction filter's calculation, an MSE degradation is incurred, since the miti-

gation of the channel decorrelation is over-weighted, while that of the noise is underestimated. By 

contrast, if the SNR at the reception antenna is higher than the SNR assumed in the filter calcula-

tion, the channel's correlation along the time-direction is not optimally exploited and the AWGN 

mitigation is over-emphasized. As a result a residual MSE is observed even at high channel SNRs. 

2.3.1.4 MSE Performance under Mismatched Multipath Spread Conditions 

So far we have assumed a fixed CIR window size - or sampling period duration normalized multipath 

spread - of KQ = 12 CIR-related taps in our analytical evaluations, which - in conjunction with 

K = 512 subcarriers associated with the indoor WATM system model of Section 6.1.1 - resulted 

in a "filter noise reduction factor" [89] of K Q / K % 0.0234 or equivalendy K O / K \ D B ~ — W . M B 

as a consequence of setting the remaining CIR-related taps to zero. In other systems the maximum 

CIR-induced delay spread will be potentially different from that of the 12 taps of the indoor WATM 

channel model and hence KQ would have to be adjusted accordingly. At this stage we recall that it 

was demonstrated for example in Equation 2.11 for an idealized channel estimator, which capitalizes 

on an infinite number of previous initial least-squares channel transfer factor estimates that the 

estimator's MSE achieved is a function of the product { K O / K ) p , where p = 1 /SNR. Furthermore, 

this is also the case for the channel predictor considered here, where an increase of the factor KQ/K 

due to considering a longer CIR can be compensated by increasing the SNR i.e the transmitted 

signal's power, if this is deemed acceptable in the system considered. Hence, varying the factor 

KQ/K results in a horizontal shift of the MSE versus SNR curves, where the SNR is associated 

with the abscissa axis. This is illustrated in the right graph of Figure 2.8 for values of KQ ranging 

from 16 to 128 in comparison to KQ = 12 used as a reference and for a fixed number of K = 512 

subcarriers. 
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2.3.1.5 Conclusions on the MSE Performance of Robust Decision-Directed Channel Predic-

tion in the Context of Error-Free Symbol Decisions 

In Section 2.3.1 the robust decision-directed channel predictor's M S E performance was assessed in 

the context of error-free symbol decisions as a function of a variety of system parameters. Specif-

ically, in Section 2.3.1.1 we investigated the influence of the number of predictor coefficients and 

that of the channel's OFDM symbol normalized Doppler frequency on the predictor's MSE versus 

SNR performance. We found that using four predictor taps was sufficient for exploiting most of the 

channel's correlation in the time-direction. This was concluded on the basis of the quasi-parallel 

nature of the MSE curves recorded for a higher number of prediction filter taps. Our further in-

vestigations in Section 2.3.1.2 were focused on the effects of a misadjustment between the OFDM 

symbol normalized Doppler frequency of the channel - associated with the Jakes' spectrum [90] -

and that associated with the robust channel predictor's uniform Doppler power spectrum invoked in 

the calculation of the CIR-related tap prediction filter coefficients. We observed even for a relatively 

modest number of four prediction filter taps that the channel predictor's MSE was relatively insensi-

tive to the OFDM symbol normalized Doppler frequency of the channel, provided that the Doppler 

frequency encountered was lower than that assumed in the design of the predictor. Furthermore, 

in Section 2.3.1.3 we evaluated the predictor's sensitivity with respect to a misadjustment of the 

SNR encountered at the reception antenna and that employed in the calculation of the predictor's 

coefficients. We found that at SNRs lower than that associated with the design of the predictor, the 

MSE was degraded, while for SNRs higher than that assumed in the calculation of the predictor, 

an MSE floor was experienced. This MSE floor was encountered, because the channel's correlation 

was not optimally exploited. Our investigations were concluded in Section 2.3.1.4 by assessing the 

influence of the number of significant CIR-related taps on the predictor's MSE performance. We 

found that for a higher number of taps the MSE versus SNR curves were shifted towards higher 

SNRs, since more of the AWGN was retained. 

2.3.2 M S E Performance of an Adaptive Decision-Directed Channel Predictor in the 

Context of Error-Free Symbol Decisions 

In this section we will assess the MSE performance of the adaptive decision-directed channel predic-

tor briefly addressed in Section 2.2.5.2, where the different CIR-related taps' predictor coefficients 

are obtained with the aid of the Burg algorithm [86, 83] on the basis of the statistics estimated from 

actual CIR-related tap samples, as advocated by Al-Susa et al. [18]. We have listed the relevant 

system parameters in Table 2.5. Recall that in our investigations of the robust channel predictor 

in Section 2.3.1, we had to explicitly specify the SNR and the OFDM symbol normalized Doppler 

frequency assumed in the CIR-related tap predictor's calculation as additional parameters, which 

are potentially different from those actually observed on the channel encountered. By contrast, both 
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Table 2.5: Summary of the parameters influencing the MSE performance of the adaptive decision-directed 
CIR-related tap predictor in the context of error-free symbol decisions and in the absence of ICI. 

of these parameters are implicitly specified in the context of the adaptive channel prediction pro-

cess investigated here by the number Ms of the CIR-related tap samples involved in the estimation 

of the channel's statistics. In addition to the parameters listed in Table 2.5 the particular shape of 

the power-delay profile will also affect the channel predictor's M S E performance. Please note that 

during our forthcoming MSE investigations of this section we have neglected the boundary effects 

related to the predictor's potentially impaired performance during the algorithm's startup phase, 

when the required Mg number of channel samples is not yet available. 

The further structure of Section 2.3.2 is as follows. In Section 2.3.2.1 we portray the adap-

tive channel predictor's MSE performance as a function of the S N R encountered at the reception 

antenna in the context of various OFDM symbol normalized Doppler frequencies, FD, and ad-

ditionally parameterized with the number of samples Mg invoked in the Burg algorithm assisted 

evaluation of the CIR-related tap predictor's coefficients. Based on these MSE performance results, 

in Section 2.3.2.2 the MSE performance results of Section 2.3.1.1 associated with the robust chan-

nel predictor recorded in the context of perfectly matched channel conditions of KQ — KQ as well 

as FD = FD and p = p will be compared to those of the adaptive channel predictor. Further-

more, in Section 2.3.2.3 the adaptive channel predictor's MSE performance achieved in conjunction 

with various sample-spaced negative exponentially decaying multipath intensity profiles will be 

compared to that associated with a sample-spaced uniform multipath intensity profile. Finally, in 

Section 2.3.2.4 we will offer our conclusions with respect to the comparison of the robust- and 

adaptive decision-directed channel predictors. 

2.3.2.1 MSE Performance under Matched Channel Conditions as a Function of the Number 

of Samples invoked in the Predictor Design 

In Figure 2.9 we have evaluated the MSE exhibited by the Burg algorithm assisted decision-directed 

channel predictor as a function of the SNR recorded at the reception antenna in the context of 

the indoor WATM channel model of Figure 6.1 using various O F D M symbol normalized Doppler 

frequencies FD and a fixed predictor length of 4 taps. The predictor's MSE has been parameterized 
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Figure 2.9: Mean-Square Error (MSE) exhibited by the Burg algorithm assisted decision-directed a pri-
ori channel predictor as a function of the Signal-to-Noise Ratio (SNR) at the reception antenna. 
The results are parameterized with the number of samples Ms invoked in the Burg algorithm. 
Error-free symbol decisions were used and a prediction filter length of 4 taps was employed in 
the "frame-invariant" fading indoor WATM channel environment of Figure 6.1. The OFDM 
symbol-normalized Doppler frequencies used were FD of 0.1 (top left), 0.05 (top right), 0.01 
(bottom left) and 0.007 (bottom right). The variance of the AWGN was cr̂  = 2. The CIR 
window size was KQ = 12 taps. 
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with the number of time-direction CIR-related tap samples Ms considered in the estimation of the 

individual CIR-related taps' correlation inherent in the Burg algorithm, in form of the spaced-time 

correlation function associated with each CIR tap's fading process. We observe a reduction of the 

MSE along with an increasing number of samples Ms invoked. This is due to the increased accuracy 

of the estimated channel statistics. However, when the number of channel samples is in excess of 

about Ms = 64, only a marginal further MSE reduction can be observed. 

2.3.2.2 MSE Performance in Comparison to that of the Robust Channel Transfer Function 

Predictor 

Upon comparing the MSE curves of Figure 2.9 for a sufficiently high number of time-direction 

CIR-related tap samples Ms to the MSE curves of Figure 2.5, which were associated with the robust 

channel predictor and were recorded for a prediction filter length of 4 taps, we observe furthermore 

that the adaptive Burg-algorithm based predictor outperforms the robust approach in terms of the 

achievable MSE by about 6dB, also depending on the specific channel SNR encountered. The mech-

anisms responsible for this improvement will be highlighted during our forthcoming discourse in 

this section. In the context of the simulation results presented here we employed the indoor WATM 

system model of Section 6.1.1, having a 3-path sample-spaced CIR. The non-zero CIR tap values are 

associated with the tap indices of 0, 6 and 11. While the robust channel predictor assessed in Sec-

tion 2.3.1 applied the same CIR-related tap prediction filter coefficients to the different CIR taps, 

regardless of the power level associated with the specific CIR-related tap, the adaptive predictor 

performed a more effective suppression of the undesired additive noise associated with the specific 

estimated CIR-related taps that have a near-zero magnitude. This is a consequence of the spectrally 

white distribution of the AWGN. As a result, the components of the specific CIR-related tap's esti-

mated cross-correlation vector tend to zero in the absence of a correlated channel signal, provided 

that a sufficiently high number of samples associated with Mg —> oo is used. Hence, for the spe-

cific indoor WATM channel model used and for a sufficiently high number of channel samples Ms 

invoked in the prediction process, the noise reduction factor becomes 3/512. By contrast, for the 

same channel model in the context of the robust prediction based approach and for a CIR-related 

window size of KQ — 12 taps the noise reduction factor is 12/512. This corresponds to an MSE re-

duction by a factor of 4, or on a logarithmic scale by 6.02dB. The same sparse nature of the CIR can 

also be exploited in the context of the robust channel predictor characterized in Section 2.3.1 upon 

applying a threshold to the estimated CIR-related tap values, below which the corresponding CIR-

related taps are forced to zero. This technique was referred to as "significant tap catching" (STC) by 

Li et al. [21] in the context of channel estimation contrived for space-time coded OFDM systems. 

It should be noted that not only the estimates of the insignificant, low-energy CIR-related taps, but 

also the estimates of the significant CIR-related taps benefit from the more efficient adaptation of 
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Figure 2.10: (left): Mean-Square Error (MSE) exhibited by the Burg algorithm assisted decision-
directed a priori channel predictor upon invoking a near-infinite number of CIR samples, 
namely Ms oo as a function of the Signal-to-Noise Ratio (SNR) recorded at the reception 
antenna. Error-free symbol decisions and a prediction filter length of 4 taps were used for a 
"frame-invariant" fading channel having OFDM symbol-normalized Doppler frequencies of 
FD — 0.1, 0.05 and 0.01, as well as different power delay profiles. The variance of the AWGN 
was = 2. The CIR window size was KQ = 12 taps, (right); Characterization of the various 
power delay profiles; the numerical value, which constitutes part of a specific delay profile's 
identifier is identical to the ratio r defined in Equation 2.58. 

the CIR-related tap prediction filter to the actual channel statistics encountered. From Equation 2.27 

it became explicit that in the context of the optimum two-dimensional channel predictor each CIR-

related tap is associated with a specific eigenvalue of the channel's spaced-frequency correlation 

matrix, while in the context of the potentially sub-optimum robust channel predictor an identical 

eigenvalue of a|-̂ ^ = K/KQ was associated with each CIR-related tap. As a result, the robust chan-

nel predictor was rendered insensitive against the specific shape of the channel's multipath intensity 

profile, while at the same time exhibiting the worst MSE performance of all predictors operating on 

channels having power-delay profiles confined to a limited CIR window dimension of KQ taps. 

2.3.2.3 MSE Performance for Various Multipath Intensity Profiles 

The influence of the specific shape of the channel's multipath intensity profile on the adaptive chan-

nel predictor's MSE performance has been further illustrated in Figure 2.10. Four different sample-

spaced multipath intensity profiles are invoked in our comparisons. The specific multipath intensity 

trajectories are portrayed in the right-hand side graph of Figure 2.10. The uniform multipath in-

tensity profile serves as a benchmarker, while with the aid of the different negative exponentially 
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decaying multipath intensity profiles the influence of a 'power compaction' to a few CIR-related 

taps on the estimator's MSE can conveniently be demonstrated. Here the static negative exponen-

tially decaying amplitude delay profile is defined as: 

/leTpoM = jGezpoe-"'-'"'', 0 < Z < jiTo - 1, (2.57) 

The specific values of the decay factor aexpo and the amplitude scaling factor Pexpo are determined 

here by the ratio r of the CIR tap amplitude in the i^o-th CIR tap, versus that in the zero-th CIR tap, 

which is formulated as: 

r = (2.58) 

and by the condition that the sum of the squared CIR tap amplitudes is unity, which implies that no 

power loss or gain is imposed by the channel, yielding: 

# 0 - 1 

1. (2.59) 
1=0 

From Equations 2.58 and 2.57 the value of the decay factor aexpo can be determined as: 

®ea;po = (2.60) 

while upon invoking Equations 2.59 and 2.57 the amplitude scaling factor Pexpo is given by: 

/ 2 — g —2aea:po 
== y 2 __ g-2a=^p.A'o ' (2-61) 

In Figure 2.10 the numerical value, which is part of a specific exponential profile's identifier is 

identical to the factor r defined by Equation 2.58. As illustrated in the left-hand side graph of Fig-

ure 2.10, the worst MSE performance is exhibited by the adaptive channel predictor on a channel 

having a uniform multipath intensity profile. In this case identical CIR-related tap prediction filters 

are invoked in the different CIR taps' prediction processes and hence the prediction could also be 

performed using the same channel transfer factor prediction filter on a subcarrier by subcarrier basis 

in the frequency domain instead of on a CIR-related tap-by-tap basis in the time-domain. By con-

trast, for the specific negative exponential multipath intensity profiles, which exhibit a non-uniform 

power distribution across the different CIR taps a reduced MSE is observed. More specifically, the 

highest performance improvement is achieved for a negative exponentially decaying multipath in-

tensity profile associated with a ratio of r = 0.0066, where the highest energy compaction into the 

first few taps is observed. 

2.3.2.4 Conclusions on Adaptive Decision-Directed Channel Prediction in the Context of 

Error-Free Symbol Decisions 

In Section 2.3.2 Burg algorithm assisted block-adaptive decision-directed channel prediction was 

investigated in the idealistic scenario of error-free symbol decisions. Our discussions commenced 
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in Section 2.3.2.1 by portraying the effects of the specific number of Ms past time-direction CIR-

related tap samples invoked in the Burg algorithm on the predictor's MSE. We found that in the 

context of a four-tap CIR-related tap prediction filter increasing the number Mg of the past time-

direction CIR-related tap samples beyond Mg = 64 does not result in any significant performance 

improvement. Furthermore, in Section 2.3.2.2 the adaptive channel predictor's MSE was compared 

against that of the robust predictor on the basis of the results portrayed in Section 2.3.1. These com-

parisons were further expanded in Section 2.3.2.3 upon invoking various sample-spaced multipath 

intensity profiles. Recall that the uniform profile is the one associated with the robust CIR-related 

tap predictor. 

In order to elaborate a little further, based on the simulation results presented in Section 2.3.2.3 we 

conclude that in scenarios associated with a uniform channel multipath intensity profile, where iden-

tical prediction filters are applied to the different CIR-related taps, the task of two-dimensional chan-

nel transfer function prediction in the frequency domain can be split into that of one-dimensional 

CIR-related tap windowing in the time-domain followed by one-dimensional subcarrier-by-subcarrier 

based channel transfer factor prediction in the time-direction using the same channel transfer factor 

prediction filter for all subcarriers. However, in order to reduce the computational complexity of 

the actual implementation, the filtering along the time-direction is performed in the time-domain, 

since the number of filtering operations is reduced by filtering KQ CIR-related taps, rather than K 

frequency-domain channel transfer factors. In this case the MSE of the adaptive channel predictor 

characterized in Section 2.3.2, while employing the Burg algorithm [86, 83] is identical to that of 

the robust channel predictor assessed in Section 2.3.1, provided that the Doppler frequency assumed 

in the design of the robust predictor's time-direction filter matches that of the channel encountered 

and the SNR assumed in the filter's calculation is identical to that experienced at the reception an-

tenna. Otherwise a further MSE degradation is observed for the robust predictor in comparison to 

the adaptive Burg-algorithm assisted predictor, as it was illustrated in Figures 2.7 and 2.8, respec-

tively. By contrast, in cases where the channel's multipath intensity profile is sharply decaying, an 

MSE degradation is observed in conjunction with the robust predictor of Section 2.3.1 compared to 

the adaptive predictor of Section 2.3.2. Recall that the "robust" channel predictor, where the pre-

diction is performed individually for each tap, i.e on a tap-by-tap basis in the CIR-related domain, 

is actually identical to two cascaded ID frequency-domain filters, where one of them interpolates 

the subcarrier channel transfer factors across a given frequency-domain OFDM symbol, while the 

other one provides a predicted channel transfer function for the next OFDM symbol. By contrast, 

the adaptive channel predictor investigated in Section 2.3.2, where different prediction filters are 

employed for the different CIR-related taps is actually equivalent to a true 2D channel predictor 

operating in the frequency domain. 
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2.3.3 M S E Performance of a Robust Decis ion-Directed Channel Predictor in the 

Context of an Uncoded System 

In Sections 2.3.1 and 2.3.2 we evaluated the MSE of the robust channel predictor and that of the 

Burg algorithm assisted adaptive channel predictor in the context of the idealistic scenario of error-

free symbol decisions at the receiver. We demonstrated that fo r transmissions over the channels 

investigated, which had a sample-spaced impulse response of a maximum dispersion of KQ sam-

ples, the robust channel predictor's MSE upper-bounds the MSE exhibited by the adaptive channel 

predictor upon invoking a sufficiently high number of time-direction CIR samples in the CIR-related 

tap prediction process. For the OFDM symbol normalized Doppler frequencies considered no sig-

nificant further a priori MSE reduction was observed upon increasing the number of time-direction 

CIR-related tap samples invoked beyond about Mg = 64. Motivated by the fact that the MSE perfor-

mance of the robust channel predictor constitutes the worst-case M S E performance of the adaptive 

channel predictor provided that a sufficiently high number of error-free CIR-related tap samples 

is available, in this section we will focus our attention on studying the robust channel predictor 

further, again, in the context of a continuous transmission mode, where the predictor's boundary ef-

fects were avoided by always providing a sufficiently high number of least-squares channel transfer 

factor estimates based on past OFDM symbols. Although the simulation results were obtained in 

the context of the indoor WATM channel model of Figure 6.1, n o specific assumptions were stip-

ulated concerning the shape of the channel's impulse response in the context of the robust channel 

predictor design. Hence the same performance results would be obtained in the context of any other 

sample-spaced CIR profile having a maximum dispersion of 11 taps. 

The further structure of Section 2.3.3 is as follows. Based on Monte-Carlo simulations in Sec-

tion 2.3.3.1 we will evaluate the MSE performance of the robust channel predictor under frame-

invariant fading channel conditions upon assuming error-free symbol decisions. In Section 2.3.3.2 

our performance assessments are rendered more realistically by allowing transmission errors to 

occur in the demodulation process at the receiver. Furthermore, in Section 2.3.3.3 the idealistic as-

sumption of frame-invariant fading is removed in favour of the more realistic frame-variant fading 

scenario. As a result, inter-subcarrier interference (ICI) [88] is encountered. Again, our conclusions 

will be outlined in Section 2.3.3.4. In contrast to our investigations in Section 2.3.3, where we have 

employed the predictor MSE as our performance measure, in Section 2.3.4 the system BER will be 

assessed in both uncoded- and coded scenarios in conjunction with various modulation schemes. 
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Figure 2.11: IVIean-Square Error (ISISE) exhibited by the robust decision-directed a priori channel pre-
dictor as a function of the SNR encountered at the reception antenna. The results are addition-
ally parameterized with the prediction filter length used. The fading indoor WATM channel 
environment of Figure 6.1 was encountered at an OFDM symbol-normalized Doppler frequency 
Ff) of 0.05; (top left): MSB for various prediction filter lengths of up to 64 taps and for error-
free symbol decisions in the context of a frame-invariant fading channel; (top right); MSB for 
prediction filter lengths of up to 4 taps and potentially error contaminated BPSK symbol deci-
sions in the context of a frame-invariant fading channel; (bottom left); same conditions as in 
the top right figure, but transmitting over a frame-variant fading channel; (bottom right); same 
conditions as in bottom left figure, but for QPSK symbol decisions; the variance of the AWGN 
was cr̂  = 2; the CIR window size was KQ = 12 taps. 
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2.3.3.1 MSE Performance for a Frame-Invariant Fading Channel and for Error-Free Sym-

bol Decisions 

We commence our investigations based on the idealistic assumption of encountering a "frame-

invariant" fading channel, where the fading channel's magnitude and phase was kept constant dur-

ing the OFDM symbol's period, so as to avoid obfuscating the results of channel prediction by 

the effects of Inter-subCarrier Interference (ICI) [88]. Furthermore, we assumed the availability 

of error-free symbol decisions. During our discourse we will gradually relax these constraints in 

favour of more realistic operating conditions. The corresponding MSE simulation results obtained 

for an OFDM symbol normalized Doppler frequency of F p = 0.05 are portrayed in the top left 

graph of Figure 2.11, where we have fixed the CIR dispersion to KQ = 12 taps, which is equal to 

the normalized multipath spread of the CIR associated with the indoor WATM channel model of 

Figure 6.1. We observe that as expected, upon increasing the prediction filter length from 1 to 64 

taps, the MSE performance improves. On the basis of the slope of the MSE curves we also infer -

as alluded to in Section 2.3.1 - that most of the channel transfer function's correlation observed in 

the time-direction for consecutive frequency-domain OFDM symbols can be exploited with the aid 

of a prediction filter length of 4 taps. Further increasing the CIR-related tap prediction filter length 

has the beneficial but modest effect of reducing the influence of the channel noise due to averaging 

a higher number of additive noise components during the filtering process. As argued before in 

the context of Figure 2.5, this noise averaging or mitigation process manifests itself in the parallel 

nature of the MSE curves observed for filter lengths in excess of 4 taps in Figure 2.11. 

2.3.3.2 MSE Performance for a Frame-Invariant Fading Channel and Sliced Symbol Deci-

sions 

In practice, error-free symbol decisions are normally not available, even if the system is designed for 

operating at a low BER of say 10"^. To be more realistic, let us now consider the case of potentially 

error contaminated, sliced symbol decisions, where the reference signal is generated by simply re-

modulating the sliced symbols. Channel coding is not considered at the moment. The corresponding 

simulation results recorded for the "frame-invariant" fading WATM channel of Figure 6.1 in the con-

text of BPSK modulated OFDM transmissions over a channel that is fading at a rate of FD = 0.05 

are illustrated in the top right-hand side graph of Figure 2.11. Observe that we have specified the 

proportion of pilot-based channel measurement or training information as an additional parameter. 

More explicitly, training information is employed in form of dedicated OFDM pilot symbols, where 

all the subcarriers host randomly BPSK-modulated pilot symbols, which are known to the receiver. 

Thus error propagation extending over a duration longer than the time between consecutive pure 

pilot-based training OFDM symbols is reduced. It should be noted that a channel sounding training 

overhead of 3.125% corresponds to assigning pure pilot-based training information to every 32-nd 
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OFDM symbol. Similarly, 6.25% overhead corresponds to a pure pilot-based training period of 

16 OFDM symbols and 12.5% corresponds to an 8 OFDM symbol training period, respectively, 

when assuming the transmission of single, rather than multiple consecutive pure pilot-based train-

ing OFDM symbols. In the top right graph of Figure 2.11 the impact of the different training OFDM 

symbol densities becomes explicit for the case of first-order i.e 1-tap CIR-related tap filtering, which 

provides relatively inaccurate channel estimates in the context of propagation scenarios having a 

high OFDM symbol normalized Doppler frequency, such as FD = 0.05. For the more accurate 2-

and 4-tap CIR-related tap prediction arrangements, transmitting training OFDM symbols shows the 

highest impact at SNRs below lOdB, while for higher SNRs the M S B performance curves merge as 

a result of the increasingly high-probability of error-free symbol decisions. 

2.3.3.3 MSE Performance for a Frame-Variant Fading Channel and for Sliced Symbol Deci-

sions 

In order to further improve the degree of realism in our simulations, let us now focus our attention 

on the case of a "frame-variant" fading channel. The corresponding simulation results acquired 

for BPSK modulation are illustrated in the bottom left graph of Figure 2.11. In comparison to the 

performance exhibited by the decision-directed channel predictor in the idealistic environment of 

a "frame-invariant" fading channel, the MSE performance becomes more limited, particularly at 

relatively high SNRs. This is a result of the noise-like ICI contributions [88] induced by the frame-

variant fading c h a n n e l . I n order to further illustrate the impact of erroneous symbol decisions on 

the quality of the predicted channel transfer functions, the a priori channel predictor MSE has also 

been evaluated in the context of the QPSK modulation scheme used. The corresponding simulation 

results are portrayed in the bottom right graph of Figure 2.11. In contrast to the corresponding 

simulation results acquired for BPSK modulation and shown in the bottom left graph of Figure 2.11, 

the merging point of the two sets of curves associated with the erroneous symbol decisions and the 

error-free symbol decisions is found at higher SNRs, namely between 15 and 20dB. Furthermore, 

we note that the residual MSE inflicted by the ICI at SNRs in excess of about 20dB is increased 

in the context of QPSK modulation in comparison to BPSK modulation, as it was shown in the 

bottom left graph of Figure 2.11. Although the variance of the ICI is independent of the specific 

choice of the modulation scheme used, our results not included here for reasons of space economy 

suggest that differences can be observed between the subcarrier-based ICI power distributions for 

the different modulation modes employed. For modulation schemes, which transmit two orthogonal 

'^Note that while the predictor's performance is related to the OFDM symbol normalized Doppler frequency of the 

channel, namely to FD = {K + Kg)Ts fD , the variance of the ICI is related to the 'FFT window duration normalized' 

Doppler frequency, namely to FD,K = KTsfo- The quotient of these normalized Doppler frequencies is given by 

= 1 4 - ^ . Hence, upon neglecting the effects of error propagation, and for all simulation setups using the same 

modulation scheme, identical OFDM symbol normalized Doppler frequencies FD and identical quotients Kg I K the 

performance will be the same, provided that the noise reduction factor Ko j K is also identical. 
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signal components, such as for example QPSK or higher-order MPSK modulation schemes, the 

probability of encountering ICI contributions of a high power is higher than for BPSK. Again, 

the exact impact of various modulation schemes on the predictor's MSE has not been investigated 

further, but the existence of a correlation between these two phenomena is conjectured. 

At this stage of our discussions it is worth noting that in channel scenarios associated with a 

high Doppler frequency the specific design of the pilot-based training OFDM symbols has a major 

influence on the estimator's performance. More specifically, transmitting the same constellation 

point in each of the subcarriers of the pilot-based training OFDM symbol would result in an exces-

sive amount of ICI as well as in a high crest-factor. Hence, in line with standard practice [95], we 

opted for assigning a randomly BPSK modulated symbol sequence, to each training OFDM symbol, 

which is also known to the receiver. 

On the basis of the simulation results presented so far, we conclude that with the aid of an MMSE 

CIR-related tap predictor, decision-directed channel estimation can be successfully employed even 

in channel scenarios exhibiting relatively high OFDM symbol normalized Doppler frequencies. Af-

ter providing our conclusions in the next section, in Section 2.3.4 we will characterize the system's 

performance in terms of the achievable BER in the context of robust decision-directed channel pre-

diction. 

2.3.3.4 Conclusions on the MSE Performance of a Robust Decision-Directed Channel Pre-

dictor in the Context of an Uncoded System 

In Section 2.3.3 the robust decision-directed channel predictor's M S E performance has been eval-

uated in the context of an uncoded system upon invoking sliced and hence potentially error-conta-

minated symbol decisions. In order to reduce the number of different MSE versus SNR curves we 

employed an OFDM symbol normalized Doppler frequency having a mediocre value of = 0.05. 

From our simulation results portrayed in Figure 2.11 we inferred that for medium SNRs up to about 

15dB the predictor's MSE performance was deteriorated due to the effects of error propagation. 

These effects can be mitigated with the aid of dedicated pure pilot-based training OFDM symbols 

transmitted periodically. We have seen in Figure 2.11, that for the frame-variant fading channel 

scenario and a number of four CIR-related prediction filters taps the channel predictor's a priori 

MSE was limited due to the Gaussian noise like influence of the ICI, rather than as a result of the 

predictor's imperfections. 

2.3.4 B E R Performance of an Uncoded System Employ ing Robust Decision-Directed 

Channel Prediction 

In Figure 2.12 we have plotted the BER performance curves corresponding to the "frame-variant" 

fading channel scenario associated with OFDM symbol normalized Doppler frequencies of FD = 
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Figure 2.12: Bit Error Ratio (BER) exhibited by a system employing robust decision-directed a priori 
channel prediction as a function of the SNR encountered at the reception antenna. A fixed 
CIR-related tap prediction filter length of 4 taps was used and the results were additionally 
parameterized with the percentage of pure pilot-based OFDM symbol training overhead in a 
single reception antenna, single user scenario. The "frame-variant" fading indoor WATM 
channel environment of Figure 6.1 was encountered at OFDM symbol-normalized Doppler 
frequencies FD of 0.1, 0.05 and 0.01 and (top left) BPSK, (top right) QPSK and (bottom) 
16QAM modulation schemes were used. The CIR window size was KQ = 12 taps. 
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f n T f = 0.1, 0.05 and 0.01. Different modulation schemes were considered. Specifically, the 

curves associated with BPSK modulation are shown in the top left graph of Figure 2.12, while those 

recorded for QPSK modulation and 16QAM are found in the top right graph and in the graph at the 

bottom of Figure 2.12, respectively. An imperfect reference signal based on sliced and remodulated 

symbol decisions was assumed in the process of robust decision-directed channel estimation and 

the CIR-related tap prediction filter length was fixed to four taps. According to our discussions in 

Section 2.3.3 using four taps was sufficient for exploiting most of the channel's correlation in the 

time-direction in the specific propagation environment considered. 

The structure of the remaining part of Section 2.3.4 is as follows. The system's BER is analysed 

in Section 2.3.4.1 in conjunction with BPSK and QPSK. The corresponding BER results related to 

the more vulnerable 16QAM scheme will be provided in Section 2.3.4.2, where we will specifically 

focus our attention on the influence of the number of consecutive pure pilot-based training OFDM 

symbols transmitted periodically. Our preliminary conclusions will be offered in Section 2.3.4.3. 

2.3.4.1 BER Performance for BPSK and QPSK 

In conjunction with BPSK and QPSK modulation we observe in Figure 2.12 that for propagation 

scenarios, which exhibit relatively high OFDM symbol normalized Doppler frequencies, such as 

FD = 0.05 and FD = 0.1, the BER performance is rather limited. This is a result of the ICI 

imposed by the frame-variant fading. The specific choice of the pure pilot-based OFDM training 

symbol period plays a more dominant role in the relatively low SNR range below 15dB, where the 

error propagation encountered deteriorates the performance, also depending on the OFDM symbol 

normalized Doppler frequency FD of the channel. As expected, the scenarios associated with a 

higher Doppler frequency are particularly vulnerable. From our further investigations - which are 

not explicitly described here for reasons of space economy - we inferred that for relatively modest 

values of FD associated with SNRs close to OdB the arrangements employing higher order CIR-

related tap prediction filters are more susceptible to error propagation, than those employing a lower-

order prediction filter. A plausible explanation of this phenomenon is that for higher-order CIR-

related tap prediction filters the probability of invoking previous channel estimates potentially based 

on erroneous symbol decisions is increased. By contrast, in propagation scenarios of relatively high 

Doppler frequencies, such as FD = 0.05 and FD = 0.1, this effect is compensated by the more 

accurate channel estimates offered by the higher-order prediction filter. As outlined in Section 2.3.3, 

this is the result of a better exploitation of the channel's correlation and that of a more efficient noise 

mitigation due to averaging a higher number of noise components. 
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2.3.4.2 BER Performance for 16QAM 

As shown in the bottom left graph of Figure 2.12, investigations were also conducted employing 

16QAM in a system capitalizing on robust decision-directed channel estimation. In the context of 

the hostile, rapidly fading scenario of F u = 0 . 1 maintaining high-integrity communication without 

inflicting excessive BERs became virtually impossible and hence the associated curves have not 

been plotted in Figure 2.12. This was attributed to the severe error propagation encountered between 

successive OFDM symbols, despite periodically transmitting dedicated pure pilot-based training 

OFDM symbols. More specifically, the effect of erroneous symbol decisions is that an inaccurate a 

posteriori channel estimate is generated for the current OFDM symbol, which in turn degrades the 

quality of the a priori channel estimate derived for the next OFDM symbol and thus the associated 

BER is also degraded. As a result, a potential system instability is observed with the consequence 

of excessive BERs. Even when benefitting from high SNRs and additionally imposing error-free 

OFDM symbol decisions in the remodulated DDCE-related reference, a residual BER of 3 • 10"^ 

was observed in the context of the rapidly fading propagation scenario of FD = 0.1 as a result 

of the excessive ICI inflicted by the frame-variant fading channel. In the more benign scenario of 

FD = 0.05, where the associated BER results are portrayed together with those of the FD = 0.01 

scenario in the bottom left graph of Figure 2.12 - after an initial BER improvement recorded for 

SNRs up to about 15dB - a BER degradation is observed for SNRs up to 20dB. This is followed 

by a rapid, avalanche-like reduction of the BER to a value of around 8 • 10"^, within an SNR 

interval of 5dB. Upon closer inspection we found that two specific mechanisms are responsible for 

the performance degradation incurred at these intermediate SNRs, which will be outlined below. 

Firstly, the AWGN plus ICI related SNR assumed in the calculation of the CIR-related tap pre-

dictor coefficients did not account for the additional impairments resulting in an increased level of 

"noise" inflicted by erroneous symbol decisions and hence a noise-amplification - also known from 

zero-forcing (ZF) equalizers - occurred, which resulted in the performance degradation observed. 

The second design aspect, which influences the system's performance is the specific structure of the 

block of pure pilot-based training OFDM symbols transmitted. So far, each training block consisted 

of a single OFDM symbol. Hence, even if the most recently received OFDM symbol was a train-

ing symbol, previous erroneously demodulated OFDM symbols within the range of the prediction 

filter might have deteriorated the MSE of the a priori channel estimate for the next OFDM symbol. 

However, in our previous investigations of Section 2.3.3 this effect was neglected. Our related ex-

periments revealed that this problem requires attention in the context of transmissions employing 

the relatively vulnerable 16QAM scheme. 

In order to further illustrate this effect, we have portrayed in the bottom right graph of Figure 2.12 

the BER of a 16QAM assisted OFDM scheme invoking 4-tap CIR-related tap prediction filtering 

in the context of an OFDM symbol normalized Doppler frequency of FD = 0.05. The results are 
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parameterized with the number of immediately adjacent pure pilot-based OFDM symbols hosted 

by a training block, referred to as the training length, as well as with the training period duration 

between consecutive training blocks, which is assumed to be 32, 16 or, alternatively 8 OFDM 

symbols long. In the upper graph the training overhead was 6.25%, while in the lower graph it was 

twice as high, namely 12.5%. From Figure 2.12 we observe that for SNRs of up to about IMB 

decreasing the training period duration is a more effective measure, than increasing the training 

block length, while for SNRs between 15- and 2bdB we encounter the reverse mechanism. More 

specifically, a training block length of at least two OFDM symbol was required for avoiding the 

channel predictor instability. 

2.3.4.3 Conclusions on the BER Performance of an Uncoded System employing Robust Decision-

Directed Channel Prediction 

In Section 2.3.4 we have assessed the uncoded system's BER performance in the context of ro-

bust decision-directed channel prediction. Our observation was that with the beneficial assistance 

of prediction filtering, decision-directed channel estimation can also be supported under rapidly 

fading channel conditions in conjunction with OFDM symbol normalized Doppler frequencies as 

high as Fr) = 0.1. Again, as shown in Section 2.3.4.1 for BPSK and QPSK modulation, the sys-

tem's BER was limited due to the effects of ICI, rather than as a result of the imperfections of 

the decision-directed channel predictor. By contrast, it was demonstrated in Section 2.3.4.2 for the 

more vulnerable 16QAM modulation scheme upon invoking four-tap prediction filtering that the 

system's stability could only be guaranteed for the lowest Doppler frequency of FD = 0.01 used 

in our investigations. For a higher Doppler frequency of FD = 0.05 the system became unstable 

at intermediate SNRs, which was a consequence of the noise amplification problem incurred. More 

specifically, the impairments resulting in an increased level of 'noise' inflicted by erroneous symbol 

decisions were not considered in the calculation of the predictor's coefficients. We found that these 

effects could be mitigated upon increasing the pure pilot-based training block length to two consec-

utive OFDM symbols per training block. This had the beneficial effect that the error-propagation 

effects extending beyond the training blocks were mitigated. By contrast, for a Doppler frequency 

of Fd = 0.1 the system's BER was excessive. 

In the next section the performance of a system employing both decision-directed channel es-

timation and turbo channel coding will be investigated, where the process of channel estimation 

potentially benefits from the more reliable, lower-BER symbol decisions. 
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coding rate Rc — 1 / 2 
constraint length = 3 

generator polynomial (7,5)8 
number of iterations 4 

Table 2.6: Turbo coding parameters 

FD 0.01 0.05 0.1 

fklCt 0.000105 0.00445 0.01635 

Table 2.7; Approximate proportionality constants Kid for the indoor WATM system model detailed in Ta-
ble 6.1 parameterized with the OFDM symbol-normalized Doppler frequency FD-

2.3.5 B E R Performance of a lYirbo-Coded Sys tem e m p l o y i n g Robust Decis ion-Directed 

Channel Predict ion 

In order to further reduce the BER of the system arrangements studied, invoking turbo channel 

coding [96, 97] is an attractive option. The turbo coding parameters are listed in Table 2.6. 

The structure of the rest of this section is as follows. In Section 2.3.5.1 we will argue that an 

accurate estimate of the channel's ICI noise variance is required, which is incorporated into the 

calculation of the subcarrier based SNR. Our investigations of the system's BER performance com-

mence in Section 2.3.5.2 using BPSK modulation, while in Section 2.3.5.3 both QPSK modulation 

as well as 16QAM are invoked in the context of various OFDM symbol normalized Doppler fre-

quencies. In these investigations the BER performance is presented for a specific configuration 

employing sliced and remodulated data symbols as a reference in the process of decision-directed 

channel prediction, but refraining from involving the turbo channel decoder in the CIR-related tap 

prediction process. By contrast, in Section 2.3.5.4 we will discuss the impact of a turbo channel de-

coded reference signal, where the 'source'-related soft-output bits of the turbo decoder were sliced, 

re-encoded and remodulated. Our conclusions will be offered in Section 2.3.5.5. 

2.3.5.1 Influence of the ICI Variance on the Subcarrier SNR 

A prerequisite for minimizing the BER is the availability of a reliable subcarrier by subcarrier 

based SNR estimate, which is employed in the process of soft-bit generation for the turbo channel 

codec. In propagation scenarios exhibiting a relatively high O F D M symbol normalized Doppler 

frequency F n as considered here, the effective additive noise experienced by the complex modulated 

symbol received in each OFDM subcarrier is constituted by the superposition of the AWGN and the 

Gaussian noise-like ICI induced by the frame-variant fading channel. Note that the average ICI-

induced noise variance can be expressed as a function of the signal variance a ] by means of 



the proportionality relationship = KiaO-f. Hence estimates of the proportionality constants Kja 

have been obtained with the aid of computer simulations for different values of FD. The results are 

listed in Table 2.7. 

2.3.5.2 BER Performance for BPSK Modulation in the Context of an Undecoded Reference 

The BER results are portrayed in Figure 2.13 assuming BPSK modulation and a training overhead of 

3.125% due to transmitting a pure pilot-based training OFDM symbol in every block of 32 OFDM 

symbols. Here we will characterize the performance observed in the context of a 4-tap CIR-related 

tap prediction filter, which is capable of exploiting most of the channel's correlation. Hence, it 

was already highlighted in Section 2.3.3, the effect of a further increase of the predictor's length 

in the context of error-free symbol decisions would be limited to improving the a priori channel 

estimator's MSB in terms of mitigating the influence of the additive noise due to the weighted 

averaging of a higher number of noise samples. 

We observe that in the context of the more rapidly fluctuating propagation scenarios associated 

with FD = 0.05 and FD = 0.1 sufficiently low BERs can only be achieved upon invoking prediction 

filter lengths of at least 2 or 4 taps. For a scenario of FD = 0.1 even in conjunction with a 4-tap 

CIR-related tap prediction filter a residual BER is observed. This is a consequence of the potentially 

excessive BER at the input of the turbo decoder, as well as a ramification of the limited accuracy 

associated with the effective SNR's estimate, which leads to relatively inaccurate soft-bit values 

to be passed to the turbo-decoder. It should be underlined that the proportionality relationship 

between the average ICI-induced noise variance and the signal variance is valid only in 

terms of their long-term statistics. The instantaneous or short-term ICI variance might substantially 

differ from its long-term value, since the ICI incurred is strongly dependent on the speed of channel 

variation experienced during a specific OFDM symbol period. We also note from the BER results 

not portrayed here due to a lack of space that the BER performance degradation incurred as a result 

of employing potentially error-contaminated demodulated symbols for channel prediction compared 

to the case of an ideal reference in terms of error-free symbol decisions is relatively limited even at 

low SNRs. This is due to the BPSK modulation scheme's relative robustness. 

2.3.5.3 BER Performance for QPSK Modulation and 16QAM in the Context of an Unde-

coded Reference 

In the top-left corner of Figure 2.14 we have summarized once again our simulation results asso-

ciated with a BPSK modulation assisted turbo-coded system. By contrast, the simulation results 

associated with a QPSK modulation- and 16QAM assisted turbo-coded system are portrayed at the 

top-right comer and at the bottom of Figure 2.14, respectively. Again, we have provided simulation 

results for the case of both an imperfect, potentially error-contaminated reference associated with a 
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Figure 2.13: Bit Error Ratio (BER) exhibited by a turbo-coded system employing robust decision-
directed a priori channel prediction with prediction filter lengths of up to 4 taps upon 
capitalizing on potentially error-contaminated, undecoded symbol decisions. The "frame-
variant" fading indoor WATIVI channel environment of Section 6.1.1 was encountered at 
OFDIVI symbol-normalized Doppler frequencies FD of 0.1 (top left), 0.05 (top right) and 0.01 
(bottom) and BPSK modulation was used. The CIR window size was KQ = 12 taps. 
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Figure 2.14: Bit Error Ratio (BER) exhibited by a turbo-coded system employing robust decision-
directed a priori channel prediction using a prediction filter length of 4 taps upon capital-
izing on potentially error-contaminated, undecoded symbol decisions. The "frame-variant" 
fading indoor WATM channel environment of Figure 6.1 was encountered at OFDM symbol-
normalized Doppler frequencies of = 0.1, 0.05 and 0.01 and (top left) BPSK, (top right) 
QPSK and (bottom) 16QAM modulation schemes were used. The CIR window size was 
KQ = 12 taps. 
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pilot-based training overhead of 3.125%, as well as for the idealistic benchmarker of an error-free 

reference, which would be generated by receiving error-free training information in every OFDM 

symbol. 

In the context of QPSK modulation and OFDM symbol-normalized Doppler frequencies of = 

0.01 and F p = 0.05 we infer that turbo coding is capable of eliminating virtually all transmission 

errors. By contrast, for the more rapidly fluctuating and hence more ICI-contaminated scenario of 

FD = 0 . 1 the BER recorded at the input of the turbo decoder is significantly increased, as illus-

trated in Figure 2.12. However, compared to the case of BPSK modulation, which was discussed 

in Section 2.3.5.2, a significant BER performance degradation is incurred due to employing an im-

perfect reference compared to the idealistic scenario of employing an error-free reference. This is 

particularly true for the case of the more rapidly fading scenarios of FD = 0.05 and FD = 0.1. 

In case of employing 16QAM further restrictions are imposed with respect to the tolerable Doppler 

frequency. Specifically, in our investigations only the slowly-fading scenario of Fn = 0.01 allows 

for virtually error-free transmissions at sufficiently high SNRs. By contrast, for FD = 0.05 a BER 

floor is observed, which is again attributed to the effects of ICI. The rapidly-fading scenario of 

FD = 0 . 1 was not considered in the context of 16QAM, since in the uncoded case excessive BERs 

were observed as a result of the severe error propagation between successive OFDM symbols. Note 

again in Figure 2.14 the significant BER performance degradation incurred compared to the case of 

employing an error-free ideal reference. 

Similarly to the BER performance results presented in Figure 2.12 for a 16QAM assisted sys-

tem using no channel coding, investigations were also conducted for the turbo coded system with 

respect to the specific required pilot-based training period duration and to the training block length 

necessitated for avoiding the effects of the DDCE's instability at SNRs between 15 and 25dB. The 

associated results are illustrated in the graph seen at the bottom right comer of Figure 2.14. Again, 

for the more rapidly-fading scenario of FD = 0.05, the training block is required to be at least two 

OFDM symbols long for the sake of avoiding an instability. By contrast, for the more slowly-fading 

scenario of FD = 0.01, where the effects of an instability are not explicitly observed, a compari-

son between the curves in the bottom-left- and right graph of Figure 2.14 shows that increasing the 

training block length is not an appropriate measure for improving the system's BER. In this case 

Figure 2.14 suggests that decreasing the training period duration with the aim of reducing the mean 

distance between the training OFDM symbols is a more effective measure. 

It should also be noted that the systems employing QPSK modulation or 16QAM potentially 

benefitted from the increased channel interleaver length compared to the case of BPSK modulation, 

since the increased number of bits per modulated subcarrier symbol proportionately increased the 

number of bits mapped to an OFDM symbol without increasing the system's effective interleaving 

delay. This was achieved at the cost of an increased decoding complexity at the receiver. 
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Figure 2.15: Bit Error Ratio (BER) exhibited by a turbo-coded system employing robust decision-
directed a priori channel prediction using a prediction filter length of 4 taps upon capi-
talizing on an ideal, undecoded or decoded reference, respectively. The "frame-variant" 
fading indoor WATM channel environment of Figure 6.1 was encountered at OFDM symbol-
normalized Doppler frequencies of (left) FO = 0.05 and (right) FD = 0.01, where QPSK 
modulation was used. The CIR window size was Ko = 12 taps. 

2.3.5.4 BER Performance for QPSK Modulation in the Context of a Decoded Reference 

Investigations have also been conducted with respect to employing a turbo decoded reference in the 

process of decision-directed channel prediction, where the 'source'-related soft-output bits of the 

turbo decoder were sliced, re-encoded and remodulated. In the context of BPSK modulation, which 

exhibits the highest robustness among the three modulation schemes employed in our simulations, 

namely BPSK, QPSK and 16QAM, no significant performance advantage was observed when em-

ploying a turbo decoded reference instead of an undecoded reference. By contrast, for the more 

vulnerable QPSK modulation employed in conjunction with a relatively modest training overhead 

due to transmitting only one training OFDM symbol within every block of 32 OFDM symbols, a 

notable performance advantage in favour of the turbo decoded reference is observed for intermedi-

ate SNRs up to 15dB, where the effects of error propagation are significant. The associated BER 

performance curves in conjunction with three different scenarios, namely an ideal-, an undecoded-

and a turbo decoded reference are portrayed in Figure 2.15 at the left-hand side for an OFDM sym-

bol normalized Doppler frequency of Fd = 0.05 and at the right-hand side for F^ = 0.01. Again 

in contrast, upon invoking 16QAM no BER performance improvement was observed at low OFDM 

symbol normalized Doppler frequencies, such as F ^ — 0.01 due to employing a 'source'-related 
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soft-output bit based reference. However, for the higher Doppler frequency of = 0.05 an exces-

sive BER was incurred, which was caused by the instability of the channel estimator. This is because 

for some OFDM symbols the turbo decoded reference contained significantly more erroneous sub-

carrier symbols, than the undecoded- or sliced reference, potentially aggravating the effects of error 

propagation. However, in the context of employing a 'source- plus parity'-related soft-output bit 

based reference, where both the source- and the parity-related soft-output bits of the turbo decoder 

are sliced and remodulated, a significantly improved performance is expected for all scenarios. 

2.3,5.5 Conclusions on the BER Performance of a Turbo-Coded System employing Robust 

Decision-Directed Channel Prediction 

In Section 2.3.5 the BER of a turbo-coded system employing robust decision-directed channel pre-

diction has been evaluated. In our initial simulations conducted with respect to a BPSK-modulated 

system in Section 2.3.5.2 and with respect to a QPSK- or 16QAM modulated system in Sec-

tion 2.3.5.3, an undecoded reference was assumed, where the symbols received in different sub-

carriers were sliced and remodulated without involving turbo decoding- or encoding. More specif-

ically, for the BPSK- and QPSK-modulated systems - given sufficiently high SNRs - error-free 

transmissions were observed at OFDM symbol normalized Doppler frequencies of FD = 0 . 0 1 and 

Fr, = 0.05, while for F p = 0.1 the BER curves exhibited a residual value of 2-10~® and 2-10"'^, re-

spectively, which was attributed to the effects of ICI. This was achieved in conjunction with four-tap 

CIR-related tap prediction filtering. By contrast, for a 16QAM-assisted system error-free transmis-

sions were only observed for the lowest Doppler frequency of Fr, = 0.01, while for FD = 0.05 a 

residual BER of 10"^ was incurred together with error-propagation and noise-amplification, which 

were induced by stability problems. Again, these phenomena could potentially be mitigated upon 

transmitting blocks of training OFDM symbols, rather than a single OFDM symbol. Our further in-

vestigations in Section 2.3.5.4 were concerned with the employment of a decoded reference, where 

the 'source'-related soft-output bits of the turbo-decoder were sliced, re-encoded and re-modulated. 

While the employment of a turbo-decoded reference had no significant impact on the performance 

of BPSK-assisted transmissions due to the modulation scheme's relative robustness, in the context 

of QPSK-assisted transmissions a notable BER advantage was observed, when employing only a 

modest training overhead. Finally, for 16QAM-assisted systems the employment of a turbo-decoded 

reference was not beneficial, particularly in the context of rapidly fading channel scenarios of e.g. 

FD = 0.05. Our interpretation of this phenomenon was that due to generating the DDCE-related 

reference based on slicing, re-encoding and re-modulating the 'source'-related soft-output bits of 

the turbo-decoder only, the detrimental effects of low-SNR subcarriers were smeared over a wider 

range of subcarriers. A significant further performance improvement can be achieved upon em-

ploying a 'source- plus parity'-related soft-output bit based reference, where the source- and parity 
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Figure 2.16: Illustration of the Time-Division Duplexing (TDD) assisted AOFDM scenario. 

bits at the output of the turbo-decoder are sliced and remodulated. These beneficial effects will 

be demonstrated in the context of our investigations on PIC detection assisted SDMA-OFDM in 

Section 4.3.2. 

2.4 A Robust Decision-Directed Channel Prediction Assisted Adap-

tive OFDM Transceiver 

Subband Adaptive OFDM (AOFDM) has been shown to be an effective method of improving the 

system's performance in mobile environments, where the subbands least affected by frequency-

selective fading are assigned more bits per subcarrier, than the severely faded subbands [98,77,99]. 

The modulation mode assignment to be employed by the remote transmitter A seen in Figure 2.16 

in the next downlink timeslot is determined by the local receiver B upon invoking an estimate of the 

short-term channel quality experienced by the most recently received OFDM symbol. Due to the 

channel's variation with time, there is a mismatch between the channel quality estimated by receiver 

B and that actually experienced by the following OFDM symbol transmitted by transmitter A. This 

potentially limits the achievable performance gain of AOFDM compared to employing a single 

fixed modulation mode. Hence the application of AOFDM is confined to channel environments 

exhibiting relatively low Doppler frequencies, if no channel prediction is used. In order to support 

AOFDM in a broader range of mobility conditions, signal prediction techniques - which are well-

known from the field of speech-coding [83, 84] for example - can be employed for obtaining a more 

accurate estimate of the channel quality experienced in the next transmission timeslot on the basis 

of a weighted sum of that in previous slots. A channel predictor assisted OFDM pre-equalization 

scheme was discussed in [80], while prediction assisted decision-directed channel estimation has 

been proposed in [18]. In our contribution we will study the performance of an AOFDM transceiver, 

which employs the decision-directed 2D-MMSE channel prediction technique of Sections 2.2.3 and 

2.2.4 and AOFDM modulation mode adaptation. It will be demonstrated that this arrangement is 

advantageous, since potentially both components, namely the process of channel transfer function 

estimation as well as that of the modulation mode adaptation benefit f rom the more accurate channel 

transfer function estimates provided by the predictor. 

In Section 2.4.1 we will commence our discussions with an outline of the adaptive transceiver's 
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Figure 2.17: Schematic of the subband adaptive transceiver employing robust [17] decision-directed channel 
transfer function prediction. For simplicity the modulation and demodulation of the AOFDM 
modulation mode related side-information and its associated error protection coding is not 
shown here. Furthermore, the joint OFDM symbol- and subcarrier index [n, A] has been omitted 
from the different variables associated with the n-th downlink timeslot, with the exception of 
Hapr[n + 1], which refers to the set of a priori subcarrier channel transfer factor estimates for 
the OFDM symbol received during the (n 4- l)-th downlink timeslot. 

structure, while in Section 2.4.2 its BER performance is assessed under a variety of channel condi-

tions. Our discussions will be concluded in Section 2.4.3. 

2.4.1 Transceiver Structure 

The schematic of the adaptive Time Division Duplexing (TDD) OFDM transceiver employed in 

our simulations is shown in Figure 2.17. The signal received by receiver B of Figure 2.17 from 

the remote transmitter A in the n-th downlink timeslot is forwarded to a Fast Fourier Transform 

(FFT) block, followed by the frequency-domain equalization of the complex symbols associated 

with each of the K subcarriers. Equalization ensues using the a priori channel transfer factor 

estimates Hapr[n, k], k = 0,... ,K — 1 predicted during the (n — l)- th downlink timeslot on the 

basis of the a posteriori channel transfer factor estimates Hapt[n — n^k], n = 1 , . . . , k = 

0 , . . . , AT — 1 of the OFDM symbols transmitted in the previous number of downlink timeslots, 

where each TDD timeslot hosts one OFDM symbol. The subband modulation mode assignment to 

be employed by transmitter B of Figure 2.16 for the OFDM symbol transmitted during the next 
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uplink timeslot to receiver A is explicitly embedded into the data stream as side-information. As 

seen in Figure 2.17, the primary data and the AOFDM modem mode signalling streams are separated 

from each other in the demultiplexer (DMUX) stage of Figure 2.17, followed by adaptive OFDM 

demodulation of the primary user data. Additionally, turbo coding can be employed in the system, 

which requires adaptive soft-bit generation at the receiver instead of direct hard-decision based 

adaptive demodulation, followed by channel-deinterleaving and turbo decoding. The demodulated 

and turbo decoded data stream is conveyed to the adaptive receiver's output. 

Furthermore, the sliced bits are invoked for reconstructing the transmitted OFDM symbol to be 

used as a reference signal, which allows generating an a priori channel estimate for the OFDM 

symbol received during the (n + l)-th downlink timeslot. Hence the output bit stream has to be 

optionally re-encoded and re-modulated. 

In the proposed arrangement the advantage of employing the 2D-MMSE channel transfer func-

tion prediction technique of Section 2.2.4 instead of the 2D-MMSE channel transfer function esti-

mation process of Section 2.2.3 as proposed by Li et al. [17] is two-fold. Firstly, more accurate 

a priori channel estimates are provided for the frequency-domain OFDM equalization at the re-

ceiver. Secondly, the channel quality expressed in terms of the signal-to-noise ratio (SNR) and 

potentially experienced by an OFDM symbol during the next downlink timeslot can be estimated 

more reliably. This potentially enhances the performance of our AOFDM scheme in terms of a more 

accurate modulation mode assignment and more accurate soft-bit values employed in the process of 

turbo-decoding. 

2.4.1.1 Modulation Mode Adaptation 

The AOFDM modulation mode adaptation performed by the modem is based on the choice between 

a set of four modulation modes, namely 4, 2, 1 and 0 bit/subcarrier, where the latter mode corre-

sponds to 'no transmission'.^^ The AOFDM modulation mode could be in theory assigned on a 

subcarrier-by-subcarrier basis, but the signalling overhead of such a system would be prohibitive, 

without significant performance advantages [98]. Hence, we have grouped the adjacent AOFDM 

subcarriers into 'subbands' and assigned the same modulation mode to all subcarriers in a subband 

[98, 77]. Note that the frequency domain channel transfer function is typically not constant across 

the subcarriers of a subband, hence the modem mode adaptation will be sub-optimal for some of 

the subcarriers. The modem mode adaptation is achieved on the basis of the a priori SNR, SNR^pr 

estimated in each of the K subcarriers for the OFDM symbol hosted by the (n 4- l)-th downlink 

'^Note that in order to support the process of decision-directed channel prediction, BPSK modulated random sequences 
- known to the receiver - were also assigned to those subbands to which zero bits were mapped by the modulation mode 
adaptation procedure. 
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timeslot, which is formulated as: 

SNRapr[M + 1, A:] = IHaprl'n + 1, (2.62) 
'^n 

where is the total noise variance in a subcarrier, given as the sum of the AWGN and the ICI-

induced noise variances, expressed as = cr̂ ĜN + o"icr The iterative AOFDM mode assignment 

commences by calculating in the first step for each subband and for all four modulation modes the 

expected overall subband BER by means of averaging the estimated individual subcarrier BERs 

[98]. Throughout the second step of the algorithm - commencing with the lowest-throughput but 

most robust modulation mode in all subbands - in each iteration the number of bits/subcarrier of 

that particular subband is increased, which provides the best compromise in terms of increasing the 

number of expected bit errors and the number of additional data bits accommodated. This process 

continues, until the target number of bits to be transmitted by the O F D M symbol is reached. This 

algorithm originates from the philosophy of the Hughes-Harthogs algorithm [100]. As a result of 

intensive research in the area recently several computationally efficient versions of the algorithm 

have emerged [98]. Again, the computed AOFDM mode assignment is explicitly signalled to the 

remote transmitter A of Figure 2.17 on the next uplink OFDM symbol transmitted by transmitter B 

and it is also stored locally in receiver B for employment during the forthcoming downlink timeslot. 

In the next section we will embark on the performance assessment of the proposed system. 

2.4.2 B E R Performance 

In this section the performance of the decision-directed channel prediction assisted subband adap-

tive OFDM transceiver will be assessed in the context of the indoor WATM system- and channel 

environment of Section 6.1.1. The structure of this section is as follows. In Section 2.4.2.1 we 

motivate the employment of channel prediction techniques in the context of AOFDM systems by 

highlighting the impact of the channel's decorrelation as a function of time on the accuracy of the 

modulation mode assignment. In Section 2.4.2.2 we characterize the performance of the AOFDM 

system without channel coding in the context of decision-directed channel prediction. By contrast, 

in Section 2.4.2.3 the performance of the decision-directed channel prediction assisted AOFDM 

system is assessed in conjunction with turbo coding. 

2.4.2.1 Motivation of Channel Transfer Function Prediction Assisted AOFDM 

It has been demonstrated in various publications [98, 77] that the employment of the constant-

throughput adaptive modulation technique is a viable approach for exploiting the different subband 

qualities imposed by a wideband channel. In the context of OFDM it would be best to adapt the 

modulation mode assignment on a subcarrier-by-subcarrier basis, but as outlined in Section 2.4.1.1, 

the associated signalling overhead would be prohibitive. Hence, sets of adjacent similar quality 
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Figure 2.18: (Left): Bit Error Ratio (BER) exhibited by an AOFDM system employing perfect channel 
prediction as a function of the SNR at the reception antenna and further parameterized with 
the number of subbands invoked in the modulation mode adaptation. (Right); Bit Error Ra-
tio (BER) exhibited by a 32 subband AOFDM system employing perfect channel estimation 
as a function of the SNR at the reception antenna and further parameterized with the OFDM 
symbol normalized Doppler frequency of the channel. The simulations were conducted in the 
"frame-invariant" fading indoor WATM channel environment of Section 6.1.1. The through-
put of the AOFDM modem was equivalent to that of an AOFDM system employing fixed QPSK 
modulation, namely 1024 Bit per OFDM Symbol (BPOS). 

subcarriers are usually grouped into subbands, and an identical modulation mode is assigned to 

each subband by the adaptation procedure. The maximum bandwidth of each subband is related 

to the channel's coherence bandwidth, namely to the bandwidth over which the fading of adjacent 

subcarriers can be considered correlated, as it was argued in Section 6.2. 

In order to highlight the influence of the subband width on the performance of the AOFDM 

modem and to motivate our specific choice of the subband width employed in the context of the 

simulation results presented throughout this section at the left-hand side of Figure 2.18 we have 

plotted the BER performance of the AOFDM modem as a function of the SNR encountered at the 

reception antenna, parameterized with the number of subbands per OFDM symbol. These results 

were generated upon invoking the indoor WATM system- and channel model of Section 6.1.1. The 

throughput of the AOFDM modem was assumed to be identical to that of an OFDM modem em-

ploying QPSK modulation, which was 1024 bits per OFDM symbol (BPOS), given indoor WATM 

system parameters. The modulation mode adaptation performed during the n-th OFDM symbol 

period for the (n 4- l)-th OFDM symbol period was based on perfect knowledge of the channel 
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transfer function experienced during the (n + l)-th OFDM symbol period. We observe that by in-

creasing the number of subbands per OFDM symbol beyond 32, no significant further performance 

improvement is attained in the context of the specific indoor WATM channel model. Compared to 

the BER performance of the fixed-mode QPSK modulation assisted OFDM modem, which has also 

been plotted in Figure 2.18, the BER of the AOFDM modem is substantially improved. 

Our previous investigations were conducted under the idealistic assumption of employing perfect 

knowledge of the channel transfer function experienced by the O F D M symbol during the {n + l)-th 

OFDM symbol period, which was used for the AOFDM modulation mode adaptation performed 

in the n-th OFDM symbol period. To be more realistic and in order to motivate the employment 

of channel transfer function prediction techniques in the AOFDM modem, let us now stipulate the 

availability of perfect channel transfer function knowledge only for the n-th OFDM symbol period, 

which is again invoked in the adaptation of the modulation mode assignment to be used during the 

(n + l)-th OFDM symbol period. The associated BER simulation results are portrayed at the right-

hand side of Figure 2.18. Again, we have plotted both the performance of the fixed-mode QPSK 

modulation assisted OFDM system, as well as that of the AOFDM modem of the same throughput, 

namely 1024 bits per OFDM symbol (EPOS). A total of 32 subbands per OFDM symbol was used. 

As described in Section 2.4.1, the modulation mode assignment for the (n-i-l)-th downlink timeslot 

was transmitted to the remote transmitter A of Figure 2.17 on the previous uplink timeslot, assuming 

a slot-by-slot uplink/downlink TDD scenario. Furthermore, we have also considered the rather 

idealistic scenario of a continuous transmission of downlink timeslots only, where the AOFDM 

modulation mode assignment for the (n + l)-th downlink timeslot is instantaneously signalled to 

the remote transmitter A of Figure 2.17 after the n-th downlink timeslot. Note that in the context of 

the above TDD scenario the effective Doppler frequency with respect to the channel's decorrelation 

incurred between two consecutive downlink timeslots is actually doubled compared to the scenario 

of a continuous transmission. In the graph on the right-hand side of Figure 2.18 we observe that as 

a result of the channel's decorrelation experienced at the relatively high OFDM symbol normalized 

Doppler frequencies of FD = 0.05 and Fj j = 0.1, the AOFDM modem performs in fact worse, than 

the fixed-mode QPSK modulation assisted OFDM system. This is because the receiver is expected 

to perform the modulation mode adaptation virtually based on near-uncorrelated channel estimates. 

As it will be demonstrated in the following paragraphs, this problem can be mitigated upon invoking 

channel transfer function prediction techniques. 

2.4.2.2 BER Performance of the Uncoded System 

While in the context of our investigations presented in Section 2.4.2.1 we capitalized on the ide-

alistic assumption of benefitting from perfect channel transfer function knowledge, here we will 

investigate the more realistic environment where the channel transfer function estimates for the 
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Figure 2.19: Bit Error Ratio (BER) exhibited by an AOFDM system employing robust decision-directed 
a priori channel prediction using a prediction filter length of 4 taps as a function of the SNR 
at the reception antenna, and parameterized with the throughput in terms of the number of 
bits transmitted per OFDM symbol. Both an ideal error-free- and a sliced potentially error-
contaminated reference were employed in the process of decision-directed channel prediction. 
The "frame-variant" fading indoor WATM channel environment of Figure 6.1 was encoun-
tered at OFDM symbol-normalized Doppler frequencies of (left:) 0.05 and (right:) 0.01. 
The BER performance curves associated with fixed BPSK and QFSK modulation are also plot-
ted as a reference. The CIR window size was KQ = 12 taps. 

(n + l)-th OFDM symbol period are generated during the n-th OFDM symbol period with the 

aid of a decision-directed channel predictor. Both the demodulation of the transmitted subcarrier 

symbols performed during the (n + l)-th OFDM symbol period, as well as the accuracy of the 

AOFDM modulation mode assignment computed during the n-th OFDM symbol period for use 

during the (n -f l)-th OFDM symbol period will benefit from the more accurate estimates provided 

by the channel transfer function predictor of Section 2.2.4 instead of the estimator of Section 2.2.3 

originally proposed in [17]. 

Furthermore, we have dropped the idealistic assumption of encountering a frame-invariant fading 

channel in favour of the more realistic frame-variant fading channel scenario, with the consequence 

of incurring an ICI-induced limitation of the effective SNR in the demodulation process, regardless 

of the SNR at the reception antenna. 

The corresponding BER simulation results are portrayed in Figure 2.19 at the left-hand side 

for an OFDM symbol normalized Doppler frequency of = 0.05, while at the right-hand side 

for FD = 0.01. Simulation results are provided both for the case of a sliced potentially error-

contaminated reference, where the received symbols are demodulated, sliced and remodulated, as 
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well as for an idealistic error-free reference due to stipulating perfect knowledge of the transmitted 

symbols at the receiver. In the scenario of employing a sliced reference a relatively modest pilot-

based training overhead due to transmitting one dedicated training OFDM symbol in every block of 

32 OFDM symbols was imposed. Furthermore, the BER curves corresponding to the fixed-mode 

BPSK- or QPSK modulation assisted scenarios have been plotted as a reference. Again, a CIR-

related tap prediction filter length of four taps was invoked in our simulations. 

Note that for the more rapidly fading scenario of FD = 0.05 no BER curve is provided for a 

throughput of 1536 bits per OFDM symbol (BPOS). This is, because as outlined in Section 2.3.4.2 

in the context of the fixed modulation mode based scenarios, the channel predictor tends to be-

come unstable due to error propagation effects, when employing the relatively vulnerable 16QAM 

modulation scheme in rapidly fading channel environments. 

We observe that the AOFDM scheme is capable of significantly outperforming the fixed modu-

lation assisted OFDM scheme. More specifically, for an OFDM symbol normalized Doppler fre-

quency of FD = 0.01 the channel SNR gain due to employing adaptive modulation is in excess 

of 15dB at a BER of 10"^ for both a BPSK- and a QPSK based fixed-mode equivalent through-

put system. Similar advantages are observed under the more rapidly fading channel conditions of 

FD = 0.05, where a comparison to the performance results of Figure 2.18 reveals that the employ-

ment of adaptive modulation is facilitated by the four-tap channel prediction filter. In contrast to 

the case of FD = 0.01 a BER floor is observed at higher SNRs, which is due to the effects of the 

ICI. At these SNRs the BER reduction attained with the advent of adaptive modulation compared 

to fixed modulation was about two orders of magnitude in the context of a throughput of 512 bits 

per OFDM symbol. At the higher throughput of 1024 bits per OFDM symbol the performance ad-

vantage of adaptive modulation was still about an order of magnitude.'"^ We also note that not only 

the modulation mode adaptation benefitted from the enhanced channel transfer function accuracy 

due to employing prediction filtering in the process of decision-directed channel estimation, but 

also the process of decision-directed channel estimation itself gained from the more reliable symbol 

decisions delivered by adaptive modulation. 

In conclusion, our discussions in this section demonstrated that with the aid of channel prediction 

filtering constant bitrate adaptive modulation techniques can be supported even at relatively high 

OFDM symbol normalized Doppler frequencies. 

'"'Note that here we have not taken into account the AOFDM mode signalling overhead imposed by explicitly signalling 
the modulation mode assignment to the remote transmitter. This is necessary, unless blind modulation mode detection 
techniques [101] are employed, which are known to be relatively inaccurate at low SNRs. Hence, for the sake of a more 
fair comparison to the fixed modulation mode assisted system, the number of subbands available to the procedure of 
modulation mode adaptation for data transmissions would have to be reduced appropriately. To be more explicit, in case 
of 32 subbands per OFDM symbol and four available modulation modes per subband to be encoded in groups of two bits, 
the total number of signalling bits per OFDM symbol would be 64. Furthermore, upon invoking halfrate channel coding 
for providing error protection to the signalling bits, the total overhead is increased to 128 bits per OFDM symbol. 
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Figure 2.20: Bit Error Ratio (BER) exhibited by a turbo-coded AOFDM system employing robust 
decision-directed a priori channel prediction using a prediction filter length of 4 taps as a 
function of the SNR encountered at the reception antenna, and parameterized with the through-
put in terms of the number of bits transmitted per OFDM symbol. The turbo-coding parameters 
were given in Table 2.6. Both an ideal and a sliced reference were employed in the process 
of decision-directed channel prediction. The "frame-variant" fading indoor WATM channel 
environment of Figure 6.1 was encountered at OFDM symbol-normalized Doppler frequencies 
of (left:) FD = 0.05 and (right:) FD = 0.01. The BER performance curves associated with 
fixed mode BPSK and QPSK modulation are also plotted as a reference. The CIR window size 
was KQ = 12 taps. 

2.4.2.3 BER Performance of the Turbo-Coded System 

Having portrayed the BER versus SNR performance of the uncoded decision-directed channel pre-

diction assisted AOFDM system in Section 2.4.2.2, we will now investigate the achievable perfor-

mance with the aid of turbo-coding. The associated turbo coding specific parameters were summa-

rized in Table 2.6. Again, we employ a sliced reference, generated upon performing hard decisions 

to the received subcarrier symbols, followed by remodulation. We demonstrated earlier in Sec-

tion 2.3.5.4 that employing a turbo-decoded reference based on the 'source'-related soft-output bits 

of the turbo-decoder provides a relatively modest performance advantage compared to a sliced refer-

ence, in conjunction with QPSK modulation, while in the context of BPSK modulation and 16QAM 

no performance advantage was observed. 

The simulation results are portrayed in Figure 2.20, at the left-hand side for an OFDM symbol 

normalized Doppler frequency of FD = 0.05, while at the right-hand side for FD = 0.01. In 

contrast to the system using no turbo-coding, which was characterized in terms of its BER in Sec-

tion 2.4.2.2, the performance advantage of the AOFDM system in comparison to a system having 
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the same throughput, but using a fixed modulation mode is significantly reduced. A slight advantage 

in favour of the AOFDM system is observed at relatively low SNRs, where the decision-directed 

channel predictor is sensitive to the effects of error propagation. This advantage is further eroded 

upon invoking a potentially error-contaminated decoded reference signal in the process of decision-

directed channel prediction. The reason for the similar performance exhibited by the turbo-coded 

AOFDM- and fixed-mode BPSK- or QPSK modulation assisted O F D M systems is that both adap-

tive modulation and turbo-coding attempt to mitigate the same channel impairments, namely the 

time- and frequency-dependent channel quality offered by the wideband channel. 

We concluded that although we were unable to demonstrate a significant advantage of turbo-

coded AOFDM compared to turbo coded fixed-mode BPSK- or QPSK modulation assisted OFDM 

at high Doppler frequencies, we have shown that adaptive modulation assisted OFDM can in fact 

be invoked even in channel scenarios having relatively high O F D M symbol normalized Doppler 

frequencies with the advent of capitalizing on FIR Wiener filter prediction techniques. 

2.4.3 Conclusions on Robust Decision-Directed Channel Predict ion Assisted A O F D M 

In Section 2.4 we have highlighted that with the aid of channel transfer function prediction tech-

niques constant throughput AOFDM systems can be operated in the context of relatively rapidly 

fluctuating channel conditions, characterized by high OFDM symbol normalized Doppler frequen-

cies. In our simulations AOFDM transmissions were successfully demonstrated for Doppler fre-

quencies of FD = 0.01 and 0.05. For the more rapidly fading channel associated with = 0.05 

the range of throughputs supported was restricted to values below 1536 bits per OFDM symbol. 

At higher throughputs the decision-directed channel predictor became unstable due to the excessive 

activation of the relatively vulnerable 16QAM modulation mode. A similar behaviour was also 

observed in Section 2.3.4.2 for fixed-mode 16QAM assisted OFDM transmissions. In the context 

of an uncoded system not only the modulation mode adaptation conducted during the n-th OFDM 

symbol period for the transmission of the OFDM symbol associated with the (n 4- l)-th down-

link period benefitted from the accurate channel estimates provided by the predictor, but also the 

decision-directed channel predictor gained from the less error-contaminated reference with the ad-

vent of the modulation mode adaptation. Furthermore, a turbo coded AOFDM system was also 

considered. A slight performance advantage was observed for the turbo-coded AOFDM scheme at 

a given throughput compared to a turbo coded BPSK or QPSK modulation assisted OFDM system. 

In the turbo coded cases the main advantage of adaptive modulation remains its flexibility with re-

spect to the desired throughput, since fixed-mode transmission is only capable of conveying 512, 

1024 or 2048 bits per OFDM symbol. 
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2.5 Conclusions 

2.5.1 Description 

In Chapter 2 decision-directed channel estimation (DDCE) and prediction (DDCP) has been inves-

tigated in the context of single-user single-transmit antenna based OFDM systems. The correspond-

ing OFDM receiver's associated structure was shown in Figure 2.1. 

Our specific discussions commenced in Section 2.2.1 with an outline of the procedure of gener-

ating a posteriori least-squares channel transfer factor estimates based on the received subcarrier 

signals x[n, k] and based on the classified symbols .s[n, k] that are most likely to have been trans-

mitted in the different subcarriers A; = 0 , . . . ,K — 1. Furthermore, in Section 2.2.2 the ID-MMSE 

channel transfer function estimator proposed by Edfors et al. [13, 14, 15] and Sandell [16] for 

inferring improved a posteriori channel transfer factor estimates f rom the initial least-squares chan-

nel transfer factor estimates of Section 2.2.1 was described. Based on these ideas Li et al. [17] 

proposed a 2D-MMSE channel transfer function estimator, which additionally capitalizes on the 

least-squares channel transfer factor estimates of past OFDM symbols. This approach was outlined 

in Section 2.2.3 with an emphasis on the aspects of 'robustness' as advocated by Li et al. [17]. 

As a result of the potentially excessive decorrelation of the channel transfer function experienced 

by consecutive OFDM symbols as demonstrated in Section 2.2.3.3, we found that it is more benefi-

cial to employ a CIR-related tap prediction filter, which operates in the time-direction instead of the 

CIR-related tap estimation filter as in Li's contribution [17]. More explicitly, instead of generating 

improved a posteriori channel transfer factor estimates for the n- th OFDM symbol period, which 

are then used - upon neglecting the channel's decorrelation - as a priori channel transfer factor esti-

mates for demodulation during the (n -1- l)-th OFDM symbol period, we directly generate a priori 

channel transfer factor predictions for the (n -h l)-th OFDM symbol period during the n-th OFDM 

symbol period. The specific structure of the MMSE CIR-related tap prediction filter was discussed 

in Section 2.2.4. This included the derivation of an expression for the subcarrier-averaged a priori 

prediction MSE in Section 2.2.4.6. 

During our performance study provided in Section 2.3 two approaches were considered for eval-

uating the CIR-related tap predictor coefficients based on the Wiener solution of Equation 2.38. 

These were the robust approach advocated by Li et al. [17], which was also discussed in Sec-

tion 2.2.3 and the block-adaptive approach proposed by Al-Susa and Ormondroyd [18], which is 

based on the Burg algorithm [83]. 

Specifically, in the context of the robust approach of Section 2.2.3, a uniform, ideally support-

limited Doppler power spectrum was employed, which is related to a sinc-shaped spaced-time cor-

relation function as given by Equation 2.55. Furthermore, the different CIR-related tap 

variances were assumed to be identical, which is related to imposing a uniform, ideally support-

limited multipath intensity profile in the design of the estimator. Recall from our discussions in 
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Section 2.2.3.2 that the estimator's MSB can be rendered insensitive with respect to the specific 

shape of the channel's scattering function, provided that we can capitalize on an infinite number 

of previous OFDM symbols in the time-direction and on an infinite number of subcarriers in the 

frequency-direction. However, there is an exceptional case, when perfect robustness can be achieved 

with respect to the channel scattering function's associated multipath intensity profile, namely in the 

context of a sample-spaced CIR. 

In contrast to the robust approach, the block-adaptive approach employs estimates of the CIR-

related taps' correlation in the time-direction, which are periodically generated from blocks of con-

secutive OFDM symbols. Note however that these estimates do not become explicitly available, 

since the Burg algorithm of [83] directly produces the optimum predictor weights. In order to avoid 

the inconvenience of storing a potentially large number of previous OFDM symbols, which may 

exceed the number of OFDM symbols employed in the actual prediction process, an attrac-

tive alternative to the block-adaptive approach is an OFDM symbol-by-symbol adaptive approach, 

which could be based on the RLS algorithm. This will be demonstrated in Section 3.5 in the context 

of our investigations on DDCP designed for multi-user OFDM systems. 

2.5.2 Performance Assessment 

The performance investigations conducted in Section 2.3 commenced with a portrayal of both the 

robust- and that of the adaptive decision-directed channel predictor's MSB in Sections 2.3.1 and 

2.3.2, respectively, upon assuming error-free symbol decisions. We found that as a result of the 

CIR-related tap-by-tap adaptation of the predictor coefficients, the a priori estimation MSB per-

formance achieved with the aid of the block-adaptive predictor - assuming the availability of a 

sufficiently high number of previous OFDM symbols' CIR-related a posteriori tap estimates - is 

potentially lower than that of the robust predictor. However, in the specific case of encountering 

a uniform multipath intensity profile, both predictors are expected to exhibit the same MSB per-

formance. Our detailed conclusions for these investigations were offered in Sections 2.3.1.5 and 

2.3.2.4, respectively. Furthermore, in Section 2.3.3 we assessed the robust predictor's MSB in the 

context of an uncoded system, based on Monte-Carlo simulations. Again, the related detailed con-

clusions were offered in Section 2.3.3.4. The uncoded system's corresponding BBR performance in 

conjunction with various modulation schemes, namely BPSK, QPSK and 16QAM was studied in 

Section 2.3.4 and our detailed conclusions were provided in Section 2.3.4.3. In order to even further 

reduce the DDCE assisted system's BBR, additionally turbo-coding was invoked, which was the 

topic of Section 2.3.5. Our detailed conclusions were offered in Section 2.3.5.5. 

In order to summarize, from the investigations of Section 2.3 we conclude that upon invoking 

2D-MMSE channel transfer function prediction filtering, decision-directed channel estimation is 

rendered attractive even in the context of high-mobility channel scenarios associated with OFDM 
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symbol-normalized Doppler frequencies ranging up to — 0.1. We found that already in con-

junction with a relatively short linear prediction filter length of four taps, most of the channel's 

time-direction correlation can be exploited, while a further increase of the predictor's length results 

in a further reduction of the channel noise. At higher values of FD, the BER performance was 

rather limited due to the effects of ICI. Even in conjunction with turbo coding for example, only 

the most robust BPSK modulation was capable of facilitating near error-free OFDM transmissions 

in the worst-case scenario of = 0.1. For the less error-resilient QPSK modulation scheme 

the FD = 0.05 scenario was found to be the highest-speed environment, where reliable operation 

was feasible and for 16QAM even less time-variant channel conditions were required. This was a 

result of the instability observed for the robust predictor - specifically at higher OFDM symbol nor-

malized Doppler frequencies - which was mainly due to the increased amount of ICI. This caused 

an increased number of subcamer symbol decisions, which were then propagated to the following 

OFDM symbols with the effects of a 'noise amplification problem' due to the robust estimator's 

inflexibility to react to the degraded channel conditions caused by the subcamer symbol errors. In 

this context the employment of the adaptive predictor would be advantageous, with the disadvantage 

of having a higher complexity as a result of the coefficient adaptation. 

2.5.3 Adaptive O F D M Transceiver 

Our further investigations conducted in Section 2.4 concentrated on employing robust decision-

directed channel prediction in the context of a constant-throughput AOFDM TDD system. After a 

description of the transceiver's structure in Section 2.4.1 the associated performance assessments 

of Section 2.4.2 considered both an uncoded as well as a turbo-coded scenario. Our more detailed 

conclusions concerning these investigations were offered in Section 2.4.3. In order to summarize, 

we found that with the aid of channel transfer function prediction techniques constant throughput 

AOFDM TDD systems can be reliably supported in the context of even relatively rapidly fluctuating 

channel conditions. In our simulations AOFDM transmissions were successfully demonstrated for 

Doppler frequencies of F£) = 0.01 and 0.05. For the more rapidly fading channel associated with 

FD = 0.05 the range of throughputs supported was restricted to values below 1536 bits per OFDM 

symbol. Having characterized the family of single-user decision-directed channel estimation- and 

prediction techniques in this chapter, in the next chapter we will study multi-user channel estimation 

techniques. 
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Special Symbols - Decision-Directed Channel Estimation for Single-

User OFDM 

C{est/pre}[") ]̂- Estimator/predictor coefficient associated with the /-th CIR-related tap of the 

OFDM symbol having an offset of —n, where n € {0 , . . . , — 1}, relative 

to the current OFDM symbol. 

:{e3t/pre}M: Vector of estimator/predictor coefHcients C{gat/pre}[M, » = 0 , . . . , - 1 

associated with the /-th CIR-related tap: C|est/pre}R] G 

Cest["]- Diagonal matrix of CIR-related tap estimator coefficients associated with the 

OFDM symbol having an offset of —n, where n G { 0 , . . . , — 1}, relative 

to the current OFDM symbol: Cest[n] 6 . 

epre[n+l-il]'. Prediction error of the /-th CIR-related tap observed during the (n-l-l)-th OFDM 

symbol period, when using the prediction generated during the n-th OFDM 

symbol period. 

©pre["•+!] Ia'o • Vector of the K CIR-related taps' prediction errors observed during the (n-t-1)-

th OFDM symbol period when using the predictions generated during the n-th 

OFDM symbol period, upon assuming a rank-i^o predictor: epre[n+l]\Ko E 

QKXl 

^pre[n+l]\Ko'- Frequency-domain representation of the vector &pre['^+^\Ka of the K CIR-

related taps' prediction errors observed during the (n -H l)-th OFDM symbol 

period when using the predictions generated during the n-th OFDM symbol 

period, upon assuming a rank-i^o predictor: 'Eipre[n + l]\Ko = uWepre [ "+ 

111A-, e c * x i . 

hexpo[l]'- Sample-spaced negative exponentially decaying CIR: /iea;poR] = ' 

/ = 0 , . . . , Kq — 1. 

h[n, /]: /-th CIR-related tap associated with the n-th O F D M symbol period. 

haptin, /]-• CIR-related a posteriori least-squares tap estimate. 

hapt[n, /]: Improved CIR-related a posteriori tap estimate. 

hapr[n+l, /]: CIR-related a priori tap estimate generated during the n-th OFDM symbol pe-

riod for employment during the (n + l)-th OFDM symbol period. 
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h[n]: Vector of the K different CIR-related taps h[n^l], I = 0 , . . . ,K — V. h[n] = 

hapt[n\. Vector of the K different CIR-related a posteriori least-squares tap estimates 

Z == 0,... -- 1: e ('*) 

hapt [n] '• Vector of the K different improved CIR-related a posteriori tap estimates, namely 

/ = 0 , . . . 1: h,%,;|rt] = <5 C**! . (") 

h[n, /]: Vector of the l-th CIR-related tap's current plus the — 1 number of past 

values, namely h[n 4- n, Z], n = - ( - 1 , . . . ,0 each associated with either 

the current or one of the past Nf}p — 1 number of OFDM symbols: h[n, /] G 

XI. 

^apt[n,l]'- Vector of the Z-th CIR-related tap's current plus the — 1 number of past 

OFDM symbols' a posteriori least-squares estimates, namely hapi[n-t-n, I], n = 

—jvjgp 4 - 1 , . . . ,0 each associated with either the current or one of the — 1 

number of past OFDM symbols: haptin, I] € 

H[n,k\. Cannel transfer factor associated with the fc-th subcarrier of the n-th OFDM 

symbol. 

Hapt[n, k]: A posteriori least-squares channel transfer factor estimate. 

Haptln, k]: Improved a posteriori channel transfer factor estimate. 

Hapr[n + I, k]: A priori channel transfer factor estimate generated during the n-th OFDM sym-

bol period for the (n -|- l)-th OFDM symbol duration. 

H[n]; Vector of the K different subcarriers' channel transfer factors H[n,k], k = 

0 , . . . .jRT-- 1: E C*'*!. 

iiapt[n]'. Vector of the K different subcarriers' a posteriori least-squares channel transfer 

factor estimates A;], A = 0 , . . . , TiT - 1: E 

Vector of the K different subcarriers' improved a posteriori channel transfer 

factor estimates Hapt[n, k], k = 0,... ,K — 1: flapt[n] € 

+ 1]: Vector of the K different subcarriers' a priori channel transfer factor estimates 

Hapr + 1, A;], k = 0, . • • , K — 1'. Hapr [h -|- 1] G .̂ 

'^Note that the choice of is arbitrary, as long as the matrix is unitary. However, the optimum choice is 
In this case the CIR-related taps are uncorrelated, 

'®See Footnote 15. 
"See Footnote 15. 
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J o N : 

J(Cpre[ 

KQ-. 

//(c: 

M,: 

MSEjec[M, A;]: 

MSB, aprt.(j|(cpM[ 

MMSEapr[/]; 

MSB, apr \ Ko • 

=1 tap 

Zero-order Bessel function of the first kind. 

MSE-related cost-function used for deriving the Z-th CIR-related tap's vector of 

optimum predictor coefficients. 

Number of significant CIR-related taps. 

Set of Mc number of constellation points associated with the modulation scheme 

employed. 

Number of OFDM symbols contained in the input block of the Burg algorithm 

assisted predictor. Note that we have Ms > . 

Subcarrier-based MSB imposed by the channel's time-variance in the absence 

of prediction filtering, when using the channel transfer factors of the current 

OFDM symbol for the equalization conducted during the next OFDM symbol 

period. In the context of Jakes' Doppler spectrum the decorrelation-induced 

MSB is denoted as MSEjec,j[n, k]. 

: MSB associated with the linear prediction of the f-th CIR-related tap in the 

context of using the arbitrary vector Cpre[l] of predictor coefficients. 

Minimum MSB associated with the linear prediction of the l-lh CIR-related tap 

in the context of using the vector Cpre[l]\opt of optimum predictor coefficients. 

Subcarrier-averaged a priori estimation MSB of the rank-i^o 2D-MMSE based 

channel predictor in the context of arbitrary estimator coefficients. 

Subcarrier-averaged a posteriori estimation MSB of the rank-Ko ID-MMSE 

based channel estimator in the context of arbitrary estimator coefficients. 

MMSEgpf I ; Subcarrier-averaged a posteriori estimation MSB of the 2D-MMSB based chan-

nel estimator employing no rank-reduction in the context of the optimum esti-

mator coefficients, when using infinite-length CIR-related tap estimation filters. 

MMSBnntL^k" : Subcarrier-averaged a posteriori estimation MSB of the 2D-MMSB based chan-

nel estimator employing no rank-reduction in the context of the sub-optimum 

estimator coefficients based on the assumptions of 'robustness' with respect to 

the channel's multipath intensity profile, when using infinite-length CIR-related 

tap estimation filters. 

A]: AWGN contribution having a variance of cr^. 
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N^}p- Number of filter taps associated with the CIR-related tap estimator- or predictor. 

rexpo'- Amplitude ratio of the sample-spaced exponential CIR: Vexpo = 

r^^\Ak]: Spaced-frequency correlation function in the context of the OFDM system: 

r g [An]; Spaced-time correlation function in the context of the OFDM system: [An] = 

r ^ ( A n T y ) = r i f ( A n T / ) . Upon assuming Jakes Doppler spectrum whose as-

sociated correlation function is given by the zero-order Bessel function of the 

first kind, we have j [An] = Jo (An • LOD)-

R W ; Spaced-frequency correlation matrix: R W = i?{H[n]H-^[n]} 6 . The 

Eigen-Value Decomposition (EVD) of the correlation matrix R ^ is given by 
R[/] = 

[/]: Spaced-time cross-correlation vector of the l-ih CIR-related taps, which is given 

by: 4- l,Z]h[n,Z]} G 

Normalized spaced-time cross-correlation vector of the /-th CIR-related taps: 

r^pj[/]: Spaced-time cross-correlation vector of the /-th CIR-related a posteriori least-

squares tap estimates: r|^^[/] = E{h*[n + I, l]h.apt[n, /]} = r|^^[/] G 

r|J^^[/]: Spaced-time auto-correlation matrix of the /-th CIR-related taps: Rj^^ [/] = 

E{h.[n,l]h^[n,l]} E 

R[4 [/]: Normalized spaced-time auto-correlation matrix of the /-th CIR-related taps: 

rW[I1 = 6 

r | J P J / ] : Spaced-time auto-con-elation matrix of the /-th CIR-related a posteriori least-

squares tap estimates: + E 

s[n,k]'. Transmitted subcarrier symbol having a variance of cr^. 

s[n, k]: Linear estimate of the transmitted subcarrier symbol. 

s[n, k\. Classified transmitted subcarrier symbol. 

SNRapr[n + 1, k]'. SNR predicted for the A;-th subcarrier of the (n + l)-th OFDM symbol to be 

used in the modulation mode assignment during the n-th OFDM symbol period: 

-I- 1, A:] = 
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U M : Unitary KLT matrix associated with the EVD of the spaced-frequency correla-

tion matrix RW; Uf-̂ J G 

x[n,k]\ Received subcarrier signal. 

a: Modulation-noise enhancement factor a = E{ [89, 15], where for the 

specific case of using M-PSK modulation we have aw-PSK = 1, while for 16-

QAM we have ai6.QAM = ^ [15]. 

o-expo'- Decay factor of the sample-spaced exponential CIR. 

Pexpo'- Amplitude scaling factor of the sample-spaced exponential CIR. 

r f 1 
A; : /-th eigenvalue associated with the EVD of the spaced-frequency correlation 

i x R M ; matrix 

ffl 
Vi : /-th eigenvalue associated with the decomposition of the spaced-frequency cor-

relation matrix R ^ with respect to the unitary matrix UM employed in the 
estimator design; v\ = (UW^rWuW)[ ;^ ; j . Note that for UW = u M we 

have . 

A ^ : Diagonal matrix of eigenvalues Ap^, / = 0 , . . . ,K-1 associated with the EVD 

of the spaced-frequency correlation matrix R W ; g 

0 lu(/i • Index used in conjunction with the CIR-related taps' spaced-time cross-correlation 

vector and auto-correlation matrix in order to indicate that the transform of the 

channel transfer factors to the CIR-related domain was carried out with the aid 

of the unitary matrix associated with the design of the estimator, where 

potentially U M = 



Channel Transfer Function Estimation for 

Multi-User OFDM 

3.1 Motivation 

The topic of decision-directed channel estimation has been addressed in a variety of contributions, 

notably for example in the detailed discussions of Li et al. [17] in the context of single-user single-

transmit antenna OFDM environments. As it was outlined in great detail in Chapter 2 the basic idea 

is to equalize the channel transfer function experienced by an OFDM symbol during the current 

transmission period by capitalizing on that encountered during the previous OFDM symbol period. 

This implies assuming quasi-invariance of the channel's transfer function between the two consec-

utive OFDM symbols' transmission intervals. An improved channel transfer function estimate can 

then be obtained for detecting the most recently received OFDM symbol upon dividing the complex 

symbol received in each subcarrier by the sliced and remodulated information symbol hosted by 

a subcarrier. The updated channel estimate is then employed again as an initial channel estimate 

during the next OFDM symbol's transmission period. 

By contrast, in the multi-user OFDM scenario to be outlined in Section 3.2 the signal received by 

each antenna is constituted by the superposition of the signal contributions associated with the dif-

ferent users- or transmit antennas. Note that in terms of the multiple-input multiple-output (MIMO) 

structure of the channel the multi-user single-transmit antenna scenario is equivalent for example 

to a single-user space-time coded (STC) scenario using multiple transmit antennas. For the latter a 

Least-Squares (LS) error channel estimator was proposed by Li et al. [21], which aims at recover-

ing the different transmit antennas' channel transfer functions on the basis of the output signal of 

a specific reception antenna element and by also capitalizing on the remodulated received symbols 

associated with the different users. The performance of this estimator was found to be limited in 

92 
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Year Author Contribution 

'99 Li, Seshadri and 
Ariyavisitakul [21] 

The LS-assisted DDCE proposed exploits the independence of 
the transmitted subcarrier symbol sequences. 

'00 Jeon, Paik and Cho 

[23] 
Frequency-domain PIC-assisted DDCE is studied, which ex-
ploits the channel's slow variation versus time. 

Li [22] Time-domain PIC-assisted D D C E is investigated as a simpli-
fication of the LS-assisted DDCE of [21]. Optimum training 
sequences are proposed for the LS-assisted DDCE of [21]. 

'01 Mody and Stuber 
[102] 

Channel transfer factor estimation designed for frequency-
domain PSAM based on CIR-related domain filtering is stud-
ied. 

Gong and Letaief 
[103] 

MMSE-assisted DDCE is advocated which represents an ex-
tension of the LS-assisted D D C E of [103]. The MMSE-
assisted DDCE is shown to be practical in the context of trans-
mitting consecutive training blocks. Additionally, a low-rank 
approximation of the MMSE-assisted DDCE is considered. 

Jeon, Paik and Cho 
[104] 

2D MMSE based channel estimation is proposed for 
frequency-domain PSAM. 

Vook and Thomas 
[105] 

2D MMSE based channel estimation is invoked for frequency-
domain PSAM. A complexity reduction is achieved by CIR-
related domain based processing. 

Xie and Georghi-
ades[106] 

Expectation maximization (EM) based channel transfer factor 
estimation approach for DDCE. 

'02 Li[107] A more detailed discussion on time-domain PIC-assisted 
DDCE is provided and optimum training sequences are pro-
posed [22]. 

Bolcskei, Heath Jr. 
and Paulray [72] 

Blind channel indentification and equalization using second-
order cyclostationary statistics as well as antenna preceding 
was studied. 

Minn, Kim and 
Bhargava [108] 

A reduced-complexity version of the LS-assisted DDCE of 
[21] is introduced, based on exploiting the channel's corre-
lation in the frequency-direction, as opposed to invoking the 
simplified scheme of [107], which exploits the channel's cor-
relation in the time-direction. A similar approach was sug-
gested by Slimane [109] for the specific case of two transmit 
antennas. 

Komninakis, 
Fragouli, Sayed 
and Wesel [110] 

Fading channel tracking and equalization was proposed for 
employment in MIMO systems assisted by Kalman estimation 
and channel prediction. 

Table 3.1: Contributions on channel transfer factor estimation for multiple-transmit antenna assisted OFDM. 
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terms of the mean-square estimation error in scenarios, where the product of the number of trans-

mit antennas and the number of CIR taps to be estimated per transmit antenna approaches the total 

number of subcarriers hosted by an OFDM symbol. 

In [23] a DDCE was proposed by Jeon et al. for a space-time coded OFDM scenario of two transmit 

antennas and two receive antennas. Specifically, the channel transfer function' associated with each 

transmit-receive antenna pair was estimated on the basis of the output signal of the specific receive 

antenna upon subtracting the interfering signal contributions associated with the remaining trans-

mit antennas. These interference contributions were estimated by capitalizing on the knowledge of 

the channel transfer functions of all interfering transmit antennas predicted during the (n — l)-th 

OFDM symbol period for the n-th OFDM symbol, also invoking the corresponding remodulated 

symbols associated with the n-th OFDM symbol. To elaborate further, the difference between the 

subtraction based channel transfer function estimator of [23] and the LS estimator proposed by Li et 

al. in [21] is that in the former the channel transfer functions predicted during the previous, i.e. the 

{n — l)-th OFDM symbol period for the current, i.e. the n-th O F D M symbol are employed for both 

symbol detection as well as for obtaining an updated channel estimate for employment during the 

(n + l)-th OFDM symbol period. In the approach advocated in [23] the subtraction of the different 

transmit antennas' interfering signals is performed in the frequency-domain. 

By contrast, in [22] a similar technique was proposed by Li with the aim of simplifying the DDCE 

approach of [21], which operates in the time-domain. A prerequisite for the operation of this parallel 

interference cancellation (PlC)-assisted DDCE is the availability of a reliable estimate of the various 

channel transfer functions for the current OFDM symbol, which are employed in the cancellation 

process in order to obtain updated channel transfer function estimates for the demodulation of the 

next OFDM symbol. In order to compensate for the channel's variation as a function of the OFDM 

symbol index, linear prediction techniques can be employed, as it was also proposed for example 

in [22]. However, due to the estimator's recursive structure, determining the optimum predictor 

coefficients is not as straightforward as for the transversal FIR filter-assisted predictor as described 

in Section 2.2.4 for the single-user DDCE. 

A comprehensive overview of further publications on channel transfer factor estimation for OFDM 

systems supported by multiple transmit antennas is provided in Table 3.1. 

Our further discourse in Chapter 3 evolves as follows. In Section 3.2 we portray the signal model 

associated with the SDMA uplink transmission scenario. Note again that in terms of the MIMO 

structure of the channel this SDMA system is equivalent for example to a single-user STC scenario 

employing multiple transmit antennas. Hence, the algorithms discussed here are amenable to a wide 

range of applications involving multiple transmit antennas. Our discussion of specific channel es-

timation techniques commences in Section 3.3 with a portrayal of the least-squares error assisted 

' in the context of the OFDM system the set of K different subcarriers' channel transfer factors is referred to as the 
channel transfer function, or simply as the channel. 
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Channel 

User 1 

User 2 

User L 

Figure 3.1: Schematic of an SDMA uplink scenario as observed on an OFDM subcarrier basis, where each 
of the L users is equipped with a single transmit antenna and the basestation's receiver is assisted 
by a f-element antenna front-end. For comparison, in an STC scenario the L transmit antennas 
are used for providing L-th order transmit diversity for a single user. 

estimator proposed by Li et al. [21]. In this section we will derive a necessary condition for chan-

nel identification and the equations describing the estimator's M S B in the context of both sample-

spaced- as well as non-sample-spaced CIRs. The estimator's potentially high complexity provides a 

further motivation for devising alternative approaches. Specifically, in Section 3.4 we will focus on 

the far less complex PIC-assisted DDCE employing prediction filtering along the time-axis in the 

CIR-related domain. Then expressions are derived for the estimator's MSB and an iteration-based 

novel approach is devised for evaluating the optimum CIR-related tap predictor coefficients. This 

is followed by an extensive performance assessment under both sample-spaced and non-sample-

spaced CIR conditions. In order to avoid the off-line optimization of the predictor coefficients based 

on certain assumptions about the channel's statistics, the CIR-related tap predictors can be rendered 

adaptive with the aid of the RLS algorithm. This has the potential of significantly further improving 

the performance, while maintaining the system's stability under time-variant channel conditions. 

Our conclusions will be offered in Section 3.6. 

3.2 The SDMA Signal Model on a Subcarrier Basis 

In Figure 3.1 we have portrayed an SDMA uplink transmission scenario, where each of the P 

simultaneous users is equipped with a single transmission antenna, while the receiver capitalizes 

on a f -e lement antenna front-end. The set of complex signals, Xp[n,k], p = 1 , . . . , P received 

by the f-element antenna array in the A;-th subcarrier of the n-th OFDM symbol is constituted by 
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the superposition of the independently faded frequency-domain signals associated with the L users 

sharing the same space-frequency resource. The received signal was corrupted by the Gaussian 

noise at the array elements. Regarding the statistical properties of the different signal components 

depicted in Figure 3.1, we assume that the complex data signal transmitted by the l-th user 

has zero-mean and a variance of a f . The AWGN noise process rip at any antenna array element 

p exhibits also zero-mean and a variance of which is identical for all array elements. The 

frequency-domain channel transfer factors of the different array elements p = 1 , . . . , P or 

users I = 1 , . . . , L are independent, stationary, complex Gaussian distributed random variables 

with zero-mean and unit variance. 

3.3 Least-Squares Error Assisted Decision-Directed Channel Trans-

fer Function Estimation 

In [21] the Least-Squares Error (LSE) approach was proposed by Li et al. for estimating the vector 

of channel transfer factors associated with each specific transmit-receive antenna pair in the context 

of the multi-user scenario outlined in Section 3.1. In contrast to [21] our derivation is based on 

a more compact matrix notation. The outline of Section 3.3 is as follows. In Section 3.3.1 the 

estimator's specific structure is derived, while in Section 3.3.2 the equations describing its MSE 

are developed for channel scenarios associated with both sample-spaced and non-sample-spaced 

CIRs. The method of further enhancing the estimator's MSE performance with the aid of CIR-

related tap prediction filtering is briefly addressed in Section 3.3.3. Furthermore, in Section 3.3.4 

Li's simplified - parallel interference cancellation assisted - approach [22] is outlined, which is 

then further developed in Section 3.4. The analysis of the estimator's complexity is provided in 

Section 3.3.5. Our conclusions will be offered in Section 3.3.6. 

3.3.1 Derivation of the LS-Estimator 

Let us commence by providing a brief outline of Section 3.3.1. In Section 3.3.1.1 the signal recorded 

for a specific receiver antenna element is described using vector notations, while in Section 3.3.1.2 

we embark on the characterization of the LS estimator based on a simplified, noise-free version of 

the received signal's model outlined in Section 3.3.1.1. 

3.3.1.1 The SDMA Signal Model on a Receiver Antenna Basis 

Recall from Section 3.2 that the complex signal Xp[n, k] associated with the p-th receiver antenna 

element in the k-\h. subcarrier of the n-th OFDM symbol is given as the superposition of the different 
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users' channel-impaired received signal contributions plus the AWGN, which is expressed as: 

L 

a;p[n,A:] = ^a j ' ) [n ,A: ]aW[n,A:] + np[n,A], (3.1) 
1=1 

where again, the different variables have been defined in Section 3.2. Upon invoking vector no-

tations, the set of equations constituted by Equation 3.1 for A = 0 , . . . , TC — 1 can be rewritten 

as: 

L 

[f*] == (3.2) 
1=1 

= S^[n]Hp[n] + np[n], (3.3) 

where in Equation 3.2 Xp[n] G Hp^[n] G and np[n] G are column vectors 

hosting the subcarrier-related variables Xp[n, k], H^\n, k] and np[n, k], respectively, and SW[n] G 

qKxK jg ^ diagonal matrix with elements given by a(') [n, k], where A; = 0 , . . . , K—l. Furthermore, 

for the inner-product based representation of Equation 3.3 we have defined S[n] G 

HpW E (2): 

!3[n] == , ]E[p[r̂  == . (3.4) 

From now on we will omit the receiver antenna's index p. The dimension of the estimation task, 

namely that of determining the L users' vectors of channel transfer factors Hp ^[n], i = 1 , . . . ,L 

containing K entries each - separately for each receiver antenna element p = 1 , . . . , P - can be 

significantly reduced with the aid of a sub-space approach, which is the topic of the next section. 

3.3.1.2 Sub-Space Based Approach 

The key idea of sub-space-based techniques is to project the received signal on the basis of which 

the desired signal is to be estimated, onto the desired signal's vector sub-space, which is potentially 

spanned by only a fraction of the number of basis vectors which span the received signal's vector 

space. Thus the contributions outside the desired signal's sub-space, which should ideally only be 

the undesired AWGN, are removed. Unfortunately, however, in the context of non-sample-spaced 

CIRs the desired signal's space has potentially the same dimension as the received signal's space. 

Hence, the projection of the received signal onto the lower-dimensional- or lower-rank sub-space 

implies an imperfect representation of the desired signal. 

The further structure of this section is as follows. The low-rank approximation of the i-th 

user's vector \n] of channel transfer factors across the K different subcarriers is outlined in 

^In order to avoid conflicts with the previous definition of H[n] cast in the context of single-user OFDM systems it 
would be useful to add a superscript of to this variable. However, this superscript has been omitted here for reasons 
of notational simplicity. 
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Section 3.3.1.2.1 and the associated coefficients- or CIR-related taps are then determined in Sec-

tion 3.3.1.2.2. A necessary condition for the unambiguous identification of the different user's 

CIR-related taps will be outlined in Section 3.3.1.2.3. Our discussions in Section 3.3.1.2 will be 

concluded in Section 3.3.1.2.4 upon portraying an alternative approach capitalizing on the QR ma-

trix factorization [87] for evaluating the vector iiapt,Ko W of CIR-related tap estimates instead of 

directly performing the inversion of matrix Q[n] as suggested by Equation 3.22. 

3.3.1.2.1 Low-Rank Approximation of the i-th User's Vector of Different Subcarriers' Chan-

nel Transfer Factors Let us commence our detailed discourse by stating that Li et al. [21] as-

sumed that upon neglecting the effects of leakage^ due to the potentially non-sample-spaced nature 

of the "true" CIR of practical channels, the i-th user's vector [n] of channel transfer factors 

can be approximated by the Discrete Fourier Transform (DFT) vector [n] E of the vec-

tor [n] 6 C^o of jfo < K number of significant CIR-related a posteriori tap estimates as 

follows: 

== (3.5) 

== (3-6) 

where W denotes the unitary DFT matrix [87] and G j,as the role of mapping the KQ 

CIR-related a posteriori tap estimates contained in the vector [n] to their "true" positions in 

terms of an OFDM time-domain sample-spaced delay, as it will be augmented below. The product 

of these matrices is denoted here as W j ^ G namely: 

TArg!) = (3.7) 

More specifically, if the m-th component of the estimated CIR-related tap vector [n] is associ-

ated with the M-th integer delay tap raster position, then matrix will have a numerical value of 

unity at the position given by the n-th row and m-th column. Since the mapping has to be unambigu-

ous, we note that each column of contains one and only one unity entry, while the remaining 

K — 1 entries are zero. Hence, the total number of unity entries contained in is equal to A 

more compact form of Equation 3.6 for the different users 2 = 1 , . . . ,Lis given by: 

(3-8) 

where H[n] G and Ha-qM G C^^oxi ^re defined as: 

H[n] = , hA:,,[n] = , (3.9) 

^Consider the case of a non-sample-spaced CIR when the set of K frequency-domain channel transfer factor samples 
is transferred to the CIR-related domain with the aid of a unitary transform, which could be e.g. the DFT matrix W . 
Although the original CIR might consist of a single non-sample-spaced tap only, its effects are potentially spread across 
all the K taps in the output of the unitary transform. This effect is known as leakage. 



and the block-diagonal matrix W j E jg defined as: 

TAT; == (3.1()) 

Then following the philosophy of Equation 3.2 the vector x[n] of received subcarrier signals can be 

approximated by: 

L 

X n (3.11) 
1=1 

= (3J.2) 

:= (3.13) 

where Equation 3.13 was obtained upon substituting Equation 3.8 into Equation 3.12 and by intro-

ducing the short-hand of A[n] 6 £KXLKO^ namely: 

== (3.14) 

Hence, the initial estimation task is reduced to that of determining the L users' associated vectors 

h^[n], i = 1 , . . . ,L, constituting hx^fn], each hosting KQ number of significant CIR-related 

taps. Note that in Equation 3.11 SM[n,] € denotes the i - th user's matrix of sliced symbol 

decisions, while S[n] G ([^LKXLK jg ^ different users' matrix of sliced symbol decisions, which 

is defined similarly to the matrix S[n] of transmitted symbols given by Equation 3.4. 

3.3.1.2.2 Determination of the LS-DDCE Coefficients Using the Gradient Approach The 

model-mismatch related error vector Ax[n] G between the vector x of received channel-

impaired signals of the K different subcarriers, and the vector x of estimated subcarrier signals 

given by Equation 3.13 can be defined as: 

Ax[n] = x[n] — x[n] (3.15) 

= x[n] — Ahj^Q[n]. (3.16) 

Furthermore, the total squared error of all the subcarriers of an O F D M symbol is given by the inner 

product of the vector of subcarrier errors as stated by Equation 3.16, yielding: 

||Ax[n]||2 = Ax-'^[n]Ax[n] (3.17) 

= - 2me 4-

where the 'cross-conelation' vector p[n] G ^LKOXI jg given by: 

p[n] = A'^[n]x[n], (3.19) 
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Figure 3.2: Stylized illustration of the LS-assisted DDCE as associated with thep-th receiver antenna. Based 
on the matrix S[n] of tentative symbol decisions, which follows the formulation of S[n] in Equa-
tion 3.4, the projection matrix P[n] is calculated as shown in Equation 3.24. By multiplica-
tion with the vector x[n] of received subcarrier signals during the combiner stage, the vector 
^apt,Ko[n] G C^^oxi jjjg 2, different users' CIR-related least-squares a posteriori tap es-
timates is obtained. In the simplest case the vector H^pr + 1]E of channel trans-
fer factor estimates is generated upon invoking Equation 3.8 and by assuming that we have 
Hapr[n, + 1 ]= Hapf [n]. However, a further reduction of the estimation MSE can be achieved 
with the aid of the CIR-related tap prediction filtering techniques discussed in Section 2.2.4 for 
single-user scenarios. 

and the 'auto-correlation' matrix'* Q[n] € XLKO jg given by; 

Q[n] = A-^[n]A[n]. (3.20) 

Following the philosophy of the least-squares (LS) error criterion, a standard approach for deter-

mining the optimum vector hapt,i^o['^] 6 C-^-'^oxi CIR-related a posteriori tap estimates^ is to 

minimize the model-mismatch related squared error given by Equation 3.18. Note that in the opti-

mum point the conjugate gradient V* of the error term of Equation 3.18 ||Ax[ri]||2 with 

respect to the vector hjCg [n] of CIR-related tap estimates is zero [21], which can be formulated as: 

|Ax[: n\ Min. V*||AxW||% = 0. (3.21) 

Upon substituting Equation 3.18 into Equation 3.21 and using a number of mathematical manipula-

tions, we obtain the following expression [21]: 

(3.22) 

Note that according to standard definition evaluating the auto-correlation- or cross-correlation involves using the 
expectation operator, which is not the case in the context of the LS-approach. However, these expressions have still been 
used in inverted commas, in order to highlight the similarities to a potential M M S E solution. 

^In accordance with the notation used for DDCE in single-user scenarios, which was discussed in Section 2.2, the 
least-squares solution is denoted by a superscript of (). 
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Here we have specifically exploited that the gradient with respect to the constant first term of Equa-

tion 3.18 is equal to zero, while the gradient with respect to the second term was evaluated by 

capitalizing on g^!ERe(z^a) = | a [87], which is valid for complex valued column vectors z and a . 

The gradient of the last term in Equation 3.18 was evaluated upon exploiting that ^ z ^ K z = R z 

[87] for a Hermitian matrix R . 

Note that we could have also directly obtained the solution for this CIR-related tap estimation 

problem by recognizing the characteristic shape of Equation 3.16, for which the least-squares solu-

tion is given by [87]: 

W = P Wx[n], (3.23) 

where: 

P[n] = ( [ n ] A [n])" ̂  [n]. (3.24) 

The matrix P[n] e ([^LKOXK of Equation 3.24 is also known from the literature [87] as a matrix, 

which projects - when multiplied from the right with x[n] - on the column vectors of A[n]. These 

span the signal's sub-space [87]. Alternatively, P[n] can be interpreted as the pseudo-inverse- or 

so-called Moore-Penrose inverse [87] of A[n], denoted by At[n]. The representation of the LS-

assisted DDCE by means of Equations 3.23 and 3.24 is further illustrated in Figure 3.2. Note that 

based on Equation 3.8 the vector ~Rapt[n] E of a posteriori channel transfer factor estimates 

is given by: 

(3-25) 

Upon resubstituting the vector }iapt,Ka[n] of LS-optimum CIR-related tap estimates given by 

Equations 3.22 or 3.23 into the model-mismatch related cost-function of Equation 3.18 we obtain: 

= x^[n]xM - (3.26) 

which is the minimum mismatch error. 

3.3.1.2.3 Necessary Condition for Identification of the LS-DDCE Coefficients As mentioned 

in Section 3.3.1.2.2, the solution of the estimation problem according to Equation 3.23 requires 

computation of the Moore-Penrose- or left-inverse of the matrix A[n] G £KXLKQ gjven in Equa-

tion 3.24. A necessary and sufficient condition for its existence is that the LKQ number of columns 

of the matrix A are linearly independent [87]. This implies that we have rank{A[ri\) = LKQ, 

where a necessary condition for this to be the case is that the number of rows of A[n], namely K is 

higher than the number of columns, namely LKQ, which is formulated as: 

^0 
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Equation 3.27 imposes a constraint with respect to the L number of simultaneous users- or the 

number of transmit antennas. Avoiding this limitation is a further motivation for devising alternative 

channel transfer function estimation approaches. 

3.3.1.2.4 Implementation by QR Decomposition It is well-known from the literature that the 

matrix Q[n] = A^[n]A[n] associated with the projection matrix P[n] of Equation 3.24, which 

is also known as the Moore-Penrose- or pseudo-inverse A^[n] of A[n] [87] exhibits a potentially 

high condition number K(A[n]), which reflects the degree of ill-conditioning or proximity to rank-

deficiency [87]. Hence, a direct inversion of Q[n] is likely to be inaccurate, specifically for L < 

as already mentioned in Section 3.3.1.2.3. These effects can be mitigated with the aid of the 

procedure of QR matrix factorization or decomposition, as demonstrated for example in [87]. The 

QR factorization implies that the matrix A[n] can be factored as: 

A[n] = Q R (3.28) 

where Q G is a unitary matrix - which intentionally lacks the index [n] in order to distinguish 

it from Q[n] of Equation 3.20 and R G jg upper triangular matrix which can be ex-

pressed as R = (R i 0)^ since K > LKQ, with R i E and 0 being a (K-LKQ) X LKQ-

dimensional zero-matrix. Upon substituting Equation 3.28 into Equation 3.16 and by substituting 

the result into Equation 3.17 we obtain for ||Ax[n]||2 [87]: 

| |Ax[n]||2 = ||x[n] - Q R h [ n ] | | | (3.29) 

(3J% 

(3.31) 

(3.32) 

(3.33) 

where all variables are defined below. The solution in the sense of minimizing ||Ax[n]||2 is given 

by[87r 

Q ( Q " x n 

Q x[n 

R ih [n ] (3.34) 

which can be directly solved for the vector h[n] of the L different users' CIR-related tap estimates 

by back-substitution, since Ri[n] is an upper triangular matrix. Note that in the context of Equa-

tion 3.30 we have exploited the unitarity nature of the matrix Q, namely, that we have Q Q ^ = I, 

while in the context of Equation 3.31 that the Euclidean norm of a matrix or vector remains un-

changed, when subjected to a unitary transform [87]. Furthermore, we have exploited in Equa-

tion 3.32 that Q ^ x [ n ] = (c d )^ , where c G (C^^OXLKO j g £(K-LKO)X{K-LKO)_ ^Qte that 
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other matrix factorizations or decompositions can also be applied to the LS estimation problem, but 

the solution acquired with the aid of the QR factorization is the most prominent one [87]. 

3.3.2 Least-Squares Channel Estimation M S E in the C o n t e x t of Both Sample-Spaced 

and Non-Sample-Spaced CIRs 

Our analysis commences in Section 3.3.2.1 with the derivation of the channel transfer factor esti-

mation errors' auto-correlation matrix, where more specifically, the average of its main-diagonal 

elements determines the average channel estimation MSE. In this section we impose no specific 

assumptions on the CIRs or the transmitted subcarrier symbol sequences. By contrast, in Sec-

tion 3.3.2.2 we will focus our attention on the idealistic case of sample-spaced CIRs. However, 

in order to render our investigations more realistic, non-sample-spaced CIRs will be considered in 

Section 3.3.2.3. In characterizing the estimator's performance, we will capitalize on the properties 

of optimum training sequences, as proposed by Li [22]. 

3.3.2.1 Correlation Matrix of the Channel Transfer Factor Estimates 

Upon substituting Equation 3.3 into Equation 3.23 and by further substituting the result into Equa-

tion 3.8 the vector flapt[n](^) of least-squares channel transfer factor estimates is obtained as a 

function of the vector H[n] of "true" channel transfer factors associated with the specific channel 

encountered and as a function of the vector of different subcarrier noise processes n[n], which is 

formulated as': 

= W y P W ( S ^ W H W + n W ) . (3.35) 

Furthermore, the vector AILAPT[n] G of the L different users ' channel transfer factor esti-

mation errors is defined as: 

AHoptW = H[n] - ilapt[n], (3.36) 

while its auto-correlation matrix ^ is given by: 

= + (3.38) 

More specifically, the first term in Equation 3.38, namely the block-diagonal matrix G £LKXLK 

hosting the different users' spaced-frequency correlation matrices = 1 , . . . ,Lis given by: 

IlLf] == (3.39) 

= . . . R[/](^)). (3.40) 

'Note that here we have again omitted the receiver antenna index p. 

' i n the context of a sample-spaced CIR it can be shown that we have W j P [ n ] S ^ [ n ] = I, conditioned on an appro-

priate selection of i = 1,... , L, such that all of the non-zero taps' energy is retained. In this case Hopt[n] is 

unbiased estimate [87] of H[n], which implies that we have H[n] = H[n] + W j P [ n ] n [ n ] . 

an 
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Here we have exploited that the channel transfer functions associated with different transmit anten-

nas are uncorrelated. Again, in Equation 3.40 R[/](') G denotes the i-th user's channel's 

spaced-frequency correlation matrix, which is defined as: 

R[/]M (3.41) 

Similarly, for the second term of Equation 3.38, namely the channel transfer factor estimates' cross-

correlation matrix r[/^ 6 obtain: 

Il lf] == 0-42) 

= R [ / ] S * W P ^ W W f , (3.43) 

while the last term of Equation 3.38, namely the channel transfer factor estimates' auto-correlation 

matrix rJ/^ G is given by: 

ribf] == (3/14) 

= WjPM(S^WR[-^]S*W-| - (7^I)P^[m]Wf. (3.45) 

Note that r | / ^ can be split into a channel- and a noise-related matrix contribution Ri{i,am,ei G 

{QifrxZyfr R![[lwGN 5 respectively, yielding: 

R i ^ ] = R K L . , + R5woN, (3.46) 

where the two components are given by: 

= W j P W S : ^ W R [ / ] s * W P ^ W W f (3.47) 

R^wGN = ^ ^ W y P W P ^ W W f . (3.48) 

While in Section 3.3.2.2 we will further elaborate on the specific structure of the auto-correlation 

matrix R ^ g ^ in the context of the idealistic scenario of a sample-spaced CIR, in Section 3.3.2.3 

we will consider its specific structure in the context of a more realistic scenario of a non-sample-

spaced CIR, with the ultimate aim of determining the a posteriori estimation MSEs. 

3.3.2.2 Sample-Spaced CIRs 

The discussions in this section are structured as follows. The specific effects of a sample-spaced 

CIR on the channel transfer factor estimation error's auto-correlation matrix are discussed in Sec-

tion 3.3.2.2.1. In order to further characterize the estimator's MSE performance, the properties of 

the optimum training sequences proposed by Li [22] are reviewed in Section 3.3.2.2.2, while their 

impact on the estimator's performance is elaborated on in Section 3.3.2.2.3. 
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3.3.2.2,1 Auto-Correlation Matrix of the Channel Transfer Factor Estimation Errors The 

decomposition of the i-th user's channel's spaced-frequency correlation matrix R ^ W , i = 1 , . . . ,L 

with respect to the DFT matrix W can be expressed as: 

(3.49) 

where the matrix E has a diagonal structure with real-valued elements only in the 

context of a sample-spaced CIR. This is, because in this specific case the Karhunen-Loeve Trans-

form (KLT) matrix [87] of is identical to the DFT matrix W . Hence the diagonal elements 

of A|y^') are the real-valued eigenvalues of the matrix RM('), while the eigenvectors of R ^ W are 

identical to the column vectors of the DFT matrix W . Upon retaining all of the CIR-related taps 

having a non-zero energy, which is achieved by appropriately designing the matrix defined in 

the context of Equation 3.7, Equation 3.49 can be also formulated as: 

IlMOO == TAf ( j g ) W " " (3.:50) 

= (3.51) 

where was defined in Equation 3.7 and A^y^ = e Recall the 

definition of the matrix A[n] from Equation 3.14, namely that we have A[n] = S ^ [ n ] W j and 

that the Hermitian transpose of A[n] is given by A^[n] = S*[n]. Then, upon substituting 

Equation 3.51 into the formulae of the channel transfer factor estimates' cross-correlation matrix-

and auto-correlation matrix given in Equations 3.43 and 3.45, respectively, and upon resubstituting 

the results into Equation 3.38 we obtain the following expression for the auto-correlation matrix of 

the channel transfer factor estimation errors: 

= RKiwGN = W W f , (3.52) 

which results from the noise-related contribution of the matrix r [ / ^ in Equation 3.46, namely from 

its second term. Upon recalling from Equation 3.24 that the projection matrix was defined as P[n] = 

(A-^[n]A[?T,])^^A-^[n], Equation 3.52 is transformed into: 

, (3.53) 

where according to Equation 3.20 we have Q[n] = A-'^[n]A[n]. Note from Equation 3.53, that 

since A[n] = S ^ [ n ] W j according to Equation 3.14, the matrix R-^Haptfn] consequently also 

the average estimation MSE depends on the specific subcarrier symbols transmitted. 

3.3.2.2.2 Properties of Optimum Training Sequences In order to draw further conclusions 

with respect to the estimator's MSE, let us consider the choice of channel sounding or training 
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subcarrier symbol sequences, as proposed by Li [22], which are given for the i-th user- or transmit 

antenna by: 

[n, A] = , (3.54) 

where ctj = is the %-th user's signal standard deviation, tp[n, k], & == 0 , . . . ,K — 1 denotes an 

arbitrary training sequence having potentially complex subcarrier symbols of unit variance, WK = 

is the complex Fourier kernel, while KQ is defined as ii'o = . In [22] it was argued that in 

the context of these training sequences for identical matrices of JKQ = ^KI = • • • = where the 

KQ number of unity elements in J ^ o are arranged on a diagonal, such that KQ number of significant 

adjacent taps are extracted in the CIR-related domain, the matrix Q[n] is of diagonal shape. This 

can be demonstrated by recalling the definition of Q[n] in Equation 3.20, and substituting A[n] of 

Equation 3.14 into Equation 3.20 yields: 

(3[n] == C3.55) 

= W ^ S * W S ^ W W j . (3.56) 

By further capitalizing on the expressions of W j and S[n] given in Equations 3.10 and 3.4, re-

spectively, the sub-matrix Q G QKQXKO Qf block-matrix Q[n] E which is 

associated with the i-th "row" and j-th "column" of Q[n], where i, j G { 1 , . . . ,L} is given by: 

Q(w)[n] = (3.57) 

= (3.58) 

where Q [ n ] G QKXK jg defined as: 

= W ^ S W * W S ( : ' ) W W . (3.59) 

More explicitly, Equation 3.58 was obtained by substituting given in Equation 3.7 into Equa-

tion 3.57. When employing channel sounding or training sequences obeying Equation 3.54 as pro-

posed in [22], the elements of the matrix which is the key component of Equa-

tion 3.59, are given by: 

t^'^'^*[n,k]t^^^[n,k] = aiajWj^°^^ (3.60) 

By further noting that the elements of the DET matrix W are given by and that of its 

Hermitian transpose by where ii,ji G { 0 , . . . ,K — 1}, it can be readily shown that 

the element ( i i , j i ) of the product matrix defined in Equation 3.59 is given by: 

(3.61) 

= cr̂ cTĵ  [(%! - Ji) - j<ro(% - j ) - ccAT] , (3.62) 
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where: 

- 1 /\ (% :> J /\ <: j i ) 

0 /\ ^ :>; /\ %i :> j i ) v(% -< ji / \ %i <:.7i) . (3.63^ 

1 A (% <: J /\ %i Z).?!) 

In the derivation of Equation 3.62 we have exploited that the summation of the complex exponentials 

in Equation 3.61 yields a non-zero contribution, if the exponential argument in square brackets is 

equal to an integer multiple of i^, namely, if we have = xK. When taking into 

account the constraint of «i, j i G {0 , . . . , ii" — 1}, we have x E { — 1,0,1}. Observe furthermore 

from Equation 3.62 that when we have [i = j), the matrix is a diagonal matrix having 

identical elements of a f , while for {i > j) the matrix is a diagonal matrix, cyclically shifted to the 

left. Finally, for {i < j) the diagonal matrix is cyclically shifted to the right, exhibiting in 

both cases the form of: 

, where ^ ° ^ ^ 

and where G ^^ith KA = [K — KO{i — j)] mod K, while Ig e jgA'axJCg 

KB = [K — K(I{J — i)] mod K. Note that the matrix multiplied from the right with a 

column vector performs a cyclic rotation of the column vector's elements. 

Upon also taking into account the 'masking' effects imposed by the matrix JKQ = = • • • = 

as seen in Equation 3.58, it follows that for CIRs having KQ adjacent significant CIR-related 

taps we have = afl and = 0, i j. 

3.3.2.2.3 A Posteriori Estimation MSE Using Optimum Training Sequences By capitaliz-

ing on the specific properties of Q[n] in the context of optimum training sequences, namely that 

Q(®'®)[n] = a f l and = 0, i 7̂  j . Equation 3.53 can be rewritten as: 

R AHnptW - (3.65) 

where the matrix E is given by: 

(3.66) 

(3.67) 

= (3.68) 

with according to Equation 3.10 and E The latter formula will 

specifically draw our attention in the context of PIC-assisted DDCE in Section 3.4. The estimation 



MSE averaged over the subcarriers of the z-th user is then given by [21]; 

MSE«[n] = (3.69) 

(3.70) 

while by further averaging over the L different users the total average MSE becomes: 

1 6 
A4SEa^^%] = -r][;A4SEi%^n] (3J1) 

i=l 

1 = 1 ' 

Note that the i-th user's a posteriori estimation MSE given by Equation 3.70 is equivalent to that 

of the single-user scenario, when performing CIR-related tap windowing of the initial least-squares 

a posteriori channel transfer factor estimates Hapt[n, k],k = 0 , . . . ,K — 1, which were defined 

in Equation 2.2. Note however, that when transmitting random symbols the estimation MSE is 

potentially degraded compared to the scenario of transmitting optimum training sequences. This is 

since the different channels' CIRs are imperfectly separated from each other. 

In the next section we will analyse the estimator's performance in the context of the more realistic 

environment of a non-sample-spaced CIR. 

3.3.2.3 Non-Sample-Spaced CIRs 

In contrast to the sample-spaced CIR of the previous section, for a non-sample-spaced CIR the de-

composition seen in Equation 3.49 for the z-th user's channel's spaced-frequency correlation 

matrix RM(') with respect to the DFT matrix W is not a diagonal matrix and does not have a re-

duced number of KQ K non-zero elements. In fact, potentially all of the decomposition's taps 

may become non-zero. 

In order to further characterize the estimator's MSE performance, we will commence our elab-

orations again by considering the channel transfer factor estimation errors' auto-correlation matrix 

^AHapt[n]' which was given by Equation 3.38. We note furthermore that the associated compo-

nents of R ^ f j ^ namely the block-diagonal matrix R M of the different users' channels' spaced-

frequency correlation matrices, as well as the channel transfer factor estimates' cross-correlation as 

well as auto-correlation matrix, namely R '̂̂ ^ and r{/^ were formulated in Equations 3.40, 3.43 and 

3.45. In order to simplify r[/^ and rJ/^ of Equations 3.43 and 3.45, we will again capitalize on the 

properties of the optimum training sequences proposed by Li [22], which also constituted the basis 

of our derivations in Section 3.3.2.2. 

Hence, our further proceedings are as follows. In Section 3.3.2.3.1 the channel transfer factor 

estimates' cross-correlation matrix is derived, while the estimates' auto-correlation matrix is de-

rived in Section 3.3.2,3.2, both in the context of the optimum training sequences [22] described 
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in Section 3.3.2.2.2. With the aid of these matrices the average channel transfer factor estimation 

MSB is then derived in Section 3.3.2.3.3, based on the averaged sum of the main diagonal elements 

associated with the subcarrier estimation errors' auto-correlation matrix of Equation 3.38. 

3.3.2.3.1 Cross-Correlation Matrix of the Channel Transfer Factor Estimates in the Context 

of Optimum Training Sequences Let us commence by studying the estimates' cross-correlation 

matrix, which was given by Equation 3.43. Upon substituting P [ n ] of Equation 3.24 and A[n] of 

Equation 3.14 into Equation 3.43 we arrive at: 

. S * ( 3 . 7 3 ) 

where the diagonal matrix at the right-hand side of the product in Equation 3.73 was obtained 

upon exploiting the specific properties of the training sequences [21] outlined in Section 3.3.2.2.2, 

implying that = a f l and = 0, i ^ j, as argued in the context of deriving 

Equation 3.65. From Equation 3.73 we infer that the sub-matrix E , located on the 

diagonal of the matrix which is associated with the i-th user is given by: 

(3.74) 

where we have also exploited that the i-ih. sub-matrix on the diagonal of S*[n]S^[n] is given by 

3.3.2.3.2 Auto-Correlation Matrix of the Channel Transfer Factor Estimates in the Con-

text of Optimum Training Sequences The AWGN-related contribution of the estimates' auto-

correlation matrix given by Equation 3.43 was elaborated on in Section 3.3.2.2, and the same 

derivation is also valid for the case of the non-sample-spaced CIR discussed here. Specifically, from 

Equations 3.52 and 3.65 we recall that: 

TiW — "1 f3 75) 
• r l -a ,AWGN — 2 W,KO " " " 2 ^ W , K Q ) ^ 

and hence, the i-th user's associated sub-matrix in the matrix of Equation 3.75 is given by: 

•D[/](2>2) _ ^nn(i) n 76) 
-M-O.AWGN — ^2 ^W,Ko-

By contrast, the channel-related component R^ch«md of defined in Equation 3.46, requires 

some further elaborations. Specifically, from Equation 3.47 we infer that; 

=: (3.77) 
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which can be transformed into: 

, J. ^ " ' 2 W.A'oJ 

. S * W S ^ W . . S ' M S ^ W . 

. d i a 9 ( i T ™ ^ , , . . (3.78) 
"l " l 

by substituting P[n] of Equation 3.24, A[n] of Equation 3.14 and Rt-^1 of Equation 3.40 into Equa-

tion 3.77. Here we have exploited again the effects of the optimum training sequences on the specific 

structure of the matrix Q[n] = A^[n]A[n], similarly to the procedure employed in the context of 

deriving Equation 3.73. From Equation 3.78 we infer that the sub-matrix 6 located 

on the diagonal of matrix R{/^, which is associated with the i-th user is given by: 

f z S W * S ( : ' ) R [ / ] ( ^ ) S ( : ' > S ( 3 . 7 9 ) 

In order to proceed further let us again recall the decomposition of the %-th user's channel's spaced-

frequency correlation matrix with respect to the DET matrix W , which was formulated 

in Equation 3.49. Recall furthermore the decomposition of from Equation 3.68. Then 

Equation 3.79 can be reformulated as: 

w j iW W ^ , (3.80) 

where was defined in Equation 3.59. Recall also that the specific structure of in 

the context of employing optimum training sequences was outlined in Section 3.3.2.3. While for 

{i = j) we have = a f l , for {i ^ j) we obtain Q = aiajlcyc\ which was further 

detailed in Equation 3.64. Upon taking into account these specific properties in Equation 3.80, we 

obtain: 

•r̂ a.ciBmiei — 2 
"i 

5'. y 
I ^ W ^ . (3.81) 

Note in Equation 3.81 that the matrix Icyc performs a rotation of the matrix with respect to 

its rows, while its transpose, namely Ic'jc^, performs a rotation of the matrix with respect to 

its columns. The effect of the two rotations within the sum of Equation 3.81 is that different parts 

of the decomposition become visible to the 'masking window' defined by the matrix I ^ . 

3.3.2.3.3 Channel Estimation MSE in the Context of Optimum Training Sequences Hence 

by following the philosophy of Equation 3.38 the ?-th user's associated sub-matrix R ^ ' g of the 
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channel transfer factor estimation error correlation matrix R-AHapt[n] given by: 

R^'j) = R[/](') _ (3.82) 
I c J a : 

where according to Equation 3.46 we have and and 

R-ô awgn were given by Equations 3.74, 3.81 and 3.76. The a posteriori estimation MSB averaged 

over all subcarriers of the i-th user is then given by: 

M S E « N = (3.83) 

1 m ,.rfinn,An \ . jFfo "H - ^Trace(AM'')lM) + - ~ ^ + 

+ E (3.84) 
;=1 

where we have exploited that Trace (UAU-^) = Trace (A) for a unitary matrix U. Note that in 

Equation 3.84 the sum of the first three terms is identical to the MSB, which would be achieved in 

a single-user scenario in the context of a non-sample-spaced CIR. However, as a result of the multi-

user interference experienced in the CIR-related domain, the MSE is further degraded in the multi-

user scenario by the contribution constituted by the last term of Equation 3.84. Furthermore, we note 

again that the MSE of Equation 3.84 is only achieved upon employing optimum channel sounding 

or training sequences [22] of Section 3.3.2.2.2, while for random subcarrier symbol sequences the 

MSE is potentially further degraded. 

3.3.3 A Priori Channel Transfer Function Estimation M S E Enhancement by Linear 

Prediction of the A Posteriori CIR-Related Tap Est imates 

The vector of CIR-related tap estimates obtained with the aid of Equation 3.22 or 3.23 and its asso-

ciated vector of channel transfer factor estimates given by Equation 3.8 are actually the a posteriori 

estimates generated for the current OFDM symbol after the detection of the transmitted subcarrier 

symbols. These estimates could for example be employed again following an iterative approach for 

obtaining potentially enhanced symbol decisions, since the channel transfer factor estimates em-

ployed during the initial symbol detection were imperfect. In the conventional decision-directed 

channel estimator, however, these a posteriori estimates are employed as a priori estimates for the 

demodulation of the next OFDM symbol, assuming that the channel's transfer function remained 

constant. However, as proposed by Li et al. [22], enhanced a priori channel transfer function 

estimates can be obtained for the next OFDM symbol period upon invoking linear prediction tech-

niques, which could operate for example in the context of the estimator structures discussed here, on 

a time-direction tap-by-tap basis in the CIR-related domain. This was alluded to by the CIR-related 

tap prediction block shown at the top of Figure 3.2. Recall that linear CIR-related tap prediction 
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was also used in the context of single-user channel estimation techniques in Chapter 2.2.4. We 

will make extensive use of these techniques in the context of PIC-assisted DDCE discussed in Sec-

tion 3.4. Note that Li's LS-assisted DDCE [21] allows for a purely transversal FIR filter-related 

implementation of the linear predictor operating along the time-direction. Thus, the optimum pre-

dictor coefficients can be determined with the aid of the Wiener equation. We note, however, that 

this approach is different from incorporating a channel transfer function predictor in the context of 

the PIC-assisted DDCE, a technique, which will be outlined in Section 3.3.4. The evaluation of the 

associated predictor coefficients is not as straightforward as for the LS-assisted DDCE and will be 

the topic of our discussions in Section 3.4. 

3.3.4 Simplified Approach LS-Assisted D D C E 

A disadvantage of the LS estimation approach discussed in Section 3.3.1 is the potentially signifi-

cant computational complexity imposed by the calculation of the inverse of the correlation matrix 

Q[n], which is required for computing the different users' CIR-related tap estimates, as shown in 

Equation 3.22. As a potential means of reducing the complexity, it was suggested by Li [22] to per-

form a parallel cancellation of the users' CIR-related contributions. More explicitly, upon invoking 

Equation 3.22 and by exploiting its specific block structure, the j - th user's vector of CIR-related a 

posteriori tap estimates can be expressed as a function of the (L — 1) remaining users' vectors of 

CIR-related a posteriori tap estimates by 'removing' their effect with the aid of the Parallel Inter-

ference Cancellation (PIC) step constituted by the second bracketed term in: 

/ . \ 
(3.85) 

\ / 
where p(')) [n] G is the j-th sub-vector of the vector p[n] of cross-correlations defined in 

Equation 3.19: 

p(i)j-^j _ W j ^ S ( ' ) * [ n ] x [ n ] , (3.86) 

and E C^^OXLKQ jg sub-matrix associated with the j-ih "row" and i-th "column" of 

the auto-correlation matrix Q[n] defined in Equation 3.20, which is expressed as: 

(3.87) 

In the simplest case tentative estimates of the {L — I) remaining users' vectors of CIR-related taps 

- which are required for the cancellation process outlined in Equation 3.85 could be provided upon 

assuming that a-q W ^ Ko\P' ~ 1] for reasonably slowly varying channels [22]. A further 

improvement of the estimator's MSE can be achieved with the aid of an ivj^p-tap prediction filter. 
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Ko 
K 
L 
P 

number of significant CIR-related taps 
number of subcarriers 
number of simultaneous users 
number of receiver antennas 

Table 3.2: S u m m a r y of the paramete rs inf luencing the L S - a s s i s t e d D D C E ' s complexity. 

which operates individually on each CIR-related tap in the time-direction. This solution will be the 

topic of Section 3.4, where the optimum predictor coefficients are determined. 

Before concluding this section, we emphasize again, that the difference between the scheme 

alluded to here and that to be presented in Section 3.4 is essentially the employment of the parallel 

interference cancellation, which is once conducted in the CIR-related domain and then once again 

in the frequency-domain. However, it can be readily demonstrated that the scheme proposed in this 

section and that of Section 3.4 produce identical results. 

3.3.5 Complex i ty Analys is of the Original- and S i m p l i f i e d LS-Assis ted D D C E 

In this section we will analyse the computational complexity imposed by the LS-assisted DDCE. 

The relevant system parameters are summarized in Table 3.2. More specifically in Section 3.3.5.1 

we will characterize the complexity of the original approach of Section 3.3.1.2 capitalizing on the 

inversion of the correlation matrix Q[n], while in Section 3.3.5.2 the complexity of the simplified 

approach of Section 3.3.4 will be assessed. 

3.3.5.1 Complexity of the Original LS-Assisted DDCE 

The complexity of the original LS-assisted DDCE technique of [21], which was described in Sec-

tion 3.3.1, is attributed to three different operations. The first operation is the calculation of the 

correlation matrix Q[n] defined in Equation 3.20, which will be considered in Section 3.3.5.1.1. 

This operation is independent of the specific antenna element considered. The second operation is 

that of evaluating p[n] of Equation 3.19, which has to be carried out separately for each of the P re-

ceiver antenna elements. The associated complexity will be quantified in Section 3.3.5.1.2. Finally, 

the system of LS-related equations has to be solved for the vector \iapt[n] of the different users' CIR-

related a posteriori tap estimates according Equation 3.22, which is transferred to the frequency-

domain with the aid of the FFT in order to obtain the channel transfer factor estimates. These steps 

will be further analysed in terms of their computational complexity in Section 3.3.5.1.3. Based on 

the analysis of the individual components a formula will then be presented in Section 3.3.5.1.4 for 

the LS-assisted DDCE's total complexity. 
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3.3.5.1.1 Complexity Associated with Assembling Matrix Q[n] More specifically, for the cal-

culation of the sub-matrix of the correlation matrix Q [ n ] we have relied on the mathe-

matical discourse of [21]^ and found that the normalized number of complex multiplications and 

additions is given by: 

= ^ ( 2 ^ ° S 2 - ^ + 1 ) (3-88) 

= £^1°E2-T, (3.85) 

where the number of operations was normalized to the K number of subcarriers, L number of 

users and P number of receiver antenna elements. Note that the additive unity contribution en-

closed in brackets seen in the expression of the loom, number of complex multiplications in 

Equation 3.88 is due to calculating the correlation between the i - th and the j-th user's transmitted 

symbols on a subcarrier basis, which is explicitly visible for example in the representation of the 

correlation matrix given by Equation 3.87. The entire correlation matrix Q[n] consists of 

sub-matrices and correspondingly the total computational complexity imposed is increased by 

the same factor of compared to the complexity of calculating a single sub-matrix. A reduction 

of this factor of can be achieved by exploiting the Hermitian structure of the correlation matrix 

Q[n], which implies that Hence, the number of off-diagonal sub-matrices 

to be evaluated is (g) = ^L{L — 1). Furthermore in the context of MPSK modulation schemes the 

sub-matrices i = 1 , . . . ,L along the main diagonal of the matrix Q[n] are weighted unity 

matrices and therefore no additional complexity is imposed by their computation. Upon incorporat-

ing the factor of (g) into Equations 3.88 and 3.89, the total normalized complexity associated with 

assembling Q[n] becomes: 

== " 1)(:^ RT 4- 1) (3-!)0) 

c S r ' l . ™ = ^ ( £ - l ) l o g 2 i r . (3.91) 

3.3.5.1.2 Complexity Associated with Assembling Vector p[n] The computational complexity 

imposed by evaluating Pp[n] of Equation 3.19 for p — 1 , . . . , P , follows similar considerations, 

which results in a normalized number of complex multiplications and additions as given by: 

Lam. == 1 (3.92) 

Ln. = iog2 a:. (3.93) 

Here we have taken into account that p[n] has to be calculated separately for each antenna element. 

Again, the unity contribution observed in the expression of the |„onji number of complex 

^Note however that in terms of the scheme's actual implementation it is not advisable to directly employ the repre-
sentation suggested by Equations 3.19 and 3.20. It is more efficient to implement the associated multiplication involving 
the DFT matrix W , with the aid of an FFT, which requires ^ log; K number of complex multiplications and twice the 
number of complex additions. 
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multiplications is required, because evaluating p[n] involves calculating the correlation between the 

received signal and the transmitted symbols, which are assumed to have been correctly detected, on 

a subcarrier basis, as observed with the j-th user's block-matrix of p[n], shown in Equation 3.86. 

3.3.5.1.3 Complexity Associated with Solving the LS System Equations for the Vector of 

CIR-Related Tap Estimates hapt,iro W Once the auto-correlation matrix Q[n] of Equation 3.20 

and the different reception antennas' associated cross-correlation vectors pp[ra], p = 1 , . . . ,P are 

available, the vector hapt,Ko,p[''^] can be evaluated for each reception antenna separately upon solv-

ing Equation 3.22. However, the associated processing can be significantly accelerated by noting 

that only the right-hand side of Equation 3.22 is changed for the different reception antenna ele-

ments. Specifically, we can employ a decomposition-based solution of Equation 3.22 with respect 

to the matrix Q[n], such as the LU decomposition [87], for example, or the QR decomposition as 

described in Section 3.3.1.2.4. This decomposition has to be performed only once, requiring ap-

proximately ^{LKQ)^ complex multiplications and the same number of additions [86]. Then the 

solution of Equation 3.22 can be carried out by forward- and backward substitutions as outlined 

in [87]. These operations impose a computational complexity of approximately (LKQ)'^ complex 

multiplications and additions per reception antenna element. Hence, we have a total normalized 

complexity of: 

(3.94) 

3.3.5.1.4 Total Complexity Finally, we have to account for the complexity imposed by trans-

forming the different receiver antennas' and users' CIR-related tap estimates to the frequency-

domain with the aid of the DFT matrix W . This operation can also be implemented with the 

computationally more efficient FFT. It can be shown that the corresponding normalized number of 

complex multiplications and additions is given by: 

Hence, the total normalized number of complex multiplications and additions is given by: 

f<0 I _ (^0 I I I I 
"^MU-CE,LS| i ionn — ^ Q j-„] | norni T " p j | nomi T 

I nO I I ^ 0 I /q Q7̂  

Specifically, upon assuming that L = P,we obtain: 

2 

+ 1 

(3.98) 

(3.99) 
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Jfo g / j f = 64 j fo == 8/\Rr ==512 j fo == 64/rff = 512 

1 
M̂U-CEyLS 1 nonn 

/T(C4-C) 1 
1 norm 

8.50 4-11.66 

14.25 4- 11.66 

12.06 4-1.46 

21.38 4-1.46 

12.06 4- 690.66 

21.38 4- 690.66 

Table 3.3: Computational complexity of the LS-assisted DDCE [21] in terms of the number of complex 
multiplications and additions normalized to the K number of subcarriers, L number of users and 
P number of receiver antennas. Here we have assumed that L ~ P = 4. 

where a normalization to KLP = KL'^ has been performed. Observe that upon increasing the 

number of simultaneous users L, the normalized complexity increases linearly. We have evaluated 

the normalized complexity for a number of configurations and the corresponding results are listed 

in Table 3.3. Note that the second additive term associated with the complexity entries of Table 3.3 

is related to the last additive term in Equations 3.98 and 3.99, which originates from the solution 

of Equation 3.22 for the vectors \iapt,Ko,p[n], p = 1 , . . . , P of CIR-related taps using the LU 

decomposition. Observe for example, that for KQ = 64 CIR-related taps the contribution due to the 

matrix inversion is excessive. 

3.3.5.2 Complexity of the Simplified LS-Assisted DDCE 

For the sake of comparison, in this section let us consider the normalized computational complex-

ity associated with the simplified DDCE approach of Section 3.3.4. Recall from Section 3.3.4 that 

the difference with respect to the original DDCE approach of Section 3.3.1.2 resides in performing 

the parallel cancellation of the interfering users' CIR-related tap contributions according to Equa-

tion 3.85 instead of carrying out matrix multiplication with the inverse of the correlation matrix 

Q[n] of Equation 3.20 as suggested by Equation 3.22. It can be readily shown that the normalized 

computational complexity of the PIC operations of Equation 3.85 f o r p = 1 , . . . , P is given by: 

j(C*C) Cfc+C) j 
hap(,Ko,Pic[n] 

— ^ 1)^0-
^apt,KQ,Plc['^] 

Hence, following the philosophy of Equation 3.97, the total normalized complexity becomes: 

(3.100) 

^ 0 I _ 
•-̂ MU-CE.PIC-LSlnonn — ^Q[r7 

- ^ 0 I nO I 
p[n] I"™" 4-

I nO I I n 
"opt, Kg,PIC W 

0 (3.101) 
h a p f , K Q — > H a p t [ n ] 

With the aid of Equation 3.101 in the specific scenario of 1/ = P we arrive at the following expres-

sions: 

a 

(0€ ) I 
MU-CEf IC-LS I norm 

(C-HC) , 
MU<EfIC-Ls|norm 

( s -- logs 4- ( s -- 4- -- 1)^(0 (3.10:2) 

2 ~ log2 K + —{L - 1)Kq, (3.103) 
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Kq = 8/K = QA jfo == 8 / j f = 512 jfo = 64: , /== 512 
^(C*C) 1 

'-̂ MU-CE,PIC-LS|iiorm 

*̂ MU-CE,PIC-LS Inorm 

8.50 + 3.0 

14.25 4- 3.0 

12.06 -1- 0.38 

21.38 4-0.38 

12.06 + 24.0 

21.38 + 24.0 

Table 3.4: Computational complexity of the simplified LS-assisted D D C E [22] in terms of the number of 
complex multiplications and additions normalized to the K number of subcarriers, L number of 
users and P number of receiver antennas. Here we have assumed that L = P = 4^. 

where again a normalization to KLP = KL'^ has been performed. Note in Equations 3.102 and 

3.103 that the complexity is a function of the second power of the number of significant CIR-related 

taps KQ. This has to be contrasted to the cubical dependency observed in Equations 3.98 and 3.99 

in the context of the original approach, as it was discussed in Section 3.3.5.1. In Table 3.4 we have 

exemplified the complexity of the simplified LS-assisted DDCE, again, for the specific parameters 

of L = P = 4. We observe a significant complexity reduction compared to that of the original 

estimator, which was characterized for the same parameters in Table 3.3. 

3.3.6 Conclus ions o n the Original- and Simplif ied L S - A s s i s t e d D D C E 

As an introduction to the topic of channel transfer factor estimation f o r multi-user OFDM systems in 

Section 3.3 we have portrayed Li's sub-space based estimation approach [21]. The corresponding 

equations, specifically that of the vector of optimum CIR-related tap estimates of Equation 3.22 

were derived in Section 3.3.1 using a more compact matrix notation rather than the original notation 

of Li et al. [21]. The matrix notation had the advantage that the standard form of this solution, 

namely that of minimizing the squared estimation error as formulated in Equation 3.17 became 

visible. We also highlighted in Equation 3.27 that a necessary condition for the identification of 

the L different users' CIR-related taps - where each user has a total of KQ significant taps - is that 

L < which is an additional motivation for identifying alternative channel transfer function 

estimation approaches. In an effort to further characterize the estimation approach proposed by Li 

et al. [21], its associated channel transfer factor estimation MSE was derived in Section 3.3.2, in 

the context of both sample-spaced and non-sample-spaced CIRs. Our discussions commenced by 

deriving the channel transfer factor estimation errors' auto-correlation matrix in Section 3.3.2.1. 

It was evident that the estimation errors' correlation matrix of Equation 3.38 and hence also the 

estimation MSE are dependent on the transmitted subcarrier symbol sequences. Li demonstrated 

in [21] that the LS-DDCE's MSE is minimized, if the sub-matrices on the "side-diagonals" of the 

correlation matrix Q[n] of Equation 3.22 are zero-matrices and thus no interference occurs between 

the different users' CIR-related tap estimation processes. For this to be the case, the constraints 

proposed by Li in [22] have to be imposed on the subcarrier symbol sequences transmitted by the 

different antennas of the different users, which is only applicable during the transmission of the 
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training OFDM symbols. However, in order to simplify our analysis, in Section 3.3.2 we have 

exploited the specific properties of the training sequences. Hence, Equations 3.70 and 3.84 derived 

in Sections 3.3.2.2 and 3.3.2.3 for describing the LS-DDCE's M S E in the context of both sample-

spaced- and non-sample-spaced CIRs, respectively, represent the lowest possible estimation MSE 

achieved in the presence of random subcarrier symbol sequences. Furthermore, in Section 3.3.3 the 

strategy of an estimation MSE enhancement by transversal linear prediction was alluded to, while in 

Section 3.3.4 a simplified approach to DDCE based on parallel interference cancellation in the CIR-

related domain, as suggested by Li [22] was outlined, which will be the basis of our further detailed 

discussions of PIC-assisted DDCE in Section 3.4. In this context it was also argued that as a result 

of the linear signal processing operations applied prior to extracting the most significant CIR-related 

taps, the PIC can be conducted both in the CIR-related domain upon invoking the correlation matrix 

Q[n] as shown in Equation 3.85, or in the frequency-domain by direct subtraction of the subcarriers' 

channel transfer factors after weighting them by the transmitted symbols, as it will be demonstrated 

in Section 3.4. Our complexity analysis conducted in Section 3.3.5 revealed that in the context of 

the original DDCE approach of Section 3.3.1 the computational complexity imposed by solving 

Equation 3.22 for generating the different reception antennas' associated vectors of CIR-related tap 

estimates is potentially excessive due to its cubical dependence on the product of the number of users 

L and the number of significant CIR-related taps KQ. This is a further motivation for identifying 

alternative ways of performing the estimation of the different channels' transfer functions. 

3.4 Frequency-Domain Parallel Interference Cancellation Assisted Decision-

Directed Channel Estimation 

In this section a PIC-assisted DDCE scheme will be introduced and characterized. Specifically, 

its analytical description is provided in Section 3.4.1, while in Section 3.4.2 its performance is 

assessed in terms of the achievable a priori channel estimation^ M S E as well as the system's BER 

in the context of both sample-spaced- and non-sample-spaced channel scenarios. The computational 

complexity of the PIC-assisted DDCE will be analysed in Section 3.4.3. Finally conclusions will 

be offered in Section 3.4.4. Let us commence our discussions in the next section by considering the 

recursive estimator's structure. 

3.4.1 The Recursive Channel Est imator 

The specific structure of Section 3.4.1 is as follows. Our portrayal of the frequency-domain PIC-

assisted DDCE commences in Section 3.4.1.1, where we provide expressions both for the a poste-

riori channel transfer factor estimates arrived at after the parallel interference cancellation as well 

^Unless otherwise stated the channel transfer function estimator is simply referred to as the channel estimator. 
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j-th user's 
estimator unit 

Channel 

Tr. P r e d / 

n 4- 1] 

Figure 3.3: Illustration of the PIC-assisted channel transfer function estimation- or prediction block, associ-
ated with the J-th user and any of the P receiver antenna elements. The PIC process is described 
by Equation 3.106. The structure of the channel transfer funct ion predictor follows that described 
in Section 2.2 for the single-user scenario. 

as for the a priori channel transfer factor estimates upon taking into account the effects of the 

CIR-related tap prediction filter. The specific structure of the predictor arrangement is detailed in 

Section 3.4.1.2. Furthermore, in Section 3.4.1.3 we derived an expression for the average a priori 

channel estimation MSB, while in Section 3.4.1.4 an expression of the average a posteriori channel 

estimation MSB for the current OFDM symbol as a function of the corresponding estimation MSBs 

associated with the previous number of OFDM symbols. After an analysis of the estimator's 

stability conditions in Section 3.4.1.5, the expression derived for the a priori estimation MSB is then 

employed in Section 3.4.1.6 - under the assumption that the system is in its steady-state condition 

- for generating the different users' vectors of optimum predictor coefficients, again, as a function 

of the predictor coefficient-dependent a priori estimation MSBs. Since the recursive structure of 

the channel transfer function estimator does not allow for an algebraic solution to be generated for 

the desired predictor coefficients, an iterative approach is applied, which exploits the contractive 

properties of the system equations. This approach was proposed earlier by Rashid-Farrokhi et al. 

[ I l l ] in the context of simultaneously optimizing the transmit power allocation and basestation 

antenna array weights in wireless networks. Since normally the exact knowledge of the channel's 

statistics in the form of the spaced-time spaced-frequency correlation function is not available, in 

Section 3.4.1.7 we discuss potential strategies for providing estimates of the statistics required. 



3.4.1.1 A Priori and A Posteriori Channel Estimates 

Recall from Equation 3.1 that the complex output signal [n, A:] of the p-th receiver antenna element 

in the A-th subcarrier of the n-th OFDM symbol is given by: 

L 
Xp[n,k] = k]s^^^[n, k] +np[n,k], ( 3 . 1 0 4 ) 

i=l 

where the different variables have been defined in Section 3.2. Upon invoking vector notation, 

Equation 3.104 can be rewritten as: 

n] = ^ SW[n]HW[n] + np[n], (3.105) X , . . . ^ 

1=1 

where Xp[n] G Hp^[n] G and np[n] € are column vectors hosting the 

subcarrier-related variables Xp[n,k], Hp\n,k] and np[n,k], respectively, and sW[n] G £ K X K 

is a diagonal matrix having elements given by A:], where 6 = 0 , . . . ,K — 1. Aa a posteriori 

(apt) estimate H ^ [ n ] G of the vector [n] of 'true' channel transfer factors between 

the j-th user's single transmit antenna and the p-th receiver antenna can be obtained by subtracting 

all the (-L — 1) vectors of interfering users' estimated signal contributions from the vector Xp[n] of 

composite received signals of the L users, followed by normalization with the j-th user's diagonal 

matrix of detected complex symbols yielding: 

( . \ (3.1CK)) 

\ / 
where for simplicity's sake we have omitted the receiver antenna's index p. The PIC process based 

on Equation 3.106, has been further illustrated in Figure 3.3. In Equation 3.106, H ^ [ n ] G 

denotes the i-th user's vector of complex a priori (apr) channel transfer factor estimates predicted 

during the (n — l)-th OFDM symbol period for the n-th OFDM symbol, as a function of the vectors 

of a posteriori channel transfer factor estimates — n] associated with the previous Nf}p 

number of OFDM symbols, which is formulated as: 

il(gr[n] =: / 1] , . . . , -- jvjgp]) . O-K)?) 

We will further elaborate on the specific structure of the predictor in the next section. 

3.4.1.2 A Priori Channel Prediction Filtering 

The channel transfer function prediction along the time-direction follows the philosophy of the 2D-

MMSE channel transfer function estimation approach proposed by Li et al. [17], which in turn is 

based on the rank-reduction assisted ID-MMSE channel estimation scheme proposed by Edfors and 
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Sandell et al. [13, 15]. These schemes were described in Section 2.2 in the context of single-user 

OFDM systems. Specifically recall Figure 2.3, which illustrated the process of 2D-MMSE based 

channel estimation- or prediction. 

• In a first step, in order to obtain the i-th user's vector of a priori channel transfer factor 

estimates for the n-th OFDM symbol period during the [n — l )- th OFDM symbol period, 

which is denoted by ilaprin], the vector of a posteriori channel transfer factor estimates 

— 1] is subjected to a unitary linear inverse transform e , yielding the 

vector h g p j n — 1] € of CIR-related a posteriori tap values; 

- 1] = 1]. (3.108) 

From a statistical point of view the optimum unitary transform to be employed is the Karhunen-

Loeve Transform (KLT) [16, 15] with respect to the Hermitian spaced-frequency correla-

tion matrix of a posteriori channel transfer factor estimates, which is given by = 

when assuming the wide-sense stationarity of The matrix G 

decomposed as where E is 

the unitary KLT matrix of eigenvectors, and G exhibits the diagonal form of 

. . . , The diagonal elements of are referred to as the 

eigenvalues of R ^ ^ ' ^ [87]. Similarly, the desired channel's ' t rue ' spaced-frequency correla-

tion matrix R[-^]W = ii?{HWHW^} can be decomposed as 

At this stage we note that the error components contaminating the vector — 1] esti-

mating the vector [n — 1] of "true" channel transfer factors are uncorrected due to the 

statistical independence of the AWGN and that of the modulated symbols transmitted in the 

different subcarriers. Hence both and share the same eigenvectors [16], which 

implies that we have . In reality however, the explicit knowledge of the chan-

nel's spaced-frequency correlation matrix R ^ W and that of its unitary KLT matrix 

is typically unavailable. Instead, an estimate RM(^) and its associated unitary KLT matrix 

has to be employed, which - in contrast to the optimum KLT matrix - results in 

an imperfect decorrelation of the a posteriori channel transfer factor estimates. 

• In a second step linear iV^^-tap filtering is performed in the time-direction separately for 

those KQ number of CIR-related components of for which the variance is significant. 

This is achieved by capitalizing on the current vector — 1] and the vectors h i p j " " " "]> 

n = 2 , . . . , Nf}p of the previous - 1) number of O F D M symbols. As a result, in the 

case of estimation filtering [17] an improved estimate hap\[n — 1] of — 1] is obtained, 

although this technique was not employed here. By contrast, in case of the prediction filtering 

employed here, an a priori estimate E of h(') [n] is obtained. In mathematical 
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terms this can be formulated as; 

-- (3-109) 
n = l 

where E denotes a sparse unity matrix having unity entries only at those KQ 

number of diagonal positions, for which the variance of the associated components of is iiagonal positions, for which the variance of 

significant. Furthermore, in Equation 3.109 the variable Cp}e[n~l] e C denotes the (n—l)-th 

CIR-related tap prediction filter coefficient. Note that for simplicity here we employ the same 

coefficient Cp}e[n — 1] for filtering each of the different Kq number of taps of the specific 

n-th CIR-related vector — n], which follows the concepts of robust channel estimation 

advocated by Li et al. [17]. These concepts were outlined in Section 2.2.3.1. 

In a last step the vector of CIR-related a priori tap estimates \iapr[n] is tn 

to the OFDM frequency-domain with the aid of the unitary KLT matrix yielding 

the vect 

period: 

In a last step the vector of CIR-related a priori tap estimates [n] is transformed back 

y K 

the vector of a priori channel transfer factor estimates H ^ [ n , ] for the n-th OFDM symbol 

== (3.11()) 

This vector of a priori channel transfer factor estimates is in turn employed in the detection 

stage during the n-th OFDM symbol period. Upon substituting Equation 3.108 into Equa-

tion 3.109 and by substituting the result into Equation 3.110 we obtain the following relation 

between the vector of a priori channel transfer factor estimates derived for the n-th OFDM 

symbol and the vectors of a posteriori channel transfer factor estimates of the past num-

ber of OFDM symbols; 

i i iSrCn]=Tl;! o . i i D 
n = l 

where ^ G is given by: 

(3.112) 

After having described the process of generating the vectors of a posteriori and a priori channel 

transfer factor estimates in Sections 3.4.1.1 and 3.4.1.2, we will embark in Section 3.4.1.3 on an 

evaluation of the associated a priori estimation MSE. 

3.4.1.3 A Priori Channel Estimation MSE 

Let us commence our discussions in this section by developing an expression for the vector of 

a priori channel transfer factor estimation errors associated with the j-th user during the n-th 
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OFDM symbol period as a function of the vectors of a priori channel transfer factor estimation 

errors of the {L — 1) remaining users during the iv£j, number of previous OFDM symbol peri-

ods. Assuming error-free symbol decisions we have — n] = sU)[n — n], j = 1, • • • ,L, 

n = 1 , . . . , Nj:̂ ap- Upon substituting Equation 3.105 into Equation 3.106 and then substituting the 

result into Equation 3.111, yields an expression for the vector of channel transfer factor estimation 

errors A H ^ [ n ] 6 in the following form: 

n = l i= i 

- E - M] 4-
n = l 

+ ^ - ,2], (3.113) 
n = l 

where 

Ziilkgrtn] = C3.114) 

Please observe that for the sake of avoiding notational confusion the variable i of Equation 3.111 

has been substituted by the variable j. The vector of a priori channel transfer factor estimation 

errors given by Equation 3.113 is constituted by three components. Specifically, the first term 

of Equation 3.113 is due to the effects of the a priori prediction errors of the number of past 

OFDM symbols, the second term is attributed to the contaminating effect of the AWGN and the third 

term is due to the lack of 'perfect predictability' of the channel transfer factors by the — 1)-

order predictor. In other words, the last term is due to the channel transfer function's decorrelation 

with time. 

The average variance of the j-th user's vector of a priori channel transfer factor estimation errors 

or in other words the average mean-square a priori estimation error can be expressed in mathemat-

ical terms as: 

where R-^^o) [»] E denotes the auto-correlation matrix of the vector A H ^ [ n ] of a priori 

channel transfer factor estimation errors. The computation of M S E ^ [n] of the j-th user's vector of 

a priori estimation errors associated with the n-th OFDM symbol period as given by Equation 3.113 

will be carried out in two steps. 
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In a first step let us evaluate the auto-correlation matrix R . vvo) fnl. This is achieved by substi-

tuting Equation 3.113 into: 

M = B { A H « [ " 1 A H W / ' [ „ ] } O . n e ) 

z, \ 

14%!" - 111̂  X I [" - "ilom! 

\ " = ' m J 

% rp(j) 

4 ^Ko 

N, [t] tap 
Of + E + R-HO), (3.117) 
^ A=1 

where we introduced a new definition, namely that of the channel transfer function deconelation-

related matrix R o) E , which is given by: 
^dec 

RgU) = . (c^^rMU)) - + 

+ T g ) R [ / ] ( ; ) T g ) ^ . ( c g ) f R M O ) c % ) . (3.118) 

In the context of Equation 3.117 we have exploited that the three additive components of the vec-

tor AHapr[n] of a priori channel transfer factor estimation errors in Equation 3.113 are uncorre-

lated. The uncorrected nature of these three terms accrues from the statistical independence of the 

complex AWGN process and that of the complex valued process describing the channel transfer 

function's evolution versus frequency and time. We have also exploited that the complex symbols 

transmitted in different subcarriers of a specific user's signal during a specific OFDM symbol pe-

riod, as well as the symbols transmitted by the same user in different OFDM symbol periods and 

the symbols transmitted by different users are statistically independent, which also implies that they 

are uncorrected. Still considering Equation 3.117, the variable a j denotes the so-called "modula-

tion noise enhancement factor" [89, 15], defined as aj = E{\s^^'>[n,k]\'^}E{\l/s^^\n^k]\'^]. For 

M-ary Phase Shift Keying (MPSK) based modulation schemes, such as for example QPSK we have 

a = 1, while for higher-order Quadrature Amplitude Modulation (QAM) schemes we have a > 1 

[89, 15]. Note that here we have implicitly assumed that the same modulation scheme is employed 

on different subcarriers of a specific user's transmitted signal. To elaborate further, the variables 

to be defined in Equation 3.118 are the spaced-time correlation function related auto-correlation 

vector G of the channel transfer function, where the n-th element is given by 

= E{H^^''*[n, k]H^^'>[n — n,k]}, and the spaced-time correlation function related auto-

correlation matrix RW(i) g Q^tap'x^tap^ of the channel transfer function, with the element (711,%) 

given by — ni,k]H^^^*[n — n2,k]}- Furthermore, Cpie E is 

the vector of conjugate complex CIR-related tap prediction filter coefficients with its n-th element 

given by CpieU = The channel's spaced-frequency correlation matrix RW(i) was defined 

earlier in Section 3.4.1.2. Let us now return to our original objective, namely that of developing an 
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expression for the average a priori channel transfer factor estimation MSB during the n-th OFDM 

symbol period. 

In a second step Equation 3.117 is invoked in conjunction with Equation 3.115 for obtaining an 

expression for the j-th user's average a priori channel transfer factor estimation MSB as a function 

of the remaining users' a priori estimation MSEs associated with the number of previous 

OFDM symbol periods: 

n.=l i = l 

+ + MSEj^c, (3.119) 

where we have: 

== ;̂T7race(R o)) (3.12()) 

(7^ -
K 

. - c(;^RMU)c%) . (3.121) 

In the context of deriving Equation 3.119 we have capitalized on the relations Trace(A + B) = 

Trace(A) + Trace (B), as well as on Trace ( U A U ^ ) = Trace (A) , which are valid for a unitary 

matrix U [16, 94]. Furthermore, in the context of deriving the first additive term in Equation 3.119 

we exploited that ;^Trace(T^)R^^MjM - - m], which is only 

valid for a unitary transform matrix having elements of unity magnitude. This is the case for 

example, when employing the DFT matrix W as the unitary transform matrix. The second additive 

term in Equation 3.119 is based on exploiting the relationship of ^ T r a c e ( T ^ ^ T ^ ^ ^ ) = We 

also note in this context that and that 

Furthermore, in Equation 3.121, the matrix E denotes the decomposition of the j-

th user's channel's spaced-frequency correlation matrix with respect to the unitary transform 

matrix which is expressed as = uW(j)-fff{,[/]0')u[/]0). Note that in contrast to 

A[/]0) associated with the decomposition of with respect to the matrix is not 

necessarily of diagonal shape constrained to having real-valued elements only. 

3.4.1.4 A Posteriori Channel Estimation MSE 

Following the philosophy of Section 3.4.1.3 related to our derivation of an expression describing the 

j-th user's average a priori channel estimation MSE as a function of the remaining {L — 1) users' 

a priori channel estimation MSEs associated with the previous Nf}p number of OFDM symbol pe-

riods, in this section a similar expression is derived for the average a posteriori channel transfer 
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factor estimation MSE. This is achieved in a first step upon substituting Equations 3.105 and 3.111 

into Equation 3.106. Similarly to the definition of the vector of a priori estimation errors in Equa-

tion 3.114, the j-th user's vector of (2 estimation errors g can be defined 

as: 

(3.12:1) 

In accordance with the definition of the average a priori channel transfer factor estimation MSE in 

Equation 3.115, we can also define the average a posteriori estimation MSE as: 

== [n]), (3.123) 

where R ^ y ) [n] £ denotes the auto-correlation matrix of the vector A H ^ [ n ] of a pos-

teriori estimation errors. Our further mathematical manipulations, which are not detailed here for 

reasons of space economy yield the following expression for the j - th user's average a posteriori 

estimation MSE during the n-th OFDM symbol period: 

r . 6 

j ,[=1 

4- Tji y i crfMSEjjc- (3.i:&4) 
1=1 

5(i) 

MSE, 

i=i 

Finally, the channel decorrelation-related MSE, namely MSE^j^ of Equation 3.124 is given by Equa-

tion 3.121, which is identical for the a priori and a posteriori estimates. 

3.4.1.5 Stability Analysis of the Recursive Channel Estimator 

In the steady-state condition we can assume that the specific user's a priori- and a posteriori esti-

mation MSEs are identical for different OFDM symbols, which is expressed as: 

K*) ivTccC®) = MSEr;| , /„[n - A], (3.125) 

where i = 1,... ,L and n = 0 , . . . , Nf}p- Hence, Equation 3.119 simplifies to: 

MSÊ '̂ ^ — — cr^MSE '̂̂  + 
^ 2^pre *^pre t apr ' 

J %=1 

+ + MSE!,£. (3.126) 
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Note that Equation 3.126 can be viewed as a system of equations for different values of j = 

1 , . . . ,L, namely for the different users. It can be shown that Equation 3.126 can be represented in 

a compact vectorial notation as: 

MSB^p, = Cpre - Pr^ - F . P , . + Cpre ' P^^ ' P" + (3.127) 

where MSEapr E hosts the different users' apn'or/ estimation MSEs denoted by M S E ^ , j = 

1 , . . . ,L, and the diagonal matrix Cp^e E hosts the different users' CIR-related tap predic-

tion coefficient related terms of ^ajCpJ^CpX, j = 1 , L . A characteristic component is the 

feedback matrix F G which exhibits the following structure; 

/ 0 1 . . . 1 \ 

1 ••. : 

: ••. 1 

\ 1 . . . 1 0 y 

F = (3.128) 

where the elements on the side diagonals are of unit value except for the main diagonal, whose 

elements are zero. The relation to the PIC process is that for the estimation of the j-th user's chan-

nel transfer function, the co-channel interference imposed by the L ~ 1 remaining users has to be 

removed. Note in this context that the j-th row of matrix F is associated with the estimation process 

of the j-th user's channel. Furthermore, the diagonal matrix P^ G hosts the different users' 

signal variances a f , i = 1,... ,L, while the vector p„ e exhibits identical elements equal to 

the AWGN noise variance a^. Finally, the matrix MSE^ec E R^^^ hosts the different users' resid-

ual channel decorrelation-related MSEs values, given by ^ T r a c e ( R o)) , j = 1 , . . . ,L, which 
dec 

are also a function of the individual users' CIR-related tap predictor coefficients, as evidenced by 

Equation 3.121. In order to proceed further. Equation 3.127 can be solved for the vector of a priori 

estimation MSEs, conditioned on the knowledge of the vectors CpiL j = 1 , . . . ,L of predictor 

coefficients, yielding: 

MSE^p^ = (I - Cp,, . p ; ^ . F . P , ) - " . (Cpre - P;^ - Pn + MSEj, , ) . (3.129) 

Per definition, the elements of MSEgpr or, equivalently, the different users' a priori estimation 

MSEs must have a finite positive value. This is coupled to the following conditions: 

1. existence of (I — F ) ~ \ where F = Cpre • P^^ F P , 

2. all elements of (I — F)~^ must be positive. 

It can be demonstrated that these two conditions are fulfilled, if the spectral radius p(F) of the 

matrix F = Cpre ' P7^ F P^ is less than unity [112]. An upper-bound estimate of the spectral 

'"Recall that the spectral radius of a matrix is the smallest radius of a circle centered around the origin of C that 
contains all the matrix's eigenvalues [87]. 



radius is given by the largest Euclidean distance measured from the origin in C, exhibited by a point 

contained in the union G ( F ) of Gershgorin disks of F. Hence, provided that we have: 

1' (3.13{l) 

it can be shown that F is invertible. By contrast, if this condition is not fulfilled, no immediate 

conclusion can be drawn with respect to the invertibility of F. 

A further criterion for the existence of the matrix inverse (I - F ) ~ M s coupled to the condition 

that the determinant of (I — F) is non-zero, namely that we have det (I — F) ^ 0. Furthermore, it can 

be shown that for all elements of this specific matrix inverse to be positive as stipulated in (2), we 

have to satisfy the condition of det(I - F) > 0. It can be shown that det( I — F) = det(I — Cpre • F) , 

which implies that the channel estimator's stability is only a function of the estimator coefficients 

to be determined. Even if the channel conditions are subjected to variations, the estimator remains 

stable for a "stable" set of coefficients - provided that correct symbol decisions are performed. 

3.4.1.6 Iterative Calculation of the CIR-Related Tap Predictor Coefficients 

Upon invoking Equation 3.126 the j-th user's vector of CIR-related tap predictor coefficients CpX 

can be evaluated conditioned on the remaining {L — 1) number of users ' a priori estimation MSEs, 
[i) (?) 

namely on MSE^p^., « = 1 , . . . , L, i ^ j, which ensues by calculating the gradient of MSE^^^ with 

respect to the j-th user's coefficients, yielding; 

V W m s e I I = <T?SiSE® H-<7^ 

V ® ) 
+ 

- ^Trace(T[/](^)l^)) - (3.131) 

where RMU) and rMU) were defined in the context of Equation 3.118. The gradient vector with 

respect to the j-th user's coefficients is defined here as with individual components 

given by the Wirtinger calculus [113], where and are the real and 

imaginary parts of Cp)e- In the context of Equation 3.131 we have exploited that = I, as 

well as that = 0 and - c % . 

"with the aid of the Gershgorin circle theorem [87] explicit bounds can be placed on the regions in C, which host the 
eigenvalues of a matrix A G c"ixm -phei-th Gershgorin disk is defined as: Ri{A) = {x € C : \x—aii\ < 

where Uij is the element of the matrix A associated with its i-th row and j-th column. The eigenvalues of the matrix A 

reside within the union of Gershgorin disks of A, which is formulated in a compact form as A(A) C U (A) = G{A) 
i = l 

[87]. 



In the optimum point of operation we have V^-^^MSE^ = 0 and hence Equation 3.131 can 

be solved for the j-th user's vector of predictor coefficients, resulting in the Wiener filter related 

solution of: 

^pre\opt — 

\ 
,2 

KQ) \ ?=i. / 
/ 

I (3.132) 

Based on Equations 3.126 and 3.132 a fixed-point iteration algorithm [87] can be devised for obtain-

ing the different users' vectors of predictor coefficients under the constraint of minimizing the sum 

of the different users' a priori estimation MSEs. This approach was proposed earlier by Rashid-

Farrokhi et al [111] in the context of simultaneously optimizing both the transmit power allocation 

and the basestation antenna array weights in wireless networks, leading to formulae similar to Equa-

tions 3.126 and 3.132. In our forthcoming discourse we will briefly present the steps of the algorithm 

with respect to our specific optimization problem, but for a formal proof of the algorithm's conver-

gence and that of the uniqueness of the solution, we refer to [111]. Note that in the context of our 

description of the algorithm, the iteration index - and not the OFDM symbol index - is given in the 

square brackets. 

1. Initialize the different users' a priori estimation MSEs, for example by setting M S E ^ [0] = 0 

for J = 1 , . . . , L. 

2. For the n-th iteration: Conditioned on the a priori estimation MSE values obtained during 

the (n — l)-th iteration, namely on M S E ^ [ n — 1], j = 1 , . . . ,-L calculate the different 

users' vectors of optimum predictor coefficients for the n-th iteration, namely Cp)e[n]\opt, j = 

1 , . . . ,L, with the aid of Equation 3.132. 

3. Conditioned on the n-th iteration's predictor coefficient vectors CpX[n]\opt, j = 1,... ,L 

obtained in step (2) and also conditioned on the (n — l) - th iteration's a priori estimation 

MSE values, namely on M S E ^ [ n — 1], j = 1 , . . . , L calculate the n-th iteration's a priori 

estimation MSE values of MSE^^[n], j — 1,... ,L with the aid of Equation 3.126. 

4. Start a new iteration by returning to step (2). 

Note that instead of invoking Equation 3.126 separately for each user, the different users' a priori 

estimation MSEs can also be calculated in parallel with the aid of Equation 3.129, as a result of 

which an even faster convergence is achieved. The price to be paid is a higher computational 

complexity, since an explicit matrix inversion is required in Equation 3.129. 

3.4.1.6.1 Simplified Approach for Identical User Statistics A simplification of Equations 3.126 

and 3.132, which we will sometimes invoke during our performance assessment in Section 3.4.2 is 
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achieved by imposing a number of assumptions. Specifically, w e will assume perfect power con-

trol, implying that = af = . . . = and that the same modulation mode is employed by all the 

L users, yielding a = ai = . . . = ai- Additionally, identical spaced-time correlation functions 

and hence identical auto-correlation matrices RW = rW(^) = . . . = R,W(-̂ ) and auto-correlation 

vectors rM = rM(i) = , . . = rM(^) are associated with the different users. As a result of these as-

__ _ sumptions the same a priori estimation MSE, namely MSE^pr = MSE^^^ = . . . = MSE^p^ and the 

same CIR-related tap predictor coefficient vector Cpre = c ^ e = . . . = c ^ \ is associated with the 

different users. Hence, Equation 3.126 can be directly solved for MSE^pr conditioned on a specific 

vector Cpre of predictor coefficients, yielding: 

M m I - " " - (3 133) 

where % = ^01 . The denominator of the fraction on the right-hand side of Equation 3.133 suggests 

a particularly simple form of the steady-state stability condition, namely that of: 

< 1, (3.134) 

which follows from Equation 3.130 upon invoking the above assumptions. Furthermore, Equa-

tion 3.132, which delivers the vector of optimum predictor coefficients as a function of the a priori 

estimation MSE simplifies to: 

-1 
(1135) ~ ismntE 

Note that upon removing the {L — 1) number of contributions in Equations 3.133 and 3.135, which 

are related to the PIC process, we obtain the expressions for the estimation MSE and the vector of 

coefficients associated with a transversal predictor, which can be expressed as: 

.2 "I —1 
Cpre,FIR I opi + Trace(T?/ll ,<-,)"lf' 

r M. (3J36) 

By stipulating a sample-spaced CIR hosting KQ number of non-zero taps and upon appropriately de-

signing the matrix , namely by assigning a numerical value of unity to those diagonal elements, 

which are related to the different CIR taps' sample-spaced delays, we obtain Trace(TMlxo) = 

Ka^j . This further simplifies Equation 3.136. 

In the next section a closed-form solution is presented for the optimum "predictor" coefficient in 

the context of one-tap a priori channel estimation. 

3.4.1.6.2 Closed Form Solution for Identical User Statistics and One-Tap CIR-Related Tap 

Prediction Filtering Eor the case of simple zero-order CIR-related tap prediction a closed form 



solution can be derived from Equations 3.136 and 3.133 for the optimum predictor coefficient in the 

context of a sample-spaced CIR, which is given by: 

Zpre[0]i:%:'': = ^ . (j- __ 4-,/, (3-137) 

where 

+ — 1) + 1 
;/== Tj . (3.138) 

2 - %- (j& - 1) - rjy[l] 

By contrast, the optimum predictor coefficient for the case of a transversal one-tap predictor is given 

by: 

<3.139) 
1 + X & 

which directly follows from Equation 3.136. In Equations 3.138 and 3.139, r ^ [ l ] denotes the 

channel transfer factor correlation coefficient for a time-lag of one OFDM symbol. Physically this 

equation simply states that if the channel transfer function varies slowly, [1] % 1 and hence the 

predictor coefficient has a high value. By contrast, if the channel correlation is low, the predictor 

coefficient has to be low. 

In the next section we will address the problem of a potential lack of knowledge about the chan-

nel's exact statistics namely that of the spaced-time spaced-frequency correlation function. 

3.4.1,7 Channel Statistics 

As it was observed in Equations 3.126 and 3.132, a prerequisite for determining the different users' 

vectors of optimum CIR-related tap predictor coefficients is the knowledge of the users' spaced-time 

channel transfer factor correlation functions j = 1 , . . . , L, defined by: 

_ E{H^^^[n, k] • [n — An, k]}. (3.140) 

These are required for evaluating the auto-correlation matrices RMO') and cross-correlation vectors 

rW(i) for J = 1 , . . . , L. Assuming Jakes' fading model [90] for example, the channel correlation 

along the time-direction is given by [17]: 

r = Jo(An-wj^^), (3.141) 

1 — —{An • )^, An • co^ 1, (3.142) 

where Jo() denotes the zero-order Bessel function of the first kind and = 2TrTff^\ and Tf 

being the OFDM symbol duration including the guard period time, while denotes the channel's 
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Doppler frequency. Since usually the exact Doppler frequency is not known, it was demon-

strated in [17] in the context of a transversal-type estimator, that the MSE performance degradation 

incurred due to a mismatch of the channel statistics is only marginal, if a uniform, ideally support-

limited Doppler power spectrum associated with is assumed for the calculation of the 

correlation coefficients of Equation 3.140. The associated spaced-time correlation function is given 

as the inverse Fourier Transform (FT) of the uniform Doppler power spectrum, which leads to: 

<3.43, 
An • Wg 

Furthermore, the calculation of the vectors of CIR-related tap predictor coefficients according to 

Equation 3.132 also requires the evaluation of the expression T r a c e M o r e explicitly 

we recall from Section 3.4.1.2 that is the decomposition of the j-th user's channel's spaced-

frequency correlation matrix with respect to the unitary transform matrix which 

is formulated as and is a sparse identity matrix having unity 

entries only at those KQ number of positions, which are associated with a significant value of 

Hence, we note that the evaluation of T r a c e r e q u i r e s the knowledge of which is 

not directly available in practice. Below we have listed several potential approaches which can be 

pursued for addressing this problem: 

1. Periodically estimate the diagonal elements of upon evaluating the variance of the 

components associated with the vector h^p^[n], as it was formulated in Equation 3.108. For 

the /-th component the variance can be approximated by averaging this component's squared 

magnitude over the past Napt number of OFDM symbols' contributions, which is expressed 

as: 

^ Napt —I 

£ I f t i i h - r t . i J P . (3.144) 
^ n=0 

Note that for Napt —̂  oo the accuracy of the estimates provided by Equation 3.144 is de-

termined by the variance of the a posteriori estimation error signals. In a second step the 

sum of those KQ number of CIR-related tap estimates is calculated, which exhibit the high-

est variance. This value constitutes the desired estimate of Trace(Ttfl^J)l^^). Note that the 

corresponding positions in the matrix associated with the KQ highest values are set to 

unity, in order to perform the masking based activation of significant CIR-related taps during 

the following OFDM symbol periods. A similar strategy of selecting the significant CIR-

related taps was also advocated by Li et al. [21] with the aim of reducing the complexity 

of a transversal filter-type channel estimator employed in Space-Time Coded (STC) OFDM 

systems. 
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2. The second alternative is that of obtaining an "average" value of Trace(T['^]('))l^g) by em-

ploying the spaced-frequency correlation matrix based on the spaced-frequency cor-

relation function associated with a uniform ideally support limited multipath intensity profile. 

The sparse identity matrix could be designed for retaining the^riZ* KQ CIR-related co-

efficients of - rather than the KQ largest one - or alternatively, for retaining the first 

KI and the last CIR-related coefficients of where KQ = KQ + This was 

suggested by van de Beek et al. [66] in the context of DFT-based channel transfer function 

estimation employed for single-user OFDM systems. 

In the next section we will embark on the performance assessment of the various channel estimation 

techniques studied. 

3.4.2 Performance Assessment 

With the exception of the results to be presented in Section 3.4.2.2.3 our investigations were con-

ducted for an SDMA uplink scenario supporting four simultaneous OFDM users each equipped 

with one transmit antenna. At the basestation (BS) four reception antennas were assumed. Unless 

otherwise stated, we impose an OFDM symbol normalized Doppler frequency of F n = 0.007, 

which corresponds to a vehicular speed of 50km/h, or equivalently, 31.25mph in the context of the 

indoor WATM system's parameters, as outlined in Section 6.1.1. 

Our assessment commences in Section 3.4.2.2 with a study of the average a priori channel trans-

fer factor estimation MSE evaluated in the context of the idealistic scenario of a sample-spaced CIR 

and upon assuming error-free symbol decisions. Specifically, in the simplified scenario of a sample-

spaced CIR the exact shape of the multipath intensity profile does not influence the performance of 

the PIC-assisted DDCE when employing the same vector of predictor coefficients for the different 

CIR-related taps. This is as outlined in Section 3.4.1.6.1 the case when the channel's entire energy 

is conveyed by the KQ number of significant CIR-related taps. By contrast, in Section 3.4.2.3 in the 

context of our more realistic investigations of the a priori estimation MSE involving non-sample-

spaced CIRs, three types of multipath intensity profiles, namely, sparse profiles, uniform profiles 

and exponential profiles are invoked. The analytical MSE performance results of Sections 3.4.2.2 

and 3.4.2.3 were generated upon invoking the iterative approach described in Section 3.4.1.6 for 

simultaneously optimizing the CIR-related tap predictor coefficients and evaluating the different 

users' a priori estimation MSEs. 

By contrast, at a later stage, namely in Section 3.4.2.4 we will consider the more realistic case of 

encountering imperfect, error-contaminated symbol decisions at the detection stage. Both uncoded 

as well as turbo-coded arrangements will be studied in terms of their a priori estimation MSE and 

system BER. These performance results were generated with the aid of Monte-Carlo simulations 

upon invoking the indoor WATM system- and channel parameters of Section 6.1.1. Since the indoor 
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WATM channel's CIR is composed of sample-spaced taps the performance curves presented in this 

context characterize the system's best possible performance. 

Let us commence our discussions in the next section by studying the effects of the specific choice 

of the CIR-related tap predictor coefficients on the average a priori channel transfer factor estima-

tion MSE. 

3.4.2.1 Evolution of the A Priori Channel Estimation MSE in a Simplified 2-Tap CIR-Related 

Tap Prediction Scenario 

In Figure 3.4 we have exemplified the evolution of the average a priori channel transfer factor esti-

mation MSE according to Equation 3.133 as a function of the CIR-related tap predictor coefficients' 

associated values, where we employed a 2-tap predictor, since for a higher number of predictor taps 

a visualization is less convenient. Also note that the predictor coefficients are real-valued due to 

employing the real-valued spaced-time channel correlation function of Equation 3.141. In our par-

ticular example the a priori channel estimation MSE evaluated f rom Equation 3.133 is minimized 

for a coefficient vector of Cpre\opt ~ (1,771, —0.898)^. By contrast, for coefficient pairs outside 

the circle having a radius o f , / —ttztt ~ 3.27, centered around the origin of the space, the A'oa(Z,-l) 
channel estimator is instable, which is evidenced by the excessive MSEs. 

3.4.2,2 A Priori Channel Estimation MSE in the Context of Ideal, Error-Free Symbol Deci-

sions Assuming a Sample-Spaced CIR 

The simulation results to be presented in this section characterize the average a priori channel 

transfer factor estimation MSE, which is a by-product of the iterative optimization of the CIR-

related tap predictor coefficients with the aid of the algorithm outlined in Section 3.4.1.6. 

In order to reduce the number of different parameter combinations to be investigated, we stipu-

late here a simplified scenario, as described in Section 3.4.1.6.1, where identical transmit powers, 

modulation modes and channel statistics are associated with the different users. More specifically, 

all users are assumed to employ MPSK modulation which renders the so-called modulation-mode 

enhancement factor equal to Om-psk = 1- Unless otherwise stated, the specific channel statistics 

invoked were that of the channel's spaced-time correlation function provided by Jakes model, as 

given by Equation 3.141. 

Furthermore, we considered 'frame-invariant' fading, where the fading envelope of each CIR-

related tap has been kept constant during each OFDM symbol's transmission period. This avoided 

the obfuscating effects of inter-subcarrier interference and hence enabled us to study the various 

channel transfer function estimation effects in isolation. 
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Figure 3.4: Evolution of the a priori channel estimation MSE according to Equation 3.133 associated with 
the simplified scenario of Section 3.4.1.6.1 as a function of the real-valued coefficients of the 
2-tap CIR-related tap predictor employed in this particular example. The number of subcarriers 
was K = 512, while the number of significant CIR-related taps was KQ = 16 in the context 
of a sample-spaced CIR. Furthermore, the number of users was L = A and the OFDM symbol 
normalized Doppler frequency was FD = 0.1. The spaced-time channel correlation function of 
Equation 3.143, associated with a uniform, ideally support limited Doppler power spectrum was 
invoked. The SNR at the reception antenna was equal to 20dB. 
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Figure 3.5; (Left:) Comparison between the a priori channel estimation MSE versus SNR performance, 
generated by an analytical evaluation of Equation 3.133 as well as that obtained by Monte-
Carlo simulations for the PIC-assisted DDCE of Figure 3.3 in the context of one-tap CIR-related 
tap prediction filtering invoking the sub-optimum transversal predictor coefficient according 
to Equation 3.139. (Right:) Comparison between the a priori channel estimation MSE ver-
sus SNR performance exhibited by the PIC-assisted DDCE in the context of one-tap predic-
tion filtering, again, upon invoking the sub-optimum transversal predictor coefficient accord-
ing to Equation 3.139 or alternatively the optimum recursive predictor coefficient according to 
Equation 3.137. The curves are parameterized with the number of significant CIR-related taps 
KQ. Each of the SDMA scenario's independently faded channels is characterized by the indoor 
WATM channel parameters of Section 6.1.1. 

The further structure of Section 3.4.2.2 is as follows: In Sections 3.4.2.2.1 and 3.4.2.2.2 a compar-

ison in terms of the a priori estimation MSE between employing the optimum recursive predictor co-

efficients and the sub-optimum transversal predictor coefficients - obtained upon setting the (Z, — 1) 

number of feedback signals in Equations 3.133 and 3.135 equal to zero. In Section 3.4.2.2.1 we will 

use a one-tap predictor while in Section 3.4.2.2.2 higher-order predictors. While furthermore in 

Section 3.4.2.2.3 the influence of the number of simultaneous users on the a priori estimation MSE 

is investigated, in Sections 3.4.2.2.4 and 3.4.2.2.5 the influence of the OFDM symbol normalized 

Doppler frequency under matched and mismatched channel conditions is portrayed, respectively. 

Finally, in Section 3.4.2.2.6 a performance comparison to Li's LS-assisted DDCE of Section 3.3 is 

conducted. 

3.4.2.2.1 Optimum Recursive versus Sub-Optimum Transversal CIR-Related Tap Predictor 

Coefficients - One Tap In the left-hand graph of Figure 3.5 we have portrayed the average a pri-

ori channel transfer factor estimation MSE exhibited by the PIC-assisted DDCE in the context of 



one-tap CIR-related tap prediction filtering. The single predictor coefficient was calculated with the 

aid of the - in this context sub-optimum transversal filter related Wiener solution of Equation 3.139, 

while the associated MSE was evaluated with the aid of Monte-Carlo simulations (labelled as "Sim-

ulation") as well as by direct evaluation of Equation 3.133 (labelled as "Formula"). We observe that 

both our analytical evaluations, as well as the simulations result in a similar MSE performance, thus 

supporting the validity of our derivations. When increasing the KQ number of significant CIR taps, 

the a priori estimation MSE degrades, since the effects of the A W G N and of the additional noise 

due to channel variations are less mitigated. Note from Equation 3.139 that for sufficiently high 

SNRs the sub-optimum transversal filter related coefficient approaches the value of the channel's 

spaced-time correlation function for a unity time-lag, which is in turn close to unity for the relatively 

slowly fading channels of / o = 0.007 considered here. Hence, following from Equation 3.134, the 

maximum value of KQ, which guarantees a stable operation in the absence of symbol errors in the 

context of a scenario having K — MPSK modulated (a = 1) subcarriers and L = 4 simultane-

ous users each equipped with a single transmit antenna is = 170. This is also reflected by the 

curves in the left-hand graph of Figure 3.5. 

By contrast, in the right-hand graph of Figure 3.5 we have compared - for the same scenario -

the average a priori channel transfer factor estimation MSE achieved with the aid of the optimum 

CIR-related tap predictor coefficient given by Equation 3.137, which takes into account the recur-

sive structure of the PIC-assisted DDCE, against the a priori estimation MSE offered by a system 

employing the suboptimum transversal filter based predictor coefficient of Equation 3.139. Both 

sets of curves have been obtained by direct evaluation of Equation 3.133 ("Formula"), upon assum-

ing error-free symbol decisions. The results suggest that upon employing the optimum recursive 

predictor coefficient, the system's stability is increased for relatively high values of x • ( i — 1) in 

the sense of Equation 3.134. 

3.4.2.2.2 Optimum Recursive- versus Sub-Optimum Transversal CIR-related Tap Predic-

tor Coefficients - Higher Order Following the approach of Figure 3.5, in Figure 3.6 we have 

compared the average a priori channel transfer factor estimation M S E achieved using the optimum 

recursive CIR-related tap predictor coefficients which were evaluated with the aid of the iterative ap-

proach of Section 3.4.1.6 upon capitalizing on the simplified Equations of Section 3.4.1.6.1 against 

the - in this context suboptimum - transversal filter coefficients provided by Equation 3.136. Two 

different predictor lengths, namely four- and eight taps are employed and the curves are additionally 

parameterized with the number of significant CIR-related taps. Again, we observe that the optimum 

recursive predictor coefficients allow us to avoid the problem of instability, which was potentially 

incurred in conjunction with the sub-optimum transversal predictor coefficients. 



138 

Fr.-Inv. Fad. SWATM, 4 Rec.-Antennas, 4 Users, MPSK Fr.-Inv. Fad. S W A T M , 4 Rec.-Antennas, 4 Users, MPSK 

Ideal Ref. 

Formula 

Recurs. Opt 
Transv. Opi 

Ideal Ref 

Eg -15 

K=512 

-30 

Fwmula 

Recurs 
Transv 

0 5 10 ^ 20 # 30 # W 
average SNR at the receiver antennas [dB] 

0 5 m 15 # # M 35 W 
average S N R at the receiver antennas [dB] 

Figure 3.6: A priori channel estimation MSE versus SNR performance exhibited by the PIC-assisted DDCE 
of Figure 3.3 in the context of (Left:) four-tap- and (Right:) eight-tap CIR-related tap prediction 
filtering upon invoking the optimum recursive predictor coefficients evaluated with the aid of the 
iterative approach of Section 3.4.1.6 on the basis of the simplified equations of Section 3.4.1.6.1. 
Again, we have plotted the a priori channel estimation M S E performance achieved with the aid 
of the - in this case - sub-optimum transversal predictor coefficients of Equation 3.136 as a ref-
erence. The curves are parameterized with the number of significant CIR-related taps KQ. Each 
of the SDMA scenario's independently faded channels is characterized by the indoor WATM 
channel parameters of Section 6.1.1. 

3.4.2.2.3 Influence of the Number of Simultaneous Users in the Context of the Optimum 

Recursive CIR-Related Tap Predictor Coefficients So far we considered the scenario of four 

simultaneous users, each equipped with a single transmit antenna. From the perspective of the 

number of channels to be estimated this is equivalent to a space-time coded (STC) scenario of two 

simultaneous users each employing two transmit antennas or to an STC scenario of a single user 

employing four transmit antennas. Based on this analogy, it is worth investigating, whether the PIC-

assisted DDCE approach advocated here is capable of supporting scenarios of a higher complexity 

in terms of the L x P number of channels involved. In Figure 3.7 we have plotted the average a 

priori channel transfer factor estimation MSE as a function of the L number of simultaneous users, 

assuming a four- or eight-tap CIR-related tap prediction filter and a fixed number of KQ = 64 sig-

nificant CIR-related taps. This associated CIR duration corresponds to 12.5% of the duration of a 

512-subcarrier OFDM symbol's time-domain representation. This may be viewed as the relative 

upper bound of the CIR length in a well-designed OFDM system. Here we capitalized again on 

the idealistic assumption of error-free symbol decisions. We observe in Figure 3.7 that the a priori 

channel estimation MSE performance is degraded upon increasing the number of users supported. 
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Figure 3.7: A priori channel estimation MSE versus SNR performance exhibited by the PIC-assisted DDCE 
of Figure 3.3 in the context of (Left:) four-tap- and (Right:) eight-tap CIR-related tap prediction 
filtering upon invoking the optimum recursive predictor coefficients evaluated with the aid of the 
iterative approach of Section 3.4.1.6 on the basis of the simplified equations of Section 3.4.1.6.1. 
Again, we have plotted the a priori channel estimation MSE performance achieved with the 
aid of the - in this case - sub-optimum transversal predictor coefficients of Equation 3.136 as a 
reference. The curves are parameterized with the L number of simultaneous users, while the KQ 
number of significant CIR taps was kept constant. Each of the SDMA scenario's independently 
faded channels is characterized by the indoor WATM channel parameters of Section 6.1.1. 

This is, because more multiuser interference related noise is inflicted by the a posteriori channel 

estimates during the PIC process, which is then injected into the a priori channel estimates' predic-

tion process. As a comparison between the MSE curves corresponding to the four-tap and eight-tap 

prediction arrangements suggests, these effects can be mitigated by increasing the predictor's range. 

Again, we observe that in the context of the sub-optimum transversal predictor coefficients the PIC-

assisted DDCE tends to become unstable at higher SNRs. 

3.4.2.2.4 Influence of the OFDM Symbol Normalized Doppler Frequency In the context of 

our previous assessment a fixed OFDM symbol-normalized Doppler frequency of FD = 0.007 

was assumed. By contrast, in this section we will investigate the influence of the OFDM symbol 

normalized Doppler frequency on the average a priori channel transfer factor estimation MSE for 

different CIR-related tap predictor lengths of Nf}^. The results of our analytical evaluations are 

portrayed in Figure 3.8, both for an SNR of 20dB measured at the reception antennas and for an 

SNR of 40dB. For both SNRs we observe that the a priori channel estimation MSE recorded at 

a given OFDM symbol normalized Doppler frequency improves only marginally upon increasing 
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Figure 3.8: A priori channel estimation MSE versus OFDM symbol normalized Doppler frequency per-
formance exhibited by the PIC-assisted DDCE of Figure 3.3 in the context of an SNR of 
(Left:) 20dB and (Right;) 40dB at the reception antennas upon invoking the optimum recursive 
CIR-related tap predictor coefficients evaluated with the aid of the iterative approach of Sec-
tion 3.4.1.6 on the basis of the simplified equations of Section 3.4.1.6.1. Again, we have plotted 
the a priori channel estimation MSE performance achieved with the aid of the - in this case -
sub-optimum transversal predictor coefficients of Equation 3.136 as a reference. The curves are 
parameterized with the number of predictor taps, while the KQ number of significant CIR-
related taps was kept constant. Each of the SDMA scenario's independently faded channels is 
characterized by the indoor WATM channel parameters of Section 6.1.1. 

the predictor length beyond a value of about 32 taps, for which mos t of the channel's correlation 

is exploited. Furthermore, we infer that the predictor's length should be at least four taps, in order 

to achieve a significant reduction of the a priori channel estimation MSE compared to the case of 

one-tap filtering. Note furthermore in Figure 3.8 that in the higher-SNR scenario of 40dB the MSE 

reduction due to employing a higher number of CIR-related predictor taps is even more dramatic 

than in the lower SNR scenario. This is, because the MMSE predictor strikes a trade-off between 

the mitigation of the AWGN and the exploitation of the channel's correlation between the channel 

transfer functions experienced by successive OFDM symbols. 

So far we have assumed a perfect matching between the channel statistics invoked in the cal-

culation of the predictor coefficients and that of the channel. By contrast, in the next section we 

investigate the effects of a mismatch with respect to the maximum Doppler frequencies. 

3.4.2.2.5 Influence of a Mismatch of the OFDM Symbol Normalized Doppler Frequency In 

our previous investigations we employed a Doppler power spectrum according to Jakes' model 
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Figure 3.9: A priori channel estimation MSE versus OFDM symbol normalized Doppler frequency perfor-
mance exhibited by the PIC-assisted DDCE of Figure 3.3 in the context of an SNR of (Left:) 
20dB and (Right;) 40dB at the reception antennas upon invoking a fixed vector of recursive CIR-
related tap predictor coefficients optimized for an OFDM symbol normalized Doppler frequency 
of FD = 0.05 with the aid of the iterative approach of Section 3.4.1.6 on the basis of the simpli-
fied equations of Section 3.4.1.6.1. As in previous graphs, a Jakes spectrum-related spaced-time 
correlation function obeying Equation 3.141 was associated with the channel. The predictor co-
efficients were calculated on the basis of the spaced-time correlation function of Equation 3.143 
associated with a uniform, ideally support-limited Doppler power spectrum. Furthermore, we 
have also plotted the MSE curves corresponding to predictor coefficients optimized for the chan-
nel's Doppler frequency as a reference. The MSE curves are parameterized with the num-
ber of prediction filter taps, while KQ, namely the number of significant CIR-related taps was 
fixed. Each of the SDMA scenario's independently faded channels is characterized by the indoor 
WATM channel parameters of Section 6.1.1. 

[90] which is related to a spaced-time channel correlation function given by the zero-order Bessel 

function of its first kind, as shown in Equation 3.141. Jakes' model was employed both for the 

derivation of the CIR-related tap predictor coefficients as well as in the "simulated" channel used 

for evaluating the a priori channel estimation MSE. The maximum Doppler frequency used for the 

calculation of the predictor coefficients as well as for the simulated channel was identical. 

In order to render a transversal filter-assisted channel estimator insensitive against the variations 

of the maximum OFDM symbol normalized Doppler frequency associated with the channel, com-

pared to that imposed in the calculation of the filter coefficients, it was proposed in [57, 17] to 

invoke a uniform, ideally support-limited Doppler power spectrum in the calculation of the filter 

coefficients, having a maximum OFDM symbol normalized Doppler frequency higher than that 

of the channel. Recall that the same 'robust' DDCE was also used in Section 2.3 for single-user 
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channel estimation. It was argued in [17] that in this case, regardless of the specific shape of the 

"true" Doppler power spectrum associated with the channel, the channel estimator would exhibit 

the same channel estimation MSE performance, as if a uniform, ideally support-limited Doppler 

spectrum was assumed both in the evaluation of the filter coefficients, as well as for the channel 

encountered. Also note that in this case the channel estimator's MSE performance represented the 

worst-case MSE performance that might be encountered when communicating over channels having 

non-uniform Doppler power spectra, but using optimally adapted filter coefficients. Furthermore, 

note from [17] that the MSE performance difference observed between the scenario, where Jakes' 

Doppler spectrum is associated both with the channel encountered as well as with the computa-

tion of the filter coefficients and the case, where a uniform, ideally support-limited Doppler power 

spectrum is associated with both the channel encountered and with the computation of the filter 

coefficients, is marginal. 

As it will be highlighted in the context of our forthcoming discussions, the channel estimator's in-

sensitivity with respect to the channel's Doppler power spectral shape is valid only upon employing 

an infinite number of predictor taps. Naturally, in practical situations this is not the case. 

In Figure 3.9 we have portrayed the average a priori channel transfer factor estimation MSE 

versus OFDM symbol normalized Doppler frequency performance of the recursive estimator of 

Figure 3.3 in the context of employing a uniform, ideally support-limited Doppler power spectrum 

having a spaced-time correlation function obeying Equation 3.143 in the calculation of the CIR-

related tap predictor coefficients. Furthermore, as in our previous investigations of Section 3.4.2.2 a 

Doppler power spectrum obeying Jakes' model [90] and having a spaced-time correlation function 

given by Equation 3.141 was associated with the channel. In our particular example the predictor 

coefficients were calculated upon invoking once again, the iterative approach of Section 3.4.1.6 

for an OFDM symbol normalized Doppler frequency of Fr, = 0.05. Furthermore, as a reference 

we have also plotted the a priori channel estimation MSE performance in the context of predictor 

coefficients, which were optimized for the channel's specific Doppler frequency. As reported in [17] 

and also observed in Figure 3.9 upon increasing the number of predictor taps the a priori channel 

estimation MSE is rendered quasi-invariant for OFDM symbol normalized Doppler frequencies on 

the channel, which are lower than that assumed in the calculation of the CIR-related tap predictor 

coefficients, namely FD = 0.05. By contrast, for higher Doppler frequencies a rapid degradation 

of the MSE is observed in Figure 3.9. This 'robustness' is achieved at the cost of a potentially 

significant loss in performance compared to the case of optimally adapted predictor coefficients. 

To give an example, for an SNR of 20dB and for 64 predictor coefficients the a priori channel 

estimation MSE performance loss is as high as lOdB at an OFDM symbol normalized Doppler 

frequency of FD = 0.007, when the predictor coefficients were designed for FD = 0.05. 
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Figure 3.10: A priori channel estimation MSB versus SNR at the reception antennas exhibited by the LS-
assisted DDCE [21] of Figure 3.2 outlined in Section 3.3 and by the PIC-assisted DDCE of 
Figure 3.3 seen in Section 3.4, for a number of users L ranging between (left:) one to four and 
(right;) five to eight, in the context of = 4-tap a priori CIR-related tap prediction filtering 
for an OFDM symbol normalized Doppler frequency of F n = 0.007. A Jakes spectrum-
related spaced-time correlation function was associated with both the channel encountered as 
well as with the calculation of the predictor coefficients. Note that in contrast to our previous 
discussions we have assumed here if = 64 and KQ = 8. 'DL' indicates Diagonal Loading of 
the matrix Q[n] defined in Equation 3.20 in order to support its invertibility. 

3.4.2.2.6 Performance Comparison to Li's LS-Assisted DDCE In this section we will evalu-

ate the a priori channel estimation MSE exhibited by the LS-assisted DDCE of Figure 3.2 proposed 

by Li et al. [21] capitalizing on a direct inversion of the correlation matrix Q[n] of the different 

users' transmitted subcarrier symbol sequences' as outlined in Section 3.3. We will then compare 

the performance of Li's LS-assisted DDCE against the MSE performance achieved by the PIC-

assisted DDCE of Figure 3.3. In both cases we have employed a = 4-tap CIR-related tap 

predictor, where in the context of the LS-assisted DDCE of Figure 3.2 the optimum predictor coef-

ficients were obtained by direct solution of the Wiener equation, while for the PIC-assisted DDCE 

of Figure 3.3 the predictor coefficients were optimized with the aid of the iterative approach por-

trayed in Section 3.4.1.6. Note that in contrast to our performance results presented in previous 

sections for iT = 512, here we have assumed iC = 64 subcarriers and KQ = % significant CIR-

related taps. It can be argued that from the perspective of an AWGN reduction in the context of 

the sample-spaced CIRs considered here, this system is equivalent to the scenario of K = 512 and 

KQ = 64. However, in the latter case the correlation matrix Q[n] of Equation 3.20 employed in the 

LS-assisted DDCE would be of potentially excessive dimension, depending on the number of users 



L. Hence K = 512 and KQ = 64 would result in a complexity, which would be impractical in terms 

of our simulations. More specifically, our aim in this section is also to demonstrate the deficiencies 

associated with the direct inversion of the correlation matrix Q[n], namely that error amplification 

may be encountered, when the matrix becomes rank deficient'^. This is observed upon increasing 

the L number of simultaneous users supported in conjunction with a fixed value of KQ. 

Our corresponding simulation results are portrayed in Figure 3.10. On the left-hand side we pre-

sented results for a number of simultaneous users ranging between one and four while on the right 

hand side for five to eight users. For a lower number of users we observe in the left illustration 

of Figure 3.10 that up to SNRs of about 15dB measured at the reception antennas the PIC-assisted 

DDCE of Figure 3.3 performs slightly better, while at higher SNRs the LS-assisted DDCE of Fig-

ure 3.2 exhibits a slight performance advantage. The reason for these performance trends is that 

at lower SNRs the multi-user interference (MUI) imposed, when the matrix Q[n] has non-zero off-

diagonal elements results in a degradation of the MSE of the LS-assisted DDCE shown in Figure 3.2, 

while at higher SNRs the effects of imperfect CIR-related tap prediction yield an increased MUI in 

the PIC-assisted DDCE, again, as seen in Figure 3.10. This effect becomes more obvious upon 

further increasing the number of simultaneous users L, as shown in the right-hand side illustration 

of Figure 3.10. Note that the less attractive performance exhibited by the LS-assisted DDCE is due 

to two effects. First of all the effects of MUI are more pronounced due to the higher number of users 

supported and secondly, the imperfections of the direct numerical inversion of the correlation matrix 

Q[n] of Equation 3.20 carried out here in the context of our simulations contributes to the signifi-

cant MSE degradation. This is, because matrices of the form - Q[n] = A^[n]A[n] as encountered 

in the context of calculating the Moore-Penrose inverse [87] A^[n] of A[n] - exhibit a potentially 

high condition number K(A[n]), where the condition number indicates the degree to which a matrix 

is ill-conditioned- or close to rank-deficiency [87]. Note again that specifically in the context of 

least-squares estimation problems the direct inversion of the correlation matrix Q[n] = A^[n]A[n] 

and the associated deficiencies can be mitigated with the aid of the QR matrix factorization [87]. 

3.4.2.3 Effects of a Non-Sample Spaced CIR in the Context of Ideal, Error-Free Symbol 

Decisions 

In Equations 3.126 and 3.132 as well as correspondingly also in Equations 3.133 and 3.135 as-

sociated with the simplified scenario of identical transmit powers and identical channel statistics, 

we observe that the evaluation of the optimum CIR-related tap predictor coefficients with the aid 

of the iterative approach described in Section 3.4.1.6 relies on the a priori knowledge of the term 

Trace(TM('^)l^g) associated with the ;-th user, where j = 1 , . . . ,L. 

Our analytical evaluations in Section 3.4.2 were conducted so far under the assumption of a 

'^A square matrix is referred to as rank deficient, if the number of linearly independent rows or columns is lower than 
the number of rows or columns. 
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sample-spaced CIR. Using a sample-spaced CIR facilitates the recovery of almost all the energy 

of the channel's output, upon invoking a finite number of significant taps, despite the fact that 

KQ is potentially smaller than the total number of K available CIR-related taps. In this case we 

have Trace(TM('))l^^) = Ka' j j . By contrast, in the context of the more realistic scenario of a 

non-sample-spaced CIR the energy conveyed by the channel is distributed over a higher number of 

CIR-related taps, i.e. it potentially 'leaks' to all CIR-related taps. This is particularly the case when 

employing the DFT matrix W as the unitary transform matrix. While Trace(TM('^)) = Ka' j j still 

holds, we potentially incur Trace(TM('^)l^^) < Ka'jj for KQ < K. The motivation for choosing 

KQ < K is twofold, namely that of reducing the predictor's complexity, but also for further reducing 

the noise in the context of the simplified predictor design of Section 3.4.1.6.1 employed here, relying 

on identical predictor coefficients for each of the different CIR-related taps. 

Our further efforts in characterizing the a priori channel estimation MSB performance in the 

context of non-sample-spaced CIRs will concentrate on three different types of power-delay profiles, 

namely, what we refer to as sparse profiles, uniform profiles and exponential profiles. These profiles 

will be outlined in Sections 3.4.2.3.1, 3.4.2.3.2 and 3.4.2.3.3. On the basis of these profiles we will 

then assess the PIC-assisted DDCE's average - as well as the subcarrier based - a priori channel 

transfer factor estimation MSB in Sections 3.4.2.3.4 and Section 3.4.2.3.5, respectively. 

3.4.2.3.1 Sparse Profiles Here we define as a sparse multipath intensity profile a finite number 

of Dirac impulses, each characterized by its delay T* and variance af^ •, which is formulated as: 

^ - 7;) - (3-145) 
i 

We impose the condition that the sum of the multipath intensity profile's different tap variances is 

unity: 

i 

which implies that no energy is lost or gained during the signal's transmission over the channel. By 

applying the Fourier transform to Equation 3.145, the spaced-frequency correlation function of the 

associated multipath intensity profile is obtained: 

% 

In the context of employing the DFT matrix W as the unitary transform matrix UM it can be 

shown that the element ng] of the matrix Tjjf], which is the result of the decomposition of 

the spaced-frequency correlation matrix r W with respect to which is formulated as Tjjfj = 

is given by [66]: 
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(a) norm, integer delay: —1 (b) norm, integer delay: 64 

Figure 3.11: Illustration of the normalized leakage across the diagonal elements of the decomposition of 
with respect to = W in the context of a CIR exhibiting a single tap of unit variance, 

characterized by its normalized integer- and fractional delay. The normalization of the diagonal 
elements of was carried out with respect to the K = 128 number of subcarriers, while the 
normalization of the single CIR tap's integer- and fractional delay was performed with respect 
to the sampling period duration T^. 

where ni = ^ — ni and n2 = ^ — n2 and Tg is the sampling period duration. For the diagonal 

elements of identified by the condition of ni = ng. Equation 3.148 simplifies to: 

1 sin^(7rrai) 
(3.149) 

With the aid of Equation 3.149 we have evaluated the influence of the fractional component of a 

single CIR tap's delay with respect to the sampling period duration Tg on the leakage^^ experienced 

by neighbouring integer delay taps in the context of employing the DFT matrix W as the unitary 

transform matrix in the sense of Equation 3.108. Recall that Equation 3.149 reflects the ni-th 

CIR-related tap's variance, where ni = 0 , . . . ,K — 1. The results - normalized to the K number 

of subcarriers - are portrayed in Figure 3.11 on the left-hand side for a normalized integer delay of 

— 1 tap or, equivalently, 127 taps and on the right-hand side for a normalized integer delay of 64 

taps. Let us concentrate here on the second figure, namely that of a normalized integer delay of 64 

taps associated with the single CIR tap employed. For an additional fractional delay of 0 all of the 

'^Although as in our experiments the CIR might consist of a single non-sample-spaced tap only, after transforming the 
associated set of K different subcarriers' channel transfer factors to the CIR-related domain with the aid of the unitary 
transform as shown in Equation 3.108, all of the transform's output taps are potentially non-zero. This effect is 
referred to as leakage. 
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Figure 3.12: Illustration of the normalized leakage among the diagonal elements of the decomposition 
of with respect to = W in the context of a (left:) uniform multipath intensity profile 
or (right:) exponential multipath intensity profile. Both profiles exhibited the same total sam-
pling period duration normalized multipath spread of T^n/Tg — 16. The normalization of the 
diagonal elements of was carried out with respect to the K = 128 number of subcarriers. 

single CIR tap's energy is projected onto the diagonal element of the matrix at index 64, or 

on the equivalent tap in the output of the unitary inverse linear transform following the philosophy 

of Equation 3.108. Upon increasing the additional normalized fractional delay, more of the CIR-

tap's energy is conveyed to the tap at the index 65 and the other surrounding taps. Specifically, 

for a normalized fractional delay of 0.5 both contributions, namely that of the 64-th and 65-th tap 

are identical. Upon further increasing the normalized fractional delay to unity, all of the single 

CIR tap's energy is projected onto the 65-th CIR-related tap. Also note the cyclic symmetry of the 

figures with respect to the integer delay. 

3.4.2.3.2 Uniform Profiles While in the previous section we considered sparse profiles having 

discrete delay taps, let us now focus on a continuous uniform power delay profile, which is charac-

terized by the following equation: 

r/.,umf(T) = ;;^rect ( 
Tm \ Tfji 

(3.150) 

where Tm is the associated delay spread of the channel and Tghift denotes the average delay with 

respect to the origin of the time-axis. Normalization to the multipath spread Tm ensures that the 

energy transfer factor of the CIR, which is the integral of the multipath intensity profile across 

its region of support, where it exhibits non-zero values, is equal to unity. This implies that no 
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energy is gained or lost during transmission over the channel. Also note that for an average delay 

of Tshift = ?m/2 an "ideally causal" delay profile is obtained. The spaced-frequency correlation 

function is given as the Fourier Transform (FT) of the power delay profile, yielding the expected 

sine-shaped function of: 

rg ,w , f (A/ ) - ^ 

Observe in Equation 3.151 that the higher the delay-spread, the more rapid the frequency-domain 

fading envelope fluctuation and hence the correlation function decays more rapidly, as a function of 

the frequency spacing. Similarly to our investigations of the leakage effects due to the ClR's non-

sample-spaced nature in the context of a sparse profile, which were conducted in Section 3.4.2.3.1, 

at the left-hand side of Figure 3.12 we have plotted the normalized variance of the diagonal elements 

of the decomposition of R[{iJ based on with respect to employing the DFT matrix W 

as the unitary transform matrix UM, which is expressed mathematically as 

The normalized multipath spread was assumed to be Tm/Tg = 16, which corresponds to 16 time-

domain OFDM sample durations and the number of subcarriers was K = 128. The "u"-shaped 

evolution of the tap variances seen on the left-hand side of Figure 3.12 for tap indices in excess of 

Tm/Ts = 16 is again a result of the leakage incurred. Note that in contrast to the leakage floor 

observed in conjunction with the sparse multipath intensity profile hosting in the particular example 

of Figure 3.11 a single tap only, the leakage floor incurred here is reduced by more than lOdB. 

This is, because as demonstrated in Figure 3.11 of Section 3.4.2.3.1 for a single Dirac impulse-like 

CIR, the maximum leakage is observed at a normalized fractional delay of 0.5. By contrast, in the 

context of the continuous delay profiles considered here we encounter fractional delay components 

ranging between the values of zero and one. Note that Equation 3.149 suggests an alternative way 

of obtaining the diagonal elements of for different power delay profiles, namely that of directly 

integrating the right-hand side of Equation 3.149 with respect to the specific power delay profile, 

instead of performing the decomposition of the spaced-frequency correlation matrix. 

3.4.2.3.3 Exponential Profiles The exponential multipath intensity delay profile is character-

ized by: 

r6,=po(r) == < . , (3.1!)2) 
[ 0 otherwise 

where the decay factor is determined on the basis of the value of the quotient of at a 

delay of r = 0 and at r = T^,, namely: 

_ fh,EXIX,{Tm) /o irON 
- r,,_.(0) ' (3.153) 



yielding: 

Qfexpo = — (3.154) 

-^m 

Furthermore the amplitude scaling factor can be determined as a function of again, based 

on the condition that the integral of the multipath intensity profile across its region of support is 

unity, resulting in: 

== 1 - (3-155) 

The exponential multipath intensity profile's spaced-frequency correlation function is given by the 

Fourier transform of the multipath intensity profile of Equation 3.152, yielding: 

rg,»p.(A/) = f " ! ! . , [ 1 - (3.156) 
CKapo 

Once again, at the right of Figure 3.12 we have plotted the normalized diagonal elements of the 

decomposition T[(j^ = of the spaced-frequency correlation matrix based on 

rn ,«po(A/) with respect to = W . The normalization was performed with respect to the 

K = 128 number of subcarriers. Furthermore, as in our previous example of a uniform multipath 

intensity profile discussed in Section 3.4.2.3.2, the normalized delay spread was Tm/Ts = 16. 

Again, the result of our evaluations is portrayed at the right-hand side of Figure 3.12. For a higher 

number of subcarriers than K = 128, the leakage floor observed in Figure 3.12 is expected to be 

found at lower variance values, which can be demonstrated with the aid of Equation 3.149. 

Having demonstrated the effects of non-sample-spaced multipath intensity profiles on the de-

composition of the associated spaced-frequency correlation matrix R'-^I 

with respect to the unitary transform matrix U M = W , we will now embark in the next section on 

a performance assessment of the PIC-assisted DDCB in the context of non-sample-spaced multipath 

intensity profiles. 

3.4.2.3.4 A Priori Channel Estimation MSE for a Non-Sample Spaced CIR The PIC-assisted 

DDCE's average a priori channel transfer factor estimation MSE performance was evaluated with 

the aid of the iterative approach proposed in Section 3.4.1.6. The spaced-frequency correlation ma-

trix Rt'^l was calculated on the basis of the spaced-frequency correlation function of Equation 3.147 

associated with a sparse multipath intensity profile consisting of only a single non-sample-spaced 

tap having a normalized integer delay of zero and a normalized fractional delay of 0.5. Following 

from our discussions in Section 3.4.2.3.1, this particular choice of the CIR ensures that the maxi-

mum amount of leakage is generated and hence our performance results constitute the worst-case 

performance. Alternatively, a spaced-frequency correlation function obeying Equation 3.151, asso-

ciated with a uniform multipath intensity profile was employed. T h e normalized multipath spread 

was set equal to one eighth of the jT = 512 subcarriers assumed here, namely to Tm/Tg = 64. 
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Figure 3.13: A priori channel estimation MSE performance of the PIC-assisted DDCE of Figure 3.3 versus 
the KQ number of significant CIR-related taps retained in the context of (left:) a single-tap 
multipath intensity profile having a normalized integer delay of TintjTs = 0 and a normalized 
fractional delay of t/^qc/Ts = 0.5 and (right:) a uniform multipath intensity profile having a 
normalized multipath spread of T^/Ts = 64. The curves are furthermore parameterized with 
the jvjgp number of CIR predictor taps. The number of subcarriers was equal to K = 512 and 
the SNR at the reception antennas was assumed to be 20dB. 

The knowledge of the factor is a prerequisite for determining both the optimum 
TraceCrl/lO)!̂ ),) 

CIR-related tap predictor coefficients and the a priori channel estimation MSE as outlined in Sec-

KO tion 3.4.1.6. The factor was evaluated upon selecting the KQ largest tap variances 
Trace(T[/]U)l^)) 

from the decomposition of the specific spaced-frequency correlation matri-

ces of the channel with respect to = W . 

The corresponding a priori channel estimation MSE curves are plotted in Figure 3.13 as a func-

tion of the KQ number of significant CIR-related taps. The curves are also parameterized with the 

NI^JP number of predictor taps. For both the single-tap and for the uniform multipath intensity profile 

channel scenarios a rapid improvement of the estimator's MSE is observed upon increasing the KQ 

number of significant CIR-related taps up to a certain optimum KQ value, which is a consequence 

of retaining more of the channel's energy. At the same time more of the undesired noise is retained 

since a gradually decreasing fraction of the CIR-related taps are discarded. Upon increasing the KQ 

number of significant taps beyond the optimum point seen in Figure 3.13, the opposite behaviour 

is observed, namely that the MSE is degraded again. This is, because for these taps the benefit of 

extracting more of the channel's energy is lower, than the penalty incurred due to retaining more 
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Figure 3.14: A priori channel estimation MSE performance versus the subcarrier index exhibited by the 
PIC-assisted DDCE of Figure 3.3 in the context of a uniform muitipath intensity profile with a 
normalized muitipath spread ofTm/Tg = 64, at an SNR of (left;) 20dB and (right:) 40dB. The 
curves are further parameterized with the KQ number of significant CIR-related taps retained. 
The number of predictor taps employed was = 4 and the number of subcairiers was equal 
to K = 512. 

of the undesired noise. Note that this behaviour is a result of employing the same set of predic-

tor coefficients for filtering each of the different CIR-related taps. By contrast, in the context of 

a predictor arrangement employing individually optimized sets of coefficients for the prediction of 

each of the different CIR-related taps, a "levelling out" of the a priori estimation MSE performance 

would be observed, instead of the explicit degradation seen in Figure 3.13. This is, because for the 

low-energy CIR-related taps suffering from a low channel-related signal component-to-noise ratio 

the noise would be more mitigated. As expected, in the context of the channel associated with a 

uniform muitipath intensity profile on the right-hand side of Figure 3.13 an improved MSE perfor-

mance is observed compared to the case of a single-tap muitipath intensity profile, where the tap's 

normalized fractional delay had been intentionally adjusted to 0.5 in order to maximize the leakage. 

Our previous investigations only delivered the a priori channel transfer factor estimation MSE 

averaged over the K subcarriers hosted by each OFDM symbol. By contrast, for the process of 

multi-user detection the quality of the channel transfer factor estimates recorded on a subcarrier-

by-subcarrier basis is of relevance. Hence, our further aim is to characterize the a priori channel 

transfer factor estimation MSE distribution across the various subcarriers, which is the topic of the 

next section. 
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3.4.2.3.5 A Priori Channel Transfer Factor Estimation MSE for a Non-Sample Spaced CIR 

on a Subcarrier Basis The specific distribution of the a priori channel transfer factor estima-

tion MSE across the different subcarriers can also be obtained using the approach outlined in Sec-

tion 3.4.1.6 for jointly optimizing the average a priori channel estimation MSE and the predictor 

coefficients. This procedure involved updating the average a priori channel estimation MSE of the 

j-th user, where j = 1 , . . . ,L, based on the average a priori channel estimation MSEs of the re-

maining users, employing the j-th user's specific vector of predictor coefficients determined with 

the aid of Equation 3.126. In a second step the j-th user's vector of predictor coefficients was then 

recomputed based on the updated a priori channel estimation MSEs of the remaining users with the 

aid of Equation 3.132. 

By contrast, here we are interested in the exact distribution of the a priori channel transfer factor 

estimation MSE across the different subcarriers. This can be obtained upon invoking Equation 3.117 

instead of Equation 3.126 in the algorithm outlined above. Again, in the context of a stable operation 

as defined in Section 3.4.1.5 we assume that the estimator's statistics recorded in form of the a 

priori channel transfer factor estimation errors' correlation matrix R - o) [n] = — n] is 
^^apr ^^apr 

invariant for n = 1 , . . . , yielding: 

, / l \ 

lopr 0^ 
rpij)H I 

4- R,,c, , . (3.157) 

Recall that the desired subcarrier-based a priori channel transfer factor estimation MSE variances 

are found on the main-diagonal of the matrix R - y) [n] of Equation 3.157. The iteration com-

mences with an initial assignment for the matrices R.vvO) W , j = 1 , . . . potentially con-

strained by the condition that the matrices are supposed to be Hermitian. The j-th user's a priori 

channel transfer factor estimation error correlation matrix is then updated with the aid of Equa-

tion 3.157 on the basis of the remaining users' error correlation matrices' diagonals denoted by 

R • (i) [n]\Diaq, employing the remaining users' associated current vectors of predictor coeffi-
L^t^apr 

cients. After updating all users' error correlation matrices the vectors of predictor coefficients are 

updated with the aid of Equation 3.132. This involves evaluating first the average a priori channel 

transfer factor estimation MSEs with the aid of Equation 3.115 on the basis of the updated error 

correlation matrices. The iteration continues by updating the error correlation matrices again upon 

invoking the updated vectors of predictor coefficients. 

Our analytical performance evaluations have been carried out for the uniform multipath intensity 

profile, again, in conjunction with a normalized multipath spread of Tm/Ts = 64 and for = 512 

subcarriers. The number of predictor taps was = 4. Our simulation results are portrayed in 
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Figure 3.14, on the left-hand side for an SNR of 20dB at the reception antenna and on the right-

hand side for 40dB. The curves are further parameterized with the KQ number of significant CIR-

related taps. As also evidenced by the simulation results of Figure 3.13 the number KQ should be 

in excess of T ^ j T s = 64 in order to be able to extract all the significant taps and hence to prevent 

an excessive degradation of the MSB. The most important observation drawn from Figure 3.14 is 

that as a result of the effects of leakage imposed by the uniform multipath intensity profile the 

estimation MSB is substantially degraded for the subcarriers near the beginning and the end of the 

frequency-domain OFDM symbol. Estimation MSEs as high as — 5dB are observed. Furthermore, 

upon increasing the SNR measured at the reception antenna to 40dB, the MSE remains relatively 

high. This is, because the variance of the leakage as defined in Section 3.4.2.3 is independent from 

the SNR measured at the reception antenna. The somewhat lower MSE observed at the right-hand 

side of Figure 3.14 for the higher SNR of 40dB is achieved, because the Wiener filter-based CIR-

related tap predictor becomes capable of more efficiently exploiting the channel's correlation. Note 

that at relatively high SNRs, such as for example 40dB, the MSE could be further improved upon 

employing a more beneficial, smooth window function, such as for example the Hamming window, 

instead of a rectangular window as employed here for windowing the a posteriori channel transfer 

factor estimates. Naturally, this would have to be appropriately considered in the calculation of 

the predictor coefficients. Based on the relatively high MSE associated with the outer subcarriers, 

we also expect for these subcarriers a significantly deteriorated BER performance, compared to the 

subcarriers at the center of the OFDM symbol. 

3.4.2.4 A Priori Channel Estimation MSE and System BER in the Context of Imperfect, 

Error-Contaminated Symbol Decisions Assuming a Sample-Spaced CIR 

So far in this section we have capitalized on the idealistic assumption of error-free symbol decisions. 

By contrast, in a realistic scenario the channel estimation process is impaired by erroneous symbol 

decisions. These effects will be further highlighted during our forthcoming discussions. While 

a qualitative description of the associated effects is given in Section 3.4.2.4.1 a more quantitative 

analysis will be provided in Section 3.4.2.4.2, where the a priori channel estimation MSE perfor-

mance and the system's BER performance will be assessed for the uncoded case. Furthermore, in 

Section 3.4.2.4.3 the impact of employing turbo coding will be highlighted. 

3.4.2.4.1 Effects of Error-Contaminated Symbol Decisions The effect of erroneous symbol 

decisions can be viewed as an additional source of noise associated with statistical properties that 

are different from those of the AWGN. As expected, the variance of the impairment induced by 

erroneous symbol decisions in the DDCE process is a function of the channel SNR. If any of the 

multiuser channel transfer functions encountered during the current OFDM symbol exhibits a deep 

fade, potentially causing multiple symbol errors in the corresponding subcarriers, the quality of 
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the associated a priori channel transfer factor estimates derived for the next OFDM symbol will 

be degraded. This will in turn increase the subcarrier symbol error probability at the output of 

the demodulator during the next OFDM symbol period. In this context the extraction of the KQ 

number of significant a posteriori CIR-related taps has an adverse effect. This is, because the 

time-domain multiplication of the rectangular window-based extraction mask defined by the sparse 

diagonal matrix I^o exhibiting KQ non-zero entries with the output of the unitary inverse transform 

ij[f]H given by Equation 3.108 corresponds to the cyclic convolution of the associated transfer 

functions in the subcarrier domain. Thus, after time-domain CIR-related tap windowing even a 

single subcarrier symbol error will affect the a priori channel transfer factor estimates of multiple 

adjacent subcarriers. As a result, an error-propagation effect may be observed, where the channel 

estimation quality is gradually degraded over a period of several consecutive OFDM symbols, also 

depending on the depth and width of the channel fades. In order to curtail these error propagation 

effects, a standard technique is to periodically transmit dedicated training OFDM symbols [17]. 

The effect of symbol errors can potentially be further mitigated upon increasing the a priori 

channel predictor's range, thus reducing the relative influence of each individual OFDM symbol's 

a posteriori estimated channel on the a priori channel predictor's output. On the other hand, as 

a result of using an increased number of OFDM symbols, at the same time the probability of in-

curring erroneous subcarrier symbol decisions during the estimation process is also increased. A 

less obvious effect related to the role of erroneous symbol decisions yet acting as an additional 

source of noise is that the system can be rendered unstable. This is, because correct symbol deci-

sions were assumed in the calculation of the predictor coefficients as outlined in Section 3.4.1, and 

hence a noise amplification problem classically known from the behaviour of conventional zero-

forcing channel equalizers might occur. Since it is difficult to quantify the symbol-error-induced 

noise contribution, the best strategy for avoiding these effects is to employ an a priori CIR-related 

tap predictor having a sufficient range such as for example four- or eight taps. The probability 

of incurring the adverse effects of erroneous symbol decision is of course also reduced upon em-

ploying more effective symbol detection schemes at the receiver, such as for example Successive 

Interference Cancellation (SIC) [114,115,116, 53,117,118,119, 120,121,122] instead of MMSE 

detection [114, 123, 124, 125, 53, 126, 127, 128, 117, 118, 129] and additionally by capitalizing 

on powerful channel coding techniques such as turbo coding [96, 97]. The essence of the SIC and 

MMSE detection techniques was highlighted in Sections 4.2.3 and 4.3.1. 

3.4.2.4.2 MSE and BER Performance in an Uncoded Scenario In Figure 3.15 we have plot-

ted at the left-hand side the average a priori channel transfer factor estimation MSE, while at the 

right-hand side the system's BER as a function of the SNR measured at the receiver antennas upon 

invoking both MMSE detection and the more effective, but also more complex M-SIC (M=2) detec-

tion technique, which are discussed in Sections 4.2.3 and 4.3.1, respectively. The curves are further 



155 

Fr.-lnv. Fad. SWATM, 4 Rec.-Antennas, 4 Users, QPSK 

T r a i n i n g 

6.#* 
— 100 % 

MMSE 

KflZ 
K = 5 1 2 

L=* 

Fr.-lnv, Fad. SWATM, 4 Rec.-Antennas, 4 Users, QPSK 

0 5 10 ^ 20 # 30 # 40 
average SNR at the receiver antennas [dB] 

Tra in ing 

6.25$ 
100% 

X 4 

MMSE 

Ko=12 

K = 5 1 2 

0 5 10 15 M M 35 # 
average S N R at the receiver antennas [dB] 

Figure 3.15: (left:) A priori channel estimation MSE versus SNR performance and (right;) BER versus 
SNR performance of an uncoded system employing the PIC-assisted DDCE of Figure 3.3 in 
conjunction with both MMSE and M-SIC (M=2) based detection at the receiver. The curves 
are further parameterized with the number of predictor taps - ranging from one to four 
- and with the fraction of training overhead imposed, where 6.25% overhead corresponds to 
transmitting one dedicated training OFDM symbol per every block of 16 OFDM symbols, and 
100% overhead denotes the idealistic case of an error-free reference. QPSK was employed as 
the modulation scheme. 

parameterized with the number of CIR-related predictor taps and the fraction of training overhead 

incorporated. While a training overhead of 6.25% corresponds to transmitting one dedicated train-

ing OFDM symbol in every block of 16 OFDM symbols, a training overhead of 100% indicates here 

the scenario, where an error-free reference was made available to the DDCE for benchmarking. In 

terms of the a priori channel estimation MSE we observe at the left of Figure 3.15 that as a result of 

the M-SIC detector's lower error probability - compared to a system employing MMSE detection 

- the remodulated reference employed in the PIC-assisted DDCE is of better quality and hence the 

DDCE's MSE is significantly improved. By comparing the corresponding dashed and continuous 

curves in Figure 3.15 we observe that for SNRs up to about 7.5dB an MSE degradation is observed 

with respect to the scenario benefitting from an error-free reference. An interesting phenomenon is 

observed in the context of MMSE detection, when using two predictor taps. Due to an "excessive" 

number of erroneous subcarrier symbol decisions encountered in a specific OFDM symbol - which 

may be potentially induced by a deep fade on one of the channels of the multiple users - the a priori 

channel estimation MSE encountered during the next OFDM symbol is severely degraded, which in 

turn may trigger an avalanche of errors, which may lead to the system's instability. In the context of 
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Figure 3.16: BER versus SNR performance of a turbo coded system employing the PIC-assisted DDCE of 
Figure 3.3 in conjunction with MMSE or M-SIC (M=2) detection at the receiver. The curves 
are parameterized with the number of CIR predictor taps - (left;) ranging from one to four -
and - (right:) ranging from eight to 32. A training overhead of 6.25% was incorporated by 
transmitting one dedicated training OFDM symbol in every block of 16 OFDM symbols. As a 
reference, we have also plotted the BER performance curves associated with the case of ideal 
channel parameter knowledge. QPSK was employed as the modulation scheme. 

one-tap CIR-related tap prediction filtering error-propagation events exceeding the length of a train-

ing period duration are prevented by periodically transmitting dedicated training OFDM symbols. 

By contrast, in the case of a higher number of predictor taps the O F D M training block length should 

ideally be identical to the number of predictor taps in order to eliminate the possibility of error prop-

agation across the training OFDM symbols. Note furthermore that these effects are not observed 

for the four-tap predictor - at least not in the range of SNRs considered - since the effects of errors 

imposed by a single OFDM symbol are more efficiently mitigated. The graph on the right-hand side 

of Figure 3.15 is again an evidence of the SIC combiner's more powerful detection capability. 

3.4.2.4.3 BER Performance in the Turbo Coded Scenario In addition to our discussions of 

Section 3.4.2.4.2, which were cast in the context of uncoded systems, here we consider a turbo-

coded system'"*. Instead of plotting the performance of a system capitalizing on an error-free refer-

ence in the context of PIC-assisted DDCE, as a benchmarker, the case of ideal channel parameter 

knowledge was considered for our further comparisons. Our B E R performance results are por-

trayed at the left-hand side of Figure 3.16 for various numbers of CIR-related predictor taps ranging 

'''The SIC-related soft-bits were generated with the aid of the simplified method of Section 4.3.1.3.1 rather than with 
the weighted soft-bit method of Section 4.3.1.3.2. Hence there is still some potential for a performance improvement 
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Ko 
K 

wis, 
p 

number of significant CIR-related taps 

number of subcarriers 

number of simultaneous users 

number of CIR predictor taps 

number of receiver antennas 

Table 3.5: Summary of the parameters influencing the PIC-assisted DDCE's complexity. 

from one to four, while at the right-hand side the number of predictor taps was between eight and 

32. Apart from noticing the M-SIC detector's more effective operation compared to MMSE de-

tection, we observe that upon increasing the number of predictor taps to a sufficiently high value, 

the system's BER is within a fraction of a dB in comparison to that exhibited by a system capital-

izing on perfect channel knowledge. By contrast, for the MMSE detector of Section 4.2.3 - even 

in conjunction with the predictor spanning the highest number of CIR-related taps - a sig-

nificant performance difference is observed in comparison to the perfect-reference scenario. This 

phenomenon is attributed to the imperfect error-contaminated remodulated reference. 

Note that in the context of the simulations conducted in this section we have employed an "un-

decoded" reference, where the output signal of the combiner was sliced and remodulated. As a 

more complex design alternative, one could also employ a channel decoded reference, where the 

'source'-related soft-output bits of the turbo-decoder are sliced, reencoded and remodulated. A fur-

ther improvement can be achieved by generating the reference based on slicing the 'source- plus 

parity'-related soft-output bits of the turbo-decoder. 

3.4.3 Computational Complexity 

In this section we will estimate the complexity of the proposed PIC-assisted DDCE scheme of 

Figure 3.3 in terms of the number of complex multiplications and additions required during the 

estimation phase. We will consider two specific cases. In the first scenario PIC was carried out in 

the frequency-domain, which was based on the concept of Section 3.4, while in the second case 

PIC was invoked in the time-domain, as proposed by Li [22]. The latter approach was outlined in 

Section 3.3.4. Note again that these schemes are equivalent in terms of their system equations and 

performance. Hence the decision, as to which domain to perform the PIC in, should be made on the 

basis of the computational complexity imposed. 

In Table 3.5 we have once again summarized the system parameters, which will influence the 

achievable performance. Our further discourse is divided into two parts. While in Section 3.4.3.1 

we will focus on the complexity imposed by the frequency-domain a posteriori channel estimation, 

in Section 3.4.3.2 we will focus on the estimation of the complexity associated with the a priori 

channel estimation conducted in the CIR-related domain. 



3.4.3.1 A Posteriori Channel Estimation Complexity 

Following our discussions outlined in Section 3.4.1.1 an a posteriori channel transfer function esti-

mate can be obtained for the j-th user and the p-th receiver antenna element during the n-th OFDM 

symbol period upon subtracting all the {L — 1) remaining users ' estimated signal contributions 

from the frequency-domain representation of the signal received by the p-ih antenna element. The 

schematic of this arrangement was shown in Figure 3.3. According to Equation 3.106 this im-

plies multiplying the a priori channel transfer factor estimates of the [L — 1) users with the users' 

associated sliced and remodulated subcarrier symbols, followed by the subtraction of these compo-

nents from the received signal and by its normalization with respect to the desired user's sliced and 

remodulated subcarrier symbols. Upon neglecting the specific properties of the modulated signal 

constellations employed, such as for example the constant modulus property of the various MPSK 

modulation schemes, the complexity imposed in terms of the number of complex multiplications 

and additions - normalized to the K number of subcarriers, L number of users and P number of 

receiver antenna elements is given by'^: 

1,̂ ,, = 2 (3.15IS) 

= Z, - 1, (3.159) 

where the computational complexity of the division-based normalization has been accounted for as 

a complex multiplication. Note in this context that l/s(-'^[n, A:] = where 

\s^^\n,k]\'^ = cr| for constant-modulus MPSK modulation schemes. 

3.4.3.2 A Priori Channel Estimation Complexity 

Calculating the i-th user's a priori channel transfer factor estimates for the next OFDM symbol 

period involves transforming the user's current set of a posteriori channel transfer factor estimates 

to the CIR-related domain with the aid of the inverse unitary linear transform according 

to Equation 3.108. In our specific case this unitary transform is implemented with the aid of the 

inverse DFT matrix W ^ . Instead of directly multiplying the vector of a posteriori channel transfer 

factor estimates with the inverse DFT matrix according to Equation 3.108, we rather employ 

here the IFFT. Employing the IFFT requires a y logg K number of complex multiplications and 

twice the number of additions. Hence, the corresponding normalized complexity contribution in the 

sense of Equations 3.158 and 3.159 is given by: 

1 

2 

= loggjir. (3.161) 

= 2 logger (3.160) 

'̂ For reasons of space economy in the rest of this section we refrain from spelling out always that normalization was 
carried out with respect to K, L and P. For the sake of brevity we will simply refer to 'normalized' complexity. 
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Kq = i / K = 64 Ko = = 512 = 64/X = 512 
^(C*C) 1 
^ M U - C E , P l c | n o r m 

^(C+C) I 
' -^MU-CE,PIc |nomi 

8.13 

15.13 

11.02 

21.02 

11.13 

21.13 

Table 3.6: Computational complexity of the frequency-domain PIC-assisted DDCE of Figure 3.3 in terms of 
the number of complex multiplications and additions normalized to the K number of subcarriers, 
L number of users and P number of receiver antennas. Here we have assumed that L = P = 4 
and furthermore we had N, [t] tap 1. 

Furthermore, filtering each of the KQ number of most significant CIR-related taps along the time-

direction according to Equation 3.109 using an iV-tap prediction filter results in a normalized com-

plexity contribution of: 

r(c+c) I I 

(3.162) 

(3.163) 

Upon invoking Equation 3.110, the predicted CIR-related taps are transformed back to the frequency-

domain, where again, for the specific case of UMW = W the EFT is employed. The FFT requires 

the same number of operations, as the IFFT, namely those given by Equations 3.160 and 3.161. 

Hence, the total number of complex multiplications and additions, normalized to the product of 

the K number of subcarriers, L number of users and P number of transmit antennas is given by; 

a 

a 

(C*C) I 

MU-CEf ICI norm — 2 4" 
K 

K H——Ni fop 

(C+C) I 

MU-CEf ICI nonn i j — 1 -f- 2 log2 K -j- ^ tap" 

(3.164) 

(3.165) 

We conclude that in most scenarios the computational complexity imposed will be dominated by 

the contribution associated with performing the IFFT and FFT operations. In order to provide 

an illustrative example, we have evaluated the computational complexity of the frequency-domain 

(FD) PIC-assisted DDCE of Figure 3.3 again, for the standard configurations as employed in the 

context of our rudimentary complexity analysis of Li's original approach and for the simplified, 

time-domain (TD)-PIC-assisted DDCE in Tables 3.3 and 3.4. Specifically, compared to the TD-PIC-

assisted DDCE's complexity summarized in Table 3.4, we observe that the FD-PIC's complexity is 

lower in terms of the number of complex multiplications and additions required. While this applies 

to the number of complex multiplications regardless of the specific choice of the system parameters, 

the number of complex additions imposed has to be considered in more detail. Upon comparing 

Equations 3.99 and 3.165 - which reflect the complexity of the TD-PIC and FD-PIC in terms of 

the number of complex additions we conclude that if we have K > then the TD-PIC is 

more complex for any choice of KQ. By contrast, for the case of K < it depends on the 
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specific choice of KQ whether the TD- or the FD-PIC is more complex. It can be readily shown 

that the 'complexity cross-over point' is given by KQ = y^i^(l — 2{L-I) kgz More explicitly, 

for KQ < KQ the TD-PIC is less complex, while for KQ > KQ the FD-PIC is less complex. Note 

that in formulating these considerations we have assumed in Equation 3.99 that we have ^ ~ 0 

and furthermore that the term of was neglected in Equation 3.165. In order to provide an 

example, for L == 8 and == 64 we have KQ = 6.04, while for K = 512 we obtain KQ = 13.52. 

3.4.4 Summary and Conclusions 

In summary, in Section 3.4 we have discussed frequency-domain PIC-assisted DDCE employed in 

the context of multi-user OFDM systems- or phrased in more general terms, used in OFDM systems 

relying on multiple transmit antennas. The outline of this section is as follows. In Section 3.4.4.1 

a summary and conclusions will be provided for the specific structure of the PIC-assisted DDCE. 

Furthermore, in Section 3.4.4.2 our summary and conclusions will be offered for the performance 

assessment of the PIC-assisted DDCE. Finally, in Section 3.4.4.3 the results of our complexity 

analysis conducted with respect to the PIC-assisted DDCE will be summarized. 

3.4.4.1 Summary and Conclusion on the PIC-Assisted DDCE's Structure 

After an introduction of the vectors of a priori and a posteriori channel transfer factor estimates and 

their associated expressions in Section 3.4.1.1, the employment of a priori CIR-related tap predic-

tion filtering was discussed in Section 3.4.1.2 for the sake of obtaining improved channel transfer 

factor estimates for the next OFDM symbol period. On the basis of the associated system equations 

an expression, namely, Equation 3.113 was derived for the vector of different subcarriers' a pri-

ori channel transfer factor estimation errors associated with the j-th user and p-th receiver antenna 

element during the current OFDM symbol period as a function of the vectors of a priori channel 

transfer factor estimation errors of the remaining (L — 1) users during the past number of 

OFDM symbol periods, where denotes the predictor's range. This expression was then em-

ployed for deriving the j-th user's a priori channel transfer factor estimation error correlation matrix 

of Equation 3.117. Furthermore, the j-th user's average channel transfer factor- or simply channel 

estimation MSE given by Equation 3.119 was derived, again, as a function of the remaining users' 

corresponding magnitudes associated with the past number of OFDM symbol periods. A sim-

ilar expression, namely. Equation 3.124 was also derived for the j-th user's a posteriori channel 

estimation MSE. Our discussions continued in Section 3.4.1.5 upon further considering the channel 

estimator's operation in the steady-state condition, implying that the estimator's MSE has reached 

its steady-state value and hence it was time-invariant for the consecutive OFDM symbols. Upon 

employing a more compact matrix notation a closed form solution, namely Equation 3.129 was 

derived for the vector of the different users' a priori channel estimation MSEs as a function of the 
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different users' transmit powers as well as that of the AWGN noise variance, that of the CIR-related 

predictor coefficients, that of the channel statistics expressed in fo rm of the channels' spaced-time 

spaced-frequency correlation functions, and finally that of the specific unitary transforms employed. 

The criteria to be satisfied for the existence of the equation's solution were provided, which also en-

sure the system's stability. Furthermore, in Section 3.4.1.6 an expression, namely Equation 3.132 

was derived, for the j-th user's vector of CIR-related predictor coefficients as a function of the 

(L — 1) remaining users' a priori channel estimation MSEs. This equation was then employed in 

conjunction with Equation 3.126 in the context of a fixed-point iteration based approach for jointly 

optimizing the expected a priori channel estimation MSE and the predictor coefficients, following a 

similar strategy to that proposed by Rashid-Farrokhi et al. [ I l l ] for jointly optimizing the transmit 

power allocation and basestation antenna array weights in wireless networks. Furthermore, in Sec-

tion 3.4.1.6.1 simplified expressions were presented for the a priori channel estimation MSE, the 

stability condition and for the vector of optimum predictor coefficients, namely, which were given 

by Equations 3.133, 3.134 and 3.135, respectively. These equations were valid in the context of a 

scenario of identical transmit powers- and channel statistics associated with the different users. For 

this specific scenario, while employing single-tap prediction filtering a closed form solution was 

presented in Section 3.4.1.6.2 for the predictor's optimum coefficient, which was given by Equa-

tion 3.137. Finally, in Section 3.4.1.7 various strategies were discussed for providing estimates of 

the channel statistics, which constitute the prerequisites for obtaining the optimum predictor coeffi-

cients, as it was highlighted in Section 3.4.1.6. 

3.4.4.2 Summary and Conclusions on the Performance Assessment of the PIC-Assisted DDCE 

The further structure of this section is as follows. The PIC-assisted DDCE's performance in the 

context of sample-spaced- as well as non-sample-spaced CIRs and error-free symbol decisions is 

summarized in Sections 3.4.4.2.1 and 3.4.4.2.2, respectively. In contrast, in Section 3.4.4.2.3 our 

findings for the scenario of a sample-spaced CIR and imperfect, potentially error-contaminated 

symbol decisions are summarized. 

3.4.4.2.1 Performance of the PIC-Assisted DDCE in the Context of Sample-Spaced CIRs 

and Error-Free Symbol Decisions Our performance assessment of the various techniques stud-

ied commenced with Figure 3.4 of Section 3.4.2.1, portraying the a priori channel estimation MSE's 

evolution as a function of the CIR-related tap predictor coefficients in the context of two-tap CIR 

prediction filtering. Figure 3.4 highlighted the estimator's sensitivity with respect to the choice of 

the predictor coefficients. Our further investigations in Section 3.4.2.2.1 then concentrated on the 

average a priori channel estimation MSE in the idealistic scenario of a sample-spaced CIR and 

error-free symbol decisions, which provided us with a useful benchmarker. Specifically the in-

vestigations conducted in Sections 3.4.2.2.1 and 3.4.2.2.2 demonstrated that without exploiting the 
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system's recursive structure characterized by our derivations presented in Sections 3.4.1.3, 3.4.1.4 

and 3.4.1.5 the system may potentially become unstable as observed in Figures 3.5 and 3.6. This is 

the case for example, when calculating the predictor coefficients associated with a specific user with 

the aid of the conventional Wiener solution, while neglecting the remaining users' a priori channel 

estimation MSEs. Our further investigations in Sections 3.4.2.2.1, 3.4.2.2.2 as well as 3.4.2.2.3, 

3.4.2.2.4 and 3.4.2.2.5, respectively, which were associated with Figures 3.5, 3.6 as well as 3.7, 3.8 

and 3.9, respectively, concentrated on portraying the influence of the various system parameters on 

the a priori channel estimation MSB. More explicitly, we studied the effects of the number 

of predictor coefficients, that of the KQ number of significant CIR-related taps, that of the L num-

ber of simultaneous users, that of the impact of the OFDM symbol normalized Doppler frequency 

denoted by FD, and finally, that of the potential mismatch between the channel statistics assumed 

in the derivation of the predictor coefficients and that of the channel encountered. Specifically, the 

investigations conducted in Section 3.4.2.2.5 with respect to the mismatch of the channel statistics 

supported the arguments of Li et al. [17] that if an ideally support-limited Doppler power spectrum 

having a maximum OFDM symbol normalized Doppler frequency of FD is assumed in the calcu-

lation of the predictor coefficients, then for channels obeying F p < FD no further a priori channel 

estimation MSB performance degradation is observed. Our illustrations in Figure 3.9 demonstrated 

that this is only true in the strict sense, when increasing the CIR-related tap predictor's order towards 

infinity. In more practical terms however, a number of 64 predictor taps appeared to be sufficient for 

rendering the evolution of the MSB almost flat as a function of the channel's OFDM symbol normal-

ized Doppler frequency. On the other hand, a moderate number of predictor taps, which was as low 

as four, was found sufficient for exploiting much of the channel transfer function's correlation in the 

time-direction. Furthermore, we observed that if the difference between the target OFDM symbol 

normalized Doppler frequency for which the predictor coefficients were designed, and that of the 

channel encountered is too high, then the channel's correlation cannot be optimally exploited. The 

conclusion that transpired was that of rendering the channel transfer function estimator adaptive, 

which will be the topic of our discussions in Section 3.5. Our investigations conducted in the con-

text of a sample-spaced CIR and error-free symbol decisions were concluded in Section 3.4.2.2.6 by 

comparing the a priori channel estimation MSB performance of PIC-assisted DDCB to that of the 

LS-assisted DDCB proposed by Li et al. [21], which was characterized in Section 3.3. As shown in 

Figure 3.10 the general tendency is that for lower SNRs, namely for SNR values up to about 15dB, 

the PIC-assisted DDCE outperforms the LS-assisted DDCB, while for higher SNRs the opposite 

trend is observed. The reason is that the LS-assisted DDCB suffers from the MUI imposed due 

to the imperfect cross-correlation properties of the different users' transmitted subcarrier symbol 

sequences. By contrast, the PIC-assisted DDCE of Figure 3.3 suffers from MUI due to the imper-

fections of the a priori channel estimates imposed on the PIC process, which becomes more obvious 
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for higher SNRs. It was observed furthermore in conjunction with the LS-assisted DDCE of Fig-

ure 3.2 that when the L number of simultaneous SDMA users approaches the maximum tolerable 

number of users given by the ratio as outlined in Section 3.3.1.2.3, then the a priori channel 

estimation MSE is further degraded. This was explained by the increased MUI due to supporting 

more users, but also due to the numerical imperfections associated with a potentially excessive con-

dition number of the subcarrier symbol sequences' auto-correlation matrix Q[n], which was defined 

earlier in Equation 3.20 of Section 3.3.1.2.1. These imperfections were mitigated for example with 

the aid of the QR matrix factorization based approach outlined in Section 3.3.1.2.4. 

3.4.4.2.2 Performance of the PIC-Assisted DDCE in the Context of Non-Sample-Spaced CIRs 

and Error-Free Symbol Decisions In order to render our investigations more realistic, in Sec-

tion 3.4.2.3 we considered the estimator's MSE performance in the context of non-sample-spaced 

CIRs. More specifically, we introduced three multipath intensity profiles, namely the sparse-, the 

uniform- and the exponential multipath intensity profile. Their associated spaced-frequency channel 

correlation functions were reviewed in Sections 3.4.2.3.1, 3.4.2.3.2 and 3.4.2.3.3, respectively. Fur-

ther investigations were conducted with respect to the leakage effects incurred upon decomposing 

the associated spaced-frequency correlation matrices with respect to the DFT matrix W . Specifi-

cally, in case of a sparse multipath intensity profile, using a single tap in the most basic scenario, 

it was found in Figure 3.11 that the leakage was maximal for a fractional delay of 0.5. The effects 

of leakage observed when using the uniform- and exponential multipath intensity profiles were por-

trayed in Figure 3.12. Our more specific investigations of the a priori channel estimation MSE 

exhibited by the PIC-assisted DDCE in the context of non-sample-spaced CIRs focussed further on 

the specific influence of the KQ number of significant CIR-related taps. The corresponding simu-

lation results were presented in Figure 3.13 for a single-tap- and for a uniform multipath intensity 

profile. In both scenarios the estimation MSE exhibited the same tendencies, namely that of having 

an MSE floor between - 2 0 - and —25dB, even for an optimum choice of the number KQ of signifi-

cant CIR-related taps. This was attributed to the leakage effects associated with employing the DFT 

matrix W instead of the optimum KLT matrix for transforming the a posteriori channel transfer 

factor estimates to the CIR-related domain in the sense of Equation 3.108. Upon further increasing 

the number of significant CIR-related taps KQ beyond its optimum point, the a priori channel esti-

mation MSE was degraded. This was related to employing the same set of tap predictor coefficients 

in the different CIR-related taps and hence the AWGN was not optimally suppressed. Our more de-

tailed investigations conducted in Section 3.4.2.3.5, which were quantified in Figure 3.14, focussed 

on the distribution of the a priori channel transfer factor estimation MSE across the various subcar-

riers of the OFDM symbol. For evaluating the MSE distribution an iterative algorithm following 

the philosophy of that in Section 3.4.1.6 was devised. We observed in Figure 3.14 that the a priori 

channel transfer factor estimation MSEs at the boundaries of the OFDM symbol interpreted in the 
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sense of the DFT-index based notation or at the center of the OFDM symbol with respect to the 

frequency may potentially become excessive, again, as a result of the effects of leakage. Hence, in 

fo fAg gnArg pg/̂ TTMoncg, fAg vaZwg q/'fAg a priori cAowigZ 

to be expected in the different subcarriers should be passed on to the combining- or detection stage. 

3.4.4.2.3 Performance of the PIC-Assisted DDCE in the Context of Sample-Spaced CIRs 

and Imperfect, Error-Contaminated Symbol Decisions Our performance assessment was con-

cluded in Section 3.4.2.4 upon considering sample-spaced CIRs and potentially erroneous symbol 

decisions, as encountered in practical physical implementations. While a qualitative assessment of 

the associated effects was provided in Section 3.4.2.4.1, the corresponding MSB- and BER simula-

tion results recorded for the uncoded scenario were portrayed in Figure 3.15 of Section 3.4.2.4.2. 

Two MUD detection schemes, namely the MMSE- and SIC detection schemes of Sections 4.2.3 and 

4.3.1 were compared against each other. It was found on the basis of the MSB curves of Figure 3.15 

that the impact of erroneous symbol decisions was distinctively visible. From the further evolution 

of the different MMSB detection-related performance curves of Figure 3.15 it can be concluded that 

a relatively powerful MUD scheme, such as SIC or M-SIC is necessary for avoiding the PIC-assisted 

DDCB's instability induced as a result of erroneous symbol decisions. Upon employing a further 

enhanced turbo-decoding assisted system, which was the topic of Section 3.4.2.4.3, the associated 

BER performance curves provided in Figure 3.16, suggested that the entire system's BER perfor-

mance was significantly enhanced. More specifically, it was observed in Figure 3.16 that in the 

context of SIC assisted detection, while employing CIR predictor lengths in excess of four taps, the 

system's BER performance may approach that exhibited in the context of perfect channel transfer 

function knowledge. 

3.4.4.3 Summary and Conclusion on the PIC-Assisted DDCE's Computational Complexity 

Our discussions in Section 3.4 were concluded by a complexity study. It was argued on the basis of 

the associated complexity under which conditions should the PIC be performed in the CIR-related 

domain- and in the frequency-domain, respectively, while noting that both schemes exhibit the same 

MSB performance. As our comparisons revealed earlier in Section 3.3, the PIC-assisted DDCE -

regardless of whether the PIC is performed in the time- or in the frequency-domain - is significantly 

less complex, than the LS-assisted DDCE, particularly for a high number of significant CIR-related 

taps. 

The advantages in favour of PIC-assisted DDCE compared to LS-assisted DDCE, namely that 

of a significantly reduced complexity and the potential support of a higher number of simultaneous 

users or transmit antennas have to be considered in the light of the disadvantage of requiring a 

less straightforward procedure for evaluating the CIR-related tap predictor coefficients, while also 

suffering from a slight performance disadvantage at higher SNRs. Furthermore, common to both 
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approaches was the MSB floor observed at higher SNRs in the context of non-sample-spaced CIRs, 

which was attributed to the imperfections of the DFT matrix W in the context of transforming the a 

posteriori channel transfer factor estimates to the CIR-related domain. From these observations we 

conclude that an improved channel transfer function estimation scheme should perform all filtering 

operations in the frequency-domain, and thus potentially avoiding the effects of transform-related 

leakage. Furthermore the filtering process should be adaptive with respect to the filters' coefficients. 

Alternatively, the previous design could be improved upon employing an adaptive unitary transform 

- such as the KLT - which takes into account the channel's statistics, and again to render the estimator 

adaptive with respect to the CIR-related tap prediction coefficients. In the next section we will focus 

on rendering the PIC-assisted DDCE of Figure 3.3 adaptive with respect to the channel's statistics, 

which is achieved with the aid of employing the Recursive Least Squares (RLS) algorithm. 

3.5 RLS-Adaptive Parallel Interference Cancellation Assisted Decision-

Directed Channel Estimation 

In an effort to further improve the PIC-assisted DDCE's MSB performance under time-varying con-

ditions with respect to the channel's specific multipath intensity profile and Doppler power spec-

trum, a viable approach is to adaptively adjust the CIR-related tap predictors' coefficients. A num-

ber of rudimentary approaches for rendering the predictor adaptive were outlined in Section 3.4.1.7. 

A common feature of these techniques was that the adaptation was assumed to be performed on a 

training block-by-block basis, possibly during training OFDM symbol periods. However, from a 

computational perspective it might be more advantageous to perform the adaptation on an OFDM 

symbol-by-symbol basis, once the new a posteriori channel transfer factor samples or CIR-related 

tap estimates become available. Furthermore, it was assumed in Section 3.4.1.2 that in order to sim-

plify the task of determining the predictor coefficients, the same set of predictor coefficients would 

be employed for each of the KQ number of different CIR-related taps, regardless of the specific tap's 

variance. This followed the philosophy of "robust" channel transfer function estimation, which was 

originally proposed by Li et al. [17] with respect to the specific shape of the channel's associated 

multipath intensity profile. This robustness was achieved at the cost of a sub-optimum MSB perfor-

mance. As a result, the predictor's complexity was found to be relatively low, which was attributed 

to the off-line optimization of the predictor coefficients. 

An approach for providing block-adaptivity for the CIR-related tap predictor's coefficients was 

outlined in Section 2.2.5.2 in form of the Burg algorithm assisted predictor proposed by Al-Susa 

and Ormondroyd [18] for single-user OFDM systems. Although the Burg algorithm, which has been 

initially proposed in the context of speech processing [83] is known to achieve a low MSB due to its 

strategy of simultaneously minimizing both the forward- and backward prediction errors, its main 
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disadvantage follows from the necessity of storing a potentially large number of past OFDM sym-

bols' channel transfer factor estimates beyond the prediction filter's range. This can be avoided by 

performing the CIR-related tap prediction coefficient adaptation on an OFDM symbol-by-symbol. 

Here we opted for employing the RLS algorithm [87], which is known to converge relatively rapidly. 

The further structure of Section 3.5 is as follows. In Section 3.5.1 the application of the RLS al-

gorithm to the problem of CIR-related tap prediction is discussed, including the assessment of the a 

priori channel estimation MSB and the estimation of the computational complexity imposed. With-

out any modifications, we then employ the RLS-based CIR-related tap predictor in the context of 

the PIC-assisted DDCE for multi-user OFDM communications, which is the topic of Section 3.5.2. 

We also characterize the BER- and MSB performance of the RLS-based PIC-assisted DDCE in the 

context of sample-spaced CIRs. Our conclusions will then be offered in Section 3.5.3. 

3.5.1 Single-User RLS-Adaptive CIR-Related Tap Predict ion 

As an introduction, we will consider in this section the application of RLS-adaptive CIR-related tap 

prediction filtering in the context of a single-user scenario. The specific structure of Section 3.5.1 

is as follows. While in Section 3.5.1.1 the standard RLS algorithm is reviewed with respect to its 

potential application in CIR-related tap prediction filtering, a simplified scheme based on ensem-

ble averaging is outlined in Section 3.5.1.2. Furthermore, in Section 3.5.1.3 a rudimentary MSB 

performance assessment is provided concerning the influence of the RLS-specific forgetting factor 

Orls and of the OFDM symbol normalized Doppler frequency Fjj on the a priori channel estima-

tion MSB. Finally, in Section 3.5.1.4 we will evaluate the complexity imposed by the RLS-assisted 

"on-line" adaptation of the CIR-related tap predictor coefficients. 

3.5.1.1 Review of the RLS Algorithm 

For the single-user scenario we recall from Section 2.2.4.4, more specifically from Equation 2.38, 

that the /-th CIR-related tap's vector Cpre[n, l]\opt E of optimum predictor coefficients"^ is 

determined by the Wiener equation [87], namely: 

:pre[n, Z], (3.166) 

where /] G is the /-th CIR-related tap's estimated auto-correlation matrix and 

/] E "p ̂  ̂  is the estimated cross-correlation vector, both of which are valid for the n-th 

OFDM symbol period. The estimate /] for the n-th OFDM symbol period could be obtained 

on the basis of the estimate — 1, /] associated with the (n — l)-th OFDM symbol period by 

"'Note that in contrast to our simplified analysis of PIC-assisted DDCE in Section 3.4 different CIR-related taps are 
potentially associated with individual vectors of predictor coefficients. 
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evaluating [87]: 

= «RLsR[^th - 1, n + (1 - aRLs)hapt[M - 1, Zjh^Jn - 1, Z], (3.167) 

where hapt[n — 1, /] is defined in correspondence with Equation 2.23 as the vector of number of 

past CIR-related tap estimates starting with the tap index (n - 1). Furthermore, the "update-term" 

of Equation 3.167 is identical to that of Equation 2.25 upon removing the expectation operator. 

Furthermore, in Equation 3.167 the variable cirls E R denotes the so-called forgetting factor [87]. 

Similarly, the estimate /] for the n-th OFDM symbol period can be obtained following the 

philosophy of Equation 3.167, yielding [87]: 

= aRijrM[n - 1, Z] 4- (1 - - 1, Z], (3.168) 

where again, the "update-term" of Equation 3.168 is identical to that of Equation 2.28 upon remov-

ing the expectation operator. Instead of explicitly inverting the estimated auto-correlation matrix 

RQp^[n] associated with the n-th OFDM symbol period, an iterative update strategy based on the 

matrix inversion lemma - also known as the Sherman-Morrison formula - or Woodbury's identity 

[87] can be invoked, which is known from the literature as the RLS algorithm [87]. In the context 

of our specific CIR-related tap prediction problem the RLS-algorithm is summarized below. Specif-

ically, the so-called Kalman gain vector k.[n,l] E ^^ for the n-th OFDM symbol period is 

given by [87]: 

, r J-, (1 - o:RLs)R^t ~ 1; l]hapt[n - 1,1] 
k[n,/J = : _ , 1 : , (3.169) 

ÔRLS + (1 - 0!RLs)h^^[n - 1, [n - l]hopf[n - 1, Z] 

which is then employed in the process of updating the inverse of the CIR-related taps' auto-correlation 

matrix, namely [87]: 

R-St - 1 J] - - 1, ' h - 1, 
URLS 

' _ 1 71 _ r _ 1 /mW-l f (3.170) 

Furthermore, the CIR-related tap predictor coefficient vector for the n-th OFDM symbol period is 

given by [87]: 

r ~ r r - "] * 

Cpj-g[n, l̂ \opf = Cpj-e[n 1 , / ] - | - k [ n , / ] haptlTi,!] Cp^g[n l,/]hapt[n 1,/] , (3.171) 

where the term in brackets denotes the prediction error associated with the n-th OFDM symbol 

period. A standard approach for initializing the RLS algorithm [87] is that of assuming an inverse 

correlation matrix having a diagonal shape defined as: 

= (3.172) 

ERis,0 

where the specific choice of eRLs.o G K is less critical in our application, than the specific value 

of the forgetting-factor Qrls. A plausible choice for Cpre[0, /] is for example (1 ,0 , . . . , 0)^, which 

corresponds to the case of zero-forcing based one-tap prediction. 
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3.5.1.2 Potential Simplification by Ensemble Averaging 

According to the formulae presented in the previous section, the R L S adaptation has to be performed 

separately for each of the KQ number of significant CIR-related taps. A simplification in terms of the 

computational complexity can potentially be achieved upon invoking the concepts of 'robustness' 

with respect to the channel's specific spaced-frequency correlation function, as proposed by Li et 

al. [17]. These were discussed in Section 2.2.3 in the context of a single-user OFDM scenario. 

An implication was that the same set of CIR-related tap predictor coefficients was invoked in the 

process of predicting the different CIR-related tap values - at the cost of an MSB performance 

degradation. More specifically, in each OFDM symbol period the auto-correlation matrix of the 

CIR-related a posteriori tap estimates is updated according to Equation 3.167 but upon substituting 

the tap-specific update term by its ensemble average: 

1]-^ (1 -ORLs)!^- -- l,Z]iig,f[n-- 1,Z], (3.1721) 

where Stap denotes the set of indices associated with the KQ number of significant CIR-related taps. 

Following the same concepts instead of Equation 3.168 we obtain the following cross-correlation 

vector update expression: 

== aRLsf[^[n-- 1]-^ (1 --OkLs)jrr - 1 , C3.174) 

Note that as a result of the ensemble averaging, as seen in Equation 3.173 the innovation-related 

term of the auto-correlation matrix may exhibit a rank, which is potentially higher than 

unity. This precludes the application of the Sherman-Morrison formula [87]. Consequently, the 

vector of CIR-related tap predictor coefficients has to be evaluated with the aid of Equation 3.166, 

namely: 

= (3.17<l) 

Note that in terms of the computational complexity imposed the direct matrix inversion based solu-

tion of Equation 3.175 is proportional to the cube of the number of predictor taps. 

3.5.1.3 MSE Performance Assessment 

In order to demonstrate the applicability of the RLS algorithm to the problem of CIR-related tap 

prediction in the context of DDCE we have portrayed in Figure 3.17 the evolution of the a priori 

channel estimation MSE versus the OFDM symbol index for an arbitrary time segment commenc-

ing with an initial vector of prediction coefficients given by Cpre[0,l] = ( 1 , 0 , . . . ,0)^ , where 

I = Q,... ,KQ — 1. Here we have employed the sample-spaced indoor WATM channel model of 

Section 6.1.1, where the highest CIR tap delay is given by IIT^. Hence, the number of significant 
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Figure 3.17: Evolution of the a priori channel estimation MSE observed with the aid of the RLS predic-
tion assisted DDCE in the single-reception antenna based single-user scenario for a specific 
time-segment associated with the sample-spaced indoor WATM channel of Section 6.1.1, as a 
function of the OFDM symbol index; (left;) parameterized with the forgetting factor a = asLs, 
for a fixed OFDM symbol normalized Doppler frequency of FD = 0.007; (right:) parame-
terized with the OFDM symbol normalized Doppler frequency FD and for a fixed forgetting 
factor of oiRLs = 0.8; in both cases the RLS predictor's startup constant was eRLs,o = 0.1, the 
Nf}p number of CIR predictor taps was equal to four and the SNR at the reception antennas 
was assumed to be 40dB; furthermore the number of significant CIR-related taps was KQ = 12 
and the number of subcarriers was K = 512. 

CIR-related taps was chosen as JCq = 12. Furthermore, the CIR-related tap predictor's range was 

equal to = 4. Note that for different time segments the specific MSE evolution is potentially 

different from that of Figure 3.17, but obeys the same general trend. Here we have investigated 

the influence of the Kalman forgetting factor Orls and of the OFDM symbol normalized Doppler 

frequency on the a priori channel estimation MSE performance. Specifically, at the left-hand side 

of Figure 3.17 the OFDM symbol normalized Doppler frequency was set to FD — 0.007, while 

the forgetting factor Orls was varied. We observe in Figure 3.17 that for lower values of Orls a 

faster adaptation is achieved, while the residual error after adaptation is potentially higher, than 

that achieved with the aid of a forgetting factor of a higher value, although the latter effect is not 

explicitly visible in Figure 3.17 due to the limited time span. By contrast, at the right-hand side of 

Figure 3.17 we have plotted the a priori channel estimation MSE for various OFDM symbol nor-

malized Doppler frequencies, FD, while keeping the forgetting factor Orls constant. As expected, 

the a priori estimation MSE is increased in scenarios having a higher OFDM symbol normalized 

Doppler frequency, while the speed of adaptation was almost identical for the different scenarios. 
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k[n, /] Cpj-e[n, Z] E 

RLS, iap 
^(C+C) 

RLS, t a p 
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N f S + N.™ 

N Z + t ' f l , 

N t , 

N f S + NSI 

NS 

Nl'i 

2W£J. 

3Nl'J^ + 2Nll 

2Jv£P +4iV,W 

Table 3.7: Computational complexity per CIR-related tap in terms of the number of complex multi-

plications, the C'rls top number of complex additions and the C^LS?ap number of "mixed" multi-
plications (real/complex) associated with the different components of the RLS-based adaptation 
of the vector of predictor coefficients. 

Note that for values of chrls that are significantly lower than those employed in Figure 3.17, the RLS 

predictor may potentially become unstable. Specifically in our experiments a value of Orls = 0.77 

was just acceptable, and yielded the highest speed of convergence while at the same time potentially 

the largest residual error after adaptation. 

Curves similar to those seen in Figure 3.17 can also be generated for the lower-complexity en-

semble averaging assisted adaptive DDCE, which was outlined in Section 3.5.1.2. Our simulation 

results, which are not explicitly portrayed here for reasons of space economy revealed that the MSB 

recorded after adaptation is potentially higher, than that of the RLS-assisted predictor, which adjusts 

the predictor coefficients on a CIR-related tap-by-tap basis. However, as it will be demonstrated in 

Section 3.5.1.4, an advantage of the ensemble averaging assisted adaptive DDCE is its potentially 

reduced complexity. 

3.5.1.4 Complexity Study 

In Table 3.7 we have summarized the implementational complexity associated with evaluating the 

Kalman gain vector k[n, /] according to Equation 3.169, that of updating the inverse auto-correlation 

matrix according to Equation 3.170 and that of updating the CIR-related tap predictor coefficient 

vector according to Equation 3.171. We observe that the complexity of this operation is proportional 

to the square of the ivjfp number of predictor coefficients. Note that the computational complexity 

could possibly be further reduced by exploiting that in the vector /] associated with the n-th 

OFDM symbol period the last — 1) elements are constituted by the first — 1) elements of 

^ a p t [ n - l , I], while the first element is constituted by the estimated tap of hapt[n, /]. For comparison 

we have summarized in Table 3.8 the computational complexity associated with updating the single 

vector of predictor coefficients based on the method outlined in Section 3.5.1.2, namely that of 

ensemble-averaging, rather than updating all the KQ number of coefficients individually. Note that 

in Table 3.8 we have listed the total complexity imposed by updating KQ number of CIR-related 

tap predictor coefficient vectors, while in Table 3.7 we have listed the complexity associated with 



(Zff/LPTfaR 3. ciFDjur 171 

R l l M f a p i Cpre [TT.] E 
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Table 3.8: Total computational complexity in terms of the number of complex multiplications, 

the Ĉ LS*̂ ^ number of complex additions and the number of "mixed" multiplications 
(real/complex) associated with the different components of the ensemble-averaging assisted 
RLS-based adaptation of the CIR-related taps' single vector of predictor coefficients. 

the processing of a specific CIR-related tap. We emphasize that the standard RLS approach of 

Section 3.5.1.1 always imposes a higher complexity, than the ensemble-averaging assisted approach 

of Section 3.5.1.2 in terms of both the number of complex additions and the number 

of mixed multiplications. 

By contrast, the number of complex multiplications depends on the parameters KQ and 

^fap^ which jointly determine, as to which of the above-mentioned two approaches exhibits a lower 

complexity. However, for a realistic choice of these parameters, for example for KQ > "i and 

N, [4 
tap {4,8,16}, the ensemble-averaging assisted approach of Section 3.5.1.2 is always of a 

lower complexity. Again, this complexity reduction is achieved at the cost of an MSB performance 

degradation. 

While in Section 3.5.1 the application of the RLS algorithm was discussed in the context of 

prediction-assisted DDCE for employment in single-user OFDM systems, in Section 3.5.1 we will 

portray its benefits in the context of the PIC-assisted DDCE for multi-user OFDM systems. 

3.5.2 RLS-Adaptive PIC-Assisted D D C E for Mult i -User O F D M 

After having reviewed the theory of RLS-adaptive CIR-related tap-by-tap prediction for single-user 

OFDM systems in Section 3.5.1.1 we will directly embark here on an assessment of RLS-adaptive 

prediction based PIC-assisted DDCE for multi-user OFDM, or more generally, for OFDM systems 

which support multiple transmit antennas. Here we will concentrate on the idealistic scenario of a 

sample-spaced CIR, while investigations which take into account the specific properties of the more 

realistic non sample-spaced channels remain a potential part of our future work. 

3.5.2.1 MSE Performance Assessment 

Throughout our investigations in this section we will focus again on our standard multi-user OFDM 

scenario of four simultaneous users, each equipped with one transmit antenna, while at the bases-

tation (BS) a four-element antenna array is employed. The channel between each transmit-receive 
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Figure 3.18: (Left:) BER versus SNR performance and (Right;) a priori channel estimation MSE versus 
SNR performance associated with the CIR-related tap-by-tap based RLS-adaptive PIC-assisted 
DDCE of Figure 3.3'® in the context of a scenario of four receiver antennas at the BS and 
four simultaneous users, each equipped with one transmit antenna; the channel between each 
transmitter-receiver antenna pair is characterized in terms of its sample-spaced impulse re-
sponse and OFDM parameters by the indoor WATM channel- and system parameters of Sec-
tion 6.1.1; the OFDM symbol normalized Doppler frequency was FD = 0.007; furthermore, 
the number of significant CIR-related taps was KQ = 12 and the number of subcarriers was 
K = 512; MMSE- as well as M-SIC (M=2) detection was employed at the receiver and both 
an ideal, error-free reference and an imperfect, error-contaminated reference was invoked in the 
DDCE; the RLS-specific forgetting factor was set to a = q;rls =0.95. 

antenna pair - characterized in terms of its sample-spaced impulse response - and the OFDM param-

eters are fixed to those used by the indoor WATM system of Section 6.1.1. Two detection techniques 

are invoked in our study, namely, the MMSE- and M-SIC detection techniques of Sections 4.2.3 and 

4.3.1. The corresponding BER- and a priori channel estimation M S E simulation results - after the 

initial adaptation'^ of the predictor coefficients - are portrayed at the left- and right-hand side of 

Figure 3.18, respectively. 

In the context of the BER performance assessment shown at the left-hand side of Figure 3.18 

we observe that with the aid of the imperfect channel estimates produced by the RLS-adaptive 

PIC-assisted DDCE almost the same performance is achieved as when employing ideal channel 

knowledge. This is particularly true for the powerful M-SIC detection algorithm, which produces 

relatively reliable symbol decisions and hence also a reliable remodulated reference for the RLS-

adaptive PIC-assisted DDCE. In contrast, a slight BER degradation is observed when using the less 

" T h e initial adaptat ion of the predictor coeff icients was observed e.g. in F i g u r e 3 .17 . Af t e r the adaptat ion the a priori 
channel es t imat ion M S E fluctuates around its specific m e a n value. 



powerful MMSE detection scheme particularly for the range of SNRs up to 5dB, while for higher 

SNRs the BER performance is also almost identical to that when using perfect channel estimates. 

The benefits of a more reliable remodulated reference used in the RLS-adaptive PIC-assisted 

DDCE become even more evident from the MSE performance results shown at the right-hand side 

of Figure 3.18. Here we observe a significant MSE reduction when employing the M-SIC assisted 

generation of the remodulated reference rather than that of the MMSE detector. In our specific 

example, which employs the sample-spaced three-path indoor WATM CIR, all of the channel's en-

ergy is concentrated in three CIR-related taps, namely those at zero, six and eleven sampling period 

delays, while at all other tap positions within the CIR window of the first KQ = 12 taps, the RLS-

based adaptive predictor succeeds in effectively reducing the noise without setting these taps by 

'brute force' to zero. Hence the maximum noise reduction factor is about 3/512. Note however 

again that in the more realistic scenario of a non-sample-spaced CIR in conjunction with employ-

ing the unitary DFT matrix W for transforming the least-squares channel transfer factor estimates 

from the frequency-domain to the CIR-related domain, the noise reduction is more moderate due 

to the effects of spectral leakage as it was discussed in Section 3.4.2.3. More explicitly, the energy 

conveyed by the channel is rather spread across the different CIR-related taps. 

Finally, let us comment on the specific choice of the forgetting factor ckrls = 0.95. As suggested 

during our investigations of RLS based adaptive prediction-assisted DDCE employed in single-user 

OFDM systems in Section 3.5.1.3, for small values of Orls, the predictor may become unstable, 

as a result of which an excessive estimation MSE is observed. Our experiments conducted in the 

context of the PIC-assisted DDCE of Figure 3.3 further underlined that the appropriate range of 

Orls values has to be re-optimized when invoking an imperfect, potentially error-contaminated ref-

erence. Again, relatively small values of Orls yield a fast convergence, but also a high sensitivity 

to erroneous symbol decisions, while for higher values of Orls the opposite is true. A choice of 

Q!rls = 0.95 was deemed reasonable in our application. However, for the robust RLS prediction 

approach outlined in Section 3.5.1.2, our results not included here for reasons of space economy 

suggested that the predictor's stability was less dependent on the specific choice of Qrls due to the 

ensemble averaging carried out across the different CIR-related taps. 

3.5.3 Conclusions 

A drawback of the PIC-assisted DDCE of Figure 3.3 discussed in Section 3.4 was the relatively 

cumbersome procedure of the off-line optimization of the predictor coefficients by means of the 

iterative approach discussed in Section 3.4.1,6. As a prerequisite for its application, assumptions 

had to be made about the channel's spaced-time spaced-frequency correlation function, potentially 

inflicting a performance loss. In order to avoid these problems - but at the complexity-related dis-

advantage of an on-line optimization during the reception of the OFDM symbols - it was proposed 
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in Section 3.5 to render the CIR-related tap predictors adaptive by means of the RLS algorithm. 

This was motivated by the observation in the context of the iterative off-line optimization proposed 

in Section 3.4.1.6, that although in each iteration the adaptation of the different predictors' coeffi-

cients is performed independently, the average channel estimation MSB associated with the different 

users' channels converges to its minimum. In order to argue further, each iteration of the off-line 

optimization has its analogy in the predictor coefficient adjustment conducted by the RLS algorithm 

after the reception of each OFDM symbol. 

Our more specific discussions commenced in Section 3.5.1 by considering a single-user scenario 

in Section 3.5.1.1. The philosophy of RLS-assisted CIR-related tap prediction was introduced, 

where the adaptation of the CIR-related tap predictor coefficients was carried out separately for 

each CIR-related tap. By contrast, in Section 3.5.1.2 a simplification was achieved in terms of 

the computational complexity by invoking ensemble averaging of the different CIR-related taps' 

auto-correlation matrices and cross-correlation vectors, according to Equations 3.173 and 3.174, 

respectively. However, the ensemble averaging prohibited the application of the Sherman-Morrison 

formula [87], which was invoked in the context of the standard RLS algorithm in an attempt to 

avoid an explicit solution of Equation 3.166 for the vector of optimum CIR-related tap predictor 

coefficients. Although the complexity of the direct solution of Equation 3.175 is proportional to the 

cube of the number of predictor coefficients, its application is in most cases significantly less com-

plex than that of the RLS-assisted CIR-related tap-by-tap adaptation procedure of Section 3.5.1.1. 

This argument was supported by our complexity analysis provided in Section 3.5.1.4. The com-

plexity reduction is achieved at the cost of an MSE performance degradation in conjunction with 

the ensemble-averaging assisted approach of Section 3.5.1.2, since the same vector of predictor 

coefficients is employed for the prediction of each of the different CIR-related taps, potentially ex-

hibiting different variances. Our rudimentary a priori estimation MSE performance assessment in 

Section 3.5.1.3 focussed on the influence of the RLS-specific forgetting factor ckrls and on that of 

the OFDM symbol normalized Doppler frequency FD • For lower values of qirls the speed of con-

vergence was faster, while at the same time the residual MSE after adaptation remained higher, than 

that recorded for higher values of ckrls-

By contrast to our discussions in Section 3.5.1, in Section 3.5.2 we concentrated on the perfor-

mance assessment of the RLS-adaptive FIC-assisted DDCE employed in the context of multi-user 

OFDM. From the BER- and MSE performance curves of Figure 3.18 presented in Section 3.5.2.1 

the system's convergence was confirmed. In the context of an imperfect, potentially error contam-

inated DDCE-related reference we found that the RLS-related forgetting factor auLs, for which a 

stable operation is maintained even in the presence of sporadic subcarrier symbol errors, was re-

quired to be closer to unity, which implies slower loss of memory. A value of = 0.95 was 

deemed acceptable for this application. Simulation results generated for the ensemble-averaging 

based RLS-adaptive PIC-assisted DDCE were not presented here for reasons of space economy, 
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but our experiments revealed that as a positive side-effect of the ensemble averaging the specific 

choice of the forgetting factor Orls was deemed less critical. Part of our future research will be 

the assessment of the RLS-adaptive PIC-assisted DDCE in the context of channels exhibiting non-

sample-spaced CIRs. 

3.6 Chapter Conclusions 

In Section 3 we have portrayed a range of decision-directed channel estimation (DDCE) approaches 

designed for multi-user OFDM scenarios, or more generally, for OFDM scenarios supporting mul-

tiple transmit antennas. While in Section 3.1 the motivation of the different channel estimation 

approaches was detailed, and in Section 3.2 the SDMA-MIMO channel scenario was outlined, our 

more specific discussions commenced in Section 3.3 with the portrayal of Li's least-squares error 

assisted estimator. Our detailed conclusions with respect to this approach were provided in Sec-

tion 3.3.6. In the context of our discussions in Section 3.3 we provided a more general mathematical 

description of the estimator proposed by Li et al. [21], while at the same time providing expressions 

for the a posteriori channel transfer function estimation MSE in the context of both sample-spaced-

as well as non-sample-spaced CIRs. Furthermore, the estimator's restriction in terms of supporting 

a maximum of L = ~ number of simultaneous users was highlighted, where K is the number of 

subcarriers and KQ is the number of significant CIR-related taps. Our discussions of the LS-assisted 

DDCE were concluded by a detailed complexity analysis, which motivated our quest for alterna-

tive channel transfer function estimation approaches. More specifically, the explicit solution for 

the vector of optimum CIR-related taps according to Equation 3.22 imposes a complexity, which 

is partially a cubical function of the product LKQ . Hence, depending on the specific choice of the 

L number of transmit antennas and the KQ number of significant CIR-related taps, the complexity 

might become excessive. 

In order to reduce this complexity it was proposed by Li [22] to perform a parallel cancellation of 

the interfering CIR contributions with the aim of avoiding a direct solution of the equation system 

seen in Equation 3.22. This was achieved on the basis of CIR-related a posteriori tap estimates 

generated during the previous OFDM symbol period by potentially invoking a linear CIR-related tap 

prediction filter. It was argued furthermore that from a mathematical point of view performing both 

the parallel interference cancellation and the CIR-related tap prediction in the CIR-related domain is 

equivalent to performing the PIC in the frequency-domain and the tap-prediction in the CIR-related 

domain, which was the topic of our in-depth discussions in Section 3.4. For detailed conclusions 

on this topic we refer to Section 3.4.4. As a result of our efforts in Section 3.4.1, expressions were 

derived for both the a priori- and a posteriori channel transfer function estimation MSE - taking into 

account the recursive nature of the estimator - and the conditions for its stability were presented. 

Furthermore, an iterative approach was proposed for the off-line optimization of the CIR-related tap 



CHAjPTTSit :3. 7wnj]LT?-i;sjEft(:wF%)jyf i76 

predictor coefficients. Our performance investigations in Section 3.4.2 were conducted with respect 

to both the estimator's MSB- and the system's BER performance, as a function of the various system 

parameters, namely that of the L number of simultaneous users, that of the KQ number of significant 

CIR-related taps, the K number of subcarriers, the number of predictor coefficients, and also 

that as a function of the OFDM symbol normalized Doppler frequency. Furthermore, the effects of 

non-sample-spaced CIRs were described. Our discussions were concluded by a complexity study 

in Section 3.4.3 by highlighting under which conditions it was more beneficial to perform the PIC 

in the frequency- or in the CIR-related domain, in order to minimize the associated complexity. It 

was found furthermore that the PIC-assisted DDCE's complexity is significantly lower, than that of 

the LS-assisted DDCE described in Section 3.3. 

A disadvantage associated with the iterative off-line optimization of the CIR-related tap predic-

tor coefficients is the requirement of having a priori knowledge concerning the channel's spaced-

time spaced-frequency correlation function. Since this is normally not available, we argued in 

Section 3.4.1.7 that a standard procedure is to assume a uniform, ideally support-limited channel 

scattering function and its associated spaced-time spaced-frequency correlation function - with the 

consequence of a concomitant performance loss in comparison to the perfect knowledge of these pa-

rameters. In order to alleviate this problem, a viable approach is to render the PIC-assisted DDCE's 

prediction filter adaptive, which can be achieved with the aid of the RLS algorithm. This was the 

topic of Section 3.5. Again, for our detailed conclusions we refer to Section 3.5.3. Our strategy 

in this section was first to demonstrate the applicability of the RLS algorithm to the problem of 

adjusting the CIR-related tap predictor's coefficients in a DDCE-assisted single-user OFDM sys-

tem, and then to demonstrate its applicability to the PIC-assisted D D C E of Figure 3.3 for multi-user 

OFDM. In order to further reduce the associated computational complexity of RLS-adaptive CIR-

related tap-by-tap prediction it was proposed to employ the same vector of predictor coefficients 

for the prediction of each of the different CIR-related taps and hence to base its calculation on the 

ensemble average of the different CIR-related taps' auto-correlation matrices and cross-correlation 

vectors. As a side-effect, we expect a slight performance degradation compared to the higher-

complexity case of CIR-related tap-by-tap prediction filtering having individual vectors of predictor 

coefficients. As our experiments showed, the choice of the RLS-specific forgetting factor Orls was 

also less critical, than for the standard RLS algorithm. Again, for more detailed conclusions on this 

topic we refer to Section 3.5.3. 
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Special Symbols - Decision-Directed Channel Estimation for Multi-User 

OFDM 

Special Symbols - Common 

Hp\n,k]\ Channel transfer factor associated with the channel encountered between the 

/-th user's transmit antenna and the p-th receiver antenna-element in the k-th 

subcarrier of the n-th OFDM symbol period. 

'H.p\n]'. Vector of channel transfer factors H^\n, k], & == 0 , . . . ,K -I associated with 

the channel encountered between the 2-th user 's transmit antenna and the p-th 

receiver antenna element; Hp\n] G 

pJ Diagonal masking-matrix used for retaining the significant CIR-related taps: 
yW _ %(:) T(«)^ c mA-xA-

p! Matrix invoked for mapping the KQ significant CIR-related taps' estimates con-

tained in the vector to their 'true' integer positions within the K-tap 

FPT window: ^ e 

KQ\ Number of significant CIR-related taps. 

L\ Number of simultaneous SDMA users, each equipped with a single transmit 

antenna. 

np[n, k]: AWGN signal contribution of variance associated with the p-th receiver an-

tenna element. 

np[n\. Vector of AWGN signal contributions np[n,k], k — Q,... ,K — I, associated 

with the p-th receiver antenna element in each of the K subcarriers; np[n] E 

P : Number of BS receiver antenna elements. 

s(') [n, k]: Symbol transmitted by the /-th user. 

S(') [n]\ Diagonal matrix of the 2-th user's transmitted subcarrier symbols g(') [n, k], k = 

0 , . . . , K - 1 : 

SW[n]: Diagonal matrix of the z-th user's sliced subcarrier symbols A], k = 

0 , . . . 

WK- Complex Fourier kernel: WK = e 
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W : DFT matrix hosting the complex exponentials W | [ j j ] = W G . 

Xp[n, k]: Signal received by the p-th receiver antenna element. 

Xp[n]: Vector of signals Xp[n,k], k = 0,... ,K — 1 associated with the p-th receiver 

antenna element in the K subcarriers: Xp[n] e 

Variance of the Z-th user's transmitted symbols. 

{)[n,k]: Index employed for indicating that the signal in round brackets is associated 

with the A;-th subcarrier of the n-th OFDM symbol period. 

Sub-matrix associated with the ?-th 'row' and j-th 'column' of the block matrix 

in brackets. 

0 Element associated with the z-tb row and j/'-th column of the matrix in brackets. 



(TfLAJPTlEJR 3. JWnUUTT-USjSR CtFDjWr ]r79 

Special Symbols - LS-Assisted DDCE 

Ap[n]: Short-hand: Ap[n] = S^[n]Wj ,p 6 

([;(C{*,+}C) Normalized computational complexity quantified in terms of the number of 

complex multiplications or additions^®. 

^C{,,+}C), . 
•̂ u-cE,Ls I norm- Normalized total computational complexity quantified in terms of the number 

of complex multiplications or additions, associated with the LS-assisted DDCE 

designed for multi-user OFDM^'. 

ciu-c*E,RcS I norm: Normalized total computational complexity in terms of the number of complex 

multiplications or additions, associated with the PIC-based LS-assisted DDCE 

designed for multi-user OFDM^^. 

Vector of KQ significant CIR-related tap estimates associated with the channel 

encountered between the i-th user's transmit antenna and the p-th receiver an-

ternia element: G 

hi^-OipN- Block-vector hosting the L different users' vectors [n], i = 1 , . . . ,L of 

KQ significant CIR-related tap estimates, associated with the p-th. receiver an-

tenna element: E 

^apt,Ko,p[n]'- Block-vector hosting the L different users' vectors of least-squares error opti-

mized significant CIR-related tap estimates, associated with the p-th receiver 

antenna element: E 

Hp ^ [n]: Vector of channel transfer factor estimates associated with the channel encoun-

tered between the i-th user's transmit antenna and the p-th receiver antenna el-

ement, based on the vector [n] of significant CIR-related tap estimates: 

# ) [ » ] = 

Hp[n]: Block-vector hosting the L different users' vectors Hp^[n], i = 1 , . . . ,L of 

channel transfer factors, associated with the p-th receiver antenna element, which 

is given by: Hp[n] = . . . , 6 . 

Hp[n]: Block-vector hosting the L different users' vectors Hp^[n], i = 1 , . . . ,L of 

channel transfer factor estimates, associated with the p-th receiver antenna ele-

ment: E 

^°The normalization was carried out with respect to the number of subcarriers K, number of users L and number of 
receiver antenna elements P. 

^'See Footnote 20. 

^ S e e Footnote 20. 
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Hapt,p[n]: Block-vector of the L different users' vectors i = 1,... ,L of least-

squares error optimized channel transfer factor estimates, associated with the 

p-th receiver antenna element: '£lapt,p[n] E 

1A'. Unity matrix; 1A € 

Ifil Unity matrix: I g € 

Icyi^: Matrix which performs the cyclic rotation of a matrix' rows, when multiplied 

from the left- or rotation of the matrix' columns, when multiplied from the right; 

Short-hand: = [jiT — jiro(2 - j)] mod jiT. 

KB'- Short-hand; KB = [K — KO{J — i)] mod K. 

KQ-. Short-hand; KQ = |_^J. 

MSE^pj p[n]: Subcarrier-averaged channel transfer factor estimation MSE associated with the 

channel encountered between the i-th user's single transmit antenna and the p-th 

receiver antenna element. 

MSEapt^p[n]: Subcarrier- and user-averaged estimation MSE associated with the channels en-

countered between the L users' single transmit antennas and the p-th receiver 

antenna element. 

Pp[n]: LS-related 'cross-correlation' vector; Pp[n] = A^[n ]x [n ] 6 

Pp[n]: LS-related projection matrix- or Moore-Penrose pseudo inverse of the matrix 

ApW: PpW G 

Qp[n]; LS-related 'auto-correlation' matrix; Qp[n] = A^[n]Ap[n] G 

Short-hand: = W^sM*[n]S(;)[n]W. 

Spaced-frequency correlation matrix associated with the channel encountered 

between the z-th user's transmit antenna and the p-th receiver antenna element; 

\f] 

Rp : Block-diagonal auto-correlation matrix hosting the L spaced-frequency corre-

lation matrices = 1 , . . . , L associated with the channels encountered 

between the L users' single transmit antennas and the p-ih. receiver antenna ele-

ment: e 
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R: [/]. •a,p-

R [/] • a , A W G N , p -

R [/] '0;Channel,p' 

R [ / ] . c,p-

R 

shik 

Shik 

zW[n,t]: 

T (i) W.A'o.p-

W w . 
J,p-

Wj,p: 

Auto-correlation matrix of the multi-user vector Hapi p[n] hosting K subcarrier 

channel transfer factor estimates per user; = i?{Hapt,p['^]H^j p[n]} = 
•of/] 1 -p [/] (z (pLKxLK 
-̂ â Channel.p "I" -̂ â AWGN.p ̂  ^ 

AWGN-related component of the auto-correlation matrix rL{],: rL{1wgn,p 6 

Channel-related component of the auto-correlation matrix R^j,: R^Lanad,p G 
(^LKxLK 

Cross-correlation matrix between the L-user vector Hp[n] of the K subcarriers' 

'trae' channel transfer factors and the L-user vector 'Hapt,p[n] of the K subcar-

riers' transfer factor estimates: R^fj, = E{Hp[n]H^j_p[n]} G . 

Auto-correlation matrix of the vector /Siiapt,p[n] of channel transfer factor esti-

mationerrors: = R y ] - 2 % { R i ^ } . l -
p [ / ] g 

Block-matrix hosting the L different users' diagonal matrices SW [n], i = 1 , . . . ,L 

of transmitted subcarrier symbols: S[n] = (S(^)^[n] , . . . , E . 

Block-matrix hosting the L different users' diagonal matrices SW[n], % = ,L 

of sliced subcarrier symbols: S[n] 6 . 

&-th element of the optimum training subcarrier symbol sequence associated 

with the 2-th user as proposed by Li [22]: [n, k] = aitp[n, 

k-th element of an arbitrary training subcarrier symbol sequence tp[n,k], k = 

0 , . . . ,K — 1 having unit-variance elements. 

Short-hand: T (0 

Combined DFT- and mapping matrix for transforming the vector [n] of ifo 

significant CIR-related tap estimates to the vector Hp ^ [n] of K channel transfer 

factor estimates: W (0 
j,p W J E . 

Block-diagonal matrix of the L different users' combined DFT- and mapping 

matrices W 
(') 
J,pi 1,... ,K associated with the p-th receiver antenna element: 

, W%)) E _ 

Vector of estimated signals Xp[n,k], k = 0,... ,K — 1 associated with the p-th 

receiver antenna element in each of the K subcarriers: Xp[n] G 



: Decomposition of the spaced-frequency correlation matrix associated 

with the channel between the i-th user's transmit antenna and the p-th receiver 

antenna element, with respect to the DFT matrix W : G 

xAT 

Short-hand: a W « = , € C ' - x^'o. 

AHapt^p[m]: Vector of channel transfer factor estimation errors associated with the K sub-

carriers of each of the L users, with respect to the p-th receiver antenna element: 

AHap(,pW = HpW - e 

Ax[n]: Vector of estimation errors between the received vector x[n]- and the synthe-

sized vector x[ri] of subcarrier signals: Ax[n] = x[n] — x[n] G 
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Special Symbols - Decision-Directed Channel Estimation for Multi-User OFDM 

PIC-assisted DDCE 

:(') r̂ i 
Cpre,p [?tj 

. w . 

x ( j ) I . 
^pre,p\opt-

-'pre-

M^U-CE,PIC I norm-

- , C { * , + } C . 
-TILS 

fpC{*,+}C. 
H l L S , t a p • 

F: 

F; 

G(F): 

Predictor coefficient employed in the context of the CIR prediction process as-

sociated with the channel encountered between the i-th user's transmit antenna 

and the p-th receiver antenna element. Note that the n-th predictor coefficient, 

where n G {0 , . . . , — 1}, is associated with the OFDM symbol having an 

offset of — n relative to the current OFDM symbol. 

Vector of predictor coefficients employed in the context of the CIR prediction 

process associated with the channel encountered between the i-th user's transmit 

antenna and the p-th receiver antenna element; c 'Ml XI 
•pre,p e 

Vector of optimum predictor coefficients, based on the knowledge of the re-

maining users' average a priori estimation MSEs, namely on MSE, 

I , 
^pre,p\opt 

1 , . . . , i), % ^ G 

ii) 

Diagonal matrix of the L different users' CIR-related tap prediction coefficient 

terms of j = 1 , . . . , Cpre E 

Normalized total computational complexity expressed in terms of the number of 

complex multiplications or additions, associated with the PIC-assisted DDCE 

designed for multi-user OFDM^^. 

Computational complexity of the CIR-related ensemble-averaging assisted RLS-

based tap predictor, expressed in terms of the number of complex multiplications 

and additions, inflicted per channel and OFDM symbol. 

Computational complexity of the CIR-related RLS-based tap predictor, expressed 

in terms of the number of complex multiplications and additions, inflicted per 

CIR-related tap and OFDM symbol. 

Feedback matrix characterizing the PIC process. While the main-diagonal ele-

ments are zero, the side-diagonal elements are unity: F G 

Short-hand: F = Cpre - ^ - F - Pg G 

Union of Gershgorin disks of F. With the aid of the Gershgorin circle theorem 

explicit bounds can be imposed on the regions in C, which host the eigenvalues 

of the matrix F [87]. 

^ S e e F o o t n o t e 20 . 
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âpr,p W: \/ector of ± e 7(7 CIR-related taps' a pr ion estimates ^], / = 0 , . . . , jiT 

1: h 
(i) 
aprj) 

h2(,pW 

H & . p W 

MSEg,,pW: 

MSE(^),W: 

M S E apr^p. 

MSEj^ec.i 

N, W . 
tap-

P . : 

Vector of the K CIR-related taps' a posteriori estimates, namely I], I = 

0 , . . . ,K - 1, which is given by: ^[n] G . 

Vector of the K different subcarriers' a posteriori^'^ channel transfer factor esti-

mates A], A; = 0 , . . . , K - 1: Hipr,p[n] E . 

Vector of the K different subcarriers' a priori channel transfer factor estimates 

H. (') ,[ri, A:], A: = 0 , . . . , ji: - 1: H%,pW E . 

Kalman gain vector associated with the RLS-assisted prediction of the Z-th CIR-

related tap: kp^[n,/] E 

Subcarrier-averaged a priori channel transfer factor estimation MSE, which is 
lU) expressed as: = ; ^Trace (R^^^^ [n]). 

Subcarrier-averaged a posteriori channel transfer factor estimation MSE, which 

is expressed as: MSE^_p[n] = ;^Trace(R [n]) 
op(,p 

Subcarrier-averaged channel-decorrelation related MSE, which is expressed as: 
j(j) 

MSE^^,pW - ;^Trace(R 0) ). 
dec,p 

Vector of average a priori channel transfer factor estimation MSEs, namely 

MSE^p^p[n], j = 1 , . . . ,L\ MSEapr,pN E 

Vector of average channel decoiTelation related MSEs, namely MSE^g p[n], j = 

1 , . . . ,L: MSErfecpW E 

Number of filter taps associated with the CIR-related tap estimator- or predictor. 

Diagonal-matrix hosting the different users' signal variances a f , 1 = 1,... ,L: 

P , 

Amplitude quotient associated with the exponential multipath intensity profile 

r, (t)- r = '^h.expoC^m) 
rA,«po(0) 

Spaced-time cross-correlation vector, whose elements are given by r 

4-1, - n, A]}: E 

MU)|, 

^^Note that the a posteriori channel transfer factor estimates for the n-th O F D M symbol were generated during the 

(n — l)- th OFDM symbol period by linear filtering. 
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r^apt})[^, /]: l-th CIR-related tap's RLS-related spaced-time sample-cross-correlation vector 

associated with the n-th OFDM symbol period; /] € 

Spaced-frequency correlation matrix: = i?{Hp^[n]Hp^^[n]} G . 

The Eigenvalue Decomposition (EVD) of the matrix is given by: = 

u | / ] (i) yY W (') U W 

Spaced-frequency correlation matrix invoked in the design of the predictor: 

6 . The Eigenvalue Decomposition (EVD) of the matrix 

is given by: 

^apt,p- Spaced-frequency correlation matrix associated with the a posteriori transfer 

factor estimates of ± e channel: ^ E 

The Eigenvalue Decomposition (EVD) of the matrix R^^j^ is given by: = 
T T [ / ] ( ^ ) A [ / ] ( ' ) T T [ / ] ( 0 - ^ 

apt,p^^apt,p ^apt,p • 

Rp : Spaced-time correlation matrix, whose elements are given by RM('))| 

- Ml, - Mg, A:]}: E 

/]: Z-th CIR-related tap's RLS-related spaced-time sample-correlation matrix asso-

ciated with the n-th OFDM symbol period: I] E 

R (i) : Channel transfer function decorrelation related matrix: R„( j ) E . 
dec,p dec,p 

R 6U) W- Auto-correlation matrix of the vector A H i t r »W of a priori channel transfer 
ZAfiopr,p ' 

factor estimation errors; R . W = - B { A H ^ [ n ] [ n ] } E . 

R ^ ( j ) [n]: Auto-correlation matrix of the vector A H ^ ^ [n] of a posteriori channel trans-

fer factor estimation errors: R^^jjO) [n] = ^ { A H ^ ^[n] A H ^ ^ [ n ] } E . 

T « Short-hand: T « „ = e C " ^ " . 

Unitary KLT matrix associated with the EVD of the spaced-frequency correla-

tion matrix E . 

: Unitary KLT matrix associated with the EVD of the a posteriori channel transfer 

factor estimates' spaced-frequency correlation matrix E . 

Up : Unitary KLT matrix associated with the EVD of the spaced-frequency correla-

tion matrix invoked in the design of the predictor: E . 

Oexpo- Decay factor associated with the exponentially decaying multipath intensity pro-

Gler,i__(T). 
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a f . 

Q!rLS' 

Pexpo • 

EpLs.o: 

,[/](«). 

apt,p,Z' 

Modulation-noise enhancement factor a,- 1 

v: 

O": 

'Tint • 

'Tfrac-

%: 

'J --
j-th user's transmitted subcarrier symbols. 

} associated with the 

Forgetting factor employed in the context of RLS-assisted CIR-related tap pre-

diction filtering: qjrls 6 K. 

Amplitude scaling factor associated with the exponentially decaying multipath 

intensity profile 

Startup-constant employed in the context of RLS-assisted CIR-related tap pre-

diction filtering: Erlŝ q € M. 

Z-th eigenvalue associated with the EVD of the spaced-frequency correlation 

matrix 

l-th eigenvalue associated with the EVD of the a posteriori channel transfer fac-

^apt,p' tor estimates' spaced-frequency correlation matrix which is expressed 

^apt,p,l apt,p ^^apt,p^apt,p)[l,l]-as; A [ / ] ( : 

Short-hand employed in the context of calculating the single coefficient of a 

CIR-related one-tap predictor. 

Spectral radius of the matrix F. The spectral radius is the smallest radius of a 

circle centered around the origin of C that contains all the matrix' eigenvalues 

[87]. 

Estimated variance associated with the /-th CIR-related a posteriori tap estimate 

based upon the current and the Ntap — 1 number of previous CIR-related a 

posteriori tap estimates. 

Integer part of the delay r normalized to the sampling period duration Tg, where 

we have: = |_^J. 

Fractional part of the delay T normalized to the sampling period duration Tg'. 

'Tfrac ~ ~ Tint-

l-th diagonal element associated with the decomposition of the spaced-frequency 

correlation matrix with respect to the channel predictor's unitary trans-

form matrix where we have: 

Short-hand: % = 
K 

a. 

Diagonal matrix of eigenvalues I = 0 , K — 1 associated with the 

EVD of the spaced-frequency correlation matrix E . 
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A MM. 
apt,p • 

A. [/]W. 

M('). T 

AHigr,pW 

v^)-. 

Op^: 

0 I SIMPLE. 

O F I R -

Ospar -

Diagonal matrix of eigenvalues / = 0 , . . . , i r - 1 associated with the 

EVD of the a posteriori channel transfer factor estimates' spaced-frequency cor-

relation matrix ^ 

Diagonal matrix of eigenvalues ^ I = 0 , . . . ,K — 1 associated with the 

EVD of the spaced-frequency correlation matrix r ] 

of the channel predictor, where we have: E 

[/](:) iT .p invoked in the design 

Decomposition of the spaced-frequency correlation matrix with respect 

to the channel predictor's unitary transform matrix which is given by: 

T [/]! U, xA' 

Vector of the K different subcarriers' a priori channel transfer factor estimation 

errors: AH^^r,? = Hn ^ [ml H apr,p 

Vector of the K different subcarriers' a posteriori channel transfer factor esti-

mation errors: A H ^ l [n, A] = [n] - 6 

Nabla operator with respect to the vector of predictor coefficients Cp)e,p, which 

is expressed as: . 
d^pre,p 

Notation used for indicating that the variable in round brackets is associated 

with the channel encountered between the j - th user's single transmit antenna 

and the p-th receiver antenna element. 

Notation used for indicating that the variable in round brackets, which could 

either be the vector of optimum predictor coefficients, or the associated estima-

tion MSB is employed in the context of the simplified scenario of different users 

having identical transmit powers, as well as identical modulation-mode noise 

enhancement factors and identical channel statistics. 

Notation used in conjunction with the vector of optimum predictor coefficients 

in order to indicate that the (L — 1) number of interfering users' MSE contribu-

tions were neglected in the coefficients' calculation. 

Notation used for indicating a sparse multipath intensity profile a 

spaced-frequency correlation function rH,spar(A/), a spaced-frequency correla-

tion matrix r W and a decomposition of the spaced-frequency correlation 

matrix with respect to the DFT matrix W . 
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Ounif: Notation used for specifying a uniform multipath intensity profile r^.^ifCr), a 

spaced-frequency correlation function rij,„„if(A/), a spaced-frequency correla-

tion matrix and a decomposition of the spaced-frequency correlation 

matrix with respect to the DFT matrix W . 

Oexpoi Notation used for a negative exponentially decaying multipath intensity pro-

file r/i_expo(7'), a spaced-frequency correlation function rg_aqx,(A/), a spaced-

frequency correlation matrix and a decomposition of the spaced-

frequency correlation matrix with respect to the DFT matrix W . 



Uplink Detection Techniques for 

Multi-User SDMA-OFDM 

4.1 Introduction 

Space-Division-Multiple-Access (SDMA) communication systems have recently drawn wide inter-

ests. In these systems the L different users' transmitted signals are separated at the base-station (BS) 

with the aid of their unique, user-specific spatial signature, which is constituted by the P-element 

vector of channel transfer factors between the users' single transmit antenna and the P different 

receiver antenna elements at the BS, upon assuming flat-fading channel conditions such as in each 

of the OFDM subcarriers. This will be further detailed during our portrayal of the SDMA-MIMO 

channel model in Section 4.1.3. 

A whole host of multi-user detection (MUD) techniques known from Code-Division-Multiple-

Access (CDMA) communications lend themselves also to an application in the context of SDMA-

OFDM on a per-subcarrier basis. Some of these techniques are the Least-Squares (LS) [114, 118, 

119,140], Minimum Mean-Square Error (MMSE) [114,123,124, 125,53,126,127,128,117,118, 

129], Successive Interference Cancellation (SIC) [114, 115, 116, 53, 117, 118, 119,120,121,122], 

Parallel Interference Cancellation (PIC) [114, 139] and Maximum Likelihood (ML) detection [114, 

53, 117, 131, 132, 133, 134, 135, 136, 138]. A comprehensive overview of recent publications on 

MUD techniques for MIMO systems is given in Tables 4.1 and 4.2. 

The further structure of our introduction is as follows. In Section 4.1.1 a detailed classification 

of the different MUD techniques is provided. By contrast, a more simple classification is employed 

in Section 4.1.2, which reflects the structure of this chapter. Before we embark on the discussion of 

linear MUD techniques in Section 4.2, the SDMA-MIMO channel model, to be used in our further 

discussions will be introduced in Section 4.1.3 

189 
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Year Author Contribution 

'96 Foschini [115] The concept of the BLAST architecture was introduced. 

'98 Vook and Baum 

[126] 
SMI-assisted MMSE combining was invoked on an OFDM 
subcarrier basis. 

Wang and Poor 

[124] 
Robust sub-space based weight vector calculation and tracking 

was employed for co-channel interference suppression, as an 

improvement of the SMI-algorithm. 

Wong, Cheng, 

Letaief and Murch 

[127] 

Optimization of an OFDM system was reported in the con-
text of multiple transmit- and receive antennas upon invoking 
the maximum SINR criterion. T h e computational complex-
ity was reduced by exploiting the channel's correlation in the 
frequency-direction. 

Li and Sollen-

berger [128] 

Tracking of the channel correlation matrix' entries was sug-

gested in the context of SMI-assisted MMSE combining for 

multiple receiver antenna assisted OFDM, by capitalizing on 

the principles of [17]. 

'99 Golden, Foschini, 

Valenzuela and 

Wolniansky [116] 

The SIC detection assisted V-BLAST algorithm was intro-

duced. 

Li and Sollen-

berger [125] 
The system introduced in [128] was further detailed. 

Vandenameele, 

Van Der PeiTe, En-

gels and H. D. Man 

[130] 

A comparative study of different S D M A detection techniques, 

namely that of MMSE, SIC and M L detection was provided. 

Further improvements of SIC detection were suggested by 

adaptively tracking multiple symbol decisions at each detec-

tion node. 

Speth and Senst 

[131] 
Soft-bit generation techniques were proposed for MLSE in the 

context of a coded SDMA-OFDM system. 

'00 Sweatman, 

Thompson, Mul-

grew and Grant 

[118] 

Comparisons of various detection algorithms including LS, 

MMSE, D-BLAST and V-BLAST (SIC detection) were car-
ried out. 

van Nee, van Zelst 

and Awater [132, 

133,134] 

The evaluation of ML detection in the context of a Space-

Division Multiplexing (SDM) system was provided, consid-

ering various simplified ML detection techniques. 

Vandenameele, 

Van Der Perre, 

Engels, Gyselinckx 

and De Man [53] 

More detailed discussions were provided on the topics of 

[130]. 

Table 4.1: Contributions on detection techniques for MIMO systems and more specifically multiple transmit 
antenna assisted OFDM systems. 
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Year Author Contribution 

'00 Li, Huang, Lozano 
and Foschini [135] 

Reduced complexity ML detection was proposed for multiple 
transmit antenna systems employing adaptive antenna group-
ing and multi-step reduced-complexity detection. 

'01 Degen, Walke, 

Lecomte and 

Rembold [119] 

An overview of various adaptive MIMO techniques was pro-

vided. Specifically, pre-distoition was employed at the trans-

mitter, as well as LS- or BLAST detection were used at the re-

ceiver or balanced equalization was invoked at both the trans-

mitter and receiver. 

Zhu and Murch 

[136] 
A tight upper bound on the SER performance of ML detection 
was derived. 

Li, Letaief, Cheng 

and Cao [129] 
Joint adaptive power control and detection was investigated 
in the context of an OFDM/SDMA system, based on the ap-
proach of Farrokhi e? a/. [137]. 

van Zelst, van Nee 

and Awater [138] 

Iterative decoding was proposed for the BLAST system fol-

lowing the turbo principle. 

Benjebbour, Mu-

rata and Yoshida 

[120] 

The performance of V-BLAST or SIC detection was studied 

in the context of a backward iterative cancellation scheme em-

ployed after the conventional forward cancellation stage. 

Sellathurai and 

Hay kin [139] 
A simplified D-BLAST was proposed, which used iterative 
PIC capitalizing on the extrinsic soft-bit information provided 
by the FEC scheme employed. 

Bhargave, 

Figueiredo and 

Eltoft [121] 

A detection algorithm was suggested, which followed the con-

cepts of V-BLAST or SIC. However, multiple symbols states 

are tracked from each detection stage, where - in contrast to 

[53] - an intermediate decision is made at intermediate detec-

tion stages. 

Thoen, Deneire, 

Van Der Perre and 

Engels [140] 

A constrained LS detector was proposed for OFDM/SDMA, 

which was based on exploiting the constant modulus property 

of PSK signals. 

'02 Li and Luc [122] The block error probability of optimally ordered V-BLAST 
was studied. Furthermore, the block error probability was also 
investigated for the case of tracking multiple parallel symbol 
decisions from the first detection stage, following an approach 
similar to that of [53]. 

Table 4.2: Contributions on detection techniques for MIMO systems and for multiple transmit antenna as-
sisted OFDM systems. 
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Multi-User Detection 

Optimum 
(M^-dim. classifier) 

Sub-Optimum 
(Mc-dim. classifiers) 

Sequential Embedded 
(combining/classification) (combining/classification) 

ML LS 
MMSE 

C 
PIC 

Figure 4.1: Classification of the various MUD techniques discussed in Chapter 4. 

4.1.1 Classification of Multi-User Detection Techniques 

The above techniques have been classified in Figure 4.1. Among the different techniques, the ML 

detection principle shown at the left-hand side of Figure 4.1 is known to exhibit the optimum per-

formance, but also imposes the highest complexity. This is, because in ML detection the number of 

trial symbol combinations, which are constituted by all possible combinations of the L different 

users' transmitted symbols belonging to an M^-ary constellation, has to be evaluated in terms of the 

Euclidean distance between the vector of signals actually received by the P different antenna ele-

ments and the vector of trial signals, which are generated from all legitimate transmitted symbols, 

impaired according to the estimated channel. 

In order to avoid the potentially excessive complexity of the optimum ML detection, a range of 

sub-optimum detection techniques have been devised, which are summarized at the right-hand side 

of Figure 4.1. The philosophy of the suboptimum detectors is to reduce the dimensionality of the 

classification problem associated with selecting the specific constellation point, which is most likely 

to have been transmitted by each user. 

Specifically, in the context of the LS- and MMSE detection techniques to be detailed in Sec-

tions 4.2.2 and 4.2.3, first linear estimates of the different users' transmitted signals are provided 

with the aid of the weighted combining of the signals received by the different antenna elements at 

the BS. This is followed by separately demodulating each of the L different users' combiner output 

signals. Hence, the original -dimensional classification problem associated with the optimum 

ML detection has been reduced to L number of individual classification steps, each having a di-

mensionality of Mc- This is achieved at the cost of a BER degradation, which is associated with 

ignoring the residual interference contaminating the linear combiner's output signals. 
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Multi-User Detection 

Linear Non-Linear 

LS 
MMSE PIC 

ML 

Figure 4.2; Classification of the various M U D techniques 

We note again that in the context of LS- and MMSE detection the linear combining and classifi-

cation steps are invoked in a sequential manner. However, a significant BER performance improve-

ment can be achieved by embedding the classification process, which is a non-linear operation, into 

the linear combining process. Two of the most prominent representatives of this family of tech-

niques are the SIC- and the PIC based detectors, which will be the topic of Sections 4.3.1 and 4.3.2, 

respectively. 

4.1.2 Outline of Chapter 4 

A possible classification of the various MUD techniques to be discussed in this chapter was pre-

sented in Figure 4.1. However, an alternative classification, which will serve as a guideline for our 

forthcoming discussions is portrayed in Figure 4.2. Here we have introduced the classes of linear-

and non-linear detection techniques. The rationale of this classification is that in the context of 

linear detection techniques, such as LS- and MMSE detection, n o a priori knowledge of the re-

maining users' transmitted symbols is required for the detection of a specific user. However, in the 

case of SIC, PIC and ML detection, a priori knowledge is involved, which must be provided by the 

non-linear classification operation involved in the demodulation process. 

As shown in Figure 4.2, the further structure of this chapter 4 is as follows. In Section 4.2 the 

most salient linear detection techniques, namely LS- and MMSE detection will be discussed. These 

discussions include their MSE- and BER performance analysis in the context of both uncoded and 

turbo-coded scenarios, as well as the analysis of the computational complexity. 

In Section 4.3 we will then embark on a detailed analysis of the family of non-linear detection 

techniques, namely that of SIC, PIC and ML detection, again, wi th respect to their BER perfor-

mance in both uncoded and turbo-coded scenarios. Furthermore, a complexity analysis will be 

carried out. Specifically, in the context of our analysis of SIC detection and its derivatives, namely 

of M-SIC and partial M-SIC we will focus our efforts on the effects of error propagation across the 
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Channel 

User 1 

I User 2 > 
\ u - 2 

User L 

Figure 4.3: Schematic of an SDMA uplink MIMO channel scenario, where each of the L users is equipped 
with a single transmit antenna and the receiver is assisted by a P-element antenna front-end. 

different detection stages. These investigations motivated the introduction of a weighted soft-bit 

metric to be employed in the context of turbo-decoding. Furthermore, in the context of PIC detec-

tion we proposed to embed turbo-decoding into the detection process, with the aim of increasing 

the reliability of the a priori symbol estimates employed in the P IC process. A final comparison 

between the different linear- and non-linear detection techniques in terms of their BER performance 

and computational complexity will be conducted at the end of Section 4.3. 

In an effort to further enhance the performance of the different detection techniques without re-

ducing their effective throughput, as in the case of turbo-coding, the applicability of adaptive modu-

lation and Walsh-Hadamard Transform (WHT) based spreading will be investigated in Section 4.4. 

Our final conclusions for this chapter will then be offered in Section 4.5. 

However, before we embark on the investigation of linear detection techniques in Section 4.2, the 

SDMA-MIMO channel model will be introduced in the next section. 

4.1.3 SDMA-MIMO Channel Model 

In Figure 4.3 we have portrayed a Space-Division-Multiple-Access (SDMA) uplink transmission 

scenario, where each of the L simultaneous users is equipped with a single transmission antenna, 

while the receiver capitalizes on a P-element antenna front-end. The vector of complex signals, 

x[n, A;], received by the P-element antenna array in the &-th subcarrier of the n-th OFDM symbol 

is constituted by the superposition of the independently faded signals associated with the L users 

sharing the same space-frequency resource. The received signal was corrupted by the Gaussian 

noise at the array elements. The indices [n, k] have been omitted for notational convenience during 
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our forthcoming discourse, yielding: 

X = H s + n, (4.1) 

where the vector x E of received signals, the vector s 6 of transmitted signals and the 

array noise vector n E respectively, are given by: 

X = (a;i ,Z2, . . . ,a;p)^, (4.2) 

s == (a(i), a(2),. . . , (4.3) 

n = ( n i , n 2 , . . . , n f ) ^ . (4.4) 

The frequency domain channel transfer factor matrix H E is constituted by the set of channel 

transfer factor vectors G 1 = 1,... , L of the i users: 

H = (4.5) 

each of which hosts the frequency domain channel transfer factors between the single transmitter 

antenna associated with a particular user I and the reception antenna elements p = 1,... ,P: 

(4.6) 

with I E ,L}. Regarding the statistical properties of the components associated with the 

vectors involved in Equation 4.1, we assume that the complex data signal transmitted by the l-th 

user has zero-mean and a variance of a f . The AWGN noise process rip at any antenna array element 

p exhibits also zero-mean and a variance of cr^. The frequency domain channel transfer factors Hf"' p 

of the different array elements p E { 1 , . . . , P } or users / E { 1 , . . . , L } are independent, stationary, 

complex Gaussian distributed processes with zero-mean and unit variance. 

4.2 Linear Detection Techniques 

The first class of detectors portrayed in this chapter belong to the family of the so-called linear 

detectors. Their employment is motivated by the observation that in the context of the optimum 

ML detector to be discussed in Section 4.3.3 a potentially excessive number of trial symbol 

combinations has to be tested in terms of their associated trial signals' Euclidean distance measured 

from the vector of signals received by the different antenna elements. Recall that L represents the 

number of simultaneously transmitting users and Mc represents the number of legitimate transmitted 

symbols. Depending on the L number of simultaneous users supported and the Mc number of 

constellation points, a practical implementation of the ML detector may become unrealistic, as 

we will show during our complexity comparison in Section 4.3.4.2. A more practical approach 

is hence to generate estimates of the different users' transmitted signals with the aid of a linear 
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L-dim. Mc-dim. 

Classifier 

Classifier 

Linear 
Combiner 

Figure 4.4: Illustration of the main signal paths associated with a linear detector such as LS or MMSE. The 
signals Xp,p = 1 , . . . , P received by the different antenna elements are fed into the linear com-
biner, whose associated output vector s of linear signal estimates with elements ,l = 1,... ,L 
is defined by Equation 4.7, and the LS- or MMSE-specific weight matrices are given by Equa-
tions 4.39 or 4.64 in its right-inverse related form and 4.68 in its left-inverse related form. The 
Z-th user's signal, where / = 1 , . . . , i , is then conveyed to a separate classifier or demodulator, 
at the output of which the amplified constellation point most likely transmitted by the Z-th 
user becomes available. The demodulator is described by Equation 4.94. Note that here we have 
omitted the signal paths associated with the channel transfer factor estimates required by the 
linear combiner. 

combiner. These signal estimates would then be demodulated separately for each of the L users 

upon neglecting the residual interference caused by the remaining users in a specific user's combiner 

output signal. Hence the dimensionality of the receiver's classification task during demodulation is 

reduced from evaluating the multi-user Euclidean distance metric times to the evaluation of 

the single-user Euclidean distance metric L times for all the Mc symbols. This reduces the total 

complexity to evaluating the Euclidean metric LM^ times. A simplified block diagram of the linear 

detector is also shown in Figure 4.4. 

Our discussions commence in Section 4.2.1 with the characterization of the linear combiner's 

output signal and its components. By contrast, in Sections 4.2.2 and 4.2.3 we will focus our atten-

tion on two specific linear combiners, namely on the LS combiner and on the MMSE combiner, 

respectively'. These combiners constitute the basis for our discussions on non-linear detection 

techniques, such as SIC, PIC and transform-based ML detection in Sections 4.3.1, 4.3.2 and 4.3.3. 

Furthermore, in Section 4.2.4 the process of symbol classification or demodulation - as seen at the 

right-hand side of Figure 4.4 - is described while in Section 4.2.5 the generation of soft-bit values 

for turbo-decoding is outlined. The LS and MMSE detectors are characterized in terms of their 

associated combiner's MSE and SINR as well as the detector's BER performance in Section 4.2.6. 

This is followed by a detailed complexity analysis in Section 4.2.7. Finally, our conclusions on 

linear detection techniques will be offered in Section 4.2.8. 

'Note that in the following the specific linear detector considered is refeiTed to as the LS- or MMSE-detector, depend-
ing on whether LS- or MMSE combining is employed. 
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4.2.1 Character izat ion of the Linear Combiner ' s O u t p u t Signal 

As the terminology suggests, an estimate s E of the vector of transmitted signals s of the 

L simultaneous users is generated by linearly combining the signals received by the P different 

receiver antenna elements with the aid of the weight matrix W E resulting in: 

s = TAfffa:. (4.7) 

In order to gain a further insight into the specific structure of the combiner 's output signal on a com-

ponent basis, let us substitute Equation 4.1 into Equation 4.7 and consider the Z-th user's associated 

vector component: 

gC) = (4.8) 

== 4- n) (4.9) 

= g n W g W + (4.10) 
i = l 

where the weight vector w(^) E is the l-th column vector of the weight matrix W . The further 

structure of Section 4.2.1 is as follows. While in Section 4.2.1.1 w e briefly characterize the different 

additive components of the combiner's output signal, their statistical properties recorded in terms of 

the different contributions' variances are highlighted in Section 4.2.1.2. On the basis of these, the 

three most prominent performance measures used for assessing the quality of the combiner's output 

signal namely, the SINR, the SIR and the SNR will be introduced in Section 4.2.1.3. 

4.2.1.1 Description of the Different Signal Components 

We observe from Equation 4.10 that the combiner's output signal is constituted by three additive 

components. More specifically, in Equation 4.10 the first term, namely: 

(4.11) 

denotes the desired user's associated contribution, while the second term, namely: 

sy = w (4.12) 

i^l 

denotes the interfering users' residual contribution. Finally, the last term, namely: 

s® = (4.13) 

is related to the AWGN. These components can be further characterized in terms of their variances, 

which will be further elaborated on in the next section. 
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4.2.1.2 Statistical Characterization 

Specifically, the variance of the desired user's detected signal is given by: 

(4.14) 

= where (4.15) 

(4.16) 

is the auto-correlation matrix of the desired user's signal. Following similar calculations, the vari-

ance of the interfering users' contribution is given as: 

(4.17) 

= where (4.18) 

L 
.(0 _ % = (4.19) 

i = l 
i^l 

is the auto-correlation matrix of the interfering users' signals. Finally, the residual AWGN related 

variance can be expressed as: 

(7%)" = (4.20) 

= where (4.21) 

(4.22) 

is the diagonal noise correlation matrix. Specifically, in the context of Equation 4.22 we have 

exploited again that the AWGN observed at different elements of the receiver antenna array is un-

corrected. For employment at a later stage we will additionally define here the undesired signal's 

auto-correlation matrix, which is related to the sum of the residual interference plus the AWGN 

expressed as: 

where the matrices R ® j and Ra,iv were given by Equations 4.19 and 4.22, respectively. 

4.2.1.3 Performance Measures 

Three different performance measures can be defined on the basis of the desired signal's variance 

o"®^, the interfering signal's variance and the noise variance which were given by Equa-

tions 4.14, 4.17 and 4.20. These measures can be employed for characterizing the quality of the 

linear combiner's output signal. These are the Signal-to-Interference-plus-Noise Ratio (SINR) at 

the combiner's output, defined as [123]: 
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the Signal-to-interference Ratio (SIR), defined as [123]: 

and the Signal-to-Noise Ratio (SNR) given by [123]: 

In the next section we will embark on the portrayal of least-squares error detection, in an effort to 

compare a number of different criteria that can be invoked for adjusting the detector's associated 

combiner weight matrix W introduced in Equation 4.7. 

4.2.2 Least-Squares Error Detector 

With reference to Figure 4.4, in this section we will derive the Least-Squares (LS) error- or Zero-

Forcing (ZF) combiner [114, 118, 119, 140], which attempts to recover the vector s[n, A:] of signals 

transmitted by the L different users in the A-th subcarrier of the n- th OFDM symbol period, regard-

less of the signal quality quantified in terms of the SNR at the reception antennas. For simplicity, 

we will again omit the index [n, k] throughout our forthcoming discourse. Our description of the LS 

combiner is structured as follows. In Section 4.2.2.1 a simplified model x of the vector x of signals 

received by the P different antenna elements is introduced as a function of the estimate s of the 

vector of L number of transmitted signals. On the basis of this simplified model a cost-function is 

established in Section 4.2.2.2, which follows the philosophy of the squared model mismatch error. 

The estimate s of the L different users' transmitted symbols is then determined in Section 4.2.2.3 

with the aid of the conjugate-gradient method [87]. Alternatively, the so-called orthogonality prin-

ciple [87] could be invoked. Furthermore, in Section 4.2.2.4 a condition is provided, which has 

to be satisfied in order to be able to identify the estimate s, while in Sections 4.2.2.5 and 4.2.2.6 

expressions are presented for both the squared error measured in the received signal's domain and 

for the mean-square error evaluated in the transmitted signal's domain. 

4.2.2.1 Simplified Model of the Received Signal 

Upon assuming perfect knowledge of the channel transfer factor matrix H an estimate x G 

of the vector of signals received by the P different antenna elements in a specific subcarrier is given 

similarly to Equation 4.1 by: 

X = ]%§, (4.27) 

where s G is the estimate of the vector of signals transmitted by the L different users, which 

we are attempting to recover. 



DET^CnON TECHNIQUES FOR 200 

4.2.2.2 Least-Squares Error Cost-Function 

The estimation error A x G C ^ ^ M n the received signal's domain can hence be expressed as: 

A x = X — X (4.28) 

X --laS. Bk29) 

Correspondingly, the squared error jjAxHg e M is given as the inner product of the vector of LS 

estimation errors formulated in Equation 4.28, namely as; 

||Ax||^ = A x ^ A x (4.30) 

= x ^ x - 2fRe(s^pLs) + (4.31) 

where the 'cross-correlation' vector p^s G is given by: 

= H ^ x , (4.32) 

while the 'auto-correlation' matrix Qls E is given by^: 

pL, = (4.33) 

4.2.2.3 Recovery of the Transmitted Signals by the Gradient Approach 

A standard approach designed for determining the desired vector s representing the estimated trans-

mitted signals of the L users is to minimize the squared error given by Equation 4.30. This can be 

achieved by noting that in the optimum point of operation, associated with the weight matrix having 

the optimum weights, the conjugate gradient V* = G of 11 A x | I2 with respect to s is equal 

to zero, which can be expressed as: 

| |Ax | |^=Min . V*||Ax||^ = 0. (4.34) 

Upon substituting Equation 4.31 into Equation 4.34, after some mathematical manipulations we 

obtain: 

QLSSlS = PlS ^ Sls = QlS^PlS- (4.35) 

Here we have specifically exploited that the gradient with respect to the first term of Equation 4.31 

is equal to zero, while the gradient with respect to the second term was evaluated by capitalizing 

on g^![Re(z^a) = [87] for complex valued vectors z and a . Furthermore, in the context of 

evaluating the gradient of the last term in Equation 4.31 we have exploited that we have = 

R z [87] in conjunction with a Hermitian matrix R. 

^Note that p l s and Q l s have been intentionally termed 'cross-correlation' vector and 'auto-coiTelation' matrix, in 
order to highlight the similarities to the corresponding matrices in the context of M M S E combining, although the expec-
tation operator is not invoked here. 
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Figure 4.5: Illustration of the principle of LS detection for a scenario of L = 2 simultaneous users. The 
vector X of received signals is projected onto the vector space spanned by the column vectors 
H(i), hosted by the channel matrix H. 

Upon substituting Equations 4.32 and 4.33 into Equation 4.35 w e obtain the following expression 

for the vector s^s of estimated transmitted signals of the L simultaneous users: 

SLS — PlsX) 

where the projection matrix Pls E is given by: 

(4.36) 

(437) 

More specifically, the matrix Pls projects the vector x of the P different antenna elements' received 

signals onto the column space of the channel matrix H [87]. These principles are further illustrated 

in Figure 4.5. As a comparison between Equations 4.7 and 4.36 reveals, the least-squares estimation 

based weight matrix W^s G is hence given by: 

W , 

while the /-th user's associated weight vector which is the Z-th column vector of matrix W 

can be expressed as: 

(438) 

(4.39) 

= H . c o l W { ( H ^ H ) - ^ } , 

where col^'^{} denotes the l-th column vector of the matrix enclosed in curly brackets. 

(4.40) 
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4.2.2.4 Condition for Identification 

From the literature [87], the projection matrix P^s of Equation 4.37 is also known as the Moore-

Penrose pseudo-inverse or left-inverse of H [87], which is denoted by A sufficient condition 

for its existence is that the L number of columns of the matrix H are linearly independent, which 

implies that we have ranA;(H) = L. A necessary condition for this is that the P number of rows 

of H is equal to or larger than its L number of columns, namely that P > L. This implies that the 

maximum number of simultaneous users or transmit antennas supported by the LS combiner must 

be lower or equal to the P number of receiver antennas. 

4.2.2.5 Squared Estimation Error in the Received Signals' Domain 

The squared estimation error formulated in the sense of Equation 4.30 and associated with the vector 

SLS of least-squares signal estimates is given upon substituting Equation 4.35 into Equation 4.31, 

resulting in; 

(||Ax||^)Ls = x ^ x - (4.41) 

4.2.2.6 Mean-Square Estimation Error in the Transmitted Signals' Domain 

By substituting the received signal's model of Equation 4.1 into Equation 4.36 we obtain: 

Sls = s 4- P ^ n , (4.42) 

which indicates that the LS-estimate Sls of the transmitted signal vector s of the L simultaneous 

users is based on a noise-contaminated version of s. We note that the vector s of transmitted signals 

is restored regardless of the potential noise amplification incurred, which coined the term Zero-

Forcing (ZF) combiner. Since i?{sLs} = s, the vector Sls is also called an unbiased estimate of s 

[87]. Furthermore, from the literature [87] the vector Sls is also known as the Maximum Likelihood 

(ML) estimate of s. More specifically, the vector s^s is a sample of an X-dimensional multi-variate 

complex Gaussian distribution, namely, s^s ~ CvV(s, RAsLs) (^), with the mean vector s and the 

covariance matrix Rasls G C^^^(' '), given by: 

= E{(PLsn)(PLsn)^} (4.43) 

= a ^ ( H ^ H ) - \ (4.44) 

and where Equation 4.44 has been obtained by substituting Equation 4.37 into Equation 4.43, and 

by exploiting that E{-nn^} — cr^I. The average estimation Mean-Square Error (MSE) evaluated 

^The complex Gaussian distribution function is denoted here as CM{), in order to distinguish it from the Gaussian 

distribution function defined for real-valued random variables. 

"Note that Asls = s — sls-
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in the transmitted signals' domain is hence given by; 

1 
MSELs = —Trace(RAsLs) (4.45) 

= y(7^Trace((H^H)-i) , (4.46) 

while the /-th user's associated minimum MSE is given as the Z-th diagonal element of the matrix 

Rasls in Equation 4.43. Hence, according to Equations 4.43 and 4.44 we have: 

== (4.47) 

== cr2((HfriI)--l)p,;]. M.48) 

In the next section the potentially more effective MMSE detection approach will be discussed. 

4.2.3 Minimum Mean-Square Error Detector 

With reference to Figure 4.4, in contrast to the LS combiner of Section 4.2.2 the Minimum Mean-

Square Error (MMSE) detector's associated MMSE combiner [114, 123, 124, 125, 53, 126, 127, 

128, 117, 118, 129] exploits the available statistical knowledge concerning the signals transmitted 

by the different users, as well as that related to the AWGN at the receiver antenna elements. 

The specific structure of Section 4.2.3 is as follows. In Section 4.2.3.1 the mean-square er-

ror related cost-function is introduced, which is then employed in Section 4.2.3.2 for deriving the 

optimum weight matrix with the aid of the conjugate-gradient approach [87]. Furthermore, in Sec-

tion 4.2.3.3 expressions are provided for the average MSE and the user-specific MSE, respectively, 

in the context of employing the optimum weight matrix. Our discussions of the MMSE combiner 

are concluded in Section 4.2.3.4 by reducing the expression derived for the optimum weight matrix 

to a standard form, which will be shown later in Section 4.2.3.4 to differ only by a scalar factor 

from the corresponding expressions associated with the Minimum Variance (MV) combiner and 

also from that of the maximum SINR combiner. 

4.2.3.1 Mean-Square Error Cost-Function 

In contrast to the derivation of the LS combiner in Section 4.2.2, the cost-function employed here 

directly reflects the quality of the combiner weights in the transmitted signals' domain. In order to 

elaborate further, the vector As G of the L simultaneous users' estimation errors evaluated in 

the transmitted signals' domain can be defined as: 

As — s - s (4.49) 

= s - T R r f x , (4J%0 
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where Equation 4.50 has been obtained by substituting Equation 4.7 into Equation 4.49. Further-

more, the estimation error's auto-correlation matrix R a j E is given by: 

Ilzia == (4.51) 

= I) TArJfRc (4.52) 

where the cross-correlation matrix Rc G of the received and transmitted signals is defined 

as: 

l ie == (4.53) 

== IIP. (4.54) 

Similarly, for the auto-correlation matrix Rg 6 of the received signals we obtain: 

Ilo = (4.55) 

== + or%I (4.:56) 

g + (7^1. (4.57) 

1=1 

Note that clearly the sum of the auto-correlation matrices Ra,5, R-a,/ and R^.a? given by Equa-

tions 4.16, 4.19 and 4.22, respectively, constitutes the auto-correlation matrix Rq E of the 

different reception antennas' associated signals, which can be expressed as: 

R„ = R ™ + R « ^ ^ . (4,58) 

where R^ = R^ / + Ra,iv from Equation 4.23. Furthermore, in Equations 4.54 and 4.56 the 

matrix P G is the diagonal matrix of the different users' associated transmit powers- or signal 

variances, given by: 

P - D m g ( a ^ , ( 7 ^ , . . . , a 2 ) . (4.59) 

In the context of deriving Equations 4.54 and 4.56 we have also exploited that E{ss^} = P, as 

well as that i ^ { n n ^ } = cr^I and that E { s n ^ } = 0. On the basis of Equation 4.52, the total 

mean-square estimation error ^{IjAajlg} e M accumulated for the different users is given by: 

E{| |As | |^} = Trace(RA«) (460) 

= Trace(P) - Trace(Rf W) - Trace(W^Rc) + 

+ Trace(W^RaW). (4.61) 

This equation will be employed in the next section in order to optimally adjust the matrix W of 

combiner coefficients. 



4.2.3.2 Recovery of the Transmitted Signals by the Gradient Approach 

Determining the weight matrix on the basis of evaluating the gradient with respect to the different 

users' total mean-square estimation error given by Equation 4.61 results in the standard form of 

the MMSE combiner, which is related to the right-inverse of the channel matrix H. This will be 

further elaborated on in Section 4.2.3.2.1. Alternatively, the weight matrix can be represented in 

a form related to the left-inverse of the channel matrix H, which had drawn our interest earlier in 

Section 4.2.2 in the context of the LS combiner characterized by Equations 4.36 and 4.37. The 

left-inverse related form of the MMSE combiner will be briefly addressed in Section 4.2.3.2.2. 

4.2.3.2.1 Right-Inverse Related Form of the MMSE Combiner Similarly to our proceedings 

in Section 4.2.2.3, the matrix W of optimum weights can be determined by noting that when 

-BdlAsl l l l of Equation 4.60 is minimized, its conjugate gradient evaluated with respect to the 

weight matrix W is identical to the zero-matrix. Hence, we obtain the following equation for the 

matrix Wmmse E of optimum weights: 

R-QŴ MMSE = R-C ^ ^ ŴMMSE — R-a (4.62) 

More specifically, upon substituting Equations 4.54 and 4.56 into Equation 4.62 we have; 

WMMSE = ( H P H ^ + ( 7 ^ 1 ) ( 4 . 6 3 ) 

In the context of deriving the conjugate gradient of Equation 4.61 with respect to the weight matrix 

W we have exploited that the constant first term yields a zero contribution, while the remaining 

terms were evaluated upon noting that = 0, as well as that = B A and 

aTrace(^^AXB) _ for the complex matrices A, B and X [87]. Note that Equation 4.63 can 

be rewritten as: 

W^MSE = (HPsNRH^ + (4.64) 

where similarly to Equation 4.59, the matrix P̂ NR E is the diagonal matrix of the different 

users' associated SNRs at the receiver antennas, which can be written as: 

PsNR = Dmg(SNR(^),SNR(^\ . . . ,SNR(^)), (4.65) 

and where the /-th user's SNR is given by SNR(') = Furthermore, note from Equation 4.62 and 

4.63 that the /-th user's associated weight vector wĵ MSE E is given by: 

wSisE = (4.66) 

= (4.67) 
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4.2,3.2.2 Left-Inverse Related Form of the MMSE Combiner Recall that as demonstrated in 

Equation 4.22, the auto-correlation matrix of the AWGN is represented by a scaled identity matrix. 

Hence, it can be shown that an alternative expression with respect to Equation 4.63 for the MMSE 

combiner's weight matrix is given by: 

WMMSE = HPsnr(H^HPSNR + 1)^1. (4.68) 

Upon substituting = H P as defined in Equation 4.54(^), as well as by substituting E 

defined as: 

R a = H ^ H P + < I , (4.69) 

similarly to Equation 4.62 we obtain the following relation: 

In terms of the required numerical accuracy, calculating the weight matrix Wmmse by solving the 

system of equations as shown at the left-hand side of Equation 4.70 is more attractive, than a so-

lution by the direct inversion of the auto-correlation matrix R^, as shown at the right-hand side of 

Equation 4.70. 

Note that in contrast to the auto-correlation matrix R^ defined in Equation 4.56, which is the 

core element of the right-inverse related representation of the weight matrix according to Equa-

tion 4.62, the correlation matrix R^ defined in Equation 4.69, which was associated with the left-

inverse related representation of the weight matrix in Equation 4.70 is not Hermitian. As a result, 

unfortunately the same computationally efficient methods which can be invoked for solving the 

system of equations associated with the right-inverse related representation of the weight matrix, 

namely the auto-correlation matrix's Toeplitz structure are not applicable here. However, a compu-

tational advantage is potentially achievable with the advent of the lower dimensionality of the matrix 

Rfl e compared to that of matrix R^ E provided that we have P > L. This property 

renders the left-inverse related form of the MMSE combiner particularly attractive for its repeated 

application in each cancellation stage of the SIC detector, which will be discussed in Section 4.3.1. 

4.2.3,3 Mean-Square Estimation Error in the Transmitted Signals' Domain 

Upon substituting the weight matrix WMMSE defined in Equation 4.62 into Equation 4.52 we obtain 

for the auto-correlation matrix of the estimation errors associated with the different users' transmit-

ted signals the following expression: 

It/ISWMSE = r* - (4.71) 

= I) - (4.72) 

^Recall from Equations 4.59 and 4.65 that P = ct^Psnr-

^The left-inverse related form of the auto-correlation matrix is denoted here as R a in order to distinguish it from its 
right-inverse related form, namely R o , defined in Equation 4.56. 
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Hence, following the philosophy of Equation 4.60, the average minimum MSE (MMSE) of the L 

simultaneous users is given by: 

1 , 
MMSEwMSB = ^Trace(RAsMMSE), (473) 

while the /-th user's MMSE is given as the /-th diagonal element of the estimation errors' auto-

correlation matrix Rasmmse defined in Equation 4.71, namely as; 

MMSEi2sE = (4.74) 

== ,7^(1 (4/75) 

4.2.3.4 Optimum Weight Vector in Standard Form 

We recall from Equation 4.58 that the received signals' auto-correlation matrix Ra can be expressed 

as the sum of the desired- and undesired signals' contributions, namely as: 

+ < ; + « • (4.76) 

Upon invoking the well-known matrix-inversion lemma- or Sherman-Morrison formula [87], the 

inverse of the auto-correlation matrix, namely R^ can be rewritten as: 

1 

R l ' = (4.77) 

Upon further substituting Equation 4.77 into Equation 4.66 we obtain: 

where: 

vf&ZsE = (4.78) 

-- 1 ' (4 79) 

and where the achievable SINR is given by: 

(4.80) 

This is immediately seen by substituting Equation 4.78 into Equation 4.24. It is interesting to note 

that the SINR given by Equation 4.80 is independent from the factor /3mmse related to the MMSE-

criterion. As a consequence, different combining approaches result in achieving the same SINR 

at the combiner's output [123], provided that their weight vectors can be expressed in the form 

of Equation 4.78, despite having a constant /?, which is potentially different from /3MMSE of the 

MMSE combiner. It was demonstrated in [123] that the most prominent combiners, which obey 

Equation 4.78 are the MMSE-, the Minimum Variance (MV) and the Maximum SINR combiners. 

As argued before, all three of these techniques exhibit the same SINR at the combiner's output, 

although they have different MSEs. 
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4.2.3.5 Relation between MMSE and MV combining 

In order to motivate the employment of the Minimum Variance (MV) combiner let us recall from 

Section 4.2.2 that the LS combiner's philosophy was to fully recover the original signal transmitted -

as illustrated by Equation 4.42 - without relying on any information concerning the AWGN process, 

which corrupts the signal received by the different antenna elements. By contrast, the philosophy 

of the MMSE combiner portrayed in Section 4.2.3 was to strike a balance between the recovery of 

the signals transmitted and the suppression of the AWGN. An attractive compromise is constituted 

by the MV approach, which aims for recovering the original signals transmitted whilst ensuring a 

partial suppression of the AWGN based on the knowledge of its statistics. In other words, the ^-th 

user's associated weight vector has to be adjusted such, that its transfer factor, which is seen 

from Equation 4.11 to be equal to , assumes a specific predefined value of ^ . 

The corresponding interference and noise variances of and are given by Equations 4.17 

and 4.20, respectively. 

Usually the MV combiner is derived by minimizing a Lagrangian cost-function, which incorpo-

rates both a constraint on the desired user's effective transfer factor, as well as the undesired signal's 

variance [87, 123]. However, as argued in the previous section, the different combiners' associated 

weight vectors, namely those of the MMSE, MV and Maximum SINR combiners, differ only by a 

scalar multiplier. Hence, the MV-related weight vector w^v of the Z-th user can be directly inferred 

from the MMSE-related weight vector w^^sE by simple normalization according to: 

Wwv = — 7 7 T ^ — — ( 4 . 8 1 ) 
w, "MMSE-* 

Here the term in the nominator denotes the l-th. user's gain factor valid in the context of MMSE 

combining. Upon substituting the MMSE-specific weight vector given by Equation 4.78 into Equa-

tion 4.81 we obtain: 

(4.82) 'MV — 

where; 

Specifically, for g = 1 this "normalized MMSE combiner" is also known as the Minimum Variance 

Distortionless Response (MVDR) combiner. 

4.2.4 Demodulat ion of the Different Users' Combiner O u t p u t Signals 

As observed at the left-hand side of Figure 4.4, the linear detector is constituted by the linear com-

biner, which produces estimates of the signals transmitted by the L different users. Based on these 



linear estimates the task of the classifiers seen at the right-hand s ide of Figure 4.4 is to determine 

the complex symbols- or constellation points that are most likely to have been transmitted by the 

different users. 

Our further proceedings are as follows. In Section 4.2.4.1 each user's combiner output signal is 

approximated as a sample of a complex Gaussian distribution function. This representation is then 

employed in Section 4.2.4.2 for determining the complex symbol- or constellation point that is most 

likely to have been transmitted by a specific user. 

4.2.4.1 Approximation of a Specific User's Combiner Output Signal as a Sample of a Com-

plex Gaussian Distribution 

In Sections 4.2.2, 4.2.3 and 4.2.3.5 various methods of detecting the different users' transmitted 

signals were discussed namely, the LS- MMSE- and MV techniques, respectively. Common to 

these techniques was their linear structure, which was conveniently illustrated by Equation 4.10. 

Specifically, the /-th user's combiner output signal is constituted by a superposition of 

the desired user's signal and of the undesired signal which is expressed as; 

(4.84) 

Comparing Equation 4.84 with Equation 4.10 reveals that the desired user's effective transfer factor 

is given by: 

(4.85) 

while the effective undesired signal namely the sum of the L — 1 interfering users' residual 

signals plus the residual AWGN, is given by: 

== 5^^ 4- (4.86) 

The individual components were defined in Equations 4.12 and 4.13, while their associated vari-

ances and were given by Equations 4.18 and 4.21. T h e /-th user's combiner output 

signal can therefore be approximately modeled, as a sample of a complex Gaussian distribution 

having a mean value of and a variance of anl^ = which is formulated as, 

~ CN{H^}an^2) C). We note however, that this relationship is only exactly true for an in-

finite number of interferers, as a result of the Central-Limit Theorem [141]. This complex Gaussian 

distribution can be expressed as [142]: 

0)2 
(4.87) 

'The complex Gaussian distribution function is denoted here as CMQ, in order to distinguish it from the Gaussian 
distribution function A/'O defined for real-valued random variables. 
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More explicitly, P{x^l)\s^''\ | s ( ' \ i jf jP) denotes the a priori probability that is 

observed at the /-th user's combiner output under the condition that the symbol is transmitted 

over a channel characterized by the effective transfer factor i j f P of Equation 4.85. 

4.2.4.2 Determination of a Specific User's Transmitted Symbol by Maximizing the A Poste-

riori Probability 

The complex symbol that is most likely to have been transmitted by the l-th user can be de-

termined upon maximizing the a posteriori probability f that the complex symbol 

s was transmitted under the condition that the sigi 

symbols contained in the trial-set given by: 

s was transmitted under the condition that the signal 2;® is observed at the combiner output, for all 

AiW = jgW ^ e VWc j . (4.88) 

In Equation 4.88 M c denotes the set of constellation points associated with the specific modulation 

scheme employed. In mathematical terms this can be formulated as; 

moa; (4.89) 

Upon invoking the definition of the conditional probability, the a posteriori probability f ( g W ) 

seen in Equation 4.89 can be rewritten as: 

f f , (4.90) 

where the total probability P{x[l}) follows from the condition that: 

g (4.91) 

which yields; 

^ (4.92) 

Note that Equation 4.90 in conjunction with Equation 4.92 is also known as Bayes' theorem [87]. 

Upon substituting Equation 4.90 into Equation 4.89 and by noting again that the a priori prob-

ability is given by the complex Gaussian distribution function of Equation 4.87, 

namely by f{x[g\s^' ' \H^f^), we obtain for the ML symbol estimate the following expression; 

. (4.93) 

®Here we have denoted the most likely transmitted symbol as SMLKJ' ™ order to emphasize that the Gaussian approxi-

mation was used for modelling the residual interference contaminating the combiner ' s output signal. 
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Note from Equation 4.93 that determining the ML symbol estimate implies minimizing the Eu-

clidean distance in the argument of the exponential term associated with the Gaussian distribution 

function of Equation 4.87. In the context of our derivation we have also exploited that we have 

f — const., as well as that we have P{x^l}) = const, as seen in Equation 4.91. Hence, 

these terms are irrelevant in the context of the minimization required by Equation 4.93. 

In order to avoid the multiplication of each trial-symbol gf*) with the effective transfer factor , 

as required by Equation 4.93, it is legitimate to evaluate: 

= org 
H, (0 

(4.94) 

instead. Note again that if the estimate a:® at the /-th user's combiner output is generated with the 

aid of the MMSE criterion, then the normalized estimate / H ^ } is actually the complex symbol, 

which would be observed at the output of the MVDR combiner, as described in Section 4.2.3.5. 

Note however that in the context of MPSK modulation schemes the normalization by the real-

valued factor of is not necessary, since only the signal's phase is of importance to the detection 

process. 

4.2.5 Generation of Soft-Bit Information for Turbo-Decoding 

Employing turbo decoding at the receiver is a powerful means of further enhancing the system's 

BER. Naturally, this is achieved at the cost of a reduction of the system's effective throughput. 

A prerequisite for the employment of turbo codes is the availability of soft-bit information at the 

detector's output, whose generation will be discussed in this section. 

Our discussions will be based on Equation 4.84, which described the /-th user's combiner output 

signal sffY as the superposition of the desired user's signal contribution which has a gain of 

i j f P , plus the effective noise contribution which comprises the L — l remaining users' residual 

interference and the residual AWGN. The residual interference was approximated by a Gaussian 

process and hence the total variance of the effective noise became an]n = 

With respect to Equation 4.84 the soft-bit value or log-likelihood ratio L^K, associated with the 

/-th user at the m-th bit-position is given by [87]: 

£,(') - 1 , 1 -PC'S = M 95) 

which is the natural logarithm of the quotient of a posteriori probabilities that the m-th bit transmit-

ted by the /-th user in the k-ih. subcarrier is associated with a logical value of 6m = 1 or 6® = 0-

Note that here we have again omitted the index [n, A] for the A:-th subcarrier of the n-th OFDM 

symbol. Equation 4.95 can be further expanded by noting that the a posteriori probability that a bit 

of bm = 1 was transmitted is given by the sum of the a posteriori probabilities of those symbols. 
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which are associated with a bit value of 6® = 1, again, at the m - t h bit position. The a posteriori 

probability that a bit value of bm = 0 was transmitted can be represented equivalently. Hence we 

obtain: 

where denotes the specific subset of the set Mc of constellation points of the modulation 

scheme employed, which are associated with a bit value of 6 e {0 ,1} at the m-th bit position. 

For notational convenience we can define the /-th user's associated set of trial-vectors employed for 

determining the probability that the m-th transmitted bit exhibits a value of 6 G {0,1} as follows: 

— G r - (4.97) 
<^1 

Substituting the Bayes theorem of Equation 4.90 into Equation 4.96 then yields for the /-th user's 

soft-bit value at the m-th bit position the following expression: 

Here we have exploited that the different trial-symbols gW have the same probability, namely 

P ( s (0 ) = const., E vWW, where Upon recalling from Sec-

tion 4.2.4 that the a priori probability H^}) is given by the complex Gaussian distribu-

tion function f \s^^\ H^}) defined in Equation 4.87, we obtain that: 

Observe that evaluating the /-th user's soft-bit value at the m-th bit position with the aid of Equa-

tion 4.99 involves the exponential function, which is computationally demanding. 

4.2.5.1 Simplification by Maximum Approximation 

In order to avoid the explicit evaluation of the exponential function, a common approach is con-

stituted by the so-called maximum-approximation, which implies that only that specific additive 

term is retained in the calculation of the numerator and nominator of Equation 4.99, which yields 

the maximum contribution. It can be readily shown that as a result of this simplification we obtain 

instead of Equation 4.99 the following expression: 

1 
(()2 

12 _ j (0 _ i j (0 12 (4.100) 
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system parameters choice 

CIR model 3-path indoor WATM of Section 6.1.1 

CIR tap fading OFDM symbol invariant 

system model indoor WATM of Section 6.1.1 

channel estimation ideal 

transmit antennas per user 1 

Table 4.3: S u m m a r y of the sys tem setup; also note that the fad ing w a s a s s u m e d to be uncorrelated for the 

d i f fe ren t C I R taps associated with the channel be tween a s p e c i f i c t ransmitter-receiver antenna pair, 

as well as uncorre la ted for the same CIR tap of d i f ferent t ransmi t te r - rece iver antenna pairs. 

turbo coding parameters choice 

coding rate Rc 1/2 

constraint length Kc 3 

generator polynomial (7,5)8 
number of iterations 4 

Table 4.4: S u m m a r y of the tu rbo-cod ing p a r a m e t e r s . 

where 

-6(0 - I (') (4.101) 

while the set was defined in Equation 4.97. We note that fo r each soft-bit to be determined, 

Equation 4.101 has to be invoked twice, namely, once for a bit value of 6 = 1 and once for 6 = 0. 

A significant complexity reduction can be achieved by exploiting that vWW = Mm''^ [ J M m ^ • 

Hence, the calculation of the Euclidean distance metric | % — only has to be performed 

once for the different trial symbols g(̂ ) € followed by an appropriate selection in the context 

of the soft-bit generation assisted by Equation 4.101. Specifically half of the symbols s^ '2 for 

the different bit polarities b G {0 ,1} and bit positions m can be readily inferred by conducting 

an initial search of the entire set This results in the ML estimate of the transmitted 

symbol according to Equation 4.94. The initial ML symbol estimate is constituted by a specific 

bit representation. The minimization obeying Equation 4.101 has to be conducted over the set of 

specific symbols, which contain the inverted versions of the bits identified during the previously 

mentioned initial ML symbol search. 

4.2.6 Per formance Analys is 

In the context of our simulations the frame-invariant fading indoor WATM channel- and system 

model described in Section 6.1.1 will be employed. Furthermore, perfect knowledge of the channel 



transfer functions associated with the different transmit-receive antenna pairs will be assumed. Note 

that as a result of performing the detection of the different users' transmitted symbols independently 

on an OFDM subcarrier-by-subcarrier basis, the performance results presented here for the uncoded 

system are independent from the indoor WATM channel's specific multipath intensity profile. The 

advantage of employing the idealistic model of an OFDM symbol invariant fading channel is that 

the performance results are not impaired by the obfuscating effects of Inter-subCarrier Interference 

(ICI). Again the general system setup has been summarized in Table 4.3, while in Table 4.4 we 

have summarized the turbo-coding parameters to be employed in the context of our investigation of 

turbo-coded systems. 

The structure of our performance investigations is as follows. In Section 4.2.6.1 the different 

detectors, namely LS, MMSE and MV are compared to each other in terms of the achievable MSE 

at the associated combiner's output, as well as in terms of the BER. By contrast, in Sections 4.2.6.2 

and 4.2.6.3 we concentrate on the assessment of the specific M M S E detector's performance in terms 

of the distribution of the SINR measured at the associated combiner's output, as well as that of the 

detector's BER performance, respectively. These investigations are conducted as a function of the 

number of users L and that of the number of reception antennas P. Our investigations are concluded 

upon evaluating the BER performance of turbo-coded MMSE detection-assisted SDMA-OFDM in 

Section 4.2.6.4. 

4.2.6.1 MSE and BER Performance Comparison of LS, M M S E and MVDR Detection 

At the left-hand side of Figure 4.6 we have portrayed the average MSE performance recorded at 

the different detectors' combiner outputs, as a function of the SNR at the reception antennas. More 

specifically, the MSE was evaluated as the squared error between the signal transmitted by a specific 

user and that observed at its associated combiner output, normalized to the user's signal variance. 

Here we have considered the scenario of two reception antennas and two simultaneous SDMA users, 

each equipped with one transmit antenna, which we denoted as (A2/U2). As expected, the best MSE 

performance is exhibited by the MMSE combiner, closely followed by the MVDR combiner, as seen 

in Figure 4.6. The worst MSE performance was exhibited by the LS combiner, which is also widely 

known as the zero-forcing combiner. Furthermore, observe that upon increasing the users' SNRs 

towards infinity, the different combiners' MSE curves merge. This is, because when increasing the 

SNR a Wiener filter based combiner effectively operates as an LS combiner, aiming for minimizing 

purely the interfering signals' variances, rather than that of the joint noise and interference contri-

butions. Note that in the context of our simulations the LS combiner's correlation matrix given by 

Equation 4.33 was regularized [87] upon adding a value of 10^® to its main diagonal elements. This 

contributed towards mitigating the problems associated with its inversion. By contrast, on the right-

hand side of Figure 4.6 we have portrayed the system's BER associated with the different detectors 
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Figure 4.6: Compar i son of the d i f ferent l inear detectors , namely , the L S , M M S E and M V D R techniques as a 

func t ion of the S N R at the recept ion antennas , with r e spec t t o (left:) the M S E at the combiner ' s 

ou tput and (right:) the detector ' s B E R ; here w e have e m p l o y e d the conf igura t ion of -L = 2 

s imul taneous users and P = 2 recept ion antennas at the B S {A2/U2) \ fo r the basic simulat ion 

parameters w e refer to Table 4 .3 

in the context of 4QAM modulation. We observe that both Wiener-filter based detectors, namely, 

the MMSE and MVDR schemes achieve the same BER performance, as a result of their identical 

SINR performance as it was highlighted in Sections 4.2.3.4 and 4.2.3.5. Note however that in the 

context of higher-order QAM modulation schemes, such as 16QAM for example, where also the 

constellation points' amplitude conveys information, a slight BER performance advantage was ob-

served for the MVDR detector although the corresponding results are not included here for reasons 

of space economy. Furthermore, similarly to our observations with respect to the different detec-

tors' associated combiner MSE performance, the LS detector performs significantly worse, than the 

MMSE and the MVDR detectors also in terms of the BER. Hence, in our following discussions we 

will focus on the MMSE detector, which will also be employed as the core element of SIC and PIC 

detectors to be discussed in Sections 4.3.1 and 4.3.2, respectively. 
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Figure 4.7: Characterization of the MMSE detector in terms of its associated SINR-PDF observed at the 
combiner's output; (left:) for each configuration the L number of users is identical to the P 
number of reception antennas, using the configurations of A2/U2, yl3/273 and .44/(74; (right:) 
the P number of reception antennas is equal to four, while the L number of users is varied, where 
we have the configurations of A4/C/2, AA/U2> and A4/[ /4; for the basic simulation parameters 
we refer to Table 4.3. 

4.2.6.2 SINR Performance of MMSE Detection for Different Numbers of Users and Recep-

tion Antennas 

In order to further characterize the MMSE detector, in Figure 4.7 we have plotted the Probability 

Density Function (PDF) of the SINR at the combiner's output for different combinations of the 

number of simultaneous users L and the number of reception antennas P, as well as for SNRs of 

OdB, 20dB and 40dB recorded at the reception antennas. Specifically, in the graph seen at the left-

hand side of Figure 4.7 we have compared those PDFs against each other, which are associated with 

the particular configurations of P = L e {2, 3,4}. We observe that at sufficiently high SNRs the 

SINR distributions become almost identical, which is because the different arrangements have the 

same diversity order. Here we emphasize the expression "almost identical", since at higher SNRs -

although visually they appear identical in Figure 4.7 - perceivable differences were found in terms 

of the corresponding average BER performance for the configurations of A2AJ2, A3AJ3 as well 

as A4/U4. More explicitly, upon increasing the MIMO system's order, the BER performance is 
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Fr.-Inv. Fad. SWATM, A2/Ux, Ideal Ch. Est., 4QAM 
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Figure 4.8: B E R p e r f o r m a n c e of 4 Q A M - m o d u l a t e d , M M S E de tec t ion -as s i s t ed S D M A - O F D M as a func t ion 

of the S N R at the recept ion antennas; the curves are f u r t h e r pa ramete r i zed with the number of 

s imul taneous users L and the n u m b e r of recept ion a n t e n n a s P, whe re m o r e specifically (left:) 

two recept ion antennas , (right:) four recept ion antennas w e r e e m p l o y e d ; for the bas ic simulat ion 

paramete rs w e refer to Table 4.3. 

improved. 

By contrast, at the right-hand side of Figure 4.7 we have considered configurations of P = 

4, i G {2,3,4}. Here we observe that upon increasing the diversity order, namely by decreasing 

the L number of SDMA users, while keeping the P number of reception antennas constant, the 

probability of incurring higher SINRs is increased. The effects of these SINR improvements on the 

system's BER performance will be further investigated in the next section. 

4.2.6.3 BER Performance of MMSE Detection for Different Numbers of Users and Reception 

Antennas 

In Figure 4.8 we have portrayed the BER performance of a 4QAM-modulated MMSE detection-

assisted SDMA-OFDM scheme as a function of the SNR at the reception antennas. The curves 

are further parameterized with the number of simultaneous users L and the number of reception 

antennas P . Upon decreasing the number of users L while keeping the number of reception antennas 

P constant, we observe that the BER performance is dramatically improved. This is because the 
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Figure 4.9: B E R per formance of turbo-coded, 4QAM-modula ted , M M S E detection-assisted S D M A - O F D M 

as a function of the SNR at the recept ion antennas; the c u r v e s are fur ther parameterized with 

the number of s imultaneous users L and the number of r e c e p t i o n antennas P , where (left:) two 

reception antennas, and (right:) four reception antennas w e r e employed, respectively; for the 

basic simulation parameters and for the turbo-coding p a r a m e t e r s we refer to Tables 4.3 and 4.4, 

respectively. 

system's diversity order is increased and hence the detector benefits from a degree of freedom for 

adjusting its associated combiner weights in favour of a better exploitation of the channel's diversity, 

in favour of a reduction of the AWGN, rather than aiming for the mitigation of the remaining users' 

interference. 

4.2.6.4 BER Performance of Turbo-Coded MMSE Detection-Assisted SDMA-OFDM 

Turbo-decoding at the receiver is a powerful means of further enhancing the system's BER perfor-

mance. This is achieved at the cost of reducing the system's effective throughput and by investing 

additional computational complexity. The turbo coding parameters were summarized in Table 4.4, 

but for the reader's convenience they are repeated here. Namely, the coding rate was Rc = \ , the 

constraint length was = 3, the octally represented generator polynomials of (7,5)g were used 

and four iterations were performed. The generation of the soft-bits required for turbo-decoding was 

discussed earlier in Section 4.2.5. 
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Our BER simulation results are portrayed in Figure 4.9, at the left-hand side for P = 2 reception 

antennas, while at the right-hand side for P = 4 reception antennas, when supporting up to L = P 

number of users. We observe that compared to the uncoded scenario, whose associated simulation 

results were shown in Figure 4.8 the BER is significantly reduced. To provide an example, for a 

so-called 'fully loaded' system associated with L = P = 4 the SNR at the reception antennas 

required for a BER of 10~^ was around 42dB, while in the context of turbo-decoding the same BER 

was reached at an SNR of around 13dB. Again, this performance improvement is achieved at the 

cost of halving the system's throughput and at an additional computational complexity imposed by 

the turbo-decoder. Furthermore, similarly to the uncoded scenario, upon removing one user from 

the 'fully loaded' system results in a significant reduction of the BER. This is, because the MMSE 

combiner has a higher degree of freedom in terms of the choice of the optimum weight matrix, with 

the beneficial effect of a better suppression of the undesired AWGN. 

4.2.7 Complexity Analysis 

In this section we will analyse the computational complexity inflicted per subcarrier when evaluating 

the vector of estimated transmitted signals, followed by hard-decision based demodulation carried 

out with the aid of minimizing the Euclidean distance metric of Equation 4.94. The structure of 

this section is as follows. While in Section 4.2.7.1 the LS combiner's complexity is quantified, in 

Section 4.2.7.2 we will concentrate on the portrayal of the MMSE combiner's complexity. Finally, 

the computational complexity related to the demodulation of the linear combiners' output signals 

will then be analysed in Section 4.2.7.3. 

4.2.7.1 LS Combining 

An expression for the LS combiner's associated weight vector was provided in Equation 4.35 for 

the case of P > L. First of all, the calculation of the 'auto-correlation' matrix Qls defined in Equa-

tion 4.33 requires X^P number of complex multiplications and the same number of additions. By 

contrast, the evaluation of the 'cross-correlation' vector p^s requires LP number of complex multi-

plications and additions. Due to the potentially high condition number [87] of the 'auto-correlation' 

matrix Qls it is disadvantageous to directly invert it, since it requires a high numerical accuracy. 

Recall that this direct solution for the vector Sls was shown at the right-hand side of Equation 4.35. 

4.2.7.1.1 LS Combining without Generating the Weight Matrix In order to circumvent this 

problem, the preferred method is that of solving the equation system shown at the left-hand side 

of Equation 4.35. In order to ensure numerical stability, a matrix decomposition based approach 

such as the Cholesky-, LU- or QR decomposition [87] could be invoked. In the context of the LS 

solution the most prominent matrix factorization technique is the QR decomposition. However, 
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here we assume that the LU decomposition technique outlined in [87] is employed. Hence, in a 

first step the matrix QLS is LU decomposed, imposing a computational complexity of complex 

multiplications and additions. Then, in a second step the desired vector SLS is determined with the 

aid of forward- and backward substitutions using the procedure outlined in [87], which imposes a 

complexity of L? complex multiplications and additions. Hence, the total computational complexity 

of solving Equation 4.35 per subcarrier is given by: 

=.Pj[, + (JO + l)j&2 -H (4.102) 

Note however that as a result of this procedure the weight matrix W l j defined in Equation 4.38 does 

not become explicitly available, although it might be required for determining the estimation MSE, 

the SNR or SINR on a subcarrier basis. 

4.2.7.1.2 LS Combining Generating the Weight Matrix As an example, in the context of the 

SIC detection® procedure to be discussed in Section 4.3.1, explicit knowledge of the weight ma-

trix is required for calculating the subcarrier based S(I)NR values employed for selecting the most 

dominant user to be cancelled next in a specific detection stage. A possible solution for determining 

WLS is first to solve Equation 4.37 for obtaining the projection matrix PLS, which is related to the 

weight matrix WLS by the Hermitian transpose as seen in Equation 4.38. This step is then followed 

by appropriately combining the output signals of the array elements according to Equation 4.36. As 

a consequence, the associated total computational complexity would be: 

== = + 2.Pj[,2 4_ _^L3. ^1.103) 

The concomitant increase in computational complexity compared to that quantified by Equation 4.102 

is, because in the process of evaluating Wls the forward- and backward substitutions as outlined in 

[87] would have to be carried out for P different matrix right-hand sides. 

Note that since the computational complexity is dominated in both cases by the third order as a 

function of the number of simultaneous users L, increasing this parameter will dramatically increase 

the associated complexity. 

4.2.7.2 MMSE Combining 

The second combiner which we will analyse in terms of its computational complexity is the MMSE 

combiner of Section 4.2.3. Here the relevant equations are the general combiner's formula, namely 

Equation 4.7, as well as the MMSE-specific expression that has to be evaluated for the determination 

of the optimum weight matrix, namely. Equation 4.64 or 4.68. Recall that both forms are equivalent 

to each other. Nonetheless, as argued in Section 4.2.3.2, there is a difference in the dimension of the 

'The LS detector, or alternatively the MMSE detector could be employed as a baseline detector in each SIC detection 

stage. 
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auto-correlation matrices. Specifically, in the context of the left-inverse related form of the weight 

matrix given by Equation 4.68 an auto-correlation matrix Rg of dimension L x L has to be inverted, 

while in conjunction with the right-inverse related form of Equation 4.64 the auto-correlation matrix 

Ra to be inverted is of dimension P x P. 

4.2.7.2.1 Left-Inverse Related Form of MMSE Combining without Generating the Weight 

Matrix As it was shown earlier in Section 4.2.7.1 for the LS combiner, if the weight matrix 

Wmmse is not explicitly required, a complexity reduction can be achieved in conjunction with the 

left-inverse related representation of the MMSE combiner by directly solving Equation 4.70 for the 

vector of the transmitted symbols' estimates. The solution of Equation 4.70 imposes a complexity 

of: 

== 4- ( f 1 ) ^ : : 4- (4.10W.) 

= f t (4.105) 

(4.106) 

which implies a complexity reduction by a factor of ( P — 1)L^ in terms of the number of complex 

multiplications and additions. 

4.2.7.2.2 Left-Inverse Related Form of MMSE Combining Generating the Weight Matrix 

Upon following similar steps, as in the context of our analysis of the LS combiner's complexity, 

which was considered for the scenario of P > L in Section 4.2.7.1, we found that the complexity of 

the MMSE combiner, as represented by Equation 4.68 in its left-inverse related form can be related 

to the complexity formula originally derived for the LS combiner namely, to Equation 4.103, which 

is repeated here for the reader's convenience: 

_ / ^ ( C + C ) _ p r i 9 p r 2 , ^ r 3 f 4 1 0 7 " ) 

"-̂MMSE.W+cmb " M̂MSE,W+cmb — -T Ij ^ 

More explicitly, this LS combining related formula quantifies the number of complex multiplica-

tions and additions required by Equations 4.37 and 4.7, respectively. However, the MMSE combiner 

is somewhat more complex, since in Equation 4.68 an additional complexity contribution of mixed 

real-complex multiplications and additions is incurred due to incorporating the SNR matrix of Psnr-

The number of these operations is given by; 

=: (4.108) 

== -L. (4.109) 

4.2.7.3 Demodulation of the Linear Combiner's Output Signal 

In addition to the computational complexity associated with the process of linear combining, we 

also have to account for the complexity imposed by demodulating the different users' associated 
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combiner output signals with the aid of Equation 4.94. More specifically, from Equation 4.94 we 

infer that evaluating the Euclidean distance metric for a single Mc-ary trial-symbol s of a subcarrier 

requires one complex addition, as well as 'half a complex multiplication, which is related to the 

operation of actually calculating the Euclidean norm^^ of the complex-valued difference between 

the received signal and the trial-symbol. Hence, in the context of Mc number of symbols per trial-

set and for L number of simultaneous users to be demodulated, the total computational complexity 

related to the demodulation of Equation 4.94 is given by: 

== =:.L;kfc, (4.111) 

where we have introduced the number of real-valued comparisons between the Euclidean 

distance metric outcomes as a further index of complexity. 

4.2.7.4 Simplified Complexity Formulae to be used in the Comparison of the Different De-

tectors 

In Sections 4.2.7.1, 4.2.7.2 and 4.2.7.3 we elaborated on the individual computational complexity 

exhibited by the LS- and MMSE combiners described in Sections 4.2.2 and 4.2.3, respectively, as 

well as by the process of demodulating the combiner's output signal as outlined in Section 4.2.4. 

By contrast, in this section, we will present simplified complexity formulae for the LS- and MMSE 

detectors, which will be employed in our final comparison of the different detectors' complexities in 

Section 4.3.4.2. Our aim was to give a more compact representation of the complexity, in terms of 

the number of complex multiplications and additions, as well as real-valued comparisons. Specifi-

cally, in the context of the MMSE detector the number of mixed real-complex multiplications and 

additions has been expressed in terms of the number of complex multiplications and additions'^ 

upon weighting them by a factor of Here we assume that the weight matrix is not determined, 

which allows for a lower-complexity implementation, as argued in the previous sections. Hence, for 

the LS detector of Equation 4.35 and the associated process of demodulation in Equation 4.94 we 

obtain the following simplified complexity formulae: 

== 4- CP 1)̂ ^^ ^ (4-11:%) 

JDj; + (,p_p l)jr2 

(4.1140 

\(lx j^y\ — (fix j^y) ' i^x jO'y) — dx 
"Here we have neglected the real-valued additions required for evaluating the product of two complex numbers and 

hence our complexity formulae provide an upper bound estimate. 
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By contrast, for the left-inverse related form of the MMSE detector in Equation 4.70 plus for the 

associated demodulation procedure of Equation 4.94 we obtain; 

+ 7.PL + (-P + l )L? + (4115) 

M̂MSE — LMc + + - ^ L + ( P + 1)L^ + - L ^ (4.116) 

= z,Afc. o u i ? ) 

Again, these simplified formulae will be employed in the context of Section 4.3.4.2 for comparing 

the different detectors' complexities. 

4.2.8 Conclusions on Linear Detection Techniques 

In Section 4.2 we have concentrated on the mathematical portrayal, performance- and complex-

ity comparison of the most prominent linear detection techniques, namely on the LS and MMSE 

procedures of Sections 4.2.2 and 4.2.3, respectively. Our discussions commenced in Section 4.2.1 

with the characterization of a linear combiner's output signal and its components, while our more 

specific discussions in Section 4.2.2 focussed on the LS detector, also known as the ZF detector-

or decorrelating detector. Its associated combiner weight matrix was shown in Equation 4.38 to be 

given as the Hermitian transpose of the Moore-Penrose pseudo-inverse or left-inverse of the chan-

nel transfer factor matrix H. In contrast to the calculation of the MMSE related weight matrix, 

its calculation outlined in Equation 4.38 does not require any statistical information. Although, as 

shown in Equation 4.42 the transmitted signal is recovered with unit-gain, it is contaminated by the 

residual AWGN, which is potentially boosted due to the effects of the actual channel matrix. In 

order to achieve a lower average MSE than that of Equation 4.46, derived for characterizing the LS 

combiner's output, the MMSE combiner of Section 4.2.3 can be invoked. 

As suggested by the terminology, from the set of all linear combiners the MMSE combiner ex-

hibits the lowest MSE at the output. As shown in Section 4.2.3, this is achieved upon incorporat-

ing statistical information concerning the transmitted signals' variances and the AWGN variance 

into the detection process, resulting in a Wiener filter-related weight matrix as evidenced by Equa-

tion 4.63 or 4.64. This representation of the weight matrix Wmmse is related to the right-inverse of 

the channel matrix. If the auto-correlation matrix associated with the different antenna elements' 

AWGN is a scaled unity matrix, then an alternative representation, namely Equation 4.68, can be 

obtained, which is related to the channel matrix's left-inverse rather than its right-inverse. Depend-

ing on the dimensions of the channel transfer factor matrix H in terms of the L number of users 

and the P number of reception antenna elements, the left- or right-inverse related form may be 

preferred in terms of the computational complexity imposed. In the context of these discussions 

the relation between the MMSE- and MVDR combiner was briefly addressed. Similarly to the LS 

combiner of Section 4.2.2, the desired signal is recovered with unity gain, while at the same time 
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suppressing the AWGN, again, based upon knowledge of the different users' SNRs encountered at 

the reception antennas. Specifically, from Equations 4.78 and 4.82 we recall that both the Z-th user's 

MMSE weight vector w^wsE and the MVDR combiner's weight vector can be represented as 

the scaled product of the inverse interference-plus-noise correlation matrix R - q a n d the desired 

user's channel vector The difference between the two solutions resides in the choice of the 

scalar factor /5, which for the specific case of MMSE detection was given by Equation 4.79, while 

for MV detection by Equation 4.83. As further argued in Section 4.2.3.4, both solutions exhibit the 

same SINR, which in turn is identical to that of the maximum SINR combiner [123, 87] not detailed 

here. The maximum SINR combiner can also be represented in a similar form as Equations 4.79 and 

4.83, but with a different value of (3. Hence, the Wiener filter-related linear combiners, namely the 

MMSE, MVDR and maximum SINR combiners maximise the S INR. Furthermore, in Section 4.2.5 

the generation of soft-bit information for turbo-decoding was demonstrated. 

Our performance assessment with respect to the MSE and SINR at the combiner's output, as well 

as with respect to the detector's BER was carried out in Section 4.2.6. The curves, which were 

shown on the left-hand side of Figure 4.6 supported that the M S E at the combiner's output is min-

imized by the MMSE weight matrix, while a slight MSE degradation was observed for the MVDR 

weight matrix of Equation 4.81 as a consequence of the requirement to recover the desired user's 

transmitted signal with a specific gain, which was assumed to be unity in our case. As expected, the 

worst MSE was exhibited by the LS combiner of Section 4.2.2. In terms of the system's 4QAM-

related BER on the right-hand side of Figure 4.6 we observed an identical performance for both 

Wiener filter related detectors'^, namely for the MMSE and MV detector. Again, as argued in Sec-

tion 4.2.3.5, their performance was identical, because the different Wiener filter-related detectors 

achieve the same SINR. However, for the LS detector of Section 4.2.2 a significant performance 

degradation was also observed in terms of the BER as shown at the right-hand side of Figure 4.6. 

Our further investigations concentrated on portraying the influence of the relation between the num-

ber of users L and the number of reception antennas P on the M M S E detector's SINR and on the 

associated BER performance. Specifically, from Figures namely, 4 .7 and 4.8 we observed that upon 

decreasing the number of users L, while keeping the number of reception antennas P constant, the 

PDF of the SINR is shifted towards higher SINRs, while at the same time the system's BER is 

significantly improved. This is also a motivation for the employment of the successive interference 

cancellation approach, which will be discussed in Section 4.3.1. 

Finally the BER performance of MMSE detection-assisted S D M A - O F D M was analysed in a 

turbo-coded scenario. The associated BER versus SNR performance curves were portrayed in Fig-

ure 4.9. Compared to the uncoded scenario the BER was significantly improved - although at the 

cost of halving the system's effective throughput. Our estimates of the computational complexity as-

sociated with the different linear detectors, namely LS and MMSE were presented in Section 4.2.7. 

^Recall that the linear detector is constituted by the concatenation of the linear combiner and the classifier. 
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We found that the computational complexity is of third order, namely 0 ( 3 ) with respect to the num-

ber of users L, upon assuming the weight matrix's representation in its left-inverse related form. 

4.3 Non-Linear Detection Techniques 

In Section 4.2 the family of linear detection techniques was discussed. These detectors aimed at 

reducing the potentially excessive number of evaluations of the multi-user Euclidean distance 

metric associated with the optimum ML detector to a significantly lower LM^ number of evaluations 

of the single-user Euclidean distance metric of Equation 4.94. This implies a substantial complexity 

reduction. Recall that the variable L represents the number of users supported, while Mc is the 

number of constellation points for the specific modulation scheme employed. As portrayed in the 

linear detector's block diagram shown in Figure 4.4, the strategy is first to provide linear estimates 

of the different users' transmitted signals and then to perform the non-linear classification- or de-

modulation separately for each user. This philosophy was based on the assumption that the different 

users' associated linear combiner output signals are corrupted only by the residual AWGN, which 

is however, only an approximation. In fact the linear combiners' output signals in Figure 4.4 also 

contain residual interference, which is not Gaussian distributed and hence represents an important 

source of further information. 

Instead of sequentially performing the operations of linear combining and classification- or de-

modulation as in the linear detector's case of Figure 4.4, a more effective strategy is to embed the 

demodulation into the process of linear combining, which is known from the family of classic chan-

nel equalizers as decision-feedback. As a result, the residual multi-user interference observed at the 

classifier's inputs is reduced. Hence, the classifier's accuracy due to neglecting the residual inter-

ference is less impaired. Two of the most prominent multi-user detection techniques known from 

CDMA communications, which incorporate these ideas are the S IC and PIC detection techniques. 

These techniques are also applicable in the context of communicating over flat-fading channels as 

observed for example on an OFDM subcamer basis. In the context of our portrayal of SIC detection 

in Section 4.3.1, apart from discussing various techniques for its improvement, a detailed analysis 

of the effects of error propagation occurring at the different detection stages will be provided. This 

error propagation analysis motivated the employment of weighted soft-bit metric assisted turbo-

decoding. Furthermore, our discussions on PIC detection will be presented in Section 4.3.2. We 

will demonstrate that a significant enhancement of the PIC detector's performance can be achieved 

by embedding turbo-decoding into the PIC detection process, instead of simply serially concatenat-

ing the PIC detector with the turbo-decoder. Finally, the optimum M L detector will be analysed in 

Section 4.3.3. 



4.3.1 SIC Detection 

The philosophy of the Successive Interference Cancellation (SIC) assisted detector [114, 115, 116, 

53, 117, 118, 119, 120, 121, 122] is motivated by two observations. First of all, we note that 

for a specific subcarrier the MSE and SINR at the output of the LS- or MMSE combiner might 

substantially differ for the different users, depending on their spatial signatures. Secondly, we recall 

from our investigations in Section 4.2.6.3 that upon increasing the MIMO system's diversity order, 

e.g. by decreasing the number of simultaneous users L while keeping the number of reception 

antennas P constant, the MSE performance of the LS- or MMSE combiner and correspondingly the 

system's BER performance is improved as a consequence of assigning a higher grade of diversity to 

mitigate the effects of fading. This was illustrated in Figure 4.8. Hence, an attractive strategy, which 

has recently drawn wide interests is to detect only the specific user having the highest SINR, SIR 

or SNR in each iteration at the output of the LS- or MMSE combiner. Having detected this user's 

signal, the corresponding remodulated signal is subtracted from the composite signal received by 

the different antenna elements. Furthermore, the channel transfer factor matrix - and the SNR matrix 

formulated in the context of the MMSE combiner characterized by Equation 4.68 in its left-inverse 

related form - are updated accordingly. 

The further structure of this section is as follows. In Section 4.3.1.1 the standard SIC algorithm 

is portrayed, which allows only the most likely symbol decision to be retained in each detection 

stage. This section also includes a detailed analysis of the effects of error propagation, which occurs 

across the different detection stages. By contrast, in Section 4.3.1.2 M-SIC and its derivatives are 

discussed, where potentially the M most likely tentative symbol decisions are retained at each 

detection node of the detection process - as it will be further explained in Section 4.3.1.2.1 - rather 

than retaining only the most likely symbol decision. Note that each node is associated with a 

specific appropriately updated array output vector of the SIC-aided detection process. Furthermore, 

in Section 4.3.1.3 the various techniques of soft-bit generation will be discussed and a weighted 

soft-bit metric will be proposed for employment in turbo-decoding, which is capable of substantially 

enhancing the performance of turbo-coded SIC detection-assisted SDMA-OFDM systems. Finally, 

a detailed performance analysis of the standard SIC and that of the M-SIC is offered in terms of 

the associated system's BER and SER performance both in the context of uncoded and turbo-coded 

scenarios in Section 4.3.1.4. The complexity of the different detection schemes will be analysed in 

Section 4.3.1.5. Finally, the summary of Section 4.3.1 will be offered in Section 4.3.1.6 along with 

our conclusions. 

4.3.1.1 Standard SIC 

From now on we assume that the MMSE combiner in its specific left-inverse related form as given 

by Equation 4.68 is assumed to be employed for performing the detection of the most dominant 
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Figure 4.10: Illustration of the main signal paths associated with the standard SIC detector. During the first 
iteration the signals Xp,p = 1 , . . . ,P received by the different antenna elements are directly fed 
into the 'selective' linear combiner, where we have = x at the detection stage or iteration 
of i = 1. The task of the 'selective' linear combiner is to identify the most dominant remaining 
user in terms of its SINR at the combiner output - from the set of (L — i + 1) remaining users 
during the i-th detection stage or iteration - and to provide its signal estimate at the 
combiner's output. This is described by Equations 4.123 and 4.124. The selected ZM-th user's 
linear signal estimate jg then classified- or demodulated according to Equation 4.125, 

yielding the amplified constellation point that is most likely to have been transmitted 
by the ZM-th user. Now the corresponding modulated signal can be regenerated. The influence 
of the /M-th user's modulated signal is then removed from the vector of signals received 
by the different antenna elements with the aid of the SIC module. This cancellation operation 
is described by Equation 4.127. The first iteration (i = 1) is deemed to have been completed, 
when the decontaminated signal appears at the output of the SIC stage. Hence, beginning with 
the second SIC iteration the 'selective' linear combiner's input, namely the 'decontaminated' 
vector xM of signals received by the different antenna elements, which contains only the influ-
ence of the (L-i+l) remaining users, is constituted by the output of the SIC module, provided 
that correct symbol decisions were conducted in the previous detection stages. Note that for the 
sake of visual clarity here we have omitted the signal paths associated with the channel trans-
fer factor estimates required by the linear combiner and by the SIC module. The role of the 
switches is to indicate that at the first detection stage the SIC is directly fed with the signals 
received by the different array elements, while during the remaining iterations of ? = 2 , . . . ,L 
with the partially 'decontaminated' composite signal of the remaining (L - i + 1) users. 



CHAPTERS. DETECTIONTECHMQUESFORAfUL]7-[;&Ej^^DMA-OfDM 228 

user in each cancellation stage. For the reader's convenience w e have repeated here the formula 

describing the combiner's operation from Equation 4.70: 

= <=3- (4118) 

where the received signals' auto-correlation matrix was defined in Equation 4.69 as: 

= 4-cr2l, (4.119) 

while the cross-correlation matrix of the transmitted and received signals was given in Equation 4.54 

namely: 

l ie = : h i \ (4.12(0 

It is computationally efficient to refrain from recalculating the correlation matrix of Equa-

tion 4.119 and the cross-correlation matrix R^ of Equation 4.120 at each cancellation stage. This 

complexity reduction can be achieved by updating these matrices based on the specific index of the 

most recently detected user. Nonetheless, these matrices have to b e calculated once at the beginning 

of the SIC detection procedure. The more detailed structure of the SIC detector will be portrayed 

below. 

1. Initialization-. Initialize the detector upon setting = x £ , as well as upon evaluating 

R ^ ^ ^ = P H ^ H 4- cr^I and R|?^^ = P H ^ . Here the index in the superscript, namely ()W 

indicates the detection stage index, which is initially set ioi = 1. 

2. i-th Detection Stage: At the beginning of the i-th SIC detection stage, given correct sym-

bol decisions in the previous detection stages, the updated vector xW of received signals 

only contains the remaining = L — i + 1 users' signal contributions plus the AWGN 

since the remodulated signals of the previously detected (i — 1) users have been deducted 

from the originally received composite signal of x Furthermore, the dimension of the auto-

correlation matrix r | ^ ^ - represented here in its Hermitian transposed form - has been re-

duced to r | ^ ^ 6 while the dimension of the cross-correlation matrix R^^^^ also 

represented in its Hermitian transposed form has been reduced to Rc^^ G upon re-

moving the previously cancelled users' associated entries. This matrix dimension reduction 

potentially facilitates the reduction of the system's overall complexity. Then the specific steps 

at the i-th detection stage are as follows: 

• Calculation of the Remaining Users' Weight Matrix-. Generate the LW number of re-

maining users' associated weight matrix upon invoking the MMSE approach, which is 

represented in its left-inverse related form by: 

= = (4.121) 
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Observe in Equation 4.121 that in contrast to Equation 4.119 and 4.120 we have sub-

stituted the matrices Ii§ and by their reduced-dimensional counterparts associated 

with the 2-th detection stage, namely by and The set of number of 

remaining users at the i-th detection stage is denoted here by 

Selection of the Most Dominant User: Calculate the objective function, which could be 

the SINR, SIR or SNR at the MMSE combiner's output according to Equations 4.24, 

4.25 or 4.26, respectively employing the different users' weight vectors. As an example, 

here we employ the SNR of Equation 4.26, since its calculation is significantly less 

complex than that of the SINR or SIR given by Equations 4.25 and 4.26. Based on 

Equation 4.26, the l-th user's associated SNR at the MMSE combiner's output during 

the 2-th detection stage is given by: 

where the auto-correlation matrix R^ ^ of the l-th user 's channel transfer factors was .(0 

defined in Equation 4.16, while the noise correlation matrix Ra,N recorded in case of 

encountering unconelated AWGN at the different reception antenna elements of the BS 

was given in Equation 4.22. Furthermore, the Z-th user 's weight vector is given 

here in form of the corresponding column vector of the weight matrix WmLsê  which 

has been obtained upon solving Equation 4.121. 

The selection of the most dominant user, which is assumed here to be the /M-th user, 

can then be expressed as: 

/W = aromaa:;(SNR^')W)_ (4.123) 

• Detection of the Most Dominant User. Under the assumption that the jM-th user has 

been found to be the most dominant one among the remaining users at the i-th 

detection stage, detect the user's transmitted signal upon invoking Equation 4.8, namely: 

(4.124) 

• Demodulation of the Most Dominant User. Carry out the demodulation by mapping the 

detected signal to one of the Mc number of constellation points contained in 

the set A4c associated with a particular modulation scheme. As shown in Equation 4.94, 

this involves minimizing the Euclidean distance metric, namely: 

2 

(4.125) 
1 

- " e f f 

'̂ Note that while the superscript in round brackets denotes the user index, the superscript in squared brackets denotes 
the detection stage or iteration index. 



where the detected user's transfer factor H'^I is given by: 

(4.126) 

Note however that for MPSK modulation schemes the normalization to H^l is not 

necessary, because the information transmitted is incorporated into the signal's phase. 

Furthermore, in the context of Equation 4.125 the variance of the /W-th user's Mc num-

ber of legitimate trial symbols is given by . Alternatively the MMSE combiner's 

output signal can be normalized by cr̂ iij = ^ /CTH., instead of amplifying the 
IB 

individual constellation points contained in the set vWc-

Detector Update by Removing the Most Dominant User's Contribution: Based on the 

demodulated signal the jM-th user's remodulated contribution is removed from 

the current vector of composite received signals, yielding: 

X [i+i] xH - (4.127) 

Furthermore, the influence of the ZM-th user's associated channel transfer factor vec-

tor is eliminated from the auto-correlation matrix yielding the reduced-

dimensional matrix of: 

^ e (4.128) 

as well as from the cross-correlation matrix yielding the reduced-dimensional 

matrix of: 

^ R^+^]^ E - i ) x f (4129) 

More specifically, this is achieved by removing the ZM-th row and column from the 

matrix R^^^ as well as by eliminating the ZH-th row f r o m the matrix Rc^^, where the 

index denotes the position of the column vector in the hypothetic reduced-size 

channel transfer factor matrix hW , which is associated with the %-th detection stage. 

3. Commence the (i + l)-th iteration by returning to Step (2). Iterate, until all the L users have 

been detected. 

We have summarized the standard SIC algorithm once again in Table 4.5. Furthermore, a simplified 

block diagram of the SIC detector was portrayed in Figure 4.10. Note that here we have omitted 

the signal paths associated with supplying of the channel transfer factor estimates to the linear 

combiner and to the SIC module. In the next section a higher-complexity strategy is proposed for 

further enhancing the standard SIC detector's performance. 
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Description Instruction 

l i W " P H ^ H + S P P ^ Initialization = x; R- PH^; lM = L 

i-th iteration: 

Weight calc. •p -p bW 
* * MMSE — w R 

SMtMBO = f e /:H, zH = argmoa;(SNR(')H) Selection 
lecK 

Combining 

Demodulation g(/W)[j] _ m m 
H. 

(zH)[i] m 

[i+1] = xH -Updating X 

"P 
•"-g e C(iM-l)xP 

Return Start {i + l)-th iteration 

Table 4.5: Summary of the standard SIC detector's operation in the context of employing MMSE combining 
and the SNR as an objective funtion for the selection of the most dominant user at each detection 
stage. 

standard SIC 

51 

52 

53 

54 

partial M-SIC M-SIC 

Figure 4.11: Illustration of the (left:) standard SIC, (middle;) partial M-SIC retaining multiple branches per 
detection node up to the first- and second detection stage, (right:) M-SIC with multiple tentative 
symbol decisions per detection node at all detection stages; here we have assumed that M = 2; 
in the graph each detection node represents an updated vector of signals received by the different 
antenna elements, for which also the linear combining - but not the array weight calculation has 
to be performed separately; furthermore, each branch represents a tentative symbol decision 
made at a given detection stage. 
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4.3.1.2 M-SIC and its Derivatives 

As we will highlight in Section 4.3.1.4, the standard SIC detector's performance is impaired as a 

result of the error-propagation occuring between the different consecutive detection stages. Hence 

efficient countermeasures capable of significantly reducing these effects will be the topic of this 

section. Specifically in Section 4.3.1.2.1 M-SIC will be investigated, while partial M-SIC in Sec-

tion 4.3.1.2.2 and Selective Decision Insertion (SDI) M-SIC in Section 4.3.1.2.3. 

4.3.1.2.1 M-SIC A viable strategy of reducing the error propagation effects is to track from 

each detection stage not only the single most likely symbol decision, but an increased number of 

M < Mc most likely tentative symbol decisions, where denotes the number of constellation 

points associated with a specific modulation scheme. To provide an example, for M = 2 in the 

first detection stage we have a total of M = 2 possible symbol decisions, while in the second 

detection stage = 4 tentative symbol decisions and correspondingly, in the i-th detection stage 

we encounter possible tentative symbol decisions. Following our description of the standard 

SIC detector in Table 4.5, associated with each tentative symbol decision there is a specific updated 

vector of signals, generated by cancelling the effects of the most dominant L — i + 1 number of users 

from the f-dimensional vector of signals received by the P number of different antenna elements. 

Hence, in the following detection stage the MMSE combining has to be performed separately for 

the different updated f-dimensional vectors of received signals. Correspondingly, the number of 

parallel tentative symbol decisions to be tracked is increased by the factor of M compared to that 

of the current detection stage. This process can conveniently be portrayed with the aid of a tree-

structure, as shown at the right-hand side of Figure 4.11, where again, we have assumed that M = 2 

was used. Specifically, each detection node represents an updated P-dimensional vector of signals 

received by the P different antenna elements, while the branches are associated with the various 

tentative symbol decisions at the i = 1 , . . . , L detection stages. Note that the first detection node 

at the top of the figure is associated with the original P-dimensional vector of signals received 

by the different antenna elements. In the final detection stage, after the subtraction of the least 

dominant user's estimated P-dimensional signal contribution, a decision must be made concerning 

which specific combination of L number of symbols - represented by the branches connecting the 

different detection nodes - has most likely been transmitted by the L different users in the specific 

subcarrier considered. A suitable criterion for performing this decision is given by the Euclidean 

distance between the original P-dimensional vector of signals received by the P different antenna 

elements and the estimated P-dimensional vector of received signals based on the tentative symbol 

decisions and upon taking into account the effects of the channel. The same decision metric is 

employed also by the ML detector, which will be discussed in Section 4.3.3. Note furthermore, that 

this distance measure is identical to the Euclidean norm of the P-dimensional vector of residual 



CfL4J07]iR4. A4i;L]rr̂ jr<%E%R SDZkbl-OfDAf :;33 

signals after the subtraction of the last detected user's f-dimensional signal contribution vector. 

The performance improvement potentially observed for the M-SIC scheme compared to the stan-

dard SIC arrangement is achieved at the cost of a significantly increased computational complexity. 

This is since the number of parallel tentative symbol decisions associated with a specific detection 

stage is a factor of M higher than that of the previous detection stage, and hence in the last de-

tection stage we potentially have to consider number of different tentative symbol decisions. 

Again, this implies that the approach of the M-SIC scheme resembles that of the ML detector to be 

discussed in Section 4.3.3. 

4,3.1.2.2 Partial M-SIC A viable approach of further reducing the associated computational 

complexity is motivated by the observation that for sufficiently high SNRs the standard SIC de-

tector's performance is predetermined by the bit- or symbol-error probabilities incurred during the 

first detection stage. This is, because if the most dominant user 's associated symbol decision is 

erroneous, its effects potentially propagate to all other users' decisions conducted in the following 

detection stages. Furthermore, as observed previously in the context of our investigations of the 

MMSE detector's performance in Section 4.2.6.3 as a function of the number of simultaneous users 

L and the number of reception antennas P the highest performance gain in terms of the achiev-

able SNR reduction at the reception antennas, whilst maintaining a specific BER is observed upon 

removing the first user from a fully loaded system. An example of such a fully loaded system is 

that supporting four simultaneous users with the aid of four reception antennas. Hence we conclude 

that the symbol error probability specifically of the first detection stage should be as low as possible, 

while the tentative symbol decisions carried out at later detection stages become automatically more 

reliable as a result of the system's increased diversity order due to removing the previously detected 

users. 

Hence, our suggestion is to retain M > 1 number of tentative symbol decisions at each detection 

node, characterized by its associated updated f-dimensional vector of received signals only up to 

the specific LpM-sic-th stage in the detection process. By contrast, at later detection stages only one 

symbol decision is retained at each detection node, as in the standard SIC scheme. This philosophy 

is further highlighted with the aid of the two graphs at the centre of Figure 4.11. Specifically, in the 

illustration second from the left of Figure 4.11 we have portrayed the case of retaining two tentative 

symbol decisions per detection node only in the first detection stage, while in the illustration sec-

ond from the right-hand side of Figure 4.11 two tentative symbol decisions per detection node are 

retained in both of the first two detection stages. 

4.3.1.2.3 Selective-Decision-Insertion Aided M-SIC In order to even further reduce the com-

putational complexity an improved strategy termed Selective-Decision-Insertion (SDI) can be ap-

plied, which was initially proposed in [53, 117]. The philosophy of the SDI technique is that of 
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tracking additional tentative symbol decisions only in those jvjgj number of subcarriers, which ex-

hibit the lowest SINR during the first detection stage, since these are most likely to cause symbol 

errors. 

4.3.1.3 Generation of Soft-Bit Information for Turbo-Decoding 

In Section 4.2.5 we elaborated on the process of soft-bit generation supporting the employment of 

turbo-decoding in the context of linear detection techniques, such as the LS and MMSE schemes. 

Specifically, we capitalized on the assumption that the residual interference at the combiner's output 

is Gaussian, which enabled us to employ the same strategies for generating the soft-bit values, as 

in a single-user scenario. In Section 4.3.1.3.1 we will demonstrate that the soft-bit generation pro-

cess designed for the non-linear SIC detector can be based on that of the linear detection schemes, 

although, as shown in Section 4.3.1.3.2 a further performance enhancement can be achieved upon 

accounting for the effects of error propagation, which occur through the different detection stages, 

as it will be demonstrated in Section 4.3.1.4.2. 

4.3.1.3.1 Generation of Rudimentary Soft-Bits As it was highlighted in Section 4.3.1.1, at 

each stage of the standard SIC-related detection process we generate estimates of the remaining 

users' transmitted signals with the aid of a linear combiner. Hence, a feasible approach employed 

for generating soft-bit values is to invoke the linear combiner's output signals of the most dominant 

user as it was demonstrated in Section 4.2.5. More specifically, the /W-th user's soft-bit values -

where the superscript i in ()M indicates that this particular user was found to be the most dominant 

remaining user during the i-th detection stage - can be generated upon invoking the associated 

combiner output signal defined in the context of Equation 4.95 namely; 

L<"3W = lo „ , 3 „ 

where as given by Equation 4.126 is the /-th detected user's effective 

channel transfer factor. 

However, generating the soft-bit values of the / W - t h user - whose associated signal is linearly 

detected during the i-th detection stage - with the aid of Equation 4.130 inherently assumes that 

the signal components of those users, which have already been detected and demodulated during 

the previous SIC detection stages, have been correctly removed f rom the P-dimensional vector 

xP] = X of signals received by the F different antenna elements for the successful employment 

of this principle. A necessary condition is that the associated symbol decisions were free of errors, 

namely that we had j = = ! , . _ ,i — l. Naturally, this assumption only holds with 

a certain probability. In the sequel our aim will be to estimate this probability and draw our further 

conclusions. 



CHLAJrniR 4. jVfIZLT]:USJEj% SDAf/l-CAFDM SllS 

4.3.1.3.2 Generation of Weighted Soft-Bits To elaborate a little further, during the first detec-

tion stage the probability that the /M-th user, which was found to be the most dominant one, has 

been correctly demodulated is given by a posteriori probability of f ilfff 

Hence, by contrast during the second detection stage the probability that the /H-th user, which was 

found to be the most dominant one among the L — 1 remaining users, has been correctly demod-

ulated is given by the a posteriori probability of conditioned on a 

correct symbol decision during the first detection stage. 

Furthermore, since we have P(a;f,f where we have exploited 

that = 1, we obtain an estimate for the probability of the joint event 

that and are the correct symbol decisions at the first and second detection stages, 

respectively, which can be expressed as; 

More generally, for the demodulated symbols of the first (i — 1) number of detection stages we have 

the joint probability: 

j=i 

Note however that this is only an estimate of the true joint probability, since for a finite number 

of users the residual interference at a specific stage's combiner output is potentially non-Gaussian, 

which is particularly the case, if an error has occurred in one of the detection stages. 

The estimated joint probability of correct symbol decisions during the first {i — 1) number 

of detection stages, which was given by Equation 4.132, can be invoked as a measure of confidence 

for the soft-bit values generated during the z-th detection stage. Specifically, it is expected that if an 

error has occurred during one of the detection stages, then the soft-bit values produced with the aid 

of Equation 4.130 for the following detection stages will be relatively unreliable. Hence, a viable 

approach of mitigating these effects is the employment of weighting, namely by weighting of the a 

posteriori probabilities that a bit having a polarity of 6 G {0,1} has been transmitted, as seen in the 

numerator and denominator of Equation 4.130, yielding: 

,(.w)i.ii p(6ii!""'' = i ixf"'I ,Hi;"'"' ' ) • i = t " + i ( i - 4 ; " ) 

-1] We observe that if approaches unity, which reflects a high confidence in having no symbol 

errors during the previous (z — 1) number of detection stages, then the expression of Equation 4.133 

transforms into that of Equation 4.130, which was based on the assumption of benefitting from the 

perfect removal of the previously detected users' signal contributions. By contrast, if tends 

towards zero, which indicates a high probability of encountering symbol errors in the SIC process, 
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then the bit probabilities P(&m 6m 6 { 0 , 1 } are potentially unreliable and 

hence should be de-weighted. This has the effect that the L-value in Equation 4.133 tends to zero. 

The advantage of weighted soft-bits will be demonstrated in the context of our investigations on 

turbo-coded SIC schemes in Section 4.3.1.4.7. 

4.3.1.4 Performance Analysis 

In this section the standard SIC algorithm and its derivative, namely the M-SIC scheme will be 

investigated in terms of their achievable Bit Error-Ratio (BER) and Symbol Error-Ratio (SER)^"^ 

performance. Again, the frame-invariant fading indoor WATM channel model and its associated 

OFDM system model described in Section 6.1.1 were invoked and ideal knowledge of the channel 

transfer functions associated with the different transmit-receive antenna pairs was assumed. The 

aim of stipulating a frame-invariant fading channel was that of avoiding the obfuscating effects of 

Inter-subCarrier Interference (ICI). Note that as a result of this assumption in the uncoded scenario 

the different detectors' BER and SER performance curves are independent from the indoor SWATM 

channel's specific multipath intensity profile. For a summary of the basic simulation setup we refer 

to Table 4.3. 

The structure of Section 4.3.1.4 is as follows. In Section 4.3.1.4.1 standard SIC and M-SIC are 

characterized in terms of their BER and SER performance for different numbers of communicating 

users and receiver antennas. Furthermore, in an effort to illustrate the effects of error-propagation 

across the different detection stages, in Section 4.3.1.4.2 more detailed investigations are conducted 

with respect to the associated system's SER performance, which is evaluated on a detection stage-

by-stage basis. These investigations are further extended in Section 4.3.1.4.3 to the scenario, where 

an error-free remodulated reference signal is employed in the context of updating the vector of 

signals received by the different antenna elements in each detection stage. In order to further aug-

ment our understanding of the effects of error-propagation, in Section 4.3.1.4.4 the detection stages' 

symbol-error event probabilities are analysed. More specifically, each error-event is captured as the 

unique combination of the presence of a symbol error ("1") - or the absence of a symbol error 

("0") at the different detection stages. Furthermore, in Section 4.3.1.4.5 the SER performance of 

the partial M-SIC scheme is analysed with respect to the detection stage I/pM-sic up to which the M 

most likely symbol decisions are retained at each detection node of the detection process. Finally, 

in Section 4.3.1.4.6 the technique of SDI-M-SIC is characterized briefly. Explicitly we will quan-

tify the effect of the wjgj number of subcarriers for which M = 2 tentative symbol decisions are 

made during the first SIC detection stage. Our performance assessments will be concluded in Sec-

tion 4.3.1.4.7 with the analysis of turbo-decoded, standard SIC detection-assisted SDMA-OFDM 

systems. 

' 'Note that he re w e re fe r to the symbo l t r ansmi t t ed on an O F D M s u b c a m e r b a s i s . 
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Figure 4.12: BER and SER performance of 4QAM-modulated (left:) standard SIC and (right;) M-SIC (M = 
2) detection-assisted SDMA-OFDM as a function of the SNR recorded at the reception antennas 
and parameterized for the different system configurations in terms of the number of users L and 
the number of reception antennas P\ two different measures, namely the SINR and the SNR at 
the combiner's output were employed for performing the selection of the most dominant user 
at each detection stage; for the basic simulation parameters we refer to Table 4.3. 

4.3.1.4,1 BER and SER Performance of Standard SIC and M - S I C for Different Numbers of 

Users and Receiver Antennas In Figure 4.12 we have portrayed the BER- as well as the SER 

performance as a function of the SNR at the reception antennas. Specifically, at the left-hand side 

of Figure 4.12 we characterized the standard SIC, while at the right-hand side of Figure 4.12 the 

M-SIC scheme. The results of Figure 4.12 are also parameterized f o r the different configurations by 

the number of users L and by the number of reception antennas P, which were assumed here to be 

identical. Furthermore, both the SINR as well as the SNR recorded at the MMSE combiner's output 

are considered as potential alternatives for performing the selection of the most dominant user at 

each detection stage. 

For both detectors, namely for the standard SIC and for the M-SIC scheme the general trend is that 

by increasing the MIMO system's order upon employing for example four reception antennas for 

supporting four simultaneous users (A4/U4) instead of two reception antennas for supporting two 

simultaneous users (A2/U2), the system's performance evaluated in terms of the achievable BER 



czfMjrziiR 4. AfiTZJir-ijCNSj; sDjubt-opiMf 2:38 

and SER is significantly improved. This is, because in the context of encountering correct symbol 

decisions at the different stages of the detection process, the associated MIMO system's diversity 

order, namely the ratio between the number of transmit- and receive antennas, is increased. As 

argued in Sections 4.2.6.2 and 4.2.6.3, this has the effect of providing a higher degree of freedom at 

the MMSE combiner of each detection stage for adjusting the reception antennas' weights, which 

results in a more efficient suppression of the AWGN. Furthermore, for a MIMO system having a 

higher order, at a specific detection stage there is also the choice between a larger number of users 

to be selected as the most dominant user to be detected next, which also implies additional diversity. 

We also observe in Figure 4.12 that compared to standard SIC the M-SIC scheme retaining M = 2 

tentative 4QAM symbol decisions out of the Mc — 4 legitimate symbols exhibits a significant 

performance advantage, which is achieved at the cost of an increased computational complexity. 

Hence, potential complexity reduction strategies, namely partial M-SIC and SDI-M-SIC will be 

characterized in Section 4.3.1.4.5 and 4.3.1.4.6. 

With respect to the different objective measures, namely the SNR and SINR, employed for per-

forming the selection of the most dominant user at each stage of the detection process a slight 

advantage is observed in favour of the SINR measure, although only for the system configurations 

of a higher order. In the context of these configurations the residual interference was apparently 

higher than for the system configurations supporting a lower number of users. In the next section 

we will focus our attention further on the effects of error propagation between the different detection 

stages. 

4.3,1.4.2 SER Performance of Standard SIC and M-SIC on a Per-Detection Stage Basis In 

this section we will further investigate the effects of error propagation across the different detection 

stages. Hence at the left-hand side of Figure 4.13 we have portrayed the SER associated with the 

different detection stages for standard SIC, while at the right-hand side of Figure 4.13 for the M-

SIC scheme. In the context of the simulation results presented in each of the larger graphs the 

SINR was invoked as the metric used for performing the selection of the most dominant user at each 

stage of the detection process. By contrast, in the smaller-sized sub-graphs of Figure 4.13, we have 

compared the SINR and SNR criteria against each other, at the first detection stage. 

More specifically, for the standard SIC we observe at the left-hand side of Figure 4.13 that upon 

traversing through the different detection stages the SER is significantly increased at lower SNRs, 

while at higher SNRs the different detection stages' SERs become virtually identical. As it will be 

supported by our forthcoming analysis of the standard SIC detector's SER recorded in the context 

of an error-free reference signal, a viable explanation of this phenomenon is that the majority of 

symbol errors caused by the early detection stages propagates to the later stages. In other words, 

only a comparably small additional error contribution is caused by the later detection stages, which 

is a consequence of the increased diversity order associated with the gradually decreasing number 
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Figure 4.13: SER performance observed in different detection stages in the context of 4QAM-modulated 
(left:) standard SIC and (right:) M-SIC (M = 2) detection-assisted SDMA-OFDM as a func-
tion of the SNR at the reception antennas; here a system configuration of L = 4 simultaneous 
users and P = 4 reception antennas is considered; in the smaller-sized sub-figures two mea-
sures, namely the SINR and the SNR evaluated at the combiner's output are compared against 
each other in terms of performing the selection of the most dominant user at each detection 
stage; for the basic simulation parameters we refer to Table 4.3. 

of undetected user symbols. For the M-SIC scheme at the right-hand side of Figure 4.13 a similar 

behaviour is observed, although, for higher SNRs the different detection stages' SER performance 

curves do not merge. This is, because at each detection stage the SER contribution induced by 

the error propagation from previous detection stages is of a similar significance as the additional 

contribution due to the AWGN. 

4.3.1.4.3 SER Performance of Standard SIC and M-SIC on a Per-Detection Stage Basis for 

an Error-Free Reference In order to further highlight the associated error propagation effects, let 

us stipulate the availability of an ideal, error-free remodulated reference during the subtraction of 

the most recently detected user's contribution from the f -d imens iona l vector of signals received by 

the P different antenna elements. Corresponding to this scenario at the left-hand side of Figure 4.14 

we have plotted the SER versus SNR performance of various system configurations parameterized 

again with the number of simultaneous users L, each equipped with one transmit antenna, which 
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Figure 4.14: (left:) SER performance of 4QAM-modulated standard SIC detection-assisted SDMA-OFDM 
as a function of the SNR at the reception antennas, parameterized with the number of simultane-
ous users L and the number of reception antennas P, where L = P-, (right:) SER performance 
of standard SIC recorded separately for each detection stage in the context of a scenario of 
i = P = 4; an ideal, error-free reference is employed in the subtractive interference cancel-
lation process associated with each detection stage, while the curves associated with the more 
realistic error-contaminated reference have been plotted as a benchmarker; the SINK was in-
voked as the metric for the selection of the most dominant user at each detection stage; for the 
basic simuladon parameters we refer to Table 4.3. 

was assumed for each configuration to be identical to the number of reception antennas P, namely 

we had L = P. In contrast to the curves presented in Figure 4.12, which are repeated here as a 

benchmarker, the error propagation between the different detection stages was prevented due to the 

employment of an error-free remodulated reference. Again, the standard SIC detector with M = I 

is considered here. As a result of the idealistic nature of the reference, the system's SER perfor-

mance is significantly improved compared to the more realistic case of an imperfect, potentially 

error-contaminated remodulated reference. The corresponding SER performance curves recorded 

during the different detection stages are shown at the right-hand side of Figure 4.14, where again, in 

the reduced-sized sub-figure we have plotted the curves associated with an imperfect remodulated 

reference. These curves were originally shown at the left-hand side of Figure 4.13. For the error-

free remodulated reference related curves we observe at the higher-index detection stages that for 
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SNRs up to 7.5dB only a relatively modest SER degradation is encountered, when compared to the 

previous detection stages. This phenomenon is in contrast to the more distinct degradation observed 

in conjunction with the original curves generated in the context of a potentially error-contaminated 

remodulated reference. This was a result of the effects of error propagation. The residual SER 

degradation observed in Figure 4.14 for the SNR range up to 7.5dB is attributed to the process of 

ranking the remaining users' SINRs, where the most dominant remaining user is detected and con-

sequently during the last detection stages only the weaker users are still to be detected. By contrast, 

at higher SNRs this trend is reversed. Specifically, the SER achieved during the last detection stages 

is far lower than that of the first detection stages, which is a result of the implicit increase of the 

system's diversity order. Again, as also supported by the BER curves of Figure 4.8, for a lower 

number of users the MMSE combiner employed at each detection stage is less restricted in terms of 

the specific choice of the receiver antenna weights, which results in a more efficient suppression of 

the AWGN. 

4.3,1.4.4 Evaluation of the Error-Propagation-Related Event Probabilities In order to ob-

tain an even further insight into the effects of error propagation across the different detection stages, 

we have measured the probabilities of the various symbol error events. More specifically, the error-

event associated with index j can be defined as the following vector: 

JSj ==(% := ,eo), e; E {0,1}, (4.134j 

where the index j is given by interpreting the vector Sj as a binary number, yielding: 

. — 1 
(4J.35) 

Explicitly, in case of an error at the i-th detection stage we have = 1. In the context of our 

evaluations we have focussed on four specific symbol error events, which are suitable for further 

demonstrating the effects of error propagation through the different detection stages. These error 

events are E% = (1,0,0,0), Eu = (1,1,0,0), as well as B14 = (1 ,1 ,1 ,0) and E15 = (1,1,1,1), 

where Eg indicates encountering an error event during the last detection stage. The correspond-

ing probabilities of these events as a function of the SNR recorded at the reception antennas are 

portrayed at the left-hand side of Figure 4.15 for the standard SIC scheme. Here we observe that 

for SNRs below the cross-over point near lOdB the specific error propagation events, which extend 

from the first detection stage to the last stage are less likely than those events which commence in 

one of the last stages of the detection process. 

This phenomenon can be explained as follows. Even for SNRs as low as OdB, the probability 

of an AWGN-induced symbol error at a specific detection stage is far lower than the probability 

of incurring an error-free detection. Hence, the event having the highest probability is that of no 
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Figure 4.15; (left;) Probability- and (right;) SER contribution of the different significant error-vectors as 
a function of the SNR measured at the reception antennas; here 4QAM-modulated standard 
SIC detection-assisted SDMA-OFDM is considered in the context of a scenario of i = 4 
simultaneous users and P = 4 reception antennas (A4/U4); the SINR was invoked as the metric 
for the selection of the most dominant user at each detection stage; for the basic simulation 
parameters we refer to Table 4.3. 

symbol errors at all detection stages, which is denoted as EQ . T h e next most likely class of error 

events - assuming the independence of encountering decision errors at the different detection stages, 

as we also assumed in the case of an error-free reference - is constituted by those events which 

host a symbol error only in one of the detection stages. As highlighted earlier in the context of 

our description of the graph at the right-hand side of Figure 4.14, for relatively low SNRs it is more 

likely to incur symbol errors during the higher-index detection stages than in the lower-index stages, 

which was attributed to the process of ranking the users at the different detection stages. This effect 

is even further augmented here as a result of the associated error-propagation phenomenon. More 

explicitly, the probability of incurring an error event during the first detection stage only, which is 

indicated by E i = (0 ,0 ,0 ,1 ) is likely to be lower than the probability of encountering the error 

event of Ei^ = (1 ,1 ,1 ,1 ) due to the error-propagation effects, although in case of independent 

errors the probability of the latter would be expected to be significantly lower. Hence, following 

these argumentations, among the four different error events considered here, the event of Eg = 



(1,0,0,0) , which is associated with incurring a symbol error only in the last detection stage appears 

with the highest probability at low to medium SNRs of up to lOdB. By contrast, for higher SNRs 

the reverse behaviour is observed, namely that the event of incurring symbol errors in all detection 

stages occurs with the highest probability. This is because upon increasing the SNR, the probability 

of incurring a symbol error in the last detection stage decreases far more rapidly than the probability 

of incurring a symbol error in the first detection stage due to its interference-contaminated nature, 

despite detecting the highest-power user first. As argued earlier, this is also a consequence of the 

higher diversity order available for the MMSE combiner during the last detection stages, which is 

due to removing the interference imposed by other users during the previous detection stages. 

On the right-hand side of Figure 4.15 we have related the different symbol error events to their 

SER contribution. For this purpose we have weighted the event probabilities presented at the left-

hand side of Figure 4.15 by their relative contribution to the average SER. More specifically, for 

errors events which host a symbol error in a single detection stage only, the weighting factor is 1/L, 

while correspondingly for two symbol errors we have 2 /Z and so on. Additionally, we have plotted 

here the joint contribution of the four most significant error events, as well as the total average 

SER, which is the joint contribution of all error events. While for lower SNRs some difference is 

observed between the SER predicted with the aid of the four most significant error events, namely 

Eg V Ei2 V i?i4 V i?i5 and the actual SER curves associated with £^1 V . . . V Ei^, at higher SNRs the 

former events of Eg V E12 V E ^ V Ei^ closely predict the actual SER. A plausible interpretation of 

this phenomenon is that at higher SNRs the SER is constituted by error propagation events, which 

is even further augmented, since the MMSE combiner does not take into account the extra non-

Gaussian "noise" caused by symbol errors encountered in previous detection stages. This problem 

results in a noise amplification, a phenomenon, which is also known from zero-forcing combiners. 

4.3,1.4.5 SER Performance of the Partial M-SIC As observed in the previous sections, the 

M-SIC scheme described in Section 4.3.1.2.1 is capable of significantly outperforming the standard 

SIC arrangement, which was found to suffer from the consequences of error-propagation between 

the different detection stages. Furthermore, compared to the optimum ML detection scheme the 

performance degradation was observed to be less than 0.5dB in terms of the SNR at the receiver 

antennas required at a specific SER. This impressive performance was achieved at the cost of a 

significantly increased computational complexity compared to standard SIC. In order to reduce this 

potentially excessive complexity, it was proposed in Section 4.3.1.2.2 to retain M > 1 symbol deci-

sions at each detection node, characterized by its associated updated vector of received signals up to 

the specific LpM-sic-th stage in the detection process, where the updating process implied cancelling 

the effects of the remodulated tentatively demodulated symbols f rom the composite multiuser sig-

nal. By contrast, at higher-index detection stages only one symbol decision would be tracked from 

each detection node, as in the standard SIC scheme. These principles were illustrated in Figure 4.11. 
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Figure 4.16: SER performance as a function of the SNR recorded at the reception antennas of 4QAM-
modulated (left:) partial M-SIC (M = 2) detection-assisted SDMA-OFDM, parameterized 
with the index of the detection stage up to which multiple tentative symbol decisions are retained 
at each detection node of the detection process and (right:) SDI-M-SIC {M = 2) detection-
assisted SDMA-OFDM, parameterized with the number of subcarriers associated with 
multiple tentative symbol decisions during the first detection stage; here a system configuration 
of Z/ = 4 simultaneous users and P = 4 reception antennas (A4/U4) is considered; the SINR 
was employed as the metric for the selection of the most dominant user at each detection stage; 
for the basic simulation parameters we refer to Table 4.3. 

The benefits of employing this strategy have again been verified here with the aid of simulations, 

as shown at the left-hand side of Figure 4.16. Again, we have plotted the performance of standard 

SIC (M = 1) as a benchmarker. Also note that the case of tracking multiple decisions per detection 

node in the first three detection stages is equivalent to the original M - S I C and hence it does not yield 

a complexity reduction. However, employing multiple tentative symbol decisions only at the first 

two detection stages will be shown to yield a significant complexity reduction in Section 4.3.1.5.2, 

which is achieved at the modest cost of increasing the SNR required for maintaining an SER of 

10~® by only about IdB. 



4.3.1.4.6 SER Performance of Selective-Decision-Insertion Aided M-SIC The philosophy of 

the SDI technique [53, 117] of Section 4.3.1.2 is that of tracking additional tentative symbol de-

cisions only in those Tvjg) number of subcarriers, which exhibit the lowest SINK during the first 

detection stage, since these are most likely to cause symbol errors. As it was argued in the context 

of Figure 4.15, the employment of this approach is motivated by the observation that at higher SNRs 

symbol errors are mainly caused during the first detection stage because of the higher number of 

interfering users than at later stages. Again, we have evaluated the performance of this strategy 

with the aid of computer simulations. The associated SER performance results as a function of the 

SNR measured at the reception antennas and further parameterized with the number of low-quality 

subcarriers A^SDI where M = 2 tentative symbol decisions are retained during the first detection 

stage are shown at the right-hand side of Figure 4.16. By contrast, in all other subcarriers only one 

symbol decision is retained at each detection node for the sake of maintaining a low complexity. 

As a reference at the right-hand side of Figure 4.16 we have again plotted the SER performance 

curves associated with the partial M-SIC, as well as that of the original M-SIC, as shown at the 

left-hand side of Figure 4.16. We observe that when the = 64 number of lowest-quality sub-

carriers classified in terms of the SINR experienced during the first detection stage are associated 

with M = 2 tentative symbol decisions during this specific detection stage, then a similar SER 

performance is observed, to the significantly more complex scenario, where all subcarriers are as-

sociated with M = 2 tentative symbol decisions during the first detection stage. This is because by 

retaining multiple tentative symbol decisions exclusively during the first detection stage, only the 

probability of those error propagation events is reduced, which are caused during the first detection 

stage and these are likely to be those associated with the Tvjpj number of lowest-SINR subcarriers. 

However, compared to the SER performance of the M-SIC, the performance degradation incurred 

by the first-stage SDI-M-SIC characterized at the right-hand side of Figure 4.16 is substantial. In 

order to achieve further performance improvements, additional tentative symbol decisions could 

also be retained during the higher-index detection stages although naturally at the cost of a higher 

complexity. 

4.3.1.4.7 BER Performance of Turbo-Coded SIC Detection-Assisted SDMA-OFDM As demon-

strated in Section 4.2.6.4 in the context of MMSE detection-assisted SDMA-OFDM employing 

turbo-decoding at the receiver is a powerful means of further enhancing the system's BER perfor-

mance. Naturally, this is achieved at the cost of reducing the system's effective throughput and by 

investing an additional amount of computational complexity. The relevant turbo coding parameters 

were summarized in Table 4.4, but for the reader's convenience they are repeated here: the coding 

rate was Rc = the constraint length was Kc = 3, the octally represented generator polynomials 

of (7, 5)g were used and four turbo decoding iterations were performed. 

Our discussions will first of all concentrate on a comparison between the various methods of 
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Figure 4.17: BER performance of turbo-coded, 4QAM-modulated, standard SIC detection-assisted SDMA-
OFDM as a function of the SNR recorded at the reception antennas for the rudimentatj soft-bit 
generation approach as suggested by Equation 4.130 and for the weighted soft-bit generation 
approach of Equation 4.133; the curves are further parameterized with the number of simulta-
neous users and reception antennas using L = P, where more specifically (left:) two reception 
antennas, and (right:) four reception antennas were employed; in the smaller-sized sub-figure 
we have magnified the range of SNRs between OdB and 5dB; for the basic simulation parame-
ters and the turbo-coding parameters we refer to Tables 4.3 and 4.4, respectively. 

soft-bit generation, namely on the rudimentary approach of Equation 4.130 and on the weighted ap-

proach of Equation 4.133. The associated BER versus SNR simulation results valid for a scenario of 

L = P = 2 and L = P = A number of simultaneous users and reception antennas are portrayed at 

the left- and right-hand side of Figure 4.17, respectively. In both scenarios a significant performance 

advantage is observed for the weighted soft-bit generation approach, which attempts to take into ac-

count the effects of error propagation through the different SIC detection stages upon de-weighting 

potentially unreliable soft-bit values. For the lower-order SDMA scenario of L = P = 2 the per-

formance improvement achieved by the weighted soft-bit generation is even more dramatic than for 

the scenario of L = P = 4. This is, because for the lower-order scenario the probability that a 

symbol error is incurred during the first detection stage is higher than for the higher-order scenario, 

since the latter system benefits more substantially from the increased grade of diversity experienced 

in conjunction with the higher number of users, supported by a higher number of antennas. Hence, 
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Figure 4.18: BER performance of turbo-coded, 4QAM-modulated, standard SIC detection-assisted SDMA-
OFDM as a function of the SNR recorded at the reception antennas; the curves are further 
parameterized with the number of simultaneous users L and the number of reception antennas 
P , where more specifically (left;) two reception antennas, and (right;) four reception antennas 
were employed; in the smaller-sized sub-figure we have magnified the range of SNRs between 
OdB and 5dB; for the basic simulation parameters and the turbo-coding parameters we refer to 
Tables 4.3 and 4.4, respectively. 

weighting of the soft-bits is more effective in scenarios supporting a lower number of users with the 

aid of less antennas. 

Having found that the weighted soft-bit metric of Equation 4.133 is the advantageous one in terms 

of the system's associated BER performance, further investigations were conducted with respect to 

different scenarios in terms of the number of simultaneous users L and the number of reception 

antennas P. The corresponding simulation results are shown in Figure 4.18 again, on the left-hand 

side for P = 2 reception antennas while at the right-hand side fo r P = 4 reception antennas. 

Similarly to our observations discussed in the context of turbo-coded MMSE detection-assisted 

SDMA-OFDM in Section 4.2.6.4, the system's BER performance is improved upon decreasing the 

number of simultaneous users L. Again, this is because, the associated MMSE combiner of each 

detection stage is less constrained with respect to the specific choice of the antenna array weights 

and hence more of the channel's diversity potential can be dedicated to mitigating the effects of 
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AWGN, rather than to suppressing the undesired co-channel users. 

4.3.1.5 Complexity Analysis 

In this section we will analyse the computational complexity exhibited by the various forms of the 

SIC algorithm on a per-subcarrier basis. The specific structure of this section is as follows. In 

Section 4.3.1.5.1 the computational complexity of the standard SIC algorithm will be investigated, 

while in Sections 4.3.1.5.2 and 4.3.1.5.3 the complexity of the M-SIC and partial M-SIC schemes 

will be analysed, respectively. 

4.3.1.5.1 Complexity of Standard SIC Here we assume that at each stage of the detection pro-

cess the MMSE combiner is employed in its specific left-inverse related representation as described 

in Section 4.2.3.2.2. As highlighted in Section 4.3.1.1, a prerequisite for the calculation of the 

weight matrix according to Equation 4.118 in the %'-th detection stage, is the availability of 

the left-inverse related correlation matrix defined in Equation 4.119, and the knowledge of 

the cross-correlation matrix defined in Equation 4.120, which were employed in the context 

of our description of the SIC detector in Section 4.3.1.1 in their Hermitian transposed form. It was 

highlighted furthermore in the same section that instead of entirely recalculating these matrices at 

the beginning of each detection stage on the basis of the current reduced-size channel transfer factor 

matrix HH, it is computationally more advantageous to calculate them only once at the beginning 

of the detection process and then eliminate the most recently detected user's influence at the end 

of each detection stage. This is achieved by removing the /H-th row- and column from the matrix 

and by eliminating the /M-th column from the matrix Rc^"^, respectively, followed by ap-

propriately rearranging these matrices with the result of a reduced dimensionality. Note that /W is 

the column vector index of the reduced-size channel transfer factor matrix HM, which is associated 

with the most recently detected user, namely the /H-th user. Let us now consider the individual 

steps one by one. 

• Initialization-. Specifically, the computational overhead incurred in terms of the number of 

complex - as well as mixed real-complex multiplications and additions at the beginning of 

the detection process required for the computation of the auto-correlation matrices and 

is given by: 

(4J36) 

(4.137) 

(4^38) 

Weight Calculation-. Furthermore, during the z-th detection stage Equation 4.118 has to be 

solved for the weight matrix with the aid of the LU-decomposition [87]. More 
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specifically, the LU decomposition implies factorizing the reduced-size correlation matrix 

r W ^ G into a lower (L) and upper (U) triangular matrix, followed by forward-

and backward substitutions as outlined in [87]. The associated computational complexity 

becomes: 

(4.139) 

Upon taking into account the reduction of the number of users to be detected and the cor-

responding reduction of the channel matrix' dimension across the different detection stages, 

the total complexity imposed by calculating the weight matrices defined in Equation 4.121 is 

given by; 

= c l S L P (4.140) 
LW = 1 LW=1 

— - f (2Z, + 1)Q:sic + (4.141) 

^ 1 

where the factor Osic is defined as: 

ttsic = 5 3 ^ ~ 2^(-^ + 1). (4.142) 
i = l 

Here we have exploited that [91] YA=I ^ + l ) / 2 and = » ( » + l ) (2n -I-1)/6 

as well as YM=I + 1)^/4. 

Selection: As the metric employed for the selection of the most dominant user we opted for 

the SNR at the combiner's output, as given by Equation 4.26. The rationale of this choice 

was that we demonstrated in Section 4.3.1.4.1 that the employment of the SNR only imposes 

a marginal performance loss compared to employing the SINK as the dominant user ranking 

metric. Here we have found that the number of complex multiplications and additions, as well 

as the number of real divisions and multiplications and the number of comparisons required 

is given by: 

CsiQobj — (ofsic ^ 1)(2-P + 1) (4.143) 

== (o%,c - 1)(2JP) (4.144) 

= (4^4% 

In this context we implicitly assumed that the SNR calculation associated with the selection 

of the most dominant user is not required in the last detection stage, since only a single user 

remains to be detected. 
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• Combining-. Furthermore, the linear combining at each stage of the successive cancellation 

process - carried out with the aid of Equation 4.124 - necessitates the following number of 

complex multiplications and additions as given by: 

= ZuP. (4.146) 

• Demodulation: In addition, the process of MPSK-related demodulation^^, which is realized 

with the aid of Equation 4.125, exhibits a total complexity of: 

== (4.147) 

== = .LJVfc, (4.i48) 

where again, we have included the number of comparisons between the outcomes of the 

Euclidean distance metric as an additional factor increasing the complexity. 

• Updating'. Finally, the process of updating the vector of signals received by the different 

antenna elements according to Equation 4.127 by cancelling the effects of the remodulated 

signal of a specific user from the composite multiuser signal imposes a total complexity of: 

(Tig:;? = = (J:-- 1)^°, (4.149) 

where again, no updating or remodulated signal cancellation is required during the last detec-

tion stage. Here we have also taken into account the average number of explicit data transfers, 

which was quantified as: 

^S,upd — ^ 1) 
5 

+ 6 
4- 1). (4.150) 

More explicitly, the first term corresponds to rearranging the auto-correlation matrix r | ^ ^ , 

while the second terms is associated with rearranging the cross-correlation matrix at 

the end of each detection stage, % = ! , . . . ,L. 

Upon combining the different contributions given in the previous equations, we obtain for the total 

complexity of the standard SIC detector as a function of the number of users L, the number of 

reception antennas P and the number of constellation points Mc the following expressions: 

Csic ^ — -ZfMc + [P{L — 3) — 1] -f - [3 + P[2L + 13)] cxgic + (4.151) 

Csic^ ^ = LM(^ + [P{L — 3) — 1] + — [3 -f- P{2L + 13)] ttsic + (4.152) 

== _ 1) (4.153) 

(4 154) 

=: = (as:c-- 1) (4.156) 

^In the context of the MPSK modulation scheme the normalization of the MMSE combiner's output signal is avoided. 
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where again, Osic = ^L{L + 1 ) was defined in Equation 4.142. In order to further simplify the com-

plexity analysis, it is reasonable to assume that mixed real-complex multiplications'® and additions 

are only half as complex as those performed on two complex variables, while the multiplication of 

two real-valued variables exhibits only one fourth of the complexity. Hence, a slightly simplified 

characterization of the standard SIC detector's complexity is given by: 

=== 4- P i l L - 3 ) - \ 
1 

+ 3 ~ + P{2L + lS] CKsic + gQfg,^4.157) 

^ — L (^c -H 4- P{L — 3) -f- -P{2L + 13)Q;sic + ^"sic (4.158) 

Csic^ ^ = (o'sic — 1) + LMc (4.159) 

= (as,c--1). (4.16()) 

4.3.1.5.2 Complexity of M-SIC As argued in Section 4.3.1.4.2, the standard SIC algorithm 

suffers from error propagation, especially in those subcarriers, where the S(I)NR observed at the 

selected user's associated combiner output during the first detection stage is relatively low. A viable 

strategy of improving the achievable performance and of further reducing the BER/SER is that of 

allowing not only the single most likely constellation point to be selected from the constellation 

during a specific detection stage's demodulation process, but rather to retain the M > 1 number 

of most likely constellation points. As a result, in the %-th stage number of detection and 

demodulation operations has to be performed. This also requires A f ' number of updating or interfer-

ence cancellation operations with respect to the local vector xM of received signals. The complexity 

contribution required for evaluating the weight matrices and SNR estimates, namely 'Initialization', 

'Weight Calculation' and 'Selection' of Section 4.3.1.5.1 remains unchanged. 

• Combining-. More specifically, the computational complexity associated with the operation of 

combining hence becomes: 

^(C*C) _ ^(C+C) _ o p M 1A1) 
'-^M-SIC,cmb — "-^M-SIC.cmb — P m - S I C " ' ) 

where the factor /3m-sic. which corresponds to the total number of different detection nodes in 

the detection process is given by: 

i = 0 I A f - l 

This is the formula characterizing a geometrical series [91]. 

'^Here we neglect that the multiplication of two complex numbers involves real-valued additions as well. Hence our 
simplified formulae are to be understood as best-case estimates of the complexity. 
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• Demodulation: For the MPSK-related demodulation operation we have: 

CM-SIC,dem = Î PM-SICMC (4.163) 

Cm-SIQciId = Pu-SlC^Cl (4.164) 

where the factor /3m-sic was given by Equation 4.162. Additionally, it is also useful to take 

into account the number of comparisons to be carried out in the context of the demodulation 

process invoked at the different detection stages. Here we have to differentiate between the 

first L — 1 detection stages and the last detection stage. Specifically, during the first L — 1 

stages of Figure 4.11 there are: 

• f L — 1 A M = 1 
ihisku == a/r == j (4.165) 

i = 0 L M - 1 ^ 

number of different detection nodes, each of which is associated with selecting the M number 

of most likely tentative symbol decisions out of the Mc number of possible symbol decisions 

associated with the specific modulation scheme employed. The number of comparisons per 

detection node required by this operation is given by: 

Mc ^ 
^M-sic,i = i 2Afc — M), (4.166) 

i=Mc — {M—\) 

which could potentially be further reduced with the aid of more effective binary tree-based 

search m e t h o d s B y contrast, during the last detection stage we incur: 

f 1 = 1 

^ i a m > 1 ' 

number of different detection nodes, each of which is associated with the selection of the 

single most likely symbol decision. This imposes a total number of comparisons per detection 

node, which is given by; 

= Mc- (4.168) 

The final operation in the M-SIC detection process is to select the specific symbol vector 

from the various possible symbol vectors defined by the different tentative symbol decisions 

retained at each detection node, whose associated Euclidean distance metric is the lowest dur-

ing the last detection stage. This requires an additional — 1 number of comparisons. 

Hence, the total number of demodulation-related comparisons during the entire detection pro-

cess is given by: 

= Ewwic, (4.169) 

" F r o m the literature it is well-known that recursive search algorithms, such as 'quick-sort ' require a potentially lower 

number of comparisons than those based on the principles of 'sorting by selection' . 
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where; 

£m-SIC — TM^SIC.i'^M.SIC.i + 7M-SIC,ii'^M-SIC,ii + — 1 . (4.170) 

Updating-. Furthermore, for the total number of updating operations with respect to the vector 

of signals received by the different antenna elements which implies cancelling the effects of 

the remodulated signal from the composite multiuser signal as seen in Equation 4.127 we 

obtain; 

^(C+C) 
'-^M-SIC,upd — ^M-SIC,upd C M - S I C - P ) 

where Cm-sic is defined here as; 

L-l 

C M - S I C — ^ 

L — 1 A M = 1 

1=1 A M > 1 . 

(4.171) 

(4.172) 

Upon additionally recalling the complexity-related contributions corresponding to the initializa-

tion, weight calculation and selection from Section 4.3.1.5.1, the M-SIC detector's complexity is 

characterized by the following equations: 

^(C+C) 
L/M.cir 

— 2 A(-sic-%: + P I /?M-sic + C m - s i c — — 2 + 

+ 
1 5 

4- f (2i: 13) 

1 

0!siC + g'̂ SIC 

(3u-&\cMc + L [ P ^ + P{(3M-SIC + C M - S I C — 2) 4-

+ g-P(2-Z' + 13)o!sic + g'̂ SIC 

c , M-SIC 

M-SIC 

(«sic - 1) 

(ô SIC — 1) + Gw-sic, 

(4.173) 

(4.174) 

(4.175) 

(4.176) 

where again, 0:5^, &.sic. as well as -yw-sicj, <̂ M-sici and "Xw-siĉ , and additionally Cw-sic, (M sic were 

given by Equations 4.142, 4.162, as well as 4.165, 4.166 and 4.167, 4.168 and also Equations 4.170, 

4.172, respectively. In the context of these equations we have once again taken into account that 

mixed real-complex multiplications and additions are only half as complex as the corresponding 

operations associated with two complex numbers'^. 

4.3.1.5.3 Complexity of Partial M-SIC In this section we will briefly assess the computational 

complexity of partial M-SIC. We recall from Section 4.3.1.2.2 that in contrast to the M-SIC de-

scribed in Section 4.3.1.2.1, the M most likely symbol decisions per detection node are only re-

tained up to the specific L' = LpM-sic-th detection stage. By contrast, for the higher-index detection 

Again, this neglects that the multiplication of two complex numbers also involves real-valued additions. 
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stages only the single most likely symbol decision per detection node is retained, as in the case of 

the standard SIC scheme, which was described in Section 4.3.1.1. This implies that for L' = 1 

the partial M-SIC detector is identical to the standard SIC detector, while for L' = L the M-SIC 

detector is obtained. The analysis of the partial M-SIC's complexity follows a similar procedure 

to that applied in Section 4.3.1.5.2 in the case of the M-SIC scheme. The difference resides in the 

specific composition of the factors /^^,c and "ypM sic,,, 7pM-sic.ii, as well as Cpw-sic and (pw-sic, which 

were defined for M-SIC in Equations 4.162 and 4.165, 4.167 as well as 4.170, 4.172. By contrast, 

here we have: 

as well as: 

A M 
% « . s , o = E ^ ' = . M > 1 

i=0 I M-1 A VW > 1, 

and: 

L-l 
7pM.s,c.n= ^ = (4.179) 

1=1-'—1 

Hence, similarly to Equation 4.169 the total number of demodulation-related comparisons during 

the entire detection process is given by: 

where we have: 

C g S m = 6̂ .SIC, (4.180) 

CpM SIC — 7pM-SIC,i<^pM-SIC,i + 7pM-SIC,ii '^pM-SIC,ii + ^ 1, (4.181) 

and 5pM-sic,i = ^M-sic,i as well as (5pM-sic,ii = ^M-sic,ii- Furthermore, the interference-cancellation based 

updating-related factor CpM-sic is given by: 

In order to obtain the expressions for the total complexity associated with partial M-SIC, the 

variables A -̂sic, Vw-sic;;, 7M-sic.ii. Cw sic and (pw-sic employed in the context of Equations 4.173, 4.174, 

4.175, 4.176 have to be substituted against the corresponding partial M-SIC-specific expressions 

defined in this section. 
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Figure 4.19: Complexity of standard SIC, M-SIC and partial M-SIC in terms of (left;) the number of complex 
multiplications and (right;) the number of real-valued comparisons recorded on 
a subcarrier basis, as a function of the number of simultaneous users L, which was assumed 
to be equal to the number of reception antennas P ; the curves related to partial M-SIC are 
further parameterized with the index of the detection stage namely, L' = ipM-sic> up to which 
M number of tentative symbol decisions per detection node were retained; specifically for M-
SIC and partial M-SIC the number of retained tentative symbol decisions per detection node 
was equal to M = 2, while in all scenarios Mc = 4 constellation points were assumed, which 
is for example the case in the context of 4QAM modulation. 

4.3.1.5.4 Complexity Comparison of the Different SIC Detectors In this section the different 

SIC-related detection techniques, namely standard SIC, M-SIC and partial M-SIC will be compared 

against each other on the basis of the complexity formulae developed in the previous sections. In 

the context of our evaluations the Mc number of constellation points associated with the modulation 

scheme employed was assumed to be M,, = 4, which is the case for example for 4QAM modulation. 

The M-SIC retained M = 2 number of symbol decisions at each detection node. In the context of 

the 4QAM modulation scheme we found that further increasing the M number of tentative symbol 

decisions per detection node retained does not yield a significant additional performance improve-

ment. 

Specifically, on the left-hand side of Figure 4.19 we have compared standard SIC against the 

M-SIC scheme as well as to the partial M-SIC arrangement in terms of the number of complex 



multiplications imposed on a subcarrier basis, as a function of the number of simultaneous users 

L, which was assumed here to be equal to the number of reception antennas P. Furthermore, the 

curves associated with the partial M-SIC scheme are additionally parameterized with the index of 

the detection stage, namely L' = ipM-sic, up to which the M most likely tentative symbol deci-

sions per detection node were retained. By contrast, for the higher-index detection stages only one 

symbol decision per detection node was retained. The curves associated with the different detec-

tion techniques in Figure 4.19 were generated with the aid of the complexity formulae given by 

Equations 4.157 as well as 4.173. For the partial M-SIC scheme furthermore the specific variables 

have to be substituted into Equation 4.173. The number of complex additions associated with the 

different detectors has not been illustrated here, since these values were found only to differ slightly 

from those of the number of complex multiplications. As expected, it is evidenced by Figure 4.19 

that the M-SIC detector may become significantly more complex than standard SIC, depending on 

the number of simultaneous users L. While for a scenario of L = P = 4 the complexity of the 

M-SIC scheme is observed in Figure 4.19 to be higher than that of standard SIC by about 32%, for a 

scenario of -L = P = 8 the M-SIC is by a factor of about 2.32 or equivalently, by about 132% more 

complex. This is a result of the exponential growth of the number of demodulation and updating 

operations associated with the M-SIC scheme, when increasing the number of users L as seen in 

Figure 4.19. As expected, the complexity of partial M-SIC is shown in Figure 4.19 to be between 

that of standard SIC and M-SIC for 1 < L' < L. 

Similar observations can also be inferred for the computational complexity in terms of the number 

of comparisons between real-valued numbers, as portrayed at the right-hand side of Figure 4.19. 

Here the complexity difference between standard SIC and M-SIC is even more dramatic. While for 

a scenario of L = P = 4 the M-SIC is a factor 3.88 more complex than standard SIC, for a scenario 

of 1/ = P = 8 this factor is as high as 23.32. Again, the partial M-SIC is capable of significantly 

reducing the complexity - also depending on the cut-off level L' - although this is achieved at the 

cost of a performance degradation, as it was observed in Section 4.3.1.4.5. 

In order to further characterize the complexity of the standard SIC- and that of the M-SIC detector, 

in Table 4.6 we have listed the complexity-related contribution of the different components involved 

in the detection process for a scenario of L = P = 4. Note that the process of initialization, weight 

calculation and selection - as described in Section 4.3.1.1 - is identical for both the standard- and the 

M-SIC detector, which is indicated by "%" in the corresponding entries of Table 4.6. However, as 

argued earlier in this section, the computational complexity related to the operations of demodula-

tion, combining and updating is significantly increased for the M-SIC scheme compared to standard 

SIC due to the higher number of detection nodes. 
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description ^ S I C ' - ' S I C M-SIC 
^(C+C) 
"-^M-SIC 

initialization: 72 66 - % % % 

weight calc. 153.33 153.33 - % % % 
selection 8&25 72 9 % % % 
combining 16 16 - 60 60 -

demodulation 8 16 16 30 60 88 
updating 12 12 - 56 56 -

-4- total 345 335.33 25 454.58 467.33 97 

Table 4.6: Computational complexity of the different processing steps involved in standard SIC (columns 
1 . . . 3) and M-SIC (columns 4 . . . 6) for a scenario of L = P = 4 simultaneous users- and 
reception antennas; specifically for M-SIC the number of tentative symbol decisions per detection 
node was equal to M = 2, while in all scenarios Mc = 4 constellation points were assumed, 
which is for example the case with 4QAM modulation. 

4.3.1.6 Summary and Conclusions on SIC Detection Techniques 

Our discussions commenced in Section 4.3.1 with a portrayal and characterization of standard SIC 

based detection and its derivatives, namely the M-SIC and partial M-SIC detection schemes in the 

context of both uncoded and turbo-coded scenarios. More specifically, standard SIC detection was 

detailed in Section 4.3.1.1. Its associated block diagram was portrayed in Figure 4.10 and the most 

significant equations were summarized in Table 4.5. As a result of the SIC detector's strategy of 

detecting only the most dominant user having the highest SINR, SIR or SNR at its associated linear 

combiner's output, the dimensionality of the associated symbol classification- or demodulation was 

reduced to evaluating the single-user Euclidean distance metric of Equation 4.125 LMc times in 

contrast to calculating the multi-user Euclidean distance metric of Equation 4.223 -times, as in 

the case of joint optimum ML detection. 

The performance of the SIC detector critically relies on correct symbol decisions at the different 

detection stages, otherwise potentially catastrophic error propagation is encountered. An attractive 

strategy of reducing these effects is that of tracking multiple symbols decisions from each detection 

node. The philosophy of this technique was addressed in Section 4.3.1.2. Specifically in Sec-

tion 4.3.1.2.1 we considered M-SIC, where the M number of most likely tentative symbol decisions 

were tracked from all detection nodes in the detection 'tree' of Figure 4.11. 

In an effort to reduce the potentially high computational complexity of M-SIC compared to that 

of standard SIC and motivated by the observation that the highest symbol error probabilities are 

associated with the 'early' or low-index detection stages, in Section 4.3.1.2.2 the partial M-SIC was 

briefly characterized. Recall that at higher SNRs for the detection stages encountered towards the 

end of the detection process the symbol error probability is lower than for the detection process at 

the beginning, provided that error-free symbol decisions were encountered in the previous detection 



stages. This is because towards the end of the detection process the MIMO system's effective di-

versity order is increased. More specifically, the principle of partial M-SIC was to track the M > 1 

number of most likely tentative symbol decisions per detection node only during the first few detec-

tion stages. By contrast, for the later detection stages only one symbol decision per detection node 

was made, as in the case of standard SIC. The philosophy of these techniques was further augmented 

with the aid of Figure 4.11, which illustrates the associated detection trees for the specific scenario 

of -L = 4 users and for retaining M = 2 number of tentative symbol decisions per detection node 

in case of M-SIC and partial M-SIC. Specifically, the graph at the left-hand side of Figure 4.11 was 

associated with standard SIC, while that at the right-hand side of Figure 4.11 with M-SIC. Finally, 

in the centre of Figure 4.11 the various partial M-SIC related detection 'trees' were portrayed. A 

further reduction of the computational complexity could potentially be achieved with the aid of the 

SDI-M-SIC technique [53, 117], which was briefly addressed in Section 4.3.1.2.3. 

Our further deliberations in Section 4.3.1.3 then addressed the problem of SIC-specific soft-bit 

generation required for turbo-decoding. Based on our observation of the effects of error propagation 

through the different SIC detection stages the weighted soft-bit metric of Equation 4.133 was pro-

posed. It was demonstrated later in Section 4.3.1.4.7 that the employment of this weighted soft-bit 

metric resulted in a significant BER performance improvement in scenarios, where the number of 

users L is of similar value to the number of BS reception antenna elements P. 

Our performance analysis of the various SIC-related detection techniques was conducted in Sec-

tion 4.3.1.4. Specifically, in Section 4.3.1.4.1 our discussions commenced with the analysis of the 

BER and SER performance of standard SIC and M-SIC, parameterized with the number of users 

L and the number of reception antennas P. A significant performance improvement was observed 

in Figure 4.12 upon increasing the SDMA-MIMO system's order under the constraint of L = P. 

This was a result of the higher 'diversity' of users in terms of their different received signal quality 

observed at each detection stage. Furthermore, we found that using the SINR instead of the SNR at 

the linear combiner's output for selecting the most dominant user f rom the set of remaining users at 

each SIC detection stage had a modest, but noticeable beneficial effect at low BERs in conjunction 

with more than three users. 

Our further investigations conducted in Section 4.3.1.4.2 then focused on the analysis of the SER 

encountered at each detection stage, again for both the standard SIC and the M-SIC. As it was 

shown for the standard SIC scheme at the left-hand side of Figure 4.13, the SER monotonously 

increases upon approaching the last detection stage. Our explanation of this phenomenon was that 

the symbol error probability encountered at a specific detection stage is composed of the symbol 

error probability of the previous stage plus an 'additional' error probability, which is related to 

the effects of the residual AWGN at the specific stage considered under the assumption that no 

symbol errors have occurred in the previous detection stages. For higher SNRs we observed that the 

different detection stages' SER curves merge, since the 'AWGN'-related symbol error contribution 
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is decreased for the higher-index detection stages, which is a result of the system's increased grade 

of diversity. For M-SIC similar SER curves were shown at the right-hand side of Figure 4.13. 

In order to further highlight the effects of error propagation through the different SIC detection 

stages, in Section 4.3.1.4.3 the standard SIC detector's SER performance was portrayed in the con-

text employing error-free symbol decisions in the SIC module of Figure 4.10. Specifically at the 

left-hand side of Figure 4.14 the SER results were averaged over the different detection stages, while 

at the right-hand side of Figure 4.14 the SER results were portrayed on a per-detection stage basis. 

Compared to the more realistic case of employing an imperfect, potentially error-contaminated re-

modulated reference the SER improvement is substantial, which provided a further motivation for 

mitigating the effects of error-propagation for example with the aid of the M-SIC scheme of Sec-

tion 4.3.1.2. 

In an effort to further characterize the effects of error-propagation, in Section 4.3.1.4.4 we have 

analysed the probability of the various symbol error events, namely that a symbol error has occurred 

in the first detection stage, while the symbol decisions carried out during the higher-index detection 

stages were error-free. The associated probabilities of the various error-events at the reception 

antennas were shown at the left-hand side of Figure 4.15 as a function of the SNR, while at the 

right-hand side their contribution to the total SER was portrayed. From these curves we inferred 

that for higher SNRs the SER is governed by specific error-events, which originated from the first 

detection-stage, followed by those events, which commenced in the second stage and so on. 

This was the main motivation for employing partial M-SIC, which was characterized in terms of 

its SER in Section 4.3.1.4.5, specifically at the left-hand side of Figure 4.16. Here we observed that 

in a scenario of L = P = A users and reception antennas as well as at an SER of 10"^ achieved 

by the partial M-SIC scheme up to and including the second detection stage, the SNR must be only 

a modest IdB higher than that required by the M-SIC arrangement, while at the same time halving 

the complexity. 

Furthermore, in Section 4.3.1.4.6 SDI-M-SIC was discussed and compared to both standard SIC 

and M-SIC at the right-hand side of Figure 4.16. The philosophy of SDI-M-SIC was to allow the 

employment of M-SIC or partial M-SIC only in a limited number of low-quality OFDM subcarriers, 

namely in those, which exhibit the lowest SINR during the first detection stage, while using standard 

SIC in all other subcarriers. In our specific example we employed partial M-SIC, where multiple 

tentative symbol decisions per detection node were permitted only during the first detection stage. In 

the context of the indoor WATM channel model of Section 6.1.1 it was shown at the right-hand side 

of Figure 4.16 that a modest number of Ns^i = 64 decision-insertion related subcarriers is sufficient 

for closely approximating the performance of the partial M-SIC scheme. This corresponded to 

1/8-th of the total subcarriers. 

Finally, in Section 4.3.1.4.7 the BER performance of turbo-coded standard SIC detection-assisted 
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SDMA-OFDM was analysed. Specifically, in the context of Figure 4.17 we have compared the ben-

efits of employing the rudimentary soft-bit metric of Equation 4.130 against those of the improved 

soft-bit metric of Equation 4.133, which accounted for the effects of error-propagation through the 

different detection stages. The employment of the weighted soft-bit metric of Equation 4.133 was 

found to be particularly beneficial in the context of a 'fully-loaded' SDMA-OFDM system, where 

the number of users L equals the number of reception antennas P. Further BER performance results 

related to the weighted soft-bit metric were presented in Figure 4.18, which characterized the influ-

ence of the number of users L on the SDMA-OFDM system's BER performance. Here we observed 

that the BER curves associated with different numbers of users were within an SNR range of 2dB 

at a BER of 10~®. This is an indication of the higher quality of the soft-bit estimates. 

Our discussions in Section 4.3.1 were concluded in Section 4.3.1.5 with the aid of a complexity 

analysis of standard SIC, M-SIC and partial M-SIC, which were the topics of Sections 4.3.1.5.1, 

4.3.1.5.2 and 4.3.1.5.3. Specifically, the associated complexity formulae of standard SIC, which 

reflect the number of complex multiplications and additions as well as real-valued comparisons 

and divisions were given by Equations 4.157, 4.158, 4.159 and 4.160, respectively. Furthermore, 

the corresponding complexity formulae of M-SIC were given by Equations 4.173, 4.174, 4.175 

and 4.176, respectively. Based on these equations the different SIC detectors' complexities were 

graphically compared in Figure 4.19. Specifically at the left-hand side of Figure 4.19 we have 

plotted the number of complex multiplications, while at the right-hand side the number of real-

valued comparisons required. We observed that standard SIC exhibits the lowest complexity, while 

M-SIC the highest complexity. A compromise in terms of both the achievable BER performance 

and the complexity imposed is achieved with the aid of the partial M-SIC scheme. In order to 

support our analysis, the corresponding numerical complexity values were provided in Table 4.5 for 

the standard SIC and the M-SIC. 

4.3.2 PIC Detection 

One of the key justifications for proposing SIC was that upon decreasing the number of users during 

the successive detection stages a higher grade of antenna array diversity potential can be dedicated 

by the MMSE combiner to the mitigation of the serious channel transfer factor fades, rather than 

to suppressing the interfering signal sources. Hence the highest array noise mitigation is achieved 

during the last SIC iteration, when after correct detection and subtraction of all the co-channel users' 

remodulated signals, the interference-free array output vector is constituted by the transmitted signal 

of the least dominant user plus an array noise contribution. The above interference cancellation 

principle - which was portrayed in the context of SIC in Section 4.3.1 - can be invoked also in form 

of a PIC scheme [114, 139]. 

The outline of this section is as follows. Our discussions commence in Section 4.3.2.1 with the 
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Figure 4.20: Illustration of the main signal paths associated with the hard-decision based PIC detector. The 
signals Xp,p = 1 , . . . , P received by the different antenna elements are fed into the MMSE 
linear combiner described by Equations 4.185 and 4.186, which is active only during the first 
PIC detection stage. Furthermore, the signals Xp,p — 1 , . . . , P are fed into the PIC module 
described by Equation 4.189, which is active for all PIC iterations associated with i >2. The 
outputs gWM, Z = 1 , . . . , L of the bank of M^-axy symbol classifiers or demodulators obeying 
Equations 4.187 and 4.193 are then fed back to the PIC module seen at the top of the figure. 
According to Equation 4.189, P different signals fnclp'P = 1, • • • , P , namely the potentially 
interference-free i.e. 'decontaminated' antenna output signals are available for the Z-th user at 
the output of the PIC module, which are again linearly combined with the aid of Equations 4.191 
and 4.192, in order to form the estimate of the signal transmitted by the Z-th user, where 
I = 1 , . . . ,L. Note that for the sake of visual clarity here we have omitted the signal paths 
associated with the channel transfer factor estimates required by the linear combiners and the 
PIC module. Also note than in our specific case the linear combiner employed is the MMSE 
combiner of Section 4.2.3 
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description of the PIC detector's structure in the context of an uncoded scenario, while in Sec-

tion 4.3.2.2 the principles of turbo-coded PIC are discussed. This is followed in Section 4.3.2.3 

by the analysis of its performance in both an uncoded- and a turbo-coded scenario, while in Sec-

tion 4.3.2.4 the analysis of the detector's complexity is carried out. A summary and conclusions 

will be offered in Section 4.3.2.5. 

4.3.2.1 Uncoded PIC 

In this section we will highlight the PIC detector's structure, which is depicted in Figure 4.20. Let 

us commence our discussions upon recalling from Equation 4.1 the specific structure of the vector 

X G of signals received by the different antenna elements, namely that we have: 

X = l i s 4-11 (4.183) 

= -I- HWgW + n , (4.184) 
1 = 1 

where again, H E is the channel transfer factor matrix, s E is the composite mul-

tiuser vector of signals transmitted by the L different users and n 6 is the vector of AWGN 

contributions encountered at the P different antenna elements. Specifically, from the component 

representation given by Equation 4.184 we observe that the array output vector x is composed of 

the /-th user's signal contribution vector and the L — 1 interfering users' signal contribution vectors 

plus the AWGN vector. Hence, if initial estimates gW, % G { 1 , . . . , \ {/} of the interfering users' 

transmitted signals would be available, a noisy estimate x^'^ of the /-th user's signal contribution 

could be obtained upon removing the L — 1 interfering users' estimated signal contributions given 

by G { 1 , . . . , L } \ {/} from the vector x of signals received by the different antenna ele-

ments. An estimate of the /-th user's transmitted signal could then be inferred by linear antenna 

diversity combining. The more specific processing steps of the P I C detector proposed here will be 

further detailed in the following sections with reference to Figure 4.20. 

First-Stage - MMSE Detection 

• Combining-. During the first PIC iteration seen in Figure 4.20 each user is detected by means 

of the MMSE combiner, where the linear combiner's output vector Smmse G is given 

according to Equation 4.50 by: 

SuMSE = (4.185) 

and the weight matrix W^mse E is given in its left-inverse related form according to 

Equation 4.68 as; 

= HPs^(H^HPsNR + I ) - \ (4.186) 
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where Psnr E is the diagonal-shaped SNR matrix. 

Classification/Demodulation-. Then the linear combiner's output vector §[̂ 1 = Smmse is de-

modulated, with the aid of the blocks seen at the bottom right-hand corner of Figure 4.20, 

resulting in the vector sM G of symbols that are most likely to have been transmitted 

by the L different users. More specifically, as shown in Section 4.2.4, the demodulation is 

carried out upon evaluating Equation 4.94, namely: 

2 

, / = ! , . . . (4.187) 

where the Z-th user's effective channel transfer factor is given by: 

(4.188) 

and the l-th user's weight vector is the /-th column vector of the weight matrix Wmmse-

Equation 4.187 implies calculating the Euclidean distance between each of the normalized 

e l e m e n t s o f the combiner's output vector sW namely, / = 1,... , L, and all of the le-

gitimate trial-symbols, which are the amplified constellation points contained in the set M c , 

associated with the specific modulation scheme employed. According to the ML principle 

that specific trial-symbol is retained as the most likely transmitted one for the /-th user, which 

exhibits the smallest Euclidean distance from the combiner's normalized output signal 

However, as argued in Section 4.2.4, this decision principle is based on the assumption, that 

the residual interference contaminating the combiner's output signal is also Gaussian, which 

in general is not the case. Hence the demodulation principle formulated according to Equa-

tion 4.187 is sub-optimum. 

i-th Stage: PIC Detection 

• Parallel Interference Cancellation-. During the i-th PIC iteration seen in Figure 4.20, where 

i > 2 a potentially improved estimate of the complex symbol transmitted by the 

/-th user is obtained upon subtracting in a first step the L — 1 interfering users' estimated 

signal contributions, from the original vector x of signals received by the different antenna 

elements, which can be expressed as: 

= X - (4 igg) 

This operation takes place within the PIC block shown at the top of Figure 4.20. Provided that 

correct tentative symbol decisions were made during the previous detection stage, namely we 

"The normalization is not necessary in the context of employing MPSK modulation schemes in the absence of tm'bo-
decoding. 
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have = s^^\j G { 1 , . . . ,L} \ {/} for the L — 1 interfering users, the estimated array 

output vector G will only consist of the Z-th user's namely the desired user's 

signal contribution vector plus the AWGN vector n , which is expressed as: 

+ n A G { 1 , . . . \ {(}. (4.190) 

• Combining: The final task is hence to extract an estimate Spic'"̂ ^ of the signal transmitted by 

the /-th user from the /-th user's PIC-related array output vector . This can be achieved 

upon invoking once again the left-inverse related MMSE combiner, seen below the PIC block 

at the top of Figure 4.20, whose associated weight matrix was given by Equation 4.186 for 

the more general case of detecting L users. As observed in Equation 4.190, the signal vector 

at the output of the PIC block at the top of Figure 4.20 is now potentially free of 

interference. Hence the channel transfer factor matrix H and the SNR matrix Psnr defined 

in Equation 4.65, which are integral parts of the MMSE-related weight matrix according to 

Equation 4.186, have to be substituted by the l-th user's related components namely, by 

and SNR(^) = This results in the weight vector w^^sE, given by: 

w ' m = 1 . (4.151) 

With the aid of the weight vector of Equation 4.191 an estimate of the l-th 

user's transmitted signal can then be extracted from the vector seen at the output 

of the linear MMSE combiner in the centre of Figure 4.20 - similarly to Equation 4.185 - as 

follows: 

P̂IC — ̂ MMSE P̂IC ' ^̂ 4. 

Classification/Demodulation: The above PIC and MMSE-combining steps are again followed 

by the classification, demodulation stage seen at the right of Figure 4.20, which obeys: 

2 

(4.193) = Qrp m m 
s/ai^Mc - " e f f 

where the /-th user's effective channel transfer factor is given by: 

(4.194) 

In other words. Equation 4.193 delivers the symbol that is most likely to have been 

transmitted by the /-th user. The i-th PIC iteration described above potentially has to be 

performed for all the different SDMA users namely, for / = 1 , . . . ,L. 
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description instruction 

First-Stage - MMSE Det. 

Calc. MMSE weight matrix 

Detection SMMSE = e aWW = gMMSE, Z = 1, - - - , ̂  

Demodulation, / = ! , . . . ,L s(0[i] = arg min 
sjcrieMc 

2-th Stage - PIC (/ = 1, ..,L) 

Subtraction 

Calc. MMSE weight vectors 

Detection " WW a(OW s(OW 
6 PIC — * P I C > — a P I C 

Demodulation gCOW = arg min 
s/ai^Mc 

Table 4.7: Summary of the standard hard-decision based PIC detector. 

We have summarized the steps of the PIC algorithm once again in Table 4.7, while the schematic of 

the PIC detector was provided in Figure 4.20. Note however that for the sake of visual clarity in the 

context of this simplified schematic we have omitted the signal paths associated with the channel 

transfer factor estimates required by the linear combiners and within the PIC module. 

4.3.2.2 Turbo-Coded PIC 

In the context of our investigations concerning uncoded PIC detection assisted SDMA-OFDM in 

Section 4.3.2.3.1 we will highlight that the system's relatively poor performance compared to that 

of uncoded SIC detection-assisted SDMA-OFDM, discussed in Section 4.3.1.4.1, is related to the 

effects of 'error propagation' between the different users' symbol estimates during the second PIC 

detection stage. This is, because if amongst the L different users' tentative symbol decisions made 

during the first PIC stage there is a specific subcanier, which has an unreliable tentative symbol 

decision while all the L — 1 remaining users' tentative symbol decisions are relatively reliable, 

then after the second PIC detection stage all of these L — 1 users' symbol decisions will become 

potentially unreliable. By contrast, the single user's tentative symbol decision, which was unreliable 

after the first detection stage is expected to become more reliable. 

In Sections 4.2.6.4 and 4.3.1.4.7 we demonstrated in the context of both MMSE-and SIC detection-

assisted SDMA-OFDM that turbo-decoding at the receiver is a powerful means of further enhancing 

the system's BER performance. Specifically, the turbo-decoder was incorporated into the system by 

simply feeding the demodulator's soft-bit output into the turbo-decoder. Recall that the generation of 

the soft-bits required for turbo-decoding was discussed earlier in Section 4.2.5 and 4.3.1.3, respec-

tively. In the context of the associated simulations four turbo decoding iterations were performed 



by the turbo-decoder, followed by slicing or hard-decision of the turbo-decoder's 'source'-related 

soft-output bits. Here we note explicitly that the turbo-iterations were entirely performed within 

the turbo-decoder, without invoking again the system's remaining components. The turbo coding 

parameters were summarized in Table 4.4. 

Similarly to the MMSE and SIC schemes, in order to enhance the BER performance of PIC 

detection-assisted SDMA-OFDM a trivial approach would be to feed the turbo-decoder with the 

demodulator's soft-bit output after the PIC detection process and again, to perform a number of iter-

ations within the turbo-decoder, followed by slicing the turbo-decoder's 'source'-related soft-output 

bits. However, recall our observation that for some users the reliability of the second PIC detection 

stage's symbol decisions might be degraded compared to that of the first PIC detection stage due to 

feeding potentially unreliable tentative symbol decisions into the second PIC detection stage. Hence 

it is potentially beneficial to embed the turbo-decoding into the PIC detection process. To be more 

specific, after the first detection stage - based on the different users' soft-bit values derived from 

the associated MMSE combiner's output signals, as it was demonstrated in Section 4.2.5, only a 

fraction of the total number of turbo-decoding iterations is performed. A reference signal is then 

generated upon slicing and remodulating the turbo-decoder's 'source- plus parity'-related a poste-

riori soft-output bits for the following second PIC detection stage. Our experiments revealed that it 

is less effective to slice, reencode and remodulate only the 'source'-related a posteriori soft-output 

bits. After the second PIC detection stage, again, soft-bits would again be generated, which are fed 

into the turbo-decoder, followed by a number of turbo-iterations and a final slicing of the 'source'-

related soft-output bits. These constitute the PIC receiver's output bits. Alternatively, further PIC 

iterations could be performed, but in the context of the hard-decision- or slicing based PIC scheme 

employed here no additional performance gain was observed. 

A further BER performance improvement can potentially be achieved upon feeding soft-bit val-

ues, rather than sliced bits, into the second PIC detection stage following the concepts of turbo-

equalization [139] instead of the hard-decision based remodulated reference signals. 

4.3.2.3 Performance Analysis 

In this section the PIC algorithm will be investigated with respect to its BER performance in both a 

scenario without channel coding, as well as a scenario where turbo-coding is employed. Specifically, 

the interference cancellation process carried out during the PIC detector's second stage will be 

shown to benefit from the less error-contaminated first stage tentative symbol decisions. Again, 

the frame-invariant fading indoor WATM channel model and its associated OFDM system model 

described in Section 6.1.1 were invoked and ideal knowledge of the channel transfer functions 

associated with the different transmit-receive antenna pairs was assumed. For a summary of the 

basic simulation setup we refer again to Table 4.3. 



Cf&4uP7jER4(. I%ETnE%:TrR:%\r7]?c:R[NT(2[;i%SjPC)R 7Wnj7;r]^[;S2if;.SI)A4;l-C)fI)Af 267 

Fr.-Inv. Fad. SWATM, A2/U2. Ideal Ch. Est., 4QAM 
10° 

° MMSE 
0 PIC 

Fr.-Inv. Fad. SWATM, A4/U4, Ideal Ch. Est., 4QAM 
10° 

0 5 10 15 20 25 30 35 40 
average SNR at the reception antennas [dB] 

o MMSE 
0 PIC 

Users: 

0 5 10 15 20 25 30 35 40 
average SNR at the receiver antennas [dB] 

Figure 4.21: BER performance of 4QAM-modulated, PIC detection-assisted SDMA-OFDM as a function of 
the SNR encountered at the reception antennas for (left:) P = 2 reception antennas and up to 
L = 2 simultaneous users and (right;) P = 4 reception antennas and up to i = 4 simultaneous 
users; additionally, we have plotted the BER performance of MMSE detection-assisted SDMA-
OFDM; for the basic simulation parameters we refer to Table 4.3. 

The further structure of Section 4.3.2.3 is as follows. While in Section 4.3.2.3.1 the PIC detec-

tion assisted SDMA-OFDM system's BER performance is considered without employing channel 

coding, our simulation results for the turbo-coded scenario will be discussed in Section 4.3.2.3.2. 

4.3.2.3.1 BER Performance of Uncoded PIC Detection-Assisted SDMA-OFDM for Different 

Numbers of Users and Receiver Antennas In Figure 4.21 we have portrayed the BER- as well 

as the SER performance of 4QAM-modulated PIC detection-assisted SDMA-OFDM as a function 

of the SNR encountered at the reception antennas. Specifically, in the context of the curves shown 

at the left-hand side of Figure 4.21 P = 2 reception antennas and up to L = 2 simultaneous 

users were assumed. By contrast, the curves at the right-hand side of Figure 4.21 characterize the 

scenario of P = 4 reception antennas supporting up to Z, = 4 simultaneous users. The MMSE 

detection-related BER performance curves, which were shown earlier in Figure 4.8 have again been 

plotted as a reference. We observe that upon increasing the SNR, the PIC detection-assisted system's 

BER performance exhibits the same trends as that of the MMSE detector, although a specific BER 
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performance is achieved at consistently lower SNRs. The highest SNR gain achievable with the 

advent of employing PIC detection compared to MMSE detection is approximately 3.03dB at a 

BER of 10"4, which was observed here for the basic SDMA scenario of P = 2 reception antennas 

and L = 2 simultaneous users (A2/U2). By contrast, for the higher-order SDMA scenario of P = 4 

reception antennas the highest SNR gain of 1.61dB is observed for L = 2 simultaneous users 

namely, while for L = 3 and L = A users the SNR gains are approximately 1.43dB and 1.25dB, 

again, at a BER of 10"*. The reason for the reduction of the SNR gain along with increasing 

the number of simultaneous users L is, because upon supporting more users the probability of an 

erroneous first-stage tentative symbol decision among one of the users is increased. Hence also 

the users benefitting from correct tentative symbol decisions during the first detection stage are 

more likely to be corrupted. As mentioned before, in an effort to render the first-stage tentative 

symbol decisions more reliable, channel coding can be employed. Hence, in the next section we will 

concentrate our attention on characterizing the PIC detection-assisted system's BER performance 

in a turbo-coded scenario. 

4.3.2.3.2 BER Performance of Turbo-Coded PIC Detection-Assisted SDMA-OFDM for Dif-

ferent Numbers of Users and Receiver Antennas As demonstrated in Sections 4.2.6.4 and 

4.3.1.4.7 in the context of turbo-coded MMSE- and SIC detection-assisted SDMA-OFDM, em-

ploying turbo-decoding at the receiver is a powerful means of further enhancing the system's BER 

performance. Again, this is achieved at the cost of reducing the system's effective throughput and 

by imposing additional computational complexity. 

In the context of PIC detection-assisted SDMA-OFDM we conjectured in Section 4.3.2.2 that 

instead of simply concatenating PIC detection and turbo-decoding as we did in the case of turbo-

coded MMSE- or SIC detection-assisted SDMA-OFDM, it is potentially more beneficial to embed 

the turbo-decoding into the PIC detection process. As a result, a set of more accurate remodulated 

reference signals can be obtained for the second PIC detection stage. 

More explicitly, a fraction of the total number of affordable turbo-decoding iterations would be 

performed after the first PIC detection stage, while the rest of the turbo iterations is carried out 

during the second PIC detection stage. More explicitly, in order to render the associated BER 

performance results comparable to those of turbo-coded MMSE-, SIC and ML detection-assisted 

SDMA-OFDM presented in Sections 4.2.6.4, 4.3.1.4.7 and 4.3.3.4.2, respectively, it is useful to 

split the total number of turbo iterations available between the turbo-decoding conducted after the 

first- and the second PIC detection stage. Since four turbo iterations were employed in our previous 

investigations, a plausible choice is to assign two iterations to both the first- and the second PIC 

detection stage. An equal splitting of the number of turbo iterations is also motivated by the obser-

vation that the most significant BER improvement due to turbo decoding is achieved during the first 

few turbo-decoding iterations. 
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Figure 4.22: BER performance of turbo-coded, 4QAM-modulated, PIC detection-assisted SDMA-OFDM as 
a function of the SNR recorded at the reception antennas for (left:) P = 2 reception antennas 
and up to L = 2 simultaneous users and (right:) P = 4 reception antennas and up to L = 4 si-
multaneous users. Two methods of generating the remodulated reference signal were employed 
by the PIC module of Figure 4.20, namely a 'source'- related a posteriori soft-output based 
reference and a 'source- plus parity'-related a posteriori soft-output based reference. For the 
list of basic simulation parameters we refer to Table 4.3. 

The other relevant turbo coding parameters were summarized in Table 4.4, but for the reader's 

convenience they are repeated: the coding rate was Rc = the constraint length was Kc = 3, 

and octally represented generator polynomials of (7,5)8 were used. Again, a total of four turbo 

iterations was performed. 

Our BER simulation results are portrayed in Figure 4.22 at the left-hand side for P = 2 reception 

antennas, while at the right-hand side for P = 4 reception antennas, when supporting up to L = P 

number of users. Two methods of generating the remodulated reference- or reconstructed received 

signal used in the PIC module of Figure 4.20 are compared against each other. Specifically in the 

first case we used slicing, reencoding, interleaving and remodulating only for the 'source'-related 

a posteriori soft-output bits, while in the second scenario we employed slicing, interleaving and 

remodulating for the 'source- plus parity'-related a posteriori soft-output bits of the turbo-decoder. 

As expected, compared to the uncoded scenario, whose associated simulation results were shown 



CHCAjDTiiRj. jiErnacjnrcwv sr/o 

in Figure 4.21, the BER is significantly reduced for both methods of generating the remodulated 

reference signal. However, for the 'source- plus parity' related remodulated reference signal of the 

second scenario a performance advantage of about 1.8dB was observed in Figure 4.22 at a BER of 

10~® compared to the 'source'-related reference based scenario. In general, note the significant BER 

performance difference in favour of the scenario of four reception antennas and three simultaneous 

users, compared to supporting four simultaneous users. The explanation of this phenomenon is that 

in the scenario supporting a lower number of users the tentative symbol decisions provided by the 

first PIC detection stage are more reliable. This is a result of the higher relative diversity order 

encountered by the MMSE combiner, which constitutes the first detection stage of the PIC process, 

as argued in Section 4.3.2.1. Hence the effects of 'error propagation' between the different users' 

signals during the second PIC detection stage are reduced. 

4.3.2.4 Complexity Analysis 

In this section we will analyse the complexity exhibited by the PIC detector described in Sec-

tion 4.3.2.1, which was also summarized in Table 4.7. We will consider each step of Section 4.3.2.1 

and Table 4.7 in terms of the associated complexity. 

First-Stage - MMSE Detection: 

• Combining: In the standard PIC algorithm of Section 4.3.2.1 the MMSE-related weight ma-

trix Wmmse to be employed for detection during the first PIC iteration does not explicitly have 

to be made available. Hence, according to Equations 4.104, 4.105 and 4.106 an initial esti-

mate sN of the vector s of signals transmitted by the different users can be obtained, which 

imposes a computational complexity quantified in terms of the number of complex multipli-

cations and additions, as follows; 

== ( f - n (4.195) 

== (4 196) 

• Demodulation: Furthermore, the demodulation operation carried out during the first PIC iter-

ation, which follows the philosophy of Equation 4.187, imposes a computational complexity 

of; 

== (4.198) 

== = jLJkfc, (4.199) 

where Mc is the number of constellation points contained in the set Mc- Note that the number 

of complex multiplications has been weighted by a factor of h in order to account for the 
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reduced complexity associated with calculating the product between a complex number and 

its conjugate complex value in the context of the Euclidean distance metric evaluation of 

Equation 4.187. 

Second-Stage - PIC Detection: 

• Parallel Interference Cancellation: As observed in Table 4.7 the second PIC iteration com-

mences by the operation of parallel interference cancellation, described by Equation 4.189, 

which is associated with a complexity of: 

== (4.2CK)) 

(7^12:+'^ == Z,(k)g2.&)jP. (4L2()1) 

Here we have assumed that the parallel subtraction based interference cancellation is or-

ganized in form of a binary tree. This reduces the complexity from originally 

L(L — 1)F complex additions associated with a linear implementation to that of L(log2 L)P. 

• Combining: The operation of combining was described by Equations 4.191 and 4.192. A 

complexity reduction is achieved, when employing constant-modulus M-PSK modulation 

schemes. Then it is sufficient to perform the combining of the different users' associated 

signals by multiplying them with the Hermitian transpose of their associated channel vectors, 

which results in; 

^[2](C*C) _ ^[2](C+C) _ pY (4 202) 
•̂ PIC.cmb-MPSK — "-̂PIC.cmb-MPSK — -Tij. 

By contrast, in the more general case of QAM modulation schemes it can be shown that we 

have: 

== (4.203) 

= 2jLP (4.2cw) 

^ f4 2(Y5) 
"-̂PIC,cmb-QAM — "-̂PIC.cmb-QAM — 

where the number of complex multiplications inflicted by calculating the Euclidean norm 

| |H(') | |2 has, again, been weighted by a factor of | in order to account for the reduced com-

plexity of calculating the product of a complex number with its conjugate complex value. 

• Demodulation: In a final step, the different users' estimated signals are again demodulated 

according to Equation 4.193, which requires a computational complexity of: 

== (4.206) 

= (4JW7) 



Hence, upon combining the different implementational complexity contributions we obtain the fol-

lowing expression for the total computational complexity: 

+ + + + (4.208) 

+ + + + + (4.209) 

(421(% 

( 4 2 m 

where again, mixed real-complex multiplications and additions as well as real additions were as-

sumed to have half the complexity of those, which involve complex numbers^". 

4.3.2.5 Summary and Conclusions on PIC Detection 

In Section 4.3.2.5 PIC assisted detection of SDMA-OFDM was introduced and characterized with 

respect to its BER performance in the context of both uncoded and turbo-coded scenarios. Further-

more, its complexity was analysed. 

The employment of PIC detection was motivated by two observations. In Section 4.3.1.6 we 

found that SIC based detection is capable of significantly outperforming MMSE detection in terms 

of the system's BER performance. This was a result of increasing the system's diversity order by 

successively removing the already detected users' remodulated signal contributions from the vector 

X of composite multiuser signals received by the different BS antenna elements. A substantial com-

putational complexity was associated with the calculation of the linear combiner's weight matrix at 

each detection stage according to Equation 4.121, and with the calculation of the remaining users' 

SINRs according to Equation 4.122, which was followed by the selection of the most dominant user 

according to Equation 4.123. Hence, in our quest for alternative, potentially less complex detection 

techniques, PIC detection was considered. 

As shown in the PIC detector's block diagram of Figure 4.20 and as described in Section 4.3.2.1, 

during the first PIC iteration linear MMSE estimates of the different users' transmitted signals were 

generated with the aid of a linear combiner, obeying Equations 4.185 and 4.186. These linear es-

timates seen in Figure 4.20 were demodulated, as shown in Equation 4.187, and employed in the 

context of the PIC module seen at the bottom left comer of Figure 4.20 as a reference for recon-

structing the different users' transmitted signal contributions. A potentially more accurate estimate 

of the /-th user's transmitted signal, where 1 = 1,... ,L, was then generated during the next PIC it-

eration by subtracting the L — 1 remaining users' reconstructed signal contributions from the vector 

X of received composite multiuser signals as suggested by Equation 4.189. These operations were 

followed by diversity combining, obeying Equations 4.191 and 4.192 and demodulation, described 

^Here we have again neglected that no real-valued additions are required in the context of real-complex multiplications 
and hence our calculation produces an upper-bound estimate of the complexity imposed 
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by Equation 4.193, in order to obtain the specific constellation point that is most likely to have been 

transmitted. Provided that correct tentative symbol decisions were made for all the L — 1 remaining 

users in the previous PIC iteration, an improved linear MMSE estimate of the /-th user's transmit-

ted signal would become available at the associated demodulator's input. This procedure has to be 

invoked for all the L different users. These processing steps were also summarized in Table 4.7 and 

in Figure 4.20. 

Motivated by the PIC detector's relatively limited BER improvement compared to MMSE detec-

tion in the context of an uncoded scenario, in Section 4.3.2.2 we proposed to embed turbo-decoding 

into the PIC iteration, instead of simply concatenating the PIC detector and the turbo-decoder. As 

a result of this embedded turbo-decoding operation we expected to reduce the effects of 'error-

propagation' in the PIC module of Figure 4.20. In these experiments soft-bits were generated for 

turbo-decoding as it was described in Section 4.2.5 in the context of MMSE detection. This proce-

dure was similar to the single-user scenario. Hence, there still remains some potential for further 

further improvement. In the context of turbo-decoding a sliced reference was generated for employ-

ment in the PIC module, which was the result of performing hard-decisions on the turbo-decoder's 

'source'-related soft-output bits followed by reencoding. An alternative strategy was that of per-

forming hard-decisions on both the 'source'- and the 'parity'-related soft-output bits, which was 

shown in our performance investigations in Section 4.3.2.3.2 to be advantageous. 

Our BER performance studies were conducted in Section 4.3.2.3. Specifically, Figure 4.21 char-

acterized an uncoded scenario, while Figure 4.22 was recorded in the context of a turbo-coded 

scenario, again upon portraying the influence of the number of users L and the number of reception 

antennas P. For the uncoded scenario the SNR performance improvement compared to a system 

employing MMSE detection was at most 3.03dB, in a scenario of L = P = 2, while for a scenario 

of -L = P = 4 the corresponding gain was at least 1.25dB. For a turbo-coded scenario the SNR im-

provement was more substantial. This will be further detailed in the context of our final comparison 

of all the different detectors in Section 4.3.4.1. 

In order to conclude our discussions, the computational complexity imposed by PIC detection 

was analysed in Section 4.3.2.4, which resulted in Equations 4.208, 4.209 and 4.210, describing 

the number of complex multiplications and additions, as well as real-valued comparisons. These 

equations were invoked in our graphical portrayal of the different detectors' implementational com-

plexities in Section 4.3.4.2. 

4.3.3 ML Detection 

In this section we will outline the philosophy of the Maximum Likelihood (ML) detector [114, 53, 

117, 131, 132, 133, 134, 135, 136, 138], which is optimum from a statistical point of view. An 

associated disadvantage is its potentially excessive computational complexity, which results from 



CRLAjrniR 4. SDA4)i-oPDAf 274 

Mi"-dim. 
Xi g(i) 

o o 
o Classifier o 
o o 

arp 

Figure 4.23: Representation of the optimum ML detector. In contrast to the sub-optimum linear- and non-
linear detectors, namely LS and MMSE discussed in Sections 4.2.2 and 4.2.3, respectively, 
as well as SIC and PIC discussed in Sections 4.3.1 and 4.3.2, respectively, the L different 
users' complex symbols most likely transmitted are jointly detected. This is achieved upon 
evaluating the number of trial-symbols in terms of their multi-user Euclidean distance 
metric with respect to the vector x of the signals received by the different antenna elements, 
namely Equation 4.223. A disadvantage is the associated computational complexity, which 
might be excessive. 

the strategy of jointly detecting the L different users. This implies assessing the possible 

combinations of symbols transmitted by the L different users by evaluating their Euclidean distance 

from the received signal, upon taking into account the effects of the channel. The stylized ML 

detector has once again been portrayed in Figure 4.23. 

The structure of this section is as follows. In Section 4.3.3.1 the philosophy of standard ML 

detection will be portrayed. In scenarios, where the number of users L is lower than the number 

of reception antennas P, a complexity reduction can be achieved by transforming the vector of 

composite multiuser signals received by the different antenna elements first to the so-called 'trial-

space' with the aid of a linear transform, as it will be discussed in Section 4.3.3.2. In an attempt to 

further enhance the system's BER performance turbo-coding can be invoked. The generation of the 

soft-bit information required will be discussed in Section 4.3.3.3, where a fuither reduction of the 

computational complexity can be achieved by applying the well-known maximum approximation. 

Our BER performance investigation will be conducted in Section 4.3.3.4 for both uncoded as well 

as turbo-coded scenarios. Furthermore, estimates of the computational complexity imposed will be 

provided in Section 4.3.3.5. A summary and conclusions will be offered in Section 4.3.3.6 

4.3.3.1 Standard ML Detection 

The structure of our discussions on the ML detector is as follows. In Section 4.3.3.1.1 the vector 

X of received signals is interpreted as a manifestation of a multi-variate complex Gaussian distri-

bution function / ( x | s , H ) , which reflects the a priori probability that the vector x was received. 

Furthermore, in Section 4.3.3.1.2 it will be shown that determining the desired vector of symbols 

Sml that is most likely to have been transmitted by the L different users is equivalent to maximizing 
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the transmitted symbols' a posteriori probability. However, it will be demonstrated with the aid of 

the Bayes theorem [87] that this is equivalent to maximizing the a priori probability, which again, 

is available in terms of the Gaussian distribution function. 

4.3.3.1.1 Representation of the Vector of Received Signals as a Sample of a Multi-Variate 

Complex Gaussian Distribution Function In order to commence our discussions, let us recall 

from Equation 4.1 the definition of the vector x of signals received by the P different antenna 

elements, namely that we have: 

X = H s + n, (4.212) 

where again, we have omitted the index [n, k], which denotes the k-ih subcanier of the n-th OFDM 

symbol. We observe that x ~ CA/'(Hs, R n ) , namely x is a sample of an L-dimensional multi-

variate complex Gaussian distribution, having a vector of mean values given by H s and a covariance 

matrix of R n E where the latter is given by: 

Iln == (4.213) 

= cr^I, (4Jtl4) 

implying that the different noise contributions are assumed to be uncorrelated. This multi-variate 

complex Gaussian distribution function can be expressed as [142]: 

/ ( x | s , H ) - - - p ^ ^ e x p ( - ( x - H s ) ^ R - ^ ( x - H s ) ) (4.215) 
TT 1-tvnl 

where Equation 4.216 was obtained by substituting Equation 4.214 into Equation 4.215. The rep-

resentation of the complex Gaussian distribution function is legitimate, since again, the noise at the 

different receiver antenna elements is assumed to be uncorrelated. More explicitly, P ( x | s , H) = 

/ ( x | s , H ) denotes the a priori probability that the vector x has been received by the BS antenna 

elements under the condition that the vector s was transmitted by the different users over a channel 

characterized by the matrix H . 

4.3.3.1.2 Determination of the Vector of Transmitted Symbols by Maximizing the A Posteri-

ori Probability In simple verbal terms the ML detector finds the specific L-dimensional vector of 

Mc-ary symbols, which is most likely to have been transmitted. In more formal terms ML detection 

is based on the idea of maximizing the a posteriori probability P ( s | x , H ) that the specific vector 

s E of the different users' symbols - which is an element of the set M.^ of trial-vectors -

was transmitted over the SDMA-MIMO channel characterized by the channel transfer factor matrix 
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H 6 under the condition that the vector x G was received by the different BS receiver 

antenna elements. This maximization procedure can be expressed as: 

SwL = a r g m o z f (s|x, H ) , (4.217) 
aeA<^ 

where the set of trial-vectors is given by; 

f \ 

\ y 

3(1) 3(f') . , 
,. . . , 6 a4C 

(Zl (72, 
(4.218) 

and where ai = yaf denotes the !-th user's standard deviation, while M c denotes the set of 

complex constellations points associated with the specific modulation scheme employed. 

The maximization procedure obeying Equation 4.217 involves knowledge of the a posteriori 

probabilities P ( s | x , H) , s 6 M.^, which can be obtained from the a priori probabilities P (x | s , H ) 

with the aid of the Bayes' theorem [87], namely: 

f ( s |x ,H) = f ( x | s , H ) ^ , (4.219) 

where all symbol vector probabilities are assumed to be identical, i.e. we have P(s ) = = 

const., and for the total probability P ( x ) we have: 

f ( x ) = z ^ f ( x | s , H ) f ( s ) = const., (4.220) 

which follows from the simple fact that all probabilities have to sum to unity, i.e. that: 

^ P ( s | x , H ) = l . (4.221) 

seM^ 

Hence, upon substituting Equation 4.219 into Equation 4.217 and exploiting that we have P ( s ) = 

const, as well as that P ( x ) = const, for all s G we obtain: 

Sml = P ( s | x , H ) -4=^ S^L = arg max P{x\s,H.), (4.222) 

where P ( x | s , H ) = / ( x | s , H ) was given by Equation 4.216. Note from Equation 4.216 that maxi-

mizing / ( x | s , H ) is equivalent to minimizing the Euclidean distance metric | |x — H s | ll V s G M ^ , 

and hence we have: 

Sml = ar(7maa;P(s |x , H ) -*=> Sml = | |x — H s | | | . (4.223) 

Note however that the complexity associated with evaluating Equation 4.223 might potentially be 

excessive, depending on the number of vectors contained in the trial-set M.^. An attractive 

strategy of reducing the complexity in the context of scenarios, where the L number of users is 

lower than the P number of BS reception antenna elements will be outlined in the next section. 



4.3.3.2 Transform-Based ML Detection 

As observed in Equation 4.223, determining the ML symbol estimate requires comparing the Eu-

clidean distance between the vector x of signals actually received by the different antenna elements 

and the vector H s of signals, which would be received in the absence of AWGN, for all the dif-

ferent vectors s of symbol combinations contained in the set In order to potentially reduce 

the computational complexity in a specific scenario, where the L number of users is lower than 

the P number of reception antenna elements, it was proposed in [131] to transform the vector x 

of received signals first to the trial-domain^' with the aid of a linear transform and then to perform 

the calculation of the Euclidean distance directly in the trial-domain. More explicitly applying this 

transform-based approach results in a potentially lower complexity than that associated with evalu-

ating Equation 4.223. A linear transform which yields a particularly simple form of the Euclidean 

distance metric to be evaluated is based on the left-inverse- or Moore-Penrose pseudo-inverse of 

the channel matrix H , which was discussed in Section 4.2.2. The resultant vector is also known 

as the LS estimate or ML estimate of the vector s of transmitted signals. More specifically, the LS 

estimate s^s was given by Equation 4.36, namely by: 

Sij == Pijic, (4.224) 

with the associated projection matrix Pls defined in Equation 4.37 as: 

Pi j - (4.225) 

Furthermore, it was shown in Equation 4.42 that the LS combiner's output vector Sls is composed 

of the vector s of transmitted signals plus an additional contribution due to the AWGN encountered 

at the array elements, which is formulated as: 

Sls = s -I- PlsH. (4.226) 

Recall from Equation 4.44 that the noise at the LS combiner's output is correlated, having a covari-

ance matrix Rasls expressed in the form of: 

R-ASLS = ^ ( H ^ H ) - ^ . (4.227) 

Hence, in equivalence to Equation 4.215, the multi-variate complex Gaussian distribution function, 

which reflects the probability that the vector Sls is observed at the output of the linear combiner 

under the condition that the vector s was transmitted over a channel characterized by the channel 

transfer factor matrix H is given by: 

/ ( s i j | s , H) = I exp ^-(sLs - s ) ^ R ^ ^ ^ ( s i j - s ) ) . (4.228) 
SLS I 

'The trial-domain is equal to the transmitted signal's domain. 



Upon following the steps outlined in the context of Section 4.3.3.1, the vector Sml of symbols that 

is most likely to have been transmitted is then given by: 

SwL = ( s |x ,H) ŝ L = org m m (Sij - s)^R;r]^ (sis - s). (4.229) 
seM^ s€M^ LS 

As a result of the linear properties of the transform applied in Equation 4.224 to the vector x of 

signals received by the different antenna elements, the same symbol detection error probability is 

achieved as with the aid of the standard approach of Equation 4.223, however at a potentially lower 

complexity. Note however, that a necessary condition for the existence of the projection matrix 

Pls is that the number of users L must be lower than or equal to the number of reception antenna 

elements P, which imposes a limitation compared to the standard M L detector of Section 4.3.3.1. 

4.3.3.3 ML-Assisted Soft-Bit Generation for Turbo-Decoding 

Turbo coding based error protection of the different subcarriers hosted by an OFDM symbol is a 

powerful means of further enhancing the system's BER performance. This is achieved at the cost of 

reducing the system's effective throughput and increasing the system's complexity. A prerequisite 

for performing turbo decoding at the receiver is the availability of soft-bit information. As suggested 

in [131], it is desirable in terms of keeping the computational complexity as low as possible to 

perform the turbo trellis-decoding separately for the different users. This is, because the joint trellis-

decoding of the different users' transmitted signals would potentially require an excessive number 

of trellis decisions and hence impose a high complexity. 

4.3.3.3.1 Standard ML-Assisted Soft-Bit Generation Following the concepts of Equation 4.95 

the soft-bit value or log-likelihood ratio- or LLR-value associated with the /-th user at the m-th bit-

position is given by: 

^ (4J30) 
z=0 |x ,H) 

which is the natural logarithm of the quotient of probabilities that the bit considered assumes either 

a value of bm = 1 or bm = 0. Note that here we have again omitted the index [n, k] for the A:-th sub-

carrier of the M-th OFDM symbol, which is associated with the different variables. Equation 4.230 

can be further expanded by noting that the probability that a binary bit value of bm — 1 was trans-

mitted at the m-th bit position associated with the /-th user in the A:-th subcarrier is given by the 

sum of the probabilities of those symbol combinations, where the /-th user's transmitted symbol is 

associated with a bit value of bm = 1. The probability that a bit value of bm = 0 was transmitted 

can be expanded equivalently. Hence we obtain: 

r ( ! ) 
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where denotes the specific subset of the set Mc of constellation points of the modulation 

scheme employed, which are associated with a bit value of 6 G {0,1} at the m-th bit position. 

For notational convenience we can define the /-th user's associated set of trial-vectors employed for 

determining the probability that the m-th transmitted bit exhibits a value of & 6 {0,1} as follows: 

/ ad) \ 
; { i ) 

0-1 
G vWc, • • • E Ai 

s(^) 

O-L 
e Air (4.232) 

Upon invoking again Bayes' theorem given by Equation 4.219, namely that: 

f ( s | x , H ) = f ( x | s , H ) 
f ( x ) ^ 

(4.233) 

and re-substituting Equation 4.233 into Equation 4.231 we obtain the following expression for the 

/-th user's soft-bit value at the m-th bit position; 

= In 
f ( x | s , H ) ' 

(4.234) 

Here we have exploited that the different symbol combination vectors s have the same probability 

namely that P ( s ) = const., s e M^. Upon recalling from Section 4.3.3.1 that the probability 

P ( x | s , H ) is given by the multi-variate complex Gaussian distribution function / ( x | s , H ) defined 

in Equation 4.216, we obtain: 

-L® = In 
HstlE 

-&l |x HsIlE 
(4.235) 

Observe that evaluating the /-th user's soft-bit value based on its LLR at the m-th bit position 

with the aid of Equation 4.235 involves the exponential function, which might be computationally 

expensive. 

4.3.3.3.2 Simplification by Maximum Approximation In order to avoid the explicit evaluation 

of the exponential function in Equation 4.235, a common approach is the employment of the so-

called maximum-approximation, which implies that only that specific additive term is retained in 

the calculation of the numerator and nominator of Equation 4.235, which yields the maximum 

contribution. It can be readily shown that as a result of this simplification we obtain instead of 

Equation 4.235 the following expression: 

where 

= aro m m | Hs| |2, 6 e { 0 , l } , 

(4.236) 

(4.237) 
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while the set was defined in Equation 4.232. We note that fo r each soft-bit to be determined, 

Equation 4.237 has to be invoked twice, once for a bit status of 6 = 1 and once for 6 = 0. 

Observe however, that a significant complexity reduction can be achieved by exploiting that the 

union of the two subspaces associated with the binary bit values of 0 and 1 of the L users at bit 

position m constitutes the entire trial space, namely that [j • Hence, the 

calculation of the Euclidean distance metric ||x — Hsjlg has to be performed only once for the 

different trial vectors s E M.^, followed by an appropriate selection in the context of the soft-bit 

generation assisted by Equation 4.237. Specifically, in a first step the Euclidean distance metric 

can be determined for half of the vectors Sm ^ associated with the different bit polarities b G {0 ,1} 

and bit positions m by searching the entire set which results in the ML estimate Sml of the 

vectors of transmitted symbols according to Equation 4.223. This initial i-dimensional, M^-ary 

ML symbol estimate is given by a specific bit vector. The inverse of this ML bit vector contains the 

specific bit polarities, for which the further minimization according to Equation 4.237 still has to be 

conducted. 

4.3.3.4 Performance Analysis 

In this section the BER performance of ML detection-assisted SDMA-OFDM will be investigated in 

both a lower-complexity, higher effective throughput scenario using no channel coding, as well as in 

a higher-complexity, lower throughput scenario where turbo-coding is employed. Again, the frame-

invariant fading indoor WATM channel model and its associated O F D M system model described in 

Section 6.1.1 were invoked and ideal knowledge of the channel transfer functions associated with 

the different transmit-receive antenna pairs was assumed. For a summary of the basic simulation 

setup we refer again to Table 4.3. The further structure of Section 4.3.3.4 is as follows. While in 

Section 4.3.3.4.1 the ML detection-assisted SDMA-OFDM system's BER performance is consid-

ered in the uncoded scenario, our simulation results characterizing the turbo-coded scheme will be 

discussed in Section 4.3.3.4.2. 

4.3.3.4.1 BER Performance of ML Detection-Assisted SDMA-OFDM for Different Numbers 

of Users and Reception Antennas In Figure 4.24 we have portrayed the BER performance of ML 

detection-assisted OFDM as a function of the SNR encountered at the reception antennas. Specif-

ically, the curves at the left-hand side of Figure 4.24 are parameterized with both the number of 

users L and the number of reception antennas P, where only scenarios associated with L < P aie 

considered. We observe that upon increasing the MIMO system's order, namely by considering a 

system of four reception antennas and four simultaneous users compared to a system of two recep-

tion antennas and two simultaneous users, the system's BER performance is significantly improved. 

This is in contrast to the behaviour observed for the MMSE detector in Figure 4.8, where a more 
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Figure 4.24: BER performance of 4QAM-modulated, ML detection-assisted SDMA-OFDM as a function of 
the SNR encountered at the reception antennas; (left;) the curves are further parameterized with 
the number of simultaneous users L and the number of reception antennas P , using the config-
urations of A2/U1..2, A3/U1..3 and A4/UL.4; (right:) the curves are parameterized with the L 
number of users for a fixed number of P = 4 reception antennas, namely using configurations 
of A4/U1..6; for the basic simulation parameters we refer to Table 4.3. 

modest improvement was observed, but it follows similar trends to those exhibited by the SIC detec-

tor characterized in Figure 4.12. More specifically, the ML detector benefits from the higher grade 

of diversity provided by a higher-order MIMO system. Also observe that by increasing the number 

of users L at a fixed number of reception antennas P, the system's performance degrades gracefully. 

More explicitly, the performance difference between the lowest-complexity system supporting one 

user and that of a "fully loaded" system associated with L = P users is less than 2dB, which is in 

contrast to the significant degradation observed for the MMSE detector in Figure 4.8. 

Our further investigations were conducted with respect to supporting L number of users, which 

was higher than the P number of reception antennas. By contrast, employing a configuration, 

where L > P was prohibited in the context of the linear detectors, such as the LS or MMSE as 

well as the MMSE-based SIC and PIC schemes. The associated simulation results are portrayed 

at the right-hand side of Figure 4.24 for a scenario of P = 4 reception antennas, supporting up 

to Z, = 6 simultaneous users. Here we observe again that the performance degradation incurred 
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Figure 4.25: BER performance of turbo-coded, 4QAM-modulated, ML detection-assisted SDMA-OFDM as 
a function of the SNR recorded at the reception antennas; the curves are further parameter-
ized with the number of simultaneous users L and the number of reception antennas P , where 
more specifically (left:) two reception antennas and (right:) four reception antennas were em-
ployed; for the basic simulation- and turbo-coding parameters we refer to Tables 4.3 and 4.4, 
respectively. 

upon increasing the number of users L beyond the number of reception antennas P is gradual. This 

is in contrast to the more abrupt degradation, which would potentially be observed in conjunction 

with MMSE-based detection schemes, when allowing for example five simultaneous users instead 

of four users in a scenario of four reception antennas. 

4.3.3.4.2 BER Performance of Turbo-Coded ML Detection-Assisted SDMA-OFDM for Dif-

ferent Numbers of Users and Reception Antennas As it was shown in Sections 4.2.6.4,4.3.1.4.7 

and 4.3.2.3.2 for MMSE, SIC and PIC detection-assisted SDMA-OFDM systems, respectively, the 

employment of turbo-decoding at the receiver is a powerful means of further enhancing the system's 

BER performance. This is achieved at the cost of a reduction of the system's effective throughput 

and by investing additional computational complexity. The associated turbo coding parameters were 

summarized in Table 4.4, but for the reader's convenience they will be repeated here: the coding 

rate was Rc = \ , the constraint length was = 3, the octally represented generator polynomials 
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of (7,5)g were used and 4 iterations were performed. The generation of the soft-bits required for 

turbo-decoding in the context of ML detection was discussed earlier in Section 4.3.3.3. 

Our BER simulation results are portrayed in Figure 4.25, at the left-hand side for F = 2 reception 

antennas, while at the right-hand side for P = 4 reception antennas and up to L = P number of 

simultaneous users. Again, we observe that compared to the uncoded scenario, whose associated 

BER simulation results were shown in Figure 4.24, the SNR at the reception antennas required for 

maintaining a specific BER is significantly reduced. In order to provide an example, in the context 

of a scenario associated with L = P = 2 and in the absence of channel coding an SNR of about 

25.7dB is required for maintaining a target BER of 10"^, while with the assistance of turbo-coding 

this target BER is reached at a reduced SNR of about 10.6dB. Similarly, for a scenario of L = P = 4 

the corresponding SNRs for the uncoded and coded case are given by 13.9dB and 4dB, respectively. 

4.3.3.5 Complexity Analysis 

The structure of our complexity analysis of the ML-related detection techniques is as follows. While 

in Section 4.3.3.5.1 the complexity of standard ML detection is discussed, we will focus our atten-

tion in Section 4.3.3.5.2 on the analysis of transform-based ML detection. Our discussions will be 

concluded in Section 4.3.3.5.3 by elaborating on the complexity associated with the generation of 

soft-bits to be used in the context of turbo-coded ML detection-assisted SDMA-OFDM. 

4.3.3.5.1 Complexity of Standard ML Detection As observed in Equation 4.223, an num-

ber of symbol combinations has to be compared in terms of the Euclidean distance metric for the 

detection of the different users' transmitted symbols in a specific O F D M subcarrier. This imposes a 

computational complexity quantified in terms of the number of complex multiplications, additions 

as well as real-valued comparisons, which is given by: 

== 4- (4.238) 

== -k f / ) (4.239) 

CfOgS;*) == (4L2ZH)) 

where again, the number of complex multiplications and additions involved in actually calculating 

the Euclidean norm | | . | | | has been weighted with a factor of 1, because the multiplication of a 

complex number with its conjugate complex value inflicts two real-valued multiplications^^. Note 

however that the number of multiplications PL required in the context of evaluating the term 

H s in Equation 4.223 for the Mjf number of different trial vectors can be reduced to M c P L by 

evaluating G vWc, / = 1, • •. , L and storing the resultant vectors in a lookup table. A 

jciy) • {cLx jo-y) — Clx 4- CLy [a 



similar technique could also be applied for reducing the number of complex multiplications in the 

context of the transform-based ML detection technique of Section 4.3.3.2, as it will be discussed in 

the next section. 

4.3.3.5.2 Complexity of Transform-Based ML Detection T h e transform-based ML detection 

technique of Equation 4.229 capitalized on the LS estimate s^s of the vector x of signals received 

by the different antenna elements. This estimate was provided with the aid of Equation 4.224 which 

employs the projection matrix given by Equation 4.225. Furthermore, in the transform-based 

ML detection process obeying Equation 4.229 explicit knowledge of the error- or noise covariance 

matrix Rasls given by Equation 4.213, was required for describing the statistical properties of the 

LS combiner's vector of output signals. 

Hence, it is a reasonable strategy to determine the error covariance matrix Rasls Arst with the 

aid of Equation 4.213. This imposes a computational complexity given by: 

„(C»C) _ ^(C+C) _ p r 2 I ^ r 3 ("4 2411 
M̂L-trf,eiT-cov — *-̂ ML-trf,err-cov — 3 

where the second term accounts for performing the direct inversion in Equation 4.213 with the aid of 

the LU decomposition [87]. Specifically, the LU decomposition [87] itself requires a complexity of 

complex multiplications and additions, while the ensuing forward- and backward substitutions 

as outlined in [87] contribute another L • number of complex multiplications and additions. The 

LU decomposition technique is only used here for a base-line comparison - more efficient techniques 

of performing the matrix inversion are known from the literature. Common to most of these matrix 

inversion techniques is that they are associated with a complexity order of O(m^), where m is the 

dimension of the square matrix to be inverted. 

Generating the LS estimate s^s of the vector s of transmitted signals with the aid of Equa-

tions 4.224 and 4.225, where the latter can be simplified upon substituting the expression of Equa-

tion 4.213 derived for the error covariance matrix R A S L S imposes an additional complexity of: 

(4.24:2) 

The major part of the computational complexity, however, is imposed - similarly to standard ML 

detection - by evaluating the number of possible trial vectors s E M.^ with the aid of Equa-

tion 4.229. This inflicts an additional number of operations given by: 

C&EtSZw == ( 1 4 - . L j | (4.243) 

== (1^ 4- BL:z44) 

(4.245) 



upon combining the different contributions quantified in this section, the total complexity of the 

transform-based ML detector becomes: 

CP 1 ^ JWrpjC 1^1 -p (4.2X16) 

i(C4^:) __ f , r _L /p_L i^rSjL 
o \ 2 

(4.248) 

A comparison between the equations associated with the standard M L detector and the transform-

based ML detector reveals that employing the latter is only recommended, when the number of users 

L is smaller than the number of reception antenna elements P, but even then it still depends on the 

particular scenario, whether the latter is really advantageous. 

In conclusion, particularly in the context of the higher-order Q A M modulation schemes, such as 

for example 16QAM and in conjunction with a relatively high number of simultaneous users the 

computational complexity might become prohibitive for the application of the ML detector. 

4.3.3.5.3 Complexity of ML-Assisted Maximum Approximation Based Soft-Bit Generation 

In this section the complexity of maximum approximation based soft-bit generation will be analysed 

which was discussed in Section 4.3.3.3.2. We argued that the soft-bit generation procedure com-

mences by evaluating the Euclidean distance metric, which is part of Equations 4.223 and 4.237, 

for all the different vectors of symbols contained in the set M ^ . T h e computational complexity of 

this processing step expressed in terms of the number of complex multiplications and additions was 

already quantified in Equations 4.238 and 4.239. Additionally, a substantial number of comparisons 

has to be carried out between the real-valued metric values, which constitute an integral part of the 

search across the different subsets of symbols denoted by A4m^^ according to Equation 4.237. As 

argued in Section 4.3.3.3.2, this complexity can be halved by determining in a first step the ML 

symbol estimate and its associated bit vector with the aid of Equation 4.223. This complexity is 

quantified in terms of the number of comparisons between real-valued metric values, as given by 

Equation 4.240, namely M^. Furthermore, in the second step a L log2 number of search steps 

- where logg is the number of bits per symbol - has to be conducted across a set of dimension 

M ^ / 2 each. Hence the total complexity is given by: 

Crisis? == (4.249) 

== 4-1^) (4.250) 

== (1 + 7̂ 1, logs Afc) (4.251) 

== 4-;^Z,log2 Afc) (4.252) 

== J, logs TWc, (4.253) 
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where the contribution ^ accounts for performing the subtraction of the metric values as 

shown in Equation 4.236. 

4.3.3.6 Summary and Conclusions on ML Detection 

In Section 4.3.3 the ML detector was discussed, which is optimum from a statistical point of view. 

That specific vector Sml of the different users' symbols is deemed to be optimum at the output 

of the ML detector, which exhibits the highest a posteriori probability of P ( S M L 1 X , H ) amongst 

the number of trial-vectors contained in the set defined by Equation 4 . 2 1 8 . Recall from 

Section 4 . 3 . 3 . 1 . 2 that the a posteriori probability P ( S M L | X , H ) can be expressed with the aid of the 

Bayesian theorem of Equation 4 . 2 1 9 , in terms of the a priori probability P ( X | S M L , H ) , which is 

given by the multi-variate complex Gaussian distribution function, of Equation 4 . 2 1 6 . Identifying 

the optimum trial-vector Sml is equivalent to minimizing the Euclidean distance between the vector 

X of received signals and the trial-vector s transmitted over the MIMO channel described by the 

channel transfer factor matrix H for all trial-vectors contained in the set as it was highlighted 

in Equation 4 . 2 2 3 . 

The computational complexity associated with this minimization process is potentially excessive, 

since all the number of trial-vectors contained in the set M.^ have to be compared to each other 

in terms of the Euclidean distance metric of Equation 4.223. Provided that the number of users L 

is lower than the number of BS reception antenna elements P, a reduction of the complexity can be 

achieved by transforming the vector x of received signals first to the trial-space with the aid of the 

linear transform of Equation 4.224, instead of transforming each trial-vector s G M.^ separately 

to the received signal's space upon multiplication with the channel transfer factor matrix H . These 

discussions were conducted in the context of Section 4.3.3.2. 

Furthermore, in Section 4.3.3.3 the principles of ML detection-assisted soft-bit generation for 

employment in turbo-decoding were discussed, where a complexity reduction was achieved by ap-

plying the maximum approximation. 

The ML detector's associated BER performance evaluated in the context of both a low-complexity, 

higher effective throughput uncoded- and a higher-complexity, lower-throughput turbo-coded sce-

nario was the topic of Section 4.3.3.4. Specifically, in Section 4.3.3.4.1 the influence of the num-

ber of users L and the number of BS reception antennas P on the BER performance of 4QAM-

modulated ML detection-assisted SDMA-OFDM was analysed. We found that as shown at the 

left-hand side of Figure 4.24 - regardless of the number of users L - upon increasing the number of 

reception antennas P, the ML detector's associated BER performance was significantly improved. 

This was a result of the increased grade of channel diversity available. Furthermore, as shown at the 

right-hand side of Figure 4.24 the ML detector also exhibited a high resilience against the increase 

of the number of users L. Specifically, for a scenario of P = 4 reception antennas the BER curves 



of one to six users were confined to a narrow interval of about 2.5dB. This performance trend is 

in contrast to that observed for the linear combining based detectors, such as the LS and MMSE 

as well as SIC and PIC schemes, where a necessary condition of high integrity detection is that 

L < P. Furthermore, our BER performance results recorded f o r the turbo-coding based system 

were presented in Figure 4.25, as part of Section 4.3.3.4.2. 

Finally our analysis of the ML detector's computational complexity was conducted in Section 4.3.3.5. 

Specifically, in Section 4.3.3.5.1 we analysed the complexity of standard ML detection, where the 

number of complex multiplications and additions as well as real-valued comparisons was given by 

Equations 4.238, 4.239 and 4.240, respectively. As expected, these complexities were proportional 

to the number of vectors contained in the trial-set Furthermore, in Section 4.3.3.5.2 the 

complexity of transform-based ML detection was evaluated. T h e associated complexity formu-

lae were given by Equations 4.246, 4.247 and 4.248. It was clear from these equations that the 

transform based ML detection may only be preferred against standard ML detection, if the number 

of users L is lower than the number of reception antennas P. O u r analysis of the complexity of 

ML-assisted maximum approximation based soft-bit generation in Section 4.3.3.5.3 revealed that 

compared to standard ML detection the complexity quantified in te rms of the number of real-valued 

comparisons due to comparing the values of the Euclidean distance metric across subsets of the set 

of trial-vectors is significantly increased. 

4.3.4 Final Compar i son of the Dif ferent Detect ion T e c h n i q u e s 

In this section a final comparison of the different linear- and non-linear detection techniques namely, 

that of the MMSE, standard SIC, M-SIC, PIC and ML schemes will be carried out, which were 

described and characterized in Sections 4.2.3, 4.3.1.1, 4.3.1.2, 4.3.2 and 4.3.3, respectively. Again, 

as in previous sections, our comparison will focus on the system's BER performance in both an 

uncoded- and a turbo-coded scenario, which will be the topic of Section 4.3.4.1. By contrast in 

Section 4.3.4.2 a comparison between the different detectors' complexities will be carried out. 

4.3.4.1 BER Performance Comparison of the Different Detection Techniques in Uncoded 

and Turbo-Coded Scenarios 

In Figure 4.26 we have compared the different detectors' S D M A - O F D M related BER performance, 

at the left-hand side for the uncoded scenario and at the right-hand side for the turbo-coded scenario. 

Let us first of all focus our attention on the uncoded scenario. As expected, the best perfor-

mance is exhibited by the most complex ML detector, closely followed by the M-SIC scheme, 

where M = 2. By contrast, a significant BER degradation is observed for the standard SIC scheme 

potentially as a result of the effects of error propagation through the different detection stages, a 

phenomenon which was analysed in Section 4.3.1.4.2. The second worst performance is exhibited 
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Figure 4.26: BER performance of (left): uncoded and (right:) turbo-coded, 4QAM-modulated, MMSE, stan-
dard SIC, M-SIC (M-2), PIC and ML detection assisted SDMA-OFDM as a function of the 
SNR at the reception antennas; in the context of the turbo-coded scenario both a PIC scheme 
capitalizing on a 'source'-related reference and a 'source- plus parity'-related reference are 
compared against each other; L = P = A simultaneous users and reception antennas were 
employed; for the list of basic simulation- and turbo-coding parameters we refer to Tables 4.3 
and 4.4, respectively. 

by the PIC arrangement, while a further degradation by about 1.25dB is incurred upon employ-

ing the rudimentary MMSE detection, as argued earlier in Section 4.3.2.3.1. Specifically, the PIC 

detector's performance was impaired by the lower-power users, potentially propagating errors to 

those users, which benefitted from a relatively high SNR at the first-stage combiner output. An 

attractive approach of significantly improving the PIC detector's performance in the context of an 

SDMA-OFDM system is that of employing channel decoding after the first detection stage, as it 

was suggested in Section 4.3.2.2. 

Let us now summarize our observations inferred in the context of the turbo-coded scenario, por-

trayed at the right-hand side of Figure 4.26. Again, the SDMA-OFDM system exhibits the best 

BER performance in the context of employing soft-bit values, which are generated with the aid of 

the ML-related metric of Section 4.3.3.3. Note that here we employed the simplified, maximum-

approximation based formula of Equation 4.236. By contrast, a modest SNR degradation of only 



CHAPTER; 4. D E T E C n O N TECHNIQUES FOj{MULn-I7SEj(SDMA-OfDM 289 

around 0.6dB is observed for the M-SIC (M=2) and of about 0.8dB for the standard SIC scheme, 

both recorded at a BER of 10~^. Again, the SIC detector's soft-bit values were generated with 

the aid of the weighted soft-bit metric of Equation 4.133. These performance trends are closely 

followed by the BER performance evaluated in the context of PIC aided soft-bit generation, where 

we have compared two different approaches of generating the PIC-related remodulated reference-

or feedback signals against each other. Recall from Section 4.3.2.3.2 that the 'source'-related ref-

erence generation implied slicing, reencoding, interleaving and remodulating the 'source'-related 

a posteriori soft-output bits of the turbo-decoder. By contrast, the 'source- plus parity'-related re-

modulated reference implied slicing, interleaving and remodulating the 'source- plus parity'-related 

a posteriori soft-output bits of the turbo-decoder. The performance degradation of the 'source- plus 

parity'-related reference assisted PIC scheme compared to standard SIC is observed in Figure 4.26 

to be about IdB, while for the 'source'-related reference assisted P IC scheme an SNR degradation of 

2.8dB is observed compared to standard SIC. Again, for MMSE detection-assisted SDMA-OFDM 

the worst performance is observed, namely an additional SNR degradation of about 4.3dB, com-

pared to the 'source'-related reference assisted PIC arrangement. 

4.3.4.2 Complexity Comparison of the Different Detection Techniques 

Having compared the various detection techniques, namely MMSE, SIC, M-SIC, PIC and ML in 

terms of the associated system's BER performance, in this section we will compare them with 

respect to their computational complexity. Here we will concentrate on the previously introduced 

two measures of complexity namely, the number of complex multiplications, as well as the number 

of comparisons between real-valued variables, which occur in the process of demodulation and 

during the selection of the most dominant user in each of the SIC's detection stages. In the context of 

our evaluations the number of constellation points associated with the modulation scheme employed 

was assumed to be = 4, which is the case for example in 4 Q A M modulation, while for the M-

SIC the number of symbols retained at each detection node was M = 2. 

Specifically, at the left-hand side of Figure 4.19 we have compared the MMSE^^, standard SIC, 

M-SIC, PIC and the ML detection schemes in terms of the number of complex multiplications 

(j€jfC incurred on a subcarrier basis, as a function of the number of simultaneous users L, which 

was assumed here to be equal to the number of reception antennas P . The curves associated with 

the different detection techniques were generated with the aid of the complexity formulae given by 

Equations 4.115, 4.157, 4.173, 4.208 and 4.238, respectively. As expected, the lowest computa-

tional complexity expressed in terms of the number of multiplications is exhibited by the MMSE 

detector, followed by PIC, standard SIC and M-SIC, while the highest complexity is exhibited by 

the optimum ML detector. 

^^The LS detector's complexity has not been portrayed here explicitly, since it is only marginally less complex than 
the MMSE detector. 
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Figure 4.27: Complexity of the MMSE, standard SIC, M-SIC, PIC and ML detection schemes in terms of 
(left:) the number of complex multiplications and (right:) the number of real-
valued comparisons on a subcarrier basis, as a function of the number of simultaneous users L, 
which was assumed here to be equal to the number of reception antennas P ; specifically for 
M-SIC the number of tentative symbol decisions per detection node was equal to M = 2, while 
in all scenarios Mc = 4 constellation points were assumed, which is for example the case in the 
context of 4QAM modulation. 

Similar observations can also be made for the computational complexity quantified in terms of 

the number of comparisons between real-valued numbers as portrayed at the right-hand 

side of Figure 4.27. Here the associated complexity formulae were given for the MMSE, standard 

SIC, M-SIC, PIC and ML detection schemes by Equations 4.117, 4.159, 4.176, 4.210 and 4.240, 

respectively. We observe a similar ranking of the different detectors in terms of their associated 

complexity, as previously seen at the left-hand side of Figure 4.27 in terms of the associated per-

formance. An exception is given by the number of comparisons associated with the PIC detector, 

which was found to be higher in the context of lower-order SDMA scenarios than for the standard 

SIC detector. The reason for this trend is that the PIC detector's complexity is increased compared 

to that of the MMSE detector, since the demodulation of each user 's signal has to be performed 

twice, namely during the first- and the second detection stage. By contrast, the complexity of the 

standard SIC is increased compared to MMSE, since in each detection stage the most dominant user 
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MMSE std. Sic: M-SIC PIC ML 

133.33 344.58 454.58 197^3 4608 
135.33 335.33 467.33 2 3 ^ 3 3 5632 
16 25 97 32 256 

Table 4.8: Computational complexity of the different detection schemes, namely MMSE, standard SIC, M-
SIC, PIC and ML detection quantified in terms of the number of complex multiplications and 
additions , 6"^+"' as well as the number of real-valued comparisons (7®$® for a scenario 
of L = P = 4 simultaneous users- and reception antennas; specifically for M-SIC the number 
of tentative symbol decisions per detection node was equal to M = 2, while in all scenarios 
Mc = 4 constellation points were assumed, which is for example the case in conjunction with 
4QAM modulation. 

has to be selected from the set of remaining users. 

The number of complex additions associated with the different detectors has not been illustrated 

here, since these values were found only to differ slightly from those characterizing the number of 

complex multiplications. 

In order to further support our comparison of the different detectors in terms of their associated 

computational complexity, we have summarized in Table 4.8 the number of complex multiplications 

and additions, as well as real-valued comparisons imposed in a scenario of L = 4 simultaneous users 

and P = 4 reception antenna elements. 

4.4 Performance Enhancement 

The BER reduction observed in the context of turbo-coded SDMA-OFDM in conjunction with vari-

ous detection techniques, namely MMSE, SIC, PIC and ML detection in Sections 4.2.6.4, 4.3.1.4.7, 

4.3.2.3.2 and 4.3.3.4.2 was achieved at the cost of a substantial reduction of the system's effec-

tive throughput, namely by 50% upon employing half-rate turbo-coding. This loss in throughput 

could have however been compensated upon employing a higher-order modulation scheme, namely 

16QAM instead of 4QAM, thus further increasing the computational complexity. Obviously there 

is a trade-off between the BER performance, the throughput and the computational complexity. 

In this section we will study potential techniques for further enhancing the BER performance 

of SDMA-OFDM on the uplink channel to the basestation, without reducing the system's effec-

tive throughput. The techniques envisaged are constant throughput adaptive modulation as well as 

Walsh-Hadamard Transform (WHT) spreading across the different subcarriers. Both of these tech-

niques have been recognized as being effective for exploiting the diversity offered by a wideband 

channel. Specifically adaptive modulation has widely been discussed in the context of single-user 

OFDM systems, namely in [98], and furthermore it was also successfully employed in conjunction 
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with decision-directed channel prediction in Section 2.4. On the other hand, spreading the transmit-

ted signal by means of orthogonal codes has been extensively discussed in the context of single- and 

multi-carrier CDMA systems, potentially supporting multiple simultaneous users. In our contribu-

tion however, spreading is employed for further exploiting the channel's diversity potential, while 

multiple users are supported with the aid of the multiple BS receiver antennas. 

The further structure of this section is as follows. In Section 4.4.1 adaptive modulation as-

sisted SDMA-OFDM- or in short form SDMA-AOFDM will be discussed. We will then embark in 

Section 4.4.2 on a discussion of WHT spreading assisted SDMA-OFDM- or again, in short form 

SDMA-WHTS-OFDM. 

4.4.1 Adaptive Modulation Assisted SDMA-OFDM 

In order to commence our discussions, let us briefly review in the next section the concepts of 

adaptive modulation as employed in the context of a single-user O F D M scenario. 

4.4.1.1 Outline of the Adaptive Single-User Receiver 

Adaptive modulation employed in single-user OFDM systems has previously been discussed in Sec-

tion 2.4 in the context of our assessment of channel transfer function prediction techniques. Recall 

that invoking adaptive modulation was motivated by the observation that the BER performance of 

an OFDM modem, which employs a fixed-mode modulation scheme is severely degraded due to the 

deep frequency-domain channel transfer function fades experienced. This deficiency of the fixed-

mode modems may be mitigated by assigning a more robust, but lower throughput modulation mode 

to those subcarriers, which are severely affected by the deep fades. By contrast, a potentially less 

robust, but higher throughput modulation mode may be assigned to the higher quality subcarriers. 

A prerequisite of performing the modulation mode assignment during the n-th uplink^"^ OFDM 

symbol period for employment during the {n + l)-th OFDM symbol period is the availability of a 

reliable estimate of the channel transfer function to be experienced by the OFDM symbol received 

during (n + l)-th OFDM symbol period. The simplest approach to subcarrier channel quality 

estimation would be to employ the pilot-based- or decision-directed channel estimate^ for the n-

th OFDM symbol period as an a priori estimate of the channel experienced during the (n + 1)-

th OFDM symbol period. However, as shown in Section 2.4 depending on the OFDM symbol 

normalized Doppler frequency of the channel this a priori estimate may result in an inaccurate 

assignment of the modulation modes to the different subcarriers, which is a consequence of the 

channel variations incurred between the two OFDM symbol periods. 

A significant improvement leading to a more accurate a priori channel estimate for the (n 4- l)-th 

^''Unless otherwise stated, we refer to 'uplink OFDM symbol period' simply as ' O F D M symbol period'. 

^Again, we synonymously use the expressions 'channel estimate' and 'channel transfer function estimate'. 
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OFDM symbol period could however be achieved with the aid of the decision-directed Wiener-filter 

based channel prediction techniques discussed in Section 2. As a result of the modulation mode 

adaptation portrayed the BER performance of the AOFDM modem was observed in Figure 2.19 to 

be significantly improved compared to that of an OFDM modem having the same throughput, but 

using a fixed modulation mode. At the same time, relatively rapidly varying channels having a high 

OFDM symbol normalized Doppler frequency could be supported. 

Motivated by the successful employment of constant throughput adaptive modulation techniques 

in the context of single-user OFDM systems, we will now investigate their potential for employment 

in multi-user SDMA-OFDM systems. We will focus our attention on employing a linear detector 

at the receiver, which exhibits the highest potential of achieving a significant BER performance 

improvement with the aid of adaptive modulation techniques. 

The further structure of this section is as follows. Our discussions commence in Section 4.4.1.2 

with the outline of the adaptive multi-user receiver's structure. This is followed in Section 4.4.1.3 

by an assessment of the system's BER performance. Our summary and conclusions will be offered 

in Section 4.4.1.4. 

4.4.1.2 Outline of the Adaptive Multi-User SDMA-OFDM Receiver 

In Figure 4.28 we have portrayed the basic block diagram of the adaptive multi-user SDMA-OFDM 

receiver employed at the BS. During the n-th OFDM symbol period, after removing the cyclic 

OFDM prefix- or guard interval, which is not shown here, the complex time-domain signals received 

by the P different BS antenna elements are independently subjected to the EFT, which delivers 

the frequency-domain- or subcarrier based representation of the signals received, namely Xp[n,k], 

where p = 1 , . . . ,P and k = 0 , . . . ,K — 1. Note that for notational convenience the subcarrier 

index k has been omitted in Figure 4.28. 

The various signals Xp[n,k] are then conveyed to the linear combiner, represented by Equa-

tion 4.7, which produces linear estimates s(')[n,A;] of the signals transmitted by the L different 

users, namely I = 1 , . . . ,L, separately for each subcarrier. The combiner weights were already 

generated during the (n — l)-th OFDM symbol period for employment during the n-th OFDM 

symbol period. 

The linear signal estimates k] are then conveyed to the adaptive classifiers, which deliver 

the sliced symbols [n, k] that are most likely to have been transmitted according to the Euclidean 

distance metric of Equation 4.94. Again, this classification takes place separately for the different 

users / = 1 , . . . ,L and subcarriers A; = 0 , . . . , — 1. Note that the classifiers of the adaptive 

OFDM modem require side information concerning the subcarrier- or subband modulation mode 

assignment employed, which was generated during the previous OFDM symbol period and was 

locally stored at the receiver. The sliced symbols are then demapped to their bit-representation not 
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Figure 4.28: Block diagram of the adaptive multi-user SDMA-OFDM receiver, which is supported by a P-
element antenna front-end in order to facilitate the separation of the L number of simultaneous 
users' associated signals at the BS's receiver. The subcarrier index k, where k = 0,... ,K — 1 
has been omitted for reasons of simplicity. 

shown in Figure 4.28, in order to obtain the bits transmitted. 

Furthermore, the sliced symbols k] of Figure 4.28 are conveyed together with the received 

subcarrier symbols Xp[n, k] to the channel transfer function predictor, which generates the a priori 

estimates Hapr,p[n -I- 1, A;] of the channel transfer factors H p \ n + 1, A;], associated with the L • P 

number of SDMA-MIMO channels portrayed in Figure 4.3 during the (n + l)-th OFDM symbol 

period. However, these a priori channel transfer factor estimates Hapr,p[n + 1,/c] have already 

been employed during the n-th OFDM symbol period for generating the matrices Wapr[n + 1, &], 

A; = 0 , . . . , iC — 1 of the combiner weights associated with the ( n -f l)- th OFDM symbol period, 

upon invoking Equations 4.64 or 4.68^®. 

Furthermore, the combiner weights are then employed in conjunction with Equation 4.24 for 

^Here the combiner weight matrix for a specific subcarrier is represented by Wapr instead of W as in Equations 4.64 
and 4.68, in order to indicate that its calculation is based on the imperfect estimates delivered by the a priori channel 
transfer function predictor. 



obtaining a priori estimates of the subcarrier-based SINRs, namely of SINR^py. [n +1 , k], potentially 

observed by the L different users at the linear combiner's output during the (n + l)-th OFDM 

symbol period. These a priori subcarrier SINR estimates are required for computing the different 

users' modulation mode assignments to be employed during the (n + l)-th uplink OFDM symbol 

period. The algorithm used for performing the modem mode assignment was summarized earlier 

in Section 2.4.1.1. Note that the updated modulation mode assignment is conveyed to the remote 

transmitters during the next downlink OFDM symbol period. 

4.4.1.3 Performance Assessment 

In this section we will briefly assess the BER performance of M M S E detection-assisted SDMA-

AOFDM. Again, we employed the indoor WATM system- and channel model of Section 6.1.1, 

where the fading was OFDM symbol invariant in order to avoid the obfuscating effects of inter-

subcarrier interference. 

Furthermore, perfect channel prediction was invoked, namely perfect knowledge of the channel 

transfer functions experienced during (n -h l)-th OFDM symbol period was made available during 

the n-th OFDM symbol period for calculating the MMSE combiner's weights to be employed during 

the (n 4- l)-th OFDM symbol period. The number of BS receiver antennas P was equal to four. A 

total of 32 subbands each hosting 16 subcarriers was employed in the context of AOFDM, which 

capitalized on four modulation modes, namely 'no transmission', BPSK, 4QAM and 16QAM. 

Our simulation results are portrayed in Figure 4.29. On the left-hand side of Figure 4.29 we 

have compared SDMA-OFDM using fixed 4QAM modulation against 32 Subband (Sb)-SDMA-

AOFDM having the same throughput, namely 1024 Bit per O F D M Symbol (BPOS). Note that 

here we have neglected the signalling overhead required for transmitting side information related to 

the modulation mode assignment to be employed during the next downlink OFDM symbol period. 

The BER curves are parameterized with the number of users L. The highest beneficial impact of 

adaptive modulation is observed for a 'fully loaded' SDMA-AOFDM system, where the number 

of users equals the number of BS receiver antennas. The is because for a lower number of users 

the effective channel - namely the SDMA-MIMO channel concatenated with the linear combiner -

experienced by the different users across the various subcarriers fluctuates less dramatically. The 

justification of this observation is that the linear combiner is capable of dedicating more of the 

channel's diversity potential to mitigating the serious frequency-domain channel fades, rather than 

to suppressing the interference imposed by the undesired co-channel users. As a result, the benefits 

of adaptive modulation are eroded. 

Having found that adaptive modulation is rendered attractive only in the context of an almost fully 

loaded SDMA-OFDM scenario, we will now focus our attention further on the BER performance 

of 32Sb-SDMA-AOFDM in the context of a scenario of four simultaneous users and reception 
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Figure 4.29: BER performance of MMSE detection-assisted SDMA-AOFDM as a function of the SNR 
recorded at the reception antennas. The curves are further parameterized with the number of si-
multaneous users L while the number of reception antennas P was fixed to four. Specifically, on 
the (left:) we have compared SDMA-OFDM using fixed 4QAM modulation to 32 Subband (Sb) 
AOFDM having the same throughput. Furthermore, on the (right:) we have compared SDMA-
OFDM using fixed BPSK, 4QAM or 16QAM modulation to 32Sb-AOFDM having equivalent 
throughputs, upon once neglecting ('32Sb-AOFDM')- and once incorporating ('32Sb-AOFDM 
& sideinfo') the additional overhead required for transmitting side-information for the reverse 
link. Note that in the context of the 512-subcarrier indoor WATM system model of Section 6.1.1 
employed here, fixed BPSK-, 4QAM- or 16QAM modulation assisted OFDM is associated with 
throughputs of 512, 1024 or 2048 Bit per OFDM Symbol (BPOS). Perfect channel transfer 
function prediction was employed. 



antennas. Here we have considered both cases, namely that where no side-information is transmitted 

as in the context of the results presented on the left-hand side of Figure 4.29, and that, where 

explicit side-information related to the modulation mode assignment to be used on the next downlink 

OFDM symbol period is received from the remote transmitters. Upon assuming that the AOFDM 

modem supports four modulation modes, namely 'no transmission', BPSK, 4QAM and 16QAM, 

a total number of two bits per subband are required. This number is increased to four bits upon 

assuming the employment of half-rate error-correction coding. Hence, in the context of 32Sb-

SDMA-AOFDM the transmission overhead required for signalling the modulation mode assignment 

to be used on the reverse link is equal to 128 bit per OFDM symbol and user. Hence, for the effective 

system throughputs of 512,1024 and 1536 BPOS the total target throughputs of the AOFDM modem 

are 640, 1152 and 1664 BPOS, respectively. From the BER curves shown at the right-hand side of 

Figure 4.29 we infer that in the context of the more realistic arrangement of transmitting explicit 

side-information the SNR required for attaining a specific BER is increased by a maximum of 

about 2dB, compared to the rather idealistic scenario, which neglects the transmission of side-

information. Note furthermore that compared to the SDMA-OFDM schemes using fixed BPSK and 

4QAM modulation modes, which support throughputs of 512 and 1024 BPOS the BER reduction 

achieved by AOFDM at a fixed SNR or equivalently, the SNR reduction attained at a specific BER 

is substantial. To provide an example, for a throughput of 1024 BPOS the SNR reduction due to 

employing SDMA-AOFDM compared to SDMA-OFDM using fixed 4QAM modulation is around 

16dB at a BER of 10"^, upon considering explicit side-information in the AOFDM transmissions. 

4.4.1,4 Summary and Conclusions 

In summary, in Section 4.4.1 we have described and characterized adaptive modulation assisted 

SDMA-OFDM. More specifically, in Section 4.4.1.1 adaptive modulation employed in single-user 

scenarios such as those described in Section 2.4 was briefly revisited. Furthermore, in Section 4.4.1.2 

the architecture of multi-user SDMA-AOFDM receiver was detailed in the context of employing lin-

ear detection techniques, such as MMSE. Its simplified block diagram was shown in Figure 4.28. 

Our BER performance assessment was then conducted in Section 4.4.1.3. We found that the em-

ployment of adaptive modulation in SDMA-OFDM is useful only in the context of an almost fully-

loaded SDMA-OFDM scenario, where the number of users L approaches the number of receiver 

antennas P. Using the indoor WATM system- and channel parameters as described in Section 6.1.1, 

the SNR advantage owing to employing 32Sb-SDMA-AOFDM having an effective throughput of 

1024 BPOS compared to SDMA-OFDM using fixed 4QAM modulation was around 16dB at a BER 

of 10^^ in the context of assuming perfect channel transfer function prediction. 

In our further experiments, which are not explicitly described here for reasons of space economy, 

we found that PIC detection, which was discussed in Section 4.3.2 is also amenable to employment 
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in conjunction with adaptive modulation techniques, resulting in a similar BER improvement as 

recorded in the context of MMSE detection. The modulation mode assignment to be used would be 

based on the SNR or SINK observed at the output of the linear combiner, which constitutes the first 

PIC stage, as it was shown in Figure 4.20. By contrast, in the context of the SIC detection scheme 

investigated in Section 4.3.1 the employment of adaptive modulation techniques turned out to be less 

attractive. This is because the effects of deep channel transfer function fades experienced by some of 

the subcarriers have already been mitigated by detecting in each SIC stage only the most dominant 

remaining user. Similarly, the advantages of adaptive modulation are also expected to erode in the 

context of ML detection. In the next section we consider an alternative frequency-domain fading 

counter measure, namely that of averaging the effects of fading, rather than accommodating them. 

4.4.2 Walsh-Hadamard Transform Spreading Assisted S D M A - O F D M 

Spreading the information symbols to be transmitted with the aid of orthogonal codes is the basis 

of supporting multiple-access capabilities in the context of single- and multicarrier CDMA (MC-

CDMA) systems [143]. Instead of transmitting each complex symbol delivered by the modulator 

separately on a specific subcarrier in the context of multi-carrier OFDM modems, its influence is 

spread over several subcarriers with the aid of orthogonal multi-chip spreading codes. The advan-

tage of employing orthogonal codes for performing the spreading is related to the resultant simple 

receiver design. A prominent class of orthogonal codes, which have been often used in CDMA sys-

tems is constituted by the family of orthogonal Walsh codes [143], which are particularly attractive, 

since the operation of spreading with the aid of these codes can be implemented in form of a 'fast' 

transform, which takes advantage of the codes' recursive structure, similarly to the FFT. 

Note however, that in the context of our discussions presented in this section, we are more inter-

ested in spreading as a means of exploiting the wideband channel's diversity potential, rather than 

in its ability of supporting multiple users, since multiple users are supported in the context of the 

SDMA-OFDM receiver with the aid of the f -e lement antenna array and the associated detection 

techniques. 

Due to the operations of spreading and despreading combined with MMSE based frequency-

domain equalization the adverse effects of the low-SNR subcarriers on the average BER perfor-

mance is potentially improved. This is a direct consequence of spreading, because even if the signal 

corresponding to a specific chip is obliterated by a deep frequency-domain channel fade, after de-

spreading its effects are spread over the Walsh-Hadamard Transform (WHT) length. Hence there is 

a high chance of still recovering all the partially affected subcarrier symbols without errors. 

The further structure of this section is as follows. In Section 4.4.2.1 the structure of the WHT 
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Figure 4.30: Simplified block diagram of the single-user WHTS-OFDM scenario. For reasons of notational 
simplicity the OFDM symbol index n and the static index ()mc have been removed from the 
different variables. 

spreading assisted single-user OFDM receiver is outlined. Specifically, we will demonstrate the sep-

arability of the operations of frequency-domain channel transfer factor equalization and despread-

ing in the context of orthogonal codes. In Section 4.4.2.2 we will then describe the WHT spreading 

(WHTS) assisted multi-user SDMA-OFDM (SDMA-WHTS-OFDM) receiver's specific structure. 

The BER performance assessment of SDMA-WHTS-OFDM cast in the context of employing either 

MMSE- or PIC detection at the receiver will then be conducted in Section 4.4.2.3. Our conclusions 

will be offered in Section 4.4.2.4. 

4.4.2.1 Outline of WHTS Assisted Single-User OFDM Receiver 

In Figure 4.30 we have portrayed the simplified block diagram of the single-user WHTS-OFDM 

transmission scenario. More specifically, at the top of Figure 4.30 the WHTS-OFDM transmitter 

is shown, which consists of WHT-assisted spreading, followed by the OFDM-related IFFT based 

modulator. The IFFT assisted modulator's output samples are then conveyed - upon neglecting 

here the further OFDM transmitter processing steps - through the stylized AWGN contaminated 

transmission channel, as shown at the right-hand side of Figure 4.30. The WHTS-OFDM receiver 

shown at the bottom of Figure 4.30 then performs the OFDM-related FFT-aided demodulation of 

the incoming signal samples, followed by subcarrier-based channel transfer factor equalization and 

despreading with the aid of the inverse WHT (IWHT). As we will show in the context of the forth-

coming derivations, the separation of the WHTS-OFDM receiver into subcarrier-based equalization 

and despreading is a consequence of the orthogonality of the Walsh codes employed. 



The further structure of this section is as follows. Our discussions commence in Section 4.4.2.1.1 

with an outline of the WHT matrix's specific properties, namely its unitary nature. Furthermore, 

in Section 4.4.2.1.2 the WHTS-OFDM receiver's design will be outlined. We will highlight that 

due to the WHT matrix's unitary nature the processes of channel transfer function equalization and 

despreading can be conducted separately. 

4.4.2.1.1 Properties of the Walsh-Hadamard Transform The lowest-dimensional WHT from 

which the higher dimensional WHTs can be recursively derived, is given by the WHTg transform, 

which is described by the following unitary matrix: 

More generally, the iV-th order WHT is given by the following recursive expression: 

=7? f I' n " ™ " \ Yr"-' ]> 
y L y 1 • UWHTat-I ^ ' *JwHTAr_i / 

as a function of the {N — l)-th order WHT matrix, namely UwHTjv-i - Note that the column vectors 

of matrix Uwhtat represent the orthogonal Walsh code vectors, for which we have: 

^ i ' ' • (4.256) 
1 0 

This implies that UwHT# is an orthogonal matrix, namely that we have [87]: 

^ (4-257) 

which therefore allows us to conclude that Uwhtat is also unitary, satisfying [87]: 

= I. (4-258) 

The unitary property allows us to separate the signal processing at the receiver into the operations of 

subcarrier-based channel transfer factor equalization followed by despreading, as it will be demon-

strated in the next section. 

4.4.2.1.2 Receiver Design The vector x[n] G of complex signals observed in the K 

different subcarriers at the output of the receiver's FFT-based demodulation is given for the WHT-

OFDM system portrayed in Figure 4.30 by: 

xfn] = H[n]UwHTs[n] + n[n], (4.259) 



where H [n] G is the diagonal matrix of subcarrier channel transfer factors, namely: 

H M = diog . . . , - 1]), (4.260) 

and UwHT 6 is the unitary WHT matrix^' of K-th order, which was defined by Equa-

tion 4.255. Furthermore, in Equation 4.259 s[n] € denotes the vector of transmitted subcar-

rier symbols, namely: 

s[nt] == ( 5 [ 0 ] , 1 ] ) ^ , (jkiX)!) 

and n[n] G is the vector of subcanier-related AWGN samples, namely: 

n[n] = (n[0], n [ l ] , . . . , n[K — 1])'^ . (4.262) 

Note that in the context of the above definitions we have omitted the OFDM symbol index [n] for 

reasons of notational simplicity. 

Equation 4.259 can be transferred into standard form, namely to: 

x[n] = HWHTWS[?T.] + n[n], (4.263) 

by considering the product of the diagonal channel matrix H [ n ] and the WHT matrix U W H T as the 

effective channel matrix Hwht["] G , namely by introducing: 

]H[wHT[n] == II[rt]TjrwHT. (4.2(yl) 

Note that Equation 4.263 exhibits the same structure as Equation 4.1, describing the SDMA-MIMO 

channel scenario on a subcarrier basis. Hence the same techniques can be invoked for recovering 

the vector s[n] of symbols transmitted over the K different OFDM subcarriers. These detection 

techniques were investigated in Sections 4.2 and 4.3 for recovering the symbols transmitted by the 

L different users on a subcarrier basis in the context of SDMA-OFDM. 

Here we will focus our attention on the case of linear equalization, namely where an estimate 

s[n] G of the vector of transmitted subcarrier symbols s[n] is obtained by linearly combining 

the complex signals received in the different subcarriers, which are represented by the vector x[n]. 

The combining can be achieved with the aid of the weight matrix W [ n ] G , as shown in 

Equation 4.7, namely: 

s n W^WxW. (4.265) 

In the context of the MMSE criterion we obtain - as demonstrated earlier in Equation 4.63 - the 

weight matrix WmmseM G , which is given in its right-inverse related form as follows: 

WMMssW = (HwKrWPMcH^W a^I)-lHwHTWPMC. (4.266) 

^'Note that here we have omitted the lower case index, which indicates the order of the WHT. 
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In Equation 4.266 the diagonal matrix P^c E of transmit powers associated with the differ-

ent subcarriers is given for an equal power allocation by: 

Pmc = I, (4.267) 

where denotes the signal variance, and is the AWGN variance. Upon substituting Equa-

tions 4.264 and 4.267 into Equation 4.266 we obtain the following equation for the weight matrix 

^̂ MMSE ['T'] • 

W'mmseM = EMMSEMUWHT) (4.268) 

where the channel-related equalizer matrix Emmse['T'] E is given by: 

EMMSEW = ( H W H ^ W + (4.269) 

This matrix describes the operation of the equalizer seen in Figure 4.30. Here we have capitalized 

on the unitary nature of the matrix Uwht, as reflected by Equation 4.258. Note that EmmseI?̂ ] given 

by Equation 4.269 is a diagonal matrix, where the A-th diagonal element is given by: 

EMMSEWI(t,t) = — - I 2^ ^2 , (4.270) 

and where H[n, k] is the A-th subcarrier's channel transfer factor. Upon substituting Equation 4.268 

into Equation 4.265 the MMSE combining related vector Smmse[«'] E of the transmitted sub-

carrier symbols' estimates is given by; 

(4^:71) 

Note in Equation 4.271 that the receiver's operation is separated into two steps. The first step 

is the subcarrier-based one-tap equalization, which is carried out by multiplying the FFT-based 

OFDM demodulator's output vector x[n] in Figure 4.30 by the Hermitian transpose of the diagonal 

matrix BwMSEW of Equation 4.269. The second step is the I W H T assisted despreading based on 

multiplying with the unitary matrix = Uwht , which was also shown in Figure 4.30. 

Following the philosophy of Equation 4.73 it can be demonstrated furthermore that the signal 

estimation MSE averaged over the different subcarrier-related components of Smmse[?̂ ] is given by: 

K-l 
M M S E m m S e M — CTG 1 ^ ^ ^MMSE[M, k] I , ( 4 . 2 7 2 ) 

where the A-th subcarrier's effective 'channel' transfer factor A], includes both the effects 

of the channel and that of the one-tap equalization at the receiver, namely: 

. (4.273) 

(7 
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In the context of deriving Equation 4.272 we have exploited only that T r a c e ( U ^ A U ) = Trace(A) 

for a unitary matrix U and for an arbitrary matrix A [94]. Note however that in the specific case 

of employing the WHT as the unitary transform, an estimation M S E identical to that averaged over 

an OFDM symbol, namely that quantified by Equation 4.272 is also observed for each individual 

subcarrier. This could be shown by following the philosophy of Equation 4.74. Furthermore, it can 

be demonstrated that after IWHT assisted despreading, as seen in Figure 4.30 the subcarrier based 

SINR is identical for all the different subcarriers, which is given by: 

SINR« n 
"̂S.WHXMMSE 

WHT.MMSE n 
(4.274) 

where we have: 

n = 

n = 

n 
O-n 
K 

< A-

y ^ HMMSE['>t-I k] 

Kk=l 
• K-1 

E 
. k=0 

X - 1 
{K 1)HUMSE[IT") k] ^ ^ ] 

k'=0 

k'^k 

Hu 

K 

E 
\ 

(4.275) 

[n, &]^.276) 

(4.277) 
\̂ &=i &.]|2 / 

In the next section we will embark on describing the multi-user SDMA-WHTS-OFDM receiver. 

4.4.2.2 Outline of the WHTS Assisted Multi-User SDMA-OFDM Receiver 

In the previous section we have demonstrated in the context of a single-user WHTS-OFDM receiver 

that the operations of linear frequency-domain channel transfer factor equalization and despreading 

can be sequentially performed. Similar derivations can also be conducted in the context of the 

multi-user SDMA-WHTS-OFDM scenario, resulting in the receiver design shown in Figure 4.31. 

Following the design concepts of the multi-user SDMA-AOFDM receiver, shown in Figure 4.28, we 

have included a decision-directed channel transfer function predictor in Figure 4.31 for providing 

the channel estimates required by the linear combiner. 

Again, as seen in Figure 4.31, blocks of K consecutive samples of the signals received by the 

P number of BS antenna elements are independently subjected to a iT-point EFT, which yields the 

signal samples' frequency-domain representation, namely Xp[n,k], p = I,... , P, k = 0,... ,K — 

1. Following this step linear combining is performed on a per subcarrier basis with the aid of 

Equation 4.7 in order obtain estimates [n, A] of the signals [n, k] transmitted by the L different 

users, where / = ! , . . . ,L. Recall that the combiner matrix associated with the MMSE criterion was 

given in its right-inverse related form by Equation 4.63. Following the design concepts of the single-

user WHTS-OFDM receiver shown in Figure 4.30, the linear signal estimates associated with the 
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WHT-Based Linear Detector 

— 1 

Classifier 

Classifier 

FFT 

FFT 

W H T 

W H T 

IWHT 

IWHT 

Linear 

Combiner 

Channel 
Trf. Func. 
Predictor 

Figure 4.31: Block diagram of the linear combining assisted multi-user SDMA-WHTS-OFDM receiver, 
which is supported by a P-element antenna front-end in order to facilitate the separation of 
the L number of simultaneous users' associated signals at the receiver. Decision-directed chan-
nel transfer function prediction is performed in order to facilitate the separation of the different 
users' transmitted signals with the aid of the linear combiner. The subcarrier index k, where 
A := 0 , . . . ,K — 1 has been omitted for reasons of notational simplicity. 
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Figure 4.32: Illustration of WHT based subcarrier spreading using a limited WHT blocksize Mwht> which 
is typically a fraction of the total number of subcarriers K hosted by the OFDM symbol for the 
sake of low implementational complexity. 

L different users are independently subjected to despreading by means of a j^-point IWHT, which 

results in the despread signal estimates k] of Figure 4.31. These are classified separately 

for each subcarrier and each user with the aid of Equation 4.94 in order to obtain the complex 

symbols [n, k] that are most likely to have been transmitted. In the context of the receiver 

design proposed here and depicted in Figure 4.31, a priori estimates of the channel transfer factors 

Hp\n,k] employed in the calculation of the different subcarriers' weight matrices according to 

Equation 4.63 are again generated upon feeding back the current O F D M symbol's subcarrier symbol 

decisions, which are subjected to WHT based spreading in order to regenerate the complex symbols 

transmitted by the L different users in each subcarrier. 

Since the employment of WHTs having a high transform length, such as for example 512, as re-

quired in case of the indoor WATM system model employed in our investigations in Section 4.4.2.3 

would impose a high computational complexity, we partition the O F D M symbol into several WHTs 

as seen in Figure 4.32. This is also justified by the observation that most of the channel's frequency-

domain diversity potential can be exploited with the aid of a relatively short spreading length, as 

illustrated in Figure 4.33. Furthermore, depending on the particular power delay profile of the chan-

nel, the OFDM symbol bandwidth of K subcarriers can be divided into interleaved blocks 

of size Mwht each, which are separately subjected to the WHT. More specifically, the i-th WHT 

block of an OFDM symbol contains subcarriers having indices j given by; 

K 
I + r 0 < r < Mw 1 , (4.278) 

where according to our definition both the first WHT block and the first OFDM subcarrier are 

represented by an index of zero. In Figure 4.32 we have further illustrated the operation of WHT 



based spreading applied to blocks of an identical size, where each block hosts only a fraction of 

the total number of subcarriers K associated with the OFDM symbol. More specifically, in this 

particular example the OFDM symbol is composed of 16 interleaved WHT blocks and the specific 

subcarriers, which are 16 frequency positions apart from each other belong to the same WHT block. 

4.4.2.3 Performance Assessment 

Our performance investigations of WHTS-OFDM are conducted separately for single- and multi-

user OFDM scenarios. Specifically in Section 4.4.2.3.1 we will demonstrate the influence of the 

spreading code length on the WHTS-OFDM system's performance. Furthermore, a comparison 

between WHTS-OFDM and AOFDM is also carried out. Our investigations of multi-user SDMA-

WHTS-OFDM cast in the context of MMSE- and PIC detection will then be conducted in Sec-

tion 4.4.2.3.2. 

4.4.2.3.1 Single-User WHTS-OFDM Simulation results have been obtained for the indoor WATM 

system- and channel model of Section 6.1.1. We commenced our investigations by assessing the im-

pact of Walsh-Hadamard spreading using different spreading code lengths on the BER performance 

of a 4QAM single reception antenna, single user OFDM system in the indoor WATM channel envi-

ronment. MMSE-based frequency domain channel equalization, as described in Section 4.4.2.1.2, 

was performed at the receiver. The corresponding results are portrayed at the left-hand side of Fig-

ure 4.33. We observe that as a consequence of the residual 'multiple-access' interference imposed 

by the spread signals of the different subcarriers hosted by each W H T block, the BER performance 

is not particularly sensitive to the WHT block length, provided that it is in excess of 32 subcarriers 

for the SNRs of our interest. It should be noted that the benefit of spreading is directly related to the 

frequency-domain diversity potential offered by a specific dispersive channel. More specifically, the 

higher the channel's delay spread, the less separated are the frequency-domain fades, hence tolerat-

ing a higher WHT length, while achieving as high a randomization of the frequency-domain fading 

effects as possible. 

In our next investigations we compared the BER performance of the WHT assisted OFDM system 

to a non-spread OFDM system and to an OFDM system employing adaptive modulation [98], under 

the constraint of having a target throughput equivalent to that of the fixed mode 4QAM modulated 

OFDM system. The modulation mode adaptation regime employed a total of four modes, namely 

'no transmission', BPSK, 4QAM and 16QAM transmission. In order to reduce the signalling over-

head required, the modulation modes were assigned on a subband basis, where each subband hosted 

either one or a number of subcarriers. Specifically, using one subcarrier per subband allowed us to 

determine the upperbound performance of the system. Furthermore, the best-case scenario of per-

fect channel transfer function knowledge was invoked in the process of determining the optimum 

modulation mode assignment. The corresponding simulation results are illustrated at the right-hand 
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Figure 4.33: (Left;) BER performance of a WHT spreading assisted 4QAM modulated single reception an-
tenna, single user OFDM system parameterised with the spreading blocksize. (Right;) BER 
performance comparison between a 4QAM modulated single reception antenna, single user 
standard OFDM system, an OFDM system employing four-mode ('no transmission', BPSK, 
4QAM, 16QAM), constant-throughput, zero-delay signalling based adaptive modulation using 
16 or 512 subbands, and a Walsh-Hadamard spreading assisted OFDM system. The simula-
tions were conducted in the context of the 'frame-invariant' fading indoor WATM system- and 
channel model of Section 6.1.1. Ideal channel transfer function knowledge was assumed. The 
BER performance of 4QAM signalling over an AWGN channel has been plotted as a reference. 

side of Figure 4.33. We observe that in the specific indoor WATM channel environment, assuming 

the separation of the total bandwidth into 32 equal-sized subbands, each hosting 16 subcarriers, 

the OFDM system employing adaptive modulation exhibits a similar performance to that of the 

spread OFDM system for a WHT blocksize of 64 subcarriers. B y contrast, a hypothetic system 

assigning the best-matching individual modulation mode to each subcarrier outperformed the WHT 

OFDM scheme by about 2dB in terms of the required SNR. Hence, taking also into account the 

signalling overhead required by the adaptive modulation scheme, as well as its limited applicability 

restricted to relatively slowly varying channels in the absence of channel transfer function predic-

tion techniques, we conclude that subcarrier spreading is a more convenient approach to exploiting 

the wideband channel's diversity potential. 
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Figure 4.34: BER performance comparison between 4QAM modulated MMSE, PIC or SIC detection-
assisted SDMA-OFDM systems as a function of the SNR at the reception antennas, (left:) 
for a L = P = 2 number of simultaneous users and reception antennas, while (right:) for a 
L = P = A number of simultaneous users and reception antennas. The systems employing 
MMSE and PIC multi-user detection were further assisted by Walsh-Hadamard spreading us-
ing a blocksize of 16 subcarriers. Ideal channel transfer function knowledge was assumed. The 
simulations were conducted in the context of the frame-invariant fading indoor WATM system-
and channel model described in Section 6.1.1. 

4.4.2.3.2 Multi-User SDMA-WHTS-OFDM Our further a im was to investigate the applica-

bility of WHT based spreading in the context of an SDMA-OFDM system, where the signals of 

L simultaneous users each equipped with one transmission antenna are separated at the BS with 

the aid of a f - e l emen t antenna array. The design of the corresponding receiver was outlined in 

Section 4.4.2.2. In our investigations we invoked the MMSE- and PIC based multi-user detection 

approaches of Sections 4.2.3 and 4.3.2, while SIC described in Section 4.3.1 was not directly appli-

cable to a spread OFDM system. This is because in a specific subcarrier or subband in each iteration 

the highest-power user is detected first, followed by the subtraction of its sliced and remodulated 

signal from the residual composite multi-user signal received by each antenna. Since the WHT 

based spreading is performed across subcarriers spaced apart f rom each other as far as possible for 

the sake of maximising the achievable frequency-domain diversity effect, these subcarriers would 

potentially require a different SIC detection order. Hence not all the symbols of a specific user 
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contained in a WHT block are available at the same time for demodulation. Simulation results have 

been obtained for a two reception antenna, two user SDMA scenario. The results are portrayed at 

the left-hand side of Figure 4.34. We observe that both the MMSE and the PIC detector using WHT 

based spreading outperform the M-SIC detector in the non-spread case, which tracked M = 1 or 

M = 2 tentative symbol decisions from each detection node as shown in Figure 4.11. Note that 

the least complex multi-user receiver, namely the MMSE detector performed about 2.5dB worse on 

average, than PIC, which was also observed in the non-spread scenario. Again, by contrast, in case 

of a four reception antenna, four user SDMA scenario characterized at the right-hand side of Fig-

ure 4.34, the ( M = 2)-SIC detector applied in the non-spread scenario outperforms both spreading 

assisted arrangements, namely those employing MMSE and PIC based detection. However, com-

pared to the standard ( M = 1)-SIC detector, at sufficiently high SNRs both the MMSE and PIC 

detection assisted SDMA-OFDM systems exhibit a better BER performance. This is achieved at a 

significantly lower complexity than that of the SIC scheme, upon assuming that a 'fast' implemen-

tation of the WHT is employed for performing the spreading. 

4.4.2.4 Summary and Conclusions 

In Section 4.4.2 WHT spreading assisted OFDM was discussed in the context of both single- and 

multi-user OFDM scenarios. Our discussions commenced in Section 4.4.2.1 with an outline of the 

WHTS-OFDM receiver's structure in the context of the single-user scenario. Specifically, in Sec-

tion 4.4.2.1.1 the WHT's properties, namely its recursive structure, as reflected by Equation 4.255, 

which allows for a 'fast' implementation, similarly to the FFT, were described. Of further interest 

was the WHT matrix' unitary nature, as described by Equation 4.258, which follows from the or-

thogonality of the different Walsh code vectors. Next we highlighted in Section 4.4.2.1.2 that the 

unitary nature of the WHT matrix facilitates a particularly simple receiver design in the context of 

linear channel transfer function equalization. The block diagram of the single-user WHTS-OFDM 

receiver was shown at the bottom of Figure 4.30. Specifically, the IWHT based despreading was 

shown to be decoupled from the channel transfer factor equalization. This was also demonstrated in 

the context of the formal derivation of a linear estimate Smc,mmse of the vector s^c of signals trans-

mitted in the K different subcarriers, which was formulated in Equation 4.271. Furthermore, we 

found that the signal estimation MSE at the receiver's output is identical for the different subcar-

riers, which was given by Equation 4.272. We also found that the SINK at the receiver's output, 

which is given by Equation 4.274, is identical for the different subcarriers. 

In Section 4.4.2.2 we then embarked on the description of the multi-user SDMA-WHTS-OFDM 

receiver's structure shown in Figure 4.31, which followed the same design concepts as the single-

user WHTS-OFDM receiver. Specifically the multi-user SDMA scheme employed a sequential 

equalization- or combining scheme, followed by WHT despreading, implemented separately for the 



different users. In order to reduce the computational complexity, we found that it was attractive to 

perform the spreading separately for K / M ^ j number of 'interleaved' blocks of size Mwht subcar-

riers each, as it was shown in Figure 4.32, instead of implementing it for a single larger-size block 

of K subcarriers, without incurring a noticeable increase of the BER. 

The evaluation of the single-user WHTS-OFDM and multi-user SDMA-WHTS-OFDM systems' 

BER performance was then carried out in Section 4.4.2.3. Specifically, in Figure 4.33 of Sec-

tion 4.4.2.3.1 we found that already for relatively small spreading block lengths, namely 64 subcar-

riers per block employed in the context of the indoor WATM channel of Figure 6.1.1, the wideband 

channel's diversity can be exploited, while a further increase of the spreading length did not yield 

a significant BER improvement, as shown at the left-hand side of Figure 4.33. This was because 

by increasing the spreading block length, the channel transfer factors associated with neighbouring 

subcarriers contained in a block became more similar. Furthermore, our BER comparisons por-

trayed at the right-hand side of Figure 4.33 revealed that WHTS-OFDM is also more attractive than 

AOFDM. More explicitly, AOFDM is capable of slightly outperforming WHTS-OFDM, but only 

for an unrealistically high number of subbands, namely in excess of 64, when neglecting the trans-

mission of side-information and by assuming perfect channel transfer function knowledge in the 

modulation mode assignment, the AOFDM is capable of slightly outperforming WHTS-AOFDM. 

Our BER performance assessment of multi-user WHTS-OFDM was then conducted in the context 

of Figure 4.34 for scenarios of two BS reception antennas and two simultaneous users as well as for 

four reception antennas and four simultaneous users, as shown at the left-hand- and right-hand side 

of Figure 4.34, respectively. Various detection techniques were compared against each other, namely 

MMSE, PIC and SIC detection, noting that in the context of the latter WHTS was not directly 

applicable. We found that in the lower-dimensional SDMA-OFDM scenario of two users both PIC-

as well as MMSE detection-assisted SDMA-WHTS-OFDM are capable of outperforming (M = 

1)- and ( M = 2)-aided SIC detection-assisted SDMA-OFDM, while in the higher-dimensional 

SDMA-OFDM scenario ( M = 2)-SIC detection-assisted SDMA-OFDM performed best, while 

at the same time exhibiting by far the highest complexity. By contrast, at sufficiently high SNRs 

( M = 1)-SIC detection-assisted SDMA-OFDM was outperformed by both PIC- as well as MMSE 

detection-assisted SDMA-WHTS-OFDM, while at the same time exhibiting a potentially far lower 

computational complexity, than the SIC detection-assisted systems. 

4.5 Summary and Conclusions 

In this section our summary and conclusions will be provided for this chapter, where we discussed a 

range of uplink detection techniques designed for multi-user SDMA-OFDM. The specific structure 

of this section is as follows. In Section 4.5.1 the motivation of employing multiple reception antenna 

assisted SDMA receivers is reviewed, which is followed in Section 4.5.2 by a summary of the 
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family of linear detection schemes. Our summary and conclusions related to the set of non-linear 

detection schemes will be offered in Section 4.5.3. Finally our overall comparison between the 

different detection schemes investigated will then be offered in Section 4.5.3.4. This is followed in 

Section 4.5.3.5 by our conclusions on the suite of performance enhancement techniques studied. 

4.5.1 Review of the Motivation for Multiple Reception Antenna SDMA Receivers 

During the past few decades a variety of Multiple Access (MA) techniques, such as Time Division 

Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Code Division Multiple 

Access (CDMA) have found favour in the various wireless communications systems. More re-

cently Space Division Multiple Access (SDMA) has been proposed for supporting multiple users in 

OFDM-based communications system. In the context of the more conventional techniques, namely 

TDMA, FDMA and CDMA, both the mobiles as well as the basestation are typically equipped 

with a single transmit- and receive antenna, respectively. The access of the different users to the 

finite capacity transmission channel is then facilitated in TDMA by allowing each user to access 

the channel's entire bandwidth for a finite time duration, namely for the duration of a time-slot. By 

contrast, in FDMA we assign each user a frequency slot. Finally, in CDMA all users share the same 

frequency band and we facilitate the separation of the different users' transmitted signals with the 

aid of unique, user-specific spreading codes. 

Alternatively, all users could potentially share the same frequency band, as in CDMA, and we 

could exploit for their separation that the different users' transmitted signals experience different 

channel transfer functions. The separation of the different users based on their unique channel 

transfer function constitutes the principle of a minimalistic SDMA scheme. More specifically, in 

the context of each of the flat-fading OFDM subcarriers, the channel matrix H associated with the 

scenario of L > 1 different users and P = 1 receiver antenna is of unity rank. Hence, only the ML 

detector is capable of separating the different users' transmitted signals, upon inflicting a potentially 

large complexity. 

In order to render SDMA amenable to employment of lower complexity linear combining-based 

multi-user detection techniques, such as the LS, MMSE, SIC and PIC detection arrangements dis-

cussed in Sections 4.2.2, 4.2.3, 4.3.1 and 4.3.2, respectively, a viable strategy is to increase the P 

number of receiver antennas, such that we have P > L. Hence the channel matrix H is poten-

tially of 'full rank' with respect to the number of users L. In other words, we have L = rank{W), 

which facilitates the linear separation of the different users' transmitted signals based on their spa-

tial signature. More specifically, the spatial signature of a particular user is constituted by the set 

of channel transfer factors between the user's single transmit antenna and the P number of differ-

ent receiver antennas, again, upon assuming flat-fading channel conditions for each of the OFDM 

subcarriers. This Multiple-Input Multiple-Output (MIMO) channel scenario was further detailed in 
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Section 4.1.3, where for simplicity we assumed that the fading experienced by each of the MIMO 

sub-channels associated with a specific transmitter-receiver antenna pair is independent from that 

of the other MIMO sub-channels. 

Our more specific discussions of multi-user detection techniques applicable to SDMA-OFDM 

were separated into the subclasses of linear- and non-linear detection techniques of Sections 4.2 and 

4.3, respectively. As argued in Sections 4.1.1 and 4.1.2 the rationale of this classification was that in 

the context of linear detection techniques, such as the LS- and M M S E detection schemes discussed 

in Section 4.2, no a priori knowledge of the remaining users' transmitted symbols is required for 

the detection of a specific user. However, in the case of the SIC, PIC and ML detection techniques 

discussed in Section 4.3, a priori knowledge of the likely values of the symbol is involved, which 

must be provided by the non-linear classification or decision operation involved in the demodulation 

process. 

4.5.2 Summary and Conclusions Related to Linear Detectors 

The typical structure of a linear detector was highlighted in Figure 4.4. More specifically, in a 

first step linear estimates of the L different users' transmitted signals are obtained by appropriately 

combining the signals received by the P different antenna elements. In a next step these signal 

estimates are classified- or demodulated in order to determine the complex symbol- or constellation 

point that is most likely to have been transmitted by each user. As a result of the user signal 

separation facilitated with the aid of the linear combiner, the process of classification is substantially 

simplified compared to that of the multi-user ML detector discussed in Section 4.3.3. Instead of 

evaluating the multi-user Euclidean distance metric associated with the multi-user ML detector 

number of times, in case of the linear detector the single-user Euclidean distance metric has 

to be evaluated LMc number of times, which constitutes a complexity reduction. However, this 

complexity reduction is achieved at the cost of a significant performance degradation in the context 

of the linear detector compared to that of the optimum ML detector, since the effects of the residual 

interference contaminating the linear combiner's output signals are neglected by the former. 

The linear combiner's associated weight matrix can be adjusted according to a number of different 

criteria. Explicitly, the Least-Squares (LS) error- and the Minimum Mean-Square Error (MMSE) 

criteria were investigated in Sections 4.2.2 and 4.2.3, respectively. More specifically, as it was 

detailed in Section 4.2.2, the LS detector's associated LS combiner generates linear estimates of the 

signals transmitted by the different users based solely on the knowledge of the channel's frequency-

domain transfer factors. In contrast to the LS combiner, the MMSE detector's associated MMSE 

combiner, which belongs to the class of Wiener-filter related combiners, as argued in Section 4.2.3.4, 

additionally capitalizes on statistical knowledge of the AWGN process, which contaminates the 

signals received by the P number of different antenna elements. As the terminology suggests, the 
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MMSE combiner achieves the minimum signal estimation MSE. However, the transmitted signals 

to be estimated cannot be recovered with a unity gain, which is in contrast to the LS combiner. 

As argued in Section 4.2.3.5, this non-unity gain may be compensated by normalizing the MMSE 

combiner's output signals, at the cost of increasing the estimation MSE. The resultant normalized 

combiner weight vectors were identical to those of the MV combiner. 

Our analysis of the LS- and MMSE detector's MSE and BER performance characterized in Sec-

tion 4.2.6 underlined the MMSE detector's advantage compared to the LS detector in terms of 

achieving a lower signal estimation MSE and BER, as it was shown in Figure 4.6. Furthermore, we 

found that upon decreasing the number of simultaneous SDMA users L, while keeping the num-

ber of reception antennas P constant, the MMSE detector's performance quantified in terms of the 

SINR and BER was significantly improved, as it was shown in Figures 4.7 and 4.8. A further BER 

reduction was achieved with the aid of turbo-coding, as it was shown in Figure 4.9, although as 

usual, this was achieved at the cost of reducing each SDMA user's effective throughput, while also 

imposing further additional computational complexity. 

Our detailed analysis of the different linear detectors' computational complexity provided in Sec-

tion 4.2.7 revealed that the MMSE detector is slightly more complex than the LS detector. However, 

the general trend is that the complexity is proportional to the cube of the number of users L, as in 

case of LS detection or MMSE detection implemented in its left-inverse related form. A similar 

cubically proportional complexity dependence is valid also with respect to the number of reception 

antennas P, as in case of the MMSE detection implemented in its right-inverse related form. 

For a more detailed summary and conclusions related to the family of linear detection techniques 

we refer to Section 4.2.8. 

4.5.3 Summary and Conclusions Related to Non-Linear Detectors 

Our summary and conclusions on non-linear detectors are separated into Sections 4.5.3.1, 4.5.3.2 

and 4.5.3.3, considering SIC, PIC and ML detection, respectively. 

4.5.3.1 SIC Detection 

The employment of SIC detection was motivated earlier in the context of our performance analysis 

of MMSE detection in Section 4.2.6.3 by the specific observation that upon decreasing the number 

of simultaneous users L, while keeping the number of reception antennas P constant, the MMSE 

detector's BER performance was improved. This was because for a lower number of SDMA users 

the associated MMSE combiner was less constrained with respect to the specific choice of the com-

biner weights optimized for suppressing the interfering users' signal contributions. This allowed for 

a more effective noise mitigation. The same principle can be invoked in the context of an iterative 

detector, namely the standard SIC detector of Figure 4.10, where in each iteration- or cancellation 



stage only the most dominant user having for example the highest SNR, SIR or SINK at the lin-

ear combiner's output was detected. The detected user's influence is eliminated from the partially 

decontaminated vector of signals received by the different antenna elements, upon invoking the 

detected user's remodulated signal. This principle was further detailed in Section 4.3.1.1. 

In the context of the BER and SER performance results of Section 4.3.1.4 we found that the 

standard SIC detector suffers from the effects of error propagation across the different detection 

stages. In fact, it was observed that if a symbol error occurred in one of the lower-index detection 

stages, then there was a relatively high probability that symbol errors also occurred in the higher-

index detection stages. By contrast, if correct symbol decisions were made in the lower-index 

detection stages, then the probability that an error occurred in one of the higher-index detection 

stages was lower, than for the lower-index detection stages. This was a consequence of the MIMO 

channel's increased diversity order in the context of the higher-index detection stages, following 

the removal of the signal contributions of those users, which had already been detected. In order 

to mitigate the effects of error propagation across the different detection stages, the standard SIC 

detector was appropriately modified. 

More specifically, in the context of the M-SIC scheme discussed in Section 4.3.1.2 an M > 1 

number of tentative symbol decisions are tracked from each detection node. Consequently, after the 

detection of the last user a decision has to be made as to which of the number of vectors 

of the different users' tentative symbols is most likely to have been transmitted. The significant 

performance advantage offered by M-SIC compared to standard SIC is achieved at the cost of an in-

creased computational complexity, which is related to the additional number of 'decontamination'-

and demodulation operations associated with the increased number of detection nodes involved. 

Based on the observation that symbol error propagation events are predominantly triggered by the 

lower-index detection stages, as it was evidenced by Figure 4.16, a viable strategy of reducing the 

complexity of M-SIC is to restrict the employment of M > 1 number of tentative symbol decision 

per detection node to the lower-index detection stages, while at the higher-index detection stages 

employing M = 1. This strategy was discussed in Section 4.3.1.2.2 and it was termed partial 

M-SIC- or pM-SIC. 

A further complexity reduction was achieved in Section 4.3.1.2.3 by restricting the employment 

of M-SIC- or partial M-SIC to those specific OFDM subcaniers, which exhibited a relatively low 

SINR during the first detection stage, while using standard SIC in conjunction with M = 1 in the 

subcarriers exhibiting a higher SINR. This strategy, which was initially proposed in [53, 117] was 

termed as Selective-Decision-Insertion M-SIC (SDI-M-SIC). 

Our further discussions presented in Section 4.3.1.3 addressed the task of soft-bit generation in 

the context of standard SIC. While our rudimentary approach in Section 4.3.1.3.1 followed the 

philosophy of soft-bit generation contrived for the MMSE detection technique, as discussed in Sec-

tion 4.2.5, the improved 'weighted' soft-bit metric of Section 4.3.1.3.2 additionally accounted for 
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the effects of error-propagation across the different SIC stages. More specifically, in case of rel-

atively unreliable symbol decisions generated during the previous SIC detection stages a viable 

strategy is to de-emphasize the soft-bits generated for the current detection stage by appropriately 

decreasing their value and thus indicating a low associated confidence. 

The assessment of the BER and SER performance exhibited by the standard SIC, M-SIC, pM-SIC 

and SDI-M-SIC schemes was conducted in Section 4.3.1.4. Specifically, we found in Figure 4.12 

that the BER and SER performance of SIC- and M-SIC detection was significantly improved upon 

increasing the L = P number of users and reception antennas of the 'fully loaded' SDMA-OEDM 

system. This is, because for a higher number of users, the SIC detector benefits from selecting 

the most dominant user from a larger 'pool' of different users at a specific detection stage, with 

the desirable effect of reducing the probability of incurring a low-SINR user as the most dominant 

user. Furthermore, in Figure 4.12 we found that upon employing M-SIC instead of standard SIC, a 

further substantial reduction of the BER or SER can be achieved. Using the SINR instead of the SNR 

recorded at the linear combiner's output in each detection stage for identifying the most dominant 

user yielded a noticeable BER or SER reduction, although only for SDMA scenarios, where the 

number of users and reception antennas was in excess of four. The effects of error propagation 

were detailed in Sections 4.3.1.4.2, 4.3.1.4.3 and 4.3.1.4.4. Furthermore, the SER performance 

of both pM-SIC and SDI-M-SIC was evaluated in Sections 4.3.1.4.5 and 4.3.1.4.6 with associated 

Figure 4.16. These schemes were employed for reducing the potentially substantial computational 

complexity associated with M-SIC. Specifically, in the context of an SDMA scenario supporting 

L = A simultaneous users with the aid of P = 4 reception antennas we found that employing M = 2 

tentative symbol decisions per detection node during the first two detection stages (ipM-sic = 2) of 

pM-SIC, which was reduced to M = 1 symbol decision per detection node during the higher-index 

detection stages, results in an SNR degradation of approximately IdB at an SER of 10"^. This 

IdB SNR degradation was the price of halving the computational complexity quantified in terms 

of the number of comparisons to be conducted, as it was shown with the aid of Figure 4.19. Our 

performance assessment of SDI-pM-SIC was the topic of Section 4.16, which demonstrated that 

in the context of the specific indoor WATM channel model of Section 6.1.1, SDI-pM-SIC yields 

the same SER performance as pM-SIC (ipM-sic = 1)^^, provided that in the context of SDI-pM-

SIC pM-SIC is employed in the jvjgj = 64 number of lowest-SINR subcarriers recorded during 

the first detection stage, while using standard SIC in the remaining subcarriers. The performance 

assessment of the various SIC schemes was concluded with the evaluation of the BER performance 

exhibited by turbo-coded standard SIC detection-assisted SDMA-OFDM in Figures 4.17 and 4.18, 

which conveniently highlighted the benefits of the weighted soft-bit metric in comparison to the 

standard soft-bit metric, both of which were outlined in Section 4.3.1.3. 

^This implied using M = 2 tentative symbol decisions at the first detection stage, which was reduced to employing 
M = 1 symbol decision during the remaining detection stages. 
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Finally, an analysis of the computational complexity exhibited by the various SIC schemes was 

carried out in Section 4.3.1.5. Specifically, in Figure 4.19 it was demonstrated that amongst the 

various successive interference cancellation based detectors the standard SIC detector is the least 

complex one, while M-SIC exhibits the highest complexity. A compromise between performance 

and complexity is constituted by the partial M-SIC scheme. For a more detailed summary and 

conclusions we refer to Section 4.3.1.6. 

4.5.3.2 PIC Detection 

The employment of the PIC detection scheme discussed in Section 4.3.2 was partially motivated by 

the SIC detector's potentially high complexity, which is related to the requirement of identifying the 

most dominant user - as well as recalculating the selected user's weight vector - in each detection 

stage, as outlined in Section 4.3.1. Furthermore, we found in the context of SIC detection that 

the highest AWGN mitigation was achieved by the linear combiner employed in each of the SIC 

detection stages, during its last detection stage, following the successful removal of all interfering 

co-channel users' contributions. 

As a consequence, the PIC scheme portrayed in Figure 4.20 was investigated. In the context of 

this arrangement tentative estimates of the different users' transmitted signals were generated with 

the aid of a linear combiner, which was the MMSE combiner of Section 4.2.3 in our specific case. 

These signal estimates were then demodulated in order to obtain tentative symbol decisions, which 

were remodulated and subtracted from the vector of signals received by the different antenna ele-

ments, upon taking into account the effects of the channel. As a result, a potentially interference-free 

vector of received signals was obtained for each user, provided that correct symbol decisions were 

made for the remaining users. Hence, the MMSE combiners, which were employed for obtaining 

improved signal estimates from the decontaminated array output vectors became then capable of 

more effectively suppressing the AWGN. This principle was further detailed in Section 4.3.2.1. 

However, in the context of our performance study provided in Section 4.3.2.3 we found that in 

the absence of channel coding the detector performs only slightly better, than the MMSE detector. 

Specifically, in the context of the 'fully loaded' SDMA scenario of four reception antennas sup-

porting four simultaneous SDMA users, as characterized in Figure 4.21, the SNR advantage of PIC 

detection over MMSE detection when aiming for maintaining a BER of 10"^ was as low as 1.25dB, 

while for a 'minimalistic' SDMA scenario of two reception antennas and two simultaneous users an 

SNR advantage of 3.03dB was observed at the same BER. The relatively modest SNR improvement 

of 1.25dB was related to the effect that if the symbol decisions obtained during the first detection 

stage were erroneous even for a single user, then during the PIC process of Figure 4.20 the remain-

ing users' received signals were imperfectly decontaminated. This phenomenon had the effect of 

potentially incurring erroneous symbol decisions for all the other users as well during the following 



demodulation process. 

In order to combat these effects it was proposed in Section 4.3.2.2 to combine the PIC detec-

tion scheme with turbo-decoding, incorporated into the classification module of Figure 4.20. A 

remodulated reference signal to be used in the PIC process may be generated based on the origi-

nal information bit-positions or 'source'-related soft-output bits of the turbo-decoder, requiring the 

slicing, re-encoding and remodulation of these bits. Alternatively, the 'source- plus parity'-related 

soft-output bits may be sliced and remodulated, which exhibited a slight advantage in Figure 4.22 

in terms of the system's BER performance. In order to render the associated BER simulation results 

presented in Figure 4.22 comparable to those of the other detectors we decided to equally split the 

total affordable number of PIC iterations into those employed during the first- and the second PIC 

stage. Compared to turbo-coded MMSE detection-assisted SDMA-OFDM a dramatic performance 

advantage was achieved with the aid of this arrangement, as it was shown in our final performance 

comparison of the different detection schemes portrayed in Figure 4.26. 

A detailed complexity analysis of the PIC detector was conducted in Section 4.3.2.4 and based on 

these equations it became obvious in our final comparison of the different detectors' complexities 

quantified in Figure 4.27 that the PIC detector constitutes an attractive design compromise between 

the MMSE- and standard SIC detectors. For a more detailed summary and conclusions on PIC 

detection we refer to Section 4.3.2.5. 

4.5.3.3 ML Detection 

In Section 4.3.3 the optimum ML detector was described and characterized. As argued in Sec-

tion 4.3.3.1, ML detection is based on the strategy of maximizing the a posteriori probability 

P ( s | x , H) that a hypothetic 'L-user' vector of symbols s was composed of the individual sym-

bols transmitted by the L different users over a channel characterized by the matrix H defined in 

Equation 4.212, conditioned on the vector x of signals received by the P different antenna elements. 

The maximization of the likelihood metric was carried out over the entire set of number 

of hypothetic 'L-user' symbol vectors constituted by the L different users' Mg-ary constellations. 

With the aid of Bayes' theorem [87] and upon exploiting that the different symbol combination 

vectors were transmitted with equal probability, it was furthermore shown that maximizing the a 

posteriori probability P ( s | x , H) is equivalent to maximizing the a priori probability P ( x | s , H ) , 

which is the probability that the signal vector x was received by the different antenna elements, 

conditioned on transmitting the hypothetic 'L-user' symbol vector s. It was furthermore shown that 

the a priori probability P ( x | s , H) is given by the multi-variate complex Gaussian distribution func-

tion / ( x | s , H), which is defined by its vector of mean values and by its covariance matrix. Hence, 

it was argued that maximization of the a priori probability P ( x | s , H ) is equivalent to minimizing 

the argument of the exponential function of Equation 4.216 constituting the multi-variate complex 



Gaussian distribution function. This involved minimizing the Euclidean distance between the vector 

X of received signals and the hypothetic 'L-user' vector of transmitted signals s, upon taking into 

account the effects of the MIMO channel described by the channel matrix H of Equation 4.212, 

again for all trial-vectors contained in the set of Mjf number of 'L-user' symbol vectors. 

As part of minimizing the multi-user Euclidean distance metric, each of the different hypo-

thetic trial-vectors s G has to be transformed to the received signal's space upon multiplication 

with the channel matrix H of Equation 4.212. It was demonstrated in Section 4.3.3.1 that if the 

number of simultaneous users L is significantly lower than the number of receiver antennas P, the 

associated complexity can potentially be reduced upon transforming each trial-vector first to the 

transmitted signal's space with the aid of a linear transform, followed by evaluating a modified Eu-

clidean distance metric. It was shown in Section 4.3.3.2 that a particularly suitable transform is 

the LS-related transform matrix of Equation 4.225, which delivers a noise-contaminated unity-gain 

estimate of the 'L-user' vector of transmitted signals, simplifying the Euclidean distance metric 

employed. 

Furthermore, the generation of soft-bit values for turbo-decoding at the receiver was alluded to 

in Section 4.3.3.3 based on the assumption of employing a separate trellis decoding of the different 

users' signals. 

The BER performance of both the uncoded and turbo-coded scenarios was then characterized 

in Section 4.3.3.4. Specifically, in Figure 4.24 we found for the uncoded scenario that the ML 

detector's performance is relatively insensitive to the number of users L, given a fixed number of 

reception antennas P. In contrast to the linear combining based detectors discussed in this chapter, 

even when increasing the number of users beyond the number of reception antennas, the perfor-

mance degradation is graceful. Furthermore, we found that similarly to the SIC detector's behaviour 

recorded when increasing the number of reception antennas, the M L detector's BER performance 

was significantly improved owing to the higher degree of diversity provided by a MIMO system 

of a higher order. Again, for the turbo-coded scenario we observed in Figure 4.25 a substantially 

improved BER performance compared to that of the uncoded scenario. For example, for the 'fully 

loaded' system of four reception antennas supporting four simultaneous users the BER at an SNR 

of 5dB was as low as 10^®. 

Our complexity analysis documented in Section 4.3.3.5 revealed that the ML detector's complex-

ity is proportional to the number of symbol combinations constituted by the L different users' 

Mc-ary trial symbols. For a more detailed summary and conclusions were refer to Section 4.3.3.6. 



4.5.3.4 Overall Comparison of the Different Detection Techniques 

Our final comparison of the different linear- and non-linear detection techniques in both uncoded-

and turbo-coded scenarios was documented in Section 4.3.4. Specifically the achievable BER per-

formance was documented in Figure 4.26, while the associated computational complexity, in Fig-

ure 4.27. 

The essence of this comparison was that in all investigated scenarios - as expected - the ML 

detector constituted the best performing, but highest complexity solution, while the MMSE detector 

was the worst-performing, lowest-complexity solution. 

A compromise in terms of performance and complexity was provided by the class of SIC detectors 

and its derivatives as documented in Section 4.3.1. While in the uncoded scenario of Figure 4.26 the 

M-SIC (M=2) scheme performed almost identically to the ML detector, a substantial performance 

degradation was observed in Figure 4.26 for the lower-complexity standard SIC detector. A trade-off 

between the performance and the complexity associated with the standard SIC and M-SIC schemes 

of Sections 4.3.1.1 and 4.3.1.2.1 was achievable with the aid of the partial M-SIC or SDI-M-SIC 

arrangements of Sections 4.3.1.2.2 and 4.3.1.2.3. The associated performance results were, how-

ever, not repeated in Figure 4.26. By contrast, in the turbo-coded scenario, both detectors, namely 

the standard SIC and M-SIC (M=2) schemes of Sections 4.3.1.1 and 4.3.1.2.1 performed within a 

range of IdB in excess of the SNR required by turbo-coded ML detection-assisted SDMA-OFDM, 

when maintaining a specific BER. 

While PIC detection was unattractive in the uncoded scenario, owing to its relatively modest 

BER improvement compared to MMSE detection, in the turbo-coded scenario a significant BER 

improvement was achieved. However, for the range of BERs of our interest, namely below 10"^, 

the PIC detector's performance was worse than that of turbo-coded standard SIC. This was related 

to the imperfections of the soft-bit estimates employed and hence there is still some potential for 

its improvement. Note that this performance improvement was achieved, while exhibiting a lower 

complexity, than that of standard SIC. 

4.5.3.5 Summary and Conclusions Related to Performance Enhancement Techniques 

In order to render the less complex, but also less powerful detection techniques, such as MMSE 

and PIC also more attractive for employment in uncoded scenarios, the performance enhancement 

techniques of Section 4.4.1 may be invoked, which are well-known from the field of single reception 

antenna based communications systems. Specifically, constant throughput adaptive modulation as 

well as Walsh-Hadamard spreading using orthogonal spreading codes may be employed. While 

AOFDM capitalizes on the difference of the different subcarriers' channel quality offered by the 

wide-band channel, spreading aims for averaging the subcarriers' quality differences. 
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4.5.3,5.1 Adaptive Modulation Assisted SDMA-OFDM Adaptive modulation employed in 

the context of OFDM - which we termed as AOFDM - is based on the idea of assigning a more 

robust, lower-throughput modulation mode to those subcarriers, which are likely to cause symbol 

errors in the context of a fixed-mode transceiver as a result of their associated low SNR. By con-

trast, a less robust, higher throughput modulation mode is assigned to the higher-quality subcarriers. 

These concepts were further elaborated on in Section 4.4.1. In the context of our associated BER 

performance investigations conducted in Section 4.4.1.3 we found that as shown in Figure 4.29, the 

employment of adaptive modulation in an MMSE detection-assisted SDMA-OFDM system is only 

advantageous in terms of further reducing the BER in specific scenarios, where the number of si-

multaneous users L approaches the number of reception antennas P. This is because in this specific 

scenario the effective channel transfer function experienced by the different users is 'sufficiently 

non-flat' across the different subcarriers, with the result of exhibiting sufficient difference in terms 

of the associated channel quality for AOFDM to excel. 

However, there are two aspects of adaptive modulation, which render its employment less conve-

nient. First of all, it is necessary to provide an estimate of the subcarrier channel quality for the next 

transmission timeslot, which could be generated on the basis of the channel estimates available for 

the current transmission timeslot, upon assuming time-invariance of the channel. However, under 

time-variant channel conditions, the more elaborate, potentially decision-directed channel predic-

tion techniques as seen in Figure 4.28 have to be invoked, in order to obtain accurate estimates of the 

channel transfer function for the next transmission timeslot. Secondly, the employment of adaptive 

modulation requires the signalling of the requested modulation mode assignment to be used during 

the next transmission time-slot to the remote users, which requires the existence of a reverse-link and 

hence its applicability is mainly confined to Time-Division Duplexing (TDD) systems, where every 

uplink transmission time-slot is followed by a down-link time-slot and vice-versa. Furthermore, the 

transmission of channel-quality related side-information reduces the AOFDM modem's effective 

throughput, which has to be compensated for by appropriately increasing the target throughput of 

the AOFDM modem. 

4.5.3.5.2 Walsh-Hadamard Transform Spreading Assisted SDMA-OFDM The above-mentioned 

deficiencies of AOFDM constituted the motivation for the alternative technique of employing spread-

ing with the aid of orthogonal spreading codes across the various subcarriers, which was the topic 

of Section 4.4.2. We argued that as a result of the spreading codes' orthogonality the operations to 

be carried out at the receiver - also in the multi-user SDMA-WHTS -OFDM scenario - can be sepa-

rated into that of channel transfer function equalization and WHT despreading, which substantially 

simplifies the receiver's design. This was illustrated in Figures 4.30 and 4.31 for the single- and 

multi-user OFDM scenarios, respectively. 

The initial BER performance results portrayed in Figure 4.32 in the context of the single user 
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WHTS-OFDM scenario demonstrated that with the aid of spreading almost the same BER per-

formance can be achieved, as in conjunction with employing adaptive modulation capitalizing on 

perfect channel transfer function predictions used for estimating the subcarrier channel quality dur-

ing the modulation mode assignment. Furthermore, in contrast to AOFDM, there is no need for 

transmitting side-information to the remote transmitters. Hence, the employment of WHTS-OFDM 

is amenable to a wider range of transmission scenarios. As shown in [144] the WHT spreading 

employed at the transmitter can be efficiently combined with the OFDM-related IFFT. As for the 

receiver, we can argue that the additional complexity imposed by performing the despreading oper-

ation is marginal, compared to that owing to multi-user detection. 

However, the main essence of our investigations was that as portrayed in Figure 4.34, with the 

aid of spreading the performance of the MMSE- or PIC detection assisted SDMA-OFDM systems 

can be significantly improved, again, provided that the effective transmission channel is strongly 

frequency selective. As outlined in the previous section, this is the case in almost fully-loaded 

SDMA-OFDM scenarios, where the number of simultaneous users L approaches the number of 

reception antennas P. For sufficiently high SNRs the MMSE- or PIC detection-assisted WHTS-

OFDM systems of Section 4.4.2.2 were capable of outperforming standard SIC detection-assisted 

SDMA-OFDM of Section 4.3.1.1. 
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Special Symbols - MUD Techniques for SDMA-OFDM 

6m [n, A;]: 

C l i r "̂ nn.dem' 

L̂S,direct" 

C| LS.W+cmb • 

CLS-

CML" 

Cmlse • 

c, MMSE,direct' 

c, MMSE,W+cmb' 

CMMSE-

^[1] . 
^PIC,X ' 

Bit polarity associated with the /-th user at the m-th bit position. 

Computational complexity associated with the operation of received symbol 

classification or synonymously demodulation in the context of the linear de-

tectors. 

Computational complexity associated with the LS solution SLs[n, k] found for a 

specific subcarrier, without explicitly generating the weight matrix. 

Computational complexity associated with the LS solution SLs[n,A:] found for 

a specific subcarrier, upon explicitly generating the weight matrix, followed by 

combining the different antennas' received signals. 

Total computational complexity associated with LS detection invoked for a spe-

cific subcarrier, without explicitly generating the weight matrix. 

Computational complexity associated with the joint ML detection of the differ-

ent users' transmitted symbols. 

Computational complexity associated with the transform-based joint ML detection-

related (x=err-cov:) error-covariance matrix calculation, (x=LS-est:) calculation 

of the LS estimates and (x=trial:) evaluation of the trial-symbol-vectors. 

Total computational complex associated with the transform-based joint ML de-

tection of the different users' transmitted symbols for a specific subcarrier 

Computational complexity associated with the joint ML detection assisted soft-

bit generation for a specific subcarrier 

Computational complexity associated with the MMSE solution SmmseI?̂ , A] for a 

specific subcarrier, without explicitly generating the weight matrix. 

Computational complexity associated with the MMSE solution for a specific 

subcarrier, upon explicitly generating the weight matrix, followed by combining 

the different antennas received signals. 

Total computational complexity associated with the MMSE detection for a spe-

cific subcarrier, without explicitly generating the weight matrix. 

Computational complexity associated with the PIC-related (x=MMSE,direct:) 

and MMSE-assisted generation of linear signal estimates and (x=dem;) with the 
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a 
[2] . 
PIC.x-

Cpic" 

CsiC.x-

CsiĈ  

C, p/M-SIC,X' 

c, pÂ -SIC" 

B,: 

E, MMSE l?%l 

/ ( x | s , H ) : 

I f , MMSE [n, A]: 

demodulation process during the first PIC detection stage for a specific subcar-

rier. 

Computational complexity associated with the PIC-related (x=sub:) subtraction, 

(x=cmb:) diversity combining and (x=dem;) demodulation during the second 

PIC detection stage for a specific subcarrier. 

Total computational complexity associated with the PIC detection for a specific 

subcarrier. 

Computational complexity associated with the SIC-related (x=stp:) startup, (x=W:) 

weight vector calculation, (x=obj:) objective function calculation, (x=cmb:) 

combining, (x=dem:) demodulation and (x=upd;) updating for a specific sub-

carrier. 

Total computational complexity of standard SIC detection for a specific subcar-

rier. 

Computational complexity associated with the M-SIC- or pM-SIC -related (x=cmb:) 

combining, (x=dem) demodulation and (x=upd:) updating for a specific subcar-

rier. 

Total computational complexity of M-SIC- or pM-SIC detection for a subcarrier. 

j-th error-event employed for characterizing the effects of SIC-related error 

propagation. The index j is generated by interpreting the different detection 

stages' conditions of an error-free detection ( ' 0 ' ) or an erroneous detection ( ' ! ' ) 

as a binary number. 

Diagonal-shaped MMSE-based equalizer matrix employed in the context of the 

single-user WHTS-OFDM system: EwMSEW G 

Complex Gaussian distribution function of the signal [n, k] observed at the 

/-th combiner's output, conditioned on transmitting the symbol k] over a 

channel characterized by the effective transfer factor k], 

Multi-variate complex Gaussian distribution function of the vector x[n, A;] of 

signals observed at the different BS receiver antenna elements conditioned on 

transmitting the vector s[n, A;] of symbols over a channel characterized by the 

matrix H[n, A;]. 

Effective joint transfer factor of the equalizer and the channel in the context of 

single-user WHTS-OFDM. 
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[n,k]: Effective transfer factor associated with the /-th user's signal contribution to the 

/-th user's linear combiner output signal [n,k], which is given by: [n, k] = 

wW^[n, A;]HW[n, k]. 

Hp\n, k]: Channel transfer factor associated with the channel encountered between the /-

th user's single transmit antenna and the p-th receiver antenna element in the 

A-th subcarrier of the n-th OFDM symbol period; Hp\n, k] E C. 

&]: Vector of channel transfer factors Hp\n,k], p = 1 , . . . , P encountered be-

tween the /-th user's transmit antenna and the P receiver antenna elements: 

H[n, A;]: Matrix constituted by the vectors of channel transfer factors / = 

1 , . . . ,L, each hosting the channel transfer factors between a specific user's 

single transmit antenna and the L receiver antenna elements: H[n, t ] E 

Hwht^ Short-hand: H w h t N = H[n]UwHT-

/W; Index of the user selected during the ?-th SIC detection stage from the set of 

remaining users with indices contained in /ZM. 

L: Number of simultaneous users. 

Set of indices associated with the L — i -f 1 number of remaining users during 

the i-th SIC detection stage. 

Lm [n, A:]: Soft-bit value or log-likelihood ratio associated with the /-th user at the m-th bit 

position in the context of the joint ML detection of the different users' symbols. 

k]: Soft-bit value or log-likelihood ratio associated with the /-th user at the m-th 

bit position. The index ()~ serves to distinguish the soft-bit value from the 

optimum soft-bit value generated in the context of the joint ML detection of the 

different users' symbols. 

LpM-sic' Index of the detection stage up to which M > 1 number of tentative symbol 

decisions are tracked in the context of pM-SIC. 

M: Number of tentative symbol decisions per detection node in the context of M-

SIC, where we have M < Mc. 

Mc'- Number of constellation points associated with the modulation scheme em-

ployed. 

Mvjut'. Number of subcarriers contained in a WHT block. 
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MSEC) [n, A]: 

M S E [ N , A : ] : 

M M S E ^ M S E 

6 . M 

M^: 

np[n, k]: 

n[n, k]\ 

PLs[n, A;]: 

P: 

MSE of the l-th user's linear symbol estimate in the context of linear detection 

techniques. 

Average estimation MSE of the L different users ' transmitted symbols, which is 

given by: MSE[n, A:] = ^ T R A C E ( R ^ a [ M , A ] ) . 

Estimation MSE averaged over the different subcarriers, which is identical for 

all linear subcarrier symbol estimates s[n, k], k = 0,... ,K — I after equaliza-

tion and despreading in the context of the single-user WHTS-OFDM system. 

Set of the Mc number of constellation points associated with the modulation 

scheme employed. 

Subset of the set Mc of constellation points, associated with a bit polarity of 

6(5 {0 ,1} at the m-th bit position. 

Set of the Mc number of trial-symbols associated with the modulation scheme 

employed by the /-th user. The trial-symbols are the appropriately amplified 

constellation points. 

Subset of the set AfW of the /-th user's trial symbols, associated with a bit 

polarity of 6 G {0,1} at the m-th bit position. 

Set of the M ^ number of trial-symbol-vectors s. 

Subset of the set M.^ of the L users' trial-symbol-vectors, associated with a bit 

polarity of 6 G {0,1} at the /-th user's m-th bit position. 

Effective interference- plus noise contribution associated with the /-th user's lin-

ear combiner output signal [n,k] = [n,k\, which is given by: [n, k] = 

AWGN signal contribution associated with the p-th receiver antenna element. 

Vector of AWGN signal contributions np[n,k], p = 1 , . . . ,P associated with 

the P different receiver antenna elements: n [n , A:] 6 

Number of subcarriers for which more than one symbol decision is tracked from 

the first detection stage in the context of SDI-M-SIC. 

LS-related 'cross-correlation' vector: pLs[n,fc] = H ^ [ n , A:]x[n, A:] G 

Number of BS receiver antenna elements. 



P(s^,^,^[n, k]): Probability of the signal x^^[n, k], which is given by the total probability, namely 

by f ( 4 ^ ) = ZgeAiC) f f m . 

15 '̂), H^n ) • ^ priori probability that x̂ ff [n, A] is observed at the /-th user's combiner output 

under the condition, that k] was transmitted, which is given by: 

f k]): Probability of the symbol k]. When no a priori probability is available 

about the transmitted symbols, it is assumed that all symbols A:] G 

appear with the same probability P{s^'-^n, k]) 1 
Mc ' 

A posteriori probability that the symbol A] was transmitted by the /-th 

user under the condition that the signal k] has been received, which can 

be expressed with the aid of the Bayes' rule as: 

P{hm \Xgn , Hgl}): A posteriori probability that a bit having a polarity of bm [n, A:] was transmitted 

by the /-th user at the m-th bit position, under the condition that the signal 

x^] [n, k] has been received. 

i^ojn,[n, A;]: Joint probability of the symbol decisions up to- and including the i-th SIC de-

tection stage, employed in the context of the weighted soft-bit generation for the 

{i + l)-th detection stage. 

P(s[n,A:]): Probability of the vector s[n, A;] of symbols. When no a priori probability is 

available about the transmitted symbols, it is assumed that all symbols s[n, A;] E 

appear with the same probability P(s [n , A;]) = 

P(x[n , A;]): Probability of the vector x[n, A:] of signals, which is given as the total probabil-

ity, namely: P ( x ) = f ( x | s , H)P(s ) . 

P(x | s , H) : A priori probability that the vector x[n, A:] of signals is observed at the BS re-

ceiver antenna elements under the condition that the vector s[n, A:] of symbols 

has been transmitted: P (x | s , H ) = / ( x | s , H) . 

P ( s | x , H) : A posteriori probability that the vector s[n, A;] of symbols was transmitted under 

the condition that the vector x[n, A:] of signals has been received, which can be 

expressed according to Bayes' rule as: P ( s | x , H ) = P ( x | s , H ) ^ ^ . 

P : Diagonal matrix of the L different users' transmit powers cr^, / = 1 , . . . ,L; 
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Pmĉ  Diagonal matrix of the K subcarriers' transmit powers in the context of the 

single-user WHTS-OFDM system: P^c = cr^I . 

Psnr: Diagonal matrix of the L different users' SNR values given by SNR(^) = ^ , / = 

1 , . . . , L at the receiver antenna elements: P S N R € 

P i s h , k]: LS-relatedprojection matrix: PLs[n, A] = A:]H[n, A:])''^H[n, k] G 

Qus[",&]: LS-related 'auto-correlation' matrix: = Ji^[n,k]'H.[n,k] G 

A;]: Auto-correlation matrix of the l-th user's signal contribution to the vector x[n] 

of received signals: R®^[n, k] E . 

R^'j[n, k]\ Auto-correlation matrix of the {L — 1) interfering users' signal contributions to 

the vector x[n] of received signals, when regarding the l-th user as the desired 

user: R®^[n,A:] 6 

Ra,jv[M, k]: Auto-correlation matrix of the AWGN signal contribution to the vector x[n] of 

received signals: Ra^iv[n, A;] e . 

Short-hand: Ra_;+yvh, A] = A] -I- R^.^h, A] E 

Iia[n-,k]: Auto-correlation matrix of the vector of received signals x[n,k]: Ra[n, A;] = 

A]} = H P H ^ -|- E 

Ra[n, k]: Left-inverse related form of the auto-correlation matrix: Ra[7^, k] = H^HP + 

Rc[M, k]\ Cross-correlation matrix of the vectors of received signals x[n, k] and transmit-

ted symbols s[n, k]: Rc[n, k] = E{x[n, k]s^[n, A]} = H[n, k]P E 

RAs^M, &]: Auto-correlation matrix of the vector As[n, A;] constituted by the transmitted 

symbols' estimation errors: R A S [ W , A:] = i?{As[n, A:]As^[n, A;]} E . 

Rn^ Auto-correlation matrix of the AWGN at the receiver antenna elements: Rn = 

-^PxP 

[n, A:]: Symbol transmitted by the /-th user. 

A;]: Linear estimate of the symbol transmitted by the /-th user, which is given by: 

s^^^[n,k] = A;]x[n, A:]. 

t]: Desired /-th user's contribution to the linear estimate A] of the symbol 

transmitted by the /-th user, based on using the weight vector w(')[n, A;]. 
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71, A;]: 

A]: 

s('^[n, k\. 

awiLh,^]: 

s[nj: 

SmmseM-

s[n, k]'. 

s[n, k\. 

SLsh, 

s[n, &]: 

SwL^n,*:]: 

Undesired interfering users' contribution to the linear estimate k] of the 

symbol transmitted by the /-th user, based on using the weight vector w('^[n, k], 

Undesired noise-related contribution to the linear estimate A;] of the sym-

bol transmitted by the Z-tb user, based on using the weight vector k]. 

Linear estimate of the symbol transmitted by the Z-th user after despreading in 

the context of the multi-user WHTS-OFDM system. 

Classified linear estimate of the symbol transmitted by the /-th user. 

The symbol that is most likely to have been transmitted by the /-th user, found 

upon maximizing the a posteriori probability f across the set 

of trial-symbols The index ()% is employed in order to distinguish this 

solution from the optimum solution k] found by joint ML detection of the 

L different users' transmitted symbols. 

The symbol that is most likely to have been transmitted by the /-th user, found 

upon maximizing the a posteriori probability f ( a ( ^ ) , H ^ } ) across the subset 

of trial-symbols 

Vector of the K subcarriers' linear symbol estimates in the context of the single-

user WHTS-OFDM system: E 

Vector of the K subcarriers' MMSE-based linear symbol estimates in the con-

text of the single-user WHTS-OFDM system: S M M S E N 6 

Vector of symbols s(')[n, A], 1 = 1,... ,L transmitted by the L different users: 

s[n, k] G 

Vector of linear symbol estimates s(')[n, fe], I = 1 , . . . ,L, which is given by: 

s[n, k] = W'^ [n , A:]x[n, k] G 

LS-assisted vector of linear symbol estimates: SLs[n, A] = A;]pLs[n, k] = 

Pls[?^, k]x[n, k] = W ^ [ n , k]x[n, k] G . 

Vector of classified linear symbol estimates k], I = 1,... ,L, which is 

given by: s[n, A;] G 

Vector of symbols that are most likely to have been transmitted by the L different 

users, found upon maximizing the a posteriori probability P ( s | x , H) across the 

set of trial-symbol-vectors M.^. 
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=600. Ofn . 

SINR •WHT.MMSE 

Vector of symbols that are most likely to have been transmitted by the L different 

users found upon maximizing the a posteriori probability P ( s | x , H ) across the 

subset of trial-symbol-vectors Mm^^-

n]: Subcarrier-averaged SINR associated with the linear subcamer symbol esti-

mates s[n,k], k = 0,... , 1 in the context of the single-user WHTS-OFDM 

system: SINRwjjt,mmse['̂ ] 

SINRm[m,A;]: 

SIRW[n,A:]: 

SNRM[n,A:]: 

U W H T A T • 

[n, A;]: 

W[n,A]: 

WLs[n,/c]: 

W^mmse[̂ ) k]'-

W[n] : 

Wmmse [n]: 

„(0 n, k]'. 

Xp[n, k]: 

x[n, k]: 

I, WHT.MMSE+'̂ Af, WHT,MMSE 

SINR at the l-th user's associated combiner output, which is expressed as: 

SIR at the l-th user's associated combiner output: SIR^^^[n, A;] = 
(Ts^^[n,k] 

SNR at the Z-th user's associated combiner output: SNR(^)[n, k] = 
[",A] 

]V-th order Walsh-Hadamard Transform (WHT) matrix. 

Weight vector used for estimating the /-th user's transmitted symbol: [n, A:] G 

Matrix of weight vectors wW[n, k], I = 1,. . . ,L used for estimating the L 

different users' transmitted symbols: W[n,k] E 

LS-optimized weight matrix: W l s [ " ) ^ ] = P f l E 

MMSE-optimized weight matrix: WmmseI't^;^] = A;]Rc[n, A:] G 

in its right-inverse related form, or WMMSÊ ?̂ , k] = Rc[n, A:]R^^ [n, k] in its left-

inverse related form. 

Weight matrix in the context of the single-user WHTS-OFDM system: W[n] £ 

MMSE-based weight matrix employed in the context of the single-user WHTS-

OFDM system: ^WmmSeM — EhjmseMUwhT E . 

Model of the /-th user's combiner output signal: [n, k] = [n, k]s^''^ [n, k]+ 

/c] = A]. 

Signal recorded at the p-th receiver antenna element. 

Vector of signals Xp[n,k], p = 1 , . . . ,P recorded at the P receiver antenna 

elements: x[n, A] E 
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x[n, &]: 

Q̂ sic-

Pmmse • 

/3mv" 

P p M - S l C '• 

7p/M-SIC,{ i / i i} ' 

'^p/M-SIC.fi/ii} • 

Gp/M-Sic-

CPIC-

A ] : 

As[n, A;]: 

Vector of linear estimates of the signals Xp[n,k], p = 1 , . . . , P recorded at the 

P receiver antenna elements: x[n, A;] E 

Constant employed in the context of quantifying the SIC detector's computa-

tional complexity: agic = i = \L{L+ I ) . 

Proportionality constant associated with the M M S E combiner' weight vector in 

the context of its representation in standard form. 

Proportionality constant associated with the M V combiner's weight vector in 

the context of its representation in standard form. 

Constants employed in the context of quantifying the M-SIC- or pM-SIC detec-

tor's computational complexity. 

Constants employed in the context of quantifying the M-SIC- or pM-SIC detec-

tor's computational complexity. 

Constants employed in the context of quantifying the M-SIC- or pM-SIC detec-

tor's computational complexity. 

Constant employed in the context of quantifying the M-SIC- or pM-SIC detec-

tor's computational complexity. 

Constant employed in the context of quantifying the M-SIC- or pM-SIC detec-

tor's computational complexity. 

Variance of the /-th user's transmitted subcarrier symbols. 

Average (x=S:) desired signal variance, (x=I:) undesired interference signal vari-

ance and (x=N:) undesired AWGN variance associated with the linear subcarrier 

symbols estimates s[n,A;], /c = 0 , . . . ,K — \ af ter equalization and despreading 

in the context of single-user WHTS-OFDM. 

Variance of the signal where (x=S:) desired signal, (x=I:) undesired 

interference signal, (x=N:) AWGN noise. 

Variance of the AWGN. 

Variance of the effective interference- plus noise contribution [n, k], which 
Aiy-
' n is given by: A:] = (7^)^ -t-

Vector of the transmitted symbols' estimation errors: As[n,k] = s[n,k] 

s[n, A] E 



(ZH/LPiiEjc 4. 7wnu];r]^[;sj5R:j;i)A4)i-c)f%:w/f 2131 

Ax[n, k]: Vector of the received signals' estimation errors; Ax[n , k] = x[n, A;] - x [ n , k] G 

[ f X l 

()[n, k]: Signal associated with the A;-th subcarrier of the n-th OFDM symbol. 

Ols^ Variables associated with the LS combiner. 

OMMSE- Variables associated with the MMSE combiner. 

()mv: Variables associated with the MV combiner. 

Op/M-zsiĉ  Variables associated with the standard SIC, M-SIC- or pM-SIC detectors. 

()pic: Variables associated with the PIC detector. 

0 W: Notation used in the context of SIC detection in order to indicate that the variable 

enclosed in round brackets is associated with the i-th detection stage, where 

i L. 

Notation used in the context of SIC detection in order to indicate that the vari-

able enclosed in round brackets is associated with the i-th detection stage, con-

ditioned on regarding the /W-th user as the strongest user to be detected during 

the i-th stage. 

Notation used in the context of PIC detection in order to indicate that the vari-

able enclosed in round brackets is associated with the Z-th user during the 2-th 

detection stage. 



Conclusions and Future Work 

5.1 Decision-Directed Channel Estimation for Single-User OFDM 

In the context of our portrayal of single-user OFDM in Section 1.3.1 we highlighted that a prereq-

uisite for performing coherent detection of the different subcarriers' symbols at the receiver is the 

availability of an estimate of the subcarriers' channel transfer factors. 

An initial a posteriori estimate of the channel transfer factor associated with a specific subcamer 

can be generated upon dividing the received subcarrier signal by the remodulated symbol decision 

obtained for this subcarrier. The initial a posteriori channel transfer factor estimates can then be 

further enhanced with the aid of generating smoothed estimates using filtering between neighbour-

ing estimates based on exploiting the channel transfer factors' correlation in both the frequency-

and the time-direction. 

Depending on the origin of the sliced and remodulated symbol employed as a reference for deriv-

ing the initial a posteriori channel transfer factor estimates, the channel estimators can be divided 

into two categories, namely pilot-assisted and decision-directed approaches. 

More specifically, in the context of pilot-assisted channel estimation the initial a posteriori chan-

nel transfer factor estimates are calculated only for a number of so-called pilot subcarriers, for which 

the complex transmitted symbol is known a priori at the receiver. This is followed by an interpola-

tion between the different pilot subcarriers' a posteriori channel transfer factor estimates, in order 

to obtain channel transfer factor estimates for all subcarriers. 

By contrast, the philosophy of the decision-directed channel estimation discussed in Chapter 2 

was based on the idea of employing the remodulated subcarrier symbol decisions as "pilots", or in 

other words as a reference signal for generating the set of K initial a posteriori channel transfer fac-

tor estimates for the current OFDM symbol. These initial estimates could then be further enhanced 

by MMSE-based ID-FIR Wiener filtering across the K subcarriers exploiting also the channel trans-

fer factors' correlation in the frequency-direction, as suggested by Edfors et al. [13, 14, 15]. An 
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even further MSB enhancement was achieved by Li et al. [17] with the aid of MMSE-based 2D-

FIR Wiener filtering upon also exploiting the channel's correlation in the time-direction, namely 

with the aid of employing also a number of previous OFDM symbols' initial a posteriori channel 

transfer factor estimates in the filtering process. These enhanced a posteriori channel transfer factor 

estimates derived for the current OFDM symbol would then be employed as a priori channel trans-

fer factor estimates for frequency-domain equalization conducted during the next OFDM symbol 

period upon neglecting the channel's decorrelation between the two OFDM symbol periods. 

5.1.1 Complexity Reduction by CIR-Related Domain Filtering 

However, the complexity imposed upon performing the filtering across all the K different subcar-

riers in the frequency-domain may potentially become excessive. To be more specific, a compu-

tational complexity of K'^ number of complex multiplications and the same number of complex 

additions would be inflicted. In order to reduce the associated computational complexity, it was 

suggested by Edfors et al. [13, 14, 15] to transform the initial a posteriori channel transfer factor 

estimates to the CIR-related domain with the aid of the Karhunen Loeve Transform (KLT), fol-

lowed by CIR-related one-tap filtering of only the first Kq number of uncorrelated CIR-related taps, 

which are assumed to be the most significant taps in terms of their variance. Finally, the remaining 

filtered CIR-related taps are transformed back to the frequency-domain. In this case the compu-

tational complexity would be quantified in terms of 2KqK complex multiplications and additions. 

While the KLT achieves a perfect decorrelation and hence the best possible energy compaction in 

the CIR-related domain, a disadvantage is that for its calculation explicit knowledge of the channel's 

statistics, namely the spaced-frequency correlation matrix is required, which is not known a priori. 

Hence, as suggested by van de Beek et al. [66], Edfors et al. [15] and Li et al. [17], the channel-

independent DFT matrix could be employed instead of the optimum KLT matrix for transforming 

the initial a posteriori channel transfer factor estimates to the CIR-related domain. In the context 

of a sample-spaced CIR the DFT matrix is identical to the KLT matrix and hence the CIR-related 

taps are uncorrelated. By contrast, in the context of a non-sample-spaced CIR the DFT matrix is 

sub-optimum in the sense that the CIR-related taps are not perfectly decorrelated and hence the en-

ergy compaction becomes sub-optimum. As a result of windowing, the CIR-related taps generated 

upon retaining only a limited number of Kq K taps with the aim of reducing the estimator's 

complexity, the DFT based estimator's MSB is significantly degraded compared to that of the KLT-

based estimator. This is because significant signal components are removed. Note that windowing 

is particularly effective in terms of complexity reduction, when the CIR-related taps are also filtered 

in the time-direction, as in case of the 2D-MMSE based estimator proposed by Li et al. [17]. A 

attractive compromise between the optimum KLT and the channel-independent DFT was found by 

Li and Sollenberger [69] upon employing the unitary matrix, which is related to the KLT of the 
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uniform multipath intensity profile's spaced-frequency correlation matrix as the transform matrix 

required for transforming the initial a posteriori channel transfer factor estimates to the CIR-related 

domain. Thus attractive energy compaction properties, similar to those of the optimum KLT, are 

achieved without having exact knowledge of the channel's statistics. As a result, only a slight MSE 

degradation compared to that of the optimum KLT-based estimator is incurred. 

5.1.2 Compensat ion of the Channel's Time-Variance b y CIR-Related Tap Prediction 

Filtering 

Our more detailed investigations of Chapter 2 concentrated on the effects of the channel's decorre-

lation incurred between consecutive OFDM symbols. Li et al. [17] proposed to employ 2D-MMSE 

based estimation filtering for deriving improved a posteriori channel transfer factor estimates for 

the current OFDM symbol based on the current- and a number of previous OFDM symbols' initial a 

posteriori channel transfer factor estimates. These channel estimates could then been employed as 

a priori channel transfer factor estimates for demodulation during the next OFDM symbol period. 

However, in the context of rapidly time-variant channels, associated with a potentially high OFDM 

symbol normalized Doppler frequency, it is more effective to directly predict the channel transfer 

factors for the next OFDM symbol period. This can be achieved by substituting the Wiener filter 

based CIR-related tap estimation filters of Li's 2D-MMSE based channel estimator design [17] by 

Wiener filter-based CIR-related tap prediction filters. Our investigations demonstrated that with the 

aid of CIR-related tap prediction filtering even channel scenarios having OFDM symbol normalized 

Doppler frequency as high as Fd = 0.1 can be supported, while capitalizing on relatively short 

prediction filters. Employing four predictor taps seemed to be sufficient for compensating most of 

the channel's variation, while further increasing the predictor's length resulted in additional modest 

MSE reduction due to averaging over a higher number of noisy samples. However, our experiments 

demonstrated that at lower SNRs and for higher-order modulation schemes the channel estimation 

MSE is potentially high, which is the result of employing erroneous subcarrier symbol decisions 

in the DDCE process. As a consequence, error propagation effects occur, which have to be cur-

tailed by regularly transmitting training OFDM symbols. In order to further reduce the system's 

BER, the employment of turbo-coding was considered as a viable option. However, generating the 

DDCE's reference signal by slicing, reencoding, interleaving and remodulating the turbo-decoder's 

'source'-related soft-output bits only exhibited no significant advantage compared to slicing and re-

modulating the turbo-decoder's soft-input bits. By contrast, generating the DDCE's reference from 

the turbo-decoder's 'source- plus parity'-related soft-output bits proved to be more effective. 
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5.1.3 Subject for Future Research: Successive Adaptiv i ty of KLT and CIR-Related 

Tap Prediction Filtering 

In the context of the 2D-MMSE based channel prediction the concepts of "robustness" with respect 

to the channel's true scattering function can be applied, as it was originally proposed by Li et al. [17] 

for the 2D-MMSE based channel estimator. However, in order to further improve the 2D-MMSE 

based channel predictor's MSE performance, the channel predictor could be rendered adaptive with 

respect to two components, namely the transform, which conveys the initial a posteriori channel 

transfer factor estimates to the CIR-related domain and secondly, with respect to the CIR-related 

tap predictors. 

Recall that the optimum transform is known to be the Karhunen-Loeve transform with respect to 

the channel's spaced-frequency correlation matrix. An estimate of the channel's spaced-frequency 

correlation matrix is given by the auto-correlation matrix of the initial a posteriori channel transfer 

factor estimates. Although this matrix differs from the channel's spaced-frequency correlation ma-

trix by an additive weighted identity matrix, which is associated with the noise contributions, the 

eigenvectors of both matrices are identical [14, 87]. Also recall that these eigenvectors constitute 

the optimum transform in terms of achieving a perfect decorrelation of the frequency-domain chan-

nel transfer factors. The auto-correlation matrix of the initial a posteriori channel transfer factor 

estimates can be estimated with the aid of the sample-correlation method [87]. Based on the current 

OFDM symbol's a posteriori channel transfer factor estimates the sample-correlation matrix can be 

regularly updated. Instead of entirely recomputing the KLT matrix in every OFDM symbol period, 

an iterative update- or tracking method proposed by Davila [145] as well as Rezayee and Gazor 

[146] in the context of speech coding is expected to be computationally more effective. 

Apart from the above-mentioned adaptive transform, the second component of the 2D-MMSE 

based channel predictor, which can be rendered adaptive, are the CIR-related tap predictors. In the 

context of our investigations we compared the block-based Burg algorithm assisted CIR-related tap 

prediction approach proposed by Al-Susa and Ormondroyd [18] against the non-adaptive robust ap-

proach proposed by Li et al. [17]. Although these investigations demonstrated that an adaptive pre-

dictor is capable of outperforming the robust predictor, a disadvantage of the block-based adaptation 

was constituted by the extra storage requirements imposed. In order to avoid these disadvantages, an 

OFDM symbol-by-symbol adaptation technique relying on the LMS- or RLS algorithms is expected 

to be more attractive. We have further illustrated the concepts of the fully adaptive 2D-MMSE based 

channel predictor in Figure 5.1. Besides the potentially reduced estimation MSE, an additional ad-

vantage of the adaptive predictor compared to a robust predictor is its ability to better compensate 

for the effects of erroneous subcarrier symbol decisions, which manifest themselves similarly to the 

effects of impulsive noise in the DDCE process. However, the advantages of the adaptive predictor 

have to be viewed in the light of the disadvantage of a higher complexity compared to the robust 
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HaptlP"! 0] 

HaptlP"! 1] 

-^] 

Pred. Adaptation 

c [M, 0]/ ' 

c[ n , ^ o ] 

HaptlP"! 0] 

Hapt\P'-i 1] 

KLT Adaptation 

Figure 5.1: Stylized illustration of a fully adaptive 2D-MMSE based channel predictor. The KLT coefficients 
are adapted for the sake of transforming the initial a posteriori channel transfer factor estimates 
to the CIR-related domain and for transforming the filtered CIR-related tap predictions back to 
the frequency-domain. Furthermore, also the CIR-related tap predictor coefficients are subjected 
to adaptation, potentially invoking the RLS algorithm. Note that we have defined K = K — 1. 

predictor. 

Our further investigations in Chapter 2 were cast in the context of employing 2D-MMSE based 

channel prediction in an OFDM system, which employs adaptive modulation. This was motivated 

by the observation that as a result of the channel's variation versus time, the modulation mode 

assignment computed during the current OFDM symbol period - based on the current OFDM sym-

bol's channel transfer factor estimates - for application during the next OFDM symbol period be-

comes inaccurate. Hence the AOFDM modem's performance is limited. A significant performance 

improvement was hence achieved by computing the modulation mode assignment based on the a 

priori channel transfer factor estimates generated for the following OFDM symbol period with the 

aid of the 2D-MMSE based channel predictor. Note that the benefits of combining decision-directed 

channel prediction and adaptive modulation are twofold. On the one hand, the modulation mode 

assignment profits from the accurate channel predictions and on the other hand the channel predic-

tions benefit from the more reliable remodulated reference signal invoked in the DDCE process in 

the light of employing adaptive modulation. 
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5.2 Channel Estimation for Multi-User SDMA-OFDM 

In the context of a single-user, single-transmit antenna assisted scenario the task of acquiring a set 

of K initial a posteriori channel transfer factor estimates was accomplished by simply dividing the 

signal received in each subcarrier by the subcarrier's complex transmitted symbol. These initial a 

posteriori channel transfer factor estimates were then employed fo r deriving improved a posteriori 

channel transfer factor estimates for the current OFDM symbol period or for generating a priori 

channel transfer factor estimates for employment during the next OFDM symbol period upon in-

voking CIR-related tap estimation- or prediction filtering, respectively. 

By contrast, in the context of a multi-user SDMA-OFDM scenario considered in Chapter 3, the 

signal received by each antenna element at the basestation is constituted by the superposition of the 

L different users' transmitted and independently faded signals. 

5.2.1 LS-Assisted DDCE 

Based on the observation that the channel's multipath spread Tm - normalized to the OFDM sam-

pling period duration - is typically only a fraction of the number of subcarriers K, a subspace-

based approach was proposed by Li et al. [21] for recovering the L sets of jT-subcarrier channel 

transfer factors associated with a specific BS receiver antenna. Based on the Least-Squares (LS) 

error criterion the vector of received subcarrier signals is projected onto the sub-space spanned by 

the first KQ number of column vectors associated with the K-ih order DFT matrix upon taking into 

account the different users' unique transmitted subcarrier symbol sequences. As a result, for each of 

the L users a set of KQ CIR-related tap estimates is obtained, which are then subjected to the DFT 

in order to obtain the desired L number of sets of channel transfer factor estimates. 

Our mathematical portrayal of this estimation problem capitalized on a more compact matrix 

notation than that of [21], which further motivated the employment of the LS error criterion as 

proposed by Li et al. [21]. Based on this notation a necessary condition was provided for the 

identification of the different users' CIR-related taps. More explicitly, the product of the L number 

of users and the KQ number of CIR-related taps to be estimated was required to be lower than or 

equal to the K number of OFDM subcarriers, namely we required that the condition of LKQ < K 

was satisfied. While this constitutes a necessary condition, it was observed that if the L number 

of users was close to the tolerable limit, the estimation MSB was potentially degraded depending 

on the specific subcarrier symbol sequences transmitted by the different users. This provided an 

additional motivation for devising alternative multiuser channel estimation approaches. 

Furthermore, the computational complexity of the LS-assisted D D C E was found to be substantial, 

because a system of equations associated with a left-hand matrix of dimension LKQ X LKQ and a 

right-hand matrix of dimension LKQ X P had to be solved for estimating the CIR-related taps of the 

MIMO system's channels between the L users' single transmit antennas and the base-station's P 



receiver antennas. However, an advantage of the LS-assisted DDCE is that its MSB can be further 

improved by invoking pure transversal CIR-related tap filtering. 

5.2.2 PIC-Assisted DDCE 

In order to address the LS-assisted DDCE's deficiency of supporting only a limited number of users 

and imposing a potentially excessive computational complexity, the idea of Parallel Interference 

Cancellation (PlC)-assisted DDCE, which was originally suggested for the CIR-related domain by 

Li [22] and for the frequency-domain by Jeon et al. [23] was significantly further developed. We 

argued above that since in a multi-user SDMA-OFDM scenario the signal received by a specific 

antenna element is given by the superposition of the different users' transmitted signals, the low-

complexity single-user techniques for deriving initial a posteriori channel transfer factor estimates 

cannot be directly applied. However, a viable approach for the estimation of a specific user's channel 

transfer factors is constituted by first removing the remaining users' interference from the received 

composite multi-user signal, and then performing the channel estimation with the aid of the same 

techniques as in the single transmit-antenna assisted scenario. This involves generating the initial 

a posteriori channel transfer factor estimates, followed by CIR-related domain filtering. We found 

that from a mathematical point of view, performing the PIC in the frequency-domain- or in the time-

domain are identical. However, performing the PIC in the frequency-domain, while the filtering in 

the CIR-related domain seems to be the least complex solution. Note that in the context of the PIC 

process the remaining users' interfering signal components are reconstructed based on the sliced 

symbols generated at the multi-user detector's output, and upon invoking furthermore the associated 

a priori channel transfer factor estimates generated during the previous OFDM symbol period for 

the current OFDM symbol period. 

However, compared to the single-user single-transmit antenna assisted scenario, the prediction 

filters to be potentially employed in the CIR-related domain for further enhancing the estimator's 

MSE were shown not to be transversal, but recursive. In the context of our discussions, math-

ematical expressions were derived for the current OFDM symbol's a posteriori channel transfer 

factor estimates' MSE and for the next OFDM symbol's predicted a priori channel transfer factor 

estimates' MSE. Furthermore, conditions for the estimator's stability were provided. Based on the 

system equations' contractive properties [87] an iterative algorithm was devised for the off-line op-

timization of the CIR-related tap predictor's coefficients with the aim of minimizing the a priori 

estimator's average MSE. Our simulation results demonstrated that the number of users each hav-

ing a single transmit antenna is not limited by K/KQ, as it is the case for the LS-assisted DDCE. 

Furthermore we found that also the principles of "robustness" with respect to the channel's actual 

scattering function as invoked in the single-user scenario were also applicable for the multi-user 

scenario, which renders the off-line optimization of the CIR-related tap predictor coefficients an 
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attractive option. In the context of our investigations we also illustrated the effects of a non-sampled 

spaced CIR on the estimator's MSE, based on using the DFT matrix as the unitary transform matrix 

for conveying the inital a posteriori channel transfer factor estimates to the CIR-related domain. 

We found that as a result of retaining only the KQ most significant CIR-related taps with the aim 

of reducing the estimator's complexity, in the frequency-domain the channel transfer factors' esti-

mation MSE significantly increased towards the edges of the OFDM symbol. This problem can be 

addressed by using the "robust" transform basis' as proposed by Li and Sollenberger [69] instead of 

the unitary DFT matrix. 

In order to potentially further improve the estimator's MSE and for rendering the estimator ca-

pable of appropriately reacting to impulsive noise as caused for example by erroneous subcarrier 

symbol decisions, we demonstrated that the adaptation of the CIR-related tap predictor coefficients 

could also be performed with the aid of the RLS algorithm. It is interesting to note that although 

the different predictors associated with the CIR-related taps of a specific channel- or with differ-

ent channels perform their coefficient adaptation independently, the estimators' average MSE is 

minimized. 

5.3 Uplink Detection Techniques for SDMA-OFDM 

Finally, in Chapter 4 we discussed a range of uplink multi-user detection techniques, which - in 

addition to multi-user channel estimation - constitute one of the pivotal components of the SDMA-

OFDM receiver. The detection techniques investigated were separated into the sub-classes of linear-

and non-linear detection. Specifically, in the context of linear detection techniques, such as the 

Least-Squares (LS)- and Minimum Mean-Square Error (MMSE) approaches no a priori knowledge 

about any of the other users' transmitted symbols is required for the detection of a specific user's 

transmitted symbol. This in contrast to the family of non-linear detectors, namely to the Successive 

Interference Cancellation (SIC), Parallel Interference Cancellation (PIC) and Maximum Likelihood 

(ML) detection based approaches. Explicitly, in the context of these schemes a priori knowledge 

about one or more of the remaining users' transmitted symbols is required for the detection of a 

specific user's transmitted symbol. An exception is the first cancellation stage of the SIC detector. 

For the different multi-user detectors investigated a mathematical analysis as well as a performance-

and complexity analysis was conducted. We found that the linear detectors, which perform the oper-

ations of linear combining and classification sequentially, constitute the lowest-complexity, but also 

the least powerful solutions in terms of the achievable BER. By contrast, the ML detector is asso-

ciated with the highest computational complexity due to evaluating number of L-dimensional 

trial-vectors in each subcarrier in terms of their Euclidean distance from the vector of received 

signals upon taking into account the effects of the channel. As a benefit, the ML detector's BER 

performance is optimum. Recall in this context that L denotes the number of simultaneous SDMA 
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users and Mc is the number of constellation points associated with the specific modulation scheme 

employed. A compromise between the achievable performance and complexity imposed is given by 

the SIC- and PIC detectors. 

5.3.1 SIC Detection 

The philosophy of the SIC scheme is based on linearly detecting and cancelling successively in 

each stage of the detection process the strongest remaining user in terms of an objective measure, 

which could either be the SNR, SIR or SINR at the linear combiner's output of each detection 

stage. Thus, the minimum occuring value of the objective function is maximized. The potential 

of various schemes was assessed for further enhancing the SIC detector's performance, namely 

that of the M-SIC, partial M-SIC and SDI-M-SIC schemes, which were contrived based on the 

idea of tracking multiple tentative symbol decisions from each detection stage, while performing a 

decision as regards to which symbols were transmitted, after the cancellation of the last user. Our 

analysis of SIC also considered the effects of error propagation potentially occuring between the 

different detection stages. Based on these observations an improved metric was developed for soft-

bit generation to be employed in the context of a system using turbo-decoding at the receiver. While 

the SIC and M-SIC schemes potentially perform close to ML detection, this is achieved at the cost 

of a significantly increased computational complexity compared to the MMSE detection. 

5.3.2 PIC Detection 

We found that a further enhancement of the performance versus complexity tradeoffs is constituted 

by the PIC detector. Recall that the signal received by the different BS antenna elements is con-

stituted by the superposition of the different users' transmitted signals. Hence, a linear estimate of 

a specific user's transmitted signal can be generated upon removing the remaining users' transmit-

ted signals, followed by single-user diversity combining. In the context of PIC detection, initial 

symbol decisions are generated with the aid of the MMSE detector for reconstructing the channel-

impaired transmitted signals to be used in the actual cancellation process. While in the context of 

an uncoded scenario the PIC detector was found to perform only marginally better, than the MMSE 

detector, in the turbo-coded scenario a significant performance improvement was observed when 

using the sliced, interleaved and remodulated "source- plus parity"-related soft-output bits of the 

turbo-decoder obtained during the first detection stage as a reference for the PIC process of the sec-

ond stage. A further performance improvement can potentially be achieved with the aid of a soft-bit 

based PIC process instead of a hard-decision based PIC. 
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5.3.3 Improvement of MMSE- and PIC-Detection by Adaptive Modulation or WHT 

Spreading 

In order to render the employment of MMSE- and PIC detection more attractive also in an uncoded 

scenario, investigations were conducted with respect to additional employing either adaptive mod-

ulation or Walsh-Hadamard Transform (WHT) based spreading in the multi-user SDMA-OFDM 

scenario. We found that these techniques are most effective in the context of a fully-loaded system, 

namely where the number of simultaneous users - and hence the number of transmit antennas -

equals the number of BS receiver antenna elements. Given the restriction of employing AOFDM 

only in Time-Division Duplexing (TDD) scenarios and the requirement of employing prediction 

filtering for compensating for the channel's variations with time, a more straightforward solution 

is constituted by WHT spreading across the different subcarriers. While at the transmitters the 

Walsh Hadamard Transform can be combined with the OFDM-related IFFT, at the receiver the 

computational complexity is increased, since the despreading has to be performed separately for 

each user. In the context of our investigations we highlighted that both in the single-user- and 

in the multi-user SDMA-OFDM system, the equalization- or linear combining at the receiver and 

the despreading can be performed sequentially as a result of the WHT matrix's unitary nature. 

Our simulation results demonstrated that with the aid of adaptive modulation or WHT spreading 

the performance of the MMSE- or PIC detection assisted systems can be significantly improved. 

Hence these schemes constitute an attractive compromise in comparison to the significantly more 

complex SIC-assisted SDMA-OFDM schemes. For further reading on related topics we refer to 

[147, 148, 149, 150, 151, 152, 153, 154, 155]. 

5.4 Closing Remarks 

This thesis considered a range of OFDM-related topics. However, a whole host of further advances 

in the field of communications research are applicable also to OFDM. Specifically the family of 

classification and learning based neural network assisted receivers investigated in the context of 

conventional single-carrier systems provides a rich set of further research topics. Partial response 

modulation techniques also have the promise of advantages in OFDM schemes. The joint optimiza-

tion of adaptive bit-allocation and crest-factor reduction techniques constitutes a further research 

challange. All the above-mentioned techniques have the potential of improving the complexity 

versus performance balance of the system. Finally, the employment of OFDM in ultra-wide band 

systems invoking various frequency-hopping and multiple access techniques is likely to grow in 

popularity as an exciting research area. 
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Appendix 

6.1 Channel Model for Monte-Carlo Simulations 

The simulation results presented throughout our discussions based on Monte-Carlo simulations were 

generated with the aid of the indoor WATM system- and channel model, which will be outlined in 

the following. 

6.1.1 The Indoor WATM Model 

The WATM system's parameters used in our investigations follow closely a proposal of the Pan-

European Advanced Communications Technologies (ACTS) Median system, which constitutes a 

wireless extension of wire-line based ATM-type networks [98]. These parameters are listed in Ta-

ble 6.1. More specifically, the number of OFDM sub-carriers is K = 512 and the cyclic prefix 

exhibits a length of Kg = 64 samples. The transmitted signal, which is centered at a carrier fre-

quency of fc = 60GHz is sampled by the receiver at a rate of f s = 225 Msamples/s. Assuming 

a worst-case vehicular speed of w = 50km/h or equivalently v = 13.9m/s, the received signal 

exhibits a maximum Doppler frequency deviation of //> = 2778Hz from the transmitted carrier 

frequency [98], which is defined by / o = ^ [98]. This equals to an OFDM-symbol-normalized 

Doppler frequency of FD = 0.0071, defined by FD = ( K + K g ) ^ , which is a more adequate 

metric for characterising the channel's variation versus time. It should be noted that our definition 

ind. WATM system K Ks f s fc 

512 64 225MHz 60GHz 

ind. WATM channel ^PATH f v FD 

3 16.9ns 2778Hz 0.0071 

Table 6.1: Parameters of the indoor WATM system model [98, 77] 
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Figure 6.1: Channel impulse response (CIR) of the indoor WATM channel [98, 77] 

of the OFDM symbol-normalized Doppler frequency FD is different from the definition presented 

in [98, 156] in the sense that here the number of guard samples K g is incorporated as well. Associ-

ated with the WATM system model is a three-path Channel Impulse Response (CIR) which exhibits 

an RMS delay spread of RMS{T) = 0.109/i5. The CIR is illustrated in Figure 6.1 [98]. Each of 

the three paths is independently Rayleigh-faded. In comparison to the original five-path CIR of [98] 

only the three paths associated with the lowest-delay taps have been retained. This helps to avoid 

Inter-Symbol Interference (ISI), since the two highest path delays of the original channel model are 

in excess of the duration of the OFDM symbol's cyclic prefix. Hence, in the following sections we 

will refer to the three-path CIR as the indoor WATM channel's- or, synonymously, the shortened 

WATM (SWATM) channel's CIR. 

6.2 The Stochastic Channel Model 

In this section the stochastic channel model employed in our investigations is outlined. The fur-

ther structure of this section is as follows. In Section 6.2.1 the model of the time-variant Channel 

Impulse Response (CIR) is outlined. Its further characterization is then conducted with reference 

to Figure 6.2 in terms of the CIR's Auto-Correlation Function (ACF) denoted as r ) in Sec-

tion 6.2.2. Furthermore, the Fourier Transform (FT) of the CIR's A C F with respect to the multipath 

delay variable r , namely r iy(Ai, A / ) - also known as the spaced-time spaced-frequency correlation 

function - is considered in Section 6.2.3. Further Fourier transforming with respect to the spaced-

time variable A t yields the function Snifd, A / ) , which is addressed in Section 6.2.4. Finally, the 

scattering function Shifd, ?") is obtained by Fourier transforming the CIR's ACF with respect to the 

spaced-time variable At, which is the topic of Section 6.2.5. Our portrayal of the channel model 

we be concluded in Section 6.2.6 by highlighting the conditions for separability of the channel's 
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Figure 6.2: Illustration of the Fourier transform relationships between the stochastic channel model's associ-
ated correlation functions. Upon setting At = 0, the CIR's auto-correlation function VH {At, T) is 
simplified to ruir) , which is known as the multipath intensity profile of the channel. In contrast, 
when setting A / = 0, the Fourier transform of the CIR's auto-correlation function rft(At,r) 
with respect to At and r , denoted by Sni fd , A / ) , is simplified to Snifd)^ which is known as 
the channel's Doppler power spectrum. 

spaced-time spaced-frequency correlation function r g ( A t , A / ) . 

6.2.1 Model of the Channel Impulse Response 

The time-variant channel impulse response CIR is given in terms of its lowpass representation by 

[157, 141]: 

^ -Tn(Z)) , (&1) 

where = 27r/cr„(t) and /c is the carrier frequency. Furthermore, in Equation 6.1 an{t) 

denotes the time-variant attenuation factor, while (t) represents the time-variant delay associated 

with the n-th CIR path. Please note that since in state-of-the-art communication systems fc is 

usually high, relatively small variations of {t) result in large changes in the value of the phase 

9n{t), which in turn impose significant changes on the CIR h{t, r ) . Since the paths' delays are 

expected to vary randomly as a result of the scatterers' random motion, the CIR tap magnitudes 

of h{t, T) versus time can also be modeled as random processes. More specifically, under these 

assumptions and for a sufficiently large number of different paths, according to the central limit 

theorem, each tap of /i(t, r ) can be modeled as a zero-mean complex Gaussian random process 

with respect to the variable t. Hence, the envelope \h{t, T)| is Rayleigh distributed. By contrast, in 

the presence of static scatterers in addition to the randomly varying scatterers, the mean value of 

h{t, T) is different from zero and hence the envelope \h{t, T)| is Ricean distributed [157, 141]. 

In order to further characterize the above stochastic channel model the associated Fourier trans-

forms can be defined which are known in the literature as Bello's system functions [158, 157, 141]. 
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Instead of using the Bello functions for characterizing the channel, due to their relevance for the 

different channel transfer function estimation methods, here we will rather employ the related corre-

lation functions and their associated Fourier transforms. The corresponding relationships are further 

illustrated in Figure 6.2. 

6.2.2 Auto-Correlation Function of the CIR; rh{At, r ) 

Upon assuming that the process modelling h { t , T ) is wide-sense-stationary, which implies that 

the process' mean value is time-invariant and its auto-correlation is only a function of the time-

difference, but not of the absolute time instants, the Auto-Correlation Function (ACF) r/j (At, t i , T2 ) ̂  

of h{t, T) can be defined as [157, 141]: 

r/.(A^,Ti,T2) == (6.2) 

- r,,(A^,Ti)^(Ti-T-2), (6.3) 

where in the context of Equation 6.3 the assumption of uncorrelated scattering [157, 141] has been 

invoked. This implies that the amplitudes and phase shifts associated with the different CIR delays 

of Ti 7̂  T2 are uncorrelated. For A t = 0, the function rh{At ,T i ) simplifies to rh{0,T) = r h i r ) , 

w i t h r = Ti, which is known as the multipath intensity profile ox delay power spectrum [157,141] of 

the channel. More explicitly, r;j(T) is the average power output of the channel for a given multipath 

delay r . The delay range 0 < r < Tm across which r / i ( r) exhibits significant values is referred to 

as the multipath spread [157, 141] of the channel. 

6.2.3 Spaced-Time Spaced-Frequency Correlation Function = Fourier Transform 

of the CIR's ACF with Respect to the Multipath Delay Variable: rg(At, A / ) 

Let us denote the time-variant channel transfer function by H{t, / ) , which is the Fourier Transform 

(FT) of the channel impulse response h{t, r ) with respect to the variable r , formulated as: 

n ( t , y ) = (6.4) 

/

oo 

(6.5) 
-00 Then the auto-correlation of H{t, / ) , namely r g ( A t , / i , /2)^ is given as the Fourier transform of 

the auto-correlation function r h { A t , Ti, Tg) of the CIR h{t, r ) taken also with respect to the variable 

Note that the definition of the auto-correlation function of h(t,T) is different from that of [157, 141], where an 
arbitrary normalization factor of 1 /2 was employed, yielding: r*(At, n , Tg) = \E{h{t, Ti)h*{t — A t , Tg)}. 

^Note that the definition of the auto-correlation function of is different from that of [157, 141], where an 

arbitrary normalization factor of 1 /2 is employed: r g ( A < , / i , / ; ) = lE{H{t, fi)H* (t - At, fz)}. 
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T [157, 141], which is given by: 

r ^ ( A ( , / i , / 2 ) = (6.6) 

= :^T{rA(At,T)} (6.7) 

= r g ( A t , A / ) . (6.8) 

This relationship is also shown in Figure 6.2. The auto-correlation function r g ( A f , A / ) is known 

as the spaced-time, spaced-frequency correlation function [157, 141] of the channel. Its dependence 

on the frequency difference A / = / i — /2, rather than on the individual frequency values / i , /g 

is related to the assumption of uncorrelated scattering. For At = 0, which corresponds to consid-

ering the channel transfer factors associated with a specific OFDM symbol, the ACF r g ( A t , A / ) 

simplifies to rjy(0, A / ) = r g ( A / ) . Since we have r g ( A / ) = the reciprocal of 

the channel's multipath spread can be employed for defining the coherence bandwidth (A / )c 

[157, 141] of the channel, which is the range —(A/)c/2 < A / < ( A / ) c / 2 of frequencies over 

which the channel transfer function exhibits a significant correlation [157, 141], namely: 

(A/ )c - (6.9) 

6.2.4 Fourier Transform of the CIR's ACF with Respect to the Multipath Delay- and 

Spaced-Time Variables: Sn i fd , A / ) 

In order to further characterize the channel, the Fourier transform of r g ( A t , A / ) with respect to 

the difference in time, namely At, can be obtained as [157, 141]: 

A / ) = / - r { r g ( A ^ , A / ) } . (6.10) 

This relationship is also shown in Figure 6.2. More specifically, for A / = 0 which corresponds 

to considering a specific subcarrier of consecutive OFDM symbols, each of which fades accord-

ing to a certain Doppler frequency in the time-direction, the function S n i f d ^ ^ f ) simplifies to 

Sn i fd , 0) = Sf f i fd) ' which is known as the Doppler power spectrum of the channel. In analogy 

to the definition of the coherence bandwidth and the related multipath spread, which characterize 

the correlation properties of the channel for a specific time instant associated with a given OFDM 

symbol, similar definitions apply to the characterization of the channel variations as a function of 

time. More specifically, the frequency range of —Bf)/2 < fd < Bf ) /2 , over which S f f i f d ) ex-

hibits significant values is referred to as the Doppler spread Bjj [157, 141] of the channel, while its 

inverse is known as the coherence time [157, 141], which is expressed as: 

(Af)c ~ -jz—. (6.11) 
-DD 

More explicitly, (At)c quantifies the time-domain displacement range of — (At)c/2 < At < 

(At)c/2, over which r/y (At, A / ) exhibits significant correlation for A / = 0. In this case r g ( A t , A / ) 

simplifies to r s i A t , 0) = r g ( A f ) . 
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6.2.5 Scattering Funct ion = Fourier Transform of t h e CIR's A C F with Respect to 

the Time-Delay: Sh{fd, r) 

A further transform pair can be defined by applying the Fourier transform to r ) of Equa-

tion 6.3 with respect to the variable At [157, 141], yielding: 

(6.12) 

which is referred to as the scattering function [157, 141] of the channel. Furthermore, it follows that 

Snifd, A / ) and Shifd, T) also form a Fourier transform pair [157, 141], which is expressed as: 

(6.13) 
t-J-A/ 

as seen in Figure 6.2. 

6.2.6 Separabi l i ty of the Channel 's Spaced-Time S p a c e d - F r e q u e n c y Correlation Func-

t ion 

In this section we will comment on the conditions that have to be satisfied for the sake of main-

taining the separability [17] of the channel's spaced-time spaced-frequency correlation function 

rniAt, A f ) . This property will be employed, for example, in the context of our discussions on 

decision-directed channel estimation (DDCE) invoked in single-user OFDM systems in Section 2. 

Finally, the separability will be also exploited in parallel interference cancellation (PIC) assisted 

DDCE characterized in the context of multi-user OFDM systems in Section 3.4. 

Based on Equation 6.1 and following the arguments of Section 6.2.1, a simplified model of the 

CIR is given by: 

- "Tn), (6.14) 

where in the absence of static scatterers the time-variant fading factor jnit) G C obeys a complex 

Gaussian distribution function. For simplicity we also assume that we have ¥" 7^2 7̂  n2. 

Upon substituting Equation 6.14 describing the time-variant CIR h { t , T ) into Equation 6.5, the 

channel's time-variant transfer function i J ( t , / ) is given by: 

By further substituting the expression of Equation 6.15 into Equation 6.6 the channel's spaced-time 

spaced-frequency correlation function r jy (At , A / ) is obtained in the following form: 

r g ( A ^ , A / ) = E { ^ ( ^ i , / i ) ^ * ( ^ 2 , / 2 ) } (6.16) 

= ^ j ^ ^ (t2)e)2:rAT.2 I (6.17) 

I n2 J 

= ^ (6.18) 
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In the context of Equation 6.18 we have exploited that E{~fni {ti)in2 (^2)} = 0 V ni ^ ng is satis-

fied, which follows from the assumption of uncorrelated scattering. Furthermore, in Equation 6.18 

the n-th CIR tap's spaced-time correlation function is given by: 

(6.19) 

= (6.20) 

where ^ is the n-th CIR tap's variance and „(At) is the n-th CIR tap's normalized spaced-time 

correlation function, which obeys (0) = 1. Note furthermore that we have At = ti — t2- Upon 

substituting Equation 6.20 into Equation 6.18 we obtain the following equation for the channel's 

spaced-time spaced-frequency correlation function: 

rg(At, A/) = g (6.21) 
n 

where we have A / = / i — /2. For At = A / = 0 the channel transfer factor's variance is 

obtained, namely a'jj = rjy(0,0) = o"! n' which is assumed to be unity [17] in the context of 

our discussions. 

Upon stipulating that the same normalized spaced-time correlation function r^(At) is associated 

with the different CIR taps [17], the spaced-time spaced-frequency correlation function of Equa-

tion 6.21 simplifies to: 

râ (A ,̂ A/) = (A() - rg(A/) , (6.22) 

where: 

rg(Af) = r;̂ (A )̂, (6.23) 

and: 

(6.24) 

Equation 6.22 reflects the separability of the channel's spaced-time spaced-frequency correlation 

function into the product of the spaced-time correlation function and the spaced-frequency correla-

tion function. 



Glossary 

ACF 

ACTS 

ADSL 

AOFDM 

APR 

APT 

AWGN 

BER 

BLAST 

BPOS 

BPSK 

BS 

CDF 

CDMA 

CE 

CIR 

DAB 

Auto-Correlation Function 

Advanced Communications Technologies and Services - a European re-

search programme 

Asynchronous Digital Subscriber Loop 

Adaptive Orthogonal Frequency Division Multiplexing 

A Priori 

A Posteriori 

Additive White Gaussian Noise 

Bit-Error Ratio 

Bell Labs Space-Time architecture 

Bit Per OFDM Symbol 

Binary Phase-Shift Keying 

Basestation 

Cumulative Distribution Function 

Code-Division Multiple Access 

Channel Estimation 

Channel Impulse Response 

Digital Audio Broadcasting 
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DDCE 

DDCP 

DFT 

DMUX 

DTTB 

D-BLAST 

EM 

EVD 

FDM 

FDMA 

EEC 

EFT 

FIR 

HE 

ICI 

IDFT 

IFET 

IIR 

ISI 

IWHT 

KLT 

LLR 

LS 

LSE 

MA 

Decision-Directed Channel Estimation 

Decision-Directed Channel Prediction 

Discrete Fourier Transform 

Demultiplexer 

Digital Terrestrial Television Broadcast 

Diagonal BLAST 

Expectation Maximization 

Eigenvalue Decomposition 

Frequency Division Multiplexing 

Frequency Division Multiple Access 

Forward Error Correction 

Fast Fourier Transform 

Finite Impulse Response 

High-Frequency 

Inter-subCarrier Interference 

Inverse Discrete Fourier Transform 

Inverse Fast Fourier Transform 

Infinite Impulse Response 

Inter-Symbol Interference 

Inverse Walsh Hadamard Transform 

Karhunen-Loeve Transform 

Log-Likelihood Ratio 

Least-Squares 

Least-Squares Error 

Multiple Access 
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MC 

MIMO 

ML 

MLSE 

MMSE 

MSE 

MU 

MUD 

MUI 

MUX 

MV 

MVDR 

OFDM 

PAPR 

PDF 

PIC 

PSAM 

PSD 

PSK 

QAM 

QPSK 

RLS 

RNS 

SB 

SDM 

Multi-Carrier 

Multiple-Input Multiple-Output 

Maximum Likelihood 

Maximum Likelihood Sequence Estimation 

Minimum Mean-Square Error 

Mean-Square Error 

Multi-User 

Multi-User Detection 

Multi-User Interference 

Multiplexer 

Minimum Variance 

Minimum Variance Distortionless Response 

Orthogonal Frequency Division Multiplexing 

Peak-to-Average Power Ratio 

Probability Density Function 

Parallel Interference Cancellation 

Pilot Symbol Aided Modulation 

Power Spectral Density 

Phase-Shift Keying 

Quadrature Amplitude Modulation 

Quadrature Phase-Shift Keying 

Recursive Least-Squares 

Residue Number System 

Subband 

Space-Division Multiplexing 



Glossary 352 

SDMA 

SDI 

SER 

SIC 

SINR 

SIR 

SMI 

SNR 

STC 

SVD 

TCM 

TDD 

TDMA 

TTCM 

V-BLAST 

WATM 

WHT 

WHTS 

ZF 

ID 

2D 

Space-Division Multiple Access 

Selective Decision Insertion 

Symbol Error Ratio 

Successive Interference Cancellation 

Signal-to-Interference-plus-Noise Ratio 

Signal-to-Interference Ratio 

Sample Matrix Inversion 

Signal-to-Noise Ratio 

Space-Time Coding 

Singular-Value Decomposition 

Trellis-Coded Modulation 

Time-Division Duplexing 

Time-Division Multiple Access 

Turbo-Trellis Coded Modulation 

Vertical BLAST 

Wireless Asynchronous Transfer Mode 

Walsh-Hadamard Transform 

Walsh-Hadamard Transform Spreading 

Zero-Forcing 

One-Dimensional 

Two-Dimensional 
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