
University of Southampton
Faculty of Engineering and Applied Science

Department of Civil and Environmental Engineering

SIMULATING ADVANCED BUS
PRIORITY STRATEGIES AT

TRAFFIC SIGNALS

By
Birendra Prasad Shrestha

March 2003

Thesis submitted in fulfihiient of the requirements for the degree of Doctor of Philosophy.

This thesis is dedicated to my parents.

lJf4I\rE;R.SIT^y()I? S(yinnHLAJ\4PT()N

ABSTRACT

]?/LCUL]nf (ZHF E3\K}I}jT;E]3Jf4(} AJSOD /LP^PIJOEI) S(:iE%N[C]3

Doctor of Philosophy
SIMULATING ADVANCED BUS PRIORITY STRATEGIES AT TRAFFIC

SIGNALS
by Birendra Prasad Shrestha

Providing priority to buses plays an important role in protecting bus services from the
effects of traffic congestion and in improving speeds and reliability. Among the
measures available, bus priority at traffic signals is the most relevant where
opportunities for segregated systems are not available and/or where numerous traffic
signals exist. Again, there is scope for many forms of bus priority at signalised
junctions. One such method is differential bus priority in which buses are given
different levels of priority according to their individual requirement. This method
allows a range of priority strategies to be implemented, depending upon the lateness of
buses and junction capacity constraints. Exploring the performance of different
priority strategies within this method has been the main aim of this research.

The literature review showed that there is a need for a model for modelling differential
priority in detail. Hence, a microscopic simulation model SIMBOL (Simulation
Model for Bus priority at traffic signal) was developed. SIMBOL simulates a bus
route in a field situation, taking account of the characteristics of buses, bus stops,
traffic signals, the AVL system and differential bus priority systems.

The model was calibrated and validated with the field data from a bus route in
Southampton. The validated model was then used to formulate 7 different types of
priority strategies and to simulate them under various scenarios. These strategies
varied in terms of the level of priority to be provided, based on the lateness of the
buses. The different scenarios in which these strategies were simulated included: the
present field condition, different types of bus generation, holding early buses,
potential errors in location systems and changes in bus operations. The performance of
these priority strategies was evaluated using the output results from the model.

The simulation results showed that all bus priority strategies simulated give benefit to
a bus system including buses and passengers. However, the type of benefits and their
magnitude differ from one strategy to another. The results illustrated the strength and
weaknesses of different priority strategies under different field conditions. This
showed that the selection of a best-suited priority strategy depends upon the aim of a
priority scheme in terms of total benefit or punctuality. Research included the
development, modelling and recommendation of a new mixed priority strategy giving
good benefits across a range of scenarios. The research also demonstrated the
usefulness of SIMBOL as a valuable tool for modelling differential bus priority under
different field conditions and as a basis for further research.

Content

Page

1.0 INTRODUCTION

1.1 Background 1

1.2 Objectives 3

1.3 Methodology 3

2 . 0 LITERATURE REVIEW

2.1 Bus priority .5

2.1.1 Bus priority at traffic signals 7

2.1.2 Bus priority with selective vehicle detection 8

2.1.3 Differential bus priority at traffic signals 10

2.2 Implementation of bus priority at traffic signals 12

2.2.1 Detection techniques used in bus priority 14

2.2.1.1 Automatic vehicle location techniques 14

2.2.1.2 Application of AVL system in bus priority 18

2.2.2 Bus priority architectures ..20

2.2.2.1 Centralised AVL-UTC communications 23

2.2.2.2 Decentralised AVL-UTC communications 23

2.3 Modelling bus priority at traffic signals 26

2.3.1 Review of existing models 26

2.3.1.1 Aggregate methods 26

2.3.1.2 Simulation models 27

2.3.1.3 Other research models 29

2.4 Summary 31

3 .0 MODELLING METHODOLOGY

3.1 Introduction 33

3.2 Buses 34

3.2.1 Bus generation 34

3.2.2 Bus movement 35

3.3 Bus stops 35

i

3.3.1 Passenger generation 35

3.3.2 Waiting time 37

3.3.3 Dwell time 37

3.4 Traffic signals 38

3.4.1 Signal timings 39

3.4.3 Delay calculation 39

3.5 Bus priority methods 41

3.5.1 Detector positioning 41

3.5.2 Method of extension and recall 42

3.5.3 Differential bus priority methods 43

3.6 AVL systems 44

3.6.1 Locational techniques 45

3.6.2 Polling 46

3.7 Other issues 46

3.7.1 Bus bunching 46

3.7.2 Overlapping routes 47

3.8 Model output 48

3.9 Summary 48

4.0 DATA COLLECTION

4.1 Introduction 49

4.2 Data requirement 49

4.2.1 Route data 50

4.2.2 Bus data 50

4.2.3 Bus stop data 50

4.2.4 Traffic signal data 50

4.3 Data collection planning 50

4.3.1 Site selection 51

4.3.2 Data collection method 53

4.4 Main survey 55

4.4.1 Bus journey data 55

4.4.2 Junction data 56

4.5 Data checks 57

n

4.6 Data refinement 59

4.6.1 Junction data 59

4.6.1.1 Signal timing data 59

4.6.1.2 Flow data 60

4.6.1.3 Delay data 61

4.6.2 Bus journey data 62

4.6.2.1 Average link speed 62

4.6.2.2 Boarding and alighting passenger rate 63

4.6.2.3 Dwell time parameters 65

4.6.2.4 Starting time of passenger generation 66

4.6.2.5 Scheduled timetable 67

4.7 Chapter summary 69

5 .0 MODEL DEVELOPMENT

5.1 Introduction 70

5.2 Main module 71

5.2.1 Input 71

5.2.2 Working of the module 71

5.2.2.1 Simulation period 73

5.2.2.2 Bus generation 73

5.2.3 Output 73

5.2.3.1 Visual output 73

5.2.3.2 Text output 74

5.3 Bus module 74

5.4 Bus stop module 75

5.4.1 Working of the module 76

5.4.2 Time gap calculation 77

5.4.3 Alighting passenger estimation 79

5.4.4 Boarding passenger generation 79

5.4.5 Dwell time 79

5.4.6 Waiting time 80

5.4.7 Bus occupancy 80

5.4.8 Journey time 81

111

5.4.9 Punctuality of buses 81

5.5 Signal module 81

5.5.1 Working of the module 82

5.5.2 Signal timings 83

5.5.3 General traffic modelling 85

5.5.4 Bus delay calculation 86

5.6 Priority module 86

5.6.1 Working of the module 86

5.6.2 Detector positioning 88

5.6.3 Journey time between detector and stop line 89

5.6.4 Maximum allowable priority 89

5.6.5 Priority calculation 90

5.6.6 Priority implementation .-91

5.7 GPS module 92

5.7.1 Working of the module 93

5.7.2 Virtual detectors 94

5.8 Chapter summary ••95

6 ,0 MODEL VERIFICATION AND VALIDATION

6.1 Introduction ••••96

6.2 Model verification 96

6.2.1 Verification using visual output •••96

6.2.2 Verification using text output 97

6.3 Model calibration 98

6.4 Model validation 99

6.4.1 Journey time validation 101

6.4.2 Bus delay validation 103

6.7 Chapter summary -104

7,0 MODEL APPLICATION

7.1 Introduction 105

7.2 Methodology -105

7.2.1 Types of priority strategies 106

IV

7.2.1.1 Mixed priority 106

7.2.2 Selection of scenarios 107

7.2.3 Method of evaluation 108

7.3 The base case scenario 109

7.3.1 Simulation results 110

7.3.2 Discussion 115

7.4 Effect of high DOS 115

7.4.1 Simulation results 116

7.4.2 Discussion 119

7.5 Effect of bus generation 120

7.5.1 Simulation results 122

7.5.2 Discussion 124

7.6 Effect of increase in passenger demand 125

7.6.1 Simulation results 125

7.6.2 Discussion 127

7.7 Effect of holding early buses .127

7.7.1 S imulation results 128

7.7.2 Discussion 130

7.8 Effect of GPS error 130

7.8.1 Simulation results 131

7.8.2 Discussion 132

7.9 Effect of change in operation 132

7.9.1 Simulation results 133

7.9.2 Discussion 135

7.10 Chapter summary 136

8.0 DISCUSSION

8.1 Introduction 137

8.2 Comparison of results 137

8.2.1 Random passenger arrival 139

8.2.2 Non-holding of buses 140

8.2.3 Unsaturated junctions 141

8.2.4 Bus route through the junctions 141

8.2.5 Bus punctuality and passenger confidence 141

8.2.6 Bus timetable 142

8.3 Chapter summary 143

9,0 SUMMARY AND CONCLUSION

9.1 Introduction 144

9.2 Main features of the model 144

9.3 Main findings of the research 146

9.4 Possible areas for further work 147

9.4.1 Further application of the model 148

9.4.2 Further development of the model 148

REFERENCES 150

Appendix A: Data collection forms 158

Appendix B: Source code of SIMBOL 164

VI

List of tables

Table 2.1: Advantages and disadvantages of AVL technologies 17

Table 2.2: Use of AVL systems in bus systems in the UK 19

Table 2.3: Example of bus priority architectures 20

Table 2.4: Use of AVL systems for bus priority in SCOOT in the UK 24

Table 2.5: Comparison of commercially available models 29

Table 3.1: Alternative priority strategies tested 44

Table 4.1: Swaythling - Portswood - Lodge Road - City Route 53

Table 4.2: An example of final stage of bus journey data collected 57

Table 4.3: Stage lengths and start time of traffic signals along Portswood corridor 60

Table 4.4: Average flows and delays of junction arms in the direction of the city 61

Table 4.5: Average link speed of buses along the bus route 62

Table 4.6: Alighting and Boarding passenger rates obtained from 2hour period 64

Table 4.7: Dwell time parameters from field data and York 66

Table 4.8: Passenger generation start time of bus stops along the route 67

Table 4.9: Timetable of buses displayed at bus stops along the route 68

Table 4.10: Modified timetable used in the model 69

Table 5.1: The optimum location of the detectors 89

Table 5.2: Maximum allowable extension and recall allowed 90

Table 5.3: Basic form of priority strategies modelled in SIMBOL 91

Table 5.4: The optimum location of the virtual detectors with GPS error 94

Table 6.1: Formatted validation data collected on 05/11/2001 100

Table 6.2: Comparison of field delay data against bus delays from SIMBOL 103

Table 7.1: Economic benefits from different priority strategies 113

Table 7.2: Change in total green time with different priority strategies 114

Table 7.3: Economic benefits from priority strategies using high DoS 118

Table 7.4: Priority strategies selected for further study 120

Table 7.5a: Comparison of priority benefits for bus generation using N (0,60) 122

Table 7.5b: Comparison of priority benefits for bus generation using N (0,120) 123

Table 7.5c: Comparison of priority benefit for bus generation using N (60,180) 123

Table 7.6: Increase in performance parameters while doubling the passengers 126

Vll

Table 7.7: Priority benefits while doubling the passengers 126

Table 7.8; Comparison of priority benefits while holding early buses 129

Table 7.9: Change in total priority benefits after introduction of GPS error 131

Table 7.10: Comparing benefits while changing from timetable to headway service 133

Table 7.11: Number of priority awards under different types of bus operation 135

Table 8.1: Comparison of different strategies under various scenarios 137

Table 8.2: The change in priority benefit while shifting timetable by 120 seconds 140

Table 9.1: Modelling features of SIMBOL 145

Vlll

List of figures

Figure 1.1 Outline of the research 4

Figure 2.1: Space time representation of bus priority 13

Figure 2.2: Centralised AVL-UTC communications 23

Figure 2.3: Decentralised AVL-UTC communications 24

Figure 3.1: Illustration of delay calculation at traffic signal 40

Figure 3.2: Example of an extension 42

Figure 3.3: Example of a recall 42

Figure 4.1: Portswood Corridor in Southampton 51

Figure 4.1: Details of Portswood Corridor bus route in Southampton 52

Figure 5.1: Diagrammatic model of SIMBOL 70

Figure 5.2: Flowchart of main module 72

Figure 5.3: An example of visual output from SIMBOL 74

Figure 5.4: Flowchart of bus module 75

Figure 5.5: Flowchart of bus stop module 76

Figure 5.6: Flowchart of detail calculation inside bus stop module 78

Figure 5.7: Flowchart of signal module 82

Figure 5.8: Flowchart of signal period calculation 84

Figure 5.9: Flowchart of general traffic modelling 85

Figure 5.10: Flowchart of working of the priority module 87

Figure 5.11: Example of 'Do nothing' recovery after an extension 92

Figure 5.12: Example of 'Do nothing' recovery after a recall 92

Figure 5.13: Flowchart of GPS module 93

Figure 6.1: Model bus journey time against field journey time 102

Figure 7.1: Bus delay savings achieved through different priority strategies 110

Figure 7.2a: Punctuality of buses (1-5) from different priority strategies 111

Figure 7.2b: Punctuality of buses (1-3) from different priority strategies 112

Figure 7.3: Change in priority benefits while using High DoS 116

Figure 7.4: Lateness profile of bus generation in the field 121

Figure 7.5: Comparison of priority benefits for different bus generation profiles 124

Figure 7.6: Change in performance parameters while holding buses 128

IX

Figure 7.7: Change in economic benefits of 'Late buses (Normal) strategy..... 134

Figure 8.1: A plan for implementing bus priority in timetable service 142

X

Acknowledgement

I would like to thank the following individuals whose kind guidance, help and support

enabled me to start, continue and complete this thesis.

I would like to express my sincere gratitude to my supervisor. Dr. N.B. Hounsell,

whose constant guidance and encouragement throughout the study period made it all

possible complete this research.

I would like to thank TRG staff, Dr. T. Cherrett for his help in SCOOT data

collection. I would also like to thank my friend. Dr. Bidur Rajbhandari and family for

their support during this study. I would also like to thank my friends Debra Grunnham

and Graham Wall for their help in language correction.

Finally, I would like to thank my wife Lata, whose encouragement and support made

it all possible to complete this work. I would also like to thank my son Binay for his

kind cooperation during thesis writing period beside his unlimited queries about my

research and his interests.

XI

Abbreviations used

The abbreviations used throughout this thesis are as follows

AVL Automatic Vehicle Location

DoS Degree of Saturation

SCOOT Split Cycle Offset Optimisation Techniques

SPRINT Selective PRIority Network Techniques

SVD Selective Vehicle Detection

UTC Urban Traffic Control

Xll

Introduction

Chapter One

Introduction

1.1 Background

In recent years, there have been growing concerns about optimising the existing road-

network rather than expanding it. In this regard, public transport having a very high

passenger carrying capacity can help to optimise the use of the existing network. This

is receiving much more political attention as well as research and development

emphasis. Cities like Southampton now have transport policies with greater emphasis

on running attractive and effective public transport (SCC, 1999). To fulfil this goal,

public transport should have at least some better quality than private vehicles. King

(1992) recognises that in order to achieve the desired major increase in bus use, a high

quality bus system with, at least, some key components is needed. These components

are fast, reliable, convenient, comfortable, reasonably priced and a good information

system. In the past, there has been too much attention paid to the movement of

vehicles rather than the movement of people and goods (King, 1992). This still

remains to some extent and public transport especially buses are now suffering from

problems such as congestion, low operating speed, bunching and irregularity.

Buses are the predominant form of public transport in most towns and cities in many

countries, including the U.K (Hounsell and McLeod, 1999). With their large carrying

capacity, buses make effective use of limited road space, and can therefore make a

substantial contribution to reducing traffic congestion (Cheney, 1992). However,

buses themselves are often affected by congestion, leading towards a decrease in

speed and an increase in bus travel time variability and service irregularity. In extreme

cases bus 'bunching' may occur, where buses form groups of two or more vehicles.

This makes the timetable of the bus operation very uncertain which can degrade the

faith of passengers in the bus service.

1

Introduction

Providing priority to buses plays an important role to protect bus services from the

effects of traffic congestion and to improve route frequencies, speeds and reliability

(IHT, 1997). These measures of providing priority to buses are getting more and more

attention in these recent years. The U.K. government also supports bus priority

schemes and hence these priority schemes are eligible for Department of Transport

/Government Office funding, as part of bids for Supplementary Credit Approval (IHT,

1997). 'Keeping Buses Moving' (DETR, 1997) outlines that the potential impact of

new traffic management measures on bus services should always be considered at an

early stage in the planning of any scheme, whether its main intention is to improve bus

services or not.

Priorities currently used for bus operations include segregated systems such as with-

flow and contra-flow bus lanes, banned turn exemption provision like bus only turn

(bus gates), improved design of bus bays, stops and priority at traffic signals (DETR,

1997). The choice of bus priority measures to implement varies according to the

situation. When considering the congested urban situation with many signalised

junctions and limited roadspace, bus priority at signals may be the most effective

option to consider. There are a number of ways in which buses can be given priority at

traffic signals. Among them, there are a number of examples where priority is given to

all approaching buses based on selective vehicle detection (SVD). In recent years,

interest has grown in using differential bus priority, which can give a varying level of

priority to the buses according to their need (e.g. their adherence to schedule). This

system not only helps to regularise the bus operation but also minimises the negative

impacts to other traffic, while giving priority (because fewer buses are given priority).

These systems typically rely on Automatic Vehicle Location system (AVL). This

research is concerned specifically with the evaluation of differential priority to the

buses using AVL in terms of potential impacts, control strategies and benefits. The

objectives of this research work are outlined below.

Introduction

1.2 Objectives

The main objective of this research is to explore ways of providing selective priority

to buses at traffic signals using AVL. The general objectives of the research are given

below.

• To review the existing state of art of bus priority at traffic signals.

• To explore the requirements of advanced bus priority strategies at traffic signals.

• To develop a simulation model capable of modelling the details of different bus

priority strategies incorporating AVL.

• To apply the simulation model to a range of operating scenarios, to evaluate the

performance of different bus priority strategies

The methodology to be followed to achieve these objectives is discussed in the next

section.

1.3 Methodology

As already discussed in the background of the research, a statement of the problem is

the first step to be started. At this stage, the necessity of the research to be carried out

in the field of differential priority to the buses at traffic signals is defined and the

objectives of the research are set out. This is followed by a review of literature

available in the field of bus priority including differential priority and use of automatic

vehicle location (AVL) systems. A review of commercially available relevant

computer software is carried out to identify potentially useful packages in this

research given the modelling requirements specified. Once the review is completed,

the proposed modelling methodology is the next to be developed. This includes the

fmalisation of modelling components and techniques to model them. This will be

followed by the collection of data from the field to make a base case model. The

developed base case model is then calibrated to simulate the field situation. The model

is then modified to incorporate differential priority strategies to give priority to buses.

The model is then used to simulate different bus priority strategies under a range of

scenarios. The results obtained from the model application are then analysed to

Introduction

evaluate the performance of the strategies and to draw conclusions. The sequence of

the research process is illustrated in Figure 1.1.

Modelling methodology

Model development

Statement of the problem

Literature review

Data collection

Calibration and validation of the model

Model application

Discussion of results

Conclusions

Literatwe Review

Chapter Two

Literature Review

2.1 Bus priority

Giving priority to buses is an important measure to protect bus services from the

effects of traffic congestion and to improve their speed and reliability. These measures

vary in scale and impact from a simple exemption from a manoeuvre prohibited to

other traffic, to area-wide measures such as priority in traffic control systems (IHT,

1987). The appropriateness of a measure may depend upon the aim and objectives of

the scheme. There may be several aims and objectives of providing priority measures

to the bus. One of them may be to reduce delays to buses arising from traffic

congestion and thus save bus operating costs, passengers' travel-time costs and bus-

fleet requirement. Another may be to increase accessibility to major traffic generators,

like shopping centres and inter-modal transport exchanges (IHT, 1997). But a key

factor is to improve the reliability and regularity of bus services which makes travel

by bus more attractive and could increase bus patronage (IHT, 1987). Oakes et. al.

(1994) also state that the overall objectives of bus priority can be encompassed by a

reduction in bus journey time and improved reliability.

There are many different ways of giving priority to buses. Some of them are link-

based and others are junction-based. These measures are used according to the need

and the feasibility to provide them. In most of the cases buses are given priority by

specifically re-allocating existing highway capacity at junctions and on links to them

(Holmann and Willumsen, 1991). Some of the bus priority measures detailed in

'Keeping buses moving' (DETR, 1997) include with-flow lanes, contra-flow bus

lanes, bus only streets, bus only turns (bus gates) and bus priority at signalised

junctions

Literature Review

With-flow lanes, contra-flow lanes, bus only streets, busways, parking control along

bus routes and improved design of bus stops are examples of linked-based priority

measures. Bus only turns (bus gates) and bus priority at signals are examples of

junction based priority measures. With-flow bus lanes are the most common form of

bus priority measure. Keeping Buses Moving (DETR, 1997), describes with-flow

lanes as a reserved traffic lane, usually on the nearside, for the use of buses and may

accommodate bicycles. A with-flow bus lane enables buses to bypass traffic queues,

usually approaching traffic signals. This will often mean substantial time savings to

buses and their passengers, offset by some additional delay to vehicles which have

been overtaken.

A contra-flow bus lane is a lane where buses are allowed to travel against the main

direction of traffic flow in a one-way street. This operation enables buses to avoid

unnecessary diversions, to maintain route patterns when new one-way streets are

introduced, and to gain better access to business and shopping areas (DETR, 1997).

These contra-flow bus lanes are usually introduced in area-wide one way traffic

systems, where the effect is to create a two-way road with 'buses only' allowed in one

direction, and all types of vehicle including buses, in the other (IHT, 1997).

A bus-only street is a section of road for the use of buses only. It may be a section of

road enabling buses to take a more direct route or a "pedestrianised" street in a town

centre where buses are exempt from a prohibition on other vehicles (DETR, 1997).

Such a street enables buses to maintain route patterns in areas where traffic flow

patterns have been changed and to gain close access to business and shopping areas

where it is denied to other vehicles (IHT, 1997). This close access to the main

attractions can be advantageous in encouraging the use of buses.

Busways are substantial corridors or networks of bus-only sections of road constructed

specifically for the exclusive use of buses. Busways are designed to segregate buses

from general traffic that protect them from congestion. For reasons of economy and

land requirement, automatically guided or tracked busways may be preferred over

busways ralying on manual steering (IHT, 1987).

Literature Review

Another form of urban bus priority measure is bus priority at junctions. A simple type

of bus priority measure may be giving turning exemption at a junction, which allows

buses to make a turn that is prohibited to other traffic. This is an inexpensive measure,

which can give a considerable advantage to buses by allowing them to take a shorter

route than other traffic. The exemptions can be used to enter into a contra-flow bus

lane or a bus only street. In signalised junctions, the segregated type of priority such as

with-flow bus lanes may be combined with the signalling measures. Queue relocation

(also known as traffic metering) is one such measure in which the flow of traffic is

controlled at upstream junctions by adjusting signal to reduce capacity so that this

junction becomes more critical than the downstream (IHT, 1997). The downstream

junction is the main junction whereas the upstream junction is the metered junction.

Along with this, the bus lane running up to the upstream stopline enables buses to by-

pass the relocated traffic queue. Other different types of signalling measures to give

priority at signalised junctions are discussed in subsequent sub-sections.

2.1.1 Bus priority at traffic signals

In signalised junctions, there is scope for many forms of bus priority options

(Hounsell, 1995). The most straightforward form of priority at traffic signals is to bias

signal timings so that the approach having higher bus flow gets more effective green

time than it would have done otherwise. The other approaches then share the

remaining part of the cycle time. This is sometimes called passive bus priority because

no equipment is required on the buses to 'actively' request priority. This form of

priority could be implemented by optimising signal timings to minimise delay to

people at the junction, rather than vehicles, as is traditionally undertaken. There is an

argument that 'minimum person delay' should, anyway, be a preferred criterion for

signal optimisation. In practice, passive priority often has to be implemented through

urban traffic control (UTC) systems, and options available in the UK include:

a) BusTRANSYT (Robertson and Vincent, 1975), where optimum signal offsets in

fixed time systems are calculated to reflect the different bus occupancy and

performance in signalised networks relative to other traffic;

Literature Review

b) Facilities in SCOOT (Split Cycle and Offset Optimisation Technique) (Hunt et.

al., 1981) such as 'split and offset weighting' (Hounsell and McLeod, 1999) where

preference can be given to specific links in the network (e.g. those containing high

bus flows).

The benefits of passive priority are generally limited and not related to the needs of

individual buses. This can be resolved by providing 'active' priority. This means that

bus priority is triggered only after detecting a bus in the traffic stream. This is

achieved by making the traffic signal responsive to the arrival of the bus by using

some sort of detection technique available. Active bus priority at traffic signals was

first trialled at isolated junctions in London in the 1970s before the large-scale trial in

the outer London bus district of SELKENT (South East London and Kent) in 1987

(University of Southampton, 1987). This large-scale trial in SELKENT covered 56

signalled non-UTC junctions and included the fitting of some 900 London buses with

transponders to activate priority (Hounsell and Landles, 1995).

The success of the SELKENT scheme in London led to the system being extended to

cover 300 outer London junctions and the fitting of all buses (about 4500) with

transponders. Then it was followed by the development of bus priority systems using

selective vehicle detection (SVD) at fixed time and traffic responsive urban traffic

control (UTC) systems. The PROMPT (Priority and Informatics in Public Transport)

(Hounsell et al, 1996) project developed bus priority at traffic signals under traffic

responsive SCOOT UTC system and SPRINT (Selective Priority Network Technique)

(Hounsell et al, 1997) was developed for those under fixed time UTC in London.

More about this system of giving bus priority with selective vehicle detection is

described in the next sub-section.

2.1.2 Bus priority with selective vehicle detection

In this method, buses are given priority at traffic signals by utilising selective vehicle

detection (SVD) techniques and hence it is commonly known as bus priority with

SVD. In this system, buses fitted with some form of electronic device are detected by

different techniques before reaching the junction. Alternatively, some advanced

Literature Review

detection techniques can detect buses in mixed traffic streams without needing on-bus

equipment. Once a bus is detected, a priority is given by altering the traffic signal

timing in its favour. Priority to buses may be given by extending the green time until

the clearance of the bus or by recalling the next green time to give green to the bus

more quickly. These methods of extension and recall are described and illustrated in

Section 2.2.

Bus priority with selective vehicle detection is an effective system in giving priority to

all detected buses. This system gives a good base for bus priority by minimising the

bus delay at traffic signals and hence reducing the journey time of the buses and

journey time variability. However, in some cases, there may be greater disruption to

other traffic without giving a real benefit to the buses. For example, buses running

early or on time may not need priority from a punctuality or regularity consideration.

'Punctuality' (i.e. a measure of buses departing on time) is the term used to measure

operational performance in timetabled services. 'Regularity' (i.e. a measure of buses

departing in regular interval) is the term used in headway-based service. 'Punctuality'

and 'regularity' are important measures for the evaluation of public transport

operations (Rudnicki, 1997). These measures directly affect the waiting time of

passengers. The relation between 'punctuality/regularity' and passenger waiting times

is described as follows according to the type of bus operation (i.e. timetable-based or

headway-based).

In timetabled services, buses are scheduled to arrive at a stop at predefined times. In

this service, generally the frequency of buses is quite low (typically less than 5 buses

per hour) and the passengers arrive at bus stop according to the time of bus arrival. In

this case, passengers arriving on time miss buses running ahead of timetable. They

have to wait for the next bus coming and hence there will be a considerable increase in

waiting time. On other hand, late buses will increase the waiting time of all

passengers at that stop. Hence, the punctual bus gives lower average passenger waiting

time at the bus stop.

Literature Review

In headway-based services, buses are operated under a predefined headway (gap)

between them. The gap between buses is given rather than the departure time of the

next bus. This is generally a high frequency service (typically more than 5 buses per

hour). Since passengers do not know the departure time of next bus, they arrive

randomly at bus stops. In this case, the buses running with lesser headway may cause

a bigger headway to the bus behind. The passengers who have just missed the bus

have to wait for a longer duration than the scheduled headway, increasing the average

passenger waiting time at bus stops. McLeod (1999) has shown that the expected

passenger waiting time is minimum when buses are regular. Hence, the regular bus

service gives lower passenger waiting time at bus stops.

A SVD priority system providing the same level of priority to all buses may not often

be that effective in maintaining service punctuality. Hence, although the system may

be effective in reducing the journey time of buses, it may not be that effective in

reducing passenger waiting time at bus stops. One of the options for making buses

more punctual and regular is by giving them priority according to their need to

maintain their punctuality or regularity. In recent years, concern has grown to refine

systems to give priority to the buses only if they need it according to prescribed

criteria (e.g. lateness). This can be termed as 'differential priority' in which buses are

given different levels of priority according to their need for the priority. This system

of giving priority is explained in more detail in next sub-section.

2,1.3 Differential bus priority at traffic signals

In this system of differential priority to buses, priority is given to the buses according

to their individual requirement and or fulfilling the other criteria imposed. Here, once

the bus is detected, it is checked with pre-defined criteria to identify whether the bus is

eligible for priority or not. The criteria can depend upon site-specific requirements and

may differ from place to place. The criteria may be based on the lateness of a bus and

the situation of the junction only or a combination of several other factors such as

delay to other traffic and passengers.

10

Literature Review

Where the criterion is based on the time gap between the buses, known as headway,

priority may be termed 'headway-based differential bus priority'. With this system,

higher levels of priority can be given to buses with headways higher than scheduled

and this should improve bus service regularity (McLeod, 1998). A study undertaken

by Transportation Research Group for London Transport Buses (University of

Southampton, 1996) has shown that selecting buses for priority according to their

headway (relative to the scheduled/average frequency) could have the following

benefits (Hounsell et. al., 1997).

• Improved service regularity

® Targeting buses with a higher than average occupancy

• The provision of a higher level of priority without significantly affecting general

traffic

• Less disruption to general traffic

Headway-based differential priority criteria depend upon the lateness of the bus and

the situation of the junction. If the bus is lagging behind by more than the threshold

defined, then it may be eligible for priority. The bus that has higher lagging may get

the higher priority. But this may be constrained by the availability of spare capacity in

the junction. The higher the saturation at a junction, the lower the chance of getting

priority, at least in the current system operated in the UK. Combining these

constraints, a priority algorithm developed by Hounsell and McLeod (1999) was used

to investigate the effect of differential priority. The algorithm was incorporated into a

simulation model SPLIT (Selective priority for Late buses Implemented at Traffic

signals) to assess the impact of differential priority on passenger waiting and travel

times to improve bus service regularity.

The algorithm for defining the priority level requested by each bus is based on the

adherence to its actual headway relative to the scheduled headway. It provides

different levels of priority according to the size of the bus headway relative to the

expected average headway. Two different factors, the ratio (R) and the difference (D)

between actual headway and scheduled headway, were considered as measures of

'lateness' of a bus. The level of priority assigned to a bus would then be determined

11

Literature Review

by comparing its lateness with pre-set lateness threshold. The values taken by lateness

threshold and the definition of the different priority levels are site specific. By

modifying the values of these threshold ratios and meaning of priority levels, it is

possible to 'fine-tune' the priority system to improve results at the site.

Another algorithm developed by Chang and Su (1995) is based on a performance

function that depends upon the current queue length, bus loading factors and bus

schedule delay. In this model, the benefit of giving a green signal to a bus is compared

with that of terminating it by computing the tradeoffs incurred in passenger, vehicle

and schedule delays. This model needs to compute a performance index, PI, that

evaluates the effect of bus priority. The performance index is calculated by summing

up passenger delay, vehicle delay and schedule delay. In a multi-phase control

intersection, the PI value is the sum of Pis for each competing phase. When PI is non-

negative, then only the bus priority is given by extending current green time for T

seconds.

One of the criteria needed for schedule-based services is based on the deviation of

buses from their scheduled timetable. With this system, buses running behind their

timetable may be made eligible for priority. The bus that has higher lagging may get

the higher priority and that may be constrained by the availability of spare capacity in

the junction. Such priority may help them to improve their adherence to the timetable

and to reduce passenger waiting time. The method of implementing awarded bus

priority at traffic signals is described in the next section.

2.2 Implementation of bus priority at traffic signals

Under current UK practice, priority to buses is implemented mainly in two ways

(McLeod, 1999). One is 'Extensions' where the green time is extended until the

clearance of the bus, if it is expected to otherwise just miss the end of the present

green period. The second is 'Recalls' where the green time is recalled to give green to

the bus more quickly once a bus is expected to arrive at red period. Khasnabis and

Rudraraju (1997) have categorised one more strategy as red interruption. In this red

12

Literature Review

interruption, a short green phase, not contiguous with the adjacent green, is injected

within the red phase along the bus route. Other options using special phases for buses

are also used in some cases. The method of implementing bus priority using

'extension' and 'recall' is illustrated in a distance time diagram in Figure 2.1.

Distance

stqjline

detector

RA Q m i A n t e Red RA Green

t_a Lr
, f—

t_ext t_ra
f ! 7-*

Qgen Buslinksi^ud

/
/ y

/ /
/ /

/

/

/ /

B ^

X

to

In the diagram, the signal setting for the bus link is shown on the top, with t_r and t_ra

representing the start and end time of the red aspect. The end of extension time

allowed, t ext = t_r + E_max, where E max is a user specified maximum allowed

extension time. The distance from the detector to the stop line is d. Three trajectories

from the detector to the stop line are drawn as dashed lines to represent probable bus

arrival time at the stop line. If a bus is predicted to arrive at the stop line at a green

signal, then the signal timings will not be changed. If it is expected to arrive just after

the start of the red signal (case B), then the bus green time will be extended to allow

the bus to exit. The extension is just sufficient for the bus to exit and may be less than

the maximum defined. And if a bus is predicted to arrive during the red (case C), then

the duration of the red aspect may be reduced by a constant amount. This is the case of

recalls.

Literature Review

McLeod (1999) states that extensions generate higher benefit to individual buses than

recalls. This is because the delay associated with buses which are eligible for an

extension but 'just miss' the green light is greater than that for buses which are

eligible for a recall which could arrive at a traffic signal at any time during the red

period. In addition, extensions cause less disruption to other traffic than recalls since

there is less interference with traffic signal settings. However, the proportion of buses

gaining an extension is often much lower than those gaining recalls, so that the net

benefit to all buses is often greater from recalls.

For the implementation of priority, a traffic signal controller should know about the

arrival time of a bus at the traffic signal. This arrival time of a bus is estimated by

detecting a bus approaching at the traffic signal. This is then communicated to the

control centre where a priority requirement is assessed and the bus priority is awarded.

The two main operational aspects such as detection system and communication

architecture are described in the subsequent sub-sections.

2.2.1 Detection techniques used in bus priority

The use of detection techniques for bus priority at traffic signals started in the form of

transponders and inductive loops detecting buses on the signal approach (Hounsell and

McLeod, 1999). But the disadvantages of this system arise from the vulnerability of

the loop to damage and the short life of the bus transponder (Hounsell and Landles,

1995). Hence, in recent years, the use of AVL systems such as beacon-based and

GPS-based is increasing. The increasing use of AVL systems has utilised a number of

different AVL techniques. These available AVL techniques used in bus priority at

traffic signals are described in next sub-section.

2.2.2.1 Automatic vehicle location techniques

With the rapid advancement of the communication sector, there are different

Automatic Vehicle Location (AVL) techniques available now. The main aim of all the

techniques is to estimate the position of a vehicle in space by measuring it precisely in

time. The various technologies that can be used for establishing vehicle location

include (Lobo, 1998):

® Dead reckoning (e.g. odometers);

14

Literature Review

® Beacon based (e.g. microwave, infra-red, inductive loops);

® Radio triangulation (e.g. Loran-C, Datatrack, Omega);

« Satellites (e.g. GPS)

In the dead reckoning technique, the distance travelled by a bus is calculated from the

number of revolutions made by tyre. The technique includes the rate gyro, the road

wheels odometer and speedometer (Krakiwsky, 1995). In a fixed route, it is possible

to fix the location of a bus using this technique. But the odometer is capable of

measuring only linear distances, any changes in route would mean that the new route

would have to be surveyed and the relative positions should be mapped on to the

absolute locations. This simple technique requires no roadside infrastructure and

hence costs less. However, it is vulnerable to inaccuracies in distance and direction.

Again, it also requires regular calibration of odometers for incorporating any change

in circumference of the wheel, that may be due to change in tyre pressure or worn

tyres (Lobo, 1998).

Beacon-based AVL systems utilise several beacons or road loops positioned at known

locations along the route. Once the instrumented vehicle passes through these

inductive loops or beacons nearby, it is detected and the location of the vehicle is

known. This technology includes various ways of detecting vehicles such as pressure

detection, magnetic detection, inductive loops, microwave and optical (infrared)

beacons (Lobo, 1998). The main advantage of the beacon-based system is that it gives

an exact location of the vehicle when it passes the beacon. Again, these beacons can

also be utilised to transmit priority requests directly from the bus to the downstream

traffic signal while using in bus priority schemes (Hounsell et. al., 1997). But since it

requires roadside infrastructure to be ready before use, it is limited to those routes that

have beacons installed. And hence it is not possible to track the vehicles if they divert

from the fixed route for any reason. Again, failure of any one of the beacons affects all

the buses in the route at that point.

Radio triangulation systems establish vehicle position relative to the navigation

network by calculating the distance between the receiver on the vehicle and the radio

15

Literature Review

transmitters that are the basis of the navigation network (Lobo, 1998). Examples of

such radio-frequency-based techniques include Omega, Loran C and Datatrack

(Krakiwsky, 1995). A radio triangulation technique is independent of route and

roadside infrastructure and requires no initialisation prior to daily use. But there is

difficulty in obtaining radio channels due to crowding of the frequency spectrum and

hence the operating cost of the system depends on the subscription cost to the network

of an existing provider. In the case of establishing a user specific radio network, high

cost requires many users or potential users to share the costs (Lobo, 1998).

The Global positioning system (GPS) is a satellite-based positioning system

developed by the US Department of Defence and is available to civil users under

certain accuracy and reliability constraints (Krakiwsky, 1995). In this system, vehicles

fitted with GPS receivers are able to determine their three-dimensional position

continuously anywhere in the world in all weather conditions. GPS (also known as

NAVSTAR, NAVigation System using Time And Ranging), which consists of 24

satellites orbiting some 20,000 km above the surface of the earth (Ibrahim, 2000).

Each satellite transmits two radio frequencies for positioning purposes; if a satellite

transmits a signal at a known time, the bus receives the signal some time later and the

distance between the receiving unit and the satellite can be calculated (Garmin, 2000).

Prior to 2000, locational accuracy using GPS was only within the range of 100 metres

which was insufficient for bus priority purposes. Differential GPS (DGPS) provided

substantially improved accuracy e.g. 5 metres (Hill, 2000), but at a cost. However,

'Selective Availability' was removed by the US Department of Defence in May 2000

(Ochieng and Sauer, 2002), so that GPS accuracy is now typically to within 10 metres,

which makes this cost-effective system now potentially suitable for bus priority. The

main advantages of GPS are that it is independent of route and roadside infrastructure,

relatively low cost, no initialisation requirement and no subscription costs. But the

system suffers from possible obscuring of signals especially in built-up areas, tall

buildings and tunnels.

With number of different AVL technologies available, these technologies each have

their own advantages and disadvantages. Some technologies are cheaper but more

16

Literature Review

inaccurate, some are more accurate but fixed to pre-determined route and some are

flexible in positioning but costly. Hence the suitability of any one of these AVL

technologies depends upon the functional requirement. For example, if high accuracy

is needed (e.g. for bus priority at traffic signal), then selection criteria should be

locational accuracy rather than flexibility and costs. But whenever the moderate

accuracy will also do (e.g. for bus operation control), then flexibility and cost is also

important when selecting the technology. Table 2.1 summarises the advantages and

disadvantages of various automatic vehicle location systems discussed above (Lobo,

1998).

Table 2.1: Advantages and disadvantages of AVL technologies (Lobo, 1998)

Technology Advantages Disadvantages

Dead

reckoning

Low cost

No roadside infrastructure

Vulnerable to inaccuracies in

distance and direction

Require regular calibration of

odometer

Beacon- Based Exact position known at beacon Roadside infrastructures required

Lack of flexibility in route choice

Radio

Triangulation

No roadside infrastructure

Flexible route choice

No initialisation

High installation /subscription

Vulnerable to interference

GPS No roadside infrastructure

Flexible route choice

No initialisation

Inaccuracies near high buildings

System owned by US Defence

Since the dead reckoning system is vulnerable to inaccuracies, it may not be possible

to use the system alone to form an AVL system. It must then be used in conjunction

with some other system for reasonable level of accuracy. Beacon-based systems have

been the most common AVL system used for public transport applications in the U.K.

(Hounsell et. al., 1996) and in Germany (Nickel, 1997). However the early type of this

system (loop and transponder) is now less popular in the U. K. because of greater

maintenance combined with costly reposition and installation requirement (Lobo

17

Literature Review

1998). Radio triangulation is a flexible system that performs well in urban areas but

relatively lacks in positional accuracy. Hence radio triangulation systems have not

been generally taken up for public transport applications in the U.K. (Hounsell and

McLeod, 1999). GPS is more extensively used in North America than any other place

although implementation is increasing rapidly in other parts of the world particularly

with the accuracy now available through 'normal' GPS.

Combining two or more technologies may be advantageous to exploit the strong

points of each technology. There are many places where two or more technologies

combine to form a hybrid system. In many systems, dead reckoning is combined with

other high accuracy systems such as beacon-based and GPS. The dead reckoning

system used fills the gap of high accuracy system between their known locations.

Examples are DGPS (Differential Global Positioning System) integrated with DR

(Dead Reckoning) such as in Patra (Kontaratos, 1996). The use of hybrid AVL system

is common in the public transport sector. The present form of AVL application in bus

priority is described in the next sub-section.

2.2.1.2 Application of AVL system in bus priority

The key components of AVL systems used in public transport are location,

communications and central processing and control units. These are often categorised

into 5 functional components (Hounsell and McLeod, 1998);

® On-vehicle equipment to track the position of the vehicle in real-time and provide

a variety of other on-bus functions. Tracking may be through location systems

discussed earlier.

® Outside equipment to aid vehicle location and data transfer. These may be beacons

or satellites. They may be active, sending a location code continuously, or

dormant, where the location code is only transmitted to the bus on request.

® Control centre to monitor the location of the bus fleet and to take various manual

and automatic functions to optimise the management of the fleet and to process

data for other functions such as passenger information and bus priority requests.

• Communications systems to communicate between the control centre and the

vehicles, with each having a radio transmitter and receiver.

18

Literature Review

® Signal controller and/or bus stop equipment to give priority at signals and/or

passenger information at bus stops.

Obtaining real-time locational information of all buses is the key aspect of the AVL

systems. It is carried out with the help of on-vehicle and outside equipment based on

the techniques discussed in the previous section. This information about the location

of a vehicle is usually transferred to the control centre by regular polling of the

vehicles. The polling of the vehicle is carried out in regular intervals by the control

centre via the communication system in place (Cassidy, 1995). The control centre

utilises the collected data to check priority requirements of a bus approaching a traffic

signal and request priority, if needed. Some of the AVL systems used in bus systems

in the UK, with their positioning techniques, communication method, polling rate,

stated accuracy and adherence to schedule are summarised in Table 2.2.

Location Positioning

techniques

Communication

techniques

Polling

cycle

Stated

accuracy

Adherence to

schedule

London,

Uxbridge Rd.

Beacon Band III radio 30 sec 2m Headway

Cardiff DGPS VHP Radio 20 sec 5m Schedule

Maidstone DGPS VHP Radio 30 sec 5m None

Southampton Beacon Band III Radio 15 sec - Schedule

Leicester DGPS VHP Radio 20 sec 10m Schedule

Sheffield DGPS VHP Radio Event-

ba#d

10m Schedule

The table shows different types of positioning and communication techniques used at

different places in the UK. Additionally, the method of communication within the

similar techniques can be altered to form different priority architectures while giving

priority to buses. These different priority architectures use different ways of requesting

and implementing bus priority at traffic signals. Some of these different bus priority

architectures are described in the next sub-section.

19

2.2.2 Bus priority architectures

The increasing use of AVL in bus priority at traffic signals has developed a variety of

bus priority architectures. These different priority architectures differ in the way of

interaction between bus, traffic signal, AVL system and UTC system. These different

ways of interaction between different components change the method of priority

request and priority implementation. A recent study in PRISCILLA (2001) has

identified some 8 categories of priority architecture in use across the world (Hounsell

and Wall, 2001). These are illustrated in Table 2.3.

Table 2.3: Example of bus priority architectures (Hounsell and Wall, 2001)

Architecture
Category

Architecture
(P = priority request)

Examples/
Cities

Priority options

Centralised Decentralised

1.

Traffic
i signals, P

Bus

Examples in
many
European
cities

V

UTC

Examples in
many
European
cities

Traffic
signals 1 n Bus p

AVL
i

jF

Traffic
^ Bus

signals i p Bus

Aalborg
Helsinki

lUTC AVL|
London

Traffic
signals

Bus

V

20

Literature Review

UTC I AVL

Traffic
signals

Bus

Zurich V

UTC AVL

Traffic
signals

Southampton
Toulouse
Turin
Cardiff
Gothenburg

Bus

V

V

V

V

V

V

V

CGA

UTC I jAVL
P f

Traffic
signals

Bus

UTC AVL
Genoa

Traffic
signals P

Bus

V

These can be summarised as follows:

Category 1. This architecture involves bus priority at isolated junctions, without

the use of AVL or UTC. Buses are typically detected using transponders, tags, or

through entering an infra-red detection zone.

• Category 2. This architecture is as Category 1, except that the traffic signals and

the priority provided operate under UTC.

21

Literature Review

® Category 3. This involves the use of AVL to determine bus-specific priority

levels, which are then transmitted from the bus to each traffic signal controller on

the route. With no UTC involved, signal control is isolated/decentralised.

® Category 4. This architecture is similar to category 3, except that the traffic

signals are under UTC. There is no communication between AVL and UTC, so

bus-specific priority requests are routed from the AVL centre to UTC via the bus

and traffic signal controllers.

• Category 5. With this architecture, used in Zurich, Switzerland, AVL is used

predominantly for fleet management. Buses and trams are given 'absolute' priority

using loop detection.

® Category 6. This involves one-way communication of bus location and priority

requirements from an AVL centre directly to UTC. AVL becomes the primary

source of bus location upstream of signalised junctions for priority purposes.

• Category 7, Common in many French Cities, involving centralised UTC/AVL

integration; UTC plays an active role in informing AVL of each proposed signal

stage change at each junction, and requesting the location of any approaching

buses or trams which should influence the stage change time (i. e. where priority is

needed).

« Category 8. This architecture illustrates the highest level of two-way

communication between the system components. In the example in Genoa, Italy,

buses are allocated a priority level by the AVL centre and transmit this directly to

the traffic signals for implementation subject to UTC commands. At a higher

level, strategic data is transferred between the AVL and UTC centres.

Out of all these different architectures, two main categories can be identified in the

UK. They are 'category 6' (Centralised AVL-UTC communications) and 'category 4'

(Decentralised AVL-UTC communications). The workings of these two architectures

are illustrated and described below (Hounsell and McLeod, 1998).

22

Literature Review

2.2.2.1 Centralised AVL-UTC communications (Category 6)

This architecture (Figure -2.2) uses AVL as the primary bus location function with a

direct interface between AVL and UTC centres. This system involves the use of AVL

for bus location and the use of a priority algorithm in the AVL centre to determine

priority requirements for each bus (e.g. according to its headway or adherence to

schedule). A priority request is then passed to UTC control. Where UTC is centralised

(e.g. SCOOT), signal timings are then re-optimised centrally to incorporate the

priority request and transmitted to the local signal controller for implementation. The

priority is provided if the bus is located on a junction approach and within a pre-

defined distance of the junction. This type of system has been trialled in Southampton

where the SCOOT centralised traffic responsive UTC system is operational (Hounsell

and McLeod, 1999).

optional

UTC priority request Priority algorithm

AVL

Signal
timings,
central
priority

Signal status
etc.

Radio poll and
priority request

Location /time

n -
Signai
controller

2.2.2.2 Decentralised AVL-UTC communications (Category 4)

In this architecture (Figure -2.3) also the calculation of individual bus priority

requirements (e.g. according to its headway or adherence to schedule) is carried out at

the AVL centre based on AVL information about the positions of buses. However,

priority requests are then returned to individual buses with the radio polling message,

rather than to the UTC centre. Priority requests are then transmitted either directly

from the bus to the downstream traffic signal (e.g. by short range radio) or, as

currently proposed for London, transmission is via a roadside beacon, with cable or

radio communications from the beacon to the traffic signal controller. This

23

Literature Review

architecture has been chosen for London, with trials undertaken on the Uxbridge Road

during the summer of 1999 (Hounsell and McLeod, 1999). The result from the trial is

referred while discussing the results from this research in Section 7.3.1.

UTC

Signal
timings,
central
priority,
etc

Signal status,
priority request
(optional), etc.

Priority algorithm

AVL

Location /time Radio poll and
priority request

Radio or
cabia link

Signal
controller

Roadside
beacon

Ffgwrg -2. j.' KE-fTTC (T/owwe//

These architectures can accommodate various AVL techniques available at present.

The first trial of beacon-based decentralised AVL-UTC architecture was carried out in

London, whereas the trial of beacon-based centralised AVL-UTC architecture was

carried out in Southampton. Since then, there are more and more systems in

implementation for bus priority in the UK. Table 2.4 gives examples of AVL systems

used for bus priority in conjunction with SCOOT in the UK, with their different

positioning techniques and communication architecture between AVL-UTC.

Location Positioning techniques Communication architecture

London, Uxbridge Rd. Beacon Decentralised

Cardiff DGPS Decentralised

Maidstone DGPS Decentralised

Southampton Beacon Centralised

Leicester DGPS Decentralised

Sheffield DGPS Centralised

24

Literature Review

This table shows that the use of GPS-based AVL system and decentralised

communication architecture in bus priority at traffic signals is relatively common in

the UK. One reason for growing use of GPS is the flexibility which it provides in the

case of changing bus routes and for the allowance of 'virtual' detectors to be 'sited'

(and changed) according to requirements. A 'virtual' detector is where the co-

ordinates of the detectors are programmed into the on-bus software, so that when the

bus reaches this location (as determined from the on-board GPS), an action is

triggered (e.g. a priority request is sent). In principle, 'virtual' detectors can be sited

anywhere on the bus route, with no need for physical infrastructures . The use of more

decentralised architecture may be due to its capability of including isolated junctions

and complex nature of centralised communication architecture. These were some of

the key reasons for adopting this architecture in London (Hounsell and McLeod,

1998). This 'Decentralised AVL-UTC communications' architecture using GPS

positioning techniques is the system chosen for bus priority in this research.

With this growing use of AVL systems in bus priority, there is scope for a variety of

strategies to be implemented. The benefits from these bus priority strategies are

different in type and magnitude. For example, the strategy giving priority to all buses

effectively reduces the journey times but does not improve passenger waiting time that

effectively. The strategy giving priority to late buses improves waiting time but gives

lesser journey time benefit. The strategy giving a higher amount of priority using

higher target degree of saturation (DOS) for side road may give more journey time

benefits but give more delays to the non-priority traffic. Additionally, the performance

of such strategies may be influenced by field factors such as passenger demand,

intervention option (holding early buses) available and type of bus operation

(timetable/scheduled). Exploring the performance of different priority strategies under

various field conditions is the focus of this research. Although few field trial results

are yet available, the scope for testing a variety of strategies is limited. Hence it has

been decided in this research to undertake simulation modelling of the system to

evaluate a range of priority strategies. The next section deals with the modelling

options available to analyse the system for this research work.

25

Literature Review

2.3 Modelling bus priority at traffic signals

In general, modelling requirements depend upon the aim and objectives of the work.

Since the main aim of this research work is to model different bus priority strategies

under various scenarios, a detail modelling of main components of a bus system is

required. These main components are bus, bus stops, traffic signal, AVL system and

bus priority. Each of these components includes modelling issues to define its

characteristics. Some of the main modelling issues are; bus - generation and

movement; bus stop - passenger generation, waiting time and bus dwell time

calculation; traffic signal - signal timings and delay calculation; AVL system - bus

positioning; and bus priority - priority criteria and implementation method. So a

model, capable of modelling these components and their modelling issues in detail, is

required for this research work. A review of available models carried out to find their

suitability for this research work is outlined in the sub-section below.

2.3.1 Review of existing models

With rapid growth in computer technology, there are numbers of methods and

programs available for modelling urban traffic. Most of them have become

increasingly sophisticated and now attempt to deal with network interaction

(Willoughby and Emmerson, 1999). Grossly, these are divided into two groups

according to their modelling approach. These are:

* Aggregate methods

® Simulation modelling

2.3.1.1 Aggregate methods

These models are the most common models in use for traffic network modelling,

incorporating traffic assignment. These traffic models use formulae with average

values of the parameters such as vehicle flow and capacity over a period of time

(Willoughby and Emmerson, 1999). CONTRAM, TRIPS and SATURN are the

examples of this type of model (although CONTRAM can be disaggregated to an

individual vehicle level). These traffic assignment models can be used in the

evaluation and assessment of traffic management schemes. Though all of these models

26

Literature Review

contain some facilities to model public transport within them, it is not their main

concern; they are more aimed at network traffic assignment rather than public

transport modelling. In particular, these models do not have the facility to model many

of the elements required for this research including AVL systems and differntial bus

priority. Hence these models are found to be not suitable to carry out this type of

research having the objectives of modelling different issues of bus priority in greater

detail.

2.3.1.2 Simulation models

With simulation, an attempt is made to model the behaviour of each vehicle/driver as

it moves through the road network, based on the characteristics of the vehicle and

driver behaviour. In Czogalla's (1997) view, microscopic simulation environment

provides an excellent experimental base for the design of control strategies which

enables the visual and statistical evaluation of the achieved results. Santhakumar and

Harihara (1992) and Agrawal (1994) find the simulation technique as the ideal tool for

the study of bus operation in a transport corridor. There are a number of packages now

available for simulation modelling of traffic.

The SMARTEST Project (Bernauer et al, 1997) found more than 60 developers

producing modelling programs around the world (Bagot, 1999). They mentioned that

it is not yet clear whether such software has reached maturity, and whether it can

provide the level of reliability that invokes full confidence in the user. Out of the

models they found in the marketplace, only PARAMICS and VISSIM have got

facility for modelling public transport priority. Other than these, NETSIM is also

found to have facility for modelling public transport.

TRAF-NETSIM is a microscopic simulation model that provides a detailed evaluation

of proposed operational improvements in a signalised network. The model can deal

with signal-controlled intersections and interaction between cars and buses explicitly.

It applies interval-based simulation to describe traffic operations where each vehicle is

a distinct object that is moved every second. Vehicles are moved according to car-

27

Literature Review

following logic, response to traffic control devices and response to other demands

such as buses stopping to pick up passengers at bus stop. There are some studies

carried out by Khasnabis et.al. (1996), Al-Sahaili and Taylor (1996) and Khasnabis

and Rudraraju (1997) which have used TRF-NETSIM to evaluate different bus

priority strategies in different parts of USA. But Khasnabis and Rudraraju (1997) have

mentioned that there are limited applications of NETSIM with a bus as the primary

vehicle. Again, it does not model differential priority and AVL systems in detail.

PARAMICS is a suite of high performance software tools for microscopic traffic

simulation. It provides simulation, visualisation, interactive network creation and

editing, interactive adaptive signal control, on-line simulation data and statistics and

others in one package (Bernauer et al, 1997). PARAMICS, includes a microscopic

car-following and lane-changing model, dynamic and intelligent routeing and

inclusion of intelligent transport systems (Druitt, 1998). PARAMICS also takes

account of public transport and its interaction with other modes at bus-stops and

through bus priority measures. However, there is no literature suggesting the

modelling of differential priority options and AVL systems in PARAMICS.

VIS SIM is a general purpose computer-based traffic simulation system (Fellendorf,

1996). VIS SIM models links, roundabouts, priority junctions, signalised intersections

and networks at a high level of detail. The model contains a psycho-physical car

following model for longitudinal vehicle movement and rule-based algorithm for lane

changing (Bernauer et al, 1997). Its signal control program uses detectors for

microscopic and macroscopic measurements (i.e. speeds, volumes, travel times) of

traffic to decide the current signal aspects. The simulation is microscopic and

stochastic with fixed time-slices (one-second interval). In this case also, there is no

literature specifying the modelling of differential priority or an AVL system as

required in this research.

PRISCILLA (2001) carried out a review of some simulation models commercially

available in the market. The review included two more simulation models other than

those reviewed above. A summary of the features of these simulation models with

28

Literature Review

regards to the modelling components required for the research is given in Table 2.5

(PRISCILLA, 2001).

Table 2.5: Comparison of commercially available models with research requirements

Modelling

components

Simulation models

Modelling

components
FLEXSYT11 HUTSIM PARAMICS TRAF_

NETSIM

VISSIM

Bus V y y V y

Bus stop X X X •/ y

Traffic signals •/ y y y y

Bus priority y y y y y

Differential bus

priority

X X X X X

AVL system X X X X X

KEY:

^ - feature is reported as being modelled

X - feature is not available as built-in facility

As shown in the table, modelling of differential bus priority and AVL system is not

specifically mentioned in the available literature of these simulation models. These

commercially available models are more complex in their treatment of general traffic,

but less complex in their treatment of buses than required for this research. Their use

would require significant program development which could not be guaranteed within

the scope of this research. Hence a review of other research models carried out to find

their suitability to the project is outlined below.

2.3.1.3 Other research models

There are a number of other research models developed for the study of specific bus

operation and priority schemes. One such simulation model developed by

Santhakumar and Harihara (1992) was aimed at evaluating the performance of urban

29

Literature Review

bus routes in Triruchirapalli in India. The main objective was to find an optimum

combination of different transportation system management (TSM) options to get

maximum reduction in journey time. Another simulation model developed by

Agrawal et al (1994) was used for performance evaluation of bus operations in the

ring road of New Delhi, India. In this case, the existing bus operation system was

compared with the simulated system by changing bus stop spacing, removing some of

them, varying bus frequency and introducing bus lanes. Both of these models were

targeted to find better system management rather than the bus priority options of

interest in this research.

A microscopic model developed by Liu et al (1999) was used to study bus priority

measures for guided bus. Though this model was primarily intended to model guided

bus it is relevant to the modelling of other buses also. The model incorporates

modelling of bus services, bus stops and selective vehicle detection. The main two

priority options modelled are extensions and recalls with only one signal change

(extension or recall) permitted per cycle. Though the approach of the model is suitable

to this research, it does not model AVL and differential priority.

A model developed by Salter and Shahi (1979) was aimed at predicting the effect of

bus priority using computer simulation. The model incorporates passenger modelling

by distributions representing their arrivals, boarding time and alighting time at each

bus stop. The model also uses simulation of non-bus vehicles in which vehicles are

generated before the junction to ensure correct level of service at the junction. The

model uses uniform time scanning for this microscopic section of the simulation. But

this model also lacks modelling differential priority and AVL, which is the main

objective of this research work.

The simulation model SPLIT (Selective Priority to Late buses Implemented at Traffic

Signal), developed by McLeod (1999), simulates the differential priority for buses at

traffic signal depending upon the headway. The model was used to model survey data

from the Uxbridge Road in London including 29 bus stops and 14 signalised junctions

in a linear network. The model was used to test 9 alternative priority strategies based

30

Literature Review

on the headway algorithm developed assuming that the signals are under SCOOT

UTC control. This model is very much compatible with the nature of this research, but

the model also does not address all the modelling aspects required by the research

objectives. The model does not cater for schedule-based bus service, traffic signal

timings and AVL systems. The model also does not calculate delay savings to the

buses and delays for general traffic on an individual basis. Beside that the model also

lacks visual representation of system operation which is very important in terms of

understanding the happenings in the system during simulation period.

2.4 Summary

Bus priority is considered as one of the most influencing factors for making bus

services regular and attractive. The priority measures include with-flow lanes, contra-

flow bus lanes, bus only streets, busways, bus only turns (bus gates) and bus priority

at signalised junctions. Bus priority at traffic signals is most effective in congested

city areas with many signalised junctions. Nowadays, bus priority with selective

vehicle detection is common in a number of developed countries. In recent years, there

is an interest in giving priority to the buses according to their individual requirement

and constrained by junction factors.

Bus priority in the UK is generally implemented by the method of green time

extensions and recalls. It needs some form of detection of buses to find their arrival

time to match the priority award. The use of automatic vehicle location (AVL)

techniques for this purpose is growing. The different AVL techniques in use are dead

reckoning, beacon based, radio triangulation and satellite based. There are several

different architectures in which these AVL systems can be used. AVL systems used

for bus priority in the U.K. have developed recently in two forms. These are

centralised AVL-UTC communications and decentralised AVL-UTC

communications. These different priority architectures have made it possible to use

several different bus priority strategies. Modelling these different strategies and their

performances under various field scenarios is the main focus of this research. This will

be carried out by simulation modelling of a bus priority system.

31

Literature Review

The main modelling components of bus priority at traffic signals are bus, bus stop,

traffic signal, AVL systems and bus priority. To determine the suitability of existing

models, both aggregate methods and simulation modelling programs available for

modelling traffic were reviewed. Though the aggregate models have got some facility

to model public transport, they do not model bus priority in detail. In simulation

approach also, commercially available packages, such as PARAMICS, TRAF-

NETSIM and VISSIM, are not found to be modelling differential bus priority and

AVL system in detail.

There are other research models developed for study of specific bus priority schemes.

The models of Santhakumar (1992), Agrawal (1994), Liu et al (1999) and Salter and

Shahi (1979) were found to be useful in designing the model but were not appropriate

to use directly. The simulation model SPLIT developed by McLeod (1998) is

particularly related to this research. The model simulates differential priority for buses

at traffic signals depending upon the headway. But the model also does not model

signal control strategy nor AVL nor calculate traffic delays in detail.

Since the models reviewed were not suitable to carry out this research to achieve set

objectives, the only way ahead was to develop a simulation model specifically for this

research programme. The modelling methodology adopted to develop the model is

detailed in Chapter-3 and the development of the model follows in the subsequent

chapters. With development of the model, it is expected to develop strategies for

differential priority to the buses at traffic signals.

Modelling methodology

Chapter Three

Modelling Methodology

3.1 Introduction

Developing a simulation model of a bus operation system needs careful assessment of

all the associated parameters. The key factors that will affect the performance of buses

in a route are their starting condition (e.g. lateness at the start of the route), their

movement along the route, bus stops, traffic signals and interaction with other traffic.

Hence the simulation model of a bus system should be able to model these key factors

in depth to mimic the field situation. In this research, the main objective being the

simulation of advanced bus priority strategies at traffic signals, there are other

parameters that the model should address also in detail. For this purpose, the model

should be capable of modelling details of differential bus priority options at traffic

signals and be able to incorporate AVL systems to locate buses. Finally the model

should provide enough information about the impact of different levels of bus priority

in the system.

In summary, the key requirements of the model in order to carry out the research are

set as follows. The model should

• Represent a proper linear route having a number of traffic signals and bus stops;

« Have a controlled method of generating buses in different intervals to

accommodate both headway based as well as schedule based bus operation;

® Model bus stops with estimation of boarding and alighting passengers, their

waiting times and dwell times;

« Be able to model the different possible AVL systems available with different

accuracies and polling frequencies;

® Model traffic signals with their signal timing and delays;

® Model different bus priority strategies;

Modelling methodology

® Be able to estimate benefits to the buses and disbenefits to general traffic from the

bus priority options;

o Be able to produce output such as the progression of bus along the route, journey

time, delays at intersections, dwell time at bus stops, passengers boarding and

alighting at each stop, waiting time of passengers, bus occupancy and punctuality.

The methodology of modelling main components along with their modelling issues is

described in the subsequent sub-sections. The method of incorporating these

components into the model is described in Chapter 5 (Model development).

3.2 Buses

Buses are the vehicles of main interest in the model. Their generation, movement and

interaction with other components are the main focus of this model. Each bus

generated at this stage is assigned a unique identification number that will relate to the

parameters representing all its functional aspects. These parameters include bus size,

its type (Double deck/single, one door/two door), passenger capacity and exit node.

The main modelling issues of this bus component are bus generation and movement.

These issues are discussed in next sub-sections.

3.2.1 Bus generation

Theoretically, buses are generated according to their time headways or their schedule.

In headway-based operation, buses are generated at a defined time interval. Whereas,

in scheduled-based operation, buses are generated according to their timetable. But in

the field, generation of buses is affected by several factors such as bus operator,

availability of buses, their condition and weather condition. Hence buses often do not

start at the beginning of their route exactly at the defined headway or timetable. This

is an issue to be reflected in the model while generating buses. This fluctuation in

generating buses can be incorporated in a model by using a distribution for generating

buses. An appropriate distribution based on field data collected for a long time is used

in the model. Using the distribution, the time headway of the next bus is calculated

when the first bus is generated. Then the next bus is generated in the system using this

headway.

Modelling methodology

3.2.2 Bus movement

Once the buses are generated at the origin, they start moving in the route links

according to the movement parameters assigned. Bus movement parameters describe

the behaviour of bus movements on the route to the destination once started from the

origin. In practice, the movement of a bus is based on various parameters such as

condition of the bus, condition of the road, weather condition, special events, roadside

parking and variation in traffic conditions. Especially, roadside parking adjacent to a

bus stop severely disrupts buses while getting in and out of the bus stops. However,

simulating all these parameters to calculate the journey time of a bus would make the

program unnecessarily complex. Again, with simulation, the parameters are kept

constant anyway when comparing strategies. Therefore modelling all aspects of

random variability is thought to be unnecessary unless they affect strategy evaluation.

Beside that, it is easier to collect link journey time of buses in the case of the bus

service. A link in this case is described as a section of a bus route between two

consecutive points where a bus is very likely to stop (e.g. bus stops, traffic signals). A

link journey time collected in the field incorporates the effect of traffic condition in

that link. This average link journey time is used in modelling bus movements in the

model.

3.3 Bus stops

Bus stops are the place where passengers arrive and wait for a bus and where boarding

and alighting takes place. When a bus comes, it stops there while the passengers inside

alight and the waiting passengers board. The generation of passengers, their waiting

time and dwell time of buses are the main modelling issues of a bus stop. These issues

are discussed separately in subsequent sub-sections below.

3.3.1 Passenger generation

Passenger demand is the main factor deciding route, frequency, bus stops and bus

operation as a whole. The estimation of numbers of boarding and alighting passengers

at a bus stop is therefore is an important component of a model. There are different

ways in which the passenger arrival at a bus stop can be modelled. In general, these

Modelling methodology

can be represented by a distribution over a time period (Salter and Shahi, 1974). This

may be a normal distribution with a mean representing the average passenger flow to

the bus stop and a variance fixed for all bus stops (Liu et al, 1999); or it may be a

simple relationship between the number of boarding and alighting passengers in terms

of rate of boarding and alighting passengers and the headway (Hounsell and McLeod,

1999). Assuming the random arrival of passengers, the relationships then used are as

follows.

Number of boarders = boarding rate * bus headway

Hence by having a boarding rate and alighting rate from a survey, the number of

passengers boarding and alighting can be calculated. This random passenger arrival

assumption is reasonable (Seddon and Day, 1974) for a high frequency service where

the passenger has no expectation about the arrival time of the bus before reaching to

the bus stop. However in the case of low frequency service, the passengers tend to

arrive at the bus stop towards the scheduled time of the bus arrival and hence the

assumption is not valid. The bus headway used here is the difference between the

departure times of two buses. Since departure time is not that straightforward to

calculate, the number of passengers generated is carried out in two parts. Firstly, the

number of passengers arrived between departure of first bus and arrival of second bus

is calculated. Then the number of passengers arrived during the dwell time are

calculated and added to the total number of boarding passengers.

Although the number of boarding passengers may depend upon the bus headway, this

may not be the case in terms of alighting passengers. Since the number of alighting

passengers at any stop will be dependent upon the passengers already inside the bus, it

may not be affected by the present headway at the bus stop where the passengers are

alighting. Hence, the number of alighting passengers is estimated according to the

fixed percentage of total passenger inside assigned for each bus stop. The relationship

for calculating these alighting passengers is:

Modelling methodology

3.3.2 Waiting time:

The waiting time of a passenger can be the time between the arrival of a passenger to

the arrival of a bus or to the boarding of the passenger or to the departure of the bus.

While using these different definitions, the average passenger waiting time differs

slightly depending upon the bus dwell time at a bus stop. However, the change being

very small, it does not influence the result while comparing one priority strategy with

another. In the model, the waiting time is used as the time between the arrival of the

passenger at a stop and the arrival of a bus in which the passenger boarded into. While

considering uniform rate of arrival of passengers at a bus stop for boarding into a bus,

the waiting time can be approximated by half the time between the departure of first

bus and the arrival of second. This can be expressed in following mathematical form:

Average waiting time = 0.5 * time gap between buses

This is the case for the services where passengers arrive in a regular basis without

knowing the actual arrival time of a bus. However in case of schedule-based operation

(low frequency service), passengers often time their arrival according to the timetable

with an appropriate allowance for punctuality. In the model, the waiting time is

calculated by using this simple relationship that is valid for high frequency services.

The total waiting time of passengers for a bus is then calculated by multiplying the

average waiting time by the number of passengers boarding.

3.3.3 Dwell time

The amount of time spent by buses at bus stops while passengers board and alight is a

very significant part of overall journey time of bus services (York, 1993). Based on a

study of London bus services, York found that the stop time of a bus could be

expressed in terms of dead times, passenger alighting time and boarding time. The

dead time is the fixed time, dependent on the particular bus type, which mainly

consists of the time taken to open or close the door and time taken to check the traffic.

Alighting and boarding times are the times taken by passengers while alighting and

boarding. These times are the product of number of passengers and the time per

passenger. The time per passenger varies between different bus types and fare

Modelling methodology

collection systems. The stop time T can be related to the number of passengers

alighting a and the number of passengers boarding bj using the ith process of

boarding, where there are m different processes of boarding by expression:

For buses with single door

T = D + Aa + ^
7 = 1

For buses with two doors

r = z). + X M
i=\

or

T — + Act

whichever is greater.

Where, A is alighting time per passenger, B is boarding time per passenger, D

is 'dead time' for one door buses, and and are dead times for two door

buses.

These variables are all dependent upon the type of the bus, which includes the size of

a bus, its number of decks and the mode of paying for tickets. The values of these

variables will be obtained from the field survey. Another formula used by Liu et al

(1999) gives the bus dwell time (T) at a bus stop that is related to the number of

passenger (N) waiting at the bus stop by:

r = (a * # + 6)

Where, a is the boarding time per passenger (including paying for ticket) and

b is the time for the bus' door being opened and closed.

Though this formula is simple in nature but does not consider the effect of the number

of passengers alighting and the variation in bus type. Hence, York's formula is used in

calculating dwell time.

3.4 Traffic signal

Traffic signals are the location where buses may be given priority, which is the main

focus of this research. The modelling of a traffic signal consists of modelling its

38

hdodelling methodology

position, signal timings and delay savings calculation. While modelling, each traffic

signal is represented according to its relative position in the route. Each of the signals

is given a unique identification number to refer to its individual properties that include

signal timings and general traffic flows in each arm etc. These are discussed in

subsequent sub-sections.

3.4.1 Signal timings

Modelling the real field situation of traffic signal timing is not a simple issue. In the

model, this issue is simplified by modelling fixed-time signals in the place of SCOOT

controlled signals. Here, the sequence and length of stages of a signal are kept fixed

for whole modelled period. This occurs predominantly within SCOOT. Average stage

length and cycle time duration was then calculated from the individual stage lengths

and cycle times obtained from SCOOT data for each junction. This simplification was

done because of the complex nature of SCOOT (e.g. varying levels of traffic, signal

timings and co-ordination) which can cause significant random variability that can

mask the impacts of the priority strategies if it were to be modelled.

3.4.2 Delay calculation

Delay calculation is a very important part of traffic signal modelling. Since the

concept of differential priority to buses is based on reducing delays of late buses at

traffic signals, it is a very important part of this research work. Again, it forms the

basis for calculating resulting benefits and disbenefits from bus priority at traffic

signals. In this model, the delays to the buses are calculated separately from general

traffic. The delay to a bus is calculated on an individual basis whereas that of general

traffic is calculated using aggregate values.

The delays at signals can be divided into two parts; delays due to the red signal and

delays due to blocking by vehicles in front. Hence while modelling the delays to a bus

at traffic signal, both the delays due to signal timing and due to presence of other

traffic in front should be accounted for. If a bus arrives at a signal in the green phase

and has no other vehicles in front, then there will be no delay to the bus. But if the bus

arrives at the back of a queue, the bus will have to follow other traffic to cross that

signal. Even arriving on the green phase, there may be some delay associated with it.

Modelling methodology

Hence the departure time of a bus is determined taking notice of other traffic too. Now

knowing the departure time of a bus, taking account of general traffic in front and the

arrival time of the bus at the signal, the delay at that signal is calculated.

In the model, the general traffic is generated according to the average arrival flow at

all approaches of a signal. When the signal is red the generated traffic is queued one

after another. But when the traffic signal turns to green, the traffic is discharged at the

saturation flow rate. The discharged general traffic is not modelled after crossing the

stop line but buses will continue their journey into next link and so on. The calculation

of delays to the general traffic will be carried out on a similar basis to that of SCOOT

(Hunt et. al., 1981) system. However, the delay calculation is simplified by taking

average inflow and outflow instead of cyclic profile as in case of SCOOT. The delay

calculation method used in the model is illustrated in figure 3.1.

Flow

Rate

(veh/sec)

Traffic

Time (sec)

Discharged Traffic

Discharge

Inflow

Inflow traf%

quel

Red time Green time Red time •
Time (sec)

Figure 3.1: Illustration of delay calculation at traffic signal

As illustrated in the figure, the traffic is generated according to the average flow

during the whole modelled period and is discharged at the rate of saturation flow

40

Modelling methodology

during the green period. To simplify the model, it is assumed that all the traffic

accumulated during the red period will be discharged completely during green time

when there is no priority. The delay of these vehicles is calculated using the time

between their arrivals at the back of the queue to their discharge at stopline. However

in the field, inflow and discharge vary according to time rather than being constant.

This variation in inflow varies the junction delays and degree of saturation and

ultimately the amount of priority that can be provided to the buses. However,

modelling these variations makes a model very complicated and does not make

significant difference while comparing one strategy with another. Hence average

values of inflow and discharge are used in the model to calculate junction delays.

3.5 Bus priority methods

Modelling bus priority at traffic signals is the main focus of this research. The

modelling of bus priority has been started with the system of giving priority to all the

buses at traffic signals. In this method, a bus is detected by a detector placed upstream

of a traffic signal and its arrival time at the stopline of that traffic signal is estimated.

Then the signal period for that expected arrival time of the bus is calculated. If the bus

is estimated not to arrive during a green period, then a priority is awarded within the

allowable limit. The main parameters to be modelled in this type of bus priority are

bus detection position and method of priority implementation. These are discussed in

subsequent sub-sections.

3.5.1 Detector positioning

The position of the bus detector plays an important role in the efficiency of bus

priority. The detector should be located at an optimum position so that there will be

less uncertainty in journey time prediction but sufficient time for priority process. A

longer detector distance (from detector to stopline) gives a higher journey time to

reach the stopline and the allowable extension time can be increased. However, it

makes estimation difficult due to variability in journey time in the field. An earlier

study (Bretherton et al, 1996) recommended a location of 70-100 m upstream of the

junction. However, the literature stressed that the detectors must be located

41

Modelling methodology

downstream of bus stops. These recommendations will be taken into account while

deciding the detector locations in the model.

3.5.2 Method of Extension and Recall

Once a bus is detected at the detector upstream of a traffic signal, its expected arrival

time at the stopline of the signal is estimated. In the model, the estimation of journey

time between a detector and stopline of the downstream traffic signal is based on the

average link speed. This estimated journey time is added to the detected time to give

the expected arrival time (EAT) of the bus at the stop line of the downstream signal. If

EAT of a bus is during a green period, then there is no need of priority. If the arrival

time is just after end of green time (EoG) then the time difference between the EoG

and EAT of the bus is calculated. If this difference is within the maximum allowable

limit, then extension of that amount equal to the difference is granted. If the difference

is more than the maximum allowable limit, then the extension will not be granted.

Instead, the maximum allowable amount of recall is granted. The examples of giving

priority using 'extension' and 'recall' along with a recovery method are shown in

Figure 3.2 and Figure 3.3.

Without I i
With | i |2
Bus • •
Extension

Without | l |2 |3 | l

With |1 |2 |3 | l

Bus • •
Recall

^ '

42

In the figures, the symbol * indicates the detection of a bus and the symbol •

indicates the bus crossing stopline. In Figure 3.2, a bus is detected in stage 1 (green

period for the bus approach) and is expected to miss the green period. Hence an

extension is provided by extending the stage until the bus crosses stopline. In Figure

3.3, a bus is detected in stage 2 and hence a recall is provided by recalling the stage 1

(green period for the bus approach) earlier.

The maximum amount of recall allowed is dependent upon the target Degree of

Saturation (DOS), which is also commonly abbreviated as 'x', for non-priority traffic

in a junction (The term DOS is used in the following text, as being most commonly

adopted by practitioners in this field). The target DOS is used to check the amount of

time that can be provided without exceeding this DOS for the non-priority links. In the

case of an extension, the maximum allowable amount is constrained by the detector

distance. The maximum amount of extension is less than or equal to the amount of

journey time from the detector to the stopline of the downstream signal. This is to

make sure that the extension awarded is the continuation of the 'green period' at the

time of detection.

Once this method of giving priority to all buses was completed, then the model was

further developed to incorporate differential bus priority. In this case, the maximum

amount of priority allowed may be different for different buses depending upon their

performance (i.e. lateness). This is dependent upon the type of priority strategy in use.

More about the modelling of these strategies is described in next sub-section.

3.5.3 Differential priority strategies

Modelling of differential priority requires a clear definition of the priority strategy to

give priority to the buses. This needs defined criteria to check the eligibility of the

priority requirement of a bus approaching a traffic signal. A headway based

differential priority criteria (as mentioned earlier in Section 2.1.3), depending upon the

lateness of a bus, was used to select priority levels in the London system (Hounsell

and McLeod, 1999). In that system, the lateness was defined in terms of headway ratio

'R' of actual bus headway to the expected headway. This headway ratio was used to

43

decide the level of priority to be awarded. The different priority strategies formulated

and tested are shown in table 3.1 (McLeod, 1998).

Logic no. Description

1 No priority for bus

2 Extensions only for all buses

3 Extensions + ^HIGH for all buses

4 Extensions + Ri//G//for buses with R > 1.00

5 Extensions + ^HIGH for buses with R > 1.25

6 Extensions + Ri^/Gi/for buses with R > 1.50

7 Extensions + Ri//G//for buses with R > 1.75

8 Extensions + R///G7/for buses with R > 1.0

Extensions only for buses with R < 1.00

Notes:

^HIGH = recalls using a 'high' target degree of saturation threshold (110%)

^NORMAL = recalls using the 'normal' target degree of saturation threshold (95%)

These priority strategies are shown here as an example and they form the starting base

for modelling differential bus priority strategies in this research. Further strategies will

be formulated and explored later in the application of the model (Chapter 7).

3.6 AVL systems

The AVL system is used to determine the locations of the buses. The modelling of

AVL is concentrated on beacon-based and satellite based (GPS) systems. These

different systems help a bus in determining its position in a network. This positional

information is then transferred to the AVL centre by means of polling. Hence the

modelling of beacon-based AVL system is divided into two parts;

® Locational techniques

® Polling

44

Modelling methodology

3.5.1 Locational techniques

In the case of a beacon based system, the location of each bus is determined primarily

using roadside beacons and then it is refined by odometer readings. While modelling,

each of the beacons placed in the network are given an identification number relating

to their position in the network. The identification number (ID number) and their

distance from a reference point (generally from origin) is given as input in the model.

While updating the position of each bus in every second, the simulation model checks

buses equipped with AVL equipment to see if a beacon has been passed during the

update of the bus position. If a beacon lies between the updated and the previous bus

position, then the individual beacon code with its positional distance is transferred to

the associated bus. The distance between two successive beacons is determined by

using odometer readings. Odometer readings are modelled by measuring the distance

travelled since the last beacon passed, and then errors in odometer measurements are

added to the distance travelled.

In the case of a GPS system, the location of each bus is determined continuously by

using a GPS receiver onboard. In principle, this continuous positioning of a bus could

be used as a multiple detection of a bus especially while approaching traffic signal for

priority. However, there are no traffic signal priority strategies able to take full

advantage of this potential yet. The GPS system modelled in here is therefore based on

single detection method used in Cardiff (Hill, 2000) and elsewhere. In this case, the

main modelling involves the estimation of GPS error incurred during the location

determination. A recent test carried out for determination of GPS error (using a

Garmin 12x1 GPS) showed the accuracy within +/- 9.8 metres at 99.73% confidence

(Rupprecht, 2001). The test result showed that the GPS error follows a normal random

behaviour with mean 0.0 metre and standard deviation of 3.3 metres. Hence the GPS

error is modelled by generating a random number from normal random distribution

with mean 0 and standard deviation 3.3. This error is added to the actual position of a

bus at that moment stored as the virtual position of the bus. This is the position

recorded by the computer on board of a bus with the aid of GPS equipment.

45

Modelling methodology

This estimated position of a bus along the route is communicated to the AVL centre.

This communication between AVL centre and buses is carried out by polling, in

which the buses are contacted by the AVL centre to find their position. The modelling

of polling is further discussed in the next sub-section.

3.5.2 Polling

The AVL centre polls each bus in the route at a regular time interval to determine its

position in the route. The polling interval depends upon the accuracy requirement of

the system as well as the number of buses to be polled in the system relative to the

communication capacity. Polling rates are typically 20-30 seconds per bus (Hounsell

and Wall, 2001). Polling information, passed from bus to the AVL centre, may

include bus number, route number, code of last beacon passed and odometer reading.

In the model, polling is represented by a 'blinked' signal on the bus. This information

about the position of a bus is used to check the priority requirement of that bus while

approaching a traffic signal.

3.6 Other issues

Other issues of modelling bus priority at traffic signals include bus bunching and the

treatment of overlapping routes. These issues are the operational side of a bus

operation system. These issues with their modelling concepts are discussed in

subsequent sub-sections.

3.6.1 Bus bunching

Bus bunching is the outcome of the deviation of a bus service from its schedule in

terms of time. In this process, the bus lagging behind the schedule picks up more

passengers than average and hence takes more time at each bus stop and lags a bit

more again. Hence the headway goes on increasing and bunches with other buses

behind and two or more buses will move together in a bunch. In some cases, the buses

behind the lagged bus may simply follow to the destination. This may be due to

reluctant driver or due to space availability at bus stops. However, in some other case,

the bus behind the lagged one may overtake it to pick up passengers. But then this bus

may also face high passenger boarding numbers and may be overtaken by the lagged

46

Modelling methodology

bus behind it. Then a sort of leap-frogging action may occur. As such, there is no

evidence that a bus will follow particular pattern in case of bunching.

Given these uncertainties, bunching is modelled here by estimating the departure time

of a bus at a stop with the arrival time of the next bus approaching that stop. When a

bus comes at the bus stop, its departure time is estimated considering the dwell time

needed for the passengers at the stop. If the arrival time of next bus is later than the

departure time of the first bus, the next bus stops to alight and board passengers. But

in case of the arrival time of next bus being earlier than the departure time of the first

bus, the next bus only stops if there are alighting passengers. This provides the

opportunity of overtaking buses at bus stops. Since this not being the universal case of

bus bunching, the generalisation may not be appropriate. Additionally, it is noted here

that bus bunching is more prevalent for high frequency services in congested

networks, which is different from the route modelled. In this route, bunching is not an

issue for most of the time, and the assumptions concerning bus bunching are not

crucial to the results from the model.

3.6.2 Overlapping bus routes

Whenever there are more than one bus services in a route or part of it, then the concept

of overlapping bus route comes into play. If the services are identical, then the

headway between the buses can be calculated by considering that all the buses are of

the same service. But whenever the services are not identical then other issues arise

from that. The passenger at the bus stop will have a choice of taking the bus from any

one of the services. The passenger may take the fist bus arriving or may wait for

another if it is perceived to be better (e.g. in terms of journey time). This makes the

modelling more complicated. Modelling this issue needs origin-destination data of

each passenger. Data collection in this way would be very extensive and has been

shown to be unnecessary in this research, given the characteristics of the network

chosen for study, as described in Chapter 4. However, a simple case of overlapping

routes is modelled by considering different services serving the route as identical

services.

47

Modelling methodology

3.7 Model output

There are a number of parameters required as an output to explore the possible benefit

of differential priority at traffic signals. These include:

® The progression of each bus along the route

* Punctuality at bus stops (a measure of variation with actual bus schedule)

® Total journey time

» Number of passengers boarding and alighting at each stop

® Waiting time of passengers

* Total dwell time at bus stops

® Total passenger journey time

* Bus delays savings at signals

® Delays to the other traffic

These outputs have been used to evaluate the performance of the different priority

strategies at traffic signals as described in Chapter 7.

3.8 Summary

The main modelling components of a simple bus priority at traffic signal are origin,

route links, bus stops, traffic signals, bus priority and AVL systems. Modelling buses

includes the issue of generation and movement. This generation is carried out

according to a distribution obtained from field data collection. The modelling of bus

movement along the route is based on average link journey time. Bus stops are

important components responsible for generating passengers. Issues include passenger

generation, their waiting time and the time required for boarding and alighting. Traffic

signals are modelled as fixed time signals with proper modelling of signal timings and

delay calculation. The bus priority modelling will be based on differential priority.

Modelling the AVL system at the beginning is concentrated on the modelling of a

beacon-based system. Other issues like bus bunching and overlapping routes are

modelled at the final stage of the model. The main outputs generated from the model

are total journey time, delays at intersections, number of passengers boarding and

alighting, their waiting time, bus occupancy, and delays to the other traffic. These

parameters will be used to evaluate the performance of different priority strategies.

48

Data collection

Chapter Four

Data Collection

4.1 Introduction

The modelling methodology (Chapter 3) described the methodology to be adopted

while modelling a bus route for this research. It identified and described the main

modelling components of a bus route. This chapter describes the data collection

process to define the components needed to build a model. This data is required in

order to build a model to utilise the methodology and to show the characteristics of the

chosen route. All the data collected to build a model of the chosen route is called the

model building data. There is also other data required in order to validate the model in

field conditions. The data and their collection methods are described in detail in

Chapter 6 (Model Validation). This chapter concentrates on the collection of model

building data.

This chapter starts by stating the data required (section 4.2) from the field. It then

describes the methodology/ survey plan (section 4.3) explaining where and how the

data has been collected. It then describes the main survey (section 4.4) carried out for

data collection. The next section describes the data checks (section 4.5) to find

possible errors in the collection process and to refine the data (section 4.6) to make it

suitable for use in the model. This chapter is summarised in the chapter summary

(section 4.7).

4.2 Data Requirement

Various data is needed to define and describe the different components of a bus

priority model. These data are to be collected from the field in order to make a valid

model for the chosen site. The required data, to be collected from the field, are

grouped according to their related components.

4 9

Data collection

4.2.1 Route data

This data is required to define the characteristics of the links of the route. The data

includes the number of links, start and end of links, link lengths, number of lanes in

each link, width of lanes, number of bus stops and number of junctions.

4.2.2 Bus data

The bus data describes the characteristics of the buses in the system. The data includes

the time of bus generation, service number, origin, destination, type of the bus,

passenger capacity, bus patronage at the start of the network and average link speed.

4.2.3 Bus stop data

This data defines the characteristics of the bus stops. The data includes the position of

bus stops, bus services, the timetable of different bus services, the starting time of

passenger arrivals, rate of passengers boarding, percentage of passengers alighting and

dwell time parameters.

4.2.4 Traffic signal data

The traffic signal data is there to represent the characteristics of the traffic signals.

This data includes the position of traffic signals, starting time of signal, total cycle

time, green time, amber time, number of arms, arm flow rate, arm delays, saturation

flows and amount of allowable priority etc.

The next section describes the selection of the site and details the methods to be

adopted for the collection of this data.

4.3 Data collection planning

The first part of this section describes the site selection for the collection of data and is

followed by describing the method of data collection.

50

Data collection

4.3.1 Site selection

The site selected for the data collection was the Portswood corridor bus route in

Southampton. The location of the route in the map of Southampton is shown in Figure

4.1.

TO VmrCHESTER
Portswood corridor

CtvaviLeis Fori
SstlsjA

M 2 7 1

A3025 I km approx TO WATERSIDE
TO PORTSMOUTH

Figure 4.1: Portswood Corridor in Southampton

The bus route extends from Swaythling junction to the city centre. The route is 4.32

kilometres long and has 16 bus stops and 11 signalised junctions. The location of the

bus stops and signalised junctions on the route are shown in Figure 4.2. This route is

served by 3 main bus services that are divided into 5 different services. These bus

services are 11/IIA, 3/3A and 101. Only one service runs throughout the route

whereas the remaining four enter and/or exit within the route. The total frequency of

the services at any bus stop on the route is 6 buses per hour or more. For this research,

traffic has been modelled in only one direction towards City Centre. The route being

easily accessible from the university, has attracted earlier research also. The earlier

study of the route provided valuable preliminary information about the route along

with an opportunity to compare results. The route having a number of bus stops,

traffic signals and bus services within a reasonable distance provided a chance of

studying a variety of bus operation aspects such as a simple case of overlapping

routes.

51

Bpssett

OODMi

HampWfark Universrty w Sou thampton
Southampton Common

Soulhampton Common

5J?̂ >xPortBwood

SiiiyfMW&v.... .WO*

ST D ™

ST.KNTS

B̂pjs-M&upt

Banisters / % PMk ^ BevwiT̂

asy a n a

"AMWAAl «0

Legend

o Traffic signal

Bus stop

Service 11

— Service 11a

— Service 3

Service 3a

Service 101

Figure 4.2: Details ofPortswood Corridor bus route in Southampton

52

Data collection

The survey time selected was between 10:00:00 and 12:00:00. This time interval is

after the morning peak. This period was chosen due to the inability of SIMBOL at its

development stage in this PhD research to cater adequately for oversaturated

junctions. During peak hours, some of the junctions get oversaturated and queues

build up that cannot be discharged in a single cycle. This is different from the present

assumption of signal modelling in SIMBOL that all the traffic generated are

discharged in a single cycle under normal operations (see Section 3.4.2).

4.3.2 Data collection method

At the beginning of data collection process, all the preliminary data required to build a

basic model of the bus route were collected together. This data included route details

such as number of links, length of links, number of lanes, width of lanes, number of

bus stops and their positions in the route, number of traffic signals and their positions

in the route, number of bus services and their starting and ending points within the

route, timetable of bus services etc. This data was collected at the beginning part of

the data collection process. Table 4.1 shows the route data collected as part of this

process.

Table 4.1 : Swaythling - Portswood - Lodge Road - City Route
S.N. Type Name Distance Cum.

Dist
Link
No.

Bus stop
No.

Signal
No.

1 Bus stop Stoneham road 0.0 0.0 0 0

2 Traffic signal Stoneham road junction 50X) 5&0 1 1

3 Traffic signal Swaythling junction 5&0 100.0 2 2

4 Bus stop McDonald restaurant 5&0 150.0 3 1

5 Traffic signal Woodmill road junction 25&0 400X) 4 3

6 Bus stop Woodmill road 40X) jW&O 5 2

7 Traffic signal Mayfield road junction 230X) 670.0 6 4
8 Bus stop Mayfield road 50X) 720.0 7 3

9 Bus stop Sirdar road 180.0 900.0 8 4
10 Bus stop Somerset road 350X) 1250.0 9 5

11 Traffic signal Talking head junction 4&0 1290.0 10 5

12 Bus stop Bus depot 320X) 1610.0 11 6

13 Traffic signal Highfield lane junction 100.0 1710.0 12 6

14 Bus stop Somerfield 9&0 1800.0 13 7

15 Traffic signal Brookvale road junction 160.0 1960.0 14 7

16 Bus stop Safeway 100.0 2060.0 15 8

53

Data collection

17 Bus stop Spring crescent 35&0 2410X) 16 9

18 Traffic signal Lodge road junction 3&0 2440X) 17 8

19 Bus stop Cedar road 18&0 2620X) 18 10

20 Traffic signal Stage gate junction 33&0 2950X) 19 9

21 Bus stop Stage gate 40X) 2990X) 20 11

22 Bus stop Middle street 220X) 3210.0 21 12

23 Bus stop Law court 280/) 3490X) 22 13

24 Traffic signal Cumberland place jn 380X) 3870X) 23 10

25 Bus stop Cenotaph 140.0 4010.0 24 14

26 Traffic signal New road junction 220X) 4230.0 25 11

27 Bus stop Marland center 9&0 4320.0 26 15

The other remaining data needed was the data describing the characteristics of buses,

bus stops and traffic signals. This data included bus data (average link speed of buses),

bus stop data (passenger boarding and alighting rate at each bus stop, dwell time

parameters, starting time of passenger arrival) and signal data (signal timings, flows at

each arms of a junction, delays associated with general traffic). This data is

changeable according to time and hence proper planning was required to gain suitable

representative data. From the method of collection, this data was grouped into two

parts as 'bus journey data' including bus and bus stop data and 'junction data' which

includes signal timings, flows and delays. 'Bus journey data' was collected by

travelling on board a bus serving the route in that 2-hour period and collecting

operational data using a palmtop computer (PTC). 'Junction data' was collected

automatically using the SCOOT loop detectors available in the field and other

information about signal timings.

Pilot surveys were carried out to check the preliminary data collected and assess the

survey plan before carrying out the main survey. A pilot survey was carried out to

collect 'bus journey data' by boarding a bus, with a second pilot survey to collect bus

arrival data at a representative bus stop (in Ports wood). These surveys provided an

opportunity to become more aware of the route. The following interesting

observations were made during the survey at Portswood :

* Passengers had a choice of bus services (11/11 A, 3/3A or 101). Passengers waiting

for other services such as 1 and 20A did not take the above services which may be

54

Data collection

due to a different operator and/or route. Again, very few passengers boarded the

48 service (serving intercity service). Hence, it was decided to model only bus

services 11/11 A, 3/3A and 101 serving the Portswood corridor as overlapping

routes.

• Some of the early buses were found to be waiting to match their timetable shown

at the bus stop. To explore the impact of this process, it was decided to make a

provision in SIMBOL for holding buses at bus stops to match their timetable.

These observations were taken into consideration while collecting the main data and

were concentrated on collecting data from only those 5 services. The next section

describes how the main survey was carried out.

4.4 Main survey

As discussed in section 4.3.2, the survey was carried out in two different parts. 'Bus

journey time' data was collected on board using a PTC and 'junction data' was

collected automatically. The details of these different surveys are explained in the

subsequent sub-sections.

4.4.1 Bus journey data

This 'bus journey survey' was aimed at collecting detailed data of the bus and bus stop

in order to build a model to represent the field condition on the Portswood corridor.

The survey was carried out between 12/11/2001-30/11/2001 during the period

10:00:00 - 12:00:00. The survey was carried out by noting down the arrival and

departure time (in real time) of buses at every signal and bus stop using a handheld

computer (Hewlett Packard 1600T). All 30 buses (of service 11/11 A, 3/3A and 101)

serving the corridor in the specified period between 10:00:00 - 12:00:00 were boarded

during this period of 3 weeks. Appendix A (Table Al) shows the schedule of the

survey carried out between 12/11/2001 and 30/11/2001 in the different buses. The

survey collected the data of the bus services on an inbound direction towards the City

Centre.

55

Data collection

The survey collected data regarding bus passenger numbers and bus journey time

(including stoppage) data for the full length of the route between Swaythling and the

City centre. The arrival and departure time (in real time) of buses at every signal and

bus stop, along with the number of passengers alighting and boarding at every bus

stop, was collected from the survey. This enabled the average link speed of a bus,

delay at traffic signals, dwell time at bus stops, boarding and alighting passenger rates

and dwell time parameters (refer section 3.4.1 modelling methodology) to be

calculated.

To ensure there was no error in the survey timing, the time in the palmtop was

checked with British standard time every morning. The collected data was also

transferred into the table format developed to ensure no loss of valuable data. A

sample of data collected manually inside a bus with the help of a palmtop and its

transfer of data onto paper is shown in Appendix A (Table A2 and Table A3). While

carrying out the survey, the bus was boarded at least one stop earlier and alighted one

stop later than the bus stop where the data of bus arrival and departure was needed.

This made sure that the counting of passengers already inside the bus, the number of

passengers alighting and the passengers boarding was accurate. Again, this also made

sure that the person collecting the data did not influence the dwell time of buses at bus

stops recorded during the survey process.

4.4.2 Junction data

Junction data from all 11 junctions on the route was collected automatically at the

ROMANSE centre via SCOOT loops. The data collection was carried out for a week

on 05/11/2001-09/11/2001 between 10:00:00 - 12:00:00. This timing was matched

with the weeklong validation data (described in Section 6.4) collection date. Since the

model uses average values while defining junction characteristics, there was no

problem in collecting bus journey data and junction data on separate dates (i.e. the

interest here is in obtaining reasonably representative data values rather than needing a

strict validation). The data collected for each junction included the green and

intergreen time for every stage, delay data for 5-minute intervals and link flows data

for every 5 minute interval. The 'signal timing data' data file contained data of the

56

Data collection

different stages of a signal including total period, green time and intergreen time of

each stage. The 'link flows data' data file contained the data regarding flows on each

arm at 5-minute interval. The third 'link delay data' data file contained delay data per

unit time interval. This data needed to be checked before use in the model to make

sure that the data was free of errors.

4.5 Data Checks

The collected data was checked to make sure that it was error free. Precautions were

taken to minimise error while collecting bus journey data manually. This included the

recording of entries in both PTC as well as in the survey form designed during the

survey period. The collected data was entered into an Excel format and checked to

make sure of the error free transfer of data. Table 4.2 shows an example of the final

stage of 'bus journey data' collected.

Table 4.2: An example offinal stage of bus journey data collected

Date : 19/11/02 Time : 11:23 Bus type : WD Pass at start: 15

Type Name Dist
(m)

Arrival
time

(hh:mm:ss)

Alight
(no.)

Board
(no.)

Depart
time

(hh:mm:ss)

Dwell
time

(hh:mm:ss)

Signal
delay

(hh:mm:ss)

Journey
time

(hh:mm:ss)
Bus stop Somerfield 1800.0 11:21:03 3 2 11:22:58 Ck01:55 - 0:00:00

Signal Brookvale rd 1960.0 11:23:47 - - 11:24:35 - 0:00:48 0:00:49

Bus stop Safeway 2060.0 11:24:58 1 0 11:25:00 0:00:02 - 0:00:23

Bus stop Spring crescent 2410.0 11:25:42 0 2 11:26:03 0:00:21 - 0:00:42

Signal Lodge road Jn 2M&0 11:26:21 - - 11:26:52 - 0:00:31 0:00:18

Bus stop Cedar road 2620.0 11:27:42 1 0 11:27:45 0:00:03 - 0:00:50

Signal Stage gate Jn 2950.0 11:28:43 - - 11:29:00 - 0:00:17 0:00:58

Bus stop Stage gate 2990.0 11:29:16 0 4 11:29:47 0:00:31 - 0:00:16

Bus stop Middle street 3210.0 11:30:12 0 0 11:30:12 0:00:00 - 0:00:25

Bus stop Law court 349&0 11:30:41 3 0 11:30:55 0:00:14 - 0:00:29

Signal Cumberland PI 387&0 11:32:25 - - 11:32:25 - 0:00:00 0:01:30

Bus stop Cenotaph 4010.0 11:32:46 2 0 11:32:51 0:00:05 - 0:00:21

Signal New road Jn 423&0 11:33:45 - - 11:34:35 - 0:00:50 0:00:54

Bus stop Marland (City) 4320.0 11:35:03 12 0 11:35:26 0:00:23 - 0:00:28

Total 22 8 0:14:00

57

Data collection

The junction data collected automatically from SCOOT loops was vulnerable for

error. Due to its size and the automatic method adopted to collect it, there was a

possibility of error in the data. So, this data was carefully checked to find possible

errors while calculating averages to be used in the model. This data collected from

SCOOT loops was in its standard format and hence proper formatting was needed in

order to calculate the average values. Due to the large amount of data, a Macro was

written in Excel to speed up the process.

In the checking process, a large amount of data was found to be missing from the

delay data collected on 6"' November. The data was collected for only 30 minutes out

of the targeted 2-hour period. The data for this day was not appropriate and hence

discarded while taking the average of delays. Again, it is to be noted that there was no

detector to collect delay and flow data on one arm of traffic signal no.7 (Safeway

junction). This arm, serving only car park of the Portwood shopping centre, is a minor

arm and does not play an important role.

Again, flow data of some of the arms were missed in some of the days. Missed data

were carefully noticed while calculating average values. In this process the flow data

of 2"̂* day i.e. 06/11/2001 was found to be of shorter period. Hence the average value

of flow data for that day is based upon the shorter period of time. Beside that, the

average flow of side arm of Mayfield junction was calculated using 2 days' data

because of missing data for other 3 days. In other cases, the average flows were

calculated using 5-day data. The day-to-day variability of the flows during the week

was very small. The average values of mean and standard deviation of flows in the

different arms of junction were calculated as 338.66 veh/hr and 15.87 veh/hr. There

was not much difference in using the average flows calculated from 4 days' (similar to

delay data) or 5 days' (all available data) data. The difference between these two

average flows was only 1.48 veh/hr (0.37%). So, the average flows were calculated

from all available 5-day data.

It is also to be noted that the flow and delay data obtained from SCOOT are converted

from Link Profile Unit (LPU) using a link specific conversion factor. Since the

58

Data collection

conversion depends upon the vehicle gaps and number of lanes, using a fixed

conversion factor may involve some error in absolute values of these data. However,

the results are being used here for comparative purposes (of strategies) rather than for

interpretation in terms of absolute values. Errors in absolute values therefore do not

play any significant role in the outcome of the research.

4.6 Data Refinement

After checking the collected data, it was refined for input into the model. The junction

data collected was in a different file for different parameters such as signal timing,

arm flows and arm delays. However, in case of bus journey time, many parameters

describing bus and bus stop characteristics were to be obtained from the single data

collected format. The different types of data deduced from the survey are explained in

the subsequent sub-sections.

4.6.1 Junction data

All the junction data was collected automatically at the ROMANSE centre for one

week. This data collected using SCOOT loops was very bulky and needed refinement

in order to use in SIMBOL. The refinement of the data collected is described

separately below.

4.6.1.1 Signal timing data

The signal timing data was extracted from the automatic collection of signal timing

data (the SCOOT m37 message). The signal data collected from SCOOT gave the

signal data for every signal at every stage. The data contained information such as

time of the end of each stage (hour:minute:sec) format, the junction number, stage

number, intergreen time, green time and total stage length. An example of m37 data in

its raw state is given in Appendix A (Table A4).

The data needed to be sorted according to the junction and then the stage. Then the

green time and intergreen times of all stages were grouped together to calculate the

total cycle time. All these stage times and cycle times were then averaged to get

average stage lengths and cycle time for that period of the day. These average stage

59

Data collection

lengths and cycle times of each day were also averaged to get final average signal

timings. This procedure was adopted for all the traffic signals on the route. The data

was also used to calculate the starting time of each signal to represent their time in the

simulation model. The start of the stage time was calculated by deducting the stage

length from the end of the stage time. The start time was taken as the starting time of

the last cycle just before 10:00 o'clock. These starting times of each signal were then

averaged to obtain the starting times of each signal. Table 4.3 shows the average stage

lengths of traffic signals along with their starting time obtained from the collected

data.

J .' fz/we q / j'zgMa/j' a/ong f
S.N. Traffic signal Stage lengths (seconds) Cycle Start time

name 1 2 3 4 time (hh:mm:ss)

green IG green IG green IG green IG (sees)

1 Stoneham Rd 71 9 0 0 5 4 12 7 108 9:59:01

2 Swaythling 48 6 1 0 2 5 28 15 104 9:59:27

3 Woodmill Rd 30 7 34 8 20 7 1 1 108 9:58:51

4 Mayfield Rd 21 7 8 7 0 0 0 0 43 9:59:39

5 Talking head 45 6 9 7 0 0 0 0 67 9:59:24

6 Highfield Rd 18 7 2 2 17 10 11 8 75 9:59:40

7 Brookvale Rd 28 12 3 3 17 6 7 6 82 9:59:15

8 Lodge Rd 31 8 13 8 2 4 0 0 67 9:59:31

9 Stage gate 30 9 11 6 22 6 0 0 84 9:58:57

10 Cumberland P 44 13 16 9 11 10 0 0 103 9:59:01

11 New Road 19 15 9 9 16 15 8 9 100 9:58:27

4,6.1.2 Flow data

Link flows were obtained from the detector flow data (the SCOOT u07 message).

Flow data of each arm from all the signals collected from the SCOOT were recorded

for every 5-minute (300 sees) interval. The data file contained speed and flow data

from each detector for 5-minute intervals. The data was collected for a whole 24-hour

period for that week, making the collection process easier. While taking the average of

the data, it was difficult to import it into Excel due to the number of rows needed

being bigger than Excel's capacity. A program called "UOVProg" developed in TRG

was used to import the data between 9:45 to 12:30 for those 11 junctions. An example

60

Data collection

of flow data (u07) in its raw stage is given in Appendix A (Table A5). The data was

transferred into Excel format and then sorted according to junction and SCOOT loop

number. The average value for each loop was then calculated for the period from

10:00 to 12:30 for a day. These average values were again used to calculate a single

average value for 5 days of the week. These values are shown in Table 4.4.

4.6.1.3 Delay data

Delay data was obtained from detector delay data (the SCOOT m02 message)

processed from SCOOT loops. The data file contained delay data at each detector per

unit time for every 5 minute interval. An example of delay data (m02) in its raw stage

is given in Appendix A (Table A6). The data was then sorted according to junction

and SCOOT loop number and the average value for each loop was calculated for a

day. These values were then again averaged to get a single average value for the week.

Due to missing data, the average was taken using data from 4 days only instead of 5

days (similar to flow data). This might have caused mismatching of the data if the

flows varied widely during the survey period. However, the day-to-day variation of

flows was very small (see Section 4.5) and these average values were just needed to

build a reasonably representative model; so there was no problem in using such data.

Table 4.4 shows the average flow and delay data from the main and side arms for

signals in the direction of the city centre.

Table 4.4 : Average flows and delays ofjunction arms in the direction of the city

S.N. Junction name Junction

No.

Bus route road Left side road S.N. Junction name Junction

No. Av Flows
(veh/hr)

Av Delays
(sec/veh)

Av Flows
(veh/hr)

Av Delays
(sec/veh)

1 Stoneham Rd 5121 263 3827 711 2J8
2 Swaythling 5131 293 5.89 -

3 Woodmill Rd 5111 311 31.98 308 2Z21
4 Mayfield Rd 5142 336 9.00 69 15.50
5 Talking head 6252 339 4.81 89 56^2
6 Highfield Rd 6121 289 26.33 403 36.07
7 Brookvale Rd 6111 501 22T9
8 Lodge Rd 6211 502 - 293 15.34
9 Stage gate 4141 439 39.69 - -

10 Cumberland PI 7331 429 5L77 671 20.03
11 New Road 7411 122 38.23 349 45.94

61

Data collection

In the table, shows that there is no side road in the modelled direction for that

junction. Blank spaces means that there was no data for those arms. The arm flow for

the side road of junction 7 leading towards the car park was assumed to be 120

vehicles per hour.

4.6.2 Bus journey data

The bus journey data collected was the main source of model building data. The

collected data was then refined to get values of average bus speed for each link,

starting times of each bus stop, number of passengers boarding and alighting and

dwell time parameters. These refined data to be used in SIMBOL are described in the

following subsequent sub-sections.

4.6.2.1 Average link speed

The average time taken by buses to travel a link, collected during the bus journey time

data, was used to calculate the average link speed of buses on each link. A link is a

section of a bus route between two consecutive points where a bus is very likely to

stop (e.g. bus stops and traffic signals). The link time of a bus at each link was

calculated as the difference between the arrival time of the bus at a link and the

departure time of the bus from the last link. This link time excluded any stoppage time

at a bus stop or a traffic signal. The link times of all the buses were then averaged to

get an average link time. This average link time was used to calculate the average link

speed for the known distance of the link. The 'space mean speed' hence calculated

was then used in the model. Table 4.5 shows the average link time calculated to use in

the model.

Table 4.5: Average link speed of buses along the bus route

S.N. Type Name Distance (m) Average time Speed (km/hr)

1 Bus stop Stoneham road 0 - -

2 Traffic signal Stoneham road junction 50 0:00:11 16J4
3 Traffic signal Swaythling junction 50 0:00:16 1L37
4 Bus stop McDonald restaurant 50 0:00:17 10^0
5 Traffic signal Woodmill road junction 250 0:00:29 3045
6 Bus stop Woodmill road 40 0:00:18 7.89
7 Traffic signal Mayfield road junction 230 0:00:21 39J4
8 Bus stop Mayfield road 50 0:00:10 18J^

62

Data collection

9 Bus stop Sirdar road 180 0:00:26 25T7
10 Bus stop Somerset road 350 0:01:09 18.28
11 Traffic signal Talking head junction 40 0:00:05 26.58
12 Bus stop Bus depot 320 0:00:36 3Z30
13 Traffic signal Highfield lane junction 100 0:00:17 2L71
14 Bus stop Somerfield 90 0:00:34 9^3
15 Traffic signal Brookvale road junction 160 0:00:41 13.96
16 Bus stop Safeway 100 0:00:23 15.85
17 Bus stop Spring crescent 350 0:00:40 3L25
18 Traffic signal Lodge road junction 30 0:00:15 7J2
19 Bus stop Cedar road 180 0:00:45 1427
20 Traffic signal Stage gate junction 330 0:00:42 28T2
21 Bus stop Stage gate 40 0:00:15 9.93
22 Bus stop Middle street 220 0:00:23 34.43
23 Bus stop Law court 280 0:00:47 2L64
24 Traffic signal Cumberland place jn 380 0:01:22 16J0
25 Bus stop Cenotaph 140 0:00:23 2L60
26 Traffic signal New road junction 220 0:00:44 17.90
27 Bus stop Marland centre 90 0:00:30 lo^a

4.6.2.2 Boarding and alighting passenger rate

The number of passengers alighting and boarding at each bus stop were obtained from

the collected data from all 30 buses. These were then used to calculate a boarding

passenger rate at every bus stop assuming that the passengers arrive randomly. The

assumption was based on a recent study carried out in the same route showing random

passenger arrival (Rajbhandari, 2002). This means a uniform rate of arrival of

passengers can be used to estimate the rate of passenger arrival at a bus stop.

However, the fixed rate may not be valid for all period during a day. The rate may be

considerably higher in peak period than off-peak making the dwell time of a bus

considerably different. However, since the total modelling period in this case is within

off peak period, the variation in the rate is not considerable. Additionally, some

random variation in passenger arrival within the period would have been smoothened

in longer run to get an average rate. Hence a uniform rate is used in the model to

estimate boarding passengers. The uniform rate was calculated by summing up the

total number of passengers arriving at each bus stop and then diving the sum by the

63

Data collection

period (2-hr i.e. 7200 seconds). This arrival rate was presented in the form of time

gaps in order to generate a passenger for the model input.

In the case of alighting passengers, the rate was expressed in terms of a percentage of

passengers already inside the bus. For this purpose, the total numbers of passengers

alighting at a bus stop and the total number of passengers inside the bus were summed

for 2-hour period. The ratio of alighting passengers to total numbers inside was then

calculated.

Numbers of alighting passenger

Total numbers of passenger inside

The ratio of passengers alighting and the rate of passengers boarding, calculated from

the survey data for all the bus stops of the Portswood route, are shown in Table 4.6.

S.N. Name Alighting
Pass

(nos.)

Boarding
Pass

(nos.)

Inside
Pass

(nos.)

Alighting ratio Boarding rate
time gaps
(sec/pass)

1 Stoneham road 4 40 114 0.035 180.0
2 McDonald Restaurant 2 50 150 0.013 144.0
3 Woodmill road 1 14 198 0.005 514.3
4 Mayfield road 1 28 211 0.005 257.1
5 Sirdar road 1 15 238 0.004 480.0
6 Somerset road 0 13 252 0.000 553.8
7 Bus depot 1 5 265 0.004 1440.0
8 Somerfield 182 103 596 0.305 69.9
9 Safeway 25 51 517 0.048 141.2

10 Spring crescent 4 21 543 0.007 342.9
11 Cedar road 4 8 262 0.015 900.0
12 Stage gate 5 20 266 0.019 360.0
13 Middle street 8 2 281 0.028 3600.0
14 Law court 31 3 275 0.113 2400.0
15 Cenotaph 58 1 247 0.235 7200.0
16 Marland (City centre) 154 0 190 0.811 1440.0

Total passengers 481 374

64

Data collection

The unequal number of passenger boarding and alighting are due to the number of

passengers already inside the bus at the beginning of the modelled route. The actual

route starts upstream of the starting bus stop (i.e. Swaythling and Portswood) of the

modelled route.

4.6.2.3 Dwell time parameters

Dwell time parameters are necessary to estimate the dwell time of buses (see section

3.4.1) at a bus stop calculated from the number of passengers alighting and boarding

at any bus stop. Since the bus journey time survey had collected the dwell time of

buses at all bus stops along with the number of passengers alighting and boarding, it

was possible to obtain dwell time parameters from the data collected. The data

collected showed that there was a clear distinction between the type of buses used in

different services. Most of the buses (85%) serving the route 11/1 lA and 101 were

double decker buses whereas most of the buses serving 3/3A were single deck low

floor buses. Hence two separate dwell time parameters were calculated to use in the

model for different services. A similar method was adopted by York (1993) while

calculating dwell time parameters in a London study. Multiple linear regression was

used to calculate the coefficients of the dwell time equation discussed in Section 3.3.3.

The dwell time expressions for two types of buses obtained from the analysis are:

T = 6.85+1.69*a +9.00* b, for double deck buses (J J/I J a/101 services);

T = 3.30+].96*a +9.04*b, for low floor buses (3/3a services);

These relationships give total dwell time T ' in seconds in terms of number of

alighting passengers 'a ' and number of boarding passengers The values

calculated for the equations were 0.67 and 0.92 respectively. The first value of R"

shows a reasonably acceptable fit whereas the second one shows a good fit of the

equation to the collected data. The t-ratios of the coefficient of input variables of the

first equation were 5.01 and 15.10. These significantly higher values than theoretical t-

values show that there is a big influence of alighting and boarding passengers in total

dwell time. Similarly the t-ratios of the coefficient of input variables the second

equation were 5.08 and 13.42. These values also being significantly higher than the

65

Data collection

theoretical t-values, the influence of the input variables was significant in case of

second equation too. Furthermore, the equations were found to be very close to those

obtained by York (1993), as illustrated in Table 4.7.

7. Dwg/Z

Bus type Data type Dwell time parameters Bus type Data type

D A B
Double deck Field 169 9.00

York 5.42 9U5
Low floor Field 330 1.96 9.04

York 3.55 1.99 9U8

These both sets of values were then statistically tested using t-test for paired data. The

test showed that the difference between the field parameters and York's parameters

was found to be not significant at the 5 percent level. This confirmed the compatibility

of the field parameters with York's parameters.

4,6.2.4 Starting time of passenger generation

The starting time of passenger generation is important for the proper estimation of the

passenger numbers for the first bus arriving at each bus stop. A wrong estimation of

this start of passenger generation time affects the dwell time of the first few buses. If

passengers are generated at all the bus stops at the same time, then the first bus

reaching the bus stop will have to carry a lot of passengers which is not realistic. Here

the starting time is calculated by using the average journey time taken by the buses of

the first service to arrive at a different bus stop. The starting time of the first bus stop

was based on the scheduled time interval and average deviation of buses for the

service. Then the start time for the rest of the bus stops was calculated by adding

average departure time of buses from those bus stops to that start time at the first bus

stop.

Since the first bus to arrive at all the bus stops just before the start of simulation

period is of service 11, its arrival time at the first bus stop and its average journey time

data were used to calculate the starting time of passenger generation at all bus stops.

At the first bus stop, the average deviation of buses of service 11 were included in the

66

Data collection

scheduled time of the bus. After including a deviation of -3 seconds (early) in the

scheduled starting time of -540 seconds (9:51 - 9 minutes earlier than 10:00), it

became -543 seconds. The starting times for the rest of the bus stops were calculated

by using the average travel time of buses of service 11. Table 4.8 shows the starting

time of passenger generation at all bus stops for the route.

S.N. Bus stop Passenger generation start
time (seconds)

1 Swaythling (Stoneham Rd)

2 McDonald restaurant -437
3 Woodmill road

4 Mayfield road -294
5 Sirdar road -241
6 Somerset road

7 Bus depot -85
8 Portswood (Somerfield) -8

9 Safeway 139
10 Spring crescent 208
11 Lodge road (Cedar road) 305
12 Stage gate 395
13 Middle street 437
14 Law court 492
15 Cenotaph 645
16 City centre (Marland centre) 761

4.6.2.5 Scheduled timetable

The scheduled timetables of all the bus services along the route were collected from

the field. The field timetable was based on the timetable stated in a booklet provided

by the bus operator. As there are 16 bus stops instead of the 4 stated in the booklet, the

timetable of the bus stops not included in the booklet were found to be the same as

that of the last bus stop with a scheduled time in the booklet. The timetable in the field

was found to be repeated for all the bus stops until the next bus stop with a scheduled

time in the booklet was reached. Table 4.9 shows the field timetable of different bus

services displayed at each bus stop along the route.

67

Data collection

Table 4.9: Timetable of buses displayed at bus stops along the route

S.N. Bus stop Distance

Bus services

S.N. Bus stop Distance 11 l l A 3 3A 101

1 Swaythling (Stoneham rd) 0.0 660 60 - - -

2 McDonald restaurant 150.0 660 60 - - -

3 Woodmill road 44&0 660 60 - - -

4 Mayfield road 72&0 660 60 - - -

5 Sirdar road 90&0 660 60 - - -

6 Somerset road 1250.0 660 60 - - -

7 Bus depot 1610.0 660 60 - - -

8 Portswood (Somerfleld) 1800.0 1080 480 180 780 1140

9 Safeway 2060.0 1080 480 180 780 1140

10 Spring crescent SMl&O 1080 480 180 780 1140

11 Lodge road (Cedar road) 2620.0 1260 - 360 - -

12 Stage gate 2990.0 1260 - 360 - -

13 Middle street 3210.0 1260 - 360 - -

14 Law court 3490.0 1260 - 360 - -

15 Cenotaph 4010.0 1920 - 1020 - -

16 City centre (Marland centre) 4320.0 1920 - 1020 - -

The times in the table are given in terms of seconds past every hour of the first bus of

each service. The same time is given for 7 different bus stops on a 1.6 kilometres route

showing the need to refine the timetable to provide more accurate information. The

modification of this field timetable is required in order to calculate lateness of buses

for determining their priority requirement in the case of differential bus priority

strategies.

The modification of the timetable was based on the average journey time of buses and

their deviation at the start of the route. The timetable of the buses at the origins was

changed taking account of deviation in the starting time. The deviation in the starting

time of buses from the field timetable for services 11/1 la and 3/3a were found to be

19.5 seconds and 152 seconds. These values were rounded down to 0 and 120 seconds

and added to the starting time for 11/1 la service and 3/3a service. The timetables for

rest of the bus stops were modified depending upon the average journey time of buses.

The journey time was calculated as the time between the departure time from a bus

stop to the departure time from next on the downstream. Using these modifications,

68

Do/a co//ecf;o/:

the timetable based on the journey time of buses is shown in Table 4.10. This

timetable is used as a base timetable in the model.

Table 4.10: Modified timetable used in the model
S.N. Name Distance 11 llA 3 3A 101

1 Swaythling (Stoneham Rd) 0.0 660 60 - - -

2 McDonald Restaurant 15&0 780 180 - - -

3 Woodmill road 440.0 840 240 - - -

4 Mayfield road 720.0 900 300 - - -

5 Sirdar road 900.0 960 360 - - -

6 Somerset road 1250.0 1020 420 - - -

7 Bus depot 161&0 1080 480 - - -

8 Portswood (Somerfield) 1800.0 1200 600 300 900 1140

9 Safeway 2060.0 1320 720 420 1020 1260

10 Spring crescent 2410.0 1380 780 480 1080 1320

11 Lodge road (Cedar road) 2620.0 1440 - 540 - -

12 Stage gate 2990.0 1500 - 600 - -

13 Middle street 3210.0 1500 - 600 - -

14 Law court 3490.0 1560 - 660 - -

15 Cenotaph 4010X) 1680 - 780 - -

16 City centre (Marland) 4320X) 1800 - 900 - -

4.7 Chapter summary

This chapter has described the data collection process involved in this research in

detail. The data collection was carried out for the Portswood corridor in Southampton.

All the data needed to develop a model of that route was collected. The data was

collected by desktop study, manual collection on site and automatic collection using

SCOOT data. The collected data was checked for possible errors and then refined into

a proper format that was usable for the model. The refined data was then ready to use

as input parameters into the model. The development of the simulation model based

on the methodology described in Chapter 3 and the data collection described in this

chapter is detailed in the next chapter.

69

Model development

Chapter Five

Model Development

5.1 Introduction

This chapter describes the model developed for the purpose of this research. The

model has been developed based on the modelling methodology (Chapter 3) and data

collection (Chapter 4). The model has been called SIMBOL (Simulation Model for

Bus priority at traffic signaLs). It is a microscopic simulation model with a fixed time

scanning interval of one second. The programming language used in developing the

model is C++ (Borland Builder versionS). It is a widely popular object oriented

programming language (Parsons, 1997). The complete source code of the model is

given in Appendix B. While modelling, the model is divided into six different

modules. These are main, bus, bus stop, traffic signal, bus priority and GPS module.

In the model, the main module takes input, interacts with other modules and produces

final output. A simple diagrammatic model of SIMBOL is shown in Figure 5.1.

Bus stop module
(dwell time, wait time)

Priority module
(priority type, amount)

Bus module
(bus movement)

Gps module
(Gps position)

Signal module
(signal timing, delay,

general traffic)

Output
(visual, text files)

Input
(user defined, built in)

Main module
(Simulation time, bus

generation)

J. 7. D/agra/M/Mafzc

70

Model development

The main module takes input parameters for all the modules designed to perform some

specific tasks. The main module then interacts with these modules at every change in

simulation time to carry out those tasks. The main module produces visual and text

output based on the outcome of the tasks. The working of all these modules are

described in the subsequent sections.

5.2 Main module

The main module is responsible for steering the overall simulation by taking input,

coordinating the interaction between all other modules and generating output. It is

responsible for starting, taking input, generating final output and ending of the

simulation model. The input, output and working of the module are described in the

following sub-sections.

5.2.1 I n p u t

The main module takes the input such as simulation period, simulation speed and

priority strategy while starting a simulation run. These are modelled as user defined

input parameters for the simulation model. All other input parameters for buses, bus

stops, signals and priority are modelled as built-in input inside this main module.

Hence, these input parameters can be modified only before running the simulation

model. These input parameters for each of the modules are given in the respective

module.

5.2.2 W o r k i n g of the m o d u l e

At the start of the simulation, the module passes all the information for the different

modules to their respective module. The main module then increments the simulation

time every second and updates the condition of all the activities. At every change in

simulation time, the module updates signal periods and number of cars in each arm of

all signals by interacting with the signal module. This is followed by checking the

time to generate a bus according to a predefined generation time. The module then

takes every generated bus in turn and updates its actual and GPS position. The updated

position of each bus is checked with bus stop, traffic signals or priority modules to

find its presence there. The module then visually displays all the activities which

71

Model development

occurred during the increment in the simulation period and finally generates concise

output at the end. The flowchart showing the working of the module is shown in

Figure 5.2.

route? No

Yes

Is it > simulation period?

Yes

Stop

Update all traffic signal periods and car numbers

Next time increment

Generate output

Next bus

For first bus in the network

Start of simulation period

For first time increment

Call bus generation model

Call bus module
Call GPS module

Call bus stop model
Call signal module

Call priority module

Figure 5.2: Flowchart of main module

Beside the interaction with modules, the main function of the main module is to

manage the simulation time and generate buses. These two main functions are

described in subsequent sub-sections.

72

Model development

5.2.2.1 S imula t ion per iod

The total simulation period is defined by the user. The model updates the simulation

time in one second intervals and scans all the activities until the simulation period is

completed. Since the buses are generated till the end of the simulation period, those

generated towards the end of the simulation may not reach their destination by the end

of the simulation period. Hence the simulation is continued to allow all the buses

generated to reach their destination but no more buses are generated after the length of

simulation period.

5.2.2.2 B u s generat ion

The module continuously checks whether the simulation time has reached the

predefined bus generation times. Once such a time is reached, a bus is generated at the

specified bus stop. There are two places for the generation of buses according to the

service. Buses of service 11/11 a are generated at Swaythling (bus stop 0) and buses of

the other services 3/3A/101 at Portwood (bus stop?). Service 11 and 3 continue to the

city whereas 11a and 3a deviate from Lodge Road junction. Although different

services start and end at different bus stops, they all reach the city with a little

deviation on the way. All these services are modelled as identical so that passengers

board the first bus to arrive at a bus stop.

5.2.3 O u t p u t

The module continuously updates the status of different components in visual output

and produces text files at the end.

5.2.3.1 Vi sua l ou tput

The module displays the progress of each component in the system continuously. The

output is shown with the reference to a linearly represented route. The positions of all

the buses, bus stops and traffic signals are arranged on this linear route. The bus stops

are represented by blue rectangles, signals by black rectangle with three coloured

circles, cars by small black rectangles and buses by big red rectangles. The positions

of buses, signal period and number of cars are visually updated every second. An

example of the visual output of a simulation run of SIMBOL is shown in Figure 5.3.

73

Model development

S i i R U l a f t o r r P e r i o d 1 4 9 9

* • L , m a 1
B ^ I *9ets Read

.

^ iLiTflhofn Road
T Bui D«oo< • . • Is Poft-mood M y -

1

t _

B 1
1 |UghWdL#n#

LwhmRoad

I f
L .

Safwwy

The Aywiob

1

-T
TN>A*9n'i3 f

J L

. CAxWb . PowidTiw

^ Place

' iiM 1 floso j

Figure 5.3: An example of visual output from SIMBOL

5.2.3.2 Text output

At the end of the simulation run, the main module generates a concise text file

containing total and averages of performances of different modules. The main output

parameters are total passenger waiting time, passenger journey time, bus journey time

and delays to cars at signals on a per hour basis. The other parameters in the output

contain the average number of passengers alighting and boarding at bus stops, bus

occupancy, waiting time, car delay per junction and bus delay per junction. The main

output parameters are used in the further analysis to evaluate the performance of

different bus priority strategies.

5.3 Bus module

This module models the movement of all buses and keeps a record of all of them in

the system. The input parameters for this module are identification number, origin,

destination, service number and capacity. These are defined at the time of generation

by the main module. The bus module then continuously checks the bus speed and

updates the position of all buses in the system.

The movement of a bus is modelled by updating its position every second. The new

position is obtained by adding the distance travelled in one second to the last position

74

Model development

of the bus. The distance travelled is calculated from the present speed of the bus. The

present speed of the bus is assigned as the average link speed according to a link if it

is moving. When it reaches a bus stop or signal and has to stop, then the speed is

changed to zero. At this time, an interaction between the bus and these components

(e.g. bus stop, signal) is modelled by the respective module. The flow chart showing

the working of the bus module is shown in Figure 5.4.

Is bus stopping? -Ne-

Yes

Return bus position to main routine

From the main routine

Calculate the distance travelled in one second

New position = old position + distance travelled

Speed = 0

Speed = average link speed

Figure 5.4: Flowchart of bus module

5.4 Bus stop module

The bus stop module models the interaction between buses and passengers at a bus

stop. It mainly estimates the dwell time of a bus from the number of passengers at a

bus stop and the waiting time of those passengers and calculates the lateness of the bus

at departure. The input parameters required for this module are bus stop identification

number, position of the bus stop, percentage of alighting passengers, rate of boarding

passengers and the timetable of the different services. At the time of a bus departure,

the module produces a detailed output for verification purposes. The output includes

the arrival and departure time of a bus, the time gap, number of alighting and boarding

passengers, average waiting time of passengers, dwell time of the bus, occupancy of

75

Mocfe/ c(eve(qpmeM(

the bus and the deviation of the bus from the schedule. The working of the module is

described in the next sub-section.

5.4.1 Working of the module

The main module calls bus stop module to check whether a bus has reached any bus

stops. The bus stop module then proceeds according to the flow chart shown in Figure

5.5.

From main routine

Get next bus stop number on the route

s bus at >= next bus stop position:

Record arrival time at the bus stop
Get scheduled time of the bus

Get number of passengers inside the bus
Estimate alighting and boarding passengers

Calculate dwell time of the bus
Calculate waiting time of the passenger

Calculate journey time of the bus and passengers

Is dwell time = 0?

Change next bus stop number
Change the scheduled time for next bus

Calculate occupancy
Calculate the deviation in departure time

Bus speed = link speed
Generate output

Bus speed = 0

c Back to main routine

Figure 5.5: Flowchart of bus stop module

The module first checks whether a bus has arrived at any of the bus stops. Once a bus

reaches a bus stop the bus identification number along with its arrival time, the service

number and the number of passengers inside is obtained. With this information, the

76

Model development

module calculates the time gap from the earlier bus, the number of alighting and

boarding passengers, the total dwell time needed, total passenger waiting time and the

departure time. The bus is stopped until the departure time by changing its speed to

zero. Once the time reaches the departure time, its speed is changed to the average link

speed. At this moment, total passengers inside, the lateness of the bus and the

scheduled timetable for the next bus is calculated.

When a bus is stopped at a bus stop, the bus gets a reserved number from the bus stop.

If a second bus arrives at the bus stop before the departure of the first, then the second

bus will only stop to alight passengers. If the first bus is still there at the end of the

alighting time, the second bus departs without boarding any passengers. All the

passengers board the first bus even if there are two buses. But, if the first bus departs

before the departure of the second bus, the second bus boards the passengers while

stopping. In case of 'holding' option, stopping may be for matching the timetable of

an early bus. All the passengers generated during this period board the bus. The

flowchart showing the detail process once a bus is at a bus stop is shown in Figure 5.6.

The various functions, carried out by the module, are described in following sub-

sections as time gap calculation, estimation of passengers, dwell time calculation,

waiting time calculation, bus occupancy, journey time and punctuality of buses.

5.4.2 Time gap calculation

The calculation of time gap is the first step taken once a bus arrives at a bus stop. This

is used in calculating the number of boarding passengers and their waiting time. While

doing the calculation, all the buses serving a bus stop are considered identical. Hence

the time gap is the time between the arrival time of a bus and the departure time of the

earlier bus. For this purpose, the arrival and departure time of all buses serving a bus

stop are noted. With this information, the time gap of every arriving bus is calculated

from the departure time of the last bus at that bus stop. The time gap for the first bus

arriving at each bus stop is calculated by using the start time of passenger generation

calculated from field data (Section 4.6.2.4). This time gap is used to estimate the

number of passengers boarding using the rate of boarding passengers.

77

Model development

Is this only bus at the stop?

Yes

Is alighting/boarding number > 0.0?

Yes

Is this only bus at the stop? N o -

Yes

Is holding in action? No

Yes

Is departure time < scheduled time? —No

Yes

Return passenger number, wait time and dwell time

Calculate dwell time of the bus

Calculate alighting and boarding passenger numbers

From bus stop module

Calculate gap between earlier bus and arrived bus

Define dwell time parameters for the bus

average wait time = 0.5*gap*(gap/fmal headway)

new dwell time = scheduled time - arrival time
Calculate boarding passenger according to headway

final headway = gap + new dwell time
Departure time = scheduled time

headway = gap + dwell time
Calculate boarding passenger according to headway

Calculate new dwell time for the passengers
final headway = gap + new dwell time

Departure time = arrival time + new dwell time

Figure 5.6: Flowchart of detail calculation inside bus stop module

78

Model development

5.4.3 Alighting Passenger estimation

As a bus arrives at a bus stop, the bus stop module obtains the number of passengers

inside the bus. Then the number of alighting passengers is estimated by multiplying

the total passengers inside by a fixed ratio assigned to that bus stop. The numbers are

calculated by following relationship:

MO. q / = MO. q/"

5.4.4 Boarding Passenger generation

The number of boarding passengers is estimated for a time gap between departure-to-

departure times of buses. Since the departure time cannot be calculated until the dwell

time is known, it is calculated recursively. First, the boarding passengers are estimated

for the time gap between departure to arrival. Then the dwell time is estimated using

these passengers along with alighting passengers. The passengers generated during the

dwell time period is then estimated. Then again dwell time for these passengers is

estimated. This total number of passengers gives the total number of boarding

passengers. The estimation of the number of boarding passengers is calculated by

using following relationship.

No. of boarding passengers = time gap / rate ofpassenger arrival (time gap)

5.4.5 Dwell time

The bus stop module obtains the service number of the bus just arrived at a bus stop to

choose the suitable dwell time equation. Then the model uses the equation to calculate

the dwell time for the estimated number of passengers alighting and boarding. The

equations obtained from the field data (Section 4.6.2.3) are:

T = 6.85+1.69*a +9.00* b, for double deck buses of (11/1 la/101 services) and;

T = 3.30+1.96*a +9.04*b, for low floor buses (3/3a services)

79

Model development

Where,

T is dwell time in seconds, a is number of alighting passengers and b is number of

boarding passengers.

Since the estimation of boarding passengers is carried out in a repetitive way, the total

dwell time is also carried out in the repetitive way to cater for the passengers

estimated to arrive during the dwell time period. The total of these two dwell times

give the total dwell time.

5.4.6 Waiting time

The waiting time of a passenger is calculated as the time between the arrival of a

passenger at a stop and the arrival of a bus which the passenger boards. The model

calculates the waiting time in a cumulative basis using a time gap between buses

(Section 5.4.2). The average waiting time for all the passengers generated during a

time gap is half of that time gap between two buses, assuming uniform rate of

passenger arrival (Section 3.3.2).

average waiting time = 0.5 * time gap between buses

This relationship is valid for this high frequency route (6 buses per hour) in the field

with passengers arriving randomly (Rajbhandari, 2002). This gives the average

waiting time for the passengers arrived during the time gap. To make it the average of

all the passengers boarded into the bus, a weighted average is taken for the total

numbers of passengers arrived during time gap and the dwell time. Since the rate of

arrival is the same, the time difference is used to take weighted average. In the model,

the weighted average waiting time is calculated by,

average waiting time = 0.5* time gap
(yzTMe gap + (fwg/Z

5.4.7 Bus occupancy

The module passes the number of passengers alighted and boarded at each bus stop at

the time of departure to the bus module. The bus module then calculates the bus

80

Mode! development

occupancy (i.e. the number of passengers inside a bus) by subtracting the number of

passengers alighted and adding the number of passengers boarded to the number of

passengers already inside at the time of arrival at that bus stop.

5.4.8 Journey time

The journey time of buses between two bus stops is calculated using their arrival times

at subsequent bus stops. The bus module then calculates the passenger journey by

multiplying bus journey time between the stops by the number of passengers inside

the bus at the last bus stop. Hence the journey time of a passenger is calculated as the

time between the bus arrival times at origin and destination of that passenger.

5.4.9 Punctuality of buses

A bus is classified as punctual if it departs within an acceptable window either side of

the schedule time. The punctuality window used in the model is between 1 minute

early to 5 minute late (CPT, 2001). While departing from a bus stop, the deviation of

the bus departure time from the scheduled time is calculated and the next scheduled

time of the next bus of the same service is updated. If the bus deviation falls within the

acceptable punctuality range, then the bus is added to the category of punctual bus.

Then the punctuality is calculated as the percentage of these punctual buses.

5.5 Signal module

The signal module models all the activities that take place at a traffic signal. It mainly

calculates the signal period and delays at traffic signals every second. The input

parameters needed for this module are signal identification number, position of

signals, cycle time, green time, amber time, lag, arm flows, saturation flows and the

maximum amount of extension and recall. The module produces a detailed output for

verification purposes at the time of a bus departure. The output includes the arrival

and departure time of a bus, the signal delay, the queuing delay and the total delays.

The working of the module is described in the next section.

81

Model development

5.5.1 Working of the module

The main module continuously calls the signal module for an update of signal stages

and car numbers at each arm of each junction. The signal module calculates the signal

stages, generates cars at all the arms of the junction and then passes to the main

module for visual display. It checks whether a bus has reached any traffic signals.

Once the module finds a bus at a traffic signal, then the interactions of the signal with

the bus starts. The flow chart showing the working of the signal module is shown in

Figure 5.7.

Is next signal <= total signal? No

Yes

signal position?

Yes

Is the signal at green period? —No

Yes

Is car infront = 0? —No

Yes

Back to main routine

From the main routine

Get next signal number on the route

Print output

Bus speed = 0

Record arrival time at the signal
Find number of cars infront
Find the phase of the signal

Change the next signal number
Calculate signal delay

Calculate queuing delay
Total delay = signal delay + queuing delay

Bus speed = link speed

J. 7. FZowc/zarf f

82

Model development

Once a bus reaches a traffic signal the bus identification number and the arrival time is

noted. With this information, the module calculates the signal period and the number

of cars in front of the bus. If the bus has arrived during the green period and there are

no preceding cars, then the bus crosses the stop line without stopping. But in the other

case, the bus is stopped until the condition is met that the signal is green and there are

no preceding cars. Once both conditions are met, the speed of the bus is changed to

the average link speed and the bus moves. While crossing the stop line, the total delay

to the bus at the signal including signal delay and queueing delay is calculated. In

priority mode, the priority award made by the priority module is taken into account

while calculating the signal periods.

The main functions such as signal timing calculation, general traffic modelling and

bus delays calculation carried out by the module are described in the following

separate sub-sections.

5.5.2 Signal timings

The model uses the average length of green time and intergreen time of stages

collected from field data (Section 4.6.1.1) in seconds. The signal sequence followed in

the model is green-amber-red-red/amber-green. However, for simplification of visual

output, red period is displayed in place of red/amber period. Hence, the signal period

change from green to amber to red and back to green (without red/amber). Traffic is

discharged during the green period of the signal according to saturation flows. Amber

period is used in the model for display purpose only and modelled as red period in

discharge calculation. No vehicle is discharged when these amber and red periods are

displayed. The signals at different arms of a junction are modelled as separate signals

linked with each other. The linking is done by the use of a common cycle time and

lags to start the green period differently within the cycle time.

The main module continuously asks the signal module to calculate the present signal

period for every change in simulation time. While calculating the present signal

period, the signal module first calculates the cycle number for the present time. Then

83

Model development

it looks for the priority to be provided for the cycle number, as directed by the priority

module (priority provision is discussed in Section 5.6.1). The module then calculates

the signal period for the present time using the cycle time and lengths of different

periods. Figure 5.8 shows the method adopted in calculating the signal period for a

given time.

-No-

Yes

Is cycle number = extend cycle number?

Yes

Is time < green period? No

Yes

Is time < green+amber period?

Yes

Return signal period

Is cycle number = recall cycle number?

signal period = green

green period = normal green period + extension

recall t ime = given recall time

extension time = given extension

cycle time = normal cycle time - recall time

Calculate cycle number of the time

signal period = red

From the signal module

signal period = amber

84

5.5.3 General traffic modelling

General traffic is modelled in SIMBOL for estimating delays at traffic signals. The

model calculates the time interval to generate a car for each arm of a junction based on

the flow data (Section 4.6.1.2). The cars are generated in every time interval passed

(based on the flow data) depending only upon the time. When the signal is in the red

period the generated traffic is queued one after another, but when the traffic light turns

green, the cars are discharged at a time interval based on the saturation flow of the

arm. During this process, the number of vehicles at each arm at every second is

counted. These number of vehicles present at an arm gives the delays of that many

vehicle-seconds for that arm. Since the buses are modelled in one direction, the total

delay is calculated for the half of the junction. Hence the total delays at a signal are

calculated from the bus route arm and the arm left side of it. The flowchart of general

traffic modelling in SIMBOL is shown in Figure 5.9.

From the signal module

V
Calculate car generate and discharge time

— N o — Is time = car generate time?

Yes

add car = 1

Set next car generate time

• Is period== green? — N o —

Yes

— N o — green time = car discharge time?^2ZZZ>-

Yes

del car = 1

set next car discharge time
i

car number = car number + add car - del car
delay to cars = delay to cars + car number

Return car number and delays)

85

Model development

Visually, the discharged cars disappear at the stop line of a junction. Again to simplify

the model, all the cars generated are queued in a single lane rather than the actual

number of lanes on the junction. The reduction in the numbers of lanes is taken into

account by increasing the saturation flow rate. Hence, though the queueing length is

longer visually, the delay associated will be same as if there were multiple lane

queueing. Even then, there may be a potential problem of blocking back of the

upstream junction if the distance is short and the flow is high. However, the problem

did not arise in the route because of longer distances between junctions.

5.5.4 Bus delay calculation

Once a bus reaches the stopline of a traffic signal, the module records the signal period

and the number of cars in front depending upon the arrival time. If the bus has arrived

during the green period, the time is also noted as start of green period. If the bus has

arrived in another period, then the time of actual start of green period is noted as the

start of green period. The bus is stopped until the signal is green and there are no cars

in front. When the bus crosses the stopline, the time between the arrival and the

departure of the bus at the stopline is calculated as the total delay to the bus. The time

between the arrival and the start of green period is the signal delay whereas the time

between the start of the green period and the departure of the bus is the queuing delay.

Since the buses are modelled for the whole route, unlike cars that are modelled only at

junctions, buses are kept in a separate lane from cars. But the effect of queuing delay

due to cars is taken account by stopping buses until all the cars in front discharge. This

is taken as a simplified method of modelling a complicated signalling system with

reasonably accurate delay calculation.

5.6 Priority module

This module is activated when the model runs in priority mode. This module is the

one responsible for providing priority to the buses at traffic signals.

86

Mode! development

5.6.1 Working of the module

The main module calls the priority module to check whether any a bus has reached

any detectors/virtual detectors upstream of signals. Then the priority module starts

working according to the flowchart shown in Figure 5.10.

Is next detector <= total detector? No

Yes

Is bus at >= next detector position? No-

Yes

— N o

Yes

Is endGreenTime <= max extend?

Yes

Back to the main module

Is the signal != green period at arrival?

Get next detector number on the route

From the main module

Recall = min (startGreenTime, max recall)

Extension = endGreenTime

Send extension/recall and cycle number to the signal

Get max. extension/recall (priority option,lateness)
For SVD, Get max. extension/recall (2, no lateness)

Change next detector number
Generate output

Record arrival time at the detector
Calculate journey time to the downstream signal

Estimate arrival time at the signal
Find signal period & cycle no. for the arrival time
Find start/end of green phase of signal at that time
endGreenTime = bus arrival time - green end time
StartGreenTime = next green start time - bus arrival

Get lateness of the bus at last bus stop

87

Model development

The module first checks whether a bus has arrived at any of the detectors/virtual

detectors. Once a bus approaching a traffic signal crosses a detector/virtual detector

placed upstream of the signal, the module obtains the arrival time, the identification

number of the downstream signal, the distance, the average link speed of the bus, and

the lateness of the bus at upstream bus stop. With this information, the module

estimates the time of arrival of the bus at the downstream signal. Then the module

calls the signal module to calculate signal period, cycle number, time to the next green

period and the time from the present green period. The module also obtains the

maximum amount of extension and recall allowed depending upon the priority

strategy (Table 5.9) and the lateness of the bus. In case of SVD (priority to all buses),

the priority amount is calculated from the second priority strategy that does not take

account of lateness. This amount is then checked with the signal state to determine

type and amount of priority to be given to the bus.

If the signal is at green period at present and the 'end green time' (bus arrival time-end

of green time) is less than the maximum extension allowed, then an extension equal to

the 'end green time' is provided. If not, the module checks the amount of recall

needed to the start of the next green period. If the recall needed is less than the

maximum recall allowed then the recall needed is provided. If the recall needed is

more than the maximum allowed then the maximum recall allowed is provided. The

amount of extension or recall provided is then sent to the signal for implementation.

The various functions carried out by the module are described in separate sub-sections

such as detector positioning, journey time calculation, maximum allowable priority

and priority calculation.

5.6.2 Detector positioning

The positions of detectors were calculated from a consideration of the upstream bus

stop position and the distance required for the maximum extension period. While

calculating the distance from the upstream bus stop, a distance travelled in one second

was deducted. This was to make sure that a bus is not at a detector whilst being at a

Model development

bus stop due to 1 second scanning interval. However, the maximum detector distance

was limited to 70 metres. This distance was taken from the recommended distance of

70-100 metres taking care of extension time and journey variability (Bretherton et al,

1996). The minimum out of two distances (just after bus stop and 70 metres) was

selected as the optimum detector distance. Table 5.1 shows the distances from the bus

stop consideration and the selected optimum distance.

Table 5.1: The optimum location of the detectors

Detector no. Junction name

Detector distance (m)

Detector no. Junction name Bus stop constraint Optimum distance

1 Stoneham road Jn 45.0 4 5 4

2 Swaythling Jnction 46.0 4 6 4

3 Woodmill road Jn 247X) 7 0 4

4 Mayfield road Jn 227X) 7 0 4

5 Talk Head 3 4 4 3 4 4

6 Highfield lane Jn 9L0 7 0 4

7 Brookvale road Jn 1574 7 0 4

8 Lodge road Jn 2L0 21.0

9 Stage gate Junction 3264 7 0 4

10 Cumberland place Jn 3734 704

11 New road Junction 2144 7 0 4

5.6.3 Journey time between detector and stop line

The model uses the average link speed of a bus to calculate the journey time between

detector and the stop line of the downstream traffic signal. Since the queuing delay at

traffic signal (Section 5.5.4) is modelled separately, the blocking due to general traffic

to reach to stop line is not considered. Since all the cars are discharged in the green

period of a cycle time, the modelling does not have a problem due to blocking while

giving priority.

5.6.4 Maximum allowable priority

In the model, the maximum allowable recall amount is constrained by degree of

saturation (DOS) whereas maximum extension amount is constrained by journey time

between the detector and the stopline. There are two maximum allowable recall

89

Model development

amounts calculated for 95% (normal) and 110% (high) Degree of Saturation (DOS)

for side roads. However, there is only one set of maximum amount of extensions

allowed for both DOS levels. Since the arm flows and signal stages are fixed in the

model, the allowable amount is fixed for the whole modelled period.

Out of these 11 signals, signals 5 and 6 have minimum green time for the side road.

Hence, it was not possible to reduce these green times to give recall priority to the bus

route arm. The only option was to give extension only and not a recall in this case. In

case of signals 6 and 11, recall priority is possible only when target DOS is set to

110%. Table 5.3 shows the maximum allowable amount of extension and recall

allowed looking towards the detector position and DOS.

Table 5.2: Maximum allowable extension and recall allowed

No Name

Max. amount allowed (sec) Maximum amount allowed (sec)

No Name

Detector

constraint

DOS

(95%)

DOS

(11094)

Normal (95%) High (110%)

No Name

Detector

constraint

DOS

(95%)

DOS

(11094) Extend Recall Extend Recall

1 Stoneham road Jn 10.0 48X) 5L0 10.0 48X) 10^ 5L0

2 Swaythling Junction 15^ 0.0 0.0 15.0 0.0 15^ 0.0

3 Woodmill road Jn 9.0 22.0 23^ 20.0 22X) 9.0 23^

4 Mayfield road Jn 7.0 6.0 6.0 7.0 0.0 7.0 0.0

5 Talk Head 5.0 3.0 3.0 5.0 0.0 5.0 0.0

6 Highfield lane Jn 12^ 0.0 3.0 12.0 0.0 120 3.0

7 Brookvale road Jn 19^ 10.0 11.0 19.0 10.0 19^ 11.0

8 Lodge road Junction ITO 16.0 l&O ITO 16.0 ILO l&O

9 Stage gate Junction 9.0 0.0 0.0 9.0 0.0 9.0 0.0

10 Cumberland place Jn 16^ 23^ 2&0 16.0 210 l&O 26̂ 0

11 New road Junction 15^ 0.0 3.0 15.0 0.0 15.0 3.0

5.6.5 Priority calculation

The module calculates the amount of priority (both extension and recall) allowed

based on the criteria of the chosen strategy. In the model, it is based on the DOS level

awarded depending upon the lateness of the bus at the upstream bus stop. There are 3

90

Model development

basic strategies included in the model: No priority; Priority to all buses and Priority to

late buses only. The 'no priority' is the base case situation. The 'priority to all buses'

is the case of selective vehicle detection (SVD) in which all the buses are given

priority. The 'priority to late buses only' is a simple form of differential priority.

These basic forms of priority strategies are shown in Table 5.4.

Tables. 3: Basic form ofpriority strategies modelled in SIMBOL

Strategy no. Description

1 No priority (Base case)

2 Priority to all buses (SVD case)

3 Priority to late buses only (Differential priority case)

These basic strategies are further modified and several different strategies based on

lateness and DOS are formulated. The formulation and exploration of these different

strategies are described in Chapter 7 (Model application).

5.6.7 Priority implementation

The bus priority awarded is implemented by the traffic module by extending the

present green period or recalling next green period earlier. While giving extension, the

green period of the priority side is increased by the amount of extension time. The red

period of the side road is extended by the same amount of time. Once the priority

award is completed, the side road green starts and continues for normal period. This

increases the total cycle time in that particular cycle. In case of a recall, the red period

of the bus route side is reduced by an amount of recall to start the green period early.

The same amount of time is deducted from the green period of the side road side.

After the priority, the bus route side ends at normal period and hence the side road

side starts earlier than usual. In this case of recall, the total cycle time is shortened in

that particular cycle. These methods are illustrated in Figure 5.11 and Figure 5.12.

Once the priority process is completed, the normal stage timings start working without

compensating the green period lost by the side road side. This process of

resynchronisation with the normal stage timings after bus priority has finished is also

91

Model development

known as 'recovery'. The model uses 'Do nothing (DN)' recovery method, which is

one of 4 methods of recovery available in bus priority in SCOOT (Bowen, 1997). The

'Do nothing (DN)' recovery is the simplest in concept and good method when offset is

not important (Bowen, 1997). Hence this Do nothing recovery method is adopted in

the model. The examples of do nothing recovery after an extension and recall are

shown in Figure 5.11 and Figure 5.12.

Without |1 •| 2 13 11 1 2 1 3

With h 1 2 I 3 11 |2 |3

Bus • •

Extension 1 1
Recovery

Override

II
H

Figure 5.11: Example of 'Do nothing' recovery after an extension (Bowen, 1997)

Without 11 I2 |3 |1 I2 |3 h
With | l |2 |3 |1 ^ |3 h
Bus * •
Recall I H
Recovery II
Override 1 1

FzgMre J. 72. q/ 'Do MofAmg' recovery a recaZZ (BowgM,

5.7 GPS module

The GPS module provides the GPS location of buses to detect a bus approaching any

traffic signals. This detection is necessary to activate the priority module for the

ascertainment and activation of the priority. The detection of an approaching bus is

carried out by the use of virtual detectors based on the GPS position of a bus

incorporating the error in the GPS system. This module continuously estimates the

92

Model development

error and provides the GPS position of a bus based on the actual bus position and the

error.

5.7.1 Working of the module

The main module calls the GPS module to get the GPS position of all the buses every

second. The GPS module generates a location error for a bus at that moment. The

error is estimated from the normal random distribution with mean 0.0 and standard

deviation 3.8 (Rupprecht, 2001). The error is then added to the actual position of the

bus giving the GPS position of the bus. This GPS position of a bus is used to check

bus arrival at a virtual detector and activation of bus priority module (section 5.6). The

modelling is based on Decentralised AVL-UTC communication architecture described

in Section 2.2.2.2. However, there is no communication delay modelled in the model

while ascertaining the priority requirement. This is like the bus keeping the lateness

information and deciding the priority requirement itself This is a possible architecture

in the case of timetabled services. The flowchart of GPS module for bus position is

shown in Figure 5.11.

Is time = polling time?

Yes

(Return GPS and AVL bus position to main module

From the main module

Generate random GPS error from N(0,3.8)

AVL bus position = GPS position - speed/3.<

AVL bus position = earlier position + speed/3.6

GPS bus position = actual bus position + GPS error

Figure 5.13: Flowchart of GPS module

93

Model development

The GPS position of buses is used to detect a bus approaching a traffic signal. The

detection is carried out by a virtual detector upstream of the signal. More about the

virtual detector is described in next sub-section.

5.7.2 Virtual detectors

In case of GPS system, a bus is detected by virtual detectors while approaching a

traffic signal. The functioning of these virtual detectors is similar to the detectors

placed on the road for selective vehicle detection (SVD). However, the virtual

detectors are marked by their positions on the bus computer rather than placing on the

road. This makes the positions of these virtual detectors very flexible and can be easily

changed, if needed.

The positions of the virtual detectors are the same as ordinary detectors (given in

Table 5.1), when the GPS system is modelled with no error. However, when the GPS

error was modelled as maximum +/- 10 metres, the maximum detector distance from

bus stop position constraint was reduced by 10 metres. This was to ensure that a bus at

an upstream bus stop is not detected due to GPS error. Hence the optimum distances

of the virtual detectors based on the bus stop position earlier were changed. Table 5.4

shows the location of the virtual detectors placed in the systems.

Table 5.4: The optimum location of the virtual detectors with GPS error

Detector distance (m)

Detector no. Junction name Bus stop constraint Optimum distance

1 Stoneham road Jn 35^ 35^

2 Swaythling Jnction 36^ 3&0

3 Woodmill road Jn 23^0 7&0

4 Mayfield road Jn 21^0 7&0

5 Talk Head 24^ 24^
6 Highfield lane Jn 8L0 7&0

7 Brookvale road Jn 147^ 7&0

8 Lodge road Jn 11.0 11.0

9 Stage gate Junction 31&0 7&0

10 Cumberland place Jn 363X) 7&0

11 New road Junction 204X) 7&0

94

Model development

This change in detector distance changed the maximum allowable extension time of

the signals. However, in the model, the reductions in allowed extension time are

modelled by giving extra amount of extension than actually required.

5.8 Chapter summary

This chapter has described the development process of the simulation model

SIMBOL. The workings of different modules of the model are described with the aid

of flowcharts. Since the model is based on the data from the bus route in

Southampton, it is necessary to check whether the model works satisfactorily as in the

field. The next chapter 'Model Validation' describes the method adopted in validating

the model with the validation data collected.

95

Model verification and validation

Chapter Six

Model Verification and Validation

6.1 Introduction

Chapter 5 described the process of model development based on the methodology

described in chapter 3 and data collection in chapter 4. This chapter describes the

method adopted for checking the developed model to eliminate errors and to ensure

that it works as intended. The first portion of this chapter, model verification,

describes the checking of the model to make sure that it is error-free. The second

portion, model validation, describes validation of the model in the field by checking

the model output against the field data collected.

6.2 Model verification

Davies and O'Keefe (1989) have defined verification as the tasks associated with

checking the model and corresponding programs to ascertain that they perform as

intended. This outlines the requirement of a model verification process. Here,

verification of the model was carried out by checking the output from the series of test

runs using hypothetical data. Specifically, the detailed checking was carried out using

the following output:

® Visual output during simulation runs;

Text output files detailing the performances of each of the modelling parameters

such as bus stop, traffic signals and buses.

6.2.1 Ver i f i cat ion u s i n g v isual output

Verification started with checking the generation of buses at different bus stops at

their generation time. Then the bus journey along the route to the destination was

checked including interactions at bus stops and traffic signals. This was to ensure that

96

Model verification and validation

the buses were complying with the following requirements: stopping at bus stops to let

passengers alight and board; stopping at the red period of traffic signals and going at

green periods; and allowing the vehicles in front of them to go first at the green

period.

The signals were visually checked for the changing of signal phases, stopping of

vehicles at the red period, increase in queue lengths during the red period and

discharging of vehicles at the green period. Looking at signal functioning in more

detail, the lengths of each signal period were checked against the input data, as well as

the number of cars generated during red periods and discharged during green periods.

The synchronisation of different signal heads at the same junction was another aspect

to be verified. Once signal functioning had been verified, priority operation was

checked. In this process, the length of extension and recall were noted to make sure

that they are within specified limits. For all this visual verification, the speed of the

simulation was made equal to real time by adjusting the simulation speed input. More

detailed verification of the model was carried out by checking the text output files

giving details of bus, bus stop, signal and detector.

6.2.2 Verification using text output

The model was verified in detail using the output files generated by different modules.

The main module produced the output file giving positions of all buses in the system

at every second. This information was used to check the distance travelled by a bus

within every second and to countercheck the output from other modules. This detailed

output gave information about bus travel as well as stoppage at bus stops or traffic

signals. The stoppage information was counterchecked with the data from the bus stop

module or signal module. To simplify the checking process, input data such as a bus

speed of 18 km/hr (i.e. 10 m/sec) and a 100 second cycle time with 50 second green

time were used. Beside that, the output from all the modules were checked themselves

or counterchecked with output from other modules. For example, the output from the

signal module was checked against that of the detector module. If the detector

predicted that the bus would get an extension of 10 seconds, the traffic signal module

97

Model verification and validation

output was inspected to see whether the bus got that extension of green period or

suffered any delays at all.

The working of the bus stop module was verified using the information such as arrival

and departure time of a bus, its gap with the preceding bus, numbers of passenger

boarding and alighting and dwell time obtained from the output file. Arrival and

departure time were checked against the bus model to verify when it really stopped

and moved from the bus stop. Calculation of the time gap between the departure of

one bus and the arrival time of the next bus at bus stops were also checked. Estimated

numbers of passengers boarding and alighting were checked with the time gap, the

arrival rate of boarding passengers, the number of passengers inside and the

percentage of alighting passengers at that bus stop. The dwell time of buses was also

checked with the number of passengers boarded and alighted.

Regarding the signal module, the signal period and the number of cars in front at the

time of bus arrival were calculated from signal input data and verified against the

output from the module. The departure of the bus and the signal period were then

crosschecked. Signal delay and queuing delay were then checked using available data.

In the case of the priority option, the arrival time of a bus as predicted from bus

detection was checked against the actual arrival of the bus at the stop line of the

downstream traffic signal. The priority need of a bus predicted by the detector was

compared with the actual priority provided by the downstream traffic signal. The

detailed output produced by the GPS module giving details of the error generated

along with actual bus position was also checked against the bus position from the

main module.

6.3 Model calibration

The calibration of the model was carried out to set saturation flows of arms of all

junctions. Additionally, the bus stop dwell time parameters for different bus services

serving the route were also calibrated (Section 4.6.2.3). Since SIMBOL has modelled

any number of lanes in an arm as a single lane, saturation flows were to be calibrated

98

Model verification and validation

for the arms of all junctions. Saturation flow values were initially set at levels referred

in the available literature for different lanes (Salter and Hounsell, 1996). They were

then modified by trial and error method until the resulting delays matched those

collected from SCOOT data. In this process, care was taken to avoid unrealistic

figures for the widths and number of lanes available at a junction arm. Realistic

saturation flows were used in the model even though some of the arm delays estimated

by the model did not match the SCOOT prediction.

6.4 Model validation

Validation of the model was carried out to make sure that it closely reflected the

system in the field. This was done mainly by comparing the journey times of an

individual bus obtained from the model to that collected in the field, typically over a

2-hour period. Both graphical and statistical methods were used. Details of these

validation methods are described in the following sub-sections.

For the validation of the model, the arrival times of consecutive buses at origins and

destinations were collected in the field for a week. Data for consecutive buses were

required because the dwell time of a bus at a bus stop is modelled as depending upon

the gap between consecutive buses. A weeklong survey, to collect arrival time of

consecutive buses at origins and destinations, was planned separately from the model

development data collection described in chapter 4.

Bus arrival data was collected from 05/11/2001 to 09/11/2001 (one week) between

10:00 - 12:00 (two hours) for the buses of services 11/11 A, 3/3A and 101 going

towards the City Centre. The data was collected simultaneously by 3 persons standing

at 3 different bus stops - Swaythling, Portswood and City Centre. Here, Swaythling is

the origin of 11/1 la buses and Portswood is the origin for 3/3a/101 buses. City Centre

is the destination stop for buses of 11 and 3 services. Data collected at each stop

included the arrival and the departure time of buses along with their service number

and vehicle registration number. The service and registration numbers were noted so

that buses could be tracked at different bus stops. To record the arrival time of all

99

Model verification and validation

buses generated between 10:00 and 12:00, the survey period was longer at Portswood

and City Centre. At the City Centre bus stop, data was collected until the last bus from

Swaythling and Portswood arrived. To keep survey times synchronised and accurate at

all three bus stops, digital watches were used. These were checked against British

Standard Time every morning.

Data collected at all three bus stops for each day were combined by checking the

service number and the registration number of the buses. The combined data was then

sorted according to the generation time of buses at their origin (Swaythling or

Portswood). This was necessary to order the generation time of buses at different

origins. The rank number of each bus in the ordered series was used as its

identification number in the model. The journey times from origins to destination

were then calculated. Here, the journey times of service 11 buses were calculated for

the entire route between Swaythling and City centre. The journey times of service 1 la

buses were calculated for the portion of the route between Swaythling and Portswood,

and for service 3 buses between Portswood and City Centre. Five tables showing

generation times of buses at origin and journey times to destination were prepared for

the 5 days of data collection. Table 6.1 shows a sample of these formatted data for one

day (05/11/2001).

Table 6.1: Formatted validation data collected on 05/11/2001

Arrival time (hr:min:sec) JourneyTime (0-D) Start time

Busid Service Swaythling Portswood City (hour;min:sec) (seconds) (seconds)

1 3 10:01:29 10:13:27 00:11:58 718 89
2 11a 10:02:46 10:13:33 0:10:47 647 166
3 11 10:08:57 10:17:44 10:28:25 0:19:28 1168 537
4 3a 10:19:54 10:28:20 00:08:26 506 1194
5 11a 10:20:53 10:30:38 0:09:45 585 1253
6 3 10:21:16 10:31:40 00:10:24 624 1276
7 101 10:22:51 1371

8 11 10:28:19 10:38:28 10:51:45 0:23:26 1406 1699
9 3a 10:35:47 10:48:25 00:12:38 758 2147

10 11a 10:38:57 10:48:25 0:09:28 568 2337
11 3 10:46:41 10:58:30 00:11:49 709 2801
12 11 10:48:27 11:04:20 11:17:00 0:28:33 1713 2907
13 101 10:48:29 2909

100

Model verification and validation

14 3a 10:57:28 11:08:24 00:10:56 656 3448
15 11a 11:(H):11 11:12:56 0:12:45 765 3611
16 3 11:03:26 11:16:40 00:13:14 794 3806
17 11 11:11:45 11:20:34 11:31:46 0:20:01 1201 4305
18 3a 11:13:31 11:21:55 00:08:24 504 4411
19 101 11:20:14 4814
20 3 11:22:36 11:32:01 00:09:25 565 4956
21 11a 11:24:09 11:34:40 0:10:31 631 5049
22 11 11:30:12 11:37:35 11:49:02 0:18:50 1130 5412
23 3a 11:35:26 11:46:03 00:10:37 637 5726
24 3 11:40:05 11:51:48 00:11:43 703 6005
25 11a 11:40:44 11:55:07 0:14:23 863 6044

26 11 11:48:11 11:56:59 12:08:24 0:20:13 1213 6491
27 101 11:52:13 6733
28 3a 11:57:23 12:05:12 00:07:49 469 7043
29 11a 11:58:54 12:08:45 0:09:51 591 7134
30 3 12:00:11 12:10:03 00:09:52 592 7211

The collected data was then used to generate buses at origins and to check the output

from the model in terms of bus journey times.

6.4.1 Journey time validation

The journey time validation was carried out by comparing the journey time of each

bus as given by the model with that obtained from the field data. The field journey

times of the buses were obtained above and the model journey times of buses from the

simulation runs. To get model journey times of buses, 5 different simulation runs were

carried out similar to those 5 days of data collection. Buses were generated at

Swaythling and Portswood according to their arrival time at these bus stops in the

field data. The simulation runs were continued until all these buses generated at

Swaythling and Portswood had arrived at the city centre. At the end of the simulation,

the arrival times of buses at their destination were produced. Bus journeys were then

calculated by subtracting generation time at origin from arrival time at destination

stop. Since origin and destination differed for different services, individual journey

times of buses were also calculated for different portions of the route. The journey

times of service 11 buses were calculated for the whole route, those of 1 la buses for

the Swaythling to Portswood portion and those of service 3 buses for the Portswood to

City Centre portion.

101

Model verification and validation

The journey times thus obtained from the model were validated against the field

journey times. The initial journey time validation was carried out by plotting, for each

bus, the model journey time against the field journey time. This plotting of journey

times of buses is shown in Figure 6.1.

"q
c
S

•s
o
"5
T 3 o

* Service 3 bus (Portswood - City Centre)

A Service 11 bus (Swaythling - City Centre)

X Service 1 la bus (Swaythling - Ports wood)

45° line

200 400 am mm iww

Field journey time (seconds)

1400 1600 1800

Figure 6.1: Model bus journey time against field journey time

The graph shows a close compatibility between the model journey times of buses and

field data. Despite the use of average link speed for all the buses in the model,

SIMBOL prediction shows considerable variation in bus journey time. The variation is

due to the different dwell times and delays at signal for different buses. Again, the

model variation is quite compatible with the field variation of journey times. This

shows the strong performance of the model in field conditions. The R" value for the

data is calculated as 0.84, showing a strong correlation between model result and field

data.

102

Model verification and validation

These sets of values were then statistically tested using t-test for paired data. Here, the

model journey times and field data of individual buses were compared to see if they

differed significantly from each other at 5 percent level. While testing, the difference

between field data and simulation results was found to be not significant at the 5

percent level. This again confirmed the compatibility of the model results with the

field data.

6.4.2 Bus delay validation

The saturation flows of each arm of all junctions were calibrated by matching average

delays to vehicles from the model and from SCOOT (Section 6.3). However, bus

delay being modelled on an individual basis in SIMBOL, it was thought sensible to

compare the model prediction of bus delay with the average vehicle delay obtained

from the SCOOT data. Table 6.2 shows the comparison made between model

predicted bus delays at the bus route arm of traffic signals and the average delay data

from the SCOOT system.

Table 6.2: Comparison offield delay data against bus delays from SIMBOL

Signal Delays (sec/veh) Difference
number Field data Model data (sec/veh)

(average delays) (bus delays)
1 3&27 4140 -7.13

2 5^8 0.01
3 3L98 2L30 10.68
4 9.00 7^2 L48
5 3.40 1.41

6 2633 2224 4.09
7 2219 2032 L87
8 - 24^0 "

9 39.69 36T6 3J3
10 5L77 48.24 153
11 38.23 39J8 -0.95

These sets of values were then tested statistically using t-test for paired data. The test

showed that the difference between the field data and simulation results was found to

be not significant at the 5 percent level. Hence the model delay calculation is found to

be valid in estimating field delay within accepted statistical limits.

103

Model verification and validation

6.5 Chapter summary

This chapter has described the verification and validation process carried out for the

model to eliminate errors and to ensure that it works as intended. The process began

with verification and was followed by calibration and then validation of the model.

Validation data were collected in the field for a week. The collected data were then

used to validate bus journey times. This showed the model results to be compatible

with field data. It is hence concluded that the model is valid for the field conditions of

the Portswood corridor. The validated model can therefore be used to explore different

bus priority options and their impacts on the system in order to develop strategies for

bus priority at traffic signals. The applications of the model for different scenarios of

bus priority options are described in Chapter 7.

104

Model application

Chapter Seven

Model Application

7.1 Introduction

Chapter 6 described the validation process of the model. The validated model was

then used to simulate different bus priority strategies to compare their performances in

various scenarios. These scenarios were built by making possible changes in the

different key components of the model. The aim of the application was to explore the

impact of the changes on the priority strategies with different scenarios that might not

be possible to test in the field. Another aim of the application was to progress towards

determining suitable strategies under different circumstances.

This chapter starts by describing the methodology adopted to compare different

priority strategies. This is then followed by a series of sections describing the

simulations carried out to model changes to different components of the system. This

includes the description of the scenario tested, simulation results and discussion. The

chapter concludes with a summary.

7.2 Methodology

The simulation model provided an opportunity to simulate various priority strategies

and to build different scenarios by changing certain parameters. Since it was not

feasible to study all possible strategies and scenarios, certain key ones were selected.

These are described in the subsequent sub-sections along with the method of

evaluation.

105

Model application

7.2.1 Types of priority strategies

The first step in applying the model was to select priority strategies for comparison.

At the initial stage, 3 basic priority strategies were selected for detailed exploration.

These are as follows:

• Priority to all buses

® Priority to late buses only

® Mixed priority (late buses and all buses)

The first strategy is a common form of priority in which all buses are given priority

within the allowable limit of a traffic signal. This type of strategy helps buses to

reduce signal delay and to improve journey time. It is widely used in the form of

"Selective Vehicle Detection' (SVD), described in Section 2.1.2.

The second strategy, giving priority to late buses only, is more advanced. It helps to

make buses punctual and hence reduce passenger waiting time. This is the simplest

form of 'Differential Priority' described in Section 2.1.3. This type of strategy is

further enhanced by changing the level of priority depending upon the lateness of a

bus.

In the course of the application of the model, a third priority strategy was developed

by mixing the first two. This was named 'Mixed Priority' and gives priority to late

buses in the earlier part of the route and priority to all buses in the latter part of the

route. The rationale behind this strategy is discussed in the next-sub-section.

7.2.1.1 Mixed priority

In general, bus stops along the latter part of a route have more alighting passengers

and few boarding passengers. In such circumstances, the waiting time saving from a

punctual service has only a small effect on total passenger waiting time. Making buses

punctual by giving priority only to late buses therefore may not be the preferred

option. Rather, passenger journey time can be reduced by giving priority to all buses.

The passengers onboard would be more than happy if they arrive earlier than

106

Model application

scheduled timetable rather than late. In this case, the strategy giving priority to all the

buses would be more beneficial.

In contrast, bus stops along the early part of the route have more boarding passengers

and less alighting passengers. Reducing average waiting time per passenger therefore

has a bigger impact on the total passenger waiting time. Conversely, with lower

number of passengers on board, the benefit of reduced journey time may have less

effect on the total passenger journey time. Additionally, the main role of differential

priority is to play a corrective role to prevent late buses from further deterioration

further along the route. The priority provided at the early part of the route may reduce

the increase of lateness with distance/time.

Hence the mixed priority strategy was formed by combining the strategy giving

priority to late buses and the strategy giving priority to all buses. This strategy should

therefore combine the better passenger waiting time from the strategy giving priority

to late buses with the passenger journey time benefit from the strategy giving priority

to all buses.

7.2,2 Selection of scenarios

The selected priority strategies were first compared using field data. Then a further

study was carried out by simulating the strategies under different scenarios. The

scenarios were constructed by changing the characteristics of the main components of

the bus operation system. The simulation model provided ample choice to change

characteristics of different components. However, it was not possible to investigate all

different combinations hence the change in only one main modelling issue of each

main component was considered. The modelling issues selected for scenario formation

were based on what can practically be implemented or already occur. These included

issues such as changes in Degree of Saturation (DOS) at traffic signals, changes in bus

generation etc. Taking one main issue of each component such as bus, passengers, bus

stops, signals and GPS system, the different scenarios formed for model application

were as follows:

• Target DOS at signals

107

Model application

® Types of bus generation

® Change in passenger demand

« Intervention (holding of early buses at selected bus stops)

« Error in GPS

® Change in bus operation (headway-based service)

These scenarios were simulated separately for the priority strategies discussed earlier.

The simulation results for each priority strategy were then used to explore and

compare the strategies under these different scenarios. The method of evaluation of

these priority strategies is discussed in the next sub-section.

7.2.3 Method of evaluation

The evaluation of different priority strategies was based on a comparison of their

respective performances. The performance of each strategy was indicated by the

output file generated at the end of each simulation run. Performance criteria included

the change in bus delays at traffic signals, change in punctuality of buses and

economic evaluation of the benefit obtained. The economic evaluation was based on

key performance parameters such as bus journey time, passenger journey time,

passenger waiting time and car delays at traffic signals.

The economic values for these parameters were calculated as the resource values of

time per person from Highways Economics Note No.2 (HEN2, 1997). This reference

gives the resource values of time per person for driver and passengers of cars and

public service vehicles; based on 1994 prices. In the present study, the same 1994

prices were used. Updating was considered unnecessary because a cross-strategy

comparison would be unaffected by the exact value. The reference also gives average

vehicle occupancies for cars and public service vehicles. These values are useful in

calculating average resource values on a per vehicle basis. The average resource value

of time per car, taking care of passengers, was obtained from Table 2.4 in the same

reference. In case of buses, the average occupancy values were obtained directly from

the simulation results in the present study.

108

Model application

Based on the note, passenger journey time value was taken as the standard non-

working time from table 2.1 (HEN, 1997); and the value of passenger waiting time as

double the passenger journey time value. The bus driver's journey time was taken as

the working time of a PSV driver. The car occupants' (including driver and passenger)

journey time value was taken from the average value given in Table 1.3 of the note.

This took account of car occupancy during both working and non-working times. The

economic values of the different parameters are therefore as follows:

• Passenger j ourney value = £3.15 (per passenger-hour j ourney time)

• Passenger waiting value = £6.30 (per passenger-hour waiting time)

• Bus driver's journey value = £9.83 (per bus-hour journey time)

• Car occupants' journey value = £6.74 (per car-hour journey time)

These economic values were used to convert the benefit and disbenefit obtained from

a particular priority strategy into economic terms. This formed one of the main bases

for comparison of the different priority strategies.

7.3 The base case scenario

Application of the model started with a simulation of the bus route in its current state.

In this scenario, simulations were carried out for different priority strategies as well as

the no priority case. All components were modelled based on their characteristics in

the field. However, because the field timetable given by the bus operator was very

unrealistic, a modified timetable (Table 4.10) was used instead. The modification to

the timetable was based on the field journey time of buses and the actual starting

deviation at the origin. As is the practice in the field, buses were not stopped at all bus

stops, even if they were earlier than their scheduled timetable. Furthermore, in contrast

to the usual assumption of a timetable service, the passenger arrival was modelled as

random due to the high frequency of buses (6 buses per hour). Again, this was as

observed in the field for this corridor (Rajbhandari, 2002). Bus priority was

implemented by the method of 'extensions' and 'recalls' described in Section 3.5.2.

Recovery of the signal setting after a priority award used in the model was the 'Do

Nothing (DN)' method described in Section 5.6.6. Using this method, no

109

Model application

compensation of lost green time is given to the side road following the 'Recall'

process.

The output from each simulation run for each type of priority strategy was stored and

compared against the output for the no priority case. A comparison of the results is

described in the next sub-section.

7.3.1 Simulation results

Four simulation runs were carried out, which covered the no priority case and 3 other

priority strategies. The main impact of bus priority at traffic signals being reduced bus

delay at junctions, the delay saving per bus per junction was compared for different

priority strategies. The average delay per bus per junction was 24.7 seconds, which is

almost equal to the car delay per junction (24.9 sees) in the no priority case. Compared

to this, average bus delay savings of 10 seconds per junction were achieved in case of

priority to all buses, 4 seconds for priority to late buses and 6 seconds for mixed

priority. Figure 7.1 shows the bus delay savings obtained from different types of

priority strategies.

Bus Delay savings per bus per junction

12.0

10.0

bX)

I
I

8.0

6.0

4.0

2.0

0.0

All buses Late buses

Priority options

Mixed priority

Figure -7.1: Bus delay savings achieved through different priority strategies

The delay saving of 10 seconds per bus per junction from priority strategy giving

priority to all buses is slightly higher than reported in other studies. However, the

earlier field trials carried out in London and Southampton (Bretherton et al., 1996)

suggested that the delay saving of that level is possible in low saturation levels. Since

110

Model application

the junctions were modelled for off-peak periods, the saturation level was quite low

and hence these higher delay savings are possible. The reduction in delay savings

from a strategy giving priority to late buses only is due to the exclusion of early or on-

time buses from getting priority. Delay savings from mixed priority is only a little

better, because priority is given to all buses only at 4 out of 11 junctions.

Beside the bus delay savings, punctuality of buses is another aspect to be compared.

This is the criterion by which the performance of most timetable services is judged.

An improvement in bus punctuality also reduces passenger waiting time (Section

2.1.2). The punctuality window used by Confederation of Passenger Transport is

between 1 minute early to 5 minutes late (CPT, 2001). Using this window of

punctuality, the percentage of punctual buses at each bus stop is shown in Figure 7.2a.

Bus Punctuality (-1 to +5 minutes)

75

70

_ 65

^ 60

= 55
3
t 50
k 45

40

35

30

O

*

X
<>

* « 0 8 St
o * 9 m o X

" 1- -

•
o

Q • X Q • •
• +

n
•

+ o

0

O No priority

• All buses

X La te buses

+ Mixed

6 7 8 9
Bus stop number

10 ii h n 14 15

Figure - 7.2a: Punctuality of buses (1-5) from different priority strategies

In many cases, the punctuality of buses is worsened while giving them priority

because the proportion of early buses increases. Furthermore, the punctuality is worst

in case of the strategy giving priority to all buses. The main reason for this poor

performance is the presence of more early buses (72% at bus stop 0) due to non-

holding practice in the field. In such a situation, the strategy that gives priority to all

buses makes more buses early and puts them out of the punctuality range.

I l l
UBRAAY

Model application

Additionally, the better performance of the 'no priority' case is due to the big window

of punctuality. This big window makes 'late' buses also punctual. For this 10-minute

frequent bus service, the punctuality window of 6 minute is quite high. Hence, the

window of punctuality for this 10-minute service was redefined as 1 minute early to 3

minutes late. With this new definition, the percentage of punctual buses at each bus

stop is shown in Figure 7.2b.

Punctuality (-1 to +3 minutes)

65

60

55

% 50

cq
I 45
s

^ 40

35

30

* o
-o

%
o *-

* o
g O X

+

- B -

0 No priority

• All buses

X La te buses

+ Mixed

6 7 8 9

Bus stop number

10 11 n H 14 15

Figure - 7.2b: Punctuality of buses (1-3) from different priority strategies

This graph shows that the strategies giving priority to late buses improves the

punctuality of buses. In contrast, the strategy giving priority to all buses is the worst in

terms of punctuality because it makes earlier buses even more early. Here again, the

performance of this strategy is influenced by more early buses due to no-holding

practices in the field. The mixed priority strategy performs equally to the late buses

priority strategy up to bus stop 9 and remains good even after the start of the priority

to all buses strategy. Its performance for the later bus stops is among the best due to

the effect of good performance earlier.

Since priority to all buses was found to provide the best bus delay savings, and the

mixed priority and priority to late buses strategies the best punctuality, it was

necessary to evaluate these strategies on a common ground of economic benefit. As

112

Model application

mentioned earlier (Section 7.1.3), passenger waiting time, bus journey time, passenger

journey time and delays to general traffic were taken as the parameters for economic

assessment. The values of these parameters used for economic assessment were taken

for a one-hour period. Table 7.1 shows the total times of each parameter in one hour

and economic values of benefit for each parameter after deducting from the no priority

case.

Table 7.1: Economic benefits from different priority strategies

Priority Total times per hour (in hours) Priority benefit per hour (in £)

wait jrTime carDelay passWait jrTime busTotal carDelay Total

No priority 13J7 5L06 45.25 - - - - -

All buses 13.52 4 7 2 4 4444 1.58 13J0 15.28 2 0 9 1737

Late buses 13J5 4 ^ 4 8 45T9 2 j a 5 J 8 8 ^ 2 &40 8^3

Mixed 13J6 48.75 45.03 2.58 8 J 5 10.93 T48 12.41

The table shows that all priority strategies give some benefit as compared to the no

priority case. Giving priority to all buses provides the most overall benefit. This

strategy also gives the maximum benefit while considering buses only ('busTotal'

column of above table). Although this strategy gives the least waiting time benefit, it

is the best overall performer due to journey time savings. Giving priority to late buses

provides the best waiting time benefit, but due to lesser journey time benefit it gives

the lowest overall benefit. The mixed priority strategy is found to be in the middle

ground, giving good waiting time benefit along with good journey time savings. Even

so, this strategy gives lesser overall benefit than the strategy giving priority to all

buses.

Journey time savings are found to be the main contributor to overall benefit for all the

priority strategies. Its impact is the greatest for the strategy giving priority to all buses.

In addition to journey time savings, it is interesting to find some waiting time savings

for the strategy giving priority to all buses. Intuitively, this strategy is thought not to

alter the gap between the buses, nor therefore the waiting time of passengers. In reality

however, even this strategy rectifies the distortions in the gaps between buses caused

i i ;

Model application

by red periods of a signal: a bus arriving during the green period will neither need nor

get a priority whereas a bus arriving in a red period will get priority, thus reducing the

distortion in the gap. Hence there will be some waiting time benefit from the strategy

giving priority to all buses. This is supported by the field trial carried out in London

(Hounsell et al, 2000), which found a waiting time benefit in the range of 2.5% from a

similar strategy. However, the strategies giving priority to late buses and mixed

priority provide more waiting time savings than this strategy.

It is also interesting to find that cars gain benefits from buses being given priority.

One reason for this is the availability of spare green time in junction in under

saturation conditions. Using this spare green time in bus priority may not disbenefit

cars. A study by Bretherton et.al. (1996) also found similar benefit to cars at junctions

with lower saturation levels in London. Furthermore, the bus route modelled in this

research passes through the main arm of most of the junctions. It follows that giving

more green time to the bus route also benefits a greater number of cars than those in

side roads. The change in the total amount of green time in the bus route and side road

sides along after giving priority with different strategies are shown in Table 7.2.

7.2."

Priority Total green time (in hours) Change (in hours)

Bus Route Side Road Bus Route Side Road

No priority 39^0 2&93 0.00 000

All buses 2&55 +0.18 -0.45

Late buses 39J6 2&68 +0.05 -0J2

Mixed 39jU 2&67 +0.10 -033

The total green time given is that calculated for all 11 signals along the route for a

simulation period of nearly 10 hours. The changes in total green time in the 2-right-

hand columns are obtained by subtracting the 'no priority' times from other 'priority

strategies' times. The increase in total green time for the bus route, being the main arm

of most of the junctions, supports the improved delay situation.

114

Model application

It is also to be noted that the contribution of waiting time savings is smaller. This is

disadvantageous to the priority strategies improving waiting times rather than journey

times. One of the reasons for this is the random arrival of passengers assumed in the

model for this high frequency service route. Another reason is the low passenger

demand in the route at this stage. The situation would change if the passenger demand

were increased. This scenario is explored in Section 7.6.

7.3.2 Discussion

This scenario has shown that the strategy of giving priority to all the buses gives the

highest overall benefit. However, strategies giving priority to late buses are better

while considering punctuality and passenger waiting time benefit. Mixed priority,

combining good points of both other priority strategies, closes the gap in overall

benefit between them. It is to be noted that these results are based on the field practice

of non-holding early buses and random arrival of passengers, which are not considered

common in timetable services. These are particularly advantageous to the strategy

giving priority to all buses. More discussion of the effects of the field situation in

overall results is given in Chapter 8.

For the field condition assumed here, the strategy of giving priority to all buses is the

best from an economic point of view; but with respect to bus punctuality and

passenger waiting time, the mixed priority strategy is the best. The benefit from the

different strategies may change if a higher degree of saturation (DOS) is set for the

non-priority traffic arm while giving priority. Since changing the DOS level is

possible in the field, this scenario is simulated next.

7.4 Effect of high DOS

The degree of saturation (DOS) for non-priority traffic stage at a traffic signal can be

set at a higher level making more availability of recall time for the priority stage. The

increase in priority amount improves bus journey times but it may be at the cost of

higher delay to the non-priority traffic. The severity of the impact depends upon the

level of Degree of saturation (DOS) and the number of priority awards made. The

number of priority awards depends upon the type of priority strategy used. Hence this

115

Model application

scenario is aimed to explore the impact using one high DOS level and different

priority strategies.

Simulation was started by taking the same 3 priority strategies compared earlier.

These were priority to 'all buses', priority to 'late buses' and 'mixed priority'. All the

data used in the model were kept the same except the change in DOS and the recall

amount allowed. The priority recall time in some of the traffic signals was increased

by using target DOS for non-priority links as 110% rather than 95%. The increased

recall amount at different traffic signals while using 110% DOS is given in Section

5.6.4. The analysis of results from simulation using these increased allowable recall

amounts is given below.

7.4.1 Simulation results

Three simulation runs were carried out to cover 3 strategies mentioned above. The

priority benefits obtained were then compared with the similar strategies using normal

DOS. The change in priority benefits from different strategies, while changing the

degree of saturation (DOS) level from normal to high, is shown in Figure 7.3.

Change in priority benefits using High DOS

&
8} 63
cs

% g
cq

2.00

1.00

0.00

-1.00

- 2 . 0 0

-3.00

-4.00

Mixed

EH pass Wait

I Total

Priority startegies

Figure -7.3: Change in priority benefits while using High DOS

There is a decrease in overall benefits in all priority strategies while changing DOS

from normal to high. However, there is an increase in bus related benefits in 'late

116

Model application

buses' and 'mixed priority' strategies while not taking car delays into account. Despite

some improvement in journey time, the total benefit from all the strategies is

decreased due to the increase in car delays. The extent of the increase in car delay is

lowest in the strategy giving priority to late buses and highest in the strategy giving

priority to all buses. With this largest increase in car delays and having no increase in

other benefits, the total benefit from 'priority to all buses' suffered the most. In the

case of 'priority to late buses', the mild increase in car delays is counteracted by the

increase in journey time benefit making total benefit unchanged. In the case of mixed

priority, the disbenefit from the increase in car delays is counteracted by some

increase in journey time benefit.

This clearly shows that the increase in car delays made the main impact when

changing DOS from normal to high. The main reason for this increase in car delays is

the type of recovery method opted after giving priority. The recovery method used in

SIMBOL is 'Do Nothing (DN)' recovery (Section 5.6.6) that is one of four methods

implemented in SCOOT (Bowen, 1997). In this method, the green time lost by side

road stage during recall process is not compensated afterwards. However, by keeping

the length of priority stage same, the side road green period starts earlier than usual.

Even so, this will make the total amount of green time of the side road lower than in

case of no priority. Though this has a little adverse effect in the case of unsaturated

conditions, it worsens the situation in the case of over-saturated conditions.

Additionally, SIMBOL is validated for unsaturated junctions and hence the results

may be less accurate when a junction is over-saturated. This over-saturation may

happen when a full recall amount is used with DOS setting higher than 100%. In such

conditions, the vehicles will be carried over to subsequent cycles to clear and hence

making car delays higher than in the field under SCOOT control.

The above figure also shows the improvement in bus journey time despite increased

car delays in the case of high DOS. The increase in car delays was greater when

giving priority to more buses. Hence it was thought that restricting priority to fewer

buses would achieve journey time benefits with a minimum increase in car delays. For

this purpose, the lateness of a bus at each upstream bus stop was taken into

117

Model application

consideration. The lateness here used is the amount of time between departure time of

a bus and its scheduled time in the last bus stop. This is positive if a bus is late and

negative if a bus is early. In this case, another strategy giving high priority to a bus

whose lateness is more than 60 seconds was considered. This is termed here as 'Late

buses (>60)' priority. This is also a kind of 'differential priority' discussed in Section

2.1.3.

This idea of giving higher priority to buses that are more than 60 seconds late is then

modified to incorporate both 'normal DOS' and 'high DOS' in a single priority

strategy. In this strategy, priority using normal DOS is given to a bus with lateness

between 0 and 60 seconds and priority using high DOS is given to a bus with lateness

more than 60 seconds. This is another type of 'differential priority' strategy and here

termed as 'Late buses (0&60)' priority.

This type of differential priority strategy is then used to form a new type of 'mixed

priority' similar to one discussed earlier in Section 7.2.LI. In this mixed priority,

'Late buses (0&60)' priority is used in the early part of the route and 'All buses

(normal)' priority in the later part. This type of mixed priority is here termed as

'Mixed (differ & all)' priority. These 3 new strategies named 'Late buses (>60)', 'Late

buses (0 & 60) and 'Mixed (Differ & all)' were simulated again using the same field

data. The economic evaluation of results from simulations is tabulated in Table 7.3.

Table 7.3: Economic benefits from priority strategies using high DOS

Economic benefits per hour (in £)

Priority strategies Pass wait time Journey time Bus total Car Delay Total

Late buses (>60) 333 4.03 -&74 329

Late buses (0&60) 2.96 7J3 1029 -1.21 9.08

Mixed (Differ & All) 2J1 10J7 13.08 1.75 14.83

The table shows that the 'Late buses (>60)' strategy gave the least benefit among all

the priority strategies. The performance of 'Late buses (0 & 60)' strategy is better,

giving the best passenger waiting time benefit. The 'Mixed (Differ & All)' strategy

118

gave the best result among all the strategies using high DOS. The total benefit from

this strategy is almost equal to the maximum benefit obtained earlier from the strategy

giving priority to all buses using normal DOS. This benefit of 'Mixed (Differ & All)'

strategy is achieved from good passenger waiting time benefit using 'Late buses (0 &

60)' strategy at the early part of the route and an increase in journey time benefit using

'All buses (Normal)' strategy in the later part.

7.4.2 Discussion

This scenario has shown that the priority strategies using higher DOS might not give

better overall benefit to a system when used alone. Despite better journey time

benefits, the strategies using high DOS gave higher car delays and hence may result in

lesser total benefit. In such a situation, the selection of a priority strategy depends

upon the aim of the scheme. If the focus is on buses rather than overall benefits, then

the stronger priority strategy using high DOS should be selected. However, if the aim

is to get a better overall benefit, then a priority strategy using only high DOS may not

be suitable.

The result has shown that the strategies using high DOS in conjunction with normal

DOS give better results than the strategies using high DOS alone. These strategies

using different levels of DOS for different levels of lateness give the best passenger

waiting time benefits along with good journey time benefits. These strategies, using

high DOS to the buses with higher lateness, utilise the facility of high DOS more

effectively than other strategies not differing in the use of high DOS from normal

DOS.

Overall, the strategies using high DOS to 'All Buses' and 'Mixed priority (Late &

all)' did not perform well when compared to similar strategies using normal DOS.

Beside that, the strategy using high DOS to 'Late buses (>60)' also did not give good

results. Hence, none of these 3 strategies were added to the list of priority strategies

for further study. However, the strategy using high DOS to 'Late Buses' performed

reasonably well when compared to the same strategy using normal DOS. Along with

that, the strategies using both high DOS and normal DOS were found to be

119

Model application

well when compared to the same strategy using normal DOS. Along with that, the

strategies using both high DOS and normal DOS were found to be performing very

well. Hence, these 3 strategies were added to the list of priority strategies. This made a

total of 6 strategies including 3 from base case scenario and 3 added now. These 6

strategies selected for further simulations to explore their performance under different

scenarios are shown in Table 7.4.

ffzorzyy ywrfaer

Strategy Description

All buses (Normal) Priority (Normal DOS) to all buses

Late buses (Normal) Priority (Normal DOS) to late buses

Late buses (High) Priority (High DOS) to late buses

Late buses (0&60) Priority (Normal DOS) to late buses (>0 sec and <=60 sec)

and priority (High DOS) to late buses (>60 sec)

Mixed (Late & All) Priority (Normal) to late buses at early part and all buses

(later part)

Mixed (Differ & All) Priority (Late buses (0&60)) at early part and all buses

(later part)

7.5 Effect of bus generation

It has been shown that buses in the field often deviate from their starting time

specified in the timetable. The deviation in bus generation may be due to various

factors, including weather conditions, road conditions, traffic conditions or operational

problems. This deviation in starting times is one of the major sources making buses

unpunctual. A small lateness at the origin becomes enlarged at each bus stop with

more passengers than average, increasing dwell times and leading to more

enlargement of the gap. This will conversely reduce the passengers for the following

bus if on time thereby reducing dwell time and the gap. Hence the gap between the

bus and the earlier bus to that will get enlarged whereas the gap between the following

bus will get smaller. This may lead ultimately towards bus bunching.

120

Model application

The deviation in bus generation (lateness) at the origin may vary from day to day.

Some days it may be very close to schedule whereas on others it may be greatly

deviated. The effect of such deviation on the performance of a bus priority strategy

may be considerable. Hence this scenario is simulated to explore the effects of

different patterns of bus generation on priority strategies. In order to approach the field

situation, a distribution similar to the lateness of buses at the origin in the field is used.

The lateness profile of buses at their origin in the field is shown in Figure 7.4.

Lateness of 11/1 la buses at origin

5
&•

1 -

-

-

-

-

-

--

-

-

-

II
-

-

-

-

to: •
^ ^ ^ tjr >•'

Lateness range (sees)

Lateness of 3/3a buses at origin

&• c --
-

-
-

ITTT n ITTT
^ ^

Lateness range (sees)

Figure - 7.4: Lateness profile of bus generation in the field

The shape of the lateness profile of buses at origin is close to the Normal distribution

(This was verified by carrying out the 'goodness of fit' test using chi-square

distribution. The difference between the Normal distribution and the field profiles was

found to be not significant at the 95% confidence level). Retaining a normal

distribution, 3 different bus generation profiles were generated by changing the mean

and/or standard deviation as follows:

• N (0,60^) - Normal distribution (mean = 0 sec, standard deviation = 60 sees);

• N (0,120^) - Normal distribution (mean = 0 sec, standard deviation = 120 sees);

• N (60,180^) - Normal distribution (mean = 60 sec, standard deviation = 180 sees)

These 3 profiles are considered to represent 3 different types of days of bus operation

in the field. Under good conditions, most of the buses will be generated on time; the

mean and standard deviation will therefore be smaller and this is represented by N

(0,60^). However it may not be possible to achieve this under normal conditions and

121

mode/

buses may be generated with a larger standard deviation. This situation is represented

by N (0,120^). In worse cases, the mean itself is shifted and standard deviation

becomes even larger. This situation, where more buses are late and deviated is

represented by N (60,180^). The results from the simulation runs and their discussion

are found in the next sub-section.

7.5.1 Simulation results

In this scenario, 21 simulation runs were carried out to cover 7 different priority

strategies in 3 different profiles of bus generation. Other model data defining the

route, bus stops and signals were kept constant. Each type of generation was used to

simulate all the priority strategies selected earlier. The results for these different

profiles are given separately in 3 different tables below. Table 7.5a gives the priority

benefit from different strategies while generating buses using N (0,60^) profile; Table

7.5b gives that of N (0,120^) profile; and Table 7.5c gives that of N (60,180^) profile.

Table 7.5 a: Comparison ofpriority benefits for bus generation using N (0,60^) profile

Economic benefits per hour (in £)

Priority strategies Pass wait time Journey time Bus total Car delay Total

No priority - total value 72.83 184^8 257J0 304.92 562.62

All buses (Normal) +L39 +14.68 +16.06 +1.21 +1%27

Late buses (Normal) +202 +11.56 +13^8 +034 +13.92

Late buses (High) +Z08 +11.69 +13.77 -2.22 +1L54

Late buses (0&60) +1.70 +11.69 +1339 -L08 +1231

Mixed (Late & All) +2.02 +13.43 +15.45 +0.74 +1&19

Mixed (Differ & All) +L89 +13.50 +1539 +L62 +17.00

Table 7.5a represents the best base case scenario with least deviation amongst all. In

this situation, the passenger waiting time is relatively low even in the base case (no

priority case). Additionally, the mean being 0, almost half of the buses will be late and

half early at origin. However, there are some more late buses in the later part of route

due to the timetable design (Section 4.6.2.5). This makes only a little more than half

of the buses getting priority from the strategies using the lateness check. Hence these

strategies lag behind the strategy giving priority to all buses in terms of journey time.

122

So, the priority 'All buses (Normal)' performed well in this condition. However, it is

to be noted that the performances of both types of 'Mixed priority' are also among the

best.

Table 7.5b: Comparison of priority benefits for bus generation using N(0,120^) profile

Economic benefits per hour (in £)

Priority strategies Pass wait time Journey time Bus total Car Delay Total

No priority - total value 8L59 184.03 265.61 304.99 570.60

All buses (Normal) -0J3 +15.40 +15.27 +L95 +17.23

Late buses (Normal) +277 +11.47 +14JW +1.01 +15.25

Late buses (High) +277 +10.97 +13J4 .L28 +12.46

Late buses (0&60) +277 +9.45 +1222 -0.54 +1L68

Mixed (Late & All) +2.65 +12.99 +15^4 +L48 +17J2

Mixed (Differ & All) +265 +10J2 +13J6 +L82 +15^8

In the case of bus generation using the N (0,120^) profile (Table 7.5b), buses are more

deviated from their scheduled timetable. With more deviation in bus generation, the

gaps between them are more uneven and hence there is increased passenger waiting

time. The table shows an increase in passenger waiting time than the generation using

N(0,60^) profile. In such a situation, the lateness-based strategies perform better in

terms of passenger waiting time benefit and improve the total benefits. In this case

also, 'Mixed (Late & all)' priority is among the best strategies.

Table 7.5c:Comparison ofpriority benefit for bus generation using N(60,180^) profile

Economic benefits per hour (in £)

Priority strategies Pass wait time Journey time Bus total Car Delay To&l

No priority - total value 8&12 180.04 266T6 304.92 571.08

All buses (Normal) +&00 +16.89 +16.89 +L75 +1&64

Late buses (Normal) +&88 +1281 +13.69 +1.48 +15T7

Late buses (High) +L20 +12.46 +13.66 -0.81 +12.85

Late buses (0&60) +L32 +12.97 +14.29 -0 61 +13.68

Mixed (Late & All) +&88 +f l50 +1438 +L48 +15.87

Mixed (Differ & All) +L39 +13J5 +14.73 +L82 +1&55

123

Model application

With a change in both mean and deviation (Table 7.5c), buses are more late and

deviated from their scheduled timetable; this further increases the passenger waiting

time in the system. This enables lateness-based strategies to give priority to more

buses. The performance of all these strategies is improved due to an increase in

journey time benefits. However, with more buses getting priority, the improvement in

passenger waiting time is lesser than earlier distributions. In this bus generation

profile also, the performance of 'All buses' and 'Mixed' priorities are among the best.

The collective comparison of these priority strategies with different types of bus

generation is shown in Figure 7.5.

Total priority benefits for different bus generation

20.0

a

E ©
g

Q All buses (Normal)

0 Late buses (Normal)

Q Late buses (High)

g Late buses (0 & 60)

g Mixed (Late & All)

g Mixed (Differ & All)

Normal(0,60) Normal(0,120) Normal(60,180)

Bus generation profile at origin

Figure - 7.5: Comparison ofpriority benefits for different bus generation profiles

The figure shows that the change in bus generation alters the performance of different

priority strategies. The performance of the 'All buses' strategy is best with all 3

different profiles. The performances of both 'Late buses (Normal)' and 'Late buses

(High)' strategies get better with deterioration in bus generation profile. In all types of

generation profiles, 'Mixed' priority is among the best performing strategies.

7.5.2 Discussion

The result has shown that the strategies giving priority to late buses perform better in

the case of system having more late buses. The performance is particularly enhanced

by the greater number of buses getting priority and hence the improvement in journey

time. The performance of these strategies are comparable to best performing 'All

124

Model application

buses' strategy in such situations. The 'Mixed' priority is found to be performing very

well in wider range of bus generation. Its strong performance came from strong

passenger waiting time benefit along with moderate journey time benefit. Even then,

the contribution of passenger waiting time benefit in total benefit is quite low. It only

contributes around 10-20% of the total benefit of any strategy. This is mainly affecting

the performance of strategies giving priority to late buses that improves the passenger

waiting time rather than journey time. One of the reasons for this is the low passenger

demand in the route at present. This scenario may change if the passenger demand is

increased. The effect of change in passenger demand is therefore explored in next

section.

7.6 Effect of increase in passenger demand

The field data showed that the passenger demand in the route is quite low. The total

numbers of passengers boarding at all 16 bus stops were 378 in total over a 2-hour

period. In average, only 25 passengers boarded each bus at 16 bus stops (with 15

buses per bus stop in average). The main effect of the low passenger demand is that

the overall impact from bus priority can be infiuenced more by vehicular traffic than

by its effect on bus passengers. In such a situation, the influence of passenger waiting

time is overshadowed by bus journey time and car delays. This gives an advantage to

the strategy giving priority to all buses over the strategy giving priority to the late

buses only. Particularly because, in this case, cars benefit with increasing bus priority.

The situation may be different if the passenger demand is higher. The increase in the

passenger demand may happen due to better service punctuality or real time

information systems or other initiatives that make bus journeys more attractive. In

such a circumstance of higher passenger demand, the performance of priority

strategies may be different. Hence this scenario is simulated to find the performance of

different priority strategies under increased passenger demand situation.

7.6.1 Simulation results

In this scenario, 21 simulation runs were carried out with double the passenger

numbers to cover 7 different priority strategies for each of 3 different types of bus

generation. The results are tabulated in Table 7.6.

125

mock/ app/icahom

Table 7.6: Increase in performance parameters while doubling the passengers

Increase in economic parameters per hour (in hours)

Bus generation Pass wait time Journey time Bus total Car delay Total

Field 92.04 (106%) 96.48 (54%) 18&52(71%0 0.00 188.52 (33%)

N(0,60) 8133(112%^ 97.47 (53%) 178.80 (69%) 0.07 178.87 (32%)

N(0,120) 8738(107X0 107.54 (58%) 194.92 (73%) 0.07 194.99 (34%)

Average 86.92(108%) 109.76 (55%) 18&52(7r%0 0.04 187.46 (33%)

With double the passenger numbers arriving at bus stops, the change in performance

parameters across all different types of bus generation is similar. With increase in

passenger numbers, the main increase is in passenger waiting time and journey time.

The average increase in waiting time is 108% whereas that of journey time is 61%.

The bigger increase (more than 100%) in passenger waiting time is due to more

passengers and an increase in dwell time at bus stops. A lower increase (less than

100%) in journey time is due to the same number of buses serving the route despite

increased passenger demand and the unchanged occupancy at the beginning of the

route. There is no change in car delay making more change in bus related benefits

('Bus total') than the overall benefits ('Total'). With the big increase in passenger

waiting time and smaller in total, the effect of waiting time on total system cost

increased considerably. Table 7.7 shows the passenger waiting time benefit and total

priority benefits for different strategies under different types of bus generations.

Priority benefit per hour (in £)

Priority strategies Field generation Normal (0,60^) Normal (0,120^)

passWait TokU passWait Total passWait Total

All buses (Normal) 3jW 2 4 ^ 7 6.61 2L37 3.53 2 0 J 2

Late buses (Normal) 5.17 16.88 832 19.92 7 3 7 1548

Late buses (High) 3 ^ 3 13T2 8 J 3 20.06 731 1724

Late buses (0&60) 3.53 13.07 8 19 21.93 6 j J 1&64

Mixed (Late & All) 4.85 20.44 8 J ^ 19.87 7 ^ 3 1&64

Mixed (Differ & All) 1 2 8 18.97 8.00 21.22 6 ^ 2 1933

126

a/ck̂ e/ app/(cof;o/;

The table shows the greater contribution of passenger waiting time to total priority

benefits in this case. The contribution is higher in priority strategies giving priority to

late buses. This enabled the priority benefits from the lateness-based strategies to be

comparable with 'All buses' priority. However, the 'All buses' priority is among the

best even in this case of increased passenger demand. Additionally, the performance

of 'Mixed (Differ and all)' priority strategy is among the best across all types of bus

generation.

7.6.2 Discussion

This scenario has shown that the increase in passenger demand increases the influence

of passenger parameters in a bus priority system. It considerably increases the total

passenger waiting time and total journey time with no or little change in general traffic

delays. The increase in passenger numbers increases the dwell time at bus stops that

further increases total waiting time and journey time. This makes the overall priority

benefit to be influenced by passengers rather than vehicles. This is advantageous to

the priority strategies reducing average passenger waiting time. The simulation results

have shown that the 'All buses' and 'Mixed priority' strategies give the best overall

benefit in case of higher passenger demand.

7.7 Effect of holding early buses

Buses arriving early at bus stops may occur due to such factors as a change in the

passenger demand, favourable traffic conditions or poor timetabling. The effect of an

early bus is more severe than a late bus by the same amount, if passengers tend to

arrive near the scheduled timetable. The passengers arriving on time miss the early

buses and have to wait for the next bus to arrive. This increases passenger waiting

time and deteriorates passenger confidence in bus arrival time at a bus stop. Hence it

is desirable to avoid early running of buses. One such method to check early buses is

by holding them at a bus stop. This is a simple method in which a driver stops at a bus

stop until its scheduled departure time is reached. It is a simple way of making buses

punctual but is relevant to timetabled services only.

127

Model application

Holding early buses makes buses punctual at downstream bus stops and hence

improves average passenger waiting time. However, this method increases the journey

time of passengers already inside the bus. Additionally, it underutilises the resources

by wasting bus and bus driver's time. The field data revealed that almost half of the

early buses were stopping to match their timetable whereas the other half did not take

notice of their earliness at the Portswood bus stop. Hence it was thought to be

necessary to explore the implication of holding buses on bus priority. This scenario

was simulated to assess the impact of holding early buses at a main stop on different

priority strategies.

7.7.1 Simulation results

The simulation started by taking 4 different base cases (no priority) based on the type

of bus generation. The simulations were carried out by stopping buses at the

Portswood bus stop, if found earlier than their scheduled timetable. The change in

economic parameters for different types of bus generation, while holding early buses

is shown in Figure 7.6.

Change in economic parameters while holding

I

1 5 . 0 0 _

1

1 0 . 0 0

5 . 0 0

w
3

C5 0 . 0 0 _
>

- 5 . 0 0

- 1 0 . 0 0

- 1 5 . 0 0 _

Q passWait

N (5 0 , 1 8 0) mjrTirne

Types of bus generation profile

Figure - 7.6: Change in performance parameters while holding buses

There is a decrease in passenger waiting time and increase in journey time across all

types of bus generation, when holding early buses. These changes are almost equally

128

Model application

opposite in this case hence the total change in benefit is very small. However, the

extent of these changes varied according to the type of bus generation. The extent is

highest while generating buses according to field data and lowest while generating

buses with N (60,1802) profile. The highest change in field data is due to the presence

of large number of early buses (72% of 11/1 la buses at their 'origin').

With this preliminary analysis, more simulations were carried out to explore the

impact of holding on different priority strategies. All 7 priority strategies were

simulated with generating buses according to field data. The change in main

performance parameters while holding buses against non-holding is tabulated in

Table7.8.

Table 7.8 Comparison of priority benefits while holding early buses

Priority strategies Change in benefit of main parameters

per hour (in £)

Total priority benefit per

hour for holding (in £)

Pass wait time Pass Journey Total

All buses (Normal) OJO -L67 1521

Late buses (Normal) 0 ^ 7 1^2 10.97

Late buses (High) 0 ^ 2 0 ^ 2 8.02

Late buses (0&60) OjO 0 3 8 9 ^ 2

Mixed (Late & All) 0 ^ 0 - 0 J 2 1122

Mixed (Differ & All) 0 ^ 9 -L76 12.05

While holding early buses, there is an increase in passenger waiting time benefit in all

the priority strategies. By holding early buses and giving priority to buses, all priority

systems make the gap between buses more even and improve passenger waiting time.

Furthermore, there is an increase in journey time benefits from the strategies giving

priority to late buses. However, there is a decrease in journey time benefit in 'All

buses' priority strategies and 'Mixed' priority (which uses the 'all buses' priority

strategy in the latter part of the route). By stopping all early buses at Portswood, it

counteracts the priority given to the early buses. This action wastes the priority given

to the early buses by 'All buses' priority and hence reduces the journey time.

129

Model application

7.7.2 Discussion

Holding is a simple strategy for making early buses punctual. By making buses more

punctual, it improves the passenger waiting time but increases journey time. However,

the influence of holding depends upon the proportion of early buses. The effect of

holding is more with more early buses in the system and less with lesser early buses.

One of the drawbacks of this method is that it is applicable to the timetable service

only. In case of headway based service, there is no reference for a driver to check

his/her 'earliness'. Furthermore, the effectiveness of the measure is dependent upon

the driver perception and behaviour and hence susceptible to be error-ridden. And

again, it requires regular standardisation of time for checking earliness of buses.

However, the use of a digital display, showing present time and the scheduled time

onboard, can avoid these time checking problems.

The above result and discussion has shown that the holding of early buses improves

the waiting time of passengers. However, this action wastes the priority given to early

buses in case of 'All buses' strategy. This reduces the journey time benefit from the

strategy and makes it less attractive. In contrast, this method gives advantages to the

strategies giving priority to the late buses in terms of both passenger waiting time

benefit and journey time benefit. Hence, the combination of 'holding' option with the

strategies giving priority to late buses was found to be working better. This scenario

has shown the positive impact of 'holding' option on lateness based priority strategies

for a timetable service. This supports the argument that 'holding early buses' should

be normal practice in the case of timetable services.

7.8 Effect of GPS error

The error in a GPS system creates an uncertainty in the predicted position of a bus.

The uncertainty in the position of a bus could have an impact on the bus priority

system in which accurate bus position information plays a vital role. If the GPS

location of a bus puts it further from the junction than it actually is, then the green

extension time awarded would be greater than needed, and wasteful. Conversely, if the

GPS location of a bus puts it closer to the junction than it actually is, then the green

130

Model application

extension time awarded could be too short for the bus to clear the junction. A

significant extra delay could then result. Especially, the positional accuracy is quite

crucial while detecting a bus at a virtual detector using the GPS position of the bus. It

is common to place a virtual detector just downstream of a bus stop. With the presence

of GPS error, a bus may be detected at a virtual detector while being at a bus stop just

upstream. In this case, the priority may be triggered/awarded while the bus is at the

bus stop and any priority awarded could be completely wasted. To avoid this

uncertainty, a safe distance (i.e. distance of maximum error - 10 metres in this case)

between the virtual detector and bus stop is kept (Section 5.7.2). This reduced length

of detection reduced the extension time allowed in some of the traffic signals. This

amount is modelled as an extra time above the actual extension time required for

buses. Hence this scenario is simulated to explore the performance of different

strategies while incorporating GPS error.

7.8.1 Simulation results

This simulation was carried out by inserting a GPS error of maximum +/-10 metres.

The GPS error was sampled from a normal random distribution with a mean 0 metre

and standard deviation 3.3 metres obtained from earlier research (Rupprecht, 2001). A

total of 6 simulation runs were carried out to model 6 different priority strategies with

buses generated according to field data. The change in total priority benefits after the

introduction of this GPS error is given in Table 7.9.

Table 7.9 Change in total priority benefits after introduction of GPS error

Total priority benefits per hour (in £)

Strategies No GPS error GPS error Change

All buses (Normal) 1737 16J9 -0.58

Late buses (Normal) 8 83 8j^ -&41

Late buses (High) 8J9 8j^ .&57

Late buses (0&60) 9.08 8.57 -OJ^

Mixed (Late & All) 12.41 1225 -&16

Mixed (Differ & All) 14.83 1411 -0.72

131

Model application

The result shows that the system with GPS error gives lesser benefit than the system

without error. The total priority benefit is reduced in the range of 5% across the

strategies. The reduction is mainly caused by a decrease in maximum extension

amount allowed. Even in this scenario, the 'All buses' and 'Mixed (Differ and all)'

strategies are the best performing strategies.

7.8.2 Discussion

It is expected to get a reduction in priority benefits once the GPS error is introduced.

This is due to the reduction in priority time allowed due to the shifting of detectors at

a safer distance from a bus stop and requirement of extra time. These are needed to

ensure that a bus does not miss a priority awarded to it. Besides that, the comparison

with a 100% accurate GPS system is not quite realistic because there are no 100%

accurate GPS systems in use. However, the 100% accuracy modelled can be obtained

in case of the system using detectors or beacons on the road.

While comparing with these 100% accurate system, their benefit is overshadowed by

their rigidity in positioning. If it is needed to change the extension amount, then the

detector should be reinstalled again. This can be easily done in the case of a GPS

system by altering the virtual detector location in the onboard computer. Additionally,

the GPS positioning of buses can be used in other areas such as 'passenger

information at bus stops' and 'fleet management'. These are not possible with using

detectors on the approaches of traffic signals only. These positive elements of a GPS

system counterbalance the reduction in priority benefit while using it. With greater

flexibility, wider areas of use and greater opportunity for combining different

function/operation of a bus operation system, the use of GPS is appropriate.

7.9 Effect of change in operation

The route modelled in SIMBOL (Portswood corridor, Southampton) has a bus

frequency of 6 or more buses per hour. A recent study (Rajbhandari, 2002) showed

that the passenger arrival in this route is random (i.e. passengers do not take any notice

of the timetable). This may be due to the frequent services, the non-punctual nature of

the bus services, or both. Besides that, the present timetable is very unrealistic because

132

Model application

of the repetition of the same timetable at up to 5-6 bus stops. This random arrival of

passengers is a more common characteristic of headway-based bus services rather than

a timetable service. In such a situation, it is interesting to explore the implications of

bus services running under headway-based operation rather than timetabled. This

scenario is intended to explore the implications of using headway-based service

instead of timetable service.

7.9.1 S imulat ion results

The simulation was carried out by changing the bus operation from timetable-based to

headway based. The headway between the buses was taken as the time interval

between buses of similar bus service (i.e. buses of 11/1 la) in the timetable-based

operation. The standard headway between buses was 600 seconds. The scenario was

simulated for 2 different types of bus generations with each having 5 different lateness

based priority strategies. The bus generation profiles used were 'Field data' (having

more early buses) and 'Normal(60,1802) distribution' (having more late buses). The

comparison of simulation results in both types of bus generations is tabulated in Table

7.10.

Table 7.10: Comparing benefits while changing from timetable to headway service

Priority strategies

Total priority benefits per hour (in £)

Priority strategies

Field generation Normal (60,180^)

Priority strategies Timetable Headway Timetable Headway

Late buses (Normal) 8.83 12.47 (+41%) 15^7 9j^ tj7%0

Late buses (High) 8J9 9.86 (+12%) 12.85 8.38 (-35%)

Late buses (0&60) 9.08 9.80 (+8%) 13.68 10.20 (-25%)

Mixed (Late & All) 12.41 16.23 (+31%) 15.87 12.58 (-21%)

Mixed (Differ & All) 14.83 14.94 (+1%) 16.55 1147(49%)

The table shows two different patterns of results for 2 different types of bus

generations. There is an increase in priority benefits while shifting to headway-based

operation in the case of field generation. Conversely, the benefit is decreased in case

of 'Normal(60,1802)' generation. Even after the change, the 'Mixed' priorities are the

best performing strategies. Here, the biggest change in priority benefit is in case of the

Model application

'Late buses (normal)' strategy in both types of bus generation. Hence this strategy is

further analysed to explore the reasons behind the change in priority benefits. For both

types of bus generation, the change in economic benefits of 'Late buses (Normal)'

strategy while shifting from timetable-based to headway-based operation is shown in

Figure 7.7.

Change in economic benefits Wiile changing bus operation

6.00

4 . 0 0

2 . 0 0

Q) s
g 0 . 0 0

H - 2 . 0 0

- 4 . 0 0

- 6 . 0 0

Q passWait

QjourneyXime

Q carDelay

• Total

Types of bus generation

Figure - 7.7." Change in economic benefits of 'Late buses (Normal) strategy

The increase in priority benefits in case of field generation is contributed mainly by

journey time and slightly by passenger waiting time. Since the strategy is targeted for

bigger headway, the buses with more passengers get priority and hence there is an

effective improvement in passenger journey time and waiting time. The decrease in

priority benefits in the case of 'Normal(60,1802)' generation is mainly due to the

reduction in journey time benefit. However, even in this case, there is an improvement

in waiting time of passengers due to better regularity. In this generation profile, there

are more late buses in the system. Hence, while shifting to headway-based operation,

some of the late buses with lesser gap (that would have got priority in case of

timetable service) do not get priority. In such a situation, there are lesser buses getting

priority than timetable service and hence a reduction in journey time benefit. The

change in the number of priority awards made in both cases of bus generation while

shifting from timetable to headway based operation is shown in Table 7.11.

134

Model application

Table 7.11: Number ofpriority awards under different types of bus operation

Number of priority awards

Field generation Normal(60,l 80)

Priority type Timetable Headway Change Timetable Headway Change
Extension 65 66 1 95 59 -36

Recalls 109 113 4 175 126 -49
Total 174 179 5 270 185 -85

In the case of field generation, there is around only 3% increase in numbers of priority

award made to the buses while changing the service from timetable to headway based.

However, there is 46% reduction in numbers of priority award made to the buses in

case of Normal (60,180) generation. This large reduction in numbers of priority award

made is the main cause for the big decrease in journey time benefits. Hence the total

priority benefit is reduced in this case of the system having more late buses. However,

the bus priority is more in case of headway-based operation if the same number of

buses gets priority. Furthermore, headway based priority is better for regularity of

buses and improvement in passenger waiting time.

7.9.2 Discuss ion

With passengers arriving randomly at a bus stop, it was expected that the headway-

based service would give better priority benefit than a timetable service. The better

priority benefit from the system is due to targeting buses with more passengers (i.e.

bigger headway). This was supported by simulation results. However, the priority

benefit may be less if there are too many late buses if compared with timetable

services. In normal case, headway-based priority is better for the system where

passengers arrive randomly without taking notice of timetable. Though it is quite

difficult to keep up the time, the timetable makes clear and easy for priority

implementation. In case of priority implementation, the timetable can be set into the

bus computer so that a bus can calculate its lateness itself. This will allow a bus to

decide its priority requirement without referring to the AVL centre. This will cut the

communication loss between bus and the AVL centre to ascertain the priority need

and increase the amount of priority time.

135

mock/

7.10 Chapter summary

This chapter describes the application of SIMBOL in exploring different scenarios of

bus priority in Portswood corridor bus route. Application of the model was started by

simulating a base case scenario and taking 3 basic types of bus priority strategies. The

strategies were further modified to use the high DOS facility available at traffic

signals. The strategies were then simulated under different scenarios such as different

types of bus generation, increase in passenger demand, holding early buses, error in

GPS and change of bus operation. The results from these simulations were tabulated

and discussed in respective sections. The overall discussion of these various strategies

and different aspects of bus operation influencing bus priority is presented in Chapter

8.

136

Discussion

Chapter Eight

Discussion

8.1 Introduction

Applications of SIMBOL to explore the performance of different bus priority

strategies under various scenarios were described and analysed in Chapter 7. The

strategies were compared and discussed under a particular scenario. In this chapter, all

the strategies are collectively compared along with the discussion of field

characteristics that might have an influence on the results.

8.2 Comparison of results

Chapter 7 showed that the performance of a strategy is often better in some aspects

and weaker in some others. Hence, to ascertain the best performing strategy, all the

strategies are compared collectively by using a performance rating between ' A' to 'D'

based on total economic benefit. The ratings are; 'A' for priority benefit between £15-

£20 per hour; 'B' for £10 - £14; ' C for £5 - £9; and 'D' for less than £5 per hour. The

performance rating of all strategies is given in Table 8.1.

Strategy Field

data

N(0,60^) N(0,120^) Holding GPS

error

Headway

All buses (Normal) A A A A A A A

Late buses (Normal) C B A A B C B

Late buses (High) c B B B C C B

Late buses (0&60) c B B B B c B

Mixed (Late & All) B A A A B B A

Mixed (Differ & All) A A A A B B A

137

Discussion

Notes;

Field data - Buses generated according to field data

N(0,60^) - Buses generated from Normal distribution (mean = 0 & SD =60 sec)

N(0,120^) - Buses generated from Normal distribution (mean - 0 & SD =120 sec)

N(60,180^) - Buses generated from Normal distribution (mean = 60 & SD =180 sec)

Holding - Stopping early buses at Portswood bus stop in place

GPS error - Inclusion of GPS error while locating buses for priority

Headway - Buses under headway based operation

The performance-rating table shows that the 'All buses' strategy gives the best

economic benefit under all the scenarios. 'Mixed priorities' also shows a strong

performance under many scenarios. The performance of the 'All buses' strategy is

particularly better while using field data (containing more early buses) and that of

'Mixed priorities' and 'Late buses' are better in the case of more late buses e.g.

generating buses with N (60,180^). Among the scenarios compared, the field scenario

containing a large percentage of early buses is less likely to be the case in most

situations. In normal conditions, buses generated according to N (0,120^) is more

likely to be the field case rather than N (0,60^). Both 'holding' and 'GPS error'

scenarios give possible benefits from the scenarios while generating buses according

to field data. Hence their results also incorporate the shortcomings of the field data. In

the circumstances of the high frequency service with random passenger arrival as

found in the field, headway based operation is the most likely scenario in general. In

these scenarios (i.e. 'N (0,120^)' and 'Headway'), the performance of 'Mixed priority'

is among the best (almost as good as 'All buses' priority). Beside the strong

performance in terms of economic benefit, 'Mixed priority' is better in terms of

punctuality/regularity consideration (than 'All buses' priority'). From these

considerations, the 'Mixed priority' is the best strategy among all the strategies

compared. The strategy comparisons in Table 8.1 are therefore specific to the corridor

modelled and only partially transferable. However, it can be concluded that the

strategies with differential priority are more expensive and complex to achieve,

because of their infrastructure requirements.

138

Discussion

It is to be noted that the passenger journey time makes the most contribution of around

50-70% in total economic benefit. The higher percentage contribution is in case of

strategy giving priority to all buses. On other hand, passenger waiting time's

contribution is in the range of 10-25% only. The upper limit of passenger waiting time

is found in strategies other than 'All buses'. Furthermore, it is interesting to find the

positive contribution of car delays benefit in some of the strategies including 'All

buses' while giving bus priority.

The big contribution of passenger journey time, less influence of passenger waiting

time and car delays benefit have given advantage to the strategy giving more priority

to buses. In such a situation, a strategy that gives priority to all buses gets advantage

over other strategies that give priority to late buses and make them more punctual.

However, this is not representative of typical field conditions everywhere. Some of the

field characteristics of the modelled route that might have an influence in these results

are: random passenger arrivals, non-holding of buses, unsaturated junctions and bus

route passing through the main arms at junctions. This analysis also does not account

for any issues of passenger confidence (e.g. a punctual service may be more important

to passengers than an improved service speed). These field characteristics are

discussed in the context of the results below.

8.2.1 Random passenger arrival

In this research, the passenger arrival at a bus stop is assumed to be random making

average passenger waiting time dependent upon the gap between buses. In this

condition, early running buses with a regular gap do not cause any waiting time

disbenefit. However, if it would have been the case that passengers arrive around the

scheduled time then passengers arriving near the scheduled timetable miss early

running buses and have to wait a very long time for next bus to arrive. This would

cause a lot of passenger waiting time disbenefit in the system. This not being the case

in the field, the 'All buses' strategy, giving priority to even early buses, has escaped

the consequences. On the contrary, the other strategies making buses more punctual

do not result in bigger passenger waiting time benefit. This is the reason for lesser

139

Discussion

passenger waiting time benefit and the weaker performances of the strategies making

buses more punctual.

8.2.2 Non-holding of buses

Holding early buses should be a common practice in a timetable service so that no bus

departs earlier than its scheduled timetable from a bus stop. However, the field

practice in this study shows that buses in most of the bus stops do not take account of

that at all. In such conditions, fewer buses get priority from strategies giving priority

to late buses. However, this makes no difference to the 'All buses' strategy that gives

priority to all buses. Furthermore, with non-holding of early buses, they are allowed to

complete their journey as soon as possible. Hence the priority benefit from this 'All

buses' strategy is higher than others in terms of journey time when there are more

early buses. The field data revealed that 72% of buses of 11/11 a service were early at

the origin and in this case, 'All buses' gave the best benefit. However, while shifting

the timetable by 120 seconds so that around 63% buses were late, 'Mixed' priority

performed the best. The change in priority benefit while shifting the timetable by 120

seconds is given in Table 8.2.

Priority benefits per hour (in £)

Priority strategies Field data 120 sees shift Change

All buses (Normal) 17^7 17J7 0.00

Late buses (Normal) 8.83 13.92 +5.09 (58%)

Late buses (High) 8J9 12J0 +3.52 (40%0

Late buses (0&60) 9.08 14^2 +5.44 (60%)

Mixed (Late & All) 1241 1626 +3.85 (31%)

Mixed (Differ & Ail) 14.83 18.22 +3.39 (23%)

The priority benefit is increased while shifting the timetable to make more buses late.

The increase in benefit is up to 60% of the earlier benefit in the case of the strategy

giving priority to late buses. This big improvement is obtained due to more buses

becoming eligible for priority that has increased the journey time savings. In this case.

140

Discussion

the maximum priority benefit is obtained from 'Mixed (Differ and all)' strategy. This

is the maximum benefit obtained for field passenger numbers, among all the scenarios.

8.2.3 Unsaturated junctions

All the junctions modelled in this study are in unsaturated condition (see Section

3.4.2). The available spare green time in these junctions can be used in bus priority

without severely disrupting other traffic. Hence the bus delay savings achieved in this

study is in the upper limit of that found in earlier studies (Hounsell et al, 1996). These

big delay savings at junctions has made the journey time savings the biggest

contributor in economic analysis of priority benefit. This influential role of journey

time gives an advantage to the 'All buses' strategy that gives priority to all buses and

hence more journey time benefit. This situation would have been different if the

junctions would be in higher saturation level. In such situation, the spare green time

will be less and so will the journey time benefit and its influence on total benefit.

Furthermore, a high number of traffic signals (11 signals in 4.32 kilometres) in the

route further enhanced the benefits from journey time savings to contribute the most in

overall priority benefits.

8.3.4 Bus route through the junctions

The bus route modelled in this research passes through the main arm of most of the

junctions. In such conditions, general traffic gets benefit from increased green time

due to priority to the buses. In this case, the more the priority award, the more is the

benefit to general traffic. This gives a clear advantage to the strategy giving more

priority i.e. strategy giving priority to all buses. However, the situation may be

different if the bus route passes through the minor arms of the junctions. In this case,

the priority given to buses may cause more disbenefit to other traffic than benefit.

8.2.5 Bus punctuality and passenger confidence

The punctuality of buses is a key criterion on which most of the timetable services are

measured. The percentage of buses at a bus stop within the specified window of

deviation (earliness/lateness) is the punctuality of buses. This is used as the

performance measure of timetable services. The higher the punctuality, the better is

the service. This also helps in improving passenger waiting time (where passenger

141

Discussion

arrive according to the timetable) and is helpful in developing passenger confidence.

However, the value of punctuality and passenger confidence developed from it is not

considered here in the economic evaluation of the priority benefit. This gives a

significant disadvantage to the strategies giving priority to late buses and making

buses more punctual. If this is also taken into account in the economic analysis, the

performance of strategies would be different.

8.2.6 Bus timetable

The discussion of the prevailing field characteristics showed that the presence of a lot

of early buses could have a big influence on the outcome of a bus priority strategy.

Beside non-holding practice, another major factor for so many early buses in the field

at origin is due to poor timetabling. In the field timetable, the journey time for the

first part of the route (Swaythling to Portswood) is around 120 seconds less than the

average journey time of buses (Section 4.6.2.5). So, most of the buses were starting

early to be on time at Portswood bus stop which the main bus stop in the middle of the

route. This resulted in very few buses getting priority from differential bus priority

strategies and hence less priority benefits. This shows that a proper timetabling is an

important issue while implementing bus priority at traffic signals. So, first step

towards the bus priority implementation for a timetabled system should be the

preparation of a proper timetable. Incorporating proper timetabling, a plan for

implementing bus priority in timetabled service is shown in Figure 8.1.

Timetable based on average journey time

Implementation of priority to all buses

Modification of timetable with improved journey time

Holding early buses at all bus stops

Implementation of differential bus priority

Figure 8.1: A plan for implementing bus priority in timetabled service

142

Discussion

The plan starts with the preparation of timetable based on the journey time of buses

without giving priority. The next step in this process is to give priority to all buses and

obtain the improvement in journey time. Incorporating the improvement of the

journey times, a modified timetable should be prepared and used for priority

implementation. Then a differential bus priority strategy can be used for bus priority

to account for within and between day variability in bus operations. In this case,

beside the benefits discussed earlier (passenger waiting time, journey time etc.), there

is a benefit of fleet management. The journey time saved from improved timetable

(reduction in journey time) can be utilised by putting resources into other routes or

services or by increasing frequency of the services (if necessary). This will help to

improve the quality of bus services and minimise the operational costs, which may

lead towards the increased patronage and help in modal shift from private to public

transport. These other benefits of bus priority are not covered within the scope of this

research. This area of fleet management can be further explored by modifying the

existing model. This is one of the possible areas for further work.

8.3 Chapter summary

The overall comparison of the simulation results showed that the strategy giving

priority to all the buses gives the highest overall benefit to a system in most cases. The

performance of 'mixed priority' is also found to be among the best in many scenarios.

Further discussion showed that 'All buses' priority is particularly favoured by the

characteristics of the modelled route in this study. These characteristics are non-

holding of buses, unsaturated condition of junction and passenger arrival profile. The

discussion showed that the performance of a strategy might be different in different

field conditions. This also pointed to the issue of suitability of a priority strategy

depending upon the field condition. However, the performance of 'Mixed' priority,

being the hybrid of two different types of strategies, is unaffected in most cases. The

discussion also showed that a bus timetable plays an influential role in a bus priority

system. Hence, a simple plan of priority implementation taking account of timetable

improvement is formulated.

143

Summaiy and conclusion

Chapter Nine

Summary and Conclusions

9.1 Introduction

This chapter summarises the work carried out during this PhD research work and

draws out the main conclusions. The aim of this research was to investigate and

develop recommendations for advanced bus priority strategies at traffic signals using a

new simulation model developed within this research. The research began with a

review of available literature on bus priority, priority mechanisms, options and

available modelling tools. It was clear from the literature review that a new simulation

model was necessary to meet the requirements of detailed modelling of advanced bus

priorities at traffic signals incorporating Automatic Vehicle Location (AVL) systems.

The modelling methodology developed was based on the specific research

requirements and available literature. The data collection was then carried out along

the Portswood corridor bus route in Southampton. A simulation model was built based

on the field data, then verified and validated. The completed model was used to

explore the performance of different priority strategies under different scenarios. The

simulation results were then discussed in the context of the modelled route. The key

findings from the application of the model are given in this chapter. The chapter starts

with a description of the key features of the model, followed by the findings from the

application and possible areas for future research.

9.2 Main features of the model

One of the main objectives of this research was to develop a simulation model for

detailed study of advanced bus priority strategies at traffic signals. In order to achieve

this, a microscopic simulation model, SIMBOL (Simulaton Model for Bus priority at

traffic signal), was developed. SIMBOL is capable of simulating a bus route taking

account of buses, bus stops, traffic signals, AVL systems and advanced bus priority

144

Summary and conclusion

depending on lateness and target degree of saturation (DOS) at junctions. The delays

to general traffic and impacts of priority on general traffic are also modelled in

SIMBOL. The main modelling features of SIMBOL are summarised in Table 9.1.

P.J.'

Component Characteristics Methods

Bus system Bus operation

Overlapping services

Timetable, headway

Multiple origin-destination

Bus Generation

Movement

Timetable, Distribution

Average link journey time

Bus stop Passenger generation

Alighting passenger

Waiting time

Dwell time calculation

Holding early buses

Regular interval. Distribution

% of passenger inside

Average, individual basis

York's, field parameters

Optional

Traffic signal Cycle time

Bus delays

General traffic delays

Fixed time

Individual basis

By generation and discharge of cars

Bus priority Priority methods

Priority strategies

Extension and recall

Selective detection. Differential and

Mixed priority

AVL system GPS based system

Detection

Error sampled from Normal

random distribution

Virtual detectors, detectors

Input Model building data

Simulation data

Built in (can be user defined)

User defined for each simulation

Output Visual

Text files

Shows buses, traffic lights and

traffic queues

Concise and detailed files

Application of the model was focussed on simulating the range of different scenarios

affecting the performance of a bus priority strategy. Various bus priority strategies

145

Summaiy and conclusion

under different scenarios were simulated. The main findings from the application and

discussion of the results are in next section.

9.3 Main findings of the research

The application of the model to the simulation of different scenarios is described in

chapter 7. The simulation was based on a field route with a high frequency (but

timetabled) bus service (10 minute frequency), unsaturated junctions, low passenger

volume and random passenger arrivals. Based on the analysis of results and discussion

from these simulations, the following conclusions can be drawn;

• Bus priority at traffic signals is a useful measure to give effective priority to buses

in urban areas where there are a number of traffic signals present. There is a wide

range of priority strategies for giving priority to buses.

® Giving priority to all buses is the simplest form of bus priority strategy at traffic

signals. By giving priority to all buses, this strategy gives the best journey time

benefits of all available priority strategies. However, this strategy by making early

buses even earlier is the least preferred in terms of bus punctuality and passenger

waiting time.

« Mixed priority giving priority to late buses at the starting part of the route and all

buses at the latter part, is found to be among the best strategies under all different

scenarios. The performance of this priority is found to be most resilient due to a

combination of the best points of other strategies. It gives very good overall

benefit, including good punctuality and passenger waiting time benefit.

® One of the factors affecting priority strategy is lateness in starting of buses at

origin. The strategy giving priority to all buses is favoured by more early buses at

the start. The differential priorities, being targeted at late buses, are found to be

more effective when there are more late buses than early.

» Holding of early buses at bus stops is a simple measure that considerably improves

the waiting time of passengers. However, this action increases journey times and

wastes the priority given to early buses. In this sense, 'holding' works better with

strategies giving priority to late buses only.

146

Summary and conclusion

® The error in GPS system used for bus location reduces the bus priority benefits.

One of the main reasons for this is the reduction in priority extension time to

ensure that a bus does not miss a priority extension provided. Despite this

reduction in benefit, its flexibility and multi purpose application makes a GPS

system worth using in the strategies giving priority to late buses.

® Shifting from a high frequency timetable service to a headway-based operation is

found to benefit systems with passengers arriving randomly at bus stops. The

headway-based priority is better because it makes buses more regular (i.e. even

gaps between buses) and hence improves the passenger waiting time.

« A proper timetabling is an important factor while implementing bus priority in a

timetabled service. A bus timetable could have a big influence on the outcome of a

bus priority strategy. So, the preparation of a proper timetable is the first step

towards the bus priority implementation for a timetabled system. The timetable

should then be modified to take advantage of the benefits provided by bus priority.

Overall, the simulation results show that the strategy giving priority to all buses is

better in terms of overall benefit but not in terms of punctuality and passenger waiting

time. The strategies giving priority to late buses are better in terms of punctuality and

passenger waiting time but not in terms of total benefit. Hence the selection of best-

suited priority strategy depends upon whether the priority scheme is aiming to achieve

total benefit or better punctuality. Between these extremes, mixed priority is the best

strategy giving very good overall benefit combined with better punctuality and

passenger waiting time.

9.4 Possible areas for further work

The research concluded with the development of a simulation model and its

application in simulating different scenarios to explore the performance of advanced

bus priority strategies at traffic signals. The new simulation model has opened up

possible areas for further work. This may include both further application of the

existing model and development of the model itself to model other issues which it

147

Stimmaiy and conclusion

does not yet cater for. Both of these possible areas of further work are described

below.

9.4.1 Further applications of the current model

This research was carried out using a system with random passenger generation as is

the case for high frequency services. Since the model is able to model individual

passenger generation, there is an opportunity to explore bus priority implications for a

low frequency timetabled service. The passenger arrival rate is then higher near to the

bus arrival time. This can be modelled once a relation/distribution is defined. More

applications of the model are as follows:

» One of the scenarios modelled here was headway-based bus operation along the

existing modelled route. This facility of modelling headway-based bus operation

could be further used to explore a system by taking an actual example of a true

headway-based bus operated system.

• The overlapping route in the present study was modelled by considering only

identical services. The model can also be applied to situations where there is a

choice of services. This will depend upon the field data collection of passenger O-

D matrix and characteristics of bus services.

• The study was carried out taking one out of several priority architectures available.

Different priority architectures with their communication lags can be modelled and

explored using the model.

® In the present study, only 4 types of bus generation profiles were simulated. More

bus generation profiles representing day-to-day variations in field conditions can

be modelled for further exploration.

® The model can be used to model bus priority in a fixed-time UTC (Urban Traffic

Control) such as the SPRINT system being trialled in London.

® The modelling of timetable modifications in response to improvements generated

by bus priority and its implications in terms of fleet management and resource

utilisation.

9.4.2 Further development of the model

The model at this stage is capable of modelling on a route basis. There may be wider

issues such as conflicting priority requirements at junctions and passenger route

148

Summary and conclusion

choice, once a network level of bus operation is considered. Further development of

the model is needed to model a bus operation system at network level. This would be

a more representative model of the field condition.

There is a practice of running buses continuously around a route, i.e. Origin-

Destination-Origin. In such cases, any deviation at the starting time at origin of the

first leg may affect the starting at the second leg (returning leg) of the journey.

Modelling this continuous circulation of buses on a route would be useful to explore

possible bus fleet management and optimisation. This requires further model

development, which is possible within the framework of the current model.

The present modelling of journey time modelling between a detector and downstream

traffic signal is based on the average speed of the bus obtained from the field data

collection. However, there may be a considerable variation in this portion of the road

due to queuing vehicles. A further work is necessary to model this variation in journey

time of buses near the signalised junctions. Along side, more detail modelling of

junction can be carried out using varying level of signal timings and traffic flows.

However, this requires significant amount of further development of the model.

Additionally, the model can be further developed to explore the new methods and

technologies (i.e. the use of multiple detection of buses using GPS system while

giving priority). These show the diverse range of potentials the model has for further

developments.

149

References

References

AGARWAL P. K., JAIN S. S., KHANNA S. K., 1994, Development of a Simulation

Model for Performance Evaluation of Bus Operation on Urban Transportation

Corridor, Proceedings of 36"' Annual Conference of Transportation Research Forum,

Florida, pp759-76

AL-SAHAILI K. A., TAYLOR W. C., 1996, Evaluation of Bus Priority Signal

strategies in Ann Arbor, Michigan, Transportation Research Record. 1996. (1554)

pp74-79

BAGOT N., 1999, Try Before You Buy: Trends in Traffic Simulation, Traffic

Technology International, pp68-74

ISIiRN/lUELPL EL, BlRJEFIIiFLE'r IL., /II.GERS S., IlCyEiRJO A/L, ir/lR/LbfTrO (]. 1).,

DOUGHERTY M., FOX K., GABARD J. F., 1997, SMARTEST: Review of Micro-

Simulation Models, Institute for Transport Studies, University of Leeds, United

Kingdom

BOWEN G. T., 1997, Bus priority in SCOOT, TRL Report 255, Transport Research

Laboratory, Old Wokingham Road, Crowthorne, United Kingdom, page 8-11

EiRJEnriilillTrCyfj I)., HCyUNtlEvLlL R/L[)I/L B., 19()6, Putdic rrEuispwort Piionl]/ ui

SCOOT, Proceedings of the Third World Congress on Intelligent Transport Systems,

Orlando, Florida, 1996, pp71

CALTABIANO R., CAMUS R., GERIN R., ONGO G., 1997, Implementation of an

Advanced AVM (Automatic Vehicle Monitoring) System for the Trieste Bus

Network, Proceedings of Seminar K: Traffic Management and Road Safety, 25*

PTRC European Transport Forum, Brunei University, Volume P419, pp9-17

150

References

CASSIDY S., 1995, " What you don't know won't hurt you!"; The Impacts Of

Automatic Vehicle Location Systems on Bus Operations and Planning, Proceedings of

Seminar D: Public Transport Planning and Operations, 23^ European Transport

Forum, University of Warwick, 11-15 September, pp. 35-48.

CHANG G. L., VASUDEVAN M., 1995, Modeling and Evaluation of Adaptive Bus-

Preemption Control With and Without AVL Systems, Proceedings of the 6th

International VNIS, 30 July - 2 August 1995, Washington, USA, pp305-316.

CHENEY C. N., 1992, Keeping Buses Moving, Proceedings of Seminar D: Public

Transport Planning and Operations, 20* European Transport Forum, PTRC, pp. 129-

140.

CPT, 2001, The Factors Affecting Bus Reliability, Confederation of Passenger

Transport, Imperial House, London.

CZOGALLA O., HOYER R., 1997, Simulation Based Design of Control Strategies

for Urban Traffic Management and Control, Proceedings of the 4th World Congress

on Intelligent Transport Systems, 21-24 October 1997, Berlin (Paper No. 2265)

DAVIES R. M., O'KEEFE R. M., 1989, Simulation Modelling with Pascal, First

edition. Prentice Hall International (UK) Group, pp 146-147.

r)e;pv\jr.tra/ce%\rr (zwf tthii v ind t h i ? i t i ;gic)ns,

1997, Keeping Buses Moving: A Guide To Traffic Management To Assist Buses In

Urban Areas, Local Transport Note LTN 1/97, The Stationery Office, 49 High

Holborn, London, Wclv 6hb, United Kingdom.

()]? t i h e ibosrvtulcdtsnvcernrr, t tr/ lnslpcditt t h e ; rje(3i(]n!s,

1998, A New Deal for Transport: Better for Everyone, The Government's white paper

on the future of transport, HMSO, London, United Kingdom.

151

References

DRUITT S., 1998, An Introduction to Microsimulation, Traffic Engineering and

Control, Vol. 39 (9), pp480-483

FELIJENIXlRf 1996, XISSIM for TraKk Si&wl Tjaf&c

Technology International '96, 1996, pp 190-192

GARMIN INC., 2000, GPS Guide for Beginners, GARMIN International, Inc,

Kansas, U.S.A.

HEN2, 1997, Highway Economics Note No. 2, Section 2, Values of Time and Vehicle

Operating Costs, Chapter 2, Design Manual for Roads and Bridges, Volume 13,

November 1997, Highways Agency, HMSO

HILL R., 2000, Real Time Passenger Information and Bus Priority System in Cardiff,

From Vision to Reality: Proceedings of the 7"' World Congress on Intelligent

Transport Systems, 6-9 November 2000, Turin, Italy

HOLMAN S., WILLUMSEN L., 1991, Computer Assisted Design of Bus Priority

Schemes, Proceedings of Seminar H: Public Transport Planning and Operations, 19*

PTRC European Transport Forum, University of Sussex, 9-13 September 1991, pp.

79-91

HOUNSELL N., WALL G., 2002, Examples of New Intelligent Transportation

Systems Applications in Europe to Improve Bus Services, Proceedings of 2002

Annual Meeting of Transportation Research Board, Washington, 10-12 January 2002,

paper no 02-3451.

HOUNSELL N. B., MCLEOD F. N., GARDNER K., HEAD J. R., COOK D., 2000,

Headway-Based Bus Priority in London using AVL: First Results, Proceedings Of

10"' International Conference On Road Transport Information And Control, London,

4-6 April, 2000, lEE Conference Publication NO. 472, pp218-222

152

References

HOUNSELL N., MCLEOD F., 1999, Automatic Vehicle Location and Bus Priority;

The London System, World Transport Research, Selected Proceedings of the 8""

World Conference on Transport Research, Volume 2, Planning, Operation,

Management and Control, pp. 279-292

HOUNSELL N., MCLEOD F., 1998, Automatic Vehicle Location Implementation,

Application and Benefits in the United Kingdom, Transportation Research Record

1618,ppl55-162

HOUNSELL N. B., BOWEN G. T., COOK D. J., GARDNER K., 1997, SPRINT:

Active Bus Priority in Fixed Time UTC in London, Proceedings of Seminar K;

Traffic Management and Road Safety, 25"' PTRC European Transport Forum, Brunei

University, 1-5 September 1997. Volume P419, pp75-86.

HOUNSELL N. B., MCLEOD F. N., LANDLES, J. R., GARDNER K., 1996, Bus

Priority in London; Building on Prompt, Proceedings of the Third World Congress on

Intelligent Transport Systems. Location: Orlando, USA, October 1996

HOUNSELL N. B., MCLEOD F. N., BRETHERTON R. D., BOWEN G.T., 1996,

PROMPT; Field Trial and Simulation Results of Bus Priority in SCOOT, Proceedings

of International Conference on Road Traffic Monitoring and Control, lEE Publication

No. 422,23-25 April 1996, pp 90-94

HOUNSELL N. B., LANDLES J. R., 1995, Public Transport Priority at TrafGc

Signals In London; Progress, Performance And Opportunities, Proceedings Of The

Second World Congress On Intelligent Transport Systems '95 Yokohama. Volume 1.

1995/11. Pp273-8

HUNT, P. B., et. al, 1981, SCOOT; A Traffic Responsive Method for Co-ordinating

Signals, Transport and Road Research Laboratory Report LR 1014, Crowthrone, UK

153

References

IBRAHIM D., 2000, Improving Accuracy for GPS Vehicle Navigation Systems in

London, Traffic Engineering and Control, June 2000, pp 228-232.

rtJSTnriJTTEftDiF /U4D TTR/Û SIPORTr, 1987, Roads and Traffic ui IJrbim

Areas, HMSO, pp. 214- 228

rb̂ STTTUTTE ()F .AJSnC) jTBL/LhlSlPCDRTT, 1997, TTransqpoil: ui thie IJrtxin

Environment, HMSO, pp. 329- 348

]<]HLA.SN/LEHS, Kj\RNVlTI, R.]&., RLLnEXFLAJRjAjnL;, IR.. IC., 1996, ffEiTISIAd-lBsuxxj

Approach to Evaluation of Bus Preemption Strategies, Transportation Research

Record. 1996. (1554)pp80-89

KING, G. N., 1992, London-Wide Bus Priority - Achievable in the 1990's?,

Proceedings of Seminar D; Public Transport Planning and Operations, 20* European

Transport Forum, PTRC, pp. 153-164

KONTARATOS M., BALIS V., LIAPAKIS C., 1996, GPS-Based AVL System: A

Tool for Supporting Public Transport Operation in the Urban Area, Proceedings of the

Third World Congress on Intelligent Transport Systems. Location: Orlando, Florida,

1996. ppl02-

KRAKIWSKY E. J., 1995, Analysis of Automatic Vehicle Location and Navigation

Systems Built Worldwide, Proceedings of 2"'' World Congress on Intelligent

Transport Systems '95 Yokohama, November 9-11, 1995, Vol. V, pp 2216- 2220

[JLI (ZJL/LRK: S., N4{)r4TrCrC)Ad]iRTf F., TAf/lTTLllSKj I)., 1999, IVluzroscmpic

Modelling of Traffic Management Measures for Guided Bus Operation, Proceedings

of 8"' World Congress on Transport Research, Volume - 2, Planning, Operation,

Management and Control, Pergamon, 1999, pp367-80

154

References

LOBO A. X., 1998, A Review of Automatic Vehicle Location Technology and Its

Real-Time Applications, Transport Reviews, 1998, Vol. 18, No. 2, ppl65-191

MCLEOD F., 1998, Headway-Based Selective Priority to Buses, Mathematics in

Transport Planning and Control, Pergamon, pp. 69-78

MIORANDI J., CAMPBELL J., 1997, Waterworks Road Intelligent Bus Priority

Pilot, Proceedings of the 4th World Congress on Intelligent Transport Systems, 21-24

October 1997, Berlin (Paper No. 2265)

NICKEL B. E., 1997, Telematic Applications in German Public Transport, Mobility

for Everyone: Proceedings of the 4* World Congress on Intelligent Transport

Systems, 21-24 October, 1997, Berlin, 9 pages

OAKES J. A. J., THELLMANN A. M., KELLY 1. T., 1994, Innovative Bus Priority

Measures, Proceedings of Seminar J: Traffic Management and Road Safety, 22"^

PTRC European Transport Forum, Vol. 381, pp. 153-164

OCHIENG W.Y., SAUER K., 2002, Urban Road Transport Navigation: Performance

of the Global Positioning System after Selective Availability, Transportation

Research, Part C, 2002, pp 171-187

PARSONS D., 1997, Object Oriented Programming with C++, Edition, Letts

Educational, Aldine Place, London

PRISCILLA, 2001, Bus Priority Strategies and Impact Scenarios Development on a

Large Urban Area, Deliverable 2, Public Transport Priority: State of the Art Review,

March 2001, pp. 66-67,108

RAJBHANDARI B., 2002, Modelling Intelligent Transport System Applications for

Public Transport, PhD Thesis, Department of Civil Engineering, University of

Southampton, pp. 113-114

155

References

ROBERTSON D. I., VINCENT R. A., 1975, Bus Priority in a Network of Fixed Time

Signals, Transport and Road Research Laboratory Report LR666, Crowthorne.

RUDNICKI A., 1997, Measures of Regularity and Punctuality in Public Transport

Operation, Transportation Systems, Preprints of 8"' IFAC/IFIP/IFORS Symposium,

Chania, Greece, 16-18 June, 1997.

RUPPRECHT W., 2001, Post SA GPS Accuracy Measurements,

wolfgang@charlotte. wsrcc. com

SALTER R. J., HOUNSELL N. B., 1996, Highway Traffic Analysis and Design, 3"*

edition, McMillan Publishing Company, UK

SALTER R. J., SHAHI J., 1979, Prediction of Effects of Bus-Priority Schemes by

Using Computer Simulation Techniques, Transportation Research Record No. 718,

ppl-5

SANTHAKUMAR S. M., HARIHARA P., 1992, Transportation Systems

Management Options to Improve Urban Bus Route Performance Using Computer

Simulation, Transportation Research Record No. 1338, pp22-27

SEDDON P. A., DAY M. P., 1974, Bus passenger Waiting Times in Greater

Manchester, Traffic Engineering and Control, January 1974, pp 442- 445

SHRESTHA B. P., 2002, Simulating Differential Bus Priority at Traffic Signals for

Improving Bus Regularity, 34"' UTSG Annual Conference, Transport Research

Institute, Napier University, 3-5 January 2002, Volume II, paper no. 46

SMITH M. W., NELSON, J. D., BELL, M. G. H., DICKINSON, K. W., 1994,

Developing the Concept of Buses as Probes: The Integration of Automatic Vehicle

156

References

Locationing and Urban Traffic Control Systems, 7* IFAC/IFORC Symposium on

Transportation Systems, TianJin, China, 1994, pp637-42

SOUTHAMPTON CITY COUNCIL, 1999, Public Transport Development study.

Summary Report, March 1999

TRIPS Version Seven Manual, 1996, MVA Systematica, 1996

TJTSrrVTERISITrir C)!? SC)ir]THL4L\dOPT()}J, 1()88, ET/alwitkm ()f S]E]L]<]3}jTr Bua Piioiity

Scheme, Final Report to the Traffic Control Systems Unit, London

LOfT/ERSITlf (IF SOUTFDVkOPTOfJ, 1996, vWIVBua Pnorky FeaubUky

Final Report to London Transport Buses

IJNIT/IiRSITlf ()F S()UTH/\lvrPTr()N, 1997, Bus Î riority at Traffic Signal: .AJVLyBP

Headway Algorithm, Final Report to London Transport Buses

T&riL]L()lJ(jIiHBlf])., IHA/DVfliRStZMSr P., 1999, ?<etw()rk IidxsKictkm - Reifiew of

Existing Modelling Techniques, Traffic Engineering and Control, Vol. 39(2), pp81-82

WREN A., 1996, ROMANSE - Road Management System for Europe, Proceedings

of Seminar H : 24* PTRC European Transport Forum, Vol. 407

WREN A., 1996, ROMANSE - Information Dissemination, Proceedings of the Third

World Congress on Intelligent Transport Systems, Orlando, Florida, 1996. pp287-288

YORK I. O., 1993, Factors Affecting Bus-Stop Times, TRL Project Report 2, Tl/25,

Transport Research Laboratory, Crowthorne, UK

157

APPENDIX A: Data Collection Forms

Appendix A

Table A2: Data collected using handheld computer

Route 3, Portswood to Town Centre

FILE NAME = WW094
DATE IS 13 11 2001

14.Bus stop
Arrival time 9
Arrival time 10
Departure time 10
15.Traffic signal

Arrival time 10
Departure time 10
16.Bus stop

Arrival time 10
Departure time 10
17.Bus stop

Arrival time 10
Departure time 10
18.Traffic signal

Arrival time 10
Departure time 10
19.Bus stop

Arrival time 10
Departure time 10
20.Traffic signal

Arrival time 10
Departure time 10
21.Bus stop

Arrival time 10
Departure time 10
22.Bus stop

Arrival time 10
Departure time 10
23.Bus stop

Arrival time 10
Departure time 10
24.Traffic signal

Arrival time 10
Departure time 10
25.Bus stop

Arrival time 10
Departure time 10
26.Traffic signal

Arrival time 10
Departure time 10
27.Bus stop

Arrival time 10
Departure time 10
28.Bus stop

927.13

Somerfield
49 48 5
4 54 98
6 15 94

Brookvale Road junction
6 44 83

6 45 66
Safeway
7 3 56
7 43 0
Spring Crescent
8 27 38

8 55 33
Lodge Road junction
9 11 10
9 15 44
Cedar Road

10 14 92
10 15 53
Stag Gates junction

11 6 39
11 40 22
Stag Gates

11 54 23
12 6 9
Middle Street

12 26 58
12 27 13
Law Courts

13 15 35
13 40 51
Cumberland Place junction

15 17 40
15 22 45
Cenotaph

15 46 73

16 4 3
New Road junction

16 51 15
17 57 1
Marlands

18 24 31
18 56 66
Pound Tree

159

Appendix A

Table A3: Manual data collection inside a bus

Portswood - Lodge Road - City Route (3)

Date:

Time : ^ o ; o 2

Day: CzXj::!

c uxtjci^

i w w o 4 0 4 - q 2 : 7 . 1 3

a^l/'^-o.-cly z_ z '

S.N Type Name Dist Arrival Alight Board Departure

1 Bus stop Portswood/Somerfield 1800.0
10:04-: SZj 1 0 1-

2 Traffic signal Brookvale road Jn 1960.0 - -

3 Bus stop Safeway 2060.0
1 3 lo:o?-:4_3

4 Bus stop Spring crescent 2410.0
o 1

5 Traffic signal Lodge road Junction 2440.0 - -

6 Bus stop Cedar road 2620.0
0 o

7 Traffic signal Stage gate Junction 2950.0 - -

8 Bus stop Stage gate 2990.0
-1 1

9 Bus stop Middle street 3210.0
0 O

10 Bus stop Law court 3490.0 3 o
11 Traffic signal Cumberland place Jn 3870.0 - -

12 Bus stop Cenotaph 4010.0
2 i

13 Traffic signal New road Junction 4230.0 - -

14 Bus stop Marland 4320.0
1 2_ o

15 Bus stop Pound tree 4540.0
— — — — •—

0.0 0.0

t

/

160

Appendix A

Table A4: Signal stage data from SCOOT

Hour Minute Sees Junction Intergreen Green Total

9 59 15 11 N04141 3 6 23 29

9 59 58 11 N04141 1 9 34 43

10 0 11 11 N04141 2 6 7 13

10 0 39 11 N04I41 3 6 22 28

10 1 26 11 N04141 1 9 38 47

10 1 39 11 N04141 2 6 7 13

10 2 10 11 N04141 3 6 25 31

10 2 54 11 N04141 1 9 35 44

10 3 7 11 N04141 2 6 7 13

10 3 35 11 N04141 3 6 22 28

10 4 14 11 N04141 1 9 30 39

10 4 27 11 N04141 2 6 7 13

10 4 51 11 N04141 3 6 18 24

10 5 38 11 N04141 1 9 38 47

10 5 51 11 N04141 2 6 7 13

10 6 18 11 N04141 3 6 21 27

10 6 58 11 N04141 1 9 31 40

10 7 11 11 N04141 2 6 7 13

10 7 39 11 N04141 3 6 22 28

10 8 18 11 N04141 1 9 30 39

10 8 31 12 N04141 2 6 7 13

10 9 0 11 N04141 3 6 23 29

10 9 34 11 N04141 1 9 25 34

10 9 47 11 N04141 2 6 7 13

10 10 21 11 N04141 3 6 28 34

10 10 57 11 N04141 1 9 27 36

10 11 10 11 N04141 2 6 7 13

10 11 42 11 N04141 3 6 26 32

10 12 17 11 N04141 1 9 26 35

10 12 30 11 N04141 2 6 7 13

10 12 55 11 N04141 3 6 19 25

10 13 41 11 N04141 1 9 37 46

10 13 54 11 N04141 2 6 7 13

10 14 22 11 N04141 3 6 22 28

10 14 57 11 N04141 1 9 26 35

10 15 10 11 N04141 2 6 7 13

10 15 39 11 N04141 3 6 23 29

161

Appendix A

Table AS: Junction flowdata from SCOOT

H
ou
rs

M
in
ut
es

Se
C O

nd
s

Ti
ck

SCN period stp IMy*10 flow cong raw fits

10 0 30 12 N04141A 300 109 15 121 0 0 0

10 5 30 12 N04141A 300 54 9 58 0 0 0

10 10 30 12 N04141A 300 90 11 91 0 0 0

10 15 30 12 N04141A 300 93 9 93 0 0 0

10 20 30 12 N04141A 300 108 13 109 0 0 0

10 25 30 12 N04141A 300 136 12 137 0 0 0

10 30 30 12 N04141A 300 66 7 66 0 0 0

10 35 30 12 N04141A 300 85 11 87 0 0 0

10 40 30 12 N04141A 300 100 6 102 0 0 0

10 45 30 12 N04141A 300 96 10 103 0 0 0

10 50 30 12 N04141A 300 64 4 70 0 0 0

10 55 30 12 N04141A 300 83 4 93 0 0 0

11 0 30 12 N04141A 300 39 2 47 0 0 0

11 5 30 12 N04141A 300 113 8 127 0 0 0

11 10 30 12 N04141A 300 90 8 91 0 0 0

11 15 30 12 N04141A 300 113 8 113 0 0 0

11 20 30 12 N04141A 300 151 9 155 0 0 0

11 25 30 12 N04141A 300 123 10 129 0 0 0

11 30 30 12 N04141A 300 91 7 94 0 0 0

11 35 30 12 N04141A 300 98 8 108 0 0 0

11 40 30 12 N04141A 300 165 17 165 0 0 0

11 45 30 11 N04141A 300 103 7 103 0 0 0

11 50 30 12 N04141A 300 126 14 135 0 0 0

11 55 30 12 N04141A 300 140 9 140 0 0 0

12 0 30 12 N04141A 300 191 20 194 0 0 0

12 5 30 12 N04141A 300 159 16 159 0 0 0

12 10 30 12 N04141A 300 143 16 157 0 0 0

12 15 30 12 N04141A 300 168 15 183 0 0 0

12 20 30 12 N04141A 300 135 9 141 0 0 0

12 25 30 12 N04141A 300 171 24 172 0 0 0

10 0 30 12 N04141B 300 483 29 529 0 0 0

10 5 30 12 N04141B 300 155 7 427 0 0 0

10 10 30 12 N04141B 300 378 18 511 0 0 0

10 15 30 12 N04141B 300 360 19 459 0 0 0

162

Table A6: Junction delay data from SCOOT

Time Junction Speed
AdUe

Speed Flow Occ Hr Sr Count

10:00:00 10000011 04141/L 19 30 13 3 9031 160 10

10:05:00 10050011 04141/L 20 32 8 1 11270 130 10

10:10:00 10100011 04141/1 20 32 11 2 9870 130 10

10:15:00 10150011 04141/1 16 25 8 2 10665 135 10

10:20:00 10200011 04141/1 14 22 12 2 9041 158 10

10:25:00 10250011 04141/1 18 28 14 2 8955 144 10

10:30:00 10300011 04141/L 14 22 9 2 9898 101 10

10:35:00 10350011 04141/L 11 17 9 2 9875 125 10

10:40:00 10400011 04141/L 14 22 9 2 10055 165 10

10:45:00 10450011 04141/L 19 30 13 2 9160 140 10

10:50:00 10500011 04141/1 11 17 9 1 9728 71 10

10:55:00 10550011 04141/L 17 27 11 2 9782 117 10

11:00:00 11000011 04141/L 8 12 6 1 10543 56 10

11:05:00 11050011 04141/1 19 30 13 2 9542 157 10

11:10:00 11100011 04141/L 20 32 12 2 9762 137 10

11:15:00 11150011 04141/1 19 30 12 2 9090 110 10

11:20:00 11200011 04141A 24 38 18 3 7605 190 10

11:25:00 11250011 04141/1 28 45 17 3 7835 175 10

11:30:00 11300011 04141/L 12 19 8 1 10982 117 10

11:35:00 11350011 04141A 22 35 13 3 9778 221 10

11:40:00 11400011 04141A 27 43 20 3 7501 198 10

11:45:00 11450011 04141A 15 24 11 2 9101 98 10

11:50:00 11500011 04141A 19 30 18 3 7890 150 10

11:55:00 11550011 04141A 17 27 14 2 8826 173 10

12:00:00 12000011 04141A 22 35 21 4 6829 210 10

12:05:00 12050011 04141A 27 43 18 3 8285 214 10

12:10:00 12100011 04141A 28 45 21 3 7942 157 10

12:15:00 12150011 04141A 22 35 19 4 7468 172 10

12:20:00 12200011 04141A 19 30 14 3 8613 186 10

12:25:00 12250011 04141A 25 40 22 4 6527 172 10

10:00:00 10000011 04141B 22 35 53 13 3303 289 10

10:05:00 10050011 04141B 25 40 45 9 2960 219 10

10:10:00 10100011 04141B 24 38 53 10 2822 229 10

10:15:00 10150011 04141B 25 40 45 9 2846 226 10

163

APPENDIX B: Source Code of SIMBOL

Appendix B

//

iifndef InputDialogFH
#define InputDialogFH
//
#include <vcl\System.hpp>
#include <vcl\Windows.hpp>
#include <vcl\SysUtils.hpp>
iinclude <vcl\Classes.hpp>
#include <vcl\Graphics.hpp>
#include <vcl\StdCtrls.hpp>
iinclude <vcl\Forms.hpp>
iinclude <vcl\Controls.hpp>
iinclude <vcl\Buttons.hpp>
iinclude <vcl\ExtCtrls.hpp> //

class TInputDialog ; public TForm
(
published:

TButton *OKBtn;
TButton *CancelBtn;
TBevel *Bevell;
TEdit *editSimPeriod;
TLabel *Label2;
TLabel *Label3;
TEdit *editSiiaSpeed;
TRadioButton *rbNoPrior;
TRadioButton *rbSVDPrior;
TRadioButton *rbAVLPrior;
TLabel *Label4;
TLabel *Label5;
TLabel *Label6;
TRadioGroup *rgAvl;
TCheckBox *cbPass;
TLabel *Labell;
TComboBox *cbLogicNos;
TLabel *IblPriorityStrategy;
TCheckBox *cbCar;
TLabel *Label7;
TCheckBox *cbSignal;
TLabel *Label8;
TLabel *lblPollingFrequency;
TEdit *editPollingFrequency;
TLabel *lblGpsAccuracy;
TEdit *editGpsAccuracy;
TLabel *lblOdoineterAccuracy;
TEdit *editOdometerAccuracy;
TCheckBox *cbHolding;
TLabel *Label9;
TCheckBox *cbDoublePass;
TLabel *LabellO;
TCheckBox *cbGpsError;
TLabel *Labelll;
void fastcall FormCreate(TObject * Sender);
void fastcall rbNoPriorClick(TObject *Sender);
void fastcall rbAVLPriorClick(TObject *Sender);
void fastcall rbSVDPriorClick(TObject *Sender);
void fastcall editSimPeriodKeyPress(TObject *Sender, char &Key);
void fastcall rgAvlClick(TObject *Sender);
void fastcall editSimSpeedKeyPress(TObject ^Sender, char &Key);
void fastcall editPollingFrequencyKeyPress(TObject *Sender^ char

&Key);
private:
public:

virtual fastcall TInputDialog(TComponent* AOwner);
int newPriorityOption;
int newSimPeriod;
int newSimSpeed;
int newPollingFrequency;
int newGpsAccuracy;
int newOdometerAccuracy;

int newLogicNumber;

164

Appendix B

int newAvlSystem;
int holdingBusstop;
int gpsError;
float doublingPassenger;
int newPassGenerateMode;
int signalPhasesVisible;
int carGeneratedVisible;
bool fastcall Execute (void);

//
extern PACKAGE TInputDialog //

iendif

'InputDialog;

165

Appendix B

//
iinclude <vcl.h>
tpragma hdrstop

iinclude "InputDialogF.h"
/ /
#pragma resource "*.dfm"
TInputDialog *InputDialog; //

fastcall TInputDialog::TInputDialog(TComponent* AOwner)
: TForm(AOwner)

{
}
//

void fastcall TInputDialog::FormCreate(TObject *Sender)
{
newSlmPeriod=36400;//29100;//7590;//7390;//7570;//7415;
newSimSpeed=100000; //Default=1000
newPollingFrequencY=l;//20; //Default=30 sees
newGpsAccuracy=0; //Default=10
newOdometerAccuracy=100;
}
/ /
bool fastcall TInputDialog::Execute(void)
{
editSimPeriod->Text=IntToStr(newSimPeriod); //These are the start values
editSimSpeed->Text=IntToStr(newSimSpeed);
editPollingFrequency->Text=IntToStr(newPollingFrequency);
editGpsAccuracy->Text=IntToStr(newGpsAccuracy);
editOdometerAccuracy->Text=IntToStr(newOdometerAccuracy) ;
cbLogicNos->IteinIndex=l;//2;//3;//2;

ActiveControl=editSimPeriod;

if(ShowModal () == mrOk)
{

if(rbNoPrior->Checked) newPriorityOption=0;
else if(rbSVDPrior->Checked) newPriorityOption=l;
else newPriorityOption=2;

if (rgAvl->ItemIndex==0) newAvlSysteiri=l;
else if(rgAvl->ItemIndex==l) newAvlSystem=2;
else { }

if(cbHolding->Checked) holdingBusstop=7;
else holdingBusstop=99;
if(cbGpsError->Checked) gpsError=l;
else gpsError=0;
if(cbDoublePass->Checked) doublingPassenger=2.0;
else doublingPassenger=l.0;
if(cbPass->Checked) newPassGenerateMode=l;
else newPassGenerateMode=0;
if(cbSignal->Checked) signalPhasesVisible=l;
else signalPhasesVisible=0;
if(cbCar->Checked) carGeneratedVisible=l;
else carGeneratedVisible=0;

newSimPeriod=StrToInt(editSiinPeriod->Text);
newSimSpeed=StrToInt{editSimSpeed->Text);
newPollingFrequency=StrToInt(editPollingFrequency->Text);
newGpsAccuracy=StrToInt(editGpsAccuracy->Text);
newOdometerAccuracy=StrToInt(editOdometerAccuracy->Text) ;
newLogicNumber=(cbLogicNos->ItemIndex)+1;
return true;
}
else return false;
}
//
void fastcall TInputDialog::rbNoPriorClick (TObject *Sender)

rgAvl->Visible=false;
cbLogicNos->Visible=false;

166

Appendix B

IblPriorityStrategy->Visible=false,•
IblPollingFrequency->Visible=false ;
eciitPollingFrequency->Visible=false;
lblGpsAccuracy->Visible=false;
editGpsAccuracy->Visible=false;
lblOdometerAccuracy->Visible=false;
editOdometerAccuracy->Visible=false;
}
//

void fastcall TInputDialog::rbSVDPriorClick(TObject *Sender)
{
rgAvl->Visible=false;
cbLogicNos->Visible=false;
lblPriorityStrategy->Visible=false;
IblPollingFrequency->Visible=false;
editPollingFrequency->Visible=false;
lblGpsAccuracy->Visible=false;
editGpsAccuracy->Visible=false;
lblOdometerAccuracy->Visible=false;
editOdometerAccuracy->Visible=false;
}
//

void fastcall TInputDialog::rbAVLPriorClick(TObject *Sender)
(
rgAvl->Visible=true;
rgAvl->ItemIndex=0;
cbLogicNos->Visible=true;
lblPriorityStrategy->Visible=true;
lblPollingFrequency->Visible=true;
editPollingFrequency->Visible=true;
lblGpsAccuracy->Visible=true;
editGpsAccuracy->Visible=true;
lblOdometerAccuracy->Visible=false;
editOdometerAccuracy->Visible=false;
}
//

void fastcall TInputDialog::rgAvlClick(TObject *Sender)
{
if(rgAvl->ItemIndex==0)
{

lblPollingFrequencY->Visible=true;
editPollingFrequency->Visible=true;
lblGpsAccuracy->Visible=true;
editGpsAccuracy->Visible=true;
lblOdoineterAccuracy->Visible=false;
editOdoineterAccuracy->Visible=false;
}
if(rgAvl->ItemIndex==l)
{
IblPollingFrequency->Visible=false;
editPollingFrequency->Visible=false;
lblGpsAccuracy->Visible=false;
editGpsAccuracy->Visible=false;
lblOdometerAccuracy->Visible=true;
editOdometerAccuracy->Visible=true;
}

}
/ /
void fastcall TInputDialog::editSimPeriodKeyPress(TObject *Sender,char
5Key)
(
if((Key<'0') I I (Key>'9'))
(
MessageBeep(0);
Key= ' \0 ' ;
}

}
//
void fastcall TInputDialog::editSimSpeedKeyPress(TObject *Sender,char &Key)

if((Key<'0')||(Key>'9'):
(

167

Appendix B

MessageBeep(0);
Key='\0';
}

}

//

void fastcall TInputDialog::editPollingFrequencyKeyPress(TObject
*Sender,char &Key)
{
if((Key<'0')||(Key>'9'))
(
MessageBeep(0);
Key='\0';
}

}
//

168

Appendix B

//
iifndef MainSimFH
#define MainSimFH
//

#Include <Classes.hpp>
tinclude <Controls.hpp>
#include <StdCtrls.hpp>
iinclude <Forms.hpp>

#Include "BusList.h"
iinclude "BusStop.h"
#include "Link.h"
#include "Bus.h"
iinclude "Signal.h"
iinclude "Detector.h"
#include "Beacon.h"
iinclude "VirtualDetector.h"
iinclude "InputDialogF.h"

iinclude <ExtCtrls.hpp>
//
class TMainSim : public TForm
{

published: // IDE-managed Components
TButton *StartBtn;
TButton *CloseBtn;
void fastcall StartBtnClick(TObject *Sender);
void fastcall CloseBtnClick(TObject *Sender) ;

private: // User declarations

int enterSimTime;
int tempBusNumber;
int routeLength;
int windowWidth;
int simulationPeriod;
float timeFactor;
int simulationSpeed;
int busGenerateTime;
int pollingFrequency;
int gpsAccuracy;
int odometerAccuracy;
int holdBusStop;
float passengerRateFactor;

int priorityOption;
int logicNumber;
int avlSystem;
int passGenOption;
int signalVisible;
int carVisible;

int totalBusstopNo;
int totalSignalNo;
int totalLinkNo;
int totalDetectorNo;
int totalBeaconNo;
int totalVirtualDetectorNo;

void RouteParameters(int startLag,float passRateFactor);
void DummyParameters();
void DrawRouteO;
void DrawSignalPhase0;
void ChangeSignalPhase(int times);
void DrawDetectorBeacon{);
void DisplaySimTime(int SimTime);
int CountDigit(int number);

void ChangeBusNumber(int busnos);
int StartBusNumber();
void Simulate(int time,int busNumber,float busPosiZ,int holdBusStop)
void MoveBus(int oldpos, int newpos, int nosBuses);
void GenerateCar(int times);

169

Appendix B

void DrawCar{);
void DrawPass(int times);
void ChangeLinkPara(float busPosi2);
void CheckBusstops(int times,int busNumber,float busPosi2,int

holdBusStop);
void CheckSignals(int times,int busNumber,float busPosi2);
void CheckSVDPriority(int times,int busNumber,float busPosi2);
void CheckAVLPriority(int times,int busNumber, float avlBusPosi2)
void CheckBeacons (int times,int busNumber,float busPosi2);

float AvlSystem(int time,int busNumber,float busPosi2);
int RandomBusGenerate();

void OutputHeaders();
void OutputFile(int busNumber,float passRateFactor);
void BusGenerate(int option, int times);

void BusData(int time);

BusList* list;
BusStop*busstop[16];
Signal*signal[40];
Link*link[28];
Detector*detector[12];
Beacon*beacon [5] ;
VirtualDetector*vDetector [12];
Bus*currentBus;
BusStop* currentBusstop;
Signal* currentSignal;
Link* currentLink;
Detector* currentDetector;
Beacon* currentBeacon;
VirtualDetector* currentVDetector;

int stopOut[16] [3 0 0] ; / / I S O]; more simu time

public: // User declarations
fastcall TMainSim(TComponent* Owner);

};
//

extern PACKAGE TMainSim *MainSim; //

#endif

170

Appendix B

/ / -

#include <vcl.h>
#pragma hdrstop

#include <stdio.h>
#include "MainSiitiF.h" //

#pragma package(smart_init)
ipragma resource "*.dfin"
TMainSim *MainSim;
FILE* stream,*streaml,*stream2,*stream21,*stream3,*stream4,*streams,*stream5,
*stream7,*stream8,*stream9,*streamlO,*streamll; //

fastcall TMainSim::TMainSim(TComponent* Owner)
: TForm(Owner)

{
streamll = fopen("ComparativeChart.txt", "w+");
fprintf(streamll, "\n \n %s","Comparative chart of different bus priority

options");
fprintf(streamll, "\n \n%s %s %s %s %s %s %s %s","SimTime",

"priority","TotPass"," TotPassWait"," TotBusJr"," TotPassJr","
TotCarDly","TotCost");
fprintf(streamll, "\n %s %s %s %s %s %s %s %s", "(sees)", " (Nos)","
(Nos)"," (hrs)"," (hrs)"," (hrs)"," (hrs)", " (£)");
fclose(streamll);

/ /
void fastcall TMainSim::StartBtnClick(TObject *Sender)
{
if(InputDialog->Execute ()) //for Dialog Box
{

priorityOption=InputDialog->newPriorityOption;
simulationPeriod=InputDialog->newSimPeriod;
simulationSpeed=InputDialog->newSimSpeed;
logicNumber=InputDialog->newLogicNumber;
if(priorityOption!=2) logicNumber=0; //to avoid priority logic for No/SVD
avlSystem=InputDialog->newAvlSystem,•
pollingFrequency =InputDialog->newPollingFrequency;
//gpsAccuracy=InputDialog->newGpsAccuracy;
gpsAccuracy=InputDialog->gpsError;
odometerAccuracy =InputDialog->newOdometerAccuracy;
holdBusStop=InputDialog->holdingBusstop;
passengerRateFactor=InputDialog->doublingPassenger;
passGenOption=InputDialog->newPassGenerateMode;
signalVisible=InputDialog->signalPhasesVisible;
carVisible=InputDialog->carGeneratedVisible;
}
else Close();

//
//Initialising

//

tempBusNumber=l;
routeLength = 4325; //Marland is at 4320 & 5 m extra for Visual Correction
windowWidth = 1000; //default =1000
timeFactor =1.0; //default = 1.0 which divides 1 sec to get

update inetrval 40.0 corresponds to real time
int generateFactorl=0;
int generateFactor2=0;
int generateFactor3=0;

busGenerateTime=600;//300; //default =300 needed for differential
//
BusList* list = new BusList(); //Defining List for buses
RouteParameters(0,passengerRateFactor);//lOO); //lOO seconds lag
DrawRouteO; //Drawing roads. Signals, Busstops and place names
OutputHeaders();
//
//Start of Simulation - Generating Buses at Origin according to time

//
randomize();
//int startTime=1000;
int simuperiod=simulationPeriod;

171

Appendix B

enterSimTime=simuperiod;
for {int time = 0; time <simulationPeriod; time++)
{

DisplaySimTime(time/timeFactor); //Displays time
float realTime = (time/timeFactor);
fprintf(stream, "\n %c %6.2f %c", ' realTime, ' ');
fprintf(Streams, "\n %c %6.2f %c", ' ', realTime, ' ');
fprintf(streams, "\n %c %6.2f %c", ' ', realTime, ' ');
if (realTime<999) fprintf(stream21, "\n %5.If",realTime);
//GenerateCar(time/timeFactor);
ChangeSignalPhase(time/timeFactor); //Changing Traffic Signal phase
GenerateCar(time/timeFactor);
if(signalVisible==l)DrawSignalPhase(); //Drawing Traffic Signal phase
if(carVisible==l)DrawCar(); //Drawing cars at the signals
if(passGenOption==l)DrawPass(time/timeFactor); //Drawing passengers //

if(time<simuperiod) //for not generating buses after simulation period
(
int option=100;//OO;//lOO;
if (option—00)
{
//generates buses in a fixed time interval
if (time==(generateFactorl*busGenerateTime*timeFactor+60+45))
{
int routeSpecifier=generateFactorl%2;
if(routeSpecifier==0) list->addBus(new

Bus("Busl",111,18.0,0.0,90,0,0,0,0,9,8,8,8,10,2450.0)); //Service 11a
if(routeSpecifier==l) list->addBus(new

Bus("Busl",110,18.0,0.0,90,0,0,0,0,15,30,11,11,10,4330.0)); //Service 11
generateFactorl++;
}
if (time==(generateFactor2*busGenerateTime*timeFactor+300+45))
{
int routeSpecifier=generateFactor2%2;
if (routeSpecifier==0) list->addBus(new

Bus("Bus2",30,18.0,1800.0,90,7,7,7,7,15,30,11,11,22,4330.0));//Service 3
if{routeSpecifier==l) list->addBus(new

Bus("Bus2",31,18.0,1800.0,90,7,7,7,7,9,8,8,8,22,2450.0)); //Service 3a
generateFactor2++;
}
if (time==(generateFactor3*1800*timeFactor+1140+45))
{
list->addBus(new

Bus("Bus2",1010,18.0,1800.0,90,7,7,7,7,9,8,8,8,15,2450.0)); //Service 101
generateFactor3++;
}

}

if (option—100)
{
streamllO = fopen("busGenTimel.txt", "r");
int tempi;
char msgl[20];
fseek(streainllO, 0, SEEK_SET);
for (int i =0; i<30; i++)
{
fgets(msgl,10,streamllO);
tempi = atoi(msgl);
if (time==templ) list->addBus(new

Bus("Busl",110,18.0,0.0,90,0,0,0,0,15,30,11,11,10,4330.0));
}
fclose(StreamllO);

streamlll = fopen("busGenTime2.txt", "r");
int temp2;
char msg2[20];
fseelctstreamlll, 0, SEEK_SET);
for (int i =0; i<31; i++)
{
fgets(msg2,10,streamlll);
temp2 = atoi(msg2);

172

if (time==temp2) list->addBus(new
Bus("Busl",111,18.0,0.0,90,0,0,0,0,9,8,8,8,10,2450.0));

}

fclose(streamlll);

stream30 = fopen("busGenTimeS.txt", "r");
int temp3;
char msg3[20];
fseek(streamSO, 0, SEEK_SET);

for (int i =0; i<31; i++)
{

fgets(msg3,10,streamSO);
temp3 = atoi(msg3);
if (time==temp3) list->addBus (new

Bus("Bus2",30,18.0,1800.0,90,7,7,7,7,15,30,11,11,22,4330.0));
}
fclose(streamSO);

stream31 = fopen("busGenTime4.txt", "r");
int temp4;
char msg4[20];
fseek(streamSl, 0, SEEK_SET);
for (int i =0; i<30; i++)
{

fgets(msg4,10,stream31);
temp4 = atoi(msg4);
if (time==temp4) list->addBus(new

Bus("Bus2",31,18.0,1800.0,90,7,7,7,7,9,8,8,8,22,2450.0));
}
fclose(stream31);

streamlOlO = fopen("busGenTimeS.txt", "r");
int temp5;
char msgS[20];
fseek(StreamlOlO, 0, SEEK_SET);
for (int i =0; i<20; i++)
{
fgets(msgS,10,streamlOlO) ;
temp5 = atoi{msg5);
if (time==temp5) list->addBus(new

Bus("Bus2",1010,18.0,1800.0,90,7,7,7,7,9,8,8,8,15,2450.0));
}
fclose(StreamlOlO);

}
}

//
//Changing attributes of buses in a loop

//
int tempNumber=StartBusNumber0;
for(int number=tempNumber; number <=list->getLength(); number++)
{
int busNumber = number;
currentBus = list->getBus(number-1);
int numberOfBuses = list->getLength();
float busPosil = currentBus->oldPosition();
float busPosiZ = currentBus->newPosition(timeFactor);
MoveBus (busPosil,busPosi2,numberOfBuses);

fprintf(stream, "%6.2f %c", busPosi2, ' ');

Simulate(time,busNumber,busPosi2,holdBusStop);

if(time==simulationPeriod-l) //this is for making sure that all buses in
route reach destination

{

if{busPosi2<4326) simulationPeriod++;
else simulationPeriod=simulationPeriod;

}
if(busPosi2==9999) ChangeBusNumber(busNumber);

}
DrawDetectorBeacon(); //Blinking of Beacons and repainting of Detectors

173

Appendix B

]

OutputFile(list->getLength(),passengerRateFactor); //Formatted output
}
//
void TMainSiiti: : ChangeBusNumber (int busnos)
{

if (tempBusNuinber==busnos)
(
tempBusNumber=busnos+l;
}

}
int TMainSim;;StartBusNumber()
{
return tempBusNumber;
}
//
//

void TMainSim::Simulate(int time,int busNumber,float busPosi2,int
holdBusStop)
{

float avlBusPosi2=AvlSystem(time,busNumber,busPosi2);
ChangeLinkPara(busPosi2); //Changing link parameters
CheckBusstops(time/timeFactor,busNumber,busPosi2,holdBusStop); //Checking

Buses at Bus Stops
CheckSignals(time/timeFactor,busNumber,busPosi2); //Checking Buses at
signals
if(priorityOption==l) CheckSVDPriority(time/timeFactor,busNumber,busPosi2);
//Giving priority using Detectors
if{priorityOption==2)

CheckAVLPriority(time/timeFactor,busNumber,avlBusPosi2); //Giving priority
using AVL data
CheckBeacons(time/timeFactor,busNumber,busPosi2); //Detecting Buses at

Beacons
}

//
void TMainSim::ChangeLinkPara(float busPosi2)
{

int nextLinkNos=currentBus->nextLink{);
if (nextLinkNos<totalLinkNo)
{
currentLink = link[nextLinkNos];
if {busPosi2>=(currentLink->linkPosition()))
{

float presentSpeed = currentLink->thisLinkSpeed();
currentBus->getSpeed(presentSpeed) ;
}

}
}
//
void TMainSim:;CheckBusstops(int times,int busNumber,float busPosi2,int
holdBusStop)
{

//int passGenOption=0;
if(passGenOption==l)

int nextBusstopNos=currentBus->nextBusstop();
if (nextBusstopNos<=currentBus->LastBusstop ())//totalBusstopNo)
f -

int reserver;
int headway;
int waitTime;
int schTimel;
int busstopNo=nextBusstopNos;
int arrivalTime=currentBus->arriveBusstopTime(times,busstopNo);
int passJourney=currentBus->PassJourneyTime ();

174

174

Appendix B

stopOut[busstopNo][busNumber-l]= arrivalTime; //stored for formatted
output generated at the last

int passInside=currentBus->totalPassInside(0,0);
int service=currentBus->ServiceNuitiber () ;
if (service>100&&service<1000) schTimel=currentBusstop-

>ScheduleStartTimell();
if (service<100) schTimel=currentBusstop->ScheduleStartTime3();
if (service>1000) schTimel=currentBusstop->ScheduleStartTimel01();
if (busstopNo!=99) schTimel=0; //not checking schedule time
if((currentBusstop->ReservedNuml()==0))//&&(currentBusstop-

>ReservedNum2()==0))
{
headway = currentBusstop-

>headwayCalculate(times,busNumber,passlnside,schTimel,0,service) ; //it does
not make any difference in passBoard but shows only different in headway

currentBusstop->GetReserveBusl(busNumber);
//this difference in headway in compesated in Busstop ;:headwayCalculate-
schTime check

}

//But makes difference in case of bus staying for alighting passenger after
departure of first bus

else
//It may have some passenger during that period -calculated differently

{

//headway = currentBusstop-
>headwayCalculate(arrivalTime,busNumber,passlnside,schTimel,1);

headway = currentBusstop-
>headwayCalculate(times,busNumber,passlnside,schTimel,1,service) ;

currentBusstop->GetReserveBus2(busNumber);
}

int passAlight = currentBusstop->alightPass(passlnside,busNumber);
int boardPassenger = currentBusstop-

>boardPassDischarge(times,busNumber,passAlight); //have to use this for
dwellTime

if((busNumber==currentBusstop-
>ReservedNuml())&&(busNumber==currentBusstop->ReservedNum2()))currentBusstop-
>GetReserveBus2(0) ;

if(busNumber==currentBusstop->ReservedNuml())reserver=l; //these are
to include boarded pass after departure of first bus

if(busNumber==currentBusstop->ReservedNum2())reserver=2;
currentBus-

>StopBusstopTime(0,busstopNo,headway,passAlight,0,waitTime,reserver);

if (boardPassenger==0)
(
currentBus->changeSpeed(0) ;
currentBus->getNextBusstop(busstopNo+1);
int passBoard=currentBusstop->boardPassNos();
int dwellT=currentBusstop->DwellTime();
waitTime=currentBusstop->waitingTime(timeFactor);
int totalPassInside=currentBus->totalPassInside(passAlight,passBoard);
float occupy=currentBus->occupancy(totalPassInside) ;
int schTime=currentBusstop->ScheduleStartTimell();
//int deviatedTime=currentBusstop-

>DeviationInSchedule(arrivalTime,busGenerateTime);
int deviatedTime=currentBusstop-

>DeviationInSchedulell(times,busGenerateTime);
currentBus->GetBusstopDeviation(deviatedTime);
int busJourney=currentBus->BusJourneyTime ();
currentBusstop-

>GenerateOutput(occupy,passlnside,deviatedTime,busJourney,waitTime,passAlight
,passBoard,dwellT);

currentBusstop->GetReserveBusl(0);
fprintf(streaml, "\n"); //busstop output
fprintf(streaml, "%3d %3d %5d %c %5d %5d %5d %5d %5d %c %5.1f %c %3d

%5d %5d %5d %5d",
busstopNo,busNumber,arrivalTime,'

',times,headway,passAlight,passBoard,
totalPassInside,' ',occupy,'

',dwellT,waitTime,passJourney,schTime,deviatedTime);
}

175

Appendix B

else
{

currentBus->changeSpeed(1);
currentBusstop->GetReserveBusl(busNumber);
}

}
else currentBus->getNextBusstop(nextBusstopNos+1);
)

}
}

else if(passGenOption==0) //generating passenger using uniform rate
{

int nextBusstopNos=currentBus->nextBusstop() ;
if (nextBusstopNos<=currentBus->LastBusstop())//totalBusstopNo)
{
currentBusstop = busstop[nextBusstopNos];
if (busPosi2>=(currentBusstop->busstopPosition()))
{
int reserver;
int schTimel;
int headway;
int busstopNo=nextBusstopNos;
int arrivalTime=currentBus->arriveBusstopTime(times,busstopNo);
stopOut[busstopNo][busNumber-1]= arrivalTime; //stored for formatted

output generated at the last
int passInside=currentBus->totalPassInside(0,0);
int service=currentBus->ServiceNumber();
if (service>100&&service<1000) schTimel=currentBusstop-

>ScheduleStartTimell();
if (service<100) schTimel=currentBusstop->ScheduleStartTime3();
if (service>1000) schTimel=currentBusstop->ScheduleStartTimel01();
if (busstopNo!=holdBusStop) schTimel=0; //not checking schedule time
if((currentBusstop->ReservedNuml()==0))//&&(currentBusstop-

>ReservedNum2()==0))
{

headway = currentBusstop-
>headwayCalculate(times,busNumber,passlnside,schTimel,0,service); //it does
not make any difference in passBoard but shows only different in headway

currentBusstop->GetReserveBusl(busNumber);
//this difference in headway in compesated in Busstop ::headwayCalculate-
schTime check

}

//But makes difference in case of bus staying for alighting passenger after
departure of first bus

else
//It may have some passenger during that period -calculated differently

{

headway = currentBusstop-
>headwayCalculate(times,busNumber,passlnside,schTimel, 1,service) ;

currentBusstop->GetReserveBus2(busNumber);
)
float passAlight = currentBusstop->AlightPass2();
float passBoard = currentBusstop->BoardPass2();
int totDwellTime=currentBusstop->DwellTime2();
float waitTime=currentBusstop->WaitTime2 ();
if((busNumber==currentBusstop-

>Re s e rvedNuml())&&(busNumber==currentBusstop->ReservedNum2()))currentBusstop-
>GetReserveBus2(0);

if(busNumber==currentBusstop->ReservedNuml0)reserver=l; //these are
to include boarded pass after departure of first bus

if(busNumber==currentBusstop->ReservedNum2())reserver=2;
currentBus-

>StopBusstopTime(totDwellTime,busstopNo,headway,passAlight,passBoard,waitTime
,reserver);

int dwellTime=currentBus->BusstopDwellTime();

if (dwellTime==0)
{

int schTime;
int deviatedTime;
currentBus->changeSpeed(0);

176

Appendix B

currentBus->getNextBusstop(busstopNo+1);
float totalPassInside=cu]:rentBus->totalPassInside(passAlight,passBoard);
float occupy=currentBus->occupancy (totalPassInside);
if (service>100&&service<1000) schTime=currentBusstop-

>ScheduleStartTimell();
if (service<100) schTime=currentBusstop->ScheduleStartTime3();
if (service>1000) schTime=currentBusstop->ScheduleStartTimel01();
if (service>100&&service<1000) deviatedTime=currentBusstop-

>DeviationInSchedulell(times,busGenerateTime);
if {service<100) deviatedTime=currentBusstop-

>DeviationInSchedule3(times,busGenerateTime);
if (service>1000) deviatedTime=currentBusstop-

>DeviationInSchedulel01(times,busGenerateTime);
currentBus->GetBusstopDeviation(deviatedTime);
currentBus->GetLateColor(deviatedTime);

int schHeadway=currentBusstop->ScheduleHeadway(service);
currentBus->GetBusstopSchedule(schHeadway) ;

int busJourney=currentBus->BusJourneyTime0;
headway=currentBus->BusHeadway() ;
float passAlight=currentBus->PassAlighted();
float passBoard=currentBus->PassBoarded0 ;
float waitTime=currentBus->PassWaited() ;
int totDwellTime=currentBus->TotalBusstopDwellTime();
float passJourney=currentBus->PassJourneyTime () ;

currentBusstop-
>GenerateOutput(occupy,passInside,deviatedTime,busJourney,waitTime, passAlight
,passBoard,totDwellTime);

if(currentBusstop->ReservedNuml()==busNumber)currentBusstop-
>GetReserveBusl(0);

if(currentBusstop->ReservedNum2()==busNumber)currentBusstop-
>GetReserveBus2(0);

{

fprintf(streaml, "\n"); //busstop output
fprintf(streaml, "%3d %3d %5d %c %5d %5d %5.2f %5.2f %5.1f %c %3.1f %c

%5d %5.1f %5.1f %5d %5d",
busstopNo,busNumber,arrivalTime,' ',times,headway,passAlight,passBoard,
totalPassInside,' ',occupy,'

',totDwellTime,waitTime,passJourney,schTime,deviatedTime) ;
}
}
else
{

currentBus->changeSpeed(1);
}

}
}

}
}

void TMainSim;;CheckSignals(int times,int busNumber,float busPosi2)
{
int nextSignalNos=currentBus->nextSignal();
if (nextSignalNos<=currentBus->LastSignal())//totalSignalNo)
{

currentSignal = signal [nextSignalNos];
if (busPosi2>=(currentSignal->signalPosition()))
{
int totalDelay;
int greenTime;
int signalNo=nextSignalNos;
int arrivalTime=currentBus->arriveSignalTime(times,signalNo);
int carlnfront = currentSignal->frontCarNumber(busNumber);
int sigStage = currentSignal->signalStage(times);
if (sigStage—1)
{
greenTime=currentSignal->GreenStartTime(times,busNumber);

1

if (sigStage==l&&carInfront==0) //Stopping with taking care of Cars

177

Appendix B

currentBus->changeSpeed(0);
currentBus->getNextSignal(signalNo+l);
int carlnfrontl = currentSignal->frontCarFirst();
int carDelayl = times-greenTime;
int signalDelayl=greenTime-arrivalTime;
totalDelay=times-arrivalTime;
currentSignal->GetBusDelay(totalDelay);
fprintf(stream2, "\n");
fprintf(stream2, "%c %2d %c %2d %c %5d %c %5d %c %2d %c %3d %c %3d %c

%3d",
' ',signalNo,' ',busNumber,' ',arrivalTime,' ',times,' ',carlnfrontl,'

',carDelayl,' ',signalDelayl,' ',totalDelay);
}
else currentBus->changeSpeed{1);
}
}

}
//

void TMainSim;;CheckSVDPriority(int times,int busNumber,float busPosi2)
{

int nextDetectorNos=currentBus->nextDetector();
if (nextDetectorNos<=currentBus->LastDetector())//totalDetectorNo)

currentDetector = detector[nextDetectorNos];
if (busPosi2>=(currentDetector->DetectorPosition()))
{
int extension=0;
int recall=0;
int detectorNo=nextDetectorNos ;
int distance=currentDetector->DetectorDistance() ;
int sigNum=currentDetector->SignalIdentity0 ;
int journeyTime=currentBus->JourneyTime(distance, timeFactor);
int arrivalTime= times+journeyTime;

currentSignal= signal[sigNum] ;
int sigStage = currentSignal->signalStage(arrivalTime);
int cycleNumber=currentSignal->CycleNumber(arrivalTime);
int endGreenTime=currentSignal->EndGreenState(arrivalTime);
int startGreenTime=currentSignal->StartGreenState(arrivalTime);

currentSignal->PriorityOption(2,9999,9999);
int maxExtensionAllow=currentSignal->MaxExtensionTime();
int maxRecallAllow=currentSignal->MaxRecallTime();

int presentSigPeriod=currentsignal->signalStage(times);
if((presentSigPeriod==l)&&(sigStage!=1 &&

endGreenTime<=maxExtensionAllow))
{
extension=endGreenTime;
recall=0;
currentSignal->GetExtension(extension, cycleNumber) ;
int sideSig=currentSignal->SideSignalNumber0;
currentSignal=signal[sideSig];
currentSignal->GetRecall(-extension,cycleNumber+1);
}
else if (sigStagei=l)
{
extension=0;
recall=startGreenTime;
if(recall>maxRecallAllow) recall=maxRecallAllow;
currentSignal->GetRecall(recall,cycleNumber);
int sideSig=currentSignal->SideSignalNumber();
currentSignal=signal[sideSig];
currentSignal->GetExtension(-recall,cycleNumber+1);
}
currentBus->getNextDetector(detectorNo+1);
fprintf(streams, "\n");
fprintf(streams, "%c %3d %c %3d %c %5d %c %3d %c %5d %c %3d %c %3d %c %3d

%c %3d",
' ',detectorNo,' ',busNumber,' ',times,' ',journeyTime,' ',arrivalTime,'

',sigNum,' ',sigStage,' extension,' ',recall);

178

Appendix B

}
//

void TMainSim:;CheckAVLPriority(int times,int busNuinber,float avlBusPosi2)
{
int nextVDetectorNos=currentBus->NextVDetector ();
if (nextVDetectorNos<=currentBus->LastVDetector ())//<totalVirtualDetectorNo)
{

currentVDetector = vDetector[nextVDetectorNos];
if (avlBusPosi2>=(currentVDetector->VirtualDetectorPosition()))

int extension=0;
int recall=0;
int vDetectorNo=nextVDetectorNos;
int distance=currentVDetector->VirtualDetectorDistance0;
int sigNum=currentVDetector->SignalIdentity();
int journeyTime=currentBus->JourneyTime(distance, timeFactor);
int arrivalTime= times+journeyTime;

currentSignal= signal[sigNum] ; //needs checking
int sigStage = currentSignal->signalStage(arrivalTime);
int cycleNuiiiber=currentSignal->CycleNuitiber {arrivalTime) ;
int endGreenTime=currentSignal->EndGreenState(arrivalTime);
int startGreenTime=currentSignal->StartGreenState(arrivalTime);
int restriction=currentSignal->RecallRestriction0;
int lateness=currentBus->LastBusstopDeviation() ;
int scheduleHeadway=currentBus->LastBusstopSchedule();
if (scheduleHeadway<=0)scheduleHeadway=l;
currentSignal->PriorityOption(logicNumber,lateness,scheduleHeadway);
int maxExtensionAllow=currentSignal->MaxExtensionTime();
int maxRecallAllow=currentSignal->MaxRecallTime{);

int presentSigPeriod=currentSignal->signalStage(times);
if ((presentSigPeriod==l)&&(sigStage!=1 &&

endGreenTime<=maxExtensionAllovj))
{
extension=endGreenTime;
recall=0;
currentSignal->GetExtension(extension,cycleNumber);
int sideSig=currentSignal->SideSignalNuml3er();
currentSignal=signal[sideSig];
currentSignal->GetRecall(-extension,cycleNumber+1);
}
else if (sigStage1=1)
{
extension=0;
recall=startGreenTime-restriotion;
if(recall<0) recall =0;
if(recall>maxRecallAllow) recall=maxRecallAllow;
currentSignal->GetRecall(recall,cycleNumber);
int sideSig=currentSignal->SideSignalNumber();
currentSignal=signal[sideSig];
currentSignal->GetExtension(-recall,cycleNumber+1);
}
currentBus->GetNextVDetector(vDetectorNo+1);
fprintf(streamlO, "\n");
fprintf(streamlO, "%c %3d %c %3d %c %5d %c %3d %c %3d %c %5d %c %3d %c %3d

%c %3d %c %3d %5d %c %5d",
' ',vDetectorNo,' ',busNumber,' ',times,' ',presentSigPeriod,'

',journeyTime,' ',arrivalTime,' ',sigNum,' ',sigStage,' ',extension,'
',recall,lateness,' ',scheduleHeadway);

}
}

}
//

void TMainSim::CheckBeacons(int times,int busNumber,float busPosi2)
{
int beaconNo=currentBus->nextBeacon ();
if (beaconNo<totalBeaconNo)
{

currentBeacon = beacon[beaconNo];

179

Appendix B

if (busPosi2>=(currentBeacon->BeaconPosition()))
{
currentBeacon->GetBeaconColor ();
int beaconPosi = currentBeacon->BeaconPosition();
currentBus->GetBeaconDistance(beaconPosi);
currentBus->getNextBeacon(beaconNo+1);
fprintf(stream?, "\n");
fprintf(stream?, " %5d %5d %5d %5d",beaconNo,busNumber,times,beaconPosi) ;
}
}
}
//
//

//This section is for drawing route, signals, busstops, buses and cars //

//
void TMainSim::MoveBus(int oldpos, int newpos, int nosBuses)
{
int oldPosition = oldpos%windowWidth; //horizontal shift to other lines
int yl=102+(int (oldpos/windowWidth))*80; //vertical shift to other lines
Canvas->Pen->Color = clSilver;
Canvas->Brush->Color = clSilver;
Canvas->Rectangle ((oldPosition),yl,((oldPosition)-10),yl+5);

if(newpos<routeLength)
{
int newPosition = newpos %windowWidth; //horizontal shift in other lines
int y2=102+(int ((newpos-2)/windowWidth))*80;//vertical shift in other line
Canvas->Pen->Color = clMaroon;
int busColor=currentBus->BusColor();
if (busColor==2) Canvas->Brush->Color = clPurple;
else if (busColor==3) Canvas->Brush->Color = clFuchsia;
else Canvas->Brush->Color = clRed;
Canvas->Rectangle (newPosition,y2, ((newPosition)-10),y2+5) ,•
if{priorityOption==2)//blinking at bus if AVL is acivated
{

int changeColor=currentBus->PollingColor();
if (changeColor>0) //changing colour while polling
{
Canvas->Brush->Color = clAqua;
Canvas->Rectangle (newPosition,y2,((newPosition)-5),y2+5);
}

}
int lateColor=currentBus->LatenessColor ();
if (lateColor>0) //changing colour while polling
{
Canvas->Brush->Color = clBlack;
Canvas->Rectangle (newPosition-6,y2,(newPosition-9),y2+5);
}

}
for (int j=l; j<500000000/(simulationSpeed*nosBuses); j++)
(
}

}
//
void TMainSim::ChangeSignalPhase(int times)
{

for (int j=0; j<totalSignalNo; j++)
{
currentSignal = signal[j];
currentSignal->signalStage(times);

1
}
//
void TMainSim:rGenerateCar(int times)
{
for (int j=0; j<totalSignalNo; j++)
{
currentSignal = signal[j];
currentSignal->CalculateCarNumber(times);
if (j<21&×<999)

180

Appendix B

int stage = currentSignal->SignalStageState {);
int cars = currentSignal->newCarNumber{);
if (j>0)fprintf{stream21, "%3d %2d", stage,cars);
}

}
}
/ /
float TMainSim;:AvlSystem(int time,int busNumber,float busPosi2)
{

float virtualBusPosi2;
if(avlSystem==l) //GPS based system
{
float gpsError=currentBus->GpsErrorGenerateNorm(gpsAccuracy);
virtualBusPosi2=busPosi2+gpsError;
}
else if(avlSystem==2) //beacon-based system
{

virtualBusPosi2=currentBus->VirtualPosition(busPosi2,odometerAccuracy);
}
fprintf(streams, "%5.2f %c", virtualBusPosi2, ' ');

//AVL polling
if ((time%pollingFrequency)==((busNumber-l)%pollingFrequency))
{
currentBus->GetPollingColor();
currentBus->GetAvlPosition(virtualBusPosi2);
}

//AVL Centre bus position
float avlBusPosi2=currentBus->AvlPosition(); //it gives the position at AVL

centre
fprintf(streams, "%6.2f %c", avlBusPosi2, ' ');//but there is a problem at

First stop

//return avlBusPosi2;
return virtualBusPosi2; //The GPS position of bus used fro priority

request
}

//

int TMainSim::RandomBusGenerate()
{
//randomize();
//float valuePxl = rand()%400;
//int valueXl = (({log((valuePxl/100000)*60))*-60)+240); //for mean =300,

St. dev = 60

int valueXl=0;
while(valueXl==0)
//do
{

float valuePx;
int valueX = rand{)%1500;
if (valueX>240)
{
valuePx = ((exp(-1*((valueX-240)/60)))/60); //for mean =300, st. dev = 60
}
else valuePx=-l.0;

float valueY = (rand()%1000)/250000.0;
if(valueY<=valuePx)
{
valueXl= valueX;
}
else valueXl=0;
}
//while (valueXl==0);
return valueXl;
}
//
void fastcall TMainSim;:CloseBtnClick(TObject *Sender)
{
Close();

181

Appendix B

}
//
/ /
void TMainSim::RouteParameters{int startLag,float passRateFactor)
{
//Timetable based on Shifted Portswood (Field) and Journey time
//BusStop::BusStop{int busstopid,int linkNo, int busstopP,int

busstopstartTime,
//float passRa,float passRb,int scheduleStartTll,int scheduleStartT3,int

scheduleStartTlOl,BusList* blist)
busstop[0] = new BusStop(0,1,0,-

543,0.035,180.0/passRateFactor, 50,60,50,list);
busstop[l] = new BusStop{1,4,150,-

437,0.013,144.0/passRateFactor, 180,60, 50, list)
busstop[2] = new BusStop(2,6,440,-

357,0.005,514.3/passRateFactor,240,60,60,list)
busstop[3] = new BusStop (3, 8,720,-

298,0.005,257.1/passRateFactor,300, 60, 60, list)
busstop[4] = new BusStop(4,9,900,-

259,0.004,480.0/passRateFactor, 360, 50, 60, list)
busstop[5] = new BusStop(5,10,1250,-

161,0.00,553.8/passRateFactor, 420,60,60,list);
busstop[6] = new BusStop(6,12,1610,-

116,0.004,1440.0/passRateFactor, 480,50,60,list);
busstop[7] = new

BusStop(7,14,1800,23,0.305,69.9/passRateFactor,600,300,1140,list) ;
//218->32
busstop[8] = new

BusStop(8,15,2060,135,0.048,141.2/passRateFactor, 720, 420, 1250,list);
busstop[9] = new

BusStop(9,17,2410,191,0.007,342.9/passRateFactor,780,480,1320,list);
busstop[10] = new

BusStop(10,19,2520,286,0.015,900.0/passRateFactor, 1440, 540, 1920, list);
busstop[11] = new

BusStop(11,21,2990,379,0.019,360.0/passRateFactor,1500,600,1920,list);
busstop[12] = new

BusStop(12,22,3210,412,0.028,3600.0/passRateFactor, 1500, 600, 1920,list);
busstop[13] = new

BusStop(13,23,34 90,472,0.113,2400.0/passRateFactor,1550,650,1920,list);
busstop[14] = new

BusStop(14,25,4 010,627,0.235,7200.0/passRateFactor,1680,780,1920,list);
busstop[15] = new BusStopdS,27,4320,757,0.811,99999.0,1800,900,1920,list);
totalBusstopNo =16;

//Defining Traffic Signals for South-bound Service
//Signal(int junctionid, float unctionPosi, lint signalld,2int sideSig,3int

//linkNo,4float signal?,5int cycleT, 6int greenT, 7int amberT,8int
//offset,9int flowArm,lOint satFlow,int maxExtend, int maxRecal)

signal[0] = new Signal (0,0,1,0,0,-100,10,11,0,0,0.0001,9999,0,0,0,0,0);
//non-existing signal for better output

signal[1] = new Signal
(l,50,l,12,2,50,108,12,7,78+startLag,21.88,4 800,10,48,10,51,8);
signal[2] = new Signal

(2,100,1,0,3,100,104,76,21,76+startLag,24.41,2000,15,0,15,0,13);
signal[3] = new Signal

(3,400,l,13,5,400,108,30,7,177+startLag,25.88,2000,9,22,9,23,28);
signal[4] = new Signal

(4,670,1,14,7,670,43,21,7,64+startLag,28.02,1700,7,0,7,0,0);
signal[5] = new Signal

(5,12 90,1,15,11,1290,67,45,6,103+startLag,28.23,2400,5,0,5,0,2);
signal[6] = new Signal

(6,1710,1,16,13,1710,75,18,7,95+startLag,24.05,2400,12,0,12,3,17);
signal[7] = new Signal

(7,1960,l,17,15,1960,82,31,15,127+startLag,41.7 6,2200,19,10,19,ll,0);
signal[8] = new Signal

(8,2440,l,18,18,2440,67,15,12,58+startLag,41.79,3600,ll,16,ll,18,0);
signal[9] = new Signal

(9,2950,1,0,20,2950,84,22,6,91+startLag,36.57,1800,9,0,9,0,17);
signal[10] = new Signal

(10,3870,1,19,24,3870,103,16,9,105+startLag,35.74,3200,16,23,16,26,0);
signal[11] = new Signal

(ll,4230,l,20,26,4230,100,16,15,141+startLag,10.17,2000,15,0,15,3,18);

182

Appendix B

//Side signals Southbound (towards City centre)
//signal[12] = new Signal

(12,0,26,20050,108,71,9,167+start:lag,38.83,4000,21,21,21,21,0);
signal [12] = new Signal

(l,50,2,0,26,20050,108,71,9,167+startlag,59.24,3600,21,21,21,21,0);
signal [13] = new Signal

(3,400,2,0,26,20400,108,34,8,248+startLag,30.65,3600,21,21,21,21,0);
signal[14] = new Signal

(4,670,2,0,26,2067 0,43,8,7,7 9+startLag,5.73,1800,21,21,21,21,0);
signal[15] = new Signal

(5,1290,2,0,26,21290,67,9,7,119+startLag,7.38,1200,21,21,21,21,0);
signal[16] = new Signal

(6,1710,2,0,26,21710,75,17,10,141+startLag,33.58,2000,21,21,21,21,0);
signal[17] = new Signal

(7,1960,2,0,26,21960,82,17,6,163+startLag,10.0,1500,21,21,21,21,0); //no
flow and delay data safeway junction car park

signal[18] = new Signal
(8,2440,2,0,26,22440,67,31,8,98+startlag,24.38,1500,21,21,21,21,0);
signal[19] = new Signal

(10,3870,2,0,2 6,23870,103,4 4,13,162+startLag,55.89,3600,21,21,21,21,0);
signal[20] = new Signal

(11,4230,2,0,26,24230,100,19,15,193+startLag,29.08,2000,21,21,21,21,0);
//Side signals Northbound (towards Swaythling)
signal[21] = new Signal

(ll,4230,4,0,2 6,34835,100,19,15,210+startljag,27.56,2000,21,21,21,21,0);
signal[22] = new Signal

(10,3870,4,0,2 6,35195,103,44,13,187+startLag,51.02,1800,21,21,21,21,0);
signal[23] = new Signal

(9,2950,4,0,2 6,36115,84,30,9,158+startLag,27.50,1800,21,21,21,21,0);
signal[24] = new Signal

(7,1960,4,0,26,37105,82,17,6,169+startLag,19.68,1800,21,21,21,21,0);
signal[25] = new Signal

(6,1710,4,0,26,37355,75,ll,8,141+startLag,28.22,3000,21,21,21,21,0);
signal[26] = new Signal

(4,670,4,0,26,38395,43,8,7,7 9+startLag,7.66,1800,21,21,21,21,0);
signal[27] = new Signal

(3,400,4,0,26,38665,108,20,7,248+startLag,10.0,1800,21,21,21,21,0); // no
flow and delay data data

signal[28] = new Signal
(2,100,4,0,26,38965,104,48,6,137+startLag,29.62,3600,21,21,21,21,0);
//Main signals Northbound (towards Swythling) Reverse order start from City
signal[29] = new Signal

(ll,4230,3,0,2 6,14835,100,16,15,141+startLag,12.78,1800,21,21,21,21,0);
signal[30] = new Signal

(10,3870,3,0,2 6,15195,103,11,10,105+startLag,11.19,1800,21,21,21,21,0);
signal[31] = new Signal

(9,2950,3,0,2 6,16115,84,11,6,91+startlag,13.75,1800,21,21,21,21,0);
signal[32] = new Signal

(8,2440,3,0,26,16625,67,33,12,58+startLag,55.81,1800,21,21,21,21,0);
signal[33] = new Signal

(7,1960,3,0,26,17105,82,28,12,127+startLag,33.30,1800,21,21,21,21,0);
signal[34] = new Signal

(6,1710,3,0,26,17355,75,20,9,95+startLag,40.50,1800,21,21,21,21,0);
signal[35] = new Signal

(5,12 90,3,0,26,17775,67,45,6,103+startlag,30.81,1800,21,21,21,21,0);
signal[36] = new Signal

(4,670,3,0,26,18395,43,21,7,64+startLag,29.89,1800,21,21,21,21,0);
signal[37] = new Signal

(3,400,3,0,26,18665,108,30,7,177+startLag,23.77,1800,21,21,21,21,0);
signal[38] = new Signal

(2,100,3,0,2 6,18965,104,28,15,7 6+startLag,25.62,1800,21,21,21,21,0);
signal[39] = new Signal

(l,50,3,0,26,19015,108,71,9,78+startLag,42.92,1800,21,21,21,21,0);
totalSignalNo = 40;

//
//Defining Linlcs for South-bound Service
//Link(int IID, int IStart,int IDist,float ITime,float ISpeed)
lin]<[0] = new Link (0,-10,-10, 0.0, 3. 6) ; //non-existing linlc for better

output
link[l] = new Link (1,0,50,0.0,16.74);
link[2] = new Link (2,50,50,0.0,11.37);

18:

link[3] = new Link (3,100,50,0.0,10.80);
link[4] = new link (4,150,250,0.0,30.95);
link[5] = new Link (5,400,40,0.0,7.89);
link[6] = new Link (6,440,230,0.0,39.74);
link[7] = new Link (7,670,50,0.0,18.78);
link[8] = new Link (8,720,180,0.0,25.17);
link[9] = new Link (9,900,350,0.0,18.28);
link[10] = new Link (10, 1250, 40, 0. 0,26.58);
link[ll] = new Link (11, 1290, 320 ,0 .0,32. 30) ;
link[12] = new Link (12, 1610, 100 ,0 .0,21. 71) ;
link[13] new Link (13, 1710, 90, 0. 0,9.52) ;
link[14] = new Link (14, 1800, 160 ,0 .0,13. 96) ;
link[15] = new Link (15, 1960, 100 ,0 .0,15. 85) ;
link[16] = new Link (16, 2060, 350 ,0 .0,31. 25) ;
link[17] = new Link (17, 2410, 30, 0. 0,7.32);
link[18] = new Link (18, 2440, 180 ,0 .0,14. 27) ;
link[19] = new Link (19, 2620, 330 ,0 .0,28. 12) ;
llnk[20] new Link (20, 2950, 40, 0. 0,9.93) ;
link[21] = new Link (21, 2990, 220 ,0 .0,34. 43) ;
link[22] = new Link (22, 3210, 280 ,0 .0,21. 64) ;
link[23] = new Link (23, 3490, 380 ,0 .0,16. 70) ;
link[24] = new Link (24, 3870, 140 ,0 .0,21. 60) ;
link[25] = new Link (25, 4010, 220 ,0 .0,17. 90) ;
link[26] = new Link (26, 4230, 90, 0. 0,10.6 8);
llnk[27] = new Link (27, 4320, 0,0 . 0 ,36.0) ; //non

at destination
totalLinkNo = 28; //the speed 36 is to cross busstop

//-

//Defining Detectors for South-bound Service
//Detector(int detectid, int linkNO, int signalNO,float detect?, int

detectDist)
new Detector (0,-10,0,-10,0) detector [0]

better output
detector[1]
detector[2]
detector[3]
detector[4]
detector[5]
detector[6]
detector [7]
detector[8]
detector[9]

//non-existing detector for

new Detector
new Detector
new Detector
new Detector
new Detector
new Detector
new Detector
new Detector
new Detector

detector[10] = new Detector (10,24,10,3800,70);
detector[11] = new Detector (11,26,11,4160,70);
totalDetectorNo =12;

(1,1,1,5,45);
(2,2,2,54,46);
(3,4,3,330,70);
(4,6,4,600,70);
(5,10,5,1256,34)
(6,12,6,1640,70)
(7,14,7,1890,70)
(8,18,8,2419,21)
(9,20,9,2880,70)

//Defining Beaconss for South-bound Service
//Avl(int detectid,int linkNo,int detect?);
beacon[0] = new Beacon (0,0,-10); //non-existing link for better output
beacon[1] = new Beacon (1,1,500);
beacon[2] = new Beacon (2,2,1500);
beacon[3] = new Beacon (3,3,2500);
beacon[4] = new Beacon (4,4,3500);
totalBeaconNo=5;

//Defining Detectors for South-bound Service
//Detector(int detectid, int signalNO,float detect?, int detectDist)
vDetector[0]

better output
vDetector[1]
vDetector[2]
vDetector[3]
vDetector[4]
vDetector[5]
vDetector[6]
vDetector[7]
vDetector[8]
vDetector[9]

= new VirtualDetector (0,0,-10,0); //non-existing link for

new VirtualDetector
new VirtualDetector
new VirtualDetector
new VirtualDetector
new VirtualDetector
new VirtualDetector
new VirtualDetector
new VirtualDetector
new VirtualDetector

vDetector[10] = new VirtualDetector

(1,1,5,45);
(2,2,54,46);
(3,3,330,70);
(4,4,600,70);
(5,5,1256,34)
(6,6,1640,70)
(7,7,1890,70)
(8,8,2419,21)
(9,9,2880,70)
(10,10,3800,70);

vDetector[11] = new VirtualDetector (11,11,4160,70);

184

//vDetector[0]
better output

//vDetector[1]
//vDetector[2]
//vDetector[3]
//vDetector[4]
//vDetector[5]
//vDetector[6]
//vDetector[7]
//vDetector[8]
//vDetector[9]

= new VirtualDetector (0,0,-10,0); //non-existing link for

new VirtualDetector (1,1,5,35);
new VirtualDetector (2,2,54,35);
new VirtualDetector (3,3,330,70);
new VirtualDetector (4,4,600,70);
new VirtualDetector (5,5,1256,24)
new VirtualDetector (6,5,1640,70)
new VirtualDetector (7,7,1890,70)
new VirtualDetector (8,8,2419,11)
new VirtualDetector (9,9,2880,70)

//vDetector[10] = new VirtualDetector (10,10,3800,70);
//vDetector[11] = new VirtualDetector (11,11,4160,70);
totalVirtualDetectorNo =12;

}
//

//These are non changing functions - Drawing Routes, showing time and
changing signal
//
void TMainSim::DrawRoute()
{

int routeSegmentNos=routeLength/windowWidth;
other lines
Canvas->Pen->Color = clSilver;
Canvas->Brush->Color = clSilver;
Canvas->Rectangle (0,0,windowWidth,routeSeginentNos*120);
start

//for horizontal shift in

//cleanup for re-

fer (int i=0; i<=routeSegmentNos; i++)
{
int segmentLength=windowWidth; //for horizontal shift in other lines
if (i==routeSegmentNos) segmentLength=routeLength%windowWidth;
int y=100+i*80; //for vertical shift in other lines
Canvas->Pen->Color = clBlack;
Canvas->MoveTo (0,y);
Canvas->LineTo (segmentLength,y);
Canvas->MoveTo (0,y+15);
Canvas->LineTo (segmentLength,y+15);
Canvas->Pen->Color = clSilver;
Canvas->Brush->Color = clSilver;
Canvas->Rectangle (0,y+2,segmentLength,y+13);

//draw a line

//road area

//for horizontal shift

for (int j=0; j<totalSignalNo; j++} //Drawing Side Roads in position
{

currentSignal = signal[j];
int junctionPosi = currentSignal->junctionPosition();
int signalLoc = currentSignal->signalIdentity();
int signalPosition = junctionPosi%windowWidth;

in other lines
int y=100+(int(junctionPosi/windowWidth))*80;
Canvas->Pen->Color = clBlack;
if ((signalLoc==2)||(signalLoc—4))
{
Canvas->Pen->Color = clBlack;
Canvas->MoveTo (signalPosition,y+(int(signalLoc/4)*45)) ;
Canvas->LineTo {signalPosition,y+(int(signalLoc/4)*45)-30) ;
Canvas->MoveTo (signalPosition+15,y+(int(signalLoc/4) *45)) ;
Canvas->LineTo (signalPosition+15,y+(int(signalLoc/4)*45)-30) ;
Canvas->Pen->Color = clSilver;
Canvas->Brush->Color = clSilver;
Canvas->Rectangle

(signalPesition+1,y+(int(signalLoc/4)*4 5)+1,signalPosition+15,y+(int(signalLo
c/4)*45)-31); //road area

}

}
}

for (int j=0; j<totalSignalNo; j++) //Drawing Traffic Signals in position
{

currentSignal = signal[j];
int junctionPosi = currentSignal->junctionPosition();
int signalLoc = currentSignal->signalIdentity();

185

Appendix B

int signalPosition = junctionPosilwindowWidth; //for horizontal shift
in other lines

int yl=85+(int (junctionPosi/windowWidth))*80; //for vertical shift in
other lines

Canvas->Pen->Color=clBlack; // should be off if all others are on
Canvas->Brush->Color=clBlack;
if (signalLoc==l) Canvas->Rectangle(signalPosition,yl,signalPosition-

6,yl+16);
else if (signalLoc==2) Canvas-

>Rectangle(signalPosition+21,yl,signalPosition+21-6, yl + 16) ;
else if (signalLoc==3) Canvas-

>Rectangle(signalPosition+21,yl+30,signalPosition+21-6, yl + 46) ;
else if (signalLoc==4) Canvas-

>Rectangle(signalPosition,yl+30,signalPosition-6,yl+46);
}

for (int j=0; j<totalBusstopNo; j++) //Drawing Bus Stops in position
{

currentBusstop = busstop[j];
int busstopPosi = currentBusstop->busstopPosition();
int busstopPosition=busstopPosi%windowWidth; //for horizontal shift in

other lines
int y=96+(int (busstopPosi/windowWidth))*80; //for vertical shift in

other lines
Canvas->Pen->Color = clBlue;
Canvas->Brush->Color = clBlue;
Canvas->Rectangle (busstopPosition,y,busstopPosition+5,y+4); //bus

stopl (110)
}

//if(priorityOption==2)
if(priorityOption==2&&avlSystem==2)
{
for (int j=0; j<totalBeaconNo; j++) //Drawing Bus Stops in position
{

currentBeacon = beacon[j];
int beaconPosi = currentBeacon->BeaconPosition();
int beaconPosition=beaconPosi%windowWidth; //for horizontal shift in

other lines
int y=100+(int (beaconPosi/windowWidth))*80; //for vertical shift in

other lines
Canvas->Pen->Color = clBlack;
Canvas->MoveTo (beaconPosition,y);
Canvas->lineTo (beaconPosition,y-10);
Canvas->Brush->Color = clGreen;
Canvas->Pen->Color = clGreen;
Canvas->E1lipse (beaconPosition-2,y-6,beaconPosition+2,y-10); //bus

stopl (110)
}

}
//
//For displaying Place names
Canvas->Font->Size=8;
Canvas->Font->Color = clBlack;
Canvas->Brush->Color - clSilver;
Canvas->TextOut((155%windowWidth),((155/windowWidth)*80+87),"Swaythling");
Canvas->TextOut((117%windowWidth),((117/windowWidth)*80+131),"Burgess

Road");
Canvas->TextOut((417%windowWidth),((417/windowWidth)*80+131),"Langhorn

Road");
Canvas->TextOut((600%windowWidth),((600/windowWidth)*80+131),"Mayfield

Road");
Canvas->TextOut((1540%windowWidth),((1540/windowWidth)*80+87),"Bus Depot");
Canvas->TextOut((1727%windowWidth),((1727/windowWidth)*80+131),"Highfield

Lane");
Canvas->TextOut({1820%windowWidth),((1820/windowWidth)*80+87),"Portswood");
Canvas->TextOut((2652%windowWidth),((2652/windowWidth)*80+87),"Lodge Road");
Canvas->TextOut((2020%windowWidth),((2020/windowWidth)*80+117),"Safeway");
Canvas->TextOut((288 9 %windowWidth), ((2889/windowWidth)*80+131),"The

Avenue");
Canvas->TextOut((3302%windowWidth),((3302/windowWidth)*80+87),"The Avenue");

186

Appendix B

Canvas->TextOut((3887.%windowWidth),({3887/windowWidth)*80+131),"Cumberland
Place") ;
Canvas->TextOut((4022%windowWidth), {(4022/windowWidth)*80 + 87),"Cenotaph") ;
Canvas->TextOut((4247%windowWidth),((4247/windowWidth)*80+131),"New Road");
Canvas->TextOut{(4330%windowWidth) , ((4330/windowWidth)*80 + 87),"City

Centre");
}
//

void TMainSiiti: : DisplaySiitiTime (int SimTime) //For displaying Simulation Time
{

char *str;
double num;
int dec, sign, ndig = 0;//5;
num = SimTime;///60.0;//2 . 0;
str = fcvt(num, ndig, &dec, Ssign);
int totalTime = StrToInt(str);
int sec = totalTime%60;
int minute = {totalTime%3600)/60;
int hour = totalTime/3600;

Canvas->Pen->Color = clSilver;
Canvas->Brush->Color = clSilver;
Canvas->Rectangle (550,10,568,12);
Canvas->Font->Color=clMaroon;
Canvas->Font->Size=12;
Canvas->Font->Style=TFontStyles()<<fsBold<<fsItalic<<fsUnderline;
//Canvas->Font->Style=TFontStyles()«fsUnderline;
Canvas->TextOut(10,10,"Transportation Research Group");
Canvas->Font->Color=clNavy;//Maroon;
Canvas->Font->Size=12;
Canvas->Font->Style=TFontStyles()<<fsBold;
Canvas->TextOut({windowWidth-200),20,"Simulation Period");
Canvas->TextOut((windowWidth-50),20,str);

//Time display in hour:minute;second format
int secDigit=CountDigit(sec);
int minuteDigit=CountDigit(minute);
int hourDigit=CountDigit(hour);
Canvas->Brush->Color = clSilver;
Canvas->Rectangle ((windowWidth-400),20,(windowWidth-500),40);
Canvas->TextOut((windowWidth-480),20,"0");
Canvas->TextOut((windowWidth-4 50),20,"0");
Canvas->TextOut((windowWidth-420),20,"0");
Canvas->TextOut((windowWidth-(400+secDigit*10)),20,sec);
Canvas->TextOut((windowWidth-430),20,":");
Canvas->TextOut((windowWidth-(430+minuteDigit*10)),20,minute);
Canvas->TextOut((windowWidth-460), 20," ; ");

Canvas->TextOut((windowWidth-(4 60+hourDigit*10)),20, hour) ;

Canvas->Font->Style = TFontStyles(); //clears
)
//
int TMainSim::CountDigit(int number) //For displaying Simulation Time

int digit;
if(number<=9) digit =1;
else digit =2;
return digit;

}
//
void TMainSim::DrawSignalPhase()
{

for (int j=0; j<totalSignalNo; j++)
{

int signalPosition; int factorl; int factor2;
currentSignal = signal [j];
int stage = currentSignal->SignalStageState ();
int junctionPosi = currentSignal->junctionPosition()
int signalLoc = currentSignal->signalIdentity();
signalPosition=junctionPosi%windowWidth;
if (signalLoc==l)
{

187

Appendix B

factorl=0; factor2=0;
}
else if (signalLoc==2)
{
factor1=1; factor2=0;
}
else if (signalLoc==3)
(
factorial; factor2=l;
}
else if {signalLoc==4)

1
factorl=0; factor2=l;
}
int y=85+factor2*30+(int (junctionPosi/windowWidth))*80; //for vertical

shift
Canvas->Brush->Color=clBlack;
Canvas->Pen->Color=clLime;
Canvas->Ellipse(signalPosition+21*factorl-l, y+11-

10*factor1,signalPosition+21*factor1-5,y+15-10*factorl);
Canvas->Pen->Color=clRed,•
Canvas->Ellipse(signalPosition+21*factor1-

1,y+l + 10*factorl,signalPosition+21*factorl-5,y+5+10*factorl) ;
Canvas->Pen->Color=clYeHow;
Canvas->Ellipse{signalPosition+21*factorl-l,y+6,signalPosition+21*factorl-

5,y+10);

if (stage==l)
(
Canvas->Pen->Color=clLime; Canvas->Brush->Color=clLime;
Canvas->E11ipse(signalPosition+21*factor1-1, y+11-

10*factorl,signalPosition+21*factor1-5,y+15-10*factorl);
}
else if (stage==2)
{
Canvas->Pen->Color=clYellow; Canvas->Brush->Color=clYellow;
Canvas->E11ipse(signalPosition+21*factorl-l,y+6,signalPosition+21*factorl-

5,y+10);
}
else
{

Canvas->Pen->Color=clRed; Canvas->Brush->Color=clRed;
Canvas->E11ipse(signalPosition+21*factor1-

1,y+l+10*factorl,signalPosition+21*factor1-5,y+5+10*factorl);
}

}
}
//
void TMainSim;:DrawCar()
{

for (int j=0; j<totalSignalNo; j++)
{
currentSignal = signal[j];
int junctionPosi = currentSignal->junctionPosition{);
int signalLoc = currentSignal->signalIdentity();
int signalPosition = junctionPosi%windowWidth; //for horizontal shift

in other lines
int y=85+(int(junctionPosi/windowWidth))*80;//+22; //22 is vertical

displacement of cars from bus
int newCarNos = currentSignal->newCarNumber();
int carPosi=signalPosition;

Canvas->Pen->Color = clSilver;
Canvas->Brush->Color = clSilver;
if(signalLoc==l) Canvas->Rectangle (carPosi,y+22,(carPosi-

(newCarNos+3)*4),y+22+2); //deleting cars
if(signalLoc==2) Canvas->Rectangle (carPosi+14,y+15,carPosi+14-3,(y+15-

(newCarNos+2)*3)); //deleting cars
if(signalLoc==3) Canvas->Rectangle

(carPosi+16,y+24,(carPosi+16+(newCarNos+3)*4),y+24+2); //deleting cars
if(signalLoc==4) Canvas->Rectangle

(carPosi+2,y+30,carPosi+2+3,(y+30+(newCarNos+2)*3)); //deleting cars

188

Appendix B

If(newCarNos>0)
(
for(int i=0;i<newCarNos;i++)
(
Canvas->Pen->Color = clMaroon;
Canvas->Brush->Color = clRed;
if(signalLoc==l)Canvas->Rectangle (carPosi-(1*4),y+22, (carPosi-3-

(i*4)),y+22+2); //adding cars
if(signalLoc==2) Canvas->Rectangle (carPosi + 14,y+15-(i*3) , (carPosi + 14-

3),y+15-2-(i*3)); //adding cars
if(signalLoc—3)Canvas->Rectangle

(carPosi+15+(i*4),y+24,(carPosi+16+3+(1*4)),y+24+2); //adding cars
if(signalLoc==4) Canvas->Rectangle

(carPosi+2,y+30+(i*3),(carPosi+2+3),y+30+2+(i*3)); //adding cars
}

}
}

}

void TMainSim::DrawDetectorBeacon{)
{
if(priorityOption==l)
{
{
for (int j=0; j<totalDetectorNo; j++) //Redrawing Detectors in position
{

currentDetector = detector[j];
int detectorPos = currentDetector->DetectorPosition();
int detectorPosition=detectorPos%windowWidth;
int y=101+(int (detectorPos/windowWidth))*80;
Canvas->Pen->Color = clDkGray;
Canvas->Brush->Color = clSilver;
Canvas->Rectangle (detectorPosition+6,y+1,detectorPosition,y+4);
}

}
}
if {priorityOption==2&&avlSystem==2)
{
for(int j=0; j<totalBeaconNo; j++) //Changing color of Beacons
{

currentBeacon = beacon[j];
int beaconPosi = currentBeacon->BeaconPosition();
int beaconPosition=beaconPosi%windowWidth;
int y=100+(int (beaconPosi/windowWidth))*80;
Canvas->Pen->Color = clGreen;
Canvas->Brush->Color = clGreen;
int changeColor=currentBeacon->BeaconColor0;
if (changeColor>0)
{
Canvas->Pen->Color = clYellow;
Canvas->Brush->Color = clRed;
}
Canvas->Ellipse (beaconPosition-2,y-6,beaconPosition+2,y-10) ;

//
void TMainSim::DrawPass(int times) //only valid if there is no more than
one passenger difference in each time segment
{

for (int j=0; j<totalBusstopNo; j++)
{

currentBusstop = busstop[j];
int busstopPosi = currentBusstop->busstopPosition();
int busstopPosition = busstopPosilwindowWidth;
int yl=85+(int(busstopPosi/windowWidth))*80+5; //22 is vertical

displacement of cars from bus
int newPassNos = currentBusstop->boardPassGenerate(times);

int passPosi=busstopPosition;
Canvas->Pen->Color = clSilver;

189

Appendix B

Canvas->Brush->Color = clSilver;
Canvas->Rectangle (passPosi, yl, (passPosi-(newPassNos + 1)*3),yl + 4);

//deleting passengers

if{newPassNos>0)
{
for (int i=0; KnewPassNos; i++)
{
int passPosi=busstopPosition-(1*3);
Canvas->Pen->Color = clBlack;
Canvas->Brush->Color = clBlack;
Canvas->Rectangle (passPosi,yl,(passPosi-2),yl+4); //adding passengers
}

}
}

}
//

// The section generates formatted outputs only //

void TMainSim::OutputHeaders() //Defining output files
{
stream = fopen("SimOut.txt", "w+");

fprintf(stream, "\n %c %c %s %c %s %c", ' ',"Time", ' ', "Distance", '

streaml = fopen("BusstopOut.txt", "w+");

fprintf(streaml, "\n %s %s %s %s %s %s %s %s %s %s %s %s %s %s",
"Stop","Bus","Arrive","Depart","Headway","PassA","PassB","Passin","Occupy","D
well","Wait","JourT","SchT","Late");
stream2 = fopen("SignalOut.txt", "w+");
fprintf(stream2, "\n %s %s %s %s %s %s %s %s %s",

"Signal","BusNo","Arrive","Depart","QCar","CrLag","SgLag","TotLag","DelayToCa
rs") ;
stream21 = fopen("SignalStages.txt", "w+");
fprintf(stream21, "\n %s %s %s %s %s %s %s %s %s",

"1", "2","3","4","5","6","7","8", "9") ;
fprintf(stream21, "\n %s %s %s %s %s %s %s %s %s %s %s %s",

"Stage","Car","Stage","Car","Stage","Car","Stage","Car","Stage","Car","Stage"
,"Car");

Streams = fopen("SimbolOutput.txt", "w+"); //for formatted output of
Busstop time
//streams = fopen("SimbolOutput.txt", "a+"); //a+ adds the output at the

end rather than overwrites

stream4 = fopen("LinkOut.txt", "w+");
fprintf(stream4, "\n %s %s %s", "LinkNo","BusNo","Time");

Streams = fopen{"DetectOut.txt", "w+");
fprintf(streams, "\n %s %s %s %s %s %s %s %s %s",

"Detect","BusNo","Time","JrTime","Arrive","Signal","Period","Extend","Recall"
) ;

streams = fopen("CarDelaysOut.txt", "w+");
fprintf(stream6, "\n %c %s %s %c %s %c %s %c %s %c %s %c %s %c %s %c %s %c

%s %c %s %c %s %c %s",
' ',"Time","0",' ',"1",' ',"2",' ',"3",' ',"4",' ',"5",' ',"6",' ',"7",'

',"8",' ',"9",' ',"10",' ',"11");

stream? = fopen("BeaconOut.txt", "w+");

fprintf(stream?, "\n %s %s %s %s", "Beacon","BusNo","Time","BeaconPosi");

Streams = fopen("BusAVLPosition.txt", "w+");

fprintf(Streams, "\n %c %c %s %c %s %c", ' ',' ',"Time", ' ', "Distance", '
') ;
Streams = fopen("AVLCentreposition.txt", "w+");
fprintf(Streams, "\n %c %c %s %c %s %c", ' ',' ',"Time", ' ', "Distance", '

190

Appendix B

streamlO = fopen{"VirtualDetectOut.txt", "w+");
fprintf(streamlO, "\n %s %s %s %s %s %s Is %s %s %s %s",

"VDetect","BusNo","Time","period","JrTime","Arrive","Signal","Period","Extend
","Recall","Lateness");

//streamll = fopen("ComparativeChart.txt", "w+");
streamll = fopen("ComparativeChart.txt", "a+");
//fprintf(streamll, "\n %s %s %s %s %s %s %s %s",

"PAlight","PBoard","DwellT","PWaitT","BJourneyT","PJourneyT","CDelayT","BDela
yT") ;
//fprintf(streamll, "\n %s %s %s %s %s %s %s %s", "(Nos)"," (Nos)","
(sec)"," (sec)"," (sec)"," (sec)"," (sec)"," (sec)");
}
//
void TMainSim::OutputFile(int busNumber,float passRateFactor)
(
float averageJourneyTimeOfBuses=0.0;
float totalJourneyTimeOfBuses=0.0;
float averagePassJourneyTimePerBus=0.0;
float totalPassJourneyTime=0.0;
float averagePassWaitingTimePerBus = 0.0;
float totalPassWaitingTime=0.0;
float totalBusDelays=0.0;
float carDelayPerJunctiQn=0.0;
float totalCarDelays=0.0;
float grandTotalCarDelays=0.0;
float busDelayPerJunction=0.0;
float totalNumberOfAlightingPass=0.0;
float averageAlightingPass=0.0;
float totalNumber0fBoardingPass=0.0;
float averageBoardingPass=0.0;
float totalDwellTimeAtStop=0.0;
float averageDwellTime=0.0;
float totMainRoadGreen=0.0;
float totSideRoadGreen=0.0;

fprintf(streams, "\n %s","SIMBOL Output");
fprintf (streams, "\n %s", " ");
fprintf(streams, "\n %s","Simulation of Portswood Corridor, Southampton");
fprintf(streams, "\n %s","Priority Type =");
if(priority0ption==0) fprintf(streamS, "%s","No Priority");
else if(priorityOption==l) fprintf(streamS, "%s","SVD Priority");
else//(priorityOption==2)
{
fprintf(Streams, "%s","Differential Priority");
fprintf(streams, "\n %s","AVL System =");
{

if(avlSystem==l) fprintf(streamS, "%s","GPS System");
else if(avlSystem==2) fprintf(streamS, "%s","Beacon System");
}
fprintf(streams, "\n %s %2d","Logic Number =",logicNumber);
}
if(holdBusStop==7) fprintf(streamS, "%s",", Holding option - Yes");
else if(holdBusStop==99) fprintf(streamS, "%s",", Holding option - No");
fprintf(streams, " %s % 2 . I f P a s s e n g e r generation factor

=",passengerRateFactor);
fprintf(streams, "\n %s %5d %s","Simulation Period =",enterSimTime,"sees") ;
fprintf(streams, " %s %5d %s","Actual Simulation Period

= ",simulationPeriod, "sees") ;

//fprintf(streams, "\n %s %s %c","
","BusStops", ' ') ;
fprintf(streams, "\n \n %s","BusStp");
//fprintf(Streams, "\n %s","BusNum");
for (int i = 0; i<totalBusstopNo; i++) fprintf(streamS, "%6d",i);

fprintf(streams, "\n %s","Distce");
for (int i = 0; i<totalBusstopNo; i++)
{

currentBusstop=busstop[i];
int dist=currentBusstop->busstopPosition();
fprintf(streams, "% 6d",dist);

191

Appendix B

}

fprintf(streams, "\n %s","BusNum");

for (int j=0; j<busNumber; j++)
{
fprintf{streams, "\n %4d %c",j+l, ' ');
for (int 1 = 0 ; i<totalBusstopNo; i++)
{

fprintf(streams, "%6d",stopOut[i][j]); //Bus arrival at different stops
}

}

fprintf(streams, "\n \n %s","BusStp");
for (int 1 = 0; i<totalBusstopNo; i++) fprintf(streamS, "%6d",i);

fprintf(streams, "\n %s","noBsBs");
for (int 1 = 0; i<totalBusstopNo; i++)
(
currentBusstop=busstop[i];
int numBus=currentBusstop->Numt>erOfBuses();
fprintf(streams, "%6d",numBus);
}

fprintf(streams, "\n %s","relibl");
for (int i = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[i];
int relBus=currentBusstop->ReliableBuses();
fprintf(streams, "%6d",relBus);
}

fprintf(streams, "\n %s","relib2");
for (int 1 = 0; i<totalBusstopNo; 1++)
{
currentBusstop=busstop[i];
int relBus2=currentBusstop->ReliableBuses2 ();
fprintf(streams, "%6d",relBus2);
}

fprintf(streams, "\n %s","avDvBs");
for (int 1 = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[i];
float deviate=currentBusstop->AverageScheduleDeviation() ;
fprintf(streams, "%6.If",deviate);
}

fprintf(streams, "\n %s","avMdDv");
for (int 1 = 0 ; i<totalBusstopNo; i++)
{
currentBusstop=busstop[1];
float modDeviate=currentBusstop->AverageModulusDeviation();
fprintf(streams, "%6.If",modDeviate);
}

fprintf(streams, "\n %s","sdDvBs") ;
for (int i = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[1] ;
float sdDeviate=currentBusstop->SdOfDeviation();
fprintf(streams, "% 6.If",sdDeviate);
}

fprintf(streams, "\n %s","sdMdDv");
for (int 1 = 0 ; i<totalBusstopNo; i++)
{
currentBusstop=busstop[1];
float sdDeviate=currentBusstop->SdOfModulusDeviation();
fprintf(streams, "% 6.If",sdDeviate);
}

192

Appendix B

fprintf(Streams, "\n %s","avWtPs");
for (int i = 0; i<totalBusstopNo; i++)
{

currentBusstop=busstop[i];
float waitBus=currentBusstop->WaitingTimePerBus{);
float pBoardl=currentBusstop->AveragePassBoarded();
float avPassWait=waitBus/(pBoardl) ;
fprintf(streams, "%6.If",avPassWait);
}

fprintf(Streams, "\n %s","avWtBs"); //average waiting time per bus
for (int i = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[i];
float waitBus=currentBusstop->WaitingTimePerBus();
float totalWaitBus=currentBusstop->TotalWaitingTime() ;
fprintf(streams, "%6.If",waitBus);
//fprintf(streams, "%6.If",totalWaitBus/S600.0);
averagePassWaitingTimePerBus+=waitBus ;
totalPassWaitingTime+=totalWaitBus;
}

fprintf(Streams, "\n %s", "avOpBs") ; //average occupancy per bus
for (int i = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[i];
float occupy=currentBusstop->AverageOccupancy();
fprintf(streams, "%6.If",occupy);
}

fprintf(streams, "\n %s","avJrBs"); //average bus journey time
for (int i = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[i];
float bJourney=currentBusstop->AverageBusJourney();
float totalBJourney=currentBusstop->TotalBusJourney();
if(i>0)
{
fprintf(streams, "%6.If",bJourney);
if(i>0)averageJourneyTimeOfBuses+=bJourney;
if(i>0)totalJourneyTimeOfBuses+=totalBJourney;
}
if(i==0)fprintf(streams, "%s"," 0.0");

}

fprintf(streams, "\n %s","psJrBs"); //passenger journey time per
bus
for (int i = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[i];
float pJourney=currentBusstop->AveragePassJourney() ;
float totalPJourney=currentBusstop->TotalPassJourney();
fprintf(streams, "%6.If",pJourney);
averagePassJourneyTimePerBus+=pJourney;
totalPassJourneyTime+=totalPJourney;

}

fprintf(streams, "\n %s","psAlBs"); //passenger journey time per
bus
for (int i = 0; i<totalBusstopNo; i++)
{
currentBusstop=busstop[i];
float pAlight=currentBusstop->AveragePassAlighted();
fprintf(Streams, "%6.If",pAlight);
totalNumberOfAlightingPass+=pAlight;
if(i>0)averageAlightingPass=totalNumberOfAlightingPass/i;
}

fprintf(streams, "\n %s","psBdBs"); //passenger journey time per
bus
for (int i = 0; i<totalBusstopNo; i++)
{

193

Appendix B

currentBusstop=busstop[i] ;
float pBoard=currentBusstop->AveragePassBoarded();
fprintf(streams, "%6.lf",pBoard);
totalNurrLberOfBoardingPass+=pBoard;
if(i>0)averageBoardingPass=totalNumberOfBoardingPass/i;
}

fprintf(streams, "\n %s","psDwBs"); //passenger dwell time per bus
for (int 1 = 0 ; KtotalBusstopNo; i++)
{
currentBusstop=busstop[i];
float pDwellT=currentBusstop->AverageDwellTime() ;
fprintf(streams, "%6.If",pDwellT);
totalDwellTimeAtStop+=pDwellT;
if(i>0)averageDwellTime=totalDwellTimeAtStop/i;
}

float totPassl =0.0;
fprintf(streams, "\n %s","psBdNo"); //total passenger number per

bus stop
for (int 1 = 0; KtotalBusstopNo; i++)
{
currentBusstop=busstop[i];
float pBoardl=currentBusstop->AveragePassBoarded();
int numBusl=currentBusstop->NumberOfBuses();
float totPass=pBoardl*numBusl;
totPassl+=totPass;
fprintf (streams, -"%6 . If ", tot Pas s)
}
fprintf(streams, "\n %s","psBdTt")

system
fprintf(streams, "% 5.If",totPassl)

//total passenger number in

fprintf(streams, "\n \n %s \n %s %s %s %s","signal
performance","signalNo","carDely","avCarDely","avBusDelay");
for (int j=0; j<21; j++) //only one side of junction taken into account
{

currentSignal = signal[j];
float carQueues=currentSignal->TotalDelayCarNumber();
float averageCarDelays=currentSignal->AverageCarDelay(simulationPeriod) ;
float busDelay=currentSignal->AverageBusDelay() ;
float carDelayHr=carQueues/simulationPeriod;//8000.0;
float totGreenTime=currentSignal->TotalGreenTime()/S600.0;
fprintf(stream3, "\n %5d %8.1f %8.1f %6.1f %6.3f %5.2f",

j,carQueues,averageCarDelays,busDelay,carDelayHr,totGreenTime); //Delay at
different signals

totalCarDelays+=averageCarDelays;//carQueues;
if(j>0)carDelayPerJunction=totalCarDelays/j;//(j-1) ;
if(j>0 && i<12)
(
totalBusDelays+=busDelay;
if(j>0)busDelayPerJunction=totalBusDelays/j ; / /(j-1) ;
}
grandTotalCarDelays+=carQueues;
if(j>0 && j<12) totMainRoadGreen+=totGreenTime;
if(j>ll) totSideRoadGreen+=totGreenTime;
}

fprintf(streams, "\n\n %s 110.If %s","Av nos of pass alight per bus per
busstop =",averageAlightingPass,"nos");
fprintf(streams, "\n %s %10.1f %s","Av nos of pass board per bus per busstop

= ",averageBoardingPass, "nos") ;
fprintf(streams, "\n %s %10.1f %s","Average dwell time per bus per busstop

=",averageDwellTime,"sees") ;
fprintf(streams, "\n\n %s %10.1f %s","Pass Waiting Per Bus

= ",averagePassWaitingTimePerBus, "sees");
fprintf(streams, "\n %s %10.1f %s","Journey Time Per Bus

= ",averageJourneyTimeOfBuses, "sees");
fprintf(streams, "\n %s %10.1f %s","Pass Journey Per Bus

= ",averagePassJourneyTimePerBus, "sees");
fprintf(streams, "\n %s %10.1f %s","Total car delays

= ",grandTotalCarDelays,"sees") ;

194

Appendix B

fprintf(streams, "\n %s %10.1f %s","Average car delay per junction
=",carDelayPerJunction,"sees");
fprintf(streams, "\n %s %10.1f %s","Average bus delay per junction

= ",busDelayPerJunction,"sees") ;
fprintf(streams, "\n %s %10.2f %s", "Total bus route side green time

= ",totMainRoadGreen,"hours") ;
fprintf(streams, "\n %s %10.2f %s","Total side road side green time

=",totSideRoadGreen,"hours");

float
totalCost=totalPassWaitingTime*((S74*passRateFactor)/2)/(3600*totPassl)*6 . S0+

totalJourneyTimeOfBuses/(3600*10)*9.83+
totalPassJourneyTime*{(374*passRateFactor)/2)/(3600*totPassl) *3 .15+

grandTotalCarDelays/simulationPeriod*6.74 ;

fprintf(streams, "\n\n %s %10.2f %s","Total Pass Waiting
= ",totalPassWaitingTime*((374*passRateFactor)/2)/(3600*totPassl),"hours") ;
fprintf(streams, "\n %s %10.2f %s","Total Bus Journey

=",totalJourneyTimeOfBuses/(3600*10),"hours");
fprintf(streams, "\n %s %10.2f %s","Total Pass Journey

=",totalPassJourneyTime*((374*passRateFactor)/2)/(3600*totPassl),"hours");
fprintf(streams, "\n %s %10.2f %s","Total car delays

=",grandTotalCarDelays/simulationPeriod,"hours");
fprintf(streams, "\n %s %10.2f %s","Total cost per hour

=",totalCost,"pounds");

fprintf(3t]:eamll, "\n %6d %3d%ld %10.1f %10.2f %10.2f %10.2f %10.2f %10.2f",
//Gap gives gap in the output

simulationPeriod,priorityOption,logicNumber,totPassl,totalPassWaitingTime*((3
74*passRateFactor)/2)/(3600*totPassl),

totalJourneyTimeOfBuses/(3600*2),totalPassJourneyTime*((374*passRateFactor) /2
)/(3600*totPassl),grandTotalCarDelays/simulationPeriod,totalCost);

fprintf(stream6, "\n");
for (int j = 0; j<totalSignalNo; j ++)
(
currentSignal = signal[j];
int carQueues=currentSignal->TotalDelayCarNumber();
fprintf(stream6, "%6d", carQueues);
}

}
//
/ /

195

Appendix B

#lf !defined(EXAMP1E_BUS_LINK)
#define EXAMPLE__BUS_LINK

#include <stdlib.h>
#include <iostream.h>

class Link
{

public:
Link(int IID, int IStart,int IDist,float ITime,float ISpeed)
-Link();
int linkldentity();
int linkPosition();
int thisLinkTime{int times);
float thisLinkSpeed0;

private;
int linkID;
int linkStart;
int linkDist;
float linkTime;
float linkSpeed;

};

#endif // end of 'defined(EXAMPLE RACE TRACK) check

196

Appendix B

#include "link.h"

Link::Link(int lID,int lStart,int IDist,float ITime,float ISpeed)
{

linkID = IID;
linkStart = IStart;
linkDist = IDist;
linkTime= ITime;
linkSpeed = ISpeed;

}
//

Link::-Link() { }
int Link::linkldentity0 {return linkID;}
int Link::linkPosition() {return linkStart;}
int Link::thisLinkTime(int times) {return linkTime;}
float Link;:thisLinkSpeed() {return linkSpeed;}
//

197

Appendix B

*if !defined(EXAMPLE_BUS_BUS)
#define EXAMPIjE_BUS_BUS

#Include <iostream.h>
#include <string.h>

class Bus
{

public:
Bus(char* nm,int serveNo,float sp,float oldp,int capa,int firstStop,int

firstSig,int firstDetect, int firstVDetect,int lastStop, int lastSig,int
lastDetect, int lastVDetect,int passStart,float finalp);

-Bus();
int ServiceNumber();
int nextLinkO;
int FirstBusstop{);
int LastBusstop();
int LastSignal0;
int LastDetector();
int LastVDetector();
void getSpeed{float ISpeed);
int arriveBusstopTime{int times,int busstopNumber2);
void StopBusstopTime(int times,int busstopNumber2,int bHeadway,float

pAlight,float pBoard,float pWait,int reserveNos);
int BusstopDwellTime();
int TotalBusstopDwellTime0;
int BusHeadway();
float PassAlighted{);
float PassBoarded();
float PassWaited();

void getNextBusstop(int busstopNums);
int nextBusstop ();
int arriveSignalTime(int times,int busstopNumber2);
void getNextSignal(int signalNums);
int nextSignal ();
int totalSignalTime0;
void getNextDetector(int detectorNums);
int nextDetector ();
void getNextBeacon(int beaconNums);
int nextBeacon();
void GetNextVDetector (int vDetectorNums);
int NextVDetector ();

void changeSpeed(int times);
float oldPosition ();
float newPosition(float timeFactor);
float totalPassInside(float passAlight,float passBoard);
float occupancy(float totalPassg);

int JourneyTime (int distance,float timeFactors);
int PassJourneyTime ();
int BusJourneyTime0;

void GetBeaconDistance(float distance);
float VirtualPosition(float realBusPosi, int odoAccuracy);
void GetAvlPosition(float distance);
float AvlPosition();

void GetBusstopDeviation(int deviTimes);
int LastBusstopDeviation();
void GetBusstopSchedule(int schTimes);
int LastBusstopSchedule();

void GetPollingColor ();
int PollingColor ();
void GetLateColor (int timings);
int LatenessColor ();
int BusColor ();

float GpsErrorGenerateNorm(int maxError);

198

private:
int serviceNos;
float speed;
float normalSpeed;
char* name;
float oldBusPosition;
int nextBusstopNos;
int nextSignalNos;
int nextDetectorNos;
int nextVDetectorNos;
int firstBusstopNos;
int lastBusstopNos;
int lastSignalNos;
int lastDetectorNos;
int lastVDetectorNos;
float passAlready;
float finalDist;

int busstopDelayTime;
int busstopNumberl;
int signalDelayTime;
int signalNumberl;
int totalSignalDelayTime;
int passCapacity;
float linkSpeed;
float pSpeed;
int nextBeaconNos;

int linkNumberl;
int nextLinkNos;
int busstopArriveTime;
int signalArriveTime;
int busstopNumberll;
int busstopStopTime;
int totalBusstopStopTime;
int busHeadway;
float passAlight;
float passBoard;
float passWait;
int alreadyReserved;

int previousTimes;
int passengerJourneyTime;
int busJourneyTime;

float lastBeaconPosi;

float lastPollingPosi;
int lastPollingTime;
int nextPollingTime;

int lastBusstopDeviation;
int lastBusstopSchedule;
int timeDuration;
int timeDurationl;

};

#endif

199

Appendix B

ttinclude "bus.h"

Bus::Bus(char* nm,int serveNo,float sp,float oldp,int capa,int firstStop,int
firstSig,int firstDetect,int firstVDetect,int lastStop,int lastSig,int
lastDetect,int lastVDetect,int passStart,float finalp)
{
serviceNos=serveNo;
speed = sp;
normalSpeed = sp;
name = new char[100];
strncpy(name, nm, 100);
oldBusPosition = (oldp - {speed/3.6)); //for making the position zero
passCapacity = capa;
nextBusstopNos =firstStop;//O;
nextSignalNos =firstSig;//O;
nextDetectorNos =firstDetect;//O;
nextVDetectorNos =firstVDetect;//O;
firstBusstopNos=firstStop;
lastBusstopNos =lastStop;//0;
lastSignalNos =lastSig;//O;
lastDetectorNos =lastDetect;//O;
lastVDetectorNos =lastVDetect;//O;
passAlready = passStart;//O;
finalDist=finalp;
linkNumberl = 0;
busstopNumberl = 100;
signalNumberl = 100;
nextLinkNos =0;
nextBeaconNos=0; //need to change for 3 service
busstopArriveTime =0;
signalArriveTime=0;
busstopNumberll=100;
busstopStopTime=0;
totalBusstopstopTime=0;
busHeadway=0;
passAlight=0.0;
passBoard=0.0;
passWait=0.0;
alreadyReserved=0;
previous?imes=0;
passengerJourneyTime=0;
busJourneyTime=0;
lastBeaconPosi=0.0;
lastPollingPosi=0.0;
lastBusstopDeviation=0;
lastBusstopSchedule=0;
timeDurationl=0;

}
//
Bus:;~Bus() (delete[] name;}
int Bus;:ServiceNumber() (return serviceNos;}
int Bus::nextLink() {return nextLinkNos;}
int Bus::FirstBusstop() (return firstBusstopNos;}
int Bus:;LastBusstop() {return lastBusstopNos;}
int Bus::LastSignal() (return lastSignalNos;}
int Bus::LastDetector() {return lastDetectorNos;}
int Bus: :LastVDetector() {return lastDetectorNos;}

//
void Bus::getSpeed(float 1Speed)
{
normalSpeed=lSpeed;
nextLinkNos++;

}
//
void Bus::changeSpeed(int times)
{
int delayTimes= times;
if (delayTimes!=0) (speed = 0.0;}
else (speed = normalSpeed;}

}

200

Appendix B

//
float Bus;:oldPosition () {return oldBusPosition;} //

float Bus: .-newPosition (float timeFactor)
{
if(oldBusPosition<-0.1) // if(oldBusPosition<=0.0)
{

oldBusPosition=oldBusPosition+(speed/(3.5))-(speed/(3.6*tiineFactor));
}
float newBusPosition = oldBusPosition + (speed/(3.6*timeFactor));
if(newBusPosition>finalDist) {newBusPosition=9999.0;} //terminate
oldBusPosition = newBusPosition;
return newBusPosition;
}
//

int Bus::arriveSignalTime(int times,int signalNumber2)
{
if (signalNumber2!=signalNumberl)
{
signalNumberl=signalNumber2;
signalArriveTime= times;
}
return signalArriveTime;
}
/ /
void Bus:;getNextSignal (int signalNums)
int Bus::nextSignal0
int Bus:;totalSignalTime()

int Bus::arriveBusstopTime(int times,int busstopNumber2)
{
if (busstopNumber2!=busstopNumberl)
{

busstopNumberl=busstopNumber2;
busstopArriveTime= times;
if (busstopNumber2!=firstBusstopNos)
{

passengerJourneYTime= passAlready*(times-previousTimes);
busJourneyTime= times-previousTimes;
}

previousTimes=times;

{nextSignalNos=signalNums; }
{return nextSignalNos;}
{return totalSignalDelayTirae;}

return busstopArriveTime;

//
int Bus::PassJourneyTime()
int Bus::BusJourneyTime() //

void Bus::StopBusstopTime (int times,int busstopNumber2,int bHeadway,float
pAlight, float pBoard,float pWait,int reserveNos)
{
if (busstopNumber2!=busstopNumberll)
{
busstopNumberll=busstopNumber2;
busstopStopTime= times;
totalBusstopStopTime= times;
busHeadway=bHeadway;
passAlight=pAlight;
passBoard=pBoard;
passWait=pWait;
alreadyReserved=reserveNos;
}
else { busstopStopTime—;}
if(reserveNos!=alreadyReserved)
{
alreadyReserved=reserveNos;
busHeadway=bHeadway;
passBoard=pBoard;

(return passengerJourneyTime;}
{return busJourneyTime;}

//here if first bus moves, second stays
//second have some boarding passengers
//departure of the first bus

//
int Bus;:BusstopDwellTime() {return busstopStopTime;}

201

int Bus;:TotalBusstopDwellTime{) {return totalBusstopStopTime;}
int Bus::BusHeadway{) (return busHeadway;}
float Bus::PassAlighted() {return passAlight;}
float Bus::PassBoarded() (return passBoard;}
float Bus::PassWaited() (return passWait;}

void Bus:;getNextBusstop(int busstopNums) {nextBusstopNos=busstopNums;}
int Bus::nextBusstop() (return nextBusstopNos;} //

float Bus:;totalPassInside (float passAlight,float passBoard)
{
passAlready = passAlready-passAlight+passBoard;
return passAlready;

}
//

float Bus::occupancy (float totalPassg)
{
float busOccupy = 1.0*totalPassg; //float busOccupy =

(100.0*totalPassg/passCapacity);
return busOccupy;
}
//

int Bus::JourneyTime (int distance,float timeFactors)
{
//int journeyTime= ((distance/normalSpeed)*3.6*timeFactors);
double journeyTime= ((distance/normalSpeed)*3.6*timeFactors);
double journeyTiinel=ceil(journeyTime); //For rounding up
return journeyTimel;

}
//
void Bus::GetBusstopDeviation(int deviTimes)
{lastBusstopDeviation=deviTimes; }
int Bus::LastBusstopDeviation() {return lastBusstopDeviation;}
void Bus::GetBusstopSchedule(int schTimes) {lastBusstopSchedule=schTimes;}
int Bus::LastBusstopSchedule() {return lastBusstopSchedule;}
//
//This part is for AVL assistance //

void BusGetBeaconDistance(float distance)
{
lastBeaconPosi=distance;
if (lastBeaconPosKO) lastBeaconPosi=0 . 0;
}
//
float Bus::VirtualPosition(float realBusPosi, int odoAccuracy) //For Beacon
{

float errorDistance=realBusPosi-lastBeaconPosi;
float virtualAddDist=errorDistance*odoAccuracy/100.0;
float virtualBusPosition=lastBeaconPosi+virtualAddDist;
return virtualBusPosition;
}
//
void Bus::GetAvlPosition(float distance) //transfer from polling
{
lastPollingPosi=distance-speed/3.6;
if (lastPollingPosi<0)lastPollingPosi=0.0;
}
//
float Bus;:AvlPosition()
{
if(lastPollingPosi>0.0)
{
lastPollingPosi=lastPollingPosi+speed/3.6;
}
return lastPollingPosi;
}
/ /
void Bus::getNextDetector(int detectorNums) {nextDetectorNos=detectorNums;}
int Bus;:nextDetector() {return nextDetectorNos;}
void Bus::getNextBeacon(int beaconNums) {nextBeaconNos=beaconNums;}
int Bus::nextBeacon() (return nextBeaconNos;}
void Bus::GetNextVDetector(int vDetectorNums)

202

Appendix B

{nextVDetectorNos=vDetectorNums;}
int Bus:rNextVDetector() {return nextVDetectorNos;} //

void Bus;:GetPollingColor() {tiineDuration=2;}

int Bus::PollingColor()
{
int pollingColor=timeDuration;
if {timeDuration>0)timeDuration—;
return pollingColor;
}
//

void Bus;:GetLateColor(int timings) {timeDurationl=timings;} //

int Bus::LatenessColor()
(
int lateColor=timeDurationl;
return lateColor;

}
//

int Bus::BusColor()
{
int busColor;
switch (serviceNos)
{
case 110:
busColor=l;
break;
case 111:
busColor-1;
break;
case 30:
busColor=2;
break;
case 31:
busColor=2;
break;
case 1010:
busColor=3;
}
return busColor;

}
//

float Bus::GpsErrorGenerateNorm(int raaxError)
(
float mean=0.0;
float stDeviation=3.3;
int multiplier=2*(3*stDeviation)*1000; //bigger range of random nos.
float divider=multiplier/(2.0*(3*stDeviation)); //for bringing back to

normal number

float valueXl=99999;
while(valueXl==99999)
{
float valueX = (rand()%multiplier)/divider-10.0;
float valueZx = (valueX-mean)/stDeviation;
float valuePx = ((exp(-

0.5*(valueZx*valueZx)))/((sqrt(2*3.14159))*stDeviation));

float valueY = (rand()%1000)*0.001/((sqrt(2*3.14159))*stDeviation);
if(valueY<=valuePx)
{

valueXl= valueX;
}
else valueXl=99999;

}
if (maxError==0) valueXl=0.0;
return valueXl;

}
//
//

2 0 3

Appendix B

#if !defined(EXAMP1E_BUS_BUSST0P)
^define EXAMPLE_BUS_BUSSTOP

iinclude <stdlib.h>
#include <iostream.h>
#include "buslist.h"

class BusStop
{

public:
BusStop(int busstopid,int linkNo,int busstopP,int busstopStartTime,float

passRa,float passRb,int scheduleStartTll,int scheduleStartT3,int
scheduleStartTlOl,BusList* blist);

-BusStop();
int busstopLinkNumber ();
int busstopldentity();
int busstopPosition();
int alightPass(int passlnside,int busArrivel);
int boardPassGenerate{int times);
int boardPassDischarge(int times, int busArrive, int alightPass);
int DwellTimeO;
int boardPassNos();
int waitingTime(int timeFactor);
int ScheduleStartTimell();
int ScheduleStartTimeS();
int ScheduleStartTimelOl();
int DeviationlnSchedulell(int times,int busFrequency);
int DeviationlnScheduleS(int times,int busFrequency);
int DeviationlnSchedulelOl(int times,int busFrequency);
int ScheduleHeadway(int serviceNos);
int BusstopHeadway();
void GetReserveBusl(int resNum);
void GetReserveBus2(int resNum);
int ReservedNuml();
int ReservedNum2();
int PassGenerateExpo (int meanPassHeadway);

int headwayCalculate(int times,int busArrive2,int passlnside,int
schTime,int reserved,int serviceNo);

float AlightPass2();
float BoardPass2 ();
int DwellTime2();
float WaitTime2();
float WaitTime3();
float WaitTime4();
float WaitTimeSO;

void GenerateOutput (float occupancy,float passin,int deviation,int
busJourney,float avWaitTime,float passAlighted,float passBoarded,float
dwellTimeAtStop);

int NumberOfBuses();
int ReliableBuses();
int ReliableBuses2();
float AverageOccupancy{);
float AverageScheduleDeviation();
float SdOfDeviation();
float AverageModulusDeviation();
float SdOfModulusDeviation();
float AverageBusJourney 0 ;
float TotalBusJourney 0 ;
float AveragePassJourney 0 ;
float TotalPassJourney 0 ;
float WaitingTimePerBus() ;
float TotalWaitingTime() ;
float AveragePassAlighted() ;
float AveragePassBoarded() ;
float AverageDwellTime();

private:
int busstopID;
int linkNos;
int busstopPosi;

2 0 4

Appendix B

float alightPassRate;
float boardPassRate;
int timeBusl;
int startTime;
int scheduleStartTimell;
int scheduleStartTimeS;
int scheduleStartTimelOl;
BusList* buslist;
int numberPassl;
int passGenerateTime;
int passGenerateFactor;
int passDischargeFactor;
int busAlready;
int checkinTime;
int alightPassTime;
int numberBoardPass;
int totalDwellTime;
int passengerA;
int busAlreadyl;
int passengerB;
int waitTime;
float deadTime;
float passAlightingTime;
float passBoardingTime;
int finalWaitTime;
int busstopReservedl;
int busstopReserved2;
int headway;
int busAlready2;
float passengerA2;
float passengerB2;
int dwellTime2;
int cumuHeadwaySquare;
int cumuHeadway;
int cumuHeadwaySquareS;
int cumuHeadwayS;
float averageWaitTime;
float cumuPassWait;
float cumuPassenger;
float averageWaitTime3;
float averageWaitTiine4;
float averageWaitTimeS;

int numberOfBuses;
int reliableBuses;
int reliableBuses2;
float cumuOccupancy;
float averageOccupancy;
float cumuDeviation;
float averageDeviation;
double cumuModulusDev;
float sumOfDeviationDiffer;
float sdOfDeviation;
float sumOfModulusDeviationDiffer;
float sdOfModulusDeviation;
float avModulusDeviation;
float cumuBusJourney;
float averageBusJourney;
float cumuPassIn;
float averagePassIn;
float averagePassJourney;
float cumuPassJourney;
float cumuWaitTime;
float averageWaitTimePerBus;
float cumuPassAlighted;
float averagePassAlighted;
float cumuPassBoarded;
float averagePassBoarded;
float cumuDwellTime;
float averageDwellTime;

};
#endif // end of !defined(EXAMPLE RACE TRACK) check

2 0 5

#include "busstop.h"

BusStop::BusStop(int busstopid,int linkNo,int busstopP,int busstopStartTime,
float passRa,float passRb,int scheduleStartTll,int

scheduleStartT3,int scheduleStartTlOl,BusList* blist)
{
busstopID = busstopid;
linkNos = linkNo;
busstopPosi = busstopP;
alightPassRate = passRa;
boardPassRate = passRb;
timeBusl= busstopStartTime;
startTime=busstopStartTime;
scheduleStartTimell=scheduleStartTll;
schedulestartTime3=scheduleStartT3;
scheduleStartTimel01=scheduleStartTl01;
buslist = blist;
numberPassl =0;
passGenerateTime=99999; // to avoid pass generate until initialisation
passGenerateFactor=l;
passDischargeFactor=l;
busAlready =0;
checkinTime=0;
alightPassTime=0;
numberBoardPass=0;
totalDwellTime=0;
passengerA=0;
busAlready1=0;
passengerB=0;
waitTime=0;
finalWaitTime=0;
busstopReservedl=0;
busstopReserved2=0;

headway=0;
busAlready2=0;
passengerA2=0.0;
passengerB2=0.0;
dwellTime2=0;
cumuHeadwaySquare=0;
cumuHeadway=0;
cumuHeadwaySquare5=0;
cumuHeadway5=0;
averageWaitTime=0;
cumuPassWait=0.0;
cumuPassenger=0.0;
averageWaitTime3=0.0
averageWaitTime4=0.0
averageWaitTime5=0.0

numberOfBuses=0;
reliableBuses=0;
reliableBuses2=0;
cumu0ccupancy=0.0;
average0ccupancy=0.0;
cumuDeviation=0.0;
averageDeviation=0.0;
cumuModulusDev=0.0;
avModulusDeviation=0.0;
sumOfDeviationDiffer=0.0;
sdOfDeviation=0.0;
sumOfModulusDeviationDiffer=0.0;
sdOfModulusDeviation=0.0;
cumuBusJourney=0.0;
averageBusJourney=0 . 0;
cumuPassIn=0.0;
averagePassIn=0.0;
averagePassJourney=0.0;
cumuPassJourney=0.0;
cumuWaitTime=0.0;
averageWaitTimePerBus=0.0;

206

Appendix B

cumuPassAlighted=0.0;
averagePassIn=0.0;
cuinuPassBoarded=0 . 0 ;
averagePassBoarded=0.0 ;
cumuDwellTime=0.0;
averageDwellTime=0.0 ;

}
//

BusStop::~BusStop() {}
int BusStop:ibusstopLinkNumber() {return linkNos;}
int BusStop::busstopldentity() {return busstopID;}
int BusStop::busstopPosition() {return busstopPosi;} //

int BusStopheadwayCalculate(int times,int busArrive2,int passlnside,int
schTime,int reserved,int serviceNo)
{

if(serviceNo>100) {deadTime = 6.85; passAlightingTime=l.69;
passBoardingTime=9.00;}
//{deadTime = 5.42; passAlightingTime=l.48; passBoardingTime=9.15;}

//York's parameters
else {deadTime = 3.30; passAlightingTime=l.96;

passBoardingTime=9.04;}
//{deadTime = 3.55; passAlightingTime=l.99; passBoardingTime=9.18;}

//York's parameters

if(busAlready2!=busArrive2)
{
int timeBus2=times;
if(reserved==0)
{
headway = timeBus2-timeBusl;
timeBusl = timeBus2;
}
else headway=0;

if(headway<0) headway=0;
passengerA2 = passInside*alightPassRate;
passengerB2 = headway/boardPassRate;
int tempPassengerB2=passengerB2; //to consider passenger at dwell time
if(passengerA2>0.0|1passengerB2>0.0)
{
dwellTime2 =

deadTime+passengerA2*passAlightingTime+passengerB2*passBoardingTime;
if(reserved==0)
{
int headwayTotal = headway+dwellTime2; //for taking account of

passengers at dwelltime
passengerB2 = headwayTotal/boardPassRate;
dwellTime2 =

deadTime+passengerA2*passAlightingTime+passengerB2*passBoardingTime;
passengerB2 = (headway+dwellTime2)/boardPassRate; //This is thirs

iteration for passenger number
timeBusl=timeBus2+dwellTime2; //for changing headway into

time gap (depart-arrive)
}

}
else {dwellTime2=0;}

if((times+dwellTime2)<schTime) //Check for scheduled timetable
{
dwellTime2=schTime-times;
if(reserved==0)
{
int headwayTotal = headway+dwellTime2; //for taking account of passengers

at dwelltime
passengerB2 = headwayTotal/boardPassRate;
timeBusl=timeBus2+dwellTime2; //for changing headway into time gap

(depart-arrive)

busAlready2=busArrive2;

207

Appendix B

cumuHeadwaySquare+=headway*headway;
cumuHeadway+=headway;
if ((headway+dwellTime2)>0)
(
averageWaitTime=0.5*headway*headway/(headway+dwellTime2); //wait time

using Gap for total Pass
}

else averageWaitTime=0;
cumuHeadwaySquare5+=(headway+dwellTime2)*(headway+dwellTime2);
cuniuHeadway5+=(headway+dwellTime2);
cumuPassWait+=0.5*headway*tempPassengerB2;
cumuPassenger+=passengerB2;

}
return headway;
}
//

float BusStop::AlightPass20 {return passengerA2;}
float BusStop::BoardPass20 {return passengerB2;}
int BusStop::DwellTime2() {return dwellTime2;}
float BusStop::WaitTime2() {return averageWaitTime;}
//
int BusStop:iDeviationlnSchedulell(int times,int busFrequency)
{
int deviationInSchedule=times-scheduleStartTimell;
schedulestartTimell+=busFrequency;
if (busstopID>9) {schedulestartTimell+=busFrequency; }
return deviationlnSchedule;

}
//

int BusStop::DeviationlnScheduleS{int times,int busFrequency)
{

int deviationInSchedule=times-scheduleStartTime3;
scheduleStartTime3+=busFrequency;
if (busstopID>9) {scheduleStartTime3+=bu8Frequency; }
return deviationlnSchedule;

}
//
int BusStop::DeviationlnSchedulelOl{int times,int busFrequency)
(
int deviationInSchedule=times-scheduleStartTimel01;
scheduleStartTimel01+=1800;//busFrequency; // Frequency of 101 is 30 min.
if (busstopID>9) {scheduleStartTimel01+=busFrequency; }
return deviationlnSchedule;

}
//
int BusStop::ScheduleHeadway(int serviceNos)
{

int schHeadway;
if(busstopID<7) {schHeadway=600;} //for ll&lla service up to Portswood
if(busstopID>=7&&busstopID<=9) //for ll&lla, 3&3a, 101 service from

Portswood to Lodge road
{

if(serviceNos<100)
{

if
{scheduleStartTimell>=scheduleStartTimel01I IscheduleStartTimel01>scheduleStar
tTime3){schHeadway=scheduleStartTime3-scheduleStartTimell;}

else {schHeadway=scheduleStartTime3-scheduleStartTimel01;}
}
if{serviceNos>100&&serviceNos<1000)
{
if

(scheduleStartTime3>=scheduleStartTimel01||scheduleStartTimel01>scheduleStart
Timell){schHeadway=scheduleStartTimell-scheduleStartTime3;}

else {schHeadway=scheduleStartTimell-scheduleStartTimel01;}
}
if (serviceNos>1000)
{
if

(scheduleStartTime3>=scheduleStartTimell){schHeadway=scheduleStartTimel01-
scheduleStartTime3;}

208

Appendix B

else {schHeadway=scheduleStartTimel01-scheduleStartTimell;}
}
}
if{busstopID>9) //for 11&3 service from Lodege Road to city centre
{

if(serviceNos<100) {schHeadway=scheduleStartTime3-scheduleStartTimell;}
if{serviceNos>100) {schHeadway=scheduleStartTimell-scheduleStartTime3; }
}
//if(busstopID<7) {schHeadway=600;} //for ll&lla service up to Portswood
return schHeadway;

}
//
int BusStop:iBusstopHeadway0
{

int schHeadway;
if(busstopID<7) schHeadway=600; //for ll&lla service up to Portswood
if(busstopID>=7&&busstopID<=9)schHeadway=300; //for ll&lla, 3&3a, 101

service from Portswood to Lodge road
if{busstopID>9) schHeadway=600;//for 11&3 service from Lodege Road to city

centre
return schHeadway;

//
int BusStop::ScheduleStartTimell() (return scheduleStartTimell;}
int BusStop::ScheduleStartTime3() {return scheduleStartTimeS;}
int BusStopScheduleStartTimelOl() {return scheduleStartTimelOl;}
void BusStop:iGetReserveBusl(int resNum) {busstopReservedl=resNum;}
void BusStop::GetReserveBus2(int resNum) {busstopReserved2=resNum;}
int BusStopReservedNuml() {return busstopReservedl;}
int BusStop::ReservedNum2() {return busstopReserved2;}
/ /
//This section is for generating individual passengers (not required at this
stage)
//
//
int BusStopalightPass(int passlnside, int busArrivel)
{
if(busAlreadyl!=busArrivel)
{

passengerA = alightPassRate*passInside; //alightPassRate is passenger
arrival rate

busAlreadyl=busArrivel;
finalWaitTime=waitTime; //for storing the waiting time refered to

arrival of bus
}

return passengerA;
}
//
int BusStop:iboardPassGenerate(int times)
{
int addPass=0;

int genTime = times-startTime; //startTime is busstop start time
if (genTime>=passGenerateFactor*boardPassRate)
{
addPass=l;
passGenerateFactor++;

}

int numberPass2 = numberPassl+addPass;
//if(numberPass2<l) numberPass2 =0 ; //there is a problem if I don't use

this statement
if{numberPass2<l) numberPass2 =0;
waitTime=waitTime+numberPassl*l;///timeFactor//l is time factor
numberPassl=numberPass2;
return numberPass2;

}
//
int BusStop::boardPassDischarge (int times, int busArrive, int alightPass)
{
int delPass=0;
if(busAlready!=busArrive)

2 0 9

checkinTime = times;
busAlready = busArrive;
passDischargeFactor=l;
alightPassTime = alightPass*passAlightingTime;
nuniberBoardPass=0;

}
int alightStartTime=times-checkinTime-8-alightPassTime; //8 is dead time &

alightPassTime is time for pasenger alighting
if (alightStartTime>=passDischargeFactor*passBoardingTime)
{
delPass=l;
passDischargeFactor++;

}
//int *change = snumberPassl;
//*change -=delPass; //Instead I could have done
numberPassl=numberPassl-delPass;//O;
numberBoardPass=numberBoardPass+delPass;
totalDwellTime=times-checkinTime;
return numberPassl;

}
//
int BusStop;:boardPassNos() {return numberBoardPass;}
int BusStop::DwellTime() {return totalDwellTime;}

int BusStop::waitingTime(int timeFactor)
{
//int outWaitTime=waitTime/timeFactor-numberBoardPass*passBoardingTime; / /to

make the wait time calculation at the start of boarding
//int outWaitTime=finalWaitTime/timeFactor;
if(numberBoardPass==0) numberBoardPass=l;
int outWaitTime=(waitTime/timeFactor)/numberBoardPass;
waitTime=0;
return outWaitTime;

}
//
int BusStopPassGenerateExpo(int meanPassHeadway)
{

//randomize();
//float valuePxl = rand()%4 00;
//int valueXl = ({(log((valuePxl/100000)*60))*-60)+240); //for mean =300,

St. dev = 60

int largestHeadway=10*meanPassHeadway;
float dividerValue=1000.0*meanPassHeadway;

int valueXl=0;
if(meanPassHeadway==99999) valueXl=99999; //to ban generating passengers at

exit
while(valueXl==0)
{
float valuePx;
int valueX = rand()%largestHeadway;
valuePx = ((exp(-1*(valueX/meanPassHeadway)))/meanPassHeadway); //for

mean =300, st. dev = 60

float valueY = (rand()%1000)/dividerValue;
if(valueY<=valuePx)
{

valueXl= valueX;
}
else valueXl=0;

}

return valueXl;
}
//
//This section is for Output generation purpose only
//
//

void BusStop:;GenerateOutput(float occupancy,float passin,int deviation,int
busJourney,float avWaitTime,float passAlighted,float passBoarded,float
dwellTimeAtStop)

210

Appendix B

{

nuinberOfBuses++;
if (deviation >-60&&deviation<180) EeliableBuses++;
if (deviation >-60&&deviation<300) reliableBuses2++;
cumuOccupancy+=occupancy;
averageOccupancY=cumuOccupancy/numberOfBuses;
cumuDeviation+=deviation;
averageDeviation=cumuDeviation/numberOfBuses,•
int modulusDeviation=sqrt(deviation*deviation);
cumuModulusDev+=modulusDeviation;//sqrt(deviation*deviation);
avModulusDeviation=cumuModulusDev/numberOfBuses,•
sumOfDeviationDiffer+=(deviation*deviation);
if(numberOfBuses)1)sdOfDeviation=sqrt(sumOfDeviationDiffer/(numberOfBuses-

1)) ;
sumOfModulusDeviationDiffer+=((modulusDeviation)*(modulusDeviation));
if(numberOfBuses>1)sdOfModulusDeviation=sqrt((sumOfModulusDeviationDiffer-

numberOfBuses*avModulusDeviation*avModulusDeviation)/(numberOfBuses-1)) ;
cumuBusJourney+=busJourney,•
averageBusJourney=cumuBusJourney/numberOfBuses;
cumuPassIn+=passIn;
averagePassIn=cumuPassIn/numberOfBuses,•
averagePassJourney=averagePassIn*averageBusJourney,•
cumuPassJourney+=(passln*busJourney) ;
cumuWaitTime+=(avWaitTime*passBoarded);
averageWaitTimePerBus=cumuWaitTime/numberOfBuses,•
cumuPassAlighted+=passAlighted,•
averagePassAlighted=cumuPassAlighted/numberOfBuses;
cumuPassBoarded+=passBoarded;
averagePassBoarded=cumuPassBoarded/numberOfBuses;
cumuDwellTime+=dwellTimeAtStop;
averageDwellTime=cumuDwellTime/numberOfBuses;

int BusStop::NumberOfBuses()
int BusStop::ReliableBuses()
reliableBuses*100/numberOfBuses;}
int BusStop::ReliableBuses2()
reliableBuses2*100/numberOfBuses;}

{return numberOfBuses;}
{return

float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop
float BusStop

//
//

AverageScheduleDeviation()
SdOfDeviation()
AverageModulusDeviation()
SdOfModulusDeviation()
AverageOccupancy()
AverageBusJourney()
TotalBusJourney()
AveragePassJourney()
TotalPassJourney()
WaitingTimePerBus()
TotalWaitingTime()
AveragePassAlighted()
AveragePassBoarded()
AverageDwellTime()

(return

{return
{return
{return
{return
(return
{return
{return
{return
{return
(return
{return
{return
{return
{return

averageDeviation;}
sdOfDeviation; }
avModulusDeviation;}
sdOfModulusDeviation;}
averageOccupancy;}
averageBusJourney;}
cumuBusJourney;}
averagePassJourney;}
cumuPassJourney;}
averageWaitTimePerBus;}
cumuWaitTime;}
averagePassAlighted;}
averagePassBoarded;}
averageDwellTime;}

211

Appendix B

#if !defined(EXAMPLE_BUS_SIGNA1)
#define EXAMP1E_BUS_SIGNAL

#include <iostream.h>

class Signal
{

public:
Signal(int signalld,int sideSig,int linkNo,float signal?,int cycleT,

int greenT,int amberT,int offset,float flowArm, int satFlow,
int maxExtendl, int maxRecall,int maxExtend2,int maxRecal2,int

recallRestrict);
-Signal{);
int signalldentity();
int SideSignalNumber();
int signalLinkNumber();
float signalPosition{);
int GreenStartTime(int times, int busNumber2);
void GetRecall{int times, int cycleNos);
void GetExtension(int times, int cycleNos);
int CycleNumber(int times);
int signalStage(int times);
int SignalStageState();
int TotalGreenTime();
void CalculateCarNumber(int times);
void CalculateCarNumberl(int times);
int newCarNumber();
int frontCarNumber(int busNumber2);
int frontCarFirst();
int carPositionNos(int busNumber2);
int carPosition(int nums);//int times, int busNumber2);
void changeFrontCarNos();
int LockBusNos();
int demoFrontCarNumber();
int EndGreenState(int times);
int StartGreenState(int times);
int RecallRestriction();

int DelayCarNumber();
int TotalDelayCarNumber();
float AverageCarDelay(int totalTime);
int MaxExtensionTime();
int MaxRecallTime();
void PriorityOption(int logicNo, int lateTime, int scheduleTime);

void GetBusDelay(int busDelay);
float AverageBusDelay();

private:
int signallD;
int sideSignalNos;
int linkNos;
float signalPosi;
int cycleTime;
int greenTime;
int amberTime;
int offsetTime;
int maxExtensionl;
int maxRecalll;
int maxExtension2;
int maxRecall2;
int recallRestrictionTime;

int stageNumber;
int numberCar;
int numberCarl;
int numberCar2;
int addCars;
int delCars;
int numberFrontCar;
int busNumberl;

212

Appendix B

float flowArms;
int satFlows;
int carGenerateFactor;
int carDischargeFactor;
int delCar;
int busNuml;
int numberFrontCarl;
int carDischargeFactorl;
int frontCarAtFirst;
int greenTimes;

int busCarNuml;
int numberFrontCarll;
int numberFrontCarlll;

int busNumbsl;
int greenStartTime;
int lockBusNuinber;

int recallCycleNuinber;
int givenRecallTime;
int recallTime;
int extendCycleNumber;
int givenExtensionTime;
int extensionTime;
int extensionTimeAllowed;
int recallTimeAllowed;
int previousExtensionTime;
int previousRecallTime;
int totalGreenTime;

int delayToCars;
int maxCarNumber;

int totalDelayCarNumber;
int recallCounter;
int recallCounterl;

int numberOfBuses;
float cumuBusDelay;
float averageBusDelay;

};

iendif // end of !defined(EXAMPLE RACE TRACK) check

21:

Appendix B

#include "signal.h"

Signal::Signal(int signalld,int sideSig,int linkNo,float signal?,int cycleT,
int greenT, int amberT,int offset,float flowArm,int satFlow,
int maxExtendl, int maxRecall,int maxExtend2,int maxRecal2,int

recallRestrict)
{
signallD = signalld;
sideSignalNos=sideSig;
linkNos = linkNo;
signalPosi = signal?;
cycleTime = cycleT;
greenTime = greenT;
amberTime - amberT;
offsetTime = offset; //offset helps to start with the phase wanted
stageNumber=0;
numberCarl =0;
numberCar2 =0;
addCars=0;
numberFrontCar=0;
busNumberl=100;
flowArms = flowArm;
satFlows = satFlow;
maxExtensionl=maxExtendl;
maxRecalll=maxRecall;
maxExtension2=maxExtend2;
maxRecall2=maxRecal2;
recallRestrictionTime=recallRestrict;
carGenerateFactor=l; //for generating the car after First interval
carDischargeFactor=l; //for discharging the car after First interval
delCar=0;
busNuml=100;
numberFrontCar1=0;
carDischargeFactorl=l;
frontCarAtFirst=0;
busNumbsl=100;
greenTimes=0;

totalDelayCarNumber=0;

greenStartTime=0;

busCarNuml=100; numberFrontCarll=0; numberFrontCarlll=0;
lockBusNumber=0;
recallCycleNumber=0; givenRecallTime=0; recallTime=0;
extendCycleNumber=0; givenExtensionTime=0; extensionTime=0;
extensionTimeAllowed=0; recallTimeAllowed=0;
previousExtensionTime=0; previousRecallTime=0;
totalGreenTime=0;

maxCarNumber=0;
recallCounter=0; recallCounterl=0;
numberOfBuses=0; cumuBusDelay=0.0; averageBusDelay=0.0;
}
//
Signal-Signal() {}
int Signal::signalldentity() {return signallD;}
int Signal::SideSignalNumber {) {return sideSignalNos;}
int Signal::signalLinkNumber() {return linkNos;}
float Signal;;signalPosition () (return signalPosi;}
//
int Signal::GreenStartTime(int times, int busNumber2)
{
if (busNumber2!=busNumbsl)

busNumbsl=busNuitiber2;
greenStartTime=times;

)
return greenStartTime;

2 1 4

Appendix B

]

//

int Signal::EndGreenState(int times)
{
int checkTime = (times+offsetTime)%cycleTime;
int endGreenState=checkTime-(greenTime-1); //I is deducted because Green

starts from 0 not 1
if (endGreenState<0) endGreenState=0;
return endGreenState;

}
//

int Signal::StartGreenState(int times)
(
int checkTime = (times+offsetTime)%cycleTime;
int startGreenState=cycleTime-checkTime;
return StartGreenState;

1
//

int Signal;;RecallRestriction() {return recallRestrictionTime;} //

int Signal::CycleNumber(int times)
{

int cycleNumbers=(times+offsetTime)/cycleTime;
return cycleNumbers;

//
void SignalGetRecall(int times, int cycleNos)
{
givenRecallTime = times;
recallCycleNumber =cycleNos;

}
/ /
void Signal:iGetExtension(int times, int cycleNos)
(
givenExtensionTime = times;
extendCycleNumber =cycleNos;

}
//

int Signal::signalStage(int times)
{

//int stageNumber;
int cycleNum=(times+offsetTime)/cycleTime;
if (cycleNum==recallCycleNumber)
{
recallTime=givenRecallTime;
previousRecallTime=recallTime;
}
else recallTime=0;
if (cycleNum==recallCycleNumber+l)
{
offsetTime=offsetTime+previousRecallTime;
recallCycleNumber=-l;

}

if (cycleNum==extendCycleNumber)
{
extensionTime=givenExtensionTime;
previousExtensionTime=extensionTime;
}
else extensionTime=0;
if (cycleNum==extendCycleNumber+l)
{
offsetTime=offsetTime-previousExtensionTime;
extendCycleNumber=-l;
}

if(extensionTime<0) //side road -ve extension by using offset to
reduce green and cycle time

{

if (cycleNum==extendCycleNumber)
1
offsetTime=offsetTime-previousExtensionTime;

2 1 5

Appendix B

extendCycleNumber=-l;
extensionTime=0;
}

}
if{recallTime<0)extensionTime=givenRecallTiine; //For side signal

shortening of green time page 34

int timing = times+offsetTime;
if (recallTime>0) timing=timing%cycleTime; //Very important (page 28)
if (recallTime<0)
{
timing=timing%cycleTime+cycleTime; //Very important (page 51) for

comparing with extended cycle time > common cycle time
//extensionTime=recallTime; //This is to decrease Green period in

case of -ve Recall
extensionTime=0;
}
int checkTime = timing%(cycleTime-recallTime); //Recalling means shortening

of CycleTime

//if(extensionTime<0)extensionTime=0; //not to change the length of side
road green time

if(checkTime<greenTime+extensionTime)

stageNumber=l; //Green stage
totalGreenTime++;

else if(checkTime<(greenTime+extensionTime+amberTime))

stageNumber = 2; //Amber stage

Ise

stageNumber=3; //Red stage

return stageNumber;
}

//
int SignalSignalStageState ()
{

return stageNumber;
}

//
int Signal::TotalGreenTime()
{
return totalGreenTime; //this is for checking change in Green due

to priority
}

//
void SignalCalculateCarNumber(int times)

int addCar=0;
delCar=0;
float carGenerateTime=300.0/flowArms;
float carDischargeTime=3600.0/satFlows;

if (times>=carGenerateFactor*carGenerateTime)
{

addCar=l;
carGenerateFactor++;

if(stageNumber!=1)
{
carDischargeFactor=l;
greenTimes=0;
}
else if(stageNumber==l)
{

greenTimes++;

216

Appendix B

if (greenTimes>=carDischargeFactor*carDischargeTirae)
{
delCar=(greenTimes/carDischargeTime)-(carDischargeFactor-1);
carDischargeFactor+=delCar;

}
}

nuniberCar2 = numberCarl+addCar-delCar;
if(numberCar2<l) nuinberCar2 =0 ; //there is a problem if I don't use this

statement
//if(checkTime==greenTime)numberCar2=0; //this is for deleting the last

vehicle appearing just befor red time
delayToCars=delayToCars+numberCar2*l;
if{numberCar2>numberCarl) maxCarNumber=numberCar2;
totalDelayCarNumber+=numberCar2; //this is for calculation of Delays

to cars at signal
numberCarl=numberCar2;

}
//

int Signal:;newCarNumber{)
{

return numtoerCar2;
}
//

int Signal::frontCarNumber(int busNumber2) //to discharge bus if no car
infront
{

if (busNumber2!=busNuml)
{
busNuml=busNumber2;
numberFrontCarl = numberCar2;
frontCarAtFirst = numberCar2;

}
else (numberFrontCar1-= delCar;}
if (numberFrontCarl<0) numberFrontCar1=0;
return numberFrontCarl;

}
//

int Signal::frontCarFirst() {return frontCarAtFirst;} //for output //

int Signal::carPositionNos(int busNumber2)
{
if (busNumber2!=busCarNuml)

busCarNuml=busNumber2;
numberFrontCarl11 = numberCar2;
lockBusNumber=busNumber2;

}
else {numberFrontCarlll-= delCar;}
if (numberFrontCarllKO) numberFrontCarlll=0;
return numberFrontCarlll;

}
//

int Signal::carPosition(int nums)//int times, int busNumber2)
{
int positionCar;
//if (number FrontCar llKl) number FrontCar ll=numberCar 2;
if(nums==0) numberFrontCarll=numberCar2;
if (nums>=l) numberFrontCarll=nuiTiberFrontCarlll;
//if(numberFrontCar111>=1) numberFrontCarll=numberFrontCarlll;
if(numberFrontCarll<0) numberFrontCarll =0 ;

if(numberFrontCarll>=l) positionCar = signalPosi-
numberFrontCarll*4.0;//2.5;

else positionCar = 5000;
return positionCar;

}
//
void Signal::changeFrontCarNos() {numberFrontCarlll=0;}
int Signal::LockBusNos() {return lockBusNumber;}
int Signal::demoFrontCarNumber() {return numberFrontCarll;}

int SignalDelayCarNumber() {return numberCar2;}

2 1 7

Appendix B

int Signal::TotalDelayCarNumber() {return totalDelayCarNumber;} //

float Signal:lAverageCarDelay(int totalTime)
{
float averageCarDelay=totalDelayCarNumber/{totalTime*flowArms/300);
return averageCarDelay;

}
//

void Signal::GetBusDelay{int busDelay)
{
numberOfBuses++,•
cumuBusDelay+=busDelay,•
averageBusDelay=cumuBusDelay/numberOfBuses;
}
/ /
float SignalAverageBusDelay() {return averageBusDelay;}
//
//This is Bus priority section //

void Signal::PriorityOption(int logicNo, int lateTime, int scheduleTime)
{
//scheduleTime is used in case of ratio which is scheduled headway 600 sees
switch (logicNo)
(
case 1: //for No priority
{

extensionTimeAllowed=0;
recallTimeAllowed=0;
break;
}
case 2: //for SVD priority with Normal DoS/ High DoS
{

extensionTimeAllowed=maxExtensionl;
recallTimeAllowed=maxRecalll;
break;

}
case 3: //Differential with Normal DoS
{

//if(lateTime/scheduleTime>=0.0) //based on ratio
if(lateTime>0) //based on difference
(
extensionTimeAllowed=maxExtensionl;
recallTimeAllowed=maxRecalll;
}
else
{

extensionTimeAllowed=0;
recallTimeAllowed=0;

}
break;

}
case 4: //Differential with High DoS
{

if(lateTime>0) //based on difference
{

extension?imeAllowed=maxExtens ion2;
recallTimeAllowed=maxRecall2;
}
else
{

extensionTimeAllowed=0;
recallTimeAllowed=0;

}
break;

}
case 5: //Differential with HighDoS for Lateness>50 and Low for >0
{

//if(lateTime/scheduleTime>=0.0) //based on ratio
if(lateTime>50) //based on difference
{
extensionTimeAllowed=maxExtension2;
recallTimeAllowed=maxRecall2;

218

Appendix B

Ise if(lateTime>0)

extensionTimeAllowed=maxExtensionl;
recallTimeAllowed=maxRecalll;

Ise

extensionTimeAllowed=0;
recallTimeAllowed=0;

break;
}

case 6: //Differential and SVD
{

//if(lateTime/scheduleTime>=0.0)
if(signalID<8)

//based on difference

//based on ratio
//based on difference

if (lateTiine>0)
{
extensionTimeAllowed=maxExtensionl;
recallTinieAllowed=maxRecalll ;
}
else
{

extensionTimeAllowed=0;
recallTimeAllowed=0 ;

//based on difference

}
else //based on difference

extensionTimeAllowed=maxExtensionl;
recallTimeAllowed=maxRecalll;
}
break;

}

case 7: //Differential and SVD
I
if {signalID<8)

if (lateTiine>50)
(
extension?imeAllowed=maxExtens ion2;
recallTimeAllowed=maxRecall2;
}
else if (lateTime>0)
{
extensionTimeAllowed=maxExtensionl;
recallTinieAllowed=maxRecalll;
}
else
{

extension? iraeAllowed=0;
recallTimeAllowed=0;
}

//based on difference

//based on difference

//based on difference

}
//based on difference else

{

extensionTimeAllowed=maxExtensionl;
recallTimeAllowed=maxRecalll;
}
break;

//
int Signal::MaxExtensionTime ()
int Signal;:MaxRecallTime () //

/ /
//

{return extensionTimeAllowed;}
(return recallTimeAllowed;}

2 1 9

Appendix B

#if !defined(EXAMP1E_BUS_VIRTUA1DETECT0R)
#define EXAMPLE_BUS__VIRTUALDETECTOR

#include <stdlib.h>
iinclude <iostream.h>

class VirtualDetector
{

public:
VirtualDetector(int vDetectId,int sigid,int vDetectP,int vDetectDist)
-VirtualDetector();
int VirtualDetectorldentity();
int Signalldentity();
int VirtualDetectorPosition();
int VirtualDetectorDistance();

private:
int VirtualDetectorID;
int signallD;
float virtualDetectorPosi;
int virtualDetectorDist;

};

iendif // end of !defined(EXAMPLE BUS VirtualDetector) check

220

Appendix B

finclude "virtualDetector.h"

VirtualDetector::VirtualDetector(int vDetectId,int sigid,int vDetectP,int
vDetectDist)
{
virtualDetectorID = vDetectId;
signallD = sigId;
virtualDetectorPosi = vDetectP;
virtualDetectorDist = vDetectDist;

//
VirtualDetector::~VirtualDetector() { }
int VirtualDetector::VirtualDetectorIdentity() {return
int VirtualDetector::SignalIdentity() {return
int VirtualDetector::VirtualDetectorPosition() (return
int VirtualDetector::VirtualDetectorDistance0 {return //

virtualDetectorID;}
signallD;}
VirtualDetectorPosi;}
virtualDetectorDist;}

221

Appendix B

#if !defined(EXAMPLE_BUS_Beacon)
#define EXAMPLE_BUS_Beacon

#include <stdlib.h>
iinclude <iostream.h>

class Beacon
{

public:
Beacon(int beaconid,int linkNo,int beacon?);
-Beacon();
int Beaconldentity();
int BeaconPosition();
void GetBeaconColor ();
int BeaconColor ();

private:
int beaconID;
float beaconPosi;
int beaconColor;

};

#endif // end of !defined(EXAMPLE BUS Beacon) check

222

iinclude "Beacon.h"

Beacon::Beacon(int beaconid,int linkNo,int beaconP)
{
beaconID = beaconid;
beaconPosi = beaconP;
beaconColor=0;

}
//

Beacon::-Beacon()
int Beacon::Beaconldentity()
int Beacon::BeaconPosition()
void Beacon::GetBeaconColor{) //

int Beacon::BeaconColor0

{ }
{return beaconID;}
{return beaconPosi;}
{beaconColor=3;}

if {beaconColor>0)beaconColor-
return beaconColor;

}
//-

223

Appendix B

#if !defined(EXAMPLE_BUS_BUSLIST)
#define EXAMPIjE_BUS_BUSLIST

iinclude <iostream.h>
#include "bus.h"
#include "busitem.h"

class BusList
{

public:
BusList ();
virtual -BusList();
void addBus(Bus* abus);
int getLength();
Bus* getBus(int index);
Bus* exitBus(int index);

protected:
BusListltem* head;
BusListltem* stop;

};

#endif

2 2 4

Appendix B

#include "buslist.h"

BusList:;BusList() {head = NULL;}
BusList::-BusList{) {if(head != NULL) delete head;} //

void BusList::addBus(Bus* abus)
{
if(head == NULL) head = new BusListltem(abus);
else head->addBus(abus);

}
//

int BusList::getLength()
{
if(head == NULL) return 0;
else
(
int count = 0;
BusListltem* current = head;
while(current != NULL)
{
count++;
current = current->next;

}
return count;

}
}
//
Bus* BusList::getBus(int index)
{

if(index > getLength()) return NULL;
else
{

BusListltem* current = head;
while(current != NULL && index > 0)
{
current = current->next;
index—;

}
return current->abus;

//
Bus* BusList::exitBus(int index)
{
if(index >= getLength()) return 0;
else
{

BusListltem* current = head;
BusListltem* previous = NULL;
while(current != NULL && index > 0)
{
previous = current;
current = current->next;
index—;

}
if(previous == NULL)
{

head = current->next; //removing the first element
stop = current;

}
else
{

previous->next = current->next;
stop = current;

return 0;

}
/ / -

2 2 5

Appendix B

#if ! defined (EXAMPLE_BUS_BUSIjISTITEM)
#define EXAMPLE BUS BUSLISTITEM

#include <iostream.h>

class BusListltem;
#include "buslist.h"

class BusListltem
{

friend class BusList;

public:
BusListItem(Bus* a) ;
virtual -BusListltem();
Bus* getBusO;

protected:
BusListltem* next;
Bus * abus;
void addBus(Bus* toadd);

};

#endif

226

Appendix B

iinclude "busitem.h"

BusListltem::BusListltem(Bus* a)
{

abus = a;
next = NULL;

BusListltem::-BusListltem()

if (next != NULL) delete next;

//

Bus* BusListltem::getBus()

return abus;

/ /
void BusListltem::addBus(Bus* toadd)

if(next != NULL) next->addBus(toadd)
else next = new BusListltem(toadd);

)
//

2 2 7

