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Engineering design optimization is an emerging technology whose application both 

tends to shorten design-cycle time and finds new designs that are not only feasible, 

but also nearer to optimum, based on specified design criteria. Its gain in attention 

in the field of complex designs is fuelled by advancing computing power now allowing 

increasingly accurate analysis codes to be deployed. Unfortunately, the optimization of 

complex engineering design problems remains a difiRcult task, due to the complexity of 

the cost surfaces and the human expertise necessary in order to achieve high quality re-

sults. This research is concerned with the effective use of past experiences and chronicled 

data from previous designs to mitigate some of the limitations of present engineering 

design optimization process. In particular, the present work leverages well established 

artificial intelligence technologies and extends recent theoretical and empirical advances, 

particularly in machine learning, adaptive hybrid evolutionary computation, surrogate 

modeling, radial basis functions and transductive inference, to mitigate the issues of i) 

choice of optimization methods and ii) dealing with expensive design problems. The 

resulting approaches are studied using commonly employed benchmark functions. Fur-

ther demonstrations on realistic aerodynamic aircraft and ship design problems reveal 

that the proposed techniques not only generate robust design performance, they can also 

greatly decrease the cost of design space search and arrive at better designs as compared 

to conventional approaches. 
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Introduction 

§1.1 Complex Engineering Design Opt imizat ion 

PRESENTLY, most complex engineering design exploration is carried out manually. 

The design engineer uses computer aided design tools to make a modification to 

the design and evaluates this by numerical simulation. He then enters a design-evaluate-

redesign process and stops when he thinks that the design is adequate based on his 

experience and knowledge of past designs. A numerical simulation may thus be used by 

hand to provide a design exploration process. Design Exploration Systems (DES) help 

in this process by attempting to automatically establish critical design parameters. 

Today, several powerful DES such aa OPTIONS [1] and iSight [2] have become avail-

able, most of which have the common characteristic of containing multiple sophisticated 

optimization routines for design-space search. The heart of a good DES is usually a de-

sign optimization facility, which is basically a design-space search tool that is employed 

to automatically End good solutions to some problem (e.g., by Ending the minimum of 

a function) by generating a collection of potential solutions to the problem and then 

manipulating them. In this way, complex engineering design optimization helps reduce 

the cycle time of the design-evaluate-redesign iteration loops and finds better designs by 

computerizing parts of the iterative process. 

In this dissertation, we shall limit our view of the engineering design process to con-

tinuous parametric design. In particular, we consider the general nonlinear programming 
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problem of the form: 

Minimize : / (x ) 

Subject to : ^i(x) < 0,7 = 1, 2 , . . . (1.1) 

(1 .2) 

X, < X < X u 

where x E is the vector of design variables representing the parametric description 

of the artifact being designed, and x; and x^ are vectors of lower and upper bounds, 

respectively, / ( x ) present a numerical property of the artifact that can be minimized and 

is often referred as the objective or htness function, ^i(x) and Ai(x) are the inequality 

constraint functions and equality constraint functions, respectively. The constraints acts 

as a form of quality control, ensuring that the design is realizable. 

§1.2 Opt imizat ion Techniques 

Optimization is a mature technology that has been studied extensively by researchers over 

the last half century. Over the years, optimization methods have evolved considerably 

and many algorithms and implementations are now available and used in the engineer-

ing optimization community. They can generally be classified into three broad cate-

gories: conventional numerical optimization methods (mostly gradient based), stochastic 

optimization methods and hybrid methods. Typical conventional numerical methods 

are steepest-descent methods, conjugate-gradient, quadratic programming, direct search 

methods and linear approximation methods [3, 4, 5]. These methods have the known 

advantage of their efficiency; however, they are very sensitive to starting point selection 

and are more likely to stop at non-global optima than modern stochastic algorithms. 

Several research ê Forts on these conventional numerical optimization methods have been 

applied with much success to some complex engineering design optimization problems 

such as aircraft design [6, 7, 8]. 

Stochastic techniques on the other hand produce new design points that do not use 

information about the local slope of the objective function and thus are not prone to 
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stalling in false optima. They do tend to require more analysis e&rt, however. Among 

the modern stochastic optimizers are Genetic Algorithms; Simulated Annealing; Evolu-

tionary Programming and Evolution Strategies [9, 10, 11, 12]. Modern stochastic tech-

niques have also enjoyed success in several complex engineering design domains including 

aerodynamic design, communication network design, control system design, architectural 

and civil engineering design, and VLSI design [11, 12, 13, 14]. A view of modern stochas-

tic techniques from the standpoint of an engineer, principally evolutionary computation 

in control system engineering and design can be found in [13]. 

The third category of optimization methods is hybrid methods, which are formed by 

combining different optimization methods or sometimes with the use of artificial intel-

ligence. InterGEN [15] is a hybrid method that combined a Genetic Algorithm with a 

conventional numerical optimizer, and uses a rule based expert system to decide when 

to switch between the two. Gage [16] also combined Genetic Algorithm with Sequen-

tial Quadratic Programming for the design of aircraft wings. In addition, there exists 

a breed of hybrid Evolutionary Algorithm - Local Searches that implicitly involve the 

use of learning procedures within the population. Such hybrid methods are commonly 

referred to as Memetic Algorithms. [17, 18, 19]. 

§1.3 Limitat ions of Present Complex Engineering De-

sign Opt imizat ion 

Even though optimization has been studied and used in the engineering design community 

for many years, it has only been heavily used relatively recently for complex designs 

[20]. This take up is now happening because advances in computing technologies allow 

increasingly accurate analysis codes to be deployed in this way, see for example the work 

reported by Jameson in a special issue of Journal of Aircraft dedicated to optimization 

[21] . 

Unfortunately, the optimization of complex engineering design problems is a difhcult 

task due to the complexity of the cost surfaces and the human expertise that are neces-

sary in order to achieve high quality results. Two aspects that effect the performance of 
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design searches significantly are: A) "Choice of Optimization Methods" and B) "Com-

putationally Expensive Design Problems". The following two subsections set out these 

issues. 

§1.3.1 Choice of Opt imiza t ion M e t h o d s 

In practice, design search tools often provide the advantage of multiple options of search 

routines for design engineers to choose from during a design search problem. This ben-

eAt, however, assumes the availability of design engineers with suScient optimization 

experience on a particular problem domain to be able to make good method or routine 

choices. Generally, present design search tools tend to provide little help to ensure ro-

bust performance in the design search process. Intuitively, design engineers tend to rely 

on qualitative rules that are derived from their past design experiences of optimization 

methods and engineering domains to aid them in making decisions for new designs. The 

e%ct of this is that it tends to lead to inconsistent designs being produced at high cost 

due to the limited experiences of novice design engineers. Moreover, design engineers 

often stick to a very limited range of optimization techniques regardless of the design 

problem involved or the sophistication of the optimization suite. The lack of suitable 

support may also have a detrimental effect on design innovation by placing too much 

dependence on a single individual's past designs, which usually contain biases. 

§1.3.2 Computa t iona l ly Expensive Design P rob l ems 

Fuelled by advancing computing power, present complex engineering designs often in-

volve the deployment of analysis codes or simulation models that are computationally 

very expensive. As a result, the overwhelming part of the total run time in design op-

timization is usually taken up by the evaluations of the analysis codes. A motivating 

example is aerodynamic design, where one function evaluation involving the solution of 

the Navier-Stokes equations may take many hours of supercomputer time. Such computa-

tionally expensive problems also arise in other areas such as electromagnetics, structural 

and photonic designs. The computational costs associated with the use of these high-
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hdelity simulation models often pose a serious impediment to the successful application 

of complex engineering design optimization. 

§1.4 Research Focus and Scope 

The term 'Artihcial Intelligence (AI)' was coined by John McCarthy in 1956 [22]. Known 

as the father of artificial intelligence, John McCarthy deAnes 'Intelligence' as the com-

putational part of the ability to achieve goals in the world. However, AI can mean 

many things to many people. Much confusion arises because the word 'intelligence' is 

ill-defined. The phrase is so broad that researchers in the AI community have found it 

useful to divide it into two classes: strong AI and weak AI. Strong AI makes the bold 

claim that computers can be made to think on a level (at least) equal to humans. Weak 

AI simply states that some "thinking-like" features can be added to computers to make 

them more useful tools and this has already started to happen (witness expert systems, 

unmanned vehicles and speech recognition software). 

The scope of this research is on producing scientihc assistants for complex engineer-

ing design, i.e., a form of "weak AI" research. In particular, the focus of this research 

is on leveraging artificial intelligence technologies for improving complex engineering de-

sign search performances via the effective use of chronicled design optimization data. 

Throughout the engineering design process, designer engineers often produce a great deal 

of data that is ignored or otherwise discarded. These historical design data often contain 

useful knowledge of the domain or process which may be extracted to aid future design 

optimization and search activities. The aim is to encourage computational discovery of 

new useful knowledge and design process automation. By doing so, one may attempt to 

mitigate the two limitations of present complex engineering design optimization process 

identified previously in section 1.3. 

The first proposal in this dissertation seeks the use of pattern classification technolo-

gies for knowledge discovery from chronicled design optimization data. This is collected 

from previous search processes in the domain of interest, and via ofiSine simulations. It 

aspires to reduce the inSuence of choice of optimization methods on engineering design 
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search performance. A second proposal then presents an approach for reducing the influ-

ence of method choice in hybrid evolutionary design search performance. The approach 

removes the need to conduct o@ine simulations. In contrast to the hrst proposal, the 

latter uses adaptive strategies and makes use of optimization data chronicled during the 

lifetime of the search process. 

Furthermore, to enable the successful application of evolutionary optimization tech-

niques for solving computationally expensive design problems with general constraints, a 

new parallel metamodeling framework that leverages surrogate models constructed from 

chronicled design optimization data is proposed in this dissertation. 
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§1.5 Layout of t he Thesis 

This thesis is organized as follows: 

Chapter 2 introduces a Domain Optimization Method Advisor [23, 24, 25] for assisting 

design engineers on the choice of optimization routines in design search. A knowledge-

based approach proposed for reducing the inSuence of choice of optimization methods 

on engineering design search performance, when searching familiar design domains, is 

presented. 

Chapter 3 investigates Meta-Lamarckian learning in Hybrid Genetic Algorithms [26] as 

an approach for reducing the influence of choice of local optimization methods on hy-

brid evolutionary design optimization performance. The proposed adaptive strategies 

facilitate a cooperative and competitive paradigm between different local optimization 

routines, working together to accomplish the shared goal. 

Chapter 4 discusses metamodeling frameworks for tackling the computationally very ex-

pensive analysis codes commonly found in complex engineering design searches. Further, 

a general metamodeling framework proposed for evolutionary search of constrained or 

unconstrained problems that are computationally expensive is proposed [27, 28]. The 

framework employs well-established notions of hybrid evolutionary-gradient optimiza-

tion, radial basis networks, transductive inference and trust-region methods. 

Chapter 5 summarizes the contributions made in the present program of research, out-

lines directions for future research and provides conclusions. 

Results from experimental studies on benchmark test problems and demonstrations on 

real world engineering design problems are presented in the respective Chapters. 
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Advisor 

THIS Chapter describes a Domain Optimization Method Advisor (DOMA) [23, 24], 

a knowledge-based approach for reducing the inEuence of optimization routine 

choice on engineering design search performance. It is designed to work when search-

ing familiar design domains. The approach makes use of historical design data collected 

from past optimization search processes on the same domain and from oIEine simulations. 

Knowledge on the merits and limitations of the available optimization search routines on 

these domains are derived from the chronicled design data to help facilitate intelligent 

search routine selection in future design searches. The approach employs two strategies: 

the Best Performing Search Strategy (BPSS) and the ArtiEcial Intelligence Selected Strat-

egy (AISS), to make recommendations of optimization routines for new design problem 

searches. These strategies are further combined to complement each other on predicting 

the most appropriate choice of optimization routines in future design searches. Demon-

strations on two real world engineering problems, aircraft wing and ship hull-form design, 

show that the proposed advisor helps improve design optimization in terms of speed and 

solution accuracy. At the same time, it reduces reliance on human experts by ensuring 

that design engineers need only minimal knowledge of optimization routines. 
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§2.1 Introduction 

Companies usually have limited diversity of trade and thus work-scope. For example, 

Airbus focuses mainly on aircraft design; Rolls Royce on engine design; while a ship 

building company may place its focus on the design of major ship elements. Depending 

on the complexity of a domain, some search routines that may have proven to be useful 

in one domain might not work so well in others. The same reasoning applies to individual 

design problems of similar domains. Therefore unless one knows which search routines in 

a DES most suits the design problem in hand, the optimization may not perform prop-

erly. It is thus necessary to support design engineers with search advisors that can assist 

them in their designing activities. Here we present an approach for supporting design en-

gineers with an optimizer advisor that contains knowledge on the merits and limitations 

of different search routines on the design domains under study. The Domain Optimiza-

tion Method Advisor helps reduce the inEuence of choice of optimization routines on 

engineering design search performance, when searching familiar design domains. 

Much research on the choice of optimization methods has been focussed on attempts to 

identify those methods that will work well on rather limited ranges of design test problems 

[29, 30]. Additionally, Sandgren [6] applied 35 nonlinear optimization algorithms to 30 

engineering design optimization problems and compared their performance. In complex 

engineering design, Bramlette and Cusic [7] compared the application and performance 

of different methods, including gradient-based numerical optimization, to the design and 

manufacture of aeronautical systems. The use of modern stochastic optimization methods 

on some artiScial test problems was also explored by Keane [31]. On the whole, the 

general conclusion obtained from all these studies is that no single optimization search 

technique always performs well on all problems - a result that is sometimes referred to 

as the "no free lunch theorem" [32]. 

Few studies in the literature have directly addressed the issue of choice of optimization 

search routines in design. Even though interest in the problem was recently re-ignited by 

Fukunaga [33], very little progress has since been made. On the other hand, it is possible 

to relate the challenges considered here to those in the problem solving community. 

For example, the mapping of scientific software to various classes of problems that are 
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represented by partial or ordinary differential equations (PDEs, ODEs) [35, 34, 36, 37]. 

Based on various characteristics of DE models, recommendations are made from the 

choices of numerous scientific software approaches available. In contrast, engineering 

design optimization cannot be easily set in these terms, as the design problems presented 

in the form of fitness functions are not often formulated as DEs. Even so, there is some 

useful experience that can be drawn on to reduce the inSuence of optimization routine 

choice on engineering design search performance. 

This Chapter is organized in the following manner. Section 2.2 presents the forms of 

design data that have been chronicled here for performing knowledge discovery. Section 

2.3 describes the strategies proposed for discovering knowledge on the merits and limi-

tations of numerous search routines. Section 2.4 briefly discusses the need for adaptable 

knowledge bases, while section 2.5 demonstrates the proposed advisor in real world com-

plex engineering designs. Finally, section 2.6 provides the main conclusions for this part 

of the work. 

§2.2 Historical Design Da t a Sources 

Throughout the engineering design process, design engineers often produce a great deal 

of data as a result of their design-evaluate-redesign actions. It is often possible to ac-

quire knowledge about the merits and limitations of optimization search routines on a 

design domain from the mass of data that results. The data that may prove to be useful 

comprises the explored design space, objective htness, expended evaluation count or time 

taken and forms of design space search violations. The latter consists of incomputable 

designs as well ag bound and constraint violations. Incomputable designs occur possibly 

due to singularities within the objective function or geometrical inconsistencies. The 

gathered data may then be classified according to the key parameters that uniquely iden-

tiSed each design problem in the domain of interest. For example in the transonic civil 

aircraft wing design, these may include the cruise height, Mach number and fuel weight 

parameters. Note that here cruise height, Mach number and fuel weight are not design 

variables to be optimized but rather the static parameters of a design optimization prob-
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lem which vary uniquely for different problems within the aircraft wing design domain. 

Such parameters will vary over some well-dehned ranges and are here termed as Domain 

Problem Descriptors or DPDs. They set out the scope of interest of a design team. 

In practice, simply relying on data chronicled from past optimization search processes 

is often insufhcient to ensure the validity of any knowledge obtained, as the data is of-

ten incomplete. The other source of design data considered here is obtained via ofHine 

simulations conducted on sample problems from the domain under study. Here a design 

domain is sampled based on its DPDs and it is assumed that the DPDs vary over well-

dehned ranges identified by the design engineers. This sample set of design problems 

represents an approximate representation of the entire domain. To provide a good rep-

resentation over the domain, design of experiments techniques such as Latin Hypercubes 

[38], Hammersley Sequence Sampling, Uniform Design or others may be used [39]. OfHine 

simulations are then conducted over the set of sampled design problems by performing 

searches on them using the numerous search routines available in the DES or optimization 

suite. These simulation processes can be very time consuming if the underlying analyses 

used are of significant complexity or when the configurations of the search routines are 

taken into account. They do however provide the raw material that may be used to guide 

future search method selection. 

Note also that even when a search routine has been selected, consideration must be 

given to control parameter settings. Consider an optimization routine with a control 

parameters, each with 6 possible values; there are possible conhgurations to operate 

the routine. If it takes an average of M evaluations to arrive at a near-optimal design and 

t seconds to evaluate each of these candidate designs, then the expected time required to 

perform a simulation consisting of g sample problems and p search routines is 

Given the enormous computational expense of the simulation, the proposed solution may 

prove to be intractable. Hence, in all the simulations conducted in this dissertation, the 

control parameters of the search routines are set up according to the DES's defaults, such 

that the computational expense at (9(p8nt) becomes much more tractable when compared 

to the former. This adoption of a routine's default settings also signifies the analogue 

of design engineers relying on established settings in the initial stages of most design 
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processes. Furthermore, the default settings hopefully represent the optimum operating 

conditions of the search routines recommended by its creator. Clearly in the future, a 

more sophisticated advisor might well also supply advice on the choice of search routine 

control parameters. 

§2.3 Domain Knowledge Cons t ruc t ion 

The data gathered from past optimization search processes and ofBine simulations com-

bine to form the total chronicled database available for use in the knowledge discovery 

process. Different modes of domain knowledge may be discovered from these data. Often 

the design engineer is trying to satisfy a number of conflicting desires and requirements 

when choosing an optimization routine. A common approach to such a predicament is to 

decide on some criteria that are considered the most important. An information equation 

may then be formulated to accommodate these criteria. 

For instance, the performance quality g of a search routine on a design problem can 

be calculated as 

C 

9 = (2.1) 
2 = 1 

which is the weighted sum of all the criteria c, considered, is the weight assigned 

to criteria z with quality of criteria z represented by in the equation. Appropriate 

weights are assigned accordingly to the importance of each criterion speciEed by the 

design engineer. Usually, non-zero fractional weights are used so that sum of all weights, 

equal to unity. Next, two strategies that make use of the domain knowledge 

acquired for predicting the best performing search routines are discussed. 

§2.3.1 S t ra tegy I - Best Pe r fo rming Search S t ra t egy 

The first strategy considered here is the 'Best Performing Search' Strategy (BPSS), which 

attempts to recommend the optimization routine that is predicted to give the best search 
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performance on the problem domain under study. It makes use of the information ob-

tained via equation 2.1 to estimate the relative strengths of each search routine on the 

domain represented by the sampled design problems. In the present strategy, the best 

performing search routines (indexed by j*) to be recommended for use on unseen design 

problems are determined as follows 

f = a r g m a x ^ ( ^ , ; = p (2.2) 
i=l 

where each search routine denoted by in the DES (indexed by j = 1 , . . . ,p) is run 

on s design sample problems (indexed % = 1 , . . . ,g). A Pareto front of optimization 

search routines can be obtained using different values for the criterion weight factor 

w, and with the inclusion of various criteria in information equation 2.1. This Pareto 

front represents the set of search routines where each member of the set is optimal in some 

sense and is said to be non-dominated by all the others in the problem domain under 

study. Later in section 2.5.2, the strategy is further demonstrated on realistic problem 

domains in an attempt to provide a greater comprehension of the proposed BPS strategy 

and the motivations for including it in the advisor. 

§2.3.2 S t ra tegy II - Artificial Intelligence Selected St ra tegy 

The second strategy proposed is the 'Artihcial Intelligence Selected' Strategy (AISS). 

The main motivation towards using the strategy is based on the observation that a 

single search routine does not always emerge as the best method throughout the entire 

problem space of a design domain. This is in contrast to the BPSS, which generates 

domain knowledge models that recommend a single best search routine for a complete 

design domain. Here, we attempt to use artificial intelligence technologies to generate 

knowledge models that predict which search routine is best, given design problems of 

familiar domains and information about the new problem. 

The approach commonly used by the problem solving community is generally based 

on "Learning from experience" techniques, where information extracted from past prob-

lem solving experiences is used to assist in solving future problems, especially those that 
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are similar. Such an approach has also been used in some engineering design applications 

to improve the design process in various ways [15, 40, 41, 42]. A collection of "Learning 

from experience" approaches used in design applications can be found in the special issue 

of Engineering Applications of Artificial Intelligence Journal [43]. In general, "Learning 

from experience" techniques have been classihed into two main categories by the artificial 

intelligence community. Expert systems, Case-Based reasoning. Explanation-based learn-

ing, Ontology based systems and others fall into the first group, which may be categorized 

as manual knowledge acquisition approaches. Many of the systems used in the problem 

solving community are instances of this category. The second category is automatic 

knowledge acquisition, and these usually employ machine learning techniques. Machine 

Learning is a recent approach to knowledge elicitation often referred to as "knowledge 

mining" or "knowledge discovery" [44]. Grounded on various artificial intelligence based 

techniques, the approach is automatic and acquires knowledge, extracts features or iden-

tifies patterns directly from examples or databases. Instances of the second category can 

be found in the work of Schwabacher, Wolberg, Reich and Rasheed [40, 45, 46, 47]. 

In the 'Artificial Intelligence Selected' Strategy presented here, machine learning is 

chosen to carry out the role of domain knowledge acquisition on data collected from 

past designs. It is particularly suitable in this work because it is able to automate the 

process of generalizing from historical design data on the applicability of search routines 

to different subsets of problems within a given domain. The choice of an automatic 

knowledge acquisition approach is also a consequence of the following factors: 

# There are currently no standard models or techniques for predicting the most ap-

propriate search routine in general design search activities. Here, the process is 

studied from a heuristic perspective with an automated knowledge capture ap-

proach for building such a model in the domain of interests. The knowledge is 

derived and then refined through the observation of new data. 

# Knowledge on the applicability of a search routine to a particular domain or prob-

lem is normally based on the experience of human operators, which is difficult to 

extract, share and model. Moreover the capability of a given search algorithm dif-

fers even among multiple implementations of the same theory: this makes manual 
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generalization from theory almost impossible. 

# The main criticism of manual knowledge acquisition is the need for the availability 

of human domain experts who are willing to share their experiences and knowledge 

in a most unreserved manner. There is also the need for qualiEed knowledge engi-

neers to perform the knowledge acquisition task, which is often di@cult to model. 

Nonetheless, there is also a further need for the acquired domain theory to be rela-

tively complete and consistent. These often pose a signihcant bottleneck for manual 

knowledge-based system development. 

# Design engineers may well have some intuition and qualitative rules that give rise 

to biases (preferences for particular search techniques). These may result in non-

optimum performance or even poor designs. It is also unlikely for one designer to 

be able to make decisions about all aspects of a design, which may possibly be 

simpler for a machine. 

# A design related knowledge base has to be dynamic, so that results from new 

searches initiated by the design engineers generates new knowledge that can be 

updated into the knowledge base. The use of automatic knowledge acquisition 

enables this process to be accomplished effortlessly. 

To be able to extract knowledge on the merits and limitations of optimization search 

routines in a design domain using machine learning, it is necessary to conduct further 

pre-processing of the data obtained in equation 2.1. This involves the conversion of the 

original data into table-like datasets, such that the sampled design problems are labeled 

and ranked according to the optimization search routine that performs the best. 'Best' 

here is taken to mean the search routine available in the DES (indexed j = 1 , . . . ,p) 

emerging with the optimum value of performance quality g when run on » design sample 

problem (indexed % = 1 , . . . ,5). Using the present AIS strategy, the best performing 

search routine (indexed by j*) predicted for design problem % is found by 

; \ = argmax{g;?}, ; = p (2.3) 
j 
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The intention here is to construct a pattern classifier using pre-processed datasets. For 

this purpose, a class set is dehned to include any search routine denoted by that 

has been observed to have ever performed best on the sampled design problems, i.e., r-' 

G O for all . The aim is to generalize or learn about the classes in O from these 

datasets so as to accurately identify design problems of the sampled set belonging to the 

same class. In particular, the supervised learning problem of constructing a classiRcation 

model using observational data is considered. Let = 1 ,2 , . . . ,M} denote the 

training dataset, where x € is the DPD input vector and 2/ G O denotes the target 

output class to be predicted. If learning is successful, generalizing from these data would 

be possible to aid future design sessions by successfully inferring the most appropriate 

optimization routines to be recommended for searching on unseen design problems in the 

given domain. 

A brief survey of machine learning techniques has been performed to identify a suitable 

learning or classiBcation model for the present application [25, 48, 49, 50, 51, 52, 53]. 

Table 2.1 lists the variety of learning models investigated in this work. IR [49] is one of 

the simplest classifier that makes a one-rule, i.e., a rule based on the value of a single 

attribute. Holte [49] shows that it is easy to get reasonable prediction accuracy on many 

commonly used datasets by simply looking at only one attribute. However, contrary 

to common claims and misinterpretations regarding Holte's results, the IR inducer is 

often inferior to ID3 and C4.5 decision tree modeling techniques [53]. ID3 is a very basic 

decision tree algorithm. C4.5 is an extension of the original IDS algorithm with pruning 

and unknown handling capabilities. Other learning models like Nearest-neighbour [48] 

are based on the idea that prediction may be effected through exploitation of similarity. 

They are also commonly known as lazy learners since they simply store all training 

dataset and postpone all efforts towards inductive generalization until prediction time. 

Naive Bayes [52] computes conditional probabilities of the classes given the instance and 

picks the class with the highest posterior. Attributes are assumed to be independent, an 

assumption that is unlikely to be true, but the algorithm is nonetheless very robust to 

violations of this assumption. Latent semantic indexing technique has been effectively 

used for information retrieval in the text domain in a variety of tasks [25]. It presumes 
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the existence of a latent structure in the textual data and treats unreliability in observed 

term-document association as a statistical problem to uncover this structure. The success 

of latent semantic indexing in information retrieval leads the author to contemplate its 

application here. Last but not least, the neural network [50] considered here learns to 

approximate the probability density function of the training dataset. When an instance is 

presented, the Erst layer computes the similarities between the instance and the training 

datasets. The second layer sum these contributions for each class of inputs to produce 

as its net output a vector of probabilities. Finally, the predicted class has the highest 

posterior. 

Legends Machine Learning Techniques 

IR Holte's Simple Classifier [49] 
ID3 Decision Trees I [53] 
C4.5 Decision Trees II [53] 
IB Nearest-Neighbour [48] (Instance Based) 
NB Probabilistic [52] (Naive Bayes) 
LSI Information Retrieval [25, 51] (Latent Semantic Indexing) 

PNN Neural Network [50] (Probabilistic Neural Network) 

Table 2.1: List of Machine Learning Techniques investigated. 

In particular, the aim is to select a machine learning model M, where M : > O, 

that displays superiority in accuracy estimation, standard deviation and model trans-

parency. On the basis of classification accuracy and standard deviation, the algorithms 

found to be most competitive in the present application are Probabilistic Neural Networks 

[50], Naive Bayes [52] and C4.5 [53]. Even though most of the machine learning tech-

niques considered here allow some form of manual tuning to obtain improved estimation 

performances, this has been considered to be too time-consuming and computationally 

expensive. Among the learning techniques considered, the use of the decision tree induc-

tive learning algorithm C4.5 [53] is preferred because it produces reasonable classification 

accuracy at relatively low cost and, more importantly, because it possesses the ability 

to generate trees or rules that provide some of the transparency that design engineers 

seek. The empirical performances of the machine learning techniques when applied to 

aerodynamic aircraft wing design will be presented in section 2.5.3. Design engineers 
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often lack great expertise in the use of optimization methods and therefore have little 

confidence that extensive computational runs will produce worthwhile results as opposed 

to just burning up compute cycles. Therefore, when recommending search routines for 

design activities, it is important for the decision-making process to provide the necessary 

transparency. Of the many machine learning techniques available, knowledge derived in 

the form of decision trees or rules seems to satisfy this human-centered criterion the most. 

Besides, human specialists can manually validate these machine-generated decision trees 

or rules and also use them to enhance the domain and optimization knowledge of less 

experienced design engineers. 

From empirical studies, AISS often performs better than BPSS in the present appli-

cation. Nevertheless, AISS tends to perform poorly under the provision of insuSRcient 

or incomplete chronicled data available for learning. These are instances where search 

routines are too similar in performance to each other, such that more design problem 

samples may be necessary to enable accurate di&rentiations of best, or under multi-class 

situations where too many search routines have been observed to work well on the prob-

lem domain under study (i.e., set O is large). Under such events where generalization 

from the labeled datasets does not give robust performance, BPSS can fit in as a reliable 

alternative. Both strategies are therefore combined to complement each other in facil-

itating the appropriate choice of optimization technique. The recommendations given 

by the BPSS are employed if the BPSS displays estimated accuracy greater than 0.7 or 

when the estimations given by the AISS is under 0.7. 

§2.4 Adaptabi l i ty 

It is important that any acquired knowledge is kept up-to-date. Here, once knowledge 

about the merits and weakness of the optimization routines on a domain has been suc-

cessfully generated, an adaptability process is invoked repeatedly to ensure the continued 

usefulness of the knowledge base. As previously mentioned, throughout the design pro-

cess, a great deal of data is produced aa a result of design-evaluate-redesign actions 

conducted by designers. This data is archived and indexed according to the design prob-
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lem being studied. At other times, scheduled batch jobs may be started to update the 

domain knowledge base using information from the archive to ensure good coverage. Such 

a process helps enable the optimization method advisor remain relevant to current design 

problem domains as well as to encompass new ones. 

§2.5 Domain Opt imizat ion M e t h o d Advisor Applied 

to Real World P rob lem Domains 

To demonstrate the applicability of the Domain Optimization Method Advisor on real 

world engineering design domains, the approach is used for the conceptual design of 

transonic civil transport aircraft wings [14] and ship hull-forms [54]. The objective of 

the aerodynamic problem considered here is minimization of wing drag D/g meters^ ag 

calculated by using an empirical drag estimation tool, TADPOLE [14], with target lift, 

wing weight, volume, pitch-up margin and root triangle layout chosen to be representa-

tive of a 220 seat wide body airliner. In the ship domain, the design of a frigate that 

has minimal resistance for a hxed displaced volume, block coefhcient, waterline Bare and 

depth to draught ratio is considered [54]. Both design problems have various design con-

straints that must be met. The Design Exploration System utilized is the one described 

by Keane, and known as OPTIONS [1]. OPTIONS is a design exploration and optimiza-

tion package that contains a large range of optimization routines that may be used to 

search for the optimal design parameters. Further details of the OPTIONS DES package 

and the design problems are contained in Appendix A and C, respectively. 

§2.5.1 Chronicled Design Opt imiza t ion D a t a 

To achieve a good representation of the design domains, offline simulations on the domain 

have been carried out. In the aircraft wing design domain, a set of 729 design problems 

representing the domain space are sampled using the Latin hypercube method [38], each 

defined by the DPDs: cruise height, Mach number and fuel weight fraction, bounded 

between 7500 - 12,000 meters, 0.1 - 0.85, and 0.2 - 0.5, respectively. The method 
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provides good uniformity and Sexibility on the size of the sample. The range for the design 

parameters was obtained from design engineers who are actively involved in aircraft wing 

design. The above comment also applies to the ship hull-form design domain. A set of 625 

ship design problems was sampled across ranges of displaced volume, block coeHicient, 

waterline Hare at maximum beam and depth to draught ratio, bounded between 2000 -

4,000 meters^, 0.43 - 0.50, 0.0 - 10.5 and 2 - 3 , respectively. 0@ine simulations are then 

conducted on the sampled design problems using each of the 31 search routine available 

in the OPTIONS DES on each domain. Two-thirds of the sampled design problems form 

the training set while the remaining one-third form the validation sets, which are used 

after training to validate the advisor. 

§2.5.2 Domain Knowledge Cons t ruc t ion - Bes t Per forming Search 

S t ra tegy 

As previously discussed, different modes of domain knowledge representing the intention 

of the design engineer can be learnt from the archived data sources. In this dissertation, 

design accuracy and the speed of search are considered here as the two most important 

criteria by the design engineers. This knowledge can be combined from the data sources 

of the design domain under consideration using 

g — w * 4- (1 — w) * /̂ 2 (2.4) 

The formulation in equation 2.4 is a specialized form of equation 2.1 for the two criteria 

instance. Only a single criterion weight factor, w, is necessary to dehne the balance for 

design speed and accuracy. and /ig in equation 2.4 represent the evaluation count 

quality and objective fitness quality of a search routine, respectively. Using equation 

2.4, a preferential list of optimization search routines can be obtained by varying w and 

subsequently used to recommend methods to design engineers for future search activities. 

This could be weighted depending on the importance of the two criteria to the design 

engineer; typically this might be to hnish the design search as quickly as possible, achieve 

the best possible design or some compromise between them. This leads to three common 
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domain knowledge models often desired by design engineers. By setting w in equation 

2.4 to 0.5, the information necessary for a Balanced-Overall (BO) knowledge model can 

be obtained. The Best-Speed (BS) and Best-Design (BD) models can be obtained by 

having w set to 1.0 and 0.0, respectively. 

The final design accuracy and efBciency of the 31 optimization search routines on both 

real world design domains are summarized in Figures 2.1 and 2.2. Each abbreviation in 

the figures represents an optimization search routine available in the OPTIONS DBS. 

All values in the figures are normalized to unity, where unity represents the best possible 

performance a search method among those considered here has achieved. The Pareto 

fronts of optimization routines for the two domains are also shown in Figures 2.1 and 

2.2, represented by the dashed lines. From these fronts, the recommended optimization 

routines based on the use of Best Performing Search Strategy can be readily obtained. 

These are summarized in Table 2.2. 

Know^ledge Model Design Domain I: 

Transonic Aircraft 
Wing-Recommended 

Search Routine 

Des ign Domain II: 

Ship Hull-Form-
Recommended Search 

Routine 

Best-Speed Successive Linear Ap-
proximation (AP) 

D avidon-Fletcher-Powell 
Strategy (DF) by Schwe-
fel 

Best-Design Simulated Annealing 
(SA) 

Simplex Strategy of 
Nelder & Meade (SM) by 
Siddall 

Balanced-
Overall 

Powell Direct Search 
Method (PD) by Siddall 

Davidon-Fletcher-Powell 
Strategy (DF) by Schwe-
fel 

Table 2.2: List of search routines recommended in the design domains studied. Results 
presented are based on using the Best Performing Search Strategy of the advisor. 
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(b) Design Speed of each 
Search Routine with rankings 
in descending order 

(a) Design Accuracy of each 
Search Routine with rankings 
in descending order. 
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Figure 2.1: Relative Final Design Accuracy and Efficiency of OPTIONS DES Search 
Routines on Aircraft Design Domain. (Results presented are based on ^ sampled wing de-
sign problems. Performances normalized to unity: larger values indicates faster searches 
or better designs.) 
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Figure 2.2: Relative Final Design Accuracy and Efficiency of OPTIONS DES Search 
Routines on Ship Design Domain. (Results presented are based on | sampled ship hull-
form design problems. Performances normalized to unity; larger values indicates faster 
searches or better designs.) 

On the transonic aircraft wing design problem domain, the routine giving the best 

speed is identiGed to be Successive Linear Approximation [3] - the BS knowledge model 

emphasizes the importance of speed and therefore ignores the final result of the wing drag 

values as long as the final searched design parameters are feasible. Simulated Annealing 

[9] provides the best solution accuracies on average across the entire design domain. 

Finally the BO model balances speed and accuracy and the best overall routine is found 

to be the Powell Direct search routine [3]. In contrast, for the domain of ship hull-form 

design, the Balanced-Overall and Best-Speed models are found to yield the Davidon-

Fletcher-Powell strategy by Schwefel [4] while the Simplex strategy of Nelder &: Meade 

[3] produces the best design accuracy among the numerous search routines. 

Besides design search accuracy and efiiciency, other criteria may also be included into 

equation 2.1 so aa to generate greater or more complex models that may better accord 

to the intentions of the design engineers. Alternatively, search routine robustness may 
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be considered as the sole criterion required by the design engineers thus arriving at the 

results shown in Figures 2.3 and 2.4 for the two engineering design domains. This criterion 

represents the desire of the designers for routines that always improved the design and 

never produced infeasible final results. Summing up the results obtained in Figures 2.1 -

2.4, it is clear that these are consistent with the conclusions made in the earlier published 

works that no single search routine always performs best. As a matter of fact, it can be 

observed that the properties of each search routines; i.e., design accuracy, efhciency and 

robustness, diEer significantly over the design domains. 

Percentage Robustness 

66a)% 
6022% 

67̂ 9* 
43.76* 

39.64% 

20.71% 

Figure 2.3: Relative Robustness of OPTIONS DES Search Routines on the Aircraft 
Design Domain. (Results presented are baaed on ^ sampled wing design problems.) 
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Figure 2.4: Relative Robustness of OPTIONS DES Search Routines on the Ship Design 
Domain. (Results presented are based on ^ sampled ship hull-form design problems.) 

§2.5.3 Domain Knowledge Cons t ruc t ion - Artif icial Intelligence 

Selected S t ra tegy 

Unlike the BPSS, any data available for learning in the Artificial Intelligence Selected 

Strategy undergoes further data processing to produce table-like datasets, before the 

knowledge models can be built. The sampled design searches are labeled and ranked 

according to the search routine that performs best. So for example, for the best speed 

model, 'best' represents the search routine that provides a feasible design within the 

shortest period of time. Table 2.3 shows a portion of the processed BS dataset. 

Statistics on the best performing routine when gathered from the various datasets 

produced in the transonic civil aircraft wing design domain are found to yield the following 

information: 

Even though there are 31 optimization search routines available in the OPTIONS 
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DBS, across the entire sampled wing design domain of 729 sets of parameters, only 

five search routines ever rank as 'Best-Speed'. These are AP, PD, PO, PL and 

LA and form 56.0%, 21.7%, 16.6%, 4.7% and 1.0% of the BS dataset. Class set 

n={AP, PD, PO, FL, LA}. 

# Seven search routines rank as giving 'Best-Design' with class set 0={SM, PD, SI, 

2M, AD, CO, SA} and respective percentages of 28.2%, 18.4%, 15.1%, 12.5%, 9.2%, 

8.9% and 7.7% in the BQ dataaet. 

• Finally six search routines rank as 'Balanced-Overall' with class set 0={AP, PD, 

PO, FL, LA, 2M} and respective percentages of 49.1%, 28.4%, 14.1%, 4.7%, 2.2% 

and 1.5% in the BO dataset. 

Using the C4.5 induction algorithm, the desired knowledge models are extracted from 

the processed datasets in the form of decision trees or rules. Figure 2.5 shows the BS 

knowledge rules obtained from the aircraft wing domain dataset. Further, the estimated 

classification accuracy and standard deviation of various machine learning techniques 

when applied on the aircraft wing problem datasets are summarized in Figure 2.6. It 

is evident from the figure that among the machine learning techniques considered, the 

C4.5, Naive Bayes and Probabilistic Neural Network are most competitive in the present 

application. The knowledge models for the optimization routines generated using the 

present strategy may then be used to aid design engineers in future design search activities 

via recommendations of appropriate search routines. 
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Domain Problem Descriptors of 
Aircraft Wing Design Problem 

F-Mach 
(0.1 — 

Fuel-
Fraction 

("0.2 -

(Height 
(7500 -

Search Rout ine 
Rankings Based on 

Design Speed 

Best-
Speed 
(BS) 

Search 
Routine 

0.35 0.225 8625.0 AP, PD, LA, BC, EP, 
DO, ES, PB, SA, GA, SI, 
HO, SM, AD, CO, PO, 
RO, GO, FI, SE, FL, 2M, 
DH 

AP 

0.725 0.425 10125.0 PD, FL, LA, BC, DH, 
EP, DO, ES, PB, SA, 
GA, CO, PO, RO, SI, 
2M, HO, FI, GO, SE, SM, 
AD, AP 

PD 

0.1 0.45 7500.0 PO, PD, LA, GO, FI, FL, 
BC, EP, DO, ES, PB, 
SA, GA, CO, RO, SI, 2M, 
HO, DH, SE, SM, AD, 
AP 

PO 

0.85 0.275 8250.0 FL, PD, FI, GO, 2M, LA, 
BC, EP, DO, ES, PB, SA, 
GA, CO, RO, SI, HO, 
DH, SE, SM, AD, PO, 
AP 

FL 

0.22 0.475 10875.0 LA, DH, PD, BC, EP, 
DO, ES, PB, SA, GA, 
PO, 2M, SI, SE, HO, SM, 
AD, CO, RO, GO, FI, 
AP, FL 

LA 

Table 2.3: A portion of the processed Best-Speed dataset with search routine rankings 
and Best-Speed search technique classes/labels. (Refer to the Appendix A for details of 
the abbreviated search routines.) 
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Rule 1: if 

{(0.6 < f-MacA < 0.6625) AND (fbeZ-fV-oc < 0.3) AND (9750 < < 10500) } 

—> Class LA 

Rule 2: if 

{ (F-MacA > 0.7875) AND (̂ e%gA( < 9375) } 

—>- Class FL 

Rule 3: if 

{ (0.225 < f-MocA < 0.6) } OR 

{ (0.1625 < F-MocA < 0.6) AND (ĵ ueJ-fV-ac < 0.45) AND (^zgA^ < 11250) } OR 

{ (0.1625 < F-MacA < 0.6) AND (^igA^ < 9000) } OR 

{ (F-MocA > 0.7875) AND (̂ e«gA( < 9375) } 

—y Class AP 

Rule 4- if 

{ (F-MacA < 0.1625)} OR 

{ ( F-MacA < 0.225) AND (m«gAf > 11250) } OR 

{ (0.725<F-MocA<0.7875) AND (fbe/-j^c>0.375) AND (9000<^e#K 9750) } OR 

{ (0.6 < f-MacA < 0.6625) AND (fbeZ-fV-ac < 0.3) AND ( n e # ( > 10500) } OR 

{ (0.6625<f-MocA<0.725) AND (fbe/-fyac<0.275) AND (9000<^e2gAK 10500) } 

Class PO 

Rule 5: if 

{ (0.6 < f-MacA < 0. 7875) } OR 

{ {F-Mach > 0.6) AND {Height > 49375) } OR 

{ (0.1625<]^-MacA<0. 225) AND (fbeZ-j^aO 0.45) AND (9000<^e%gA<<10500) } 

Class PD 

Figure 2.5: Knowledge on the speed performance of search routines on the Aircraft 
Wing Design Domain in the form of rules. These are derived by the C4.5 inductive 
algorithm using the Best-Speed datasets obtained from ofHine simulations. 
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Figure 2.6: Estimated Mean Classification Accuracies and Standard Deviation of the 
Machine Learning techniques considered. 
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§2.5.4 Pe r fo rmance Of Domain Opt imiza t ion Method Advisor 

In assessing the proposed Domain Search Advisor, it is useful to develop standards for 

comparison. Some common procedures obtained from analogues to typical designers' 

behaviors have been derived for comparisons and are here termed 'Common Designer 

Strategies' (CDS). These involve tactics from both novices and optimization experts at 

work: Ave such conventional strategies have been identihed as 

# The simplest and most basic strategy adopted, often by novice design engineers is 

(CDSl) 'Random Guessing'. This represents a simple random choice of optimiza-

tion routines from those available in the optimization engine each time a new design 

space search is carried out. 

# The second strategy (CDS2) is the notion of selecting the optimization routine 

based on the method that was able to successfully generate a feasible design in its 

first attempt used in the domain under study (i.e., sticking with something that 

has worked before). 

# The third strategy (CDS3) is to utilize an optimization method that is presumed 

to be most robust, e.g., the Evolutionary Programming (EP) optimization method 

is often regarded to be very robust and is thus chosen here. 

# The fourth strategy (CDS4) is an analogue of the favoritism traits sometimes dis-

played by design engineers. Here the Genetic Algorithm (GA) is chosen to be the 

design engineers' favourite. 

# The final strategy identified (CDS5), is utilizing an optimization method that has 

generally been accepted as having the ability to provide a design within the shortest 

period of time, e.g., Successive Linear Approximation (AP) is often regarded as the 

fastest available method in the OPTIONS DES. 

The performances of the conventional approaches in comparison to the Domain Op-

timization Method Advisor for design search activities are tabulated in Table 2.4. The 

resultant performance statistics gathered were obtained based on searches conducted on 
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the vahdation samples previously discussed. It can be observed that the advisor con-

stantly attain performances that are better (much nearer to unity) when compared to 

any of the Common Designers Strategies on each respective scheme and on both design 

domains. Note that in the table, the nearer the value is to unity, the better is the per-

formances of each strategy in conducting design search. This suggests that the strategies 

proposed in the advisor are capable of providing accurate predictions on choice of search 

routines, even for unseen design problems. The search advisor was also capable of provid-

ing signiEcant improvement in the design search performances as compared to any of the 

conventional CDS. At the same time, it reduces reliance on human experts by ensuring 

that design engineers need only minimal knowledge of optimization routines. 

Strategy for 
Choice of 

Optimization 
Search Routines 

Estimated Relative 
Search Performance 

on Aircraft Wing 
Design Domain 

Estimated Relative 
Search Performance 
on Ship Hull-Form 

Design Domain 

Strategy for 
Choice of 

Optimization 
Search Routines 

BSS BDS BOS BSS BDS BOS 
CDSl 0.1007 0.4199 0.2496 0.0762 0.5385 0.2560 
CDS2 0.1351 0.5166 0.3155 0.1056 0.5761 0.3353 
CDS3 0.0981 0.6782 0.3882 0.0180 0.7017 0.3599 
CDS4 0.0981 0.6740 0.3861 0.0192 0.7518 0.3855 
CDS5 0.5908 0.2978 0.4443 0.3423 0.5513 0.4468 
Domain Optimiza-
tion Method Advisor 

0.9447 0.7017 0.7191 0.9351 0.9614 0.7751 

Table 2.4: Relative performance of the Domain Optimization Method Advisor in com-
parison with the 'Common Designers Strategies' CDS 1-5. Results are obtained for the 
various best schemes proposed, taken over the ^ unseen design problems from the respec-
tive domains. Values closer to unity more nearly achieve the desired results. 
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§2.6 Conclusion 

In this Chapter, a Domain Optimization Method Advisor has been presented. The Best 

Performing Search Strategy and ArtiAcial Intelligence Selected Strategy have been com-

bined to make elective use of chronicled design optimization data, thus providing an 

accurate inference of the most appropriate optimization method to use on unseen de-

sign problems. The work makes use of two realistic complex engineering design domains 

where significant improvement in search performances can be achieved if design searches 

are conducted using the proposed advisor. Besides improvement in design search perfor-

mance, the system also helps reduce reliance on optimization domain experts by ensuring 

that minimum knowledge of optimization techniques is required by design engineers when 

performing design searches, and at the same time, eliminating any human biases that may 

exists. 

The results presented also support the "no free lunch theorem" as well as the conclu-

sions of many published papers that no single optimization method is best for all design 

problems, even including those within the same design domain. This further empha-

sizes the importance of the search advisor in supporting engineering design optimization 

process. 

Nevertheless, a significant limitation of the Domain Optimization Method Advisor is 

the need for offline simulations to be conducted. Simulations are conducted to ensure the 

completeness of the historical design data and thus the acquired knowledge about the 

merits and limitations of the search methods on the domain under study. This process can 

be very time consuming if the underlying analysis codes used are of significant complexity. 

Fortunately, in most conceptual design activities this is not so. In addition, the derived 

knowledge could be easily afiFected by relatively common changes in the design problem 

statements, such as modification of constraint bounds and other parameters. In practice, 

if modifications on problem statements are expected to occur, evolutionary algorithms 

like the hybrid Genetic Algorithm are commonly made use of. Taking this cue from the 

engineering design community, the next Chapter presents a Meta-Lamarckian Learning 

methodology. 



Meta-Lamarckian Learning 

IN Chapter 2, an approach for reducing the inAuence of inappropriate choice of search 

methods on complex engineering design optimization performance was discussed. In 

this Chapter, Meta-Lamarckian Learning in Hybrid Genetic Algorithm-Local Search [26] 

is presented. Meta-Lamarckian Learning presents an alternative approach to reducing 

the influence of local optimization method choice on design search performance. In 

contrast to the former approach, it is relatively unaffected by changes in design problem 

statements. Furthermore, since it makes use of optimization data chronicled during the 

lifetime of the design search process, there is no requirement for prior ofHine simulation. 

Two adaptive strategies proposed for local optimization routine selection in hybrid GA-LS 

are investigated and described in this Chapter. These strategies facilitate a cooperative 

and competitive environment for diEerent local optimization routines, permitting the 

routines to collaborate and work together to accomplish the shared goal more effectively. 

Experimental studies and analysis of these strategies on benchmark test functions and 

the aerodynamic aircraft wing design problem already described are also presented. It is 

shown that the proposed approach aids design engineers working on complex engineering 

problems by reducing the possibilities of employing inappropriate local search methods 

in a hybrid GA-LS, while at the same time, yielding robust and improved design search 

performance. 

33 
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§3.1 In t roduc t ion 

Genetic Algorithms (GAs) are a powerful set of global search techniques that have been 

shown to produce very good results on a wide class of complex design problems. GAs 

are capable of exploring and exploiting promising regions of the search space. They 

can, however, take a relatively long time to locate the local optimum in the region of 

convergence and may sometimes not And the optimum with sufhcient precision. 

Torn and Zilinskas [55] in the section of their work entitled "Global search methods: 

exploration and exploitation", observe that two competing goals govern the design of 

global search methods: exploration is important to ensure global reliability; i.e., every 

part of the domain is searched enough to provide a reliable estimate of the global op-

timum; exploitation is also important since it concentrates the search effort around the 

best solutions found so far by searching their neighbourhoods to produce better solutions. 

Many search algorithms achieve these two goals using a combination of dedicated global 

and local searches. These are commonly known as hybrid methods. Hybrid Genetic 

Algorithm-Local Search methods, which incorporate local improvement procedures with 

traditional GAs may thus be used to improve the performance of GAs in search. Such 

hybrids have been used successfully to solve a wide variety of engineering design problems 

and experimental results show that GA-LS hybrids not only often find better solutions 

than simple GAs, but also that they may search more efBciently [11, 17, 18, 19, 55, 56]. 

Note that the term Local Search and the abbreviation LS are used interchangeably in 

this Chapter. 

Davis [11] argues that hybridizing genetic algorithms with the most successful local 

search method for a particular problem gives one the best of both worlds: correctly im-

plemented, these algorithms should do no worse than the traditional GA or LS alone. 

Clearly, what this implies is that unless one knows which local search method most suits 

the problem in hand (along with its correct parameters settings), a GA-LS hybrid method 

may not perform at its optimum or worse, it may perform less well than using the GA or 

the LS alone. Some recent studies on the choice of local search method employed have 

shown that this choice effects the eGiciency of problem searches significantly. The inSu-

ence of the local search method employed has been shown by Mitchell [57] and Hart [58] 
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to have a major impact on the search performance of GA-LS hybrids. These experiments 

conducted on two different local methods, demonstrated that the performance obtained 

by GA-LS hybrids can indeed be worse than that obtained by the GA alone. The varied 

suitability of each local search method to different problems also helps explain why for the 

last 10-15 years, GA-LS hybrids have relied on the use of a variety of different methods as 

the local improvement procedure. The significance of local search method choice on the 

performance of GA-LS hybrids is therefore not a new observation. However, little work 

haa been done to mitigate this problem. The greatest barrier to further progress is that, 

with so many local search methods available in the literature, it is almost impossible to 

know which is most relevant to a problem when one has only limited knowledge of the 

problem structure. In real situations, it is often not possible to have even a partial un-

derstanding of the problem structure that is being searched before one starts. Moreover, 

LS(s) by themselves are known to work very differently with diSFerent design problems, 

even among problems from the same design domain, aa seen in Chapter 2. Depending 

on the complexity of a design problem, local search methods that may have proven to be 

successful in the past might not work so well, or at all, on others. 

Given the restricted amount of well-established theoretical knowledge in this area and 

the limited progress on mitigating the effects of incorrect local search method choice in 

GA-LS hybrids, it is reasonable to ask whether the effects of this choice on performance 

might be reduced via some intelligent means while the GA-LS is running. Many adap-

tive systems already exist and have been shown to solve some problems very effectively. 

Spears [59] and Ko [60] have attempted to adapt the crossover operator of evolutionary 

algorithms based on locality and convergence or the contributions made by the solutions. 

Adaptation of the mutation operator haa also been attempted by Schwefel [4], Fogel [61], 

Back [62], and Smith et al. [63]. A general survey of various adaptive systems in evolu-

tionary computations and their influences can be found in the work of Hinterding [64]. 

Recently, some LS parameters in hybrid GA-LS were also adapted for three-matching [65] 

and identification problems [66]. Nevertheless, the operator that has perhaps the greatest 

inSuence on GA-LS hybrid performance, but one that has yet to be thoroughly explored 

for adaptation, is the choice of LS(s) that best matches the problem under study. In 
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this Chapter, we focus on investigations into the adaptive choice of local search methods 

to ensure robustness in GA-LS hybrid search performance. Two adaptive strategies are 

presented for the selection of the local method from a pool of LS(s) while the design 

search progresses. The strategies make elective use of online chronicled design optimiza-

tion data to aid in the choice of local search methods, thus reducing the inHuence of 

inappropriate choice on GA-LS hybrid design search performance. 

Note that here we present work based only on Darwinian and Lamarckian evolution. 

The standard GA concept represents the Darwinian approach. Lamarckian learning forces 

the genotype to reSect the result of improvement through placing the locally improved 

individual back into the population to compete for reproductive opportunities [67]. The 

approach of using multiple local search methods during a hybrid GA-LS search in the 

spirit of Lamarckian learning is here termed Meta-Lamarckian learning. 

This Chapter is organized in the following manner. Section 3.2 presents traditional 

Lamarckian learning, a basic Meta-Lamarckian learning scheme and two potential adap-

tive strategies inspired by social evolution. Section 3.3 summarizes some experimental 

studies on benchmark test functions, analyses the results and recommends the more com-

petitive of the two adaptive Meta-Lamarckian learning strategies. Section 3.4 demon-

strates the Meta-Lamarckian learning approach on the real world aerodynamic wing 

design problem. Finally, section 3.5 provides the main conclusions. 

§3.2 Meta-Lamarckian Learning in GA-LS Hybr ids 

Traditionally, GA-LS hybrids with Lamarckian learning procedures are based on the use 

of the GA and a single local search method for local improvements. Little published 

work has dealt with GA hybrids using multiple local search methods to perform global 

optimization on a single problem. Every search algorithm, except for uniform random 

search, introduces some kind of bias into its search. Different local search methods 

have different biases. It is these biases that make a method efhcient for some classes of 

problems but not for others [68]. This has been seen already in Chapter 2. Therefore 

the motivation for the use of multiple local search methods, and thus Meta-Lamarckian 
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learning in hybrid GA-LS searches, is to reduce the inEuence of inappropriate choice 

of local search methods on design optimization performance and at the same time, to 

achieve improved search performance. 

§3.2.1 Basic Meta -Lamarck ian Learning Scheme, GA-B 

The most basic Meta-Lamarckian learning scheme for LS selection is one in which the 

local search method is randomly selected at every iteration during the run - this does not 

adapt but has the advantage of at least giving all the available local methods a chance 

at all times. It is purely stochastic in nature: each local method has an equal probability 

of being chosen at ail iterations. This approach forms a base-line algorithm with which 

other Meta-Lamarckian learning strategies may be compared. 

§3.2.2 Adap t ive Meta -Lamarck ian Lea rn ing 

Lamarckian learning in hybrid GA-LS search may be structured to promote coopera-

tive, competitive, or individualistic efforts. The traditional approach in GA-LS where a 

single LS is used on the problem throughout the search is an example of individualistic 

e&rt. There hag been a long history of research on these different kinds of effort in social 

evolution since the hrst study in 1898, where it was shown that cooperation and com-

petition, as compared with individualistic efforts, typically result in higher achievement 

[69]. Inspired by these works, the adaptive strategies proposed here for Meta-Lamarckian 

learning in hybrid GA-LS are structured to promote cooperation and competition among 

the different LSs, working together to accomplish the shared optimization goal. 

The idea behind the adaptive strategies is that as the search progresses, the eEective-

ness of each local search method in dealing with the current problem is learnt. Knowledge 

about the current population of solutions and each LS is thus built dynamically online, 

so identifying the strengths and weaknesses of the LSs for the problem currently being 

worked on, given its current state. To promote competition among the LSs, the local 

methods with higher htness improvement measures are rewarded with greater chances of 

being chosen for subsequent chromosome optimizations. On the other hand, cooperation 
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among the LSs in solving the problem is achieved via problem decomposition or diversity 

in the LS selection. In nature, Stness is determined by a creature's ability to overcome 

the dangers that may prevent it from reaching adulthood and reproducing. In GAs, a 

Etness function is used to evaluate the quality of the individuals in the population. This 

function takes the genotype of the individual as an argument, decodes it into a pheno-

type, and judges the quality of the phenotype using problem specihc code. It is easy 

to reward the local methods according to their on-line performance on the basis of the 

fitness differences of the children and the parent after the application of the local method 

across the efforts is completed. In the Meta-Lamarckian learning approach considered 

here, the reward assigned to a local method on a parent chromosome is calculated by 

(3.1) 

where p / is the initial function htness of a parent chromosome before local search and c / 

is the Enal function Atness of the child chromosome obtained after applying local search. 

Here, r is the number of LS function evaluation calls made to reach the improved child 

chromosome or solution. Alternatively, the actual cpu time may be used in place of the 

number of LS function calls made on the parent chromosome. Further, we distinguished 

between absolute and relative reward of local search methods [70]. The term I ^ 

provides a simple measure of the rate at which the local search improves a design and is 

an obvious component of absolute reward measure; such a reward model was also used 

on an artihcial problem by Lobo and Goldberg [71]. A signifies the relative reward which 

scales the absolute reward in proportion to the method's ability to produce high quality 

genotypes when compared to the best global solution obtained so far. Here, A is set 

aa ^ or for minimization and maximization problems, respectively. 6/ is the best 

solution encountered so far in the global search. We have tried a number of terms to 

provide this measure such as but hnd that the ratio of 6/ to c / gives the best 

performance in practice. The reward obtained by each LS on the chromosomes then 

influences which method is selected from the pool of available methods to proceed with 

the local improvement. 
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According to a survey conducted by Hinterding [64], adaptive systems are generally 

categorized aa or In this dissertation, two adaptive 

Meta-Lamarckian learning strategies are proposed for study: 1) Sub-problem Decompo-

sition - GA-Sl and 2) Biased Roulette Wheel - GA-S2. 

§3.2.3 A Heuris t ic Approach , Sub-p rob lem Decomposi t ion - GA-

S l 

Sub-problem Decomposition, GA-Sl, is a heuristic approach. At the start of the strategy, 

each LS is given an equal probability of being chosen as the local search method to be 

used. The reward of the chosen local method searching on a chromosome is measured 

using equation 3.1. The parent chromosome and selected local methods together with 

the reward obtained are archived in a database that is used later to guide future LS 

choice. The set of parent chromosome vectors archived in the database is denoted by 

f where m is the database size at any instant of search. 

Next, after some pre-deAned number of generations ^ has been completed, the mech-

anism of sub-problem decomposition takes over. For each unseen parent chromosome, 

denoted by p, in the GA population to be searched, the strategy locates the A: nearest 

neighbours from the archived database f , using a simple Euclidean distance metric. This 

subset of k chromosomes in P is denoted by Pk- The local search methods associated 

with then form the local sub-pool of candidate LS's that will compete, based on their 

rewards, to decide on which method proceeds with the local improvement of p. After 

local search, all p and the chosen LS, together with the reward obtained are updated into 

the database. See Figure 3.1 for a pictorial illustration and pseudo-code of the strategy. 

With the choice of LS involving only the rewards for candidate LS's that are applicable 

in the neighbourhood of the chromosome to be improved, the strategy decomposes the 

original problem cost surface into many sub-partitions dynamically, and attempts to 

choose the most competitive local search method for each sub-partition. In the same 

manner, it creates opportunities for joint operations between di&rent LSs in solving the 

problem aa a whole, because the diverse LSs help improve the overall population based 
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For k=20, the local search method with 
the maximum average fitness among the 
20 nearest chromosome in the database 
will be used for Lamarckian Learning 
on the new chromosome. 

Legends 
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Dimension 1 

GA-SlPseudo-Code 

B E G I N 

If (GA Generation < g) 

* Generate a random number between 1 and LS pool size. 

* Select the LS method that the nnmber indicates and apply. 

* Create/Update Database. 

Else 

* Locate A; nearest chromosomes in set f to new chromosome p using Simple 
Euclidean Measures: i.e., 

{ A; min || p — % || } (3.2) 

* Find the average htness of each member of the reduced LS pool based on 
Pk. 

* Select the LS method with the maximum average htness and apply. 
* Update Database. 

End If 

E N D 

Figure 3.1: Pictorial Illustration and Pseudo Code of Sub-problem Decomposition Strat-
egy, GA-Sl. 
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on their areas of specialization. This Sub-problem Decomposition strategy thus promotes 

both cooperation and competition among the LS's during hybrid search. 

§3.2.4 A Stochast ic Approach , Biased R o u l e t t e Wheel - GA-S2 

The Biased Roulette Wheel strategy, GA-S2, is a stochastic approach making use of 

knowledge gained on-line to form biases. During the training stage, each local method is 

first given a single opportunity to hybridize with the GA in optimizing a chromosome. 

After this, the probability that a local method will be chosen to work on any subse-

quent chromosome is biased according to its previous performance, which now changes 

dynamically as the overall search progresses. The measurement of each local method's 

Stness/reward on a chromosome is again based on equation 3.1, and a biased roulette 

wheel is used to pick the subsequent local search methods, based on the rewards taken 

over all previous local searches. See Figure 3.2 for a pictorial illustration and pseudo-code 

of the Biased Rx)ulette Wheel strategy. 

Since the choice of LS is biased according to the reward or Gtness of each local search 

method, the Biased Roulette Wheel strategy is generally a competitive strategy. Likewise, 

the stochastic nature of the strategy guarantees diversity in the LS selection, hence 

restraining any LS from dominating throughout the search. By ensuring diverse LS 

methods participation in the problem search, the strategy promotes joint operation and 

hence cooperation between local search methods. 

§3.3 Numerical Studies on B e n c h m a r k Problems 

In this section, some experimental studies on benchmark problems obtained by imple-

menting Meta-Lamarckian Learning within a standard genetic algorithm (GA) are pre-

sented. The basic steps of the hybrid GA-LS search with Meta-Lamarckian Learning are 

outlined in Figure 3.3. 

In the first step, the GA population may be initialized randomly or using design 

of experiments techniques such as Latin Hypercube Sampling [38]. Subsequently, for 

each chromosome in the population, a local search is selected from the pool of multiple 
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Subsequently, spaces are allocated 
according to the LS's fitness. 

Training Stage: 
Local search methods have 
equal space on roulette wheel 
initially, thus equal probability. 

A single spin of the 
roulette wheel will 
pick the local method. 

GA-S2 Pseudo-Code 

B E G I N 

If (Training Stage) 

* Ensure each LS is given one chance to participate in a random order. 

* Update LS's Global fitness. 

Else 

Sum the fitness of each member of the LS pool. 

Determine the normalized relative fitness of each member of the LS pool. 

Assign space on roulette wheel proportional to local method's fitness. 

Generate a random number between zero and unity, select the LS method 

where the random number falls within and apply. 

* Update LS's Global fitness. 

End If 

* 

* 

* 

* 

E N D 

Figure 3.2: Pictorial Illustration and Pseudo Code of Biased Roulette Wheel Strategy, 
GA-S2. 
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B E G I N 

Initialize: Generate an initial GA population. 

While (Stopping condition are not satisfied) 

Evaluation of all individuals in the population. 

For each individual in the population. 

* Select LS using the Meta-Lamarckian Learning Strategy employed and 
proceed with local improvement, (faeticfo-cofie 0/ or 
comes m Aere.) 

* Replace the genotype in the population with the locally improved 
solution. 

End For 

Apply standard GA operators to create a new population; i.e., Selection, 
Mutation and Crossover. 

End While 

E N D 

Figure 3.3: Proposed General Algorithm for Hybrid GA-LS With Meta-Lamarckian 
Learning. 

LS's based on the Meta-Lamarckian learning strategy in use and employed for local 

improvement. The htness or reward given to the local method is updated and this is 

followed by replacement of the genotype in the population with the locally improved 

solution (in the spirit of Lamarckian learning). Standard GA operators are then used to 

generate the next population. 

In this research work, a standard genetic algorithm with Baker's stochastic universal 

sampling selection algorithm, n-point crossover and mutation is employed. A pool of nine 

local search methods was also selected from the OPTIONS DES to be representatives of 

the many used in the previous experimental studies. These consist of various optimiza-

tion methods from the Schwefel libraries, some brieSy described by Siddall with a few 

others available in the literature [1, 3, 4]. The local search routines are implementations 

of constrained and unconstrained nonlinear methods commonly used in engineering de-

sign optimization. Those routines used here have search performances that lie between 

the best and worst performing GA-LS hybrids on these problems. The nine hybrid GA-
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LSs used are GA-BC, GA-CO, GA-DS, GA-HO, GA-FL, GA-LA, GA-NM, GA-PD and 

GA-PO. The abbreviations have the following meanings: 

GA: Standard GA. 

GA-BC: GA with Bit Climbing Algorithm by Davis [1], 

GA-CO: GA with Complex Method of M.J.Box as implemented by Schwefel [4]. 

GA-DS: GA with Davies, Swann and Campey Search with Gram-Schmidt 

orthogonalization as implemented by Schwefel [4]. 

GA-HO: GA with Hooke and Jeeves Direct Search by Siddall [3]. 

GA-FL: GA with Fletcher's 1972 method by Siddall [3]. 

GA-LA: GA with Repeated Lagrangian Interpolation as implemented by Schwefel [4]. 

GA-NM: GA with Simplex Method by Nelder and Meade [4]. 

GA-PD: GA with Powell's Direct Search Method as produced by AERE Harwell [3]. 

GA-PO: GA with Powell's Direct Search Method as implemented by Schwefel [4]. 

Three commonly used benchmark test problems already extensively discussed in the liter-

ature are used here to study the proposed Meta-Lamarckian learning in comparison with 

the conventional approaches. These consist of the thirty-dimensional Sphere (M=30), 

ten-dimensional Griewank (^=10) and twenty-dimensional Bump (n=20), representing 

classes of general constrained, unimodal and multimodal benchmark functions summa-

rized in Table 3.1 [72, 55, 73]. For further details of the benchmark test function used 

here, the reader is referred to Appendix B. 

§3.3.1 Effects of Local M e t h o d Choice on Search Pe r fo rmances 

To see how the choice of the local search method employed eSects the efhciency of problem 

searches, the nine different local search methods were used to form fixed GA-LS hybrids 

and used to search the benchmark problems. The averaged convergence trends obtained 

for the test problems as a function of the total number of function evaluations are shown 

in Figures 3.4 - 3.6. 

All results presented are averages over twenty independent runs. Each run continues 

until the global optimum was found or a maximum of 40,000 trials (function evaluation 



Chapter 3. Meta-Lamarckian Learning 45 

calls) was reached, except for the Bump function where a maximum of up to 100,000 

trials was used. The Bump constrained problem is a very hard problem and therefore 

requires greater effort. In each run, the control parameters for the hybrid GA-LS used in 

solving the benchmark problems were set as follows: Population size of 50, Mutation rate 

of 0.1%, 2-point Crossover with a rate of 60%, 10 bit binary encoding, and Maximum 

Local Search Length of 100 evaluations. 

From the results of Figures 3.4 - 3.6, the effect of local method choice on the efficiency 

of GA-LS hybrids is clearly significant. For instance, GA-PL is seen to perform best on 

the Sphere function but very poorly on both Griewank and Bump. On the other hand, 

the majority of the nine Gxed GA-LS(s) combinations do not show any improvement over 

the standard GA on the difficult Bump problem, with most having search capabilities 

closer to the least efficient GA-LS hybrid. In addition, the two different implementations 

of Powell's Direct Search included in the investigation illustrate that the capability of a 

given local search method may differ even among different implementations of the same 

basic algorithm. These characteristics make generalization in this field very difficult and 

also the a priori selection of a particular fixed GA-LS hybrid to fit an unseen or black-box 

optimization problem almost impossible. 

The rationale behind the rapid optimum convergence of the GA-FL hybrid on the 

quadratic Sphere function can be explained by the quadratic convergence phenomenon. 

FL is a quasi-Newtonian method. It is a powerful optimization procedure that uses 

the Broyden, Fletcher, Shannon formula for updating the approximation of the Hessian 

matrix or the Davidon, Fletcher, Powell formula to approximate the inverse Hessian 

matrix. At some point along the FL search, on each successive iteration, a doubling 

(approximately) change in the Sphere function value occurs with each iteration. This 

doubling effect which is commonly referred to as quadratic convergence is responsible 

for the fast convergence, i.e., if denotes the distance to the minimum at step then 

quadratic convergence has the form 6̂ +̂  oc 
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Benchmark Test 

Functions 

Range 
of X; 

[Xl, xj" 

Characteristics Function 
Minimum 

At 

Benchmark Test 

Functions 

Range 
of X; 

[Xl, xj" Epi'^ Disc*^ Con'^ 

Function 
Minimum 

At 

n . 

F Sphere ' 12 / 
[-5.12. 
5.12f none none none no 0.0 

- 1 + L 4 0 0 0 n ^ ) ] 

[-600, 
600]̂ ° weak high none no 0.0 

A " n \ 
abs ^ cos '* (x.)- 2 cos ^ {x.) 

p _ I '=1 1=1 
[0,10]^° high high none Yes 

Maximum 

at 

-0.81 
Bump 1 ̂  

n x , > 0 . 7 5 and £ . , < 1 5 ; ^ 
,=1 ,=1 

[0,10]^° high high none Yes 

Maximum 

at 

-0.81 

Table 3.1: Classes of General Constrained, Unimodal and Multimodal Benchmark test 
functions. *1: Bpistasis, *2:Multimodality, *3:Di8continuity, *4:Constrained. 
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Figure 3.4: Average convergence trends for minimizing SOD Sphere function using GA 
and various GA-LS hybrids with Lamarckian Learning. Note that the search traces 
terminate at the global optimum of the Sphere function at 0.0 or In(O.O) = —oo. 
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Figure 3.5: Average convergence trends for minimizing lOD Griewank function using 
GA and various GA-LS hybrids with Lamarckian Learning. 
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_GÂ  
GA-SI 

2 3 4 5 6 7 

Function Evaluation Calls 

10 
4 

X 1 0 

Figure 3.6: Average convergence trends for maximizing 20D Bump function using GA 
and various GA-LS hybrids with Lamarckian Learning. 
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§3.3.2 Resul ts of Meta-Lamarck ian Lea rn ing 

To analyze the new approach proposed here, the three Meta-Lamarckian learning strate-

gies discussed earlier were tested on the benchmark problems. In these studies, the 

control parameters, stopping criteria and other conhgurations were maintained at the 

same values as the previous experiments conducted in section 3.3.1. The averaged con-

vergence trends obtained for the strategies are shown in Figures 3.7 - 3.9. Note, in all 

cases, results are plotted against the total number of function evaluations calls made by 

the combined GA and LS searches. The performance of the Meta-Lamarckian learning 

approach may be established by comparison with some of the fixed hybrids and also with 

GA-AV. GA-AV represents the estimated performance one might expect to get when the 

selection of a Gxed LS in a hybrid GA is made randomly. This is assumed to be an 

average of the previous search traces in Figures 3.4 - 3.6 for the entire pool of nine fixed 

LS hybrids on each problem and is obtained from: GA-AV^ = where Z, is 

the total number of LSs in the experimental studies, is the objective function 

fitness obtained from the fixed LS hybrid, GA-LS^, at function evaluation call/count j . 

GA-FL 

GA-82 

GA-PO 
GA 

G/VAV 

. GA-B Function Optimum is found 

1.5 2 2 .5 3 

Function Evaluation Calls X 10 

Figure 3.7: Average convergence trends for minimizing SOD Sphere function using 
strategies GA-B, GA-Sl and GA-S2 compared with standard GA and GA-AV. Also 
shown are the search traces for the GA-PO and GA-FL fixed hybrids. 
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Figure 3.8: Average convergence trends for minimizing lOD Griewank function using 
strategies GA-B, GA-Sl and GA-S2 compared with standard GA and GA-AV. Also shown 
are the search traces for the GA-PO and GA-DS 6xed hybrids. 

Prom Figures 3.7 - 3.9, it is notable that although the basic Meta-Lamarckian learning 

scheme, represented by search trace GA-B, performs generally better than GA-AV, it still 

performs poorly when compared to the best LS hybrid on each problem, i.e., GA-FL for 

Sphere and GA-DS for Griewank and Bump. On the other hand, the adaptive strategies, 

GA-Sl and GA-S2, display search performances that are significantly better than GA, 

GA-AV and GA-B and also close to that of the best LS hybrid on each benchmark 

problem. 

To develop a better understanding of the two adaptive strategies, GA-Sl and GA-S2, 

we further analyze them according to the following aspects: 

• Search Quality and Efficiency - the capability of the strategy to provide high 

search quality and efficiency over different problems types. 

Computational Cost - the additional cpu time incurred over and above tradi-
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Figure 3.9: Average convergence trends for maximizing 20D Bump function using strate-
gies GA-B, GA-Sl and GA-S2 compared with standard GA and GA-AV. Also shown are 
the search traces for the GA-NM and GA-DS Axed hybrids. 

tional Lamarckian learning in fixed hybrid GA-LS. 

• Robustness - the capability of the strategy to generate search performances that 

are close to the best LS hybrid (from among the pool tested), on diSFerent problems. 

• Simplicity - ease of implementation. Simple strategies should require minimum 

effort to develop as well as a minimum numbers of additional control parameters 

that need to be managed. 

(a) Search Quality and EfRciency 

The search quality and efhciency performance of GA-Sl is dependent on the initial 

period, allocated for learning before the mechanism of sub-problem decomposi-

tion steps in. It is also strongly dependent on the nearest neighbour parameter, A:, 



Chapter 3. Meta-Lamarckian Learning 51 

which dehnes the candidate LSs that will compete for selection. Shown in Table 

3.2a, the mean search quality (i.e., function htness value) and associated standard 

deviations for different values of A; applied to the benchmark problems with p, set 

aa 1 generation are shown. These include having A, set as 18 (i.e., twice the LS pool 

size, Z, of 9), 3Z/, 4Z,, and 20i}. The effect of ^ on the convergence rate is next 

shown in Table 3.2b. Extensive studies on the variations of the g and A: control 

parameters have been made; however, no Exed values are always found to generate 

the best search quality on the three test problems. Nevertheless, the search quality 

of GA-Sl is found to be generally more effective if parameters ^ and A; are set within 

the ranges 1 < p < 3 with 2Z, < A; < 4Z,, respectively. It may be seen in Table 3.2 

that the search quality deteriorates when A; and g gets larger as the sub-problem 

decomposition mechanism is gradually lost. 

In contrast to GA-Sl, the biased roulette wheel approach GA-S2 has no extra 

parameters to set. Its search performance on the three test functions are as shown 

in Table 3.2c. To determine if the search performances of the two Meta-Lamarckian 

strategies diEer from each other in a signiEcant way, the two-sample (test was em-

ployed. Using two-sample ^ test at a confidence levels of a = 0.05 or 0.10, there is 

insufficient evidence to indicate that the mean search qualities of GA-Sl and GA-

S2 (i.e., at speciEed stopping criteria) are significantly diEerent when the control 

parameters of GA-Sl are maintained within the recommended range. 

UBRAAY 
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Sphere Griewank Bump Function 
Function Function (Maximum) 

(Minimum) (Minimum) 
Global Optimum Mean at Standard Mean at Standard 

found at Bval. 40,000 Devia- 100,000 Devia-
Count of tion tion 

GA-Slt=2z, 9833 5.08 5.58 73.8 5.00 
GA-Slt=3z, 10177 9.07 22.9 72.1 5.93 
GA-Slt=4z, 9997 8.56 10.2 72.7 ^ 7.31 
GA-Slt=6z, 10833 15.4 39.3 69.3 8.89 
GA-Slyfc = 20L 20133 37.3 66.1 66.9 11.7 

Standard GA Mean at 
40,000 
= 63.7 

Standard 
Devia-

tion 
=8.19 

15700 2400 66.7 7.33 

(a) 

Sphere Griewank Bump Function 
Function Function (Maximum) 

(Minimum) (Minimum) 
Global Optimum Mean at Standard Mean at Standard 

found at Eval. 40,000 Devia- 100,000 Devia-
Count of t ion tion 

GA-Slg=i 10177 9.07 22.9 72.1 5.93 
GA-Slg-3 12297 55.3 21.8 72.2 6.46 
GA-Slg=g 23756 109.2 107.6 67.8 9.29 

(b) 

Sphere Function 
(Minimum) 

Griewank 
Function 

(Minimum) 

Bump Function 
(Maximum) 

Global Optimum 
found at Eval. 

Count of 

Mean at 
40,000 

Standard 
Devia-

tion 

Mean at 
100,000 

Standard 
Devia-

tion 

GA-S2 7198 2.80 8.28 73.4 2.22 

Table 3.2: (a) Effects of changes in k on Search Quality for Sub-problem Decomposition 
Strategy, GA-Sl. (b) EEects of changes in p on Search Quality for Sub-problem Decom-
position Strategy, GA-Sl. (c) Mean and Standard Deviation of Biased Roulette Wheel 
Strategy, GA- S2 on the benchmark problems. 

GiiewdMA; are 6?/ Biimp function are 
ore taA;en ofer ,90 mna. 
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(b) Computational Cost 

Of course, when searching across a domain where the algorithm function evalua-

tions are expensive, such as aerodynamic wing design, all these adaptive strategies 

have negligible additional cost. For GA-Sl and GA-S2, the total computational 

costs incurred are of the order of + ĉ g) and O(c^e), respectively, where c is 

the number of chromosomes evaluated so far or LS selections made, is the time 

taken to perform the Euclidean distance measure between any two chromosomes 

and is the time required to evaluate equation 3.1 and choose a LS from among 

the pool. 

On a Pentium III processor, both tg and (for a 20D problem) are found to be 

around 2 mgec and 7 msec, respectively. For a hybrid GA-LS search with stopping 

criteria of 100,000 maximum function evaluation calls, c is approximately 1400. 

The total time incurred by strategy GA-Sl and GA-S2 over traditional GA-LS 

search with Lamarckian learning at (14002 * 7 ms + 1400 * 2 ms % 14 seconds) and 

(1400*2 ms = 2.8 mtZZzsecoMcfs), respectively are negligible. Nonetheless, between 

the two strategies presented, GA-Sl is most costly. 

(c) Robustness and Simplicity 

Adopting the proposed adaptive strategies in a hybrid GA-LS search improves the 

robustness of the search performance greatly: this is one of the primary goals in this 

study. Both strategies are able to select a LS that matches the problem throughout 

the search, thus producing convergence trends that are close to the best 6xed GA-LS 

hybrid on the benchmark problems. However, the Biased Roulette Wheel strategy 

GA-S2, is generally simpler to implement than GA-Sl. It also has no control 

parameters requiring management, unlike the g and k parameters of GA-Sl. 

Based on these performance metrics, the Biased Roulette Wheel strategy, GA-S2, is 

considered the more competitive hybrid GA-LS search, especially when computational 

cost and simplicity are the main issues. Further discussion is thus restricted to this 

method in the dissertation. However, before demonstrating Adaptive Meta-Lamarckian 
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learning on a real-world engineering design problem, some further issues are addressed. 

In the next subsection, the experimental studies to investigate the e%ct of these concerns 

on the convergence trends are presented. 

§3.3.3 Othe r Issues Considered 

The success of Meta-Lamarckian learning in hybrid GA-LS design optimization also in-

volves taking into account the issues 

• What is the effect of LS pool size on design search performance? 

* What local search methods should be included in the LS pool? 

# Can human expert knowledge be incorporated into the Meta-Lamarckian learning 

approach proposed (for instance, by the choice of LS pool members)? 

(a) Effects of LS Pool Size 

The chances of obtaining robust or better design search performance from a hybrid 

GA-LS generally increase by using multiple LS during the search, especially when 

adaptive strategies are used to control the choice of LS. The effect of different sizes 

of LS pool (i.e., 2, 4, 9 and 25) on GA-S2 is presented for the Griewank benchmark 

problem in Table 3.3. From the table, it may be seen that the use of a smaller 

LS pool size is often associated with quicker improvements during earlier stages, as 

less evaluations are needed to acquire su&cient knowledge about the LS before the 

learning strategy begins to take eEect. So, although it is advantageous to include 

a large pool of LS to maintain wide ranging robustness, one concern is the number 

of evaluations required before the LS decision space is sufficiently explored. From 

extensive studies conducted on a range of benchmark problems and LS methods, 

the GA-S2 strategy is found to remain generally effective even with a pool size of 

up to 25 different local search methods. However, a pool size of around 10 local 

search methods would be more easily accessible in a real world engineering design 

environment and is thus recommended. 
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LS Methods within the 
Pool 

Mean Search Fi tness at Function 
Evaluation Count of 

LS Methods within the 
Pool 

1000 5000 10000 30000 40000 
Pool Size = 2 
DS, PO 536 59.3 23.9 6.74 5.34 
Pool Size = 4 
CO, DS, NM, PO 973 62.0 23.2 7.05 5.81 
Pool Size = 9 2770 165 41.1 5.17 2.80 
Pool Size = 25 9140 287 96.6 20.9 8.40 

Best hxed LS hybrid 
GA-DS 443 65.3 23.1 4.63 3.45 

Table 3.3: Effects of Changes in LS Pool Size on the minimization of the Griewank 
function, mean function htnesses are multiplied by 10° .̂ When the pool size is 25, the 
other methods used were taken from the OPTIONS DES. 

(b) Choice of Local Search Methods in the Pool 

The choice of which local search methods to include within the pool is another 

issue that is considered critical, especially when one has no prior knowledge of the 

problem in hand. Nevertheless, aa a rule of thumb, the recommended LS pool should 

contain both derivative based and non-derivative local methods. Typical derivative 

baaed LS include steepest descent, conjugate-gradient and quasi-Newton methods 

[3, 5]. As previously discussed, the FL quaai-Newton method, which possesses the 

ability to converge rapidly to the local optimum on quadratic functions was shown 

to contribute aa the best fixed LS hybrid GA on the Sphere problem. For non-

derivatives methods, direct search methods, linear approximation methods, and 

local evolutionary search are all good choices [4, 74, 75]. DS, Evolutionary Strategy 

(ES), Evolutionary Programming (EP) and Simulated Annealing (SA) are direct 

search or local evolutionary methods that makes a good combination with FL in 

the same pool as they can handle problems where derivative based LS may fare 

badly. Other considerations on choice of LS pool would include the abilities of the 

LS to handle general non-linear constrained problems. 
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(c) Incorporation of Human Expert Knowledge 

The proposed Meta-Lamarckian learning approach also permits the incorporation 

of a designer's intuition, experience and knowledge during design activities. For 

example, assume that a design specialist has knowledge about the DS local search 

method, i.e., DS often performs relatively well on most design problems of interest to 

him/her. However, not being totally sure about its suitability for a new problem, 

he/she may not wish to commit to a hxed hybrid and instead incorporate this 

expert knowledge into the adaptive strategies by biasing the DS local method with 

a greater probability of being selected. Trace GA-S2A in Figure 3.10 illustrates 

the case where the DS method is biased with twice the chances of selection, as 

compared to the other local methods in the same pool. This combination clearly 

works well. The Domain Optimization Method Advisor described in Chapter 2 may 

be used to give such advice if an historical database of methods is available. 

Shown also in Figure 3.10 is the trace GA-S2B where the designer chooses to use 

six local methods (PO, NM, CO, BC, PD and DS) as the pool to perform a search on 

the Griewank function. From these results, it is seen that superior search performances 

are obtained when human expert knowledge is incorporated into the Meta-Lamarckian 

learning process. Improvements can also be found for the other benchmark problems 

when knowledge is incorporated in this way. Every search algorithm, except for uniform 

random search, introduces some unique form of bias, suitable for some classes of problems 

but not for others. Therefore, any hxed GA-LS hybrid will include biases. Since a priori 

knowledge about problems is often scarce, this makes selection of the appropriate LS 

for use in such fixed schemes difficult. The great advantage of the proposed adaptive 

GA-LS approaches is that they are able to address this fundamental problem by allowing 

a range of local searches to cooperate and compete in Ending good solutions. With the 

incorporation of human designer knowledge, further improvement of search performance 

may be attained. 
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Figure 3.10: Average convergence trends for minimizing lOD Griewank function using 
GA-S2A and GA-S2B with the incorporation of Human Expert Knowledge compared 
with conventional GA and GA-S2. Also shown are the search traces GA-PO and GA-DS 
hybrids. 
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§3.4 Aerodynamic Aircraf t Wing Design 

In aerospace companies, design teams are often required to work on design problems that 

are new to them and accompanied by tight deadlines. To demonstrate the practicality 

of the Adaptive Meta-Lamarckian learning approach, strategy GA-S2 is next applied to 

a real world engineering design problem, the design of transonic civil transport aircraft 

wing considered in Chapter 2 [14]. The objective is again set as the minimization of 

wing drag D /g meters^ as calculated by using TADPOLE, with target lift, wing weight, 

volume, pitch-up margin and root triangle layout chosen to be representative of a 220 

seat wide body airliner. The reader is referred to Appendix C for further details of the 

aerodynamic wing design problem considered. 

Here, the worst and best hxed hybrid GA-LS on this problem were found to be GA-BC 

and GA-CO, respectively (see Figure 3.11). In addition, both GA-FL and GA-DS fared 

very poorly compared to others in the LS pool of nine. Once again, GA-S2 waa able to 

generate design search performance that is as good as the best Exed hybrid on this realistic 

problem (GA-CO). With the incorporation of human expert knowledge, superior design 

search performance may be attained, as shown by the GA-S2C search trace in Figure 

3.11 where the CO local method is biased with greater probability of being selected. 

Such results encourage the use of multiple local methods, rather than relying simply on 

one fixed, and possibly poor choice. Adaptive Meta-Lamarckian learning clearly offers a 

high quality and robust approach for engineers working on engineering design problems, 

regardless of whether a priori knowledge about the problem is available or not. 
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Figure 3.11: Design of a Transonic Civil Transport Aircraft Wing using Adaptive Meta-
Lamarckian Learning hybrid GA-S2. GA-S2C differs from GA-S2 due to the incorpora-
tion of human knowledge (see text). Also shown are the search traces for GA, GA-BC, 
GA-FL, GA-DS, GA-CO, GA-AV and GA-B. 
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§3.5 Conclusion 

The major impact of local optimization search routine choice in hybrid Genetic Algorithm-

Local Searches has been discussed and illustrated in this Chapter. Meta-Lamarckian 

learning in hybrid GA-LS search has been proposed to mitigate the problem. Two new 

adaptive strategies for Meta-Lamarckian learning have been described and analyzed. Ex-

perimental studies on three representative classes of benchmark problems have shown 

that the strategies proposed are elective in reducing the influence of local method choice 

on design search performance. Overall, the Biased Roulette Wheel approach to method 

selection is the most promising adaptive strategy considered here. It is shown to be capa-

ble of reducing the inSuence of inappropriate choice of search methods on hybrid GA-LS 

searches, and also attaining robust, high quality and e&cient performance on both bench-

mark problems as well as a real-world engineering design problem. Further, the approach 

reduces reliance on optimization domain experts, hence ensuring that design engineers 

in hybrid evolutionary design search require minimum knowledge of local optimization 

methods. 



Computationally Expensive 

Engineering Design Problems 

IN Chapters 2 and 3, methodologies for reducing the influence of inappropriate choice 

of search methods on complex engineering design optimization performance were pre-

sented. As previously noted in Chapter 1, besides a high reliance on human expertise, 

present engineering design processes must also deal with the complexity of cost surfaces. 

For this reaaon, a study on handling computationally expensive analysis codes in engi-

neering design optimization under limited computational resources has been conducted 

and the findings are presented in the Chapter. 

Most studies in the literature have addressed this problem using frameworks that in-

corporate approximation models in design procedures using gradient based optimization 

algorithms, with rather less efforts placed on Evolutionary Search. In this Chapter, a 

novel parallel evolutionary optimization algorithm that leverages approximation mod-

els for solving computationally expensive design problems with general constraints, on 

a limited computational resource [27] is proposed and investigated. The essential back-

bone of the proposed framework is an evolutionary algorithm coupled with a feasible 

sequential quadratic programming solver in the spirit of Lamarckian learning. Further, a 

trust-region approach is employed for interleaving the use of exact models for the objec-

tive and constraint functions with computationally cheap surrogate models during local 

search. In contrast to earlier work, the local surrogate models are constructed from data 

61 
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chronicled online using radial basis functions in the spirit of transductive inference. In 

addition, the present approach retains the intrinsic parallelism of evolutionary algorithms 

and can hence be readily implemented on grid computing infrastructures. Experimental 

results are presented for some benchmark functions and on the aerodynamic wing de-

sign problem to demonstrate that the present algorithm converges to good designs on a 

limited computational resource. 

§4.1 In t roduc t ion 

Complex engineering design problems commonly have large design spaces. In such design 

spaces, typically thousands of function evaluations are required to locate a near optimal 

solution. Often in aerospace and ship detailed design processes, variable-Sdelity analysis 

codes are employed to strike a balance between design cost, time and estimation accuracy. 

Nevertheless, in design optimization processes where high-Sdelity analysis code are used, 

each function evaluation may require a 6nite element or computational fluid dynamics 

simulation costing hours of supercomputer time. Therefore, the overwhelming part of 

the total run time in complex engineering design optimization is usually taken up by the 

evaluations of the analysis code. This often poses a serious impediment to the practical 

application of optimization to complex engineering design problems. 

To reduce the cost of each function evaluation, surrogate models, metamodels or ap-

proximation models, which are often described as a "model of the model", are often 

constructed from historical design optimization data and then used in lieu of the actual 

expensive analysis models. Hence, for many large-scale design problems where compu-

tationally expensive high-6delity models are used for predicting design improvements, 

a popular and widely followed practice for optimal design is to make use of a gradient 

based optimization module linked to an approximate analysis routine, which is contin-

uously updated at each design cycle based on the results of exact model analysis. This 

practice leads to a computationally efficient search procedure, and hence, the solution of 

expensive large design space problems is made possible in a tractable amount of time. 

Since line search procedures are utilized in gradient based optimization algorithms, the 
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issue of range of validity of the approximation models or the control of approximation 

errors can be directly addressed by using od Aoc move limits or a trust region framework 

in the line searches. Similarly, frameworks for approximation model management baaed 

on metamodelling strategies for pattern search algorithms have also been proposed in the 

literature [76]. 

A variety of approximation model management frameworks for gradient based opti-

mization algorithms exist in the literature. However, a detailed analysis of the literature 

reveals that few studies have addressed the issue of incorporating approximation models in 

design procedures using Evolutionary Search (ES). The reason being that since ESs make 

use of probabilistic recombination operators, controlling the step size of design changes 

(to control the accuracy of approximate Etness predictions) is not straightforward as it 

is in gradient based optimization algorithms. This difficulty becomes particularly severe 

when local approximation models are employed during search. In principle, global models 

can be employed to circumvent this problem. However, in practice, due to the cur^e o/ 

dimensionality, such models become increasingly difficult to construct for problems with 

large number of variables. 

In order to successfully apply evolutionary algorithms (EAs) to engineering design 

problems with high-hdelity simulation models, further research for new approaches to 

handle the problem is necessary. Most of the research work related to ES has mostly in-

volved the use of problem specific knowledge to increase computational efhciency [77, 78, 

79, 80]. Other attempts have been described in Chapters 2 and 3. Although it has been 

shown that such approaches can be effectively used to achieve performance improvements, 

there are finite limits to the improvements achievable when dealing with computationally 

expensive problems. The history of theoretical developments and applications of gradient 

based optimization techniques to design indicates that the most infiuential factor for their 

wide spread use has been the ease with which approximation models can be incorporated 

to achieve substantial savings in the computational cost. The development of faster and 

more efficient optimization algorithms alone would not have sufficed to make this possi-

ble. Taking this cue from the evolution of classical design optimization procedures, the 

question of how to integrate approximation models with evolutionary search procedures 
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needs to be addressed in order to study their practical applicability for design problems, 

where computational cost is often a critical issue. This requirement for studies focusing 

on the extent to which approximation concepts can be combined with stochastic evolu-

tionary search was also noted in a recent survey of the state of the art in multidisciplinary 

design optimization methodology by Sobieszczanski-Sobieski and Haftka [81]. 

Robinson and Keane presented a case for employing variable-fidelity analysis models 

and approximation techniques to improve the efHciency of evolutionary optimization for 

complex design tasks, for instance aeronautical design [79]. A computational framework 

for integrating a class of single-point approximation models with Genetic Algorithm was 

also proposed by Nair and Keane [80]. However, such frameworks are restricted to a 

special class of approximation models that are domain specific. For more general approx-

imation models, Ratle [82] examined a strategy for integrating evolutionary search with 

Kriging models. This problem was revisited by El-Beltagy et al. [83] where it is argued 

that the issue of balancing the concerns of optimization with that of design of experi-

ments should be addressed. Numerical studies were presented for certain pathological 

cases to show that the idea of constructing an accurate global surrogate model may be 

fundamentally flawed due to the curse of dimensionality. Liang et al. [84] attempted to 

couple hybrid evolutionary search (i.e., Evolutionary Search -H Local search) instead of 

traditional ES with quadratic response surface methods. The basic idea of Liang is to 

increase the exploitation factor of traditional ES via the use of local search. It does so by 

first mapping the approximated solution to its exact solution, which is then followed by 

concentrating search efforts around the neighbourhoods of the mapped exact solution to 

produce better solutions using the exact analysis codes. However the use of the computa-

tionally expensive exact analysis codes to perform local searches is ineScient. Moreover 

by discarding the interacting term between design variables of the standard quadratic 

polynomial approximation model when working with high dimensional and multi-modal 

problems, the accuracy of the quadratic model on realistic problems may become ques-

tionable. A framework for coupling EAs and neural network-based surrogate models is 

also presented by Jin et al. [85]. This approach uses both the expensive and approximate 

models throughout the search, with an empirical criterion to decide the frequency at 
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which each model should be evaluated. 

In spite of extensive work on this topic, existing strategies for integrating approx-

imation models with EAs have met with limited success in applications to real-world 

problems. Some of the key factors responsible for this are: 

e The curse of dimensionality that causes signihcant difhculties in constructing a 

global surrogate model which is capable of accurately predicting htness improve-

ments during the search. 

• The inability of most frameworks to handle problems with general nonlinear in-

equality and equality constraints. 

# Most of the proposed strategies for managing the interplay between the exact and 

approximate models tend to compromise on the intrinsic parallelism of traditional 

EAs. 

Based on the survey conducted, a general framework or algorithm for integrating 

surrogate models with EAs, which addresses the limitations of existing strategies out-

lined above is proposed. The proposed algorithm leverages well-established notions in 

the literature on hybrid evolutionary optimization techniques, radial basis functions, and 

trust-region frameworks. The essential backbone of the present approach is an EA hy-

bridized with a feasible sequential quadratic programming solver. Each individual in an 

EA generation is used as an initial guess for local search in the spirit of Lamarckian 

learning. It uses a trust-region framework to manage the interplay between the original 

objective and constraint functions and computationally cheap surrogate models during 

local search, thereby maintaining the accuracy of the surrogate model. 

Furthermore, the idea of employing local surrogate models that are constructed using 

data points that lie in the vicinity of an initial guess is proposed. This idea of construct-

ing local models is similar in spirit to the multipoint approximation technique proposed 

by Toropov et al. [86]. Here, the local learning technique is viewed and discussed as 

an instance of the transductive inference paradigm, which haa been the focus of recent 

research in statistical learning theory. Traditionally, global surrogate models are con-

structed using inductive inference, which involves using a training dataset to estimate a 
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functional dependency and then using the computed model to predict the outputs at the 

points of interest. However, when constructing surrogate models for optimization, the 

specific interest is to ensure that the models predict the objective and constraint function 

values accurately at the sequence of iterations generated during the search - how well the 

model performs at other points in the parameter space is of no concern in this specific 

context. Transductive inference oEers a solution to this problem by directly estimating 

the functional dependency and outputs at the point of interest; the reader is referred to 

[87, 88] and Vapnik's text [89] (see in particular Chapter 8) for a detailed theoretical 

analysis of its superior generalization capabilities over standard inductive inference. 

In the present work, transduction is implemented by constructing radial basis net-

works using data points in the local neighbourhood of an optimization iteration. In other 

words, instead of constructing a global surrogate model, a local model is created on the 

Ay whenever the objective and constraint functions must be estimated at a design point 

during local search. The localized training data can be readily selected from an online 

historical database containing previous iterations, which is continuously updated as the 

search progresses. Further, the proposed algorithm is shown to be readily and efhciently 

parallelized on grid computing architectures. Extensive numerical studies are presented 

for some benchmark test functions and the real world aerodynamic wing design problem. 

It is shown that the present framework allows for the possibility of converging to good 

designs on a limited computational resource. 

This Chapter is organized as follows: Section 4.2 outlines surrogate model construc-

tion using radial basis functions, and section 4.3 presents the proposed algorithm for 

integrating local surrogate models and trust-region methods with EAs. The grid infras-

tructure employed to achieve parallelism is also brieSy discussed. In sections 4.4 and 

4.5, the experimental studies on some benchmark test functions and application of the 

proposed framework for aerodynamic wing design are presented. Finally, section 4.6 

summarizes the main conclusions. 
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§4.2 Surrogate Modeling 

Surrogate models or metamodels are (statistical) models that are built to approximate 

computationally expensive simulation codes. Surrogate models are orders of magnitude 

cheaper to run, and can be used in lieu of exact analysis during evolutionary search. 

Further, the surrogate model may also yield insights into the functional relationship be-

tween the input x and the output If the true nature of a computer analysis code is 

represented as 

Z/ = / W , (4.1) 

then a surrogate model is an approximation of the form 

^ = / W , (4.2) 

such that 1/ = ^ + E, where 6 represents the approximation error. 

There exist a variety of techniques for constructing surrogate models; see, for ex-

ample, the texts by Vapnik [89] and Bishop [90] for an exposition of learning theory. 

One popular approach in the design optimization literature is least-squares regression 

using low-order polynomials, often known as response surface methods. A statistically 

sound alternative for constructing surrogate models of a deterministic computer model 

is Kriging, which is sometimes referred to as a form of design and analysis of computer 

experiments (DACE) model in the statistics literature [91] and Gaussian process regres-

sion in the neural network literature [92]. A comparison of some surrogate modeling 

techniques has been presented by Giunta and Watson [93] and Jin et al [94]. 

As mentioned earlier, in the present study it is proposed to use local surrogate models 

in the spirit of transductive inference. In particular, a surrogate model is built on the 

Ay when the objective and constraint functions at an optimization iteration are to be 

estimated. This local model is built using only a small set of data points that lie in 
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the local neighbourhood of the design point of interest. Since surrogate models will 

probably be built thousands of times during the search in this fashion, computational 

efhciency is a major concern. This consideration motivates the use of radial basis function 

networks, which can be efficiently applied to approximate multiple-input multiple-output 

data, particularly when a few hundred data points are used for training. 

Let = 1, 2 , . . . ,n} denote the training dataset, where x E is the input 

vector and 2/ E A is the output. Since interest lies in caaes where the training data is 

generated by running deterministic computer models, we assume the data to be noise-

free. Hence, the focus is on interpolating radial bagis function models of the form 

1 = 1 

X — X,- (4.3) 

where — Xi||) : ^ is a radial baais kernel and a: = {0!i,0!2,... ,0:^} E 

denotes the vector of weights. 

Typical choices for the kernel include linear splines, cubic splines, multiquadrics, thin-

plate splines, and Gaussian functions [90]. The structure of some commonly used radial 

basis kernels and their parameterizations are shown in Table 4.1. 

Nomenclature k. {x, (5) 

Linear Splines 

Thin Plate Splines 

Cubic Splines 

Gaussian 

Multiquadrics 

% —c. 

|x - c . | | ln 

lU — c 

% - c. 
I|3 

/J/ 

1 + 

Table 4.1: Radial Basis Kernels. 



Chapter 4. Computationally Expensive Engineering Design Problems 69 

Given a suitable kernel, the weight vector can be computed by solving the linear 

algebraic system of equations K a = y, where y = {z/1,^2, -- G denotes the 

vector of outputs and K E denotes the Gram matrix formed using the training 

inputs (i.e., the ijih element of K is computed as — X j | | ) ) . 

Micchelli [95] proved that non-singularity of the Gram matrix K can be theoretically 

guaranteed for a class of kernels only when the set of input vectors in the training dataset 

are distinct. In many papers in the radial basis function literature, a polynomial term P 

is often appended to equation 4.3 along with some constraints. In other words, if K is 

a conditionally positive definite function of order g, then to ensure a unique solution for 

the weight vector, equation 4.3 is rewritten as 

i=l 

(4.4) 

where Pg is a polynomial of order q — 1 and the following homogeneous constraint equa-

tions are imposed 

(4.5) 
1=1 

Then the weight vector can be computed by solving a linear algebraic system of equations 

of the form Ax = b, where 

A = 
K P 

0 
,x = {o;,0} , a n d b = { y , 0 } , (4.6) 

where P is a matrix which arises by substituting the input vectors in the training dataset 

into the polynomial term P, and 0 is a vector composed of the undetermined coefficients 

of f . In practice, good approximations can be obtained by using a constant instead of a 

full-order polynomial. Here, the coefficient matrix A becomes 
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A = 
K 1 

0 
(4.7) 

where 1 E is a vector of ones. 

For problems with multiple outputs, the weight vector can be evidently computed 

for all the outputs of interest once the matrix K is decomposed. For a typical dataset 

with 500 training points, 20 inputs, and Ave outputs, surrogate model construction using 

linear splines generally takes a fraction of a second on one processor of an SGI Povyer 

Challenge. When dealing with computationally expensive problems that cost more than a 

few minutes of cpu time per function evaluation, this training cost is generally negligible. 

In the present study, we used linear splines to construct surrogate models since ex-

perimental studies in the literature [94] suggest that this kernel is capable of providing 

models with good generalization capability at a low computational cost. Next, an algo-

rithm that integrates a local version of such surrogates in hybrid evolutionary search is 

presented. 

S4.3 Presen t Framework 

In this section, the essential ingredients of the proposed local surrogate modeling algo-

rithm for parallel evolutionary optimization of computationally expensive problems are 

presented. Consider a general nonlinear programming problem of the form: 

Minimize : / ( x ) 

Subject to : g;(x) < 0, % = 1, 2,. . . (4.8) 

X( < X < 

where x G is the vector of design variables, and x; and x„ are vectors of lower and 

upper bounds, respectively. 

Here, we are interested in cases where the evaluation of / ( x ) and p(x) is computation-

ally expensive, and it desired to obtain a near optimal solution on a limited computational 
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resource. The basic steps of the proposed algorithm are outlined in Figure 4.1. 

BEGIN 

Initialize: Generate a database containing a population of designs. 

3.) 

While resource 

Evaluate all individuals in the population using the exact models (if solu-
tions are not available). 

For each non-duplicated individual in the population 

* Apply trust-region enabled feasible SQP solver to each individual in 
the population by interleaving the exact and local surrogate models 
for the objective and constraint functions. 

Update the database with any new design points generated during 
the trust-region iterations and their exact objective and constraint 
function values. 

Replace the individuals in the population with the locally improved 
solution in the spirit of Lamarckian learning. 

End For 

Apply standard EA operators to create a new population. 

End While 

* 

* 

E N D 

Figure 4.1: Proposed algorithm for integrating local surrogate models with hybrid EAs 
for optimization of computationally expensive problems. 
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In the Erst step, a database using a population of designs, either randomly or using 

design of experiments techniques such as Latin hypercube sampling [38] is initialized. All 

the design points thus generated and the associated exact values of the objective and 

constraint functions are archived in the database that will be used later for constructing 

local surrogate models. Alternatively, one could use a database containing the results 

of a previous search on the problem or domain, such as that in Chapters 2 and 3 or a 

combination of them. 

Subsequently, a hybrid EA is employed, where for each non-duplicated design point 

or chromosome in the population, a local search is conducted using surrogates. The local 

strategy used here embeds the feasible SQP optimizer within a trust-region framework 

[96, 97]. A rationale behind using a feasible SQP solver is to exploit its well-known ability 

to efEciently locate the local optima of optimization problems 

Besides, since local surrogate models are in use, there is little di&culty in computing the 

derivatives (gradient or Hessian), making a derivative-based method such as the SQP 

solver an excellent choice. 

Further, instead of adopting an augmented Lagrangian approach, we handle the ob-

jective and constraint functions separately in the spirit of Giunta and Eldred [98]. More 

specifically, during local search for each chromosome in an EA generation, a sequence of 

trust-region subproblems of the following form is solved. 

Minimize ; /^(x + x^) 

Subject to : g^{x. + x^) < 0, z = 1, 2 , . . . ,p (4.9) 

||x|| < 

where A; = 0 ,1 ,2 , . . . , /Cmoi, and are the initial guess and the trust region radius 

used for local search at iteration k, respectively. In practice, the Loo norm can be em-

ployed to impose the second constraint in equation 4.9. Hence, this constraint can be 

transformed into appropriate bounds on the design variables, which are updated at each 

trust-region iteration based on the value of A'̂ . 



Chapter 4. Computationally Expensive Engineering Design Problems 73 

For each subproblem (or during each trust-region iteration), surrogate models of the 

objective and constraint functions, viz. and created dynamically. The m 

nearest neighbours of the initial guess, x^, are hrst extracted from the archived database 

of design points evaluated so far using the exact analysis code. The criterion used to 

determine the similarity between design points is the simple Euclidean distance metric. 

These points are then used to construct local surrogate models of the objective and 

constraint functions. It is worth noting here that care has to be taken to ensure that 

repetitions do not occur in the training dataset, since this may lead to a singular Gram 

matrix K. 

The surrogate models thus created are used to facilitate the necessary objective and 

constraint function estimations in the local searches. After each iteration, the trust region 

radius is updated based on a measure which indicates the accuracy of the surrogate 

model at the Ath local optimum, x^. After computing the exact values of the objective 

and constraint functions at this point, the figure of merit, p*, is calculated as 

mm f o r % ^ l , 2 , . . . , p (4.10) 

where 

The above equations provide a measure of the actual versus predicted change in the ob-

jective and constraint function values at the /cth local optimum. The value of is then 

used to update the trust region radius as follows [96]: 

= 0.25A\ if / < 0.25, 

= A \ if 0.25 < / < 0.75, (4.12) 

= ^ A \ if / > 0.75, 

where = 2, if ||x^ - x^||oo = A^ or ( = 1, if ||x^ - x^||oo < A*. 
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The trust region radius, A*', is reduced if the accuracy of the surrogate, measured 

by p'̂  is low. is doubled if the surrogate is found to be accurate and the Mh local 

optimum, x^, lies on the trust region bounds. Otherwise the trust region radius remains 

unchanged. 

The exact values of the objective and constraint functions at the best solution of the 

/cth subproblem are combined with the m nearest neighbouring design points to generate 

a new surrogate model for the next iteration. In addition, the initial guess for the /c + 1th 

iteration within each local search is determined by 

- x{ ,̂ if / > 0 

= x^, i f / < 0 . (4.13) 

The trust region iterations (for each chromosome) are terminated when A; > where 

kmax is the maximum number of trust-region iterations that is set a priori by the user. At 

the end of Amai trust-region iterations for a chromosome, the exact htness of the locally 

optimized design point is determined. If it is found to be better than that of the initial 

guess then Lamarckian learning proceeds. Lamarckian learning forces the genotype to 

reflect the result of improvement by placing the locally improved individual back into 

the population to compete for reproductive opportunities. In addition, the optimized 

design point and its corresponding objective and constraint function values are added 

to the database. This process of hybrid EA search is continued until the computational 

resource is exhausted or a user specihed termination criterion is met. 

Note that apart from the parameters used in standard EAs, the proposed algorithm 

has two additional user-specifled parameters, aiid m. In Section 4.4, the experimen-

tal studies used to investigate the effect of these parameters on the convergence trends 

are presented. 
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Further, in engineering design optimization, evaluation of the objective and constraint 

functions takes up the overwhelming bulk of the computation. Therefore, a sub-linear 

improvement in design search efBciency can be achieved via global parallelism, where 

all design points within a single population are evaluated simultaneously across multi-

ple machines. Parallelism is thus considered a desirable feature of any framework for 

optimization of computationally expensive problems. In the present algorithm, it is rel-

atively straightforward to achieve parallelism, since local search for each individual in 

an EA generation can be conducted independently. To ensure load balancing, it is only 

necessary to specify that the number of trust region iterations be kept the same for each 

individual. 

In the present implementation of the proposed algorithm, NetSolve [99] is employed. 

Netsolve is a computational platform which facilitates grid-based heterogeneous comput-

ing [100] in a transparent and efficient manner. Parallelism is achieved by wrapping the 

local search and surrogate modeling routines on a NetSolve server. The analysis codes 

are also wrapped on NetSolve servers, which can be invoked by the local search and the 

client routines. Hence, using the farming client application programming interface, local 

search for each chromosome in an EA generation can be readily conducted in parallel 

on remote servers. Even though we used a centralized database, it should be noted that 

NetSolve has capabilities for distributed data storage on remote servers. Note that this 

approach does not parallelize the SQP steps and thus is only suitable where the SQP 

updates can be efficiently offered as serial processes. 

§4.4 Numerical Studies on B e n c h m a r k Prob lems 

In this section, the numerical results obtained by implementing the proposed approach 

within a standard binary coded genetic algorithm (GA) are presented. In the exper-

imental studies, 10 bit binary encoding, uniform crossover and mutation operators at 

probabilities 0.6 and 0.01, respectively, are employed for the standard GA with a popula-

tion size of 50. A linear ranking algorithm is used for selection. The codes implementing 

the objective and constraint functions were wrapped on NetSolve servers running Red 
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Hat Linux on Pentium III processors. The GA code is linked to the NetSolve client 

library so that the objective function and constraint evaluation modules, and the local 

search routines can be invoked remotely. 

The feasible SQP implementation that is used here is the "Fortran code for Feasible 

Sequential Quadratic Programming" code developed by Lawrence and Tits [101]. Feasible 

Quadratic Programming is a quasi-Newton method that solves a nonlinear constrained 

optimization problem by fitting a sequence of quadratic programming problems to it, 

and then solving each of these problems using a quadratic programming method. When 

started from an infeasible point (one that violates at leaat one of the linear or nonlinear 

constraints), FFSQP first carries out an optimization in which it minimizes the maximum 

of the constraint violations. This optimization continues until a feasible point is found. 

Then it minimizes the maximum of the objective functions, while keeping the nonlinear 

equality and inequality constraints, linear equality and inequality constraints, and simple 

bounds on the variables satished. In another words, when presented with an infeasible 

chromosome in the population, FFSQP attempts to repair it, optimize it locally and 

return a feasible chromosome into the population via the Lamarckian learning procedure. 

Hence, one main motivation of using FFSQP in this work is its chromosome repairing 

capabilities. 

Two benchmark problems commonly used in the literature are adopted here for testing 

the proposed algorithm. They represent classes of unconstrained and constrained mul-

timodal test problems. These problems make it possible to study whether the proposed 

approach would bring any increase in elBciency or computational cost reduction when 

used on complex problems. The problems considered are the minimization of the twenty-

dimensional Rastrigin and maximization of the Bump functions described in Appendix 

B. These functions have very rugged landscapes and are often difficult to optimize. The 

averaged convergence trends obtained by applying the present algorithm to the bench-

mark test problems as a function of the total number of function evaluations are shown 

in Figures 4.2 - 4.4. 
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Figure 4.2: Averaged convergence trends for m=100 and various values of kmax (3, 5 
and 8) compared with standard GA and global surrogate modeling framework for the 
20D Rastrigin function. 
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Figure 4.3: Averaged convergence trends for Amoi = 3 and various values of m (100, 
150 and 200) compared with standard GA for the 20D Rastrigin function. 

The results presented here were averaged over 20 runs for each test function. Also 

shown in the figures are averaged convergence trends obtained using a standard GA and 

a global surrogate modeling strategy. The algorithm based on global surrogate models 

employed in the present numerical studies is based on the approach proposed by Ratle 

[82]; see Figure 4.5 for an outline of the steps involved in this algorithm. 

The results obtained for the test functions show that the global surrogate framework 

displays early sign of stalling. This is consistent with previous studies in the literature [82, 

83, 85] which suggest that when global surrogate models are applied to high-dimensional 

and multimodal test functions, the search generally tends to stall early on. Such an 

eEect is a result of the curse of dimensionality, which often leads to early convergence 

at false global optima of the surrogate model. In contrast, the results obtained using 

the proposed algorithm clearly demonstrate that solutions close to the global optima 
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Figure 4.4: Averaged convergence trends for Amai = 3 and various values of m (100, 
150 and 200) compared with standard GA for the 20D Bump function. 

can be obtained on a limited computational resource. As surrogates are used only for 

local searches, i.e., ag the exact model is used for all analysis conducted at the EA level, 

the chances for convergence to false global optima are greatly reduced. In addition, the 

use of the trust-region framework maintains convergence close to the local optima of the 

original problem during the SQP steps. 

For these benchmark problems, the effect of increasing the maximum number of trust-

region iterations and the number of nearest neighbours (employed to construct the local 

surrogate model) on the convergence behavior is also studied; see Figures 4.2 - 4.4. A 

number of observations can be made from the convergence trends. First, it appears that 

there is not much to be gained by increasing beyond three. Secondly, it appears that 

smaller values of m generally lead to faster convergence during the early stages of search, 

but there is a tendency to stall at later stages. The converse is true for increases in m. 
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BEGIN 

Initialize: Generate a database containing a population of designs. 

[/pZoQcf o one 

Construct surrogate model using all available design points in the database. 

Set Atness function Surrogate model 

While resource 

Evaluate all individuals in the population using the fitness function. 
Apply standard EA operators to create a new population. 

If (fitness function := Exact model) 

Update database with any new designs generated using the exact model. 

Update surrogate model using all designs in the database. 

End If 

If (convergence over surrogate model) 

fitness function := Exact model 

Else 

fitness function := Surrogate model 

End If 

End While 

E N D 

Figure 4.5: Algorithm based on global surrogate models proposed by Ratle [82]. 
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This suggests the possibility of adaptively selecting m during the search. The follovying 

simple strategy is proposed: 

171 — ijTlmin ~l~ '^max) , (4.14) 
tt 

where mmin = population size, TTimai = 400, while and are the current time spent 

and the amount of affordable computational resource specified by the user, respectively. 

§4.5 Aerodynamic Aircraf t W i n g Design 

In this section, the application of the proposed algorithm to the transonic civil transport 

aircraft wing design problem considered by Keane and Petruzzelli [14] and previously in 

Chapters 2 and 3 is presented. Again, the objective is set as the minimization of wing 

drag D/q meters^ with target lift, wing weight, volume, pitch-up margin and root triangle 

layout chosen to be representative of a 220 seat wide body airliner. 

Aerodynamic wing design is an extremely complex task, which is why it is normally 

undertaken over an extended time period and at different levels of complexity. Here, the 

wing drags may be predicted using the empirical drag estimation tool, TADPOLE, or the 

the linearized potential method, VSAERO, which is a full Computational Fluid Dynamic 

code. TADPOLE takes only some 6 seconds to run, and returns drag values based on 

curve Rts to previously analyzed wings. VSAERO is more computational expensive than 

TADPOLE and requires approximately 11 minutes of compute time per drag evaluation. 

However, it has the advantage of providing more accurate drag predictions provided Mach 

numbers are not too high, i.e. < 0.9. The reader is referred to Appendix C for further 

details of the aerodynamic wing design problem considered. 
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A summary of the search results obtained for the aerodynamic wing design problem 

is shown in Table 4.2, and Figures 4.6 and 4.7. 

Mean Wing Drag Values {D/q, meters^) at 
Evaluation Counts of 

250 500 600 800 1200 1500 
100 2.823 2.781 2.788 2.788 2.788 2.788 
200 3.218 2.788 2.775 2.771 2.768 2.768 
300 3.235 3.049 3.049 2.771 2.764 2.761 
400 3.265 3.064 3.049 3.020 2.772 2.758 

Adaptive m .̂7gO g.7Jg 

Standard GA 3.213 3.004 2.983 2.978 2.974 2.961 

Table 4.2: Summary of minimum drag values using the TADPOLE code and surrogate 
models. 

Table 4.2 shows the search results when using TADPOLE for drag estimation. Note 

that there are at least m exact design points available in the database before local search 

using surrogates steps in. Once again, it is observed from these results that smaller 

values of m lead to faster convergence of the wing drag values during the early stages 

of search, but result in stalling at later stages, and the converse is true for increases in 

m. These results are in line with those observed earlier for the test functions. Hence, 

for the computationally expensive VSAERO code, is chosen adaptively using equation 

4.18. The maximum number of trust region iterations is also set to three. Note 

that during local search, the surrogate models for the objective function and the four 

inequality constraints are constructed. 

For this problem, it has been found using the standard GA as well as observed from 

previous studies by Keane and Petruzzelli [14] that the near optimal value of 2.758 using 

the TADPOLE code can be obtained after 10,000 evaluations. In comparison, using the 

proposed approach, we are able to converge to this solution on an average after 1,500 

exact evaluations, when m is chosen adaptively during the search. 

In Figure 4.6, the averaged convergence trends using VSAERO for wing drag esti-
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Figure 4.6: Summary of minimum drag values using the VSAERO code and surrogate 
models. Results are average of 3 runs. 

mation also clearly illustrates the ability of the proposed algorithm to arrive at good 

designs on a limited computational resource. The convergence trends of the best run for 

the aerodynamic wing design problem using VSAERO are also plotted as a function of 

wall-clock time in Figure 4.7. The wall-clock time refers to the actual time or the total 

amount of elapsed time that the program takes to run or to execute the allocated search 

taak(s). Due to the availability of only eight licenses for the VSAERO code, the timing 

plot obtained in Figure 4.7 is based on a total of eight processors being used for parallel 

computations. Previous studies using the VSAERO code for wing drag estimation have 

revealed that the best design that can be obtained using the standard GA with only the 

exact analysis model has a drag value of 2.63 after 1,800 evaluations. In comparison, us-

ing the present approach, this solution was obtain on average after 250 exact evaluations. 
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Figure 4.7: Comparison of best convergence trends as a function of wall-clock time for 
the Aerodynamic Wing Design Problem using the VSAERO code and surrogate models. 

After 733 exact evaluations, the best design obtained using the proposed algorithm had 

a drag value of 2.404, which is the lowest value obtained to date for this problem using 

various optimization algorithms. Note that the best solutions reported here satisfied all 

the four inequality constraints. 
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§4.6 Conclusion 

In this Chapter, a general framework that leverages surrogate models created from histor-

ical data for evolutionary optimization of computationally expensive constrained design 

problems is proposed and presented. It is argued that for such complex design problems, 

constructing an accurate global surrogate model suffers from fundamental difficulties due 

to the curse of dimensionality. A local learning approach in the spirit of transductive 

inference is employed to construct surrogate models. Such local approximation mod-

els are shown to be easily incorporated into hybrid evolutionary-gradient optimization 

algorithms. The proposed local search strategy employs a trust-region framework to in-

terleave the exact and approximate models. Further, it is shown that such an approach 

retains the intrinsic parallelism of traditional EAs. 

Extensive numerical studies on some benchmark test functions to demonstrate the 

effectiveness of the proposed algorithm are presented. The results were compared with 

those obtained using a standard genetic algorithm and a global surrogate modeling strat-

egy. Experimental results are also presented for the real world aerodynamic wing design 

problem using a full 3-d CFD code. These studies clearly indicate that the present ap-

proach allows for the possibility of arriving at good solutions on a limited computational 

resource. 



Concluding Remarks 

THIS Chapter concludes the dissertation with a brief synopsis of the contributions 

of the present research. Areas for future work and a program of future research 

are also outlined. 

§5.1 Research Contr ibut ions 

The focus of this research waa to develop methodologies that leverage Artihcial Intelli-

gence techniques to achieve advancement in complex engineering design search. In par-

ticular, the present methodologies integrate machine learning techniques along with an 

existing Design Exploration System and search routines to enhance the chances of arriv-

ing at good designs and at the same time, improving search efficiency. This was achieved 

via effective use of design optimization data chronicled from previous design search pro-

cesses and online searches. The proposed approaches have concentrated on mitigating 

two limitations found in most current complex engineering design optimization processes, 

identified as 

# Choice of Optimization Methods. 

• Computationally Expensive Design Problems. 

The primary contributions of the present program of research are summarized below. 
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§5.1.1 Domain Opt imizat ion M e t h o d Advisor 

In Chapter 2, a Domain Optimization Method Advisor [23, 24, 25] was presented. The 

proposed advisor seeks to reduce the inEuence of choice of optimization methods on en-

gineering design search performance, when searching familiar design domains. Domain-

speciEc knowledge is used to support the use of a DES by engineers, using data collected 

from previous optimization search processes in the same domain and from ofBine sim-

ulations. The methodology described is simple, automatic and is applicable to many 

engineering design process as it is neither tightly coupled to domains nor particular DES. 

A machine learning induction technique based on a decision tree algorithm is identified 

as being most suitable in this application as it provides accurate predictions and trans-

parency in making optimization method recommendations for design problems. Further-

more, the advisor helps reduce the reliance on human experts and caters to the multiple 

needs of design engineers of different abilities. It is also shown to achieve better de-

sign search performances in both efhciency and design quality when compared to the 

conventional approaches commonly adopted by general design engineers. 

§5.1.2 Meta -Lamarck ian Learning 

In Chapter 3, Meta-Lamarckian Learning in Hybrid Genetic Algorithm-Local Search 

(GA-LS) [26] was presented. The proposed learning methodology aims to assist in the 

choice of local optimization method in hybrid evolutionary design search. The method-

ology does not require offline simulations to be conducted but instead makes effective 

use of the optimization search data amassed while the design problem is searched online. 

It is applicable to general engineering design problems and adapts to changes on design 

problems statements. Two adaptive strategies have been investigated and the better 

strategy recommended for use. Besides assisting design engineers in the choice of local 

optimization methods when working with general complex engineering design problems, 

the proposed approach was shown to yield robust and improved design search perfor-

mance. Furthermore the methodology also permits the incorporation of human expert 

knowledge to achieve improved designs. 



Chapter 5. Concluding Remarks 88 

§5.1.3 Evolut ionary Opt imizat ion of Computa t iona l ly Expen-

sive P rob lems via Sur roga te Mode l ing 

In Chapter 4, a study of the literature on handling computationally expensive analysis 

codes or simulation models in complex engineering design optimization was presented. 

From this survey, the need for a general framework for evolutionary optimization of com-

putationally expensive constrained problems which use surrogate models is established. A 

novel algorithm or framework that interleaves computationally expensive analysis models 

for the objective and general constraint functions with cheap surrogate models created 

from online chronicled data is then proposed and the results from several investiga-

tions were presented. The proposed approach employs a trust-region framework, hybrid 

evolutionary-gradient optimization, with radial basis networks and transductive infer-

ence. Further, it is shown that the proposed framework improves design search efhciency 

and arrives at superior designs when compared to the more conventional approaches 

[27, 28]. 

§5.2 Fu tu re Work 

The methodologies proposed in this dissertation provide some of the groundwork for an 

intelligent optimization system in complex engineering design by making effective use 

of experiences or chronicled optimization data from paat designs. Computational and 

Artihcial Intelligence technologies have already assisted and will continue to advance this 

field in numerous ways. In future research, the two traditions of computational and arti-

ficial intelligence technologies will continue to help in dealing with complex engineering 

designs. One aims at understanding the human creative scientihc process (strong AI), 

the other at producing scientific assistants (weak AI). Both aim at the computational 

discovery of new scientific knowledge. A summary of potential future work is outlined 

below. 
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§5.2.1 Domain Opt imizat ion M e t h o d Advisor 

The Domain Optimization Method Advisor presented symbolizes an initial endeavor to 

predicting the most appropriate search routines on general optimization problems. There-

fore, above and beyond the acquisitions of domain knowledge, it is important that future 

research focuses on the derivation of domain-independent knowledge on optimization 

methods. In that case, the advisor may aasist design engineers working on general black-

box design problems, in contrast to restricted design domains. Clearly, the design of 

a more sophisticated advisor that might supply advice on the choice of search routine 

control parameters would also be appealing. Several artificial intelligence technologies 

that may prove to be valuable in this part of the work are Agents, Expert Systems, 

Ontology-Based Systems and Reinforcement Learning. 

§5.2.2 Meta -Lamarck ian Learning 

In Meta-Lamarckian Learning, we would like to foster novel adaptive strategies and credit 

assignment metrics that better define the rewards assigned to optimization routines. 

Studies on the dynamics of Meta-Lamarckian Learning and extension to Meta-Baldwin 

Learning in hybrid evolutionary search are also worthy of note. In addition, fuelled by ad-

vancing computing power, further efforts may provide a parallel form of Meta-Lamarckian 

Learning in hybrid evolutionary techniques which would greatly benefit the engineering 

design community. The work presented on Meta-Lamarckian Learning epitomizes the 

adaptive methodology for automating the appropriate choice of local optimizers in hy-

brid evolutionary search. The proposed methodology was then validated via extensive 

empirical studies. Given the restricted amount of well-established theoretical knowledge 

in the choice of local optimizer, research efforts should therefore be placed on providing 

some theoretical background in the area. 
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§5.2.3 Evolut ionary Opt imiza t ion of Computa t iona l ly Expen-

sive P rob lems via Sur roga te Mode l ing 

(a) Global Convergence of Proposed Framework 

An intriguing future activity would be to attempt to prove the global convergence of the 

general metamodeling framework proposed for evolutionary search of computationally 

expensive problems discussed previously in Chapter 4. Global convergence is defined in 

the optimization literature aa the mathematical assurance that the iterations produced by 

an algorithm, started from an arbitrary initial guess, will converge to a stationary point 

or local optima for the original high-fidelity expensive analysis code. One approach based 

on the classical trust region idea from nonlinear programming is shown by Alexandrov 

et. al. [96] to be provably convergent to a local optima of the original problem. 

Global convergence results for Evolutionary Algorithms that make use of approxima-

tion models in the search do not seem to have appeared in the literature so far. Nev-

ertheless, it may be possible to design EAs that inherit the existing global convergence 

properties of classical algorithms. The work by Hart [102] has shown one such possibility 

where a provably convergent evolutionary pattern search algorithm waa proposed that 

inherits the existing theory for classical pattern search. 

In order to prove global convergence for trust-region frameworks that embed surro-

gate models in the local search, Alexandrov et al. showed that zero-order and first-order 

consistency conditions have to be imposed at the initial guess, i.e., 

f { 4 ) = f ( 4 ) (5-1) 

V/(xJ) = V/(xJ) (6.2) 

Since we use an interpolating surrogate model in the present approach, only the zero-

order consistency condition is satished at the initial guess. To satisfy equation 5.2, the 

exact sensitivities of the objective and constraint functions are also required, which would 

be computationally prohibitive for many problems. 
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Clearly, the framework presented has some chance at having provable global conver-

gence properties, therefore it is worth noting here that future efforts might be placed in 

this area of research. 

(b) Surrogate-assisted Coevolutionary Search on Problems w îth General Con-

straint Functions 

It may also be worth exploring the employment of coevolutionary search [103] for solv-

ing computationally expensive optimization problems. The motivation for this study 

arises from the fact that since coevolutionary search is based on the divide-and-conquer 

paradigm, it may also be possible to circumvent the curse of dimensionality inherent in 

surrogate modeling techniques such as radial basis networks. The efBcacy of surrogate-

assisted coevolutionary search on general bound constrained problems was reported in 

[28]. In particular, the use of coevolutionary search with surrogates to solve computa-

tionally expensive optimization problems under limited computational budget was in-

vestigated via studies on bound constrained benchmark test functions and a realistic 

two-dimensional cantilevered space structure design problem. Y. S. Ong et al. showed 

that by employing approximate models for the Stness, it becomes possible to converge 

to good solutions even for bound constraint functions with a high degree of epistasis. 

In continuation of the work developed on surrogate-assisted coevolutionary search, it 

would be of great interests to determine if the deduction drawn in [28] may also apply 

to computationally expensive optimization problems with general nonlinear equality and 

inequality constraints. 

(c) Other future work 

Further research eEorts placed on evolutionary optimization of computationally expensive 

problems via surrogate modeling would nonetheless involve spawning novel solutions in 

the direction discussed earlier in section 4.1 of this dissertation, i.e., engaging the factors 

responsible for limiting the success of approximation models+EA frameworks to real 

world problems. 
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Appendix A: 
Design Exploration System 

Design exploration systems (DESs) address the needs of engineers responsible for estab-

lishing critical design parameters, usually during the early stages of the design process. 

Such systems aim to provide a controlled framework for studying the effects of parameter 

choices on the traditional programs available to the designer for dealing with geomet-

ric decisions, stress analysis, performance estimation, etc. They have started to become 

available over recent years with the advent of relatively cheap and powerful computational 

facilities and sophisticated optimization and exploration techniques. The increasing cost 

of professional manpower and pressure to gain maximal performance from designs makes 

it reasonable to expect that DESs will grow in use and influence. 

The Design Exploration system used in this research work is known as OPTIONS [1]. 

OPTIONS is a design exploration and optimization package that may be used to study 

design problems. The user provides routines describing his or her problem plus entries 

in a problem-specific database. It is then possible to manipulate the design manually, 

systematically map out the eEects of design changes, or, having specified design variables, 

constraints and an objective function, invoke one of the many optimizers within the 

package. Among the many different methods in OPTIONS, some are from standard 

libraries by Siddall and Schwefel [3, 4], while others have been specially developed for 

the suite, based on ideas culled from the literature. The 31 optimization search routines 

of the OPTIONS DES together with the abbreviations employed in this dissertation are 

listed in Table A.l. 
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Abbreviations 31 Optimization Search Rout ines Prom OPTIONS DES 

AP Method of successive linear approximation by Siddall 
AD Adaptive random search by Siddall 
BC Bit climbing algorithm by Davis 
CO Complex strategy of Box by Schwefel 
DA Davidon-Fletcher-Powell Strategy by Siddall 
DF Davidon-Fletcher-Powell strategy by Schwefel 
DH Dynamic hill-climbing algorithm 
DO Design of experiments based optimizer 
DP Davis, Swan and Campey with Palmer orthogonalizational by 

Schwefel 
DS Davis, Swan and Campey, with Gram-Schmidt orthogonaliza-

tion by Schwefel 
EP Evolutionary programming 
ES Evolution strategy 
FI Repeated one-dimensional Fibonacci search by Schwefel 
FL Fletcher's 1972 method by Siddall 
GA Genetic algorithm based on clustering and sharing 
GO Repeated one-dimensional Golden section search by Schwefel 
HO Hooke and Jeeves direct search by Schwefel 
JO Jacobson and Oksman Method by Siddall 
LA Repeated one-dimensional Lagrangian interpolation search by 

Schwefel 
MM Schwefel's multi-membered evolution strategy by Schwefel 
NA E04UCF improved general purpose routine found in NAg maths 

library 
NU Powell routine in the Numerical Recipes cookbook 
PB Population-baaed incremental learning algorithm 
PD Powell direct search method by Siddall 
PO Powell's strategy of conjugate directions by Schwefel 
RO Rosenbrock's rotating co-ordinated search by Schwefel 
SA Simulated annealing 
SE Hooke and Jeeves direct search by Siddall 
SI Simplex strategy of Nelder &: Meade by Schwefel 

SM Simplex strategy of Nelder & Meade by Siddall 
2M Schwefel's two-membered evolution strategy by Schwefel 

Table A . l : The 31 optimization search routines employed from the OPTIONS DES. 



Appendix B 
Benchmark Test Problems 

Some commonly used benchmark test problems already extensively discussed in the liter-

ature are used here in this research work. They represent classes of general constrained, 

unimodal and multimodal continuous parametric test problems. The first is the bound 

constrained unimodal Sphere function [72]. The second and third are the bound con-

strained Griewank [55] and Rastrigin functions, while the last is the bump or Keane 

function [31], which is subject to two nonlinear inequality constraint functions. Griewank, 

Rastrigin and Bump are all highly multimodal problems and considered as difficult for 

most search methods. 
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§B.l Sphere Problem 

The Sphere test problem is a smooth, symmetric function and is used to provide a measure 

of the general efficiency of the proposed strategy. It has a single minimum located at (0, 

. . . , 0). The function is defined as 

Minimize: 

Fsphere — ^ (B-l) 
i=l 

Subject to : — 5.12 < a;, < 5.12, z = 1 , . . . , n 

where x G i?" is the vector of design variables, and n is the variables size, respectively. 

The surface of the Sphere function for n = 2 is shown in Figure B.l. 

Figure B . l : 2-D Sphere function. 
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§B.2 Griewank Problem 

The Griewank test problem is a high dimensional multimodal function with many local 

minima and a global minimum located at (0, . . . , 0). It is deEned as 

Griewank 

Minimize: 

n 2 ^ 

= 1 + E - ni':o=k/\/i)] 
i=l 

(B.2) 
1=1 

Subject to : — 600 < Xi < 600, i = 1,... ,n 

where x E ^ is the vector of design variables, and M is the variables size, respectively. 

Figure B.2 shows a one-dimensional slice of this function for [—200, 200]^°. 

-150 -100 -50 50 100 150 200 

Figure B.2: 1-D slice of Griewank function. 

This function has inter-parameter linkage due to the presence of the product term. 

However, the effect decreases as the number of parameters increases. The Griewank 

function with 10 dimensions, n = 10, has more than 500 local minima in the hybercube 

[—600,600]^°. It has a very rugged landscape and is difBcult to optimize. 
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§B.3 Rastrigin Problem 

Like the Griewank function, the Rastrigin test problem is also a high dimensional mul-

timodal function with many local minima and a global minimum located at (0, 0). 

There are many other local minima surrounding the global minimum. It also has a very 

rugged landscape and is difficult to optimize. The bound constrained Rastrigin function 

was proposed in Rastrigin, 1974 and its generalized version by Muhlenbein is defined as 

Minimize: 

n 
FRastrigin = l O n + - lQcOs{2'KXi)) ( B . 3 ) 

1=1 

Subject to : — 5.12 < Xj < 5.12, i = 1 , . . . , n 

where x e i?" is the vector of design variables, and n is the variables size, respectively. 

The surface of the Rastrigin function for n = 2 is shown in Figure B.3. 

Figure B.3: 2-D Rastrigin function. 
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§B.4 Bump Problem 

The Bump test problem was developed by Keane. It is the most difficult for optimizers to 

deal with among those considered in this dissertation. This function gives a highly bumpy 

surface where the true global optimum is usually defined by the product constraint. It 

is quite smooth but contains many peaks, all of similar heights and has strong inter-

parameter linkage. Its main purpose is to test how methods cope with optima that 

occur hard up against the constraint boundaries commonly found in engineering design. 

These properties of bump make it suitable for the study of GA performance as well as in 

adaptive control of evolutionary optimization methods. The function is defined as 

Maximize: 

P _ [ EILi coŝ (a:») -2niLi cos^jxi) ] , . 
- vmm ' ' 

Subject to : > 0.75 and 

0.0 < Xi< 10.0, i — 1,... ,n 

where x e i?" is the vector of design variables, and n is the variables size, respectively. 

The surface of the Bump function for n = 2 is shown in Figure B.4. 

Figure B.4: 2-D Bump Constrained function. 



Appendix C 

Realistic Industrial Engineering 

Design Problems 

The two realistic industrial engineering design problems have been used in the present 

program of research and are described here. 

§C.l Aircraft Wing Design Problem 

The design of the wings for a transonic civil transport aircraft is an extremely complex 

task. It is normally undertaken over an extended time period and at a variety of levels of 

complexity. Typically, simple empirical models are use at the earliest stages of concept 

design, followed by ever more complex methods as the design process proceeds towards 

the 6nal detailed stages. 

In this dissertation, the design optimization of a civil transport aircraft wing for oper-

ation at Mach 0.785 and a Reynolds number of 7.3 million is considered. The objective is 

to design a wing with minimal wing drag D/q meters^ as calculated by using tools with 

variety of levels of complexity, with target lift, wing weight, volume, pitch-up margin and 

root triangle layout chosen to be representative of a 220 seat wide body airliner. Figure 

C.l shows a geometric view of streamlines over the transonic civil transport aircraft. 

The planform geometry is also shown in Figure C.2, while the dehnitions of the wing de-

sign variable, nonlinear inequality constraints and optimization conditions considered are 
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given in Table C.l. The common parameters used to describe the wing design problem 

considered here consist of the free-stream velocity and viscosity and coefficient of lift of 

the wing together with a small number of overall wing geometry variables. The wing ge-

ometry is characterized by the planform shape of the wing together with several span-wise 

functions such as twist and thickness to chord ratio. Here, a wing design is represented 

by eleven parameters (i.e., eleven optimization design variables). In order to prevent 

the optimizer from driving the designs to unworkable extremes, several constraints are 

placed on the wings designed. These are the under-carriage bay length (which must be 

accommodated within the root to kink section of the wing), the fuel tank volume (which 

must be accommodated between the main spars within the wing), the wing weight and 

the pitch-up margin. 

It is assumed that drag predictions/estimations accuracy increases with the complex-

ity level. One of the principle tools used by British Aerospace in this area is the TAD-

POLE program, which is based on empirical models by Cousin and Metcalfe. Here, the 

wing drags predicted by this code are supplemented by the linearised potential method 

VSAERO. The VSAERO code is available as a commercial package. Both codes return 

the total drag coefBcient defined by the wave drag due to the presence of shocks, viscous 

wake or profile drag due to the boundary layer and vortex or induced drag due to the tip 

vortex of the 3-d wing. A common approach to drag recovery is also implemented in the 

two codes. 

In terms of computational cost, TADPOLE is the fastest code, taking only some 6 

seconds to run, and simply returns drag values based on curve fits to previously analyzed 

wings making assumptions about the kinds of roof-top pressure profiles now commonly 

achieved in transonic wing design. VSAERO is a linearised potential code with coupled 

viscous boundary layer and as employed here, with added correction for compressibility 

[104]. It is computationally more expensive than TADPOLE and requires approximately 

11 minutes of compute time per drag evaluation. However, it has the advantage of 

providing more accurate drag predictions provided Mach numbers are not too high. 



Appendix C. Realistic Industrial Engineering Design Problems 112 

Figure C. l : Geometric view of streamlines over a transport aircraft. 
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Figure C.2: Wing Planform Geometry. 
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11 Wing Design Variable Definit ions 
Lower Limit Upper Limit Quantity (units) 
100 250 Wing Area (m^), 5" 
6 12 Aspect Ratio, 
0.2 0.45 Kink position, 2 W t / ^ 
25 45 Sweep angle (degrees), a 
0.4 0.7 Inboard taper ratio, Ck/Cr 

0.2 0.6 Outboard taper ratio, Q/Cr 
0.1 0.18 Root thickness/chord, 21./Cr 
0.06 0.14 Kink thickness/chord, T^/Ck 
0.06 0.14 Tip thickness/chord, Tf /Q 
4.0 5.0 Tip wash (degrees) 
0.65 0.85 Kink washout fraction 

Four Design Constraint Functions 
2.5 Under-Carriage bay length 

135000 Wing weight (A/̂ ) 
40.0 Wing volume {m?) 

5.4 Pitch-up margin 

Table C . l : Optimization conditions for wing design parameters, constraints and respec-
tive limits. 
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§C.2 Ship Hull Form Design Problem 

The preliminary design of a frigate hull is also considered in this work. Here, a frigate of 

some 3,300 tonnes deep displacement is designed so that its hull-form displays minimal 

resistance at a design speed of 30 knots in the deep condition, together with a payload 

consisting of a fuel dead-weight of 600 t at 0.8 m above the keel plus equipment totaling 

175 t at a height which varies according to the hull and super-structure particulars. 

A hull-form is defined by nineteen parameters listed in Table C.2. The design example 

and code (a statistically based hullform resistance code) used here are based on that 

described in Keane et al. [54]. With the routines used by Keane et al., only the 1) 

length to displacement ratio, 2) beam to draught ratio, 3) breadth to draught ratio, 4) 

non-dimensional position of maximum beam, 5) waterline flare at maximum beam and 

6) ship type are required to dehne the hull form. Prom these primary parameters, all 

the nineteen parameters listed are generated or baaed on defaults. The defaults provide 

convenience by using type ship data to provide a useful starting point for design. 

The objective of the optimization is to design a hull-form that has the smallest total 

resistance at design speed 30 knots (through altering the design variables) for a partic-

ular displaced volume, block coefficient, waterline flare at maximum beam and depth to 

draught ratio while meeting the design variable boundaries and design constraints. The 

constraints and design variables selected for this problem are summarized in Table C.3. 

The constraints adopted were the six on roll stability, an upper limit on the length to 

depth ratio to ensure against longitudinal strength problems and a minimum enclosed 

volume to guarantee payload capacity. Additionally waterline length, waterline beam, 

draught, depth, and maximum section coefficient were constrained, but within very wide 

limits. The design variables chosen were those strongly affect both resistance and stabil-

ity. These were length to volume ratio, beam to draught ratio, prismatic coefficient and 

non-dimensional position of maximum beam. Resistance is calculated based on Holtrop 

and Mannen's power prediction method and is fully in accordance with that method, 

except that it does not include the propulsion analysis (instead a default or designer 

chosen propulsion coefficient is used). The method calculates the total resistance from 

the addition of frictional resistance, appendages resistance, wave resistance, additional 
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pressure resistance of a bulbous bow near the surface, addition pressure resistance due 

to transom immersion and model ship correlation allowance, ignoring any interactions 

between them. Figure C.4 gives an example of a frigate hull-form displaying the geome-

try of its hullform before and after an optimization search for minimum resistance. The 

optimized design is shown to be considerably longer and thinner than the original design. 

Ship Hull form P a r a m e t e r Def in i t ions 

Waterline Length Forward Rake Angle 
Waterline Beam Aft Rake Angle 
Draught Rise of Floor Angle 
Depth Waterline Flare at Maxi-

mum Beam 
Block CoefRcient Waterline Flare the Aft Per-

pendicular 
Maximum Section CoeHi-
cient 

Half Angle of Water-plane 
Entrance 

Overall Beam at the position 
of Maximum Section 

Upper Deck Half Angle of 
Water-plane Entrance 

Non-dimensional Position of 
the Maximum Beam 

Ratio of Waterline Transom 
Width to Waterline Beam 

Length of the Parallel Mid-
dle Body 

Ratio of Overall Transom 
Width to Overall Beam 

Length of Keel 

Table C.2: Ship Hull-form Parameter Definitions. 
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Four Hull-form Design Variable Definit ions 
Lower Limit Upper Limit Quantity (units) 
5.0 12.0 Length to volume ratio 
1.0 6.0 Beam to draught ratio 
0.55 0.6 Prismatic coefRcient 
0.14 0.6 Non-dimensional position of 

maximum beam 
13 Design Constraint Functions 

0.7 Initial GM (m) 
0.09 Area below GZ curve from 0° 

to 40° (m 
0.03 Area below GZ curve from 30° 

to 40° (m racf) 
0.055 Area below GZ curve from 0° 

to 30° racf) 
30 Angle of Maximum GZ 

0.2 Maximum GZ (m) 
14.0 Length to depth ratio 
12000 Minimum enclosed volume 

0.0 1000.0 Waterline Length 
0.0 1000.0 Waterline Beam 
0.0 1000.0 Draught 
0.0 1000.0 Depth 
0.4 1.0 Maximum Section CoeScient 

Table C.3: Optimization conditions for Hull-form design parameters, constraints and 
respective limits. 
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4- Optimized Ship Hull form 

Figure C.3: Geometric view of a frigate hull-form and its optimized version. 


