
UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

Southampton SO 17 IBJ

TOOLS FOR THE SUPPORT OF AUTOMATIC PARALLELISATION BY

ALGORITHM SUBSTITUTION

by Philip Galloway

BSc

A thesis submitted in partial fulfilment of the requirements for the award of a

degree of Master of Philosophy at the University of Southampton.

Department of Electronics and Computer Science

April 2002

SlLNPIiR\riS()R: IDr J S ReeTn:

Department of Electronics and Computer Science

University of Southampton

Southampton S017 IBJ

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

Master of Philosophy

TOOLS FOR THE SUPPORT OF AUTOMATIC PARALLELISATION BY

ALGORITHM SUBSTITUTION

By Philip Galloway

BSc

Program recognition is an important tool for the development, support and

manipulation of software, particularly in the field of parallelisation tools. One area of

current interest is the potential advantage of algorithm substitution as a means of

optimising source code for execution on parallel hardware. In order to substitute an

algorithm within a source code, the elements of the original algorithm must be

recognised and extracted. The recognition of code elements is therefore the first step

towards implementing such a system.

This work reports on the implementation and operation of two algorithms to support

the program recognition aspects of this automatic algorithm substitution idea. The

algorithms have been applied to a number of source code examples and their

performance evaluated. The approach embodied in these algorithms has been shown

to be effective as they can operate without the need for extensive code normalisation

found in other approaches to this problem.

Acknowledgements

I would like to thank Dr Steve Simpson for his unwavering support and

encouragement throughout the duration of this work. I would like to thank Roke

Manor Research Ltd for their financial assistance in allowing me to pursue this

activity as a part time research student.

My thanks also go to Dr Jeffery Reeve who has provided guidance and

encouragement during my work in the ECS department.

I would like to dedicate this work to my Mother.

Contents

Chapter 1 Introduction 1

1.1 Background 3

1.1.1 Problem domains for parallel processing 5

1.1.2 Support for the programmer 7

1.1.3 Parallelisation Toolsets 8

1.1.4 Current Parallel tools and technology 11

1.2 Motivation 17

1.3 Related Work 18

1.3.1 Automatic Program Recognition 19

1.3.2 Algorithm Substitution 19

1.3.3 Algorithm Learning Procedures 20

1.4 Approach 21

Chapter 2 Learn Tool System Description 24

2.1 Learn Tool History and Composition 25

2.2 The Sage++ System 26

2.3 Reverse Traversal 26

11

Contents

2.4 Pattern Matching 29

2.4.1 Related Work on Pattern Matching 29

2.4.2 Overview of Approach 30

2.4.3 Code Status Items 32

2.4.4 Rules 33

2.4.5 Keys 33

2.4.6 Matching Algorithm 33

2.4.7 Learn Tool Facilities 35

Chapter 3 Test Cases 38

3.1 Statistics Example 39

3.1.1 Reverse Traverse 39

3.1.2 Pattern Matching 42

3.2 Laplace Example 47

3.2.1 Reverse Traverse 48

3.2.2 Pattern Matching 49

3.2.3 Laplace Variation 1 52

3.2.4 Laplace Variation 2 53

3.2.5 Laplace Variation 3 53

3.2.6 Laplace Variation 4 53

3.3 Matrix Multiply Example 55

3.4 Maximum Value in an Array of Integers 56

3.5 Discussion 56

Chapter 4 Concluding Remarks 58

4.1 Parallelisation Tools 59

4.2 Reverse Traversal 59

4.3 Pattern Matching 59

4.4 Summary 60

Appendix 1 - Example Source Code 62

Al . l - Statistics 62

A 1.2 - Laplace 67

Bibliography 73

ni

Contents

List of Figures

Figure 1 Generic Parallelisation Toolset components 8

Figure 2 Abstract view of program composition 19

Figure 3 Reverse Traverse Flow Chart 27

Figure 4 Flow chart detailing the rule-matching algorithm 35

Figure 5 Annotated Rule Editor Dialog 36

Figure 6 Annotated Rule Association Dialog 37

Figure 7 Screen shot of Stats example reverse traverse showing mean dependency

graph 39

Figure 8 Reverse Traverse dependence graph for variance 41

Figure 9 Rule: calculation of mean 42

Figure 10 Screen shot of the match detail for the calculation of mean rule 43

Figure 11 Rule: sum array items 44

Figure 12 Screen shot of the match detail for the Sum array items rule 45

Figure 13 Rule: Assign ToZero 45

Figure 14 Screen shot of the match detail for the AssignToZero rule 46

Figure 15 Rule: Accumulator_l 46

Figure 16 Screen shot of the match detail for the Accumulator_l rule 47

IV

List of Figures

Figure 17 Reverse Traverse dependence graph for datal 48

Figure 18 Rule: laplace sequence 49

Figure 19 Rule: ew then ns 49

Figure 20 Rule: west then east 49

Figure 21 Rule: 2D array West access 50

Figure 22 Screen shot of the match detail for the "laplace sequence" rule 51

Figure 23 Screen shot of the match detail for the 2D array West access rule 51

Figure 24 Variation 1 coding of Laplace example 52

Figure 25 Screen shot of the match detail for the" laplace sequence" rule for this

variation 52

Figure 26 Variation 2 coding of Laplace example 53

Figure 27 Variation 3 coding of Laplace example 53

Figure 28 Variation 4 coding of Laplace example 54

Figure 29 Screen shot of the match detail for the "laplace sequence" rule for this

variation 54

Figure 30 Code fragment for matrix multiply 55

Figure 31 Code fragment for find maximum integer value from array 56

List of Tables

Table 1 Description of the fields in a "CodeStatusItem" 32

VI

Chapter 1 Introduction

"Automated program recognition can play a crucial role in overcoming

limitations of existing tools for automatic parallelization" Martino et al.

[1],

Program recognition is a process whereby the core functionality of an application,

module or phrase is recognised by studying its implementation or detailed behaviour.

It can be thought of as the process whereby the original intent of the programmer is

deduced. Indeed the working title of this thesis was "Intent Analysis", however

program recognition is the more commonly used term in the computer science

community.

Chapter 1 Introduction

Software engineers who maintain legacy code perform program recognition

routinely, as do application developers who work in teams and need to review the

work of their co-workers. The application of program recognition to the process of

parallelisation builds on the observation that the greatest program speed-ups are most

often achieved when a component algorithm is completely changed rather than re-

coded or optimised. This is particularly true for algorithms that are targeted for

parallel hardware where the memory hierarchy is many layered and inter-process /

inter-processor communication costs can dramatically inhibit the efficiency of poorly

matched algorithms. The other application of program recognition for parallelisation

activities is to restructure the code to use pre-optimised library routines once a

suitable substitution has been found.

Automated program recognition would be used to allow a parallelisation tool to

perform algorithm substitution as part of its operation. Algorithm substitution may

also be useful for optimising code for serial platforms, indeed for commercial

software that is developed under a tight budget, optimal algorithms are rarely chosen

for an initial implementation. There are several reasons for this, the most common

being the drive to implement a simple (less efficient) algorithm accurately in the

minimum required development time so that effort can be concentrated on

verification of functionality and user interaction issues.

Several workers in the academic community have reported on their progress towards

the goal of implementing algorithm substitution systems, these include Martino et al.

[1] KeBler et al. [2], Pinter at al. [3], KeBler [4,5], (Raghavendra et al. [6], Bansali

et al. [7] and Hagemeister et al. [8]. This work was motivated by the same

fundamental idea and has resulted in a prototype analysis code, named "Learn Tool"

that implements two of the strategies considered.

This work seeks to allow the deduction of the intent of the programmer to be

partially automated, to assist in the optimisation of legacy code for operation on

parallel platforms. Thus the scope of the work is confined to the extraction of intent

information from legacy code and does not address directly the issue of optimal

program fabrication for parallel platforms.

The thesis is organised as follows:

Chapter 1 Introduction

Chapter one starts with a background section that discusses briefly the distinction

between parallel and serial computers and then sets the context of the work with a

description of a generic parallelisation toolset that may be used to convert serial code

to execute "optimally" on parallel hardware. This is followed by a more detailed

discussion of the motivation for the work. Next, a section detailing the related work

on program recognition provides an overview of other work in this area and how it

relates to this work. The chapter concludes with an outline of the approach to the

practical work undertaken.

Chapter 2 describes the software constructed to investigate the ideas for the program

recognition concept; this introduces the Sage++ toolset (a third party parse tree

generator and source code to source code transformation toolset) the Reverse

traversal and the Pattern matching algorithms, which were implemented on top of

Sage++ in the Learn Tool application.

Chapter 3 provides examples of exercising the Reverse Traverse and Pattern

matching algorithms on simple source code test cases. This highlights some of the

difficulties of the two approaches and demonstrates the basic utility of the pattern

matching approach.

Chapter 4 contains the conclusions drawn from the work and summarises the main

findings.

1.1 Background

To start it is worth reviewing the definitions of parallel and serial computer, as in

these days of high integration and pipelined processors the distinction can become

somewhat blurred.

A serial computer can be thought of as executing instructions in an ordered manner,

starting with the first and ending with the last, essentially adopting a Von Neumann

architecture. The order of instructions is determined by the control structures in the

program but there is no simultaneous execution of different parts of the instruction

sequence at any time. A parallel computer has more than one processing unit

allowing separate instructions to be executed simultaneously on different units. The

instructions may be the same but operating on different data. Single Instruction

Chapter 1 Introduction 4

Multiple Data (SIMD) or both instructions and data may be different, Multiple

Instruction Multiple Data (MIMD). SIMD is often referred to as a data parallel

approach or as the parallelisation strategy is almost always based on data

partitioning. MIMD is also described as task, thread or process parallelism.

Parallel implementations of software operate in two main paradigms. The first is

closely associated with SIMD or the data parallel approach. The partitioning of the

data in the problem is embedded in the source code, typically in HPF or OpenMP

extensions to C, Fortran or C++. The distribution of the data to physical processors,

or processes on actual processors is a compile or run time issue and is dealt with by

the compiler and/or a data distribution library. The second, MIMD style is a lower

level approach based on writing explicit message passing code and potentially

running different executables on the distributed processors. The second style can be

used for a SIMD program and can provide a more intimate control of the locality of

the data. The second style is the most common approach for implementing task

parallel applications. The two main task parallel strategies are master/slave and

pipeline. The master/slave model is were a single co-ordinating process distributes

tasks to a pool of slave processors that may perform multiple instances of the same

code or may perform different tasks associated with the overall problem. A pipeline

strategy breaks up the calculation into stages that feed from one process to the next

with data flowing through them, very much like a production line. Each processor

performs part of the overall calculation and the data is passed on to the next

processor when processed. Pipeline parallelism is often employed in Digital Signal

Processing (DSP) situations where there is a natural flow of data from an external

source and 'live' processing is required.

Modem Microprocessors are parallel processors, in that they typically have multiple

processing components. Central Processing Unit (CPU), Floating Point Units

(FPU's) and dedicated communication sub processors, along with memory

management and cache facilities. For the purposes of this text, microprocessors of

this sort will be classified as serial machines, since the instruction set (for the high

level programmer) is purely sequential, with any parallelism being exploited

invisibly by the compiler, macro code, or skilled assembly language programmer.

Chapter 1 Introduction

Modern compilers achieve a good degree of efficiency for most applications where

there is fine-grained parallelism. This granularity maps well onto the multiple

processing units within typical microprocessors.

Parallel computers exist in many configurations ranging from dual processor PCs,

and workstation clusters to dedicated parallel machines such as IBM SP2, Cray T3D,

T3E and SGI Origin 2000. Every parallel computer has a set of performance

characteristics that relate to its memory hierarchy, inter-processor communications

and core microprocessor. The programming model for a parallel machine may be

shared memory, distributed memory or both. The level of hardware support for

communications will influence the programming model and how effectively it can be

used on a particular platform. For example, a network cluster of workstations on a

standard Ethernet, will have high latency and relatively low bandwidth

communications, so a shared memory paradigm would tend to perform poorly

against, for example an SGI Origin 2000, which whilst having a physically

distributed memory, has high bandwidth support for node to node communications

(as well as a common virtual memory space). That is not to say that programmers

cannot use a shared memory paradigm on a parallel machine with low

communications performance, but rather to indicate that that it will only work

efficiently if great care is taken to ensure data and process locality, a task, often more

easily achieved by adopting a message passing approach.

Parallel machines roughly fall into three categories, Symmetric Multi Processing

(SMP) where a single memory bus is used for all processors. Massively Parallel

Processing (MPP) where the memory is distributed and data is shared by

communications and recently Non-Uniform memory Access (NUMA) or Distributed

Shared Memory, (Origin 2000) where there is explicit hardware support for a single

memory image over a distributed memory architecture.

1.1.1 Problem domains for parallel processing

Parallel processing is adopted as a solution to the problems of ultimate computer

performance and cost performance trade-offs Kelly [9]. Parallel architectures offer

the possibility of exceeding the processing capability of single processors in terms of

MIPS and FLOPS as well as ability to provide large memory configurations with

Chapter 1 Introduction

distributed address spaces. Many areas of research can and do utilise the fastest of

computers to tackle problems in domains such as weather forecasting Sabot et al

[10], Fluid Mechanics, Sethian [11], Jin et al [12], Quantum Physics, Hong [13],

Wave Propagation, Ewing [14], Computational Mechanics, Cross et al. [15] and my

own area of interest, Electromagnetic Simulation, Harman and Simpson [16],

Galloway and Simpson [17], Galloway [18] to name a few.

To summarise, parallel computers are used in the following situations:

Where a single processor reaches its ultimate speed and is still not fast

enough.

• Where sufficient execution speed can be attained on a single processor but

the cost of the equivalent parallel hardware is lower.

® Where a single processor configuration cannot address enough memory space

for the calculation of very large problems.

9 Where a convenient parallel resource, such as a workstation cluster has

available idle time and can be exploited at low cost. This is common in most

business environments where hundreds of desktop PC could be exploited at

little additional cost and with little impact on the main users.

The use of parallel processing machines in other situations (other than parallel

processing research) is rarely cost effective, since the operator has to overcome all

the drawbacks of operating a parallel application listed by Kelly [9] which do not

occur for the alternative realisable single processor solutions.

The above holds true for most scientific applications, whereas there is considerable

activity in internet based parallel processing, where agents, Knapik and Johnson [19]

may interact to achieve goals that are not possible on a local configuration because of

special resource or information availability. Languages to support this work such as

Java 2 (JDK 1.2), Oz and Mozart, Haridi, Roy et al. [20] are not considered in the

context of this work, which focuses on scientific applications and primarily legacy

FORTRAN applications.

Chapter 1 Introduction

1.1.2 Support for the programmer

A programmer writing code for a parallel computer is operating in one of the

following situations:

Converting an existing serial application.

« Converting a parallel application to a new computer platform.

® Writing a new application for a parallel computer.

The conversion of existing code entails a trade-off between changing inefficient code

sections and spending a minimum of effort in performing the conversion.

Parallelisation tools have been developed to attempt to make these tasks efficient.

The tools provide a variety of facilities that help the programmer solve the problems

encountered during the code creation and conversion processes.

The main problems that the programmer has to solve are:

® How to distribute or partition the data.

® How to distribute or partition the functionality.

® How to take account of the memory layout of the target machine or machines.

9 Making the selection of suitable algorithms.

Incidental details of how to implement the data sharing and synchronise the

operation of multiple processing units are also areas where tools can assist.

With no parallelisation tools it is possible to construct parallel applications using

networking protocols such as TCP/IP, which are usually accessible from most high

level languages, however for any particular application the first step is most likely to

build a communications library or a virtual memory space support structure on top of

this layer. Commercial Off The Shelf (COTS) parallelisation tools provide these with

minimum effort and go on to provide support for code analysis, code re-writing and

supporting debugging and monitoring tasks.

Chapter 1 Introduction

1.1.3 Parallelisation Toolsets

The practical work undertaken for this thesis looks at two components of a generic

parallelisation toolset. This section presents a representative parallelisation toolset

and highlights where the work reported on in this thesis resides in the overall

parallelisation process.

Compiler Compiler

Profiler

Parallel
performance
monitoring

tools

Cal lTree

Reverse
Traverse

Parallel
Debugger Performance

Estimation
Senal Executable

Output
Dependency

Analysis
Static

Analysis

Code
Normalisation

Parallel
Emcutable

Parse Tree

Serial Target Machine
Source Code Characteristics

Inputs

Program *
Recognition

(Pattern
Matching)

Algorithm
Substitution

Code
Fabrication

Algorithm
Substitution

Code
Fabrication

Pattern
Library

Parallel Algorithm
Library

Revised
Parse Tree

Message Passing
Library

Figure 1 Generic Parallelisation Toolset components

Figure 1 provides a detailed diagram showing some of the key components of a

generic parallelisation toolset. The main purpose of the toolset is to assist the user in

converting a serial application to run effectively on a particular target parallel

machine. The application source code and the target machine characteristics (along

with any target machine specific libraries) constitute the starting position of the

conversion process. The toolset provides the user with facilities to understand the

code, manipulate the code and evaluate the efficiency and correctness of the resulting

parallel executable. The output is the parallel executable (or several executables)

that will operate on the target parallel machine. This toolset is assumed to operate on

a traditional high level language such as FORTRAN, C or C++.

Chapter 1 Introduction

The interconnections in Figure 1 show the general flow of activity and highlight

where machine characteristics and human support or influence is needed or expected.

Note the practical use of the toolset would be iterative, with the user potentially

revisiting earlier stages of the parallelisation process several times to fine tune and

optimise the end result. The remainder of this section details each of the components

on the diagram and provides a brief explanation of the support being provided by the

toolset.

The Target machine characteristics would include details of the number of

processing nodes, the memory configuration, the cache line lengths and

communication performance such as latency and bandwidth. These details are often

needed to optimise data partitioning, algorithm selection and the code fabrication

processes.

The compiler would produce a serial executable and a parse tree, which may be used

by the other tools in the toolset to manipulate and extract information from the code.

In a large application it is often only a small section of code that can provide a

significant benefit from parallelisation. This is typically in a deeply nested loop

where most of the application spends its time during the calculation. Identification of

this code section is critical to effective parallelisation. The toolset would provide a

profiler, which would instrument the code to identify the main time consuming

operations that the application performs. Alternative means of identification of the

key section to parallelise could be provided by a call tree, a performance

estimation tool or perhaps a reverse traverse* tool. In most cases all these would be

used to identify the critical sections of code and to put into context the sections with

respect to the overall architecture of the application.

Dependency analysis is the key process that allows the identification of independent

processing opportunities. The loops in the key sections of the code are examined and

the references to the data being processed is checked to see if the operations can be

performed in parallel or if the operations must proceed in a strict order Wolfe

One of the tools investigated in the practical work of this thesis

Chapter 1 Introduction 1 0

[21] [22]. Prior to dependency analysis the code may be manipulated to make it more

likely for the dependency analyser to operate effectively. These manipulations are

often called code normalisation and may consist of but not limited to:

• Procedure in-lining.

• Forward propagation of constant expressions.

• Induction variable substitution.

• Temporary variable substitution.

• Dead code removal.

• Conversion of GOTO's into if-then-else or while statements.

• Loop distribution.

Other manipulations such as loop unrolling and loop re-rolling may also be used to

improve the outcome of the dependency analysis. Some toolsets may provide

facilities for the user to influence the outcome by feeding in user knowledge of the

application to allow more data independence to be identified.

Static analysis is a process whereby a decomposition of the program data to execute

in parallel is selected. This results in a SIMD code with the data partitioned among

the processors and the application of an owner computes rule. A classic example of

this occurs for structured grid algorithms, where there may exist several data

partitioning strategies BLOCK, STRIP, CYCLIC etc. which can be selected at the

static analysis stage. In cases where the decomposition is likely to be data dependent,

for example when the data indexing is indirect, then this might lead to the addition of

code to perform a dynamic decomposition, which is then evaluated at runtime.

The code fabrication operates on the revised parse tree and assembles and compiles

the parallel executable(s). This may consist of adding message passing code to

distribute and re-assemble the parallel sections of data processing, or may entail the

addition of OpenMP or perhaps HPF directives. Again this tool may need to be

sensitive to the target machine properties, for example selection of data sizes may

Chapter 1 Introduction 11

crucially effect the cache coherency, also the possibility to pre-fetch or hide

communication operations behind processing may be possible for some architectures,

Brooks and Warren [23]. Vectorisation of communications to minimise the impact of

communications latency may also be provided.

Program recognition* may be used to automatically recognise the mathematical

operations embodied in an application and provide the possibility to substitute

algorithms that are better matched or are more parallelisable on the target machine

architecture. The process of program recognition is the main subject of this thesis

and usually involves template or pattern matching. Algorithm substitution is the

process whereby an equivalent algorithm is evaluated for use in a particular

application, as a substitute to one of the recognised components within the original

code. This selection involves an assessment of the likely performance of the new

algorithm and verifying that a complete substitution is possible. Code normalisation

may also precede program recognition.

The final components for a parallelisation toolset are a parallel debugger and

performance visualisation tools. These allow the correctness of the parallel code to

be tested, corrected and potentially fine-tuned.

1.1.4 Current Parallel tools and technology

Several of the components for the generic parallelisation toolset are already well

established in the market place, whilst others are still being developed and improved.

This section provides a summary of where this field was at the start of the practical

work undertaken for this thesis and then highlights some of the advances made in the

interim.

Parallel Languages

Parallel languages allow the direct exploitation of any possible parallel nature in an

application. A typical application will have tasks that can be done in any order and

some which must be executed sequentially. The programmer can code the sequential

One of the tools investigated in the practical work of this thesis.

Chapter 1 Introduction 12

parts of the task and then indicate which ones can be performed in parallel by using

special language constructs.

There are several disadvantages to the parallel language approach:

• Existing applications have to be completely re-written

• The languages are sometimes only available on a small number of specialist

machines

• The application is not generally portable

• Only a few programmers specialise in the new languages

• The languages may not support sophisticated features of the more general-

purpose languages.

Occam, Poutain and May[24] and Strand, Foster and Taylor [25] are two such

languages that have gained some acceptance in the community despite suffering the

drawbacks mentioned above. Parallel languages do not appear as part of the generic

parallelisation toolset as this is aimed at converting existing code and not re-writing

from scratch. Having said this, if automatic translation into a parallel language were

possible this might be an appropriate starting point for parallelisation.

Language Extensions

Extensions to commonly used languages such as FORTRAN 77 allow certain

operations to be performed in parallel. Large matrix and array operations are typical.

The extension are either of academic origin or from parallel hardware vendors such

as Silicon Graphics Inc. Instances of these language variants/extensions include

Vienna FORTRAN, Chapman et al [26], FORTRAN D, Fox et al.[27], HPF, Harris

et al. [28], ADAPTOR HPF, Brandes et al. [29], OpenMP [30], Jin et al. [31],

MlPSpro™ Power Fortran 77 [32], CM Fortran [33] PARADIGM Su, Lain et

al.[34]. The programmer suggests a distribution scheme for the data, typically a mesh

partitioning using compiler directives or the extended language syntax and then

performs loop operations on the distributed data in parallel. The compiler checks that

data is passed correctly across the partitions and may provide a set of alternate

Chapter 1 Introduction 13

distribution strategies (CYCLIC or BLOCK). These language extensions can be

very useful for building new parallel code, and in certain circumstances adapting

existing applications.

The main drawbacks appear to be the limited problem domains where these

operations are beneficial. The programmer still needs to know a lot about the

algorithm and the expected flow of data to select an appropriate partitioning.

Conversion of a code containing indirect or conditional addressing of arrays is a

serious difficulty as highlighted by Walker, [35] although some solutions have been

suggested for these problems, Das and Slatz et al., [36]. More recently there has

been much activity on sparse systems and there exist a number of parallel libraries to

address these problems. Wijngart [37] provides an extensive list of the current work

in this area as part of the conceptual design paper on the Charon toolkit, for example

Saad et al [38] with PSPARSLIB and Schonauer et al with LINSOL [39].

The portability of HPF makes it an attractive language for developers indeed the

extensions in HPF2.0 allowing task parallelism to be addressed make this an

extremely versatile language.

IViessage Passing Libraries

Message passing libraries provide a machine independent communications facility

for message passing between independent processes. The processes are independent

instruction sequences being executed on separate processors, or time-sharing one

processor. These libraries are typically implemented on top of TCP/IP sockets, pipes

or streams, dedicated lO links, parallel data interconnects on shared bus systems or

shared memory areas. The most commonly used library is called the Message

Passing Interface (MPI) [40] [41] although different vendors of parallel machines

previously generated similar but incompatible products, these include CsTools from

Meiko [42], Express, PARMACS plus similar offerings from SGI.

These very basic components allow the parallel programmer to concentrate on the

problem and ignore some of the details of the communication protocols. The

topology independent features are both an advantage in that the programmer can

completely ignore the topology issue, and a disadvantage in that unfortunate

Chapter 1 Introduction 14

scheduling of task locations and data partitions may lead to a failure to attain the best

efficiency.

Decomposition Assistance

Many mesh problems in science have a very obvious set of partitioning options. A

cubic grid for which all cells require the same processing load, and nearest neighbour

communications, is generally split in one dimension and partitioned into equal slices.

Two or three-dimensional slicing is possible, but this is not generally useful for

exploiting a computer with a non-square or cubic number of processing nodes. Many

physical problems have more complex grids, fluid dynamics models of rivers for

example are only active where the fluid is to be represented. The connectivity and

distribution of the data points in the computer memory is sometimes a sparse matrix,

with only a subset of the elements active. Partitioning of sparse matrix systems is a

classical graph problem. The main aim is to level the number of nodes in each

partition whilst minimising the amount of data required to be communicated along

the edges. Saad and Sosonkina [43] provide a good overview of the general approach

for parallelisation of a sparse linear system. The domain Decomposition Tool DDT,

Flores and Reeve [44] is a typical partitioning program that locates good partitions

by a number of methods. It is important to realise that the best partition must be a

good sub optimal partition that can be located with minimal computation effort, since

the runtime of the complete problem must allow for the effort consumed in selecting

the partitioning. Generally the optimum partition will take much too long to locate.

Optimum partitions share the load on the processors evenly and minimise the

communications at data partition boundaries.

In unstructured grid or sparse matrix problems communications along the edges of

the partitions become very complex and vectorisation of communications become

difficult. In recent years much of the focus of work has been in these areas where

parallelisation is non trivial. Examples of this include the work of Brandes [29] and

KeBler [5], Adams[45], Saad and Sosonkin [43].

Chapter 1 Introduction 15

Code Analysis

These tools are aimed at re-engineering existing serial applications. In many cases

the original programmer is not involved in this task, the code may be poorly

documented, badly structured and may be prematurely optimised Symonyi, [46]. The

programmer faces the task of understanding what the code is doing, how it is doing

it, and finally how it can map onto a parallel platform.

Tools to aide in this process contain a front end parsing for the language and then

instead of the code generation functions of a compiler, they generate dependency or

data logistics information that can be browsed by the user. FORGE Explorer [47] and

IDA, Merlin [48] are typical of these. The Sage Toolset [49,50] is available to

academics for building analysis and code restructuring tools (a machine tool toolset).

This tool provides a front end parser and a C++ class library that allows access to the

data contained in the source code.

Commercial systems such as KAP™ from Kuck and Associates Inc. are now

becoming standard tools for the support of paralleisation / optimisation. The Digital

KAP Fortran / OpenMP optimiser includes support for:

Automatic and directed parallel decomposition for SMP

Loop optimisations

Memory Management optimisations

Scalar optimisations

Function in-lining

BLAS recognition

Dusty Deck transformations

Informational program listings.

KAP [51] provides Inter procedural analysis IP A as well as code transformations. It

has a limited capability to provide algorithm replacement with calls the Basic Linear

Chapter 1 Introduction 16

Algebra Subroutines (BLAS) libraries, some of which are optimised for target

parallel architectures. The Charon toolkit, Wijngaart [37] is targeted at structured

grid problems.

OpenMP [30] supports multi-platform shared memory architectures, where each

processing node shares at least some of its memory space with all the other

processors taking part in the application. This common memory space model can

support both MIMD and SIMD programming styles, although there can be serious

performance penalties if it is applied to MPP systems and includes fine-grained

parallelism.

Code Restructuring

The KAP/Pro Toolset, Kuck and Associates, [51], IBM PTRAN [52], SUPERB Zima

et al. [53], CMAX Sabot et al. (Connection machine) [10], CAPTools, Cross et al.

[54] [15] and PARAMAT, KeBler [4] are instances of code generation tools that

attempt to automate the whole process of converting a serial application for optimum

performance on a parallel computer. These automatic parallelisation tools all adopt

the technique of examining source code to identify independent calculation threads,

and generating new code that distributes the operations and or data over the nodes of

a parallel machine, this process is usually termed dependence analysis and is

described in detail by Wolf [21,22]. When the parallelisation systems are well

refined, they can manage to achieve a reasonable speed up. Good performance

improvements are most easily achieved on naturally data parallel algorithms Cross,

lerotheou et al., [54]. Cross et al. CAPTools [12][15] is a toolset that originated for

structured mesh problems and appears well suited to the parallelisation of CFD

codes. There exist other code restructuring tools such as the Foresys Fortran

Engineering System from Simulog [55] that are more suited to code normalisation,

porting and code maintenance.

Parallel Debugging and Runtime Analysis

At the back end of a parallelisation task the resulting parallel program will be tested.

This is often when the performance bottlenecks are discovered. Galloway [17]. In

cases where performance is less than expected, it is useful to be able to observe the

Chapter 1 Introduction 17

program in action. For this task, parallel performance analysis (PPA) tools may be

used to gain useful information on the runtime behaviour of the program. Parallel

debugger support may also be required if the parallelisation process has introduced

errors in the algorithm. These tools become increasingly important as the complexity

of the parallel program increases.

A sample of tools of this sort include the P2D2 project, Hood [56] which is aimed at

the CFD community to provide a consistent parallel debugging environment across

multiple architectures, an essential feature if the parallelisation is on a heterogeneous

platform or platforms. It is based around gdb and has been exercised on IBS SP's,

SGI worksations and Origins, and on Linux systems. Panorama, May and Herman

[57] is a parallel debugger and performance tool based on trace collection.

ArrayTracer Nikolaou et al. [58] concentrates on performance analysis and attempts

to minimise the impact of trace collection using a sophisticated static analysis prior

to runtime. PAPI, London K., Dongarra et al, [59] provides performance monitoring

using hardware counters for parallel applications on Linux platforms. The

combination of the profiling support in the Tuning and Analysis Utilities (TAU)

toolset and the runtime interaction from the Distributed Array Query and

Visualization Framework (DAQV) Shende et al. [60], provides a different analysis

view based on callstack sampling.

1.2 IVIotivation

A means of being able to recognise core algorithms and be able to replace them with

efficient alternatives for the particular target hardware would seem to be an ideal way

of providing a more complete code restructuring tool for the parallelisation of dusty

deck code. I will call this process "automatic algorithm substitution" if this is

performed automatically by a code-restructuring tool.

This term "automatic algorithm substitution" has been used but is as yet not clearly

defined. From a mathematical viewpoint for procedures within a source code there

are many methods of implementing the same required algorithmic functionality. For

example the number of sorting algorithms developed in the programming community

is large: Bubble Sort, Quick Sort, Selection Sort are but a few, an interesting account

of a few of these algorithms is provided by Meader [61]. The choice of the

Chapter 1 Introduction 18

algorithms for a specific program is influenced by many factors, knowledge (of

candidate algorithms), target machine characteristics, speed requirements etc. In

many cases, as a program ages these factors change dramatically, particularly if an

implementation on a parallel machine is required. At this stage the choice of a

different algorithm for part of the program may lead to a significant optimisation.

Intent Programming (IP), Symonyi [46] builds on this recognition that as the

environment changes, the ideal source code for an application also needs the ability

to change to preserve efficiency.

For new application generation there has emerged a trend favouring the adoption of

several levels of abstract design before code is written. Fitzpatrick at al. [62]

contends that

"a competent mathematician can write functional specification in a few hours"

that can subsequently be transformed to optimal code by utilising a library of proven

optimal transformations. Gate et al. [63] describes the experience of porting

applications to parallel machines and promotes the concept that all arbitrary

implementation specific design decisions need to be documented as the code is built

to allow efficient re-engineering for a new parallel or serial computer. His paper cites

a specific instance where the computer architecture determines the optimum choice

of algorithm selection. If the compiling system cannot change algorithms, then it will

often fail to generate efficient code for parallel computers.

The goal therefore is to provide a means of re-fabricating programs to use algorithms

that are well matched (efficient) to a target platform. The recognition of algorithmic

content is the first step to achieve this goal. The identification of algorithmic content

of a dusty deck program may be thought of as an inverse problem to that of

compiling. It is a translation from the specific to the general and is a challenging

problem for a computer based tool.

1.3 Related Work

Having set the scene in the previous section, this section talks in detail about the

directly related work on algorithm recognition as a means of providing improved

optimisations for applications running on parallel hardware.

Chapter 1 Introduction 19

1.3.1 Automatic Program Recognition

Early work on designing systems for automatically recognising program content

seems to have started in the late 1970s mainly in the artificial intelligence community

for example Waters [64] and Fickas et al. [65]. Their work provides the use of the

term cliches to designate commonly recurring sequences of standard low-level

instructions and control sequences. A typical approach to the recognition of these

cliches or phrases is by pattern matching on the program text, parse tree or data flow

graphs. GRASPR Willis, [66] is an experimental system that adopts the latter

approach with some success. The reported motivation for GRAPSR was for assisting

software engineers as well as addressing an interesting artificial intelligence problem.

Examples cited for the use of the technique range from automatic documentation

generation too code maintenance and reverse engineering. Alternative terminology

for this assembly of low level instructions varies with author and ranges from

'semantic concepts' Kozaczynski et al. [67], too 'plans' Rich [68] and 'idioms'

Pinter et al. [3] and Snyder [69]. Algorithm substitution for parallel program

optimisation seems to have been recognised as a possibility much later on.

1.3.2 Algorithm Substitution

A programmer deals with code on many levels of abstraction. One way of looking at

this would be to say that programs are collections of algorithms glued together with

interfaces. The algorithms are made up from simple component functions, which in

turn are built up from basic operators. Figure 2 illustrates this conceptual outline.

Complexity

Program

Algorithms

Simple Component Fuctions

Basic Operators

Figure 2 Abstract view of program composition

Chapter 1 Introduction 2 0

For program recognition, as described by Wills [66] the cliches would be the simple

component functions and/or whole component algorithms.

Gate [63] and Simonyi [46] clearly emphasise that the choice of algorithm should be

one of the last operations in the program design process and in an ideal environment

would be an easily changed design decision. This is consistent with the object-

oriented approach of program design and rapid prototyping recommended for

example in C++ development, Stroustrup [70]. The ability to abstract up from a

specific implementation to an implementation independent representation of the

design of the program and then push down to multiple specific implementations is of

considerable advantage for many programming tasks. Algorithm substitution for

parallelisation and optimisation of programs for parallel platforms needs these two-

abstraction level changing abilities.

Algorithm replacement for parallelisation based on program recognition has been

addressed by KeBler et al. [2, 4, 5] Bhansali et. al. [6, 7, 8] and Di Martino et al. [1].

KeBler reports on implementations of these schemes in PARAMAT and SPARMAT.

PARAMAT probably has the most extensive coverage in the number of non-trivial

patterns "concepts" (100) using (160) templates KeBler [4]. SPARMAT KeBler [5]

is a specialist sparse matrix enhancement that demonstrates that the technique can be

applied to algorithms with a high degree of indirection and runtime data dependent

data layout optimisation issues, where other more traditional prarallelisation

approaches generally have poor results.

Di Martino et al. [1] reports on the differences in the approach adopted in the PAP

tool against the work of KeBler. In their joint paper they conclude that the PAP

recogniser is slower but more flexible and general than PARAMATS pattern

recogniser.

1.3.3 Algorithm Learning Procedures

Wills [66] emphasises that the knowledge base of cliches was generated by hand in

order to investigate the utility of the approach for a number of medium sized

analyses on "student" programs. The automatic acquisition of the knowledge base

appears to have been recognised as a significantly harder problem. There exists

considerable work on generalised pattern matching, of which Nevill-Manning et al

Chapter 1 Introduction 2 1

[71] provides an interesting introduction, describing his application called sequitur.

Naturally any cliche pattern located in a program by an approach such as sequitur

would require additional meaning to be associated with it before it became a useful

piece of program transformation knowledge. One approach to this might be to infer

the function of such a program component through experimentation. A system would

need the ability to fabricate test code to exercise the component and/or have the

ability to deduce the functionality of the component by some abstract reasoning

process.

One of the main restrictions to this possibility is the lack of a systematic method of

building patterns. This omission from the works cited has been recognised by

Villavicencio [72] and the beginnings of a method of achieving this are provided in

his work.

1.4 Approach

The approach described in this thesis is based on observations of the processes that a

human programmer performs when trying to discover the purpose, and errors in an

unfamiliar source code.

For a procedural language such as FORTRAN, the programmer can take advantage

of the probable partitioning of the program into subroutines that can encapsulate

relatively simple algorithm components, although for some legacy code such

structuring is not always available. For this work the examples used all have a

procedural breakdown. While this breakdown is useful in the presentation of the

examples, it is not a fundamental limitation of the approach.

The programmer will typically tackle a new source code problem using a variety of

static analysis techniques along with specific dynamic test cases where the behaviour

of code is examined during execution.

Examples of static analyses that a programmer may apply might be:

• Determination of the context in which each subroutine is called.

• Deduction of how each subroutine affects the data being manipulated.

Chapter 1 Introduction 2 2

• Identification of algorithms that are being embodied in the specific section of

code.

• Construction of a call tree.

• Generation of outline flow charts.

® Formation of a view of the dependencies in the flow of control.

Dynamic analyses might include:

• Dissection of the code and exercise of the individual subroutines.

® Observation of how subroutines manipulate data at runtime using for example

a debugger.

The programmer will have background knowledge of a range of algorithms in their

domain of experience, but may be lacking specific experience of algorithms present

in the source under analysis. Therefore reference to external information is a likely

part of the overall process.

This thesis looks at two of these processes:

® Formation of a view of the dependencies in the flow of control.

® Identification of algorithms that are being embodied in the specific section of

code.

The approach adopted to address the first of these processes is referred to as Reverse

Traversal of the code. Specifically the analysis starts at the end of the program and

works back through the flow of control tracing the significant data items thought he

call tree. This is conceptually very simple and in practice the main difficulty appears

to be the control and display of the dependency tree that results.

The approach to the second item is to implement a matching process whereby

patterns within training samples of code are captured in a generic form and used as

templates to match against unknown code samples. Matching against templates is

probably only a small part of what a human programmer might do. Whilst significant

Chapter 1 Introduction 2 3

mathematical constructs might be familiar to a programmer and will stimulate

hypothesis generation, the human programmer will also be able to "dry run" phrases

of the code and match predicted behaviour against expectations within what might be

termed the fluid hypothesis space.

Chapter 2 Learn Tool System Description

The "Learn Tool" is a set of analysis routines that seeks to assist the operator in

evaluating the intent or purpose of legacy FORTRAN code. It was constructed

during this work to allow experimentation with algorithms that could play a part in

the machine understanding and transformation of source code. At this time the tool

encompasses two approaches, Reverse Traversal and Pattern Matching.

24

Chapter 2 Learn Tool System Description 2 5

Reverse Traversal is a bottom up approach intended to isolate the main calculation

routes within a particular piece of source code. The main control flow of the source

code is identified and then the last executed statement is used as a starting point. The

analysis dry runs in reverse through the call tree, making notes on loop nests, scope

and variable passing. As this traversal of the parse tree proceeds, sets of actions are

triggered in response to particular types of statement.

Pattern Matching is a process of subjecting the parse tree to a direct comparison to

a library of commonly occurring sequences that are associated with higher-level

operations.

Both these processes have been built on top of the Sage++ Toolkit developed by

"Indiana University, University of Oregon and University of Rennes" [49][50]. This

library includes a FORTRAN parser capable of accepting a variety of FORTRAN

source forms including FORTRAN?? and FORTRAN90, and a C++ class library for

interrogating and manipulating the parse tree.

The following sections will deal with the Sage++ system, Reverse Traversal and

Pattern Matching in more detail, and conclude with an overview of how the Learn

Tool is operated.

2.1 Learn Tool History and Composition

The Learn Tool system, created for this work, started as two separate analysis

programs written C++ on Digital UNIX and Solaris using Motif™. These have been

ported to a single MFC application, LearnToolViewer, in the later stages of the work

and it is in this form that example output will be presented in this document. The

source code is approximately 10,000 lines of C++ including comments but excluding

the Sage++ library that required a few modifications to port to a windows platform.

The viewer with its graphical outputs and dialogs represent about a fifth of the

whole.

Chapter 2 Learn Tool System Description 2 6

2.2 The Sage++ System

This section provides a brief overview of the Sage++ system. This is intended to

provide a convenient reference to some of the terminology used in the following

sections that describe the algorithms and implementation details of the Learn Tool.

The Sage++ system adopts a project concept that points to one or more dependency

files generated by the FORTRAN parser program fldep. The dependency files

contain the information about the parse tree of an individual file within a project. At

the top level the project consists of a text file that lists the component dependency

file paths. The Sage++ API provides a method of instantiating an SgProject object

with reference to the contents of the project text file. All the subsequent objects can

be accessed from the SgProject object. The SgProject object contains one or more

SgFile objects that in turn contain the SgStatement objects (one for each line in the

source code). SgStatement(s) can be flow control items representing for example the

beginning and end of DO loops, program statements, declarations, assignments and

subroutine calls etc. SgStatement(s) refer to their component SgExpression(s),

SgSymbol(s) and SgType(s).

The SgStatement object has lexnext() and lexprev() functions that allow the

application to traverse forwards and backwards through the statements within the

source code. The SgFile object allows random access to any of the SgStatement(s) it

owns.

Each different type of SgExpression, SgStatement is implemented as an object

specialisation with its own unique access functions and dynamic typing is supported

within the Sage++ API through global functions. So for example the application can

determine if a particular statement is a program header by calling the function

isSgProgHedrStmt on the SgStatement object in question, this returns a pointer to the

object if it is and NULL if it isn't.

2.3 Reverse Traversal

This section describes how the reverse traversal is performed and presents and

explains the output achieved.

Chapter 2 Learn Tool System Description 27

The reverse traverse analysis searches the parse tree and locates the statement that is

the last to be executed. This statement is used as a starting point for the analysis,

which then works back statement-by-statement following the logical flow of control

of the program. The traverse is terminated when the first statement is reached.

start

r

Locate the
lastexecuted

statement in the
program

1 f
' w h i l e the current^

statement is not
the first to be

exeuted

Find the next
statement (in

logical reverse
order)

Process statement
and add new

actions if
necessary

Update the exsting
actions with

reference to the
current statement

End Loop

Figure 3 Reverse Traverse

Flow Chart

presented in Figure 3.

The model adopted for the reverse traverse process is

to imagine a programmer examining the source code

and making notes on the flow of control, the

significance of specific variables and identification of

the core calculations in the main algorithms.

For each statement visited an exprSummary object is

created for the statement and the expressions within

the statement. The exprSummary simplifies the task

of discovering if an item being looked for actually

exists within the statement. The exprSummary

provides a filter for the information in an

SgStatement so that actions can be targeted at

specific parts of the statements.

As the analysis progresses through the statements,

actions are added to an actionList in response to

certain conditions. In our model the programmer has

noted for example that a particular variable or data

structure should be traced back to its declaration and

any manipulations on it should be recorded. Any

existing live actions in the actionList are updated if a

new piece of information is available from the

current statement that is relevant to that particular

search. A flow chart of the main analysis loop is

The design of the algorithm is based around the ability to extend the number and type

of actions available although it was only taken as far as the reverse traverse process

Chapter 2 Learn Tool System Description 2 8

of identifying the program outputs and tracing back to the declarations and

intervening manipulations before the focus of the work shifted to pattern matching.

The reverse traversal follows the logical flow control of the program (in reverse) and

as it proceeds it maintains a context structure indicating the control level of each

statement within the program as a whole. This is effectively a call stack and is

essential for being able to match data on multiple levels that may have their variables

names changing or going out of scope in subroutine calls.

This general architecture has been used to extract information from the program,

particularly concerning how the results of the program have been arrived at. A new

action is created for each output statement, for example writing results to a file or the

screen. The action is to keep track of the data being output and if it occurs in any

statement earlier in the code to keep a note of that occurrence and any inter-

dependence with data associated with that statement. This is achieved by maintaining

a dataTrace with each action that records the statements that reference the variable

being traced, or any variable that is used to influence the result. The dataTrace

consists of an ordered list of dataTraceltem(s) that grows, each time a statement is

visited that has a relevant reference to the items being traced. The traces operate over

the whole code by following subroutine and function call parameters and mapping

them to the actual variables at the calling level.

Scalar and array items are tracked and some filtering is provided to discount rarely

executed paths in the code, for example conditionally executed error reporting.

Whilst this may omit important information in some cases, the resulting dataTrace

can remain linear.

During the reverse traversal, all items that have already been identified as

contributing to the output item are search for, which could lead to an exponential

growth of the tree. By ensuring that if a complete assignment has been made then the

assignee is removed from the scope of the search moderates this potential for

algorithm runaway. For example in a CALL, SUBROUTINE pair of statements, the

parameters in the CALLs parameter list go out of scope (for the search) and the

corresponding parameters in the subroutine parameter list come into scope.

Chapter 2 Learn Tool System Description 2 9

Information about the type of statement that they relate to is stored in the dataTrace

items and each item has a reference to the "parent" searched for item. This

information can be used to construct a graph of the overall dependence flow though

simple programs. This output form has been chosen as it illustrates how rapidly the

complexity of the analysis grows for relatively simple algorithms. This dependency

graph is not a true dependency analysis of the sort described by Wolf [21] [22] but

more an Inter Procedural or data flow analysis in the style of Merlin [48] and Walker

[35].

The Reverse Traversal process is intended to mimic the code inspection process that

humans employ to understand the purpose and flow within a code. It achieves a

transformation of the code representation into a graph that highlights the statements

that have significant influence on the results of executing the code. It provides a view

of the code as a whole unencumbered by a particular procedural decomposition. Its

use within the program recognition process was initially intended to flatten the

program structure and pre-filter the parse tree before the pattern matching process.

This has been achieved, however the increase in complexity of representation for

relatively simple programs caused an adjustment to the planned approach adopted for

the pattern matching process removing this flattening step.

2.4 Pattern]\iatching

The pattern matching technique is described in this section. A detailed explanation of

the structures and matching algorithms developed follows an overview of the whole

approach.

2.4.1 Related Work on Pattern Matching

There exists a wide body of work relating to pattern matching covering subject areas

diverse as genetic sequence matching, web searching to computer science re-writing

systems. The class of pattern matching used in this work seems to be closest to the

work described by Kucherov [73]. Kucherov describes the use of a Directed Acyclic

Word Graph (DAWG) however the algorithm is restricted to finding the first match

to a particular pattern. Closely related, from a computer science perspective is the

large system simplification work of Baker et al. [74],[75] and [76] that applies

pattern matching to highlight possible redundant sections of code that could be

Chapter 2 Learn Tool System Description 3 0

unified for example in a common procedure call. The approach adopted in this work

is a rudimentary technique aimed at limiting the exponential growth of the search

space by discarding potential sequences as soon as they fail the overall matching

criteria.

The description by Hagemeister et al. [8] comes closest to the approach used in this

work. Hagemeister develops a syntax for describing the patterns, which is based very

closely on the tokens available from the Sage++ parser. This approach in turn is

based on the SCRUPLE matching described by Paul et al. [77]. The pattern matching

approaches in PARAMAT [4] appears to be based on the graph parsing approach of

Wills [66] whereas the PAP work of Di Martino et al. [1] is closer to the SCRUPLE

technique and the method described herein.

More recently direct Al approaches have been attempted for pattern matching.

Quilici A., Yang Q., et al [78] report on their work and conclude that direct

application is not the best approach, however they can be made to be effective if

constraint satisfaction techniques are included.

2.4.2 Overview of Approach

The pattern recognition process involves breaking down the code into a sequence of

tokens that contain sufficient information to retain the algorithmic content of the

original source code and yet is simple enough to be used in a pattern-matching

algorithm. The Sage++ toolkit presents the information about the code as a hierarchy

of objects. To unwrap this hierarchical representation, a recursive algorithm has been

created that generates a flat list of items from identified sections of the source code.

This flat structure is incorporated into a CodeStatus object, which contains a list of

codeStatusItem(s) that are used to match against. Individual matches occur on integer

values and no string matching is needed making the process fairly efficient.

The flat list of items is generated by stepping through the statements in the order that

they appear, in the code. Each statement generates a list of items, which is appended

to the current list. Within a statement, depending on the type of statement,

expressions, symbols and types may also generate lists of items, which are inserted

Chapter 2 Learn Tool System Description 3 1

into the full list produced by the statement. Overloading the constructor on the

CodeStatusItem class facilitates the process of recursive generation.

The selection of which items are placed into the CodeStatus object has evolved as the

range new concepts to recognise has grown.

The pattern library is managed under a knowledgeBase class; each pattern in the

knowledge base is referred to as a Rule item. Each Rule has a series of Keys that are

used to match to specific code examples. The Keys are built from and subsequently

matched to the CodeStatusItems(s) in the flat format expansion of the parse tree. The

Keys are related to each other in a Rule with a simple syntax.

The Rule syntax supports the following features:

CodeStatusItem type and order of occurrence

Relative positioning of items is either strong or weak

Instance correlation is enforced

Multiple instances of the same rule match with the same starting item are

flagged as voiding the match.

The user constructs rules by picking CodeStatusItems derived from a test sample of

code. Once a CodeStatusItem is incorporated into a Rule it becomes a component

Key. The Keys are selected in a particular order and the following operators (

"AND", "THEN" and "LAST") are used to indicate the relative positioning

relationship. The "AND" operator indicates the spacing between the currently

selected item and the next one must be exact for a match to be possible (strong

relative positioning). The "THEN" operator indicates that once this item is matched

then the next item to match can be an arbitrary distance from the current item (weak

relative positioning). The "LAST" operator terminates the sequence.

Each Rule is currently allowed to be referenced to one of its Key items, usually a

variable symbol, that has to have a common matching element during subsequent

pattern matching operations. For example the referred to item in a "counter" Rule is

the counter variable.

UBAARY

Chapter 2 Learn Tool System Description 32

The "OR" operator although not exphcitly supported has been implemented in the

Learn Tool pattern matching algorithm by allowing several rules to be equivalent as

far as the matching process is concerned. This is managed by a Rule association

process, and simply allows Rules to match with items of either Rule A or Rule B if

Rule A and Rule B are associated. This has been particularly useful when matching

expressions that contain commutative operations. It can also be applied to assist the

pattern matching as an alternative to code normalisation. This is similar to

PAR AM AT, KesBler [4] in that several routes exist to the final higher level pattern

match.

2.4.3 Code Status Items

For a section of code a flat list of CodeStatusItem(s) is generated by moving from

statement to statement and conditionally adding items to the list depending on the

type and content of the statements. CodeStatusItems(s) record five fields for each

record. These are described in table Table 1.

Item Description

Type The type field records whether the item is derived from a 'Statement',

'Expression', 'Symbol' or 'Rule'. The first three are generated from the

basic parse tree supplied by the Sage++ project. The 'Rule' items are added

when the matching process has located a match to a 'Rule' from the

knowledge base.

Variant This field records what type of 'Statement', 'Expression', 'Rule' etc. this

instance is. e.g. a 'Statement' might be a PROC_HEDR.

Id This field records the specific instance of the occurrence of this item.

Tag The tag is a string containing a textual representation of the variant.

Name The name is a string that is used if the specific instance has a token

associated with it. For example a 'Symbol' type, variant

VARIABLE_NAME would have a tag of "VARIABLE_NAME" and a

name indicating the name of the variable in the code. In the case of a

symbol derived item the name will be directly associated with the Id of the

item.

Table 1 Description of the fields in a "CodeStatusItem".

Chapter 2 Learn Tool System Description 3 3

The codeStatusItems are used for both creating trial Rules as well as matching

against Rules that have been previously formulated. The Tag and Name items are

included to allow intelligible feedback to the operator on where patterns have

matched and why. The comparison operations are restricted to the Type, Variant and

Id integer values that uniquely identify the item in the sequence. The use of three

integers for the comparisons allows most compare operations to complete (with a

negative outcome) after a single integer compare instruction. The attention to this

detail is mainly relevant because the speed of operation of the matching algorithm is

quite important for allowing such as system to be realised as a practical product.

2.4.4 Rules

Rules contain the matching information that has been formulated from example

sequences of code. The matching sequence is stored as a list of Keys that are used to

mach against codeStatusItems. The rules maintain information about other rules that

have been marked as being equivalent, enabling the formulations to include an OR

concept. Each Rule has a specific instance ID from one of its Keys that characterises

the Rules ID during the matching process.

2.4.5 Keys

Keys maintain information about the type and instance from the originating

codeStatusItem. They also maintain information about their relationship to the next

Key in the sequence within the Rule. This takes the form of the "THEN", "AND"

and "LAST" operators that are owned by the current key and relates to the next Key

in the sequence. In the case of the "AND" relationship the separation of the Keys is

stored. A Key can be considered to be a single character in a string matching

problem, with the "AND" spacing being a fixed distance and the "THEN" being the

variable length of don't cares of Kucherov [73].

2.4.6 Matching Algorithm

The matching algorithm allows the multiple compares to be processed in a relatively

efficient and memory conservative way. The overall process is outlined in Figure 4.

For each rule currently in the database the current codeStatus structure is examined

for instances of each of the keys that make up the rule. For simple rules this might be

Chapter 2 Learn Tool System Description 3 4

a VARIABLE_NAME or an assignment operator for example. For more complex

rules the key instances may be previously matched rule items. A table is constructed

of all the possible instances of the searched for keys. This is then traversed key by

key building valid sequences that match the partial rule sequence up to the point of

the current key. Invalid sequences are removed, as the first mismatch is located.

Once all the keys have been evaluated a final list of sequences remain that are

matches to the current rule.

At this point the uniqueness of the sequence matches is checked. If the same starting

key is present for multiple matches then the Rule as currently defined is ambiguous

for the code being evaluated and requires re-formulating.

Only unique instances of rule matches are currently reported in the Learn Tool

program. This uniqueness problem is addressed by Paul et al [77], by delivering the

"shortest match" permutation from the matching engine. They comment that patterns

that have a combinatorial explosion problem are rarely found in program

understanding problems, however that is probably critically dependent on the skill of

the operator forming the rules.

Chapter 2 Learn Tool System Description 35

I n s t a n c e T a b l e

/ C o m p a r e Rule aga ins t current \
I c o d e S t a t u s r e p r e s e n t a t i o n j

k e y 1

key 2

key 3

k e y 4

F o r e a c h K e y in t h e R u l e , c o m pile a
t a b l e of all t h e i n s t a n c e s of t h e k e y s in

t h e c o d e s t a t u s r e p r e s e n t a t i o n

P u t all t h e k e y 1 i n s t a n c e s into t h e
c u r r e n t l y valid s e q u e n c e list

For e a c h cu r r en t ly valid s e q u e n c e
i n s t a n c e

/ \
F o r e a c h i n s t a n c e of t h e next k e y in

t h e k e y t a b l e

E v a l u a t e if t h e i n s t a n c e m e e t s
t h e ' A N D " a n d "THEN" s p a c i n g cr i ter ia

a n d t h e i n s t a n c e ID is c o n s i s t e n t
(e i t he r m a t c h i n g p r e v i o u s i n s t a n c e s

(or no t) a s a p p r o p r i a t e

T h i s g r a d u a l bui ld up of valid
s e q u e n c e s tha t surv ive t h e
s u c c e s s i v e e v a l u a t i o n s of

t h e K e y s , a l l o w s t h e full s e t
of p o s s i b l e p e r m u t a t i o n s to

b e e v a l u a k d w i t h o u t
e x p a n d i n g t h e full t r e e of

p o s s i b i l i t i e s

f o u n d

D e l e t e t h i s s e q u e n c e f rom t h e
c u r r e n t l y valid s e q u e n c e list

Add th is s e q u e n c e , with t h e n e w
m e m b e r , to the cu r r en t ly val id

s e q u e n c e list.

End For

\ /

End For

Figure 4 Flow chart detailing the rule-matching algorithm

2.4.7 Learn Tool Facilities

The Rules (patterns) are stored in a list belonging to the knowledgeBase class. This

provides the Load/Save functionality and access to the patterns during a matching

operation. Users may build test patterns interactively and add them to the

knowledgeBase class using a Rule Editor Dialog.

Chapter 2 Learn Tool System Description 36

Description of the current
rule

Rules in the current
know ledge base

Selection tree for routines in
the current Sage++ project

Rules-
east then west
west then east
ns then ew

Ui
ID;

Name: |AssignToZero

C^Ref: P
Update Rule |

Cleat AB |

Array ilem squared
Sum Item squared

ew then ns
laplace sequenc Sum array items
Accumulator.! calk of mean

a»0 asstanment

Add / Remove Rules

Delete

JjJ

stats, f
:

I load.data
: calc_#W*

outpuLdata

IF (NUM.ELEMENTS .GT. 2) THEN
SUM1«0
SUM2=0
DO P=1,NUM_ELEMEMTS

|-Key#-
ASSIGN_STATAND
VARIABLE_NAME AND
IS VALUE ZERO LAST

Add K v AND

Add Kep THEN

Add Key Last

Remove Key

Clear Key List

Set KwlnstRef

Tap
VARIABLfiNAME
T FLOAT \
INT_VAL
IS_VALUEjZERO
ASSIGN_^T
AssignToZer^
VAR REF
VARIABLE.N^ME
T FLOAT

i L

I ID I Name
20 sumi
2 No Name
172 0
0
45 No Name
Z1
173 No Name
21 sum2
2 No Name

Rule name, id and reference Rule Assembly operations

Keys in the currently
selected Rule

codeStatusltems in the
currently selected

subroutine

Source code from the
currently selected

codeStatusltem

Figure 5 Annotated Rule Editor Dialog

Figure 5 shows the Rule Editor dialog in the LearnToolViewer application. It is

showing the construction of the AssignToZero Rule within the context of the

Statistics example, which is addressed in more detail in the next chapter. Currently

all rules exercised in this work have been constructed by hand and have been used to

perform what if experiments on combinations of keys that work and those that don't.

A systematic approach and guidance on how to construct rules would be essential for

a fully developed system. It might be possible to import rules from other pattern

matching work, for example the pattern library of Kessler [1] or Di Martino [2],

although as this approach excludes code normalisation it is doubtful whether the

libraries could be transferred without significant modifications.

Chapter 2 Learn Tool System Description 37

Associations between Rules are established using the Rule Association Dialog. An

example of this is shown in Figure 6, for the "North Then South" Rule that will be

discussed in more detail in the "Laplace" example in the next chapter.

Association of a pair of
Rules

Rule Association X|

Square work space2
while true break loop
2D array West access
20 array east access

LU I

2D array north access
2D array south acces:
North Then South
South then North

Associate Rules I

J j

Square work space!
While Not Loop
Counter
test_second_pass

I

Square work space2
while true break loop
2D array West acces!
2D array east access

J j

- Alreadĵ Associated with

South then North Delete Association

Let of current associations
fo the first ruk selected.

Figure 6 Annotated Rule Association Dialog

For both the Reverse Traverse and Pattern Matching the Learn Tool provides simple

graphical output showing the dataTrace data and the pattern matching detail

respectively. In a completed parallelisation Toolset this information would be

available to the user in a number of forms and would stimulate the tool to provide

options for algorithm substitution with perhaps an indication of the potential benefits

that might be realised for any particular substitution.

Chapter 3 Test Cases

The test cases presented here start with the source of the program used to generate

the Rules. The reverse traverse of the code is shown followed by the matching results

against the Rules and a description of the component rules. This is followed by

example variations of the source example to demonstrate the properties of the rules

being investigated.

38

Chapter 3 Test Cases 39

3.1 Statistics Example

This first example is of a simple statistics program that generates the mean and

variance of a set of data. The data is read from a text file and the results are

computed and written to another output text file. The source code is given in

Appendix la.

3.1.1 Reverse Traverse

The reverse traversal of this example provides two dependency graphs, one for each

of the mean and variance.

1 -M
File Edit View Analysis Help

D 1 ss! a % m fy; = = = A " 1 # 1 ^ f imean

Output Variable:mean.

(+):mean:UPi

f(+):mean:DN

[(+):sum1:(=)
I 'suml / num_elements]

(+):num_elements:(=)
|sum1 / num^elements]

(+):num_elements:DN (+): array: UP

(+):num_elements:UP ;+):sum1:(=)
;sum1 + array(p)]

|(+): array: (=)
|sum1 + am

(+): array: DN (+):num_elements:(=)
rnum_elements -1]

(+):-:Read Statement
[array(num_elements)]

+):num_elements:(=
num_elements +1]

(+):-:[-]

Ready
d
J,

Figure 7 Screen shot of Stats example reverse traverse showing mean dependency graph.

Chapter 3 Test Cases 4 0

Figure 7 shows the main screen of the learnToolViewer application after it has

performed a reverse traverse analysis of the example code. At the top of the diagram

the output variable "mean" is the root (from line 130). This variable is traced though

an upward CALL/SUBROUTINE paring into the main program and then down into

the subroutine that performs the calculation. At this point the mean is found to be

dependent on an initialisation denoted by the (+):-:[-] string, the variable suml in the

expression (suml/num_elements) and num_elements in the same expression. These

variables in turn are followed and their dependence on the input variable "array" is

located after another change of subroutine scope.

The change of colour in the display is used to show the call stack level of the code. In

this example the top of the tree is in purple and occurs in the "OUTPUT_DATA"

subroutine off the main program level. The main program level is shown in red, the

"CALC_STATS" subroutine level is in green and the "LOAD_DATA" level is in

yellow.

The output syntax of the string for each node starts with a "(+)" if it is a new node in

the tree. The next item, spaced with a is the item reference, for example "mean"

or if it is an initialisation a is used. The next item again separated by a is an

"(=)" if there is an assign association, an "UP" or "DN" for a subroutine call

association. If there is an "(=)" association then a string is appended with the

assignee enclosed in square brackets. For an initialisation a blank "[-]" is appended.

Chapter 3 Test Cases 41

u

W «

-W

g
r §

1
£ s
E E

1

i !
Z)
p

1 1

J . 1 IP E

f r i +

s i . i l ' s

^ '
E "i 0) 0)

I!

E

if
II

"E +

II
F g

I
75 5

Figure 8 Reverse Traverse dependence graph for variance.

Chapter 3 Test Cases 4 2

Figure 8 shows the similar dependence graph for the variance output variable. Whilst

the calculation of the variance is mathematically fairly simple, the representation of

the dependence graph in this form has become quite extensive.

3.1.2 Pattern Matching

The pattern matching approach in this example has concentrated on the calculation of

the mean. The rule for this is detailed in Figure 9.

Rule 21 : Name: calculation of mean

Keys:{

ARRAY_REF AND

VARIABLE_NAME AND

STAR_RANGE AND

VARIABLE_NAME THEN

Sum array items THEN
ASSIGN_STAT AND

VARIABLE_NAME AND

DIV_OP AND

VARIABLE_NAME AND

VARIABLE_NAME LAST }

Figure 9 Rule: calculation of mean

Chapter 3 Test Cases 43

The first two items estabhsh the id associated with the array that stores the items on

which the mean is to be calculated. The STAR_RANGE is specific to the

FORTRAN calling scheme whereby the array is a reference to data passed into a

subroutine that may change depending on from where it is called. The second

VARIABLE_NAME item is the range index and the divided by element in the mean

calculation. The "sum array items" is a rule that is expanded below. The last five

items establish the final division and assignment.

H - I r i l x l i
ESe Edit yiew Analysis Help j

1 % | m|=?r 1—"1 1 ^ 1 f [calculation < •'I

^ule: calculation of mean| |KC#s:| [Related Source:]

ARRAY REF ARRAY_REF:No Namej 1 REAL ARRAYM j

[calculation of meani

1 REAL ARRAYM j

VARIABLE NAME: VARIABLE NAME:array (REALARRAYDl

T FLOATl

VARIABLE NAME:array (REALARRAYDl

STAR RANGE [STAR RANGE: No Namel 1 REAL ARRAYC) 1

VAR DECLl

1 REAL ARRAYC) 1

VAR REF
VARIABLE NAME lVARIABLE_NAME:num_elements 1 INTEGER NUM_ELEMENTS |

r iNT i
VAR DECLl

Sum array items iSum an-ay Items:! 1 SUM1=0|

VAR REFl
VARIABLE NAME!

ASSIGN_STAT [ASSIGN. STAT:No Name! 1 MEAN=SUM1/NUM^ELEMENTS |

IVAR REFl

[ASSIGN. STAT:No Name! 1 MEAN=SUM1/NUM^ELEMENTS |

VARIABLE NAME {VARIABLE NAMEmeatil 1 MEAN=SUM1/NUM ELEMENTS 1

rr FLOATl

{VARIABLE NAMEmeatil

DIV_OP piV_OP:No Name] 1 MEAN=SUM1/NUM_ELEMENTS |

IVAR REFl

VARIABLE_NAME lVARIABLE_NAME:suml| ! MEAN=SUM1/NUM_£LEMENTS I

\T FLOATl

lVARIABLE_NAME:suml|

IVAR REFl
VARIABLE NAME VARIABLE_NAME:num elements) 1 MEAN=SUM1/NUM„ELEMENTS I

Ready

Figure 10 Screen shot of the match detail for the calculation of mean rule.

Figure 10 shows the output from the pattern matching within the learn tool for the

calculation of mean rule.

Chapter 3 Test Cases 4 4

Rule 2 0 : Name: Sum array items

Keys :

{ AssignToZero THEN

FOR_NODE AND

VARIABLE_NAME THEN

Accumilatorl AND

ARRAY_REF AND

VARIABLE_NAME AND

VARIABLE_NAME THEN

FOR NODE LAST]

Figure 11 Rule: sum array items

Figure 11 shows the keys for the "sum array items" rule. The assignToZero is a rule

that captures the initialization of the variable to be used as the storage for the sum.

The FOR_NODE establishes the loop within which the sum is performed. The

VARIABLE_NAME refers to the loop index and the Accumilatorl is a rule that

captures the "a=a+b" construct. This is augmented with a reference to the data

VARIABLE_NAME item and the loop index variable name. The closure of the loop

provides the last key for the rule. Figure 12 shows the screen shot for this rule.

Chapter 3 Test Cases 45

1

File Edit View Analysis Help |

D 1 0^ 1 0 1 ^ 1 1 1 A/" 1 M ' 1 ^ l i l u l B i j j
1

Rule: Sum array items

AssignToZero i

jSum array items|

kAR_REF|

FOR_NODE|

iVARIABLE_NAME

|NT_VAL|

iAccumulatorJ

kAR_REF|

fv'ARIABLE_NAME|

ARRAY_REF

VARIABLE.NAMEj

|VAR_REF|

VARIABl^_NAME|

lUNTi
l4SSIGN_STAT|

FOR NODE I

Ready

Keys:

AssignToZero:

FOR NODE:No Name

VARIABLE_NAME:p

Accumulator 1:

ARRAY REF:No Name

VARIABLE_NAME:array

!VARIABLE_NAME:p

FOR NODE:No Name

'Related Source:j

SUM1=0

DO P=1 ,NUM_ELEMEMTS

DO P=1 ,NUM_ELEMENTS

SUM1=SUM1+ARRAYCP)

SUM1=SUM1+ARRAY(P)

SUM1=SUM1+ARRAYCP)

SUM1=SUM1+ARRAYCP)

DO P=1 ,NUM_ELEMENTS

Figure 12 Screen shot of the match detail for the Sum array items rule.

Rule 19 : Name: AssignToZero

Keys :

{ AS SIGN_STAT AND

VARIABLE_NAME AND

IS_VALUE_ZERO LAST }

Figure 13 Rule: Assign ToZero

The keys of the AssignToZero rule are shown in Figure 13 and the corresponding

screen shot is included in Figure 14.

Chapter 3 Test Cases 46

a mm 7 . | n | x |

File Edit View Analysis Help

D 1 S | X i ==l A r | # 1 f i s m r a Siz l

Rule: AssignToZero iKeys: iRelated Source:,

lASSIGN^STATJ ASSIGN STAT:No Name SUM1=0

ISum array itemsl

VARIABLE_NAME

r r FLQA"

IIMT VAL

IS VALUE ZERO

Ready

VARIABLE NAME:sum 1

IS VALUE ZERO:

SUM1=0

SUM1=0

Figure 14 Screen shot of the match detail for the AssignToZero rule

Rule 18 : Name: Accumulator_l
Keys:{

ASSIGN_STAT AND

VARIABLE_NAME AND

ADD_OP AND

VARIABLE NAME LAST }

Figure 15 Rule: Accumulator_l

Figure 15 and Figure 16 complete the set of rules used to match against the

calculation of mean .

Chapter 3 Test Cases 47

- i n l x | |

File Edit View Analysis Help |

• 1 1^1 1 a l 1 % | e | » .
1 1

1

iRule: AccumulertorJ] Keys: Related Source;]

iASSIGN_STAT| ASSIGN_STAT:No Name 1 SUM1=SUM1+ARRAY(P)

lAccumulatorJ |

kAR_REF|

[VARIABLE_NAME| VARIABLE_NAME:sum1 J SUM1=SUM1+ARRAY(P)

^D_OP]
KAR_REF|

VARIABLEJNM^El

ADD OP.NoName SUM1=SUM1+ARRAY(P)

VARIABLE NAME:sum1 I SUM1=SUM1+ARRAY(P)

Ready

Figure 16 Screen shot of the match detail for the Accumulator_l rule

3.2 Laplace Example

This example examines a simple two-dimensional relaxation algorithm. A regular

grid is used with its edges set to a pre-determined boundary condition. A numerical

iteration process is used to calculate the internal points that satisfy Laplace's

equation:

d^u d^u _

The source code is given in Appendix lb. Almost all relaxation algorithms operate

by implementing an averaging scheme so that the values in each element are updated

on the basis of the values in their neighbours. This update occurs in an iterative loop

until the evaluation of the maximum error falls below a pre-determined threshold.

The averaging construct in this case is embodied in lines 183 and 184 of the source.

A more detailed discussion of relaxation algorithms can be found in Teukolsky et al

[79] chapter 19.

Chapter 3 Test Cases

3.2.1 Reverse Traverse

48

H :
Si

It] I s

i i

.«2 H,

I

g
0
1

I

1 1
|! 1

II
fl f?

It ii
!i !i

u

Figure 17 Reverse Traverse dependence graph for datal

Figure 17 shows the reverse traverse dependence graph for this example. There is

only a single identified output "datal" and this is traced through the two calls to the

itterate_step subroutine and the initialisation routines where the boundary conditions

are set-up. The lack of a trace item for the initialisation of the edge_points variable is

due to it being set in a PARAMETER statement for which there is no method for

Chapter 3 Test Cases 4 9

generating an expression summary. This appears to be a limitation of the Sage++

parse tree.

3.2.2 Pattern Matching

In this example the core pattern to match against is the averaging statement

embodied in lines 183 and 184. The rule for this is shown in Figure 18.

Rule 17 : Name: laplace sequence

Keys: {

FOR_NODE THEN

FOR_NODE THEN

ew then ns THEN

FOR_NODE THEN

F0R_N0DE LAST }

Figure 18 Rule: laplace sequence

Rule 16 : Name: ew then ns

Keys: {

west then east THEN

North Then South LAST }

Figure 19 Rule: ew then ns

The repeated FOR_NODE items provide the context for the main key, which

identifies the East West then North South array access pattern.

Rule 14 Name west then east

Keys {

2D array West access THEN

2D array east access LAST }

Figure 20 Rule: west then east

Chapter 3 Test Cases 5 0

Rule 7 : Name: 2D array West access

Keys: {

ARRAY_REF AND

VARIABLE_NAME AND

SUBT_OP AND

T_INT AND

IS_VALUE_ONE AND

T_INT LAST)

Figure 21 Rule: 2D array West access

The "ew then ns" rule is constructed on top of two sub rules, the "west then east"

(Figure 20) and the "North then South". Similarly the "west then east" rule is built

from the "2D array West access" (Figure 21) and the "2D array East access". Each of

these rules has a reversed counterpart, for example "North then South" has a partner

"South then North" which are labelled as equivalent for the matching process. The

equivalence of these rules allows the matching to work independently of the order of

the coding of the array accesses.

Figure 22 Shows the output from the rule matching process for the "laplace

sequence" rule. The contributing rule 2D array West access is shown in Figure 23.

Chapter 3 Test Cases 51

^ laplacel . l tv - learnToolViewer

File Edit View Analysis Help

D Q % m === AT laplace se SQ

|Rule: laplace sequence]

FOR_NODE;

japlacejeguen^

FOR.NODE

^ariable_N!^
IrjNTi

ewthenns:

h/ARIABLE_IMAME|

fr_FLOAT|

FOR_NODE

|CONTRQL_EI^

FOR_NODE

Ready

FOR_NODE:No Name:

IFOR NODE:No Name

lew then ns:

FOR_NODE:No Name

[FOR_NODE:NO Name!

Related Source:!

DO I=2,EDGE_P0INTS-1

DO J=2,EDGE POBMTS -1

DATA2(I,J) = 0.25*C DATA1 (1-1 ,J) + DATA1 (1+1 ,J) ^

DO J=2,EDGE_P0INTS -1

DO L=2,EDGE_P0INTS-1

Figure 22 Screen shot of the match detail for the "laplace sequence" rule

laplace 1.ItV - learnToolViewer

File Edit View Analysis Help

JSjxl

D l c g i l H l ^ I % I m 1=4 AT I # I "g

[Rule: 2D array West access |

ARRAYJEFi

|2D array West access]

Ready

[Keys:! Related Source:

ARRAY REF:NoNamei DATA2(I,J) = 0.25«(DATA1 (1-1 ,J) + DATA1 (1+1 ,J) H

yARIABLE_NAME p/AraAB[ilNAME:datal] 1 DATA2(I,J) = 0.25*(DATA1 (1-1 ,J) + DATA1 (1+1 ,J) + |

|r_FL0AT|

SUBT OP ;SUBT_OP:No Name i DATA2(I,J) » 0.25"(DATA1 (1-1 ,J) + DATA1 (1+1 ,J) + |

kAR REF|

f/ARIABLE_NAME|

TJNT 1T_INT:No Namej 1 DATA2(i,J) = 0.25*(DATA1 (1-1 ,J) + DATA1 (1+1 ,J) + |

|NT_VAL|

IS_VALUE_ONE IS_VALUE_0NE:| 1 DATA2(I,J) = 0.25«(DATA1 (1-1 ,J) + DATA1 (1+1 ,J) + |

|yAR_REF|

kARIA8LE_NAME|

TJNT T INT:No Name DATA2(I,J) = 0.25'(DATA1 (1-1 ,J) + DATA1 (1+1 ,J) + |

Figure 23 Screen shot of the match detail for the 2D array West access rule.

Chapter 3 Test Cases 52

3.2.3 Laplace Variation 1

The first variation to test is to split the averaging process using a temporary stack

variable to accumulate the sum. This is achieved by replacing lines 183 and 184 with

the code in Figure 24.

ACCUMULATOR = DATA1(I-1,J)

ACCUMULATOR = ACCUMULATOR + DATA1(I+1,J)

ACCUMULATOR = ACCUMULATOR + DATA1(I,J-1)

ACCUMULATOR = ACCUMULATOR + DATA1(I,J+1)

DATA2(I,J) = 0.25 * ACCUMULATOR

Figure 24 Variation 1 coding of Laplace example

rA laplaceZ.ltv - learnToolViewer

File Edit View Analysis Help
JSjxJ

0 Gg B === AT #

[Rule: laplace sequence!

FOR_NODE

llaplace sequencel

[VARIABLE NAMEl

FOR_NODE

[VARIABLE NAMEl

ew then ns

I V A R I ^ E NAME

tT FLOAl

FOR_NODE

ICOIMTROL END!

FOR NODEi

Ready

|Keys:|
FOR NODE: No Name

IFOR NODEiNo Name:

lew then ns:

FOR NODE: No Name

|FOR_NODE:No Nam^

[Related Sourcej

DO 1=2,EDGE POINTS-1

D0J=2,EDGEP0INTS-1

ACCUMULATOR = DATA#1 ,J)

D0J=2,EDGE POINTS -1

D0I=2,EDGE POINTS-1

Figure 25 Screen shot of the match detail for the" laplace sequence" rule for this variation

Rule matches the "laplace sequence" rule correctly for this variation of the code as is

shown in Figure 25.

Chapter 3 Test Cases 5 3

3.2.4 Laplace Variation 2

DATA2(I,J) = 0.25*(DATA1(I-1,J) + DATA2(I+1,J) +

+ DATA1(I,J-1) + DATA2(I,J+1))

Figure 26 Variation 2 coding of Laplace example

Figure 26 shows the second variation coding of lines 183 and 184 of the original

example. This time the matching algorithm correctly does not match to the "laplace

sequence" rule. It recognises the individual North, South, East and West 2D access

rules but the combinations of these for example "west then east" rule is not matched

because the expected common variable name "DATAl" is not common in this

instance of the sequence.

3.2.5 Laplace Variation 3

DATA2(I,J) = 0.25*(DATA1(I-1,J) + DATA1(I+1,J) +

+ DATA2(I,J-1) + DATA2(I,J+1))

Figure 27 Variation 3 coding of Laplace example

Figure 27 shows the third variation coding of lines 183 and 184 of the original

example. This time the matching algorithm correctly does not match to the "laplace

sequence" rule. It recognises the two pairs of "North then South" and "East then

West" but cannot link them together because of the change of variable name between

the instances.

3.2.6 Laplace Variation 4

Figure 28 shows the last variant of the Laplace example. In this case all the elements

for the "laplace sequence" rule are present and it is only the minus sign between the

B and the C on the last line that prevents this variation from being a correct coding of

this part of the algorithm. The Learn Tool achieves a match against the "laplace

sequence" rule as shown in Figure 29.

Chapter 3 Test Cases 54

A = DATAl(I-l, J)

B = DATA1(I+1,J)

C = DATAl(I,J-1)

D = DATAl(I,J+1)

DATA2(I,J) = 0.25 * (A + B - C + D)

Figure 28 Variation 4 coding of Laplace example

»Untitled - learnToolViewer

File Edit View Analysis H e ^

j-jajxl

D 0̂ y m AT laplace seq

Rule: laplace sequence Keys: Related Source:
FOR_NODE FOR_NODE:No Name 1 DO 1=2,EDGE POINTS-1

VARIABLE
FOR NODE
[VARIABLE NAME

FOR„NODE:NQ Nam^ DO J=2,EDGE POINTS-1

rr iNTi
ew then ns
VARIABLE N A f ^

lew then ns: A = DATA1{I-1,J^

T FLOAl
FOR_NODE
CONTROL E l ^

FOR NODE:No Name D0J=2,EDGE POINTS-1

,FOR_NODE:No Nannej DO 1=2,EDGE POINTS-1

R e a d y

Figure 29 Screen shot of the match detail for the "laplace sequence" rule for this variation.

This property of incorrectly matching against a Rule, results from the Rule being

defined to match without ensuring all the elements necessary for the higher-level

concepts are present. This non-complete match approach is intended to mimic the

behaviour of a human programmer, where the pattern matching procedure might start

with what might be called a skim search. That is to say a first pass where a small set

of key features are looked for. If a key feature were located during this skim search,

then the programmer would form a hypothesis that this might be one of the concepts

that is being looked for. Performing a more detailed search to locate the missing

elements to tests the hypothesis would conclude the search process. Whilst a human

programmer can make mistakes when the complexity of the formulation of a concept

is high, the ability to ignore a lot of detail makes the searching very efficient, and

Chapter 3 Test Cases 5 5

robust against the multitude of possible representations of the same concepts. The

Rule formulation gains advantage from this flexibility as it allows matches to be

attempted without needing extensive code normalisation before being applied. The

down side is that the approach can make mistakes, like a human programmer.

3.3 Matrix Multiply Example

While no rules have been developed for this algorithm it is thought worthwhile to

discuss how this approach would be expected to perform on this problem that has

been described in some detail in KeBler [4] pp.78.

DO 1=1,N

DO J=1,N

RET(J,I) = 0.0

DO K - 1,N

RET(J,I) = RET{J,I) + A(J,K) * B(K,I)

END DO

END DO

END DO

Figure 30 Code fragment for matrix multiply

Figure 30 shows a code fragment for the matrix multiply example translated into

FORTRAN. The core matching is the multiply and add assignment with the specific

array indices: (J,I) (J,K) and (K,I). The triple nest of the loop and the assign to zero

would complete the rule construction. Unlike KeBler [4], Figure 30 shows the code

with no loop unrolling. If the inner loop were unrolled the index pattern would be

present for the first item of the unrolling and the match would probably be made. The

problem would arise if the loop step on the inner loop was to be part of the match

and the overall matching would fail since it had a non-unity step size.

In the absence of code normalisation transformations, it is probable that the concept

would be recognised but the manipulation of the code would be error prone due to

the way the match would ignore the un-wound elements of the source. The loop

unwinding is an optimisation artefact and may cause human developers difficulty

when trying to comprehend third party source code. This is a good example of where

Chapter 3 Test Cases 5 6

code normalisation is beneficial and where premature optimisation can make source

code difficult to maintain and re-optimise for a new platform.

3.4 Maximum Value in an Array of Integers

While no rules have been developed for this algorithm, it is thought worthwhile to

discuss how this approach would be expected to perform on this problem that has

been described in some detail in Paul et al [77] pp. 7.

MAX = ARRAY(1)

DO 1 = 2 , N

IF (MAX .LT ARRAY(I) THEN

MAX = ARRAY(I)

END IF

END DO

Figure 31 Code fragment for find maximum integer value from array.

Figure 31 shows the code fragment for the find_max example. The first thing to

notice is the need to have two core rules that are associated, namely "scalar less than

array" and "array greater than scalar". These core rules would be combined together

with the conditional assignment within the loop. The initialisation of the common

scalar value would probably be assumed and a match would be made.

3.5 Discussion

With the limited number of examples examined it is difficult draw more than

tentative conclusions from the work at this stage. The Reverse Traverse information

as presented becomes very large for even small examples and the chosen

presentation format is not ideal. Li a completed system this information would

perhaps be presented as an interactive tree much like a file system browser, allowing

the user to limit the amount of data displayed at any one time. The Reverse Traverse

output needs perhaps a prioritising metric so that if presented automatically, only the

most important items are shown. There appears to be scope for research on how this

metric might be formed and how successful the resulting filtering might be at guiding

the toolset user to the areas of code that would benefit most from the application of

the other parallelisation tools in the toolset.

The pattern matching as implemented is fallible in certain instances. In some ways

this similarity in performance is encouraging considering the starting point of the

work. The trade off hoped for in terms of speed of recognition against accuracy is not

proved. As implemented, in debug mode the matching process takes approximately

40 milliseconds to execute on the largest presented example on an 800 MHz Athlon

PC. This is probably a respectable figure compared to the performance reported by

KesBler [2] although for this example only about 20 rules were being compared and

the example code length was a single subroutine.

The ability to match the rules developed to particular example codes has been shown,

however the number and complexity of the rules is low and currently targeted at

fairly simple algorithm components.

For a full system to be built, a means of systematically constructing rules would be

required. This would involve identification of all the necessary information to extract

from the parse tree to construct the codeStatusItems. The resolution of the ambiguous

matching problem would also be necessary.

It may be that the deliberate avoidance of a code normalisation step is a fundamental

flaw in the approach. It certainly makes formulating rules a non trivial task and

perhaps makes it impossible to derive a systematic approach to developing general

robust rules.

57

Chapter 4 Concluding Remarks

This work has presented a summary of existing approaches to the problem of

developing and converting software to run parallel computer platforms. It has made

the suggestion that algorithm substitution can be beneficial in some cases where the

original serial algorithm is not well matched to a particular parallel platform and a

change of algorithm can lead to significant improvements in execution speed and/or

overall capacity. The work has also presented the results of the feasibility study to

investigate the possibility of implementing such a system of transformations, which

has lead to the construction of the Learn Tool program that incorporates the Reverse

Traversal and pattern matching algorithms.

58

Chapter 4 Concluding Remarks 5 9

4.1 Parallelisation Tools

The extensive set of parallelisation tools developed over the last ten years highlights

the need for support in programming parallel computer systems. Whilst there is

support for code rewriting for distributing data and computation for SMP and MPP

systems from sequential source, only a few tools are starting to consider algorithm

substitution as a means of optimising the algorithm as well as the data and processing

and distribution on these architectures.

4.2 Reverse Traversal

The reverse traversal concept is to start with a program and treat it as a "black box",

determine its inputs and outputs and then open up the box and follow the processing

between the two. By starting at the output and tracing backwards a focus is

maintained on the data of most interest allowing a certain level of detail and

potentially redundant code to be ignored. The main limitation of the algorithm is that

it can only be reasonably beneficial within an interactive browsing facility. The

Reverse Transverse tree expands very rapidly with relatively simple code examples

and display of the whole tree is very rapidly unusable.

The Reverse Traversal could be used as a simple method of identifying the tightly

nested loops of relevance in a practical situation and act as a trigger to enact the

pattern matching on a subset of the code in a more developed tool.

4.3 Pattern Matching

The pattern matching approach has been shown to operate successfully on two

examples. Its current limitations include the restriction of matching in a single

subroutine at a time and the lack of confirmation checking after a possible match is

located.

Both the pattern matching and the Reverse Traversal approach are based on the idea

that the best way of implementing machine understanding and manipulation of

source code should be based on approach adopted by human programmers. With

pattern matching, the human programmer has a distinct advantage over machine

approaches in the ability to pattern match in parallel (so to speak). Although the

Chapter 4 Concluding Remarks 6 0

author is un-aware of a definitive understanding of the human cognitive process, if

neural network or memory surface concepts Bono [55] are indicative of these

abilities, then humans can perform very rapid matches in parallel without the time

consuming methodical comparisons used in this work. The human approach also

allows for greater flexibility in the matching criteria, in that exact matches are rarely

needed and multiple levels of detail are available in order to home-in on a match.

The human programmer can also be prompted by source code comments to trigger a

recognition or to prompt a more detailed search for the expected patterns in the code.

While computers have very powerful detail processing, for example comparing two

strings, the number of detailed comparisons for all the possible variations of code

representation can become very large for a relatively small number of patterns. This

suggests that a less detailed and more parallel search method is required for an

automatic system to address high complexity problems.

In order to introduce sufficient capability of variation in code representation, this

work has allowed variable length gaps and associations between sub patterns. It has

also needed to concentrate on the combination of small characteristic phrases in

combination to infer that the higher-level pattern is in fact present during the Rule

creation process. The Learn Tool approach could incorrectly recognise code

examples that contain coding errors since there is currently no confirmation process

whereby a possible match is then checked for completeness.

In other approaches KeBler [2] [4], Pinter et al [3] and KeBler et al [5] code

normalisation is used to reduce the variation between the templates and the

examples. The approach of a human programmer is sometimes to normalise code,

but often pattern matching is possible with no normalisation and it is for this reason

that code normalisation was omitted from the approach.

4.4 Summary

This work describes two algorithms developed to test the feasibility of using program

recognition techniques for program optimisation by algorithm substitution. The

pattern matching algorithm has proved to be the best approach, a result that is in

agreement with a number of authors Martino et al [1], KeBler et al [2], Pinter at al

[3], KeBler [4][5], Raghavendra et al [6], Bansali et al [7], and Hagemeister et al [8].

Chapter 4 Concluding Remarks 6 1

The algorithms have been embodied in a program called Learn Tool, which includes

a pattern creation editor and the matching algorithm scheme. This has been exercised

successfully against a number of test code samples, the results of which are presented

herein.

Appendix 1 - Example Source Code

Al l - Statistics

1 C This example is generated from Advanced Basic Scientific Routines

2 C B.V. Cordingley D.J Chamund page 50 MEAN AND VARIANCE.

3

4 C The program opens a data file of choice. Filename prompted for

5 C and output mean and variance values to file called stats.out

6

7 C 3 Subroutines:

8

9 C 1. Prompt for filename, read file data into array

I O C 2. Calculate Mean and Variance

11 C 3. Output data to a file.

12

13 C PERG 12-1-96 Started.

62

Appendix 1 Example Source Code 6 3

14 0==

16 PROGRAM STATS

17

18 INTEGER MAX_ELEMENTS

19 PARAMETER (MAX_ELEMENTS = 1000)

20 REAL ARRAY (MAX_ELEMENTS)

21 INTEGER NUM_ELEMENTS

22

2 3 CALL LOAD DATA (ARRAY, MAX_ELEMENTS , NUM^ELEMENTS)

24

25 CALL CALC_STATS (ARRAY, NUM_ELEMENTS, MEAN, VARIANCE)

26

27 CALL OUTPUT___DATA (MEAN, VARIANCE)

28

2 9 END

30

Appendix 1 Example Source Code 6 4

SUBROUTINE LOAD_DATA (ARRAY, MAX_ELEMENTS, NUM_ELEMENTS)

31 T:

32

33 C

34

35 C

36 c

37 c

38 c

39 c

40 c

41 c

42 c

43 c

44

45

46

47

48

49

50

51

52

53

54

55 1

56

57

58

59

60

61

62

63

64

65 10

66

67 20

69

This routine prompts for an input file and reads column

orientated floating point data in free format.

e.g. 0.1786

5.6723

If there are more than MAX_ELEMENTS in the file the reading

is stoped short of the end.

REAL ARRAY (*)

INTEGER MAX_ELEMENTS

INTEGER NUM_ELEMENTS

LOGICAL EOF

CHARACTER *1024 filename

EOF = .FALSE.

NUM_ELEMENTS=0

WRITE(*,*)'Enter data file name'

READ{*,1)filename

FORMAT(A1024)

OPEN(UNIT=1,STATUS^'OLD',FORM='FORMATTED',FILE=filename,ERR=10)

DO WHILE {.TRUE.)

NUM_ELEMENTS=NUM_ELEMENTS + 1

READ{1,*,END=2 0)ARRAY(NUM_ELEMENTS)

IF (NUM_ELEMENTS .EQ. MAX_ELEMENTS) RETURN

ENDDO

RETURN

WRITE{*,*)'Failed to open file:',filename

STOP

NUM_ELEMENTS =NUM_ELEMENTS -1

RETURN

END

Appendix 1 Example Source Code 6 5

71

72

C —

SUBROUTINE CALC__STATS {ARRAY, NUM^ELEMENTS , MEAN, VARIANCE)

73 C

74

75 c This routine calculates the mean and variance of items in

76 c the array ARRAY. It looks at NUM_ELEMENTS of the array.

77

78

79 REAL ARRAY(*)

80 INTEGER NUM^ELEMENTS

81 REAL MEAN

82 REAL VARIANCE

84 c Local variables

85 REAL SUM1,SUM2

86 INTEGER P

88 IF (NUM^ELEMENTS .GT. 2) THEN

89 SUN1=0

90 SUM2=0

91 DO P=1,NUM_ELEMENTS

92 SUM1=SUM1+ARRAY(P)

93 SUM2=SUM2+ARRAY(P)*ARRAY(P)

94 END DO

95 MEAN=SUM1/NUM_ELEMENTS

96 VARIANCE^(SUM2 - MEAN*SUM1)/NUM_ELEMENTS

97 c VRME=VARIANCE*NUM_ELEMENTS/(NUM_ELEMENTS-1)

98 c SDMK=SQRT(VRMK)

99 c SDME=SORT(VRME)

100 END IF

101

102 c Trap insufficient data occasions

103 c

104

105 IF (NUM_ELEMENT .LT. 2) THEN

106 W R I T E ' N o t Enough DATA to process'

107 MEAN=0.0

108 VARIANCE^0.0

109 END IF

110

111 RETURN

112

113 END

Appendix 1 Example Source Code 6 6

114 C=

115

116 C

117

118 c

119 c

120 c

1 2 1

122

125

126

127

128

129

130

131

132

133

134

135

136 10

137

138

139

140 r -

SUBROUTINE OUTPUT DATA(MEAN,VARIANCE)

This subroutine outputs the MEAN and Variance to SDTOUT

and a results file called stats.out

REAL MEAN

REAL VARIANCE

OPEN{UNIT=1,FILE='stats.out',STATUS='UNKNOWN'

+ FORM='FORMATTED',ERR=10)

WRITE(1,*)'MEAN:',MEAN,' VARIANCE:',VARIANCE

CLOSE(UNIT=1)

RETURN

WRITE(*,*)'Error opening output file'

STOP

END

Appendix 1 Example Source Code 6 7

A1.2 - Laplace
1 Q* ************ ± * * * * ic * ± ************* -k ************* -k * * -k ***************** *

2 C

3 C PROGRAM: laplacel.ftn

4 C CREATED: 16:4:94 by Philip Galloway

5 C LAST CHANGE:

6 C

7 C

9 C

10 C This program performs a simple 20 Laplace solution on a

11 C uniform square grid.

12 C

13 Q* ** *

14

15 PROGRAM laplacel

16

17 C Define the number of cells along each edge.

18 INTEGER EDGE_POINTS

19 PARAMETER(EDGE_POINTS = 200)

20

21 C Define the convergence limit

22 REAL CONVERGENCE_LIMIT

23 PARAMETER (CONVERGENCE_LIMIT=0. 0001)

24

25 C Declare the data stores.

26 REAL DATAl(EDGE_POINTS,EDGE^POINTS) 'First data store.

27 REAL DATA2(EDGE_POINTS,EDGE^POINTS) !Second data store.

28

2 9 C Set up the start data for iteration.

30 CALL INITIALISE_DATA_SPACE (DATAl, EDGE_POINTS)

31

32 C Define the Boundary conditions.

33 CALL SET_BOUNDARY_CONDITIONS {DATAl, DATA2,EDGE_P0INTS)

34

35 C Iterate until convergence is reached.

36 CALL ITTERATE (DATAl, DATA2,EDGE_P0INTS,C0NVERGENCE_LIMIT)

37

3 8 C Output the resultant data to a sequential binary file.

39 CALL OUTPUT_GRID_DATA {DATAl, EDGE___POINTS)

40

41 END

42

Appendix 1 Example Source Code 6 8

43 C

44 SUBROUTINE INITIALISE_DATA__SPACE (DATAl, EDGE_POINTS)

45 C ================================

46

47 C This routine sets all the interior point data to zero.

48

4 9 INTEGER EDGE_POINTS !The dimension of the raw data space.

50 REAL DATAl(EDGE_POINTS,EDGE_POINTS)

51

52 C Local array indexes.

53 INTEGER I,J

54

55 C Set all interior points to zero.

56 DO 1=2,EDGE_POINTS

57 DO J=2,EDGE_POINTS

58 DATA1(I,J) = 0

5 9 END DO

6 0 END DO

61

62 C RETURN

63

64 END

65

Appendix 1 Example Source Code 6 9

SUBROUTINE SET BOUNDARY CONDITIONS(DATAl,DATA2,EDGE POINTS)

66 C

67

68 C

69

70 c

71 c

72 c

73 c

74

75

76

77

78

79 c

80

81

82

83

84

85 c

86

87

88 c

89

90

91

92

93

94

95

96

97

98 c

99

100

101

102

103

104

105

106

107

108

109

110

111

112

This subroutine sets the edge boundary conditions using

built in trig and polynomial functions.

the full size edge is parameterised from 0-1 in which there

are EDGE_POINTS samples.

INTEGER EDGE_POINTS ! The dimensions of the stores.

REAL DATAl (EDGE_POINTS, EDGE_POINTS)

REAL DATA2{EDGE_POINTS,EDGE_POINTS)

LOCAL DATA

INTEGER I,J ! Array indexes.

REAL PI

PARAMETER{PI=3.141596)

Set up the I dependency functions

DO 1=1,EDGE_POINTS

Put the same EC's in both data stores.

DATAl(1,1) = COS(2.0*PI*REAL(I)/REAL(EDGE_POINTS))

DATA2(1,1) = DATAl(1,1)

DATA1(I,EDGE_P0INTS) = SIN(PI*REAL(I)/

REAL (EDGE_POINTS))

DATA2(I,EDGE_POINTS) = DATAl(I,EDGE_POINTS)

END DO

Set up the J dependency functions

DO J=1,EDGE_P0INTS

DATAl(1,J) = 0 . 1

DATA2 (1, J) = DATAl (1, J)

DATAl(EDGE_POINTS,J) =0.9

DATA2(EDGE_POINTS,J) = DATAl(EDGE_POINTS,J)

END DO

RETURN

END

Appendix 1 Example Source Code 70

113 C -

114 SUBROUTINE ITTERATE (DATAl, DATA2 , EDGE_POINTS, CONVERGENCE_LIMIT)

115 C

116

117 c This subroutine iterates over the data until the CONVERGENCE

118 c LIMIT is no longer exceeded. Each call of the procedure

119 c ITTERATE_STEP transfers the working data set from DATAl

120 c to DATA2 or visa-versa. If the CONVERGENCE LIMIT is not

121 c exceeded at any point then DONE is returned TRUE.

122

123

124 INTEGER EDGE_POINTS ! The dimensions of the stores.

125 REAL DATAl(EDGE_POINTS,EDGE_POINTS)

126 REAL DATA2(EDGE_POINTS,EDGE_POINTS)

127 REAL CONVERGENCE_LIMIT ! The convergence limit.

128

129 c Local variables.

130 LOGICAL DONE ! Detects the convergence situation

131 INTEGER STEPS ! Step counter.

132

133

134 DONE = .FALSE.

135 STEPS = 0

136 DO WHILE {.NOT. DONE)

137

138 CALL ITTERATE_STEP(DATAl,DATA2,EDGE_POINTS,

139 + CONVERGENCE_LIMIT,DONE)

140 STEPS = STEPS + 1

141 IF (MOD(STEPS, 10) .EQ. 0) write(*,*)STEPS

142 IF (.NOT. DONE) THEN

143 CALL ITTERATE STEP(DATA2,DATAl,EDGE POINTS,

144 + CONVERGENCE_LIMIT,DONE)

145 STEPS = STEPS + 1

146 END IF

147

148 IF (MOD(STEPS,10) .EQ. 0) write(*,*)STEPS

149 END DO

150

151 write(*,*)'Convergence took ',STEPS,' Steps.'

152

153 RETURN

154

155 END

156

157

Appendix 1 Example Source Code 7 1

158 C -

159 SUBROUTINE ITTERATE^STSP(DATAl,DATA2,EDGE_POINTS,

160 + CONVERGENCE LIMIT,DONE)

161 C

162

163 c This subroutine preforms a single itteration step using

164 c the Jacobi method for solving the Laplace Equation

165 c on a regular square grid.

166

167 INTEGER EDGE POINTS ! The dimensions of the stores.

168 REAL DATAl(EDGE_POINTS,EDGE_POINTS)

169 REAL DATA2(EDGE_POINTS,EDGE_POINTS)

170 REAL CONVERGENCS_LIMIT ! The convergence limit.

171 LOGICAL DONE ! Finish after convergence reached.

172

173 c Local data

174 INTEGER I;J j data array indexes.

175 REAL CURRENT DIFF ! Current convergence size

176 REAL MAXIMUM DIFF ! Maximum convergence size

177

178 MAXIMUM DIFF = 0.0

179 DO I=2,EDGE_P0INTS-1

180

181 DO J=2,EDGE_P0INTS -1

182

183 DATA2(I,J} = 0.25*(DATA1(I-1,J) + DATA1(I+1,J) +

184 + DATA1(I,J-1) + DATAl(I,J+1))

185

186 c Find the convergence test at this point.

187 CURRENT_DIFF = ABS(DATA2(I,J) - DATAl(I,J)}

188 MAXIMUM_DIFF = MAX(MAXIMUM_DIFF,CURRENT_DIFF)

189

190 END DO

191

192 END DO

193

194 IF (MAXIMUM_DIFF .LT. CONVERGENCE_LIMIT) THEN

195 DONE = .TRUE.

196 END IF

197

198 RETURN

199

200 END

201

202

Appendix 1 Example Source Code 7 2

203 C

204 SUBROUTINE 0UTPUT_GRID_DATA(DATA1,EDGE_P0INTS)

205 C ===========================

206

207 C This routine opens a binary sequential file and

208 C dump the data information in DATAl

209

210 INTEGER EDGE_POINTS

211 REAL DATAl (EDGE___POINTS, EDGE_POINTS)

212

213 INTEGER I,J ! array indexes.

214

215 C Open the file

217 OPEN (UNIT=10,FORM='UNFORMATTED' .ACCESS^'SEQUENTIAL'

218 + FILE='Laplace.binSTATUS='UNKNOWN')

219

22 0 DO 1=1,EDGE_POINTS

221 MRITE(IO)(DATA1(I,J),J=1,EDGE_P0INTS)

222 END DO

223

224 CLOSE(UNIT=10,STATUS='KEEP')

225

226 RETURN

228 END

]) i b l i o ;* r a])h3 f

[1] Beniamino Di Martino and Christoph W. KeBler, 'Program Comprehension

Engines for Automatic parallelization: A Comparative Study', Software

Engineering for Parallel and Distributed Systmes, pp 144-157, Chapman &

Hall, 1996.

[2] C. W. KeBler, W. J. Paul, 'Automatic parallelization by Pattern Matching',

Proc. Of Second Int. Conference of the Austrian Centre for Parallel

Computation, Springer LNCS 734, pp 166-181, October 1993.

[3] S. S. Pinter, R.Y. Pinter, 'Program Optimization and Parallelization Using

Idioms', ACM SIGPLAN, Principles of Programming Languages, pp 79-92,

1991

[4] C. W. KeBler, 'Pattern-driven automatic program transformation and

parallelization', Proc. Euromicro workshop on Parallel and Distributed

Processing 1995, pp76-83

73

Bibliography 7 4

[5] C. W. KeBler, C. H Smith,' The SPARMAT approach to automatic

comprehension of sparse matrix computations', Proc. 7^ International

workshop on program comprehension 1999, pp 200-207

[6] C. S. Raghavendra, S. Bhansali, 'On porting sequential programs to parallel

machines', Proc. COMPSAC'94 pp 313-318

[7] S. Bansali, J. R. Hagemeister, et. al, 'Parallelizing sequential programs by

algorithm-level transformations' Proc. IEEE Third workshop on program

comprehension 1994, pp 100-107

[8] J. R. Hagemeister, S. Bansali, et. al., 'Implementation of a pattern -matching

approach for identifying algorithmic comcepts in scientific FORTRAN

programs', Proc. 3'^ Int. conference on High Performance Computing 1996,

pp209-214

[9] Kelly T, 'Optimising Hardware Granularity in Parallel Systems', PhD

University of Edinburgh 1995

[10] Sabot G., Wholey S. et al, 'Parallel Execution of a FORTRAN 77 Weather

Prediction Model', Proc 1993 ACM/IEEE conference on Supercomputing,

Portland Oregon, USA.

[11] Sethian J. A., 'Computational Fluid Mechanics and Massively Parallel

Processors', University of California, Proc. Supercomputing 1993.

[12] Jin H., Hirbar M. and Yan J., 'Parallelization of ARC3D with Computer-

Aided Tools', NAS Technical Report , NAS-98-005, NASA Ames Research

Center 1998.

[13] Hong Q Ding, 'Monte Carlo Simulation of Quantum Systems on Massively

Parallel Supercomputers', Proc. Supercomputing 1993.

[14] Ewing R E. Sharpley R.C., 'Distributed Computation of Wave Propagation

Models using PVM', Proc. Supercomputing 1993.

[15] Cross M., lerotheou C. S., Johnson S.P., Legget P. and Rvans E., ' Software

tools for Automating the parallelisation of FORTRAN Computational

Bibliography 7 5

Mechanics Codes', Parallel and Distributed Processing for Computational

Mechanics 1997.

[16] Harman M.,Simpson S.,'EPSILON - A Radar Cross Section Modelling

package', Proc. UKSCS 1990

[17] Galloway P., Simpson S., 'Parallelisation of Radar Cross Section (RCS)

Prediction for Electrically Large Targets', Proc, European Simulation

Multiconference 1991

[18] Galloway P.,'The Operation and Control of large Parallel Simulations on a

Network of Sun Workstations using CSTools™',Proc. European Simulation

Symposium 1992

[19] Knapik M, Johnson J., 'Developing Intelligent agents for distributed

systems', McGraw-Hill, 1998.

[20] Haridi S., Van Roy P. et. al., 'Programming Languages for distributed

applications'. New Generation computing, 16(3):223-261, May 1998.

[21] Wolfe M., 'Data Dependence and Program Restructuring', Jou.

Supercomputing 4 (321-344) 1990

[22] Wolfe M., 'Engineering a data dependence test', CONCURRENCY: Practice

and Experience, Vol 5(7), 603-622 Oct 1993

[23] Brooks, E. D. Ill and Warren K. H. 'A Study of Performance on SMP and

Distributed Memory Architectures Using A Shared Memory Programming

Model'. Proc. of SuperComputing (Nov 1997).

[24] Fountain D., May D.,'A tutorial Introduction to occam Programming'.,ESP

Professional Books.

[25] Foster I., Taylor S.,"Strand: New concepts in parallel programming". Prentice

Hall 1990. ISBN 013850587X

[26] Chapman B., Mehrotra P., et al, 'Dynamic Data Distributions in Vienna

Fortran', Supercomputing 1993 Pp. 284-293

Bibliography 7 6

[27] Fox G., Hiranandani S., et al., 'Fortran D language specification.' Dep.

Computer Science Rice COMP TR900079. 1991.

[28] Harris J. et. al.,'Compiling High Performance Fortran for Distributed-memory

Systems',Digital Technical Journal Vol. 7 No. 3 1995

[29] Brandes T., Benkner S., 'Exploiting Data Locality in Scaleable Shared

Memory Machines with Data Parallel Programs', Proceedings of Euro-Par

2000, Parallel Processing. September 2000.

[30] OpenMP Fortran/C Application Program Interface, http://www.openmp.org/

[31] Jin H.M, Frumkin M., Yan J., 'The OpenMP Implementation of NAS Parallel

Benchmarks and Its Performance', NAS Technical Report, NAS-99-011,

NASA Ames Research Centre, 1999.

[32] Silicon Graphics, Inc. MlPSpro ™ Power Fortran 77 Programmer's Guide.

Document 007-2361-007, SGI, 1999.

[33] Thinking Machines Corporation, 'CM Fortran Reference Manual', version

5.2, Cambridge, MS, 1989

[34] Su E., Lain A., et.al., 'Advanced Compilation Techniques in the PARADIGM

Compiler for Distributed Memory Multicomputers', Proc. ACM International

Conference on Supercomputing, Barcelona Spain, 1995.

[35] Walker E., 'Extracting data flow information for Parallelizing FORTRAN

nested loop kernels', PhD thesis. University of York (U.K.) June 1994.

[36] Das R., Saltz J., et al ' Slicing Analysis and Indirection Access to Distributed

Arrays' Proc. Sixth Annual Workshop on languages and Compilers for

Parallel Computing, Portland OR. August 1993.

[37] Van der Wijngaart R. F., 'Charon toolkit for parallel, implicit structured-grid

computations: Literature Survey and conceptual design' NAS Report 97-018,

NASA Ames Research Centre, Moffett Field, CA., 1997

http://www.openmp.org/

Bibliography 7 7

[38] Saad Y., Kuznetsov S., et al. 'PS PARS LIB: A portable library of parallel

sparse iterative solvers', Proc. Eighth SI AM Conference on Parallel

Processing for Scientific Computing, Minneapolis, MN, March 1997.

[39] Schonauer W., Hafner H., Weiss R., 'LINSOL, a parallel iterative linear

solver package of generalised CG-type for sparse matrices', Proc. Eighth

SIAM Conference on Parallel Processing for Scientific Computing,

Minneapolis, MN, March 1997.

[40] Message Passing Interface, http://www-unix.mcs.anl.gov/mpi

[41] Snir M., Otto S. W., et. al, 'MPI: The Complete Reference', MIT Press, 1995

[42] Meiko Ltd., 'CS TOOLS for MeikOS', Meiko Almondsbury, Bristol England

[43] Saad Y., Sosonkina M., 'Non-standard parallel solution strategies for

distributed sparse linear systems'. Proceedings of ACPC'99, Lecture notes in

computer science, Berlin, 1999. Springer-Verlag.

http://citeseer.ni.nec.eom/308666.html.

[44] Folors N. Reeve J., 'Domain Decomposition Tool (DDT) version 2.2 An

abridged Users Guide', Southampton University 1994, ESPRIT CAMAS

6756.

[45] Adams M. P., 'A Distributed Memory Unstructured Gauss-Seidel Algorithm

for Multigrid Smoothers', ACM/IEEE proceesinds of SCOl: High

Performance Networking and Computing 2001.,

http://citeseer.ni.nec.eom/adams01distributed.html

[46] Charles Simonyi, "The Death of Computer Languages, The birth of

Intentional Programming', Technical Report, MSR-TR-95-52, Microsoft

Corporation.

[47] Advanced Parallel Research, 'Forge Explorer User's Guide',

http://www.qpsf.edu.au/workshop/forge/forge.html

[48] J.H. Merlin. 'Inter-procedural Dependency Analyser (IDA)' CAMAS report

2.2.1.1, Univ. of Southampton March 1993.

http://www-unix.mcs.anl.gov/mpi
http://citeseer.ni.nec.eom/308666.html
http://citeseer.ni.nec.eom/adams01distributed.html
http://www.qpsf.edu.au/workshop/forge/forge.html

Bibliography 7 8

[49] Bodin F., Beckman P. et al, 'Sage++: An Object-Oriented Toolkit and Class

Library for Building Fortran and C++ Restructuring Tools', University of

Rennes and Indiana University. 1994, OONSKI94

[50] 'Sage++; A Class library for Building FORTRAN 90 and C++ Restructuring

Tools:User Guide', Nov 1994, Indiana University.

[51] KAP: http://www.kai.com/vkomp

[52] Allen F.,Burke M., et al, 'An Overview of the PTRAN Analysis System for

Multiprocessing',Jou. of Parallel and Distributed Computing 5 617-640 1988.

[53] Zima H. P.,Bat H. J.,Gerndt M., 'SUPERB: A tool for semi-automatic

MIMD/SIMD parallelization'. Parallel Computing 6 (1988) 1-18

North-Holland.

[54] Cross M., lerotheou C. S., et al,'CAPTools - semiautomatic parallisation of

mesh based computational mechanics codes' Pres. to HPCN Europe Munich

1994. (April).

[55] Simulog http://www.simulog.fr

[56] Hood, R, ' Building a Portable Distributed Debugger', proc. STDT'96:

SIGMETRICS Symposium on Parallel and distributed Tools. 1996.

[57] May J., Berman F., ' Panorama: A Portable, Extensible Parallel Debugger',

ACM SIGPLAN, 28(12), December 1993.

[58] Nikolaou, C., Saridakis, T., Zarras A, 'ArrayTracer : A Parallel Performance

Analysis Tool', Technical Report TR95-0136, Aug 1996

http://citeseer.nj.nec.com/article/nikolaou96arraytracer.html

[59] London, K., Dongarra, J. et al. ' Using PAPI for hardware performance

monitoring on Linux Systems', Presented at Linux Clusters : Revolution, July

2001., http://www.ptools.org/proiects/index.html

[60] Shende S., Hackstadt S. T. and Malony A. D., ' Dynamic performance

callstack sampling: Merging TAU and DAQV-II', Proceedings of the Fourth

International Workshop on Applied Parallel Computing (PARA98), June

http://www.kai.com/vkomp
http://www.simulog.fr
http://citeseer.nj.nec.com/article/nikolaou96arraytracer.html
http://www.ptools.org/proiects/index.html

Bibliography 7 9

1998., Lecture notes in Computer Science, No. 1541, Springer-Verlag, Berlin

1998.

[61] 'Animated Algorithms', The Mathematica Journal vol4, issue4 Fall 1994

pp37- 43, based on work by Roman E Meader, ETH Zurich, Institute of

Theoretical Computer Science.

[62] Fitzpatrick s. et. al, 'Deriving Efficient parallel Implementations of

Algorithms Operating on General Sparse matrices using Automatic Program

Transformations'. Parallel Processing CONPAR 94-VAPP VI pp 148-159.

[63] ten Cate H.H., Vollebregt E.A.H, "On the portability and efficiency of

parallel algorithms and software" Report 94-76, NOWESP project within

MAST II program.

[64] R. C. Waters. 'Automatic analysis of the logical structure of programs.'

Technical Report 492, MIT Artificial Intelligence Lab., December 1978.PhD

Thesis.

[65] S.F Fickas and R Brooks. 'Recognition in a program understanding system'.

In Proc. 6"̂ International Joint conference. Artificial Intelligence, pages

2660268, Tokyo, Japan, August 1979.

[66] L. M. Wills. 'Automated Program Recognition by Graph Parsing', PhD

thesis, MIT 1992, Technical Report 1358, MIT Artificial Intelligence Lab,

Cambridge, MA. http://users.ece.gatech.edu/~Iinda/phd-thesis.html

[67] W. Kozaczynski, J.Ning, et. al. ,'Program concept recognition and

Transformation', IEEE Transactions on Software Engineering, 1992. ppl065-

1074

[68] C. Rich., 'A formal representation of plans in the programmer's apprentice.'.

Proceedings of the 7'^ International joint conference on artificial intelligence.

1981.

[69] L. Snyder. 'Recognition and Selection of Idioms for Code Optimization',

Acta Informatica, 17:327-348, 1982.

http://users.ece.gatech.edu/~Iinda/phd-thesis.html

Bibliography 8 0

[70] Stroustrup B., 'The C++ Programming language', Third Edition, Addison-

Wesley, 1997. ISBN 0-201-88954-4

[71] C. G. Nevill-Manning, I. H. Witten, ' Identifying Hierarchical Structure in

Sequences: A linear Time algorithm', http://dna.stanford.edu/sequitur/iair

[72] Villavicencio G., 'Program Analysis for the Automatic Detection of

Programming Plans Applying Slicing', Proceedings of the 5th European

Conference on Software Maintenance and Reengineering. CMSROl, March

2001, http://citeseer.ni.nec.eom/villavicencio01program.html

[73] Kucherov G., 'Matching a Set of Strings with Variable Length Don't Cares',

Theoretical Computer Science, 178 (1997) pp 129-154.

[74] Baker B. S., Giancarlo R., 'Longest Common Subsequence from Fragments

via Sparse Dynamic Programming', European Symposium on Algorithms,

August 1998.

[75] Baker B. S., et al. 'On Finding Duplication and Near-Duplication in Large

Software Systems', Second working conference on Reverse Engineering,

1995.

[76] Baker B. S., et al., 'Compressing Differences of Executable code', ACM

SIGPLAN workshop on compiler support for system software (WCSSS'99),

1999.

[77] Paul, S., Prakash A, "A Framework for source code search using program

patterns", IEEE Transactions on Software Engineering 20(6): 463-475.

[78] Quilici A., Yang Q., et al., 'Applying Plan Recognition Algorithms to

Program Understanding', Automated Software Engineering: An International

Journal, July 1997, http:// citeseer.nj.nec.com/quilici97applying.html

[79] Teukolsky S. A. et al. 'Numerical recipes in C, The art of scientific

computing. Second Edition', Cambridge University Press, ISBN 0-521-

43108-5, 1992

http://dna.stanford.edu/sequitur/iair
http://citeseer.ni.nec.eom/villavicencio01program.html

Bibliography 8 1

[80] Bono Edward de, ' The Mechanism of Mind', Penguine Books Ltd, ISBN 0-

1402.1445-3, 1969.

