UNIVERSITY OF SOUTHAMPTON

Faculty of Engineering and Applied Science
Department of Electronics and Computer Science

Southampton SO17 1BJ

TOOLS FOR THE SUPPORT OF AUTOMATIC PARALLELISATION BY
ALGORITHM SUBSTITUTION

by Philip Galloway
BSc

A thesis submitted in partial fulfilment of the requirements for the award of a

degree of Master of Philosophy at the University of Southampton.

Department of Electronics and Computer Science

April 2002

SUPERVISOR: Dr J S Reeve
Department of Electronics and Computer Science
University of Southampton

Southampton S017 1BJ

UNIVERSITY OF SOUTHAMPTON
ABSTRACT

Faculty of Engineering and Applied Science

Department of Electronics and Computer Science

Master of Philosophy

TOOLS FOR THE SUPPORT OF AUTOMATIC PARALLELISATION BY
ALGORITHM SUBSTITUTION

By Philip Galloway
BSc

Program recognition is an important tool for the development, support and
manipulation of software, particularly in the field of parallelisation tools. One area of
current interest is the potential advantage of algorithm substitution as a means of
optimising source code for execution on parallel hardware. In order to substitute an
algorithm within a source code, the elements of the original algorithm must be

recognised and extracted. The recognition of code elements is therefore the first step

towards implementing such a system.

This work reports on the implementation and operation of two algorithms to support
the program recognition aspects of this automatic algorithm substitution idea. The
algorithms have been applied to a number of source code examples and their
performance evaluated. The approach embodied in these algorithms has been shown

to be effective as they can operate without the need for extensive code normalisation

found in other approaches to this problem.

Acknowledgements

I would like to thank Dr Steve Simpson for his unwavering support and
encouragement throughout the duration of this work. I would like to thank Roke
Manor Research Ltd for their financial assistance in allowing me to pursue this

activity as a part time research student.

My thanks also go to Dr Jeffery Reeve who has provided guidance and

encouragement during my work in the ECS department.

I would like to dedicate this work to my Mother.

Contents

Chapter 1 INtrodUCTION c..ec.veviiiieeiece ettt et 1
1.1 Backgroundooouviiiiiiiiiiic ettt 3
1.1.1 Problem domains for parallel processingcccocceevermeinrneecrenennieneneens 5
1.1.2 Support for the PrOgrammerccoeeiiiiiiierienc e ee e seeneas 7
1.1.3 Parallelisation TOOISELSceeviiiririiiinirinrcteeir et 8
1.1.4 Current Parallel tools and technology......cccocceevvivircieiiiieiniie e 11

1.2 MIOTIVALION .1ttt ettt ettt s et naeasbe e e en 17
L3 Related WOTK c...oeiiiiiiiiienecietcc e 18
1.3.1 Automatic Program Recognitionc.ccceuievirrieiiriienieninececeie e 19
1.3.2 Algorithm SubDSHITULIONcveveiiiiiiiiiecieeeee ettt 19
1.3.3 Algorithm Learning Procedurescccccceeverinieenieoieiinennnenrecnenen, 20

L APPIOACKH ...ttt 21
Chapter 2 Learn Tool System DesCriptionc.cceceiivcnenniiineeiceeeseeces e 24
2.1 Learn Tool History and COmMPOSILIONcccceteriiverriniiirieniieiisesie e 25
2.2 The Sage++ SYSIEIM ..ooruiiiiriiiiieiiie ettt 26
2.3 Reverse Traversal ..ot 26

il

Contents

2.4 Pattern MatChing......coccoeeeveeieiiriiieciieccc s 29
2.4.1 Related Work on Pattern MatChingoooocoooeersosreseeseessesresssreoes 29
2.4.2 Overview of APProach ...c...ccccouivimiiiiiciiiiii i 30
2.4.3 Code Status TeIMSoeeiierieeiieeeeit i 32
244 RUIES ..ttt 33
245 KEYS cuveviriteiterieieete sttt et 33
2.4.6 Matching AIOTIthimcccveoiiiiiiiiiiii e 33
2.4.7 Learn Tool FaCilitiesc.cuveiiiiriiiiiiiiieniiicen e 35

Chapter 3 Test CaSES.....covveiiiiiiiiiiiiii ettt e 38

3.1 Statistics EXAMPIE.....o.cooieririiiiiiiniiciiii e 39
3.1.1 REVEISE TTAVEISE ocovveiieiiiiie ittt 39
3.1.2 Pattern MatChing........c.occcoveeiiiiiiiiniiiiiccnii et 42

3.2 Laplace EXaMPIE......ccocooiiiiiiiiiiiiiiii e 47
3.2.1 REVETSE TTAVETSE .vvvereeeeeaereeiieenieeeieeeiee sttt 48
3.2.2 Pattern MatChing......c.cccocviiiiiiiiiiii e 49
3.2.3 Laplace Variation ... 52
3.2.4 Laplace Variation Z.........ccccccviiiciciniiiiiiiiiiieeeseescenie e 53
3.2.5 Laplace Variation 3..........cccocevieiriviiiiiiimiee et 53
3.2.6 Laplace Variation 4..........cccoevveiiineiiniiniiiieeiireee et 53

3.3 Matrix Multiply EXampleccccoooiiiiiiiiiiii i 55

3.4 Maximum Value in an Array of INt€gers........cccoovmvivrniiniiiiiii 56

3.5 DISCUSSION ...vevvieeriierieereeatesieeneeseeenseseseseeesateeneenassstseuestssieesasentesreeanesnaeareanssereenns 56

Chapter 4 Concluding Remarks ... 58

4.1 Parallelisation TOOIS ...cccoeiiiiiiireci 59

4.2 ReVErSE TIAVETSAL ..cc.veieciiiiiiiiieeiiieiie ettt 59

4.3 Pattern MatChing.......cccccveveenveiiiiiiiiiciniencniencies e 59

4.4 SUIMIMATY ..ottt sttt bbbttt ebe st a bt se e sbs b 60

Appendix 1 — Example Source Code.....c.coiiiiiiiiieiiiiiiiiiie 62
ATLT — SEALISTICS 1oveeiiiiitiieie ettt st n st ear e b 62
ATL2 = LaPIACE .ttt s 67

BIDLIOZIAPRY ...t 73

11

Contents

List of Figures

Figure 1 Generic Parallelisation Toolset COMPONENLScccveeveeriiecrinrienie e, 8
Figure 2 Abstract view of program COMPOSILIONccoeeeeiririecieeerieieeiene e 19
Figure 3 Reverse Traverse FIOW Chart.........cccooceiieiniinieiicreiiee e 27
Figure 4 Flow chart detailing the rule-matching algorithm...........cc.cococivinie. 35
Figure 5 Annotated Rule Editor Dialog.........ccoooiiiiiiiiiiiiiiiniciice e, 36
Figure 6 Annotated Rule Association Dialog.........cccocueveriieniiniicniiiiieniniieeneene 37
Figure 7 Screen shot of Stats example reverse traverse showing mean dependency
GIAPNL .ot 39
Figure 8 Reverse Traverse dependence graph for variance.coceevcvveevcninneninne 41
Figure 9 Rule: calculation of MEan.........coocveeeviiiiiiiiiniiicee et 42
Figure 10 Screen shot of the match detail for the calculation of mean rule. 43
Figure 11 Rule: SUM array eIcooeeruirieriiieitesieeseeientesre sttt e ree e 44
Figure 12 Screen shot of the match detail for the Sum array items rule.................... 45
Figure 13 Rule: ASSIZN TOZETO ..c..eiviiviiiiiiiiiiieei ettt 45
Figure 14 Screen shot of the match detail for the AssignToZero rule.........c.ocuene.n. 46
Figure 15 Rule: Accumulator_1cocooviiiioiiniiiiiiieieccce e 46
Figure 16 Screen shot of the match detail for the Accumulator_1 rule..................... 47

iv

List of Figures

Figure 17 Reverse Traverse dependence graph for datal.............c.oo 48
Figure 18 Rule: laplace SEqUENCEccccoiiiiiiiiiiiiiiiieicce e 49
Figure 19 Rule: eW then NSccocviiiiiiiiiiiiiii e 49
Figure 20 Rule: west then €ast.........ccoiiiciiniiiiiiiiiiii 49
Figure 21 Rule: 2D array West aCCESS......ccovriiriiiiiiiiiiiieic e 50
Figure 22 Screen shot of the match detail for the “laplace sequence” rule 51
Figure 23 Screen shot of the match detail for the 2D array West access rule. 51
Figure 24 Variation 1 coding of Laplace examplecccoevviiiiniiiiiiiinniniinn, 52
Figure 25 Screen shot of the match detail for the” laplace sequence” rule for this

VATTALION 1ottt ettt ettt sttt e s ae st e s era e e nas e eabeateeaeaas 52
Figure 26 Variation 2 coding of Laplace example ..o, 53
Figure 27 Variation 3 coding of Laplace example.........cccocooviiiieiiiiniinin 53
Figure 28 Variation 4 coding of Laplace examplecccccoecoiviiiniiiiiniiii, 54
Figure 29 Screen shot of the match detail for the “laplace sequence” rule for this

VATTATION. 1. evrtrureesiteetieeite et te et e st e e saneests e st esan e s st e sasen e e saassebe s r e s ensesasaenneenaeenseens 54
Figure 30 Code fragment for matrix multiplyccccooniniiviniiinniiiii e 55
Figure 31 Code fragment for find maximum integer value from array..................... 56

List of Tables

Table 1 Description of the fields in a “CodeStatusItem”..........c.ccoecvviinvinnivennieenenn. 32

vi

Chapter 1 Introduction

“Automated program recognition can play a crucial role in overcoming

limitations of existing tools for automatic parallelization” Martino et al.

[1].

Program recognition is a process whereby the core functionality of an application,
module or phrase is recognised by studying its implementation or detailed behaviour.
It can be thought of as the process whereby the original intent of the programmer is
deduced. Indeed the working title of this thesis was “Intent Analysis”, however

program recognition is the more commonly used term in the computer science

community.

Chapter 1 Introduction 2

Software engineers who maintain legacy code perform program recognition
routinely, as do application developers who work in teams and need to review the
work of their co-workers. The application of program recognition to the process of
parallelisation builds on the observation that the greatest program speed-ups are most
often achieved when a component algorithm is completely changed rather than re-
coded or optimised. This is particularly true for algorithms that are targeted for
parallel hardware where the memory hierarchy is many layered and inter-process /
inter-processor communication costs can dramatically inhibit the efficiency of poorly
matched algorithms. The other application of program recognition for parallelisation
activities is to restructure the code to use pre-optimised library routines once a

suitable substitution has been found.

Automated program recognition would be used to allow a parallelisation tool to
perform algorithm substitution as part of its operation. Algorithm substitution may
also be useful for optimising code for serial platforms, indeed for commercial
software that is developed under a tight budget, optimal algorithms are rarely chosen
for an initial implementation. There are several reasons for this, the most common
being the drive to implement a simple (less efficient) algorithm accurately in the
minimum required development time so that effort can be concentrated on

verification of functionality and user interaction issues.

Several workers in the academic community have reported on their progress towards
the goal of implementing algorithm substitution systems, these include Martino et al.
[1] KeB3ler et al. [2], Pinter at al. [3], KeBler [4,5], (Raghavendra et al. [6], Bansali
et al. [7] and Hagemeister et al. [8]. This work was motivated by the same
fundamental idea and has resulted in a prototype analysis code, named “Learn Tool”

that implements two of the strategies considered.

This work seeks to allow the deduction of the intent of the programmer to be
partially automated, to assist in the optimisation of legacy code for operation on
parallel platforms. Thus the scope of the work is confined to the extraction of intent
information from legacy code and does not address directly the issue of optimal

program fabrication for parallel platforms.

The thesis is organised as follows:

Chapter 1 Introduction 3

Chapter one starts with a background section that discusses briefly the distinction
between parallel and serial computers and then sets the context of the work with a
description of a generic parallelisation toolset that may be used to convert serial code
to execute “optimally” on parallel hardware. This is followed by a more detailed
discussion of the motivation for the work. Next, a section detailing the related work
on program recognition provides an overview of other work in this area and how it
relates to this work. The chapter concludes with an outline of the approach to the

practical work undertaken.

Chapter 2 describes the software constructed to investigate the ideas for the program
recognition concept; this introduces the Sage++ toolset (a third party parse tree
generator and source code to source code transformation toolset) the Reverse
traversal and the Pattern matching algorithms, which were implemented on top of

Sage++ in the Learn Tool application.

Chapter 3 provides examples of exercising the Reverse Traverse and Pattern
matching algorithms on simple source code test cases. This highlights some of the

difficulties of the two approaches and demonstrates the basic utility of the pattern

matching approach.

Chapter 4 contains the conclusions drawn from the work and summarises the main

findings.
1.1 Background

To start it is worth reviewing the definitions of parallel and serial computer, as in
these days of high integration and pipelined processors the distinction can become

somewhat blurred.

A serial computer can be thought of as executing instructions in an ordered manner,
starting with the first and ending with the last, essentially adopting a Von Neumann
architecture. The order of instructions is determined by the control structures in the
program but there is no simultaneous execution of different parts of the instruction
sequence at any time. A parallel computer has more than one processing unit
allowing separate instructions to be executed simultaneously on different units. The

instructions may be the same but operating on different data, Single Instruction

Chapter 1 Introduction 4

Multiple Data (SIMD) or both instructions and data may be different, Multiple
Instruction Multiple Data (MIMD). SIMD is often referred to as a data parallel
approach or as the parallelisation strategy is almost always based on data

partitioning. MIMD is also described as task, thread or process parallelism.

Parallel implementations of software operate in two main paradigms. The first is
closely associated with SIMD or the data parallel approach. The partitioning of the
data in the problem is embedded in the source code, typically in HPF or OpenMP
extensions to C, Fortran or C++. The distribution of the data to physical processors,
or processes on actual processors is a compile or run time issue and is dealt with by
the compiler and/or a data distribution library. The second, MIMD style is a lower
level approach based on writing explicit message passing code and potentially
running different executables on the distributed processors. The second style can be
used for a SIMD program and can provide a more intimate control of the locality of
the data. The second style is the most common approach for implementing task
parallel applications. The two main task parallel strategies are master/slave and
pipeline. The master/slave model is were a single co-ordinating process distributes
tasks to a pool of slave processors that may perform multiple instances of the same
code or may perform different tasks associated with the overall problem. A pipeline
strategy breaks up the calculation into stages that feed from one process to the next
with data flowing through them, very much like a production line. Each processor
performs part of the overall calculation and the data is passed on to the next
processor when processed. Pipeline parallelism is often employed in Digital Signal

Processing (DSP) situations where there is a natural flow of data from an external

source and ‘live’ processing is required.

Modern Microprocessors are parallel processors, in that they typically have multiple
processing components, Central Processing Unit (CPU), Floating Point Units
(FPU's) and dedicated communication sub processors, along with memory
management and cache facilities. For the purposes of this text, microprocessors of
this sort will be classified as serial machines, since the instruction set (for the high
level programmer) is purely sequential, with any parallelism being exploited

invisibly by the compiler, macro code, or skilled assembly language programmer.

Chapter 1 Introduction 5

Modern compilers achieve a good degree of efficiency for most applications where
there is fine-grained parallelism. This granularity maps well onto the multiple

processing units within typical microprocessors.

Parallel computers exist in many configurations ranging from dual processor PCs,
and workstation clusters to dedicated parallel machines such as IBM SP2, Cray T3D,
T3E and SGI Origin 2000. Every parallel computer has a set of performance
characteristics that relate to its memory hierarchy, inter-processor communications
and core microprocessor. The programming model for a parallel machine may be
shared memory, distributed memory or both. The level of hardware support for
communications will influence the programming model and how effectively it can be
used on a particular platform. For example, a network cluster of workstations on a
standard Ethernet, will have high latency and relatively low bandwidth
communications, so a shared memory paradigm would tend to perform poorly
against, for example an SGI Origin 2000, which whilst having a physically
distributed memory, has high bandwidth support for node to node communications
(as well as a common virtual memory space). That is not to say that programmers
cannot use a shared memory paradigm on a parallel machine with low
communications performance, but rather to indicate that that it will only work
efficiently if great care is taken to ensure data and process locality, a task, often more

easily achieved by adopting a message passing approach.

Parallel machines roughly fall into three categories, Symmetric Multi Processing
(SMP) where a single memory bus is used for all processors, Massively Parallel
Processing (MPP) where the memory is distributed and data is shared by
communications and recently Non-Uniform memory Access (NUMA) or Distributed
Shared Memory, (Origin 2000) where there is explicit hardware support for a single

memory image over a distributed memory architecture.

1.1.1 Problem domains for parallel processing

Parallel processing is adopted as a solution to the problems of ultimate computer
performance and cost performance trade-offs Kelly [9]. Parallel architectures offer
the possibility of exceeding the processing capability of single processors in terms of

MIPS and FLOPS as well as ability to provide large memory configurations with

Chapter 1 Introduction

distributed address spaces. Many areas of research can and do utilise the fastest of
computers to tackle problems in domains such as weather forecasting Sabot et al
[10], Fluid Mechanics, Sethian [11], Jin et al [12], Quantum Physics, Hong [13],
Wave Propagation, Ewing [14], Computational Mechanics, Cross et al. [15] and my
own area of interest, Electromagnetic Simulation, Harman and Simpson [16],

Galloway and Simpson [17], Galloway [18] to name a few.
To summarise, parallel computers are used in the following situations:

e Where a single processor reaches its ultimate speed and is still not fast

enough.

e Where sufficient execution speed can be attained on a single processor but

the cost of the equivalent parallel hardware is lower.

e Where a single processor configuration cannot address enough memory space

for the calculation of very large problems.

e Where a convenient parallel resource, such as a workstation cluster has
available idle time and can be exploited at low cost. This is common in most
business environments where hundreds of desktop PC could be exploited at

little additional cost and with little impact on the main users.

The use of parallel processing machines in other situations (other than parallel
processing research) is rarely cost effective, since the operator has to overcome all
the drawbacks of operating a parallel application listed by Kelly [9] which do not

occur for the alternative realisable single processor solutions.

The above holds true for most scientific applications, whereas there is considerable
activity in internet based parallel processing, where agents, Knapik and Johnson [19]
may interact to achieve goals that are not possible on a local configuration because of
special resource or information availability. Languages to support this work such as
Java 2 (JDK 1.2), Oz and Mozart, Haridi, Roy et al. [20] are not considered in the
context of this work, which focuses on scientific applications and primarily legacy

FORTRAN applications.

Chapter 1 Introduction 7

1.1.2 Support for the programmer

A programmer writing code for a parallel computer is operating in one of the

following situations:
e Converting an existing serial application.
e Converting a parallel application to a new computer platform.

e Writing a new application for a parallel computer.

The conversion of existing code entails a trade-off between changing inefficient code
sections and spending a minimum of effort in performing the conversion.
Parallelisation tools have been developed to attempt to make these tasks efficient.
The tools provide a variety of facilities that help the programmer solve the problems

encountered during the code creation and conversion processes.
The main problems that the programmer has to solve are:
e How to distribute or partition the data.
e How to distribute or partition the functionality.
e How to take account of the memory layout of the target machine or machines.

e Making the selection of suitable algorithms.

Incidental details of how to implement the data sharing and synchronise the

operation of multiple processing units are also areas where tools can assist.

With no parallelisation tools it is possible to construct parallel applications using
networking protocols such as TCP/IP, which are usually accessible from most high
level languages, however for any particular application the first step is most likely to
build a communications library or a virtual memory space support structure on top of
this layer. Commercial Off The Shelf (COTS) parallelisation tools provide these with
minimum effort and go on to provide support for code analysis, code re-writing and

supporting debugging and monitoring tasks.

Chapter 1 Introduction 8

1.1.3 Parallelisation Toolsets

The practical work undertaken for this thesis looks at two components of a generic
parallelisation toolset. This section presents a representative parallelisation toolset

and highlights where the work reported on in this thesis resides in the overall

parallelisation process.

Profiler
Parallel
CallTree performance
monitoring
) tools
Reverse *
Traverse
’ Parallel
Serial Executable Performance - Debugger
Estimation l
gy 1
y Qutput
Compiler Dependency Static | |
P Analysis Analysis |
|
W Parse Tree f]
Code I i Parallel
‘ Normalisation I i Executable
__________ [N S S ———
‘ I ¥
\ . Program *
Serial TargetMachine | | | Recognition Algorithm Code
Source Code Characteristics (Pattern [™"| Substitution Fabrication
Matching)
Inputs Revised
Parse Tree
Pattern Parallel Algorithm Message Passing
Library Library Library

Figure 1 Generic Parallelisation Toolset components

Figure 1 provides a detailed diagram showing some of the key components of a
generic parallelisation toolset. The main purpose of the toolset is to assist the user in
converting a serial application to run effectively on a particular target parallel
machine. The application source code and the target machine characteristics (along
with any target machine specific libraries) constitute the starting position of the
conversion process. The toolset provides the user with facilities to understand the
code, manipulate the code and evaluate the efficiency and correctness of the resulting
parallel executable. The output is the parallel executable (or several executables)
that will operate on the target parallel machine. This toolset is assumed to operate on

a traditional high level language such as FORTRAN, C or C++.

Chapter 1 Introduction

The interconnections in Figure 1 show the general flow of activity and highlight
where machine characteristics and human support or influence is needed or expected.
Note the practical use of the toolset would be iterative, with the user potentially
revisiting earlier stages of the parallelisation process several times to fine tune and
optimise the end result. The remainder of this section details each of the components

on the diagram and provides a brief explanation of the support being provided by the

toolset.

The Target machine characteristics would include details of the number of
processing nodes, the memory configuration, the cache line lengths and
communication performance such as latency and bandwidth. These details are often

needed to optimise data partitioning, algorithm selection and the code fabrication

processes.

The compiler would produce a serial executable and a parse tree, which may be used

by the other tools in the toolset to manipulate and extract information from the code.

In a large application it is often only a small section of code that can provide a
significant benefit from parallelisation. This is typically in a deeply nested loop
where most of the application spends its time during the calculation. Identification of
this code section is critical to effective parallelisation. The toolset would provide a
profiler, which would instrument the code to identify the main time consuming
operations that the application performs. Alternative means of identification of the
key section to parallelise could be provided by a call tree, a performance
estimation tool or perhaps a reverse traverse” tool. In most cases all these would be
used to identify the critical sections of code and to put into context the sections with

respect to the overall architecture of the application.

Dependency analysis is the key process that allows the identification of independent
processing opportunities. The loops in the key sections of the code are examined and
the references to the data being processed is checked to see if the operations can be

performed in parallel or if the operations must proceed in a strict order Wolfe

* One of the tools investigated in the practical work of this thesis

Chapter 1 Introduction 10

[21][22]. Prior to dependency analysis the code may be manipulated to make it more
likely for the dependency analyser to operate effectively. These manipulations are

often called code normalisation and may consist of but not limited to:
e Procedure in-lining.
e Forward propagation of constant expressions.
e Induction variable substitution.
e Temporary variable substitution.

e Dead code removal.

e Conversion of GOTO’s into if-then-else or while statements.

e Loop distribution.

Other manipulations such as loop unrolling and loop re-rolling may also be used to
improve the outcome of the dependency analysis. Some toolsets may provide
facilities for the user to influence the outcome by feeding in user knowledge of the

application to allow more data independence to be identified.

Static analysis is a process whereby a decomposition of the program data to execute
in parallel is selected. This results in a SIMD code with the data partitioned among
the processors and the application of an owner computes rule. A classic example of
this occurs for structured grid algorithms, where there may exist several data
partitioning strategies BLOCK, STRIP, CYCLIC etc. which can be selected at the
static analysis stage. In cases where the decomposition is likely to be data dependent,
for example when the data indexing is indirect, then this might lead to the addition of

code to perform a dynamic decomposition, which is then evaluated at runtime.

The code fabrication operates on the revised parse tree and assembles and compiles
the parallel executable(s). This may consist of adding message passing code to
distribute and re-assemble the parallel sections of data processing, or may entail the
addition of OpenMP or perhaps HPF directives. Again this tool may need to be

sensitive to the target machine properties, for example selection of data sizes may

Chapter 1 Introduction 11

crucially effect the cache coherency, also the possibility to pre-fetch or hide
communication operations behind processing may be possible for some architectures,
Brooks and Warren [23]. Vectorisation of communications to minimise the impact of

communications latency may also be provided.

Program recognition® may be used to automatically recognise the mathematical
operations embodied in an application and provide the possibility to substitute
algorithms that are better matched or are more parallelisable on the target machine
architecture. The process of program recognition is the main subject of this thesis
and usually involves template or pattern matching. Algorithm substitution is the
process whereby an equivalent algorithm is evaluated for use in a particular
application, as a substitute to one of the recognised components within the original
code. This selection involves an assessment of the likely performance of the new
algorithm and verifying that a complete substitution is possible. Code normalisation

may also precede program recognition.

The final components for a parallelisation toolset are a parallel debugger and
performance visualisation tools. These allow the correctness of the parallel code to

be tested, corrected and potentially fine-tuned.
1.1.4 Current Parallel tools and technology

Several of the components for the generic parallelisation toolset are already well
established in the market place, whilst others are still being developed and improved.
This section provides a summary of where this field was at the start of the practical

work undertaken for this thesis and then highlights some of the advances made in the

interim.
Parallel Languages

Parallel languages allow the direct exploitation of any possible parallel nature in an
application. A typical application will have tasks that can be done in any order and

some which must be executed sequentially. The programmer can code the sequential

“ One of the tools investigated in the practical work of this thesis.

Chapter 1 Introduction 12

parts of the task and then indicate which ones can be performed in parallel by using

special language constructs.
There are several disadvantages to the parallel language approach:
e Existing applications have to be completely re-written

e The languages are sometimes only available on a small number of specialist

machines
e The application is not generally portable
e Only a few programmers specialise in the new languages

e The languages may not support sophisticated features of the more general-

purpose languages.

Occam, Poutain and May[24] and Strand, Foster and Taylor [25] are two such
languages that have gained some acceptance in the community despite suffering the
drawbacks mentioned above. Parallel languages do not appear as part of the generic
parallelisation toolset as this is aimed at converting existing code and not re-writing
from scratch. Having said this, if automatic translation into a parallel language were

possible this might be an appropriate starting point for parallelisation.

Language Extensions

Extensions to commonly used languages such as FORTRAN 77 allow certain
operations to be performed in parallel. Large matrix and array operations are typical.
The extension are either of academic origin or from parallel hardware vendors such
as Silicon Graphics Inc. Instances of these language variants/extensions include
Vienna FORTRAN, Chapman et al [26], FORTRAN D, Fox et al.[27], HPF, Harris
et al. [28], ADAPTOR HPF, Brandes et al. [29], OpenMP [30], Jin et al. [31],
MIPSpro™ Power Fortran 77 [32], CM Fortran [33] PARADIGM Su, Lain et
al.[34]. The programmer suggests a distribution scheme for the data, typically a mesh
partitioning using compiler directives or the extended language syntax and then
performs loop operations on the distributed data in parallel. The compiler checks that

data is passed correctly across the partitions and may provide a set of alternate

Chapter 1 Introduction 13

distribution strategies (CYCLIC or BLOCK). These language extensions can be

very useful for building new parallel code, and in certain circumstances adapting

existing applications.

The main drawbacks appear to be the limited problem domains where these
operations are beneficial. The programmer still needs to know a lot about the
algorithm and the expected flow of data to select an appropriate partitioning.
Conversion of a code containing indirect or conditional addressing of arrays is a
serious difficulty as highlighted by Walker, [35] although some solutions have been
suggested for these problems, Das and Slatz et al., [36]. More recently there has
been much activity on sparse systems and there exist a number of parallel libraries to
address these problems. Wijngart [37] provides an extensive list of the current work
in this area as part of the conceptual design paper on the Charon toolkit, for example

Saad et al [38] with PSPARSLIB and Schonauer et al with LINSOL [39].

The portability of HPF makes it an attractive language for developers indeed the

extensions in HPF2.0 allowing task parallelism to be addressed make this an

extremely versatile language.

Message Passing Libraries

Message passing libraries provide a machine independent communications facility
for message passing between independent processes. The processes are independent
instruction sequences being executed on separate processors, or time-sharing one
processor. These libraries are typically implemented on top of TCP/IP sockets, pipes
or streams, dedicated IO links, parallel data interconnects on shared bus systems or
shared memory areas. The most commonly used library is called the Message
Passing Interface (MPI) [40] [41] although different vendors of parallel machines
previously generated similar but incompatible products, these include CsTools from

Meiko [42], Express, PARMACS plus similar offerings from SGI.

These very basic components allow the parallel programmer to concentrate on the
problem and ignore some of the details of the communication protocols. The
topology independent features are both an advantage in that the programmer can

completely ignore the topology issue, and a disadvantage in that unfortunate

Chapter 1 Introduction 14

scheduling of task locations and data partitions may lead to a failure to attain the best

efficiency.
Decomposition Assistance

Many mesh problems in science have a very obvious set of partitioning options. A
cubic grid for which all cells require the same processing load, and nearest neighbour
communications, is generally split in one dimension and partitioned into equal slices.
Two or three-dimensional slicing is possible, but this is not generally useful for
exploiting a computer with a non-square or cubic number of processing nodes. Many
physical problems have more complex grids, fluid dynamics models of rivers for
example are only active where the fluid is to be represented. The connectivity and
distribution of the data points in the computer memory is sometimes a sparse matrix,
with only a subset of the elements active. Partitioning of sparse matrix systems is a
classical graph problem. The main aim is to level the number of nodes in each
partition whilst minimising the amount of data required to be communicated along
the edges. Saad and Sosonkina [43] provide a good overview of the general approach
for parallelisation of a sparse linear system. The domain Decomposition Tool DDT,
Flores and Reeve [44] is a typical partitioning program that locates good partitions
by a number of methods. It is important to realise that the best partition must be a
good sub optimal partition that can be located with minimal computation effort, since
the runtime of the complete problem must allow for the effort consumed in selecting
the partitioning. Generally the optimum partition will take much too long to locate.
Optimum partitions share the load on the processors evenly and minimise the

communications at data partition boundaries.

In unstructured grid or sparse matrix problems communications along the edges of
the partitions become very complex and vectorisation of communications become
difficult. In recent years much of the focus of work has been in these arecas where
parallelisation is non trivial. Examples of this include the work of Brandes [29] and

KeBler [5], Adams[45], Saad and Sosonkin [43].

Chapter 1 Introduction 15

Code Analysis

These tools are aimed at re-engineering existing serial applications. In many cases
the original programmer is not involved in this task, the code may be poorly
documented, badly structured and may be prematurely optimised Symonyi, [46]. The
programmer faces the task of understanding what the code is doing, how it is doing

it, and finally how it can map onto a parallel platform.

Tools to aide in this process contain a front end parsing for the language and then
instead of the code generation functions of a compiler, they generate dependency or
data logistics information that can be browsed by the user. FORGE Explorer [47] and
IDA, Merlin [48] are typical of these. The Sage Toolset [49,50] is available to
academics for building analysis and code restructuring tools (a machine tool toolset).
This tool provides a front end parser and a C++ class library that allows access to the

data contained in the source code.

Commercial systems such as KAP™ from Kuck and Associates Inc. are now
becoming standard tools for the support of paralleisation / optimisation. The Digital

KAP Fortran / OpenMP optimiser includes support for:
- Automatic and directed parallel decomposition for SMP
- Loop optimisations
- Memory Management optimisations
- Scalar optimisations
- Function in-lining
- BLAS recognition
- Dusty Deck transformations
- Informational program listings.

KAP [51] provides Inter procedural analysis IPA as well as code transformations. It

has a limited capability to provide algorithm replacement with calls the Basic Linear

Chapter 1 Introduction 16

Algebra Subroutines (BLAS) libraries, some of which are optimised for target
parallel architectures. The Charon toolkit, Wijngaart [37] is targeted at structured

grid problems.

OpenMP [30] supports multi-platform shared memory architectures, where each
processing node shares at least some of its memory space with all the other
processors taking part in the application. This common memory space model can
support both MIMD and SIMD programming styles, although there can be serious

performance penalties if it is applied to MPP systems and includes fine-grained

parallelism.

Code Restructuring

The KAP/Pro Toolset, Kuck and Associates, [51], IBM PTRAN [52], SUPERB Zima
et al. [53], CMAX Sabot et al. (Connection machine) [10], CAPTools, Cross et al.
[54] [15] and PARAMAT, KeBler [4] are instances of code generation tools that
attempt to automate the whole process of converting a serial application for optimum
performance on a parallel computer. These automatic parallelisation tools all adopt
the technique of examining source code to identify independent calculation threads,
and generating new code that distributes the operations and or data over the nodes of
a parallel machine, this process is usually termed dependence analysis and is
described in detail by Wolf [21,22]. When the parallelisation systems are well
refined, they can manage to achieve a reasonable speed up. Good performance
improvements are most easily achieved on naturally data parallel algorithms Cross,
lerotheou et al., [54]. Cross et al. CAPTools [12][15] is a toolset that originated for
structured mesh problems and appears well suited to the parallelisation of CFD
codes. There exist other code restructuring tools such as the Foresys Fortran
Engineering System from Simulog [55] that are more suited to code normalisation,

porting and code maintenance.
Parallel Debugging and Runtime Analysis

At the back end of a parallelisation task the resulting parallel program will be tested.
This is often when the performance bottlenecks are discovered, Galloway [17]. In

cases where performance is less than expected, it is useful to be able to observe the

17

Chapter 1 Introduction

program in action. For this task, parallel performance analysis (PPA) tools may be
used to gain useful information on the runtime behaviour of the program. Parallel
debugger support may also be required if the parallelisation process has introduced
errors in the algorithm. These tools become increasingly important as the complexity

of the parallel program increases.

A sample of tools of this sort include the P2D2 project, Hood [56] which is aimed at
the CFD community to provide a consistent parallel debugging environment across
multiple architectures, an essential feature if the parallelisation is on a heterogeneous
platform or platforms. It is based around gdb and has been exercised on IBS SP’s,
SGI worksations and Origins, and on Linux systems. Panorama, May and Berman
[57] is a parallel debugger and performance tool based on trace collection.
ArrayTracer Nikolaou et al. [58] concentrates on performance analysis and attempts
to minimise the impact of trace collection using a sophisticated static analysis prior
to runtime. PAPI, London K., Dongarra et al, [59] provides performance monitoring
using hardware counters for parallel applications on Linux platforms. The
combination of the profiling support in the Tuning and Analysis Utilities (TAU)
toolset and the runtime interaction from the Distributed Array Query and
Visualization Framework (DAQV) Shende et al. [60], provides a different analysis

view based on callstack sampling.

1.2 Motivation

A means of being able to recognise core algorithms and be able to replace them with
efficient alternatives for the particular target hardware would seem to be an ideal way
of providing a more complete code restructuring tool for the parallelisation of dusty
deck code. I will call this process “automatic algorithm substitution” if this is

performed automatically by a code-restructuring tool.

This term "automatic algorithm substitution" has been used but is as yet not clearly
defined. From a mathematical viewpoint for procedures within a source code there
are many methods of implementing the same required algorithmic functionality. For
example the number of sorting algorithms developed in the programming community
is large: Bubble Sort, Quick Sort, Selection Sort are but a few, an interesting account

of a few of these algorithms is provided by Meader [61]. The choice of the

18

Chapter 1 Introduction

algorithms for a specific program is influenced by many factors, knowledge (of
candidate algorithms), target machine characteristics, speed requirements etc. In
many cases, as a program ages these factors change dramatically, particularly if an
implementation on a parallel machine is required. At this stage the choice of a
different algorithm for part of the program may lead to a significant optimisation.
Intent Programming (IP), Symonyi [46] builds on this recognition that as the
environment changes, the ideal source code for an application also needs the ability

to change to preserve efficiency.

For new application generation there has emerged a trend favouring the adoption of

several levels of abstract design before code is written. Fitzpatrick et al. [62]

contends that

"a competent mathematician can write functional specification in a few hours"

that can subsequently be transformed to optimal code by utilising a library of proven
optimal transformations. Cate et al. [63] describes the experience of porting
applications to parallel machines and promotes the concept that all arbitrary
implementation specific design decisions need to be documented as the code is built
to allow efficient re-engineering for a new parallel or serial computer. His paper cites
a specific instance where the computer architecture determines the optimum choice
of algorithm selection. If the compiling system cannot change algorithms, then it will

often fail to generate efficient code for parallel computers.

The goal therefore is to provide a means of re-fabricating programs to use algorithms
that are well matched (efficient) to a target platform. The recognition of algorithmic
content is the first step to achieve this goal. The identification of algorithmic content
of a dusty deck program may be thought of as an inverse problem to that of
compiling. It is a translation from the specific to the general and is a challenging

problem for a computer based tool.

1.3 Related Work

Having set the scene in the previous section, this section talks in detail about the
directly related work on algorithm recognition as a means of providing improved

optimisations for applications running on parallel hardware.

Chapter 1 Introduction 19

1.3.1 Automatic Program Recognition

Early work on designing systems for automatically recognising program content
seems to have started in the late 1970s mainly in the artificial intelligence community
for example Waters [64] and Fickas et al. [65]. Their work provides the use of the
term clichés to designate commonly recurring sequences of standard low-level
instructions and control sequences. A typical approach to the recognition of these
clichés or phrases is by pattern matching on the program text, parse tree or data flow
graphs. GRASPR Willis, [66] is an experimental system that adopts the latter
approach with some success. The reported motivation for GRAPSR was for assisting
software engineers as well as addressing an interesting artificial intelligence problem.
Examples cited for the use of the technique range from automatic documentation
generation too code maintenance and reverse engineering. Alternative terminology
for this assembly of low level instructions varies with author and ranges from
‘semantic concepts’ Kozaczynski et al. [67], too ‘plans’ Rich [68] and ‘idioms’
Pinter et al. [3] and Snyder [69]. Algorithm substitution for parallel program

optimisation seems to have been recognised as a possibility much later on.

1.3.2 Algorithm Substitution

A programmer deals with code on many levels of abstraction. One way of looking at
this would be to say that programs are collections of algorithms glued together with
interfaces. The algorithms are made up from simple component functions, which in

turn are built up from basic operators. Figure 2 illustrates this conceptual outline.

Complexity e e e e e e ‘

Basic Operators

Figure 2 Abstract view of program composition

Chapter 1 Introduction 20

For program recognition, as described by Wills [66] the clichés would be the simple

component functions and/or whole component algorithms.

Cate [63] and Simonyi [46] clearly emphasise that the choice of algorithm should be
one of the last operations in the program design process and in an ideal environment
would be an easily changed design decision. This is consistent with the object-
oriented approach of program design and rapid prototyping recommended for
example in C++ development, Stroustrup [70]. The ability to abstract up from a
specific implementation to an implementation independent representation of the
design of the program and then push down to multiple specific implementations is of
considerable advantage for many programming tasks. Algorithm substitution for
parallelisation and optimisation of programs for parallel platforms needs these two-

abstraction level changing abilities.

Algorithm replacement for parallelisation based on program recognition has been
addressed by KeBler et al. [2, 4, 5] Bhansali et. al. [6, 7, 8] and Di Martino et al. [1].
KeBler reports on implementations of these schemes in PARAMAT and SPARMAT.
PARAMAT probably has the most extensive coverage in the number of non-trivial
patterns “concepts” (100) using (160) templates KeBler [4]. SPARMAT KeBler [5]
is a specialist sparse matrix enhancement that demonstrates that the technique can be
applied to algorithms with a high degree of indirection and runtime data dependent

data layout optimisation issues, where other more traditional prarallelisation

approaches generally have poor results.

Di Martino et al. [1] reports on the differences in the approach adopted in the PAP
tool against the work of Kefler. In their joint paper they conclude that the PAP

recogniser is slower but more flexible and general than PARAMATS pattern

recogniser.
1.3.3 Algorithm Learning Procedures

Wills [66] emphasises that the knowledge base of clichés was generated by hand in
order to investigate the utility of the approach for a number of medium sized
analyses on “student” programs. The automatic acquisition of the knowledge base
appears to have been recognised as a significantly harder problem. There exists

considerable work on generalised pattern matching, of which Nevill-Manning et al

Chapter 1 Introduction 21

[71] provides an interesting introduction, describing his application called sequitur.
Naturally any cliché pattern located in a program by an approach such as sequitur
would require additional meaning to be associated with it before it became a useful
piece of program transformation knowledge. One approach to this might be to infer
the function of such a program component through experimentation. A system would
need the ability to fabricate test code to exercise the component and/or have the

ability to deduce the functionality of the component by some abstract reasoning

process.

One of the main restrictions to this possibility is the lack of a systematic method of
building patterns. This omission from the works cited has been recognised by

Villavicencio [72] and the beginnings of a method of achieving this are provided in

his work.

1.4 Approach

The approach described in this thesis is based on observations of the processes that a
human programmer performs when trying to discover the purpose, and errors in an

unfamiliar source code.

For a procedural language such as FORTRAN, the programmer can take advantage
of the probable partitioning of the program into subroutines that can encapsulate
relatively simple algorithm components, although for some legacy code such
structuring is not always available. For this work the examples used all have a
procedural breakdown. While this breakdown is useful in the presentation of the

examples, it is not a fundamental limitation of the approach.

The programmer will typically tackle a new source code problem using a variety of

static analysis techniques along with specific dynamic test cases where the behaviour

of code is examined during execution.
Examples of static analyses that a programmer may apply might be:
e Determination of the context in which each subroutine is called.

e Deduction of how each subroutine affects the data being manipulated.

Chapter 1 Introduction 22

e Identification of algorithms that are being embodied in the specific section of

code.
e Construction of a call tree.
e Generation of outline flow charts.
e Formation of a view of the dependencies in the flow of control.
Dynamic analyses might include:
e Dissection of the code and exercise of the individual subroutines.

e Observation of how subroutines manipulate data at runtime using for example

a debugger.

The programmer will have background knowledge of a range of algorithms in their
domain of experience, but may be lacking specific experience of algorithms present

in the source under analysis. Therefore reference to external information is a likely

part of the overall process.
This thesis looks at two of these processes:
o Formation of a view of the dependencies in the flow of control.

e Identification of algorithms that are being embodied in the specific section of

code.

The approach adopted to address the first of these processes is referred to as Reverse
Traversal of the code. Specifically the analysis starts at the end of the program and
works back through the flow of control tracing the significant data items thought he
call tree. This is conceptually very simple and in practice the main difficulty appears

to be the control and display of the dependency tree that results.

The approach to the second item is to implement a matching process whereby
patterns within training samples of code are captured in a generic form and used as
templates to match against unknown code samples. Matching against templates is

probably only a small part of what a human programmer might do. Whilst significant

23

Chapter 1 Introduction

mathematical constructs might be familiar to a programmer and will stimulate
hypothesis generation, the human programmer will also be able to “dry run” phrases
of the code and match predicted behaviour against expectations within what might be

termed the fluid hypothesis space.

Chapter 2 Learn Tool System Description

The “Learn Tool” is a set of analysis routines that seeks to assist the operator in
evaluating the intent or purpose of legacy FORTRAN code. It was constructed
during this work to allow experimentation with algorithms that could play a part in
the machine understanding and transformation of source code. At this time the tool

encompasses two approaches, Reverse Traversal and Pattern Matching.

24

Chapter 2 Learn Tool System Description 25

Reverse Traversal is a bottom up approach intended to isolate the main calculation
routes within a particular piece of source code. The main control flow of the source
code is identified and then the last executed statement is used as a starting point. The
analysis dry runs in reverse through the call tree, making notes on loop nests, scope
and variable passing. As this traversal of the parse tree proceeds, sets of actions are

triggered in response to particular types of statement.

Pattern Matching is a process of subjecting the parse tree to a direct comparison to

a library of commonly occurring sequences that are associated with higher-level

operations.

Both these processes have been built on top of the Sage++ Toolkit developed by
“Indiana University, University of Oregon and University of Rennes” [49][50]. This
library includes a FORTRAN parser capable of accepting a variety of FORTRAN
source forms including FORTRAN77 and FORTRANO0, and a C++ class library for

interrogating and manipulating the parse tree.

The following sections will deal with the Sage++ system, Reverse Traversal and

Pattern Matching in more detail, and conclude with an overview of how the Learn

Tool is operated.
2.1 Learn Tool History and Composition

The Learn Tool system, created for this work, started as two separate analysis

programs written C++ on Digital UNIX and Solaris using Motif ™. These have been

ported to a single MFC application, LearnTool Viewer, in the later stages of the work
and it is in this form that example output will be presented in this document. The
source code is approximately 10,000 lines of C++ including comments but excluding
the Sage++ library that required a few modifications to port to a windows platform.

The viewer with its graphical outputs and dialogs represent about a fifth of the

whole.

Chapter 2 Learn Tool System Description 26

2.2 The Sage++ System

This section provides a brief overview of the Sage++ system. This is intended to
provide a convenient reference to some of the terminology used in the following

sections that describe the algorithms and implementation details of the Learn Tool.

The Sage++ system adopts a project concept that points to one or more dependency
files generated by the FORTRAN parser program f2dep. The dependency files
contain the information about the parse tree of an individual file within a project. At
the top level the project consists of a text file that lists the component dependency
file paths. The Sage++ API provides a method of instantiating an SgProject object
with reference to the contents of the project text file. All the subsequent objects can
be accessed from the SgProject object. The SgProject object contains one or more
SgFile objects that in turn contain the SgStatement objects (one for each line in the
source code). SgStatement(s) can be flow control items representing for example the
beginning and end of DO loops, program statements, declarations, assignments and
subroutine calls etc. SgStatement(s) refer to their component SgExpression(s),

SgSymbol(s) and SgType(s).

The SgStatement object has lexnext() and lexprev() functions that allow the
application to traverse forwards and backwards through the statements within the

source code. The SgFile object allows random access to any of the SgStatement(s) it

owns.

Each different type of SgExpression, SgStatement is implemented as an object
specialisation with its own unique access functions and dynamic typing is supported
within the Sage++ API through global functions. So for example the application can
determine if a particular statement is a program header by calling the function
isSgProgHedrStmt on the SgStatement object in question, this returns a pointer to the

object if it is and NULL if it isn’t.

2.3 Reverse Traversal

This section describes how the reverse traversal is performed and presents and

explains the output achieved.

Chapter 2 Learn Tool System Description 27

The reverse traverse analysis searches the parse tree and locates the statement that is
the last to be executed. This statement is used as a starting point for the analysis,
which then works back statement-by-statement following the logical flow of control

of the program. The traverse is terminated when the first statement is reached.

< Start) The model adopted for the reverse traverse process is
to imagine a programmer examining the source code
3 and making notes on the flow of control, the
Locate the
lastexecuted significance of specific variables and identification of
statementin the
program the core calculations in the main algorithms.

h 4

While the current For each statement visited an exprSummary object is
statementis not lg— . L.
the first to be created for the statement and the expressions within
exeuted

the statement. The exprSummary simplifies the task

4

Find the next
statement (in
logical reverse

of discovering if an item being looked for actually

exists within the statement. The exprSummary

ordern) provides a filter for the information in an
4 SgStatement so that actions can be targeted at
Process statement .
and add new specific parts of the statements.
actions if
necessary

As the analysis progresses through the statements,

A

Update the exsting
actions with
reference to the
currentstatement

v

End Loop

actions are added to an actionList in response to
certain conditions. In our model the programmer has

noted for example that a particular variable or data

| structure should be traced back to its declaration and

any manipulations on it should be recorded. Any

existing live actions in the actionList are updated if a

new piece of information is available from the
Figure 3 Reverse Traverse

current statement that is relevant to that particular
Flow Chart

search. A flow chart of the main analysis loop is

presented in Figure 3.

The design of the algorithm is based around the ability to extend the number and type

of actions available although it was only taken as far as the reverse traverse process

Chapter 2 Learn Tool System Description 28

of identifying the program outputs and tracing back to the declarations and

intervening manipulations before the focus of the work shifted to pattern matching.

The reverse traversal follows the logical flow control of the program (in reverse) and
as it proceeds it maintains a context structure indicating the control level of each
statement within the program as a whole. This is effectively a call stack and is
essential for being able to match data on multiple levels that may have their variables

names changing or going out of scope in subroutine calls.

This general architecture has been used to extract information from the program,
particularly concerning how the results of the program have been arrived at. A new
action is created for each output statement, for example writing results to a file or the
screen. The action is to keep track of the data being output and if it occurs in any
statement earlier in the code to keep a note of that occurrence and any inter-
dependence with data associated with that statement. This is achieved by maintaining
a dataTrace with each action that records the statements that reference the variable
being traced, or any variable that is used to influence the result. The dataTrace
consists of an ordered list of dataTraceltem(s) that grows, each time a statement is
visited that has a relevant reference to the items being traced. The traces operate over
the whole code by following subroutine and function call parameters and mapping

them to the actual variables at the calling level.

Scalar and array items are tracked and some filtering is provided to discount rarely
executed paths in the code, for example conditionally executed error reporting.

Whilst this may omit important information in some cases, the resulting dataTrace

can remain linear.

During the reverse traversal, all items that have already been identified as
contributing to the output item are search for, which could lead to an exponential
growth of the tree. By ensuring that if a complete assignment has been made then the
assignee is removed from the scope of the search moderates this potential for
algorithm runaway. For example in a CALL, SUBROUTINE pair of statements, the
parameters in the CALLs parameter list go out of scope (for the search) and the

corresponding parameters in the subroutine parameter list come into scope.

Chapter 2 Learn Tool System Description 29

Information about the type of statement that they relate to is stored in the dataTrace
items and each item has a reference to the “parent” searched for item. This
information can be used to construct a graph of the overall dependence flow though
simple programs. This output form has been chosen as it illustrates how rapidly the
complexity of the analysis grows for relatively simple algorithms. This dependency
graph is not a true dependency analysis of the sort described by Wolf [21][22] but

more an Inter Procedural or data flow analysis in the style of Merlin [48] and Walker

[35].

The Reverse Traversal process is intended to mimic the code inspection process that
humans employ to understand the purpose and flow within a code. It achieves a
transformation of the code representation into a graph that highlights the statements
that have significant influence on the results of executing the code. It provides a view
of the code as a whole unencumbered by a particular procedural decomposition. Its
use within the program recognition process was initially intended to flatten the
program structure and pre-filter the parse tree before the pattern matching process.
This has been achieved, however the increase in complexity of representation for
relatively simple programs caused an adjustment to the planned approach adopted for

the pattern matching process removing this flattening step.

2.4 Pattern Matching

The pattern matching technique is described in this section. A detailed explanation of

the structures and matching algorithms developed follows an overview of the whole

approach.

2.4.1 Related Work on Pattern Matching

There exists a wide body of work relating to pattern matching covering subject areas
diverse as genetic sequence matching, web searching to computer science re-writing
systems. The class of pattern matching used in this work seems to be closest to the
work described by Kucherov [73]. Kucherov describes the use of a Directed Acyclic
Word Graph (DAWG) however the algorithm is restricted to finding the first match
to a particular pattern. Closely related, from a computer science perspective is the
large system simplification work of Baker et al. [74],[75] and [76] that applies

pattern matching to highlight possible redundant sections of code that could be

Chapter 2 Learn Tool System Description 30

unified for example in a common procedure call. The approach adopted in this work
is a rudimentary technique aimed at limiting the exponential growth of the search

space by discarding potential sequences as soon as they fail the overall matching

criteria.

The description by Hagemeister et al. [8] comes closest to the approach used in this
work. Hagemeister develops a syntax for describing the patterns, which is based very
closely on the tokens available from the Sage++ parser. This approach in turn is
based on the SCRUPLE matching described by Paul et al. [77]. The pattern matching
approaches in PARAMAT [4] appears to be based on the graph parsing approach of
Wills [66] whereas the PAP work of Di Martino et al. [1] is closer to the SCRUPLE

technique and the method described herein.

More recently direct Al approaches have been attempted for pattern matching.
Quilici A., Yang Q., et al [78] report on their work and conclude that direct
application is not the best approach, however they can be made to be effective if

constraint satisfaction techniques are included.

2.4.2 Overview of Approach

The pattern recognition process involves breaking down the code into a sequence of
tokens that contain sufficient information to retain the algorithmic content of the
original source code and yet is simple enough to be used in a pattern-matching
algorithm. The Sage++ toolkit presents the information about the code as a hierarchy
of objects. To unwrap this hierarchical representation, a recursive algorithm has been

created that generates a flat list of items from identified sections of the source code.

This flat structure is incorporated into a CodeStatus object, which contains a list of
codeStatusltem(s) that are used to match against. Individual matches occur on integer

values and no string matching is needed making the process fairly efficient.

The flat list of items is generated by stepping through the statements in the order that
they appear, in the code. Each statement generates a list of items, which is appended
to the current list. Within a statement, depending on the type of statement,

expressions, symbols and types may also generate lists of items, which are inserted

Chapter 2 Learn Tool System Description 31

into the full list produced by the statement. Overloading the constructor on the

CodeStatusltem class facilitates the process of recursive generation.

The selection of which items are placed into the CodeStatus object has evolved as the

range new concepts to recognise has grown.

The pattern library is managed under a knowledgeBase class; each pattern in the
knowledge base is referred to as a Rule item. Each Rule has a series of Keys that are
used to match to specific code examples. The Keys are built from and subsequently
matched to the CodeStatusltems(s) in the flat format expansion of the parse tree. The

Keys are related to each other in a Rule with a simple syntax.

The Rule syntax supports the following features:
CodeStatusltem type and order of occurrence
Relative positioning of items is either strong or weak
Instance correlation is enforced

Multiple instances of the same rule match with the same starting item are

flagged as voiding the match.

The user constructs rules by picking CodeStatusltems derived from a test sample of
code. Once a CodeStatusitem is incorporated into a Rule it becomes a component
Key. The Keys are selected in a particular order and the following operators (
“AND”, “THEN” and “LAST”) are used to indicate the relative positioning
relationship. The “AND” operator indicates the spacing between the currently
selected item and the next one must be exact for a match to be possible (strong
relative positioning). The “THEN” operator indicates that once this item is matched
then the next item to match can be an arbitrary distance from the current item (weak

relative positioning). The “LAST” operator terminates the sequence.

Each Rule is currently allowed to be referenced to one of its Key items, usually a
variable symbol, that has to have a common matching element during subsequent

pattern matching operations. For example the referred to item in a “counter” Rule is

the counter variable.

Chapter 2 Learn Tool System Description 32

The “OR” operator although not explicitly supported has been implemented in the
Learn Tool pattern matching algorithm by allowing several rules to be equivalent as
far as the matching process is concerned. This is managed by a Rule association
process, and simply allows Rules to match with items of either Rule A or Rule B if
Rule A and Rule B are associated. This has been particularly useful when matching
expressions that contain commutative operations. It can also be applied to assist the
pattern matching as an alternative to code normalisation. This is similar to

PARAMAT, KesBler [4] in that several routes exist to the final higher level pattern

match.

2.4.3 Code Status Items

For a section of code a flat list of CodeStatusltem(s) is generated by moving from
statement to statement and conditionally adding items to the list depending on the
type and content of the statements. CodeStatusltems(s) record five fields for each

record. These are described in table Table 1.

Item Description

Type The type field records whether the item is derived from a ‘Statement’,
‘Expression’, ‘Symbol’ or ‘Rule’. The first three are generated from the
basic parse tree supplied by the Sage++ project. The ‘Rule’ items are added

when the matching process has located a match to a ‘Rule’ from the

knowledge base.

Variant | This field records what type of ‘Statement’, ‘Expression’, ‘Rule’ etc. this

instance is. e.g. a ‘Statement’ might be a PROC_HEDR.

Id This field records the specific instance of the occurrence of this item.

Tag The tag is a string containing a textual representation of the variant.

Name | The name is a string that is used if the specific instance has a token
associated with it. For example a ‘Symbol’ type, variant
VARIABLE_NAME would have a tag of “VARIABLE_NAME” and a
name indicating the name of the variable in the code. In the case of a

symbol derived item the name will be directly associated with the Id of the

item.

Table 1 Description of the fields in a “CodeStatusItem”.

Chapter 2 Learn Tool System Description 33

The codeStatusltems are used for both creating trial Rules as well as matching
against Rules that have been previously formulated. The Tag and Name items are
included to allow intelligible feedback to the operator on where patterns have
matched and why. The comparison operations are restricted to the Type, Variant and
Id integer values that uniquely identify the item in the sequence. The use of three
integers for the comparisons allows most compare operations to complete (with a
negative outcome) after a single integer compare instruction. The attention to this
detail is mainly relevant because the speed of operation of the matching algorithm is

quite important for allowing such as system to be realised as a practical product.

2.4.4 Rules

Rules contain the matching information that has been formulated from example
sequences of code. The matching sequence is stored as a list of Keys that are used to
mach against codeStatusltems. The rules maintain information about other rules that
have been marked as being equivalent, enabling the formulations to include an OR
concept. Each Rule has a specific instance ID from one of its Keys that characterises

the Rules ID during the matching process.

2.4.5 Keys

Keys maintain information about the type and instance from the originating
codeStatusltem. They also maintain information about their relationship to the next
Key in the sequence within the Rule. This takes the form of the “THEN”, “AND”
and “LAST” operators that are owned by the current key and relates to the next Key
in the sequence. In the case of the "AND” relationship the separation of the Keys is
stored. A Key can be considered to be a single character in a string matching
problem, with the “AND” spacing being a fixed distance and the “THEN” being the

variable length of don’t cares of Kucherov [73].

2.4.6 Matching Algorithm

The matching algorithm allows the multiple compares to be processed in a relatively
efficient and memory conservative way. The overall process is outlined in Figure 4.
For each rule currently in the database the current codeStatus structure is examined

for instances of each of the keys that make up the rule. For simple rules this might be

Chapter 2 Learn Tool System Description 34

a VARIABLE _NAME or an assignment operator for example. For more complex
rules the key instances may be previously matched rule items. A table is constructed
of all the possible instances of the searched for keys. This is then traversed key by
key building valid sequences that match the partial rule sequence up to the point of
the current key. Invalid sequences are removed, as the first mismatch is located.
Once all the keys have been evaluated a final list of sequences remain that are

matches to the current rule.

At this point the uniqueness of the sequence matches is checked. If the same starting
key is present for multiple matches then the Rule as currently defined is ambiguous

for the code being evaluated and requires re-formulating.

Only unique instances of rule matches are currently reported in the Learn Tool
program. This uniqueness problem is addressed by Paul et al [77], by delivering the
“shortest match” permutation from the matching engine. They comment that patterns
that have a combinatorial explosion problem are rarely found in program
understanding problems, however that is probably critically dependent on the skill of

the operator forming the rules.

Chapter 2 Learn Tool System Description 35

Compare Rule against current
code Status representation

instance Table i
For each Keyin the Rule, compile a
table of all the instances of the keys in

key 1] I the code status representation

key 2 l

key 3 J Putall the key 1 instances into the
: i

Key 4 currently valid sequence list

I

.| Foreach currentlyvalid sequence
g instance

’

For each instance of the nextkeyin
the key table

This gradual build up of valid
l sequences thatsurvive the

successive evaluations of
the Keys, allows the full set
of possible perm utations to
be evaluated without
expanding the full tree of
possibilities

Evaluate if the instance meets
the"AND" and “THEN" spacing criferia
and the instance ID is consistent
(either matching previous instances
(or not) as appropriate

if a match is found

Add this sequence, with the new
member, to the currently valid
sequence list.

Delete this sequence from the
currently valid sequence list

End For

End For

G

Figure 4 Flow chart detailing the rule-matching algorithm

2.4.7 Learn Tool Facilities

The Rules (patterns) are stored in a list belonging to the knowledgeBase class. This
provides the Load/Save functionality and access to the patterns during a matching
operation. Users may build test patterns interactively and add them to the

knowledgeBase class using a Rule Editor Dialog.

Chapter 2 Learn Tool System Description 36

Selection tree for routines in
Rules in the current the current Sage++ project
know ledge base T

Add/ Remove Rules

Description of the current
rule

Rule Editor

Rules T
east then west ew then ns / AsignT oZero Array item squared ! New I
west then east laplace sequ: Sum array items Sum Item squared
ns then ew Accumulator_1 calk of mean Delete I
‘4 [»]
1
ID: |19 a=0 assjgnment g stats.f
: + stats
Name: IAsslgnTuZero load_data
KeyRef: |1 - calc_stats
‘- output_data
Update Rule
IF (NUM_ELEMENTS .GT. 2) THEN
Clear Al I SUM1=0
SUM2=0
DO P=1,NUM_ELEMENTS
Keys
ASSIGN_STAT AND Add Key AND | | Tag [1ID_[Name |
VAR IABL IAME 20 suml

INT_VAL
Add Key Last I IS_VALUE_PERO 0
= ASSIGN_STAT 45 NoName
emove Key AssignTaZer 21
Clear Key List VAR_REF 173 NoName

21 sum2

2 No Name e
| »
T

VARIABLE _|
T FLCIAT

Set Key Inst.Ref.

VARIABLE_NAME AND _N.
IS_VALUE_ZERO LAST Add Key THEN I T_FLOAT 2 NoName
172 0 =1

| d=

codeStatusitems in the
Rule name, id and reference Rule Assembly operations currently selected
subroutine
Keys in the currently Source code from the
selected Rule currently selected
codeStatusitem

Figure 5 Annotated Rule Editor Dialog

Figure 5 shows the Rule Editor dialog in the LearnToolViewer application. It is
showing the construction of the AssignToZero Rule within the context of the
Statistics example, which is addressed in more detail in the next chapter. Currently
all rules exercised in this work have been constructed by hand and have been used to
perform what if experiments on combinations of keys that work and those that don’t.
A systematic approach and guidance on how to construct rules would be essential for
a fully developed system. It might be possible to import rules from other pattern
matching work, for example the pattern library of Kessler [1] or Di Martino [2],
although as this approach excludes code normalisation it is doubtful whether the

libraries could be transferred without significant modifications.

Chapter 2 Learn Tool System Description 37

Associations between Rules are established using the Rule Association Dialog. An
example of this is shown in Figure 6, for the “North Then South” Rule that will be

discussed in more detail in the “Laplace” example in the next chapter.

Association of a pair of
Rules

Rule Association

Square work space2 2D array north access Square work spacel Square work space2
while true break loop 2D array south acces: While Not Loop while true break loop
2D array West access iRy Associate Rules I Counter 2D array West access
2D array east access South then North test_second_pass 2D array east access
Kig | 2 KiE] 2l
Already Associated with

South then North Delete Association

Cancel I

List of current associations
fo the first rule selected.

Figure 6 Annotated Rule Association Dialog

For both the Reverse Traverse and Pattern Matching the Learn Tool provides simple
graphical output showing the dataTrace data and the pattern matching detail
respectively. In a completed parallelisation Toolset this information would be
available to the user in a number of forms and would stimulate the tool to provide

options for algorithm substitution with perhaps an indication of the potential benefits

that might be realised for any particular substitution.

Chapter 3 Test Cases

The test cases presented here start with the source of the program used to generate
the Rules. The reverse traverse of the code is shown followed by the matching results
against the Rules and a description of the component rules. This is followed by
example variations of the source example to demonstrate the properties of the rules

being investigated.

38

Chapter 3 Test Cases 39

3.1 Statistics Example

This first example is of a simple statistics program that generates the mean and
variance of a set of data. The data is read from a text file and the results are

computed and written to another output text file. The source code is given in

Appendix la.

3.1.1 Reverse Traverse

The reverse traversal of this example provides two dependency graphs, one for each

of the mean and variance.

+7+ stats.Ity - learnTool¥iewer
File Edit View Analysis Help

DS - &2 &= ==& &| 2 [nean 'I

|»

(+):num_elements:DN

(+).array.DN (+):num_elements:(=)
num_elements - 1]

(+)--:Read Statement (+):num_elements:(=)
[array(num_elements)] fnum_elements+1] =

(+)-[]

=
Ready [[el

Figure 7 Screen shot of Stats example reverse traverse showing mean dependency graph.

Chapter 3 Test Cases 40

Figure 7 shows the main screen of the learnToolViewer application after it has
performed a reverse traverse analysis of the example code. At the top of the diagram
the output variable “mean” is the root (from line 130). This variable is traced though
an upward CALL/SUBROUTINE paring into the main program and then down into
the subroutine that performs the calculation. At this point the mean is found to be
dependent on an initialisation denoted by the (+):-:[-] string, the variable sum] in the
expression (suml/num_elements) and num_elements in the same expression. These
variables in turn are followed and their dependence on the input variable “array” is

located after another change of subroutine scope.

The change of colour in the display is used to show the call stack level of the code. In
this example the top of the tree is in purple and occurs in the “OUTPUT_DATA”
subroutine off the main program level. The main program level is shown in red, the

“CALC_STATS” subroutine level is in green and the “LOAD_DATA” level is in

yellow.

The output syntax of the string for each node starts with a “(+)” if it is a new node in
the tree. The next item, spaced with a “:” is the item reference, for example “mean”
or if it is an initialisation a “-* is used. The next item again separated by a *“:” is an
“(=)” if there is an assign association, an “UP” or “DN” for a subroutine call
association. If there is an *“(=)” association then a string is appended with the

assignee enclosed in square brackets. For an initialisation a blank “[-]” is appended.

41

Chapter 3 Test Cases

[-1-:(+)

[+ mEoEu_ul_._Sc_ [(sawaa” wnu)Ae.iie]
(=):spawale wnu:(+) Wawarls peay:-i(+)

[} - spuawaE"wny _
(=):spawia wnui(+) NQ:Aesde(+)

NQ:Siuawa|a whui(+)

(=)

[1 + sawsja wnu [(spawae™ wnu)ieue]
(=):sawaia™ wnui(+) UBwaRIS pray-i(+)

N

[} - spawae"wnu]
(=):spawaja wnu:(+) NQ:AeLie:(+)

NQ:Siawala~ wnui(+) !

[(suawaje™wnu)Aeiie]
Wawarls peay:-i(+)

[-1-1(+) Na:desei(+)

Figure 8 Reverse Traverse dependence graph for variance.

Chapter 3 Test Cases 42

Figure 8 shows the similar dependence graph for the variance output variable. Whilst
the calculation of the variance is mathematically fairly simple, the representation of

the dependence graph in this form has become quite extensive.

3.1.2 Pattern Matching

The pattern matching approach in this example has concentrated on the calculation of

the mean. The rule for this is detailed in Figure 9.

Rule 21 : Name: calculation of mean
Keys: {

ARRAY REF AND

VARIABLE NAME AND

STAR RANGE AND

VARIABLE _NAME THEN

Sum array items THEN
ASSIGN_STAT AND

VARIABLE NAME AND
DIV _OP AND

VARIABLE NAME AND
VARIABLE NAME LAST }

Figure 9 Rule: calculation of mean

Chapter 3 Test Cases 43

The first two items establish the id associated with the array that stores the items on
which the mean is to be calculated. The STAR_RANGE is specific to the
FORTRAN calling scheme whereby the array is a reference to data passed into a
subroutine that may change depending on from where it is called. The second
VARIABLE_NAME item is the range index and the divided by element in the mean
calculation. The “sum array items” is a rule that is expanded below. The last five

items establish the final division and assignment.

<’ stats.Ity - learnTool¥iewer . Tong B _Of x]
File Edit Yiew Analysis Help

DB 4|2 8= =] & ?Icalculationuv”
Rule:calculation of mean| [Keys|

ARRAY_REF ARRAY_REFNo Name|

[calculation of mear]

VARIABLE_NAME VARIABLE_NAME:array
FLOA

STAR_RANGE STAR_RANGE:No Name

VAR DECL

=
>
0
2y
m
il

VARIABLE_NAME VARIABLE_NAME:num_elements

()]
=
5
o
<
5
=
w

H

VAR DECL

Sum array items:

VAR REF]

VARIABLE NAME]

ASSIGN_STAT ASSIGN_STAT:No Name
AR RE

VARIABLE_NAME VARIABLE_NAME mean
FLOA

DIV_OP DIV_OP:No Name
AR RE

VARIABLE _NAME VARIABLE_NAME:sum1
FLOA

AR RE
VARIABLE_NAME VARIABLE_NAME:num_elements | MEAN=SUM1/NUM_ELEMENTS

:

:I

i

Ready [s (e

Figure 10 Screen shot of the match detail for the calculation of mean rule.

Figure 10 shows the output from the pattern matching within the learn tool for the

calculation of mean rule.

Chapter 3 Test Cases 44

Rule 20 : Name: Sum array items
Keys:
{ AssignToZero THEN
FOR_NODE AND
VARIABLE NAME THEN
Accumilatorl AND
ARRAY REF AND
VARIABLE NAME AND
VARIABLE NAME THEN
FOR_NODE LAST}

Figure 11 Rule: sum array items

Figure 11 shows the keys for the “sum array items” rule. The assignToZero is a rule
that captures the initialization of the variable to be used as the storage for the sum.
The FOR_NODE establishes the loop within which the sum is performed. The
VARIABLE_NAME refers to the loop index and the Accumilatorl is a rule that
captures the “a=a+b” construct. This is augmented with a reference to the data
VARIABLE_NAME item and the loop index variable name. The closure of the loop

provides the last key for the rule. Figure 12 shows the screen shot for this rule.

45

=101 x]

Chapter 3 Test Cases

_{;_stats.ltv - learnToolYiewer
File Edit View Analysis Help

Dl |E| & |8 @[[===

I
§§ggnTnZero:!

FOR_NODE:No Name
VARIABLE_NAME:p

Accumuator_1:

ARRAY_REF| ARRAY_REFNo Name
VARIABLE_NAME VARIABLE_NAME array

VARIABLE_NAME VARIABLE_NAMEp

l—
4
Hq

ASSIGN_STAT
FOR_NODE FOR_NODE:No Neme

-

Ready i [[iy

Figure 12 Screen shot of the match detail for the Sum array items rule.

Rule 19 : Name: AssignToZero

Keys:

{ ASSIGN STAT AND
VARIABLE NAME AND
IS_VALUE_ZERO LAST }

Figure 13 Rule: Assign ToZero

The keys of the AssignToZero rule are shown in Figure 13 and the corresponding

screen shot is included in Figure 14.

Chapter 3 Test Cases 46

T+ stats.Ity - learnToolYiewer

File Edit View Analysis Help

D S|B] 4[2]|R]= =« 8|2 [NE-]
Keys:

ASSIGN_STAT:No Name

—

ASSIGN_STAT
AssignToZero

IV_Sum array itemslv S
VARIABLE NAME ~ VARIABLE_NAME:sumf

INT VAL* S
IS.VALUE_ZERO ~ IS_VALUE_ZERO.

Ready EEEI =

Figure 14 Screen shot of the match detail for the AssignToZero rule

Rule 18 : Name: Accumulator 1
Keys: {

ASSIGN STAT AND
VARIABLE_NAME AND
ADD OP AND
VARIABLE_NAME LAST }

Figure 15 Rule: Accumulator_1

Figure 15 and Figure 16 complete the set of rules used to match against the

calculation of mean.

Chapter 3 Test Cases 47

{7, stats.Ity - learnToolViewer

File Edit View Analysis Help

D@6 &[B|8[[=o| S| 7 (MmN

Rule: Accumulator_1/ Keys:
ASSIGN_STAT ASSIGN_STAT:No Name.
VARIABLE_NAME VARIABLE_NAME:sum!.
FLOAT
ADD_OP ADD_OP:No Name
[vAR_REF,
VARIABLE_NAME VARIABLE NAME:sumi,
Ready [[oma [l

Figure 16 Screen shot of the match detail for the Accumulator_1 rule
3.2 Laplace Example

This example examines a simple two-dimensional relaxation algorithm. A regular
grid is used with its edges set to a pre-determined boundary condition. A numerical
iteration process is used to calculate the internal points that satisfy Laplace’s

equation:

’u du
St =0

d°x d°y

The source code is given in Appendix 1b. Almost all relaxation algorithms operate
by implementing an averaging scheme so that the values in each element are updated
on the basis of the values in their neighbours. This update occurs in an iterative loop
until the evaluation of the maximum error falls below a pre-determined threshold.
The averaging construct in this case is embodied in lines 183 and 184 of the source.

A more detailed discussion of relaxation algorithms can be found in Teukolsky et al

[79] chapter 19.

Chapter 3 Test Cases 48

3.2.1 Reverse Traverse

o

B

P e
870 oG Sy a

[datal edge_points]

5 %3 g.’.
F I
& Eg s? §f
i it o5 3t
st] 8 ef
i 8 &5 &%

Figure 17 Reverse Traverse dependence graph for datal

Figure 17 shows the reverse traverse dependence graph for this example. There is
only a single identified output “datal” and this is traced through the two calls to the
itterate_step subroutine and the initialisation routines where the boundary conditions
are set-up. The lack of a trace item for the initialisation of the edge_points variable is

due to it being set in a PARAMETER statement for which there is no method for

Chapter 3 Test Cases 49

generating an expression summary. This appears to be a limitation of the Sage++

parsetree.

3.2.2 Pattern Matching

In this example the core pattern to match against is the averaging statement

embodied in lines 183 and 184. The rule for this is shown in Figure 18.

Rule 17 : Name: laplace sequence
Keys: {

FOR_NODE THEN

FOR_NODE THEN

ew then ns THEN

FOR_NODE THEN

FOR_NODE LAST }

Figure 18 Rule: laplace sequence

Rule 16 : Name: ew then ns
Keys: {
west then east THEN
North Then South LAST }

Figure 19 Rule: ew then ns

The repeated FOR_NODE items provide the context for the main key, which

identifies the East West then North South array access pattern.

Rule 14 : Name: west then east
Keys: {
2D array West access THEN

2D array east access LAST |}

Figure 20 Rule: west then east

Chapter 3 Test Cases 50

Rule 7 : Name: 2D array West access
Keys: {

ARRAY REF AND

VARIABLE _NAME AND

SUBT OP AND

T _INT AND

IS VALUE_ONE AND

T_INT LAST }

Figure 21 Rule: 2D array West access

The “ew then ns” rule is constructed on top of two sub rules, the “west then east”
(Figure 20) and the “North then South”. Similarly the “west then east” rule is built
from the “2D array West access” (Figure 21) and the “2D array East access”. Each of
these rules has a reversed counterpart, for example “North then South” has a partner
“South then North” which are labelled as equivalent for the matching process. The

equivalence of these rules allows the matching to work independently of the order of

the coding of the array accesses.

Figure 22 Shows the output from the rule matching process for the “laplace

sequence” rule. The contributing rule 2D array West access is shown in Figure 23.

Chapter 3 Test Cases 51

- placel.lty - learnTool¥iewer
File Edit View Analysis Help

D& &[B|@]= =~ S| 2 (-

[FOR_NODE [FOR_NODE:No Name|
aplace sequence|
7 ARIABLE_NAME]
FOR_NODE FOR_NODE:No Name

F/ARIABLE_NAME

[aRiABLE_Nawe]
FOR_NODE FOR_NODE:No Name
[onTroL e

bl

Ready [[[

Figure 22 Screen shot of the match detail for the “laplace sequence” rule

<"~ laplace.Ity - learnToolViewer

File Edit VYiew Analysis Help

D[S W] s|®B[B= =] S| 2 MR-

ARRAY_REF ARRAY_REF:No Name. DATA2(lJ) = 0.25% DATA1(1 J) + DATA1(1+1,4) +
PD array West accessl
VARIABLE_NAME VARIABLE_NAME datal DATA2(1J) = 0.25% DATA1(-1,J) + DATA1(+1,d) +
SUBT_OP
'AR_REF
‘ VARIABLE_NAMEI
T_INT| T_INT:No Name DATA2(1,J) = 0.25% DATA1 (-1 J) + DATA1(1+1,J) +
vl

ISVALLE_ONE 1S_VALLE_OE:
AR_REF|

[rariaBLE_NamE]

T_NT

DATA2(l,J) = 0.25*(DATA1(I-1,J) + DATA1(1+1,J) +

Ready e [[

Figure 23 Screen shot of the match detail for the 2D array West access rule.

Chapter 3 Test Cases 52

3.2.3 Laplace Variation 1

The first variation to test is to split the averaging process using a temporary stack
variable to accumulate the sum. This is achieved by replacing lines 183 and 184 with

the code in Figure 24.

ACCUMULATOR = DATA1(I-1,J)

ACCUMULATOR = ACCUMULATOR + DATAL (I+1,dJ)
ACCUMULATOR = ACCUMULATOR + DATA1(I,J-1)
ACCUMULATOR = ACCUMULATOR + DATAl(I,J+1)

DATA2(I,J) = 0.25 * ACCUMULATOR

Figure 24 Variation 1 coding of Laplace example

+T~laplace2.ltv - learnToolViewer A N _[of x|
File Edit View Analysis Help

D||&| & [B|B:x [==«] S| 2 [ErEmn-|

FOR_NODE:No Name

FOR_NODE
Iaélace seauencel
[VARIABLE NAMEI

FOR_NODE
VARIABLE_NAME
ewthen ns
VARIABLE TUAME]

FLOA

FOR_NODE FOR_NODE:No Name
CONTROL_END

FOR_NODE FOR_NODE:No Name

FOR_NODE:No Name

ewthen ns:

Ready [[

Figure 25 Screen shot of the match detail for the” laplace sequence” rule for this variation

Rule matches the “laplace sequence” rule correctly for this variation of the code as is

shown in Figure 25.

Chapter 3 Test Cases 53

3.2.4 Laplace Variation 2

DATA2(I,J) = 0.25*(DATALl(I-1,J) + DATA2(I+1,J) +

+ DATA1(I,J-1) + DATA2(I,J+1))

Figure 26 Variation 2 coding of Laplace example

Figure 26 shows the second variation coding of lines 183 and 184 of the original
example. This time the matching algorithm correctly does not match to the “laplace
sequence” rule. It recognises the individual North, South, East and West 2D access
rules but the combinations of thesé for example “west then east” rule is not matched
because the expected common variable name “DATAI” is not common in this

instance of the sequence.

3.2.5 Laplace Variation 3

DATA2(I,J) = 0.25*(DATA1(I-1,J) + DATAL(I+1,J) +

+ DATA2(I,J-1) + DATA2(I,J+1))

Figure 27 Variation 3 coding of Laplace example

Figure 27 shows the third variation coding of lines 183 and 184 of the original
example. This time the matching algorithm correctly does not match to the “laplace
sequence” rule. It recognises the two pairs of “North then South” and “East then

West” but cannot link them together because of the change of variable name between

the instances.

3.2.6 Laplace Variation 4

Figure 28 shows the last variant of the Laplace example. In this case all the elements
for the “laplace sequence” rule are present and it is only the minus sign between the
B and the C on the last line that prevents this variation from being a correct coding of
this part of the algorithm. The Learn Tool achieves a match against the “laplace

sequence” rule as shown in Figure 29.

Chapter 3 Test Cases 54

DATAL1 (I-1,J)
DATAL (I+1,J)
DATA1(I,J-1)

O Qo w »
[

DATAL(I,J+1)

DATA2(I,J) = 0.25 * (A + B - C + D)

Figure 28 Variation 4 coding of Laplace example

<7 Untitled - learnToolYiewer
File Edit View Analysis Help

D@ &= @ 5o & 2 [Ermme-|

laplace sequence]
VARIABLE NAMEI
FOR_NODE
|VARIABLE NAMEI
[L_INT]

ewthenns ewthenns:
VARIABLE NAMEI

T FLOA

FOR_NODE FOR_NODE:No Name
FOR_NODE FOR_NODE:No Name

FOR_NODE:No Name

Ready o [[7

Figure 29 Screen shot of the match detail for the “laplace sequence” rule for this variation.

This property of incorrectly matching against a Rule, results from the Rule being
defined to match without ensuring all the elements necessary for the higher-level
concepts are present. This non-complete match approach is intended to mimic the
behaviour of a human programmer, where the pattern matching procedure might start
with what might be called a skim search. That is to say a first pass where a small set
of key features are looked for. If a key feature were located during this skim search,
then the programmer would form a hypothesis that this might be one of the concepts
that is being looked for. Performing a more detailed search to locate the missing
elements to tests the hypothesis would conclude the search process. Whilst a human
programmer can make mistakes when the complexity of the formulation of a concept

is high, the ability to ignore a lot of detail makes the searching very efficient, and

Chapter 3 Test Cases 55

robust against the multitude of possible representations of the same concepts. The
Rule formulation gains advantage from this flexibility as it allows matches to be
attempted without needing extensive code normalisation before being applied. The

down side is that the approach can make mistakes, like a human programmer.

3.3 Matrix Multiply Example

While no rules have been developed for this algorithm it is thought worthwhile to
discuss how this approach would be expected to perform on this problem that has

been described in some detail in Kel3ler [4] pp.78.

DO I=1,N
DO J=1,N
RET(J,I) = 0.0
DO K = 1,N
RET(J,I) = RET(J,I) + A(J,K) * B(K,I)
END DO
END DO
END DO

Figure 30 Code fragment for matrix multiply

Figure 30 shows a code fragment for the matrix multiply example translated into
FORTRAN. The core matching is the multiply and add assignment with the specific
array indices: (J,I) (J,K) and (K,I). The triple nest of the loop and the assign to zero
would complete the rule construction. Unlike KeBler [4], Figure 30 shows the code
with no loop unrolling. If the inner loop were unrolled the index pattern would be
present for the first item of the unrolling and the match would probably be made. The
problem would arise if the loop step on the inner loop was to be part of the match

and the overall matching would fail since it had a non-unity step size.

In the absence of code normalisation transformations, it is probable that the concept
would be recognised but the manipulation of the code would be error prone due to
the way the match would ignore the un-wound elements of the source. The loop
unwinding is an optimisation artefact and may cause human developers difficulty

when trying to comprehend third party source code. This is a good example of where

Chapter 3 Test Cases 56

code normalisation is beneficial and where premature optimisation can make source

code difficult to maintain and re-optimise for a new platform.

3.4 Maximum Value in an Array of Integers

While no rules have been developed for this algorithm, it is thought worthwhile to
discuss how this approach would be expected to perform on this problem that has

been described in some detail in Paul et al [77] pp. 7.

MAX = ARRAY (1)

DO I=2,N
IF (MAX .LT. ARRAY(I)) THEN
MAX = ARRAY (I)
END IF
END DO

Figure 31 Code fragment for find maximum integer value from array.

Figure 31 shows the code fragment for the find_max example. The first thing to
notice is the need to have two core rules that are associated, namely “scalar less than
array” and “array greater than scalar”. These core rules would be combined together
with the conditional assignment within the loop. The initialisation of the common

scalar value would probably be assumed and a match would be made.

3.5 Discussion

With the limited number of examples examined it is difficult draw more than
tentative conclusions from the work at this stage. The Reverse Traverse information
as presented becomes very large for even small examples and the chosen
presentation format is not ideal. In a completed system this information would
perhaps be presented as an interactive tree much like a file system browser, allowing
the user to limit the amount of data displayed at any one time. The Reverse Traverse
output needs perhaps a prioritising metric so that if presented automatically, only the
most important items are shown. There appears to be scope for research on how this

metric might be formed and how successful the resulting filtering might be at guiding

the toolset user to the areas of code that would benefit most from the application of

the other parallelisation tools in the toolset.

The pattern matching as implemented is fallible in certain instances. In some ways
this similarity in performance is encouraging considering the starting point of the
work. The trade off hoped for in terms of speed of recognition against accuracy is not
proved. As implemented, in debug mode the matching process takes approximately
40 milliseconds to execute on the largest presented example on an 800 MHz Athlon
PC. This is probably a respectable figure compared to the performance reported by
KesBler [2] although for this example only about 20 rules were being compared and

the example code length was a single subroutine.

The ability to match the rules developed to particular example codes has been shown,
however the number and complexity of the rules is low and currently targeted at

fairly simple algorithm components.

For a full system to be built, a means of systematically constructing rules would be
required. This would involve identification of all the necessary information to extract
from the parse tree to construct the codeStatusltems. The resolution of the ambiguous

matching problem would also be necessary.

It may be that the deliberate avoidance of a code normalisation step is a fundamental
flaw in the approach. It certainly makes formulating rules a non trivial task and

perhaps makes it impossible to derive a systematic approach to developing general

robust rules.

57

Chapter 4 Concluding Remarks

This work has presented a summary of existing approaches to the problem of
developing and converting software to run parallel computer platforms. It has made
the suggestion that algorithm substitution can be beneficial in some cases where the
original serial algorithm is not well matched to a particular parallel platform and a
change of algorithm can lead to significant improvements in execution speed and/or
overall capacity. The work has also presented the results of the feasibility study to
investigate the possibility of implementing such a system of transformations, which
has lead to the construction of the Learn Tool program that incorporates the Reverse

Traversal and pattern matching algorithms.

58

Chapter 4 Concluding Remarks 59

4.1 Parallelisation Tools

The extensive set of parallelisation tools developed over the last ten years highlights
the need for support in programming parallel computer systems. Whilst there is
support for code rewriting for distributing data and computation for SMP and MPP
systems from sequential source, only a few tools are starting to consider algorithm
substitution as a means of optimising the algorithm as well as the data and processing

and distribution on these architectures.

4.2 Reverse Traversal

The reverse traversal concept is to start with a program and treat it as a “black box”,
determine its inputs and outputs and then open up the box and follow the processing
between the two. By starting at the output and tracing backwards a focus is
maintained on the data of most interest allowing a certain level of detail and
potentially redundant code to be ignored. The main limitation of the algorithm is that
it can only be reasonably beneficial within an interactive browsing facility. The
Reverse Transverse tree expands very rapidly with relatively simple code examples

and display of the whole tree is very rapidly unusable.

The Reverse Traversal could be used as a simple method of identifying the tightly
nested loops of relevance in a practical situation and act as a trigger to enact the

pattern matching on a subset of the code in a more developed tool.

4.3 Pattern Matching

The pattern matching approach has been shown to operate successfully on two
examples. Its current limitations include the restriction of matching in a single

subroutine at a time and the lack of confirmation checking after a possible match is

located.

Both the pattern matching and the Reverse Traversal approach are based on the idea
that the best way of implementing machine understanding and manipulation of
source code should be based on approach adopted by human programmers. With
pattern matching, the human programmer has a distinct advantage over machine

approaches in the ability to pattern match in parallel (so to speak). Although the

Chapter 4 Concluding Remarks 60

author is un-aware of a definitive understanding of the human cognitive process, if
neural network or memory surface concepts Bono [55] are indicative of these
abilities, then humans can perform very rapid matches in parallel without the time
consuming methodical comparisons used in this work. The human approach also
allows for greater flexibility in the matching criteria, in that exact matches are rarely
needed and multiple levels of detail are available in order to home-in on a match.
The human programmer can also be prompted by source code comments to trigger a

recognition or to prompt a more detailed search for the expected patterns in the code.

While computers have very powerful detail processing, for example comparing two
strings, the number of detailed comparisons for all the possible variations of code
representation can become very large for a relatively small number of patterns. This
suggests that a less detailed and more parallel search method is required for an

automatic system to address high complexity problems.

In order to introduce sufficient capability of variation in code representation, this
work has allowed variable length gaps and associations between sub patterns. It has
also needed to concentrate on the combination of small characteristic phrases in
combination to infer that the higher-level pattern is in fact present during the Rule
creation process. The Learn Tool approach could incorrectly recognise code
examples that contain coding errors since there is currently no confirmation process

whereby a possible match is then checked for completeness.

In other approaches KeBler [2][4], Pinter et al [3] and KeBler et al [5] code
normalisation is used to reduce the variation between the templates and the
examples. The approach of a human programmer is sometimes to normalise code,
but often pattern matching is possible with no normalisation and it is for this reason

that code normalisation was omitted from the approach.

4.4 Summary

This work describes two algorithms developed to test the feasibility of using program
recognition techniques for program optimisation by algorithm substitution. The
pattern matching algorithm has proved to be the best approach, a result that is in
agreement with a number of authors Martino et al [1], KeBler et al [2], Pinter at al

[3], KeBler [4][5], Raghavendra et al [6], Bansali et al [7], and Hagemeister et al [8].

Chapter 4 Concluding Remarks 61

The algorithms have been embodied in a program called Learn Tool, which includes
a pattern creation editor and the matching algorithm scheme. This has been exercised
successfully against a number of test code samples, the results of which are presented

herein.

Appendix 1 — Example Source Code

Al.1 - Statistics

W N U W N

\tel

11
12
13

This example is generated from Advanced Basic Scientific Routines

B.V. Cordingley D.J Chamund page 50 MEAN AND VARIANCE.

The program opens a data file of choice. Filename prompted for

and output mean and variance values to file called stats.out

3 Subroutines:

1. Prompt for filename, read file data into array
2. Calculate Mean and Variance

3. Output data to a file.

PERG 12-1-%6 Started.

62

Appendix 1 Example Source Code

14
16

18
19
20
21
22
23
24
25
26
27
28
29
30

PROGRAM STATS

INTEGER MAX_ ELEMENTS

PARAMETER (MAX ELEMENTS=1000)

REAL ARRAY (MAX ELEMENTS)

INTEGER NUM_ELEMENTS

CALL LOAD DATA (ARRAY,MAX ELEMENTS,NUM_ ELEMENTS)
CALL CALC_STATS (ARRAY,NUM ELEMENTS,MEAN, VARIANCE)

CALL OUTPUT_DATA (MEAN, VARIANCE)

END

Appendix 1 Example Source Code

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
€6
67
68
69

QO N0 000 0nnann

10

20

This routine prompts for an input file and reads column

orientated floating point data in free format.

e.g. 0.1786
5.6723

If there are more than MAX _ELEMENTS in the file the reading
is stoped short of the end.

REAL ARRAY (*)
INTEGER MAX ELEMENTS
INTEGER NUM ELEMENTS
LOGICAL EOF

CHARACTER *1024 filename

EQF = .FALSE.
NUM_ELEMENTS=0
WRITE (*, *) 'Enter data file name’
READ (*,1) filename
FORMAT (A1024)

OPEN (UNIT=1, STATUS='0LD',6 FORM="'FORMATTED' ,FILE=filename, ERR=10)
DO WHILE (.TRUE.)
NUM_ELEMENTS=NUM_ELEMENTS+1
READ (1, *, END=20) ARRAY (NUM_ELEMENTS)
IF (NUM_ELEMENTS .EQ. MAX ELEMENTS) RETURN
ENDDO

RETURN

WRITE(*,*) 'Failed to open file:', filename
STOP

NUM_ELEMENTS=NUM_ELEMENTS-1

RETURN

END

Appendix 1 Example Source Code 65

71 O T L L L e T e T e L e
72 SUBROUTINE CALC“STATS(ARRAY,NUM_ELEMENTS,MEAN,VARIANCE)
73 C =====================

74

75 c This routine calculates the mean and variance of items in
76 C the array ARRAY. It looks at NUM_ELEMENTS of the array.
77

78

79 REAL ARRAY (*)

80 INTEGER NUM_ELEMENTS

81 REAL MEAN

82 REAL VARIANCE

83

84 c Local variables

85 REAL SUM1, SUM2

86 INTEGER P

87

88 IF (NUM_ELEMENTS .GT. 2) THEN

89 SUM1=0

90 SUM2=0

91 DO P=1,NUM_ELEMENTS

92 SUM1=SUM1+ARRAY (P)

93 SUM2=SUM2+ARRAY {P) *ARRAY (P)

94 END DO

95 MEAN:SUMl/NUM_ELEMENTS

96 VARIANCE= (SUM2 - MEAN*SUMl)/NUM_ELEMENTS

97 C VRME=VARIANCE*NUM_ ELEMENTS/ (NUM_ELEMENTS-1)
98 C SDMK=SQRT {VRMK)

99 C SDME=SQRT (VRME)
100 END IF
101
102 c Trap insufficient data occasions
103 C
104
105 IF (NUM_ELEMENT .LT. 2) THEN
106 WRITE (*,*) '‘Not Enough DATA to process'
107 MEAN=0.0
108 VARIANCE=0.0
109 END IF
110
111 RETURN
112

113 END

Appendix 1 Example Source Code 66

114
115
116
117
118
119
120
121
122
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

(==s===ssss==========SSSSSSsSSSSSSSSSSSSSSSSSSSSSSSSsSSSo=s==sS=s=========
SUBROUTINE OUTPUT_DATA (MEAN, VARIANCE)
c mmmmmmmmmmmmess—————=a
C This subroutine outputs the MEAN and Variance to SDTOUT
and a results file called stats.out
c
REAL MEAN
REAL VARIANCE
OPEN{(UNIT=1,FILE='stats.out', STATUS='UNKNOWN',
+ FORM='FORMATTED', ERR=10)
WRITE (1, *) '"MEAN:',MEAN, ' VARIANCE:',6 VARIANCE
CLOSE (UNIT=1)
RETURN
10 WRITE (*,*) 'Exrror opening output file'
STOP
END
(o m M M mmmm e EEEES——SSSSSSE=SS=======

Appendix 1 Example Source Code

67

Al.2 — Laplace

Cruxrhhdhhhhkdhhhhhhhhhhhhkhhhkkhkrhhkhhhhkdhkhhrrrhrdrkdrdhhdrhdrhdhdhdhdkdhhdrskx

[R . N I R S

0

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Q0 0 0nan

PROGRAM: laplacel.ftn
CREATED: 16:4:94 by Philip Galloway
LAST CHANGE:

C**

C
C
C
C

This program performs a simple 2D Laplace solution on a

uniform square grid.

Chhrdhkhhdhrhdddhhhhbhrhhhhdrhhhhhhkhhkhrdhkhrrdddhdrhdbhrr bbb rbhrrrrdrhkdrkx

PROGRAM laplacel

Define the number of cells along each edge.

INTEGER EDGE_POINTS
PARAMETER (EDGE_POINTS = 200)

Define the convergence limit
REAL CONVERGENCE_LIMIT
PARAMETER (CONVERGENCE_LIMIT=0.0001)

Declare the data stores.
REAL DATAl(EDGE_POINTS,EDGE_POINTS)

REAL DATA2 (EDGE_POINTS, EDGE_POINTS)

Set up the start data for iteration.

IFirst data store.
{Second data store.

CALL INITIALISE DATA SPACE(DATAl,EDGE_POINTS)

Define the Boundary conditions.

CALL SET_BOUNDARY_CONDITIONS (DATA1l,DATA2,EDGE_POINTS)

Iterate until convergence is reached.

CALL ITTERATE (DATAl,DATA2,EDGE_POINTS, CONVERGENCE LIMIT)

Output the resultant data to a sequential binary file.
CALL OUTPUT_GRID_DATA(DATAl,EDGE_POINTS)

END

Appendix 1 Example Source Code 68

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

This routine sets all the interior point data to zero.

INTEGER EDGE_POINTS (The dimension of the raw data space.
REAL DATAI1l (EDGE_POINTS, EDGE POINTS)

Local array indexes.

INTEGER I,J

Set all interior points to zero.
DO I=2,EDGE_ POINTS
DO J=2,EDGE_POINTS
DATA1(I,J) = 0
END DO
END DO

RETURN

END

Appendix 1 Example Source Code 69

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
108
110
111
112

Q00 QN

This subroutine sets the edge boundary conditions using
built in trig and polynomial functions.
the full size edge is parameterised from 0-1 in which there

are EDGE_POINTS samples.

INTEGER EDGE_ POINTS ! The dimensions of the stores.
REAL DATAL (EDGE_POINTS, EDGE_POINTS)
REAL DATA2 (EDGE_POINTS, EDGE_POINTS)

LOCAL DATA

INTEGER I,J ! Array indexes.
REAL PI

PARAMETER{PI=3.141596)

Set up the I dependency functions
DO I=1,EDGE_POINTS

Put the same BC's in both data stores.
DATAL1(I,1) = COS(2‘O*PI*REAL(I)/REAL(EDGE_POINTS))
DATA2{I,1) = DATA1(I,1)

DATAL (I,EDGE POINTS) = SIN(PI*REAL(I)/
REAL (EDGE_POINTS))

DATA2 {I,EDGE_POINTS) = DATA1l(I,EDGE POINTS)

END DO

Set up the J dependency functions
DO J=1,EDGE_POINTS

DATA1(1,J) = 0.1
DATA2(1,J) = DATA1(1,J)

DATAL (EDGE_POINTS,J) =0.9
DATA2 (EDGE_POINTS,J) = DATAl(EDGE_POINTS, J)

END DO
RETURN

END

Appendix 1 Example Source Code

113
114
115
116
117
118
112
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

O 00 0n

This subroutine iterates over the data until the CONVERGENCE
LIMIT is no longer exceeded. Each call of the procedure
ITTERATE_STEP transfers the working data set from DATAL

to DATA2 or visa-versa. If the CONVERGENCE _LIMIT is not
exceeded at any point then DONE is returned TRUE.

INTEGER EDGE_POINTS ! The dimensions of the stores.
REAL DATAl (EDGE_POINTS, EDGE_POINTS)

REAL DATA2 (EDGE_POINTS, EDGE_POINTS)

REAL CONVERGENCE_LIMIT ! The convergence limit.

Local variables.

LOGICAL DONE ! Detects the convergence situation
INTEGER STEPS ! Step counter.

DONE = .FALSE.

STEPS = O

DO WHILE (.NOT. DONE)

CALL ITTERATE_ STEP(DATAl,DATA2,EDGE_POINTS,
CONVERGENCE_LIMIT, DONE)
STEPS = STEPS + 1
IF (MOD(STEPS,10) .EQ. 0) write(*,*)STEPS
IF (.NOT. DONE) THEN
CALL ITTERATE STEP(DATAZ2,DATAl,EDGE_POINTS,
CONVERGENCE_LIMIT, DONE)
STEPS = STEPS + 1
END IF

IF (MOD(STEPS,10) .EQ. 0) write(*,*)STEPS
END DO

write(*,*)'Convergence took ',STEPS,' Steps.'
RETURN

END

70

Appendix 1 Example Source Code

158 [
159 SUBROUTINE ITTERATE_STEP(DATAL,DATAZ2, EDGE_POINTS,

160 + CONVERGENCE_LIMIT, DONE)

161 c EEEEEEEEES st L E D

162

163 C Thig subroutine preforms a single itteration step using
164 c the Jacobi method for solving the Laplace Eguation

165 C on a regular sqguare grid.

166

167 INTEGER EDGE_POINTS ! The dimensions of the stores.
168 REAL DATAL (EDGE_POINTS, EDGE_POINTS)

169 REAL DATAZ (EDGE_POINTS, EDGE POINTS)

170 REAL CONVERGENCE LIMIT ! The convergence limit.
171 LOGICAL DONE ! Finish after convergence reached.
172

173 c Local data

174 INTEGER I,J | data array indexes.

175 REAL CURRENT_DIFF ! Current convergence size
176 REAL MAXIMUM DIFF ! Maximum convergence size
177

178 MAXIMUM DIFF = 0.0

179 DO I=2,EDGE_POINTS-1

180

181 DO J=2,EDGE_POINTS -1

182

183 DATA2(I,J) = 0.25*{(DATA1(I-1,J) + DATALI({I+1,d) +
184 + DATA1({I,J-1) + DATAL(I,J+1))
185

186 C Find the convergence test at this point.

187 CURRENT_DIFF = ABS(DATA2{(I,J) - DATA1l(I,J})

188 MAXIMUM DIFF = MAX(MAXIMUM DIFF,CURRENT DIFF)

189

190 END DO

121

192 END DO

193

194 IF (MAXIMUM DIFF .LT. CONVERGENCE LIMIT) THEN

195 DONE = .TRUE.

196 END IF

197

128 RETURN

199

200 END

201

202

Appendix 1 Example Source Code

72

203
204
205
206
207
208
209
210
211
212
213
214
215
217
218
219
220
221
222
223
224
225
226
228

This routine opens a binary sequential file and
dump the data information in DATAL

INTEGER EDGE_POINTS
REAL DATALl (EDGE_POINTS, EDGE_POINTS)

INTEGER I,J ! array indexes.
Open the file
OPEN (UNIT=10, FORM='UNFORMATTED' , ACCESS="'SEQUENTIAL',
FILE='Laplace.bin', STATUS="'UNKNOWN')
DO I=1,EDGE_POINTS
WRITE{10) (DATAL1(I,J),J=1,EDGE_POINTS)
END DO

CLOSE (UNIT=10, STATUS="'KEEP')

RETURN
END

Bibliography

[1]

Beniamino Di Martino and Christoph W. KefBler, ‘Program Comprehension
Engines for Automatic parallelization: A Comparative Study’, Software
Engineering for Parallel and Distributed Systmes, pp144-157, Chapman &
Hall, 1996.

C. W. KeBler, W. J. Paul, ‘Automatic parallelization by Pattern Matching’,
Proc. Of Second Int. Conference of the Austrian Centre for Parallel

Computation, Springer LNCS 734, pp 166-181, October 1993.

S. S. Pinter, R.Y. Pinter, ‘Program Optimization and Parallelization Using
Idioms’, ACM SIGPLAN, Principles of Programming Languages, pp 79-92,
1991

C. W. KeBler, ‘Pattern-driven automatic program transformation and

parallelization’, Proc. Euromicro workshop on Parallel and Distributed

Processing 1995, pp76-83

73

Bibliography

74

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

C. W. KeBler, C. H Smith,” The SPARMAT approach to automatic
comprehension of sparse matrix computations’, Proc. 7™ International

workshop on program comprehension 1999, pp 200-207

C. S. Raghavendra, S. Bhansali, ‘On porting sequential programs to parallel

machines’, Proc. COMPSAC’94 pp 313-318

S. Bansali, J. R. Hagemeister, et. al, ‘Parallelizing sequential programs by
algorithm-level transformations’ Proc. IEEE Third workshop on program

comprehension 1994, pp100-107

J. R. Hagemeister, S. Bansali, et. al., ‘Implementation of a pattern —matching
approach for identifying algorithmic comcepts in scientific FORTRAN

programs’, Proc. 3 Int. conference on High Performance Computing 1996,

pp209-214

Kelly T, 'Optimising Hardware Granularity in Parallel Systems', PhD
University of Edinburgh 1995

Sabot G., Wholey S. et al, Parallel Execution of a FORTRAN 77 Weather
Prediction Model', Proc 1993 ACM/IEEE conference on Supercomputing,
Portland Oregon, USA.

Sethian J. A., 'Computational Fluid Mechanics and Massively Parallel

Processors', University of California, Proc. Supercomputing 1993.

Jin H., Hirbar M. and Yan J., ‘Parallelization of ARC3D with Computer-
Aided Tools’, NAS Technical Report , NAS-98-005, NASA Ames Research

Center 1998.

Hong Q Ding, 'Monte Carlo Simulation of Quantum Systems on Massively

Parallel Supercomputers', Proc. Supercomputing 1993.

Ewing R.E. Sharpley R.C., 'Distributed Computation of Wave Propagation
Models using PVM', Proc. Supercomputing 1993.

Cross M., Ierotheou C. S., Johnson S.P., Legget P. and Rvans E., * Software
tools for Automating the parallelisation of FORTRAN Computational

Bibliography

75

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Mechanics Codes’, Parallel and Distributed Processing for Computational

Mechanics 1997.

Harman M.,Simpson S.)EPSILON - A Radar Cross Section Modelling
package', Proc. UKSCS 1990

Galloway P., Simpson S., 'Parallelisation of Radar Cross Section (RCS)
Prediction for Electrically Large Targets', Proc, European Simulation

Multiconference 1991

Galloway P.,'The Operation and Control of large Parallel Simulations on a
Network of Sun Workstations using CSToolsT™',Proc. European Simulation

Symposium 1992

Knapik M, Johnson J., ‘Developing Intelligent agents for distributed
systems’, McGraw-Hill, 1998.

Haridi S., Van Roy P. et. al., ‘Programming Languages for distributed

applications’, New Generation computing, 16(3):223-261, May 1998.

Wolfe M., 'Data Dependence and Program Restructuring', Jou.

Supercomputing 4 (321-344) 1990

Wolfe M., Engineering a data dependence test', CONCURRENCY: Practice
and Experience, Vol 5(7), 603-622 Oct 1993

Brooks, E. D. III and Warren K. H. ‘A Study of Performance on SMP and
Distributed Memory Architectures Using A Shared Memory Programming

Model’. Proc. of SuperComputing (Nov 1997).

Pountain D., May D.,'A tutorial Introduction to occam Programming'.,BSP

Professional Books.

Foster 1., Taylor S.,"Strand: New concepts in parallel programming", Prentice

Hall 1990. ISBN 013850587X

Chapman B., Mehrotra P., et al, 'Dynamic Data Distributions in Vienna

Fortran', Supercomputing 1993 Pp. 284-293

Bibliography

76

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Fox G., Hiranandani S., et al., 'Fortran D language specification." Dep.

Computer Science Rice COMP TR900079. 1991.

Harris J. et. al.,'Compiling High Performance Fortran for Distributed-memory

Systems',Digital Technical Journal Vol. 7 No. 3 1995

Brandes T., Benkner S., ‘Exploiting Data Locality in Scaleable Shared
Memory Machines with Data Parallel Programs’, Proceedings of Euro-Par

2000, Parallel Processing. September 2000.
OpenMP Fortran/C Application Program Interface, http://www.openmp.org/

Jin H.M, Frumkin M., Yan J., “The OpenMP Implementation of NAS Parallel
Benchmarks and Its Performance’, NAS Technical Report, NAS-99-011,
NASA Ames Research Centre, 1999.

Silicon Graphics, Inc. MIPSpro ™ Power Fortran 77 Programmer’s Guide.

Document 007-2361-007, SGI, 1999.

Thinking Machines Corporation, ’CM Fortran Reference Manual’, version

5.2, Cambridge, MS, 1989

Su E., Lain A., et.al., ‘Advanced Compilation Techniques in the PARADIGM
Compiler for Distributed Memory Multicomputers’, Proc. ACM International

Conference on Supercomputing, Barcelona Spain, 1995.

Walker E., 'Extracting data flow information for Parallelizing FORTRAN
nested loop kernels', PhD thesis, University of York (U.K.) June 1994.

Das R, Saltz J., et al ' Slicing Analysis and Indirection Access to Distributed
Arrays' Proc. Sixth Annual Workshop on languages and Compilers for

Paralle] Computing, Portland OR. August 1993.

Van der Wijngaart R. F., ‘Charon toolkit for parallel, implicit structured-grid
computations: Literature Survey and conceptual design’ NAS Report 97-018,

NASA Ames Research Centre, Moffett Field, CA., 1997

http://www.openmp.org/

Bibliography

77

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Saad Y., Kuznetsov S., et al. ‘PSPARSLIB: A portable library of parallel
sparse iterative solvers’, Proc. Eighth SIAM Conference on Parallel

Processing for Scientific Computing, Minneapolis, MN, March 1997.

Schonauer W., Hafner H., Weiss R., ‘LINSOL, a parallel iterative linear
solver package of generalised CG-type for sparse matrices’, Proc. Eighth
SIAM Conference on Parallel Processing for Scientific Computing,

Minneapolis, MN, March 1997.

Message Passing Interface, http://www-unix.mcs.anl.gov/mpi

Snir M., Otto S. W, et. al, ‘MPI: The Complete Reference’, MIT Press, 1995
Meiko Ltd., 'CS TOOLS for MeikOS', Meiko Almondsbury, Bristol England

Saad Y., Sosonkina M., ‘Non-standard parallel solution strategies for
distributed sparse linear systems’, Proceedings of ACPC’99, Lecture notes in
computer science, Berlin, 1999, Springer-Verlag.

http://citeseer.nj.nec.com/308666.html.

Folors N. Reeve J., 'Domain Decomposition Tool (DDT) version 2.2 An

abridged Users Guide', Southampton University 1994, ESPRIT CAMAS
6756.

Adams M. F., ‘A Distributed Memory Unstructured Gauss-Seidel Algorithm
for Multigrid Smoothers’, ACM/IEEE proceesinds of SCOl: High
Performance Networking and Computing 2001.,

http://citeseer.nj.nec.com/adams01distributed.html

Charles Simonyi, “The Death of Computer Languages, The birth of
Intentional Programming’, Technical Report, MSR-TR-95-52, Microsoft

Corporation.

Advanced Parallel Research, ‘Forge Explorer User’s Guide’,

http://www.gpsf.edu.au/workshop/forge/forge.html

J.H. Merlin. 'Inter-procedural Dependency Analyser (IDA)' CAMAS report
2.2.1.1, Univ. of Southampton March 1993.

http://www-unix.mcs.anl.gov/mpi
http://citeseer.ni.nec.eom/308666.html
http://citeseer.ni.nec.eom/adams01distributed.html
http://www.qpsf.edu.au/workshop/forge/forge.html

Bibliography

78

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

Bodin F., Beckman P. et al, '‘Sage++: An Object-Oriented Toolkit and Class
Library for Building Fortran and C++ Restructuring Tools', University of

Rennes and Indiana University. 1994, OONSKI9%4

'Sage++: A Class library for Building FORTRAN 90 and C++ Restructuring
Tools:User Guide', Nov 1994, Indiana University.

KAP: http://www.kai.com/vkomp

Allen F.,Burke M., et al, '"An Overview of the PTRAN Analysis System for
Multiprocessing',Jou. of Parallel and Distributed Computing 5 617-640 1988.

Zima H. P..Bat H. J..Gerndt M., 'SUPERB: A tool for semi-automatic
MIMD/SIMD parallelization', Parallel Computing 6 (1988) 1-18
North-Holland.

Cross M., Ierotheou C. S., et al,CAPTools - semiautomatic parallisation of

mesh based computational mechanics codes' Pres. to HPCN Europe Munich

1994. (April).

Simulog http://www.simulog.fr

Hood, R, ‘ Building a Portable Distributed Debugger’, proc. STDT’96:
SIGMETRICS Symposium on Parallel and distributed Tools. 1996.

May J., Berman F., * Panorama: A Portable, Extensible Parallel Debugger’,
ACM SIGPLAN, 28(12), December 1993.

Nikolaou, C., Saridakis, T., Zarras A, ‘ArrayTracer : A Parallel Performance
Analysis Tool’, Technical Report TR95-0136, Aug 1996

http://citeseer.nj.nec.com/article/nikolaou96arraytracer.html

London, K., Dongarra, J. et al. * Using PAPI for hardware performance
monitoring on Linux Systems’, Presented at Linux Clusters : Revolution, July

2001., http://www.ptools.org/projects/index.html

Shende S., Hackstadt S. T. and Malony A. D., * Dynamic performance
callstack sampling: Merging TAU and DAQV-II’, Proceedings of the Fourth
International Workshop on Applied Parallel Computing (PARA98), June

http://www.kai.com/vkomp
http://www.simulog.fr
http://citeseer.nj.nec.com/article/nikolaou96arraytracer.html
http://www.ptools.org/proiects/index.html

Bibliography

79

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

1998., Lecture notes in Computer Science, No. 1541, Springer-Verlag, Berlin
1998.

'‘Animated Algorithms', The Mathematica Journal vol4, issue4 Fall 1994
pp37- 43, based on work by Roman E Meader, ETH Zurich, Institute of

Theoretical Computer Science.

Fitzpatrick s. et. al, Deriving Efficient parallel Implementations of
Algorithms Operating on General Sparse matrices using Automatic Program

Transformations'. Parallel Processing CONPAR 94-VAPP VI pp 148-159.

ten Cate H.H., Vollebregt E.A.-H, "On the portability and efficiency of
parallel algorithms and software" Report 94-76, NOWESP project within

MAST II program.

R. C. Waters. ‘Automatic analysis of the logical structure of programs.’

Technical Report 492, MIT Artificial Intelligence Lab., December 1978.PhD
Thesis.

S.F Fickas and R Brooks. ‘Recognition in a program understanding system’,

In Proc. 6" International Joint conference. Artificial Intelligence, pages

2660268, Tokyo, Japan, August 1979.

L. M. Wills. ‘Automated Program Recognition by Graph Parsing’, PhD
thesis, MIT 1992, Technical Report 1358, MIT Artificial Intelligence Lab,
Cambridge, MA. http://users.ece.gatech.edu/~linda/phd-thesis.html

W. Kozaczynski, J.Ning, et. al. ,’Program concept recognition and

Transformation’, IEEE Transactions on Software Engineering, 1992. pp1065-

1074

C. Rich., ‘A formal representation of plans in the programmer’s apprentice.’,

Proceedings of the 7™ International joint conference on artificial intelligence.

1981.

L. Snyder. ’Recognition and Selection of Idioms for Code Optimization’,

Acta Informatica, 17:327-348, 1982.

http://users.ece.gatech.edu/~Iinda/phd-thesis.html

Bibliography

80

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

Stroustrup B., ‘The C++ Programming language’, Third Edition, Addison-
Wesley, 1997. ISBN 0-201-88954-4

C. G. Nevill-Manning, I. H. Witten, ‘ Identifying Hierarchical Structure in

Sequences: A linear Time algorithm’, http://dna.stanford.edu/sequitur/jair

Villavicencio G., ‘Program Analysis for the Automatic Detection of
Programming Plans Applying Slicing’, Proceedings of the 5th European
Conference on Software Maintenance and Reengineering. CMSRO1, March

2001, http://citeseer.nj.nec.com/villavicencioOlprogram.html

Kucherov G., ‘Matching a Set of Strings with Variable Length Don’t Cares’,
Theoretical Computer Science, 178 (1997) pp 129-154.

Baker B. S., Giancarlo R., ‘Longest Common Subsequence from Fragments
via Sparse Dynamic Programming’, European Symposium on Algorithms,

August 1998.

Baker B. S., et al. ‘On Finding Duplication and Near-Duplication in Large

Software Systems’, Second working conference on Reverse Engineering,

1995.

Baker B. S., et al., ‘Compressing Differences of Executable code’, ACM
SIGPLAN workshop on compiler support for system software (WCSSS’99),
1999.

Paul, S., Prakash A, “A Framework for source code search using program

patterns”, IEEE Transactions on Software Engineering 20(6): 463-475.

Quilici A., Yang Q., et al.,, ‘Applying Plan Recognition Algorithms to
Program Understanding’, Automated Software Engineering: An International

Journal, July 1997, http:// citeseer.nj.nec.com/quilici97applying.html

Teukolsky S. A. et al. ’Numerical recipes in C, The art of scientific
computing, Second Edition’, Cambridge University Press, ISBN 0-521-
43108-5, 1992

http://dna.stanford.edu/sequitur/iair
http://citeseer.ni.nec.eom/villavicencio01program.html

Bibliography 81

[80] Bono Edward de, * The Mechanism of Mind’, Penguine Books Ltd, ISBN 0-
1402.1445-3, 1969.

