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Program recognition is an important tool for the development, support and 

manipulation of software, particularly in the field of parallelisation tools. One area of 

current interest is the potential advantage of algorithm substitution as a means of 

optimising source code for execution on parallel hardware. In order to substitute an 

algorithm within a source code, the elements of the original algorithm must be 

recognised and extracted. The recognition of code elements is therefore the first step 

towards implementing such a system. 

This work reports on the implementation and operation of two algorithms to support 

the program recognition aspects of this automatic algorithm substitution idea. The 

algorithms have been applied to a number of source code examples and their 

performance evaluated. The approach embodied in these algorithms has been shown 

to be effective as they can operate without the need for extensive code normalisation 

found in other approaches to this problem. 
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Chapter 1 Introduction 

"Automated program recognition can play a crucial role in overcoming 

limitations of existing tools for automatic parallelization" Martino et al. 

[1], 

Program recognition is a process whereby the core functionality of an application, 

module or phrase is recognised by studying its implementation or detailed behaviour. 

It can be thought of as the process whereby the original intent of the programmer is 

deduced. Indeed the working title of this thesis was "Intent Analysis", however 

program recognition is the more commonly used term in the computer science 

community. 
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Software engineers who maintain legacy code perform program recognition 

routinely, as do application developers who work in teams and need to review the 

work of their co-workers. The application of program recognition to the process of 

parallelisation builds on the observation that the greatest program speed-ups are most 

often achieved when a component algorithm is completely changed rather than re-

coded or optimised. This is particularly true for algorithms that are targeted for 

parallel hardware where the memory hierarchy is many layered and inter-process / 

inter-processor communication costs can dramatically inhibit the efficiency of poorly 

matched algorithms. The other application of program recognition for parallelisation 

activities is to restructure the code to use pre-optimised library routines once a 

suitable substitution has been found. 

Automated program recognition would be used to allow a parallelisation tool to 

perform algorithm substitution as part of its operation. Algorithm substitution may 

also be useful for optimising code for serial platforms, indeed for commercial 

software that is developed under a tight budget, optimal algorithms are rarely chosen 

for an initial implementation. There are several reasons for this, the most common 

being the drive to implement a simple (less efficient) algorithm accurately in the 

minimum required development time so that effort can be concentrated on 

verification of functionality and user interaction issues. 

Several workers in the academic community have reported on their progress towards 

the goal of implementing algorithm substitution systems, these include Martino et al. 

[1] KeBler et al. [2], Pinter at al. [3], KeBler [4,5], (Raghavendra et al. [6], Bansali 

et al. [7] and Hagemeister et al. [8]. This work was motivated by the same 

fundamental idea and has resulted in a prototype analysis code, named "Learn Tool" 

that implements two of the strategies considered. 

This work seeks to allow the deduction of the intent of the programmer to be 

partially automated, to assist in the optimisation of legacy code for operation on 

parallel platforms. Thus the scope of the work is confined to the extraction of intent 

information from legacy code and does not address directly the issue of optimal 

program fabrication for parallel platforms. 

The thesis is organised as follows: 
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Chapter one starts with a background section that discusses briefly the distinction 

between parallel and serial computers and then sets the context of the work with a 

description of a generic parallelisation toolset that may be used to convert serial code 

to execute "optimally" on parallel hardware. This is followed by a more detailed 

discussion of the motivation for the work. Next, a section detailing the related work 

on program recognition provides an overview of other work in this area and how it 

relates to this work. The chapter concludes with an outline of the approach to the 

practical work undertaken. 

Chapter 2 describes the software constructed to investigate the ideas for the program 

recognition concept; this introduces the Sage++ toolset (a third party parse tree 

generator and source code to source code transformation toolset) the Reverse 

traversal and the Pattern matching algorithms, which were implemented on top of 

Sage++ in the Learn Tool application. 

Chapter 3 provides examples of exercising the Reverse Traverse and Pattern 

matching algorithms on simple source code test cases. This highlights some of the 

difficulties of the two approaches and demonstrates the basic utility of the pattern 

matching approach. 

Chapter 4 contains the conclusions drawn from the work and summarises the main 

findings. 

1.1 Background 

To start it is worth reviewing the definitions of parallel and serial computer, as in 

these days of high integration and pipelined processors the distinction can become 

somewhat blurred. 

A serial computer can be thought of as executing instructions in an ordered manner, 

starting with the first and ending with the last, essentially adopting a Von Neumann 

architecture. The order of instructions is determined by the control structures in the 

program but there is no simultaneous execution of different parts of the instruction 

sequence at any time. A parallel computer has more than one processing unit 

allowing separate instructions to be executed simultaneously on different units. The 

instructions may be the same but operating on different data. Single Instruction 



Chapter 1 Introduction 4 

Multiple Data (SIMD) or both instructions and data may be different, Multiple 

Instruction Multiple Data (MIMD). SIMD is often referred to as a data parallel 

approach or as the parallelisation strategy is almost always based on data 

partitioning. MIMD is also described as task, thread or process parallelism. 

Parallel implementations of software operate in two main paradigms. The first is 

closely associated with SIMD or the data parallel approach. The partitioning of the 

data in the problem is embedded in the source code, typically in HPF or OpenMP 

extensions to C, Fortran or C++. The distribution of the data to physical processors, 

or processes on actual processors is a compile or run time issue and is dealt with by 

the compiler and/or a data distribution library. The second, MIMD style is a lower 

level approach based on writing explicit message passing code and potentially 

running different executables on the distributed processors. The second style can be 

used for a SIMD program and can provide a more intimate control of the locality of 

the data. The second style is the most common approach for implementing task 

parallel applications. The two main task parallel strategies are master/slave and 

pipeline. The master/slave model is were a single co-ordinating process distributes 

tasks to a pool of slave processors that may perform multiple instances of the same 

code or may perform different tasks associated with the overall problem. A pipeline 

strategy breaks up the calculation into stages that feed from one process to the next 

with data flowing through them, very much like a production line. Each processor 

performs part of the overall calculation and the data is passed on to the next 

processor when processed. Pipeline parallelism is often employed in Digital Signal 

Processing (DSP) situations where there is a natural flow of data from an external 

source and 'live' processing is required. 

Modem Microprocessors are parallel processors, in that they typically have multiple 

processing components. Central Processing Unit (CPU), Floating Point Units 

(FPU's) and dedicated communication sub processors, along with memory 

management and cache facilities. For the purposes of this text, microprocessors of 

this sort will be classified as serial machines, since the instruction set (for the high 

level programmer) is purely sequential, with any parallelism being exploited 

invisibly by the compiler, macro code, or skilled assembly language programmer. 
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Modern compilers achieve a good degree of efficiency for most applications where 

there is fine-grained parallelism. This granularity maps well onto the multiple 

processing units within typical microprocessors. 

Parallel computers exist in many configurations ranging from dual processor PCs, 

and workstation clusters to dedicated parallel machines such as IBM SP2, Cray T3D, 

T3E and SGI Origin 2000. Every parallel computer has a set of performance 

characteristics that relate to its memory hierarchy, inter-processor communications 

and core microprocessor. The programming model for a parallel machine may be 

shared memory, distributed memory or both. The level of hardware support for 

communications will influence the programming model and how effectively it can be 

used on a particular platform. For example, a network cluster of workstations on a 

standard Ethernet, will have high latency and relatively low bandwidth 

communications, so a shared memory paradigm would tend to perform poorly 

against, for example an SGI Origin 2000, which whilst having a physically 

distributed memory, has high bandwidth support for node to node communications 

(as well as a common virtual memory space). That is not to say that programmers 

cannot use a shared memory paradigm on a parallel machine with low 

communications performance, but rather to indicate that that it will only work 

efficiently if great care is taken to ensure data and process locality, a task, often more 

easily achieved by adopting a message passing approach. 

Parallel machines roughly fall into three categories, Symmetric Multi Processing 

(SMP) where a single memory bus is used for all processors. Massively Parallel 

Processing (MPP) where the memory is distributed and data is shared by 

communications and recently Non-Uniform memory Access (NUMA) or Distributed 

Shared Memory, (Origin 2000) where there is explicit hardware support for a single 

memory image over a distributed memory architecture. 

1.1.1 Problem domains for parallel processing 

Parallel processing is adopted as a solution to the problems of ultimate computer 

performance and cost performance trade-offs Kelly [9]. Parallel architectures offer 

the possibility of exceeding the processing capability of single processors in terms of 

MIPS and FLOPS as well as ability to provide large memory configurations with 
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distributed address spaces. Many areas of research can and do utilise the fastest of 

computers to tackle problems in domains such as weather forecasting Sabot et al 

[10], Fluid Mechanics, Sethian [11], Jin et al [12], Quantum Physics, Hong [13], 

Wave Propagation, Ewing [14], Computational Mechanics, Cross et al. [15] and my 

own area of interest, Electromagnetic Simulation, Harman and Simpson [16], 

Galloway and Simpson [17], Galloway [18] to name a few. 

To summarise, parallel computers are used in the following situations: 

# Where a single processor reaches its ultimate speed and is still not fast 

enough. 

• Where sufficient execution speed can be attained on a single processor but 

the cost of the equivalent parallel hardware is lower. 

® Where a single processor configuration cannot address enough memory space 

for the calculation of very large problems. 

9 Where a convenient parallel resource, such as a workstation cluster has 

available idle time and can be exploited at low cost. This is common in most 

business environments where hundreds of desktop PC could be exploited at 

little additional cost and with little impact on the main users. 

The use of parallel processing machines in other situations (other than parallel 

processing research) is rarely cost effective, since the operator has to overcome all 

the drawbacks of operating a parallel application listed by Kelly [9] which do not 

occur for the alternative realisable single processor solutions. 

The above holds true for most scientific applications, whereas there is considerable 

activity in internet based parallel processing, where agents, Knapik and Johnson [19] 

may interact to achieve goals that are not possible on a local configuration because of 

special resource or information availability. Languages to support this work such as 

Java 2 (JDK 1.2), Oz and Mozart, Haridi, Roy et al. [20] are not considered in the 

context of this work, which focuses on scientific applications and primarily legacy 

FORTRAN applications. 
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1.1.2 Support for the programmer 

A programmer writing code for a parallel computer is operating in one of the 

following situations: 

# Converting an existing serial application. 

« Converting a parallel application to a new computer platform. 

® Writing a new application for a parallel computer. 

The conversion of existing code entails a trade-off between changing inefficient code 

sections and spending a minimum of effort in performing the conversion. 

Parallelisation tools have been developed to attempt to make these tasks efficient. 

The tools provide a variety of facilities that help the programmer solve the problems 

encountered during the code creation and conversion processes. 

The main problems that the programmer has to solve are: 

® How to distribute or partition the data. 

® How to distribute or partition the functionality. 

® How to take account of the memory layout of the target machine or machines. 

9 Making the selection of suitable algorithms. 

Incidental details of how to implement the data sharing and synchronise the 

operation of multiple processing units are also areas where tools can assist. 

With no parallelisation tools it is possible to construct parallel applications using 

networking protocols such as TCP/IP, which are usually accessible from most high 

level languages, however for any particular application the first step is most likely to 

build a communications library or a virtual memory space support structure on top of 

this layer. Commercial Off The Shelf (COTS) parallelisation tools provide these with 

minimum effort and go on to provide support for code analysis, code re-writing and 

supporting debugging and monitoring tasks. 
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1.1.3 Parallelisation Toolsets 

The practical work undertaken for this thesis looks at two components of a generic 

parallelisation toolset. This section presents a representative parallelisation toolset 

and highlights where the work reported on in this thesis resides in the overall 

parallelisation process. 

Compiler Compiler 

Profiler 

Parallel 
performance 
monitoring 

tools 

Cal lTree 

Reverse 
Traverse 

Parallel 
Debugger Performance 

Estimation 
Senal Executable 

Output 
Dependency 

Analysis 
Static 

Analysis 

Code 
Normalisation 

Parallel 
Emcutable 

Parse Tree 

Serial Target Machine 
Source Code Characteristics 

Inputs 

Program * 
Recognition 

(Pattern 
Matching) 

Algorithm 
Substitution 

Code 
Fabrication 

Algorithm 
Substitution 

Code 
Fabrication 

Pattern 
Library 

Parallel Algorithm 
Library 

Revised 
Parse Tree 

Message Passing 
Library 

Figure 1 Generic Parallelisation Toolset components 

Figure 1 provides a detailed diagram showing some of the key components of a 

generic parallelisation toolset. The main purpose of the toolset is to assist the user in 

converting a serial application to run effectively on a particular target parallel 

machine. The application source code and the target machine characteristics (along 

with any target machine specific libraries) constitute the starting position of the 

conversion process. The toolset provides the user with facilities to understand the 

code, manipulate the code and evaluate the efficiency and correctness of the resulting 

parallel executable. The output is the parallel executable (or several executables) 

that will operate on the target parallel machine. This toolset is assumed to operate on 

a traditional high level language such as FORTRAN, C or C++. 
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The interconnections in Figure 1 show the general flow of activity and highlight 

where machine characteristics and human support or influence is needed or expected. 

Note the practical use of the toolset would be iterative, with the user potentially 

revisiting earlier stages of the parallelisation process several times to fine tune and 

optimise the end result. The remainder of this section details each of the components 

on the diagram and provides a brief explanation of the support being provided by the 

toolset. 

The Target machine characteristics would include details of the number of 

processing nodes, the memory configuration, the cache line lengths and 

communication performance such as latency and bandwidth. These details are often 

needed to optimise data partitioning, algorithm selection and the code fabrication 

processes. 

The compiler would produce a serial executable and a parse tree, which may be used 

by the other tools in the toolset to manipulate and extract information from the code. 

In a large application it is often only a small section of code that can provide a 

significant benefit from parallelisation. This is typically in a deeply nested loop 

where most of the application spends its time during the calculation. Identification of 

this code section is critical to effective parallelisation. The toolset would provide a 

profiler, which would instrument the code to identify the main time consuming 

operations that the application performs. Alternative means of identification of the 

key section to parallelise could be provided by a call tree, a performance 

estimation tool or perhaps a reverse traverse* tool. In most cases all these would be 

used to identify the critical sections of code and to put into context the sections with 

respect to the overall architecture of the application. 

Dependency analysis is the key process that allows the identification of independent 

processing opportunities. The loops in the key sections of the code are examined and 

the references to the data being processed is checked to see if the operations can be 

performed in parallel or if the operations must proceed in a strict order Wolfe 

One of the tools investigated in the practical work of this thesis 
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[21] [22]. Prior to dependency analysis the code may be manipulated to make it more 

likely for the dependency analyser to operate effectively. These manipulations are 

often called code normalisation and may consist of but not limited to: 

• Procedure in-lining. 

• Forward propagation of constant expressions. 

• Induction variable substitution. 

• Temporary variable substitution. 

• Dead code removal. 

• Conversion of GOTO's into if-then-else or while statements. 

• Loop distribution. 

Other manipulations such as loop unrolling and loop re-rolling may also be used to 

improve the outcome of the dependency analysis. Some toolsets may provide 

facilities for the user to influence the outcome by feeding in user knowledge of the 

application to allow more data independence to be identified. 

Static analysis is a process whereby a decomposition of the program data to execute 

in parallel is selected. This results in a SIMD code with the data partitioned among 

the processors and the application of an owner computes rule. A classic example of 

this occurs for structured grid algorithms, where there may exist several data 

partitioning strategies BLOCK, STRIP, CYCLIC etc. which can be selected at the 

static analysis stage. In cases where the decomposition is likely to be data dependent, 

for example when the data indexing is indirect, then this might lead to the addition of 

code to perform a dynamic decomposition, which is then evaluated at runtime. 

The code fabrication operates on the revised parse tree and assembles and compiles 

the parallel executable(s). This may consist of adding message passing code to 

distribute and re-assemble the parallel sections of data processing, or may entail the 

addition of OpenMP or perhaps HPF directives. Again this tool may need to be 

sensitive to the target machine properties, for example selection of data sizes may 
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crucially effect the cache coherency, also the possibility to pre-fetch or hide 

communication operations behind processing may be possible for some architectures, 

Brooks and Warren [23]. Vectorisation of communications to minimise the impact of 

communications latency may also be provided. 

Program recognition* may be used to automatically recognise the mathematical 

operations embodied in an application and provide the possibility to substitute 

algorithms that are better matched or are more parallelisable on the target machine 

architecture. The process of program recognition is the main subject of this thesis 

and usually involves template or pattern matching. Algorithm substitution is the 

process whereby an equivalent algorithm is evaluated for use in a particular 

application, as a substitute to one of the recognised components within the original 

code. This selection involves an assessment of the likely performance of the new 

algorithm and verifying that a complete substitution is possible. Code normalisation 

may also precede program recognition. 

The final components for a parallelisation toolset are a parallel debugger and 

performance visualisation tools. These allow the correctness of the parallel code to 

be tested, corrected and potentially fine-tuned. 

1.1.4 Current Parallel tools and technology 

Several of the components for the generic parallelisation toolset are already well 

established in the market place, whilst others are still being developed and improved. 

This section provides a summary of where this field was at the start of the practical 

work undertaken for this thesis and then highlights some of the advances made in the 

interim. 

Parallel Languages 

Parallel languages allow the direct exploitation of any possible parallel nature in an 

application. A typical application will have tasks that can be done in any order and 

some which must be executed sequentially. The programmer can code the sequential 

One of the tools investigated in the practical work of this thesis. 
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parts of the task and then indicate which ones can be performed in parallel by using 

special language constructs. 

There are several disadvantages to the parallel language approach: 

• Existing applications have to be completely re-written 

• The languages are sometimes only available on a small number of specialist 

machines 

• The application is not generally portable 

• Only a few programmers specialise in the new languages 

• The languages may not support sophisticated features of the more general-

purpose languages. 

Occam, Poutain and May[24] and Strand, Foster and Taylor [25] are two such 

languages that have gained some acceptance in the community despite suffering the 

drawbacks mentioned above. Parallel languages do not appear as part of the generic 

parallelisation toolset as this is aimed at converting existing code and not re-writing 

from scratch. Having said this, if automatic translation into a parallel language were 

possible this might be an appropriate starting point for parallelisation. 

Language Extensions 

Extensions to commonly used languages such as FORTRAN 77 allow certain 

operations to be performed in parallel. Large matrix and array operations are typical. 

The extension are either of academic origin or from parallel hardware vendors such 

as Silicon Graphics Inc. Instances of these language variants/extensions include 

Vienna FORTRAN, Chapman et al [26], FORTRAN D, Fox et al.[27], HPF, Harris 

et al. [28], ADAPTOR HPF, Brandes et al. [29], OpenMP [30], Jin et al. [31], 

MlPSpro™ Power Fortran 77 [32], CM Fortran [33] PARADIGM Su, Lain et 

al.[34]. The programmer suggests a distribution scheme for the data, typically a mesh 

partitioning using compiler directives or the extended language syntax and then 

performs loop operations on the distributed data in parallel. The compiler checks that 

data is passed correctly across the partitions and may provide a set of alternate 
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distribution strategies (CYCLIC or BLOCK). These language extensions can be 

very useful for building new parallel code, and in certain circumstances adapting 

existing applications. 

The main drawbacks appear to be the limited problem domains where these 

operations are beneficial. The programmer still needs to know a lot about the 

algorithm and the expected flow of data to select an appropriate partitioning. 

Conversion of a code containing indirect or conditional addressing of arrays is a 

serious difficulty as highlighted by Walker, [35] although some solutions have been 

suggested for these problems, Das and Slatz et al., [36]. More recently there has 

been much activity on sparse systems and there exist a number of parallel libraries to 

address these problems. Wijngart [37] provides an extensive list of the current work 

in this area as part of the conceptual design paper on the Charon toolkit, for example 

Saad et al [38] with PSPARSLIB and Schonauer et al with LINSOL [39]. 

The portability of HPF makes it an attractive language for developers indeed the 

extensions in HPF2.0 allowing task parallelism to be addressed make this an 

extremely versatile language. 

IViessage Passing Libraries 

Message passing libraries provide a machine independent communications facility 

for message passing between independent processes. The processes are independent 

instruction sequences being executed on separate processors, or time-sharing one 

processor. These libraries are typically implemented on top of TCP/IP sockets, pipes 

or streams, dedicated lO links, parallel data interconnects on shared bus systems or 

shared memory areas. The most commonly used library is called the Message 

Passing Interface (MPI) [40] [41] although different vendors of parallel machines 

previously generated similar but incompatible products, these include CsTools from 

Meiko [42], Express, PARMACS plus similar offerings from SGI. 

These very basic components allow the parallel programmer to concentrate on the 

problem and ignore some of the details of the communication protocols. The 

topology independent features are both an advantage in that the programmer can 

completely ignore the topology issue, and a disadvantage in that unfortunate 
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scheduling of task locations and data partitions may lead to a failure to attain the best 

efficiency. 

Decomposition Assistance 

Many mesh problems in science have a very obvious set of partitioning options. A 

cubic grid for which all cells require the same processing load, and nearest neighbour 

communications, is generally split in one dimension and partitioned into equal slices. 

Two or three-dimensional slicing is possible, but this is not generally useful for 

exploiting a computer with a non-square or cubic number of processing nodes. Many 

physical problems have more complex grids, fluid dynamics models of rivers for 

example are only active where the fluid is to be represented. The connectivity and 

distribution of the data points in the computer memory is sometimes a sparse matrix, 

with only a subset of the elements active. Partitioning of sparse matrix systems is a 

classical graph problem. The main aim is to level the number of nodes in each 

partition whilst minimising the amount of data required to be communicated along 

the edges. Saad and Sosonkina [43] provide a good overview of the general approach 

for parallelisation of a sparse linear system. The domain Decomposition Tool DDT, 

Flores and Reeve [44] is a typical partitioning program that locates good partitions 

by a number of methods. It is important to realise that the best partition must be a 

good sub optimal partition that can be located with minimal computation effort, since 

the runtime of the complete problem must allow for the effort consumed in selecting 

the partitioning. Generally the optimum partition will take much too long to locate. 

Optimum partitions share the load on the processors evenly and minimise the 

communications at data partition boundaries. 

In unstructured grid or sparse matrix problems communications along the edges of 

the partitions become very complex and vectorisation of communications become 

difficult. In recent years much of the focus of work has been in these areas where 

parallelisation is non trivial. Examples of this include the work of Brandes [29] and 

KeBler [5], Adams[45], Saad and Sosonkin [43]. 
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Code Analysis 

These tools are aimed at re-engineering existing serial applications. In many cases 

the original programmer is not involved in this task, the code may be poorly 

documented, badly structured and may be prematurely optimised Symonyi, [46]. The 

programmer faces the task of understanding what the code is doing, how it is doing 

it, and finally how it can map onto a parallel platform. 

Tools to aide in this process contain a front end parsing for the language and then 

instead of the code generation functions of a compiler, they generate dependency or 

data logistics information that can be browsed by the user. FORGE Explorer [47] and 

IDA, Merlin [48] are typical of these. The Sage Toolset [49,50] is available to 

academics for building analysis and code restructuring tools (a machine tool toolset). 

This tool provides a front end parser and a C++ class library that allows access to the 

data contained in the source code. 

Commercial systems such as KAP™ from Kuck and Associates Inc. are now 

becoming standard tools for the support of paralleisation / optimisation. The Digital 

KAP Fortran / OpenMP optimiser includes support for: 

Automatic and directed parallel decomposition for SMP 

Loop optimisations 

Memory Management optimisations 

Scalar optimisations 

Function in-lining 

BLAS recognition 

Dusty Deck transformations 

Informational program listings. 

KAP [51] provides Inter procedural analysis IP A as well as code transformations. It 

has a limited capability to provide algorithm replacement with calls the Basic Linear 
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Algebra Subroutines (BLAS) libraries, some of which are optimised for target 

parallel architectures. The Charon toolkit, Wijngaart [37] is targeted at structured 

grid problems. 

OpenMP [30] supports multi-platform shared memory architectures, where each 

processing node shares at least some of its memory space with all the other 

processors taking part in the application. This common memory space model can 

support both MIMD and SIMD programming styles, although there can be serious 

performance penalties if it is applied to MPP systems and includes fine-grained 

parallelism. 

Code Restructuring 

The KAP/Pro Toolset, Kuck and Associates, [51], IBM PTRAN [52], SUPERB Zima 

et al. [53], CMAX Sabot et al. (Connection machine) [10], CAPTools, Cross et al. 

[54] [15] and PARAMAT, KeBler [4] are instances of code generation tools that 

attempt to automate the whole process of converting a serial application for optimum 

performance on a parallel computer. These automatic parallelisation tools all adopt 

the technique of examining source code to identify independent calculation threads, 

and generating new code that distributes the operations and or data over the nodes of 

a parallel machine, this process is usually termed dependence analysis and is 

described in detail by Wolf [21,22]. When the parallelisation systems are well 

refined, they can manage to achieve a reasonable speed up. Good performance 

improvements are most easily achieved on naturally data parallel algorithms Cross, 

lerotheou et al., [54]. Cross et al. CAPTools [12][15] is a toolset that originated for 

structured mesh problems and appears well suited to the parallelisation of CFD 

codes. There exist other code restructuring tools such as the Foresys Fortran 

Engineering System from Simulog [55] that are more suited to code normalisation, 

porting and code maintenance. 

Parallel Debugging and Runtime Analysis 

At the back end of a parallelisation task the resulting parallel program will be tested. 

This is often when the performance bottlenecks are discovered. Galloway [17]. In 

cases where performance is less than expected, it is useful to be able to observe the 
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program in action. For this task, parallel performance analysis (PPA) tools may be 

used to gain useful information on the runtime behaviour of the program. Parallel 

debugger support may also be required if the parallelisation process has introduced 

errors in the algorithm. These tools become increasingly important as the complexity 

of the parallel program increases. 

A sample of tools of this sort include the P2D2 project, Hood [56] which is aimed at 

the CFD community to provide a consistent parallel debugging environment across 

multiple architectures, an essential feature if the parallelisation is on a heterogeneous 

platform or platforms. It is based around gdb and has been exercised on IBS SP's, 

SGI worksations and Origins, and on Linux systems. Panorama, May and Herman 

[57] is a parallel debugger and performance tool based on trace collection. 

ArrayTracer Nikolaou et al. [58] concentrates on performance analysis and attempts 

to minimise the impact of trace collection using a sophisticated static analysis prior 

to runtime. PAPI, London K., Dongarra et al, [59] provides performance monitoring 

using hardware counters for parallel applications on Linux platforms. The 

combination of the profiling support in the Tuning and Analysis Utilities (TAU) 

toolset and the runtime interaction from the Distributed Array Query and 

Visualization Framework (DAQV) Shende et al. [60], provides a different analysis 

view based on callstack sampling. 

1.2 IVIotivation 

A means of being able to recognise core algorithms and be able to replace them with 

efficient alternatives for the particular target hardware would seem to be an ideal way 

of providing a more complete code restructuring tool for the parallelisation of dusty 

deck code. I will call this process "automatic algorithm substitution" if this is 

performed automatically by a code-restructuring tool. 

This term "automatic algorithm substitution" has been used but is as yet not clearly 

defined. From a mathematical viewpoint for procedures within a source code there 

are many methods of implementing the same required algorithmic functionality. For 

example the number of sorting algorithms developed in the programming community 

is large: Bubble Sort, Quick Sort, Selection Sort are but a few, an interesting account 

of a few of these algorithms is provided by Meader [61]. The choice of the 
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algorithms for a specific program is influenced by many factors, knowledge (of 

candidate algorithms), target machine characteristics, speed requirements etc. In 

many cases, as a program ages these factors change dramatically, particularly if an 

implementation on a parallel machine is required. At this stage the choice of a 

different algorithm for part of the program may lead to a significant optimisation. 

Intent Programming (IP), Symonyi [46] builds on this recognition that as the 

environment changes, the ideal source code for an application also needs the ability 

to change to preserve efficiency. 

For new application generation there has emerged a trend favouring the adoption of 

several levels of abstract design before code is written. Fitzpatrick at al. [62] 

contends that 

"a competent mathematician can write functional specification in a few hours" 

that can subsequently be transformed to optimal code by utilising a library of proven 

optimal transformations. Gate et al. [63] describes the experience of porting 

applications to parallel machines and promotes the concept that all arbitrary 

implementation specific design decisions need to be documented as the code is built 

to allow efficient re-engineering for a new parallel or serial computer. His paper cites 

a specific instance where the computer architecture determines the optimum choice 

of algorithm selection. If the compiling system cannot change algorithms, then it will 

often fail to generate efficient code for parallel computers. 

The goal therefore is to provide a means of re-fabricating programs to use algorithms 

that are well matched (efficient) to a target platform. The recognition of algorithmic 

content is the first step to achieve this goal. The identification of algorithmic content 

of a dusty deck program may be thought of as an inverse problem to that of 

compiling. It is a translation from the specific to the general and is a challenging 

problem for a computer based tool. 

1.3 Related Work 

Having set the scene in the previous section, this section talks in detail about the 

directly related work on algorithm recognition as a means of providing improved 

optimisations for applications running on parallel hardware. 
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1.3.1 Automatic Program Recognition 

Early work on designing systems for automatically recognising program content 

seems to have started in the late 1970s mainly in the artificial intelligence community 

for example Waters [64] and Fickas et al. [65]. Their work provides the use of the 

term cliches to designate commonly recurring sequences of standard low-level 

instructions and control sequences. A typical approach to the recognition of these 

cliches or phrases is by pattern matching on the program text, parse tree or data flow 

graphs. GRASPR Willis, [66] is an experimental system that adopts the latter 

approach with some success. The reported motivation for GRAPSR was for assisting 

software engineers as well as addressing an interesting artificial intelligence problem. 

Examples cited for the use of the technique range from automatic documentation 

generation too code maintenance and reverse engineering. Alternative terminology 

for this assembly of low level instructions varies with author and ranges from 

'semantic concepts' Kozaczynski et al. [67], too 'plans' Rich [68] and 'idioms' 

Pinter et al. [3] and Snyder [69]. Algorithm substitution for parallel program 

optimisation seems to have been recognised as a possibility much later on. 

1.3.2 Algorithm Substitution 

A programmer deals with code on many levels of abstraction. One way of looking at 

this would be to say that programs are collections of algorithms glued together with 

interfaces. The algorithms are made up from simple component functions, which in 

turn are built up from basic operators. Figure 2 illustrates this conceptual outline. 

Complexity 

Program 

Algorithms 

Simple Component Fuctions 

Basic Operators 

Figure 2 Abstract view of program composition 
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For program recognition, as described by Wills [66] the cliches would be the simple 

component functions and/or whole component algorithms. 

Gate [63] and Simonyi [46] clearly emphasise that the choice of algorithm should be 

one of the last operations in the program design process and in an ideal environment 

would be an easily changed design decision. This is consistent with the object-

oriented approach of program design and rapid prototyping recommended for 

example in C++ development, Stroustrup [70]. The ability to abstract up from a 

specific implementation to an implementation independent representation of the 

design of the program and then push down to multiple specific implementations is of 

considerable advantage for many programming tasks. Algorithm substitution for 

parallelisation and optimisation of programs for parallel platforms needs these two-

abstraction level changing abilities. 

Algorithm replacement for parallelisation based on program recognition has been 

addressed by KeBler et al. [2, 4, 5] Bhansali et. al. [6, 7, 8] and Di Martino et al. [1]. 

KeBler reports on implementations of these schemes in PARAMAT and SPARMAT. 

PARAMAT probably has the most extensive coverage in the number of non-trivial 

patterns "concepts" (100) using (160) templates KeBler [4]. SPARMAT KeBler [5] 

is a specialist sparse matrix enhancement that demonstrates that the technique can be 

applied to algorithms with a high degree of indirection and runtime data dependent 

data layout optimisation issues, where other more traditional prarallelisation 

approaches generally have poor results. 

Di Martino et al. [1] reports on the differences in the approach adopted in the PAP 

tool against the work of KeBler. In their joint paper they conclude that the PAP 

recogniser is slower but more flexible and general than PARAMATS pattern 

recogniser. 

1.3.3 Algorithm Learning Procedures 

Wills [66] emphasises that the knowledge base of cliches was generated by hand in 

order to investigate the utility of the approach for a number of medium sized 

analyses on "student" programs. The automatic acquisition of the knowledge base 

appears to have been recognised as a significantly harder problem. There exists 

considerable work on generalised pattern matching, of which Nevill-Manning et al 
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[71] provides an interesting introduction, describing his application called sequitur. 

Naturally any cliche pattern located in a program by an approach such as sequitur 

would require additional meaning to be associated with it before it became a useful 

piece of program transformation knowledge. One approach to this might be to infer 

the function of such a program component through experimentation. A system would 

need the ability to fabricate test code to exercise the component and/or have the 

ability to deduce the functionality of the component by some abstract reasoning 

process. 

One of the main restrictions to this possibility is the lack of a systematic method of 

building patterns. This omission from the works cited has been recognised by 

Villavicencio [72] and the beginnings of a method of achieving this are provided in 

his work. 

1.4 Approach 

The approach described in this thesis is based on observations of the processes that a 

human programmer performs when trying to discover the purpose, and errors in an 

unfamiliar source code. 

For a procedural language such as FORTRAN, the programmer can take advantage 

of the probable partitioning of the program into subroutines that can encapsulate 

relatively simple algorithm components, although for some legacy code such 

structuring is not always available. For this work the examples used all have a 

procedural breakdown. While this breakdown is useful in the presentation of the 

examples, it is not a fundamental limitation of the approach. 

The programmer will typically tackle a new source code problem using a variety of 

static analysis techniques along with specific dynamic test cases where the behaviour 

of code is examined during execution. 

Examples of static analyses that a programmer may apply might be: 

• Determination of the context in which each subroutine is called. 

• Deduction of how each subroutine affects the data being manipulated. 
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• Identification of algorithms that are being embodied in the specific section of 

code. 

• Construction of a call tree. 

• Generation of outline flow charts. 

® Formation of a view of the dependencies in the flow of control. 

Dynamic analyses might include: 

• Dissection of the code and exercise of the individual subroutines. 

® Observation of how subroutines manipulate data at runtime using for example 

a debugger. 

The programmer will have background knowledge of a range of algorithms in their 

domain of experience, but may be lacking specific experience of algorithms present 

in the source under analysis. Therefore reference to external information is a likely 

part of the overall process. 

This thesis looks at two of these processes: 

® Formation of a view of the dependencies in the flow of control. 

® Identification of algorithms that are being embodied in the specific section of 

code. 

The approach adopted to address the first of these processes is referred to as Reverse 

Traversal of the code. Specifically the analysis starts at the end of the program and 

works back through the flow of control tracing the significant data items thought he 

call tree. This is conceptually very simple and in practice the main difficulty appears 

to be the control and display of the dependency tree that results. 

The approach to the second item is to implement a matching process whereby 

patterns within training samples of code are captured in a generic form and used as 

templates to match against unknown code samples. Matching against templates is 

probably only a small part of what a human programmer might do. Whilst significant 
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mathematical constructs might be familiar to a programmer and will stimulate 

hypothesis generation, the human programmer will also be able to "dry run" phrases 

of the code and match predicted behaviour against expectations within what might be 

termed the fluid hypothesis space. 



Chapter 2 Learn Tool System Description 

The "Learn Tool" is a set of analysis routines that seeks to assist the operator in 

evaluating the intent or purpose of legacy FORTRAN code. It was constructed 

during this work to allow experimentation with algorithms that could play a part in 

the machine understanding and transformation of source code. At this time the tool 

encompasses two approaches, Reverse Traversal and Pattern Matching. 

24 
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Reverse Traversal is a bottom up approach intended to isolate the main calculation 

routes within a particular piece of source code. The main control flow of the source 

code is identified and then the last executed statement is used as a starting point. The 

analysis dry runs in reverse through the call tree, making notes on loop nests, scope 

and variable passing. As this traversal of the parse tree proceeds, sets of actions are 

triggered in response to particular types of statement. 

Pattern Matching is a process of subjecting the parse tree to a direct comparison to 

a library of commonly occurring sequences that are associated with higher-level 

operations. 

Both these processes have been built on top of the Sage++ Toolkit developed by 

"Indiana University, University of Oregon and University of Rennes" [49][50]. This 

library includes a FORTRAN parser capable of accepting a variety of FORTRAN 

source forms including FORTRAN?? and FORTRAN90, and a C++ class library for 

interrogating and manipulating the parse tree. 

The following sections will deal with the Sage++ system, Reverse Traversal and 

Pattern Matching in more detail, and conclude with an overview of how the Learn 

Tool is operated. 

2.1 Learn Tool History and Composition 

The Learn Tool system, created for this work, started as two separate analysis 

programs written C++ on Digital UNIX and Solaris using Motif™. These have been 

ported to a single MFC application, LearnToolViewer, in the later stages of the work 

and it is in this form that example output will be presented in this document. The 

source code is approximately 10,000 lines of C++ including comments but excluding 

the Sage++ library that required a few modifications to port to a windows platform. 

The viewer with its graphical outputs and dialogs represent about a fifth of the 

whole. 
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2.2 The Sage++ System 

This section provides a brief overview of the Sage++ system. This is intended to 

provide a convenient reference to some of the terminology used in the following 

sections that describe the algorithms and implementation details of the Learn Tool. 

The Sage++ system adopts a project concept that points to one or more dependency 

files generated by the FORTRAN parser program fldep. The dependency files 

contain the information about the parse tree of an individual file within a project. At 

the top level the project consists of a text file that lists the component dependency 

file paths. The Sage++ API provides a method of instantiating an SgProject object 

with reference to the contents of the project text file. All the subsequent objects can 

be accessed from the SgProject object. The SgProject object contains one or more 

SgFile objects that in turn contain the SgStatement objects (one for each line in the 

source code). SgStatement(s) can be flow control items representing for example the 

beginning and end of DO loops, program statements, declarations, assignments and 

subroutine calls etc. SgStatement(s) refer to their component SgExpression(s), 

SgSymbol(s) and SgType(s). 

The SgStatement object has lexnext() and lexprev() functions that allow the 

application to traverse forwards and backwards through the statements within the 

source code. The SgFile object allows random access to any of the SgStatement(s) it 

owns. 

Each different type of SgExpression, SgStatement is implemented as an object 

specialisation with its own unique access functions and dynamic typing is supported 

within the Sage++ API through global functions. So for example the application can 

determine if a particular statement is a program header by calling the function 

isSgProgHedrStmt on the SgStatement object in question, this returns a pointer to the 

object if it is and NULL if it isn't. 

2.3 Reverse Traversal 

This section describes how the reverse traversal is performed and presents and 

explains the output achieved. 
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The reverse traverse analysis searches the parse tree and locates the statement that is 

the last to be executed. This statement is used as a starting point for the analysis, 

which then works back statement-by-statement following the logical flow of control 

of the program. The traverse is terminated when the first statement is reached. 

start 

r 

Locate the 
lastexecuted 

statement in the 
program 

1 f 
' w h i l e the current^ 

statement is not 
the first to be 

exeuted 

Find the next 
statement (in 

logical reverse 
order) 

Process statement 
and add new 

actions if 
necessary 

Update the exsting 
actions with 

reference to the 
current statement 

End Loop 

Figure 3 Reverse Traverse 

Flow Chart 

presented in Figure 3. 

The model adopted for the reverse traverse process is 

to imagine a programmer examining the source code 

and making notes on the flow of control, the 

significance of specific variables and identification of 

the core calculations in the main algorithms. 

For each statement visited an exprSummary object is 

created for the statement and the expressions within 

the statement. The exprSummary simplifies the task 

of discovering if an item being looked for actually 

exists within the statement. The exprSummary 

provides a filter for the information in an 

SgStatement so that actions can be targeted at 

specific parts of the statements. 

As the analysis progresses through the statements, 

actions are added to an actionList in response to 

certain conditions. In our model the programmer has 

noted for example that a particular variable or data 

structure should be traced back to its declaration and 

any manipulations on it should be recorded. Any 

existing live actions in the actionList are updated if a 

new piece of information is available from the 

current statement that is relevant to that particular 

search. A flow chart of the main analysis loop is 

The design of the algorithm is based around the ability to extend the number and type 

of actions available although it was only taken as far as the reverse traverse process 
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of identifying the program outputs and tracing back to the declarations and 

intervening manipulations before the focus of the work shifted to pattern matching. 

The reverse traversal follows the logical flow control of the program (in reverse) and 

as it proceeds it maintains a context structure indicating the control level of each 

statement within the program as a whole. This is effectively a call stack and is 

essential for being able to match data on multiple levels that may have their variables 

names changing or going out of scope in subroutine calls. 

This general architecture has been used to extract information from the program, 

particularly concerning how the results of the program have been arrived at. A new 

action is created for each output statement, for example writing results to a file or the 

screen. The action is to keep track of the data being output and if it occurs in any 

statement earlier in the code to keep a note of that occurrence and any inter-

dependence with data associated with that statement. This is achieved by maintaining 

a dataTrace with each action that records the statements that reference the variable 

being traced, or any variable that is used to influence the result. The dataTrace 

consists of an ordered list of dataTraceltem(s) that grows, each time a statement is 

visited that has a relevant reference to the items being traced. The traces operate over 

the whole code by following subroutine and function call parameters and mapping 

them to the actual variables at the calling level. 

Scalar and array items are tracked and some filtering is provided to discount rarely 

executed paths in the code, for example conditionally executed error reporting. 

Whilst this may omit important information in some cases, the resulting dataTrace 

can remain linear. 

During the reverse traversal, all items that have already been identified as 

contributing to the output item are search for, which could lead to an exponential 

growth of the tree. By ensuring that if a complete assignment has been made then the 

assignee is removed from the scope of the search moderates this potential for 

algorithm runaway. For example in a CALL, SUBROUTINE pair of statements, the 

parameters in the CALLs parameter list go out of scope (for the search) and the 

corresponding parameters in the subroutine parameter list come into scope. 
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Information about the type of statement that they relate to is stored in the dataTrace 

items and each item has a reference to the "parent" searched for item. This 

information can be used to construct a graph of the overall dependence flow though 

simple programs. This output form has been chosen as it illustrates how rapidly the 

complexity of the analysis grows for relatively simple algorithms. This dependency 

graph is not a true dependency analysis of the sort described by Wolf [21] [22] but 

more an Inter Procedural or data flow analysis in the style of Merlin [48] and Walker 

[35]. 

The Reverse Traversal process is intended to mimic the code inspection process that 

humans employ to understand the purpose and flow within a code. It achieves a 

transformation of the code representation into a graph that highlights the statements 

that have significant influence on the results of executing the code. It provides a view 

of the code as a whole unencumbered by a particular procedural decomposition. Its 

use within the program recognition process was initially intended to flatten the 

program structure and pre-filter the parse tree before the pattern matching process. 

This has been achieved, however the increase in complexity of representation for 

relatively simple programs caused an adjustment to the planned approach adopted for 

the pattern matching process removing this flattening step. 

2.4 Pattern ]\iatching 

The pattern matching technique is described in this section. A detailed explanation of 

the structures and matching algorithms developed follows an overview of the whole 

approach. 

2.4.1 Related Work on Pattern Matching 

There exists a wide body of work relating to pattern matching covering subject areas 

diverse as genetic sequence matching, web searching to computer science re-writing 

systems. The class of pattern matching used in this work seems to be closest to the 

work described by Kucherov [73]. Kucherov describes the use of a Directed Acyclic 

Word Graph (DAWG) however the algorithm is restricted to finding the first match 

to a particular pattern. Closely related, from a computer science perspective is the 

large system simplification work of Baker et al. [74],[75] and [76] that applies 

pattern matching to highlight possible redundant sections of code that could be 
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unified for example in a common procedure call. The approach adopted in this work 

is a rudimentary technique aimed at limiting the exponential growth of the search 

space by discarding potential sequences as soon as they fail the overall matching 

criteria. 

The description by Hagemeister et al. [8] comes closest to the approach used in this 

work. Hagemeister develops a syntax for describing the patterns, which is based very 

closely on the tokens available from the Sage++ parser. This approach in turn is 

based on the SCRUPLE matching described by Paul et al. [77]. The pattern matching 

approaches in PARAMAT [4] appears to be based on the graph parsing approach of 

Wills [66] whereas the PAP work of Di Martino et al. [1] is closer to the SCRUPLE 

technique and the method described herein. 

More recently direct Al approaches have been attempted for pattern matching. 

Quilici A., Yang Q., et al [78] report on their work and conclude that direct 

application is not the best approach, however they can be made to be effective if 

constraint satisfaction techniques are included. 

2.4.2 Overview of Approach 

The pattern recognition process involves breaking down the code into a sequence of 

tokens that contain sufficient information to retain the algorithmic content of the 

original source code and yet is simple enough to be used in a pattern-matching 

algorithm. The Sage++ toolkit presents the information about the code as a hierarchy 

of objects. To unwrap this hierarchical representation, a recursive algorithm has been 

created that generates a flat list of items from identified sections of the source code. 

This flat structure is incorporated into a CodeStatus object, which contains a list of 

codeStatusItem(s) that are used to match against. Individual matches occur on integer 

values and no string matching is needed making the process fairly efficient. 

The flat list of items is generated by stepping through the statements in the order that 

they appear, in the code. Each statement generates a list of items, which is appended 

to the current list. Within a statement, depending on the type of statement, 

expressions, symbols and types may also generate lists of items, which are inserted 
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into the full list produced by the statement. Overloading the constructor on the 

CodeStatusItem class facilitates the process of recursive generation. 

The selection of which items are placed into the CodeStatus object has evolved as the 

range new concepts to recognise has grown. 

The pattern library is managed under a knowledgeBase class; each pattern in the 

knowledge base is referred to as a Rule item. Each Rule has a series of Keys that are 

used to match to specific code examples. The Keys are built from and subsequently 

matched to the CodeStatusItems(s) in the flat format expansion of the parse tree. The 

Keys are related to each other in a Rule with a simple syntax. 

The Rule syntax supports the following features: 

CodeStatusItem type and order of occurrence 

Relative positioning of items is either strong or weak 

Instance correlation is enforced 

Multiple instances of the same rule match with the same starting item are 

flagged as voiding the match. 

The user constructs rules by picking CodeStatusItems derived from a test sample of 

code. Once a CodeStatusItem is incorporated into a Rule it becomes a component 

Key. The Keys are selected in a particular order and the following operators ( 

"AND", "THEN" and "LAST") are used to indicate the relative positioning 

relationship. The "AND" operator indicates the spacing between the currently 

selected item and the next one must be exact for a match to be possible (strong 

relative positioning). The "THEN" operator indicates that once this item is matched 

then the next item to match can be an arbitrary distance from the current item (weak 

relative positioning). The "LAST" operator terminates the sequence. 

Each Rule is currently allowed to be referenced to one of its Key items, usually a 

variable symbol, that has to have a common matching element during subsequent 

pattern matching operations. For example the referred to item in a "counter" Rule is 

the counter variable. 

UBAARY 
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The "OR" operator although not exphcitly supported has been implemented in the 

Learn Tool pattern matching algorithm by allowing several rules to be equivalent as 

far as the matching process is concerned. This is managed by a Rule association 

process, and simply allows Rules to match with items of either Rule A or Rule B if 

Rule A and Rule B are associated. This has been particularly useful when matching 

expressions that contain commutative operations. It can also be applied to assist the 

pattern matching as an alternative to code normalisation. This is similar to 

PAR AM AT, KesBler [4] in that several routes exist to the final higher level pattern 

match. 

2.4.3 Code Status Items 

For a section of code a flat list of CodeStatusItem(s) is generated by moving from 

statement to statement and conditionally adding items to the list depending on the 

type and content of the statements. CodeStatusItems(s) record five fields for each 

record. These are described in table Table 1. 

Item Description 

Type The type field records whether the item is derived from a 'Statement', 

'Expression', 'Symbol' or 'Rule'. The first three are generated from the 

basic parse tree supplied by the Sage++ project. The 'Rule' items are added 

when the matching process has located a match to a 'Rule' from the 

knowledge base. 

Variant This field records what type of 'Statement', 'Expression', 'Rule' etc. this 

instance is. e.g. a 'Statement' might be a PROC_HEDR. 

Id This field records the specific instance of the occurrence of this item. 

Tag The tag is a string containing a textual representation of the variant. 

Name The name is a string that is used if the specific instance has a token 

associated with it. For example a 'Symbol' type, variant 

VARIABLE_NAME would have a tag of "VARIABLE_NAME" and a 

name indicating the name of the variable in the code. In the case of a 

symbol derived item the name will be directly associated with the Id of the 

item. 

Table 1 Description of the fields in a "CodeStatusItem". 
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The codeStatusItems are used for both creating trial Rules as well as matching 

against Rules that have been previously formulated. The Tag and Name items are 

included to allow intelligible feedback to the operator on where patterns have 

matched and why. The comparison operations are restricted to the Type, Variant and 

Id integer values that uniquely identify the item in the sequence. The use of three 

integers for the comparisons allows most compare operations to complete (with a 

negative outcome) after a single integer compare instruction. The attention to this 

detail is mainly relevant because the speed of operation of the matching algorithm is 

quite important for allowing such as system to be realised as a practical product. 

2.4.4 Rules 

Rules contain the matching information that has been formulated from example 

sequences of code. The matching sequence is stored as a list of Keys that are used to 

mach against codeStatusItems. The rules maintain information about other rules that 

have been marked as being equivalent, enabling the formulations to include an OR 

concept. Each Rule has a specific instance ID from one of its Keys that characterises 

the Rules ID during the matching process. 

2.4.5 Keys 

Keys maintain information about the type and instance from the originating 

codeStatusItem. They also maintain information about their relationship to the next 

Key in the sequence within the Rule. This takes the form of the "THEN", "AND" 

and "LAST" operators that are owned by the current key and relates to the next Key 

in the sequence. In the case of the "AND" relationship the separation of the Keys is 

stored. A Key can be considered to be a single character in a string matching 

problem, with the "AND" spacing being a fixed distance and the "THEN" being the 

variable length of don't cares of Kucherov [73]. 

2.4.6 Matching Algorithm 

The matching algorithm allows the multiple compares to be processed in a relatively 

efficient and memory conservative way. The overall process is outlined in Figure 4. 

For each rule currently in the database the current codeStatus structure is examined 

for instances of each of the keys that make up the rule. For simple rules this might be 
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a VARIABLE_NAME or an assignment operator for example. For more complex 

rules the key instances may be previously matched rule items. A table is constructed 

of all the possible instances of the searched for keys. This is then traversed key by 

key building valid sequences that match the partial rule sequence up to the point of 

the current key. Invalid sequences are removed, as the first mismatch is located. 

Once all the keys have been evaluated a final list of sequences remain that are 

matches to the current rule. 

At this point the uniqueness of the sequence matches is checked. If the same starting 

key is present for multiple matches then the Rule as currently defined is ambiguous 

for the code being evaluated and requires re-formulating. 

Only unique instances of rule matches are currently reported in the Learn Tool 

program. This uniqueness problem is addressed by Paul et al [77], by delivering the 

"shortest match" permutation from the matching engine. They comment that patterns 

that have a combinatorial explosion problem are rarely found in program 

understanding problems, however that is probably critically dependent on the skill of 

the operator forming the rules. 
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Figure 4 Flow chart detailing the rule-matching algorithm 

2.4.7 Learn Tool Facilities 

The Rules (patterns) are stored in a list belonging to the knowledgeBase class. This 

provides the Load/Save functionality and access to the patterns during a matching 

operation. Users may build test patterns interactively and add them to the 

knowledgeBase class using a Rule Editor Dialog. 
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Figure 5 Annotated Rule Editor Dialog 

Figure 5 shows the Rule Editor dialog in the LearnToolViewer application. It is 

showing the construction of the AssignToZero Rule within the context of the 

Statistics example, which is addressed in more detail in the next chapter. Currently 

all rules exercised in this work have been constructed by hand and have been used to 

perform what if experiments on combinations of keys that work and those that don't. 

A systematic approach and guidance on how to construct rules would be essential for 

a fully developed system. It might be possible to import rules from other pattern 

matching work, for example the pattern library of Kessler [1] or Di Martino [2], 

although as this approach excludes code normalisation it is doubtful whether the 

libraries could be transferred without significant modifications. 
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Associations between Rules are established using the Rule Association Dialog. An 

example of this is shown in Figure 6, for the "North Then South" Rule that will be 

discussed in more detail in the "Laplace" example in the next chapter. 

Association of a pair of 
Rules 

Rule Association X| 

Square work space2 
while true break loop 
2D array West access 
20 array east access 

LU I 

2D array north access 
2D array south acces: 
North Then South 
South then North 

Associate Rules I 

J j 

Square work space! 
While Not Loop 
Counter 
test_second_pass 

I 

Square work space2 
while true break loop 
2D array West acces! 
2D array east access 

J j 

- Alreadĵ  Associated with 

South then North Delete Association 

Let of current associations 
fo the first ruk selected. 

Figure 6 Annotated Rule Association Dialog 

For both the Reverse Traverse and Pattern Matching the Learn Tool provides simple 

graphical output showing the dataTrace data and the pattern matching detail 

respectively. In a completed parallelisation Toolset this information would be 

available to the user in a number of forms and would stimulate the tool to provide 

options for algorithm substitution with perhaps an indication of the potential benefits 

that might be realised for any particular substitution. 



Chapter 3 Test Cases 

The test cases presented here start with the source of the program used to generate 

the Rules. The reverse traverse of the code is shown followed by the matching results 

against the Rules and a description of the component rules. This is followed by 

example variations of the source example to demonstrate the properties of the rules 

being investigated. 

38 
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3.1 Statistics Example 

This first example is of a simple statistics program that generates the mean and 

variance of a set of data. The data is read from a text file and the results are 

computed and written to another output text file. The source code is given in 

Appendix la. 

3.1.1 Reverse Traverse 

The reverse traversal of this example provides two dependency graphs, one for each 

of the mean and variance. 

1 -M 
File Edit View Analysis Help 

D 1 ss! a % m fy; = = = A " 1 # 1 ^ f imean 

Output Variable:mean. 

(+):mean:UPi 

f(+):mean:DN 

[(+):sum1:(=) 
I 'suml / num_elements] 

(+):num_elements:(=) 
|sum1 / num^elements] 

(+):num_elements:DN (+): array: UP 

(+):num_elements:UP ;+):sum1:(=) 
;sum1 + array(p)] 

|(+): array: (=) 
|sum1 + am 

(+): array: DN (+):num_elements:(=) 
rnum_elements -1 ] 

(+):-:Read Statement 
[array(num_elements)] 

+):num_elements:(= 
num_elements +1] 

(+):-:[-] 

Ready 
d 
J, 

Figure 7 Screen shot of Stats example reverse traverse showing mean dependency graph. 
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Figure 7 shows the main screen of the learnToolViewer application after it has 

performed a reverse traverse analysis of the example code. At the top of the diagram 

the output variable "mean" is the root (from line 130). This variable is traced though 

an upward CALL/SUBROUTINE paring into the main program and then down into 

the subroutine that performs the calculation. At this point the mean is found to be 

dependent on an initialisation denoted by the (+):-:[-] string, the variable suml in the 

expression (suml/num_elements) and num_elements in the same expression. These 

variables in turn are followed and their dependence on the input variable "array" is 

located after another change of subroutine scope. 

The change of colour in the display is used to show the call stack level of the code. In 

this example the top of the tree is in purple and occurs in the "OUTPUT_DATA" 

subroutine off the main program level. The main program level is shown in red, the 

"CALC_STATS" subroutine level is in green and the "LOAD_DATA" level is in 

yellow. 

The output syntax of the string for each node starts with a "(+)" if it is a new node in 

the tree. The next item, spaced with a is the item reference, for example "mean" 

or if it is an initialisation a is used. The next item again separated by a is an 

"(=)" if there is an assign association, an "UP" or "DN" for a subroutine call 

association. If there is an "(=)" association then a string is appended with the 

assignee enclosed in square brackets. For an initialisation a blank "[-]" is appended. 
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Figure 8 Reverse Traverse dependence graph for variance. 
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Figure 8 shows the similar dependence graph for the variance output variable. Whilst 

the calculation of the variance is mathematically fairly simple, the representation of 

the dependence graph in this form has become quite extensive. 

3.1.2 Pattern Matching 

The pattern matching approach in this example has concentrated on the calculation of 

the mean. The rule for this is detailed in Figure 9. 

Rule 21 : Name: calculation of mean 

Keys:{ 

ARRAY_REF AND 

VARIABLE_NAME AND 

STAR_RANGE AND 

VARIABLE_NAME THEN 

Sum array items THEN 
ASSIGN_STAT AND 

VARIABLE_NAME AND 

DIV_OP AND 

VARIABLE_NAME AND 

VARIABLE_NAME LAST } 

Figure 9 Rule: calculation of mean 
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The first two items estabhsh the id associated with the array that stores the items on 

which the mean is to be calculated. The STAR_RANGE is specific to the 

FORTRAN calling scheme whereby the array is a reference to data passed into a 

subroutine that may change depending on from where it is called. The second 

VARIABLE_NAME item is the range index and the divided by element in the mean 

calculation. The "sum array items" is a rule that is expanded below. The last five 

items establish the final division and assignment. 

H - I r i l x l i 
ESe Edit yiew Analysis Help j 

1 % | m|=?r 1—"1 1 ^ 1 f [calculation < •'I 

^ule: calculation of mean| |KC#s:| [Related Source:] 

ARRAY REF ARRAY_REF:No Namej 1 REAL ARRAYM j 

[calculation of meani 

1 REAL ARRAYM j 

VARIABLE NAME: VARIABLE NAME:array (REALARRAYDl 

T FLOATl 

VARIABLE NAME:array (REALARRAYDl 

STAR RANGE [STAR RANGE: No Namel 1 REAL ARRAYC) 1 

VAR DECLl 

1 REAL ARRAYC) 1 

VAR REF 
VARIABLE NAME lVARIABLE_NAME:num_elements 1 INTEGER NUM_ELEMENTS | 

r iNT i 
VAR DECLl 

Sum array items iSum an-ay Items:! 1 SUM1=0| 

VAR REFl 
VARIABLE NAME! 

ASSIGN_STAT [ASSIGN. STAT:No Name! 1 MEAN=SUM1/NUM^ELEMENTS | 

IVAR REFl 

[ASSIGN. STAT:No Name! 1 MEAN=SUM1/NUM^ELEMENTS | 

VARIABLE NAME {VARIABLE NAMEmeatil 1 MEAN=SUM1/NUM ELEMENTS 1 

rr FLOATl 

{VARIABLE NAMEmeatil 

DIV_OP piV_OP:No Name] 1 MEAN=SUM1/NUM_ELEMENTS | 

IVAR REFl 

VARIABLE_NAME lVARIABLE_NAME:suml| ! MEAN=SUM1/NUM_£LEMENTS I 

\T FLOATl 

lVARIABLE_NAME:suml| 

IVAR REFl 
VARIABLE NAME VARIABLE_NAME:num elements) 1 MEAN=SUM1/NUM„ELEMENTS I 

Ready 

Figure 10 Screen shot of the match detail for the calculation of mean rule. 

Figure 10 shows the output from the pattern matching within the learn tool for the 

calculation of mean rule. 
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Rule 2 0 : Name: Sum array items 

Keys : 

{ AssignToZero THEN 

FOR_NODE AND 

VARIABLE_NAME THEN 

Accumilatorl AND 

ARRAY_REF AND 

VARIABLE_NAME AND 

VARIABLE_NAME THEN 

FOR NODE LAST] 

Figure 11 Rule: sum array items 

Figure 11 shows the keys for the "sum array items" rule. The assignToZero is a rule 

that captures the initialization of the variable to be used as the storage for the sum. 

The FOR_NODE establishes the loop within which the sum is performed. The 

VARIABLE_NAME refers to the loop index and the Accumilatorl is a rule that 

captures the "a=a+b" construct. This is augmented with a reference to the data 

VARIABLE_NAME item and the loop index variable name. The closure of the loop 

provides the last key for the rule. Figure 12 shows the screen shot for this rule. 
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1 

File Edit View Analysis Help | 

D 1 0^ 1 0 1 ^ 1 1 1 A/" 1 M ' 1 ^ l i l u l B i j j 
1 

Rule: Sum array items 

AssignToZero i 

jSum array items| 

kAR_REF| 

FOR_NODE| 

iVARIABLE_NAME 

|NT_VAL| 

iAccumulatorJ 

kAR_REF| 

fv'ARIABLE_NAME| 

ARRAY_REF 

VARIABLE.NAMEj 

|VAR_REF| 

VARIABl^_NAME| 

lUNTi 
l4SSIGN_STAT| 

FOR NODE I 

Ready 

Keys: 

AssignToZero: 

FOR NODE:No Name 

VARIABLE_NAME:p 

Accumulator 1: 

ARRAY REF:No Name 

VARIABLE_NAME:array 

!VARIABLE_NAME:p 

FOR NODE:No Name 

'Related Source:j 

SUM1=0 

DO P=1 ,NUM_ELEMEMTS 

DO P=1 ,NUM_ELEMENTS 

SUM1=SUM1+ARRAYCP) 

SUM1=SUM1+ARRAY(P) 

SUM1=SUM1+ARRAYCP) 

SUM1=SUM1+ARRAYCP) 

DO P=1 ,NUM_ELEMENTS 

Figure 12 Screen shot of the match detail for the Sum array items rule. 

Rule 19 : Name: AssignToZero 

Keys : 

{ AS SIGN_STAT AND 

VARIABLE_NAME AND 

IS_VALUE_ZERO LAST } 

Figure 13 Rule: Assign ToZero 

The keys of the AssignToZero rule are shown in Figure 13 and the corresponding 

screen shot is included in Figure 14. 
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VARIABLE_NAME 

r r FLQA" 

IIMT VAL 
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Ready 

VARIABLE NAME:sum 1 

IS VALUE ZERO: 

SUM1=0 

SUM1=0 

Figure 14 Screen shot of the match detail for the AssignToZero rule 

Rule 18 : Name: Accumulator_l 
Keys:{ 

ASSIGN_STAT AND 

VARIABLE_NAME AND 

ADD_OP AND 

VARIABLE NAME LAST } 

Figure 15 Rule: Accumulator_l 

Figure 15 and Figure 16 complete the set of rules used to match against the 

calculation of mean . 



Chapter 3 Test Cases 47 

- i n l x | | 

File Edit View Analysis Help | 

• 1 1^1 1 a l 1 % | e | » . 
1 1 

1 

iRule: AccumulertorJ ] Keys: Related Source;] 
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Ready 

Figure 16 Screen shot of the match detail for the Accumulator_l rule 

3.2 Laplace Example 

This example examines a simple two-dimensional relaxation algorithm. A regular 

grid is used with its edges set to a pre-determined boundary condition. A numerical 

iteration process is used to calculate the internal points that satisfy Laplace's 

equation: 

d^u d^u _ 

The source code is given in Appendix lb. Almost all relaxation algorithms operate 

by implementing an averaging scheme so that the values in each element are updated 

on the basis of the values in their neighbours. This update occurs in an iterative loop 

until the evaluation of the maximum error falls below a pre-determined threshold. 

The averaging construct in this case is embodied in lines 183 and 184 of the source. 

A more detailed discussion of relaxation algorithms can be found in Teukolsky et al 

[79] chapter 19. 
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3.2.1 Reverse Traverse 

48 
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Figure 17 Reverse Traverse dependence graph for datal 

Figure 17 shows the reverse traverse dependence graph for this example. There is 

only a single identified output "datal" and this is traced through the two calls to the 

itterate_step subroutine and the initialisation routines where the boundary conditions 

are set-up. The lack of a trace item for the initialisation of the edge_points variable is 

due to it being set in a PARAMETER statement for which there is no method for 
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generating an expression summary. This appears to be a limitation of the Sage++ 

parse tree. 

3.2.2 Pattern Matching 

In this example the core pattern to match against is the averaging statement 

embodied in lines 183 and 184. The rule for this is shown in Figure 18. 

Rule 17 : Name: laplace sequence 

Keys: { 

FOR_NODE THEN 

FOR_NODE THEN 

ew then ns THEN 

FOR_NODE THEN 

F0R_N0DE LAST } 

Figure 18 Rule: laplace sequence 

Rule 16 : Name: ew then ns 

Keys: { 

west then east THEN 

North Then South LAST } 

Figure 19 Rule: ew then ns 

The repeated FOR_NODE items provide the context for the main key, which 

identifies the East West then North South array access pattern. 

Rule 14 Name west then east 

Keys { 

2D array West access THEN 

2D array east access LAST } 

Figure 20 Rule: west then east 
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Rule 7 : Name: 2D array West access 

Keys: { 

ARRAY_REF AND 

VARIABLE_NAME AND 

SUBT_OP AND 

T_INT AND 

IS_VALUE_ONE AND 

T_INT LAST ) 

Figure 21 Rule: 2D array West access 

The "ew then ns" rule is constructed on top of two sub rules, the "west then east" 

(Figure 20) and the "North then South". Similarly the "west then east" rule is built 

from the "2D array West access" (Figure 21) and the "2D array East access". Each of 

these rules has a reversed counterpart, for example "North then South" has a partner 

"South then North" which are labelled as equivalent for the matching process. The 

equivalence of these rules allows the matching to work independently of the order of 

the coding of the array accesses. 

Figure 22 Shows the output from the rule matching process for the "laplace 

sequence" rule. The contributing rule 2D array West access is shown in Figure 23. 
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DO L=2,EDGE_P0INTS-1 

Figure 22 Screen shot of the match detail for the "laplace sequence" rule 

laplace 1.ItV - learnToolViewer 
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kAR REF| 
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|NT_VAL| 
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Figure 23 Screen shot of the match detail for the 2D array West access rule. 
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3.2.3 Laplace Variation 1 

The first variation to test is to split the averaging process using a temporary stack 

variable to accumulate the sum. This is achieved by replacing lines 183 and 184 with 

the code in Figure 24. 

ACCUMULATOR = DATA1(I-1,J) 

ACCUMULATOR = ACCUMULATOR + DATA1(I+1,J) 

ACCUMULATOR = ACCUMULATOR + DATA1(I,J-1) 

ACCUMULATOR = ACCUMULATOR + DATA1(I,J+1) 

DATA2(I,J) = 0.25 * ACCUMULATOR 

Figure 24 Variation 1 coding of Laplace example 

rA laplaceZ.ltv - learnToolViewer 

File Edit View Analysis Help 
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0 Gg B === AT # 
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[VARIABLE NAMEl 

FOR_NODE 

[VARIABLE NAMEl 

ew then ns 

I V A R I ^ E NAME 

tT FLOAl 

FOR_NODE 

ICOIMTROL END! 

FOR NODEi 

Ready 

|Keys:| 
FOR NODE: No Name 

IFOR NODEiNo Name: 

lew then ns: 

FOR NODE: No Name 

|FOR_NODE:No Nam^ 

[Related Sourcej 

DO 1=2,EDGE POINTS-1 

D0J=2,EDGEP0INTS-1 

ACCUMULATOR = DATA#1 ,J) 

D0J=2,EDGE POINTS -1 

D0I=2,EDGE POINTS-1 

Figure 25 Screen shot of the match detail for the" laplace sequence" rule for this variation 

Rule matches the "laplace sequence" rule correctly for this variation of the code as is 

shown in Figure 25. 
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3.2.4 Laplace Variation 2 

DATA2(I,J) = 0.25*( DATA1(I-1,J) + DATA2(I+1,J) + 

+ DATA1(I,J-1) + DATA2(I,J+1) ) 

Figure 26 Variation 2 coding of Laplace example 

Figure 26 shows the second variation coding of lines 183 and 184 of the original 

example. This time the matching algorithm correctly does not match to the "laplace 

sequence" rule. It recognises the individual North, South, East and West 2D access 

rules but the combinations of these for example "west then east" rule is not matched 

because the expected common variable name "DATAl" is not common in this 

instance of the sequence. 

3.2.5 Laplace Variation 3 

DATA2(I,J) = 0.25*( DATA1(I-1,J) + DATA1(I+1,J) + 

+ DATA2(I,J-1) + DATA2(I,J+1) ) 

Figure 27 Variation 3 coding of Laplace example 

Figure 27 shows the third variation coding of lines 183 and 184 of the original 

example. This time the matching algorithm correctly does not match to the "laplace 

sequence" rule. It recognises the two pairs of "North then South" and "East then 

West" but cannot link them together because of the change of variable name between 

the instances. 

3.2.6 Laplace Variation 4 

Figure 28 shows the last variant of the Laplace example. In this case all the elements 

for the "laplace sequence" rule are present and it is only the minus sign between the 

B and the C on the last line that prevents this variation from being a correct coding of 

this part of the algorithm. The Learn Tool achieves a match against the "laplace 

sequence" rule as shown in Figure 29. 
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A = DATAl(I-l, J) 

B = DATA1(I+1,J) 

C = DATAl(I,J-1) 

D = DATAl(I,J+1) 

DATA2(I,J) = 0.25 * ( A + B - C + D ) 

Figure 28 Variation 4 coding of Laplace example 
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Figure 29 Screen shot of the match detail for the "laplace sequence" rule for this variation. 

This property of incorrectly matching against a Rule, results from the Rule being 

defined to match without ensuring all the elements necessary for the higher-level 

concepts are present. This non-complete match approach is intended to mimic the 

behaviour of a human programmer, where the pattern matching procedure might start 

with what might be called a skim search. That is to say a first pass where a small set 

of key features are looked for. If a key feature were located during this skim search, 

then the programmer would form a hypothesis that this might be one of the concepts 

that is being looked for. Performing a more detailed search to locate the missing 

elements to tests the hypothesis would conclude the search process. Whilst a human 

programmer can make mistakes when the complexity of the formulation of a concept 

is high, the ability to ignore a lot of detail makes the searching very efficient, and 



Chapter 3 Test Cases 5 5 

robust against the multitude of possible representations of the same concepts. The 

Rule formulation gains advantage from this flexibility as it allows matches to be 

attempted without needing extensive code normalisation before being applied. The 

down side is that the approach can make mistakes, like a human programmer. 

3.3 Matrix Multiply Example 

While no rules have been developed for this algorithm it is thought worthwhile to 

discuss how this approach would be expected to perform on this problem that has 

been described in some detail in KeBler [4] pp.78. 

DO 1=1,N 

DO J=1,N 

RET(J,I) = 0.0 

DO K - 1,N 

RET(J,I) = RET{J,I) + A(J,K) * B(K,I) 

END DO 

END DO 

END DO 

Figure 30 Code fragment for matrix multiply 

Figure 30 shows a code fragment for the matrix multiply example translated into 

FORTRAN. The core matching is the multiply and add assignment with the specific 

array indices: (J,I) (J,K) and (K,I). The triple nest of the loop and the assign to zero 

would complete the rule construction. Unlike KeBler [4], Figure 30 shows the code 

with no loop unrolling. If the inner loop were unrolled the index pattern would be 

present for the first item of the unrolling and the match would probably be made. The 

problem would arise if the loop step on the inner loop was to be part of the match 

and the overall matching would fail since it had a non-unity step size. 

In the absence of code normalisation transformations, it is probable that the concept 

would be recognised but the manipulation of the code would be error prone due to 

the way the match would ignore the un-wound elements of the source. The loop 

unwinding is an optimisation artefact and may cause human developers difficulty 

when trying to comprehend third party source code. This is a good example of where 
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code normalisation is beneficial and where premature optimisation can make source 

code difficult to maintain and re-optimise for a new platform. 

3.4 Maximum Value in an Array of Integers 

While no rules have been developed for this algorithm, it is thought worthwhile to 

discuss how this approach would be expected to perform on this problem that has 

been described in some detail in Paul et al [77] pp. 7. 

MAX = ARRAY(1) 

DO 1 = 2 , N 

IF ( MAX .LT ARRAY( I ) THEN 

MAX = ARRAY(I) 

END IF 

END DO 

Figure 31 Code fragment for find maximum integer value from array. 

Figure 31 shows the code fragment for the find_max example. The first thing to 

notice is the need to have two core rules that are associated, namely "scalar less than 

array" and "array greater than scalar". These core rules would be combined together 

with the conditional assignment within the loop. The initialisation of the common 

scalar value would probably be assumed and a match would be made. 

3.5 Discussion 

With the limited number of examples examined it is difficult draw more than 

tentative conclusions from the work at this stage. The Reverse Traverse information 

as presented becomes very large for even small examples and the chosen 

presentation format is not ideal. Li a completed system this information would 

perhaps be presented as an interactive tree much like a file system browser, allowing 

the user to limit the amount of data displayed at any one time. The Reverse Traverse 

output needs perhaps a prioritising metric so that if presented automatically, only the 

most important items are shown. There appears to be scope for research on how this 

metric might be formed and how successful the resulting filtering might be at guiding 



the toolset user to the areas of code that would benefit most from the application of 

the other parallelisation tools in the toolset. 

The pattern matching as implemented is fallible in certain instances. In some ways 

this similarity in performance is encouraging considering the starting point of the 

work. The trade off hoped for in terms of speed of recognition against accuracy is not 

proved. As implemented, in debug mode the matching process takes approximately 

40 milliseconds to execute on the largest presented example on an 800 MHz Athlon 

PC. This is probably a respectable figure compared to the performance reported by 

KesBler [2] although for this example only about 20 rules were being compared and 

the example code length was a single subroutine. 

The ability to match the rules developed to particular example codes has been shown, 

however the number and complexity of the rules is low and currently targeted at 

fairly simple algorithm components. 

For a full system to be built, a means of systematically constructing rules would be 

required. This would involve identification of all the necessary information to extract 

from the parse tree to construct the codeStatusItems. The resolution of the ambiguous 

matching problem would also be necessary. 

It may be that the deliberate avoidance of a code normalisation step is a fundamental 

flaw in the approach. It certainly makes formulating rules a non trivial task and 

perhaps makes it impossible to derive a systematic approach to developing general 

robust rules. 

57 



Chapter 4 Concluding Remarks 

This work has presented a summary of existing approaches to the problem of 

developing and converting software to run parallel computer platforms. It has made 

the suggestion that algorithm substitution can be beneficial in some cases where the 

original serial algorithm is not well matched to a particular parallel platform and a 

change of algorithm can lead to significant improvements in execution speed and/or 

overall capacity. The work has also presented the results of the feasibility study to 

investigate the possibility of implementing such a system of transformations, which 

has lead to the construction of the Learn Tool program that incorporates the Reverse 

Traversal and pattern matching algorithms. 

58 
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4.1 Parallelisation Tools 

The extensive set of parallelisation tools developed over the last ten years highlights 

the need for support in programming parallel computer systems. Whilst there is 

support for code rewriting for distributing data and computation for SMP and MPP 

systems from sequential source, only a few tools are starting to consider algorithm 

substitution as a means of optimising the algorithm as well as the data and processing 

and distribution on these architectures. 

4.2 Reverse Traversal 

The reverse traversal concept is to start with a program and treat it as a "black box", 

determine its inputs and outputs and then open up the box and follow the processing 

between the two. By starting at the output and tracing backwards a focus is 

maintained on the data of most interest allowing a certain level of detail and 

potentially redundant code to be ignored. The main limitation of the algorithm is that 

it can only be reasonably beneficial within an interactive browsing facility. The 

Reverse Transverse tree expands very rapidly with relatively simple code examples 

and display of the whole tree is very rapidly unusable. 

The Reverse Traversal could be used as a simple method of identifying the tightly 

nested loops of relevance in a practical situation and act as a trigger to enact the 

pattern matching on a subset of the code in a more developed tool. 

4.3 Pattern Matching 

The pattern matching approach has been shown to operate successfully on two 

examples. Its current limitations include the restriction of matching in a single 

subroutine at a time and the lack of confirmation checking after a possible match is 

located. 

Both the pattern matching and the Reverse Traversal approach are based on the idea 

that the best way of implementing machine understanding and manipulation of 

source code should be based on approach adopted by human programmers. With 

pattern matching, the human programmer has a distinct advantage over machine 

approaches in the ability to pattern match in parallel (so to speak). Although the 



Chapter 4 Concluding Remarks 6 0 

author is un-aware of a definitive understanding of the human cognitive process, if 

neural network or memory surface concepts Bono [55] are indicative of these 

abilities, then humans can perform very rapid matches in parallel without the time 

consuming methodical comparisons used in this work. The human approach also 

allows for greater flexibility in the matching criteria, in that exact matches are rarely 

needed and multiple levels of detail are available in order to home-in on a match. 

The human programmer can also be prompted by source code comments to trigger a 

recognition or to prompt a more detailed search for the expected patterns in the code. 

While computers have very powerful detail processing, for example comparing two 

strings, the number of detailed comparisons for all the possible variations of code 

representation can become very large for a relatively small number of patterns. This 

suggests that a less detailed and more parallel search method is required for an 

automatic system to address high complexity problems. 

In order to introduce sufficient capability of variation in code representation, this 

work has allowed variable length gaps and associations between sub patterns. It has 

also needed to concentrate on the combination of small characteristic phrases in 

combination to infer that the higher-level pattern is in fact present during the Rule 

creation process. The Learn Tool approach could incorrectly recognise code 

examples that contain coding errors since there is currently no confirmation process 

whereby a possible match is then checked for completeness. 

In other approaches KeBler [2] [4], Pinter et al [3] and KeBler et al [5] code 

normalisation is used to reduce the variation between the templates and the 

examples. The approach of a human programmer is sometimes to normalise code, 

but often pattern matching is possible with no normalisation and it is for this reason 

that code normalisation was omitted from the approach. 

4.4 Summary 

This work describes two algorithms developed to test the feasibility of using program 

recognition techniques for program optimisation by algorithm substitution. The 

pattern matching algorithm has proved to be the best approach, a result that is in 

agreement with a number of authors Martino et al [1], KeBler et al [2], Pinter at al 

[3], KeBler [4][5], Raghavendra et al [6], Bansali et al [7], and Hagemeister et al [8]. 
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The algorithms have been embodied in a program called Learn Tool, which includes 

a pattern creation editor and the matching algorithm scheme. This has been exercised 

successfully against a number of test code samples, the results of which are presented 

herein. 



Appendix 1 - Example Source Code 

Al l - Statistics 

1 C This example is generated from Advanced Basic Scientific Routines 

2 C B.V. Cordingley D.J Chamund page 50 MEAN AND VARIANCE. 

3 

4 C The program opens a data file of choice. Filename prompted for 

5 C and output mean and variance values to file called stats.out 

6 

7 C 3 Subroutines: 

8 

9 C 1. Prompt for filename, read file data into array 

I O C 2. Calculate Mean and Variance 

11 C 3. Output data to a file. 

12 

13 C PERG 12-1-96 Started. 

62 
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14 0====================================================== 

16 PROGRAM STATS 

17 

18 INTEGER MAX_ELEMENTS 

19 PARAMETER (MAX_ELEMENTS = 1000 ) 

20 REAL ARRAY (MAX_ELEMENTS) 

21 INTEGER NUM_ELEMENTS 

22 

2 3 CALL LOAD DATA (ARRAY, MAX_ELEMENTS , NUM^ELEMENTS) 

24 

25 CALL CALC_STATS (ARRAY, NUM_ELEMENTS, MEAN, VARIANCE) 

26 

27 CALL OUTPUT___DATA (MEAN, VARIANCE) 

28 

2 9 END 

30 
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SUBROUTINE LOAD_DATA (ARRAY, MAX_ELEMENTS, NUM_ELEMENTS) 

31 T: 

32 

33 C 

34 

35 C 

36 c 

37 c 

38 c 

39 c 

40 c 

41 c 

42 c 

43 c 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 1 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 10 

66 

67 20 

69 

This routine prompts for an input file and reads column 

orientated floating point data in free format. 

e.g. 0.1786 

5.6723 

If there are more than MAX_ELEMENTS in the file the reading 

is stoped short of the end. 

REAL ARRAY (*) 

INTEGER MAX_ELEMENTS 

INTEGER NUM_ELEMENTS 

LOGICAL EOF 

CHARACTER *1024 filename 

EOF = .FALSE. 

NUM_ELEMENTS=0 

WRITE(*,*)'Enter data file name' 

READ{*,1)filename 

FORMAT(A1024) 

OPEN(UNIT=1,STATUS^'OLD',FORM='FORMATTED',FILE=filename,ERR=10) 

DO WHILE {.TRUE.) 

NUM_ELEMENTS=NUM_ELEMENTS + 1 

READ{1,*,END=2 0)ARRAY(NUM_ELEMENTS) 

IF (NUM_ELEMENTS .EQ. MAX_ELEMENTS) RETURN 

ENDDO 

RETURN 

WRITE{*,*)'Failed to open file:',filename 

STOP 

NUM_ELEMENTS =NUM_ELEMENTS -1 

RETURN 

END 
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71 

72 

C — 

SUBROUTINE CALC__STATS {ARRAY, NUM^ELEMENTS , MEAN, VARIANCE) 

73 C 

74 

75 c This routine calculates the mean and variance of items in 

76 c the array ARRAY. It looks at NUM_ELEMENTS of the array. 

77 

78 

79 REAL ARRAY(*) 

80 INTEGER NUM^ELEMENTS 

81 REAL MEAN 

82 REAL VARIANCE 

84 c Local variables 

85 REAL SUM1,SUM2 

86 INTEGER P 

88 IF (NUM^ELEMENTS .GT. 2) THEN 

89 SUN1=0 

90 SUM2=0 

91 DO P=1,NUM_ELEMENTS 

92 SUM1=SUM1+ARRAY(P) 

93 SUM2=SUM2+ARRAY(P)*ARRAY(P) 

94 END DO 

95 MEAN=SUM1/NUM_ELEMENTS 

96 VARIANCE^(SUM2 - MEAN*SUM1)/NUM_ELEMENTS 

97 c VRME=VARIANCE*NUM_ELEMENTS/(NUM_ELEMENTS-1) 

98 c SDMK=SQRT(VRMK) 

99 c SDME=SORT(VRME) 

100 END IF 

101 

102 c Trap insufficient data occasions 

103 c 

104 

105 IF (NUM_ELEMENT .LT. 2) THEN 

106 W R I T E ' N o t Enough DATA to process' 

107 MEAN=0.0 

108 VARIANCE^0.0 

109 END IF 

110 

111 RETURN 

112 

113 END 
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114 C= 

115 

116 C 

117 

118 c 

119 c 

120 c 

1 2 1 

122 

125 

126 

127 

128 

129 

130 

131 

132 

133 

134 

135 

136 10 

137 

138 

139 

140 r -

SUBROUTINE OUTPUT DATA(MEAN,VARIANCE) 

This subroutine outputs the MEAN and Variance to SDTOUT 

and a results file called stats.out 

REAL MEAN 

REAL VARIANCE 

OPEN{UNIT=1,FILE='stats.out',STATUS='UNKNOWN' 

+ FORM='FORMATTED',ERR=10) 

WRITE(1,*)'MEAN:',MEAN,' VARIANCE:',VARIANCE 

CLOSE(UNIT=1) 

RETURN 

WRITE(*,*)'Error opening output file' 

STOP 

END 
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A1.2 - Laplace 
1 Q* ************ ± * * * * ic * ± ************* -k ************* -k * * -k ***************** * 

2 C 

3 C PROGRAM: laplacel.ftn 

4 C CREATED: 16:4:94 by Philip Galloway 

5 C LAST CHANGE: 

6 C 

7 C 

9 C 

10 C This program performs a simple 20 Laplace solution on a 

11 C uniform square grid. 

12 C 

13 Q* ******************************************************************** * 

14 

15 PROGRAM laplacel 

16 

17 C Define the number of cells along each edge. 

18 INTEGER EDGE_POINTS 

19 PARAMETER(EDGE_POINTS = 200) 

20 

21 C Define the convergence limit 

22 REAL CONVERGENCE_LIMIT 

23 PARAMETER (CONVERGENCE_LIMIT=0. 0001) 

24 

25 C Declare the data stores. 

26 REAL DATAl(EDGE_POINTS,EDGE^POINTS) 'First data store. 

27 REAL DATA2(EDGE_POINTS,EDGE^POINTS) !Second data store. 

28 

2 9 C Set up the start data for iteration. 

30 CALL INITIALISE_DATA_SPACE (DATAl, EDGE_POINTS) 

31 

32 C Define the Boundary conditions. 

33 CALL SET_BOUNDARY_CONDITIONS {DATAl, DATA2,EDGE_P0INTS) 

34 

35 C Iterate until convergence is reached. 

36 CALL ITTERATE (DATAl, DATA2,EDGE_P0INTS,C0NVERGENCE_LIMIT) 

37 

3 8 C Output the resultant data to a sequential binary file. 

39 CALL OUTPUT_GRID_DATA {DATAl, EDGE___POINTS) 

40 

41 END 

42 
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43 C 

44 SUBROUTINE INITIALISE_DATA__SPACE (DATAl, EDGE_POINTS) 

45 C ================================ 

46 

47 C This routine sets all the interior point data to zero. 

48 

4 9 INTEGER EDGE_POINTS !The dimension of the raw data space. 

50 REAL DATAl(EDGE_POINTS,EDGE_POINTS) 

51 

52 C Local array indexes. 

53 INTEGER I,J 

54 

55 C Set all interior points to zero. 

56 DO 1=2,EDGE_POINTS 

57 DO J=2,EDGE_POINTS 

58 DATA1(I,J) = 0 

5 9 END DO 

6 0 END DO 

61 

62 C RETURN 

63 

64 END 

65 
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SUBROUTINE SET BOUNDARY CONDITIONS(DATAl,DATA2,EDGE POINTS) 

66 C 

67 

68 C 

69 

70 c 

71 c 

72 c 

73 c 

74 

75 

76 

77 

78 

79 c 

80 

81 

82 

83 

84 

85 c 

86 

87 

88 c 

89 

90 

91 

92 

93 

94 

95 

96 

97 

98 c 

99 

100 

101 

102 

103 

104 

105 

106 

107 

108 

109 

110 

111 

112 

This subroutine sets the edge boundary conditions using 

built in trig and polynomial functions. 

the full size edge is parameterised from 0-1 in which there 

are EDGE_POINTS samples. 

INTEGER EDGE_POINTS ! The dimensions of the stores. 

REAL DATAl (EDGE_POINTS, EDGE_POINTS) 

REAL DATA2{EDGE_POINTS,EDGE_POINTS) 

LOCAL DATA 

INTEGER I,J ! Array indexes. 

REAL PI 

PARAMETER{PI=3.141596) 

Set up the I dependency functions 

DO 1=1,EDGE_POINTS 

Put the same EC's in both data stores. 

DATAl(1,1) = COS(2.0*PI*REAL(I)/REAL(EDGE_POINTS)) 

DATA2(1,1) = DATAl(1,1) 

DATA1(I,EDGE_P0INTS) = SIN(PI*REAL(I)/ 

REAL (EDGE_POINTS) ) 

DATA2(I,EDGE_POINTS) = DATAl(I,EDGE_POINTS) 

END DO 

Set up the J dependency functions 

DO J=1,EDGE_P0INTS 

DATAl(1,J) = 0 . 1 

DATA2 (1, J) = DATAl (1, J) 

DATAl(EDGE_POINTS,J) =0.9 

DATA2(EDGE_POINTS,J) = DATAl(EDGE_POINTS,J) 

END DO 

RETURN 

END 
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113 C -

114 SUBROUTINE ITTERATE (DATAl, DATA2 , EDGE_POINTS, CONVERGENCE_LIMIT) 

115 C 

116 

117 c This subroutine iterates over the data until the CONVERGENCE 

118 c LIMIT is no longer exceeded. Each call of the procedure 

119 c ITTERATE_STEP transfers the working data set from DATAl 

120 c to DATA2 or visa-versa. If the CONVERGENCE LIMIT is not 

121 c exceeded at any point then DONE is returned TRUE. 

122 

123 

124 INTEGER EDGE_POINTS ! The dimensions of the stores. 

125 REAL DATAl(EDGE_POINTS,EDGE_POINTS) 

126 REAL DATA2(EDGE_POINTS,EDGE_POINTS) 

127 REAL CONVERGENCE_LIMIT ! The convergence limit. 

128 

129 c Local variables. 

130 LOGICAL DONE ! Detects the convergence situation 

131 INTEGER STEPS ! Step counter. 

132 

133 

134 DONE = .FALSE. 

135 STEPS = 0 

136 DO WHILE {.NOT. DONE) 

137 

138 CALL ITTERATE_STEP(DATAl,DATA2,EDGE_POINTS, 

139 + CONVERGENCE_LIMIT,DONE) 

140 STEPS = STEPS + 1 

141 IF ( MOD(STEPS, 10) .EQ. 0) write(*,*)STEPS 

142 IF (.NOT. DONE) THEN 

143 CALL ITTERATE STEP(DATA2,DATAl,EDGE POINTS, 

144 + CONVERGENCE_LIMIT,DONE) 

145 STEPS = STEPS + 1 

146 END IF 

147 

148 IF ( MOD(STEPS,10) .EQ. 0) write(*,*)STEPS 

149 END DO 

150 

151 write(*,*)'Convergence took ',STEPS,' Steps.' 

152 

153 RETURN 

154 

155 END 

156 

157 
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158 C -

159 SUBROUTINE ITTERATE^STSP(DATAl,DATA2,EDGE_POINTS, 

160 + CONVERGENCE LIMIT,DONE) 

161 C 

162 

163 c This subroutine preforms a single itteration step using 

164 c the Jacobi method for solving the Laplace Equation 

165 c on a regular square grid. 

166 

167 INTEGER EDGE POINTS ! The dimensions of the stores. 

168 REAL DATAl(EDGE_POINTS,EDGE_POINTS) 

169 REAL DATA2(EDGE_POINTS,EDGE_POINTS) 

170 REAL CONVERGENCS_LIMIT ! The convergence limit. 

171 LOGICAL DONE ! Finish after convergence reached. 

172 

173 c Local data 

174 INTEGER I;J j data array indexes. 

175 REAL CURRENT DIFF ! Current convergence size 

176 REAL MAXIMUM DIFF ! Maximum convergence size 

177 

178 MAXIMUM DIFF = 0.0 

179 DO I=2,EDGE_P0INTS-1 

180 

181 DO J=2,EDGE_P0INTS -1 

182 

183 DATA2(I,J} = 0.25*( DATA1(I-1,J) + DATA1(I+1,J) + 

184 + DATA1(I,J-1) + DATAl(I,J+1) ) 

185 

186 c Find the convergence test at this point. 

187 CURRENT_DIFF = ABS(DATA2(I,J) - DATAl(I,J)} 

188 MAXIMUM_DIFF = MAX(MAXIMUM_DIFF,CURRENT_DIFF) 

189 

190 END DO 

191 

192 END DO 

193 

194 IF (MAXIMUM_DIFF .LT. CONVERGENCE_LIMIT) THEN 

195 DONE = .TRUE. 

196 END IF 

197 

198 RETURN 

199 

200 END 

201 

202 
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203 C 

204 SUBROUTINE 0UTPUT_GRID_DATA(DATA1,EDGE_P0INTS) 

205 C =========================== 

206 

207 C This routine opens a binary sequential file and 

208 C dump the data information in DATAl 

209 

210 INTEGER EDGE_POINTS 

211 REAL DATAl (EDGE___POINTS, EDGE_POINTS) 

212 

213 INTEGER I,J ! array indexes. 

214 

215 C Open the file 

217 OPEN (UNIT=10,FORM='UNFORMATTED' .ACCESS^'SEQUENTIAL' 

218 + FILE='Laplace.binSTATUS='UNKNOWN') 

219 

22 0 DO 1=1,EDGE_POINTS 

221 MRITE(IO)(DATA1(I,J),J=1,EDGE_P0INTS) 

222 END DO 

223 

224 CLOSE(UNIT=10,STATUS='KEEP') 

225 

226 RETURN 

228 END 
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