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In this research, we s tudy an interconnection of two general i terative learning control (ILC) system. 

This topic is a new topic in the area of ILC. To develop this theory, a new robustness notion describing the 

effect of disturbance and initial condition in ILC system is introduced. This new notion is called iterative 

input to state stability (iterative ISS), which is formulated following the idea of input to s ta te stability. 

Based on this notion, the cascade and feedback interconnection of ILC system is considered. It is proved 

tha t bounded disturbance bounded s ta te property and disturbance asymptot ic gain property hold for 

feedback and cascade system interconnection, provided each subsystem is iterative ISS. In order to see 

the applicability of the theory of ILC system interconnection, we perform a case study. In particular, we 

choose a certain class of nonlinear adaptive Lyapunov based ILC and investigate whether iterative ISS 

is a property of this class of control system. If iterative ISS can be derived from this particular adaptive 

nonlinear ILC then the general ILC system theory interconnection is applicable to this class of nonlinear 

adaptive ILC. The result shows tha t nonlinear adaptive ILC does not have the property of iterative ISS 

although under restrictive disturbance and initial condition set. As a recommendation for fu ture work, 

we discuss a possibility to achieve the iterative ISS property of this class of nonlinear adaptive ILC. 
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C h a p t e r 1 

In t roduc t ion 

1.1 Genera l Pr inciple of ILC 

Iterative learning control (ILC for short) considers systems that repetitively perform the same task with 

a view to sequentially improving accuracy. Examples of this notion can be found for example in the 

papers of Arimoto et al. ([2],[3]), Furuta and Yamakita ([10]), Padieu and Su ([28]), Owens ([24],[25]), 

Lee and Lee ([21]), Moore ([22]), and Bucheit et al. ([6]) as well as the general area of t ra jectory 

following in robotics. The specified task is regarded as the tracking of a given reference signal r{t) or 

output t ra jectory for an operation on a specified t ime interval 0 ^ t ^ T. It is important to note tha t 

feedback control cannot , by its nature, achieve this exactly as a non-zero error is required to activate 

the feedback mechanism. The objective of ILC is to use the repetitive na tu re of a process in order to 

improve progessively the accuracy with which the operation is achieved by changing the control input 

iteratively from trial to trial. 

Improvements in performance correspond intuitively to reductions (pointwise, peak or energy) in the 

difference between the reference signal and the actual output of the system signal in a trial. Improving 

performance is the objective of the control s trategy and this can only be achieved by using available 

data from the process in an effective manner. As the ILC process is i terative, this means, tha t signal 

and measurements f rom the previous trials are the na tura l choice of d a t a for use in the construction of 

control inputs for the present trial. The control system is said to 'learn' by remembering the effectiveness 

of previously tried inputs and using information from their success or failure to construct a new trial 

control input functions. In contrast to adaptive scheme, ILC does not a t t e m p t to identify explicitly the 

plants but changes (or adapts) only the control input . This ' adapta t ion ' or updat ing takes place after 

each trial, and not after each time step as in adaptive control. 

The technical difficulty of ILC lies in two-dimensionality (in the mathemat ica l sense) of the overall 

system ([25]) and the need for consequence changes in methods of analysis and thinking, including the 

ideas of causality and stability. The two dimensions are the trial index k (discrete) and the elapsed time 

t (continuous or discrete) during a trial. It is obviously desirable to have notions of stability with respect 

to both dimensions in a precisely defined sense (see Rogers and Owens ([29]) for some related ideas in the 

theory of repetitive dynamical systems). Whilst stability in the t direction has the simple and standard 

interpretation, stability in the k direction is taken to be equivalent to converge of the ILC algorithm in a 

precisely defined sense. As the different notions of causality, stability and convergence places ILC outside 



the traditional realm of control theory, it is important to study it as a subjec t area in its own right. 

ILC was originally introduced by Arimoto ([2],[3]) who presented an algori thm tha t generated the new 

trial control input by adding a 'correction' term to the control input of t h e previous trial. This control 

increment was calculated using the previous trial tracking error data. They also derived convergence 

conditions for this algorithm in terms of th state-space matrices of the p lant . ILC has since then been 

further explored using similar techniques and ideas but still underdeveloped. Various update algorithms 

and corresponding invariant or time-variant, linear or nonlinear and especially the particular problems 

of mechanical systems, can be seen, for example, in robotic manipulators . Robotic is a particularly 

important application area of ILC. A textbook about ILC ([22]) includes a l i terature survey up to 1992. 

A significant distinction is whether linear or nonlinear systems are considered. 

In this thesis, the problem of interconnection of two ILC systems is investigated. In particular, 

we focus our s tudy on ILC system which is robust to disturbance and the initial resetting error. The 

following problem consider: suppose we have two robust ILC systems, is the interconnection of these two 

ILC systems is also robust? To tackle this problem, we define precisely t h e desired robustness property 

of an ILC system. We utilise the idea of input to state stability, which is introduced by Sontag (see e.g. 

[35]) to formulate the robustness property of an ILC system. The possibility of interconnection of two 

ILC systems for having this robustness property is investigated. In section 1.4 the input to state stability 

theory is reviewed and in section 1.5 we will present the motivation of considering this problem. In the 

subsequent chapters, the interpretat ion of input to s ta te stability theory into ILC context to formulate 

a new robustness property of ILC system is considered. The theory of ILC system interconnection and 

a case study will be discussed afterward. 

1.2 Rigorous Theoret ical Approach to ILC 

1.2.1 Motivational Example 

Before we discuss some theories of ILC design, we need to put ILC design problem into a sensible 

mathematical formulation. To understand how it is formulated, we begin wi th a simple example. Suppose 

we require to control the following system [3]: 

1 1 1 1 , ^ 1 I n 
(1 .1) 

with the output : 

d Xx 0 1 Xi 0 " 

dt 
Xx + 

dt 32 - 1 - 2 . ^2 
+ 

_ 1 _ 

0 1 ] 
Xi y 0 1 ] 

J 12 
(1.2) 

Suppose the reference signal to be tracked is yd[t) = 12^^(1 — t). The object ive is to track the reference 

signal y{t). Following [3], this can be done by controlling the system iteratively and upda te the control 

input in each iteration as follows: 

I tera t ion 1: set u{i) = yd{t)- Calculate the output y{t) from equation (1.1) and (1.2). Calculate the 

error: e(<) = i/d(^) - ;/((). Set u i ( f ) = u(f), yi(t) = y(t) and ei(<) = e(t). 

I t erat ion 2: compute u(t) as follows: 

d 
u(t) = + ^ e i ( Z ) (1.3) 



Calculate y{t) f rom equat ion (1.1) and (1.2). Calculate the error: e{t) 

and e2(<) = e(f) . 

I t e r a t i o n 3: compute u{t) as follows: 

u(() = Uz + ^ e 2 ( f ) 

!/dW - !/W- Set U2(^) = %((), 

(1.4) 

Calculate y{t) f rom equat ion (1.1) and (1.2). Calculate the error: e{t) = y^{t) - y{t). Set u^it) = u{t), 

2/3(i) = yit) and £3(4) = e{t). This algori thm is repeated until yd{t) - yk { t ) = 0 for each t, where k is t h e 

number of i terat ions which have been executed. T h e number of i te ra t ion k can be finite or '00' (which 

means the system keeps approaching the desired behaviour as i tera t ion goes). 

After approximate ly 10 t imes of calculation, it is shown in [3] by s imulat ion t h a t t h e magni tude of 

error \y{t) - yd{t)\ approaches zero. Hence, af ter repeated applicat ions of u{t), t he system converges t o 

the desired control object ive. Denote the number of i tera t ion by k, refer r ing to the equat ion (1.3) and 

(1.4) the relation between input of i terat ion k and k + 1 can be wr i t ten as follows: 

d d 
Uk+l — u* + '^Vd 

1.2.2 One Dimensional Representat ion 

dt 
3/t (1.5) 

To s tudy m a n y aspects of ILC deeply, we need to formula te a general (nonlinear) ILC problem in a 

rigorous theoret ical f ramework . Consider again the sys tem (1.1)-(1.2). B y applying ILC, in each i teration 

we get different s t a t e and o u t p u t t ra jec tory . Hence, at t h e fe-th i te ra t ion , t h e sys tem (1.1) and (1.2) 

should be wri t ten as follows: 

d 0 1 ' 0 " 
+ 

dt - 1 - 2 
+ 

1 

yk 0 1 
"^Ik 

(1.6) 

(1.7) 

with the ILC law: 

" t + i = U* 4- r(3/d - y&) (1.8) 

Now we pu t the ILC problem in a general set t ing. Consider a sys t em which is described in the 

nonlinear continuous t ime s t a t e space form. As in the equat ion (1.6)-(1.7) we pu t an index k in each 

variable t o cap ture t h e sys tem behaviour in every i tera t ion. T h e sys tem representa t ion is wri t ten as 

follows : 

z&(t) = / ( z t ( f ) , u t ( f ) , d & ( Z ) ) 

y&(f) == ,h(z&(f), %&(*)) (1.9) 

In this work, we call t he representa t ion of (1.9) as iterative system. It is t o different iate with the usual 

s t a te space representa t ion , which does not include the index k. T h e index k is t aken to be the element of 

the set of na tu ra l n u m b e r i.e. A; 6 N. T h e s ta te Xk belongs t o a s ta te space X, t h e o u t p u t yk belongs to 

an ou tpu t space y, u* belongs to an admissible input space U, f and h a re t h e sys tem dynamics belong 

to space J- and Ti, respectively (the space T and T-L are typically taken t o be a funct ion space). These 

dynamics / (and also h) is unknown in the sense tha t we only know some p rope r ty of this dynamics such 

as the bound of / (which can be constant or a known funct ion) and t h e increment p rope r ty of / (the 

Lipschitz condit ion). 



The ILC problem can be formulated as follows. Suppose yd G V is t h e reference signal to be tracked 

then the control objective is to find the sequence of input {uk}k^i so t h a t asymptotically 'track' t h e 

reference signal y j i.e.; 

l i m s u p | | ^ t - ! / d | | = 0 (1-10) 
t-fOO 

or 

l i n i s u p | | i / t - 2 f d | | $ e (1.11) 

t—̂OO 

where || • || it is a suitable defined norm on y and e is a 'small' positive number , which is usually specified 

by the designer. In some cases such as {\\yk - yr\\}k^i decreases monotonically, we can replace ' l imsup ' 

with just 'lim'. There are various approaches to find {uk jk^ i in the l i te ra ture as will be discussed in the 

following section. 

Beside forcing the ou tpu t to track the desired reference output , it is also required that the input 

behaves well along the i teration and over the iterations. For example t h e input is typically required t o 

be bounded/uniformly bounded for each t E [0, T] and for each t E N. I t may also require the input t o 

converge to a desired input , etc. 

The iterative system representation (1.9) is a non-standard s tate space representation. The control 

problem of achieving the convergence in the sense of (1.10) or (1.11) is also a non-standard control 

problem. In here, there are two kinds of information propagation t h a t need to be considered. The 

information which propagates along the finite time axis and the information which is transmitted over 

finite time axis. Hence, a notion such as boundedness and uniformity need to be established on both 

direction. 

As we can see, ILC involves the system behaviour over iterations as well as over a finite time (along 

iteration). Hence, a rigorous approach to solve ILC problem is by formulat ing the problem into 2-

dimensional system theory. However, the theory of 2 dimensional system for nonlinear system is not well 

established. Therefore, we use a one dimensional nonlinear system theory to formulate and solve the ILC 

problem. 

1.3 Theory of ILC Design: Linear Sys tem 

In the literature, there are some theories have been proposed to solve ILC problem for linear and nonlinear 

system. The surveys [23] is among good expositions of this subject . 

In this section we discuss the solution of ILC problem if (1.9) is l inear. In general, theory of ILC for 

linear system is less complicated than nonlinear system. Hence, to grasp a bet ter understanding about 

ILC theory we begin with linear system first. Consider the linear system: 

i t = .Azk 4- Bu* (1.12) 

with the pair {A,B) is controllable. The problem is to design an ILC algori thm for this system. The 

following ILC is proposed in the li terature: 

1.3.1 D-type ILC 

D-type ILC is the first ILC algorithm appears in the li terature. It was proposed by Arimoto ([3]). The 

original task is to make the tracking performance of robot manipula tor is be t ter . I t has the following 



form: 

Uk+i = Uk + T—{yk — yd) (1 13) 

The system (robot manipulator) to be controlled is a linear system (1.12). The objective is to make t h e 

error converge in the sense of A-norm i.e; 

lim lletllA = lim - y r e / l k = 0 (1.14) 
k-*oo fc^co 

In the works of Arimoto ([3]), it has been proved tha t the D-type ILC above achieves a convergence in 

the sense of A-norm (see the definition of A-norm in the appendix A) with a condition that CB ^ 0. The 

details of the theorem and proofs can be seen in [3]. Based on this result, some researchers such as [13] 

and [14] try to use D-type ILC to nonlinear system. We will discuss this in the next section. 

1.3.2 P - type ILC 

The D-type ILC which is originally suggested by Arimoto uses a derivative in the control law (1.13). In 

many implementation the use of derivative needs to be avoided. Arimoto ([5],[4], see also [12] and [31]) 

propose ILC without using derivative as follows: 

Uk+i(t) = (1 - a )uk i t ) + auo + (pBkit), 0 < a < 1 (1.15) 

Where a > 0 is a forgetting factor and uq is the initial input, which can be taken as an arbitrary 

continuous function or number and used to enhance the performance. If t h e ILC (1.15) above is applied 

to linear system (1.12) then the convergence in A norm as in (1.14) is obtained ([5], [12], [31]). For 

nonlinear system, as pointed out by Saab([31]), the convergence can be achieved. However, there are 

many strict technical assumptions need to be satisfied. We will discuss about this further in the next 

section. 

1.3.3 Universal Adaptive ILC 

Consider the following linear system as in (1.12). Supposed it can be stabilised by the so-called universal 

adaptive controller proposed by Owens ([26],[27]); 

u{t) = —sgn{CB)K{t)y{t), k{t) = cy'^{t), c > 0, K{Q) = Kq (1.16) 

and has the properties tha t for all values of xq and for all choices of Kq , 

lim y{t) = 0, and lim K{t) = Koo{xo,Kq) < oo (1.17) 
i—>oo t—)-oo 

The proposed adaptive ILC algorithm; 

u&+i(f) = + 5gn(CB)[(A'&+iet+i)(f) + (j^+ie&)(f)], 0 ^ ^ T (1.18) 

with: 

= 1/k - 3/d 

Kk+i = Kk+cWekW"^ 

and f t is talcen to be a constant F for each t E N. 

10 



A s s u m p t i o n 1 .3 .1 . The system (1-12) is single input and single output 

T h e o r e m 1.3.1. [27] Suppose that the plant satisfies assumption (1.3.1) and the adaptive ILC algorithm 

described above is applied with an arbitrary choice of input uq £ L2[0,T], generating an initial error 

eo € L2[0,T]. Suppose also that the reference signal r can be generated exactly by an input Uca £ L2[0,T]. 

Under these conditions we have: 

1. The tracking error converges to zero in the sense of L2[Q,T] 

2. The monotonically increasing adaptive feedback gain parameter sequence {Kk)k^o converges to a 

limit gain K^o < oo 

3. There exists a gain K* such that whenever Kk > K*, the error norm {||e&|| w strictly mono-

tonically decreasing 

4- If the plant (1.12) is also minimum-phase, then it is possible to choose K* to be independent of 

trial length T. 

1.4 Theory of ILC Design: Nonlinear AfRne System 

In this section, we generalise the theory of ILC from previous section to nonlinear systems. We consider 

the following time invariant nonlinear system; 

X = f{x)+B{x)u + w, x{Q) = 5 (1.19) 

y = + % 

To make the result hold generally we take the following: s tate and o u t p u t signals are all taken to be 

continuous functions: 

3/6C([0 ,T] ,RP) 

The control signal is a mapping of u ; [0,T] -> M™ which is integrable along finite interval [0,T]. This 

signal is not necessary to be continuous since we may also consider a discontinuous control. However, 

it requires to be integrable since we measure ' the size' of u using i ^ [0 , TJ-norm, 1 ^ p < oo as well as 

.L°°[0,T]-norm. 

The system dynamic, the input dynamic and the output dynamic are taken to be the following 

mappings: 

/ : E" R" , g : R" RP, B : R" 

The disturbance terms are taken as follows: 

w : [ 0 , r ] - ^ ] r , a i i d t , : [ 0 , T ] - > E P (1.20) 

In addition w and v belong to L^[0,T] n i ° ° [ 0 , T ] respectively, which means the disturbances is required 

to have a finite energy and bounded. 

Finally the initial condition (initialisation error) S is taken to be a vector in E " . 

11 



1.4.1 D-type ILC 

A l g o r i t h m 

In this subsection we discuss some works which uses the D-type ILC as in the linear case (section 1.3) 

to nonlinear system. Denote Xk, Vk, w*, Vk the state, output , initial condition (initialisation error), 

and disturbances at pass k, respectively. The form of the controller is the same as in (1.13), but it has 

a nonlinear learning operator to handle the system nonlinearity. It is expressed as follows: 

(121) 

or the variant of it such as : 

U&+1 = a«o + (1 - - 3/d) (1.22) 

with the mapping £ ; E" x [0,T] -> and £ belongs to L°°[0,T] and need to satisfy a certain 

condition (see equation (1.24) below. Similarly in the linear case the convergence is achieved in the sense 

of A-norm as follows; 

||3/t - 3/d||A ^ E (1.23) 
t-+oo 

where e ^ 0 which depends on the size of disturbance , % and 5^ • 

To at tain the convergence as in (1.23) then some additional assumptions are imposed to the system 

(1.19)-(1.20) as follows 

1. the mapping from input to state and from state to output is one to one 

2. the dynamics / , B in (1.19) and (1.20) along with the derivative of g: and posses a global 

Lipschitz condition. It is defined as follows: there exist positive constants ki , kg, ks and A4 such 

that for any ti and (g in [0,T], we have 

| |B(a;t(t2))-B(a;t(ti))|t_L.[o,T] ^ t2 | |z&(f2)-rt( t i ) | | i=' [o ,T] 

\\-^{.^k{t2)) — -^{Xk{ti))\\L'=°[0,T] ^ kz\\Xk{t2) — Xk{ti)\\ioo\^Q^T] 

\\-Q^{Xk{h)) - -Q^{.Xk{tl))\\L'=<'[0,T] ^ k4\\xk{t2) — Xk{ti)\\ico^Q jr,^ 

Furthermore, there is also a condition need to be satisfied by the controller (1.21) and (1.22) as follows: 

| | / - f (g(a:*),f) - g i ( z t ) - g(z&)||i«.[o,r] ^ f < 1, V(a;,t) 6 R" x [0 ,7] (1.24) 

The assumption 1 is a technical assumption which guarantee tha t for any input there will be a corre-

sponding output t rajectory. It implies tha t for each reference t ra jec tory there exists a unique input Ud-

Or in other word, there is a unique input Ud which produce the reference t ra jec tory %. The assumption 

2 states tha t the system has a linear growth. Hence, by this assumption, we can expect tha t since the 

D-type ILC (1.21) works in linear system then it must also be able to achieve a convergence for nonlinear 

system having linear growth. The condition on £ as in (1.24) is a nonlinear analogy with linear case, 

which is a technical condition to achieve the convergence. 

First of all, we consider the most simple case where Wk = 0,Vk = 0, and Sk = 0. For this case, Hauser 

([13]) has proven t ha t the D-type ILC (1.21) achieves convergence as s t a t ed in the following theorem: 

12 



T h e o r e m 1.4 .1 . [13] Consider the system (1.19)-(1.20). Let Xd{0) and yd{t), t £ [0,7] be given with 

yd{-) be a realizable trajectory. Let Xk{0) = 1^(0) for all k. Suppose £ satisfies inequality (1-24), then the 

learning operator given by equation (1.21) will generate a sequence of inputs, Uk{t), t E [0,T], uniformly 

in t. Furthermore, the sequences, Xk{t),yk[t),t E [0,T], generated by these controls are such that: 

l imsi ip | |uk- 'Ud| |A = 0 
ÔO 

limsuplla;^ - a;d||A = 0 
A—KXD 

lim8up||!/&-3/d||A = 0 
A—Kao 

If disturbance occurs then the convergence of D-type ILC will depend on the size of the disturbance. 

This is reasonable since the disturbance will affect the performance of the controller. The work of 

Heinzinger and co-authors ([14])proved tha t under the presence of bounded disturbance, the ILC (1.21)-

(1.22) will achieve the bounded convergence as in (1.23). The dis turbance t ha t they consider is bounded 

by A-norm as follows: 

^ = 0, and |a:t(0)| ^ 

This result is s tated in the following theorem: 

T h e o r e m 1.4 .2 . [14] Let the system described as (1.19)-(1.20) satisfy the above assumptions with the 

ILC as in (1-21) and (1.22). Given the desired output trajectory yd{-) and an initial state id(0), which 

are achievable, if the condition (1.24) w satisfied then there exist positive constants ai, 02, a^, hi, b2,b3,Ci 

such that: 

^ ( : r - ^ j ( o i k & ( 0 ) - 3 ; d ( 0 ) | + 0 2 6 w + a3l|"o-'Ud(0)||A) 
ÔO 1 - P 

limSUp li lt - ^ 61 f 7 - ^ ) - Zd(0)| + Ozbu, + OsHuo - Ud(0)||A) + ('2k*(0)l 
t-+oo \ 1 - P / 

limsupll?/* -i/dllA ^ ci (a ik*(0 ) - id(0)l + 4-(i3||tfo -"^(0)11^) + 62| it(0) | 

The other work on D-type ILC is the work of Chen ([7]) which tries t o eliminate the disturbance 

caused by the initialisation error. The system which is considered is still the nonlinear system (1.19)-

(1.20) along with the technical assumptions 1 and 2. The ILC is as in the equation (1.21), but it is 

modified to be of the form: 

u*+i(<) = - 2/d(^)) (1.25) 

where £ is a mapping of [0,7] -4- and belongs to i ° ° [0 ,T ] . This modification means tha t £ is 

uniform in every pass on [0,7], which is different with £ tha t depends on k, if viewed from the domain 

[0,T]. In addition of the controller (1.25) they propose the following upda t ing algorithm; 

i&+i(0) = z&(0) + g (0)£(0)e*(0) (1.26) 

The objective tha t can be achieved is still a bounded convergence in A-norm as in (1.23) but the e is 

independence with the initial condition error. 

For this purpose some more assumptions need to be put on the system (1.19)-(1.20) in conjunctions 

with the aasumptiona 1 and 2 above: 

• the input dynamic 5 as a function of ( 6 [0,7] is uniform in every pass: V& 6 N, i? : [0,7] M"® 

13 



« the output dynamic h is linear in state and uniform in every pass as a function t G [0,T], that is: 

V t E N , C : [ 0 , r ] - 4 R P ' ' " 

® with regard to the disturbances, it is only required to have a finite increment for two consecutive 

passes as follows: 

||w*(f) - wt+i W l k < ^ 61; (1 27) 

with bw > 0 and by > 0. The consequence of this assumption is t h a t it is more preferable to have 

a uniform level of disturbances in every pass (although they may be large). It is not desirable if 

there is a ' jump' of disturbance in a certain iteration. 

Thus, the condition tha t must be satisfied by £ needs to be modified as follows: 

t | 7 - Z : ( t ) g ( t ) C ( t ) | | < l (1.28) 

In short, the system considered by Chen and coworkers is a nonlinear system with input-output 

dynamics which change with time but not by iteration. This is also the case for the D-type ILC tha t they 

use (1.25), where the learning gain is taken to be time varying but uniform in every pass. Furthermore, 

the disturbance is allowed to be time varying but it is also desired to be uniform in every pass (or a t 

least do not change so much from pass to pass). Hence, some system components, the ILC learning gain 

and the disturbance are expected to be uniform/almost uniform in every pass. Since there is no much 

variations from pass to pass then we can expect the ILC (1.25) and initial condition (1.26) will result in 

convergence as in (1.23). Chen and coworkers proved this result formally in the following theorem; 

T h e o r e m 1.4.3. [7] For the nonlinear uncertain system (1.19)-(1.20), given the desired trajectory yd{t) 

over the fixed time interval [0, T], by using the ILC updating law as in (1.25) and the initial state learning 

as (1.26), if the condition as in (1.28) is satisfied, then the X-norm of the output tracking error is bounded. 

Particularly, for sufficiently large A there exists positive constants bc,kf,b^ and bsL such that: 

where 

03(A-') = 1 - t/0(A-i) 

O.(A-) = 

Clearly, from the two inequalities above the convergence does not depend on the size of initialisation 

error anymore. It only depends on the bound of disturbance Wk and Vk in the sense of A-norm. 

Discuss ion 

In this discussion, we present some drawbacks of using D-type ILC; 

Global Lipschitz condition. This condition is the main shortcoming of th i s approach. As it can be seen, 

that to require the nonlinearity to have global Lipschitz condition, restr icts the system as a polynomial 

of order no more than 1. This is a strong restriction, because even for t he following simple nonlinear 

system; 

(13:0) 
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it does not satisfy the Lipschitz condition since the dynamic is of polynomial of degree 2. 

Convergence in X-norm. Naturally the convergence is measured in -L°°[0, T] (uniform convergence) 

or in L'^[0,T] (associated to finite energy convergence). However, as we have seen, the D-type ILC can 

obtain a convergence only in the sense of A-norm. We will see that one may not get a uniform convergence 

although the convergence in A-norm is achieved. Consider again equation (1.23): 

limsupll!/* -3/d||A = 0 
A—>-00 

which is equivalent with: 

limsupe'-^^lly* -ydUz, - = 0 

Since A is taken to be large then e~^'^\\yk - ^ Wuk — 2/dlU~, for each t E N. It means that the 

convergence in A-norm is faster then in L°°[0,T] norm. It implies tha t if the convergence in A-norm is 

achieved then the uniform convergence is not necessarily achieved. Since t he uniform convergence measure 

the upper bound of signal/error, we may not get zero tacking error a l though we get zero convergence 

error in A-norm. 

1.4.2 P - type ILC 

P-type ILC is an ILC which does not require differentiation operator. As we know a numerical differen-

tiation can cause a large error especially if there is a noise in the measurement. It can make the system 

very prone to instability. P-type ILC is proposed to avoid this situation. 

Consider the nonlinear system as in (1.19)-(1.20). Denote £ as a (possibly nonlinear) operator. The 

feedforward P-type ILC takes a form as follows: 

u t+ i = "& + - !/d) (131) 

as suggested in the work of Saab [31]. The goal of the ILC (1.31) is to achieve: 

t-»oo 

k—»oo 

where ei and £2 are positive constants and the norm can be T]-norm, X°°[0, r ] -norm or A-norm. 

This goal is more ambitious compared to D-type ILC in the previous section, since the convergence is 

not restricted in A-norm . However, there are some additional technical assumptions to achieve this 

convergence: 

1. the output dynamic h is taken to be linear in s tate as follows: 

h{x) — Cx (1.32) 

so tha t the output equation (1.20) becomes: 

y{t) = Cx{t) + V (1.33) 

2. All the disturbances are bounded in A-norm. 

3. The coupling matrix B satisfies the following condition; it has a full column rank and = PC 

where Pk is positive definite matrix and CC'^P'^ is symmetric. 
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4. The operator B and ^ are bounded on K x [0,r], Vt E N. 

5. Let r = x-Xd- Let f k , and r* be / , B and r at pass k. The following inequality is satisfied for 

each A E N on [0, T]: 

{fk — f{_Xd) + {Bk — B{xd))ud — \rk,B^'^Cvk) ^ ei 

where the notion (•,•) denote the inner product (see the definition in the appendix). 

All the above technical assumptions are needed to establish the boundedness of the input error Uk-Ua, 

in the sense of its inner product, with respect to the size of disturbance Vk and w*. This construction 

will not be put in here, for brevity, the details can be found in the work of Saab ([31]). Once the bound 

of input error is established then the bound of \\yk - yaW as A: -)• oo can be obtained. 

Note that , different with D-type ILC and the other ILC algorithms, t he ILC (1.31) does not explicitly 

require the system dynamic / to have a global Lipschitz condition or satisfy the convergence inequality 

condition as in the equation (1.24). However, those assumptions listed above are not easy to check in 

general, and it is not guaranteed that they are weaker than Lipschitz condition and condition (1.24). 

Hence, the assumptions are not more general than the assumptions on (1.21) as in the previous subsection. 

It should be noted that , however, all the above assumptions is verified in the case of robotics manip-

ulator [5]. 

T h e o r e m 1.4.4. [31] Suppose the nonlinear system (1.19)-(1.20) satisfies the additional assumptions 

above. Then the learning operator given by (1.31) will generate a sequence of inputs Uk{t), t E [0, T], 

such that ||wjfc — Ud\\ is bounded with \\xk{t) — Xd(t)\\ and ||i*(f) — are bounded for each E N on 
[0, T] as follows: 

III* - Zdll ^ ||a:&(0) - Zd(0)||e^' + / (||B(a;j)<^u&|| + | |%||) d-r, 
Jo 

| | i * - i d | | ^ 4-11^(1^)6^*11+ ||%|| + t|B(a;d)'Ud|| + ||gt-5(1^)111111*11 

Since % are related to Xk as in (1.20) then % converges to yd-

1,4.3 Adaptive Nonlinear ILC 

Another approach of designing ILC for nonlinear ILC is to utilise an adapt ive nonlinear feedback control 

as an ILC. This approach is found on the work of French and Rogers ([9]). Consider the nonlinear system 

(1.19) and (1.20). Now if it is assumed that the nonhnear dynamics / can be represented as a linear 

combination of a known function and unknown parameter. It is also assumed tha t this combination 

follow a certain structure i.e: chain of integrator, parametrict strict feedback or output feedback system. 

The approach is to design nonlinear adaptive control to the system (1.19)-(1.20). This design is based 

on the structure of the system as mentioned above. The adaptive nonlinear ILC simply consists of the 

designed nonlinear adaptive control and the initial parameter est imate update . The initial parameter 

estimate update is as follows: 

0&(O) = ^ t_i ( ! r ) , A ; ^ 2 

9i (0) = 0 

and the nonlinear adaptive control depends on the structure of the system (chain of integrator, parametric 

strict feedback and output feedback). In this subsection we only consider the system with the chain of 
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integrator, which is the most simple s t ructura l assumptions. At each k - t h i teration, the system of chain 

of integrator is wri t ten as follows: 

i k ( t ) = A i k W + + u t W ) , z t ( 0 ) = (1.34) 

with 
' 1 0 0 • • 0 ' • 0 ' 

0 1 0 • • 0 0 

A = , B = 

0 0 0 • • 1 0 

. 0 0 0 • • 0 1 

The proposed nonlinear adapt ive ILC has a form of simple nonlinear adapt ive control as follows; 

î(0) = 0, g&(0) = gt_i(r) 

Define the following cost criterion: 

'Pk — WVk 6)III,2[O,T] 

(1.35) 

(1.36) 

(1.37) 

with B{yd,, e) is a ball with the centre of yd and the radius of e > 0. T h e objective is to have the cost 

criterion converges to zero; 

lim Wvk - yd\\mo,T] = 0 (1.38) 

A:-+oo ^ 

Moreover system signal, control signal and parameter est imate are d e m a n d e d to be bounded in t e rm 

of Z,°°: 
^ 6i, l l u t l k - < Ez, and||0*||y;» ^ C3 (1.39) 

Since the ILC uses the nonlinear feedback control then we can expec t the boundedness along the 

pass. Moreover the pa ramete r est imate is upda ted in each pass so t h a t t h e system output converges to 

the reference t ra jec tory . T h e above ILC results in a convergence in I /^[0 ,T] sense. It is s ta ted formally 

in the following proposi t ion [9]; 

P r o p o s i t i o n 1 .4 .1 . Let the system is given by equation (1.34)- Then the ILC design given by equation 

(1.35) and (1.36) achieve the control objective (1.38) and (1.39). 

The more details of this adapt ive nonlinear ILC will be explained in chap te r 4. 

1.4.4 Nonlinear Non-Minimum Phase System 

In this section we consider an ILC tha t can be used to control nonl inear non-minimum phase system 

which is proposed by Gosh and Paden ([11]). Consider the system as in t h e equation (1.19)-(1.20) with 

Vk = 0. Suppose it is also : 

« stable in the first approximat ion and input to s ta te stable 

« has unstable hyperbolic zero dynamics 
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The proposed iterative learning controller is as follows: 

+ (1.40) 

+ + (141 ) 

(^f&(^) = (A-6( (75) -^ )<* i t (* ) + [(^^t(^) + ( ^ ^ t ( f ) - ( C A ) J z t ( f ) ] , i&(±oo) = 0 (1.42) 

The t runcat ing operator T is defined as such tha t for any measurable function r ; E : 

T ( r ( t ) ) = T ( t ) , V ^ e [ 0 , T ] 

= 0, otherwise 

The truncating operator T is used since the control input 5uk{t), which is obtained from equations (1.41) 

and (1.42), hold for t € (—oo, +oo) . In iterative learning control environment we need the system to b e 

operated in finite time length and not for the whole t ime horizon. 

The notat ion Suk, Sijk, Sxk are defined as: 

Suk = Ud — Uk, 5xk = Xd — Xk and Syk ^ yd — Vk (143) 

where, Ud is the desired control input, Xd the desired s ta te and yd the desired output , respectively. The 

matrices A, b, and C are found by linearising the nonlinear system (1.19)-(1.20) respectively. 

Although the matr ix A — b{Cb)~^ is unstable because of the non-minimum phase assumption, the 

boundary condition in equation (1.42) guarantees the solution 5xk to b e in fl I/°° fl C°, as stated in 

[11] (see also [30]). However, it involves the knowledge of 5xk aX t = + o o and t = —oo, which means it 

is a non-causal solution [30]. In other word we have to know the value of the ' future ' behaviour of 6xk 

in order to calculate the 'present ' value of 6xk-

The following theorem states the convergence result of ILC (1.40)-(1.42) applied to the nonlinear 

system (1.19)-(1.20); 

T h e o r e m 1.4 .5 . [11] Consider the nonlinear system (1.19)-(1.20). If assumptions above hold then the 

above ILC algorithm (1.40)-(1.42) produces the sequence of inputs which converges to u* G if there are 

no input disturbances (wk = 0, for each k £N) and no initialisation error. Ifwk is bounded, Uk converges 

to B{u*, r) depends continuously on the bound on the disturbance Wk. If there exists aud & ico nCo[0, T] 

with P{ud) = yd, then Uk converges to the desired input solution Ud-

This kind of ILC, apar t f rom its capability to handle a nonlinear non-minimum phase system, has 

some shortcomings: 

• the very obvious one is the method required the exact knowledge of nonlinear system (1.19)-(1.20), 

in order to obtain the controller and the zero dynamics. This is of course, make it less attractive, 

since one motivation of using ILC is to handle the unknown system. 

# secondly, the fact that the trajectory is non-causal make it difBcult in implementation. 

® thirdly, the requirement the system to be input to s ta te stable and s table in the first approximation 

might be too strong. 

» the other shortcoming is similar with the D-type ILC, tha t is the use of error derivative which make 

the system more sensitive of output noise. 
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Based on these facts, this type of ILC can be good in theoretical point of view, but may not be desirable 

in practical purpose. 

As a final remark, although this algorithm is used for non-minimum phase, it still can be used t o 

control minimum-phase system. In this case, it is not necessary to use the non-causal stable inversion 

and the result will be similar with the D-type ILC in section 1.4.1. 

1.4.5 The other types of ILC 

There are some other various types of ILC algorithm proposed in the l i terature. The survey paper such 

as [23] provides the list of the relevance literature. In case of nonlinear system, many of algorithms are 

based on the existing D-type and P- type ILC. Some other algorithms still use the restrictive assumptions 

like Lipschitz condition and convergence measure similar to A-norm. These works can be seen in the 

paper of, among them, [8], [16], [19], [37], [40],[39], [38], [41]. All of these algorithms have almost the 

same principle. Hence, it is not necessary to include the full hsts of those kinds of algorithm . The 

interested readers can consult e.g. the survey [23] and references therein for further reading. 

1.5 Inpu t to S ta te Stabil i ty Theory 

1.5.1 Motivations and Definition 

In this section, a brief introduction of input to s ta te stability (ISS for shor t ) is presented. Most of the 

material in this section is taken from [15] and [35]. To understand the concept of input to s ta te stability, 

consider the nonlinear system as follows: 

X = f{x,u), x(0) = xo (1.44) 

with state x 6 ffi", input u E M™, in which / (0 ,G) = 0 and f{x,u) is locally Lipschitz on E " x R™. The 

control input u : [0, oo) —> E™ is taken to be any piecewise continuous bounded function. Suppose we 

assume tha t this system is asymptotically stable for u = 0. A natural question is to ask whether such a 

system has: 

• the 'converging input converging s ta te (CICS)' property: 

lim u{t) = 0 => lim x{t) = 0 (1.45) 

« the 'bounded input bounded state property (BIBS)'. 

u e (1.46) 

If the system (1.44) above is a stable linear system: 

X — Ax + Bu (1.47) 

then both implications above are always true, since the solution satisfies: 

| i ( f ) | ^ ^(t) |z(0) | -t- Tllullz,.. (1.48) 

with; 
fOO 

,8(^) = | | e ^ * | M 0 and 7 = 11511 / (1.49) 
Vo 
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It is clear from the above equation tha t 'converging input converging s ta te ' and 'bounded input a n d 

bounded state ' property hold. However, in general, asymptotic stabil i ty for nonlinear system does n o t 

imply CICS and BIBS. Consider the following example of nonlinear sys tem [33]: 

X =-X + {x^+ l)u, x{0) = 1 (1.50) 

which is asymptotically stable if u = 0. Now take the bounded control: 

u ^ ) = l ( L & p 

The system will be: 

x = -x + x'^ + l, x(0) = 1 (1.52) 

which results in unbounded solution, since the quadratic term 'dominates ' the —x term. Hence the BIBS 

cannot be achieved in general. 

It is therefore necessary to characterise a class of nonlinear systems, the solution of which like the 

solution of the linear system (1.47), where BIBS and CICS hold. Therefore it is natural to require the 

solution of nonlinear system (1.44) to behave like the solution of a linear sys tem (1.12). Hence, one would 

like to have the solution of nonlinear system (1.44) is a generalisation of (1.48) as follows; 

|z(f) | ^ /9(ti(0)|,() 4- Tdlulli ,-) (1.53) 

with /3 is a function of class /C£, and 7 is a class K/K.°° function (see t h e definition of class IC and /C°° 

function in the appendix) . Thus, if the solution nonlinear system (1.44) follows the above inequality 

then we call the nonlinear system (1.44) to be input to s ta te stable or ISS for short. Formally, ISS is 

stated as follows: 

Def in i t i on 1.5.1. [15] The nonlinear system (1-44) » said to be input-to-state stable if there exists a 

class ICC function and a class K- function 7, such that, for any u 6 Loa and any E R", the response 

of x{t) of (1.44) in the initial state a;(0) = x° satisfies: 

^ t) + idl'ulloo) (1-54) 

for all i ^ 0. 

The definition of ISS above means tha t the s tate x{t) of nonlinear sys tem (1.44) does not decrease 

to zero as f 00. Instead, we are interested in the case in which x{t) is bounded , and the bound on the 

s tate is related to the bound of input through a (possibly nonlinear) gain function 7. 

1.5.2 Some Character isa t ions of ISS 

The notion of input-to s ta te stability provides a number of alternative (equivalent) characterizations. In 

the following, we provide some characterizations of ISS. All of the s t a t emen t s are s ta ted without proof. 

The proof can be seen for instance in [15]. 

We star t by observing tha t : 

l i m ; 8 ( | | % ° | | , f ) = 0 (1.55) 

so in input to s tate stable system, the response x{t) to any input u G Loo satisfies: 

l im8up| | z ( t ) | |^7( | |u | |oo) (1.56) 
t—KX) 

The following is the characterization of (1.56) which only involves the behaviour of ||u||co for large t. 
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L e m m a 1 .5 .1 . [15] Property (1.56) is equivalent to the property: 

l imsup | | i ( f ) | | (1 57) 

T h e proper ty (1.57) is called /C-asymptotic gain (/C-AG for short) [35]. Now consider inequality (1.54). 

Observe tha t , for each i ^ 0, 

^ ^ ( | | z ° | | , 0 ) 

where 0) is a class /C function. By inequality (1.54) the response of z ( t ) is bounded and, in particular, 

IMIoo ^ max{'yo(| |z° | | ) ,7( | |u| |oo)} (1.58) 

for some class K. funct ion 70 and 7. This proper ty is called bounded inpu t bounded s ta te (BIBS for 

short) . 

The following theorem is one among useful characterizat ion of input t o s ta te stability: 

T h e o r e m 1 .5 .1 . [15] System (1-44) » ^SS if and only if there exists class JC functions 70 and 7 such 

that, for each u E Loo and any x° e E " , the response x{t) in the initial state a;(0) = 1° satisfies: 

Halloo ^ m a x { 7 o ( l k ° | | ) , 7 ( | | u | | ) } 

l i m s u p ||a;(t)|l ^ 7 ( l imsup | |u(t) | | ) 

0̂0 (—̂OO 

The proof of this theorem is very lengthy and it is beyond the scope of this thesis. The interested 

reader can refer t o [35] for t h e details of the proof. 

These two propert ies, BIBS and )C-AG is a boundedness and asympto t ic proper ty of nonlinear system. 

Hence, if a nonlinear system satisfies both of these propert ies then it can be expected t ha t it is ISS, as 

justified in the above theorem. In chapter 5, we will formulate the boundedness and asymptot ic property, 

called bounded d is turbance bounded s ta te and dis turbance asymptot ic gain, which is an analogy of BIBS 

and /C-AG, for ILC system. 

The other impor tan t character isat ion is the Lyapunov character isat ion of ISS. It s ta tes t ha t an equiv-

alence between the p roper ty of ISS and the existence of a Lyapunov like funct ion, which is called ISS 

Lyapunov function. It is defined as follows: 

D e f i n i t i o n 1 .5 .2 ( I S S - L y a p u n o v f u n c t i o n [15]). A function V : R" —> R is called an ISS-

Lyapunov function for system (1.44) if there exists class ]C°° functions a, a, a, and a class fC function 

X such that: 

a ( | | z | | ) ^ V(x) ^ a( | |x | | ) ,Va; E M" (1.59) 

and 

Ikll ^ ^ -a i ( lk l l ) ,Vz E R" (1.60) 

T h e o r e m 1 .5 .2 ( L y a p u n o v c h a r a c t e r i s a t i o n of I S S [15]). The system is input to state stable if and 

only if it has the ISS-Lyapunov function. 

This theorem is very useful in proving many impor tan t character isa t ion of ISS, for example in proving 

theorem (1.5.1). Fur thermore , it plays an impor tant role for control design based on ISS, see for instance 

[18]. 

The concept of input to s t a te stability has a t t rac ted a t tent ion many researchers. There are many 

theories and applications are developed based on this notion. T h e discussion of all aspects of ISS is 

beyond this thesis. T h e interested reader can consult [34] for a good survey in this area. 
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1.5.3 Nonlinear System Interconnection Theory 

Consider the following cascade interconnection nonlinear system: 

z i = 

Z2 = 

(1.61) 

(1.62) 

in which x E K", z E M'", / ( 0 , 0 ) = 0, g(0,0) = 0, and f(xi,x2), g{x2,u) are locally Lipschitz, and the 

feedback interconnection nonlinear system: 

3=2 = y2 ( l l , l 2 , ' u ) 

in which xi E E " ' , X2 6 , / i (0,0) = 0, /2 (0 ,0 ,0) = 0. 

(1.63) 

(1.64) 

^1 = 
u 

^1 = 
^1 

Figure 1.1: Cascade Interconnection 

T h e o r e m 1.5 .3 (Cascade I n t e r c o n n e c t i o n T h e o r y [34]). Suppose the system (1.61) viewed as a 

system with state xi and input Zg is input-to-state stable and that the system (1-62) viewed as a system 

with state Zg o,nd input u is input-to-state stable as well. Then the system (1.61) and (1.62) with the 

state x — (xi,X2) and input u is input-to-state stable. 

Id 

1 
1 

Figure 1.2: Feedback Interconnection 

T h e o r e m 1 .5 .4 (Feedback I n t e r c o n n e c t i o n T h e o r y [15]). Suppose the system (1.63) viewed as a 

system with state Xi and input X2 is input-to-state stable, and that the system (1.64) viewed as a system 

with state X2 and inputs Xi and u is input-to-state stable as well. If the condition: 

'yi(72(r)) < r,Vr > 0 (1.65) 

22 



holds, then the system (1.63) and (1.64) viewed as a system with state x = {xi,x2) and input u is 

input-to-state stable. In particular, the class K. functions: 

-yo(r) = max{2'yoi (r), 2^02(r), 2'Yi o -ygg (r), 2̂ /3 o -yoi (r)} 

"/(r) = max{2'yiO'yu(7'),2'yu(r)} 

are such that response x{t) to any input u{-) E is bounded and: 

llzlli,. ^ max{'yo(|z(0)|),3'(| |u||f,»)} 

lim8up||z(f)||oo ^ T(limsup||u(()| |) 
f—K30 (—̂OO 

1.6 General Theory of ILC System Interconnect ion 

The theory of nonlinear system interconnection has received an increasing at tent ion in the area nonlinear 

control theory. This theory helps to overcome the problem of stability of a complicated system. Theory 

of nonlinear system interconnection can be found in s tandard nonlinear control theory literature such as 

[17], [15], [18], [32], [34], [36] and many others. 

Following the successful of utilising this theory, then there is an interest to establish an analogue 

theory in ILC context. This research is an a t tempt to investigate tha t possibility. To the best of our 

knowledge this topic is never explored before in any ILC literature. We hope tha t this theory will have 

many applications to solve ILC problems similar to t ha t in nonlinear control. 

The theory of ILC system interconnection is to find a condition which guarantees an ILC system 

interconnection to be well-behaved. This condition should include the behaviour of each connected ILC. 

We formulate this problem by using the theory of nonlinear system connection. First of all, we formulate 

a new notion of robust ILC system with respect to the disturbance by using input to s tate stability theory 

(ISS). We call this notion as iterative input to state stability (iterative ISS). Using this notion we develop 

the theory of ILC system interconnection which is an analogue to nonlinear system interconnection theory 

developed from ISS. 

As it has been discussed previously, ISS is a notion of stability of a system under the influence of 

input /d is turbance and initial condition. In ILC, the initial condition also plays a role, for instance it also 

affects the convergence (see [9] for an example). Hence, the effect of initial condition and disturbance 

need to be taken into account. The ISS theory is a good approach to formulate a property of an ILC 

system which is influenced by the initial condition and disturbance. 

We can see the analogy of ISS nonlinear system with robust ILC system. If a nonlinear system has 

an ISS property then the stability can be maintained whenever the initial condition and the input are 

bounded. In other word, the unboundedness of initial condition and control input may lead the system 

to be unstable. This fact has an analogue with ILC. A convergence of an ILC may be influenced by the 

presence of the disturbance and initial condition (as seen in some algori thms in the previous section). 

Hence, a concept of a robust ILC system can be formulated similarly to t h e ISS formulation of stability 

of nonlinear system. 

Consider the one dimensional iterative system representation: 

Xf̂  — (1.66) 

The desirable solution would be the state of the system converges to zero if there are no disturbances. 
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If there are disturbances then the size of the disturbance my affect this convergence. Therefore, t h e 

property as CICS and BIBS nonlinear system should be carried to i terat ive system. 

As we have known from ILC, a good ILC has some (or all) of the following properties: 

1. If there are no disturbances then the er ror /s ta te will converge 

2. Convergent disturbance give a convergent state 

3. Bounded disturbance gives a bounded state 

On the other hand, for nonlinear system, the notion of ISS gives a property such as: asymptotic 

stability (without the presence of input /dis turbance) , BIBS and CICS. This is an analogue with t h e 

above three properties of ILC system. Hence, this suggest us to formulate a similar notion like ISS in 

ILC context. Subsequently we can use this notion, to develop the theory of ILC system interconnection. 

In the next chapter, we will introduce this new notion. This notion is formulated in a similar manner 

with ISS. It uses class function, to measure the disturbance and initial condition. However, we 

use class JCC function instead of class ICC function (see the definition of class K,, /C°°, and IC in the 

appendix). This is due to the fact tha t some ILC's have a weak convergence criteria [41]. By this notion 

some properties with regard to asymptotic and boundedness of ILC are derived. Using these properties 

we establish some theorems for ILC system interconnection. 

1.7 Outl ine of th is Thesis 

8 C h a p t e r 1: Introduction. 

We present a brief introduction of ILC, example and theoretical framework we use in this work. 

We also discuss some li terature review concerning the theory of ILC design. The motivation of this 

work is also presented. 

• C h a p t e r 2: Iterative ISS and System Interconnection. 

This chapter presents our contribution of this research. We divide this section in two main sections 

in this chapter, which are: 

— ISS Modeling of Robust ILC System. 

In this subsection, we formulate a desired property of robust ILC system. It follows the 

similar principle of ISS. The formulation is expressed in term of class ICL function and class 

K. function. This notion is called iterative input to s ta te stability, or iterative ISS. Some 

properties related to boundedness and asymptotic property of a system possessing iterative 

ISS are also derived. These properties later are useful in proving some theorems regarding 

ILC system interconnection theory. 

— General Theory of ILC System Interconnection. 

In this section we consider the interconnection of two ILC systems. There are two kinds of 

interconnection: cascade interconnection and feedback interconnection. We develop theories 

stat ing tha t the iterative ISS of each subsystem is sufficient t o guarantee some boundedness 

and asymptotic property of the interconnection. 

8 C h a p t e r 3: Case Study: The Nonlinear Adaptive ILC. 

This chapter also presents our contribution of this research. We investigate to what extend the 
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adaptive nonlinear control proposed by French and Rogers [9] posses iterative ISS. We obta in 

a result tha t the adaptive nonlinear ILC does not have i terat ive ISS property even when t h e 

disturbance is restricted. 

C h a p t e r 4: Conclusion and Recommendation for Further Work. 

A p p e n d i x ; Notation and definition 
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Chapter 2 

I tera t ive ISS of System 

Interconnect ion 

The goal of considering the system interconnection is to have a basis of developing an ILC design method 

for more complicated nonlinear repetitive system. This idea emerged f rom the fact tha t a 'large' system 

can be seen as an interconnection of some 'smaller' subsystems. 

We consider two classes of system interconnection: cascade interconnection and feedback interconnec-

tion. These classes of system interconnection proved to have useful propert ies called bounded disturbance 

bounded s ta te and disturbance asymptotic gain. These two properties intuitively imply iterative ISS. I t 

should be stated, however, in this work the iterative ISS property of the class of system interconnection 

still cannot be proved formally. 

The main contributions in this chapter are: 

« introduce the formal definition of iterative ISS for ILC based on t h e idea of ISS 

introducing some new boundedness and asymptotic properties of ILC system 

proving iterative ISS is sufficient to obtain those properties 

» deriving bounded disturbance bounded state and disturbance asymptot ic gain property for cascade 

interconnection system 

» deriving bounded disturbance bounded state and disturbance asymptot ic gain property for feedback 

interconnection system 

2,1 Sys tem formulat ion and i terat ive ISS defini t ion 

First of all, we need to formulate the class of system under consideration. Let A: € N denote the pass 

number. Let x t £ C( [0 , r ] ,M") . Let the control input iik • [0,T] —>• R" belong to an admissible input set 

Uk, which is usually taken to be L°°[0,r]. Consider the following i terat ive system: 

— f dk) ^ (0) — 6k (2'^) 

Suppose dt : [0,!r] belongs to an admissible set of disturbance D t , and the initial condition 

sequence belongs to a certain admissible initial condition set %. The set D* usually is taken to 
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be ip [0 , r ] , 1 < p ^ 00 whereas the set I is taken to be a sequence space such as /^-space. It is necessary 

to define % and I properly, since the successful of an ILC depends on t h e type of the disturbance/init ial 

condition allowed. The dynamic / is taken to be / S C(®" x % x 

Let M be a suitable memory space (memory is used to 'memorise' information from the previous 

pass), which can be taken as Lp[0,T] space or even an Euclidean space. The memory m* E vW, is 

formulated as follows; 

= F(/Ck_i) (2.2) 

for a suitably defined operator F and for a set: 

(2.3) 

where dk '• [0, T] -)• M." is the internal state of the controller. 

Now we formulate the ILC system. Given mk & M, there is an opera tor % with: 

X : (2.4) 

so tha t the following controller: 

(2.5) 

make the 'closed-loop' system: 

z* = /(i&,x(z&,m*),dt), a:&(0) = J& 

with the memory equation as above: 

fulfill the objective: 

/(x/j , ,dfc), Xfe(O) — Sk (2.6) 

TUk = F{K.k-i) (2.7) 

l imsupl lz t l l ^ l i m s u p W (||d&||,||{<^i}i^i||!P[i,t]) (2-8) 
ôo t—̂oo 

where the map W is a smooth mapping. In many ILC algorithm, the m a p M is linear combination of 

||dA;|| and It should be noted that when there is no d is turbance ILC system need to fulfill 

the following objective; 

l imsup ||xit|| ^ A' ' (0,0) < 00 (2.9) 
>oo 

There are two points need to be pointed out with regards to this set up : 

• we consider the system s ta te Xk rather than the output . It is in contras t with many ILC algorithm, 

which is constructed for the system output . However, at this stage, it is more feasible to work with 

s ta te rather than with the output directly. 

® the reference signal is not included in this set up i.e it is assumed t o be zero. Hence, we consider 

the task of ILC to stabilise an iterative system ra ther than for t racking. 

The following is the formal definition of iterative ISS: 

D e f i n i t i o n 2 .1 .1 . The system (2.6)-(2.1} has the iterative ISS property if there exists a class ICC function 

P, class K, (respectively, IC°°) functions ji and 72 such that we have: 

II Zk K ;9(|| I|,t) + 7 1 II 4 II j + 7 2 (ll{')Ji$:i||(,[i,t]) (2.10) 

/ o r enc/i Zi E C ([0, T],]R"), /o r eocA (f* E / o r eac/i E a n d / o r eacA A E N. 
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Note t ha t /3 is a class KC. function, not class K.C.. If the first argument is zero, and the second 

argument is fixed then /3(0, •) ^ 0 (see definition of class K function in the appendix). The norm for t h e 

initial condition 5k is taken to be the norm of the space where the sequence is defined. For 

xi and d'f, the norm can be taken to be ig[0, T], 1 ^ g ^ oo norm as well as A-norm which is commonly 

used in ILC literature. 

The definition 2.1.1 gives an est imate of the size of the signal in each iteration. The class K (re-

spectively, /C°°) 7i and 72 represent 'general gains' which quantify how large is the influence of t h e 

disturbances (class K. can be thought of representing the gain with offset). The definition (2.1.1) clearly 

gives understanding tha t if the system has iterative ISS property then, provided the system signal is 

bounded in the first pass, small disturbances do not affect the stability of the system. As it is seen in 

the definition 2.1.1 we are including two kinds of disturbances. The first kind is due to disturbance, 

which is represented as d* and the other kind is the initial condition 8k. T h e inclusion of initial condition 

is the distinctive feature of iterative ISS compared to the conventional ISS and it is formulated with a 

summation. It is reasonable to think tha t we cannot expect the behaviour in the current pass is suddenly 

bet ter (though it has a perfect resetting) if we have a high resetting error at the previous pass. Hence 

the resetting error from the previous passes also contribute to 'dis turb ' the current pass, which gives 

an accumulation effect to the current pass - represented as a summation from the first pass up to the 

current pass. 

2.2 Some Proper t i e s Rela ted to I tera t ive ISS 

Consider an ILC system; 

2;*(0)=aA 

niA == (2.11) 

with a suitably defined operator F and ICk is as defined in (2.3). Let A i b e a set of measurable and 

integrable function. Let dk belong to admissible disturbance set D&CVW and {Sk}k^i € The set P 

has included all initialisation error which is bounded in every pass either decreasing or non decreasing 

initial condition. It is not necessary to consider the increasing initial condition since it may lead to 

instability. Let the system s ta te Xk E ([0, T] ,®") . 

The following properties are the boundedness and asymptotic property of an ILC system with respect 

to disturbance and initial condition: 

• In the following definition, we introduce a property of an ILC system which we call pass shifting 

property. This definition represents the behaviour if an ILC system is 'shifted' to a certain iteration 

number then the behaviour in the later iteration is influenced by the disturbance, initial condition 

and signal from which the system is shifted. 

D e f i n i t i o n 2 .2 .1 (Pass sh i f t ing p r o p e r t y ) . The ILC system (2.11) is said to have a pass shifting 

property if for each p S N, there exists a class ICC function (3, class K. (respectively, K.°°) functions 

7i and 72 such that the following estimate holds: 

||z*+A|| ^ ^ ( | k l + A | | , t ) 4 - 7 l -H72 

for each fc 6 N, for each A € NU {0}, for each Xi+x E C ([0,T], M"); for each dk £ Vk and for each 
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D e f i n i t i o n 2 .2 .2 ( D i s t u r b a n c e A s y m p t o t i c ga in ( D A G fo r shor t ) ) . The ILC system (2.11) 

is said to have a disturbance asymptotic gain property, if for each p G N, there exists class K, 

(respectively, ]C°°) functions 71 and ^2 such that the following holds: 

l imsupllikll f l imsup| |dt | | j ,72 ( l imsup |6 t |P ) ^ (2.13) 
k^co L \ k-^oo J \ k^oo J J 

/or each A € N, /or eacA dt E % and /or eacA E Z''. 

As can be found in ISS theory, we have a /C-asymptotic gain property, stating tha t for any ISS 

system, if we take the t ime increases then the effect of initial condition will decrease, so the system is 

mainly influenced by the input /d is turbance . In the ILC context , this is represented by disturbance 

asymptotic gain property. In this definition, we describe the s i tuat ion where the effect of the signal 

at the first pass decreases as i teration increases. In other word, at a large iteration the system is 

mainly influenced by the disturbance and initial condition only. 

Note tha t if we take 6 Ip then as A: 00 then 0. We s ta te this fact in the following 

remark: 

R e m a r k 2 .2 .1 ( R e m a r k o n d i s t u r b a n c e a s y m p t o t i c g a i n p r o p e r t y ) . Suppose 1 ^ j? < 00 

we have: 

limsup||a;&|| ^ 7% f limsup||d&||) ( 214 ) 
t— ôo \ t-+oo / 

D e f i n i t i o n 2 .2 .3 ( B o u n d e d d i s t u r b a n c e b o u n d e d s t a t e ( B D B S for short ) ) . The ILC sys-

tem (2.11) is said to have a bounded disturbances bounded state (BDBS) property if for each p £N, 

there exists a class K (respectively, iC°°) function 70, class IC (respectively, ) functions 71,72 

such that the following inequality holds: 

^ m a x j7o( | |a ; i | | ) ,7 i f m ^ | | d t | | ) ,72 (||{(^i}i^i||!,[i,t]) ^ (2.15) 
I \ 1 ̂  2 ̂ /C / J 

for each /c 6 N, for each Xi 6 C ( [ 0 , T ] , E " ) , for each dk 6 Vk, and for each {5k}k'^i E l^• 

As can be observed directly, the BDBS property is analogue with the bounded input bounded s ta te 

property in nonlinear system. 

The following lemmas relate the aforementioned properties with i tera t ive ISS: 

L e m m a 2 .2 .1 ( I terat ive ISS equ iva lence w i t h pas s s h i f t i n g p r o p e r t y ) . The ILC system (2.11) 

is iterative ISS if and only if it has a pass shifting property. 

Proof. Necessity. Suppose the system is iterative ISS. Then there exists /3, 7% and 72 such that for each 

A: E N, for eeich E C([0,Tj.R"), for each dt E D*, and for each G we have: 

Iktll ^ / ) ( l k i | | , & ) + 7 i ( IKIl) + 7 2 (2.16) 

Hence: 

| | z t+A|N;8( lki | | ,A: + A ) + 7 i ^ ^ ^ n ^ ^ | | d i | | j + 7 2 ^ ^ ^ j (2.17) 
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Consider the shifted disturbance dk — dk+\ belonging to Vk C M and the shifted initial condition 

{Sk}k^i = belonging to Ip. According to the (2.11) then the response of the system is 

Xk = Xk+\- Since the system is iterative ISS then, there exists a class /C£ function /3, and a class JC 

(respectively, IC°°) 71 and 72 such tha t for each k eN: 

with xi is the shifted s ta te at the first iteration. Hence, we obtain: 

||zt+A|| ^ /9(||%1+A||,t) + 7 i f ||di 

Since the above inequality holds for each t G N, and for any dk, i i+A belonging to their domain 

then the system has pass shifting property. 

Sufficiency. Suppose the system has a pass-shifting property. Then there exists a K^jC function /3, a IC 

(respectively, /C°°) function 71 and 72 such tha t for each A: € N, for each x i+a , for each dk E % , and for 

each {5k}k^i £ l^, the inequality (2.12) holds. Since it holds for every A G N u {0}, then choose A = 0. 

Then the inequality (2.12) becomes inequality (2.18) which means the system is iterative ISS. • 

L e m m a 2.2.2 ( I terat ive ISS impl i e s D A G ) . Let the system (2.11) be iterative ISS. Suppose 1 ^ p < 

CO. Then the system has disturbance asymptotic gain property. 

Proof. Suppose the system is iterative ISS. Then for each p € N, there exists /? 6 ICC, 71 and 72 which 

are in K, (respectively, 1C°°) such tha t for each A; G N, for each xi E C ( [ 0 , r ] , ®"), for each dk E and 

for each { h ] k ^ i G F , the following holds: 

Iktll + 7 2 (2.18) 
\ 1 ̂  2^ ft J 

Taking & — 0 0 we have: 

l im8up| |a;&| |^7i ( l |d*||)+'72(| |{^t}&^i| |f'') (2.19) 

Now, we look at the term containing dk in inequality (2.19). Define s = limsupj,_^(^ ||dt||- Then 

Ve > 0 ,3 r i > 0 such tha t ||d*|| ^ s + e, Vfc > n . Then, \\dk+Ti || ^ s + e, VA: 6 N, which implies; 

71 | | d t + n l l ) ^ 7 i ( a + E) (2.20) 

Now observe tha t the term which contains 5k • For each T2 > 0, we have tha t : 

00 Tg — 1 00 

A:=l A;=l A=r2 

The last term in right hand side goes to zero as r2 ->• 00 since the 'tail ' of the convergence infinite series 

tends to zero. Then, Ve > 0, Srs > 0, such that ^ e, or ( ^ ^ 1 ^ -

Now, take I — max{r3 , r i } . Define Xk+i = Xk, then its associate dis turbances are dk+i and 5k+i-

Thus, by pass shifting property : 

Iim8up||zt | | = l im3up| |zt | | ^ l imsup/3( | | z i+! | | ,A; )+7i | max | | o ( , | | ) + ' 7 2 f f 
&—yoo *—»oo k—>co \l+l^i^k+l J I j 
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r.+.l" 
2̂=1 

= l i m s u p / 9 ( | | r i + , m ) 4 - i ' i (^ma% ||(4+,|A + 7 2 f f y i | & + , | f 

for a class ICL function and class K, functions % and 72, which gives: 

l imsupll it l l ^ 7 1 ( 3 + 6 ) + 7 2 (2.21) 
k—̂ 00 \ / 

Since e > 0 can be any number, we can take e —)• 0, which yields: 

l imsup llxfcll ^ 7i ( l i m s u p Ijdifel 
t—̂OO 

which is the desired result. • 

L e m m a 2 .2 .3 ( I terat ive I S S impl i e s B D B S p r o p e r t y ) . Let the system (2.11) he iterative ISS. Then 

the system has bounded disturbance hounded state property. 

Proof. The iterative ISS property of ILC system (2.11) implies: 

/ 1̂ % *̂ 

Since ^(•, 1) is in i t (respectively, £ ° ° ) then we can define a class ^ (respectively, ^ ° ° ) function 7o(-) 

such tha t : 70 = /3(', 1). This will give us: 

^ max j27o(| |a;i | |) ,47i ^ m ^ | | d i | | j ,472 

Define 70 = 270, 71 = 471, dan 72 = 472, we have the inequality (2.15) for each xi 6 C ( [0 , r ] ,K" ) , for 

each du G % and for each E V, which completes the proof. • 

In nonlinear control theory we know that BIBS+/C-AG imphes ISS. Hence, since BDBS and DAG 

analog BIBS and /C-AG then intuitively BDBS+DAG also implies i terat ive ISS. Nevertheless, it can be 

argued informally tha t BDBS+DAG is a condition for iterative ISS as follows: BDBS is the property of 

boundedness of the first i teration signal (%%), disturbance (d*), and initial condition (Jjt) in every itera-

tion. DAG stated t ha t if the iteration increases then the remaining influence only from the disturbance 

and the initial condition. Hence if an ILC system satisfies both proper ty it means it is bounded by x i , 

dk and 5k for every pass and the effect of xi decreases as i teration increases. This is the iterative ISS 

property. We state the conclusion of this intuitive reasoning in the following conjecture: 

Conjec ture 2 .2 .1 ( B D B S and D A G i m p l y i terat ive I S S ) . If the system (2.11) is BDBS and DAG 

» itero^ire ZS'5'. 
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Figure 2.1; Cascade Interconnection 

2.3 Cascade In terconnect ion 

In this section, we consider the cascade interconnection of two i terat ive ISS system. We apply the 

results from the previous section to show tha t this type of system interconnection imply BDBS and 

DAG provided provided each of its subsystem is iterative ISS. In part icular , we take the following system 

specification: let the s tate of the systems be 

€ C ( [ 0 , T ] , ZkeC([0 ,T] ,&") 

Let the system memories be m* E vW, and ruk £ M. We assume the initial conditions/initialisation 

errors decreases tha t is: 

with 1 ^ p < 00. By this choice of initial condition we can relate the i terat ive ISS with DAG using 

lemma 2.2.2. 

Let the disturbance dk : [0,T] -4- i?® belongs to an admissible d is turbance set % . Denote / £ 

C (M" X yVf X K",1R") and h € C (M® x Ai x R', R') the nonlinear dynamic of the systems. Consider 

the following cascade interconnection of two ILC system: 

— f {p^k-i'^kT t ^k(O) — Sk 

m* = 

^k ~ dk), Zk{0) ~ Sk 

fhk = F{K.k-i) 

for suitably defined operator F and F. The signal /C* is as defined in (2.3). 

A s s u m p t i o n 2 .3 .1 . Consider the system: 

ik — f k, ^k, ^k): (0) — ^k 

rhk = F\K.k-i) 

viewed with state Xk and disturbance Zk, is iterative ISS. 

A s s u m p t i o n 2 .3 .2 . Consider the system: 

Zk " hi^Zk^iTTlk^dk), Zk{0) — Sk 

viewed with state Zk and disturbance dk, is also iterative ISS. 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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T h e o r e m 2 .3 .1 . If the assumptions (2.3.1) and (2.3.2) are satisfied then the cascade interconnection 

system (2.22)-(2.23) is BDBS and DAG, i.e. there exists a class K. (respectively, JC'^) function 71 and 

class K (respectively, ) functions ji, 72, 73 such that the following inequalities hold: 

max ^ max < 7o 
Xi 

Zi 

and 

l i m s u p 
t—»oo 

Xk 

Zk 

. 7 . 11*111.72 

^ 71 ( l in i8up( | |dt | | ) 

/ " ~5i 1 
1 J 

(2.26) 

(2.27) 

/or eacA; n E C ( [ 0 , r ] , R " ) , zi E C ( [ 0 , r ] , R ' ) , (f* E D&, € Z", t 6 N. 

Before proving the theorem 2.3.1, first we will provide a l emma connect ing the i terat ive ISS p rope r ty 

of each subsystem to DAG proper ty for each subsystem. Following defini t ion 2.2.2 and remark 2.2.1, t h e 

subsystem (2.24) which consists the external d is turbance z* has DAG p r o p e r t y if there exists 7 ° of class 

K (respectively, K.°°) such t h a t for each t 6 N, for each E C ( [ 0 , T ] , R") , it holds tha t : 

l imsup ll̂ jfell < 7 j f l imsup | | z t | 
A—̂ 00 \ t-+oo 

(2.28) 

Similarly, the subsystem (2.25) consisting dk as the dis turbance, is D A G if there exists 7^ of class K, 

(respectively, JC°°) such t h a t for each k eN, for each dk E % it holds t h a t : 

l i n i s u p | | z t | | < 7i ( l i m s u p lldjfcl 
KX) \ &—KX) 

(2.29) 

L e m m a 2 .3 .1 . If the subsystem (2.24) (respectively, subsystem (2.25)) is iterative ISS then it has DAG 

property. 

Proof. T h e proof is a simple applicat ion of l emma 2.2.2. For subsystem (2.24), since Zk as t h e d i s turbance 

then inequality (2.28) follows directly. For subsystem (2.25), by l emma 2.2.2 it is clear t h a t i terat ive ISS 

implies DAG. • 

P r o o f of T h e o r e m 2 . 3 . 1 

First , we prove t h a t the cascade interconnection sys tem (2.22)-(2.23) is B D B S . Let k, xi, zi, dk, {Sk}k^i 

be arb i t ra ry in their domain . Since the subsystem (2.24) is i terat ive ISS then we have the following: 

< A ( | | a ; i | | , l ) + 7i ( + 7 2 
l<i<A \ 

(2.30) 

Choose 7i ; E>o E>o be such t h a t 71 ( ) = /3i(-, 1). Clearly 71 is a /C (respectively, K!°°). Hence, 

Ikill < 7 i ( l k i | | ) + 7 i I k ' l l j + 7 2 (2 31) 

By following the same way, the i terat ive ISS proper ty of subsys tem (2.25) also implies t h a t there 

exists 72 of dags ^ (respectively, /C°°) such that: 

(2.32) 
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Substitute (2.32) to (2.31), we have: 

< 7i ( lk i | | ) + 7 2 + 7 ^ ^72(lki||) + 7 1 +''y^ 

Using the semi-triangle inequality two times we get; 

(2.33) 

< ' ? i ( l k i | | ) + 7 M 2 7 2 ( | | z i | | ) ) + 7 r ( m ^ | | d i | | j j fTr" 
l<i<& 

Using fact 7 in the appendix we have: 

max 
l<i<& 

Xk 

Zk 

< max llzill 4- max WzA 
~ l<i<k l<i<k 

And by fact 6 in the appendix we get: 

max 
!<«<& 

I t 

Zk 
^ 71 

Zl 
+ 72 

Xi 

Zl 
+ 7r 272 

+ 7i max 
Xi 

Zl 

+ 7i 47^ 

V V 
6i 

+ 7f(^47. (^mgl ldi l l 

[ II ))-='(( 

Xi 

Zl 

•72 

5i 

5i 

/ ' s, ' 

1 
\ 

I . A / 

"[1,*]/ / 

Now define the following functions: 

7^(.) = 2 ( 7 i ( . ) + 7 2 ( . ) + 7 r ( 2 7 2 ( ) ) ) 

7 i ( ) = 4(7^(.)+7^(47^(.))) 

72 ( ) = 4 ( 7 ^ ( . ) + 7 f ( 4 7 ^ ( ) ) + 7 ^ ( . ) ) 

By fact 1 and fact 2, 7^ € /C (respectively, 7^ and 7^ are functions of class K. (respectively, K.° 

Thus, the inequality (2.34) becomes: 

max 
!<:<* 

Hence: 

Zk 

Xi 

Zl 

/ r - - \ / / Si 1 
1 6i / V lP[l,k]/ 

max 
!<:<& 

Xk 

Zk 

^ max < 7i 
Xi 

Zl 
.7, m j « J | d . | | ) , 7 , / ' & ' 1 

1 S^ J k 

Since i i , zi , dt, j*, cind are arbitrary then it holds for each: i i , z i , j t , and J*. 

Now we prove that the cascade interconnection system (2.22)-(2.23) is DAG. Since the subsystem 

(2.24) is iterative ISS then according to lemma 2.3.1, subsystem (2.24) has disturbance asymptotic gain 

property. Hence there exists Sf such tha t inequality (2.56) and (2.57) hold for each z* 6 C([0, T], E") 

and for each dk E % -
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Substitute (2.57) to (2.56) we have: 

] i n i s u p | | i t | | < i ' i (i'l limsupjldtll 

Using the the fact 1 in the appendix, we have: 

lim sup 
k—yoo 

Xk 

Zk 

Define the function a : E>o -> K>o such that: 

a(') = ?! (i'i()) +'7i() 

By fact 2 and fact 3, « is a class K. (respectively, /C°°) function. 

Substitute a to inequality (2.35), we obtain: 

lim sup 
k—^oo 

Xk 

Zk 
^ a [ lim sup ||d^| 

for each dk E E" and for each fc £ N, which complete the proof. 

(2.34) 

^ 71 f?! +?! Aim8up||(ft|A (2.35) 
\ \ k-^ca J J \ k-t'OO / 

(2.36) 

• 

Conjecture 2.3.1. If the assumptions 2.3.1 and 2.3.2 hold then the cascade interconnection system 

(2.22)'(2.23) is iterative ISS. 

2.4 Feedback interconnect ion 

Figure 2.2: Feedback Interconnection 

In this section, we discuss the iterative ISS property of feedback interconnection ILC system. The 

system under consideration is almost similar with the previous section, the difference only we have an 

additional disturbance and which is an interconnection of state in each of subsystems. We restate again 

the system specification for clarity. Let for each t 6 N: 

i t e C ( [ 0 , T ] , R " ) , z t e C ( [ 0 , T ] , R ' ) 

be the state of the system. The memory is taken to be fhk G M and rfik € M. 
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The external disturbances : [0, T] -4- R" and dk : [0, T] -> 1® are measurable functions. The initial 

conditions are taken to be: 

/ e C(E" X Ai X R' X n r , R " ) and A € C ( « ' X vW X E" X R"), for each t 6 N. We aasume that 

1 ^ p < 00. Consider the following interconnected ILC system; 

ik — f {Xk^ TTlk: dk) ^ Xk{0) — Sk 

mt = (2.37) 

^k — ^i^^k-i^kiXk-jdk)-, '2^(0) ~ Sk 

fhk = F{Kk-i) (2.38) 

Consider the system: 

= / ( z t , m t , z * , J & ) , i & ( 0 ) = j t 

m* = f ( X : t _ i ) (2.39) 

viewed as a system with s ta te and disturbances z* and dk • The system is iterative ISS if for all p G N 

there exists a class ICC. function (3, class K. (respectively , /C°°) functions 7 i , 7 2 i 7 3 the following holds: 

Iktll < ^(||ii | | ,A:) + 7^ + 7 2 +"73 (2 40) 

for each fc € N, for all xi E C([0, T], M"), for each dk E D&, for each E 

A s s u m p t i o n 2 .4 .1 . The system (2.39) is iterative ISS. 

Now consider the second subsystem: 

zt = z t ( 0 ) = a t 

mt = f ( X : t _ i ) (2.41) 

viewed as a system with s ta te z* and disturbances and dk. The sys tem is iterative ISS if there exists 

a class iCC function /?, class K (respectively, 1C°°) functions 7^,72,73 such t ha t : 

< /^(Iklll, K i l l + 72 Il^'lll + "Ts (ll{^J<;:lll(''[l,t|l 

for each k eN, for each zi E C([0,T], M"), for each E % , for each E P . 

A s s u m p t i o n 2 .4 .2 . The system (2.41) is iterative ISS. 

A s s u m p t i o n 2 .4 .3 . For each s E R, and for e such that 0 < e < 1 the following gain composition 

condition holds: 

7 2 ° 2 7 2 ( s ) ^ E a (2.43) 

and, 

7 2 0 2 7 2 ( 3 ) ^ 6 8 (2.44) 

T h e o r e m 2 .4 .1 . Suppose the assumptions 2.4.1, 2.4-2 and 2.4-3 hold then the feedback interconnection 

ayatem a n j DAG. 
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P r o o f of T h e o r e m 2.4 .1 

The proof of theorem 2.4.1 is divided into two. The first par t is to prove BDBS property of feedback 

interconnection (2.37)-(2.38) and the second part is DAG property of (2.37)-(2.38). The following is t h e 

first part of the proof: 

Proof of BDBS property of feedback interconnection The iterative ISS property of subsystem (2.39) 

says that for each p € N, there exists Pi € jCC, 7^ ,72,73 all are of class K (respectively, K°°) such t h a t 

for each xi £ C ([0,T], M"), for each d* 6 % , for each E P , and for each A; £ N, we have: 

Clearly that /3i(-, 1) is a function of class K (respectively, £°°) . Let 7^ (-) = ^i(-, 1), we get: 

^ m ^ 7 g ( | | i i | | ) + 7 ^ f m ^ l l d i l l ) + 7 ^ ( m ^ | | z i | | ) + 7 3 ( 2 4 5 ) 

Analog with subsystem (2.39), since the system (2.41) is iterative ISS then we have: 

^ 7 o ( l k i l l ) + 7 i 

Substitute inequality (2.46) to inequality (2.45), using the semi-triangle inequality three times, and 

then re-arranging we have: 

^ 7o( lki | | ) -{ -7^o47g( | |z i | | )4-7^ ( m ^ | | J i | A -t-72 087^ 

+ 72 ° 272 4-73 + 7 2 087^ (2.47) 

Substitute inequality (2.45) to inequality (2.46), using the semi-triangle inequality three times, and 

then re-arranging we have; 

[kill < 7o(lkill) + 72 ° 47g(| | i i | | ) 4- 7̂ ' [ || j , |A -I- 7^ o 87^ IKII 

+ 72 ° 27^ + T'a (ll{^J^>ill!'|i.*]) + 72 ° 87^ (ll{^Ji>ill!P[i,t]) (2-^ 

Using the condition (2.43) and then rearranging, the inequality (2.47) becomes: 

(1 - e) llzill ^ 7o(lki | | ) 4- 72 ° 47^(lkill) + 7i 11̂ ^ 

+ 72 ° 87^ ( + '̂ 3 (ll{^Ji^l|l('[l,*], 

+ 72°87Xll{<^i}i^i|lMi,t]) (2-49) 

Using the condition (2.44) and then rearranging, the inequality (2.48) becomes: 

( 1 - E ) m % | | z i | | ^ 7 o ( l k i l l ) + 7 2 ° 4 7 g ( | | a ; i | | ) 4 - 7 ^ [ m ^ | | J i | | 

+ 72 ° 87^ ^ 4- 73 (||{&}i>i||ip[i,k]) 

+ 72°87#(| |{&}i^ilkp[i ,*]) (2.50) 
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Adding the inequality (2.49) and (2.50) we get; 

( i % ^ ° 4-70 (Ikill) + 7 o ( l k l l ) + o 4'yg(||zi||) + 7o( lki | | ) 

+ 7i + 7 2 IKII^ + 7 3 (ll{^i}^3:i||('[i,&]) + 7 2 ° 8^3 (ll{^Ji)ill"'[i,t] 

+ 72 + 7 2 ° 8 7 i +7Xll{^J^^ill!'[i,A:]) + 7 2 °87Xll{^J'^ill"'[i,t]) 

Using the fact 6 and 7 we get: 

(1 - e) max 
IKiKt 

+ 72 ° 

Xi 

Zi 
^ 72 ° 4Tg 

Xi 

Zi 

Xi 

21 
+ 7g 

Xi 

Zi 
+ 7? max 

/ ( - — -
-\ / ( 

+ 73 
5i 

5- } + 72 0 87^ 

V 
I Ot 

V 
I 

+ 7? o 871 max 
di 
* -73 

+ 72 o 87? I max 
di 

di 

+ 72 max 
\ 

di 

+ 72 o 87^ 
' i>i 

Define the following functions: 

..d-- 2 
— 7 2 (470(')) + 7o(') + 72 ° 47g(.) + 7g(.) 
— e 

7i (-) + 72 (-) + 72 ° 87^ (') + 72 o 87^ (') 

73 ( ) = Y ^ ' ^ ^ ( ' ^ ' ^ ' ^ 3 ( ) + 7 2 ° 8 7 | ( . ) + 7 ^ o 8 7 ^ ( . ) 

7 f ( ) 

7 ^ ( ) 

1 - e 

4 

1 - e 
4 

(2.51) 

(2.52) 

(2.53) 

by the fact 2 and fact 3, 7^ 6 /C (respectively, /C°°) , 72 and 73 are class K. (respectively, K.°° functions. 

The above inequality becomes: 

max 

or, 

Xi 

Zi 4 ^ ' 
Xi 

Zi 

1 j / 
+ 772 4 

max 
Xi 

Zi 

^ max < 7^ 
Xi 

Zl 
, 7 , max 

(2.54) 

(2.55) 

since k, i i , z i , d*, and J* are arbi trary then the above inequality holds for each: &, Xi, zi, dk, dk, 

5k and 5k in the set where they belong. • 

Now we will prove tha t the iterative ISS of subsystems (2.39) a n d (2.41) imply DAG property of 

system (2.37)-(2.38). Before go to the proof we will formulate the D A G property of each subsystem 

and then prove tha t those property exist for each subsystem. The proof of DAG property of feedback 

interconnection follows subsequently. 
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Since we assume 1 ^ p < oo, then according to the remark 2.2.1, the subsystem (2.39) has DAG 

property if there exists of class /C (respectively, /C°°) such that for each k E N, for each 

Zk G C ([0, T], E^), and for each J* E % it holds that; 

limsup ||i&|| ^ 7i [ l imsup llJfcll j + 7 2 f limsup ||zt|| ) (2.56) 
A - + 0 0 \ k-¥CO J \ k^OO J 

Similarly, the subsystem (2.41) is DAG if there exists 7^ and 7^ all are of class K (respectively, /G°°) 

such that for each fc £ N, for each Xk € C ([0, T], ®"), and for each dk € D& it holds that; 

l imsup||zt | | ^ 7i (liinsup||J&|| j +7% n i m s u p | | z t | A (2 57) 

The following lemma is used in the proof of the next main theorem. 

L e m m a 2.4.1 . If the ILC system (2.39) (respectively, (2.4I)) is iterative ISS then it has DAG property. 

Proof. We only prove tha t the iterative ISS property implies DAG proper ty for ILC system (2.39); for 

ILC system (2.41) the proof of iterative ISS property implies DAG proper ty follows similarly. Now, 

suppose the system (2.39) is iterative ISS. Let k, z i , 5k be arbi t rary in the set where they belong. 

The following inequality holds; 

Iktll ^ ^ ( | | i i | | , t ) + 7 ^ ^ m ^ | | d , | | + ||zj||^ + 7 2 ^ m ^ | | d i | | + ||zi||^ 4-'y» 

Let a class K, (respectively, function 74 be; 

74 ('") = {27^ (u), 27^ (u)} (2.59) 

for each v G % o - We get: 

Ik&ll ^/3(l | i i l l ,&) + 74 +^3 1̂1 

Using lemma 2.2.2 we obtain: 

limsup 11%*II ^ 7 4 I limsup ||dt|| + ||z*||) (2.61) 
&—̂oo \ A—»oo / 

Using the semi triangle inequality we have: 

limsuplli&ll ^ 7 4 (21imsup| |dt | | ) + 7 ^ [21imsup| |zt | | 
t—̂ oo \ t-+oo / \ &-+00 

Define 7°( ' ) = 71(2-), we have: 

l imsup | | i t | | ^ 7° [ l imsup | |d t | | ) + 7° ( Hmsup ||z*|| ] 
A—+00 \ &—̂oo / \ A—̂oo / 

which completes the proof. Using the same way we can also prove that the system (2.41) is DAG. • 

Proof of DA G property of feedback interconnection. We will prove t h a t iterative ISS of subsystem 

(2.39) and (2.41) imply DAG. Since ILC system (2.39) and (2.41) are iterative ISS then according to 

lemma 2.4.1, they have DAG property. Substitute inequality (2.57) to inequality (2.56), and then use 

semi triangle inequality we obtain: 

limsup||i&|| ^ 7 i f l i m s u p | | d & | | ) + 7 2 o 2 7 M l i m s u p | | d & | | j 
t—>-00 \ t-4̂ 00 / \ t—+00 / 

+ 72 ° ^72 f^hmsup | |zt |A (2.62) 
\ t-+oo y 
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Substi tute inequality (2.56) to inequality (2.57) and then use the semi triangle inequality, we obta in 

l imsup | | z* | | ^ T ' i f l i m s u p | | d * | | ) + ' Y 2 o 2 ' Y ^ | l i m 8 u p | | J & | | ) 
A-4-00 y 

+ VzoS'Ygll imsupllzt l l ) (2.63) 
V A-i-oo / 

Adding inequality (2.62) with (2.63) and then use the condition (2.43) and (2,44) we have: 

l imsup llz&ll + l imsup ||z&|| ^ 7" j l imsup ||d<;|| 
A—+00 &—»oo \ A:—̂00 

11) (u Hm sup I 
t—̂ 00 

+ 72 ° 271111111 sup ||dt II 
\ &—»oo 

+ e I l imsup llxfcll) + e f l i m s u p ||z&|| ] 
\ k-^oa J \ t—KX) / 

Rearranging we get: 

(1 - e) ( l i m s u p | | z t | | + l imsup ||z*|| ^ 7i 1™sup ||d&|| + 7i l imsup | |dt | | 
&-»00 t-KX) / * ' / » . A—̂-oo / \ A—Kso y 

6 ^ II J. II \ , ..a _ n..6 + 72 ° 27" I lim sup ||d* II 4- 72 o 27* ( l im sup ||d& 

Using the fact 6 and the fact 7, we obtain: 

(1 - e) lim sup 
fe—>-co 

^ 7i I lim sup 
y fe—^00 

dk 

&—yoo 

+ 7i lim sup 
\ k—yoo 

A—>-00 

dk 

dk 

+ 72 O 27° lim sup 
\ &-»oo 

Define a function a : E>o R>o such that : 

dk 

(4 
j + 7 2 ° 2 7 f ^li lim sup 

&-»oo 

dk 

dk 

1 
a 

1 — e 
( 7 f ( ) + 7 f ( ) + 7 ^ ° 2 7 r ( . ) + 7 ^ ° 7 f ( ) ) (2.64) 

By fact 3, a is a function of class K. (respectively, }C°°). 

Thus, 

lim sup 
k^co 

Xk 

Zk 

^ a l imsup 
\ A—̂ oo 

which says tha t the system (2.37)-(2.38) has DAG property. 

(2.65) 

• 

Conjec ture 2 .4 .1 . The feedback interconnection system (2.37)-(2.38) is iterative ISS if the assumptions 

(2.4.1), (2.4.2) and (2.4-3) hold. 

2.5 S u m m a r y 

In this chapter the new robustness property of ILC system called i terat ive ISS is introduced. The 

properties related to this notion are derived. By using these properties the theory of ILC system inter-

connection is developed. It is proved that for the cascade and feedback interconnection, i terative ISS of 

each subsystem implies BDBS and DAG of the system interconnection. 
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Chapter 3 

Nonlinear Adapt ive ILC: a Case 

Study 

The main contributions in this chapter is a case study the applicability of iterative ISS to a class of 

nonlinear adaptive ILC. Particularly, we study the possibility to derive the iterative ISS property of 

adaptive iterative learning control which is proposed by [9]. Denote A; G N the pass number, following 

[9] we consider the nonlinear iterative system which has an integrator chain structure as follows: 

(3.1) 

The s ta te is taken to be a continuous function i.e Xk E C ( [0 ,T] ,M"); 0 € E" is the vector of an 

unknown system parameter ; the control input function is : [0,T] —> M; the nonlinear dynamic is 

(j) G C(1R",K"); the disturbance d'j, : [0,T] —)• E is taken to be a measurable function and matr ix 

A g jgnxn g j i j E are as follow: 

A = 

" 1 0 0 • • 0 " ' 0 

0 1 0 • • 0 0 

, B = 

0 0 0 • • 1 0 

0 0 0 • • 0 1 

We take the initial condition error E i.e. we assume t h e influence of initialisation error 

decreases as the iteration increases. As it has been proved in [9] tha t th is kind of initialisation error does 

not destabilise the nonlinear adaptive ILC if the external disturbance d'j. is not present. Throughout this 

section, we write Xk (t) as Xk, 9k ( f ) aa 9k and d'f, (t) as d'f,, unless in the situations where the argument of 

t needs to be explicitly written to clarify the meaning. 

Consider the following performance cost: 

Vk —II Xk |l2a[o,r] (3.2) 

The objective of the nonlinear adaptive ILC is to make limt_»oo Vk = 0 while keeping the ||uit||i,~[o,T] to 

be bounded. Following [9] the following adaptive iterative learning control is used; 

• let a € E" be such t ha t A^^, = A — Ba^ is Hurwitz 
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" let Q E and f be the real positive definite, symmetric matrix, respectively, satisfying 

the following Lyapunov equation; 

P + -PA* = —Q 

• let 

» let the adaptat ion gain be a E #>o • 

• let §k E C ( [ 0 , T ] , ® " ) denote the parameter estimate. 

Consider the following nonlinear adaptive ILC design/ILC input law as follows: 

(3.3) 

^i(O) = 0, i9t(0) = g&_i(r) 

Applying the control law (3.3) to the system (3.1) we get the closed-loop system: 

z*(() = A,z&(f) + B((g - g*(())^<^(3;&(()) + d{^(f)), z t (0 ) = (3.4) 

gt(f ) = azt(f)6<^(iA:(^)), ^i(0) = 0, g & ( 0 ) = g * _ i ( T ) (3.5) 

To guarantee the adaptive ILC fulfill its objective we require the d is turbance decrease as the iteration 

increases. Hence, the following set is taken to be the admissible set of d is turbance 

% = j j E VW I |d(f)| ^ € [ 0 , r ] j (3.6) 

Similarly we also require the initial condition to be monotonically decreasing. The 

following set is the admissible set of initial condition sequence 

J : G z' I ^ ^ 2 , v t € N } (3.7) 

If the disturbance and initial condition error decrease over the pass, we can expect the convergence can 

be achieved. The reason is the disturbance and initial condition will de te r the ILC system to converge. 

If the effect of these disturbances decrease then it will not prevent the system to converge. Hence, it is 

sufficient to have the disturbance to decay if we want to get the convergent learning. 

We formulate the iterative ISS of the closed-loop system (3.4) as follows: the closed-loop system 

(3.4)-(3.5) has iterative ISS property if there exists a class funct ion /?, class K. (respectively, /C°°) 

functions 71 and 72 such tha t we have the following hold: 

II ||2'[o,r]^ ;8(ll Zi ||ia[o,T],t) 4-71 || dj Ik^io,?]^ + 7 2 (||<^t||(3[i,t]) (3 8) 

for each E C ([0, T], E"), for each d* ED*, for each € % and for each t E N. 

T h e o r e m 3.0 .1 . Consider the closed-loop system (3.4)-(3.5). Then there exists F : M^o x N —>• 7i 

and 72 both of them are of class IC/JC^ functions, such that the following estimate holds: 

lkt|L:[0,r] < r(||a;i||i,2[0,T],A:) + 7 1 f m^||d;||2,3[o,T] ) + 7 2 (||(^t||('[i,t]) (3 9) 
\ X ̂  /c / 

with r(||a;i||j;,2[o,T]; ^) 0 as k co and T{0,k) = 0, for each k E N. 
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To facilitate the proof of theorem 3.0.1, we consider the following positive definite function V which 

is taken from [9]: 

= (3.10) 

where 

/(%&) = i & f z * (3.11) 

9 ( % ) = = - ^ { 0 — 9k)'^{9 — 9 k) (3.12) 

with -Kk = {9 — 9k). 

The idea of the proof is similar with [9]. To establish the proof the theorem 3.0.1, we do the following 

steps: first we prove tha t V decreases along the pass (lemma 3.0.1), and then using this lemma we prove 

Xk and 9 — 9k are uniformly bounded (lemma 3.0.2) and Vk converges to zero (lemma 3.0.3). Using 

lemma 3.0.2 we obtain the uniform boundedness of Xk (lemma 3.0.4). By using the boundedness of 

Xk we show tha t z* is uniformly continuous along the interval [ 0 , r ] and in every pass (lemma 3.0.5). 

Using the uniform continuity of Xk and the convergence of Vk we prove tha t Xk uniformly converges to 

zero (lemma 3.0.6). Using the uniform convergence of Xk, the convergence of |g(wt(T)) - g{'Kk~i{T))\ is 

established ( lemma 3.0.7). Finally using lemma 3.0.7 we prove the theorem 3.0.1. 

L e m m a 3 .0 .1 . Consider the closed-loop system (3.4)-(3.5). Suppose d'^, G %)& and {Sk}k^i 6 I . Con-

sider the positive definite function V as in equation (3.10). Then V{xk{t),ixk{t)) decreases along the 

interval [0, T], \fk E N. 

Proof. 

^(a:t(t),;rk(f)) = 

= (Ac* + B (i^(a;t) + ut + (^%* + B (<̂ (a;&) + ut + d^)) 

Substi tuting the control law (3.3) and adaptat ion law (3.5) and rearranging we have: 

y(a;*, g - gt) = z* f z t + ^(g - + 21* f - (i^^(3;t)6)^(g -

Note tha t b = {P^ + P)B = 2PB, since P is a symmetric matrix. Using this we have: 

y(a;*,0 - gt) = z* a:* + 6 ^(g - gt)^(^(a;t)^ + - (z& <A(zt)6)^(0 - g&) 

Since the second and fourth terms are canceled and also AjP + PA^ = —Q then the above equation 

is simplified to: 

^ (a : t , TT*) = - I * + Ik (3.13) 

Since Q is a real positive definite symmetric matr ix then A(Q) > 0. Note tha t the following fact is 

used: x^Qx/. ^ XiQ)x'k^k, for every real positive definite symmetric m a t r i x Q. Hence: 

^ —-A(Q)a;^a;k - -A(Q)a;t 

= —2A(G)3;t^a;t + ^^(Q) ^ 
4 

A(Q) 
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Using Young's inequali ty: c^e - c^c ^ | -e^e, Vc 6 ®", Ve £ K" and make the identification c = Xk 

and e = ' the above inequali ty now becomes: 

From the assumption, we obta in: 

^ - ^ A ( Q ) i r z & + ^A(Q)a:^zt 

which completes the proof. • 

L e m m a 3 .0 .2 . Consider the closed-loop system (3.4)-(3.5). Suppose d'j^ € D* and 6 Z. Then 

there exists Mi and Mg with 0 < Mi < oo, 0 < Mg < oo such that for each k G N; 

I I ||l~[O,T] ^ M l 

I I ^ % I | l ~ [ O , T ] ^ Mg 

Proof Consider the closed-loop system (3.4)-(3.5). Firs t , we prove t h a t || | | l~[o,t]^ M i , for each 

t E N. Consider V as in t h e equat ion (3.10). Choose: 

^ / I + y(%i(0),%i(0)) + E I l i (0)3:t(0) 

/ A(f) 

By assumption {a;jfe(0)}^^j 6 h we have: 0 < M i < oo. 

, , 2 _ i + y ( x i ( o ) , ^ i ( o ) ) + E ~ , » n o ) ' ^ » ( o ) 

' ' W) 

A ( f ) M ^ = l + y(%i(0),%i(0)) + ; ^ i r ( 0 ) : c t ( 0 ) 
k~l 

Let k be a rb i t ra ry in N and t be a rb i t ra ry in [0,T]. Since d'f. 6 t h e n by lemma 3.0.1, V decreases. 

Hence according to the proof of proposit ion 2 in [9], we have: 

i = i 

^ l + y ( z i (0 ) , 7r i (0 ) ) + ^ r t ( 0 ) 3 ; & ( 0 ) (3.15) 

k=l 

Hence, 

A ( f ) M ^ ^ y(z&(f) ,7rt(t)) 

Using the definition of V: 

Zt f r t ^ r f f r t + ; ^ ( ^ - i9t)^(^ - ^t) = y ( i t , 7 r t ) ^ M^A(-P) 

Note that Vf E [0, T], Vk € N, 

A ( f ^ 
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Since k €N and t e [ 0 , r ] are chosen arbitrary, hence for each A E N and for each t E [0,T] we have: 

< Ml 

I I X k | | l = O ^ M l 

Now we prove that \\0 — dk M2, Vt E N. Let k be arbi t rary on N, and t be arbitrary on 

Choose: 

M2 = 

Clearly 0 < M2 < co. We have, 

\ 
2a f 1 + y(zi(0) ,7ri(0)) + ^%^(0 )a ; t (0 ) j 

k=l / 

Mg = 2 a : ( l + y(zi(0) ,7ri(0)) + ]^i^(0)a7&(0) 
\ A;=l / 

Tiyf'2, CO 
+ y ( r i ( 0 ) ,%i (0 ) ) + ^ Z % ' ( 0 ) r * ( 0 ) - 1 

&=i 

Using inequality (3.15), the above equation becomes: 

M 

2a 

Using the definition of V we obtain: 

- — 2 „ 
dk)'^(0 — 0k) ^ ^kP^k +—{d — Ok)"^ {9 — Qk) 

Since k £N and i G [0, T] are arbitrary, then for each t E N and for each i e [0, T], we get: 

^ M 2 , V ( E [ 0 , T ] 

I I ^ | | i ~ ^ M 2 

• 

L e m m a 3 .0 .3 . Consider the closed-loop system (3.4)-(3.5). Let d'f. G T>k and G I . Then: 

Pa: -> 0 as k 00 (3.16) 

Proof. Consider the closed-loop system (3.4)-(3.5). Consider V as in t h e equation (3.10). Since E % , 

it follows from lemma 3.0.1 tha t : 

V t E N , V f e [ 0 , r ] (3.17) 

Rearranging we have: 

< ( A ( ^ ) ( -1^(2:* , ; r t ) ) (3.18) 

Take the integral from 0 to T and then followed by the summation f r o m 1 to K, K ^ 1, K G ^ v/e 

obtain: 

K 4 f ^ fT \ 

g i . ^ soiisy. 
4 A 

^ ( y ( i * ( 0 ) , 7 r * ( 0 ) ) - y ( a ; t ( T ) , 7 r * ( r ) ) (3.19) 
A(0) 
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Consider the the term (l^(r*(0),7rt(0)) - y(a;t(T'),7rt(T))). Using 

T^(z&(0),;r*(0)) = / ( z * ( 0 ) ) + g(7r&(0)) = / ( i&(0) ) + g(7r*_i(r)) 

the following holds: 

^ ( y ( z & ( 0 ) , 7 r t ( 0 ) ) - y ( z t ( r ) , 7 r & ( r ) ) = g(7ri(0)) + ^ / ( z t ( 0 ) ) (3.20) 
A;=l k—l 

Let K oo and use the assumption t h a t € / i , we have t h e second t e rm in RHS is finite. 

Define W = / ( z * ( 0 ) ) . We have: 

OO 
^ ( y ( z t ( 0 ) , ; r * ( 0 ) ) - y ( z t ( r ) , , r * ( r ) ) = g ( , r i ( 0 ) ) + W 
A=:l 

T h e inequality (3.19) becomes: 

OO -T , OO , 

^ E (T^(:c*(0),7rt(0)) - y ( z t ( T ) , 7 r t ( r ) ) = ^ (g(%i(0)) + W) (3.21) 
j ^ V o A ( 0 ) k 

Now, from the definition o iVk and (3.21), we have: 

OO 
Vk = 

A = 1 

S j^(V(n(0),n(0)) - V M T ) , n ( T m 

< 00 

with 5(7ri(0)), W and A(Q) are positive constants . 

Since Pk ^ 0, Vk e N, t hus 7^* -+ 0 as t oo. This completes the proof . • 

The following l emma is established using the first two lemmas. 

L e m m a 3 .0 .4 . Consider the closed-loop system (3.4)-(3.5). Suppose d'f, g % and {5k}k-^i G %. Then 

there exists M, 0 < M < oo, such that for each A; 6 N, || i * | | l~[o,t]^ M . 

Proof. Since 6 % , by lemma 3.0.2, 3 M i such t h a t ||z*||i«.[o,T] ^ M i for each & E N, hence there 

exists 0 < W < OO such t h a t by (3.6): 

v & E N , V f e [ o , r ] 

From lemma 3.0.2, the re exists Mg > 0 such t h a t \9 — 9k\ ^ Mg. Consider the nonlineari ty ^(•). Since 

4) E C(M",M") and | i * | ^ M i then there exists Ms, 0 ^ Ms < oo, such t h a t : 

|<^(rt)| < sup |<^(zt)| ^ Ms (3.22) 

Now choose: 

M = | A . | M i + IBIM2M3 + |B|yV + 1 (3.23) 

Clearly 0 < M < 00. Consider the equat ion (3.4). Taking the modulus on bo th sides, applying tr iangle 

and Cauchy-Schwarz inequali ty we get: 

| i t | ^ |^* | | z t | + |.B||0 - g*|| .^(i*)| + | B | | 4 | (3.24) 
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Hence, by (3.23), we obtain the following: 

|%t| ^ M < 00 

II Ik- ^ M 

Since k and t were arbi t rary then the above inequality hold for each t E N and t G [0, T], which completes 

the proof. • 

The next lemma provides the uniform continuity along the pass and in the pass axis. 

L e m m a 3 .0 .5 . Consider the closed-loop system (3.4)-(3.5). Suppose d'f, 6 % and {5k}k^i € %. Then 

for each e > 0. there exists 5 > 0 such that for each fc G N, for each ti,t2 6 [0,T].-

1̂ 2 - ( i | ^ |3;*(*2) - a:t(fi)| ^ E (3.25) 

Proof. Let e be arbi t rary positive number, we need to choose so t h a t V t 6 N, \xk{t2) - Xk{t\)\ ^ e, 

y t i , t 2 E [0,T]. 

Following lemma 3.0.4, there is an M , with 0 < M < oo such that || | | l ~ : ^ M. Hence: 

II Xk IIL™ 1̂ 2 ""^il ^ M\t2 — ( i | , VA: E N, Vii , i2 E [0,T] (3.26) 

Let; 

Clearly J f > 0 since e > 0 and M > 0. Hence for each ^1,(3 E [0,T]: 

1̂ 2 - f l l ^ 

Using (3.26), we obtain: 

II Xk ||L°>= 1̂ 2 — M\t2 — 1 ^ E, VA: E N V^i,tg E [0,T] (3.27) 

Let k be arbi t rary in N and ti and (2 be arbi t rary in [0,r]. Following the mean value theorem ([1], 

[20]), for each a E K", 3c with ti < c < <2 such tha t : 

{zt(t2) - r t ( f i ) } = {zt(c)(t2 - <i)} (3.28) 

(c depends on both a and k) Consider the left hand side of (3.28). Take the case Xk{t2) — Xk{ti)- In 

this case, LHS is zero which makes the RHS is also zero. Hence, the inequality (3.26) is trivially satisfied. 

So let assume Xk{t2) — z t ( t i ) ^ 0. Let: 

_ Zt(<2) - Z&(fi) 

k*(t2) - Zt(t l ) | 

Clearly jaj = L By this choice of a, the equation (3.28) becomes: 

(3.29) 

|it(^2) - a;&(fi)| = (̂ 2 - ( i ) } , V < i , * 2 E [ 0 , r ] (3.30) 

and also with the help of Cauchy-Schwarz inequality, we obtain, Vk E N, Vti, <2 E [0,T]: 

| a : t ( ^ 2 ) - r t ( ( i ) | ^ 
r t ( t 2 ) - r t ( ( i ) 

|a:t(t2) - r&(ti) | 

Zt(c) | | f2 - 4 1 
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|a;t(c)||^2 - til 

(3.31) 



Consider RHS of (3.31). Since the point c is always in [0,T] then \xk{c)\ ^ | | Xk | | l~- Using (3.26) we 

have: 

|a:k(c)||f2 - f i | <11 I k - 1̂ 2 - f i | < c (3.32) 

Since A, Zi, and (g were arbi trary then the above inequality holds for each A: 6 N and for each t i , t2 € [0, T] . 

Hence, using (3.32) and inequality (3.31) becomes: 

| z & ( ^ 2 ) - z t ( f i ) t < e , V k e N , Vt i , t2E[0 ,T' ] 

which completes the proof. • 

The next lemma establishes the uniform convergence if the i terat ion increases as a consequence of 

the property developed in the previous lemmas. 

L e m m a 3 .0 .6 . Consider the closed-loop system (3.4)-(3.5). Suppose E % and 6 %. Then 

Iztl —̂  0 as k oo uniformly on [0,T]. 

Proof. Consider the closed-loop system (3.4)-(3.5). From lemma 3.0.3 we have 7̂ * —> 0, as t oo. We 

will show tha t this implies \xk\ —)• 0, as fc -> oo uniformly on the closed interval [0,T]. We prove this 

lemma by contradiction, tha t is suppose: |a;^| ^ 0 as A; oo then ^ 0, as fc oo uniformly under 

the given assumption. 

Since |z&| 0 uniformly, we have there exists e > 0, such tha t for each ^ > 0, there exists k > K 

and there exists f* E [0, T] with: 

| z & ( 4 ) | ^ € (3.33) 

We will construct an interval such that |a;&(-)| > 0 along t ha t interval, a t k where (3.33) holds. 

From lemma 3.0.5 it follows that , given e > 0, there exists J > 0, such tha t for each k £ N, for each 

t £ [0, T], for each t £ [0, T], for \t -i\ ^ S we have: 

I | 3 : t ( ^ ) | - | r t ( ^ | (3.34) 

Choose e = | e . Choose k to be arbi trary in N, t and i to be a rb i t ra ry in [0,T] then for \t — i\ < 5,, 

we have: 

I |%A(f)|-|a;t(f)| I < 

— ^e + |a;i(i)| ^ |z&(f)| < \xk{t)\ + (3.35) 

Note tha t since: 

\t — i\ < 5f: 

t — Jg ^ t ^ 

hence (3.35) holds if: 

t £ [0 , r ] n [i — Jj , t + ()(] 

Since k was arbi t rary in N and t was arbitrary in [0,T], we can consider a specific k and t where a 

certain property holds. Now consider at k > K and let t = ik £ [0,T] so tha t (3.33) holds. Then we 

have if f E [f* - H [0,T], inequality (3.35) becomes: 

|z*(f&)| < k t ( t ) | < ^6 + |r&(ft)| 
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Using (3.33), we get : 

la:*Ml ^ + 6 = -E, (3.36) 

Define [o,6] = [it - 6e,ik + 5^] D [0,T] with; 

a = m a x { 0 , 4 - (3.37) 

b = m i n { r , 4 + t̂ e} (3.38) 

We will show tha t 6 - a is always greater than zero. From equation (3.37) and (3.38): 

6 - a = min{r, ik + 5^} — max{0, f* — (3.39) 

If niax{0,ife - S^} = 0 then: 

b - a = m i n { r , h + > 0 

since j ^ > 0 and T > 0. 

Suppose max{0, — 6^} = i/. — then we have, either: 

b — a = ik — {tk — Jg) — 2(5̂  > 0 

or 
h — a ~ T — ik >0 

since 0 ^ ^ T and 5̂  > 0. Hence 6 — a is always greater than zero. 

Now consider inequality (3.36). We can conclude: 

3e > 0, such that 'iK > Q,3k> K, with \xk{t)\ ^ (3.40) 

since t was chosen arbi trary in [0,T], then the above inequality holds for each t G [a, b]. It means 3e > 0, 

such tha t yR > 0, 3k > K with: 

6̂ nb / Q \ 2 
^ ^ ^ - a) > 0 

Since Vk = | | |||2[o \xk{t)\'^ > 0, VA; g N we can conclude t ha t : 3e > 0, such tha t > 0, 

3k > K with Vk > 0. Thus, Vk 0 as k oo. In other word, if 'Pa -> 0, as A: -> co then \xk{t)\ -4- 0 

uniformly on [0, T] as k oo. This complete the proof. • 

The next lemma is our main goal. It is developed using the conclusion from the previous lemma. 

L e m m a 3 .0 .7 . Consider the closed-loop system (3.4)-(3.5). Let d'^ 6 T>k and {Sk}k-^i G Z. Then: 

la(7r&(n) - a W _ i ( r ) ) | = O (3.41) 
A—*̂oo 

Proof. Consider the closed-loop system (3.4)-(3.5). According to the l e m m a 3.0.6 then; 

|z*(f)| -4 0,A; 00 

uniformly on [0 , r ] . We will prove that \xk{t)\ -)• 0, A: ->• co uniformly on [0,T] implies |g(7r&(T)) -

g(7r&_i(T'))| 0 as t 00. 

From the definition of uniformly convergence [1] we have; 

Ve > 0 , 3 . ^ > 0, such thatVA > |z&(^)| < e, for each t G [0, T] (3.42) 
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Let t be arbi t rary in [0,T] and let k be such tha t (3.42) holds. F r o m the proof of lemma 3.0.4, we 

know t h a t there exists C, 0 < C < oo, \(j){xk{t))\ ^ C (see inequality (3.22)). Let a and b be as in t h e 

pa ramete r est imate equat ion (3.5). Then the following inequality holds: 

|a | |6 |Ckt(t) | ^ |#*(Z)| (3.43) 

By lemma 3.0.2 there exists Mg, 0 < Mg < oo such t h a t for each A: e N, for each t E [0,r], 
\9 - ^ Mg. Hence, multiply both sides of (3.43) with M2T, we get : 

M2T|a||6|C|z&(t)| ^ M2T|^*(f) | 

^ | ( 9* ( t ) -0 )^^&(t ) |T (3.44) 

Since {9 - 9k{t))'^9k{t) is continuous and it is defined on compact interval [0 , r ] then there exists 

a global maximum on f £ [0,T]. Since t were arb i t rary then we can choose t on [0,T] such t h a t 

[9 — 9k{t))^9k{t) maximum. Hence, the inequality (3.44) becomes: 

M2T|a||6|C|a;*(^)| ^ T 

Now consider the positive definite function g as defined in (3.12). B y chain rule we have: 

—3(0 — 9k{t)) = ~ 9k{t))^9k{t) = —{9k{t) — 9)'^9k{t) 
a 

(3.45) 

(3.46) 

Subst i tu te (3.46) to the inequality (3.45), we have; 

M2T\a\\b\C\xk{t)\ ^ max 

a g(0 - ^t(^))d( 

- 9(^ -

By using g*(0) = 9k-i{T) and (3.42), we get: 

0 ^ g(g - g*(T)) - g(g - g t _ i ( r ) ) ^ M2T|6|C|%*(f)| < MsTI&IC 

(3.47) 

(3.48) 

Define: e = M2T\b\Ct. Since e can be any positive number and k is chosen such tha t (3.42) holds 

then we can conclude tha t for each e > 0, there exists K > Q, such t h a t for each k > K we have: 

# - g * ( T ) ) - # - g t _ i ( r ) ) < e 

which means t ha t g ( g - g * ( r ) ) - # - g t - i ( T ) ) -4 CO as A: 00, as required. • 

P r o o f of t h e o r e m 3 . 0 . 1 Consider the closed-loop system (3.4)-(3.5). By lemma 3.0.7 we have tha t : 

lim |p(7rt(T)) - g (7r*_i ( r ) ) | = 0 
A—̂ 00 

Let k be arb i t rary in N. Choose A{k) = \/|9(7r&(T)) — g ( 7 r t _ i ( r ) ) | . Clearly t ha t A(fc) ^ 0 and 

A(/c) -4- 0 as A; 00 so tha t A is a class L function. Choose: 

'-yi(s) = y F , Vs e (3.49) 
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And also choose: 

'72(3) = \/3 6 Bk&o (3-50) 

Observe tha t , 71 and 72 are always positive, zero at s = 0, and increase as s increases. Therefore, 71 

and 72 are class K. functions. Hence for each E % , for each { 5 k } E ?i, we have: 

A(&) + 7 i II 4 11̂  + 7 2 (||(^&||f3(i,t]) 

= + y m g II < II + 

> - « W - i ( : r ) ) | + m g || d; ||i=[o,Tj (3'5i) 

Now consider V as in equation (3.10). It follows from lemma 3.0.1, Vt E [0, T]: 

(3.52) 

Rearranging and then take the integral from 0 to T , we have: 

l|:r*|li2[o,?i < ^ ( y ( z t ( 0 ) , 7 r * ( 0 ) ) - y ( % t ( n , 7 r t ( T ) ) (3.53) 

Note tha t , by using the definition of V as in equation (3.10), we get : 

y(i* (0), vr* (0)) - y(%t (r), vr* (T)) = zr(0)f It (0) + g(;rt (T)) - zr(T)f (T) - g(7rt_i (T)) 
< A(f)%r(0)%t(0) + |a(7rt(r)) - g(%k-i(T))| 

By using the above inequality, the inequality (3.53) becomes: 

II 3:* lli2[o,r] ^ (0)z*(0) + |g(7rt(r)) - g(7rt_ i (T))0 , Vt E N 

II z* ||i.[o,T] ^ ^ ^ A ( f ) 3 : n O ) : c * ( 0 ) + ^ | g ( 7 r * ( T ) ) - g(7r*_i(T))|, Vt E N (3.54) 

Using inequality (3.51), inequality (3.54) becomes: 

II a;* lk:[0,T] ^ y ^ ^ y | g ( 7 ^ ) ) - g K - l M ) l + II 4 lk::[0,T] + ^ ^ l k X O ) l l ^ [ l , & ] 

^ A( t ) + 71 ^ II lk'[0,T] j + 72 (||'^&||(a[i,t]) 

To complete the proof, let xi E C([0, T], IR") be a response of closed-loop system (3.4)-(3.5) at A; = 1, 

then define: 

r(||a:i||L2[o,T]i^) = A(fc) + e ^||a;i|U2[o,T] (3.55) 

Note tha t since |g(7r&(T)) - g(7rk-i(T))l not only depends on k b u t also depends on z i (0 ) then so 

does A(k). We will examine the value of A(k) when ||2;i||z,a[o,r] = 0. From equation (3.47) we have : 

|a (g(7rt(T)) - g(7r*_i(r)))| ^ M2r|a | |6 |C|zt ( ( ) | , E [0,T] (3.56) 
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which implies: 

|a ( g k k M ) - g ( ^ & - i m ) ) | ^ M2T|a||6|C|zt(0)| < M2T|a| |6 |C|i i(0) | (3.57) 

By the assumption of {Skj^^i E %, it follows that if ||ri||^,a[o,T] = 0 and hence zi(0) = 0: 

|a (9 W (T)) - g(7r*_i (T))) I = 0 (3.58) 

Hence A{k) = 0 when ||ii||z,a[o,r] = 0 which means r(0, &) = 0. Moreover, it follows from (3.57) and 

(3.58) tha t |5(7rfc(r)) — g(7r&_i(%"))! is continuous at z i (0) = 0 which means it is also continuous a t 

INl l|i2[0,T] — 0. 

Thus, we have : 

Iktlli'to.T] ^ r(||zi||j,2[0,T],&) + 7 i + 7 2 (3-59) 

with r(||zi||2;3[o,T],*) 0 as t 00 and r (0 ,*) = 0. Since k was taken to be arbitrary in N then the 

above inequality holds for each fc 6 N, which completes the proof. • 

From the theorem 3.0.1, we have seen that a class of adaptive nonlinear ILC proposed by [9], in 

general, may have iterative ISS property although we still cannot prove it up to this point. As we have 

seen, the function F is not a class ICC function. It is only a class £ funct ion. Hence, more restriction is 

needed so tha t the property of iterative ISS can be fulfilled. 

Although we impose a restriction on Vk as in (3.6) and I as in (3.7), we still can apply the theorem 

2.3.1 (cascade connection) and theorem 2.4.1 (feedback connection). It is because, those theorems require 

d'). e Vk and 5k £ Ip. Since I £ Ip the condition is already fulfilled. 
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Chapter 4 

Conclusion and Future Works 

4.1 Conclusion 

In this work, key elements of a theory of nonlinear ILC system interconnection has been developed. 

We consider two types of interconnection: feedback interconnection a n d cascade interconnection. An 

overview of the results obtained is given: 

® It has been shown tha t the idea of input to s tate stability t heo ry can be used to formulate a 

robustness property for the ILC system. The formulation of this p roper ty involves an estimate in 

term of class KC functions and class K functions. We call this robustness property iterative ISS. 

This property shows that : 

— in an ILC system, the convergent behaviour depends on t h e behaviour of disturbance and 

initial condition. The system may diverge if the d i s turbance and initial condition tend to 

infinity. 

— without the presence of disturbance and initial condition, t h e convergence only depends on 

the bound of the signal in the first pass 

Note tha t , the initial condition enters the iterative ISS formulation (inequality (3.8)) as a summation 

start ing from the first pass to the current pass. Hence, if the ini t ial condition does not decrease 

over the iterations, then by this formulation, the ILC system m a y not converge to the desired 

behaviour. In many ILC systems, this may not be the case. In fact there are few algorithms 

allowing the initial condition to be bounded (not necessarily decrease) over iterations, but still can 

achieve a convergence ([7], [14], [31]). 

® We have shown tha t for any ILC system to possess iterative ISS property, some boundedness and 

asymptotic properties can be derived. We term these properties bounded disturbance and bounded 

state (BDBS) and disturbance asymptotic gain (DAG) respectively. By these properties, every 

iterative ISS ILC system is bounded by the disturbance and init ial condition. Moreover, as the 

iterations continue, the influence of the first pass signal decreases. T h e only thing tha t can influence 

the system is the disturbance and the initial condition. Therefore, it is not surprising tha t iterative 

ISS is sufficient to guarantee that BDBS and DAG hold. It has been shown these properties are 

essential to development of the ILC system interconnection theory. 
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The assumption t ha t needs to be satisfied is tha t the initial condition belongs to an /p-space (it 

decreases over iterations). It can be achieved, for example if we utilise a special controller to drive 

the initial condition. Nevertheless, in many practical circumstance, we cannot always have th i s 

scheme. For example there are many ILC system which work well (achieve convergence) al though 

the initial condition is only known to be bounded (e.g. [7], [14], [31]). Hence, the assumption t h a t 

Sk E Ip is a strong assumption for an ILC system to have BDBS and DAG property. 

a The theory of ILC system interconnection has been developed based on iterative ISS as follows: 

it is assumed tha t the iterative ISS as a desirable property of any ILC system. Hence the theory 

of ILC system interconnection is to show tha t whether the ILC system interconnection is i terative 

ISS if each subsystem is iterative ISS. We have shown tha t if each subsystem is iterative ISS then 

the BDBS and DAG properties are achieved in both types of interconnection. 

This result can be considered to be a very significant achievement towards iterative ISS property. 

The most desirable result is to have the ILC system interconnection to be iterative ISS if given 

each subsystem is iterative ISS. 

» To apply the theory of ILC system interconnection to a concrete ILC problem, then it is necessary 

to check the applicability of the iterative ISS property in an ILC system. If an ILC system is 

iterative ISS then the theory of system interconnection will apply. For this purpose, we choose 

the nonlinear adaptive ILC proposed by French and Rogers [9]. We assumed that the disturbance 

and initial condition to decrease over iterations. We can only show tha t this class of adaptive 

nonlinear ILC is bounded by class K. functions of disturbance and initial condition, and with a 

class £ function. Whereas to satisfy iterative ISS property, t h e bound on class ICC function of 

initial (first) pass and iteration need to be obtained. Hence, the i terative ISS property is a strong 

property to be satisfied by the nonlinear adaptive ILC. 

4.2 Fu tu re Works 

This research has identified new open problems which should be investigated in further research: 

® For the ILC system interconnection (both feedback and feedforward), the iterative ISS has not 

been proved to be satisfied. It requires a s tatement stat ing t h a t BDBS and DAG imply iterative 

ISS (in this work, we can only state this implication in a conjecture) . Further work is required to 

fill in this gap. A suggestion is to use the idea from the converse theorem of Lyapunov ISS ([36]). 

® The ILC system interconnection theory has been developed by assuming tha t the initial condition 

belongs to Ip. The fu ture work need to weaken this assumpt ion since the assumption tha t the 

initial condition belong to Ip may be too strong. Usually the init ial condition is taken to belong to 

loo- One way to deal with this problem is to redefine the i tera t ive ISS so as not to depend on the 

sum of the initial conditions. Instead, we only need the bound of initial condition, in terms of loo, 

in the new iterative ISS formulation. 

• In the theory of ILC system interconnection, the reference signal is considered to be zero. This is 

an ideal case. In many ILC systems, the reference signal is not zero and the task of ILC is to track 

a reference signal. It is recommended for the fu ture work, the reference signal is included. 
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The iterative ISS property of nonlinear adaptive ILC still cannot be derived although the dis tur-

bance and initial condition are taken to be restrictive. However, we believe that , the iterative ISS 

can be obtained for a special case of a chain of integrators. Hence, in the future work, we suggest t o 

restrict the nonlinear dynamic term <j) (in equation (4.1)). For th is case the iterative ISS proper ty 

should follow. 
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Appendix A 

Mathemat ica l Nota t ions and 

Definitions 

A . l N o r m 

» For any vector € R" , the symbol | j | represents the Euclidean n o r m of j i.e. | j | = If J is 

a scalar then | j | represents the absolute value (modulus). 

• For any real vector valued funct ion £ : E —>• E" , the norm of £ is wri t ten as || £ ||l2[o,t]i which 

is defined as follows: ^ 

• The L°° norm of £ over [0, T] is wri t ten as || £ | | i«. which is def ined as follows: 

K l k « [ o , r ] = aup 

• For any real sequence the Z^-norm, 1 ^ p ^ oo is defined as: 

ll{fji;=i| |z'[i,t] = ( 2 ] I ' 1 ^ P < 

and 

(#1 
%=i / 

aup p = o o 

• If A: is 00, then we write instead of which is defined as: 

/ oo \ 1/P 

• Let £ be functions f rom the interval [0,T] to B" . Then the A-norm of f a t i € [0,r] denote by ||^||a: 

which is defined as: 

= sup 
te[o,T] 

where A is a positive constant. 
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• Let l\ and I2 be functions from the interval [0, T] to K". Then t h e innerproduct of li and 62 a t 

t e [0,T] denote by , l 2 { t ) ) , which is defined as: 

( 4 M , ^ 2 W ) = / exp-AT^^('7-)^2(T)dT 
Jo 

where A is a positive constant. 

A.2 Funct ion 

• the notat ion C denotes the space of continuous functions f rom the set 3Jli to the set OJIg. 

® we say a function ^ is measurable if there exists a sequence of step functions that converge point-

wisely to almost everywhere ([18]). 

• the function 7 : is a class K, function if it is positive definite and strictly increasing. If 

in addition limg_yoo 7(a) = 00 then it is said to be class /C°° funct ion. 

® if the function 7 : -4- is strictly increasing, but 7(0) > 0 then it is a class semi-/C 

(respectively, semi-/C°°) function, which is denoted by K (respectively, ^ ° ° ) 

» we say A : N is a class C function if lims_>oo A(s) = 0. 

• the function (3 ; K^o x N —>• E^o is a K.L if it is a class K, function in the first argument and a class 

£ in the second argument . It is a class KiC if class K in the first argument and a class C. in the 

second argument. 

• Semi-triangle inequality: 

Fact 1. Let 7 E /C (respectively, IC°°) then we have: 

7 ( 0 + 6) ^ 7(20) + 7(26) 

• Composition of two class K. (respectively, IC°°) functions: 

Fact 2. Composition of two class K. (respectively, )C°°) functions is again class K- (respectively, 

K°°) function. 

® Addition of two class K. (respectively, )C°°) functions: 

Fact 3. Addition of any class K. (respectively, }C°°) function with the same argument is again class 

/C (respectively, ]C°°) function. 

e The fact 1, fact 2 and fact 3 are also valid for every class IC (respectively, 1C°°) function. 

» Composition of a class IC (respectively, IC°°) function with a class IC (respectively, ^ ° ° ) function: 

Fact 4. Suppose 71 is a class K. (respectively, /C°°j function and 72 is a class K. (respectively, ]C°°) 

function then 71 o 72 and 72 o 71*3 a class K. (respectively, K.°°) function. 

B Addition of a class K. (respectively, K^) function with a class IC (respectively, K.'^) function; 
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Fact 5. Suppose 71 is a class K. (respectively, ) function ond "yg w a class K, (respectively, IC°°) 

function then 71 + 72 is a class K (respectively, K.°°) function. 

Fact 6. For each f i and in M (respectively, E" j the following holds: 

fx fl 

/2 
^ 11/21 ^ 1 1 ) 

where the norm || • || is taken to be Lp-norm over [0,T] /X-norm (respectively, Euclidean norm). 

Triangle inequality: 

Fact 7. Suppose f i and f2 in M (respectively, Then the following holds: 

fl 

/2 
^IIAIH-l l /z l l (A.2) 

where the norm || • || is taken to be Lp-norm over \Q,T]/\-norm (respectively, Euclidean norm). 

A.3 Other Mathemat i ca l Nota t ions 

• we use N for the set of natural number { 1 , 2 , . . 

• the symbol denotes the sequence of wi, wg, . . w * where E E" and A E N. 

• For any real positive definite symmetric matr ix X denote A(X) as a maximum eigenvalue and A(X) 

as a minimum eigenvalue of matr ix X. 
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