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Abstract 

Coordination is an important part of any computer program. As well as perform-

ing computation, applications need to interact with their environment (for exam-

ple, reading a file from a disk, displaying information to a user). In distributed 

applications, processes that together make up the overall program also need to 

coordinate amongst themselves. Such coordination includes synchronisation and 

exchange of data. 

Allowing processes to be mobile, where they are able to migrate around a net-

work of nodes, allows novel solutions to be programmed where alternatives with 

static networks of processes would be inefficient or impossible to implement. For 

example, one method of finding "interesting" data on a network would be for a 

client machine to read the data off a variety of servers, and perform the filtering 

locally. A mobile solution could be to migrate processes to the servers, where they 

would query the data locally, migrating back to the client with the results. If the 

filter processes are small, and the databases large, this would result in reduced 

network usage and decreased search time. 

Coordination becomes problematic in the presence of mobility. If two processes 

are allowed to migrate around a network, it becomes difficult to maintain connec-

tivity between them. 

This thesis explores how a set of interacting mobile processes may coordinate 

their activities. By abstracting away from physical networks to a model based on 

channels, distributed applications designers need not be aware of where processes 

are executing; two processes will always be able to communicate if they have ac-

cess to a common channel. 

The use of higher order channels presents a unified model of coordination — 

channels are used for migration (processes are transmitted to their destination 

node over a channel) and reconfiguration (channels may be transmitted over chan-

nels). 

This model presents a powerful toolbox to the distributed applications de-

signer. A distributed implementation, which binds the model wi th a symbolic 

computational language is provided, with sample applications used to demon-

strate the systems capabilities. 



Contents 

Chapter 1 Introduction 9 

1.1 Mobility in a distributed system 9 

1.1.1 Distributed architectures 9 

1.1.2 Distributed data flow 11 

1.2 The mobile process 11 

1.2.1 Data representation 12 

1.2.2 Process representation 12 

1.2.3 Mobile environment 13 

1.3 Process migration 14 

1.3.1 Placement 15 

1.3.2 Environmental awareness 15 

1.3.3 Efficiency 15 

1.4 Lisp as a mobile language 16 

1.4.1 Symbols 17 

1.4.2 Object systems 17 

1.4.3 Continuations 17 

1.5 Coordination 18 

1.6 Research statement 19 

1.7 Overview 19 

1.8 Summary 20 

Chapter 2 Distributing computation 21 

2.1 Introduction 21 

2.2 Shared memory architectures 

2.2.1 Operating system threads 

2.2.2 Ada 

2.2.3 Modula 3 

2.2.4 MultiLisp 

2.2.5 Sting 

2.2.6 QLisp 

2.2.7 Spur Lisp 

2.2.8 EuLisp 27 

2.2.9 Summary 28 

21 

22 

24 

24 

24 

26 

26 

27 



2.3 Closely coupled architectures 29 

2.3.1 Occam 29 

2.3.2 Message Passing Interface 30 

2.3.3 Distributed shared memory 30 

2.3.4 Summary 31 

2.4 Loosely coupled architectures 31 

2.4.1 No mobility 32 

2.4.2 Limited mobility 36 

2^^ 38 

2.4.4 Summary 40 

2.5 Chapter summary 40 

Chapter 3 Coordination of distributed applications 42 

3.1 Introduction 42 

3.2 Coordination languages 42 

3.3 Relationship with computation languages 43 

3.4 Features of a coordination language 43 

3.5 Linda 44 

3.5.1 Overview 44 

3.5.2 Integration with computational languages 44 

3.5.3 Linda in operation 45 

3.6 Actors 45 

3.6.1 Overview 45 

3.6.2 Integration with computational languages 47 

3.7 Opus 47 

3.7.1 Overview 47 

3.7.2 Integration with computational languages 48 

3.8 Manifold 48 

3.8.1 Overview 48 

3.8.2 Integration with computational languages 49 

3.9 MeldC 49 

3.9.1 Overview 49 

3.9.2 Integration with computational languages 50 

3.10 Logic based coordination 50 

3.10.1 Overview 50 

3.10.2 Integration with computational languages 51 

3.11 Structured dagger 51 

3.11.1 Overview 51 

3.11.2 Integration with computational languages 51 

3.12 Agora 52 

3 ^ 2 1 52 

3.12.2 Integration with computational languages 52 

3.13 Summary 52 



Chapter 4 Coordination in a mobile environment 54 

4.1 Introduction 54 

4.2 Models of distribution 54 

4.2.1 CSP 55 

4.2.2 The 7r-calculus 56 

4.2.3 Higher Order Communications 58 

4.3 Other models of distribution 59 

4.3.1 Unity 59 

4.3.2 The Paralation model 59 

4.3.3 Petri nets 60 

4.3.4 Document flow model 60 

4.3.5 Time Warp 60 

4.3.6 Chemical abstract machine 60 

4.4 HOC as a coordination language 61 

4.4.1 Dynamic configuration 61 

4.4.2 Mobility 61 

4.4.3 Conclusion 63 

4.5 HOC as a computation language 63 

4.5.1 Data types in the Tr-calculus 63 

4.5.2 Conclusion 65 

4.6 Choice of computation language 65 

4.6.1 Binding the computation and coordination language 65 

4.6.2 Multitasking 69 

4.6.3 Support for mobility 70 

4.6.4 Scheme: A higher order dynamic programming language . . 74 

4.7 HOC Scheme: A language for mobile computing 74 

4.7.1 Mobile phones 74 

4.8 Implementing HOC Scheme 76 

4.8.1 Stepper 77 

4.8.2 Simple interpreter 77 

4.8.3 Distributed system 77 

4.9 Summary 78 

Chapter 5 Implementing a stepper 79 

5.1 Introduction 79 

5.2 The language 

5.3 User interface 

5.4 Implementation 

5.4.1 Evaluator 

5.4.2 Processes 

5.4.3 Continuations 

5.4.4 Top level environment 

79 

79 

81 

83 

83 

83 

84 

5.4.5 Process specific environments 85 



5.4.6 Expressions 86 

5.4.7 Other structures 86 

5.4.8 Stepper 87 

5.5 Future extensions 88 

5.5.1 Deadlock detection 88 

5.5.2 Dead processes 92 

5.5.3 Automatic runs 92 

5.5.4 Profiling 93 

5.6 Summary 93 

Chapter 6 A distributed implementation of HOC Scheme 95 

6.1 Introduction 95 

6.2 Aside — the single node 95 

6.3 Language 96 

6.4 User interface 96 

6.5 Distribution 100 

6.5.1 Starting HOC Scheme nodes 100 

6.5.2 Stopping HOC Scheme nodes 102 

6.5.3 Starting a HOC Scheme application 104 

6.5.4 Top level environment 105 

6.5.5 Discovering nodes in HOC Scheme 106 

6.6 Implementation 108 

6.6.1 Implementation language 109 

6.6.2 Byte code interpreter 113 

6.6.3 Connectivity 118 

6.6.4 Top level environment 128 

6.6.5 Scheduler 132 

6.6.6 Channels 133 

6.6.7 User interface 147 

6.6.8 Starting a HOC Scheme node 148 

6.6.9 Stopping a HOC Scheme Node 149 

6.7 Future work 151 

6.8 Summary 151 

Chapter 7 Applications of HOC Scheme 152 

7.1 Introduction 152 

7.2 Prime numbers 152 

7.2.1 Motivation 153 

7.2.2 Implementation 153 

7.2.3 Conclusions 158 

7.3 Metacircular HOC Scheme 158 

7.3.1 Motivation 158 

7.3.2 Implementation 159 

7.3.3 Experiments 165 



7.3.4 Conclusions 166 

7.4 Document flow model 166 

7.4.1 Motivation 166 

7.4.2 Implementation 167 

7.4.3 Experiments 172 

7.4.4 Conclusions 178 

7.5 Summary 179 

ChapkrS Condusions 180 

8.1 Introduction 180 

8.2 Mobility in distributed systems 180 

8.2.1 Accessing large data sets 180 

8.2.2 Distribution 181 

8.2.3 Agency 181 

8.2.4 Dynamic distributed programming 181 

8.3 Coordination of mobility 182 

8.3.1 Cooperating processes 182 

8.3.2 Dynamic network architectures 182 

8.4 Related work 183 

8.4.1 Abstract machine for the 7r-calculus 183 

8.4.2 Higher order channels 183 

8.5 Further work 184 

8.5.1 Applicability of HOC Scheme to agency 184 

8.5.2 Mobile networks for multimedia applications 185 

8.6 Summary 186 

Appendix A Listing of metacircular HOC Scheme 188 

A.l The evaluator 188 

A.2 The channels implementation 195 



List of Figures 

2.1 A request brokered by an ORB 35 

4.1 Receiving values over a channel using boxes 66 

4.2 Outline of a simple interpreter 69 

4.3 Outline of a simple continuation passing interpreter 70 

4.4 A simple threads package using continuations 71 

4.5 Process migration using RFC and static code 73 

4.6 Mobile phone network configuration 76 

5.1 A tail recursive procedure 84 

5.2 A round robin scheduler for the stepper 87 

5.3 Modelling a deadlock detection manager in HOC Scheme 91 

5.4 An improved deadlock detection algorithm 94 

6.1 Example of the expression evaluator window 99 

6.2 Example of the list window 100 

6.3 Example of the input/output window 100 

6.4 Mobile phones running under HOC Scheme 101 

6.5 A function to spawn processes received on a channel 105 

6.6 The resource locator process 107 

6.7 Modules contained in a HOC Scheme node 109 

6.8 Mondo bizarro by Eugene Kohlbecker compiled using Scheme->C . 112 

6.9 API exposed from the network module 119 

6.10 Sample code using sockets API 126 

6.11 Preserving eq-ness over sockets 127 

6.12 Messages that make up the top level environment protocol 129 

6.13 Simultaneous update of the top level environment 130 

6.14 The spawn primitive 133 

6.15 Protocol for synchronisation of two channels 140 

6.16 Failing an output branch 141 

6.17 Failing an input branch 142 

6.18 Synchronisation protocol with no failure cases 143 

6.19 Synchronisation protocol with large data transfers 143 

6.20 Synchronisation protocol where input process can fail 144 



6.21 Asynchronous communication 145 

6.22 Out of order message delivery 146 

7.1 A hello world program for HOC Scheme 153 

7.2 A pipeline of sieves 155 

7.3 A prime number generator using dynamic sieves 157 

7.4 Deadlock with concurrent firing of rules 170 

7.5 An acton process implemented in HOC Scheme 172 

7.6 A basic acton network 173 

7.7 An acton network with feedback 173 

7.8 Example library network 174 

7.9 Mobile phones 175 

7.10 My beautiful process 176 

7.11 Channel protocol 177 

7.12 Rendezvous under windows interface 178 

7.13 A rule matching a set of documents 179 



List of Tables 

3.1 Laws for actor systems 47 

4.1 TT-calculus constructs 57 

4.2 HOC constructs 59 

4.3 HOC syntax within Lisp 74 

6.1 TCP/IP connections used in HOC Scheme networks 121 

&2 127 



Chapter 1 

Introduction 

1.1 Mobility in a distributed system 

2.2.] Disfnbw W arckzf ectwres 

There are a number of ways of describing a distributed system. One method is to 

classify the architecture which a distributed application uses. These fall into three 

camps: 

Shared memory — A number of processes access a common shared memory. The 

computer architecture ensures that all processors see the same view of this 

memory through the use of cache coherency. Special processor instructions 

allow primitives to be designed to control which processor has access to the 

memory, to prevent corruption of shared data structures. 

These systems allow multithreaded programs originally designed for unipro-

cessor machines to run without modification on parallel machines. The scal-

ability of this architecture is poor, as all processors need to frequently access 

the same memory, resulting in the shared memory becoming a bottleneck; 

Closely coupled — These distributed systems use a multiprocessor machine with 

a very high bandwidth and highly interconnected communications network. 

Each processor in the machine has its own memory that cannot be directly ac-

cessed by the other processors. Applications which target these architectures 

typically do so in order to gain a speedup over their sequential equivalents; 

Loosely coupled —- Distributed systems utilise a network of workstations inter-

connected using a Local Area Network (LAN) and/or a Wide Area Network 

(WAN). Applications utilise these networks as a necessity in order to perform 

their applications. Examples include groupware applications, which need 

to communicate with the user of their workstation, as well as with other 

nodes in the groupware application, and client server architectures, where 

the server performs useful processing on behalf of a number of clients. 

The loosely coupled network of workstations on a LAN has traditionally not 

been a good target for distributed applications which are designed for speedup 

over their sequential equivalents. 



LANs are relatively slow at transferring data, compared with other media such 

as memory and disks. The bandwidth of a LAN is shared between all the nodes 

on a segment, thus in a 10Mbps LAN with 10 stations on, if all stations were to 

transmit at the same time, the effective bandwidth would reduce to 1Mbps. In the 

case of Ethernet this is further reduced by the CSMA/CD method of accessing the 

network. When a packet is transmitted, if another node on the segment is also 

transmitting, a collision is detected and the two stations back off before trying to 

retransmit the frame. The number of collisions will increase as the network load 

increases, further reducing available bandwidth to nodes on heavily loaded net-

works. It also means that the transmission time of a packet cannot be guaranteed. 

Another problem is with guaranteed delivery of packets. LANs implement a 

"best effort" network; when a packet is sent from a node, routers and switches in 

its path do their best to forward the packet towards its destination. In a congested 

network packets will be lost, and there is no method for selecting what packets a 

router/switch should drop. 

New networking standards are overcoming these problems. 

Speed — Networks are becoming faster. The physical network layer is now ca-

pable of transmitting frames at an increased rate. lOOMpbs Ethernet is now 

widely available and IGbps Ethernet is being standardised. 

In addition, switching technologies are increasing throughput of packets be-

tween different LAN segments. The relatively low price of switch ports 

means that the number of stations on a LAN segment can be reduced, thus 

increasing the amount of bandwidth available to individual nodes, and in 

the case of Ethernet, reducing the likelihood of collisions. Indeed in an ATM 

(Asynchronous Transfer Mode) network there can only be one node per switch 

port, so the node has all the available bandwidth between itself and the 

switch; 

Delivery — New protocols allow streams between two endpoints in a network 

to be designated high priority. RSVP ((Braden et al. 1997)) is a protocol by 

which two endpoints signal to all the routers and switches in a route that the 

data stream needs to reserve a given bandwidth. If available bandwidth is 

available on all network segments between the endpoints, then the reserved 

bandwidth data path may be established. Routers and switches in the route 

of the data path will treat the stream as high priority and forward packets in 

a timely maimer. 

ATM has a number of quality of service levels which an endpoint may signal 

to the switch fabric when setting up a data channel. 

1. UBR — Unrestricted bit rate. This is much like the best effort strategy 

of traditional networks. The switch will forward as many cells (a fixed 

size frame) on a UBR channel as is possible; 

2. CBR — Constant bit rate. This allows an endpoint to signal that it in-

tends to send a stream of data at a constant bit rate (for example voice). 
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The stream will only be set up if there is enough bandwid th between 

the endpoints; 

3. VBR — Variable bit rate. The rate at which data is transmitted down the 

stream changes (for example compressed video) but wil l remain within 

the limits supplied when the channel was established; 

4. ABR —' Available bit rate. The switch periodically signals the endpoint 

to inform it how much bandwidth is available to it. This could be used, 

for example, to degrade a video stream if available bandwidth was re-

chicedL, UTuproNiryr it ordyTwtuan. the sigrudledto say 

that available bandwidth had increased. 

With the increase in speed of today's workstations and networking technolo-

gies, distributed applications designed specifically for speed u p can be targeted at 

loosely coupled networks. 

1.3.2 Dz'stnbwWdafayZow 

Another method of describing a distributed system is not on the underlying archi-

tecture, but rather by how processes act on data within the application. There are 

three main camps: 

Data->process — Data is sent to the node which requires the data . For example, a 

network file system can be thought of as sending data back to the requesting 

process; 

Process->data -— For large data sets, it could be more efficient to move the process 

to the data rather than the data to the process. A process could also move to 

the data in order to reduce latency. For example a Java applet sent to a web 

browser allows a user to input data and get results faster than if the input 

data had to be sent to a web server, and then wait for the web server to 

process the data and send back the results; 

Combination — In many cases a client machine requires a subset of data held by 

the server (for example a database application). In this case a process can 

be sent to the server which selects what data to retrieve (for example a SQL 

((American National Standards Institute 1992)) statement), and the subset of 

data is sent back to the client for further processing. Another scenario is that 

both the data and process move to some third party node, perhaps because 

the third party node has some special processing capability (for example a 

vector processor). 

1.2 The mobile process 

The previous section has shown that moving a process to a node where data resides 

can be more efficient than moving the data towards the process. This is especially 

true when dealing with large sets of data. Processes could also benefit by moving 

to another node to access other fixed resources of that node (for example, a user or 

a vector processor). 
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This section addresses a number of issues which need to be t a k e n into account 

when designing a system with support for mobile processes. 

1.2.1 Data represgntafzoM 

A loosely coupled network is likely to contain machines of d i f fer ing architectures. 

There could be differences between CPU type, operating system o r both. 

This can effect the movement of data between machines as different architec-

tures can have different representations for data. Differences include: 

Endianness — The order in which high and low order bytes of a machine word are 

stored. Some architectures store high end first, others low e n d first. Therefore 

if a machine word were to be transferred bitwise between t w o machines with 

different endianness, the receiving machine would see it as a different value 

to the sending machine ((Batey & Padget 1993)); 

Word size — Different CPUs have different machine word sizes. 32 bits is preva-

lent today but 64 bit processors are becoming more common. Thus in the 

language C, s i z e o f ( ink) on one machine may not equal s i z e o f ( i n t ) 

on another; 

Alignment — In some architectures data can only be read f rom memory if it is 

aligned on a machine word boundary. This could mean t h a t packed struc-

tures (where data items are not aligned on word boundaries) would be un-

able to be read. A packed structure which is valid on one machine would 

have to have each element machine word aligned in order to be read on a 

machine which enforces alignment. 

Thus in order to transmit data between heterogeneous machines reliably, a 

common data representation needs to be adopted when transferring data between 

machines. Transmitting processes can convert their machine specific data repre-

sentation to a common representation for sending over a network, and receiving 

processes can convert the incoming common data representation back to their in-

ternal representation. XDR ((Sun Microsystems 1987)) is one m e t h o d which per-

forms these transforms. An optimisation is to query the architecture of the receiv-

ing machine and only convert to common data representation for transmission if 

the architectures of the sender and receiver differ. If the architectures are the same, 

the data may be transmitted in internal form with no need for conversion at either 

end. 

The process of converting an internal data representation to a common data for-

mat for transmission is called marshalling; the corresponding process of converting 

a common format back into a machine specific implementation is unmarshalling. 

].2.2 Process represeMfafzoM 

Different CPUs in workstations in a network affect how a process may be repre-

sented. A binary executable which works on one machine in t he network is by 

no means guaranteed to work on other machines in the same network. Different 

CPUs may have a different machine code, and thus will fail to execute a binary 
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which contains machine code for a different processor. Even where the CPUs are 

the same, if the operating system differs between two machines o n a network this 

can also make their binary executables incompatible. This is because the binary 

contains a loader that will contain operating specific code, as well as code to access 

shared libraries in an operating specific manner. 

There are a number of ways in which a process can be made portable so as to 

be able to run on a variety of nodes within a network: 

Interpreter — The source code of a process can be transmitted to any machine 

in the network. Each machine in the distributed environment contains an 

interpreter which is capable of executing the source code representation of 

the process; 

Byte code — Similar to interpretation of source code, the source code of the pro-

cess is compiled into a common byte code form. Each machine in the dis-

tributed environment contains a byte code interpreter to execute processes; 

Multiple binaries — If the source code of the process is compiled into binary form 

for each architecture in the distributed environment, then sending a process 

to a node involves querying the node to find its architecture, and selecting 

the correct binary for transmission. Another method is to encode multiple 

object formats for different platforms in one single binary, called a fat binary; 

Portable machine code — Also called thin binaries, a common object format is 

translated into equivalent machine specific binary before be ing run. 

Both the source code and byte code interpreter solutions allow easy creation of 

portable processes. The interpreter needs to be written and ported to each machine 

in the target distributed environment. A significant disadvantage of interpreta-

tion over binary executables is execution speed. Interpretation takes significantly 

longer than direct execution. Byte code interpretation is more efficient than source 

interpretation, and byte code processes are likely to be more compact than their 

source code equivalents. Performance of a byte code process can be further en-

hanced by the use of just in time compiling, where the byte code process is further 

compiled into CPU specific machine code. 

The multiple binaries solution requires more effort on the pa r t of the process 

designer, as rather than creating one binary representation of the process (byte 

code), multiple binaries need to be created. On a network with a large variety of 

architectures, a considerable number of binaries could be needed. If a new archi-

tecture is introduced to the network, all processes in the distributed application 

will have to be recompiled to target the new architecture in order for it to partici-

pate in the distributed environment. In the case of the interpreter solution, a new 

interpreter for the architecture will need to be written, but once done will run all 

existing processes in the distributed environment. 

1.2.3 MobzkeMMroM/MgMf 

For a process to be truly mobile, the movement of code and data need to be com-

bined. Although a process might move to another node in order to access a data 
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set residing on the node, it will also need to take local data with it. The local data, 

for example, could be used to instruct the process what portion of the remote data 

set to interrogate. 

One method would be to represent a mobile process as a block of code (which 

could be source, byte code or binary) with an entry point, and a parameter block 

which contains all the mobile data the process needs in order to operate on the 

target node. When starting the mobile process, the remote node would supply the 

parameter block to the process's entry point. 

This method could be used for many of today's languages. For higher level 

languages, more elegant solutions can be proposed. 

The closure allows both environment and code to be packaged together as one 

high level object. For example, in Lisp the following function produces a closure 

which takes a number and adds a given number to it: 

(define (make-add n) 

(lambda (x) 

(+ X n))) 

(define add-one (make-add 1)) 

(add-one 2) = > 3 

Note that the closure returned can be thought of as a function of one argument. 

However it also packages up the binding of n in its environment, thus allowing n 

to be referenced in the body of the closure. 

In this way a mobile process can be represented as a closure, with the closure 

holding in its environment bindings which need to be transported in order to exe-

cute the code. 

1.3 Process migration 

Previous sections have described the conditions necessary for the migration of pro-

cesses and data around a network of heterogeneous workstations. 

This section introduces other factors which must be taken into consideration 

when designing a distributed environment for mobile processes. 

It should be pointed out that in a distributed environment for mobility, it is in-

tended that mobility support should be present in each node of the system. That is, 

all processes in a node should be able to migrate to other nodes, no t just processes 

which originated on that node. For example, this definition removes an SQL server 

from being considered a distributed environment for mobility. Although there is 

process migration (an SQL program sent from the client to the server), once at the 

server it does not move again. Likewise, a Java applet sent f rom a web server to 

a client browser is not considered a candidate for a distributed environment for 

mobility. 
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Being able to move between nodes allows the implementation of flexible dis-

tributed applications. For example, a process could follow its u s e r as they move 

between workstations, or travel between nodes in a network collecting data re-

quired by a user. 

1.3.1 Placement 

Where distribution is controlled by the application and not the under ly ing operat-

ing system, the distributed application designer must be able to di rect processes to 

the nodes on which they are required to execute. 

Possible methods include: 

Automatic — The node chooses to migrate processes to other nodes . For exam-

ple, this could be done to achieve load balancing between all nodes in the 

environment; 

Explicit — The process asks to be migrated to a specific node (perhaps addressed 

by host name, for example); 

By requirements — The process could query the distributed environment to re-

turn a handle to a node which meets its requirements (for example has a 

certain data set, or has a vector processor). Once a suitable node has been 

discovered, the process can migrate to it. 

The automatic movement of processes to achieve load balancing is performed 

by a number of distributed systems, for example. Sting ((Jagannathan & Fhilbin 

1992)). This thesis does not concentrate on this aspect of mobile computing. Rather 

it concerns itself with the explicit migration of processes between nodes, with a 

mechanism for discovering nodes which meet the requirements of a process. 

1.3.2 awareness 

Once a process has migrated to a foreign node, it needs to be able to request ser-

vices available on that node. Thus each node needs to provide foreign processes 

with the ability to discover and bind to its resources. 

A process may also need to be able to send results back to its home node. A 

common need for this feature might be for a data collecting process which migrates 

between sites looking at data sets and sending any "interesting" data back to its 

home site. 

13.3 ^czeMcy 

Given that a mobile process could migrate between many nodes in its lifetime, it is 

possible that a process will not execute all the code in its execution on any single 

node. Thus a possible efficiency saving could be made by only partially migrating 

a process when it moves between nodes. 

Code that is likely to execute would be migrated, with the remaining code be-

ing held back at the originating node, and only sent to the remote node if the 

migrated process needs it. 

The problem comes in guessing what code is most likely to be executed. If the 

algorithm is over cautious, then too much code will be migrated, under cautious 
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and too little code will be migrated initially, resulting in code fetches at a later time. 

Both would result in more bandwidth being used. 

One possible solution is to look at the stack frames of the migrating process. 

Each stack frame represents a computation going back in time, w i t h frames at the 

top of the stack being the most recent. As frames from the top of the stack will be 

popped first, it follows that these will point to code which will b e executed before 

frames at the bottom of the stack. Thus partially migrating a process involves 

sending only part of the stack and the code it references. 

In an environment which includes garbage collection, partial migration can 

lead to the need for more sophisticated distributed garbage collectors. This is be-

cause process state is distributed between multiple nodes, with data on one node 

possibly referencing data on another node. 

The closure representation of processes discussed in section 1.2.3 makes the 

guesswork more difficult as the closure can be considered atomic, and the choice 

of where it could be split for partial migration is non obvious. 

1.4 Lisp as a mobile language 

Lisp was developed in the 1960's by a team led by John McCarthy. He published 

Kecwrgfue fwMch'oMS EzpregsioMS TTzezr &i/ Adac/zme, Parf I 

((McCarthy 1960)) giving the first description of Lisp. 

Since then Lisp has evolved steadily into a mature Language ((McCarthy 1981), 

(Steele Jr & Gabriel 1993)), with many dialects and implementations available for 

varying platforms (including specially designed Lisp machines). 

Major dialects of Lisp include: 

Common Lisp ((Steele Jr 1984), (Steele Jr 1982)) This has adopted by ANSI^ as their 

standard Lisp ((ANSI X3.226-1994 1994)). It is a large language designed for 

commercial strength applications. Several companies market environments 

and compilers for the language, with public domain implementations also 

available; 

Scheme ((dinger. & Rees 1991)) A much smaller dialect than Common Lisp, Scheme 

was designed from the outset to be a clean, simple language. A denotational 

semantics is provided with its definition. Its lack of a standard object system 

makes object oriented programming convoluted ((Abelson et al. 1985) chap-

ter 3, (Adams & Rees 1988)). Proprietary implementations of object systems 

for Scheme do exist ((Queinnec 1993)); 

IsLisp (dSO/IEC 13816:19971997)) This has been adopted as the ISO^ standard 

Lisp. It is a subset of Common Lisp made up from a blend of the German DIN 

Kernel Lisp ((Brand et al. 1992)) and the Japanese Lisp((Yuasa et al. 1992)); 

^American National Standards Institution 
^International Standards Organisation 
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EuLisp((Padget et al. 1993)) This is being developed as a European standard Lisp. It 

aims to be more complete than Scheme by including an object system, prim-

itives for concurrency, and modules supporting programming in the large, 

and simpler than Common Lisp by using a layered structure. 

Lisp provides a number of features which make it suitable for representing 

mobile processes, and also a suitable choice as an implementation language for 

modelling mobile processes. 

Lisp is a symbolic language, with the symbol as one of its major data types. An-

other major data type is the cons cell, which can be used to create lists of data. 

Lists made up of symbols and other lists (for example the list ( i f (= x y) 

' y e s 'no ) ) are known as s-ezpresszons, with Lisp programs m a d e up of such s-

expressions. The primitive r e a d provides the Lisp programmer w i t h a mechanism 

for reading s-expressions from input streams. Interpreters for Lisp can be written 

within Lisp, with r e a d being used to parse the s-expressions and c a s e statements 

matching the prefix commands to interpret them. Thus code m a y be treated as 

data. A Lisp interpreter that can interpret itself is called a metacircular evaluator. 

14.2 Ob;'ec( systems 

A number of Lisps support object oriented programs through bui l t in object sys-

tems. The degree of integration with the rest of the Lisp environment varies. 

The EuLisp object system, TELOS((Bretthauer et al. 1992), (Bretthauer et al. 1993), 

(Broadbery & Burdorf 1993)), has been designed at the same t ime as the rest of 

the languages, with the result that objects "go all the way down" , in that all Lisp 

data are objects which are instances of some class. 

Some Lisps extend the object model with a metaobject protocol ((Kiczales et al. 

1991)), where the programmer can extend the object system w i t h classes which 

manage objects, known as procedural reflection. This allows systems to export 

in a controlled fashion details of their implementation, allowing other program-

mers to tailor the system for their requirements without affecting the original code 

((Kiczales 1992)). 

1.4.3 CoMhMwafzoMs 

Many dialects of Lisp provide primitives or special forms which allow the cur-

rent continuation to be reified into a data structure that can be applied. Contin-

uations represent the remainder of a computation. In machine terms, a contin-

uation represents the stack of a computation and all its registers at a given point. 

Once captured, continuations can be used in a number of situations ((Allison 1988), 

(Allison 1990)), for example to implement non local exits, model threads, and pro-

vide a mechanism for the clean handling of errors (where functions are given suc-

cess and failure continuations and invoke the required continuation upon comple-

tion or failure). 
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Interpreters need not have access to continuations in order fo r an embedded 

language to use them ((Bonzon 1990)). Programs can be written in continuation 

passing style, in which each function takes an additional argument, its continua-

tion (modelled as a closure) which it invokes, passing it the result of the function. 

Continuation passing evaluators take standard Lisp code and evaluate it using 

continuation passing style. By providing primitives to reify this continuation, the 

features described above can be implemented in an embedded interpreter even if 

the underlying Lisp does not have direct support for continuations. 

1.5 Coordination 

In previous sections the properties needed for a process to be able to migrate be-

tween nodes has been discussed. In summary these are: 

9 Support for running a process on differing architectures; 

® Support for transmission of code as well as data over a network link; 

® Support for transmission of a process's environment to a remote node; 

• Ability of a process to interact with the environment of a remote node. 

These features allow processes to run on any node in the distributed environ-

ment, and to move between nodes when needed. 

We have previously centred on the example of one process migrating between 

nodes and interacting with each node's environment (for example, a data gather-

ing process which migrates between nodes querying each one's local data set). 

Now consider properties a distributed environment requires to support a set 

of mobile processes. If each mobile process acts in isolation (multiple data gath-

ering processes, all carrying out different tasks, for example) then the answer is 

none. The properties described above provide a sufficient environment to run N 

instances of independent data gathering processes. 

However if a set of mobile processes need to interact to perform a common task, 

then additional properties need to be provided by the distributed environment. 

Processes mainly interact in one of two ways, both of which we will refer to as 

coordination. 

Synchronisation —A process halts its execution until a condition is met which 

allows it to proceed. Examples of synchronisation include mutual exclusion 

(for example to stop two processes simultaneously updating the same data 

set), and event handling, where a process waits for a signal (generated by 

another process) before continuing; 

Communication — Processes share (partial) results amongst themselves. This en-

ables a task to be broken down into many subtasks which are executed by 

different processes, which can lead to an increase in parallelism. For exam-

ple, if items from two separate data sets are required in order to make a de-

cision, two processes may be created to query each data set in parallel. Once 

both results have been received the decision making process may continue. 
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Coordination in a distributed environment poses problems; protocols need to 

be devised by which some operations (for example mutual exclusion) appear to 

be atomic to the distributed application but are actually achieved using a set of 

operations or messages between nodes. 

Additional complexity is introduced when processes become mobile. Sets of 

interacting mobile processes need not all migrate to the same node , but still need 

to communicate. Thus the distributed environment needs to be able to track the 

movement of processes so it may route messages for a process to t he node on which 

it is currently executing. 

1.6 Research statement 

This work describes the design and development of a distributed environment 

to support interacting mobile processes and investigates the applicability of the 

environment to a number of applications. 

In addition this research presents a study of traditional distributed environ-

ments, coordination languages and existing environments which support mobile 

processes. 

The prototype environment produced is not of production quality and does 

not integrate solutions in a number of key fields that a production level environ-

ment would require (for example, authentication). It is intended to illustrate the 

applicability of the communications model and programming language to mobile 

applications. 

The originality of the work presented within this thesis lies in the combination 

of a higher order communications model with a dynamic programming language 

to produce an environment which meets the needs of applications requiring inter-

acting mobile processes. 

1.7 Overview 

A study of existing distributed environments is presented in chapter 2. This high-

lights how dynamic languages have traditionally coped with distribution and how 

suited these environments are for the execution of mobile processes. 

Chapter 3 provides a literature review on coordination languages. It describes 

each language and how it combines with computational languages to provide an 

environment for distributed applications. 

The applicability of the 7r-calculus as a language for coordination is presented 

in chapter 4. It is shown that, together with a suitable computational language, an 

environment suitable for mobile processes can be envisaged. 

Chapters 5 and 6 describe the design and implementation of the language, and 

demonstrate through the use of examples how distributed applications which use 

interacting mobile processes can be executed. 

Solutions to further examples are presented in chapter 7. These show how mo-

bility can be used in programming solutions to problems. In addition it is shown 
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that the language is a suitable base for implementing other distributed environ-

ments such as the document flow model ((Berrington, DeRoure, Greenwood & 

Henderson 1993)). 

Finally chapter 8 goes on to discuss future enhancements which could be made 

to the environment to bring it closer to a production level system and sums up 

with conclusions. 

1.8 Summary 

This chapter has shown how the increases in the performance of today's work-

stations and local area networks allow distributed applications to be built which 

would previously have been targeted at specialised hardware. 

In addition environments which traditional specialised distributed computing 

machines are unable to support may be envisaged. These applications can take 

advantage of the fact that they run on workstations on a local area network, for 

example to interact with users or resources on the network. 

The network of workstations is able to support a mobile computing environ-

ment. Three main requirements have been shown to be needed in order to provide 

a practical environment in which mobile processes may execute: 

1. Computational language. This should be able to be executed on multiple 

types of heterogeneous workstations. It should also be able to be represented 

in a form which can be used to transport mobile processes between worksta-

tions; 

2. Ability to interact with the distributed environment. This includes discov-

ering potential nodes which meet the migrating process's requirements, and 

the ability of a migrated process to interact with its host node 's local envi-

ronment; 

3. Coordination between sets of processes which have potentially migrated to 

disparate nodes. This allows a programming task to be split into a number of 

separate processes, resulting in a increase in parallelism and reduced process 

complexity. 

The next chapter goes on to discuss current distributed environments. 
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Chapter 2 

Distributing computation 

2.1 Introduction 

This chapter looks in greater depth at current technologies available to the dis-

tributed application writer. As outlined in the introduction the technologies are 

organised into three main categories; 

1. Shared memory. Multiple processors in a system share a single memory 

through a common bus; 

2. Closely coupled. A set of processors with separate memory address spaces 

which communicate over a high performance network; 

3. Loosely coupled. A set of workstations communicating over a local area net-

work and/or a wide area network. 

Flynn's taxonomy ((Flynn 1972)) classifies four categories of hardware used in 

parallel machines; 

1. SISD — Single Instruction Single Data; 

2. SIMD — Single Instruction Multiple Data; 

3. MISD — Multiple Instruction Single Data; 

4. MIMD — Multiple Instruction Multiple Data. 

SISD is used on conventional single processor workstations, where each in-

struction acts upon a single piece of data. SIMD extends this to perform parallel 

data operations where instructions operate on multiple data (for example, a vector 

processor). The MISD classification is an unusual case where m a n y instructions 

operate in parallel on a single datum. Finally MIMD architectures use multiple 

streams of instructions, each acting independently on data. 

This chapter concentrates on architectures and languages corresponding to the 

MIMD classification, as distributed systems usually fall within this classification. 

2.2 Shared memory architectures 

Many of today's workstation operating systems have multiprocessor support built 

in, and multiprocessor systems are becoming popular in the server market. 
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This is because of the low cost involved in obtaining a performance increase 

out of existing applications by simply running them on multiprocessor hardware. 

A multithreaded application can achieve speedup if the multiprocessor oper-

ating system chooses to run the application's threads on different processors si-

multaneously. Even for a single threaded application speedup c a n be achieved as 

other applications' threads running on the machine can be executed on other pro-

cessors in the system, increasing the availability of processor resource to the single 

threaded application. 

However, care must be taken when writing multithreaded applications if it is 

likely that the application will run on multiprocessor systems. If a thread locks 

a resource for a long time when it is not actually accessing it, i t may not result 

in any performance decrease on a uniprocessor. This is because as long as the 

uniprocessor has a thread it can execute, it does not matter if another thread is 

blocked waiting for a resource. On multiprocessor systems, long term locking of 

unused resources can reduce the scope for parallelism within the application, thus 

reducing overall speedup. Excessive locking of resources for short periods of time, 

on the other hand, can lead to degradation on multiprocessor ha rdware as threads 

running on different processors constantly compete for shared resources. 

2,2.1 OperahMgsysfemfkregds 

A common method of achieving distribution of tasks amongst the processors of a 

shared memory machine is through the use of operating system threads. Many op-

erating systems provide support for multithreaded applications(for example Mach 

threads ((Cooper & Draves 1988)), Sun lightweight processes ((Sun 1988))), com-

prising of a number of services. 

1. Scheduler. There are two main types of scheduler. Pre-emptive schedulers 

allow each thread to run for a specified period of time, k n o w n as a timeslice. 

The thread is able to run for this set of time, unless it blocks for some other 

reason, or a higher priority thread becomes ready to run (for example, after 

having serviced an interrupt). Once a thread's timeslice is exhausted, another 

thread is given the chance to execute. With cooperative schedulers a thread 

must explicitly allow another thread to be scheduled by either blocking or 

yielding control of the processor. An example of a cooperative scheduler is 

the WIN16 scheduler for Windows 3.1. When an event is dispatched to an 

application, the application takes control of the processor for as long as is 

required to process that event. If the application fails (for example it goes 

into an infinite loop), this can prevent the system dispatching events to other 

applications, thus freezing the whole system. A pre-emptive scheduler on 

the other hand, would allow other applications to continue operating, even 

in the presence of a failed process^; 

1 memory protection is also used to reduce scope for system wide failures 
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2. Threads interface. This API is provided to user applications to allow man-

agement of threads. Services provided include thread creation, destruction 

and retrieval of the thread's status; 

3. Mutual exclusion. Another API provided by the operating system, this al-

lows the application programmer to protect resources from pre-emption. This 

allows programs which are decomposed into separate threads to cooperate 

on shared data structures, for example a server thread to a d d work items 

to a queue which is accessed by worker threads retrieving work items. It 

is important to ensure the server and worker threads do no t try to access 

the queue simultaneously as this could result in the queue 's data structure 

becoming corrupted; 

4. Signals. Threads often cannot perform useful work until another thread has 

performed some task. Signals, another API provided by operating systems, 

provide a mechanism for threads to wait until the application or operating 

system is ready for them to proceed. This is an efficient alternative to busy 

waiting, where a thread continually loops, checking to see if the system is 

ready for it to continue, using up processor resource even w h e n there is noth-

ing to be done. Using signals, a thread blocks until it is signalled by another 

thread to continue, which is more efficient than busy waiting, especially if 

the thread blocks for a relatively long period of time. Threads can also block 

waiting for external signals from other applications or the operating system, 

for example signalling that an lO operation has finished, or that a thread has 

terminated. 

This set of services is capable of running an application with multiple threads 

either on a single processor machine, or a shared memory multiprocessor. This 

is because the thread is a unit of execution, and given a common memory and 

resource pool, can execute on any processor which has access to this pool. Hence 

the thread is a good basic abstraction to achieve parallelism on shared memory 

multiprocessor hardware. 

Other abstractions which make use of shared memory multiprocessor hard-

ware are often mapped down on to underlying operating system threads ((Mohr 

1991)). 

At any given time an operating system has a set of threads which are able to 

execute (because they are not blocked waiting for some condition, have not been 

terminated or suspended, and are not finished). The operating system can then 

choose which threads to execute on its available processors (one thread per pro-

cessor). The choice of which thread to execute from the available pool is often 

based on the thread priority and previous execution time of threads. The threads 

will then run until their allocated timeslice has been exhausted (for pre-emptive 

schedulers) or until they block (pre-emptive and cooperative schedulers). At this 

time other threads will be scheduled to execute and the scheduler loop continues. 

As each time a thread is scheduled it can be executed on a different processor, it 

could be argued that the threads migrate between processors (although processor 
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caches may make it more efficient for threads to stick to one processor). However, 

threads cannot explicitly migrate between processors and in a symmetr ic multipro-

cessor system there would be no advantage gained in being able to do so, as each 

processor has access to the same resources as all other processors in the system. 

Many operating systems have direct support built into their kernels to support 

multiprocessing systems. Examples of multithreaded operating systems with sup-

port for running on multiprocessor hardware include Windows N T (with Win32 

threads), Novell NetWare SMP, and Solaris SMP. 

2.2.2 

Tasks are the unit of concurrency available to Ada ((Barnes 1989)) applications. 

They can either be defined statically (for example if defined ins ide a procedure 

the task will be started each time the procedure is called) or dynamically by defin-

ing parameterised task types. Synchronisation and communication are provided 

by the rendezvous mechanism. The s e l e c t statement allows n o n deterministic 

choice of a rendezvous. 

2.2.3 3 

Modula 3 ((Birrell 1991)) provides support for parallelism th rough the use of a 

threads package. An interface to allow the creation, initialisation and starting of 

threads is provided. Communication between threads is achieved through the 

use of shared variables, with semaphores being used to guard access. Threads 

may synchronise through the use of w a i t and s i g n a l . These primitives allow a 

thread to block, waiting for a condition which another thread m a y signal, allowing 

an event driven programming style. 

2.2.4 

MultiLisp ((Halstead 1985)) is a dialect of Scheme ((dinger. & Rees 1991)) which 

uses constructs to introduce explicit parallelism into applications running on shared 

memory multiprocessor machines. 

Two constructs provide support for explicitly creating concurrency, pcall and 

/wfwre. 

Pcalls (parallel calls) evaluate all their arguments in parallel a n d then perform 

an application of the evaluated arguments. Thus (pcall + ( f 1) (f 2 ) ) is 

equivalent to ( a p p l y + ( l i s t (f 1) (f 2 ) ) ) except that all the arguments 

to p c a l l are evaluated in parallel. 

Futures allow programmers to indicate where useful parallelism can be gained 

in their programs and spawn threads to evaluate expressions whose results are not 

needed immediately. It is the programmer's responsibility to ensure that the par-

allelism created is safe, for example does not change the state of shared variables 

used by the main thread of control. If code executed in a future needs to access a 

resource which may be accessed by other futures or the main thread of control (for 

example, a shared data structure), then locking primitives can to be used in order 

to serialise access to the resource. 
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The form ( f u t u r e expression) returns a placeholder -— a h a n d l e on the fu-

ture. The implementation may choose to create a thread to evaluate the future 

expression concurrently with the main thread of control, or inline t he expression. 

In MultiLisp, once a future has been evaluated the placeholder is replaced with 

the value of the expression. If the value of the future is required before the future 

has been determined, then the requesting thread is blocked and wa i t s for the future 

to finish evaluating. The placeholder can be passed as a rguments to functions 

without the need to be evaluated. 

For example, the following code calculates the number at sequence position n 

in the Fibonacci sequence; 

(define (fib n) 

(if n 2 ) 

1 

(+ (future (fib (- n 1))) (future (fib (- n 2)))))) 

In this case for each iteration of the loop where n > 1, two fu tu res are created 

which compute the Fibonacci values further up the sequence. However we can 

see here that in fact the pcall construct would have been more appropriate for 

no sooner than both futures have been created, their values are needed by the + 

operator. This causes the placeholders to be read, so the thread blocks until both 

futures have been evaluated. 

Furthermore, the above example shows another problem wi th using futures, 

that it is relatively easy to create too much parallelism, where the system spends a 

large proportion of its time managing threads rather than executing them. Several 

solutions have been proposed. With dynamic load-based partitioning, the decision 

to inline or spawn a task to evaluate a future is based on system load at the time 

the future is reached. 

Mohr ((Mohr 1991)) shows this policy can make inefficient use of resources and 

even lead to deadlock under certain conditions. These conditions can be difficult 

to detect statically by both compiler and programmer. He goes o n to present an 

alternative method using lazy task creation. When a future is reached it is au-

tomatically inlined, so no partitioning occurs. However the paren t of the future 

(the future's continuation) is stored in a lazy task queue. An idle processor can 

steal this continuation and create a task to evaluate the parent, t hus creating par-

allelism. This is known as task stealing. Tasks will only be created w h e n resources 

are available to execute them. 

This could be implemented on top of multiprocessor operating systems by 

spawning N threads at system start up, where N is the number of processors. 

Each thread could then loop, waiting to steal a continuation, executing it and loop-

ing back ready to steal the next available continuation. Pscheme ((Yao 1994)) also 

makes use of the pcall mechanism but extends this with the notion of ports, allow-

ing the parallel computations of a pcall to be captured in a similar maimer to the 
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capture of continuations. Values can then be "thrown" down these ports, allow-

ing the pcall operation to be completed multiple times, with potentially differing 

results. 

2 2 ^ 

Sting ((Jagannathan & Philbin 1992), (Philbin 1992)) is another dialect of Scheme, 

with support for the efficient execution of multiple threads. The system uses a set 

of virtual processors, each responsible for the scheduling of the threads executing 

on them. A virtual processor may "steal" threads from other vir tual processors 

when it has no work to do, achieving load balancing between virtual processors. 

When threads are created, storage needs to be allocated for their heap and stack, 

which can be costly, especially if an application creates many threads throughout 

its lifetime. Sting allows thread storage space to be reused by delaying the creation 

of threads. A terminated thread's stack and storage space is reused by a newly 

started thread, with new storage only being allocated if no space can be reclaimed 

from terminated threads. 

2.2.6 QLz'sp 

Tasks created by Qlisp ((Gabriel & McCarthy 1984), (Goldman & Gabriel 1988b), 

(Goldman & Gabriel 1988a)) are placed in a queue until resources become available 

to execute them. Each construct capable of creating tasks takes a prepositional 

argument. If the value of the proposition is true then a task is spawned to evaluate 

the construct, otherwise it is inlined. This allows the user to control the amount 

of parallelism created (for example by only spawning new tasks for the first few 

levels of a tree search). Primitives to examine the task queue enable the user to 

implement a form of load balancing. 

It is likely that implementations of QLisp running on various platforms will re-

quire different prepositional expressions, depending upon the number of proces-

sors and execution speed. This would mean programs would have to be fine-tuned 

for each platform on which they are designed to run. The use of the prepositional 

argument could also detract from the intuitiveness of a program as load balancing 

code and process code are mixed. 

The construct (spawn p r o p form) creates a task to evaluate form if p r o p 

evaluates to true, otherwise the form is evaluated inline. Spawn returns a future 

placeholder if a task is spawned or the value of the form if it is inlined. 

The most common way of introducing parallelism in Qlisp is with the qlet 

construct. This is similar to a Lisp l e t construct, in that it introduces new bindings 

into the lexical scope of an expression, except tasks are spawned to evaluate each 

new binding (if the prepositional argument to q l e t evaluate to true). By default 

the body of the q l e t expression is not evaluated until all tasks spawned by the 

q l e t have finished and all the variables of the q l e t have been bound. Eager 

evaluation of a q l e t may be selected through the use of a keyword. In this case 

the variables of the q l e t are bound to future placeholders, which will be replaced 

with the value of their expression when the task evaluating it has completed. 
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The qlambda construct allows the user to implement mutual exclusion zones in 

the code. A closure is returned, which when invoked will spawn a task to evaluate 

the closure (if the proposition evaluates to true). Any other process invoking this 

closure will be blocked and wait until the closure becomes free f o r execution. 

2.2.7 Spwr Lzsp 

Spur Lisp ((Zorn et al. 1989)) provides support for multiple processes with a very 

simple threads interface. The form ( m a k e - p r o c e s s E) creates a new process 

which immediately starts executing the expression E. The language also has sup-

port for futures as in MultiLisp. Communication between processes is via mail-

boxes. Primitives are provided to send and receive data t o / f rom a mailbox. Mail-

boxes may contain arbitrary amounts of data so the send operat ion is guaranteed 

not to block. The receive operation will only block if the mailbox contains no data. 

A process may choose to receive mail from a number of mailboxes, in which case 

mail will be returned from the first non empty mailbox. This is similar to CSP's 

((Hoare 1985)) alt construct, except mailboxes are scanned in order and posting to 

a mailbox is not synchronised with a process retrieving data f rom a mailbox. 

No direct support is given for semaphores or locks that allow synchronisation 

between processes, although such data structures can be model led using mail-

boxes. 

2.2.8 EuLisp 

The EuLisP definition allows the concurrent execution of expressions through the 

use of threads, and atomic communication and mutual exclusion via the use of 

semaphores ((Berrington 1990), (Berrington, Broadbery, DeRoure & Padget 1993), 

(Berrington, Deroure & Padget 1993)). A thread is an abstract data type represent-

ing the flow of control in a program, and interacts with other threads via shared 

memory. 

When a thread is created, an initial function is supplied; a rguments are pro-

vided when the thread is started, and the thread executes the application of the 

initial function to these arguments. When the function returns, the value of the 

thread is set to the return value of the function, and the thread completes normally. 

The following interface is provided for the creation and control of threads: 

< t h r e a d > Class object representing the class thread. This object is pre-installed 

in the TELOS^ ((Bretthauer et al. 1992), (Bretthauer et al. 1993),(Broadbery & 

Burdorf 1993)) hierarchy; 

{make < t h r e a d > ' i n i t - f u n c t i o n function) Allocates, initialises and returns 

a thread with function as its initial function. The thread object is a first class 

object as is any other object in the TELOshierarchy; 

( t h r e a d - s t a r t thread. args) Starts a thread with the specified arguments; 

( t h r e a d - r e s c h e d u l e ) Indicates the current thread can concede control to an-

other thread; 

^The EuLiSP Object System 
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( t h r e a d - v a l u e f/zread) Blocks the current thread until f/irgatf has completed, 

and returns its value. 

The definition does not force a conforming EULISP implementation to adopt any 

particular scheduling policy, allowing implementers to choose a suitable one for 

the hardware and operating system platform they are targeting. 

A portable EuLisP program must therefore not assume a part icular scheduling 

policy itself; for example, assuming a time-slicing scheduler and therefore never 

explicitly calling t h r e a d - r e s c h e d u l e may cause the program to fail on a sched-

uler which lacks pre-emptive tasking, where threads must concede control volun-

tarily. 

A fairness guarantee also needs to be stated. Due to the possibility of a host 

operating system handling the execution of threads, it is impossible to make a 

strong guarantee. 

However a sufficient, although weak, guarantee is that if a th read reschedules 

infinitely often, then every other ready thread will also be scheduled infinitely 

often. Semaphores are provided for synchronisation between threads and mutual 

exclusion. The following primitives are provided: 

< l o c k > A class object representing the class lock. This object is pre-installed in 

the TELOS hierarchy; 

(make < l o c k > ) Method for the generic function make which returns a newly 

allocated open lock; 

( l o c k lock) Perform a P ((Dijkstra 1965)) operation on lock. This blocks the cur-

rent thread until such time as no other thread has ownership of the lock. At 

this time the thread takes ownership of the lock; 

( u n l o c k lock) Perform a V operation on lock. This removes ownership of the 

lock and allows the ownership to be transferred to a waiting thread. 

An implementation is free to choose its strategy for the locking operation. For 

example, by blocking a thread on a lock until it becomes free or b y busy waiting 

by rescheduling a thread until the lock becomes free. 

2.2.9 Swmman/ 

One significant advantage of shared memory multiprocessor machines over other 

distributed environments is that a large existing code base can b e run on them. 

This is due to a number of common operating systems having built in support for 

these machines, thus allowing applications targeted at these operating systems to 

run unmodified. 

As all processors share the same physical memory, performance can be reduced 

as processors compete for the memory resource. Local caching of memory on each 

processor in the machine can improve performance at the cost of hav ing to imple-

ment a cache coherency protocol. However even with local caching the number of 

processors which can be supported by such a system remains small. 
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These systems are not good candidates for mobile processes, a s processes run-

ning on such systems are only distributed amongst processors wi th in the worksta-

tion. However, they could be used as high performance nodes wi th in a distributed 

environment. In commercial environments, shared memory multiprocessors are 

often used as high performance application and file servers, supporting a number 

of client machines over a local area network. 

2.3 Closely coupled architectures 

Shared memory multiprocessors do not scale well due to the bottleneck introduced 

by processors having to access the same memory pool. By giving each processor 

its own separate memory space this bottleneck can be removed. This effectively 

results in N separate computers, where N is the number of processors in the mul-

tiprocessor machine. 

As application threads running on different processors do no t have access to 

the same shared address space, new methods of communication between threads 

need to be found. Possible solutions include: 

a Separate address space/shared memory hybrid. Threads have access to a lo-

cal memory space for storing information not needed by other threads (e.g. 

code, local variables — although the use of pointers could make this prob-

lematic), and use the shared address space for storing data structures that are 

shared with other threads in the application. This decreases the complexity of 

writing applications, but reintroduces the bottleneck of shared memory. In-

deed such architectures may have little performance increase over traditional 

shared memory architectures, depending on the efficiency of local caching; 

® Message passing. If each processor in the machine is able to transmit and re-

ceive messages from every other processor in the machine then communica-

tion can be achieved by copying data between address spaces. As no shared 

memory is involved, bottlenecks can be reduced (assuming that the commu-

nications mechanism between processors is efficient). Existing threads based 

applications will need to be redesigned to use message passing styles, result-

ing in a non trivial porting effort being required; 

8 Simulated shared memory. This makes use of the underlying message pass-

ing architecture of the multiprocessor machine, but presents the programmer 

with a familiar shared memory programming interface. Optimisations per-

formed by the compiler and runtime system are used to increase efficiency 

of the application towards that of an equivalent application running on truly 

shared memory architectures. 

There are a number of technologies which have been designed for closely cou-

pled architectures using a high bandwidth network, with communication in mind. 

2.3.3 Occam 

The CSP model of concurrency (see section 4.2.1) has been adopted by the language 

Occam ((Occ 1988), (Fountain & May 1988)), the main language for the Transputer. 
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This maps CSP constructs, together with common programming language con-

structs onto an Algol like syntax. Channels are used to synchronise and communi-

cate data between processes. 

This presents a message passing paradigm to the programmer. Messages are 

transmitted over channels, with the sending and receiving processes synchronis-

ing during this operation (a transmitting process cannot proceed until a receiving 

process is ready to receive the data). 

2.3.2 Message PassMg fnte^ce 

In a distributed environment where processors do not share memory, an effective 

and efficient method needs to be used to communicate between parts of the sys-

tem. A widespread technique used is that of message passing. The necessary in-

formation is packaged up by a process into a message and passed to some form of 

communication layer. This layer then transfers the packet to its destination, where 

it is passed to the receiving process. As well as point to point, other communica-

tion models such as multicast are supported. 

The Message Passing Interface (MPI) ((MPI Forum 1994)) library is the prod-

uct of a committee of the research and industrial communities. The mission of the 

committee was to develop a standard for message passing, thus hopefully reduc-

ing the number of vendor specific and proprietary message passing libraries with 

incompatible interfaces. It focused on providing an interface for h igh performance 

applications. 

MPI-1, the first version of the specification, focuses mainly on point to point 

communication routines. In addition, the library provides support for collective 

communication amongst groups of processes. The topologies of communication 

networks between processes can be specified, enabling the implementation to op-

timise the underlying communication network and mapping of processes to pro-

cessors. 

It is not designed to be used in a heterogeneous environment, and different 

vendors' implementations of the standard are not required to inter-operate. Hence 

MPI implementations may make use of architecture specific encoding and be fully 

optimised for their target environment. 

2.3.3 Dzsfn'bwW s/zarê f memon/ 

Alewife ((Kranz et al. 1992)) is a combination of hardware and software which pro-

vides an environment for parallel processes through a combination of distributed 

shared memory and message passing. 

This allows the applications programmer to choose the most appropriate tech-

nology for an individual task, with applications being able to use both shared 

memory and message passing concurrently. 
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2.3.4 Swmman/ 

The closely coupled architecture is suited to writing high performance parallel ap-

plications. Its separate address spaces and high bandwidth internal communica-

tions network between processors removes the bottlenecks associated with shared 

memory multiprocessors. 

However the separate address space for each node in the multiprocessor means 

that porting existing non message passing applications is far more involved than 

porting them to run on shared memory machines (often no port ing effort is re-

quired for these machines). 

Mobile processes could be deployed on such architectures to help with load 

balancing amongst nodes within the machine, or if different resources need to be 

accessed on different nodes. 

2.4 Loosely coupled architectures 

A set of workstations connected by a local or wide area network has features in 

common with the closely coupled architecture discussed in the previous section. 

Each node in the network has its own address space, in addition to other resources 

only accessible through the node (for example, a database). Communications be-

tween nodes can only be achieved using message passing over the network as 

there is no shared memory between nodes (although some nodes in the network 

may be shared memory multiprocessors). 

However the network of workstations also has some differences over the closely 

coupled architecture. 

• Multiuser. Workstations tend to be located on users' desks, with users log-

ging on to their own workstations. This allows a "user" resource to be asso-

ciated with a workstation, whereas with the closely coupled architecture it is 

more difficult to associate a user with an individual node; 

» Heterogeneous. Although it would be possible to build a heterogeneous 

closely coupled machine, with different nodes having different CPUs, it is 

most common for all the nodes in the computer to be of the same type. This 

is less so with a network of workstations. As discussed in the introduction, 

there are a number of ways in which workstations in a network can differ, 

including CPU type and operating system; 

8 Reliability. Local and wide area networks around a building / campus / world 

tend to be less reliable than a network between nodes in a single machine. 

This is because there are more parts in the network, including wires, hubs, 

routers and switches, and therefore more things to go wrong. 

There are a multitude of technologies and languages which have been designed 

to support loosely coupled networks. A review of these has been split into three 

main sections: 
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1. Languages and technologies which have no direct support for mobility. These 

systems have the potential to support mobile systems, but such features have 

to be added by the applications programmer; 

2. Languages and technologies with support for limited mobility. These sys-

tems allow a process to migrate to a node where it is executed. Once it has 

migrated, it cannot migrate again; 

3. Support for full mobility. Processes may migrate between n o d e s many times 

in their lifetimes. 

2.4.1 No moMih/ 

This section reviews toolkits and distributed systems which have n o direct support 

for mobile processes. 

Sockgfs 

A low level interface, sockets ((W.R.Stevens 1990)) provides an abstraction to the 

underlying network protocols. The main protocols abstracted by sockets are UDP, 

an unreliable datagram service based on top of IP, and TCP, a reliable byte stream 

service also based on top of IP. 

The sockets abstraction allows connections to be set up to remote computers 

and data to be sent and received across these connections. Sockets impose no rules 

on the format of data which can be sent over a connection, therefore it is up to the 

applications programmer to ensure that data sent over a connection can be read 

and understood by the receiving end. 

The application can achieve this by tackling a number of areas. In order for two 

applications communicating over a network to communicate, they must agree on 

the protocol to be used. This includes the types of messages, w h e n they can be 

sent, and what they should contain. 

In addition a common data format needs to be used when sending messages. 

When communicating between heterogeneous workstations, it is important that 

the receiving workstation receives messages with the same contents as the sending 

workstation. This can be upset if both processors have a different endianness, 

for example, this would cause an integer sent from one node to be interpreted 

as having a different value by the receiving node. Alignment and word size can 

also affect message interpretation if they are different on the sending and receiving 

workstations. 

Resolution of this problem can be achieved, for example, by converting integers 

which are sent over the link to network byte order by the sending node, and back to 

host byte order by the receiving application. This will allow integers to be correctly 

transmitted between machines, even if each of the machines has different byte 

order for data representation. XDR ((Sun Microsystems 1987)) provides a standard 

for the transmission of data in a common format over a network of heterogeneous 

workstations. 

An optimisation of this solution is to negotiate on the link (using network byte 

order messages) whether any conversion is needed when the connection is first 
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established, and only subsequently to convert messages to network byte order if 

sending a message to a workstation with different characteristics. 

This interface is very low level and provides no built in support for the discov-

ery of nodes on the network, fault tolerance and many other features desirable in 

distributed applications. 

PgraZW VzrfwgZ Maĉ zMe 

Parallel Virtual Machine (PVM) ((Geist et al. 1994), (Sunderman 1990)) provides 

a package for programming a network of heterogeneous machines, consisting of 

a library for C and Fortran programmers, and a set of system programs which 

support the virtual machine. 

In PVM a virtual machine consists of a number of machines linked together 

by support software. The user is able to specify a list of physical machines which 

should make up the virtual machine. This configuration need not be static, as 

machines can be added and removed whilst the virtual machine is operational. 

Individual users may configure their own virtual machines, with a single physical 

machine capable of being part of a number of virtual machines. A speed rating 

may be associated with machines, allowing PVM to bias the placing of processes 

towards faster machines (although it does not take account of machine load and 

network performance). 

The PVM library consists of a set of message passing interfaces and process 

control routines. Processes are started by specifying the program name, and, op-

tionally the machine or architecture on which it should be started. PVM will then 

select an appropriate machine and instruct the PVM daemon running on that ma-

chine to start the process. 

Messages in PVM consist of a message tag and message body. A set of routines 

is supplied to marshall and unmarshall data to/from a message body. A message 

can be sent to a specific process using its tid(process id assigned by PVM). Mes-

sages sent between two machines are guaranteed to arrive and are delivered in 

order. They are buffered at the receiving end, where the process m a y either choose 

to consume them serially, or specify a message tag to receive a message by type. 

Broadcasts may be accomplished by sending a message to a set of tids or by 

specifying a named group. Processes can join named groups, allowing operations 

to be performed on the group as a whole, including broadcasts and barrier syn-

chronisations. 

Remote Procedure Calls ((Stamos & Gifford 1990)) provide an abstraction on top 

of sockets which allow distributed applications to be built in a procedural style. 

The application can be split in two. The server receives and executes requests, 

and the clients send their requests to servers. Clients and servers are separate 

applications, and can be executed on separate workstations, communicating using 

message passing over a network. 
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An Interface Definition Language(IDL) is used to specify the requests which 

the client may make to servers. These requests take the form of procedure calls, 

with the interface file compiling into client and server libraries. The client library 

packages up the procedure arguments into a message and sends it to the server to 

be processed. It then waits for the result from the server before returning to the 

caller. This gives the illusion to users of the client library that they are just mak-

ing standard procedure calls, simplifying the distributed programming interface. 

The server library receives requests from clients, unpacks the parameters from the 

received message and makes the procedure calls, returning any results (the proce-

dures return code, OUT parameters) to the client in another message. The Angel 

operating system ((Wilkinson et al. 1992)) provides support for a n optimised RFC 

mechanism called Lightweight RFC. 

Nezws 

Nexus ((Foster et al. 1994)) is primarily designed as a runtime system for task-

parallel languages. It couples global pointers with RFC like requests in a multi-

threaded environment. A Remote Service Request (RSR) specifies a global pointer, 

a procedure to be invoked and the arguments for the procedure. These arguments 

are transferred to the location pointed at by the global pointer, a n d the requests 

procedure is invoked. 

CORB/l 

The Common Object Broker Architecture ((Siegel 1996)) is similar to RFC in that 

it is an abstraction above message passing libraries such as sockets. Like RFC 

an Interface Definition Language is used to specify the interface between client 

and server. Unlike RFC, CORBA is an object oriented environment. Interfaces 

represent a contract between a client and a remote object. Like many objected 

oriented systems, CORBA has support for inheritance and polymorphism. 

All requests made between clients and servers travel via an ORB (object request 

broker). This process uses a proprietary protocol for its connections between client 

and server. Clients do not have to know the exact location of objects they wish 

to communicate with. Rather they have handles to these objects, and the ORB re-

solves this handle to an object and its location in order to forward the message to 

the correct server for handling. Figure 2.1 shows a client sending a message to an 

object managed by the local ORB. A standard inter-ORB protocol allows messages 

to be routed to objects via remote ORBs when the object is not being managed by 

the clients local ORB. This feature removes the need for clients to have knowledge 

of their network environment. Sending a message to an object uses the same inter-

face (through the IDL), be the object local or remote. 

Objects may be discovered in a number of ways (for example, b y creating a new 

object, using the dynamic invocation interface, or via the trader service). COR-

BAServices provide objects with a standard set of tools which they may use in 

order to perform their tasks, reducing the burden on the applications programmer. 
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Server stub Client stub 

I _2. Orbforwaxds to jervec _ _L Clifintj-equest_ _ 

_4. Qtb forwards to client _ _ L _ _ 1 EesulLof cequest 

ORB 

Client Application Server Application 

1 EesulLof cequest. 

Figure 2.1: A request brokered by an ORB 

This is extended with CORB AFacilities, a set of interfaces w h i c h provide high 

level tools for building common elements of applications (for example, user inter-

faces). The facilities are further split into horizontal facilities (which are common 

to many types of application) and vertical facilities (which are common to a certain 

type of application, for example, financial applications). 

DzsfnbwW CompuhMg EMDz'roMmeMt 

The Distributed Computing Environment (DCE) ((Rosenberry et al. 1992)) is an 

initiative funded by the Open Software Foundation(OSF). 

It splits distributed environments into administrative domains calls cells. An 

authentication mechanism is provided to support distributed applications running 

over many cells. In addition a number of technologies which should be present in 

a conforming DCE are specified. 

» RFC. Used as the basic process for request services from a remote machine; 

e Threads. Allowing concurrency to be introduced into single applications; 

» Directory service. This allows applications to discover w h e r e resources they 

need reside in the network. Applications can also register resources they 

provide with the directory service; 

9 Time service. This allows a distributed application to have a consistent view 

of the current time by ensuring that all clocks in the DCE are kept synchro-

nised with each other; 

8 Distributed file service. This allows applications to have access to files, re-

gardless of which node in a cell they are executing on. 

Distributed shared memory 

Midway ((Bershad et al. 1993)) is a distributed shared memory environment. It uses 

a threads interface to provide the application with a means of introducing concur-

rency into an application. A software implementation of a distributed cache is 

used to maintain the consistency of shared data. Different consistency models are 

available to the applications writer, with each model having a trade-off between 

efficiency and ease of use. 
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A weakly ordered system maintains causality within the sys tem whilst reducing 

the number of messages which need to flow. The DASH operat ing system ((John 

& Ahamad 1993)) uses locking primitives that provide hints abou t when a process 

expects to see a consistent view of an area of memory allowing the operating sys-

tem to ensure that the local copy of the shared memory is up to date before the 

critical section is entered. 

MUSE ((Yokote et al. 1989)) is another example of an operat ing system which 

provides direct support for distributed programming (through a set of metaob-

jects). 

2.4.2 LimzW mobz'Zify 

SQL 

SQL ((American National Standards Institute 1992)) is a language used to query 

databases. For a large database residing on a server in a network, i t is more efficient 

to send a query for the database server to execute against the database, rather than 

have the client read sections of the database from the server across the network so 

that it may execute the query locally. SQL is used to express quer ies that may be 

sent across the network for the database server to execute. 

Three tier database systems are becoming more popular in ne tworked environ-

ments. In the traditional two tier approach, clients send queries to the database 

server in order to access and update the database. Therefore t h e client needs to 

possess knowledge of the structure of the database, and the rules that are used to 

access and update data, so called business logic. 

With the three tier approach, clients send higher level requests to servers, for 

example by using the CORE A or RFC interfaces. The servers t h e n make the rele-

vant requests to the database servers, implementing the business logic. The clients, 

who no longer have to implement business logic, are known as th in clients. Three 

tier implementations can improve security, as clients do not have direct access to 

the database, and can only contact it via an exposed API. 

They can also improve the utilisation of database connections, as servers field-

ing requests from multiple clients can query the database on behalf of these clients 

over the same database connection. At first glance it would appea r that three tier 

applications would place a heavier load on the network, as n o w not only is the 

database being queried, but clients and servers are communicating using another 

protocol. As well as producing additional network traffic, it cou ld also increase 

latency. These problems can be reduced however. For example, a separate, private 

network could connect the servers and database. This would remove load from the 

rest of the network and increase security, as clients would not b e able to connect 

directly to the database server. 

The latency question depends upon how long servers take to execute the busi-

ness logic of each request. For a lightly loaded high performance server, latency 

could actually be reduced, as the server could take less time to execute the re-

quest than a standard user workstation (which is likely to be less power fu l than the 
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server). Management tasks can also be reduced, as changing business logic would 

involve updating the servers, rather than all clients which access the database. 

Poskcnpt 

In the same way that SQL has been developed to reduce the a m o u n t of database 

traffic on a network. Postscript ((Taft & Walden 1995)) is a p a g e description lan-

guage which reduces printer traffic on a network. Rather t h a n sending a large 

bitmap to a printer, a Postscript printer receives programs w h i c h generate the 

bitmaps locally, and these are then printed. Since the p rog ram is smaller than 

the generated bitmap, network traffic is reduced. It also reduces the load on the 

client that is printing, as it does not have to generate the bi tmaps itself. 

Profocok 

Protocols which are used by applications to communicate w i t h servers can be 

thought of as simple programming languages. For example, SMTP^ ((Postel 1982)) 

is used by a client to deliver email. Commands sent to the SMTP server include 

MAIL TO; <name>, which instructs the server where the mail is to be delivered, 

and RCTP FROM: <name>, which instructs the server who the emai l is from. Such 

commands are combined in a single session to achieve the client's aim — to deliver 

email. 

More complex protocols such as the X Windows protocol look more like pro-

gramming languages. X events are interpreted by clients, and X servers respond 

to requests issued by clients (similar to RFC). 

/ara 

The Java virtual machine ((Gosling 1995)) allows Java programs, compiled down 

into a byte code, to be executed on a variety of platforms. A s the byte code is 

portable, any platform that has the virtual machine ported to it can execute any 

Java program''. 

Just in time compilers can increase the performance of Java applications (ap-

plets) by further compiling the Java byte code into native machine code. This re-

tains the portability of Java applets, as byte code is used to distribute them, whilst 

improving performance by reducing the overhead of byte code interpretation. An-

other technique is to use threaded code ((Bell 1973)) which preserves the space 

advantage of byte code whilst improving performance. 

Currently the main use of Java is to distribute applets from w e b servers to ex-

ecute on local clients, with web browsers used to display the apple t ' s output. As 

applets can be downloaded from servers where little is known of their contents, 

they can be sandboxed so as to reduce the chances of them accessing or disrupting 

data on client workstations. 

^Simple Mail Transfer Protocol 
''Although incompatibilities between VMs do exist 
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However, technologies such as RMI® ((RMI1996)) and Jini ((Waldo 1998)) allow 

more complex Java applications to be written which can interact w i t h a network of 

other Java nodes. 

Another technology for distributing applications on the Web is Microsoft's Ac-

tiveX. It allows any program, often compiled into native code, t o be downloaded 

from a web server and executed on a client, again with results sent to the web 

browser. As native code is harder to sandbox, authentication techniques are used 

to ensure that unsafe code is not executed. 

OmMz'ware 

Omniware ((Adl-Tabatabai et al. 1996)) uses a byte code for distribution of pro-

grams over a network. These byte code programs are then fu r the r compiled into 

native machine code before being executed. A method called software fault isolation 

prevents programs from accessing memory outside their application boundaries. 

This simplifies the validation of processes by the virtual machine, as processor 

rather than source semantics can be used for program verification. 

2.4.3 PwZZ TMo&z/zty 

The Unix rsh® command allows shell scripts to be written which can transplant 

themselves to other computers on the network. For example, the following script 

finds the path of a user's home directory on two machines, and displays the results: 

#!/bin/sh 

HOMEl='rsh $1 echo 

H0ME2='rsh $2 echo 

echo home directory on $1 is $H0ME1 

echo home directory on $2 is $HOME2 

A script may be sent via rsh to execute on any host where the user has permis-

sion to perform rsh operations. Once a script has been transferred to a host, it has 

the shell's full range of features available to it. These range from start ing programs 

to manipulating files. Anything the shell can do, given the user ' s permissions, a 

remote shell script can also do. 

This openness is very powerful when writing scripts that pe r fo rm well tested 

tasks in a known and limited environment. But it also means tha t it is very inse-

cure. 

For example the following script would attempt to perform a n evil task on a 

remote machine: 

!#/bin/sh 

# Do not run me! 

^Remote Method Invocation 
® Remote shell 
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rsh $1 'rm -rf /' 

For this reason care needs to be taken when writing remote shell scripts, and 

most networks will not allow them to be started from hosts outside their domain. 

This does not make r s h a good candidate for writing mobile code for large 

scale applications. 

Network j ZoMgwge 

NCL ((Falcone 1987)) uses a universal Lisp-like language to transparently send 

commands between clients and servers over a heterogeneous network of worksta-

tions. Clients send procedures for the server to execute. These procedures may 

send other procedures for remote evaluation elsewhere, allowing a procedure to 

migrate more than once between machines in the network. 

KaZz Sc/zemg 

Kali Scheme ((Ceftin et al. 1995)) is a distributed Scheme programming environ-

ment built on top of Scheme-48 ((Kelsey & Rees 1995)), a byte code interpreter 

designed at MIT. 

Unlike many other distributed Lisps, it does not implement a shared memory, 

but instead uses separate address spaces with a set of message passing primitives 

provided to the user to allow communication between nodes. 

Address spaces are treated as first class objects. The ( m a k e - a d d r e s s - s p a c e 

<node>) primitive spawns a new Kali Scheme image on the specified node (where 

node is a network address or a hostname which can be resolved to a network ad-

dress). The object returned by the primitive is a pointer into the address space on 

the remote node, and can be used to send messages to the node. 

As well as supporting the transmission of basic Scheme data types (lists, sym-

bols, constants, etc), the Kali Scheme message passing primitives can be used to 

send and receive higher order data types such as functions, closures and continu-

ations. Continuations are sent in a lazy fashion; only the top few frames are sent 

at first, with subsequent frames being requested by the receiving node if they are 

needed for evaluation. This allows cheap migration of processes, and can cut down 

communication costs as often the process will not unwind to the top of its stack. 

Continuations are used to represent threads in a Kali Scheme program. User 

level schedulers may be installed to handle context switching between threads. 

This could be used to define an application specific load balancing system by 

spawning a threads continuation on a remote address space. 

As each Kali Scheme node has a separate address space, with data being copied 

between address spaces (messages), garbage collection may be performed inde-

pendently. The one exception to this is a new data type introduced by Kali Scheme 

called the proxy. 

A proxy may be thought of as a remote pointer. The (make-p roxy) primitive 

returns a pointer to an address on the current node. This address may then be ref-

erenced using ( p r o x y - v a l u e <proxy>) and set using ( s e t - p r o x y v a l u e ! 

<proxy> < v a l u e > ) . However unlike a remote pointer, these operations are only 
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valid on the node which created the proxy. Remote nodes can f i nd out the address 

space in which the proxy resides using (proxy-address <proxy>) which re-

turns an address space object. 

As the proxy is just another Scheme object, it can be passed between nodes 

using the message passing primitives. However as it points back into another 

node's address space, it is unsafe to reclaim the proxy on one n o d e if other nodes 

reference the proxy. For this data type alone a distributed garbage collector is used. 

To ease the programming burden, primitives have been built o n top of the mes-

sage passing layer. As the data does not reside in shared memory, these primitives 

allow computations to be migrated towards the data. 

( r e m o t e - a p p l y < a d d r e s s > <expr>) applies the expression in the specified 

address space, and synchronously waits for a response. This may be thought 

of as a remote procedure call in traditional languages; 

( r e m o t e - e x e c < a d d r e s s > <thunk>) takes a thunk (a function of no argu-

ments) and spawns a new process in the specified address space to execute 

the thunk. The requesting address space does not wait for the thunk to finish 

executing. This allows new processes to be introduced into a remote node. 

For example, to move the current process to a remote node x the following 

expression would suffice: 

(call/cc (lambda (k) 

(remote-exec x (lambda () (k #t))) #f)) 

By testing the return code from the c a l l / c c the application can determine if 

it is the migrated process (return code is true), or is the original process (in which 

case the return code is false). 

2.4.4 Swmman/ 

There is a multitude of technologies available for the distribution of applications 

through a loosely coupled network. These range from methods for distributing a 

stand alone application to clients' machines (web clients pulling applications from 

servers), through low level protocols for message passing such as sockets, to higher 

level distributed application oriented technologies like CORBA. 

These technologies provide varying support to mobile processes. Languages 

which make use of a common code representation are better suited to process mo-

bility as they can operate on a number of nodes in a heterogeneous network. Kali 

Scheme has support for the distribution of processes through the ability to capture 

and transmit continuations and closures. Java provides support for the transmis-

sion of code for a class through the RMI interface. 

2.5 Chapter summary 

This chapter has presented a survey of technologies and languages which may be 

used to implement parallel and distributed systems. 
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Shared memory systems allow the provision of parallelism to existing appli-

cations through the use of operating system threads. By executing threads on 

separate processors parallelism can be achieved without the n e e d for rewriting 

applications that other techniques such as message passing systems require. 

It has been shown that distributed environments can be categorised by their 

support for the mobility of processes they provide. Message passing layers such 

as sockets and PVM provide no direct support for mobility of processes, although 

Kali Scheme shows that such systems together with a portable process representa-

tion can be used to achieve mobility. 

All these systems provide some support for the coordination of activities be-

tween threads and tasks (such as the semaphore or event). However, these capa-

bilities are either deeply integrated into the computational language or are a "bolt 

on" library. 

The next chapter introduces languages which have been specifically designed 

with coordination in mind, and can be separated from their computational lan-

giiage(s). 
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Chapter 3 

Coordination of distributed 

applications 

3.1 Introduction 

The previous chapter discussed different architectures which can be built to sup-

port parallel and distributed applications, and computer languages that provide 

abstractions of these architectures. 

All these languages have one thing in common — at some level they pro-

vide support for multiple processes or threads running within a single applica-

tion. Even in languages which attempt to hide parallelism, the runtime system 

will make use of threads or multiple processes. 

Two mechanisms are needed to support this concurrency; 

Communication —• This is needed to pass data between threads and processes so 

that they may cooperate in solving a single task. This communication can 

be explicit (message passing) or implicit (shared variable in a (distributed) 

shared memory); 

Synchronisation — Used to ensure that processes and threads only communicate 

and access common areas of memory when it is safe to d o so, preventing 

simultaneous update of a resource. 

Together these two mechanisms are called coordination. This chapter investi-

gates coordination and how these mechanisms can be separated f rom other aspects 

of a computer language. 

3.2 Coordination languages 

A coordination language does not specify how different elements involved in a 

computation should proceed, but rather how the elements interact to achieve the 

desired result. 

A computation can be thought of as a number of elements. These elements 

could be as small as a thread of control within a process, or as large as a set of 
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elements (recursively). In (Carriero & Gelernter 1992), Gelernter and Carriero call 

a collection of such elements an ensemble. 

An ensemble need not be composed of just machine elements. A user could 

also be thought of as an element as they are involved somehow in the computation, 

even if that involvement is just collecting the results the program generates. Many 

of today's programs coordinate more frequently with a user v i a graphical user 

interfaces. 

Thus every program consists of a number of elements which n e e d to be coordi-

nated. Even a single threaded program needs to coordinate its resul ts somehow, be 

it to a user, a file, or another program using a form of inter-process communication 

such as pipes. 

3.3 Relationship with computation languages 

It can be argued that a coordination language is orthogonal to a computational 

language. In order to operate correctly, an application will need to perform both 

coordination and computation, with computation being used to per form process-

ing of data, and coordination managing the processing of this da ta . 

As can be seen from above, even the most trivial programs h a v e a combination 

of computation and coordination. 

Traditional languages provide coordination through access to a library of rou-

tines, often provided by the host operating system. For example t he stdio library in 

Unix systems provides access to basic file management routines. As these library 

routines are not built in language constructs, they may be thought of as interpreted 

commands. There is no scope to optimise these operations based on knowledge of 

the implementation as a whole — the same primitives are used b y whichever pro-

gram invokes them. 

Managing coordination of tasks through a coordination language permits op-

timisation on a per application basis. As computational language compilers can 

optimise a routine based on knowledge of the computation as a whole , so the com-

piler of a coordination language can optimise communication and synchronisation 

based on knowledge of overall program structure. 

For example, if it can be determined that two processes communicate with each 

other frequently then it can arrange for these two processes to r u n on the same 

node of a distributed system, helping to reduce communication costs and increas-

ing efficiency. 

3.4 Features of a coordination language 

Coordination languages are conceptually simple as they need to express very few 

constructs. A good coordination language should be able to express coordina-

tion for both tightly coupled and loosely coupled architectures, thus freeing im-

plementers of systems from knowing about the underlying architecture they are 

targeting. 
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As discussed in the introduction, a coordination language n e e d s to be able to 

represent and manipulate the basic elements of coordination w h i c h occur within a 

running application. 

1. Create new processing elements. These could be new threads of control 

within an existing process or a new process entirely. N e w processes can be 

targeted at a uniprocessor, multiprocessor or distributed architectures; 

2. Communicate between processing elements. This communication could be 

achieved in a number of ways. Shared variables allow different threads 

within a process to communicate values between themselves. Shared mem-

ory between processes can be used on closely coupled systems. For loosely 

coupled systems, message passing will need to be used to communicate be-

tween elements. The coordination language can hide aspects of this in order 

to present a consistent interface across architectures; 

3. Synchronise processing elements. This can include suspending a thread of 

control until another thread signals it to continue (for example a worker 

thread suspends itself until a master thread gives it work to do). Another 

form of synchronisation is controlled access to a shared resource (for exam-

ple critical sections). 

The following sections give example implementations of languages which al-

low coordination of computational languages. An overview of each language is 

given including how it integrates with a computational language. The benefits 

and drawbacks of each approach are also discussed. 

3.5 Linda 

3.5.1 ODgfTiew 

Linda ((Carriero & Gelernter 1989)) allows application programmers to write ar-

chitecture neutral applications by providing an abstract model of a computing sys-

tem. In this model all processes communicate via a global address space, known as 

"tuple space". It is the responsibility of the underlying Linda run t ime to provide a 

concrete implementation of this abstraction. Such implementations exist for both 

closely and loosely coupled architectures. 

Objects which reside in the tuple space use a universal data representation to al-

low sharing of data between processes written in different languages. This allows 

a single distributed application to be built from many processes, with processes 

implemented in a language that suits their function. 

3.5.2 ZMkgratzoM wzfk ZgMgwages 

Linda extends each computational language with four primitives which provide 

applications with the ability to communicate via the tuple space and to manage 

process creation during the lifetime of the application as a whole. 

Communication is achieved by creating a data object tuple a n d adding it to the 

tuple space. Any other process can then read this tuple, and t hus inter process 

communication has occurred. Note that this communication is asynchronous — 
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the process that writes the tuple will not wait until the tuple is consumed before 

proceeding. The receiving process will block until a suitable tuple is present. 

A live tuple can be added to tuple space. This in effect creates a new process 

(with the Linda runtime system deciding where this process should execute). Once 

finished the task becomes a data tuple, the data being the result of the process's 

computation. 

The four primitives defined by Linda are: 

e v a l — Create a live object to evaluate an expression and place it in tuple space; 

o u t — Create a data object tuple and place it in tuple space; 

i n — Remove a tuple from tuple space; 

r d — Read a tuple in tuple space, but do not remove it. 

A process selects a tuple to read/remove by specifying a templa te the tuple 

must match. The Linda runtime will then attempt to match the templa te to a tuple 

in tuple space and read/remove the tuple. For example, the operat ion i n ( " t e s t " , ?x) 

will remove a tuple whose first element is the string " t e s t " and bind the second 

element in the tuple to the variable x. If no match is found the process blocks until 

a suitable tuple is added. 

3.5.3 Lmda m operaHoM 

The tuple space abstraction greatly aids the programmer when wri t ing portable, 

distributed applications. Linda has been integrated with several computational 

languages, including C, Fortran, Scheme, and Modula-2. Linda runs on several 

types of parallel machines, and sets of workstations connected b y a local area net-

work. 

In (Carriero & Gelernter 1998), Carriero and Gelernter show the applicability 

of Linda to a range of applications. In (Carriero & Gelernter 1989), they compare 

Linda with other concurrent programming systems. 

3.6 Actors 

3.6.1 ODem'ew 

From a general perspective, the Actors model resembles other mode l s which con-

sist of processes that cooperate using inter-process communication via message 

passing, as message passing in the Actor model uses unidirectional, asynchronous 

communication with unbounded buffers. 

However, it does possess features which distinguish it from traditional message 

passing models, with support for dynamic process creation and the use of arrival 

ordering of messages. 

Hewitt and Baker defined a set of laws ((Hewitt & Baker 1977)) (see table 3.1), 

which can be derived from first principles. These, together with Hewit t ' s work on 

control structures ((Hewitt 1979)) as patterns of message passing, form the basis 

of the development of the Actor model. Agha's thesis ((Agha 1986)) provides a 

comprehensive description of this model. 
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Every object in the Actor model is an actor, for example the number one, or the 

function nf i b . The system progresses by actors asynchronously sending messages 

to each other (where messages are also actors). 

There are three kinds of actor: 

Primitive actors — These correspond to basic data types and pr imi t ive functions 

of the computational language, such as the number 5 and t h e multiplication 

operation; 

Serialised actors — Contain mutable local state, modifiable b y the actor. Such 

actors are commonly used as data repositories, such as the register or stack; 

Unserialised actors — contain immutable state. For example the factorial function 

may be implemented as an unserialised actor in terms of o ther primitive or 

unserialised actors such as true, one, multiply, and recursively, factorial. Any 

number of instances of the same unserialised actor may be executed, as ref-

erential transparency shows that this is safe given no muta t ions of state. 

Actors communicate using messages, which are themselves actors. Each actor 

in a system responds to a fixed set of messages. Concurrency is introduced by 

an actor sending a number of messages in response to one input message, and is 

correspondingly reduced by an actor which receives a message not sending any 

new messages. 

Messages are composed and sent asynchronously to target actors. A weak fair-

ness rule guarantees which all messages are delivered sometime in the future, and 

will eventually be processed by the receiving actor. As messages a r e themselves ac-

tors they may be created by sending a message to the primitive create-unserialised-

gcfor. 

One important class of actors is the continuation actor. This actor captures the 

state required to complete evaluation. Typically an actor will s end a continuation 

as part of a message to a target actor, which will send its reply to the received 

continuation. This effectively blocks the client actor until its request has been pro-

cessed, allowing for synchronisation within an asynchronous message passing sys-

tem. 

Every actor may be described by a scnpi{behaviour) and acquaintances{environment). 

Scripts are applied to incoming messages, where templates match the message and 

specify the behaviour of the actor. 

The acceptance of a message by an actor is termed an "event". The exclusion of 

iterative constructs in the language other than recursive message passing ensures 

that an actor script executes in a finite time on receipt of a message, allowing an 

underlying run to completion (or cooperative) scheduler to implement the weak fair-

ness guarantee. This also ensures that an actor script cannot flood the system with 

an infinite number of messages. 
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1. If an event .Ei precedes an event 7̂%, then only a Hnite number of events occurred 

between them; 

2. No event can immediately cause more than a finite number of events; 

3. Each event is generated by the sending of at most a single message; 
4. The event ordering is well-founded (one can always take a finite number of "steps" 

back to the initial event); 

5. Only a finite number of actors can be created as an immediate result of a single event; 

6. An actor has a finite number of acquaintances at any time. Acquaintances are the 
actors to which it can send messages. An actor's acquaintances when processing a 
message are the union of its own acquaintances and the acquaintances of the message. 

Table 3.1: Laws for actor systems 

3.6.2 MfegrafzoM compwfafzoMaZ 

The pervasiveness of the message, together with the continuation actor makes bind-

ing the actor model into existing computational languages problematic. Most com-

putational languages have no direct support for continuations, a n d efficiently im-

plementing message passing primitives with fine grain parallelism is difficult. 

Several new languages have been defined which make use of the Actor model, 

whilst providing support for computation. SAL, which has an Algol-like syntax is 

one example, and Act3 ((Hewitt et al. 1984)) is built on a simpler actor language. 

Act. Act has a Lisp like syntax, with complex pattern matching be ing used to bind 

identifiers. 

3.7 Opus 

3.7.3 

Opus ((Haines et al. 1996)) extends the Fortran programming language to provide 

a coordination model which allows an application to be distributed over a number 

of nodes. These nodes may either use a shared memory, or have disjoint address 

spaces with message passing providing the illusion of a shared memory. The ac-

tual address model is hidden from the programmer, and suppor ted by the Opus 

runtime. 

Opus introduces the SDA (ShareD Abstraction) to Fortran. This may be thought 

of as a class like structure in C++, although it has no support for inheritance. An 

SDA consists of a set of data elements and methods which act on these elements. 

Access to an SDA is serialised — i.e. at any one time only one me thod of an SDA 

may be executing. External access to an SDA's data elements is also serialised. This 

frees the programmer from having to use critical sections and locks at the expense 

of possible loss of some parallelism. For example it might be safe for two methods 

in the same SDA to act concurrently if one does not modify data in the SDA that 

the other needs to access, but Opus will always serialise these methods as they 

belong to the same SDA. 

Serialising access to an SDA also reduces the possibility of deadlock, but does 

not remove it. Although methods within an SDA cannot deadlock each other as 
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they never run concurrently, if a method needs to call a method in another SDA 

then this could cause deadlock. For example SDA A method x calls SDA B method 

y, but method y is blocked because method z is currently executing. If method z 

were to call another method in SDA A then deadlock would occur. 

Preconditions may be attached to methods (as when clauses) which specify 

what state an SDA has to be in for a method to execute. For example in a stack 

SDA the pop method may have a precondition that there is at least one element on 

the stack. 

Calls to SDA methods may be synchronous or asynchronous. In the asyn-

chronous method any OUT parameters are invalid until the SDA method com-

pletes. The SDA method returns an event that may be tested (asynchronous) or 

waited on (synchronous). 

A set of constructs is provided to manage SDAs. These include SDA creation, 

deletion, finding existing SDAs and serialising and unserialising SDAs f rom/ to 

persistent storage. 

3.7.2 fzikgrafzoM wz'f/i compwfah'oMgZ 

As stated in the previous section. Opus is closely tied to Fortran to provide the 

computational part of a distributed Opus application. Opus is similar in concept to 

concurrently executing objects, and other objected oriented languages have similar 

support for concurrency (for example concurrent C++ and Corba). 

3.8 Manifold 

3.8.3 OucTTzew 

In (Arbab 1995), Arbab introduces two models for coordination of massively con-

current activities. 

TarggW seM f̂/recezDg 

This models traditional message passing systems such as sockets. Processes send 

messages to a specific process by providing some unique address tha t the underly-

ing message system can resolve into a physical destination (processor and process 

pair). Receiving processes typically will not specify a source from which they wish 

to receive, although security considerations will limit this set of processes. 

The Idealised worker/idealised manager (IWIM) model abstracts coordination away 

from the underlying communications network. A worker process has a number of 

input and output ports through which it receives and sends data. 

A manager process is responsible for creating worker processes and config-

uring the (abstract) communications network by creating channels and attaching 

them between input and output ports of worker processes. 

The manager process can dynamically change this network throughout the life-

time of an application. 

48 



Managers can also be managed, acting as a worker to a higher level manager. 

This capability allows a distributed application to be decomposed into a set of 

concurrent modules, with each module having its own manager. 

coordmafzoM /aMgwagg 

Arbab goes on to discuss Manifold, a coordination language w h i c h implements 

the IWIM model. Worker processes are written in a high level computat ional lan-

guage, interfacing with a library which provides the implementation of ports and 

support for linking an application into a Manifold application. Channels can per-

form either synchronous or asynchronous communication be tween ports. 

Manager processes are written in Manifold, which is implemented as a state 

transition language. This allows networks to be created out of worker processes, 

without explicit knowledge of the worker 's implementation language. Workers 

may raise events which cause state changes in their manager process, allowing 

managers to dynamically reconfigure their workers. 

3.8.2 iMfegrafzoM compwfah'oMaZ ZoMguages 

Manifold uses a C runtime library to provide ports and events to worker processes. 

Thus the only constraint on a suitable language for the implementation of worker 

processes is that it must be able to link with C libraries. 

C and C++ are obvious choices, but other languages which h a v e foreign func-

tion interfaces can also be used. Data that flows through ports a re of standard C 

types, thus any foreign language must be able to transform data f rom its internal 

representation to a C representation. 

3.9 MeldC 

3.9.1 Ouerriew 

MeldC presents a distributed object oriented environment to the programmer. Un-

like other systems which class themselves as a coordination language, MeldC in-

cludes a computational language as well as mechanisms for the coordination of 

computations. 

In MeldC, most entities within the system are represented as objects. Messages 

can be sent to these objects, with the MeldC kernel routeing messages to the correct 

destination. Data types which cannot be represented as objects are modelled as 

built in types in the MeldC kernel. For example the message cannot be represented 

as an object, as a message would have to be sent to the message class in order to 

create a message, resulting in an infinite regression. Other primitives in the MeldC 

kernel which cannot be modelled as objects include threads and synchronisation 

routines. 

Threads are used to handle requests made to objects by other MeldC objects. A 

transformation process is used to turn a message into a thread which dispatches a 

routine to process the message. On return the the thread is t ransformed back into 

a reply message and sent back to the requesting object. 
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Other network resources can be modelled in MeldC by creating gateway ob-

jects. These provide a MeldC object interface to other objects running in the MeldC 

application, and translate requests into the appropriate behaviour to operate the 

foreign resource. 

The MeldC object system allows object behaviour to be extended in two ways, 

through structural and computational reflection. The structural reflection employs 

a meta object system ((Kiczales et al. 1991)) to allow the application writers to 

change behaviour of classes. All classes are first class objects in MeldC, with classes 

generally being instances of the class Metaclass, with Metaclass being an in-

stance of itself. Metaclass defines the behaviour of creating a n d destroying ob-

jects. By deriving a class fromMetaclass, new types can be defined with different 

behaviours from instances of Metaclass (for example, persistence). 

MeldC also provides a mechanism for objects to dynamically change their be-

haviour through object composition and computational reflection. Secondary be-

haviour is added to an object by attaching a shadow object. This shadow object 

is a regular object, which receives requests sent to the primary object, allowing it 

to change the behaviour of the object to which it is attached without the need for 

the system to be restarted. For example, an audit object can shadow an accounting 

object, which in turn may be shadowed by a monitoring object. The meta object 

system is used to provide this functionality. 

3.9.2 ZMkgrgfz'oM wzYA compwfafi'oMaf 

MeldC provides its own computational language in addition to message passing 

primitives that provide support for the coordination of objects. 

Foreign resources may be incorporated in MeldC through the use of gateway 

objects. 

3.10 Logic based coordination 

In (Diaz et al. 1996), it is shown how the use of logic variables can be used to 

coordinate multiple processes. 

Two new data types are introduced to the computational language. 

The logical channel — This data structure is used to transmit a n d receive tuples 

of data between processes. The primitives Put (x) and Get (x) are used 

to implement non blocking sends and blocking receives respectively. The 

channel network can be defined with one producer and many consumers to 

implement a form of multicast; 

The logical variable — This variable can represent any standard data type within 

the language, and can be transmitted as a higher order object over logical 

channels. The variable may only be instantiated once, with consumers block-

ing until the variable is instantiated. 

The ability to pass logical variables over channels provides a method for im-

plementing synchronous requests. The logical variable is passed along with other 
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data in the request tuple, and once completed, the server can instantiate the logical 

variable with the request result. The client blocks, waiting for t h e logical variable 

to become ready, and once read the request is complete. 

Note that as channels are not higher order objects themselves, they may not be 

passed as data in tuples over other channels to provide a return p a t h to the client. 

3.10.2 InkgraHoM witk compuWHonaZ kngi/ages 

Any language which can support the addition of the logical charmel and variable 

constructs (be it through macros or an additional preprocessor s tep) is suitable for 

operation with the logic channel coordination model. 

A suitable common data representation needs to be chosen fo r the transmission 

of tuples over channels and the setting of logical variables so that processes written 

in dissimilar languages or operating in a heterogeneous environment can correctly 

communicate. 

3.11 Structured dagger 

Structured dagger ((Kale & Bhandarkar 1996)) has been designed to provide sup-

port for coordination amongst processes written in Charm ((Kale et al. 1994)), a 

distributed message passing language. 

Charm objects are augmented by entry methods. These blocks specify com-

putations and the dependencies of these computations to messages, including the 

arrival order of messages and dependencies on other computations. 

For example, a constraint could be placed on a stack object such that it will only 

process pop messages when there is data on the stack. In base Charm, this case 

would have to be explicitly handled by consuming the pop message and buffering 

it until a push message was processed. This is achieved by placing a when block in 

the charm object, allowing a guard to be specified that must hold before a received 

message can be processed. 

The s e q and o v e r l a p constructs inform the compiler about dependencies be-

tween blocks of code. The s e q construct means that all operations must be per-

formed in sequence, whereas the o v e r l a p constructs allows concurrent execution 

on receipt of multiple messages. 

3.212 ZMkgraHoM compwktzoMa/ Zangwages 

Structured Dagger is closely linked to Charm. This is a machine independent par-

allel programming language. The Charm language is similar to C with a few syn-

tactic extensions. 

Programs consist of medium grain objects (chares). These chares interact by 

sending messages between themselves and through the use of special information 

sharing modes. 
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3.12 Agora 

3.12.1 Orerriew 

Agora ((Bisiani & Forin 1998)) uses a (virtual) shared memory for the communica-

tion of data between processes. Each process running in the Agora environment 

has an event queue which is used for event driven synchronisation between pro-

cesses. 

Objects stored in the shared memory are statically declared a n d must declare 

their type. Data types allowed in the shared memory include basic types, records 

and hash tables, but cannot include recursive types or pointers. 

Objects residing in shared memory are write once, with subsequent writes pro-

ducing new copies of the object. Each process has a map of object to shared mem-

ory address. These maps are lazily updated as object contents change. A mark and 

sweep garbage collector is used to manage the shared memory. 

In loosely coupled systems the shared memory is simulated with the use of 

Agora servers, with a master slave replication model used to maintain state. Write 

requests are always sent to the master server. Reads are cached by processes, 

with the master server broadcasting (either using a network broadcast, multicast 

or multiple point to point messages) object changes to all processes which have 

cached copies of the object. 

Shared objects have names, with a flat name space held on the master Agora 

server. Processes initially read objects in the shared address space by binding to 

the object providing its name as the key. As most of these lookups occur during 

the initialisation phase of the application, system performance is generally not im-

pacted by having to send messages to the server to perform object lookups. 

3.12.2 iMkgrafzoM wzYA ZoMgiiages 

Agora has bindings with CMU Common Lisp, C, and C++. The authors show how 

the shared memory system can achieve comparable results with message passing 

systems. In simulated shared memory implementations running on loosely cou-

pled systems, fewer messages are used over traditional message passing systems, 

especially where the network supports broadcast or multicast to update caches 

with changed objects. 

3.13 Summary 

Coordination languages provide the ability for processes to communicate in a 

structured fashion. This coordination can be orthogonal to the computation an 

application carries out. 

Languages such as Linda and Manifold provide constructs for coordination 

which are independent of the computational language. This allows the applica-

tions programmer to choose a computational language which is suitable for im-

plementing the chosen solution, whilst writing to a common coordination model. 
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Other languages such as Structured Dagger and Opus are closely tied to a com-

putational language (Charm and Fortran respectively). Providing implementa-

tions for other languages might be possible, but assumptions a b o u t available data 

types and computational forms might make parts of the coordination model diffi-

cult — especially if the coordination model needs to work with processes written 

in multiple languages. 

Although coordination and computation may be considered orthogonal, there 

will always be overlap between the computation and coordination modules in an 

application. For example, data will in some way need to be sha red between pro-

cesses, thus enforcing a set of data types which a coordination sys tem can handle. 

If the coordination system is designed to work in a heterogeneous environment 

with processes written in different languages interacting, this set of data types be-

comes an intersection of the data types of all the supported computational lan-

guages. 

This can limit the expressiveness of a distributed application. For example. Lisp 

has support for higher order objects such as continuations and closures, whereas 

other languages such as C have no direct support for such types. Thus if an appli-

cation were to make use of C and Lisp it would be unlikely that these higher order 

expressions could be used as part of the common data types. 

MeldC shows that by combining coordination with a specific computation lan-

guage, an arguably more powerful distributed environment can be created over 

a system using a separate computation and coordination language. However, the 

disadvantage of this closed system is the requirement to create gateway objects 

to access services not directly written in MeldC (although it can also be argued 

that gateway processes need to be written for any service not implemented using 

a chosen coordination language). 
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Chapter 4 

Coordination in a mobile 

environment 

4.1 Introduction 

This chapter discusses a method for writing distributed applications which are 

made up of mobile processes. This presents challenges when designing the prim-

itives which are used to provide coordination and communication within the ap-

plication. 

For a process to be mobile, a method of locating the process needs to be de-

fined so other processes in the network may communicate with it. In static net-

works this can be determined at compile time, or system initialisation time where 

process placement is defined by a separate configuration file. However mobile net-

works require a more dynamic solution to maintain an effective communications 

network. 

The following section discusses current models of distribution, and how these 

models may be used to provide a framework for writing systems with mobile pro-

cesses. 

Section 4.4 goes on to describe how a particular model using channels can be 

used as a coordination model for dynamic systems, and chooses a suitable compu-

tation language to bind with the coordination system in section 4.6. 

Finally, section 4.8 describes possible implementations of the distributed sys-

tem. 

4.2 Models of distribution 

As with other large engineering projects, modelling can play a pa r t in the building 

of a distributed computing system. Various aspects of the system can be modelled, 

from individual components which make up the system to the structure as a whole. 

Modelling the interactions between different processes in the system allows the 

distributed application designer to investigate which designs produce the most ef-

ficient solution to a problem. The efficiency of a solution can be measured in a 
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number of ways, for example by calculating the computation t ime of each process 

and finding the slowest path of execution in the application. Ano the r method is 

to examine the number of cross process interactions which are l ikely to occur in 

the final system. Each interaction is likely to involve at least one message being 

passed between the processes, which are possibly executing on different nodes. 

Message passing is likely to be the slowest part of the system, as it relies on net-

working technology that runs at a fraction of the speed of processors, causing the 

network to become the bottleneck of a distributed system. By reducing the num-

ber of interactions between processes which form the critical path of execution in 

a distributed application, improvements in the overall system performance can be 

made. 

Models which are based on a formal semantics can also be pas sed through the-

orem provers ((FDR 1983)) to investigate whether desired propert ies of the system 

hold true (for example, that interactions between processes never cause deadlock). 

At the lowest level of a distributed system the unit of interaction between two 

processes operating on different nodes is the message. A number of models have 

been designed which abstract the message passing layer using channels. 

In essence a channel may be thought of as a pipe, with two ends . One end of 

the pipe may be used to send messages, with the other receiving these messages. 

In the case of a bi-directional channel, either end may send and receive messages 

over the channel. Implementations of message passing systems are able to be mod-

elled using charmels. For example a socket could be expressed as a bi-directional 

channel, able to send and receive messages between two fixed points on a network. 

Thus a formal model based on channels may be able to be directly implemented 

using sockets as the physical representation of the channel. 

Other models which have the channel as the basic element of communication 

make the mapping of a model to an underlying message passing implementation 

more complex as they extend the notion and capabilities of a channel. 

The following sections present a number of languages which u s e channels for 

inter-process communication. 

4 2 1 C5P 

Communicating Sequential Processes ((Hoare 1985)) provides a notat ion for defin-

ing a static network of processes. Each process executes a sequence of events (for 

example a & represents the event a followed by the event b), whose names con-

stitute the alphabet of the process. Recursion within processes is the only permitted 

looping construct (for example P = a P). Two processes running in parallel 

synchronise on events common to alphabets of both the processes — these events 

must execute in lock step fashion. The choice operator allows a process to proceed 

in a number of ways depending on which event is chosen, allowing non determin-

ism to be introduced into a system. 

The model has been extended to allow communication as well as synchroni-

sation between events. This is achieved by one process outputt ing a value and 
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another process inputting the value. The communication occurs when processes 

synchronise on an event. 

An example of a CSP process is a static network to act as logic gates. Two 

gates are shown below, the unary NOT gate and the binary AND gate. Each gate 

synchronises on its inputs and outputs the result of the logical operation. The 

binary operation introduces non determinism by allowing either of its input gates 

to become ready first. 

A.ND(^a,b,c) = (a?Zi —> 6?l2|&??i -4- aTlg) —> c\fnAnd{li^l2) —̂  AND{^CL,h,c) 

CSP has no support for the mobility of processes and reconfiguration of com-

munications networks. The alphabet of a process is fixed, and is not a first class 

object (i.e. it cannot be used as an object communicated over an event). The pro-

cess is also not treated as a first class object, and hence may not migra te around the 

network. 

The most well known implementation of CSP is Occam(see section 2.3.1), but 

others do exist. For example an integration of CSP into Lisp is described in (C.J.Fidge 

1998). 

4.2.2 TTze 7r-caZcwZws 

The TT-calculus is a way of describing and analysing systems consisting 

of agents which interact among each other, and whose configuration or 

neighbourhood is continually changing ((Milner 1991)). 

In the monadic 7r-calculus((Milner 1991),(Milner 1993)) there are two entities. 

The most primitive is the name (also referred to as a link, or channel). Processes are 

the only other entity in the system, with names used to specify interfaces between 

processes. If two processes have access to a common name (using normal lexical 

scooping rules) then those two processes can communicate using that name. 

Communication between processes is synchronous. Values m a y be transmit-

ted one way during a communication. In the case of the monadic vr-calculus, only 

names may be transmitted during a communication. This implies that names are 

dynamic, allowing networks of processes to reconfigure themselves during execu-

tion. For example, the following expression reduces, allowing two initially uncon-

nected procedures to communicate. 

ab.P I a{c).c.Q | b.R ^ 

f I &Q I &#=> 

f I 0 I ^ 
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action terms A ::= xy.P send y over x 
z(y).f receive any y over X 

terms P •.:= Ax + . . . + An alternative action 
j 4 i | . . . \An concurrent action 
vyP restriction (new y in P) 
\P replication (!P = P| |!P) 

basic rule of computation : 
^ 

Table 4.1: 7r-calculus constructs 

Constructs for the specification and creation of processes allow systems to be 

defined. The dynamic nature of the 7r-calculus extends to processes, with con-

structs provided to create new processes during execution, again dynamically chang-

ing the structure of the network. Table 4.1 shows the constructs available to the 

monadic vr-calculus. 

The polyadic 7r-calculus extends the monadic vr-calculus by allowing multiple 

names to be transmitted over a name in a single operation. Milner shows that 

this is syntactic sugar and may be expressed using the monadic vr-calculus by the 

addition of temporary names to pass the multiple values. In the case of output 

the temporary name is first transmitted, and then the values are sent over this 

temporary name. 

(̂2/1 - - !/»)=> wyn) 

For input the reverse happens. The temporary name is received and then the 

multiple values are received from this temporary name. 

.. .3/n) => w(i/n)) 

As can be seen from the above examples, the polyadic representation is easier to 

understand than the monadic case. By treating it as an atomic action, deadlock can 

be avoided. For example in the above cases n values are transferred over channel 

X. In the monadic case, the sender and receiver must agree on this value of n or one 

process will block. In the case of the polyadic 7r-calculus a rule can be introduced 

that in order to communicate, both processes must have the same arity in their 

input/output operations. 

Processes are also promoted to first class objects in the polyadic 7r-calculus. In 

the monadic yr-calculus the only first class object is the name. The process, the only 

other type in a vr-calculus system, cannot be directly manipulated. Instead names 

which represent access to the process are manipulated. For example it might be 

desirable to introduce a new process into a system by transmitting it over a name. 
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This is not possible in the monadic 7r-calculus. Instead a n a m e (r) which can 

communicate with R is used instead. 

xr.Q I x{a).a.S | f.P^ 

Q \ r.S I f.P => 

Q I I f 

As it has been shown that the passing of processes can be model led by a suit-

able encoding in the monadic Tr-calculus, it is convenient syntactic sugar to be able 

to treat processes as first class objects like names. This allows writing 7r-calculus 

which expresses mobile code. However there is no encoding to say where a pro-

cess is placed, which is a useful element to model when designing distributed 

applications. 

If a notion of placement were to be introduced in the 7r-calculus then the above 

expressions may no longer be equivalent. In the first case the processes may have 

to move between two different nodes, whereas in the monadic case, the channel 

representing the process moves between sites and the process itself does not move. 

Much work has been done to extend the concepts of the 7r-calculus to make it 

more relevant to modelling distributed applications. The spi-calculus ((Abadi & 

Gordon 1997)) extends the 7r-calculus with cryptographic primitives. The join-

calculus ((Fournet et al. 1996)) reformulates the 7r-calculus wi th a more explicit 

notion of places of interaction. This aids the building of distributed applications 

using channels, as the yr-calculus itself has no notion of process placement. The 

join-calculus adds the concept of named locations, and a notion of distributed fail-

ure. Locations form a tree, and subtrees can migrate from one p a r t of the tree to 

another. 

Mobile ambients ((Cardelli & Gordon 1998)) describes a calculus which allows 

movement of processes and devices through domains of administration. A study 

of the correspondence of the A-calculus and the 7r-calculus leads to the definition 

of a new calculus, the blue calculus ((Boudol 1997)). It is shown tha t a continuation 

passing style can be used to transform the blue calculus into the 7r-calculus, with 

the TT-calculus representing a sort of assembly language. 

4.2.3 Higker Order CommwMicaHoMS 

The language HOC ((Henderson 1993)) is based on the 7r-calculus. It provides 

constructs which allow concurrent processes to be defined that communicate via 

synchronous channels. Like the 7r-calculus, HOC allows channels to be passed as 

messages along channels, giving it the ability to dynamically change the configu-

ration of processes. Processes may also be passed over channels, allowing for the 

migration of processes between nodes. In addition the replication operator of the 

TT-calculus is dropped in favour of a recursive mechanism to provide looping. 

Table 4.2 shows the language constructs available in HOC. 
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action terms A ::= f send y over x 
x?y P receive any y over x 

terms P ::= | . . . \ A„ alternative action 
' Ai\\.. .\\An concurrent action 

= f 1; f 2 composition 
= skip terminate successfully 

basic rule of computation : 
x?y Pi{y] II x\z P2 => Pi[z] II P2 

Table 4.2: HOC constructs 

4.3 Other models of distribution 

In addition to models focused on the channel as the basis of communication be-

tween processes, a number of other models have been developed which describe a 

set of interacting processes. Some have direct implementations, others are strictly 

theoretical. 

4.3.1 IZMzfy 

The Unity model ((Chandy & Misra 1988)) allows concurrent execution of guarded 

expressions. At any time guards for expressions may be evaluated, and if true, the 

expression executed. Expressions whose guards hold may be executed in paral-

lel, so care must be taken when expressions cause side effects. A construct for 

performing parallel assignments is provided. 

An implementation using EULISP to map unity programs onto BSP-Occam is 

described in (DeRoure 1991). 

4.3.2 Dig PargZaHoM mocfeZ 

The Paralation model ((Sabot 1988)) is designed to be independent of computer 

language and architecture. Several implementations for various languages exist, 

including Lisp and C. In contrast with CSP which places emphasis on the process 

as the main source of parallelism, the Paralation model is a data parallel model. 

The basic data type is the field, which contains data residing on differing sites 

(where sites are mapped onto available processors). A paralation defines a collec-

tion of such fields. A small number of primitives are provided to perform data 

parallel computation on fields (where the same procedure is applied to each site in 

the field), and map fields into new paralations. 

For example the code to create a new field in a paralation wi th its elements 

incremented by n is as follows: 

(defun incfield (f n) 

(elwise (f) (+ f n))) 

This data centric view of parallel processing maps well onto SIMD multipro-

cessor hardware such as vector processors. 
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4.3.3 Pefn nek 

Petri nets ((Filman & Friedman 1984), (Peterson 1977)) are directed graphs with 

places and transitions as nodes in the graph. A place can contain a number of to-

kens, and a transition can have many inputs and outputs. All i n p u t s must be an 

edge from a place to the transition, with outputs being edges f r o m the transition 

to a place. A transition may "fire" if all the places connected to i ts inputs contain 

tokens. On firing, all input places have one token removed and al l output places a 

token added. Extensions to the model include coloured tokens a n d firing when a 

specified number of tokens is present in the input places. 

4.3.4 mode! 

Actons are the only processes in the document flow model ((Berrington, DeRoure, 

Greenwood & Henderson 1993), (Berrington et al. 1994)). An ac ton maintains a 

collection of documents in its "in tray", and has a set of rules that m a y act on these 

documents. For example, an acton could combine two documents into a single 

document (such as a report document and a changes document being combined 

into a finished report document). Rules can also be used to send documents to an-

other acton in the network, allowing for the workflow applications to be modelled. 

An implementation of the document flow model is presented in section 7.4, 

together with sample DFM applications. 

4.3.5 Time Warp 

The Time Warp model ((Jefferson 1985), (Tinker & Katz 1988)) s tems from database 

transaction systems ((Kung & Robinson 1981)), allowing for optimistic concur-

rency. Processes proceed without synchronisation and can later roll back if actions 

they performed are found to be incorrect. Causality is maintained though the use 

of distributed clocks ((Lamport 1978)). 

The system needs to capture the state of a process before each action is taken so 

that it may be rolled back if it is found that the action should not h a v e taken place. 

Rollback is achieved by sending aMfi-mcssages for all events following the event to 

be rolled back to. This in turn can cause other processes to roll back their state, 

resulting in more anti-messages being sent. There is a danger that the system could 

spend more time rolling back than rolling forward, resulting in wasted resource 

and slow progress in a system. However Gupta ((Gupta et al. 1991)) has shown 

that implementations of the model do show degrees of speed up. 

4.3.6 CAemicaZ aktracf mac/ziMe 

The chemical abstract machine ((Berry & Boudol 1992)) or cham provides a novel 

approach to the modelling of parallel applications. Rather than focusing on a pro-

cess and message model like CSP or the 7r-calculus, it abstracts away from these 

elements and instead presents a framework in which non determinism plays a 

large part in the progress of a system. 
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A soZwfioM contains many moZecwZes, which are an abstract representation of 

some data type (for example, one could think of a solution of integers). This so-

lution is stirred by some method (Brownian motion in traditional chemistry, and 

some arbitrary mechanism in this model), allowing molecules to come into contact 

with other molecules. 

A set of reaction rules specify how molecules that meet may interact, allowing 

the system to proceed. Further rules allow the combination of molecules {cooling 

rules) and the splitting of molecules into a set of simpler molecules {heating rules). 

For example, returning to the solution of integers, a rule cou ld be introduced 

such that when two molecules meet, the larger integer is destroyed if it is a multiple 

of the smaller integer (other than one). Once the reaction had finished, the solution 

would contain only prime numbers, as all the primes multiples wou ld have been 

removed. 

It has been shown that the chemical abstract machine is general enough to be 

able to model the yr-calculus and a concurrent A-calculus. 

4.4 HOC as a coordination language 

By combining HOC with a higher order computational language, a language for 

programming dynamically changing networks of interacting processes can be en-

visaged. 

This section examines the features that HOC possesses which make it suitable 

for programming networks of mobile processes. Changes to the model are intro-

duced in order to model the placement of processes. 

One feature of HOC is the ability to reconfigure dynamically the communications 

infrastructure of a set of processes by transmitting channels over other channels. In 

this way, a process receiving a channel can then use this new channel to send and 

receive further messages, resulting in the network between sending and receiving 

processes changing over time. 

This is useful with the presence of mobile processes, as a constant method of 

communicating with the process can be used (via a channel which the process 

"takes with it" when it migrates). 

If this were not the case, a separate mechanism for locating processes would be 

required and connections would have to be re-established before communication 

could continue. 

4.4.2 Mobz'Zî y 

The ability to send processes over channels as higher order objects allows the mod-

elling of mobility in a distributed environment. 

As demonstrated in section 4.2.2, in a distributed environment, two processes 

communicating using a common channel need not be executing on the same node. 
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Therefore sending a process over a channel can cause that process to move be-

tween nodes. In the presence of distribution, the following reduct ions become 

ambiguous: 

(z!() v4||f)||(%?() B) => v4||f ||B 

These two expressions reduce to the same set of three parallel processes. How-

ever, in the first expression the process P is sent over channel x a n d the receiving 

process then causes the process to be executed, whereas in the second expression, 

no data is passed when the two processes initially synchronise us ing channel x, 

and the left hand side process causes P to be executed. 

From the above expressions it is not clear on which node each process executes. 

If a rule is introduced that the || (parallel execution) operator causes processes to 

be executed on the same node as the parent processes (unless explicitly specified), 

then the node on which processes execute can be made explicit b y parameterising 

them with their node identifier. 

For example, suppose two nodes are given the names a and h. The above ex-

pressions could be rewritten as follows: 

(%!() v4|M.||(z?() 

These expressions now explicitly show the node on which each process exe-

cutes. The first expression shows that although the process executing on node a 

has access to process P , it does not execute it. Instead, it sends it over channel x, 

where the receiving process on node b causes it to be executed. Therefore this ex-

pression shows the process P has migrated between node a to node b. The second 

expression shows that no migration has taken place, and that process P is executed 

on node a, and that the process executing on node b has no knowledge of P . 

An example of process mobility is the Entrance process. This process accepts 

all incoming processes being sent over a channel and executes them locally on the 

node on which it is executing. 

Entrance{x) = xlP —>• Entrance{x)\\P 

Such a process could be used to allow processes to migrate between well known 

nodes, if an initial network is set up with entrance processes operating on nodes 

parameterised with global channels. For example the following network uses two 
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global channels g0(0a and to allow a travelling process to migrate between 

nodes. 

(gofoa) a 11 Entrance (goto;,) & 11 (g0(0a! (gotot )) c =>-

Entrance{gotOa) a 11 Entrance (goto;, )&|| (gotob lP)a 

(gotoa) a 11 ranee (goto^) & 11 

This example shows a process initially executing on node c migrat ing a process 

to node a, which in turn migrates process P to node b. 

4.4.3 CoMcZwszoM 

Using Higher Order Channels as a communications model provides the ability for 

mobile processes to communicate and synchronise over a dynamically changing 

configuration. 

By extending the model to include the placement of processes, the system can 

model a distributed set of processes and the migration of processes over channels 

to other nodes in the network. 

4.5 HOC as a computation language 

The TT-calculus and HOC have only the process and channel as their basic data 

types. Although these languages can be used to describe the interactions between 

processes in a complex system, actually representing the computat ion that pro-

cesses perform in terms of 7r-calculus and HOC constructs is more problematic. 

4.5.1 Dgfa fypes ZM t/ze 7r-caZcwZus 

The TT-calculus and HOC can themselves directly model other da ta types. Mil-

ner shows in (Milner 1991) that the vr-calculus can be used to represent A calculus 

expressions. It can also be used to model a number system directly using just pro-

cesses and channels. 

Two channels are used to represent a number process, a channel representing a 

unit and a channel representing zero. For example, a process which represents the 

number three can be directly encoded as follows in HOC. 

three{u,z) = u!() ->• ul{) ul{) -> zl{) 

Processes can then be designed which perform arithmetic operations on num-

bers. To add two numbers for example, two sets of unit and zero channels need to 

be supplied as inputs, and a new set of unit and zero channels provide the sum. 

CLCld(^U± J Zi, tl2) Z2, '^sum; ^sum ) — 

Ui^Q ^ Usum-Q ^ add(ui J Zij U2j Z2j Usum^ ^sum)l 
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Zl?() ^ copy[U2, Z2,Usumt ̂ sum) 

copy{u, Z,Ui;opy, Zcopy) — 

ti?() ' y ̂copj/K) ^ copy {Uy Z jU2-i'^ copyi Zcopy)\ 

z'^i) ZcopylQ 

The process synchronises on the unit channel of the first n u m b e r until the first 

number sends on its zero channel. For each unit received, a corresponding transmit 

is performed on the unit channel, representing the sum of the t w o numbers. When 

the zero channel synchronises, the second number in the sum is copied (including 

the zero) to the sums channels. When the zero channel of the second number 

synchronises, the addition has finished and the zero channel of t h e sum is used to 

signal this. 

The following process can be used to represent the number six, by building 

a network of processes that add the number three twice in order to produce the 

desired result: 

z) = i/(ui, zi, Z2)(^kree(ui, Zi)||three(u2, ^2)||odd(ui, z i , U2, u, z)) 

Multiplication of numbers is more problematic as number processes are only 

one shot, in that once a number process has output its value, it terminates. One so-

lution is to spawn multiple copy processes to provide enough copies of the number 

to satisfy multiplication by repeated addition. Another solution is to redesign the 

number process to be a server, spawning processes to deliver its value when re-

quested. The numbers server process has one channel, on which it outputs unique 

unit and zero channels. Once a unit and zero channel have been sent, a process is 

spawned to deliver the number over these channels as before. T h e number three 

process now becomes; 

(Aree(a) = z/uz(8!(w,z) (kree(a)||(AreeCfzeW(u,z)) 

z) = u!() u!() u!() z!() 

Each mathematical operator must also now be expressed as a server process, al-

lowing networks of arithmetical expressions to be built. The multiplication server 

and client process is given below. 

(̂ l̂-̂ lWproduct'̂ product) •̂ product) ^ (^1; -̂ 1) ^ 

zi, 6,Uprodwcf, 6,product)) 

TflultiplyCliGTLt{tli^ Zi, 6, Upj^Qi^uct-) Zproduct) — 

Wi?() ^ cop;/(7m(a(w2,Z2,Uproducf)) 

TTlultiplyCli6Tlt(ui^ Zi.,b^Up'pQ(iuct: Zp'pQ(luct)\zi^Q y Zproduct^-0 
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cqpy[/mfa(u, = 

u?() UdatlQ cppyU'm^8(tf,z,Udg()|z?0 gHp 

Similar techniques can been used to implement addition, subtraction, division 

and copying of numbers using the number server protocol. This technique is not 

pure TT-calculus as it relies on the dynamic creation of processes a n d on recursion, 

which are not fundamental properties of the 7r-calculus. 

4.5.2 ConcZwszoM 

The previous section highlights a number of problems in representing a number 

system using the vr-calculus: 

» Efficiency. Computers have a very efficient means of representing numbers. 

It is unlikely that the channels and process representation of numbers used 

by the vr-calculuswill be anywhere near as efficient as us ing a computer's 

native representation however well optimised the yr-calculus runtime system 

is; 

e Complexity. In order to perform a mathematical operation in the 7r-calculus, 

a complex network of channels and processes must be constructed. Contrast 

this with the ease with which mathematical operations can be achieved in 

traditional computational languages. 

It is clear that in order to write processes which perform computations and 

represent data types in an efficient manner then HOC alone is insufficient. Instead 

a computational language needs to be available, with HOC constructs being used 

to perform coordination and communication between the processes. 

4.6 Choice of computation language 

A number of considerations need to be taken into account when choosing a com-

putational language. The following sections introduce the factors that need to be 

considered when choosing one which has to be able to support a dynamic set of 

mobile processes. 

Lisp is treated as a strong candidate due to its support for dynamic program-

ming. 

Any computational language is likely to have more special forms than the coordi-

nation language with which it is being integrated (in this case HOC). It therefore 

makes sense to merge HOC into the computational language, rather than the other 

way around. This is further supported by the fact that HOC syntax can not be 

directly encoded by today's keyboards and so will need to be changed to make it 

easier to program. 

There are a number of ways in which extensions to the computational language 

to support coordination can be achieved. 
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;; D̂ Mz'fzoM bo% 
(define (make-box) (cons 'box ())) 
(define set-box-value! Set-cdr!) 
(define box-value box cdr) 

;; Recezue two Mwmbers ODer a cfzaMneZ gnd reh/fM fWr swm 
(define (channel-add c) 
(let ((bl (make-box)) (b2 (make-box))) 
(channel-input c bl b2) 
(+ (box-value bl) (box-value b2)))) 

Figure 4.1: Receiving values over a channel using boxes 

Library 

A library of functions with a well defined application programming interface could 

be provided to supply the coordination capabilities to the computational language. 

The applications programmer could then use the standard features of the language 

to perform relevant computations, calling on functions in the coordination library 

to perform synchronisation and message passing. For example, t he following C 

function prototype could represent the API for sending data over a channel: 

void ChannelOutput(Channel* c. Data* dl, Data* d2) ; 

This function would output the supplied data variables dl and d 2 over charmel 

c, and return when a synchronisation with a process which received data from c 

was completed. 

The design of a function to input data over a charmel is less obvious. In HOC, 

data received over a channel is bound to the receiving process's arguments sup-

plied to the receive operation. Thus after the following reduction t h e name y actu-

ally refers to z in Q. 

xlz -)• P\\x7y Q => P\\Q 

The binding of data to variables is problematic in function calls. One solution 

in C would be to pass in pointers to the addresses that should b e set to point at 

received data values. This mechanism would produce the following specification 

for receiving data over a channel: 

void CharLnelInput(Channel* c, Data** dl. Data** d2); 

When the function returns, *dl and *d2 will point at the items of data received 

in the synchronisation with the sending process. 

Other languages such as Lisp have no direct support for pointers. As a solution 

to this a box object could be passed as a parameter to the receive function. The 

receive function could then use a mutation to set the contents of the box to the 

value of the received data. 

Figure 4.1 shows the definition of a box object, and a function which calls 

Channel Input to receive two numbers and return their sum. 
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Another method in Lisp would be to provide a closure to t he input function 

which should be called once the input has synchronised with a n output process 

and the data items have been received. The input function should return the value 

which the closure computed. This would remove the need to p a s s box objects as 

parameters to the input function. The example of a function receiving two values 

on a channel and returning their sum shown in figure 4.1 could then be expressed 

as follows; 

;; Recezce two Members a ckawMeZ and refwrM (Aez'r sum 
(define (channel-add c) 

(channel-input c (lambda (a b) (+ a b)))) 

By passing in a closure to the input function, the scope of the variables bound 

to the received data items is explicitly defined to be that of the scope of the closure 

itself. 

New speciaZybnMg 

Lisp, like most computational languages, evaluates functional arguments before 

applying the function to its arguments. The expression (f (+ 1 2) ) would 

cause the application (f 3) to be evaluated. 

Macros, on the other hand, leave their arguments unevaluated. Thus if f were 

defined to be a macro then it would receive as its argument the expression ' (+ 1 

2) . The expression returned by the macro is then evaluated. 

Thus macros can be thought of as source code translators in tha t they take un-

evaluated source as their arguments and return a transformed source code expres-

sion to be evaluated in their place. 

The translation performed by the macros need not occur at runtime. A compiler 

could invoke macros when it is parsing a source file and compile the expressions 

returned by the macro for execution at runtime. This allows new special forms to 

be introduced to the language with no runtime overhead. 

For example, the function to input data over a channel could be transformed 

into a special form which removes the need for the programmer to pass in a closure 

for evaluation. Instead, the special form would take as arguments the variables 

which are to receive the data values over the channel, and the expression which 

should be applied once synchronisation is complete. The example of a function 

receiving two values over a channel and returning their sum could then be written 

as follows: 

; ; Receive two numbers over a channel and return their sum 

(define (channel-add c) 

(channel-input c (a b) (+ a b))) 

After macro translation the function would look similar to the previous input 

function, taking a closure as the argument to process received data. 
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;; macro (ramsZahoM 
(define (channel-add c) 

(internal-channel-input-function c (lambda (a b) (+ a b)))) 

Compkfe parsing 

Parsing, like macros, allows transformation of source code before execution. 

Not all languages have support for macros, or have only a limited support. In 

order to introduce special forms to these languages a new pre-processor could be 

written which parses the source code and, in a similar fashion to macros, translates 

new special forms into source code of the base language. 

Introducing new special forms using parsing rather than macros has a number 

of advantages: 

9 Universal. This technique can be applied to any language, without any spe-

cial support being needed in the base language; 

• Language independent. The parser need not be written in the target lan-

guage which it is to output. For example lex and yacc could be used in con-

junction with the C language to produce a parser which outputs Lisp; 

® Syntax independent. The parser can define a complete language syntax, 

which may be very different from that of the base language it is targeting. 

One disadvantage of the use of a parser over macros is that a parser must be 

able to parse the complete source code, even if it only translates a small number 

of new special forms. With macros, these new special forms can be defined using 

macros, with the main parser used to parse the standard components of the lan-

guage. This significantly reduces the effort required to extend the computational 

language. 

The least efficient of all the options, interpreting is also the most general. 

Like macros and parsing, interpreting allows the introduction of new special 

forms to a language. However as it is the interpreter which is responsible for exe-

cuting the program, it can specify how this execution is to be achieved, rather than 

leave it up to the compiler of the base language. This makes it possible for an inter-

preter which executes a particular dialect of Lisp to be written in a different dialect 

of Lisp (for example a Lisp interpreter which provides dynamic scoping may be 

written in a dialect of Lisp which has support only for lexical scope rules). 

Primitives from the host Lisp can be exposed to the interpreted Lisp if they pro-

vide the desired behaviour, and can be used to increase the efficiency of common 

operations (for example list operations). 

Due to its simple syntax, it is relatively easy to write an interpreter in Lisp. 

Figure 4.2 shows the main function used to evaluate a simple Lisp like language. 



(define (eval e a) 
(if (atom? e) 
(if (number? e) 
e 
(eval-lookup-symbol e a)) 

(case (car e) 
((if) (if (eval (cadr e) a) (eval (caddr e) a) (eval (cad-

ddr e) a))) 
(else (eval-apply e a))))) 

Figure 4.2: Outline of a simple interpreter 

It takes two arguments as its parameters, the expression to evaluate and the en-

vironment which represents the context within which the expression should be 

evaluated. 

In this example, the source expression passed to the interpreter is either an 

atom or a list. These have been pre-parsed by the host Lisp's reader function. 

For example, a read-eval-print loop which inputs expressions to be evaluated and 

outputs their results would make use of the host Lisp's reader to inpu t expressions 

as follows: 

(define (read-eval-print) 

(print "?") 

(print (eval (read) *top-level-environment*)) 

(read-eval-print)) 

Interpreters which execute different inputs (for example byte codes) can be 

built in a similar fashion. 

The system can be extended to continuation passing style, as shown in figure 

4.3. The continuation is represented as a closure of one argument, the value to be 

passed to the continuation. The evaluator then either invokes the continuation (for 

example providing it with the value of an atom), or extends it (for example, when 

evaluating an if expression, the predicate needs to be evaluated first, with the 

continuation extended to evaluate the relevant expression depending on the result 

of the predicate). 

This supports multitasking; at any point where the evaluator is about to invoke 

a continuation, it can store it away (together with the value that should be passed 

to it), and invoke another process's continuation. Thus the continuation models a 

process containing both its code and current state. 

4.6.2 

Although the target environment is a network of workstations wi th multiple pro-

cessors available to execute processes of the distributed application, it is possible 

that the number of processes needed to execute the application will outstrip the 

number of processors available to execute them. With the ability of processes to 
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(define (evalk k e a) 
(if (atom? e) 

(If (number? e) 
(k e) 
(k (eval-lookup-symbol e a))) 

(case (car e) 
((if) (evalk (lambda (v) (evalk k (if v (caddr e) (cad-

ddr e)) a)) 
(cadr e) a)) 

(else (evalx-apply k e a))))) 

Figure 4.3: Outline of a simple continuation passing interpreter 

specify which processor they should execute on, the problem of multiple processes 

per node can arise even if other nodes in the network are idle. 

Thus the system needs each node to be able to multitask the set of processes it 

is currently managing. 

Most operating systems already have support for multitasking, both inter-process 

and intra-process. Inter-process tasking is achieved by allowing processes to spawn 

new processes, typically with separate address spaces. Intra-process multitasking 

may be achieved using a threads package, with a process having multiple execu-

tion threads running within the same address space. 

Some dialects of Lisp provide support for multitasking by provision of a threads 

library ((Padget et al. 1993), (Kelsey & Rees 1995)). Where there is n o direct support 

for multitasking, continuations may be used to provide the illusion of cooperative 

multitasking. A blocked thread may be modelled as a captured continuation. Un-

blocking the thread is achieved by simply invoking the continuation. 

Figure 4.4 shows an implementation of two basic primitives, c r e a t e - t h r e a d 

which is used to spawn new threads and y i e l d which is called by a running 

thread to allow other threads a chance to execute. Finally s t a r t - t h r e a d - s c h e d u l e r 

is used to set things going. 

4.6.3 mobzHfy 

Processes written in the computational language can be migrated between nodes 

by outputting them over channels. This implies that it must be possible to get some 

sort of handle representing the current process in order to be able to migrate it, and 

that the underlying system has to be able to support this migration. 

The following sections describe various methods for migrating code around a 

network. 

Source represcMfafiOM 

Languages with a simple syntax, such as Lisp, allow programs to be described in 

terms of data types of the language. For example the Lisp expression ( + 1 2 ) 

consists of a list which contains three atoms — two numbers and a symbol. This 

simple and uniform syntax makes it easy to build Lisp programs which generate 

Lisp code. 
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;; TTze Zis( (kreatfs 
{define *ready-threads* '()) 

;; Tke sc/Kf̂ wZers coMfiMwafzoM. CoZZed wWz MO more fkrewfs k scAef̂ uZe 
(define * thread-finished* '{)) 

; ; Creak a new (kreaif. 77% argwmeMf fa (ZzHMt) WZZ be ZMDoW (ke 
; ;^rst time the new threaii is sc/WuZed 
(define (create-thread thunk) 

(add-ready-thread 
(lambda (v) (thunk) (schedule-next)))) 

;; YieZd fke cwrrgMZ ZkraW 
(define (yield) 

(call/cc (lambda (k) 
(add-ready-thread k) 
(schedule-next)))) 

; ; A(Z(f a f Aremf fo ZZze tkreatf pooZ 
(define (add-ready-thread thread) 

(set! *ready-threads* (append *ready-threads* (list thread))) 

;; ScAê fuZe a Mfw ZAreofZ k be ZMwW 
(define (schedule-next) 

(if (null? *ready-threads*) 
(*thread-finished* '()) 
(let ((next (car *ready-threads*))) 

(set! *ready-threads* (cdr *ready-threads*)) 
(next '())))) 

;; SZarf (Zze ZAreads scZWwZer 
(define (start-thread-scheduler) 

(call/cc (lambda (k) 
(set! *thread-finished* k) 
(schedule-next)))) 

Figure 4.4: A simple threads package using continuations 

The above expression could be built by evaluating the Lisp expression ( l i s t 

' + 1 2) . This could be abstracted into a procedure that builds an expression to 

add two numbers. 

(define (generate-add a b) (list '+ a b)) 

Using this same technique more complex expressions can be built, generating 

source that when evaluated would compute the desired result. 

As these expressions are generated in source form it is possible for them to be 

evaluated on any evaluator which is running the distributed application. Processes 

would be able to migrate by generating source code to run on the remote node, and 

sending the source code to that node (via charmel communication) for evaluation. 
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Each evaluator needs to be able to accept a source code expression and execute 

it. Many dialects of Lisp have the eval function which is used for this purpose. 

It takes as its only argument an expression in source form, and returns the result 

after having evaluated it. 

Some dialects of Lisp choose not to provide eval as it muddies the semantics 

of the language. By using the interpreting option outlined in the previous section, 

eval can be implemented even if the base language does not suppor t it. 

Being able to represent a process in source code form makes it easily trans-

portable between nodes (as it is just a basic Lisp data type). An early implemen-

tation of the Tube mobile code system ((Halls 1997)) passes a round processes in 

source code form. 

The major disadvantage of this approach is that, whilst it is possible to write 

Lisp programs which generate other Lisp programs, and because of the simple 

syntax it is easier than in many other languages, it is still takes more effort than is 

desirable. In effect the programmer is writing two programs, one to generate the 

process code, and the actual process code itself. 

No (raMsmisszoM 

If migration of processes in their source code form is discounted, two possible 

paths remain open for the migration of processes between nodes; 

1. RFC interface for migration; 

2. Portable representation of code. 

For an RFC like interface the code of a process is not migrated between nodes. 

Instead, all nodes in a distributed application must have access to the code of any 

process which could migrate to the node during the lifetime of the application. 

In addition, migration points must be set at application design time as they 

have to be explicitly encoded into the process. 

Given a system with RFC like semantics, migration may then be performed 

by issuing a remote procedure call to the node where the process wishes to mi-

grate, passing as arguments any data which the process needs in order to continue 

functioning on the remote node. The RFC server can then serve the call by spawn-

ing a new thread to continue the process, passing the received parameters as start 

arguments to the thread. The client can then terminate its thread, as the process 

has now migrated to the remote node. Figure 4.5 shows an example of a process 

migrating between nodes. Although this example refers to RFC, it is equally ap-

plicable to a system using channels as its means of communication. For example 

the migrating process could output its argument over channel x, and the receiving 

process, on a remote node, spawns a new thread on receiving the new process's 

arguments on channel x. 

This approach to migration has the advantage that the cost of migrating a pro-

cess is small, as no code is passed between nodes. The fact that code is not transmit-

ted between nodes means that no common code representation is required, and so 
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RPC Client 

Process A 

Issue RPC Request -

Terminate thread 

RPC Server 

Serve RPC request 

Spawn new thread 

"RPC complete 

Process A (cont) 

Call process a continue function 

Arguments provided by client 

Figure 4.5: Process migration using RPC and static code 

code executing on nodes can be fully compiled into architecture specific machine 

cod& 

There are also some disadvantages. The system is not easily extensible. In or-

der to introduce a new type of mobile process, the system needs to be stopped, 

nodes need to be recompiled to include the code for the new process, and the sys-

tem restarted. If the number of nodes is large, this could cause significant down 

time. The migration points have to be fixed and explicitly coded for, which does 

not allow the underlying system to move processes between nodes. Migrating 

continuations (a representation of a stack frame which describes how a process 

has progressed during its lifetime) is also problematic. It is difficult to pass stack 

frames over a communications link, even if the recipient node contains all the rel-

evant code referred to by the continuation. This is because pointers will need to be 

translated to point at the relevant code on the receiving node, which is difficult to 

determine at runtime. Thus this solution is only suitable for migration where the 

continuation is not sent between nodes. Instead the process can be thought of as 

being stopped on the leaving node, and restarted with a new continuation on the 

receiving node. 

Porfob/e reprggeMfafzoM 

The other approach to migration is to migrate both code and data of a process to 

the remote node. Lisp has a number of ways in which both code and data may be 

transported to remote nodes; 

1. Function pointers. The start address plus arguments used to invoke the pro-

cess can be sent as distinct data elements; 

2. Closures. Data and code are packaged up into one higher level object which 

may then be transmitted to the remote node; 

3. Continuations. The remainder of computation the process has to perform 

(akin to a call stack in C) may be captured as a higher level object (a function 

of one argument) by some dialects of lisp. Such objects are called continua-

tions. If this object is then invoked on a remote node, the process continues 

to execute on that node. 

The above list deliberately looks only at the transportation of processes from 

the user's point of view. Clearly some means of transporting code as well as data 

73 



HOC Construct Lisp construct Description 

x\a ( o u t p u t X a) send a over x 

xla —>• expr ( input X (a) expr) receive on x, bind to a a n d execute expr 
( a l t A B) Choose either Aor B 
(spawn A) {spawn B) Execute A and B concurrently 
(A) ( B ) Composition of A and B 

skip ( e x i t - p r o c e s s v a l ) Terminate process (returning v a l ) 

Table 4.3: HOC syntax within Lisp 

between nodes is needed. The code must be reified into a data structure suitable 

for transmission, and the receiving node must be able to turn the data structure 

back into code for execution. A common approach is to adopt a common code 

format to represent processes. Nodes in the distributed system then interpret this 

common code, or compile it further to native code on receipt of the process. 

The approach of transmitting code as first class objects allows the programmer 

to easily package code for transmission over the network. 

4.6.4 Sc/zemg; /I jyMomzc programmmg ZgMgwage 

Scheme ((dinger. & Rees 1991)) is a dialect of Lisp with a relatively small set 

of primitives and a clean syntax. It has several features which lend it to being a 

computational language in a distributed environment. 

a Ability to represent code as higher order data objects (continuations and clo-

sures). This provides a mechanism for capturing processes for migration 

over a network; 

e Simple syntax. The Lisp syntax makes for easy parsing, and the simple in-

troduction of new special forms; 

e Dynamic. Scheme functions are not statically typed, rather it is the data that 

is typed. This allows the creation of generic operations, for example the map-

ping of a function over a list, or the sending of any type of data over a chan-

nel; 

8 Small. Unlike many other Lisps, Scheme is a relatively small language, mak-

ing it easier to write interpreters for it. 

4.7 HOC Scheme: A language for mobile computing 

To aid integration into Scheme, the HOC constructs of table 4.2 need to be given a 

Lisp-like syntax. Table 4.3 shows the proposed new syntax and their HOC equiv-

alents. 

Standard Scheme constructs are used to define processes. The spawn primitive 

takes a thunk (a closure with no arguments) as the representation of a process 

which it is to start. 

4.7. ] MobzVe pAo/ies 

To illustrate using this language an example is taken from Milner's vr-calculus tu-

torial ((Milner 1991)). This example shows many of the constructs shown in table 

4.3. It is also a good example of the ability of higher order channels to reconfigure 
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networks of processes dynamically. It models a simple mobile p h o n e system, with 

a car containing a mobile phone which changes the base station wi th which it com-

municates. The car process communicates with one of a number of bases, with a 

centre process controlling which base is communicating with the car. 

The c a r process communicates with a base through two channels. The t a l k 

channel allows communication to pass between the car and base, and the s w i t c h 

channel allows the base to instruct the car to switch to a new pa i r of communica-

tion channels. The car process described in lisp syntax is given below. 

(define (car-process talk switch) 

(alt ((input talk) (car-process talk switch)) 

((input switch (talka switcha) (car-process talka switcha))))) 

A base has four channels. The t a l k and s w i t c h channels are used to commu-

nicate with the car, and the g i v e and a l e r t channels are used to communicate 

with the centre. A base can be in one of two modes — either active, in which case 

it is communicating with the car (and may be instructed by the centre to perform 

a switch operation), or idle, in which case it awaits a signal from the controller to 

become active once a switch has been made. 

(define (active-base talk switch give alert) 

(alt ((output talk) (active-base talk switch give alert)) 

((input give (talka switcha) 

(output switch talka switcha) 

(idle-base talk switch give alert))))) 

(define (idle-base talk switch give alert) 

(input alert) 

(active-base talk switch give alert)) 

The c e n t r e process communicates with bases, controlling which one commu-

nicates with the car. A c e n t r e process using two bases is given below. 

(define (centrel) 

(output givel talk2 switch2) 

(output alert2) 

(centreZ)) 

(d^^ine (centre2) 

(output giveZ talkl switchl) 

(output alertl) 

(centrel)) 
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Figure 4.6: Mobile phone network configuration 

To start the system, the car process, two bases and a centre need to be running 

in parallel. 

(define t:alkl (make-channel)) 

;; and repeat^ swz'k/il, ^ce], aZerfl, gzDe2, «Zert2 

;; SpawM processes 
;;Mr 
(spawn (lambda () (car-process talkl switchl))) 

;; f'ase 1 foch'i;e) 
(spawn (lambda () (active-base talkl switchl givel alertl))) 

;; base 2 Ĉ fZe) 
(spawn (lambda () (idle-base talkZ switch2 give2 alert2))) 

; ;ceMfre 
(spawn central) 

Figure 4.6 shows the configuration of the network when the car is communi-

cating with base one. 

4.8 Implementing HOC Scheme 

In order to demonstrate the ability of the combination of HOC and Lisp to form a 

natural language for creating distributed applications, experience must be gained 

in using the language to ascertain its advantages and disadvantages. 

Sample applications need to be written in the new language and compared and 

contrasted with other implementations for distributed hardware. In addition, the 

behaviour of such a system needs to be studied in order to discover properties 

of the language which do not show up in theoretical models. This includes how 
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efficient the language can be made, and whether any of the constructs described for 

the language cause implementation difficulties. It is also important to test the ease 

with which distributed applications can be written, as the purpose of the language 

is to abstract the distributed system to a level where the developer has a powerful 

set of tools for creating interacting processes. 

In order to perform the experiments it is useful to be able to execute sample 

applications, preferably over a distributed set of nodes. There are a number of 

ways of executing such applications. 

4.8.1 Sfgpper 

Processes in HOC synchronise on input and output over a common channel. A 

stepper allows the user to view available synchronisations between all processes 

running in the system and direct which synchronisations should proceed. 

This can be a useful tool in understanding the behaviour of the processes and 

tracing possible sequences of events that a running system could take. 

As the time the user takes to select synchronisations is likely to be longer than 

the time taken by the system to compute the sets of possible synchronisations, the 

user becomes the bottleneck in the system. Therefore speed is not the overriding 

objective when designing and implementing a stepper. 

Because of this it is not necessary to provide a distributed stepper. Instead one 

process providing the illusion of executing multiple HOC Scheme processes will 

be sufficient to provide the user with an adequate tool. 

4.8.2 ZMferprefer 

An interpreter capable of directly executing the expressions of H O C Scheme in 

single address space (which implies a single machine) is not a good candidate for 

executing a finished application, as it provides none of the benefits that HOC is 

capable of expressing (multiplatform, distributed, migration). However such a 

system is a good candidate for testing applications before deployment on a dis-

tributed network. Advantages of this approach include: 

8 Simple debugging. All the application's processes execute in the same ad-

dress space, which allows the user to inspect the entire state of the system (if 

the interpreter allows this). Contrast this with a distributed system, where 

if one process breaks, others can continue to execute, resulting in difficulties 

when debugging; 

o Simple configuration. As no network of distributed nodes is involved, then 

there is no network configuration to be carried out; 

8 Simple loading. Again as there is only a single node, loading applications 

becomes trivial. 

4.8.3 Dishi&u W gysfgm 

When the application has been tested and debugged, the final distributed imple-

mentation of HOC Scheme can be used. As well as executing the application, the 

final system should also be used for a final test of the application, to show up bugs 
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not found by the stepper or single node (for example bugs t ha t arise from pro-

cesses being distributed, possible race conditions and bugs in the HOC Scheme 

implementation). 

4.9 Summary 

This chapter has presented a number of channel based abstractions which may be 

used in the design of a distributed system. 

Abstractions that treat channels as higher order objects (such as the 7r-calculus) 

allow dynamic reconfiguration of networks during the lifetime of a distributed ap-

plication. Milner shows that a formal model can be built up for such an abstraction. 

Extending the channel model to be able to pass other data types over channels 

allows even greater flexibility in designing distributed applications. The ability to 

pass processes over channels in HOC allows dynamic reconfiguration of process 

graphs, with the explicit placement of processes shown in section 4.4.2 demon-

strating this. 

The ability of processes to be passed over channels has an obvious applica-

tion in the design of distributed applications, that of producing mobile code. Such 

systems allow processes to execute on the most "appropriate" node , where appro-

priate is defined by the application. 

By integrating a higher order channels model into a computational language, 

a powerful system can be envisaged that provides a means for programmers to 

write computational applications which can take advantage of mobile code, and 

dynamic reconfiguration of networks. 

The following chapters discuss the implementation of a set of tools that the 

HOC Scheme programmer can utilise when designing, testing, and deploying dis-

tributed applications. 
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Chapter 5 

Implementing a stepper 

5.1 Introduction 

The stepper allows applications writers to design the basic processes of a dis-

tributed HOC Scheme application and model the interactions between them. It 

is not intended to be able to execute the final application; rather it implements a 

subset of HOC Scheme. 

5.2 The language 

The first task when designing the stepper is to specify the source language it must 

execute. This is a modified version of HOC Scheme. Major differences include; 

1. Channels are named at creation. This allows the user interface to present a 

consistent name for the charmel, regardless of which variables the channel is 

bound to; 

2. Processes are named at creation. Again this aids the user interface, present-

ing named processes which may communicate over a channel; 

3. Input and Output expressions are named. Once again, this information can 

be used to aid the user in understanding what point processes that make up 

the distributed system have reached; 

4. Limited environment. As the stepper is not intended to execute full scale ap-

plications, its initial top level environment provided to the application pro-

grammer need not be as complete as final distributed systems. 

The following sections discuss the requirements of the stepper in more detail 

and present the design of the system, together with possible alternative routes in 

the design, and reasons for the paths taken. 

5.3 User interface 

Once the language itself has been specified, the interaction of the user with the 

stepper needs to be defined. This is the most important aspect of the system, as a 

poor user interface will not encourage users to go to the effort of writing the appli-

cation for the stepper in order to investigate properties of their proposed system. 
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Efficiency, although important, takes second place in priority over the user inter-

face. The main importance of efficiency is to provide the user w i t h a sufficiently 

quick response to requests they make of the system, and so can b e thought of as 

part of the user interface experience itself. 

When designing a user interface, the first step is to consider whether this should 

be windows or character based. 

Windows based interfaces are regarded as being superior to character based 

ones in that they are more user friendly, and can have a consistent look and feel 

with other windows based applications running on the system. 

Character based interfaces also have advantages. From the user perspective, 

it is possible to see (and record) a trace of all commands and responses issued 

to/received from the stepper. With a sufficiently good input tool, command histo-

ries can be searched, edited and reissued. This can make the character based inter-

face appropriate for more advanced users, who are the most likely to be working 

with the stepper. Character based interfaces are also simpler and less time con-

suming to the implementer than the windows based alternative. 

Thus the character based interface was chosen for the user interface of the step-

per. This interface has two modes of operation; 

1. Read-eval-print loop. This main outer loop allows the user to define chan-

nels and processes. It also allows processes to be started; 

2. Stepper. This displays a list of all the possible interactions between processes 

that are currently possible and allows the user to choose which one proceeds. 

The stepper mode of operation could either start automatically, as soon as there 

are two running processes which are able to communicate with each other, or be 

started manually by a command issued by the user when in the read-eval-print 

mode. The manual mode has the advantage that the user may create the complete 

set of processes that are to be run, before starting the stepper mode. 

In a similar fashion, the stepper could be stopped midway through the execu-

tion of a set of interacting processes, and control returned to the read-eval-print 

loop. This could be used for modelling external events occurring within the system 

(for example an additional node coming online and introducing n e w processes to 

the set of interacting processes, or an interrupt causing an external event or mod-

ifying a global variable). Once again issuing a command in the read-eval-print 

loop could manually restart the stepper-print loop, allowing it to continue where 

it left off, possibly with additional possible interactions. 

The stepper presents a list of possible interactions between processes to the 

user. This list needs to be expressive enough for the user to understand each op-

tion. This is achieved through the naming of process, channels and synchronisa-

tion operations, producing an output for each possible synchronisation of: 

® Charmel name; 

® Output process name; 

• Output synchronisation name; 
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» Input process name; 

» Input synchronisation name; 

9 Data items to be transferred from the output process to the input process. 

Once the list of possible interactions between all processes h a s been displayed, 

the stepper prompts the user for their choice. A number of possible options are 

available to the user; 

1. Allow one of the interactions to proceed. The user inputs one number corre-

sponding to the interaction to proceed; 

2. Step many. By typing in a list of numbers, the user can direct which current 

interaction is to proceed, and which subsequent ones should proceed; 

3. Return control to the read-eval-print loop. This option leaves all executing 

processes in the blocked state; 

4. Quit the stepper and return control to the read-eval-print loop. Rather than 

leave the processes, this option kills all running processes a n d returns control 

to the read-eval-print loop, so that the user may start another set of processes 

or retry the current set; 

5. Dump a trace. This prints a list of all the interactions which have been per-

formed since the stepper started to direct the processes to their current states. 

The step many option could be used to return to a known position in subse-

quent runs (by taking a trace of the steps which have been taken to reach this po-

sition). In order for a subsequent run to reach the same position, the stepper must 

be consistent across runs. The order in which it presents possible interactions must 

be the same for each run. 

5.4 Implementation 

The stepper is implemented using the continuation passing evaluator features dis-

cussed in section 4.6.1. As has been shown, the continuation can be used to repre-

sent process state, as it is an object which represents the remainder of a computa-

tion. By scheduling different continuations to run, and blocking running continu-

ations at appropriate times, a multitasking environment of multiple processes can 

be modelled. 

This model maps nicely onto the HOC Scheme process, with one continuation 

representing each process. There are a number of points at which these processes 

could be blocked in order to provide the illusion of multiprocessing. 

1. When a process is created. If another process is currently running then the 

newly created process can be placed on the ready queue. This means that 

new processes are created in a blocked state; 

2. When the process needs to synchronise with another using a channel. The 

process must be blocked until another process is willing to synchronise and 

the user selects the interaction to proceed; 

3. When a process ends. A process waiting on the ready queue may be sched-

uled to run; 
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4. For smoother multitasking, processes can be blocked m i d w a y through com-

putations (whenever control passes back to the evaluator, for example to in-

voke or extend a process's continuation). This would result in more frequent 

rescheduling of processes. As long as the evaluator reschedules processes in 

a consistent manner, this will not effect the order in which possible interac-

tions are presented to users in multiple runs. 

It was decided that the scheduler should only block processes when necessary, 

when new processes are created or a process is waiting to synchronise using an 

input or output clause, a so called "run to completion scheduler". This simpli-

fies the implementation of the scheduler, and is sufficient for executing processes 

in the stepper, provided that all processes eventually block on a n input or out-

put clause, or terminate. 

The example continuation passing evaluator of section 4.6.1 modelled the pro-

cess as simply a continuation. Although the continuation is needed to model a 

HOC Scheme process in the stepper's evaluator, it is not sufficient, as additional 

information needs to be stored along with the process's continuation. 

One piece of information is the process name, used by the stepper to communi-

cate to the user which processes are involved in possible interactions. This needs 

to be associated with the blocked process. 

A solution is to transform the evaluator from a continuation passing evalua-

tor into a process passing evaluator. The process object that the evaluator passes 

around contains the process's continuation, as well as its name a n d any other state 

needed to be recorded per process by the stepper. Another useful piece of state 

would be a process identifier (PID), so that each process running in the stepper 

could be uniquely identified. 

The choice operator ( a l t ) results in the one continuation per process model be-

ing broken. This is because each branch of the a l t statement represents a different 

possible route for the process, with each route having a unique continuation. In 

order to evaluate an a l t statement, each branch needs to be partially evaluated 

to discover the input or output clause each will block on. Note this means that 

we assume each branch of an a l t clause does eventually block. Furthermore no 

branches should alter the state (environment) of the process before blocking, as 

this would mean that a branch would affect the process even if it was not chosen 

to proceed, and another branch was taken. Each branch in turn is evaluated until 

a blocking statement is met, at which point the next branch is evaluated. When 

all branches have been evaluated the process is blocked and another process can 

be scheduled to execute. This results in the same process being blocked multi-

ple times, with each block having a different continuation, only one of which may 

proceed. In order to enforce this, the stepper should remove any alternate contin-

uations when one branch has been selected to proceed by the user. 

The stepper consists of number of modules, each of which have data structures 

associated with them. 
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5.4.3 

The evaluator module is responsible for actually evaluating processes and expres-

sions passed to it from the read-eval-print loop. There are five main data struc-

tures associated with this module: 

1. Processes; 

2. Continuations; 

3. The top level environment; 

4. Process specific environments; 

5. Expressions. 

In addition, the module provides a public interface, exposing two functions; 

• ( e v a l < p r o c e s s > < e x p r e s s i o n > <env>) This evaluates the provided 

expression in the context of the process and its environment. It is used by 

the read-eval-print loop to evaluate expressions the user has input, and by 

special primitives which need fine control of the evaluator; 

• ( s t a r t - s c h e d u l e r ) This function invokes each process in turn in the eval-

uator's ready list. The function returns to the caller when there are no more 

processes to schedule (all processes have either blocked waiting to commu-

nicate over a channel, or have terminated). 

The following sections discuss in more detail the data structures used by the 

evaluator. 

5.4.2 Processes 

The process is a data structure consisting of three main elements: 

1. Process identifier; 

2. Process name; 

3. Process continuation. 

The process object is an abstract data type, with a number of functions provided 

for manipulating process objects. 

o ( p r o c e s s - a l l o c a t e - i d ) generates a new unique process id, using the 

global variable * g l o b a l - p r o c e s s - a l l o c a t o r * to store the next process 

id to be allocated; 

® ( p r o c e s s - m a k e <id> <name> < c o n t i n u a t i o n > ) creates an object to 

represent the process with a unique combination of id, n a m e and continua-

don; 

8 ( p r o c e s s - i d < p r o c e s s > ) returns the process id of a process object; 

9 ( p r o c e s s - n a m e < p r o c e s s ) returns the process name of a process; 

• ( p r o c e s s - k < p r o c e s s > ) returns the process continuation of a process. 

5.4.3 CoMfzMwah'oMg 

The continuation is modelled as a function which takes one argument, the value of 

the computation that has currently been computed. By applying this value to the 

continuation, the process is able to proceed. 
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(define (sample-tail-recursion c n) 
(output c n) 
(sample-tail-recursion c (+ n 1))) 

Figure 5.1: A tail recursive procedure 

One way of thinking of a continuation is as of a collection of stack frames. The 

continuation grows when a process calls on a (non tail recursive) procedure, and 

shrinks when a procedure returns to the caller, at which time the current continua-

tion is invoked, with its argument being the value computed by the procedure. For 

tail recursion, it is important not to grow the continuation, as this method is used 

for infinite recursion. For example the procedure of figure 5.1 is a tail recursive 

procedure. It calls itself but does not need the value computed b y the procedure. 

In this case, the function call can be replaced with a goto-like statement. 

Tail recursion can be spotted by the evaluator by noticing that t he return value 

of the recursive call is the return value of the procedure that is currently being 

executed, i.e. when the procedure is the last expression of the current procedure. 

In this case the current continuation can be passed to the evaluator to evaluate the 

recursive call. 

Although it would be possible to model the continuation as a list of frames, 

with each frame being a data structure representing how the computat ion should 

proceed when the frame is invoked, the closure is a more natural choice. As dis-

cussed in the introduction, a closure encapsulates code with an environment in 

which this code should be evaluated when the closure is invoked. 

By representing each frame in a continuation as a closure, wi th the most recent 

frame encapsulating the closures of the previous frame, the complete continuation 

of a process can be passed around as a single closure. 

This method has been chosen to represent continuations of the stepper 's pro-

cess. It has the advantage of being an efficient means of representing the continu-

ation, as it makes use of the host Lisp's closure representation, a n d therefore uses 

the host Lisp's invocation mechanism. An object based representation of a contin-

uation using frames would have to have a new invocation mechanism written for 

it, although it would provide the advantage of allowing stack d u m p s of processes 

which could aid debugging. 

5.4.4 Top gMDzronmeMf 

The top level environment is shared between all processes running in the stepper. 

It contains procedures and variables which are global to the whole system. New 

items can be added to the top level environment through the d e f i n e construct 

available in the read-eval-print loop. Once added to the top level environment, 

the values become immutable. If mutation were to be allowed, this would give an 

alternative means of communication, via shared variables, rather t han the channels 

based communication that is intended to be the only means of communication 

between processes. 
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The top level environment is similar to local environments of processes, in that 

its job is to bind names with values. Thus the data structure u sed to represent the 

top level environment can be reused to help represent local environments. 

The environment is modelled as a set of pairs, containing the variable name 

and the value of that variable. The value can be any Lisp da ta type, including 

closures, channels, lists etc. Similar to the process, an API provides access to the 

environment. 

• {env-make) This function creates and returns a new environment object. 

This function is only called once when the stepper initialises to create the top 

level environment; 

8 ( e n v - a d d <env> <name> <box>) This function adds the binding of <name> 

and <box> to the supplied environment (see below for the definition of 

a box). The function returns a Boolean value. 'True' represents success, 

whereas 'false' means that the name already exists in the environment; 

9 ( e n v - f i n d <env> <name> Called to lookup values in the top level envi-

ronment, this function returns a box (see below) which contains the value 

associated with <name>, or null if the name does not exist in the environ-

ment. 

In order to distinguish between a failure to lookup a name, and the value as-

sociated with a name being null, a wrapper needs to be placed around the value 

so that null will only ever be returned from a lookup if the name does not exist in 

the environment. This is called a box. It has other features that may be used by 

other areas of the stepper; for example it could be used to pass around an area of 

mutable memory. The box data structure also has an API: 

9 (box-make <va lue>) Creates a box containing < v a l u e > ; 

9 ( b o x - v a l u e <box>) Returns the value contained within the box; 

9 ( b o x - s e t ! <box> <va lue>) Mutates the value contained in the box to 

a new value. 

5.4.5 Process specz/ic cMMroMmeMk 

Environments that are local to processes reuse the environment a n d box data struc-

tures provided for the top level environment. The local environment extends the 

top level environment by providing a frame based lookup. This is used to ex-

tend environments when the lexical scope of a function is extended (for example 

through the use of a l e t clause). The API for the local environment consists of 

three main functions; 

1. ( l o c a l - e n v - m a k e < t o p - l e v e l - e n v > ) Creates and returns a local envi-

ronment object which contains the top level environment as its first frame; 

2. ( l o c a l - e n v - a d d < l o c a l - e n v > <env>) Returns a n e w local environ-

ment with the environment <env> added to it; 

3. ( l o c a l - e n v - f i n d < l o c a l - e n v > <name>) Searches all frames in the lo-

cal environment for a binding to <name>, returning the box associated with 
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name if it exists. The environments are searched in order, from the most re-

cently added environment to the top level environment which was added 

when the local environment was created. 

5.4.6 EzpressioMS 

Finally, in order to execute processes the evaluator needs to be given expressions 

that represent thems. The stepper represents these expressions as basic Lisp struc-

tures containing lists, symbols and atoms. The native r e a d function takes input 

from the console and parses it into a standard list. For example the input: 

(define (addl x) (+ x 1)) 

would be parsed into: 

(list: 'define (list 'addl 'x) (list '+ 'x 1)) 

5.4.7 Of/zgrsfrwcfwres 

The other main structure used by the evaluator is the list of processes that are 

ready to execute. This is contained in one global variable *ready-list*. Each 

entry in the list is an invocation — a pair containing the process which is ready to 

execute and the value that should be passed to the process's continuation when it is 

rescheduled. Thus the ready queue has two APIs, one for manipulating the ready 

queue and the other for managing invocations. The invocation API is described 

bdm^ 

» ( m a k e - i n v o c a t i o n < p r o c e s s > <va lue>) Returns a new invocation ob-

ject containing the process and value; 

o ( i n v o c a t i o n - p r o c e s s < i n v o c a t i o n > ) Returns the process contained 

in the invocation; 

® ( i n v o c a t i o n - v a l u e < i n v o c a t i o n > ) Returns the value contained in the 

invocation; 

a ( i n v o c a t i o n - i n v o k e < i n v o c a t i o n > Invokes the process contained within 

the invocation with its value. 

The ready queue API makes use of the global variable * r e a d y - l i s t * without 

exposing it to the user. 

8 ( a d d - r e a d y - p r o c e s s ! < i n v o c a t i o n > ) Adds an invocation to the tail 

of the ready list; 

® ( g e t - r e a d y - p r o c e s s ) Removes and returns an invocation from the head 

of the ready list. If the ready list is empty then null is returned. 

Using this API it is trivial to write a scheduler, shown in Figure 5.2. 



(define (start-scheduler) 
(let ((inv (get-ready-process))) 
(when (inv) 
(invocation-invoke inv) 
(start-scheduler)))) 

Figure 5.2: A round robin scheduler for the stepper 

5.4.8 Sfeppgr 

The stepper module also has a number of data structures it uses to maintain state 

between invocations. The main data structure on which the stepper acts is the 

channel. This has a number of elements; 

1. Name. The name given to the channel when it was created; 

2. Processes blocked on output; 

3. Processes blocked on input. 

Once again, an API is used to manipulate these channel objects. 

® (make -channe l <name>) Creates a new channel. This function is exposed 

to processes running on the stepper by adding it to the top level environment 

when the stepper initialises; 

• ( c h a n n e l - n a m e <channe l>) returns the name of the charmel; 

• ( c h a n n e l - i n p u t s <channe l>) returns a list of processes blocked wait-

ing to input data on the channel; 

® ( c h a n n e l - s e t - i n p u t s ! <channe l> < l i s t > ) sets the list of processes 

blocked on input to the provided list; 

e ( c h a n n e l - o u t p u t s <channe l>) returns a list of processes blocked wait-

ing to output data on the channel; 

» ( c h a n n e l - s e t - o u t p u t s ! <channe l> < 1 i s t >) sets the list of processes 

blocked on output to the provided list. 

As well as channels, the stepper module also manipulates a number of other 

data structures. These include: 

e List of possible interactions between processes. The building of this list is 

discussed below; 

® List of pending steps. This list is used when the user inputs a number of 

steps to be taken, A number is taken off the head of the list each time the 

stepper is invoked; 

» List of completed steps taken since the stepper started. This is used to pro-

vide the user with a trace of the steps taken to reach the current state. 

The list of possible interactions is built up dynamically as processes block on 

i n p u t and o u t p u t clauses. These functions are provided in the top level environ-

ment as special types of primitives which take the current process as an argument 

and do not continue it. Instead they place the process on the relevant blocked 
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queue of the channel, and return. Control is then passed back to the scheduler and 

another process on the ready list is rescheduled. 

There are two main ways of computing the list of invocations which should be 

presented to the user when all processes have blocked. One method is to deter-

mine all possible invocations when all processes have blocked. The other method 

dynamically updates the list when evaluating i n p u t and o u t p u t clauses. There 

are advantages and disadvantages to each method. The advantage of the static 

approach is that the same simple algorithm is followed each t ime the stepper is 

invoked. 

clear the stepper interaction list 

for each process in the blocked process list 

if there is another process blocked on the same channel and 

if that process is prepared to synchronise with the first then 

add them to the steppers interaction list 

However this method is less efficient than a more dynamic method as the whole 

process set has to be searched multiple times. In complexity, this algorithm is order 

The dynamic approach on the other hand, updates the stepper 's interaction list 

as and when processes become blocked. This results in fewer steps being taken 

to compute the interaction list. However, this approach involves more complex 

data structures, as the stepper interaction list is never cleared. Instead, when an 

interaction is selected to be stepped, it must be removed from the list. In addition, 

any potential interactions on the list involving the processes that have just inter-

acted also need to be removed from the list. This can occur when one branch of an 

a l t clause of a process has been selected, since the remaining a l t clauses become 

invalid as their paths will not be taken, and so any interactions that they could 

potentially become involved with also become invalid. 

5.5 Future extensions 

The features described above allow the user to write applications in a simplified 

form in order to test properties of their system (mainly interactions between pro-

cesses) before implementing and deploying the system on a distributed network. 

This section describes possible extensions which could be added to the stepper 

to enhance the number of services available to the user. Any additional function-

ality made available to the user will enforce the benefits of writing the application 

prototype to run on the stepper, before going on to the full implementation. 

5.5.1 

CompZete jeadZock 

Complete deadlock occurs within a system when every process is blocked, waiting 

for an event from another process. For example, the following system defined 

below will deadlock immediately. 



x!a ->• ylb\\y\c -> xld 

The first process needs to transmit over x before it can receive a value on y, 

whereas the second process must transmit on y before receiving on z. In a syn-

chronous system like the 7r-calculus, deadlock occurs because b o t h processes need 

to send before receiving. 

To resolve the deadlock in this particular case, the events of o n e process should 

be swapped (it need not matter which process, but it should not be more than one). 

Complete deadlock of a system can be easily detected and f lagged to the user 

by the stepper. The stepper needs to check that the following conditions are met 

before flagging there is deadlock. 

1. There are no possible interactions between processes. If there are events 

which can be stepped, then the system can proceed and h a s not deadlocked. 

This condition could be met when the system terminates successfully, and so 

additional checks need to be made; 

2. There are no processes on the scheduler's ready queue. Again, the system 

may proceed if there are processes that are able to execute; 

3. Every process in the system is blocked, waiting to input or output data over 

a channel. 

The stepper could perform this check every time control w a s returned to it 

from the scheduler. By implication the second case, that there are not processes on 

the scheduler's ready queue, must hold, otherwise the scheduler would not have 

returned control. Determining that there are no possible interactions between pro-

cesses is trivial, as the stepper has to determine all possible interactions to present 

a list to the user. 

The third check is more problematic. However this can be t ransformed into an 

easier check. As processes can only block waiting to input or ou tpu t on channels, 

it holds that if a process exists and is not on the ready queue and is not executing 

then it must be blocked on a channel. Thus when the control is passed from the 

scheduler back to the stepper, all active processes are blocked, wai t ing to input or 

output over a channel. The only check needed is to see if there are any blocked 

processes. If there are, and no communications between these blocked processes is 

possible then the system is deadlocked. 

Partial deadlock occurs when a subset of all active processes wi thin the system 

deadlock amongst each other. Other processes in the system continue to run nor-

mally. This could occur in a system which is carrying out multiple tasks in parallel, 

with each task subdivided into multiple processes. One of these tasks could dead-

lock, but would not necessarily affect the progress of the other tasks being worked 

on. The following system contains partial deadlock: 



P{x, y) = xla -)• y?b ->• P(x, y) 

Q(z,^) = zYo -> -f Q(z,3/) 

f(o,6)| |f(6,a)| |f(c,d)| |Q(c,d) 

The first two processes deadlock, as neither process is able to transmit on a or 

h. However the system as a whole may continue as the third a n d fourth processes 

can always interact with each other, first communicating over channel c and then 

channel d. 

Because the complete system does not come to a halt, partial deadlock is not as 

easy to spot as a system that has completely deadlocked. 

Systems do exist that can examine chains of interactions between processes and 

detect deadlock within a single chain ((K.M.Chandy & J.Misra 1981)). 

DeaifZoc/: (fgfecfioM ZM cfMtnbwW dafabases 

Hilditch and Thomson describe a solution for distributed detection of deadlock 

in (Hilditch & Thomson 1993). Each transaction in a system has an associated 

deadlock detection manager process, which is informed each t ime its transaction 

is dependant on another transaction (for example, if transaction A is waiting for a 

lock currently possessed by transaction B, then A is said to depend on B). 

Transactions deadlock detection processes communicate "with each other to main-

tain a distributed dependency graph. Two algorithms are presented to maintain 

the dependency graph. In the first example deadlock detection managers may re-

ceive three messages; 

a d d - g r a p h T The deadlock manager's transaction depends on another trans-

action T, which should be added to its dependency graph. The deadlock 

manager also probes T; 

s u b - g r a p h T The deadlock manager's transaction no longer depends on trans-

action T, and so it should be removed from the dependency graph; 

p r o b e T P A probe informs a deadlock manager that a transaction T depends 

on it. The current transaction selected for abortion if deadlock is found is 

also sent (P). If the deadlock manager finds T in its dependency graph then 

a cycle has been found and P is aborted. Otherwise the probe is propagated 

to all deadlock managers whose transactions are dependent on the probed 

deadlock manager, allowing cyclic chains to be found. 

Figure 5.3 shows this system modelled using HOC Scheme. With suitable con-

version the algorithm can be tested in the stepper. The deadlock detection manager 

for a transaction takes as its parameter a transaction object. This object contains 

channels to all the elements of the transaction (for example its a b o r t channel), as 

well as channels to all the deadlock manager's services. 

A simple lock manager and transaction process has also been implemented. 

The complete system allows the user to obtain or release a lock for a transaction. A 
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;; E;f Aer accept (kpeWcncy grapA c/iawge operaHoM or probe 
(define (start-DDM transaction) 

(DDM transaction '())) 

(define {DDM transaction conflicts) 
(alt ((add-graph transaction conflicts)) 

((sub-graph transaction conflicts)) 

((probe transaction conflicts)))) 

; ; Probe cof^KhMg fraMsocfioMS DDM, an j aiW fo Zz'sf q/'co?^!ch'Mg 
; ; tMMSactiOMS 
(define (add-graph transaction conflicts) 

(input (transaction-add-graph transaction) (conf) 

(output (transaction-probe conf) transaction) 

(DDM transaction (cons conf conflicts)))) 

;; Remove from list of conflicting transactions 
(define (sub-graph transaction conflicts) 

(input (transaction-sub-graph transaction) (conf) 

(DDM transaction (remove conf conflicts)))) 

; ; f e r ^ r m probe 
(define (probe transaction conflicts) 

(input (transaction-probe transaction) (init current-victim) 

; ; Reset Dz'ch'm fo DDM's (roMsacHoM z/'zf z's yowMger 

(if (younger? transaction current-victim) 

(set! current-victim transaction)) 

; jifin our conflict list then deadlock so abort victim 

; ; Ofkerwise propagate probe 
(if (member init conflicts) 

(output (transaction-abort current-victim)) 

(map (lambda (t) 

(output (transaction-probe t) init current-

victim) ) conflicts)) 

(DDM transaction conflicts))) 

Figure 5.3; Modell ing a deadlock detection manager in H O C Scheme 

deadlock manager will abort a transaction process when cyclic dependencies are 

found. Aborting a transaction results in the transaction immediately releasing all 

locks it possesses and releasing all locks it is waiting for as they become available. 

Only when it has no locks does the transaction process terminate. 

The paper suggests that it is essential that asynchronous message passing should 

be used as the communication primitive. Though this would be possible to model 

in the 7r-calculus (by defining processes to behave as communication buffers) it 

was found to be unnecessary. The only case where asynchronous communication 

is needed is where a deadlock manager needs to communicate wi th itself. This can 

only happen if a transaction tries to acquire a lock it already possesses, in which 

case a deadlock manager would attempt to probe itself. This would also break the 
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two phase locking protocol that transactions should adhere to, a n d so should not 

occur amongst conforming transactions. 

The second algorithm records all probes to a deadlock manager and introduces 

an a n t i - p r o b e message, allowing deadlock managers to retract probes when 

dependencies have been resolved. 

By recording which transactions have probed a deadlock manager, cycles in 

the dependency graph can be found when processing a d d - g r a p h messages. The 

algorithm also uses an algorithm by Obermark to reduce the number of messages 

by only sending probes and anti-probes to transactions which are younger than 

the sending transaction. Figure 5.4 shows an implementation in HOC Scheme of 

the improved deadlock detection algorithm. 

Again a set of transaction processes and a simple lock manager run in parallel 

with the deadlock detection processes to simulate a transaction system as in the 

first algorithm. 

5.5.2 processes 

Another form of deadlock, dead processes occur when a process is blocked, wait-

ing to input/output over a channel, and no other process will synchronise with it. 

This will result in the process never being unblocked and therefore never proceed-

ing. 

One method to spot dead processes is to examine the lexical environments of all 

processes to see if they have bindings to the channel that the potential blocked pro-

cess is waiting on. If no other process has access to the channel in its environment, 

then it follows that no other process will be able to perform the corresponding in-

put /output on the channel, and so the waiting process will never unblock. The 

process can then be flagged as dead to the user. 

However, this method will not spot all dead processes. Just because a process 

has access to the dead processes channel in its environment, it does not necessarily 

follow that the process will communicate using that channel. Further lexical anal-

ysis could be performed on the process to try to determine if it will use the channel 

in the future. Again this analysis may be incomplete, as it could find that the com-

munication will occur if the process takes a particular branch, b u t at runtime the 

process chooses an alternative path of execution. 

5.5.3 mns 

Rather than a formal verification and trace of all possible sequences of interac-

tions between processes, automatic runs could be initiated by the user to perform 

random steps and thus produce a random trace through the system. A limit on 

the number of steps to be made per run could be set, and the system could carry 

out repeated runs, with each producing a different random trace. By combining 

the automatic run with the features described above, the system could be used to 

discover paths which lead to deadlock and dead processes. 
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5.5.4 frq/zZmg 

By gathering statistics about what interactions occur most frequently between pro-

cesses, the application designer can optimise the system for running in a dis-

tributed environment. 

For example, the statistics could show that two processes frequently commu-

nicate with each other through a common channel. In this case it would be most 

efficient to co-locate the processes on the same node, as this w o u l d cut down on 

the number of messages flowing between nodes. If co-locating the two processes 

is inappropriate, for example each process is servicing a separate user and needs 

to be located on their user's workstation, then consideration should be given to 

changing the algorithm so the two processes do not communicate as frequently, 

which would again reduce the number of messages flowing between nodes. 

5.6 Summary 

The stepper as implemented is a useful tool available to application developers us-

ing HOC-Scheme to prototype their applications in order to investigate the com-

munications and interactions between processes. 

Further enhancements could be made to the stepper to provide a better set of 

services to the application developer. 
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(define (start-DDM transaction) 

(DDM transaction '() '())) 

(define (DDM transaction conflicts probes) 

(alt ((add-graph transaction conflicts probes)) 

((sub-graph transaction conflicts probes)) 

((probe transaction conflicts probes)) 

({anti-probe transaction conflicts probes)))) 

(define (add-graph transaction conflicts probes) 

(input (transaction-add-graph transaction) (conf) 

(if (member conf probes) 

; ; If probed then abort 
(output (transaction-abort conf)) 

;; Probe coM/Zicf (/"we are yowMger 
; ; Probe cof^zcfybr off owr probes fTiaf are yowMger 
(progn 

(if (younger transaction conf) 

(output (transaction-probe conf) transaction) ) 
(map (lambda (p) (if (younger p conf) 

(output (transaction-probe conf) p) '())) 

probes))) 
(DDM transaction (cons conf conflicts) probes))) 

(define (sub-graph transaction conflicts probes) 

(input (transaction-sub-graph transaction) (conf) 

; ; sen j aMh'-probes 
(if (younger transaction conf) 

(output (transaction-antiprobe conf) transaction)) 

(DDM transaction (remove conf conflicts) probes))) 

(define (probe transaction conflicts probes) 

(input (transaction-probe transaction) (init) 

(if (member init conflicts) 

(output (transaction-abort init)) 

(map (lambda (conf) 

(if (younger init conf) 

(output (transaction-probe conf) init))) 

conflicts)) 

(DDM transaction conflicts (cons init probes)))) 

(define (anti-probe transaction conflicts probes) 

(input {transaction-antiprobe transaction) (init) 

(map (lambda (conf) 
(if (younger init conf) 

(output {transaction-antiprobe conf) init) ) ) 

conflicts) 

(DDM transaction conflicts (remove init probes)))) 

Figure 5.4; An improved deadlock detection algorithm 
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Chapter 6 

A distributed implementation 

of HOC Scheme 

6.1 Introduction 

A distributed implementation of HOC Scheme allows the users and programmers 

of applications to gain experience of how applications behave in a truly distributed 

environment. 

This chapter introduces an implementation of HOC Scheme which runs on a 

network of distributed workstations. Each workstation in the HOC Scheme system 

executes an instance of the HOC Scheme runtime system. In turn, each runtime 

is responsible for executing the HOC Scheme processes that go to make up the 

distributed application. The chapter is split into a number of sections: 

1. Design of the language. This section describes the language the HOC Scheme 

nodes execute, extending the basic language structure defined in chapter 4; 

2. The user interface. The design of the user interface can affect the design of 

the underlying system and so needs to be considered at the outset of the 

implementation work; 

3. Achieving distribution. This section discusses additional features that HOC 

Scheme needs in order to provide support for the distribution of processes. 

In particular, the bootstrap case needs to be considered; 

4. Implementation. Finally, when all other issues have been settled, the imple-

mentation is described; 

5. Future work. This section discusses possible extensions which could be made 

to improve the HOC Scheme environment. 

6.2 Aside — the single node 

The single node system is intended to allow application developers to run a com-

plete HOC Scheme implementation on just one node. This should allow the ma-

jority of application debugging to be achieved within a simple non-distributed 

environment. 
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Once debugged, the application can be tested on a distributed system using 

multiple nodes. 

The single node need not possess every feature required by a node that operates 

in a distributed system (for example, network connectivity is no t required by a 

single node system). However, the converse is not the case, a n d it is true to say 

that a node running as part of a distributed system should possess all the features 

of a stand alone node. Namely: 

9 A scheduler with the ability to support multiple processes; 

• The ability to allocate channels; 

8 The ability for processes running on the same node to communicate with 

each other. 

By designing the distributed node with the ability to operate as a single stand 

alone node, implementation effort can be greatly reduced, as only one system need 

be written. Given that the distributed node is a superset of the s t and alone node, it 

does not place greater requirements and implementation effort on the distributed 

system designer. 

For this reason, a distributed HOC Scheme node may operate as a single stand 

alone node, and given suitable configuration of the node, execute HOC Scheme 

applications which have been designed to run over a network of nodes. 

6.3 Language 

The HOC Scheme nodes execute the language described in section 4.7. Thus it 

supports the computational features of Scheme bound to the coordination features 

of HOC. 

The top level environment found in all nodes of the HOC Scheme network also 

contains additional primitives not defined in section 4.7. These n e w primitives fall 

into two main camps: 

1. Support for distribution. These primitives are provided to aid the application 

during boot strap and also allow the system to modify its state. Section 6.5 

discusses these primitives in detail; 

2. Support for the user interface. This provides the application user with a lim-

ited toolbox for creating basic user interfaces. Section 6.4 defines these prim-

itives. 

6.4 User interface 

Similar to the stepper, the user interface could either be character based or win-

dows based. The presence of a number of nodes in the distributed system increases 

the problems of designing the user interface. Not only does the decision need be 

made about the type of user interface, but on which node to display the output. 

The choice of node on which to output information depends upon the type of 

application that is being run. For example, if the application is designed to solve 

a mathematical problem, then it is likely that only one node will act as the user 
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interface — the workstation at which the operator is sitting, w i t h other nodes in 

the system used as workers to help achieve speedup. A workflow application on 

the other hand might require the input from several users in order to proceed. In 

this case each user's workstation would be running an instance of HOC Scheme, 

and would therefore be a node in the HOC Scheme network. Each of these nodes 

would have to be capable of interacting with their user, and each would therefore 

require some form of user interface. 

This implies that the system has to be able to support multiple user interfaces. 

This leads to a further issue. When a process requires data to be input or out-

put, how does it specify which node in the system should be used to handle this 

request? 

One solution would be to add an additional parameter to each user interface 

function that specified which node should be used to perform this input or output 

request. There are a number of disadvantages to this approach: 

1. Naming of nodes could be problematic as the node names would have to be 

known at programming time; 

2. A communications protocol between the nodes for the handling of user in-

terface input and output requests would have to be designed. This would be 

in addition to the protocol design needed to implement the channels based 

communications between processes running in the HOC Scheme environ-

ment. 

Another approach is to perform the input or output on the n o d e on which the 

process making the request is executing. This would mean that no additional 

parameters would be needed by the input and output primitives. However this 

method also presents problems. 

1. What if the process which wants to perform the input /output routine is not 

executing on the correct workstation where the operation should be per-

formed? 

2. What if the process does not explicitly know (by name) which node should 

handle the input/output operation? 

These two problems can be solved using the coordination features provided in 

HOC Scheme. If a process is not executing on the correct node then it has two 

choices: 

1. Migrate to the correct node and then perform the input /output operation; 

2. Using channels, communicate with a process executing on the required node 

and request that it perform the input/output operation on its behalf. 

Going back to the workflow example described above, a good solution to the 

input/output problem would be for a user interface process to run on each user's 

workstation, using channels to interface with other worker processes that need to 

input requests f rom/output results to these users. This has the added advantage 

that a user could change workstation, causing their user interface process to mi-

grate to their new workstation. Because the channels are node independent the 
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worker processes in the system would not have to be reconfigured to perform in-

put /output operations on the new node. Instead they would carry on communi-

cating with the user's user interface process using the same channels as when the 

user was located on his/her previous workstation. 

In the case of a single user running an application on a HOC Scheme network, 

the model above also holds. For example, worker processes could be dispatched 

from the user's workstation to other workstations within the system. When these 

worker processes have completed their tasks, they could migrate back to the user's 

workstation to report their results. 

Thus using the coordination primitives of HOC Scheme combined with a sim-

ple user interface input/output model is sufficient to handle both the single user 

and multiple user applications. 

We can now go back to the choice of a windows or character based interface. 

The stepper chose the character based interface because it was sufficient for its 

needs and reduced the complexity of the implementation. For the distributed im-

plementation, the arguments for a windows based interface become stronger. Ad-

vantages include: 

• Non-blocking. The Lisp reader provided by most implementations blocks 

the main thread of control whilst waiting for the user to inpu t a complete 

expression. Windows based interfaces are generally event driven, allowing 

the system to continue doing useful work whilst the user is typing in data, 

for example, executing other HOC Scheme processes; 

8 More intuitive. Whereas the stepper was designed to be used by application 

designers, it is envisaged that the distributed system could be used by a less 

proficient class of user. By providing an interface closer to the ones which 

they are used to working with, acceptance of new applications could be made 

easier. 

If a windows based interface is to be provided, then the completeness of this 

implementation has to be considered. A complete interface would provide the 

applications programmer with access to the full range of windows and controls 

that the underlying windows system has to offer. As most windows systems do 

not come with a Lisp interface, this would be a significant piece of work, both in 

designing the API and the actual implementation. As this research is not centred 

around the provision of user interfaces, this complete approach was discounted. 

Another approach is to provide the user with access to a limited toolkit of user 

interface components, sufficient to build limited user interfaces. This has the ad-

vantage of being a more manageably sized project, whilst providing the applica-

tion programmer with a non-blocking input/output interface. 

This approach has been adopted to provide the windows based interface for 

HOC Scheme. This user interface consists of a number of components. 

1. Expression evaluator. This is similar to the character based read-eval-print 

loop provided by the stepper. It consists of three panes, an input pane where 
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HOC Scheme 

Output 

Expression; 

[(input a (n) n) 
(spawn (lambda 0 (output a 5))) 
(define a (make-channel)) 

(def ine a (make-channel)) 
= <Channel: 0 6> 
Spawned process 4 
(spawn (lambda () (output a 5 ) } ) 

= ( ) 

Task 4 f in ished. Return value = OUTPUT 
( input a (n) n) 

Figure 6.1: Example of the expression evaluator window 

users may type expressions to be evaluated, an output pane which displays 

the history of input expressions and their results, and a list window that 

allows previously entered expressions to be recalled and edited. Figure 6.1 

shows the expression evaluator; 

2. List window. This displays the contents of a list, where each element is a 

text string. The user may then select one of these list items, and this item is 

the return value of the list pane function. Figure 6.2 shows an example list 

window; 

3. Input/Output window. This allows the application programmer to provide 

the user with a window, separate from the expression evaluator, in which 

they can view output and input data for the system. Figure 6.3 shows an 

example input/output window. 

For completeness, a character based interface is also provided by the HOC 

scheme system. This includes a read-eval-print loop as well as the ability for pro-

cesses to output and input data from the console. Figure 6.4 shows the output of 

the mobile phones example running on a single node with character output. 
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List 1 

Item 2 

tern 3 

Figure 6.2: Example of the list window 

10 Window 

Output 1 
Output 2 
Output 3 

10 prompt:^ 

Figure 6.3: Example of the input/output window 

Thus the applications programmer has the choice over the type of interface 

to provide to the user. The applications programmer could even mix interfaces, 

perhaps with workstations used by general users providing a w indows based in-

terface, and nodes used by system operators using a character based one. 

6.5 Distribution 

6.5.1 Starting HOC Scheme nodes 

When a HOC Scheme node is started it may not be alone. Other HOC Scheme 

nodes could be executing on the network. An issue that needs to be addressed is 

how new nodes join the existing network when they are started. 

One solution is for the new node to broadcast a message to all workstations 

on the network asking whether they are executing HOC Scheme nodes. Work-

stations that are executing HOC Scheme will listen for such messages and send a 

confirmation message back to the sender. The new node will thus find out about 

existing nodes and can then use a join network protocol to bind itself in with the 

other nodes. If no response message is received within a given t imeout period, the 

node can assume that it is alone and start acting as a single station. 
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HOCScheme? (load "mobile.scm") 

= OK 
HOCScheme? (start) 
Spawned process 3 

Spawned process 4 

Spawned process 5 
Type s to switch to base 2 

s 

Give 

Alert 

Switch 

Type s to switch to base 1 

s 

Give 

Alert 

Switch 

Type s to switch to base 2 

Figure 6.4: Mobile phones running under HOC Scheme 

This has advantages and disadvantages. The main advantage is simplicity for 

the user. All the user has to do is start the node on their workstation, and the node 

will do its best to join an existing network. 

One disadvantage arises if the HOC Scheme network needs to be run over the 

wide area. Broadcasts typically do not leave the site on which the broadcast was 

made. This protects the wide area network from congestion due to broadcast traffic 

(as wide area networks are usually much slower than local area ones, they are less 

suited to carrying the large amount of broadcast traffic that a local area network 

typically carries). Therefore a different mechanism will be needed for connecting 

HOC Scheme nodes running on different sites through a wide area network. 

Another problem with the broadcast model comes when multiple networks of 

HOC Scheme nodes need to be built, with no interaction between these networks. 

As an example, this could be required for operating a live network, on which users 

perform real work, in parallel with a test network, on which new applications are 

developed. 

This separation could be achieved by using separate physical networks, or sep-

arate subnets through which broadcast traffic does not pass. However, requiring 

a physical change in the network infrastructure to solve what is essentially a soft-

ware problem is impractical. 

An alternative solution is to name an existing HOC Scheme node in a network 

when starting a new node which should join that network. This solves the prob-

lems that the broadcast model introduces. HOC Scheme networks that span dif-

ferent sites using a wide area network can be easily built, by naming nodes which 

reside in different site over a WAN connection. 

Multiple networks of HOC Scheme nodes can also be created over one physical 

network. Two seed nodes could be started without naming any other node in the 

network. This would cause both nodes to create their own HOC Scheme networks. 
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Additional nodes could then be started, and by naming either seed node, the new 

node could be directed to join the intended network. New networks could be 

created at any time without affecting the separate HOC Scheme networks that are 

already running. 

This does pose problems however. It is not as trivial for a user to join a new 

node to a HOC Scheme network as the broadcast solution, because the user is 

required to have knowledge of an existing node in the network. In addition, an 

ordering problem arises, in that nodes that are to be named as existing nodes in the 

network must be started before the nodes that name them. This problem could be 

exacerbated when creating a network which runs over a wide area. One solution 

would be to designate one node that should be named by all other nodes joining 

the network, and to ensure that this one node is operational for mos t of the time. 

The naming scheme for introducing new nodes to the network w a s chosen over 

the broadcast mechanism as it is independent of the underlying network. 

6.5.2 Sfoppmg HOC MO(fgs 

By allowing HOC Scheme nodes to be stopped as well as started, the network of 

nodes becomes dynamic, in addition to the dynamic network of processes execut-

ing on these nodes. This allows dynamic reconfiguration of the network to bring 

online additional resources when required, and to reduce the size of the network 

when it is prudent to do so. 

However, the stopping of nodes does present problems. A node can be stopped 

in two ways: 

1. Planned. The user instructs the node to stop and the node is detached from 

the network in a graceful manner; 

2. Unplanned. The node is removed from the network due to a failure. 

Handling the failed node correctly is vital to provide a reliable environment 

((Birman 1993)). Different methods of handling each type of shutdown need to be 

planned. For the optimal case, the following conditions should be met: 

1. The remaining nodes in the network do not fail due to any node in that net-

work shutting down; 

2. Management is taken over by another node of the channels that the closing 

node contained; 

3. Processes that were executing on the closing node are moved to another node 

in the network; 

4. Any communications involving the closing node are retried once the net-

work has reconfigured. 

In the case where the node is shut down cleanly, all the above conditions could 

be met. The node will have time to offload the processes it was executing and chan-

nels it was managing. Whilst in this mode, it could fail any messages that were sent 

to it, causing the remaining nodes to retry once the network was reconfigured. 
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Failure of a node can occur for many reasons. For example, the HOC Scheme 

process could be terminated without letting it execute its shu tdown routine, or the 

workstation on which the HOC Scheme node was executing could crash. 

In such cases the shutdown routine of the node will not run, a n d for all the con-

ditions specified in the above list to be met, a robust fault tolerant infrastructure 

would be needed. This would involve the mirroring of processes, so that when a 

process changed state, its mirror process would reflect this. Thus if a node crashed, 

the mirror node would be able to take over, continuing from the same state as the 

crashed node had reached. Such a scheme is costly, both in t e rms of communi-

cations and implementation effort. Solutions could be achieved b y using existing 

fault tolerant tools. For example, much work has been done in the area of fault tol-

erant databases. If the state of each process were to be written to such a database, 

then if the node failed, a backup node could query the database to resurrect the 

processes. This would also allow processes to be persistent, giving the system the 

ability to completely shutdown, and be brought back online in the same state at a 

later time. This was beyond the scope of this thesis however, and a simpler solu-

tion was sought. 

In order to allow the network to continue in the presence of a failed node, some 

of the above conditions still need to be met. 

1. The remaining nodes in the network do not fail due to any node in that net-

work failing; 

2. Management is taken over by another node of the channels that the failing 

node contained; 

3. Any communications involving the failed node are retried once the network 

has reconfigured. 

If these conditions are met then the network should remain ful ly operational. 

However, applications running in the HOC Scheme network could fail. This is 

because processes running on the failed node are not preserved. Thus any process 

which attempts to communicate with a process on a failed node will also fail. In 

this case the communicating process will block as there will be nothing to receive 

the communication. 

Moving the management of channels from the failed node can also cause prob-

lems. This is because it involves state being maintained for these channels. Again 

a backup node is needed in order to mirror this state, so that the backup node may 

take over management if the primary node fails. 

One possible solution that does not require a backup node would be to remove 

the management of channels from these nodes. Instead, a core set of centralised 

nodes could handle the management of channels. Thus if a node on a user's work-

station failed, no state other than the processes running on that node would be lost. 

However, this just moves the problem into the centre of the network, away from 

user workstations. Although it could be argued that centralised server worksta-

tions are less likely to crash than user workstations, they can still do so, and thus 
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some mirroring scheme would still be required. In addition, this loads the com-

munications mechanism between user nodes and the centralised channel manage-

ment nodes. By allowing each user node to manage channels, the communications 

load becomes more diffuse across all nodes in the HOC Scheme network. 

Another type of failure is partial failure. This occurs when a node(s) in the 

HOC Scheme network becomes temporarily unavailable. This could occur, for 

example, when the physical network becomes partitioned due to a break in a wire. 

Nodes on one side of the break will not be able to communicate with nodes on 

the other side until the break has been fixed. For individual nodes in the network, 

it is difficult to distinguish between a partial and total failure of a node. In both 

cases, the node becomes unavailable and stops responding to messages. For this 

reason it is safer to assume that the node has completely failed. In the case of a 

network partition, nodes on both sides of the partition will assume that nodes on 

the other side have failed and continue to operate independently, resulting in the 

HOC Scheme network becoming partitioned. This presents a problem when the 

fault is fixed as the networks should now merge back to form the original structure. 

As can be seen, failure situations, both complete and partial, pose many prob-

lems when designing a distributed system which is intended to have a degree of 

fault tolerance. The implementation of HOC Scheme that this thesis introduces 

does not fully solve any of these problems. It does, however, present an architec-

ture that is extensible and could be extended in such a way as to provide a fault 

tolerant network. 

6.5.3 SfgrfzMg a HOC Sc/zgme appZicafzoM 

Many HOC Scheme nodes may be used to execute a single application. Thought 

needs to be given to how such applications are started. 

One method is to start each node by loading the application file (HOC Scheme 

source code) and a boot file specific to each node which starts the application's 

processes applicable to that node. 

An alternative is to load the application on one node, and start all processes on 

that node and quickly migrate these processes to the destination node where they 

are intended to execute. 

By explicitly loading the application and boot file on each node, more work is 

placed on the user. However, this method means that all nodes running the appli-

cation will have the applications code preloaded and ready to r u n any processes 

which migrate to them. Using only one node to load an application reduces the 

effort required by the user to start HOC Scheme applications running, but places 

more load on the HOC Scheme runtime as initially only one node in the system 

will contain the applications code. This means that code of a migrating process 

must be sent across the network in addition to its environment. 

Both methods leave one unresolved issue, that of the linking u p of nodes. HOC 

Scheme enforces the rule that the only method of communication between pro-

cesses is by sending and receiving data over channels. This implies that in order 

104 



;; Accepf processes (wer a c/iawMeZ awf spawM 
(define {entrance c) 
(input c (p) 
(spawn p)) 

(entrance c)) 

Figure 6.5: A function to spawn processes received on a channel 

to communicate, both processes must have access to the same channel. How is 

this achieved if processes start on different nodes, in the case of applications being 

preloaded on each node? In the case where the application is loaded on only one 

node, how do processes discover and migrate to other nodes in the network to 

create a distributed system? Some alternative method of distribution needs to be 

defined to solve this chicken and egg situation. 

In the case where the application is loaded on a single node and processes mi-

grate to their destination nodes, a distribution mechanism needs to be provided 

for all nodes in the system. Such a system could be provided by an entrance pro-

cess which listens on a channel and receives closures that it subsequently spawns 

to execute on its node. Figure 6.5 shows the implementation of such a process, 

implemented in HOC Scheme. 

For this system to operate correctly, the channel that each node's entrance pro-

cess uses needs to be available to the node that has loaded the application, in order 

that it may communicate with these entrance processes to start the distributed ap-

plication. 

6.5.4 Top 

The top level environment can be used to help solve some of the problems involved 

with starting applications across a distributed network. 

The top level environment contains the bindings which are common to all pro-

cedures and therefore processes within the application. If each node were to main-

tain its own separate top level environment, it follows that the application would 

have to be loaded into each environment on every node on which the application 

was to execute. 

By allowing the top level environment to be shared between all nodes in the 

HOC Scheme network, only one node would be required to load the application. 

In order to achieve this distributed environment, a distribution mechanism needs 

to be defined. 

This mechanism cannot easily be built on top of the channel communication 

protocols as it is orthogonal to them. The top level environment mus t be capable 

of distributing channels as well as any other bound object. 

It is important to enforce the rule that channels are the only means by which 

processes are able to communicate with each other. For this reason, the top level 

environment has been made immutable. If bindings in the top level environment 
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were to be made mutable, this would give processes an alternative means of com-

munication, via the shared variable. Without the provision of mutual exclusion 

primitives to protect variables being simultaneously written to by multiple pro-

cesses, and event primitives to signal to a process that a shared variable is ready to 

be read, then the use of shared variables for communication is risky. 

A mutable variable also poses problems concerning distribution, especially if 

two processes simultaneously change the value of a variable on different nodes, as 

it is important that all nodes in the network finally settle on one of the two values. 

If some nodes were to settle on the first value, and others to settle on the second, 

then the top level environment would become inconsistent. 

The same problem arises in an immutable environment. W h e n two nodes si-

multaneously define the same variable, but with different values, the whole system 

must agree which definition should be accepted, with the other definition report-

ing that the name is already contained within the top level environment and is 

immutable. 

6.5.5 Dzscoyermg Monies in HOC 

A distributed top level environment can be used to distribute charmel bindings 

which allow nodes to migrate processes to other nodes. For example, the first node 

that starts the network could create a shared channel which enables processes to 

migrate to a random node. Other nodes would then receive this channel in their 

copy of the distributed top level environment when they boot up, and could spawn 

an e n t r a n c e process to listen on this channel. When a process wants to migrate to 

a random node, it could then transmit itself over this well known channel. It is then 

up to the underlying channel management system to determine which e n t r a n c e 

process should rendezvous with the sender, thus determining to which node the 

process will migrate. 

Naming of channels that communicate with e n t r a n c e processes on specific 

nodes is more complex. Each name in the top level environment must be unique. 

In addition, if names are not to be hard coded into the application then a mecha-

nism needs to be designed to allow processes to discover nodes. 

The resource locator process has been designed to solve this. Again a well 

known channel is used to access this process to allow other processes to discover 

nodes that contain a certain set of resources. This resource set is modelled as an 

unstructured list of symbols, with each symbol representing a resource. There is 

no restriction on the type of resource a symbol may represent, f rom the physical, 

for example p r i n t e r might represent this node has a printer, to the more abstract 

— f r e d representing the user "fred" is logged onto this machine. Figure 6.6 shows 

the implementation of a resource locator. For brevity, the mechanics of matching 

resources is not shown. 

An API for accessing the resource locator which hides the interface between 

processes making the requests and the resource locator server process is included. 
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; ; TTze T-ggowrce Zocafor process. Can ef'fAer (atE mpuf k regisfer Mew resources 
;; or perform a resource location 
(define (resource-locator query-channel register-channel database) 

(alt ((input query-channel (required-resources reply-channel) 
(output reply-channel (query-database 

database required-resources) ) 
(resource-locator query-channel register-

channel database))) 
((input register-channel (resources node) 

(resource-locator query-channel register-channel 
(exkend-database database resources node)))))) 

; ; Start one resource locator for the whole network 
(define *resource-locator-query-channel* (make-channel)) 
(define *resource-locator-register-channel* (make-channel) ) 
(spawn (lambda () (resource-locator *resource-locator-query-
channel* 

channel^ 
* resource-locator-regis ter-

(make-empty-database) ) ) ) 

; ; AP7occessmg (ke fesowrce Zocafor 

;; f W a MOtfe 
(define (find-node resource-list) 

(let ((reply (make-channel))) 
(output *resource-locator-query-channel* resource-list reply) 
(input reply (process-spawner-channel) process-spawner-

channel))) 

; ; Regisfer o wifA a sef (^resources 
(define (register-node resource-list process-spawner-channel) 

(output *resource-locator-register-channel* 
resource-list process-spawner-channel)) 

Figure 6.6: The resource locator process 

The communications protocol consists of two operations, querying the database 

and registering new resources. 

The query operation is split into two separate communications. The first is sent 

from the requesting process to the resource locator server. A list of resources which 

should be matched is passed through the communication in addition to a channel 

on which the result should be sent. The request locator server can then perform the 

lookup and use a second communication to send the result back to the client. The 

split of a two way communication allows different methods of handling requests. 

The implementation of the resource locator server shows the query request being 

handled synchronously. However this need not be the case. For example, the 

server could spawn a new process to handle the request whilst the server process 

immediately recurses, ready to receive the next request. If lookups take a long 

time, this method would help increase the throughput and responsiveness of the 

resource locator server. 
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Although the client API does not support it, the two stage communication pro-

tocol also allows clients to lookup nodes in an asynchronous fashion. The client 

can first output the lookup request to the resource locator server, along with its re-

ply channel. Whereas the f i n d - n o d e client API then immediately blocks waiting 

to input the result from the server, clients could actually perform other tasks, only 

later collecting the result. 

Care should be taken when writing asynchronous clients that the system does 

not deadlock. For example, if the client tried to output two lookup requests to the 

server and then wait for both results, the synchronous server of figure 6.6 would 

deadlock. If asynchronous clients were to be combined with asynchronous servers 

that spawned processes to handle requests, then no deadlock would occur. 

There is only one resource locator server in a HOC Scheme network. This pro-

cess resides on the first node that starts, with other nodes being able to access this 

process through its well known channel, which is part of the distributed top level 

environment. 

As this server and its API are written purely in HOC Scheme, it is not consid-

ered part of the underlying HOC Scheme runtime. Instead it executes as a user 

process on top of the runtime system, as would any HOC Scheme process an ap-

plication might spawn. The same is true of the e n t r a n c e process. 

The source code for these processes is precompiled into the H O C Scheme run-

time. The resource locator is only loaded into the top level environment and the 

server process spawned if it is the first node to join the network, whereas e n -

t r a n c e processes are started on each node of the network. 

Finally, the issue arises of how to register resources for a node. Nodes may be 

able to auto discover resources (for example, query the operating system to see if 

a printer is attached to the workstation). Another solution could be to configure 

the resources a workstation contains in an initialisation file, for example, . h o c -

schemerc . Finally resources could be specified on the command line when boot-

ing a HOC scheme node. This method could be used to specify resources that are 

dynamic (for example, which user is logged onto the network). 

6.6 Implementation 

Each HOC Scheme node that makes up a distributed network of nodes consists 

of the same set of modules. For nodes with the same architecture and operating 

system, the same binary image is used. Figure 6.7 shows the structure of a HOC 

Scheme node. 

Each module is responsible for the operation of part of the HOC Scheme node: 

• Compiler. This module is used to compile HOC Scheme source code into a 

form which can be executed by the runtime interpreter; 

® Interpreter. This module is responsible for executing HOC Scheme processes, 

both application and system. It maintains the environment for each process 

and the top level environment shared between all processes; 
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Figure 6.7: Modules contained in a HOC Scheme node 

• Scheduler. This is used to maintain the illusion of multitasking of HOC 

Scheme processes. It is responsible for maintaining a ready queue of pro-

cesses, and supporting the blocking and resumption of processes; 

• Channel manager. This module is responsible for maintaining the state ma-

chine used in the protocol for handling channels created on the node. Chan-

nels created on other nodes in the network are managed by their nodes chan-

nel managers; 

» Communications system. This module handles all the inter node message 

transfers, as well as the delivery of incoming messages to their destination 

modules; 

8 Boot module. Responsible for initialisation of the node. 

The following sections discuss in greater detail the modules which make up a 

HOC Scheme node. 

6.6.1 /mpZgmgMfah'oM 

Section 6.6.1 discusses the requirements of a runtime system that has to be able 

to support mobile code. This mobility is achieved through the use of a byte code 

interpreter, which is capable of executing on a variety of architectures without re-

compilation. 

This section discusses the choice of byte code, the implementation of the in-

terpreter and the underlying platform on which the interpreter and other HOC 

Scheme modules are implemented. 

Several choices could be made when deciding how to implement the system. 

The first is the choice of language. Although any computer language should be 

capable of writing the compiler and interpreter. Lisp was quickly settled on as it 

has a number of advantages over other potential languages. 
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1. A built in parser. This provides a trivial way of reading in Lisp expressions 

from an input stream and parsing them into Lisp data structures, which can 

later be further parsed by the compiler; 

2. Built in Lisp data types. These data types can be provided "as is" by the byte 

code interpreter to the processes that it is executing; 

3. Garbage collection. Again, not only can this be used to garbage collect objects 

discarded by the compiler and interpreter, it can clean up objects that runtime 

processes no longer require. 

Alternatives do exist. For example, the Tube system ((Halls 1997)) uses a com-

piler producing Java byte code from a Lisp like language. This byte code can then 

be executed on any standard Java virtual machine, of which there are many imple-

mentations. 

Once it was decided to use Lisp to implement the compiler and runtime system, 

an implementation had to be chosen. Because the system interprets HOC Scheme 

processes, compiled into byte codes, it is desirable that the byte code interpreter 

should not be interpreted itself. This is because interpretation is slower than the 

direct execution of binary code by a workstation's CPU. Having the HOC Scheme 

byte code interpreter itself interpreted by an underlying Lisp interpreter would 

result in HOC Scheme processes being executed through two levels of interpreta-

tion, greatly reducing the execution speed of these processes. For this reason, a 

Lisp compiler producing native code that could directly execute on workstations 

was sought. 

Compilers which generate architecture specific code have to be ported to new 

architectures as and when they arise. It is therefore important, if HOC Scheme is 

to execute on a variety of nodes in a heterogeneous network, that the compiler be 

able to target many platforms. 

Some compilers produce C code, which is then further compiled to native code 

by a workstation's C compiler. Such a compiler would appear to be a good candi-

date for the HOC Scheme system, as the system could be compiled on any platform 

that contained a C compiler. However, provision of the runtime support needed 

by applications is often architecture specific, the garbage collector, for example. 

The following sections briefly describe compilers suitable for compiling a HOC 

Scheme node written in Lisp into a set of binary executables that can target multi-

ple platforms. 

5c/zgme->C 

Scheme->C ((Bartlett 1989)) is a scheme compiler which generates C as its target 

language. This makes the compiler portable across platforms. A separate runtime 

library is linked against the object code to produce the final application. 

The system has a number of extensions over standard Scheme which aid the 

compilation process. 
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1. Modules. This allows a single application to be split into several files, which 

aids programmers in producing structured code, and gives them the ability 

to quickly find the code they require; 

2. Foreign language interface. This allows Scheme programs to call functions 

implemented in another language, that have been compiled into object code 

which is linked into the final application; 

3. Constants. By declaring a name as mapping to a constant va lue , the compiler 

need not place this name in the top level environment, a n d can instead per-

form substitution of constant names with their values at compile time. This 

increases runtime performance, as constants will not need to be looked up 

every time they are referenced; 

4. Interpreter. A runtime system can be built which boots into the Scheme-

>C interpreter, a standard read-eval-print loop. However, in addition to 

the standard Scheme functions, the top level environment contains all def-

initions from modules that are linked into the executable. This allows easy 

unit testing of the distributed system, as individual modules can be tested by 

calling their top level functions directly from the interpreter; 

5. Debugger. The interpreter can also be used to aid debugging of modules. 

From the interpreter, users can set breakpoints, including conditional break-

points that execute an expression to determine if they should break. Once in 

a breakpoint, the user can examine the call stack and state of local variables. 

Figure 6.8 shows a sample module and how it is compiled in to an executable, 

and finally that executable running. Note that this example makes extensive use of 

continuations, showing that the compiler can cope with the most complex Scheme 

data type. It is left as an exercise for the reader to validate that the output produced 

is correct! 

Similar in function to Scheme->C, Bigloo is a Scheme compiler which generates 

C source code, which is then further compiled to object code and linked against a 

runtime library to produce an executable. 

One advantage of the Bigloo system over Scheme->C is that it comes with a 

built in object system, Meroon ((Queinnec 1993)). This extends the Scheme pro-

gramming language with an object system that allows generic funct ions to be cre-

ated (these are functions with multiple bodies, with the actual b o d y chosen based 

on the classes of arguments passed to the function), and a class based type sys-

tem with support for single inheritance. For an excellent grounding in Lisp object 

systems see (Kiczales et al. 1991). 

Scheme48 

Scheme48 does not compile into native code, instead it uses a byte code represen-

tation with byte code interpreters able to execute on multiple platforms. 

However it does possess many of the features that are required in order to run 

a HOC Scheme system. 
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nb88r% more mondo.sc 

(module mondo (main call-mondo)) 

(define (call-mondo command-line-args) (mondo-bizarro) (newline)) 

(define (mondo-bizarro) 

(let ((k (call/cc (lambda (c) c)))) 
(display 1) 
(call/cc (lambda (c) (k c))) 
(cU.splay 2) 
(call/cc (lambda (c) (k c))) 
(display 3))) 

nb88r% see -o mondo mondo.sc 
mondo.sc: 
nb88r% mondo 
11213 
nb88r% 

Figure 6.8: Mondo bizarro by Eugene Kohlbecker compiled using Scheme->C 

1. Functions are able to be reified into a data structure that contains the byte 

code of the function. This data structure can then be transmitted over a net-

work and reconstructed on a remote node. This would allow the creation of 

mobile code; 

2. The threads interface allows execution of multiple tasks by each individual 

node; 

3. A foreign language interface allows the system to create primitives that map 

onto functions defined in other languages. 

Given this underlying system, primitives could be provided to manage chan-

nels and the communication between nodes. The Scheme48 byte code interpreter 

would then directly execute HOC Scheme processes, calling on a library of func-

tions to provide the additional HOC Scheme functionality that Scheme48 does not 

natively provide. This solution was discussed in section 4.6.1. 

The disadvantage of this approach is the difficulty in providing a distributed 

top level environment, although other approaches to the distribution of well known 

channels could be envisaged, for example by communicating with a well known 

process on another machine. 

CommgrcigZ Lzspg 

Commercially available Lisp compilers are more powerful than their public do-

main equivalents. These compilers typically produce native code directly, choos-

ing not to go via some intermediate language such as C. This allows the compiler 

to have full control over the optimisation process. 

These Lisps typically come with powerful debugging and profiling tools, and 

are a good candidate for producing commercial quality applications. 
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Tkg choice 

Scheme->C was chosen as the compiler used to produce the H O C Scheme node 

binaries. This implies that the implementation language for wr i t ing the HOC 

Scheme node is Scheme. 

This does not mean future versions of HOC Scheme nodes n e e d to be compiled 

using Scheme->C. Bigloo is also a good candidate for compiling HOC Scheme 

nodes. Some porting effort would be required, from the extensions to Scheme 

provided by Scheme->C to equivalent extensions provided by Bigloo. 

As long as the communication protocols between nodes are n o t altered, a dif-

ferent implementation language could be chosen, with these n o d e s being able to 

intemperate with HOC Scheme nodes written in Scheme. 

Scheme->C was chosen over the other candidates due to a set of modules 

which HOC Scheme node makes use of being available. These modules are in-

troduced in subsequent sections. 

6.6.2 BykcoffeiMferprefer 

Within the HOC Scheme node lies the interpreter module. This m o d u l e is respon-

sible for executing the HOC Scheme processes. These processes are either standard 

HOC Scheme processes provided by the HOC Scheme system, (the e n t r a n c e pro-

cess, for example), or processes spawned by the distributed application the HOC 

Scheme node is executing. It is also responsible for executing expressions provided 

by the read-eval-print module, and the windows interface module . 

The interpreter does not execute expressions in the form pa r sed by the Lisp 

reader receiving expressions to be evaluated. Instead it executes a form of byte 

code which is compiled from the read expressions. 

This byte code has been adapted from a previous project wh ich used Scheme-

>C as its compiler, the ICSLAS project, run at INRIA, Paris ((Queirmec 1990)). 

Part of this project provides a two pass compiler and runtime interpreter. The 

first pass of the compiler parses the expression, itself parsed into Lisp s-expression 

form, into an intermediate syntax tree structure known as s-code. This s-code is then 

further compiled into a form which can be directly executed by the interpreter. 

This form is known as i-code. Both types of code make use of the Meroon object 

system. For example, all instructions that the HOC Scheme run t ime interpreter 

executes are derived from the base class I code . The instruction that represents 

"evaluates to an atom" would be represented by an instance of the following class: 

(define-class RT-Quotation Icode 

( value ) 

) 

This defines a subclass of Icode called RT-Quotation. Instances of this class 

contain one field (similar to a non static C++ member variable), called value. 
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The Meroon object system automatically creates a constructor for the class, make-

RT-Quotation that takes one argument. This creates a new instance of RT-

Quotation with the value field initialised to the value of the argument , and re-

turns this new instance. It also creates functions which manipulate the field. (RT-

Quotation-value <instance>) returns the value field of t he instance, and 

(set-RT-Quotation-value! <instance> <new-value>) assigns<new-

value> to the value field of the supplied instance. 

Once the instruction and the data it encapsulates have been defined, code can 

be added to the interpreter so that the instruction can be executed. All instructions(e) 

are executed in the presence of a continuation(e), a lexical environment(r) and a top 

level global environment(g). 

A generic function is defined with these arguments, indicating the expression e 

is the argument that is specialised by methods added to this generic function. The 

default operation of the function is to raise an exception stating that a non valid 

i-code instruction was provided. 

(define-generic (evaluate (e) r k g) 

(raise-exception (make-Non-Evaluatable-Exception e) #f k g) ) 

A method can then be added to this generic function to evaluate instances of 

RT-Quotation. This instruction is evaluated by passing the va lue field of the 

object to the continuation of the expression. 

(define-method (evaluate (o RT-Quotation) r k g) 

(resume k (RT-Quotation-value o) g) ) 

In addition to classes which represent code, runtime objects are also repre-

sented as instances of classes in the Meroon class hierarchy. 

A set of classes is used to represent continuations. The continuation hierarchy 

consists of three classes, an abstract base class and two subclasses. These represent 

a linked list of frames, with the bottom continuation being a pr imit ive Scheme 

function that is used to clean up the evaluation, for example to p r in t the value for 

a read-eval-print loop, or tidy up a completed process. 

(define-class Continuation Object 

( ) 

:virtual ;immutable ) 

; Bottom continuations end a continuation. When such a continuation 

; recezpes a DaZwe, zMzwAzes z'k/zMaZzzer OM z's onZy 

; k buzZd f/ie Mz'fiaZ coMfiMwafioM k.zMz'f. 

define-class Bottom-Continuation Continuation 

( finalizer 
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:immutable ) 

;;; Regular continuations hold a frame, the others are linked through others. 

(define-class Full-Continuation Continuation 

{ others ;a Continuation 

frame ; a Frame 

) 

:immutable ) 

Frames are used to represent the various ways in which a continuation can be 

extended. Like continuations, all types of frames are derived f r o m the abstract 

base class Frame. For example when a conditional expression is evaluated, the 

current continuation is extended with a frame that when invoked, either evaluates 

the consequent code or alternative code, depending on the value passed to the 

continuation. The interpreter then goes on to execute the conditional statement. 

The value computed by executing the conditional statement is the value passed to 

the extended continuation. 

(define-class Frame Object 

( ) 

:virtual :immutable ) 

; ; ; T%g coMtzMwaHoM o/"OM ? fAen eke) 
(define-class If-Frame Frame 

( consequent ;aIcodeform 

al ternant ; a Icodeform 

r ; a lexical Environment 

) 

: immutable ) 

The continuation is invoked by the return generic function, which uses the 

top frame of a continuation to choose which method to execute. In addition, the 

function takes the remainder of the continuation(k), the value passed to the con-

tinuation(v) and the top level environment as arguments(g). 

(define-method (return (fr If-Frame) k v g) 

(evaluate (if v (If-Frame-consequent fr) (If-Frame-alternant fr) ) 

(If-Frame-r fr) 

k 

9 ) ) 

This approach to evaluation differs from that used when wri t ing the HOC 

Scheme stepper. In the stepper, parsing of s-expressions and execution of these ex-

pressions are carried out at the same time. The distributed HOC Scheme system 
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splits it into three distinct sections, parsing s-expressions to s-code, compiling the 

s-code into i-code, and finally executing the i-code. This has a number of advantages 

over direct interpretation used by the stepper. 

The i-code compiler can perform optimisations statically before the code is exe-

cuted. For example, rather than searching the environment for a variable contained 

in the top level or lexical environment, the compiler can statically determine the 

exact position these variables lie in the environment, resulting in faster environ-

ment access times. 

It can also produce inlined code, for example when a function which is bound 

to an immutable top level environment variable is called, it is safe for the compiler 

to inline this function. 

The separation of parsing from execution also allows different types of binaries 

to be built. Nodes which accept expressions from the user, either via a character 

based read-eval-print loop or a windows based interface, need to be able to pro-

duce i-code so that these expressions may be evaluated. However, nodes whose 

only function is to evaluate code, and who do not read users' expressions, need 

only have the i-code interpreter as part of their binaries. This can result in two dif-

ferent types of nodes — listeners which interact with the system on behalf of a user 

and feed instructions to the second type of node, evaluators. 

The runtime environment also differs from that used by the stepper. The most 

important difference, in terms of portability, lies in the way continuations are rep-

resented. In the stepper, continuations are modelled using the hos t Lisp's repre-

sentation of closures. The continuation passed around in the evaluator is a closure 

which takes one argument, the value passed to the continuation. In fact, the clo-

sure may encompass many closures, with outer closures wrapping existing contin-

uations when the continuation needs to be extended. 

For example, as demonstrated above, the conditional construct i f is shown 

to extend the continuation. In the stepper, a function which evaluates an i f ex-

pression(expr) in the presence of a continuation(k) and environment(a) could be 

expressed as follows. 

;; EmZwak an 
(define (eval-if k expr a) 

(eval (lambda (v) 

(eval k (if v (if-consequent expr) (if-alternative expr)) a)) 

(if-condition expr) 

a) ) 

This calls back the evaluator in order to compute the conditional clause of the 

i f expression. It passes back to the evaluator an extended continuation which 

again calls the evaluator to compute the consequent or alternate clause depending 
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on the result of computing the conditional clause. When the conditional or alter-

nate clause is evaluated, the original continuation is passed, equivalent to popping 

the i f frame off the top to the stack. 

Although this is an elegant use of a higher order data structure provided by 

the host Lisp system, it does have drawbacks. As the continuation is always rep-

resented as one closure it may be considered an atom. In fact, this one closure may 

wrap many other closures. Representing the continuation as one closure makes it 

impossible to inspect all the closures contained within. This can be useful when 

debugging an application, as the set of frames within a continuation represents the 

call stack. 

By representing continuations as a Meroon object which in t u r n contains other 

Meroon objects, the distributed HOC Scheme system allows the inspection of con-

tinuations. The inspection process is enhanced by the ability to place i-code instruc-

tions in the continuation. This provides the back trace not only w i t h the frames of 

the continuation used to hold runtime data, but also the instructions which caused 

the continuation to be extended. 

A simple method can be added to the r e t u r n generic funct ion to ensure that 

i-code frames within the continuation do not raise exceptions. 

(define-method (return (fr Icode) k v g) 

(resume k v g) ) 

This method simply resumes the rest of the continuation, which in turn pops off 

the next frame in the continuation and calls return using the f rame as the discrim-

inator. In this way, i-code frames act as an identity, they do not affect the runtime 

execution of a program. 

Whether i-code frames are added to the continuation depends on a global vari-

able * t r a c e - c o m p u t a t i o n * . If this value is set to non nil, i-code frames will be 

included in the continuations. This runtime flag could be replaced with a constant, 

resulting in debug or non debug binaries being built, one with the flag set, the other 

with the flag cleared. This would give the Scheme->C compiler greater chances to 

optimise the runtime interpreter, as runtime checks to see if i-code f rames should be 

added to the continuation would not be required. Further enhancements could be 

made by including within the i-code instruction the s-expression tha t caused the in-

struction to be generated. This could be used to aid the programmer in identifying 

which lines in the source code are associated with the trace of the continuation. 

The stepper's representation of a continuation also makes for difficulties when 

designing a system for mobile processes. This is because in order to migrate the 

process to another node, the continuation of the process needs to be transmitted to 

that node. If the continuation is represented using a host Lisp's closure, then in or-

der to transmit this to another node, the host Lisp must provide primitives to reify 

the closure into a Lisp data structure which is capable of being transmitted. The 
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receiving node will require a primitive to transform this received data structure 

back into a closure. Most host Lisps do not provide this functionality. 

By representing continuations using objects within the Meroon class hierarchy 

the contents of the objects can be inspected. If the same representation of an object 

is used on all nodes of a system, objects can be decomposed into separate fields 

with each field being transmitted separately to the remote node, a n d the instance 

being reconstructed by the receiving node. Objects contained wi th in objects are 

further decomposed into their fields by a recursive process. More information on 

the structure of message is given in section 6.6.3. 

Similarly, Meroon objects represent closures in the distributed HOC Scheme 

system, again allowing the transmission of higher order data types between nodes 

running the i-code interpreter. The interpreter used by the stepper represents clo-

sures in a similar manner to continuations, by using the host Lisp's representation 

of closures, making it difficult for this interpreter to be used in systems where code 

must be mobile. 

As has been shown, the i-code interpreter makes extensive use of the Meroon 

object system. The class hierarchy is used to represent the syntax tree, byte code 

and runtime objects such as continuations and closures. Generic funct ions are used 

to manipulate these objects. This object-oriented design makes the system easily 

extensible. For example the introduction of a new special form to the language is 

achieved with the following steps. 

1. Defining an additional class in the syntax tree. This should be subclassed 

from Scode; 

2. Defining an additional class in the i-code hierarchy. This should be subclassed 

from I c o d e ; 

3. Changing the s-expression to s-code parser to recognise the n e w special form 

and generate the corresponding s-code objects; 

4. Defining a method for c o m p i l e 2 l c o d e which takes the n e w s-code objects 

and generates the correct i-code; 

5. Defining a method for the e v a l u a t e generic function, which takes the new 

instruction as its discriminator. This method can then be used to produce the 

desired behaviour in the system for this special form. 

Existing code is not modified apart from in the s-expression parser, where the 

data structure being parsed is not in Meroon object form. In all other cases, addi-

tional code is added to the system without affecting existing code. 

This technique has been used to extend the interpreter with n e w special forms 

introduced for distributed applications ((Queinnec & DeRoure 1992)). 

6.6.3 Connectivity 

This section describes how HOC Scheme nodes interact at the lowest level — the 

messaging layer. Other sections describe the protocols which run over the mes-

sage layer to provide the connectivity that HOC Scheme applications use (the dis-

tributed top level environment, and the implementation of channels). 
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;; PwWzc ZM(e7]̂ ce TMOtfwZe 

; ; Represents a node identifier. 
(define-class Node Object 

{ network-address ) 
) 

;; Initialise the network module 
(define (network-initialise network-address) 

;; RefwrMS a ob/ect represcMk fkis fWe 
(define (network-get-local-node) . . . ) 

;; TTze base cZoss/rom wkic/z a/Z messages sAowW be (fermetf 
(define-class Message Object 

{) 

;; 5eW a message to a wmfe 
(define (network-send node message) ...) 

; ; geMenc/i/McfioM wAzck z's cmZZêf wAeM a message is rece/bed/rom a MOffe 
;; AfodwZes sAow/̂ f mefkotfs to (Zzis /ivMcWoM fo AaMtfZe fWr appmpriafe 
; ; message types 
(define-generic (network-receive node (message))) 

/IZZow (Ae Mefwort fo pe^rm Aowse teepmg 
Tkere zs no separate tkread tkat receives messages, TTzer^re caZZ tkis 
perWz'caZZy to recezw aW dz'spatcZz messages 

(define (network-schedule) ...) 

; ; Waz'tybr a message to am'pe aM(Z tZzen (ZzspatcZz. CaZZ fZzzs wZzen tZze MOffe 
; ; has no useful work to do and so blocking the thread is not a problem 
(define (network-wait) ...) 

Figure 6.9: API exposed from the network module 

The purpose of the messaging layer is to provide other modules with an inter-

face to a reliable method of sending and receiving messages between nodes in the 

HOC Scheme network. 

ZMfgr/ocg 

Figure 6.9 shows the interface that is exposed to other modules which make up the 

HOC Scheme node. 

As can be seen from this interface, the underlying network transport is hidden 

from the modules which make use of the message system. Instead, an abstract 

interface is presented, where only the Node object (that represents how to access 

a remote node) is required in order to send a message. By making the network-

receive function generic, modules can easily extend the message system to pro-

cess their module specific messages, without the need to explicitly register this 

with the network module. 
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The abstract interface now needs to be turned into a concrete implementation. The 

first choice that needs to be made is which underlying transport will be used to 

send and receive messages. The choice of transport is not binding. Given the ab-

stract interface, another implementation can be written if necessary. For example, 

if HOC Scheme were to be targeted on a set of workstations connected by an ATM 

network, an implementation of the network module which maps directly onto an 

ATM transport using virtual circuits might be more efficient than using a transport 

based on LAN emulation. 

The transport chosen for this implementation of HOC Scheme was TCP/IP 

sockets. This provides the following features: 

e Connection oriented interface. Before sending a message to a remote node, a 

connection to that remote node needs to be initiated. The remote node must 

accept the incoming connect before the message can be sent; 

9 Persistent connections. Once a connection is set up between nodes, multiple 

messages may be sent over the connection. The connection m u s t be explicitly 

closed in order to tear it down; 

• Reliable transport. The TCP/IP protocol ((Wright & Stevens 1995)) guaran-

tees messages are received in the order that they were sent, and that no mes-

sages are lost or corrupted. It achieves this using a sliding windows based 

protocol with checksums used to ensure message integrity. 

Other higher level message abstractions could have been chosen (for exam-

ple PVM). However, although at a low level, socket's implementations are widely 

available and provide a suitable set of tools for creating the concrete implementa-

tion of the network module. 

Given the transport, a class can be created that represents a network address 

contained within a Node object. This contains the IP address and the port number 

which should be used to connect to the node. 

(define-class IPNetworkAddress NetworkAddress 

( ipaddr 

port) 

) 

The only time that the other HOC Scheme modules directly create an 

IPNetworkAddress object is during initialisation. An instance of this class is 

passed to the n e t w o r k - i n i t i a l i s e function. This provides the network mod-

ule with information such as on which interface it should accept connections, and 

on which port to listen for incoming connections. Both the i p a d d r and p o r t field 

can be set to 0, indicating respectively that any physical network interface may be 

used and any available port may be used to listen for incoming connections. 
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Number nodes 
Number connections 

Number nodes star network connected network 

1 0 0 
2 1 1 
3 2 3 
4 3 6 
8 7 24 

16 15 120 
n n — 1 

Table 6.1: TCP/IP connections used in HOC Scheme networks 

CoMMgctz'oMs Modes 

Although the underlying transport mechanism has been chosen, there are a num-

ber of methods which could be used to establish and maintain links between nodes. 

1. Routed network. Connections are established between nodes that represent 

the architecture of the underlying physical network. For example if there are 

two groups of nodes separated by a wide area network, then there will be 

only one connection over the wide area, between two nodes, one on each 

side of the WAN. Messages from nodes not directly connected are routed 

through these gateway nodes; 

2. Star network. A type of routed network where all nodes are connected to a 

central node, which routes messages between nodes not directly connected; 

3. Fully connected network. Each node has direct connections to every other 

node in the HOC Scheme network; 

4. One shot connections. Connections are established between nodes when a 

message needs to be sent. When the message has been sent, the link is closed; 

5. Dynamic connections. Connections are established between nodes when a 

message needs to be sent. These connections can then persist so that subse-

quent messages sent to the same nodes do not need to re-establish connec-

tions. 

The routed network option uses less resources in the workstation's TCP/IP 

stack than the fully connected network option, as the resource usage of a TCP/IP 

stack directly corresponds to the number of connections being m a d e through the 

stack. As the number of nodes in the HOC Scheme network increases, so does the 

difference in the resource usage between the routed network a n d the fully con-

nected network. For example table 6.1 shows the number of connections made by 

a fully connected network and routed star network for varying number of nodes. 

Clearly the fully connected network is not practical if the system is to be able to 

support a large number of nodes. However, the routed network does place addi-

tional overheads on the network module, in that it must have knowledge of the 

connections in the HOC Scheme Networks, and be capable of routeing messages 

that are en route to a remote node. 

Using one shot connections reduces resource usage, as on average at any given 

time the number of established connections in the HOC Scheme network will be 
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small. However, overall network load will increase, as the TCP/IP protocol needs 

to send several packets over the network in order to establish a connection. This 

will also result in increased latency when sending messages. The mechanism could 

be used if UDP were chosen as the underlying network transport. This transport 

does not establish connections between nodes, and therefore there is no overhead 

to sending a message. However, this protocol does not guarantee the reliable deliv-

ery of messages, and so a mechanism for detecting failures in packet transmission 

would be required. 

The dynamic connection approach is a compromise between the fully con-

nected network and the partially connected routed network. It has the advantage 

that nodes which need to communicate are directly connected, removing the route-

ing overhead from the network module. It also is more efficient than the one shot 

connection case, as once established, links between nodes can persist and more 

messages can be sent over them. As links can be re-established, the network mod-

ule, is free to choose when to close dynamic links. This could be w h e n a threshold 

of a maximum number of links has been reached, or the link has remained idle for 

a period of time. 

The network module for HOC Scheme uses the dynamic connection method as 

a compromise between the complexities of including a routeing algorithm in the 

network module, which the underlying network layer is more suited to handling, 

and reducing the number of persistent connections in order to preserve resources. 

Lafgnn/ us. 

When implementing the network module consideration needs to be given to the 

type of network traffic it is likely to produce. In HOC Scheme networks many of 

the messages flowing between nodes are likely to be small (in the order of a 100 

bytes or so). However, occasionally larger messages will need to be transmitted 

(for example when processes migrate between nodes). 

It is common to prepend messages with their size when transmitting them over 

the network. This allows the receiving node to determine easily h o w many bytes 

need to be received in order to decode the message. This fixed format clashes 

with the default TCP/IP implementation. As the TCP/IP layer does not know the 

format of the data that is being sent over a connection, it tries to optimise the length 

of packets it transmits over the network. It does this using the Nagle algorithm. 

After data has been given to the TCP/IP stack to be sent over a cormection, it is 

queued ready to be sent. However, a packet is not sent when the amount of data is 

small (where small is determined by the TCP/IP stack). Rather, it waits for a small 

amount of time to see if the application will send more data over the connection. 

If this occurs, then both sets of data can be combined into one packet sent over the 

network. 

The Nagle algorithm helps reduce network traffic for streams based applica-

tions, where data is constantly being given to the TCP/IP stack for transmission. 

However this algorithm can adversely affect performance of message based appli-

cations. This is because the application knows that a message is complete, passes 
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it to the TCP/IP stack for transmission, but transmission is delayed whilst waiting 

to see if more data can be sent over the connection. For message based protocols 

which require acknowledgements, the latency is doubled as the holding off trans-

mission occurs serially, once at the initiating node, and then at t he replying node. 

Luckily, the Nagle algorithm can be disabled on a per connection basis. This 

allows connections that are to be used to send messages between nodes to avoid 

this bottleneck. If the Nagle algorithm is disabled, the TCP/IP stack sends a packet 

each time it is given data to send, rather than delaying the sends . In order to 

prevent too much packet fragmentation, it is important to pass complete packets to 

the TCP/IP stack. 

By disabling the Nagle algorithm, latency is reduced at the expense of a possi-

ble increase in network load. Sending a message takes a finite a m o u n t of time. A 

number of steps need to be taken. 

1. The message needs to be converted into a form suitable for transmission over 

a byte stream connection; 

2. The converted message needs to be given to the TCP/IP stack; 

3. The TCP/IP stack needs to convert the data into a packet suitable for trans-

mission over the network. This includes calculating a checksum of the data, 

creation of a TCP and IP header and creation of a MAC heade r (header for 

the underlying network, for example Ethernet or Token Ring); 

4. The TCP/IP stack gives the packet to the network driver; 

5. The network driver programs the network card to send the packet; 

6. The network card sends the packet. 

There is a fixed overhead in sending a packet across the ne twork that is intro-

duced by these separate stages, regardless of the size of the packet that is to be 

transmitted. Given this, it is more efficient to send larger packets than smaller 

ones. This does not mean that small packets should be padded wi th zeros to make 

them larger — this will not increase efficiency as null data is being sent over the 

network. However, if two small messages are to be sent over the network to the 

same receiving node, then sending these messages in one packet would be more 

efficient than sending them in two packets. 

This implies that perhaps the Nagle algorithm does have a par t to play in mes-

sage based connections. Turning on the Nagle algorithm would certainly combine 

two small messages into one packet. But it would also continue to introduce la-

tency when only one message needed to be sent over a link. 

The solution is to implement a similar concept to the Nagle algorithm in the 

network module, and not use the underlying Nagle algorithm provided by the 

TCP/IP stack. This provides the network module with greater control over when 

exactly messages are to be sent. 

The n e t w o r k - s c h e d u l e function is called periodically to process received 

messages that have been queued by the TCP/IP stack. The flushing of outbound 

messages to the TCP/IP stack could also be performed out of this function. This 

would produce the following algorithm. 
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" The network-send function does not pass messages directly to the TCP/IP 

stack. Instead it queues them. This queue could either be a single queue of 

all messages waiting to be sent, or a per node queue; 

• When the n e t w o r k - s c h e d u l e function is called, messages to be sent to a 

node are combined and given to the TCP/IP stack as a single block of data. 

As the TCP/IP stack is not using the Nagle algorithm, these messages are 

then immediately sent over the network. This is repeated for each node to 

which messages need to be sent. 

This algorithm introduces some latency to the sending of messages, as they are 

not transmitted out of the n e t w o r k - s e n d function. As long as the n e t w o r k -

s c h e d u l e function is called regularly then this latency can be controlled. Care 

must be taken not to call the n e t w o r k - s c h e d u l e function too often, as this will 

reduce the chance that multiple messages are queued to be sent to a node, resulting 

in fewer opportunities to combine messages into a single packet. 

The algorithm can be further improved by flushing outbound message queues 

when the length of the queued messages exceeds a threshold. This is because most 

physical networks impose a limit on the length of a packet that may be transmitted 

over the medium. For example, the maximum size of packet able to be transmitted 

on an Ethernet network is approximately 1.5k, and on Token Ring is configurable 

up to 16K, with nodes typically set to transmit packets at the maximum size of 

4K. Thus if data of a length that exceeds this maximum packet size is given to 

the TCP/IP stack for transmission, it is split into multiple packets. If it could be 

detected that enough messages had been queued to fill a packet, these could be 

given to the TCP/IP stack directly out the n e t w o r k - s e n d function, rather than 

waiting for n e t w o r k - s c h e d u l e to be called. 

Sockets represent active connections between nodes. The TCP/IP stack provides 

an interface where data can be sent and received over these sockets. 

A table of active connections which maps Node objects to sockets that may be 

used to communicate with the node needs to be maintained. If there is no match 

then a new connection to that node needs to be established. 

The data contained within the IPNetworkAddress is all that is required to 

establish a new connection. The address and port uniquely identify a remote node. 

The TCP/IP stack's c o n n e c t primitive can be used to set up the connection, and 

returns a new socket that may be used to communicate with the remote node. This 

new connection can then be added to the node to socket mapping table. 

Once a new connection is established, the first message sent over the connection 

contains the IPNetworkAddress of the local node. This allows the remote node 

to enter the new socket into the its remote node socket mapping table. It also allows 

the remote node to report the address from which messages have been received. 
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The remote node does not need to send back its IPNetworkAddress. This 

is already known by the local node as it must have used this address object to 

establish the connection. 

Each node has a special socket which listens for connections on the network 

address specified during initialisation (see section 6.6.3). This is used to receive 

incoming connections. 

When checking to see which sockets are ready for processing, the following 

algorithm is used: 

1. Ask the TCP/IP interface which sockets (both the special listening sockets 

and all active data sockets contained in the node to socket mapping table) 

have data ready waiting for processing (using the s e l e c t primitive); 

2. For each ready socket, perform the appropriate action on that socket. 

® For listening sockets, accept the connection and receive the IPNet-

workAddress from the new data socket, and add it to the node to 

socket table. Then perform the receive data operation o n the newly cre-

ated socket; 

« For data sockets, receive and dispatch messages on the socket until no 

more data is available on it. 

Sockets may be closed by the network module by calling the c l o s e s o c k e t 

function in the TCP/IP stack. This can be used to manage the number of active 

connections. For example, the node to socket table could be ordered with the most 

frequently used sockets at the top of the table. If the number of connections grows 

too large, the network module can begin closing connections f rom the bottom of 

the table (the least frequently used sockets). 

The remote endpoint discovers that a socket is closed by finding that directly 

after the socket has been flagged as ready, there is no data to receive on the socket. 

The remote node can then close its socket representing the connection, and remove 

it from the node to socket table. 

There are two ways of managing messages that are to be sent to the local node 

(i.e. the sending and receiving nodes are one and the same). 

1. Use a loopback TCP/IP connection. The initialisation code could create a 

connection to its node's IPNetworkAddress . The loopback case could then 

be managed in the same way as sending and receiving messages to/from 

remote nodes; 

2. As part of the implementation of n e t w o r k - s e n d , notice that the address 

specified corresponds to the local node, and place the messages in a spe-

cial loopback queue. This queue could then be processed in the n e t w o r k -

s c h e d u l e function, by calling n e t w o r k - r e c e i v e on each message in the 

queue. 

Whilst the use of the TCP/IP connection is elegant, as once initialisation has 

been performed, loopback messages do not present a special case, it is inefficient. 
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; SampZe sen;er ccxfe usmg soctek /IPf 
(define s (make-socket)) ;i:Tea(eanewTCP/rPsocW 
(sockeC-blnd s 1234) ;WMdfAesocW(oporfI234 
(socket-listen s 5) : listen for connections (max. 5 waiting) 
(define new-sock (socket-accept s) ) ; accept a new connection 

; SampZe cZzeMf co(fe socWs 
(define s (make-socket)) ; create a socket 
(socket-connect s "hostname" 1234) ; connect to remote host 

Figure 6.10: Sample code using sockets API 

This is because computation is carried out that could have been avoided. The mes-

sage needs to pass through the node's TCP/IP stack, which involves extra over-

head. But more costly, the message needs to be converted into a byte stream for 

transmission through the TCP/IP stack, and then parsed back in to a Lisp data 

structure upon receipt from the stack. 

By using the second method and keeping messages that need to be looped back 

in a separate queue, the translation of the message to and from a byte stream can 

be avoided, greatly reducing the cost of sending loopback messages. 

Errors on connections are currently not handled by this module . Extensions 

need to be made in order to signal to interested modules when connections are 

closed abnormally. The current implementation will notice that t he connection is 

closed, and will then try to reopen it to send subsequent packets. This is acceptable 

if the remote node has not crashed, although messages may have been lost when 

the previous link broke. 

fnkr/acg to sockek fibran/ 

Many operating systems provide a standard interface to the T C P / I P stack using a 

C API (sockets) and a library to link into applications. 

In order for the network module to make use of this API, a foreign language 

module which exposes the socket's functionality to Scheme->C programs was cre-

ated. 

A C program file was used to map from a function style suitable for Scheme 

programs to the equivalent calls in the sockets library. A Scheme wrappe r file that 

defined the foreign language interface was also created. This p rov ided a simple 

Scheme API for manipulating sockets. For example, figure 6.10 shows sample code 

of how a server might wait for connections and a client may connect. 

The Scheme socket API allows two basic types of data to be sen t and received 

— integers and strings (C strings represented as an array of characters with a null 

terminator). All other Lisp data types which need to be sent over t he network need 

to be converted into strings and integers. 

The function ( s e n d - s e x p r e s s i o n < s o c k e t > < o b j e c t > ) converts any type 

of Scheme < o b j e c t > into a mixture of strings and integers a n d sends the re-

sult over < s o c k e t > . Conversely, ( r e c v - s e x p r e s s i o n < s o c k e t > } receives a 
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Expression Encoding 

boolean 0 - false, 1 - true 
null 2 
number 3 followed by value 
character 4 followed by ascii value 
string 5 followed by length of string 

followed by characters of string 
symbol 7 followed by symbols string 
pair 8 followed by encoded c a r , 

followed by encoded c d r 
vector 9 followed by number of elements 

followed by encoded elements 
item in cache 10 followed by cache code 

Table 6,2: Encoding of s-e%pn»ssm»s 

;; On sendzMg szWe 
(define cell (cons 1 2)) 
(define xfer (cons cell cell) 
(eg? (car xfer) (cdr xfer)) 
(send-sexpression s xfer) 

; refwms (rwe 

;; On (Ae recezMMg sz(k 
(define received (recv-sexpression s)) 
(eg? (car received) (cdr received)) ;returnstrue 

Figure 6.11: Preserving eq-ness over sockets 

mixtures of integers and strings over < s o c k e t > and reconstructs the original s-

expression, which it returns. Table 6.2 show how basic Lisp types are encoded for 

transmission. Meroon objects are represented as vectors, and so can be transmitted 

over the network using s e n d - s e x p r e s s i o n 

In order to preserve data structures correctly when they are transmitted be-

tween nodes, the s-expression senders and receivers preserve the eq-ness of the 

objects they send. This maintains the links between any shared data structures 

within the s-expression. Figure 6.11 shows an example of a structure being sent 

over a network with its eq-ness preserved. 

A hash table of encoded objects is built on the sending node. If an object is 

found to be in the cache, a lookup cache instruction is encoded instead of the object. 

The receiving end also builds up a hash table of objects it has received. As it 

uses the same data as the sending end, these hash tables will be equivalent. If a 

lookup cache instruction is received, the object is looked up in the hash table and a 

reference to the same object is returned, thus preserving shared structures. 

Hash tables are reset after every transmission or receipt of an s-expression. There-

fore eq-ness is only preserved across individual sends. If the structure in figure 6.11 

were transmitted twice, the two received s-expressions would not be e g ? . This stops 

the hash table from growing too large, and prevents it from referencing objects 
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which would otherwise be garbage collected, whilst allowing the programmer to 

transmit shared data structures when required. 

6.6.4 Top ZfDeZ CMDzroMrngMf 

Section 6.5.4 introduces some of the requirements that the implementation of the 

top level environment must satisfy. The choosing of a compiler, interpreter and 

network module place additional constraints on the top level environment. 

The top level environment is accessed by all nodes, be they nodes that are 

purely used for evaluation of processes, or nodes that also accept and compile 

expressions from the user. This implies that all nodes must be given access to this 

top level environment. As processes may access the environment at runtime, this 

access should be made as efficient as possible, as any delays in accessing the top 

level environment will result in a slow down in the execution speed of processes. 

Given these conditions, it becomes clear that the most efficient means by which 

nodes can be given access to the top level environment is by each node having a 

copy of it. Having one copy stored centrally, with other nodes sending and receiv-

ing messages to query the environment would have drastic effects on the runtime 

performance of processes. 

However, when updating the top level environment, efficiency is not as crucial. 

This is because the top level environment is immutable, so processes cannot change 

it at runtime. The only time it can be changed is when distributed applications are 

being loaded into HOC Scheme. This is likely to occur far less frequently than 

access of the environment during execution of processes. 

The environment should possess the following features: 

B Extensible. It is desirable that additional bindings can be added to the top 

level environment at runtime. This allows the loading and deployment of 

new processes and applications in a running system; 

8 Protected against duplication. Names in an environment should be unique. 

Thus if the same application is loaded simultaneously by different nodes, 

this should not result in multiple copies of the same binding occurring in the 

environment. More importantly, it should not result in different bindings to 

the same name occurring. 

The design of the top level environment for this implementation of HOC Scheme 

uses a centralised master copy of the environment which is distributed in its com-

plete form to all nodes in the HOC Scheme network. Additional updates may be 

sent to the nodes when new bindings are introduced to the environment as addi-

tional applications are loaded. 

All reads of the top level environment are carried out on a node ' s local copy. 

This results in a fast lookup of bindings when processes are executing, where the 

top level environment is in the critical path. 
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; ; A&sfracf base cZossybr aZZ fop ZeceZ eMDzroMmeMf 
; ; rgkW messages 
(define-class TLE-Message Message 

0 
:virtual) 

; ; Register W recezue c/zawges ZM (ke fop ZereZ eMDz'roMmeMf 
(define-class (TLE-Reguest-Receive-Changes TLE-Message) 

0 ) 

;; Fetch a complete copy of the top level environment 
(define-class (TLE-Request-Env TLE-Message) 

0 ) 

(define-class (TLE-Response-Env TLE-Message) 
( bindings ) ) ; ; list of bindings that make up the top level environment 

; ; Re<̂ wesf fo a sef q / f o fke (op ZeceZ eMi;;'ronmeM( 
{define-class (TLE-Request-Add-Bindings TLE-Message) 

( b i n d i n g s ) ) ; ; Zz'sf q/'?MfMes (o be a^fdej (o (Ae eny 

; ; Response sent to reqwestmg Mode 
(define-class (TLE-Response-Add-Bindings TLE-Message) 

( b i n d i n g s ; ; Zzs( q/'Mcmes fAaf sAowZif be mftfed fo enf 
p o s i t i o n )) ;;posztzon(^yzrsfnewbWmgmDectonse(fenu 

; ; /M(fzcah'oM sgMt fo oZ/ of/KT regzsfgreff MO(fes 
; ; WzeM (op /eueZ eMDz'roMMzeMf z's e%feMje(f 
(define-class (TLE-Indication-Add-Bindings TLE-Message) 
( b i n d i n g s ; ; Zzst q/'Mames (Zzaf s/zowM be fo enc 
position ) ) ; ; position of first new binding in vectorised env 

; ; /MzYzaZzse bzWzng 
(define-class (TLE-Request-Initialise-Binding TLE-Message) 

( position ; ; position of the variable in the top level env vector 
con ten t s )) ;;Wz/eq/̂ fAez'm'WaZzsedz;a?'wbZe 

(define-class (TLE-Response-Initialise-Binding TLE-Message) 
( position 
result )) 

position of the variable in the top level env vector 
True if ok to initialise variable, FALSE if already 
initialised 

(define-class (TLB-Indication-Binding-Initialised TLE-Message) 
( p o s i t i o n ; ; posz'h'oM fbe MzrzabZe ZM (Zze (op ZeceZ eMU rector 

con ten t s )) ; ; raZwe q/'the mzHaZzsed DoriabZe) 

Figure 6.12; Messages that make up the top level environment protocol 

Writes a re p e r f o r m e d b y s e n d i n g update m e s s a g e s to the n o d e c o n t a i n i n g the 

mas t e r copy of the t o p level env i ronmen t . The m a s t e r e n v i r o n m e n t t h e n dis-

t r ibutes the u p d a t e s to all o ther n o d e s in the H O C Scheme n e t w o r k . 

N o d e s c o m m u n i c a t e w i t h the m a s t e r top level e n v i r o n m e n t n o d e u s i n g a set of 

m e s s a g e s tha t toge the r f o r m the top level e n v i r o n m e n t protocol . F i g u r e 6.12 s h o w s 

the f o r m a t of these messages . 
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Node 1 Master Environment Node 2 

REQ: Add binding x REQ: Add binding x 

IND: Add binding x 

RESP: Add binding x 

ggSP: Add binding (none) 

Figure 6.13: Simultaneous update of the top level environment 

The top level environment is closely tied to the compiler and run t ime interpreter. 

The parser that translates s-expressions to s-code takes a global environment handler 

as an argument. This handler allows the parser to extend dynamically the global 

environment when it comes across new top level bindings. Once the expression 

has been parsed, the handler can be queried to find out what n e w top level bind-

ings are present in the parsed expression. 

If the parser discovers that the expression references new top level bindings, 

a TLE-Request-Add-Bindings message is sent to the node hold ing the master 

copy of the environment. 

Upon receipt of this message, the master node extends its environment with 

the new bindings. It then sends back a response message to the requesting node, 

and sends an update indication to all other registered nodes. 

By always extending the global environment by going via the master copy, up-

dates are serialised, allowing simultaneous updates to be handled correctly. This 

ensures that no duplicate names occur in the top level environment, and all nodes 

agree on the correct position of each binding. Figure 6.13 shows the messages that 

flow between two nodes and the node holding the master environment when both 

nodes attempt to extend the environment with the same name simultaneously. 

The node that sent the TLE-Request-Add-Bindings message waits for the 

response message from the master node before beginning the compilation stage of 

the process. At this stage the nodes top level environment has been extended with 

the new bindings. The s-code to i-code compiler can then be run wi th the generated 

i-code containing direct references to the new top level environment bindings. 
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Finally, the compiled code can be executed. This execution may initialise the 

new top level bindings. This results in the TLE-Request-Ini tialise-Binding 

message being sent to the master node. Again, the master node serialises initiali-

sation, failing initialisation if another node initialises it first. 

With a cursory glance, it could be claimed that the protocol can be improved 

by combining the add bindings and initialise binding messages into a single com-

bined stage. However, to compile Lisp expressions correctly, this cannot be the 

case. Consider the following code. 

(define (foo) (+ 1 bar)) 

{define bar 3) 

The function foo is compiled into code before the definition of b a r . However, 

foo refers to b a r in its code. Thus in order to correctly compile foo, an unini-

tialised binding to b a r must exist in the top level environment. This enforces the 

separation of extending the top level environment from initialising variables. 

fMz'fiaZzgafzoM 

All nodes in a HOC Scheme network start with the same top level environment. 

This contains the primitives of HOC Scheme (for example, c o n s , c a r , cdr) . 

Additional changes to the top level environment need to be fetched from the 

node that holds the master copy. This presents the first issue wi th initialising the 

top level environment module. One node in the network has to be flagged as hold-

ing the master copy of the environment. Other nodes need to obtain the network 

address of the master node. 

For this implementation, command line parameters are used to specify whether 

a node is to be master, and if it is not, the address of the master node. 

Non master nodes then need to register with the master environment and ob-

tain any changes that have been made to the environment since the system as 

a whole was started. This is done using two messages. The TLE-Reques t -

R e c e i v e - C h a n g e s message informs the master node that indications should be 

sent to this node when updates to the environment occur. The TLE-Reques t -Env 

results in current changes to the environment being sent to the node. It is impor-

tant to send these messages in the correct order. If the messages were sent the 

other way around, any changes made to the environment by other nodes between 

the fetching of current changes and registering for new changes would be lost. 

These two messages could be combined into a r e g i s t e r and r e c e i v e c h a n g e s 

message. They are kept separate to allow nodes to register with a new master node, 

if in future the protocol is extended to allow the master node to change during the 

lifetime of the system. 

Primitives that refer to compiled Scheme->C code are not directly referenced 

by the environment, as this leads to difficulties in distribution. As with continua-

tions and closures represented using the host Lisp's abstractions, primitives cannot 
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be converted into a byte stream for transmission by the network module to other 

nodes. 

Instead, each node contains a separate primitive table, which is the same on 

every node. Instead of including a direct reference to the pr imit ive function in 

bindings, they refer to indexes into the primitive table. Resolving a binding which 

represents a primitive therefore takes an additional lookup, slightly decreasing 

performance. However it does mean that bindings which refer to primitives can 

be transmitted between nodes, as the offset stored into the b ind ing is easily con-

vertible to a byte stream representation. 

6.6.5 

The scheduler implemented for distributed HOC Scheme is similar in concept to 

the scheduler used by the HOC Scheme stepper. This module does not interact di-

rectly with other nodes in the HOC Scheme network, and therefore has no message 

protocol associated with it. 

A process is represented by an instance of the class p r o c e s s tha t contains four 

elements. 

1. The process identifier. This is an instance of class PID and uniquely identifies 

a process across all nodes. It contains the Node on which the process resides, 

together with an integer which uniquely identifies the process on its node; 

2. The process state. This is either null if the process is ready to run , or a block-

ing object if the object is blocked on some event; 

3. Message id. This is used by the channel protocol used to pe r fo rm input and 

output operations; 

4. Code. An object that represents the i-code which the process will run when it 

is next scheduled. 

The scheduler module contains primitives to create, find, and schedule these 

process objects. The scheduler itself is a simple loop that runs the process at the 

head of the ready queue and then repeats. In between scheduling processes to run, 

it calls a housekeeping function which is used to perform tasks that keep the HOC 

Scheme node in an up to date state, for example by calling n e t w o r k - s c h e d u l e 

to process message queues. 

When no processes are able to be scheduled, the scheduler modu le enters a 

sleep state by calling n e t w o r k - w a i t , and will only restart once a message has 

been received from the network that could have unblocked a process. 

The scheduler also defines the spawn primitive which is added to the top level 

environment at initialisation time. This is shown in figure 6.14. 

As can be seen, the spawn primitive takes one argument, the t h u n k (a function 

of no arguments) that is to be used as the start function for the new process. It then 

creates a process structure and sets the code to be an invocation object, which when 

evaluated will execute the thunk, sending its result to the supplied continuation. 

This continuation is another object, one which prints the result of the evaluation 

and tidies up the process object. 
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; ; Boffom conhMi/afioM pn'mk process reswZf a)W/rees process. 
(define task.k.init 

{make-Bottom-Continuation 
(make-Primitive-Reference 
(lambda (v g) 

(formatx #t "Task ~a finished. Return value = ~a~%" 
(process-get-id *current-process*) v) 
(process-free *current-process*))))) 

;; Spaivn schedules the thunk to run as a new process 
(define (spawn thunk) 

(let ((process (schedule-create-process))) 
(process-set-code! process 

(make-Invokation thunk '() task.k.init g.init)) 
(schedule-process process) 
(formatx #t "Spawned process ~a~%" (process-get-id process) 
' O K ) ) 

(defprimitive spawn spawn 1) 

Figure 6.14: The spawn primitive 

A quieter version of spawn, called q u i e t - s p a w n is also included. This per-

forms the same task as spawn but does not output any information to the user. 

6.6.6 CkaMMgZs 

Channels are the only means by which processes running in a H O C Scheme net-

work can communicate. HOC Scheme channels have a number of features which 

aid the distributed application programmer, as they are higher order, but require 

effort in order to correctly implement in a distributed system. 

WTzaf zs a cAaziMeZ? 

There are differing views of a channel. To the applications programmer, the HOC 

Scheme channel is a basic data type of the language. The m a k e - c h a n n e l function 

will construct and return one of these data types. 

The programmer may then use this object to achieve communication between 

two processes. How that communication is achieved does not concern the appli-

cations programmer (although they should be aware that using a charmel is more 

costly in terms of time than other HOC Scheme operations). 

The programmer can treat the channel as they would any other HOC Scheme 

object. The channel can be bound to names, either in the local environment of a 

process, or in the top level environment common to all nodes in the system. The 

channel can be transmitted over another (or even the same) channel to another 

process, possibly residing on another node. 

To the systems programmer, designing and implementing the HOC Scheme 

node, a channel is a combination of data structures and messaging protocols which 

133 



satisfy the applications programmer's view of a channel. The atomic channel ele-

ment that the application programmer sees hides the implementation of the chan-

nel abstract data type. 

In this way, different implementations of channels may be created for differing 

architectures without the applications programmer needing to change the imple-

mentation of their systems. 

CkaMMeZ sWfe 

In order to implement channels, some state needs to be maintained for each chan-

nel active in the HOC Scheme network. 

For example, two processes do not have to perform channel operations at the 

same time. One channel may perform an input operation and have to wait until an-

other process performs a corresponding output operation. Data pertaining to the 

input operation will need to be stored until the synchronisation can be completed. 

This section discusses the state which is maintained for the implementation of 

this HOC Scheme node. As important as what state needs to be maintained is the 

question of where the state should be maintained. There are four main possibili-

ties; 

1. State should be maintained on the node where the sending process is execut-

mg; 

2. State should be maintained on the node where the receiving process is exe-

cuting; 

3. State should be maintained on some other node; 

4. Some/All of the above. 

One problem with implementing the HOC Scheme channel stems from its dy-

namic nature. Any process which has access to a channel (as it is bound in the lex-

ical environment of the process, or is in the top level environment) may perform 

input/output operations using that channel. Thus, when a process performs an 

operation on a channel, it cannot be statically determined which process will syn-

chronise to complete the operation. Any process that has a binding to the channel 

could perform the synchronisation. If the channel is bound in the top level envi-

ronment, this generalises to all processes being able to synchronise with the chan-

nel (although it would be possible to reduce this statically by determining which 

processes accessed the top level binding). 

When a process performs an output operation, where does the process send 

the data? This can only be determined when another process performs an input 

operation on the same channel. 

It is clear that state needs to be maintained on the nodes involved in the com-

munications. At the very least, it should be flagged that the processes have blocked, 

waiting to synchronise on a channel. The sending process might need to store the 

data it is to transmit until a receiving process has been found. 
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commwMzcgfzMg processes 

Given that two processes wish to communicate over a common channel, the ques-

tion then arises of how do the two processes "discover" each other. 

One solution could be to broadcast to all HOC Scheme nodes information about 

which channels a node can currently communicate over. Receiving nodes could 

then check if any matches could be made with their blocked processes, and com-

munications initiated when matches are found. 

This solution could work without a large overhead on a local area network 

that used shared media. A single multicast message could be sent , with all HOC 

Scheme nodes on that network segment receiving the message. 

A network of HOC Scheme workstations which does not use a single shared 

segment of a LAN will increase traffic. For example, a separate message would be 

sent to a node that resided on the other side of a WAN. In the wors t case, a purely 

switched network (for example ATM or switched Ethernet), N messages would 

need to be sent in order to broadcast a single message to all N nodes in the HOC 

Scheme network. 

TTze mo(feZ 

Another solution is to use a third party to match processes that wish to perform 

an output operation with processes that wish to perform an input operation on the 

same channel. This broker process resides on a (possibly) different node, fixed for 

the lifetime of the channel it is managing. Both the input and output processes send 

a message to the broker indicating that they are prepared to communicate over a 

channel. By storing this information, the broker process can build up knowledge 

of what processes are waiting to communicate. When the broker finds a pair of 

processes that match, the communication protocol used to achieve synchronisation 

between the processes can be started. 

The broker model has been adopted for this implementation. It has the advan-

tage that the model works with the same efficiency regardless of the underlying 

network architecture. 

The number of brokers in the HOC Scheme network directly affects the protocol 

needed to achieve communications. 

If there is only one broker, it holds the complete state about which processes 

are able to communicate. This allows it to match processes blocked on input with 

processes blocked on output, and know that the synchronisation will succeed. 

Consider the case where a process has several channels on which it may syn-

chronise (as the result of evaluating an a l t statement). In the case where there is 

one broker, a branch can be chosen to proceed and the broker can remove all other 

branches from its data structure. Thus the first chosen branch will proceed and no 

other branches for that a l t will be given the opportunity to proceed. 

If there are multiple brokers, then a single broker may only have a subset of 

knowledge of the branches the process may proceed with, with other brokers hav-

ing knowledge of branches involving channels not managed by the first broker. 
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Two brokers could simultaneously choose to proceed two separate branches of the 

same a l t . The process blocked in the a l t state would then have to proceed with 

one of the synchronisations and fail the other. Thus the concept of failing syn-

chronisations needs to be introduced if multiple brokers are present in the HOC 

Scheme network, increasing the complexity of the synchronisation protocol. 

Multiple brokers do however help increase scalability and parallelism in the 

distributed application. If all channels based communication were to happen through 

a single broker, then all synchronisations between processes wou ld be serialised. 

This could become a bottleneck when many processes are communicating over 

channels at the same time. By having multiple brokers each managing a subset of 

channels, the communications load is spread more evenly, with parallel synchro-

nisations occurring between channels managed by different brokers. Because of 

this potential increase in parallelism, the use of multiple brokers h a s been adopted 

for HOC Scheme. 

The broker model is similar in concept to Mobile IP ((Perkins 1997)). When mo-

bile computers are plugged in different subnets of a common internet, they have 

to be configured with an internet address suitable for that subnet. Therefore the 

mobile computers will be given a different address for each subnet in which they 

are plugged. Although this is fine for client pull applications, where the mobile 

computer uses the Internet to pull data from servers, for example by browsing the 

web or getting email from a POPS mail server, it does not lend itself to server push 

applications. 

For example, an agent could be "launched" into the Internet b y a mobile com-

puter plugged in subnet A. The mobile computer could then move to subnet B, 

being configured with a different internet address. The agent will have difficulty 

in returning to the computer as its address has changed. 

One solution would be for the agent software to inform some centrally located 

server of its current address, allowing agents to query this database to find if its 

computer is online, and if it is, the address it should use to contact it. 

Mobile IP generalises this to allow mobility without the need for specialised 

location servers for each type of application. A mobile computer is given a fixed 

internet address, which actually resolves to a proxy. The proxy is informed of the 

mobile computer's current address and forwards packets to that address. This 

allows the mobile computer to advertise a single address from which it may be 

contacted, regardless of where it is in the network. In a similar marmer, channels 

have a single address, that of their broker, by which any process using a channel 

may be contacted. 

CAaMMef rerisiW 

The concept of a channel can now be formalised for the multiple broker's model. 

A channel is an object containing two items; 

1. A Node object which represents the broker process managing this channel; 
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2. An i n d e x object. This references the specific data structure that the broker 

uses to represent the channel. 

Thus a channel object which HOC Scheme applications pass around can be 

thought of as a remote pointer, pointing at the channel's data structure managed 

by its broker. 

This representation of a channel leads to more issues which n e e d to be resolved. 

Firstly the issue of memory management. 

Dz'sMbw W garbage coZZech'oM 

A channel may be thought of as a remote pointer to some state held on a broker 

node. This channel object may be copied between nodes (by be ing transmitted 

over channels or bound in the top level environment). Therefore, al though a single 

node can determine whether the channel object should be garbage collected, it 

carmot determine if the state the channel refers to on the broker 's node should be 

collected. This is because other nodes may still contain a copy of the channel, and 

thus the channel might still be used for communications. The state for the channel 

held by the broker can only be discarded when all processes in the HOC Scheme 

network no longer have access to the channel object. This can be achieved using a 

distributed garbage collector. 

However, the need for a distributed garbage collection can be removed if an 

appropriate data structure is used by the broker. 

Hitherto, the state maintained for a channel by the broker has jus t been referred 

to as a data structure, implying the broker always holds some persistent state about 

the channel. However, this need not be the case. When a channel is not being used 

for synchronisation, the broker need hold no data about the channel. 

The broker only holds data for a channel when a process has performed an 

input or output operation on that channel. As soon as a match is found, the ren-

dezvous protocol can be started and the information can be removed. If there are 

no more pending inputs and outputs on the channel, the whole channel structure 

can be removed. When the channel is subsequently used for synchronisation, the 

data structure can be recreated. 

This means that when the broker holds information on a channel, the channel is 

in use for an input or output operation, and therefore is referenced by at least one 

process in the HOC Scheme network. When no operations are being performed 

on the channel, the broker holds no information about the channel. Thus if all 

HOC Scheme nodes independently garbage collect all references to the channel, 

no additional garbage collection is required on the channel's broker node. In this 

way the need for a distributed garbage collection can be avoided. 

Choice of broker 

Another issue is to determine a method for choosing which broker should man-

age a newly created channel. This can affect the efficiency of the synchronisations 

between processes. 
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One option is the round robin approach. Channels are shared out equally 

amongst the brokers, by allocating a new broker for each newly created channel. 

Scope for parallelism within the channel communication system is increased, as 

by evenly distributed channel management amongst the brokers, the probability 

of any two channels being managed by the same broker is reduced. This then in-

creases the chance that any synchronisations involving two different channels will 

be able to execute in parallel. 

Whilst in an idealised environment the round robin strategy of broker alloca-

tion may be appropriate, it pays no regard to the usage of channels. The channel 

communication system uses a message passing protocol, part of which involves 

communicating with the channel's broker. As sending a message across a network 

is more costly than sending a message to another subsystem operating within the 

same HOC Scheme node, the fewer cross node messages that are sent the better. 

If the broker for a channel is situated on the same node as the input or output 

process, then the number of cross node messages needed to perform the synchro-

nisation is reduced, thereby increasing the efficiency of the communication. The 

optimal case is where the broker, sending process and receiving process are all 

located on the same node, as this results in no messages leaving the node. 

The round robin allocation method could increase the chances of a cross node 

message needing to be sent in order to communicate with a channel's broker. An-

other method could be to run a broker on every HOC Scheme node and use the 

broker on the node on which a channel was created. This increases the chance that 

at least one communicating process using the channel will be co-located with the 

channel's broker. 

It should be noted that with this method, migration becomes more costly not 

only in the cost of migrating the process to another node, but in the cost associated 

with the process communicating over channels it created on its former node, as 

messages now need to be sent over the network to the channel's broker. It can also 

be inefficient to send a channel to processes which then use it to communicate on 

nodes other than the broker of the channel. However, if a channel is permanently 

associated with a broker, then these cases are bound to arise in a network that 

supports mobility and higher order channels. 

A larger problem comes with dealing with channels created w h e n defining top 

level environment bindings. If the above algorithm is followed, top level channels 

will always be managed on the broker of the compiling node. However, it is un-

likely that this is the node which will make use of the channels. For example, the 

following code defines some channels and a process that acts on these channels. 

(define a (make-channel)) 

(define b (make-channel)) 

(define (flip-flop a b) 

(output a 'flip) 
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{input b (flop)) 

{flip-flop b a)) 

(define (flop-flip a b) 

{input a (flop)) 

(output b 'flip) 

(flop-flip b a)) 

(output *anY-evaluator* (lambda () (flip-flop a b))) 

(output *any-evaluator* (lambda () (flop-flip a b))) 

As can be seen, although the compiling evaluator defines the channels, the 

nodes to which the processes migrate make use of them. 

A different initialisation method for channels bound to the top level environ-

ment is used. On creation, the channel points at no broker, instead it is set to an 

uninitialised state. Upon use of such a channel, a node will attempt to bind it to its 

broker module. A message is sent to every node in the HOC Scheme network in-

forming it of the new state of this channel. Nodes receiving this message can then 

initialise any copies of the channel contained within their environments. If multi-

ple nodes try to initialise the charmel simultaneously the first message received is 

used and all subsequent messages ignored. 

The initialisation multicast is sent via the master top level environment node 

for two reasons; 

1. The master top level environment has knowledge of every HOC Scheme 

node in the network as all nodes register with it. Other HOC Scheme nodes 

may only have partial knowledge and therefore will be unable to perform a 

multicast to all HOC Scheme nodes; 

2. By sending messages via a single node, message order is preserved. If two 

separate nodes try to initialise the same channel, the master environment 

node will broadcast first one initialisation message then the other, with all 

nodes in the system guaranteed to receive the messages in the order that the 

master environment node sent them. If both nodes were to send an initiali-

sation message direct to every node in the HOC Scheme network simultane-

ously, nodes could receive the messages in a different order to other nodes, 

resulting in an inconsistent view of the channel amongst nodes. 

Although this initialisation mechanism could be used for all channels created in 

the HOC Scheme network, be they bound to the top level environment or created 

within the lexical environment of a process, it could lead to inefficiency. 

Top level environment channels are only created at application load time, whereas 

channels in the lexical environment of a process can be created throughout the life-

time of an application. This can lead to the initialisation process being performed 

throughout the lifetime of an application rather than for a small period, generally 

shortly after load time, when top level channels are used. Therefore use of the 
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Figure 6.15: Protocol for synchronisation of two channels 

initialisation protocol for channels created in the lexical environment for a process 

will lead to increased network traffic, and additional latency in creating channels. 

In addition, channels created in the lexical environment of a process are likely 

to be used by the creating process, and so allocating the broker of the node on 

which the process is running without using the initialisation process is a suitable 

optimisation. 

SynchroMows commwMicafioM 

The protocol used to achieve communication and synchronisation using the broker 

model involves message passing between the two communicating processes and 

the broker. 

Figure 6.15 shows the messages that are passed for a successful synchronisation 

between two processes. 

As can be seen, five messages are used to perform the single synchronisation. 

At the first stage, the broker is informed about the processes wishing to communi-

cate. Once a match has been made, the remaining protocol can be started. 

A match is found when two processes wish to communicate over the same 

channel and the following conditions are met: 

1. One process is performing an o u t p u t operation and the other is performing 

an i n p u t operation; 

2. The sending and receiving processes are communicating the same number 

of data items; 

3. The sending and receiving operations belong to different processes (i.e. they 

are not different branches of an a l t operation performed b y a single pro-

cess). 
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Figure 6.16: Failing an output branch 

When the broker finds a suitable pairing of processes, it sends the output pro-

cess a message instructing it to send its data to the input process. A t this stage the 

output process has a chance of declining the synchronisation (if another branch of 

an a l t operation has been taken). It does this by sending a decline synchronisation 

message to the input process. The input process can then re-send its i n p u t re-

quest to the broker to allow it to participate in a subsequent synchronisation. This 

is shown in figure 6.16. 

Assuming the output process can indeed participate in the synchronisation, it 

sends a message to the input process that includes the data to be passed over the 

synchronisation. Again the opportunity for the input process to decline the syn-

chronisation needs to be given. The input process declines in a similar manner to 

the output process, by sending the output process a decline synchronisation message, 

shown in figure 6.17. This allows the output process to re-send its o u t p u t mes-

sage back to the broker. If the input process accepts the data message sent by the 

output process, the input process can be unblocked and placed on the scheduler's 

ready queue. The input process can then reply to the output process, allowing it to 

be unblocked and proceed. 

During the time the output process is waiting for an acknowledgement or re-

jection message from the input process, messages may be received f rom other bro-

kers a n d / o r input processes requesting that other branches of the a l t operation 

should proceed. These messages should be stored until confirmation or rejection 

or the currently proceeding branch is confirmed. If confirmed, all stored messages 

should be rejected, and if rejected, a stored message indicating that another branch 

should proceed should be acted upon, with remaining messages left in the store. 

Finally, when both processes have decided to proceed, any remaining branches 

can be failed. This involves rejecting outstanding messages and informing other 
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Figure 6.17: Failing an input branch 

brokers holding state on the a l t operations that the branches will no longer pro-

ceed, causing the brokers to remove the state from their data structures. 

The above protocol gives both the sending and receiving processes the oppor-

tunity to fail a synchronisation. Optimisations can be made to this protocol when 

it is known that either party involved in a synchronisation cannot fail. This is 

the case where a process performs a synchronisation outside of an a l t operation. 

There is only one possible outcome for the process: it synchronises with another 

process using the channel and then continues. It cannot fail to synchronise. The 

optimal case is where both processes will not fail a synchronisation. Figure 6.18 

shows the protocol used between the processes and the brokers to perform this 

operation. 

When a process performs a channel operation which cannot fail, it flags this 

to the broker. In the case of an output operation which cannot fail, the data to be 

communicated through the synchronisation is also sent and stored at the broker. 

This reduces overall latency of the synchronisation, but does not reduce the num-

ber of messages sent. If a large amount of data is to be communicated through a 

synchronisation (for example, a process) then the data is kept at the sender. On 

synchronisation, the broker sends a message to the send process instructing it to 

send its data to the receiving process and to continue to execute. Figure 6.19 shows 

this protocol. 

In the case where one process involved in the synchronisation will not fail, the 

optimised protocol also uses four messages (when the synchronisation succeeds). 

The protocol used when the output process is an a l t branch and the input process 

will not fail is the same protocol followed for large data transfers, shown in figure 

6.19. If the output branch cannot send its data because another branch of the a l t 
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Figure 6.18: Synchronisation protocol with no failure cases 
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Figure 6.19: Synchronisation protocol with large data transfers 

has already proceeded, then the failure case of figure 6.16 is followed, allowing the 

input process to re-send its i n p u t message to the broker. 

The final case is where the output operation will not fail, but the input process 

could. This is shown in figure 6.20. The output branch is not automatically pro-

ceeded by the broker, rather the input process decides whether the synchronisation 

can proceed. If it can, it sends an ack message to the output process to allow it to 

proceed, otherwise it follows the failure case of figure 6.17 and sends a n a c k mes-

sage to the output process, causing it to re-send its o u t p u t to the broker. For large 

data transfers, the complete protocol of figure 6.15 is used. 
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Figure 6.20: Synchronisation protocol where input process can fail 

These protocol diagrams show that in order to perform a synchronisation be-

tween two processes, at least four messages need to flow between the processes 

and channel broker. For cases involving failure, even more messages will need to 

be sent. This shows the importance of the correct choice of broker in order to help 

reduce the amount of cross node network traffic. 

AsyMc/zfOMOws coMmwMz'cah'oM 

In many cases in a distributed system, the need for processes to synchronise can be 

separated from their need to communicate. Thus the synchronous communication 

protocol discussed above can cause inefficiency in a distributed system as senders 

needlessly wait for a suitable receiving process to become ready before being able 

to proceed ((Liskov et al. 1986)). 

By allowing an asynchronous send operation on channels, communication can 

be achieved without the need for two processes to synchronise. Figure 6.21 shows 

the protocol used to perform asynchronous output. 

The input operation is still synchronous, as input processes will always block 

until data becomes available. An asynchronous input could be designed where 

the process informs the channel system that it wishes to receive data on a channel, 

and a future is returned. The process may then continue to do work, touching the 

future when it needs the result of the input operation. If the operation has com-

pleted, the process will not block. If the operation has yet to complete, touching 

the future will cause the process to block until the data arrives, similar to the syn-

chronous input. The message protocol used to achieve this input is the same for 

synchronous and asynchronous versions of i n p u t . 

Asynchronous operations may not be performed where the operation chooses 

which branch of an a l t operation will proceed. This is because in order to make 
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Figure 6.21: Asynchronous communication 

the choice of which branch should proceed, one of the operations has to complete 

synchronously. 

Modifications to the broker are required to implement asynchronous commu-

nications. Firstly, the asynchronous message protocol needs to be recognised. In 

addition, the broker has to cope with multiple input and output operations from 

the same processes and ensure that operations do not complete out of order. If two 

processes perform an output operation on a common channel simultaneously, the 

broker can arbitrarily choose which operation should be the first to synchronise 

with an available output process (although its algorithm should guarantee some 

form of fairness). 

If the same process were to perform two asynchronous output operations on 

the same channel, it is desirable that an input process receiving on the channel 

receives its input in the same order as that which the sending process transmitted. 

Therefore it is desirable that the broker buffers subsequent output operations until 

previous operations have completed, thus ensuring the ordering of messages sent 

over a channel. 

A problem can arise with this method if the process migrates to another node 

in the meantime. For example, figure 6.22 shows a process P perform an asyn-

chronous output operation on node Ni at time t. The resulting output message 

arrives at the broker at time t -t- 10. After performing its asynchronous output 

operation, P immediately migrates to another node (the channel protocol used to 

achieve this is not shown), and continues to execute on this node N2 at time t + 5. 

Thus the migration took less time than the it took for the original output message 

to reach the broker. This could occur if the broker node was on the far side of 

a WAN link, with the process migrating to a node on the LAN, or if a connec-

tion had to be set up to the broker, but already existed between N i and N2. Now 
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Figure 6.22: Out of order message delivery 

the process performs a further asynchronous output on the same channel, with the 

output message arriving at the broker at time (+9. It can be seen that the messages 

arrive at the broker out of order, and thus are dispatched to a receiving process out 

of order. 

Further problems arise when attempting to generalise the preserving of mes-

sage order to all channels in a system. If a process performs a n asynchronous 

output on channel a, and then channel b, it could be argued that the data of chan-

nel b should not be made available until a process had received the data sent over 

a. However channels a and b could be managed by different brokers, and there-

fore b's broker would have no direct knowledge of when the data on a had been 

consumed. 

The data could be held at the sending process. By using the synchronous com-

munication protocol of the above section, the sending node could feed the mes-

sages to the broker in the correct order. In the case above, it would first send an 

output message for a, and then when told to continue by a's broker, would send 

the queued output message for b. In this manner the processes would perceive 

an asynchronous interface, whilst the underlying synchronous message passing 

protocol would preserve event ordering within a process. 

In order to preserve message order in the presence of migration, a synchronous 

send operation should be used to migrate a process. With the above algorithm, 

the channel operation used to migrate the process will not occur until all previous 

operations have completed. Using synchronous output, it is ensured that no fu-

ture channel operations are performed until after the process has migrated. This 

prevents a set of operations being left on the previous node of the process, again 

allowing for the possibility of out of order message delivery. 
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Thus although the asynchronous protocol of figure 6.21 uses fewer messages 

than the synchronous communication protocols, by allowing for the delivery of 

out of order messages, it places extra burden on the distributed applications pro-

grammer. 

By using an asynchronous programming interface to the underlying synchronous 

message protocol, with asynchronous operations queued at the client, message or-

der is preserved, whilst allowing processes to improve performance. 

Bounded queues can be used by the asynchronous channels interface to limit 

the amount of state held by a process. For example, a limit of n outstanding chan-

nel operations could be imposed (either per process, or for the n o d e as a whole). 

If another asynchronous channel operation were performed, the channel system 

could transform it into a synchronous operation, to allow the buffer to completely 

clear. Alternatively it could block the process until the number of outstanding 

channel operations reached a low water mark, at which time the process could 

resume. This technique helps with the management of memory. For example, if 

an asynchronous producer was working at a faster rate than consumers were col-

lecting the data and an infinite asynchronous buffer was used, then eventually the 

system would run out of memory. 

6.6.7 User mfer/ace 

C/zarackr zMfeTyacg 

The character based interface is a simple read-eval-print loop. This is represented 

as a listener process called REP, running on the HOC Scheme node. Thus config-

uring a node to have a character interface is as simple as deciding whether or not 

to create the REP process. 

When the process is scheduled to run, it blocks the whole HOC Scheme node, 

waiting for the user to input an expression. This expression is then compiled and 

evaluated in the context of the listener process. The evaluation is passed an initial 

continuation which displays the result of the evaluation and reschedules the REP 

process. 

As the REP process blocks the HOC Scheme node from executing whilst wait-

ing for user input, a mechanism of turning off the REP is provided in order to allow 

unhindered execution to processes running on the node. The primitive w a i t - a l l 

blocks the current process, only allowing the process to proceed when no more 

processes are running. 

GrapMcoZ user mfer^ce 

The GUI for HOC Scheme uses Sun's User Interface Toolkit (UIT). This is a set 

of C++ classes which provide a class based interface onto X View, a toolkit for X 

Windows. 

The foreign function interface is used to provide primitives which the Scheme 

system may call on to perform windows operations. 

In a similar fashion to the REP module, a GUI process is created when the HOC 

Scheme node is configured to run a GUI. When scheduled, this process calls the 
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GUI module to process any queued events. This is needed as the HOC Scheme 

node still runs as a single threaded application when the GUI is present, and so 

regular time needs to be given to the GUI module to handle its events. 

When evaluating an expression, the GUI interface first compiles the expres-

sion. However, unlike the REP process, it does not execute it within the context of 

the GUI process. Instead it spawns a process to execute it. This is to prevent the 

expression blocking the GUI process. 

Input and output primitives are extended to check the environment in which 

they are running. A read from a character based environment will read an expres-

sion from the console, blocking the HOC Scheme node until the expression has 

been input. If running under a GUI, the GUI module is informed that it should 

read an expression from the user. The reading process then blocks until the GUI 

module informs it that the expression has been read, at which point it can continue 

to execute. Note that only the reading process blocks; other processes are allowed 

to proceed due to the asynchronous behaviour of the GUI module. 

Additional primitives only valid for GUI based nodes are provided as part of 

the HOC Scheme top level environment. These allow a wider range of GUI based 

input/output operations including the list choice and input /ou tput window dis-

cussed in section 6.4. 

The GUI module uses sockets as its means of interfacing with the X windows 

server. It needs to be informed when the socket is ready through a notification 

interface. Additional sockets may be given to this interface, allowing it to be 

informed of messages from remote HOC Scheme nodes and new incoming con-

nections that should be processed. The network module passes responsibility for 

scheduling of message handling functions to the GUI module w h e n executing in 

GUI mode, and is called back when the GUI module detects messages, or incoming 

connections need to be processed. 

The scheduler never returns as there is always at least one process to execute, 

the GUI process. If the GUI process were to always process pending events and 

reschedule, this would lead to busy waiting when there were no events to dispatch, 

and no processes other than GUI to schedule. Therefore the GUI process checks for 

these conditions, and if it is the only process running, it blocks the system until 

one of its sockets becomes ready. 

6.6.8 0 HOC ScAgme Motk 

Given the implementation of all modules, it is now possible to execute a HOC 

Scheme node. All that is required is for each module to be initialised in the required 

manner. 

HOC Scheme nodes take a number of command line parameters at startup. 

This is preferable to using an initialisation file (for example . h o c s c h e m e r c ) , as 

command line parameters allow different instances of HOC Scheme to be started 

on the same workstation — useful for test purposes. 

The command line parameters are as follows; 
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® c o n t r o l l e r — Specifies that the node is the first node in the HOC Scheme 

network and should therefore maintain the master copy of the top level en-

vironment. It should also boot the resource locator process and create the 

channels associated with this process. If present this should be the first pa-

rameter; 

8 <hostname> — If the node is not to be a controller for a H O C Scheme net-

work, the first parameter should be the hostname of the H O C Scheme con-

troller node. Controllers listen on a well known port known by all HOC 

Scheme nodes, so it is not necessary to pass the port as a parameter; 

• l i s t e n e r — Specifies that a character based read-eval-print loop should 

be started; 

® x l i s t e n e r — Specifies that a GUI window for the input of expressions 

should be started; 

8 < r e s o u r c e > — any other value is taken as a resource n a m e which should 

be registered with the resource manager as a means of contacting the node. 

Once the command line parameters have been parsed, initialisation occurs in 

the following order: 

1. Global variables within the HOC Scheme modules are initialised; 

2. The initial top level global environment is created; 

3. The network module is started; 

4. If the node is a controller, the master top level environment module is started, 

followed by the resource manager server process; 

5. If node is not the controller, it connects to the controller and registers with 

the master top level environment; 

6. If the node is a listener, the REP process is started; if it is an xlistener then the 

GUI process is started; 

7. For all types of node, an E n t r a n c e process for the global ^entrance* channel 

is started; 

8. A newly created channel is registered with the resource manager for the sup-

plied command line resources and an E n t r a n c e process which listens on 

this channel is created; 

9. The scheduler is started. 

The HOC Scheme node is then operational and can participate in the execution 

of distributed applications. 

6.6.9 SfoppzMg 0 HOC ScAgwze Node 

Section 6.5.2 introduced the cases in which a HOC Scheme node could be removed 

from a network. These were: 

1. The node fails; 

2. The physical network becomes partitioned; 

3. A shutdown request is received by the HOC Scheme node. 
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This current implementation of distributed HOC Scheme only caters for the 

last case, the ordered shutdown. Failure of a node is currently no t handled. It will 

cause all processes on that node to stop interacting with the HOC Scheme network. 

It will also cause processes running on other nodes in the H O C Scheme to fail, 

most often by deadlocking if they try to perform a synchronisation with a process 

executing on a failed node. However, unless the failed node is the controller node, 

other nodes in the network will remain operational. 

In the case where the controller node fails, other nodes will remain operational 

but will fail if they try to extend the global environment or at tempt to initialise a 

top level channel. 

The shutdown request is implemented by providing a primitive (shutdown) 

which causes the node on which it is executing to close. This can either be input 

directly using the read-eval-print loop (or windows interface), or by migrating a 

process to the node which needs to be shut down. For example, the following code 

closes a random node. 

;; SfiuWown a node, any node. 
(define (random-death) 

(output *any-evaluator* (lambda () (shutdown)))) 

The shutdown primitive performs the following steps; 

1. Informs the controller that the node is closing. 

2. Sends its broker's state to the controller, which takes over management of 

the channels the node's broker maintained; 

3. Sends processes (including process state) to the controller, which takes over 

the execution of the processes; 

4. Informs the controller that the migration is complete. The controller then 

broadcasts a message to all other nodes informing them that the controller is 

taking over the node's channels. Any subsequent channel operations which 

would have been directed at the closing node are then sent to the controller 

(this is handled by nodes network modules); 

5. The controller sends a message to the closing node informing it that it can 

now exit; 

6. The closing node forwards all channel messages to the controller, until it re-

ceives the shutdown confirmation message from the controller; 

7. The closing node may now exit. 

This method ensures that all processes and channels are moved off the closing 

node before it exits, allowing the HOC Scheme network as a whole to continue. 

Processes that used user interface elements on the closing node will fail, as 

these are no longer available. 

All channel and process state is transferred to the controller, as the controller is 

guaranteed to be available during this process. It follows that the controller cannot 

be shutdown, and if attempted, the shutdown primitive returns false. 
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6.7 Future work 

This HOC Scheme environment is not of production quality. Further improve-

ments could be made to allow it to run production quality applications. 

For example, the windows interface could be extended, possibly by porting 

a complete toolkit interface to HOC Scheme. This would allow applications to 

construct interfaces suited to their requirements, rather than relying on the limited 

set of user interface components provided by the current implementation. 

Further work needs to be carried out to improve the resilience of HOC Scheme, 

particularly in the presence of failure. This could require changes in the HOC 

Scheme language, for example, allowing synchronous channel operations to spec-

ify a time out period. 

6.8 Summary 

This chapter has detailed the design and implementation of a distributed system 

supporting HOC Scheme applications. 

A partially connected network model is used, allowing the underlying network 

protocols to perform routeing operations whilst conserving network resources by 

not cormecting nodes which do not communicate directly. 

Application code and global variables are distributed though a shared immutable 

top level environment, with a replicated master model used for efficient lookups 

during runtime. All updates to the environment are handled by the master, al-

lowing for the serialisation of update requests and the distribution of a consistent 

environment to all nodes in the system. 

The broker model is used to implement a generalised model of communication, 

allowing the distribution of channels to change dynamically without the need to 

reconfigure the underlying system. Also, it does not rely on any particular network 

topology other than being able to send a message between any two points. 

An existing runtime interpreter and compiler from the ICSLAS project was in-

tegrated into the HOC Scheme system to provide process compilation and evalu-

ation support. All code and runtime data structures are Meroon objects, allowing 

for the distribution of platform independent code over the network. The compiler 

runtime was extended to allow distribution of code which references primitive 

functions to be transmitted over a network. 

The next chapter goes on to show applications written in H O C Scheme and 

running on HOC Scheme networks. 
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Chapter 7 

Applications of HOC Scheme 

7.1 Introduction 

Experimentation is an important part of investigating the value of a programming 

environment. Many programmers create a hello world program, which simply 

outputs a string to the console as a means of getting started with a programming 

environment, be it a completely new language, or a new compiler/interpreter for 

a language they already know. This allows programmers to discover many things 

about the new system such as basic program structure, input ou tpu t libraries and 

operation of the compiler/interpreter through this one simple program. 

Figure 7.1 shows a hello world program for HOC Scheme. It makes no use of 

the channels system, distribution or processes. Rather it allows the programmers 

to familiarise themselves with the HOC Scheme environment. The example shows 

one HOC Scheme node being started, with a character based read-eval-pr int loop, 

and the hello world program being loaded and executed. 

The following sections discuss more complex experiments which have been 

carried out using HOC Scheme. 

7.2 Prime numbers 

Prime numbers have always been a source of fascination for mathematicians, going 

back to Euclid (who showed that there are infinitely many primes). Today primes 

are used in real world applications, for example their use in cryptography, where 

keys are generated using very large prime numbers. 

A prime number is a member of the set of positive integers . This set can 

be partitioned into three sets which have empty intersections, 1, -prime numbers 

2 ,3 ,5 ,7 , . . . and composite numbers 4,6,8,9, For a number to be prime it can 

have only two divisors, one and itself. All other numbers (apart from one) are 

composite, in that they may be composed by the multiplication of other numbers. 

For example, two is a prime number, in that is can only be divided by itself and 

one, but all other even numbers are composite, as they can be divided by two. 
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nb88r% more hello-world.scm 

;; Hello world 

(define (hello-world) (format #t "hello world")) 

nb88r% hocscheme controller listener 

HOCScheme> (load "hello-world.scm") 

OK 
HOCScheme> (hello-world) 

hello world 

HOCScheme> (exit) 

nb88r% 

Figure 7.1: A hello world program for HOC Scheme 

7.2.3 Mofzuah'oM 

The distributed HOC Scheme implementation is not designed for high perfor-

mance systems such as prime number generators. The protocol needed to perform 

synchronous communication is too heavyweight for applications where processes 

must achieve a consistent high throughput of data in order to achieve a speedup 

over a sequential version of the same application. 

However, HOC Scheme is a suitable language for writing such applications, 

even if the current implementation is not tailored to execute them. The channels 

model provides an elegant way for networks of processes to be created, and this 

section looks at various network configurations which can be used to generate 

prime numbers. 

7.2.2 Implementation 

There are several algorithms for generating and testing prime number s on comput-

ers, including probabilistic methods for testing large primes. This section focuses 

on the use of a traditional method of computing prime numbers , using a sieve, 

with channels used to construct a data flow network in order to achieve paral-

lelism though pipelining. 

SzeDe aZgonYkms 

A number of algorithms that make use of a finite number of sieves to generate 

prime numbers have been developed, the most famous being the sieve of Eratos-

(Aengs. 

The sieve principle is similar to the filter primitive which acts o n lists. The filter 

function is defined as follows: 

(define (filter list predicate) 

(cond ((null? list) '()) 

((predicate (car list)) 

(cons (car list) (filter (cdr list) predicate))) 

(else (filter (cdr list) predicate)))) 
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Given a list of elements, the function returns a new list which contains only the 

elements of the initial list that hold when passed to the supplied predicate. 

In the same fashion, a number n will only pass through a sieve containing a set 

of numbers 5 if it is divisible by no number in S, other than 1 or n. Thus if S is the 

set of positive integers (an infinite set of numbers) then any number which passes 

through the sieve of S will be prime, by definition. 

Clearly it is impossible to test n against an infinite set of numbers. Two tech-

niques allow this set to be reduced to a manageable size, whilst allowing the sieve 

to still guarantee that n is prime if it passes through the sieve. 

1. Consider a sieve element m which is a composite number wi th factors ki (i.e. 

m = X 2̂ X...). If any number in ki divides by n, then so will m. Thus if all 

factors of m are in the sieve there is no need to test n against m. This implies 

that composite numbers whose factors are in the sieve need not be in the 

sieve themselves. This can be extended to factors which are themselves com-

posite numbers, and by reduction, all composite numbers can be removed 

from the sieve, leaving only primes present in S. This reduces S from the set 

of all positive integers to the set of all primes; 

2. The greatest element in S which needs to be tested to determine if n is prime 

is the square root of n. If a prime p was found to be a factor of n, then n = 

p X where k is the other factor. If A; > then p < \/n. Hence it is possible 

to determine if a number is prime by testing for factors up to -^/n. 

These techniques allow a manageable sized set of primes to be held by the 

sieve. In order to test whether number n is prime, only primes less than the square 

root of n will need to be present in the sieve. 

Through filtering a stream of integers it is possible for a sieve to grow dynam-

ically by placing numbers it finds to be prime in the sieve, allowing the sieve to 

find larger prime numbers. Two guarantees must be met; 

1. The current set of primes contained within a sieve must include all the primes 

up to \ /n, in order that it can be correctly determined whether n is prime; 

2. A prime p must be added to the set of primes S used by a sieve before a value 

n where n > is processed by the sieve. 

The first case is satisfied by passing in an ascending sequence of values which 

includes all primes, provided that no value is greater than the square of its prede-

cessor. The sequence of integers starting from two (one is treated as a special case) 

and the sequence consisting of two followed by every odd number are suitable 

sequences for generating the set of prime numbers. The second guarantee places 

a requirement on the implementation to ensure that a prime is in the sieve before 

a number which requires that prime to correctly determine if it can be factored, is 

tested by the sieve. 
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Figure 7.2: A pipeline of sieves 

lIszMg mwZHpk sz'fDes 

A single sieve can be replaced by a number of sieves, provided that the union of 

sets of integers contained within the sieves meets the above requirements. This 

may be used to improve the performance of the prime number generator. 

Figure 7.2 shows a simple pipeline of sieves. The channels are used to create 

a data flow network between the sieve processes. An integer generator process is 

placed at the source end of the network and feeds numbers into the pipeline. At 

the far end, prime numbers are produced and can be consumed by an application 

which then uses them for another application (for example to produce keys for 

cryptographic applications, or to simply display a list of prime numbers to a user). 

It is important that these primes are incorporated into the sieves in order that 

they may correctly generate larger primes. There are a number of ways of doing 

this: 

• The final sieve in the network, which determines for sure if a number is 

prime, incorporates all primes into its sieve. This causes an imbalance of 

work amongst the sieves. The final sieve will contain far more numbers than 

the sieves upstream. Indeed, unless upstream sieves are created with a pool 

of precomputed primes, they will be of no use as they cannot accumulate 

primes. Clearly, this scheme is inefficient; 

® The primes are distributed evenly amongst the sieve processes. This is a 

more efficient algorithm, as each sieve has an equal amount of work to per-

form. If sieve processes are located on different nodes, the pipeline can per-

form work in parallel. It is important to ensure that a pr ime is added to a 

sieve before integers that could be factored by the prime are passed through 

the sieve; 

8 As HOC Scheme is a dynamic system, a dynamic approach could be taken. 

Rather than having a fixed static network of sieves, the network could be 

allowed to grow as more primes are found. This approach is discussed in 

more detail below. 

A (fyMg/MZC Mgfwor/c q/'sieves 

The dynamic network of sieves has a number of advantages over its static coun-

terpart. No feedback mechanism is required, as a sieve is either at the end of a 

network generating and accumulating primes (similar to the first case discussed 

above), or is in the middle of a network and is using a fixed set of primes in its 

sieve. When an accumulating sieve is full, it can generate a new accumulating sieve 

process, whilst itself becoming a fixed, non accumulating sieve. Additional HOC 
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Scheme nodes can be added dynamically to the network, and become part of the 

prime number computation application when new sieve processes are spawned 

on them. A static network of sieves would have to be reconfigured to take account 

of new nodes, and would probably have to be restarted. 

One disadvantage of this approach is the potential for performance drop off 

due to the large numbers of sieve processes that could be generated. It has been 

shown that channel communication uses a number of messages passed between 

the processes and the channels broker. If sieve processes are located on different 

nodes, some of these messages will have to be transmitted over the network. Thus 

in a pipeline of n sieves, n+1 channel synchronisations will occur, or 2(n +1) inter 

node messages, assuming that the broker and output process of using a channel 

are co-located. Therefore the more sieve processes, the longer the pipeline, and 

the longer the pipeline, the more time a prime will take to pass through due to the 

latency of message transfers. In a static network, the communications overhead is 

constant, as the length of the pipeline is fixed. 

With the dynamic sieves implementation the size of the set of primes each sieve 

manages can also affect performance. Sieves in the pipeline that are "close" to the 

integer generator are going to process more numbers than sieves further down-

stream. For example, every even number other than two will be swallowed by the 

first sieve in the pipeline, halving the flow of numbers downstream of the sieve. 

This will in turn filter out further integers which it can factor, again reducing the 

rate of numbers flowing downstream to the next sieve. 

In general, sieves containing lower number primes will filter out more integers 

than sieves containing larger primes. If the size of the set of pr imes managed by 

each sieve is kept at a constant, sieves downstream will perform less communica-

tion and processing than sieves further upstream. By increasing the size of the set 

each sieve manages as the network grows, decreased time performed doing com-

munication can be compensated by increased time taken by the sieve to process 

numbers in the pipeline. This helps to keep sieves in the network doing roughly 

the same amount of work. Also by locating small primes in the sieve next to the 

integer generator, the number of communications can be drastically reduced, as 

numbers are more likely to be factors of small primes than larger ones contained 

in sieves downstream. 

fmpZemeMfing tfie dynamic network 

Figure 7.3 shows the code used for creating a dynamic network of sieves. For 

brevity, the code which deals with the set abstract data type is omitted. 

This provides a system that can be started with three processes — an integer 

generator, an initial sieve and a stream printer to display the results of numbers 

that pass through the pipeline (primes). 

The performance of the application can be modified in two ways; 
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;; /Mfeger geMerakr, 
(define (integers c n) 

(output c n) 
(integers c (+ n 1))) 

; : Printer, tail of stream 
(define (print-stream c) 

(input c (n) (display n)) 
(newline) 
(print-stream c)) 

;; AccwmwZaHMg sieue 
(define (accumulating-sieve chan-upstream chan-primes S max) 

(input chan-upstream (p) 
(if (factor? p S) 

(accumulating-sieve chan-upstream chan-primes S max) 
(accumulate-prime chan-upstream chan-primes S max p) ) ) ) 

; ; a prime to an occumukHng siew 
(define (accumulate-prime chan-upstream chan-primes S max prime-
number) 

(output chan-primes prime-number) 
(let ((extendedS (set-extend S prime-number))) 

(if (< (set-size extendedS) max) 
(accumulating-sieve chan-upstream chan-primes extendedS max) 
(generate-new-sieve chan-upstream chan-primes extend-

edS max)))) 

;; Spawn a new accwmwZah'ng siece on anof/zgr ncWe 
(define (generate-new-sieve chan-upstream chan-primes S max) 

(let ((pipe (make-channel))) 
(output *any-node* (lambda () 

(accumulating-sieve pipe chan-primes 
(set-emptyset) (generate-new-

max max)))) 
(fixed-sieve chan-upstream pipe S))) 

; ; A/uced sfeue 
(define (fixed-sieve chan-upstream chan-downstream S) 

(input chan-upstream (p) 
(when (not (factor? p 8)) 

(output chan-downstream p))) 
(fixed-sieve chan-upstream chan-downstream S)) 

;; Creak a pn'me number generator pipe/zne 
(define (generate-primes max) 

(let ((pipe (make-channel)) 
(print (make-channel))) 

(spawn (lambda () (integers pipe 2))) 
(spawn (lambda () (print-stream print))) 
(spawn (lambda () (accumulating-sieve pipe print (set-

emptyset) max))))) 

Figure 7.3: A prime number generator using dynamic sieves 
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1. Changing the initial maximum set size. This affects the s ize of the set accu-

mulated by the initial sieve in the network — the sieve closest to the integer 

generator; 

2. Varying the g e n e r a t e - n e w - m a x function to change the m e t h o d of comput-

ing the set size of subsequent sieves in the network. 

7.2.3 CoMc/wszoMS 

As with any channels based model, HOC Scheme lends itself to the easy imple-

mentation of streams based processing solutions. Pipelines of processes can easily 

be created, with synchronous output ensuring that processes n e e d not perform 

buffering on the streams (data is effectively pulled through the network) . 

HOC Scheme extends this model by allowing the network connecting each 

stream module (process) to be extended by dynamically introducing new stream 

modules and reconfiguring the data flow network. 

This allows an application to adapt, based on the amount of w o r k it has to per-

form or on external factors such as new processing resource becoming available. 

The ability for processes to migrate to other nodes in the H O C Scheme system 

allows dynamic building of data flow networks between nodes. For example, the 

prime sieve program of figure 7.3 implements a pipeline laying process, by placing 

each new sieve on a new node. 

7.3 Metacircular HOC Scheme 

This section presents a working implementation of HOC Scheme, called metacir-

cular HOC Scheme, which is written in HOC Scheme. This implementation can 

be executed by the evaluator presented in chapter 6, henceforth called base HOC 

Scheme. The implementation is capable of evaluating any system defined in HOC 

Scheme, including itself. A complete code listing is provided in appendix A. 

7.3.1 Motivation 

Base HOC Scheme is based upon a number modules that do not lend themselves 

to the creation of dynamic networks of mobile processes. 

1. A processor specific machine code (compiled using Scheme->C); 

2. A static network between processing nodes (TCP/IP); 

3. No built in support for multi processing (not supported by Scheme->C run-

time). 

This relatively low level starting point meant that in order to implement base 

HOC Scheme, abstractions needed to be provided to present the illusion of a dy-

namic environment to the HOC Scheme programmer. 

By definition, the HOC Scheme system presents an environment where pro-

grammers can write processes which are mobile and use channels as first class 

objects to implement dynamically changing communications networks between 

the processes. 

Such an environment would have been an ideal starting point to implement 

HOC Scheme. Given that this environment now exists, it seems appropriate to 
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demonstrate how it can support the implementation of other distributed environ-

ments. The fact that in this section we implement HOC Scheme is just one example 

of a distributed environment. In the next section, we go on to s h o w how the Doc-

ument Flow Model can be implemented in HOC Scheme. 

An alternative implementation is also useful in verifying the correctness of the 

channels model. It is also a reasonably sized application which makes use of most 

of the features provided by base HOC Scheme, and thus can be used to increase 

confidence in the base implementation. 

The system is truly metacircular — that is it can load and execute itself as well 

as other HOC Scheme applications. This allows confidence to g row not only in the 

base HOC Scheme, but also in the metacircular implementation. 

7.3.2 fzMp/emgMkh'oM 

Section 4.6.1 describes a typical continuation passing metacircular evaluator. This 

shows how constructs of the base language can be propagated through as con-

structs provided by the evaluator. For example the evaluator does not modify 

most basic types such as symbols, numbers and pairs. Other more complex types, 

such as abstractions (lambda expressions), can also be exposed. In addition, prim-

itives of the underlying language may be exposed as primitives of the evaluated 

language (with appropriate wrappers to handle continuations). 

Within HOC Scheme a number of base types can be exposed through the metacir-

cular evaluator. These include: 

® Basic types. For example symbols, numbers, pairs; 

® Abstractions (lambda expressions); 

® Processes; 

8 Channels. 

Within this list the exposure of underlying processes and channels as primitive 

processes and channels of the metacircular evaluator are the most contentious. The 

passing through of underlying data types as types of the evaluator removes the 

ability of the evaluator to model the underlying types. In the case of processes and 

channels it can be argued that this reduces the scope of the HOC Scheme metacir-

cular evaluator to test the underlying system by modelling its features. 

It was decided that the most important feature to model in the metacircular 

HOC Scheme was the channels mechanism. It is the contention that a cleaner 

model of channels can be written in HOC Scheme than in a language with an in-

terface to a more static communications mechanism. 

Rgpresenhmg TMgfaczYcuZar process 

The HOC Scheme process is a less interesting feature to model. The underlying 

process representation is sufficient for the metacircular HOC Scheme. There is a 

case for modelling the scheduler in future models of HOC Scheme. This would 

allow different scheduling strategies to be investigated. 
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The process is not a first class object. The continuation of a process can be 

captured, but this does not capture all information about a process. For example 

the following function captures a continuation and sends it to a remote node (using 

the supplied channel) for further evaluation. 

(define (remote node) 

(call/cc (lambda (k) 

(output node (lambda () (k 'remote))) 

'local))) 

Although we talk about the process migrating to the remote node, this is not 

strictly the case. The continuation of the process is copied to the remote node and 

is executed in a newly spawned process (performed by the E n t r a n c e process). 

Once the synchronisation has completed there will be two processes, each execut-

ing the same continuation. In this respect the r e m o t e function behaves in a similar 

fashion to the Unix f o r k routine. The return value of the r e m o t e function can be 

used to determine what behaviour the continuation should take. 

Thus in order to expose the underlying implementation of processes through 

the metacircular HOC Scheme, a data type representing a process object need not 

be implemented. Instead, the API that manipulates processes needs to be exposed. 

For the HOC Scheme process, this means that the spawn primitive needs to be 

made available to the metacircular HOC Scheme. 

A primitive is defined in the top level environment which takes a thunk as its 

argument and calls the underlying HOC Scheme spawn to create a new process 

to execute the thunk. As this thunk is part of a new process, a new continuation 

needs to be given to it before it can be executed. The spawn primitive is shown 

below. 

(primitive 'spawn 

(lambda (thunk) 

;; CaZZ UMfferZyzMg HOC ScAeme spawn 
(spawn (lambda () 

(applyx #f (lambda (alt v) v) thunk '{)))) 

'ok)) 

TTzg TMgfgcz'rcwZar graZwafor 

The evaluator used in metacircular HOC Scheme is a standard continuation pass-

ing evaluator with one modification, the addition of an extra parameter to con-

trol whether the process being evaluated is currently evaluating an a l t statement. 

This allows the channel module to behave differently, depending on whether an 

i n p u t or o u t p u t operation is used as part of an a l t statement. Section 7.3.2 

discusses the implementation of channels. 
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In order to propagate this a l t value around, the continuation is also modified 

to take two arguments — the value to be passed to the continuation and whether 

the continuation is being executed as part of an a l t statement. Most primitives 

simply propagate the a l t parameter back to the evaluator (through calls to a p p l y 

or eva l ) . 

The i n p u t and a l t special forms are also handled by the evaluator. An alter-

native would be to define primitive functions and implement a macro system to 

translate the special forms into function calls, but this was considered too costly 

for implementing just two additional special forms. The evaluator calls on e v a l -

i n p u t and e v a l - a l t respectively to process these special forms. 

The top level environment is created with enough primitives to be able to load 

and execute the metacircular HOC Scheme. The distribution of this environment 

is handled differently to base HOC Scheme implementation. Instead of having a 

replicated master model of the environment, a single copy of the environment is 

held at the node where the (only) read-eval-print loop executes. This reads an 

expression from the user and calls e v a l to execute the expression. One of the pa-

rameters to e v a l is the environment in which the expression should be executed. 

In the base implementation of HOC Scheme, this contains just the lexical environ-

ment of any procedures that are being evaluated. The top level environment is 

held as a separate data structure, with the compiler being able to determine if the 

lexical or top level environment should be accessed to fetch the value of a bind-

ing. In metacircular HOC Scheme the environment passed to the e v a l function 

includes the top level environment in addition to any lexical environment. 

This approach has the advantage of implicit distribution of the top level envi-

ronment when a process (in the form of continuation of abstraction) migrates to 

another node. Since an abstraction or continuation contains references to the envi-

ronment, this environment will be transmitted between nodes, and since the envi-

ronment encompasses the top level, the complete environment needed to evaluate 

the abstraction/continuation will be sent. 

The disadvantage of this approach is that only one evaluator can reliably ex-

tend this environment, forcing there to be only one read-eval-print loop. If multi-

ple read-eval-print loops are required, it is relatively trivial to implement a repli-

cated master environment, the skeleton of which is shown below. 

(define (replicated-master clients database change-channel register-

channel ) 

(alt ((input change-channel (change) 

(when (database-update database change) 

(map (lambda (c) (output c change)) clients)) 

(replicated-master clients database 

change-channel register-channel))) 

((input register-channel (new-client) 

(map (lambda (change) (output new-client change)) 
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(database-changes database)) 

(replicated-master {cons new-client clients) database 

change-channel register-channel))))) 

This function accepts change requests for a generic database and broadcasts 

it to all clients if the database accepts the change. It also allows other clients to 

register with the master, first sending it all changes performed on the database 

and then incorporating the client in the system to receive subsequent updates. 

Metacircular channels 

As discussed in section 7.3.2 the easiest way to model channels in the metacircu-

lar HOC Scheme is to make direct use of the underlying channel model. With 

this method, for example, the m a k e - c h a n n e l function would directly map onto 

the underlying m a k e - c h a n n e l function provided by the base H O C Scheme, and 

likewise for other channel primitives. 

However one purpose of the metacircular HOC Scheme is to provide an alter-

native implementation of channels in order that the protocols u sed to implement 

channels may be further investigated, and the above direct implementation ap-

proach will not gain any further understanding in implementing channels based 

communication. 

This is not to say that channels provided by the base HOC Scheme will not 

be used in the implementation of metacircular HOC Scheme channels. Indeed 

the choice of using the base process model and the desire to a l low processes to 

communicate across nodes requires that we use base HOC Scheme channels (as the 

only method of inter-process communication in HOC Scheme is th rough channels). 

In order to model the broker model it is appropriate to create a broker process 

with which evaluating processes can communicate to perform channel operations. 

There should be at least one broker process, although as in the base HOC Scheme 

this number can be increased to provide some parallelism in the channel's com-

munication protocol. 

As the broker is a separate process, channels are required to communicate with 

it. The implementation uses three channels, which the broker process waits on, 

using an a l t statement. 

1. An input channel which accepts input operations to be performed on the 

channels the broker manages; 

2. An output channel which accepts output operations to be performed on the 

channel the broker manages; 

3. A new channel channel which outputs a new (metacircular) channel that is 

to be managed by the broker. 

The m a k e - c h a n n e l primitive can be now be defined as simply inputting and 

returning a channel using the new channel channel. If more than one broker is to 

be run, these brokers can be started using the same base HOC Scheme channel to 

output a new channel on, causing the m a k e - c h a n n e l primitive to select a broker 
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based on which one is ready to communicate. Alternatively each broker could be 

started with a unique new channel channel, with the m a k e - c h a n n e l primitive 

selecting from which broker to input a new channel, perhaps b a s e d on which node 

the m a k e - c h a n n e l operation is running. 

The input and output channel used by the broker should b e unique to each 

broker. Given this information the channel object returned by t h e broker can now 

be defined. It is modelled as a vector containing three items. 

1. The input channel which should be used to contact the b roker for input op-

erations; 

2. The output channel which should be used to contact the broker for output 

operations; 

3. An identifier which uniquely identifies the channel within the broker. 

Given such an object, a process has the ability to make i n p u t and output re-

quests on a metacircular channel by communicating with its broker. 

First the protocol for performing basic input and output is described, and then 

this is extended to cope with a l t statements. 

In a similar fashion to base HOC Scheme, the metacircular H O C Scheme bro-

ker accepts input and output requests for channels which it manages , and when 

an input request is found to match an output request, the rendezvous protocol is 

started. 

This protocol uses dynamically created base channels to pe r fo rm additional 

communications between the transmitting and receiving process. When perform-

ing an output operation on a metacircular channel, a process sends three items 

over the output channel to the broker. 

1. The (metacircular) channel over which it wishes to communicate; 

2. The number of data items which it wishes to send over the channel; 

3. A (base) channel which should be used to specify where to send the data, 

called the reply channel. 

If the broker cannot match this request against a corresponding input request, 

then it is queued until a suitable input request is received. 

The output process then waits on the reply channel, over which it will receive 

another (base) channel which should be used to send the data to the receiving 

process. The process can then send the information and continue. 

The input process performs a similar protocol. An input request is sent to the 

broker process containing the same three types of data as the ou tpu t operation, 

a metacircular charmel, the number of items that are to be received, and a base 

channel which the broker can use to kick off the rendezvous protocol, its reply 

channel. 

The input process then waits on its reply channel, and inputs a request from 

the broker to rendezvous with an output process. The input process can then send 

its reply channel to the output process, and again wait on the channel. This time it 

will receive the data items from the output process, which it can then bind to the 
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input statement's variables. The synchronisation is then complete and the input 

process may continue. 

In the case where no a l t statements are in force, the channel mechanism al-

lows optimisation of this protocol. The output process, rather than waiting for a 

channel on which to output the data items, could immediately output these items 

on its reply channel. The input process could then receive these data items when it 

receives the output's reply channel from the broker. This would remove the need 

for the input process to send a message to the output process, informing it where 

to send its data. 

As in the base model, the provision for a l t statements adds complexity to the 

rendezvous protocol as the scope for failure needs to be taken into account. The 

same basic protocol is used to perform the rendezvous, but extra data items are 

communicated to allow recovery from failures. 

As shown in the previous section, sending a message to the inpu t process starts 

the rendezvous protocol. The input process fails by sending n u l l to the output 

process instead of the reply channel on which the data should be sent. On receipt 

of such a null message, the output process re-sends its output request to the broker. 

In a similar manner, the output process can fail by sending n u l l when requested 

by an input process to send its data, forcing the input process to re-send its input 

message to the broker. 

The extra parameter passed around with continuations is used by the channel 

module to process a l t statements. When not involved in an a l t statement, the 

parameter is set to n u l l . However, the e v a l - a l t function whose job is to evalu-

ate an alt statement changes the value of this parameter to be a newly created base 

channel. This channel is used as the reply channel in any input or output requests 

that the branches of the a l t statement send to brokers. 

Rather than block waiting to input a message on the reply channel, input and 

output statements return an object which represents how the a l t branch is blocked. 

Return is passed to the e v a l - a l t function which can go on to partially evaluate 

the next branch, with the branch again returning control when an input or output 

statement is encountered. When all branches have been partially evaluated, the 

e v a l - a l t function contains a list of objects representing all branches in the a l t 

statement, with the brokers having received the input and output requests of the 

statement. 

As all requests made to brokers were sent with a common reply channel, the 

a l t process can then block waiting to input a message from any broker for any 

branch. To identify correctly which branch a broker needs to proceed, an extra 

parameter must be passed, indicating which channel this request is for. The a l t 

process can then match this against the list of branches to determine the correct 

branch to proceed. For there to be a common reply channel for all branches, the 

broker also needs to indicate whether it is performing an input or output operation. 
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Once a request is received over the reply channel, the alL process continues, 

using the standard rendezvous protocol discussed in the previous section. As-

suming the rendezvous succeeds, the a l t process may proceed by invoking the 

continuation of the branch that has been selected (with the a l t parameter reset 

to n u l l ) . However, in order to prevent deadlock in the system, the reply channel 

must remain active, as other broker processes may try to use it for further synchro-

nisations. 

A separate process is spawned to input requests on the reply channel and to 

respond with a failure message to indicate the rendezvous has failed (the f a i l -

a l t process). There are a number of methods of preventing a build up of such 

processes: 

1. Specify a count when spawning the process. This should be equal to the 

number of branches minus one. Once the process has performed this number 

of synchronisations, it can terminate, as all branches have been failed; 

2. Have a single failure process which listens on all reply channels and fails 

them. Again a counter could be used to ensure that the number of channels 

the process fails does not reach infinity; 

3. Have a separate protocol to inform brokers that an inpu t /ou tpu t request is 

no longer valid. This could then be used to inform brokers that all remaining 

branches of the alt statement are invalid. Once this is complete, no broker 

will try to communicate over the reply channel and so the fail-alt process 

can terminate. 

The third option was chosen as it guarantees that the f a i l - a l t process will 

eventually terminate, whereas the other options rely on the other branches of the 

a l t statement being tried, which cannot be guaranteed. 

Resowrce Zocator 

The resource locator was not implemented directly in metacircular HOC Scheme. 

This is because there was no need; the resource locator is itself written in HOC 

Scheme and thus can run directly without modification in metacircular HOC Scheme. 

The same is true of the Entrance process, although channels in the base HOC 

Scheme are used to distribute metacircular HOC Scheme Entrance processes to 

nodes in the HOC Scheme network. 

7.3.3 ExpenmgMfs 

Confidence can be gained in the correctness of the model by running applications 

on top of it. Three applications were chosen. 

1. The prime number generator of section 7.2 shows that the model can support 

processes migrating between nodes in order to build a network of processes; 

2. The mobile phones example shows that metacircular channels can be passed 

over metacircular channels to reconfigure the communications network be-

tween processes; 
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3. Running metacircular HOC Scheme on top of metacircular HOC Scheme. 

This demonstrates that the model is truly metacircular and also that the pro-

tocol to handle a l t statements works correctly (as the broker process uses 

an a l t statement). 

As shown, all these applications test different features of H O C Scheme, and 

together make up a comprehensive test of the model. 

7.3.4 CoMc/wszoMS 

It is possible to model the HOC Scheme language directly in HOC Scheme. Indeed 

some of the features of HOC Scheme aid the implementation. 

The use of base channels to communicate with brokers presents a flexible frame-

work for the implementation of brokers. The metacircular channel neither cares 

where the broker resides, nor even if the broker is mobile. Further research could 

be carried out on the movement of brokers to achieve the best possible rendezvous 

speeds for the set of channels it is managing. 

In the optimal case where a l t statements are not involved, the rendezvous 

process can be achieved with three synchronisations using base channels. This is 

one less than the four messages the base model requires to perform a rendezvous 

(although metacircular channels make use of base channels, a n d thus the three 

synchronisations it performs translate into twelve messages being sent between 

nodes by the base HOC Scheme). 

7.4 Document flow model 

The document flow model provides a paradigm for process suppor t through a 

network of distributed sub-processes. These sub-processes are distributed, and are 

also capable of being mobile in the sense that they can change their configuration 

dynamically and the physical processor on which they are running. 

Section 4.3.4 provides a fuller description of the document flow model (hence-

forth referred to as DFM). 

7.4.1 Motivation 

DFM was developed in order to support the research being carried out into process 

enactment systems. Being able to execute DFM applications directly allows models 

to be investigated. 

As its name suggests, DFM provides support for processing flows of docu-

ments around an application. These documents can be used to model documents 

found in traditional business processes, for example, a travel authorisation form, 

or more abstract notions such as speech in a mobile phone conversation. This abil-

ity allows DFM to model processes other than the business processes that were in 

mind when the model was developed. An investigation into the applicability of 

DFM to other application areas is carried out. 

Several implementations of DFM have been developed. As well as giving an 

insight into DFM as a modelling language, different implementations provide a 
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means of investigating the applicability of the base language for implementing 

other languages. 

7.4.2 Imp/erngMfahoM 

Two Lisp implementations were written, both interpreting a common base lan-

guage representing DFM systems. 

The first implementation was written in EULISP and presents a stepper-like in-

terface to a single user. The system is not distributed across nodes , but does make 

use of the EuLisp threads system, allowing for concurrent execution of threads on 

multiprocessor systems. 

The second implementation is written in HOC Scheme. As m i g h t be expected, 

this allows DFM systems to run across multiple nodes in the H O C Scheme net-

work, with multiple users interacting with the application. 

This section presents the common language used to express DFM applications 

and an overview of each implementation. 

A Lisp s y M f a a : D f M 

There are three basic types which are definable within DFM: 

1. Documents; 

2. Actons; 

3. Rules. 

Instances of each of these types needs to be defined within a DFM application. 

Each document has a type, with all documents of the same type having a common 

interface. Documents also contain data, and this is represented as fields within a 

document. For example the source file document could contain fields such as author, 

version etc. The definition of a source file document type is given below. 

(defdoc SourceFile 

(name author version code)) 

This definition creates functions to create instances of the document type (make-

SourceFile), and access items within a document (SourceFile-author). 

Actons are containers which hold sets of documents, rules that act on these 

documents and a binding table which holds the addresses of other actons with 

which they communicate. The following code defines an acton, binding it to the 

top level variable repository and calling it Source Code Repository. 

(defacton repository "Source Code Repository") 

The most complex type defined in DFM applications is the rule. This takes a list 

of documents that it is to process, and when the guard allows, applies the action 

associated with the rule. An example rule to check-in a source code document into 

a repository is given below. 
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(defrule checkin ((s SourceFile) (c Checkin)) 

guard: (and (equal (SourceFile-name s) 

(SourcePile-name (Checkin-SourceFile c) ) ) 

(< (SourceFile-version s) 

(SourceFile-version (Checkin-SourceFile c) ) ) ) 

message: "Check in source file" 

action: (send self (Checkln-SourceFile c))) 

This rule requires that there are any two documents contained within an acton, 

where one is of type S o u r c e F i l e and the other of type C h e c k i n , they correspond 

to the same source file and the checked in source file is newer t han the source file 

currently in the acton's repository. When two documents are found that match 

these criteria, the rule is able to be fired and the message is displayed to the acton's 

user (if it has one). When the user selects the rule to be fired, the action clause 

specifies that the new source file should be added to the acton's document store, 

replacing the old source file. It is replaced as both the source file and check-in 

documents are removed before applying the rule; they must be returned explicitly 

to the document store by the action clause in order to persist. 

A method of installing rules and setting bindings within rules needs to be pro-

vided. 

;; /MskzZZ f/K c/zectzM n/k fo f/ze reposi'fon/ actoM 
(add-rule repository Checkin) 

;; Set fke ocfoM (Aat kgs cAect owk 
(set-binding repository checkoutlog checkoutlog-acton) 

These methods are in fact syntactic sugar which wrap the rule/binding into 

an AddRule or SetBinding document, and then send the document to the ac-

ton. On receipt of the document the acton automatically fires a built in rule which 

causes the rule/binding to be installed. 

And finally, a means of sending documents to actons and looking up bindings 

in actons needs to be defined. 

;; SeMff aw mz'WaZ DgrsioM a sowrceyZZe (o fke sowrcg code confroZ system 
(send-acton repository (make-SourceFile "/test" "nb88r" 1 

"code goes here")) 

(send-acton (lookup-binding repository 'checkoutlog) 

(make-log "Doc added")) 

DfM 2M EuLisP 

The implementation of DFM in EULISP consists of three modules: 
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acton Implements the behaviour of actons. It defines the structure of documents, 

rules and actons; 

acton-language This module provides macros which map the DFM language con-

structs defined in the previous section into function calls m a d e to the acton 

module; 

acton-stepper Provides a stepper like interface to a set of actons by using an in-

terface exposed by the acton module. This allows actons to be queried to see 

the contents of an acton's document store and which rules m a y currently fire, 

and to fire acton rules. 

DFM applications can be defined in their own modules, importing the above 

modules to access the DFM functionality. 

Rather than computing the complete set of rules which may fire when the step-

per module queries an acton, a cache of combinations of documents which can 

cause rules to fire is maintained. This cache is updated when documents are added 

or removed to/from the acton's document store. This allows limited searches to be 

performed against the document store rather than a complete search which would 

be needed if caching were not implemented. 

The EuLisp object system(TELOs) is used to implement the acton module. For 

example the class ActiveRule is a subclass of Rule, containing the cache of doc-

uments which can be fired for the rule. The acton-language module defrule 

macro creates an instance of Rule, and installing this in an acton creates an Ac-

tiveRule. A generic function is used to process received documents (instances 

of classes subclassed from Document). Standard rules are applied to process re-

ceived documents requesting that rules be added to or removed f rom an acton. 

EuLisP threads are used to increase concurrency between actons. This might 

seem unnecessary when using a stepper, where the majority of t ime is spent wait-

ing for the user to select rules to fire. However, the stepper is only one method of 

managing actons, and other more efficient managers could be written that auto-

matically step rules and would benefit from concurrent execution of actons. 

There are a number of methods by which threads may be utilised in evaluating 

actons. 

Each acton could have a thread associated with it, with all requests made to 

the acton being passed to its thread for processing. This has the advantage that no 

protection against concurrency of the acton's data structures is required, as only 

the acton's thread will directly access this data. However, forcing all requests to go 

through a single thread of control can reduce the scope for concurrency (for exam-

ple, multiple rules in an acton cannot fire concurrently), and also increase the work 

required by synchronous calls. For example, in order to retrieve the rules which 

may currently fire in an acton, the application must signal the acton's thread to per-

form some work, passing it a data structure that contains the request to retrieve 

active rules, and then wait until the acton's thread has completed the request. 
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Acton 1 thread 

Acquire acton 1 lock 

Fire acton 1 rule 

Send document to acton 2 

Acquire acton 2 lock 

Block waiting for acton 2 lock 

Acton 2 thread 

Acquire acton 2 lock 

Fire acton 2 rule 

Send document to acton 1 

Acquire acton 1 lock 

Block waiting for acton 1 lock 
\l 

Figure 7.4: Deadlock wi th concurrent firing of rules 

Whilst this message passing paradigm might be appropriate for distributed sys-

tems where the requester and requestee reside on different nodes, it only presents 

additional complexity to applications that are to run on a single node. 

An alternative approach is to spawn threads to fire rules asynchronously. This 

would quickly free up the acton management thread, allowing it to select other 

rules to fire or perform other processing such as logging that it fired a rule. The 

thread which fired the rule would persist until the rule had completed processing. 

Locks or semaphores need to be used to prevent rules from accessing an acton's 

data structures which other threads (firing rules or the management thread) are 

accessing. There are two main items which can be protected; 

The rule — This protects the rules cache from concurrent updates; 

The acton — This protects the acton data structures (set of rules, document store, 

and bindings) from concurrent updates. 

A coarser grain of concurrency could be gained by using just the acton's lock. 

By acquiring the acton's lock before modifying any rule installed in the acton, pro-

tection can be gained against concurrent access to rules. This is sufficient, as all 

actions go through an acton (delivery of documents, requests to obtain rules which 

may fire), and thus the acton can control concurrent access. 

Care needs to be taken to avoid deadlock when dealing with multiple threads 

and locks. For example, the case where two actons simultaneously send each other 

documents (by each acton firing one of its rules). Figure 7.4 shows how deadlock 

could occur if each rule is executing in its own thread. 

A trivial way to avoid this type of deadlock is to never acquire more than one 

lock at a time. However, it is not always easy to implement, and is sometimes 

impossible. With DFM, such a strategy can be employed to avoid deadlock, as 

when a rule fires it contains all the information needed to process the action clause 

of the rule. It has the documents, and knows the address of its acton ( s e l f ) . This 

means that a rule does not need to keep open the lock to its acton. It only needs to 

take out locks on actons when looking up bindings (when it obtains its own acton's 

lock) and sending a document to an acton. As these actions can be serialised there 

is no need for a rule to have ownership of more than one lock at any one time. 

The one thread per firing rule implementation was adopted, due to its sim-

pler implementation and greater scope for concurrency. A disadvantage of this 
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approach over the single thread per acton is that firing a number of rules could in-

troduce too much concurrency to the system, causing the EULISP runt ime to spend 

too long managing its pool of threads rather than executing them. 

This has been solved by actons limiting the number of rules they have concur-

rently executing. If a manager requests that an acton fire a rule, this request can 

be stored and executed at a later time if the acton finds that t oo many rules are 

currently executing. This approach can also be used to improve thread usage — 

the thread which is used to fire an acton's rule can be reused. Once the thread has 

finished firing the rule, rather than terminating, it can check the acton to see if it 

has any pending rules to fire. If so it can "steal" the rule from the acton and fire it, 

removing the need for the acton to create a new thread to fire the rule. 

DFM in HOC Scheme 

The HOC Scheme implementation makes use of the process a n d channels model 

to provide a multiuser distributed environment in which DFM applications can 

execute. This is a useful demonstration of the ability of HOC Scheme to provide 

powerful constructs which can be used to simplify the implementation of other 

distributed environments. 

Like the EuLisp implementation, the implementation of an acton is kept separate 

from its user interface. This allows different types of user interface to be created 

(a Windows interface and stepper are provided in this implementation), and also 

allows the acton to continue operating in the absence of a user interface. This 

could be appropriate for actons which automatically fire rules, or when the user 

logs out but wishes to continue to collect documents in order to participate in the 

application when they come back online. 

A single process model is used to implement an acton, with channels providing 

the external interface by which the requests may be made to the acton. Whilst 

this is similar to the single thread model discussed and discounted in the EULISP 

implementation, the presence of distributed nodes makes the single process per 

acton more appropriate for the HOC Scheme implementation. 

Figure 7.5 shows the basic skeleton of an acton process. Five charmels are used 

to manage the interface to the acton process. The receive and fire channels process 

new documents arriving at the acton and requests to fire rules owned by the ac-

ton. On receipt of these messages the appropriate processor is called, which then 

performs the requested action and tail recursively calls the a c t o n - e n g i n e to con-

tinue handling requests (with a possibly updated state). 

The listen and unlisten channels provide user interfaces with a means of register-

ing a channel on which they wish to receive notifications when the state of an acton 

has changed. Indications sent out on listener channels are sent asynchronously to 

prevent deadlock from occurring (due to a user interface process attempting to fire 

a rule whilst the acton process attempts to notify the user interface). 

Finally, user interfaces may always input data from an acton's ready channel 

to receive the current state of an acton. This is useful for interfaces which do not 

require asynchronous notification, such as steppers. 
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(define {acton-engine act state) 
(alt ((input (acton-receive act) (doc) 

(acton-process-receive act state doc))) 
((input (acton-fire act) (rule) 

(acton-process-fire act state rule))) 
((input (acton-listen act) (listener) 

(acton-process-listen act state listener))) 
((input (acton-unlisten act) (listener) 

(acton-process-unlisten act state listener) ) ) 
((output (acton-ready act) (acton-generate-ready-

rules state)) 
(acton-engine act state)))) 

Figure 7.5: An acton process implemented in HOC Scheme 

The s t a t e parameter of the acton contains state similar to tha t of the EuLisp 

implementation including: 

• Document store. The current set of documents the acton has received; 

B Bindings. References to other actons used by the rules of the acton; 

8 Rules. Installed rules including caches; 

® Listeners. Channels to send asynchronous notifications about changes in the 

acton's state. 

The acton is represented as an object which contains all the channels that may 

be used to communicate with the acton (the a c t parameter in the acton engine 

procedure). This object can be passed between actons safely (as fields within a 

document), due to the fact that channels are first class objects which may be trans-

mitted over channels. 

The stepper user interface takes a number of actons which it is to manage. It 

then queries each acton in turn on its ready channel and presents a list of rules 

which may fire to the user. The user then selects an option and the stepper com-

municates with the relevant acton over its fire channel. The process then repeats. 

The windows interface uses the asynchronous notification interface of the acton 

to receive updates of an acton's state and presents this state in a list pane to the 

user. Again the user may select an item in the list pane, causing the windows 

interface to make a request to the acton that the rule be fired. 

The caching and rule firing mechanism uses the same techniques as the EULISP 

implementation, but is a slightly different implementation due to the lack of the 

TELOS object system. 

7.4.3 Ezpgn'Mienk 

DFM has been used to model a variety of applications, ranging f r o m business pro-

cess models through to protocols. This section presents some applications which 

have been written in DFM. 
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Rules: PassDocument 

Bindings: Downstream 

InBox: CDPDoc 

Acton: Pass 

Rules: CreateDocument 

Bindings: Downstream 

Acton: Create Acton: Dispose 

InBox: CDPDoc 

Rules: DisposeDocument 

Bindings: none 

Figure 7.6: A basic acton ne twork 

Bindings: Downstream 

Rules: PassDocument 

InBox: CDPDoc 

Ac ton : Pass 

Bindings: Downstream 

Ac ton : C r e a t e A c t o n : Di.sj)ose 

InBox: CDPDoc 

Rules: DisposeDocument 
Pass Document 

Bindings: Downstream , 

Figure 7.7: An acton ne twork wi th feedback 

Creafe, dispose, pass 

A simple application, this is a similar process to that of hello world in that it 

demonstrates how to write DFM applications. In this example, three actons com-

municate in a pipeline, with documents being generated by the acton at the head 

of the pipeline, passed through by the acton in the middle and finally disposed of 

by the document at the end. Three rules are needed to manage these operations. 

CreateDocument — Creates a document and feeds it into the pipeline; 

PassDocument — Passes the document through the pipeline; 

DisposeDocument — Removes a document from the pipeline. 

The following code demonstrates how the CreateDocument rule is written. 

(defrule CreateDocument {) 

guard: t 

message: "Create document" 

action: (send downstream (make-CDPDoc))) 

;; MO (focwmeMk to /ire rwZe 
;; can aZways/zre 

Figure 7.6 shows an example network and route documents take. This network 

is configured by installing the relevant rules in each acton and setting bindings to 

ensure that documents flow in the correct direction. The network can be recon-

figured easily. Figure 7.7 shows a network with the final acton having the choice 

of either disposing of documents or passing the document back to the head of the 

pipeline. This is achieved by installing the PassDocument rule in the last acton, in 

addition to the DisposeDocument rule. The downst ream binding needs to be set 

to point to the middle acton. 

Consider the acton. In many ways it is like an email account. It can receive doc-

uments (akin to receiving email), send documents to other actons (send email to 
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Acton; Library 

InBox: Book, Request 

Rules: SendBook 

Bindings: none 

A 

Acton: Borrower 1 

InBox: Book 

Rules: BorrowBook, ReturnBook 

Bindings: Library 

A 

Acton: Borrower 2 

InBox: Book 

Rules: BorrowBook, ReturnBook 

Bindings: Li,brary ^ 

Figure 7.8: Example library network 

O t h e r email accounts) and process documents (email rules). The create, dispose, 

pass pipeline shown above could be written using rules in s tandard email pack-

ages. However, DFM extends the email model by allowing the user choice, for 

example allowing a rule to be selected where several rules apply to the same doc-

ument (as in the feedback acton of figure 7.7). 

It also extends the email rules concept by allowing combinations of messages to 

be processed by a single rule (whereas email rules are applied to only one message, 

not combinations). 

This example shows how multiple document types may be u s e d in implement-

ing a simple model of a library. There are two types of document, the Book and the 

Request. Figure 7.8 shows a possible configuration of a library system, containing 

two borrowers and a central library. Borrower actons can use the BorrowBook rule 

to send Request documents to the library acton. The following ru le is used by the 

library acton to match books against borrower's requests. 

(defrule SendBook ((request Request) (book Book)) 

guard: (equal (Book-ISBN book) (Request-ISBN request) ) 

message: (format t "Send ~a by ~a" (Book-title book) 

(Book-author book)) 

action: ( s e n d - a c t o n (Request-borrower request) book)) 

This combines request and book documents contained within the libraries doc-

ument store and sends the book to the borrower acton which issued the request. 

The borrower may return the book by applying the ReturnBook rule. 

Mobile phones 

Figure 7.9 shows the now familiar network of the mobile phones example ex-

pressed using actons. As DFM is an asynchronous model there are two options 

to modelling the mobile phones example. 
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Rules: SwitchBase 

Acton: Centre 

InBox; SwitchState 

Rules: CarSwitch, CarTalk 

Bindings: CurreytBase 

InBox: Talk, Switch 

Acton: Car 

Rules: Active, Idle, Talk, Switch 

Bindings: Cai 

InBox: Switch, Talk, BaseState 

Acton: Base 1 

Rules: Active, Idle, Talk, Switch 

Bindings: Cyi 

InBox: Switch, Talk, BaseState 

Acton: Base 2 

Figure 7.9: Mobile phones 

1. Modify the behaviour of the system to suit the asynchronous behaviour of 

DFM; 

2. Pass documents as reply messages to model the synchronous behaviour of 

channels used by the mobile phones. 

The first option allows situations not supported by the channels model of mo-

bile phones. This is because messages (expressed in terms of documents) can be 

received (processed by rules) out of order. For example, a car acton could continue 

to talk to base one even though it has received a document informing it to talk 

to base two. Only when the car acton has processed the Switch document will it 

send its Talk documents to base two. 

By acknowledging receipt of documents, the synchronous protocol of the TT-

calculus mobile phones example can be modelled. However, this increases the 

complexity of the implementation using actons. The direct encoding in 7r-calculus 

is more suitable. 

"My beautiful process" 

My beautiful process is a simple example which demonstrates another feature of 

actons — their ability to change their behaviour over time^. 

^Devised by Professor Peter Henderson, University of Southampton 
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Rules: SwapBehaviour 

Bindings: otha 

Ac ton ; M B P I 

InBox: Behaviour InBox: Behaviour 

Rules: BehaveAs 

Bindings: ot|ier 

Ac ton : M B P 2 

Figure 7.10: My beautiful process 

Figure 7.10 shows the network which implements the example. Two actons 

send documents between each other which causes them to change their behaviour 

to be that of the other acton. 

This can be expressed in terms of 7r-calculus as follows. 

P = alQ -4- Q 

7 = f 

As can be seen, when run in parallel, process P behaves firstly as P, and then 

as I, as it receives I over a. I firstly behaves as I and then as P . Thus the two 

processes swap behaviour, with P now behaving as I and I behaving as P. The 

next synchronisation then causes the two processes to swap back to their original 

behaviour, and so the system progresses, with the processes continually swapping 

behaviour. 

This is encoded in DFM with two rules. SwapBehaviour sends a document to 

its companion acton, providing it a new rule to install, and BehaveAs consumes 

this document and installs the provided rule over the currently installed rule. 

The two rules are shown below: 

(defrule SwapBehaviour () 

guard: t 

message: "Swap behaviour" 

action: (send a (make-Behaviour 'rule swap-behaviour) ) 

(change-behaviour self BehaveAs)) 

(defrule BehaveAs ((Q Behaviour)) 

guard: t 

message; "Change behaviour" 

action: (change-behaviour (self Behaviour-rule Q))) 

; ; Standard lisp function to remove current behaviour rule and install 

;; 0 new one 

(define (change-behaviour self new-behaviour) 

(delete-rule self (lookup-binding self 'current-behaviour)) 

(add-rule self new-behaviour) 

(set-binding self current-behaviour new-behaviour)) 
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Acton: Broker 

InBox: input, output 

Rules: Rendezvous 

Bindings: none 

A A 

Acton: Process 1 

InBox: process, channel, 
send-data, data 
decline-send, ack, nack 

Rules: Input, Output, 
OutputAccept, OutputReject 
InputAccept, InputReject 

Bindings: Broker 

Acton: Process 2 

InBox: process, channel, 
send-data, data 
decline-send, ack, nack 

Rules: Input, Output, 
OutputAccept, OutputRej 
InputAccept, InputReject 

Bindings: Broker 

Figure 7.11: Channel protocol 

The two actons of figure 7.10 can then be primed, F with Behave As and I 

with SwapBehaviour. Bindings which point to the current behaviour also need 

to be set. This technique demonstrates how an Acton can reflect and change its 

behaviour dynamically during its lifetime ((Dourish 1992)). 

HOC ScAgme cAaMMeZ profocoZ 

The final example presented is a model of the communications protocol used by 

the implementation of distributed HOC Scheme. This allows transitions in the 

protocol and the messages passing between nodes to be viewed at a more leisurely 

pace than that at which the actual protocol runs. 

Figure 7.11 shows the configuration of actons used to examine two processes 

communicating using a common broker process. Documents are used to represent 

the messages which implement the protocol, and a special document Process is 

used to store information about the current state of a process (for example, waiting 

for an Ack document from an input process. 

Rules are used to test how messages should be handled, given the current state 

of a process. For example, the rule below shows how a broker kicks off the ren-

dezvous process when it finds that an input and output document match. 

(defrule Rendezvous ((o Output) (i Input)) 

guard; (and (equal (Output-chan o) (Input-chan i)) 

(not (equal (Output-sender o) (Input-receiver i)))) 

message: "Perform rendezvous" 

action: (send-document (Output-sender o) (make-SendData (Output-mid o) i))) 
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Process 1 Process 2 

[BeJi dgzyo.vs Rr6c$;sn . , ? > 2 . 

G&neratB:lnpi±Channel 1 
Generate Output Channel 1 

I G8hef:a(R Input CbaoDei 1: 
I Generate Output Channel 1 

Broker 

Figure 7.12: Rendezvous under windows interface 

Upon receipt of the SendData message, an output process can apply the fol-

lowing rule if it is willing to accept the rendezvous; 

(defrule AcceptOutput ((s SendData) (p Process)) 

guard: (and (= (SendData-mid s) (Process-mid p)) 

(eg? (Process-status p) 'generate)) 

message: "Send data to input process" 

action: (let ((input (SendData-input s))) 

(send-document (InputReceiver input) 

(make-Data (Input-mid input) self)) 

(set-process-status! p 'wait-ack) 

(send-document self p))) 

Figure 7.12 shows the state where a rendezvous is about to be started when 

running under a windows environment. 

7.4.4 Conclusions 

This section has presented a method of encoding DFM applications using a Lisp 

like syntax, and the implementation of two environments support ing the execution 

of these applications. 

It has been shown that EULISP threads provide a method of increasing concur-

rent processing when executing DFM applications on shared memory multipro-

cessor machines. For distributed environments, HOC Scheme provides a suitable 

environment for implementing alternative distributed environments, with chan-

nels providing a suitable generic transport for creating networks of connected pro-

cesses. 

Further investigation could be carried out on the HOC Scheme model to in-

vestigate using other aspects of the language in optimising the execution of DFM 

applications. For example, acton processes could migrate towards the acton with 

which they perform most communication, helping to reduce communication costs. 

The flexible nature of channels means that user interface processes (steppers and 

178 



(defrule SendBook ({request Request) (books Book*)) 
guard: (not (ISBN-present (Request-ISBN request) books)) 
message: (format t "Decline ~a" (Request-ISBM request)) 
action: (send-acton (Request-borrower request) (make-

DeclineRequest request)) 
;; Put books hack into the library 
(send-acton self books)) 

Figure 7.13: A rule matching a set of documents 

windows) can still contact their respective actons regardless of where they reside, 

even if they move between nodes during their lifetime. 

The implementation of DFM presented here exposes a problem with the model. 

Consider the library example of section 7.4.3. The SendBook rule is used by the 

library acton to dispatch books to borrower actons when a Request is found to 

match a book in the library. No consideration was given to the case where no 

book in the library matches a request. Currently the only method of processing 

the request would be to allow failure of all requests, including ones where a book 

was present. It is impossible to create a rule which can be fired when a request is 

present that matches no book currently in the library. 

The model could be extended to allow rules to match all documents of a certain 

type, allowing sets of documents to be searched to determine if a rule can fire. 

Figure 7.13 shows a rule which could be added to a library acton which checks 

against all books in a library to see if a request can be serviced (an asterisk is used 

to denote matching all documents of a certain type, with the parameter bound to 

a list containing all the documents). 

It has been shown that DFM is a useful modelling tool, not only for business 

processes but also for other models such as protocols. 

7.5 Summary 

This chapter has shown how the features which HOC Scheme provides can be used 

to implement various applications. 

The channels model allows data flow networks to be easily constructed, with 

the higher order features of channels allowing the network to be reconfigured and 

extended during the application's lifetime. 

Lisp's ability to parse and process symbolic data structures makes it an ideal 

language for building interpreters for other languages. HOC Scheme extends this 

by allowing distributed languages to be implemented. The high level communica-

tions model presented by HOC Scheme make it an ideal starting point, as many of 

the features required by distributed languages are provided. 
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Chapter 8 

Conclusions 

8.1 Introduction 

This chapter summarises the benefits which can be derived from distributed pro-

gramming, and the role that mobility has to play in distributed environments. 

HOC Scheme is compared to a number of related systems which also provide 

communication over a set of dynamic channels. 

Finally, future directions of HOC Scheme and related technologies which could 

be investigated are discussed. 

8.2 Mobility in distributed systems 

Benefits can be gained from distributed programming without the need for mobile 

processes. Applications such as email and network file systems are amongst the 

most widely used applications on computer networks, but the processes which 

implement these systems run on fixed servers, with clients connecting to them 

using a variety of protocols. 

Toolkits such as CORBA provide a powerful environment for writing client 

server distributed applications, which may be multi tier (as servers can act as 

clients to other servers), without the need to provide support for mobility. 

However, mobile processes can enhance distributed systems by allowing for 

the movement of processes to the most "appropriate" points in the network where 

they may best achieve their aims. 

8.2.3 AccgsszMg Zarge (fafa sek 

A case for the use of mobility is where the process is smaller than the set of data 

upon which it acts. In this case it is more efficient to move the process towards the 

data rather than the data towards the process. 

This reduces both network utilisation (a small process travels over the network, 

rather than a large set of data), and latency, resulting in a more efficient system. 

An example of this approach is SQL, where databases are queried by clients 

sending SQL programs to the database server. The server then executes this pro-

gram against its database, allowing it to find and return to the client the subset of 
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data that it requires. This results in less use of the network (the client does not need 

to fetch the entire database). A similar approach is adopted by Postscript, where 

small programs are sent to printers and when executed produce large bitmaps. 

8.2.2 Dishibuh'oM 

The ability to distribute applications through a network can be used as an aid to 

software maintenance. So-called "thin clients" can download applications from a 

central server as and when they are required (maintaining a cache of these pro-

grams locally if the client has a local disk). 

This is used in the distribution of Java and ActiveX programs through web 

browsers. The client can check with the server for newer versions of programs, 

resulting in efficient distribution of updates, without the need for explicit user 

intervention. 

8.2.3 Agency 

Agents are small programs which perform tasks on behalf of a user ((Jennings 

1995)). These tasks can range in complexity (for example a simple task could be to 

inform the user when their favourite web pages are updated, while a more com-

plex example could check airline flights availability and correlate with available 

rooms in a hotel). 

Tasks could be performed on the computer on which the agent is programmed, 

with it sending requests out over the network to gather information. However, 

like SQL, performance enhancements could be gained by providing a framework 

where the agent can become mobile, allowing it to visit nodes on the network to 

collect relevant information pertaining to its task. 

This solution would allow the user to "launch" agents without having to leave 

their computers on. In the presence of a dynamic network, agents could return to 

the user's computer even if it had moved to a new point in the network (a notebook 

computer, for example). 

8.2.4 Dywamzc (fz'sfn&w W programmmg 

The ability of processes to move between nodes during the lifetime of a distributed 

application could also lead to changes in the way applications are programmed. 

For example, the prime number generator described in section 7.2 employs a pro-

cess which dynamically extends a network of sieves, moving between nodes to 

introduce parallelism to the system. 

Document processing applications could also benefit from dynamic program-

ming. As well as distributing documents around nodes in a groupware applica-

tion, processes that act on the documents could also be distributed. This would 

allow system administrators to introduce new types of document to the system 

easily, without the need to reconfigure each node in the system. 
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8.3 Coordination of mobility 

8.3.3 CooperafiMg processes 

Some forms of distribution require little or no cooperation between tasks to achieve 

their goal. For example, SQL statements act in isolation when executed by the 

server; they do not communicate with other SQL statements w h i c h may also be 

executing in parallel. 

However a large set of distributed applications require processes to cooper-

ate so that logical tasks may be partitioned over a number of processes, either to 

achieve speedup through parallelism or to access resources specific to a node. 

Mobile processes are no exception to this. However, maintaining communi-

cation links in the presence of mobility presents problems. One method would 

be to inform a centralised database of the location of each process, updating the 

database as processes migrate. This is akin to a mobile phones network, where a 

phone travels between cells, and a central controller must be kept u p to date so it 

can contact the phone when new calls arrive. 

This approach can lead to race conditions; for example there could be a race 

between a process migrating and another process trying to locate the migrating 

process so that it can send a message to it. 

8.3.2 Dynamic network architectures 

The dynamic network of channels introduced in chapter 4 describes an elegant so-

lution to the coordination of mobile processes. By allowing channels to be treated 

as standard data types, they may themselves be transmitted to other processes 

over channels, allowing the network to change over time. 

For example, the resource locator process allows a channel which represents ac-

cess to be returned as part of a query (which itself involves communicating with 

the resource process over channels). This charmel may then be used to communicate 

with the resource, which may be situated on any node in the network. 

The promotion of a channel to a higher order data object also removes the need 

for the two forms of communication shown in section 3.10, where requests are 

made using a fixed network of channels, and replies are implemented by the in-

stantiation of a logic variable. With higher order channels, a channel can be passed 

as part of the request, with the requestor then waiting to input the result of the 

operation from this channel. 

By allowing processes to be transmitted over channels, mobility can be intro-

duced to the network. The dynamic nature of channels allows other processes to 

maintain communications with migrating processes, without the need to reconfig-

ure themselves. 

By combining these channels with a computation language it has been shown 

that an environment for mobile distributed computing can be created. Section 6.6.6 

shows a method by which these higher order channels can be implemented. 
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8.4 Related work 

8.4.1 Absfracf macMne /or (Ae Tr-caZcw/ws 

An abstract machine for executing 7r-calculus processes has been developed ((Turner 

1995)). This uses a reduced version of the polyadic 7r-calculus as its input language. 

Two restrictions have been introduced; 

1. Replication is only allowed on input. This restriction makes it easier to spot 

when replication should be performed, as when the input synchronisation 

has occurred, a new replicated process can be spawned, allowing further 

inputs to be performed. With replicated output, it is more difficult to deter-

mine how many processes should be created (especially wi th asynchronous 

outputs); 

2. The summation operator is disallowed. This operator is u sed to introduce 

non-determinism to a process, by allowing it to synchronise using one of a 

set of channels, taking different paths depending on which charmel is syn-

chronised. Turner shows that this can be modelled in a separate library and 

thus does not need to be part of the basic abstract machine. 

The language Pict is another method of representing vr-calculus processes so 

that they may be directly executed by computers. 

The abstract machine is used to implement a Pict to C compiler. As all pro-

cesses are pure 7r-calculus, the communications infrastructure is h ighly optimised. 

The abstract machine uses multiple threads of control, and can therefore make ef-

fective use of shared memory multiprocessors. There is currently no distributed 

implementation available. 

8.4.2 Hzgker cAanMek 

In (Muller & May 1998), another implementation of higher order channels is in-

troduced. In this model, at any time only two processes may contain handles to a 

channel, one to its input port, and one to its output port (channels in this model are 

unidirectional). 

Once a port (channel end) has been transmitted over a process, the port be-

comes invalid on the sending process and can no longer be used. This allows each 

port of a channel to know the exact location of its partner, removing the need for 

a third party (such as the broker) to be used in order to perform communication 

over a channel. 

A protocol is presented that allows the reliable transmission of por ts over chan-

nels. It ensures that no messages are lost whilst the port is being transferred and 

the network reconfigured. 

Synchronous communication is used to transfer data over the channels (requir-

ing two messages to flow over the network). The system has been extended ((May 

& Muller 1998)) to allow asynchronous communication (multimedia streams, for 

example) over channels. A hybrid synchronous/asynchronous channel is used to 

spot when it can safely transmit data asynchronously, and when it should return to 

a synchronous mode — often when channels are being moved between processes. 
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The system does not deal with the migration of processes over channels, and al-

ternative methods need to be found where the sharing of a channel name between 

many processes would be an obvious solution (for example, a resource locator pro-

cess would need to be redesigned). 

8.5 Further work 

Areas in which the implementation of HOC Scheme could be improved have been 

described in section 6.7. This section introduces additional areas in which HOC 

Scheme could be applied. Any changes that may be required to the implementa-

tion of HOC Scheme are highlighted. 

8.5.1 Applicability of HOC Scheme to agency 

HOC Scheme provides many of the features required by a f ramework for imple-

menting agents. This can be classified into the following sections ((Dale 1997)): 

1. Migration. For an agent to be mobile it needs to be able to migrate. It is the 

agent which decides where and when to migrate; 

2. Communicate. Agents need to be able to communicate with other agents so 

that cooperative agents can be programmed. They also need to be able to 

communicate with fixed resources on the nodes to which they migrate; 

3. Language support. Agents should use a common language. This language 

should be expressive enough to allow agents that have not previously met to 

communicate; 

4. Security. Controls need to be maintained to ensure that agents do not per-

form operations where they do not have the required authorisation. 

Both the migration and communication requirements are satisfied by the cur-

rent implementation of HOC Scheme. Agents can be modelled as processes which 

migrate as closures or continuations over channels, and take channels with them 

in order that they may be contacted regardless of their location. 

These channels can be used to provide a communications ne twork between 

agents, and between agents and fixed resources found through the resource locator 

process. If agents use a common protocol to communicate over these channels, 

agents belonging to different applications will be able to communicate. 

A method for allowing initially unconnected agents to be introduced would 

need to be implemented. This could be achieved using a more dynamic version of 

the resource locator process, with agents registering when they enter a node, and 

unregistering when the agent migrates. This would allow other agents to query a 

node to discover agents which are available to communicate. 

Security is an important consideration when implementing agent systems, es-

pecially if cost is to be associated with accessing resources. HOC Scheme has no 

built in support for security at present. Although a security layer could be written 

in HOC Scheme, a built in security model is likely to be less easy to bypass. 
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8.5.2 MobzZe /br gppZicafzoMS 

At present multimedia streams are usually either between two fixed points, or 

use a multicast network to distribute a stream to many receiving elements. As 

computers become more mobile, techniques will have to be f o u n d for allowing 

multimedia streams to move with the user. 

HOC Scheme currently supports the concept of moving streams of data. The 

network of channels may be reconfigured dynamically during the lifetime of an 

application, and the ability of processes to move between nodes is a useful concept 

for maintaining contact with a mobile user. As arbitrary data m a y be sent over 

channels, conceptually, streams of multimedia traffic could be sent over them. 

However the implementation is currently not suited to processing multime-

dia streams. These streams have different properties to the types of data hitherto 

transmitted over HOC Scheme channels. 

1. Real time. Multimedia streams are generally real time. Although a certain 

amount of buffering can be done at the receiving endpoint to smooth out 

jitter introduced by networks, the underlying transport mus t be capable of 

transferring the data in real time. If it fails to do this, the stream will break 

down due to buffer underruns; 

2. Latency considerations. Different types of stream have differing require-

ments with regards to latency. For example, a broadcast video stream can 

have a higher latency than a video conference stream, as it doesn't matter 

if the observer sees a frame in a broadcast a few seconds after it has been 

transmitted, but is disconcerting if this frame is part of a two way video con-

ference. In general, it is acceptable to introduce a relatively large amount of 

latency to a uni-directional stream. This can be introduced by the transmit-

ting ends compression codec sending large packets, requiring it to introduce 

latency as it fills the data buffer, and by the receiver's decompression codec 

and buffering data to smooth out network jitter. In bi-directional streams 

with humans on each end of the link, latency should be kept as low as possi-

ble (consider the difference in quality between a transatlantic call over a land 

line and via a satellite); 

3. Lossy. If data is lost in a multimedia stream, in general there is no time to 

request that it be re-sent. Whilst it may produce a glitch in the stream, the 

receiving codec should be able to recover and continue processing the re-

mainder of the stream. 

In the current implementation of HOC Scheme the broker model would make 

it very difficult to pass data between endpoints in real time over a charmel. For a 

multimedia stream to be efficient, only one message should flow between nodes 

for each output over the channel. This implies that the sending process should 

be able to determine the destination from the channel, rather than relying on the 

broker to resolve a destination. 
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The issue of latency could be offloaded to the sending and receiving processes, 

by allowing them to choose the packet size for transmission, a n d the buffer size 

on receipt. Alternatively HOC Scheme could manage latency, given suitable pa-

rameters from the sending and receiving process. It could then al low the sender to 

stream bytes through the channel, performing internal buffering in order to trans-

mit the correct sized packet. On the receiving end, HOC Scheme could ensure that 

the buffer does not grow too large, due to not having a synchronised clock. 

The current use of TCP/IP as the transport for channels wou ld also need re-

viewing. Whilst this is a suitable transport for non multimedia streams, it can in-

troduce latency to a multimedia stream and might not be able to meet the streams 

real time requirements. UDP is a more suitable transport. The real time proto-

col(RTP) uses UDP for the transmission of real time traffic on an internet. 

The fact that data can be lost without destroying the multimedia stream could 

be a boon to the HOC Scheme environment when moving multimedia endpoints 

between nodes. If the move fails to occur in real time, this would not cause the 

network to fail. Instead it may cause a glitch in the stream, but it would recover. 

The different requirements of the multimedia stream suggest that there should 

be two classes of channel managed by HOC Scheme nodes. 

Multimedia channel — A channel which can solely transmit a n d receive multi-

media traffic between two endpoints. It uses an unreliable network transport 

and an optimised asynchronous message passing interface. An additional 

extension could be the ability of a multimedia channel to broadcast a stream 

to a set of nodes; 

Control channel — The traditional HOC Scheme channel, this provides support 

for reliable communications in a dynamically configurable network. It is a 

higher order channel, in that processes, control channels and multimedia 

channels may be transmitted over it. 

The two types of channel in combination provide an environment in which 

multimedia streams may be transmitted between two endpoints, and by using the 

control channel the streaming network can be reconfigured dynamically. 

8.6 Summary 

This thesis has presented a model for the coordination of mobile processes. By ab-

stracting away from physical network implementations to a model using channels, 

the application designer is free to place and migrate processes around the network 

whilst maintaining connectivity. 

The higher order capabilities of the model presents the programmer with a 

mechanism for controlling the migration of processes (by sending them over chan-

nels to another node) and reconfiguration of networks (by sending channels over 

channels). 

Two implementations of the model have been documented, one allowing ap-

plication designers to investigate process interactions, and the other showing how 

186 



the model can be implemented on top of a low level network interface, providing 

a distributed implementation. 
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Appendix A 

Listing of metacircular HOC 

Scheme 

A.l The evaluator 

; ; aZf - cAaMMgZ wsed (o commwMz'cgk ezdiange wkew eca/wZahMg aft ckz/ses 

; ; A: = coMhMuah'oM, e = expresszoM, a = eMrz'mMmeMf 

(define {evalx alt k e a) 

(if (pair? e) 

((case (car e) 

( (if) eval-if) 

((case) eval-case) 

((cond) eval-cond) 

((begin) eval-begin) 

((define) eval-define) 

((lambda) eval-lambda) 

((let) eval-let) 

((set!) eval-set!) 

((quote) eval-quote) 

((and) eval-and) 

((or) eval-or) 

((load) eval-load) 

((input) eval-input) 

((alt) eval-alt) 

(else eval-apply)) alt k e a) 

(eval-atom alt k e a))) 

; e c 

(define (eval-if alt k e a) 

(evalx alt (lambda (alt v) 

(evalx alt k (if v (caddr e) (cadddr e)) a) 

(cadr e) a)) 
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; (case e ((ZI e))) 
(define (aval-case alt k e a) 

(evalx alt (lambda (alt v) (select-case alt k v (cddr e) a) 

(cadr e) a)) 

ele2J('Z2e3e4.J) 
(define (select-case alt k val cases a) 

(cond {(null? cases) (errorx 'no-case val)) 

((eg? (caar cases) 'else) 

(eval-forms alt k (cdar cases) a)) 

({memq val (caar cases)) 

(eval-forms alt k (cdar cases) a)) 

(else (select-case alt k val (cdr cases) a)))) 

; fcl el e2 ,J fc2 e3 e4 .J) 

(define (eval-cond alt k e a) 

(select-cond alt k (cdr e) a)) 

(define (select-cond alt k conds a) 

(cond ((null? conds) (errorx 'no-cond '())) 

((eg? (caar conds) 'else) (eval-forms alt k (cdar conds) a)) 

(else (evalx alt (lambda (alt v) 

(if V 

(eval-forms alt k (cdar conds) a) 

(select-cond alt k (cdr conds) a))) 

(caar conds) a)))) 

;C&egzM el e2 e3) 
(define (eval-begin alt k e a) 

(eval-forms alt k (cdr e) a)) 

(define (eval-forms alt k e a) 

(evalx alt (if (cdr e) (lambda (alt v) (eval-forms alt k (cdr e) a)) k) 

(car e) a)) 

; a W or (/"a W.. J 

(define (eval-define alt k e a) 

(let ((define-var (if (pair? (cadr e)) (caadr e) (cadr e))) 

(define-exp (if (pair? (cadr e)) 

(append (list 'lambda (define-vars e)) 

(define-exps e)) 

(caddr e)))) 

(evalx alt (lambda (alt v) (new-binding a define-var v) 

(sendx k alt define-var)) 
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define-exp a))) 

(define (define-vars e) (cdr (car (cdr e))) 

(define (define-exps e) (cddr e)) 

; (ZamWa fa W el e2 ...) 
(define (eval-lambda alt k e a) 

(sendx k alt (lambda (k alt v*) 

(eval-forms alt k (cddr e) (extend-env a (cadr e) v*) ) ) ) ) 

; ffa W (c el e2 .. J 
(define (eval-let alt k e a) 

(let ((vars (let-vars (cadr e) ) ) 

(vals (let-vals alt (cadr e) a))) 

(eval-forms alt k (cddr e) (extend-env a vars vals)))) 

(define (let-vars bindings) 

(if bindings 

(cons (caar bindings) (let-vars (cdr bindings))) 

' 0 )) 

(define (let-vals alt bindings a) 

(if bindings 

(evalx alt (lambda (alt v) (cons v (let-vals alt (cdr bindings) a))) 

(car (cdr (car bindings))) a) 

' 0 ) ) 

;(set/ 0 W 
(define (eval-set! alt k e a) 

(evalx alt (lambda (alt v) 

(set-binding a (cadr e) v) 

(sendx k alt v)) 

(caddr e) a)) 

; a) 
(define (eval-guote alt k e a) 

(sendx k alt (cadr e))) 

el e2 ..J 
(define (eval-and alt k e a) 

(eval-and-list alt k (cdr e) a)) 

(define (eval-and-list alt k 1 a) 
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(evalx alt (lambda (alt v) 

(if (and (cdr 1) v) 

(eval-and-list alt k (cdr 1) a) 

(sendx k alt v))) 

(car 1) a)) 

/Corel e2 ..J 
(define (eval-or alt k e a) 

(eval-or-list alt k (cdr e) a)) 

(define (eval-or-list alt k 1 a) 

(evalx alt (lambda (alt v) 

(if (or V (null? (cdr 1))) 

(sendx k alt v) 

(eval-or-list alt k (cdr 1) a))) 

(car 1) a)) 

; (kW 
(define (eval-load alt k e a) 

(let ((h (open-file (cadr e) "r"))) 

(read-forms alt k a h))) 

(define (read-forms alt k a h) 

(let ((val (read h))) 

(if (eof-object? val) 

(begin (close-port h) (sendx k alt 'ok)) 

(evalx alt (lambda (alt v) (read-forms alt k a h)) val a)))) 

; fmpuf c Ca b c ..J el e2 ..J 
; EfaZuate cAaMneZ e%;?res5ioM aW pass (o mpwfywnch'oM 
(define (eval-input alt k e a) 

(evalx alt (lambda (alt v) 

(inputx k alt V (caddr e) (cdr (cddr e)) a)) 

(cadr e) a)) 

raZf rCel e2 .J W e4 .J); 
Evaluate each branch with alt set to a channel, and call the exchange to 

AaMZe pmkcoZ 
(define (eval-alt alt k e a) 

(let ((alt-chan (make-channel))) 

(altx alt-chan (eval-alt-branches alt-chan k (cdr e) a) 

(define (eval-alt-branches alt k branches a) 

(if (null? branches) 

' 0 

(cons (eval-forms alt k (car branches) a) 
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(eval-alt-branches alt k (cdr branches) a)))) 

; Atom 

(define (eval-atom alt k e a) 

(if (symbol? e) 

(sendx k alt (lookup-binding a e)) 

(sendx k alt e))) 

(define (eval-apply alt k e a) 

(eval-list alt (lambda (alt v*) (applyx alt k (car v*) (cdr v*) 

e a) ) 

(define (eval-list alt k e a) 

(if e 

(eval-list alt (lambda (altl vl) 

(evalx altl (lambda (alt2 v2) 

(sendx k alt2 (cons v2 vl))) 

(car e) a)) 

(cdr e) a) 

(sendx k alt '()))) 

(define (applyx alt k f v*) 

(yield) ;; fn/ aW stop sfoct/rom bZowzMg 
(f k alt V * ) ) 

(define (sendx k alt v) (k alt v)) 

Environment modelled as a list of frames 

frame mcxfeZZeff as a Zzst q/'bWmgs 
BzWmg as a pazr (Mame, caZwe) 

; ;New^ame 
(define (extend-env a vara vals) 

(cons (pairlist vars vals) a)) 

(define (pairlist vars vals) 

(cond ((symbol? vars) (list (cons vars vals))) 

(vars (cons (cons (car vars) (car vals)) 

(pairlist (cdr vars) (cdr vals)))) 

(else '()))) 
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; ; New k'M 
(define (new-binding a var val) 

(let ((binding (assg var (car a)))) 

(if binding 

(set-cdr! binding val) 

(set-car! a (cons (cons var val) (car a)))))) 

;; ezisfmg bzMifzMg 
(define (set-binding a var val) 

(let ((binding (retrieve-binding a var))) 

(if binding 

(set-cdr! binding val) 

(errorx 'no-binding var)))) 

;; Loob/p q/'Wntfrng 
(define (lookup-binding a var) 

(let ((binding (retrieve-binding a var))) 

(if binding 

(cdr binding) 

(errorx 'no-binding var)))) 

;; fekk bzMffzMgyrom (Ae eMMroMmeMt 
(define (retrieve-binding a var) 

(if a 

(let ((binding (assg var (car a)))) 

(if binding 

binding 

(retrieve-binding (cdr a) var))) 

' 0 ) ) 

(define (errorx mess val) 

(format #t "ERROR: ~a ~a~%" mess val) 

' { ) ) 

; Top level environment 

;; Top level environment 

(define top-frame '()) 

;; a t pn'/Mzhre k fke fop Zez'eZ 
(define (kprimitive name f) 

(set! top-frame (cons (cons name f) top-frame)) 

name) 
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;; 0 (o f/K eMDzroMTMeMf 
(define (primitive name f) 

(set! top-frame (cons (cons name (lambda (k alt v*! 

(sendx k alt (apply f v*)))) 

top-frame)) 

name) 

;; AW 
(primitive '+ +) 

(primitive -) 

(primitive '* *) 

(primitive 'format format) 

(primitive 'read read) 

(primitive 'cons cons) 

(primitive 'car car) 

(primitive 'cdr cdr) 

(primitive 'cadr cadr) 

(primitive 'cddr cddr) 

(primitive 'cdar cdar) 

(primitive 'caar caar) 

(primitive 'caddr caddr) 

(primitive 'caadr caadr) 

(primitive 'cadddr cadddr) 

(primitive 'pair? pair?) 

(primitive 'append append) 

(primitive 'list list) 

(primitive 'set-car! set-car!) 

(primitive 'set-cdr! set-cdr!) 

(primitive 'length length) 

(primitive 'open-file open-file) 

(primitive 'close-port close-port) 

(primitive 'eof-object? eof-object?) 

(primitive 'display display) 

(primitive 'assq assq) 

(primitive 'memq memq) 

(primitive 'eg? eg?) 

(primitive 'equal? equal?) 

(primitive 'null? null?) 

(primitive 'symbol? symbol?) 

(primitive '= =) 

(primitive '> >) 
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(primitive 'not not) 

(primitive 'remainder remainder) 

;; TTzg oMZy A: pn'mz'twe neaieff. Mates appZy a biMary/wMcWoM. 
(kprimitive 'apply (lambda (k alt v*) 

(applyx alt k (car v*) (cadr v*)))) 

;; Use kos( HOC ScW»e sc/K̂ wZer 
(primitive 'spawn (lambda (thunk) 

(spawn (lambda () (applyx #f (lambda (alt v) v) 

thunk '()))) 

' ok) ) 

(primitive 'quiet-spawn (lambda (thunk) 

(quiet-spawn (lambda () (applyx #f (lambda (alt v) v) 

thunk '()))) 

' ok) ) 

(primitive 'yield yield) 

euaZ Zoop 

(define env '()) 

(define win #t) 

(define (read-eval-print alt v) 

(yield) 

(display v) 

(format #t "-%REP? ") 

(evalx alt read-eval-print (read) env) 

(define (start) 

(set! env (list top-frame)) 

(read-eval-print #f "Hello!")) 

A.2 The channels implementation 

(define (exchange in out new cancel inputs outputs id) 

(alt ((input in (cin rin nargs) 

(exchange-in in out new cancel inputs outputs id (makeq cin rin nargs)))) 

((input out (cout rout nargs) 

(exchange-out in out new cancel inputs outputs id (makeq cout rout nargs))) 

( (output new (list in out cancel id)) 

(exchange-new-chan in out new cancel inputs outputs id) ) 

((input cancel (c r nargs) 
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(exchange-cancel in out new cancel inputs outputs id (makeg c r nargs)))))) 

(define (exchange-in in out new cancel inputs outputs id cin) 

(let ((cout (match outputs cin))) 

(if cout 

(begin 

(rendezvous cin cout) 

(exchange in out new cancel inputs (remove cout outputs) id)) 

(exchange in out new cancel (cons cin inputs) outputs id)))) 

(define (exchange-out in out new cancel inputs outputs id cout) 

(let ((cin (match inputs cout))) 

(if cin 

(begin 

(rendezvous cin cout) 

(exchange in out new cancel (remove cin inputs) outputs id) ) 

(exchange in out new cancel inputs (cons cout outputs) id)))) 

(define (exchange-new-chan in out new cancel inputs outputs id) 

(exchange in out new cancel inputs outputs (+ id 1))) 

(define (exchange-cancel in out new cancel inputs outputs id c) 

(exchange in out new cancel 

(remove c inputs) 

(remove c outputs) id)) 

TTze reMffezwMS mec/zaMz'sm 

(define (rendezvous gin gout) 

(quiet-spawn (lambda () (rendezvous-input gin gout (make-channel))))) 

(define (rendezvous-input gin gout newc) 

(output (greply gin) 'input? (gchan gin) (gargs gin) newc) 

(input newc (r) 

(if r 

(rendezvous-output gin gout newc) 

(begin 

(output (exout (gchan gout)) (gchan gout) (greply gout) 

(qargs gout)) 

"rendezvous-failed")))) 

(define (rendezvous-output gin gout newc) 
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(output (qreply qout) 'output? (qchan qout) (qargs gout) newc) 

"rendezvous-complete") 

(define (makeq qchan qreply qargs) (list qchan qreply qargs)) 

(define qchan car) 

(define qreply cadr) 

(define qargs caddr) 

(define exin car) 

(define exout cadr) 

(define excancel caddr) 

(define exid cadddr) 

(define (match 1 q) 

(cond ((null? 1) #f) 

{(and (equal? (qchan q) {qchan (car 1))) 

(= (qargs q) {qargs (car 1))) 

(not (equal? {qreply q) {qreply (car 1))))) (car 1) 

(else (match (cdr 1) q)))) 

(define (remove a 1) 

(cond ((null? 1) '{)) 

({equal? (car 1) a) (cdr 1)) 

(else (cons (car 1) (remove a (cdr 1)))))) 

; ; Output protocol 

;; Sewf exchange c/zoMMeZ antf Mwm&er 
;; ybr fepZy/rom ezc/MMge giMMg mpwf process 
; ; SGMd grgS (O ZMput pmCgSS 

(define (koutputx k alt v*) 

(let ((chan (car v*)) 

(args (cdr v*))) 

(if alt 

(alt-output k alt chan args) 

(standard-output k alt chan args)))) 

(define (standard-output k alt chan args) 

(let ((reply (make-channel))) 

(output (exout chan) chan reply (length args) 

(input reply (ready chan nargs sendto) 

(output sendto args)) 
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(sendx k alt 'output))) 

(define (alt-output k alt chan args) 

(output (exout chan) chan alt (length args)) 

(make-altout chan (length args) k args)) 

Input protocol 

exckawge cAaMweZ ofW MWMber args 
Wait to receive wk/rom output process 
Ei;a7wafe Wy /wnctzoM wz'tfz aẑ s bouMff to caZwes 

(define (inputx k alt chan args body a) 

(if alt 

(alt-input k alt chan args body a) 

(standard-input k alt chan args body a))) 

(define (standard-input k alt chan args body a) 

(let ((reply (make-channel))) 

(output (exin chan) chan reply (length args)) 

(input reply (ready chan nargs new-reply) 

(output new-reply #t:) 

(input new-reply (data) 

(if data 

(eval-forms alt k body (extend-env a args data) 

(standard-input k alt chan args body a)))))) 

(define (alt-input k alt chan args body a) 

(output (exin chan) chan alt (length args)) 

(make-altin chan (length args) k args body a)) 

XZt protocol 

(define (altx reply alts) 

(input reply (ready chan nargs nc) 

(case ready 

((output?) (altx-output nc (altmatch 'output chan nargs alts) 

reply alts)) 

((input?) (altx-input nc (altmatch 'input chan nargs alts) 

reply alts))))) 

(define (altx-output nc out reply alts) 
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(output nc (alt-args out)) 

(alt-decline reply alts) 

(sendx (alt-k out) #f 'output)) 

(define (altx-input nc in reply alts) 

(output nc #t) 

(input nc (data) 

(cond (data 

(alt-decline reply alts) 

(eval-forms #f (alt-k in) (altin-body in) 

(extend-env (altin-a in) (alt-args in) data))) 

(else 

(output (exin (alt-chan in)) (alt-chan in) reply (alt-nargs in) 

(altx reply alts))))) 

(define (alt-decline reply alts) 

(quiet-spawn (lambda () (_alt-decline reply alts)))) 

(define (_alt-decline reply alts) 

(if alts 

(alt ((input reply (ready chan nargs nc) 

(output nc #f) 

(_alt-decline reply alts))) 

((output (excancel (alt-chan (car alts))) 

(alt-chan (car alts)) 

reply 

(alt-nargs (car alts))) 

(_alt-decline reply (cdr alts)))) 

#f)) 

(define (altmatch direction chan nargs alts) 

(if (null? alts) 

' 0 

(let ((alt (car alts))) 

(if (and (eg? (alt-direction alt) direction) 

(equal? (alt-chan alt) chan) 

(= (alt-nargs alt) nargs)) 

alt 

(altmatch direction chan nargs (cdr alts))))) 

;; AZt jak shwfwres 

(define (make-altout . outs) (cons 'output outs)) 

(define (make-altin . ins) (cons 'input ins)) 

(define alt-direction car) 

(define alt-chan cadr) 
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{define alt-nargs caddr) 

{define alt-k cadddr) 

{define (alt-args a) (cadddr (cdr a))) 

(define (altin-body a) (cadddr (cddr a))) 

(define (altin-a a) (cadddr (cddr (cdr a)))) 

(define *new-chan* (make-channel)) 

(define (make-new-channel) 

(input *new-chan* (c) c)) 

(kprimitive 'output koutputx) 

(primitive 'make-channel make-new-channel) 

; Skrf an process 
(quiet-spawn 

(lambda () (exchange (make-channel) (make-channel) *new-chan* (make-

channel ) 

' 0 ' 0 0)) ) 
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