UNIVERSITY OF SOUTHAMPTON

ANALYSIS OF THE LEGALITY OF “REVERSE ENGINEERING™
OF COMPUTER PROGRAMS -
UNDER THE COPYRIGHT DESIGNS AND PATENTS ACT 1988:
AN APPROACH FOR THE FUTURE

LT. TANAPHOT EKKAYOKKAYA

LL.B., LL.M. (Hons), §olicit0r & Barrister

Ph.D. THESIS

FACULTY OF LAW

MAY 2001

DEDICATION

This thesis 1s dedicated to my family — mother and father, Keith and Marian,
grandma, Aunt Sumana, Manapol, and Pollarat — and to the Thai Government.

This thesis is the result of work done wholly while the author was in
registered postgraduate candidature.

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF LAW

Doctor of Philosophy
ANALYSIS OF THE LEGALITY OF “REVERSE ENGINEERING” OF

COMPUTER PROGRAMS UNDER THE COPYRIGHT DESIGNS AND
PATENTS ACT 1988: AN APPROACH FOR THE FUTURE
by Lt. Tanaphot Ekkayokkaya

This thesis analyses the legality of “reverse engineering” under the Copyright Designs
and Patents Act 1988 and suggests a new way to consider the legality of reverse
engineering. The thesis submits that current copyright law misconceives the principle
of software engineering and, as a result, fails to differentiate the process of reverse
engineering from that of forward engineering. Such a conceptual misunderstanding
creates commercial problems in the software industries and other industries which

rely on the use of software technology.

As a means of solving the problems, this thesis suggests that these two processes
should be separated from each other so that the legal status of each one 1s considered
on its own merits. The thesis proposes that “reverse engineering”’, and the steps
leading to the completion of a finished product, i.e., “forward engineering”’, should
not be an infringement of copyright. Rather, infringement should be determined by a
comparison of the finished product with the original product. Comparison of the two
products will create a more open creative environment for the exploitation of 1deas,

and stimulate greater encouragement of competition in the software market.

Also examined is the impact of the framework proposed in this thesis on three main
related areas of law, namely, the law of confidence, patent law and competition law.
The thesis shows that the proposed framework will not have an adverse impact on
these areas. The author believes that this thesis is the first to introduce a new way of
perceiving and solving the problems of the legality of reverse engineering as well as

analysing the impact of the proposed framework on related areas of law.

TABLE OF CONTENTS

Preface
Acknowledgements
Definitions & Abbreviations

PART 1

Chapter One: Introduction

1.

I~

7 | B =N

Overview of the software industry

1.1 Overview the recent development of software

1.2 Trend of software development in future

The importance of reverse engineering

The concept of intellectual property law

3.1 IP law and its role in protecting commercial interests

3.2 IP law and its role in benefiting society

The issues |

The thesis

5.1 The thrust of the thesis

5.2 Testing the proposed framework against the philosophy underlying IP law
5.3 The impact of the proposed framework on other related areas of law
The structure of the thesis

1X

OO0 ~JO WU N H L — —

P
Prrverd

Chapter Two: Practice of reverse engineering and commercial

problems

1.
2,

Introduction
The nature of reverse engineering
2.1 Definition of reverse engineering
2.2 The process of reverse engineering
Current practice of reverse engineering
3.1 Practice of reverse engineering in software development
3.2 Practice of reverse engineering in software maintenance
3.3 Impact of Java on the practice of reverse engineering
Legal problems presented by the practice of reverse engineering
4.1 Why reverse engineering infringes copyright
4.1.1 Act of reproduction
4.1.2 Act of adaptation
4.2 Legal problems
Commercial problems flowing from the exercise of copyright law
5.1 Commercial problems in software development
5.2 Commercial problems in software maintenance
Conclusion

14

14
15
15
16
18
18
23
28
32
34
34
35
36
36
37
42
44

Chapter Three:The current legal response and its deficiency 48

. Introduction

Software Directive

2.1 The direct answers
2.1.1 Inability to develop interoperable products
2.1.2 Inability to perform corrective maintenance

2.2 The unsolved problems

UK copyright law

3.1 The direct answers
3.1.1 Inability to develop interoperable products
3.1.2 Inability to perform corrective maintenance

3.2 The unsolved problems

US copyright law

4.1 The US courts’ response

4.2 Evaluation of legal reasoning underpinning and practical results

Conclusion

Chapter Four: The proposed framework

N =

Introduction
Background analysis from previous chapter

First step suggestion: differentiate forward engineering from reverse

engineering

3.1 First theoretical interest: conform to the process of software engineering

3.2 Second theoretical interest: reveal the real purpose of reverse engineering

3.3 Third theoretical interest: provide a sound background for the court to
hold that forward engineering is an infringement of copyright if forward
engineering 1s performed to create a substantially similar product

Second step suggestion: approve the practice of reverse engineering and

forward engineering

Third step suggestion: concentrate on developing the test for

“substantial similarity” for the Java programming language

Conclusion

PART 11

Chapter Five: Impact on the law of confidence

W N

. Introduction

Conflict and consistency of public policies
Impact on various areas of the law of confidence
3.1 Impact on the jurisdictional foundation of the action for breach ot

confidence
3.1.1 Equty

48
49
50
50
60
01
70
71
71
74
75
77
77
79
94

95

95
96

98

100
101

102

104

105
129

131

131
133
140

140
140

11

3.1.2 Contract
3.2 Impact on the status of confidential information and categories of

confidential information 144
3.3 Impact on the imposition of an obligation of confidence 146
4. Legal implications of the presence of obligation of confidence 148
4.1 Whether the proposed framework undermines an obligation of
confidence in the course of employment 1438
4.1.1 Obligation of confidence owed by employees 149
4.1.2 Obligation of confidence owed by consultants 151
S. Legal implications of the absence of obligation of confidence 152
5.1 Whether the new framework approves the acquisition of confidential
information by improper means 152
6. Conclusion 155
Chapter Six: Impact on patent law 157
1. Introduction 157
2. Overview of the current practice of patenting software 159
3. Current position of software patentability under UK patent law 162
3.1 Computer programs not patentable as such 162
3.2 Application of other excluded matters to prohibit patenting of computer
programs 168
4. Impact on the current position of UK patent law 170
S. Current position of software patentability under EPC and comparison
to UK position 174
6. Analysis of the potential development of UK patent law 179
7. Forthcoming development from EU and WIPO 182
7.1 Proposal for the revision of the EPC 183
7.2 The Community Patent 185
7.3 The protection of inventions by the utility model 186
7.4 The WIPO Patent Law Treaty 188
8. Suggested trend of patent law and implication of the proposed framework 189
9. Conclusion 206
Chapter Seven: The role of competition law 208
1. Introduction 208
2. Background: Competition policy and competition in the software
reverse engineering market 210
3. Issues related to and analysis of Article 81 214
3.1 Background of Article 81 214
3.2 Possibility of collaboration between software companies under Article 81 215
3.3 Copyright licensing 215
3.4 Effect on trade 218
3.5 Restriction of competition 219

142

11

N

-

Issues related to and analysis of Article 82
4.1 Two kinds of refusal
4.2 Brief background of law
4.3 Analysis of the first element
4.3.1 Ambiguity in the concept
4.3.2 Ambiguity in the assessment the existence of a dominant position
4.4 Analysis of the second element
4.4.1 Uncertainty of judging abuse of a dominant position
4.4,2 Refusal to license
Essential Facility Doctrine
Nexus Issues
Conclusion

Chapter Eight: Conclusion

Selected bibliography

220
221
222
222
222
226
232
232
234
242
242
2438

250

260

1V

- PREFACE

The debate on software reverse engineering has been going on for more than a
decade. Much of the discussion has focused on the extent to which reverse
engineering should be legally allowed without considering the actual process of
software engineering in which reverse engineering is embedded. Therefore, the legal
solution to date simply- complicates the matter and interferes with the doctrine of
copyright law. In the United Kingdom and the EC, the legal solution is not only
ambiguous but also inefficient when solving the commercial problems. Furthermore,
the legal solution which was propounded in the early 1990s, it 1s submitted, cannot
cope with the swift development of software technology. The development in this
field over the past five years gives rise to the need for the legality of reverse
engineering beyond that which was provided in the early 1990s. Thus, it can be said
that the Copyright Designs and Patents Act 1988 1s one step behind the current

development of software technology and 1s waiting for reconsideration.
These are the circumstances which have brought about my research.

I argue that the stringent conditions of the reverse engineering privilege provided 1n
the Software Directive and the Copyright Designs and Patents Act 1988 fail to
accommodate a broad range of real-life situations. They also fail to meet the
objective of supporting the standardisation in the software industry. I suggest that a
relaxation on reverse engineering would have better promoted the software industry’s

desire to break into the intermational market, thus facilitating the creation of

interoperable and open systems.

At present, it seems that neither the EC Directive nor the Copyright Designs and
Patents Act 1988 can serve as the best model for achieving the standardisation in the
software market or promoting the ability of the EC software industry to compete with
the US counterpart. In addition, this stringent decompilation privilege retlects the
short-sightedness of both the EC and SAGE; as one scholar expresses her concern by
stating that “it injures not only the developing EC software industry but someday may

backfire and hinder current industry giants ..., for if and when another competitor,

such as the Japanese software industry, develops a product that becomes the industry
standard, who then will be begging for the economically sensible right of reverse
engineering to better promote competition and innovation?”.! 1t is, therefore, the aim
of this thesis to represent a broader and clearer reverse engineering privilege. This
recommended privilege would bring the software industry of all members of the EC
into line with global standardisation and perform as a model for other countries in

carrying out the open systems.

The aim of this thesis can be broken down 1nto following objectives:

(1) To provide a recommendation for a legal framework which would give a broader
scope for the legality of reverse engineering and which could be incorporated into an
EC Directive or enacted as an amendment to the Copyright Designs and Patents Act

1988, or, at the very least, considered as a foundation for a prospective discussion at

both national and intermational levels.

(1) To provide a comprehensive and critical study of the principle of copyright law
governing reverse engineering computer programs; to examine the policies of the EC
In introducing the Directive on the legal protection of computer programs
(91/250/EEC), 1991 O.J. (L122); to scrutinise the policy objectives of the UK
Government in the adoption of the Software Directive by inserting section 50B into
the Copyright Designs and Patents Act 1988; to examine whether such incorporation
of the contents of section 50B provides the same effect as that of Article 6 of the
Software Directive; to assess whether Article 6 and section 50B, or, broadly speaking,
the Software Directive and the Copyright Designs and Patents Act 1988 can satisfy

the need of reverse engineering in current software markets.

(111) To trace the development of case law 1n the United States with respect to reverse
engineering; to identify the parameters of the legality of reverse engineering in the
United States; to signify the trend of the US courts in legalising reverse engineering to

comply with “open systems’ in future; to suggest, in accordance with (1), the trend of

' Morrison G Linda, ‘The EC Directive on the Legal Protection of Computer Programs: Does It Leave
Room for Reverse Engineering Beyond the Need for Interoperability?’ (1992) 25 Vanderbilt Journal of

Transnational Law 293, at 332.

Vi

the legality of reverse engineering in the United Kingdom so as to fulfil the global

need of the open systems.

(iv) To analyse the relationship between reverse engineering and copyright law in
terms of what aspects of the use of the reverse engineering technique could infringe
the exclusive rights of the copyright owner; to trace the development of the
1dea/expression dichotomy and analyse its relationship with reverse engineering; to
examine the necessity of using reverse engineering techniques in reaching the

standardisation of user and technical interface.

(v) To analyse the impact of the proposed framework on three main related areas of

law, namely, the law of confidence, patent law and competition law.

To accomplish these purposes, first of all, the thesis will provide for a basic
understanding of the common practice and procedure of reverse engineering that is
necessary for the discussion in greater detail 1n the following chapters. This includes
the explanation of the definition of reverse engineering. The practices of reverse
engineering 1n software development and software maintenance are separately

considered. This requires consultation with the staff and review of the literature from

the Engineering Department.

Secondly, reverse engineering under copyright law in the EC will be examined and
compared to reverse engineering under the Copyright Designs and Patents Act 1988,
which i1s based on the EC Directive, so as to clarify whether or not it provides
sufficient provisions to balance the need of the protection of computer programs and
the retention of competitiveness in software markets. In this analysis, cases relating
to reverse engineering both occurring before and after the enactment of the Copyright
Designs and Patents Act 1988 will be canvassed. In order to understand the basis of
the Copyright Designs and Patents Act 1988, the EC Sofiware Directive will be
analysed. The Internet is of great assistance in searching for related information. For
a comparative analysis, copyright law in the United States will be chosen as 1t well

represents the use of the common law doctrine of “fair use” which the US courts

employ to legalise reverse engineering.

Vil

Finally, this thesis will examine the impact of the proposed framework on the law of
confidence, patent law and competition law. In particular, it will compare the
possible use of competition law to legalise reverse engineering with the proposed
framework. The impact of the proposed framework 1s limited to only two branches of
intellectual property law, namely patent law and the law of confidence,” because they

provide rather direct legal protection for computer programs, as opposed to trademark

and designs law. A knowledge of economics needs to be applied in order to analyse

~ the 1impact on these areas of law and to justify the proposed framework.

This author has attempted to state the law as it stands on 1 April 2001.

Tanaphot Ekkayokkaya
Faculty of Law

University of Southampton

? The law of confidence can be regarded as an intellectual property right to the extent that equity
enables i1ts owner to control the dissemination of the information to others and, in certain
circumstances, provides a remedy in the event of its unauthorised disclosure. See Stephen Saxby,
Encyclopedia of Information Technology Law Volume I (Sweet & Maxwell: London, 1990-2000) para.

2.2000.

Viil

ACKNOWLEDGEMENTS

In writing this thesis, I received help from many people. First of all, I would like to
thank my supervisor, Dr. Stephen Saxby, who helped immensely during the arduous
process. I also would like to thank Professor Nicholas Gaskell for helping me to draft
the proposal of my thesis, and Professor Charles Debattista and Dr. Andrew Halpin

for their invaluable suggestions.

My studies in Southampton would not have been enjoyable without great
encouragement and support from my host family, Dr. Keith & Marian Hubble. I very

much appreciate their hospitality.

I am very much grateful for financial support from the Thai Government and the

Faculty of Law, University of Southampton.

Thanks, also, to my friends — Wachira Boonyanet, Sita Sitalux and other Thai students
who gave me encouragement during my studies. Also many thanks to my officemates
— Stuart Macdonald who gave me a piece of cake and Kyriaki Noussia who helps me

put on weight by donating loads of Greek chocolate.

And last, but by no means least, thank you mum and dad for everything.

1X

10.

11.

DEFINITIONS AND ABBREVIATIONS

“Applets” — Java programs that run across the Internet.

“Black box” reverse engineering — a method of observing the functioning of a
program without access to the source code.

“Byte code” — An intermediate form between source code and object code.
“CAD” — Computer-aided design. CAD 1i1s a technology that is widely used in
science and engineering. Using CAD systems, engineers may design new
products, invent new processes, or even create other software programs that are

based on interactions between their own experience and expertise with a CAD

system.
“CAM” — Computer Aided Manufacturing. A combination of CAD and CAM

enables a designer to create a three-dimensional representation of an object, with
the help of the computer, and then the computer programs instructions for
automated manufacture of the object and controls the manufacturing process.
“CDPA 1988” — Copyright Designs and Patents Act 1988.

“Comment” — text 1n a program that is not meant for seeing by the user but is
meant for a statement so that the programmer or someone looking at the program
can know what 1s going on.

“CONTU” - The National Commission on New Technological Uses of
Copyrighted Works. |

“CUE” — Computer Users in Europe.

“Decompilation” — the other type of reverse engineering which requires a
conversion of object code towards source code and related data. (In both “black
box” reverse engineering and “decompilation”, the target program needs to be run
in a computer and thus a copy of the target program will be created in RAM. A
copy that 1s created in RAM, although a temporary form of expression, will
constifute an infringement of copyright, unless it is authorised by the copyright
holder. In addition, 1n the case of decompilation, the conversion of object code to
source code 1s also considered to be adaptation, which 1s one of the exclusive
rights of copyright. For this reason, the copyright holder can assert his exclusive
rights to prevent others from accessing ideas in his computer program.)

“ECIS” — The European Committee for Interoperable Systems.

12.
13.
14.

15.
16.
17.
18.

19.
20.
21.
22.
23.

24,
23.
26.
27.

28.
29.
30.
31.
32.

“EPC” — European Patent Convention 1973.

“EPO” — European Patent Office.

“Forward engineering’ — the process of rebuilding a new application system,
using the 1deas, objects, etc. retrieved from “reverse engineering”’. (The process
of reverse engineering inherently shifts into the process of forward engineering
once the reverse engineering process 1s completed at some point.)

“GATT” — General Agreement on Tariffs and Trade.

“IP”” — Intellectual Property.

“IT” — Information Technology.

“Legacy system” — A computer system or application program which continues to
be used because of the cost of replacing or redesigning it and often despite its poor
competitiveness and compatibility with modem equivalents. The implication is
that the system 1s large, monolithic and difficult to modify. If legacy software
only runs on antiquate hardware the cost of maintaining this may eventually
outweigh the cost of replacing both the software and hardware unless some form
of emulation or backward compatibility allows the software to run on new
hardware.

“PCT” — Patent Co-operation Treaty.

“PLT” — Patent Law Treaty.

“PO” — Patent Office (normally refer to UK Patent Office).

“RAM” — Random Access Memory.

“Reverse engineering’ — the process of analysing how a computer program

functions. Reverse engineering can be performed in two different ways: by “black

box” and “decompilation” methods.

“"ROM” — Read Only Memory.

“SAGE” — The Software Action Group for Europe.

“SMEs” — Small and Medium sized Enterprises.

“Software engineering”’ — a generic term covering both the processes of “reverse
engineering’ and “forward engineering’’.

“SRI” — software related invention.

“TRIPs” — Trade Related Aspects of Intellectual Property Rights.
“WIPO” — World Intellectual Property Organisation.

“WTO” — World Trade Organisation.

“Y2K” — The year 2000 problem.

X1

CHAPTER ONE

INTRODUCTION

1. Overview of the software industry
1.1 Overview the recent development of software
1.2 Trend of software development in future

2. The importance of reverse engineering

3. The concept of intellectual property law
3.1 IP law and its role in protecting commercial interests
3.2 IP law and 1ts role in benefiting society

4 The issues

S The thesis

5.1 The thrust of the thesis
5.2 Testing the proposed framework against the philosophy underlying IP law
5.3 The impact of the proposed framework on other related areas of law

6 The structure of the thesis

1. OVERVIEW OF THE SOFTWARE INDUSTRY

1.1 Overview the recent development of software

In recent years, computer programs have become almost indispensable in many
industries and organisations. This has been evidenced by the fact that many products
and services on the market have made use of computer technology as a selling point.
Nowadays, as the use of computer technology is even increasing, most companies are
left with only two choices, namely, adopt the technology and stay in business, or

ignore 1t and trail behind their competitors.

Such a move towards the computer technology-oriented sphere not only exists in the
industry where computer programs are marketed as independently finished products
but also in other industries where computer programs are embedded in or incorporated
within other products. For instance, in the automobile and communication industries,

computer programs are used extensively. This leads to an unprecedented achievement

which would never have happened without the aid of computer programs. By way of
an example, many car companies now use computer programs to control brake
pressure and the distribution of torque on each wheel to prevent the car from
understeering or oversteering in the mid bend.' This system is called “traction
control”. For the communications industry, mobile phones appear to be the best
example. Nowadays, many mobile phones contain voice-activated dialling software”

and Wireless Application Protocol (WAP) enabling the user to search the Internet via

mobile phones.’

This move towards the computer technology-oriented sphere is also held to be true for
other industries where the efficiency of services is crucial. In the banking industry,
for example, computer programs are used to enable customers to perform many
banking transactions, e.g. transfer funds between their accounts, pay their bills and
view their mortgage accounts over the Internet, without the restriction of banking
hours.* Moreover, with the aid of the computer technology, not only can traditional
commercial transactions’ be carried out over the Internet but new breeds of businesses

are also created, e.g. reverse auction and get-paid-to-surf-the-Internet businesses.®

It 1s, therefore, quite manifest that computer programs now have an important role to
play in our “information society”. Thus, their applications to modern businesses are

not negligible.

' Car companies that have used this system are, for example, Mercedes, BMW, Volvo, Lexus, Audi,
Jaguar, Ferrari and Porsche. Nathan Morgan, ‘Road test new BMW 5-Series’/ Mercedes E-Class
(2001) 634 Auto Express 34, 36; Nik Berg, ‘Family planning — Volvo V70’ (2000) 79 Top Gear 29;
Peter Grunert, ‘Middle class’ (2000) 70 Top Gear 122, 123; Michael Bailie, ‘Fully loaded’ (2000) 70
Top Gear 154, 156-7; James Mills, ‘Jag’s new R-types’ (2000) 573 Auto Express 26, 29. Tom Stewart,
"In bed with Modena’ (1999) 69 Top Gear 96, 98; Richard Meaden, ‘Porsche 911 Carrera 4’ (1998) 2
EVO 68, 77.

? For example, Ericsson T18 and T28.

> " For example, Nokia 7110 and 6210.

* For example, the Internet banking services offered by HSBC Bank and Lloyds TSB Bank,
<http://www.banking.us.hsbc.convinternetbanking/fags.asp>,
<http://www.infoville.org.uk/banking/online/banking lloydtsb.htm> respectively, accessed on
29/01/01. Companies that help creating Internet banking software are, for example, WoldNet Bank
Inc. <http://ivww.worldnetbank.com>, Fiserv Solutions Inc. <http://www.fisnet.com> accessed on

29/01/01.
> For example, selling books or air tickets.

The Get Paid companies earns their money on the advertisements they bring to the web-surfer and
that is the reason why they can keep up paying the web-surfer. The more time the web-surfer spends

1.2 Trend of software development in future

As the growth of the application of software to various industries has increased at a
rapid rate, it can be predicted with certainty that within a few years computer software
will become a significant element for new kinds of technology-oriented innovations in

many industries.

Consider two of the above examples. In the communications industry, a project,
called the “Transparently Reconfigurable Ubiquitous Terminal” (TRUST), has just
been commenced to create a seamless communication across the information society.’
The project is set to create an imminent wave of the future which is seen as “mobile
multimedia”. This will, in the near future, replace the contemporary slogan of
“anyone, anywhere, anytime”, which refers to simple voice telephony, with the new
slogan of “everything, everywhere, always on-line”.® Such a technological
breakthrough in this project relies heavily on the swift development of software. In
this particular example, the project is achieved by software-reconfigurable radio
systems and networks.” Similarly, in the automobile industry, tomorrow’s cars in
2006 will fully packed with an Aladdin’s cave of technology, e.g. Global Positioning

Systems (GPS),'" intelligent airbags,'' steer-by-wire techmcz-logy,,]2 electro-hydraulic

valves'® and Sensotronic Brake Control (SBC)."

online the more money they will earn. Examples of those companies are destopdollars.com,
cashsurfers.com, <http://www.get.paid.to.surf-the.web.homepage.com> accessed on 30/01/01.
; TRUST <http://www.ist-trust.org/trust_frameset.html> accessed on 31/02/01.

Ibid.
? Ibid. Personal mobile multimedia based around UMTS has accelerated fast since the baseline air
interface decisions of ETSI in January 1998, with 3rd Generation (3G) multimedia services and
technologies beginning to take shape. The role of software re-configurable radio within this framework
is beginning to clarify - within Europe the need to evolve GSM infrastructures to support UMTS and
the need to roam between GSM and UMTS infrastructures will require flexible implementations. The
TRUST programme is aimed at the development of these enabling technologies and associated
Intellectual Property within Europe.
'® Tan Adcock, ‘Inside story: This is the future’ (2001) 635 Auto Express 32, 34. It helps the driver to
plot the route to avoid traffic jams and contacts the emergency services in case of accident.
' Ibid. The system using electronic sensors will control whether the airbag is to be deployed and at

what rate to minimise injuries.
'2 1bid. This technology will replace a “mechanical link”, i.e. the steering column between the driver

and the front wheels. The companies developing this technology are BMW and Delphi.

"> Ibid., at 32. Instead of camshafts, rocker arms and tappets, tiny electric coils combined with
hydraulics will operate each valve independently so that the cylinder receives the precise amount of
fuel and air needed, whatever the driving conditions. This technology is being developed by Lotus

Engineering.

As there will be a sharp increase in the use of software technology, it is expected that
proficient communication between different kinds of software will become vital. For
example, 1t will be necessary for an online banking program to be able to
communicate with a personal financial program of a user at home."” It will also be
necessary for the GPS to be compatible with the steer-by-wire technology in order to
provide maximum safety. The Massachusetts Institute of Technology is working to
link electronic steering and braking systems into the GPS navigation network, so that
if a driver starts to deviate off the road the computer would automatically keep the

vehicle on the Straight.”j

Therefore, 1t 1s anticipated that the development of software technology will lead to an
immense increase in research and application of computer software to various
industries and will result in the need for compatibility between different kinds of
software. This compatibility will to a great extent be dependent on the development

of reverse engineering.

2. THE IMPORTANCE OF REVERSE ENGINEERING

One of the most important processes in the development of software technology
mentioned above is that of reverse engineering. Reverse engineering in the computer
science language refers to the process of analysing a computer program. It can be
said that reverse engineering plays an important role in both software development
and software maintenance because the programmer or the engineer usually pertorms
reverse engineering in the course of developing new software and maintaining
existing software in order to retrieve necessary information. This information can
then be used to achieve several goals, e.g. to ensure compatibility between computer
programs, to create a competing program and to correct errors that have occurred

during the lifecycle of a computer program. Full details of reverse engineering will

'* Ibid., at 32. This optimises the braking effect via a micro processor so that each wheel has maximum

stopping effort according to speed and road conditions.

'> At the present time, only Microsoft Money is able to communicate with HSBC Bank’s online
banking services, supra note 4.

'® Supra note 10, at 32.

be given 1n the next chapter. For reverse engineering to become widely acceptable,

changes will be required in the law relating to intellectual property.

3. THE CONCEPT OF INTELLECTUAL PROPERTY LAW

The development of software technology can be said to be the product of genius and,
thus, requires some form of legal protection. Undeniably, the most straightforward
applicable legal framework is intellectual property law (IP law). This section briefly

describes the role of IP law in protecting commercial interests and in benefiting

society.

3.1 IP law and its role in protecting commercial interests

It has long been accepted that the most basic function of intellectual property law (IP
law) 1s to provide a form of a legal protection for what a man has produced and
brought into being.'’ In effect, IP law has provided a framework which ensures that
the publication of new works and the manufacture of new products will be profitable,
provided that they are sufficiently meritorious, useful and commercially attractive to
attain a viable level of sales.'® In case of computer programs, copyright law is the
branch of IP law which has been accepted as a means of protecting computer
programs. Therefore, the natural role of copyright law 1n this respect 1s to provide the
author with legal protection for his commercial interests derived from his computer
programs. Thus, it can be seen that, in this context, IP law functions as a property

right which is granted as incentives and rewards. This leads to the following rights."

Right to possess something,
Right to use or enjoy its benefits,

Right to manage or decide how 1t is to be used,

I W9 o —

Right to receive income from it,

:; David Bainbridge, Intellectual Property 4" ed. (FT Pitman Publishing: London, 1999) p. 18.

Ibid.
" The Office of Technology Assessment (OTA), Intellectual Property Rights in an Age of Electronics
and Information (1986), p. 21 quoting Lawrence Becker, The Moral Basis of Property Rights (New
York University Press: New York, 1980) p. 189-190.

5. Right to consume or destroy it,
6. Right to modify it,

7. Right to transfer it,

8. Right to distribute i,

9.

Right to exclude others from using it.

These rights will enable the owner of IP rights to protect his or her commercial
interests in the same way as the owner of tangible property. Therefore, it i1s believed
that this 1s one of the justifications for the grant of IP rights. However, it needs to

balance with the other role.

3.2 IP law and its role in benefiting society

The other main accepted role of IP law is that it is used as a stimulator for the

20

dissemination and publication of information. This role has been succinctly

described by the US Constitution in Article 1, Section 8, and it has been globally
accepted. The purposes of the grant of IP rights are, firstly, to foster the progress of
science and the useful arts, and, secondly, to encourage the creation and dissemination
of information and knowledge to the public.?! Such purposes were adopted and stated

explicitly in the enactment of the US copyright Act 1909 as follows:**

The enactment of copyright legislation by Congress under the terms of the
Constitution 1s not based on any natural right that the author has in his
writings, for the Supreme Court has held that such rights as he has are purely
statutory rights, but on the ground that the welfare of the public will be
served and progress of science and useful arts will be promoted ... Not
primarily for the benefit of the author, but primarily for the benefit of the
public such rights are given. Not that any particular class of citizens,
however worthy, may benefit, but because the policy is believed to be for the
benefit of the great body of people, in that it will stimulate writing and

invention to give some bonus to authors and inventors.

** Bainbridge, supra note 17.
‘1 OTA, supra note 19 at 19.
2 OTA, supra note 19 at 3.

Thus, 1t can be seen that the second role of IP law is the emphasis point for the policy
underlying the IP law framework. It is also the one to which the authority has to pay
attention when considering extending or reducing the scope of the IP law framework.
In the United Kingdom, the same policy also has long been recognised, for the
justifications for copyright legislation have historically centred on the economic and
social arguments.” It has been accepted that the protection of copyright, along with
other intellectual property rights, is considered as a form of property worthy of special
protection because it 1s seen as benefiting society as a whole and stimulating further

creative activity and competition in the public interest.**

The second role is illustrated in the form of limitations of the legal protection
provided by IP law (this may differ according to the branches of IP law) such as
exceptions to the exclusive rights provided by the CDPA 1988. With relevance to this
thesis, one of the exceptions is a provision in copyright law permitting the act of
reverse engineering, but only to a certain extent. By allowing the act of reverse
engineering, the society will benefit from the free flow of information and the
dissemination of existing knowledge. This, it is believed, will encourage greater

investment in the field and result in the advancement of technology.

4. THE ISSUES

The main 1ssues in this thesis are, firstly, whether or not the current provision in
copyright law that permits the act of reverse engineering is sufficient to serve the role
of IP law 1n benefiting society. Secondly, if the current provision is not sufficient,
how should the provision be amended? Thirdly, what is the impact on other branches

of IP law and other related law?

z': Copinger and Skone James on Copyright 14" ed. (Sweet & Maxwell: London, 1999) p. 30.
Ibid.

5. THE THESIS

5.1 The thrust of the thesis

This thesis proposes that these two processes, namely reverse engineering and
forward engineering, should be separated from each other so that the legal status of
each 1s considered on its own merits. Nonetheless, 1t 1s submitted that the reverse
engineering process should not be an infringement of copyright because it would be
inconsistent with the rationale of copyright law — copyright does not protect ideas
themselves but the expression of ideas. Nor should the forward engineering process
be an act of infringement. This 1s because, in practice, whether or not this process is
infringing cannot be determined until the end product has been created. For this
reason, the thesis propounds that the law should focus solely on the comparison of the

end products.

The thesis’ proposal for the “product comparison” approach begs the question of how
the courts would be able to determine whether or not infringement has occurred. This
1s due to the fact that the infringement 1ssue 1s still a grey area so that the courts may
even struggle to determine the elements in which copyright can subsist before they
can reach a decision on infringement. In this respect, the doctrine of the
idea/expression dichotomy i1s considered to be a useful tool for the courts in
determining subsistence and infringement of copyright. There is uncertainty and
ambiguity in the scopé of this doctrine, however, as demonstrated by the fact that
courts in different jurisdictions have drawn different conclusions when deciding what
element constitutes 1dea and what 1s expression. An original feature of this thesis,
therefore, is the suggestion as to where the focus of idea and expression should lie,
and how the courts should compare the literal and non-literal elements of computer
programs 1n relation to modern computer programming language technology such as
Java and Visual Programming Language (VPL). Since it is proclaimed that Java 1s a
breakthrough in computer programming language technology, and that Java is
considered as a true object-oriented programming language, part of my thesis will

examine whether or not and to what extent the existence of Java will aftect the

practice of, and the need for reverse_engineering. The thesis will also consider how

Java may influence the court’s decision on the infringement issue.

3.2 Testing the proposed framework against the philosophy underlying IP law

My research will reveal that the framework proposed in this thesis i1s in line with the
philosophy underlying IP law. That is to say, the proposed framework will protect the
commercial mterests of the owner of computer programs and benefit the public at the
same time. Moreover, the basic pﬁnciples of copyright law — which, as 1t will be
seen, are undermined by the current provisions on reverse engineering — will be

restored by the proposed framework.

5.3 The impact of the proposed framework on the other related areas of law

The arguments comprising the central theme of this thesis may impact upon the
present non-copyright legal framework which gives protection to computer programs.
The law of confidence, the purpose of which is to protect confidential information
where a confidential relationship exists, is the second most important mechanism used
to protect computer programs, and perhaps, the most ettective way to protect ideas
and confidential information. The surrender of intellectual property rights in respect
of “reverse engineering’ practices may raise questions about the scope and suitability
of the law of confidence within such a regime. In the context of computer software,
information embedded in computer programs may be considered confidential and
protected by the law of confidence, so far as 1t is kept secret. This gives rise to such
questions as whether or not the legitimate exercise of reverse engineering will result
in the loss of confidentiality in the “information”; whether or not an employee can
escape the obligation of confidence when corﬁputer programs are made available to
the public especially on the Internet; whether or not there is a residue in the software
to be protected by the law of confidence and finally whether or not the law of
confidence will be capable of protecting computer programs once the copyright

relaxation proposed by this thesis 1s established.

The proposed limitation of copyright protection may lead to attempts by leading
software manufacturers to strengthen the legal protection of computer programs.
Some manufacturers, who wish to maintain a ‘monopoly’ in their product market,
may seek to divert to patent-related protection. As a result, the patent is likely to
become a more attractive means of protecting computer programs because it bestows
a much stronger initial protection than copyright. In the United Kingdom, although
computer programs are not generally patentable per se, they may be patented if they
are related to inventions. Therefore, the thesis will investigate how far the scope of
patent protection might extend to software-related inventions and what impact this

will have upon the development and exploitation of ideas.

Given its common law connection, the development of patent law in the United States
1s of particular interest. There have been attempts to extend the scope of US patent
law to give protection to relatively broader technical effects achieved by computer
programs. The thesis, therefore, will compare the United States approach with the
United Kingdom approach. The thesis will also consider whether the more generous
US approach towards patentability should be adopted into this country directly or
indirectly by analogous reasoning. How UK patent law might develop in the

attermath of copyright regulation of reverse engineering will be assessed.

Finally, the thesis will analyse the impact of competition law on reverse engineering
practices. Currently, there is a trend in the European Court of Justice towards the use
of competition law to limit the exercise of intellectual property rights. It is arguable
whether the operation of competition law in this respect can be effective in the sense
of recognising the legality of reverse engineering without requiring changes to the
provisions of the 1988 Act. Thus, the thesis will consider whether and to what extent
reverse engineering can be legalised in the sense that this practice may be ringfenced
by the exercise of competition law. Securing the balance between public interest
concerns and the rights of the copyright holder will be considered as well as the extent
to which the principles of competition law might legalise reverse engineering

practices as an alternative to the relaxation of copyright.

10

6. THE STRUCTURE OF THE THESIS

The thesis 1s separated into two parts. The main content of the first part begins in
chapter two with the description of the nature and the current practice of reverse
engineering. Legal problems presented by the practice of reverse engineering and
commercial problems flowing from the exercise of copyright law are also discussed in
this chapter. In chapter three, the current legal response to the solving of the legal and
commercial problems will be analysed. The deficiency of the current legal response
will be illustrated. In this chapter, the US response to the same issue will be discussed
as it provides an alternative approach recognised by many countries. This is to
consider whether or not the US approach has any deficiency and 1s appropriate for
adoption by the EC and the UK. As will be seen, the US approach does not prove to
be the most efficient solution to the problems mentioned. Therefore, this leads to the
solution proposed by this thesis which is discussed in chapter four. The solution will
be explained 1n three steps in order to show how the framework proposed by this

thesis may be achieved.

In the second part, the thesis will analyse the impact of the proposed framework on
other areas of law which are related to copyright law. There are three areas in this
study: law of confidence, patent law and competition law. They are the subject of
chapter five, six and seven respectively. In chapter five, the analysis 1s focused on the
enforcement of the law of confidence once the proposed framework is establishéd.
The study will also include legal implications where there 1s and there 1s not an
obligation of confidence. Then, in chapter six, the impact of the proposed framework
on software patentability is considered. This chapter will go on to look at the
forthcoming development in this field and scrutinise any implication of the proposed
framework on such development. This chapter concludes by suggesting the approach
towards the development of UK patent law in the future. Finally, the thesis will
justify the proposed framework by showing that current competition law cannot fulfil

the need for the legality of reverse engineering. This will be discussed in chapter

SCVCEIN.

A flowchart on the next page shows how scheme of this thesis 1s developed. At the

end of the thesis (in chapter eight), the development of the thesis’ argument from one

11

chapter to another will be illustrated again in a flowchart form so as to provide the

best understanding of the thesis.

12

Dillgt ETH AL BT T N TR, T Lt I mr T remTiTE Rt oeor Rl

A N wrmrrm o -a g aw g T R TR, TEWRL E W ot W s,

The need for the legitimacy of RE

Attempt to legalise

Y e PRI T - L q._.\ f ol s cale e e e — o . S— e TEF R A TR, W " T Eprwr g m—

The 1988 Act — section 5OB and others

Analysed by the thesis

Purposes of RE not penmtted by the 1988 Act
& current need for RE not fulfilled

WAL W T W m ot TR & Laamen o oupl g S R MM M MR T v O e R MR W UL urmRu T T~y T I Tr TR P edmroan e L R L R et e ol gy e g B . B -

, The51s — attempt to legahse RE to meet current need of SO ftware mdustry

thesis’ recommended approach thesis’ comparative approach

Wrmmwmm:wwmma:mltﬁy Wmﬂm:rmmmmmm“.r
- T

~ Approach 1 - Approach 2
abandon RE in favour whether and to what
of product comparison extent RE can be
legalised by

regulation of
competition law

Law of

No impact on

confidence

P OOFSETT A R T TR AP TR L LIRS i I N e

other legislation

L TRETEFLLPETAE FEJ e LY SR T LD T TR I.‘F.':I.1 F.._r—_.."-'-m- I._ﬂ_ﬂ:‘ FT-TEEE f ThATEE

whether the scope
will be changed,
whether the employee
can avoid a confidential
obligation, etc.

how software patent law
should develop 1n the future
to meet potential demand of
software manufacturers

- - . -k gy -ruph mLmm e e -t ek oL U 1 umf

Result 1 Result 2

YA
- Comparison

& Analysis

The flowchart illustrates the /Y \
outline of the thesis and ~ Conclusion

stages of legal analysis

13

CHAPTER TWO

PRACTICE OF REVERSE ENGINEERING AND

COMMERCIAL PROBLEMS

. Introduction
2. The nature of reverse engineering
2.1 Definition of reverse engineering
2.2 The process of reverse engineering
3. Current practice of reverse engineering
3.1 Practice of reverse engineering in software development
3.2 Practice of reverse engineering in software maintenance
3.3 Impact of Java on the practice of reverse engineering
4. Legal problems presented by the practice of reverse engineering
4.1 Why reverse engineering infringes copyright
4.1.1 Act of reproduction
4.1.2 Act of adaptation
4.2 Legal problems
S. Commercial problems flowing from the exercise of copyright law
5.1 Commercial problems in software development
5.2 Commercial problems in software maintenance
6. Conclusion

e

1. INTRODUCTION

The term “reverse engineering” may be familiar to experts in the software engineering
field but it may not be generally well-known to others. In layman’s terms, “reverse
engineering’ 1s the process of analysing a computer program to understand how the
program functions. Although the practice of reverse engineering is limited to the
software industry, its implications to society are significant. However, in many legal
analyses of the reverse engineering practice, the analysts fail to show the actual
practice of reverse engineering. Therefore, frequently their analyses on the issue are

incorrect.

This thesis, by way of introduction, begins by exploring the current practice of reverse

engineering in the software industry. This is to provide a background for legal

14

analysis 1n subsequent chapters, and to demonstrate that reverse engineering is a valid

practice in the software industry.

2 THE NATURE OF REVERSE ENGINEERING

The discussion in this sub-section aims to provide a factual background of computer
technology regarding reverse engineering. This thesis suggests that the correct
understanding of the definition and process of reverse engineering is a necessary step

for the further argument and proposed solution in subsequent chapters.

2.1 Definition of reverse engineering

The term “reverse engineering”’, in fact, has never been defined in the Glossary of
Software Engineering Terminology' but Chikofsky and Cross give a definition which

has gained general acceptance in both public and private sectors, and is as follows:

Reverse engineering is the process of analysing a subject system to
o 1dentify the system’s components and their interrelationships and
o create representations of the system in another form or at a higher level of

abstraction.

Reverse engineering in and of itself does not involve changing the subject
system or creating a new system based on the reverse-engineered subject

system. It is a process of examination, not a process of change or

replication.’

From the definition above, it can be seen clearly that reverse engineering is simply a
process of analysing an object and in this context the object analysed is a computer

program. It is also clear that the sole immediate purpose of reverse engineering is to

' The Glossary of Software Engineering Terminology is provided by the Institution of Electrical and
Electronic Engineers (IEEE).

* E J Chikofsky and Cross, ‘Reverse Engineering and Design Recovery; a Taxonomy’, (1990) IEEE
Software 13,17. This Definition was also quoted by two leading Australian computer lawyers,
Cifuentes and Fitzgerald. See Cristina Cifuentes and Anne Fitzgerald, ‘Reverse Engineering of
Computer programs: Comments on the Copyright Law Review Committee’s Final Report on Computer
Software Protection’, {1995) 6 Journal of Law and Information Science 241, 248.

15

identify the program’s components and to discern how these components interact with
others. Basically, it can be said that the real purpose of reverse engineering is to
understand how a given computer program works, that is to conceive the ideas
underlying such a program. This is reiterated in the second paragraph of the

definition quoted.

Chikofsky and Cross also include in the definition a common method of reverse
engineering, namely, by creating representations of the program at higher levels of
abstraction. This method is commonly known as “decompilation”. It is a necessary
process which has to be done in order to achieve the purpose described previously, i.e.
to 1dentify the program’s components. In the context of computer programs, a
representation of the program at a higher level is required in order for the programmer
to understand the operation of the program clearly. This 1s because the representation
at a higher level of abstraction produces a form of computer code which is close to

human language, hence, understandable by humans.

In the software engineering field, there is another method of performing reverse
engineering, which 1s commonly known as a “black box” method (referred to in this
thesis as “black box” reverse engineering). Although this method is not described in
the definition (apparently owing to its limited application) it is worth extending the
discussion to its legal position. This is because it is one of the controversial issues in
the “Software Directive”.” Moreover, “black box” reverse engineering may become
the only available method of reverse engineering in future because the creation of a

higher level of abstraction may be technically impossible as a result of an anti-

decompiler device. The process of “black box” reverse engineering will be discussed

below.

2.2 The process of reverse engineering

The process of reverse engineering computer programs can be separated into two

main groups according to the methods of performing reverse engineering discussed

* The Council Directive of 14 May 1991 on the Legal Protection of Computer Programs (91/250/EEC)
OJNo L 122/42,17.5.91.

16

above. The method of performing reverse engineering by creating representations at a
higher level of abstraction dictates that the process will involve translation of
computer program codes from a low level code to a higher level code. The method of
making a representation of the system at a higher level is required because most
computer programs distributed in the market are complied into binary code, called
“object code” or “low-level code”, to enable the computer to execute efficiently the
instructions wriften in a high-level code, called “source code”. The object code
provides little or no information to the programmer as it represents merely electrical
pulses symbolised by 0’s and 1°s. Hence, the underlying 1deas of a computer program
are hidden from inspection. If the programmer wishes to gain access to the ideas in
the object code program, he would have to convert the program from object code to
source code normally by using reverse engineering tools. During the process of
reverse engineering, multiple copies of object code will be created by the reverse
engineering tools. Source code also has to be copied several times to ensure that the
final version of the source code represents the closest details to the original source
code. It is also due to the fact that humans cannot remember all the million lines of
code without recording it. The programmer, therefore, needs to record the code either
manually or electronically. The act of converting a computer program from a low

level code to a higher level code 1s also known as “decompilation” as mentioned

above.

Another method of reverse engineering, which is called “black box™ reverse
engineering, involves a different process. “Black box” reverse engineering does not
require a conversion of object code to source code. It can be performed by
monitoring and comparing the input and output of the data entered into the computer
or observing some physical result such as printing or displaying of the screen monitor.
However, “black box” reverse engineering 1s usually insufficient to determine the
underlying ideas of a complex program that is normally commercially valuable. For
example, determining the underlying ideas of voice recognition software by observing

inputs and outputs of voice and text data may not be sufficient to know how the

17

software recognises voices." Therefore, the object code of the voice recognition

software has to be converted into a human readable source code form.

The processes of both methods of reverse engineering are the crucial factor that
renders the act of reverse engineering illegal under copyright law. In section four, the
reason why these processes are considered as an infringement of copyright under
current copyright law will be clarified. The section below illustrates the significance

of reverse engineering in the software industry.

3. CURRENT PRACTICE OF REVERSE ENGINEERING

Reverse engineering has now been recognised as one of the major fields of computer
science. Its importance has been emphasised in both the academic and practical
arenas.” A large number of software houses and even individuals, nowadays, use
reverse engineering techniques to develop a new product, to generate the profit of
their product or to improve the product’s quality. The practice of reverse engineering
can be divided broadly into two separate areas, namely, the practice of reverse
engineering in software development and in software maintenance. Each practice has

its own end purposes. The differentiation of the areas of reverse engineering practices

will help the legal analysis in subsequent chapters.

3.1 Practice of reverse engineering in software development

The practice of reverse engineering in software development is usually tied to the
need to improve software. The need to improve software constantly arises at both the
operating system and application program levels. Such a need is derived from two
main groups, namely from the manufacturer of software and from the user of

software. The need derived from the manufacturer is usually stimulated by

* John T. Soma, Gus Winfield and Letty Friesen, ‘Software Interoperability and reverse engineering’
[1994] 20 Rutgers Computer & Technology Law Joumal 189, 196.

> In the academic arena, the emphasis on reverse engineering can be seen from “Working Conference
on Reverse Engineering” sponsored by IEEE Computer Society/TCSE Committee on Reverse
Engineering and Reengineering, and Reengineering Forum. The emphasis on reverse engineering in
the practical arena can be seen, for example, from information regarding reverse engineering provided
by the UK Government Centre for Information Systems (CCTA).

18

competition in the software market whereas the need derived from the user may be

caused by business requirement changes.

From the manufacturer’s aspect, reverse engineering is mostly used for testing the
program to be released. The use of reverse engineering extends to any level of
abstraction of the program and it is normally performed whenever the information is
incomplete or inaccurate.® For instance, during the testing of a modified system, if a
problem relating to interoperability occurs and the documentation does not provide
the solution, reverse engineering is then performed to find out what part of the
program has a malfunction. This allows the programmer to “debug” 1t. For example,
IBM and AT&T use reverse engineering in the process of the development and
improvement of their products. The practice of reverse engineering by such
multinational companies can also be seen indirectly from the development of the
reverse engineering tools from their laboratory. For example, the C Information
abstraction System (CIA), which is a collection of reverse engineering tools for C, are
developed by AT&T Labs Research.” This practice has paved the way for further

research 1nto reverse engineering techniques by many universities.®

The need derived from the manufacturer may require the programmer (who works for
that manufacturer) to perform reverse engineering on software of other manufacturers
in order to obtain necessary information. What can be said to be necessary
information is dependent on the end purpose of each software development project.
For example, if a software development project involves a creation of a program
which needs to be compatible with an existing program, the necessary information
retrieved by reverse engineering will be the “interface code”. If the project 1s to
create a competitive program, the necessary information will be underlying ideas and
principles of how the target program functions or how screen displays are created.

This can be done in the following manner.

° Andrew Johnson-Laird, ‘Reverse Engineering of Software: Separating Legal Mythology From Actual
Technology’ [1992] Software Law Journal 331, 345.

7 <http://www.research.att.com/sw/tools/reuse/packages/ciao.html> accessed on 16/11/98.

® For example, Brigham Young University <http://www.byu.edu:80/>, Virginia Commonwealth
University <http://www.isy.vcu.edu/~paiken/index.htm>, University of Victoria
<http://wwww.pigi.csc.uvic.ca/UVicRevTut/UVicRevTut.html> accessed on 11/6/99.

19

With regard to the first example, the existing program that is expressed in the form of
object code has to be reverse engineered (converted) into source code so that the
programmer can determine which parts of the existing program contain interface
code. By isolating and duplicating the interface code, the programmer can develop a
new compatible product by embedding this interface code in the new product.
Company A, for instance, can use reverse engineering techniques to obtain the
interface code and then use the interface code to create a video game that is
interoperable with a video game console of company B into which various game
cartridges are inserted.” With respect to the second example, the programmer can
ascertain the ideas, principles and nrganisation of the program that has been reverse
engineered and then incorporate these ideas into the improved program or use them to
produce a new competing computer program having the same function as the original

OI1C.

It should be noted that in the circumstance where companies wish to study the
products of their competitors by using reverse engineering, these companies usually
perform reverse engineering secretly and may seek help from various gronps of
hackers from the Internet. This is because they are afraid of lawsuits since the law in
this area is still uncertain.'® At present, there are many hacker websites which provide
information about reverse engineering. For example, BOMARC-Reverse
Engineering,” The Underground Railroad,'* Hackers Catalog,,13 The Shadow
Knights'* and 2600 Magazine."”” There are also third-party companies which offer
this kind of service, i.e. using reverse engineering to analyse the products of their
customers’ competitors.'® Not only do companies reverse engineer products of others
but “open source” developers also use reverse engineering to develop freely available

software, such as Samba and Linux, in order to make them more reliable. Samba is a

? Sega v Accolade 977 F. 2d 1510 (9™ Cir. 1992); Atari v Nintendo 975 F. 2d 832 (Fed. Cir. 1992); see
Stephen B. Maebius, ‘The New Use of Fair Use: Accessing Copyrighted Programs Through Reverse
Engineering’ (1993) 75 Journal of the Patent and Trademark Office Society 431, 432.

"> An interview of a previous unnamed employee of Hewlett Packard.

'! <http://w3.trib.com/~rollo/bomcat.htm>

'* <http://www.tomah.com/samarac/>

1> <http://www.hackerscatalog.com>

'* <http://members.tripod.com/~The Phantom x/Main.html>

"> <http//www.2600com>
'® E-mail response, on 13/11/98, from Michael Blaha of OMT Associates, Inc. He said that he has used

reverse engineering for several companies with which he consulted. However, he was not at liberty to
release their names.

20

suit of programs which works together to allow clients to access a server’s filespace
and printers via the Server Message Block (SMB). This program allows Unix clients
to use Microsoft file and print services.'’ In a recent survey project of John Wallberg
of the Massachusetts Institute of Technology, the interviewees agreed that reverse
engineering 1s a valid practice which is used to investigate a competitor’s product and

to learn about it so that the company can design and market a superior product.'®

A high level of the use of reverse engineering for determining information or
underlying 1deas in a rival’s program can also be seen indirectly from the

development of devices used to prevent a program from being reverse engineered.

Such devices are known as an “obfuscator”.'” Modern computer programs, which are

written by Java programming language, are vulnerable to reverse engineering.
Therefore, obfuscators are frequently contained in these programs so as to provide
some measure of protection against reverse engineering.”’ A well-known obfuscator
1s, for example, Crema, which can obfuscate a decompiler like Mocha.”’ Nowadays,
there are many decompilers and disassemblers distributed on the Internet free of

charge, such as PEDasm,** Tasm X86, and Advanced Hex Editor.”* This indicates

the popularity of the practice of reverse engineering in the software industry.

In software development the need to improve or modify software is also derived from
software users (individuals and companies). Such a need comes from the fact that

business requirements have changed or the user wants to increase his productivity.

' <http://sunsite.auc.dk/samba/docs/fag/sambafag-1.html#ss1.1> accessed on 26/10/98. Samba is
available at<ftp://samba.anu.edu.au/pub/samba/>. People who develop Samba can be reached at
<samba-bugs@samba.anu.edu.au>, Andrew Tridgell is the person who first created Samba. He does
not ask for payment, but he does appreciate it when people give him pizza in retum.

'* John Wallberg, ‘Scenario from Ethics and Reverse Engineering’ (last updated: 5 September 1998)
<http://ethics.cwru.edu/projects/rev_scen.html> accessed on 29/10/98.

" D. Dyer, ‘Java decompilers compared’ <http://www.javaworld.com/javaworld/jw-07-1997-
decommpilers.html> accessed on 25/10/98. In essence, obfuscators remove all non-essential symbolic
information from the class files and, optionally, replace it with fake symbolic information designed to
confuse the decompiler.

> Qusay H. Mahmoud, ‘Java Tip 22: Protect Your Bytecodes from Reverse
Engineering/Decompilation’ <http://www.javaworld.com/javaworld/javatips/jw~javatip22.html>
accessed on 25/10/98.

*! Mocha is the most widely used decompiler for Java computer programs. Although the code
generated by Mocha is not exactly the same as the original source code, it is close enough for someone

to understand and modify.
%2 Can be found at <http://www.timeless.org.zw/software/PEDasm/PEDsm10b.zip>

*> Can be found at <http://www.timeless.org.zw/software/lasm/iasm.zip>

21

This 1s usually involved with bespoke software. In this scenario, in order to apply the
changes correctly and efficiently, the business processes must be understood and the
detailed functions of the existing software, such as the sequence of operation of
modules, must be determined.” A problem is likely to occur if the past changes to the
software cannot be well understood by the programmer. This situation normally
happens when the change procedures in the past were not carried out properly.
Undisciplined changes may result in poor documentation even though the existing
software may give the desired end result. Poor documentation and unfamiliar code
structure will eventually limit the scope of further improvement and modification.
Reverse engineering, therefore, plays an important role in overcoming such limitation
by helping the programmer to understand the overall structure and design of the

existing software which have been rewritten over many years.

Companies or organisations wishing to improve or modify their software as
mentioned above may employ in-house programmers, the manufacturer of the
software, or a third-party company who offers software development services. In
practice, if companies or organisations employ their in-house software engineers, they
may purchase reverse engineering tools available in the software market for using in
the process of evaluating an existing body of code and capturing important
information before making a modification. However, it 1s more common that a third-
party company is called in to help the process of software development. This is
because software development is a complicated task and requires specialist expertise.
The third-party company may use its own reverse engineering tools in the process of
understanding the existing code of the customers’ software prior to commencing any
modification or enhancement to the software. In the software industry, there are
many third-party companies offering these kinds of services, e.g. Advanced Software

Technologies Inc.”’ There are also many companies around the world selling reverse

#* Can be found at <http://www.timeless.org.zw/software/axe/axe.zip> It is an editor for Windows
05/98/NT.

CCTA by Richard West, Reverse Engineering — An Overview (HMSO: London, 1993) p. 5.
*® Ibid., at p. 6. Related, but not entirely relevant, is the need for documenting the database of the

legacy system. To reengineer the legacy application program, programmers may need to document the
existing database first, by using a tool for reverse engineering an existing database into a physical
model. The tools available in the market are, for example, ERwin/ERX from Logic Works and
Embarcadero Technologies’ ER/Studio, PowerDesigner from Sybase Company.

" <http://www.advancedsw.com/> accessed on 10/11/98.

22

engineering tools, for example, Applied Conversion Technologies Inc.”® and Imagix

* Reverse engineering tools are also being developed by individuals, e.g.

Corp.
Giampiero Caprino. He creates a reverse engineering compiler (REC), known as a

portable decompiler.’”

3.2 Practice of reverse engineering in software maintenance

Equally important is the application of reverse engineering to software maintenance.”’

Reverse engineering is frequently used by software engineers to check errors and to
help them understand the overall structure and design of a system, particularly a large
and complex software system, known as a “legacy” system. Moreover, the
programmer often uses reverse engineering to analyse the quality of the code and then

to evaluate the impact of future changes.”

Software maintenance has been recognised over the past decade as being no less
significant than software development.®> The software industry, academia and
entrepreneurs have become aware that the failure of software maintenance can cause
substantial financial loss and will severely atfect the prosperity of their businesses.
Maintaining a “legacy” system, which comprises millions of lines of codes and
algorithms, and constitutes a vital asset for corporations and governments, is not an

easy task. It is accepted in the software industry that software maintenance has

*® This company sells a tool, called XACT. XACT is used for transforming assembly language to C.
<http://www.year2000plus.com/reveng.html> accessed on 10/11/98.

This company sells reverse engineering tools, called Imagix 4D. These tools are designed to use
with software that 1s programmed by C or C++ programming language. The tools help software
developers understand the legacy C and C++ system and also help them in creating design
documentation, including HTML. E-mail response from Imagix Corporation on 29/10/98.

*% The portable decompiler supports a variety of different input binary files, such as Unix EIf, Unix

COFF, Windows PE, Linux and SunOS AQUT, and produces a C-like representation as output. REC —
Reverse Engineering Compiler Home Page <http://www.aromatic.com/~cg/rechome.htm>.

*! The IEEE Standard Glossary defines “software maintenance” as “the process of modifying a
software system or component after delivery to correct faults, improve performance or other attributes,
or adapt to a changed environment”.

*% West, supra note 25, at 6.

* The Court of Appeal in Saphena Computing v Allied Collection Agencies (unreported) 3 May 1989
has recognised that even when software 1s delivered there will still be some work to be done. The
software will almost certainly contain errors and the software house will normally be expected to test
the software to locate errors and make the necessary modifications. This duty will endure for a period
of time though 1t 1s difficult to predict how long (See David Bainbridge, Introduction to Computer Law

(3" ed.) (Pitman Publishing: London, 1996) p. 180.

23

* This is because the cost of software maintenance

become a critical problem.’
practices, while rarely seen as a direct cost, accounts for 50-90 percent of total life-
cycle costs.” If the time required to comprehend software is reduced by the use of
reverse engineering, it is manifest that the overall cost of software maintenance will

greatly decrease.

The use of reverse engineering in the process of software maintenance has also been
seen as a way to extend the life of the system and to maximise the return on the
investment in the current software. This is because it can show significant saving
over the cost of replacing the old system.”® At the present time, several researchers
have reported that the application of reverse engineering techniques to the software
maintenance industry has yielded significant benefits to most software users.”’ Many
universities and organisations have now begun to develop software reverse
engineering tools to help the programmer in the process olf maintaining legacy
software. For instance, the computer science department of the University of British
Columbia has proposed a number of reverse engineering techniques that automatically

produce a high-level view of a software system.>®

In addition to the need for the maintenance of software, the need for upgrading and
migrating existing software systems has currently become more apparent and pressing
too. This is because many businesses require more efficient management and higher
‘ product quality. It is suggested that reverse engineering used in software maintenance
can also be done for the purpose of enhancement of the legacy system or migration to
a new software platform or a new generation of hardware.”” When it is necessary to
change an old system to a completely new one, the use of reverse engineering can
help 1n the process of changing over. This is because most new application software

system developments tollow on from existing systems or have to link up with

** H. Miiller, ‘Understanding Software Systems Using Reverse Engineering Technologies Research and
Practice’ <http://wwww.rigi.csc.uvic.ca/UVicRevTut/Abstract.html> accessed on 29/10/98.

> A. Frazer (P.A.V. Hall ed.), Reverse Engineering — hype, hope or here? (Software reuse and reverse
engineering in practice (Chapman & Hall: London, 1992)), p. 221.

3% West, supra note 25, at 23-25.

*"J Cross, A Quilici, L Wills, P Newcomb and E Chikofsky, ‘Second Working Conference on Reverse
Engineering Summary Report’ <hftp://www.cc.gatech.eduw/conferences/WCRE9S5/summary-rpt.html>
accessed on 13/11/98.

*® <http://www.cs.ubc.ca/labs/se/projects/index.htmI> accessed on 10/11/98.

*? Frazer, supra note 35, at 217.

24

different applications. Thus, the use of reverse engineering to check existing
functionality or to define interface requirements will point to opportunities ih saving
time and cost.*’ In a major upgrading or migrating of a legacy system, an experienced
third-party company may be called in to help in the process of changing over. For
example, Ipso Facto Consulting, Inc. was asked by both UK and US large financial
software houses to re-engineer their treasury systems and existing products and to
position all their new developments on a client server. The aim of implementing a
new environment was to cope with the treasury and market maker functions with on-
line access to the dealing floors in London and New York, which processed up to
40,000 transactions per day.*' Therefore, it can be seen that in a large re-engineering
project, a company normally employs a third party rather than uses its in-house

programmers.

At present, the move towards open systems and interoperability has become apparent
and received a global consensus. Several multinational corporations and
organisations have chosen to replace an old incompatible system with a new
compatible system to incorporate tomorrow’s systems and free up resources for
innovation.** In such cases where the move towards an open system is apparent,
reverse engineering may be used by a third-party company to comprehend the existing
system, thus reducing the problems in changing the system to a new interoperable
environment. A very good example is the role of the Open Group.” There are many
large companies and organisations that have chosen to move towards an open system
with the assistance of the Open Group. These companies and organisations are, for
example, the Boeing Company, the United States Air Force, the Government of
Norway (in providing its citizens with Internet-based public administration services),
the UK national insurance, Litton/PRC, the US Internal Revenue Service and the UK

Department of Social Security.*’

Technically, the move towards the open system is to migrate an old legacy software

system with closed environments to a new software system which can interoperate or

40 West, supra note 25, at 25.
*! This new implementation used MS-Window on front-end PCs with a Stratus back-end under UNIX

running ORACLE. <http://www.ipsofacto.com/project3.htm> accessed on 10/11/98.
*? <http://www.opengroup.org/challenge/> accessed on 10/11/98.
* <http://www.opengroup.org/overview/> accessed on 10/11/98.

25

* Seemingly, the process of

communicate with software from other companies.
transition from a legacy system to a new and compatible environment is also known
as “re-engineering”’. The process of re-engineering normally includes two major
steps, namely, “reverse engineering” and “forward engineering”. Reverse engineering
helps the programmer to understand the existing system before they begin the process
of forward engineering to implement a new system. (Reverse and forward
engineering also applies to software development in general, where a company uses
reverse engineering to determine underlying ideas and uses forward engineering to
create a new product. This leads to the submission that the law should recognise
reverse and forward engineering and consider their legal status on their own merits.)
In this circumstance, like the activities of the Open Group, it is clear that the third-
party company is the party which usually uses reverse engineering in the process of
moving towards the open system. In addition, when the customers wish to change a

platform or an environment, the third-party companies may use reverse engineering

on an application program in order to retrieve the source code and then to recompile

% Third-party companies may use

the application program for the new platform.
reverse engineering not only for software migration towards the open system but also
for the redocumentation of the existing system for the purpose of an efficient
managing system. For example, Ascent Logic Corporation reverse engineered the
Integrated Combat System of a submarine to provide a service-wide environment for

managing the acquisition and maintenance of Naval systems.”’

From the discussion above it can be clearly seen that, in practice, software
maintenance does not merely involve error correction, but also includes actions taken
to make subsequent maintenance more efficient and reliable, as well as the
enhancement of the existing software. Therefore, it is rare that an application

program is re-engineered without additional functionality being added.”® This can be

** <http://www.opengroup.org/case-studies/> accessed on 10/11/98.

* John Warner, the president of the Boeing Company, expressed his concemns about the necessity of
the open system, stating that ‘when the people who build the equipment and write the operating
systems and the applications do not comply with open standards, it makes it more difficult for us’.
Moreover, he stressed that ‘[Boeing has] gone so far as to declare to suppliers that open systems are our
direction. If that is not what you are, if that is not what your product is, then we are not interested’.
<http://www.opengroup.org/comm/case-studies/boeing.htm> accessed on 10/11/98.

*® In this circumstance, the application program is usually written in 3GL or C, C++.

¥ <http://www.year2000plus.com/reveng.html> accessed on 10/11/98.

*® Chikofsky and Cross, supra note 2, at 16.

26

arguably considered as an overlap between software development and maintenance.
However 1t might be categorised, many organisations and corporations are facing
maintenance problems that mainly stem from lack of access to the source code, poor
documentation and design of the existing software. Usually, the system’s maintainers
are not the manufacturers of the software, so the maintainers must expend many
resources to examine and learn about the system by studying the source code and all
documentation of the software.*” Frequently, such source code and documentation
may be lost or misplaced, or may not be available because the original software
manutacture has gone out of business or just no longer supports the product. The only

way to recover or retfrieve source code and documents i1s to reverse engineer the

existing software.

Reverse engineering can also be applied to facilitate safety analysis in safety-critical
systems. The Bylands project,”’ for example, used program transformations
developed by the University of Durham, to reverse engineer code to recover a
specification in order to validate the system requirements, i.e., to ascertain that the

Sl

code actually behaves as i1t i1s required to behave. More recently, reverse

engineering has been used by a third party to solve “the year 2000 problem” (Y2K)
for which original manufacturers did not cater when creating the existing software.”
Source Retrieval LLC., for example, offers the decompilation services for solving the
Y2K compliance problem for all IBM midrange systems.” Indeed, it can be said that
any party (e.g. manufacturers, third-party companies, users or even interested
programmers) who are involved with Y2K remediation would use reverse engineering

to understand the existing codes before making changes.>

In the software industry, there are many companies which offer reverse engineering

services and which market reverse engineering tools to be used by software

49 1.1
Ibid., at 14.
*O T.M. Bull, E.J. Younger, K.H. Bennett and Z. Luo: ‘BYLANDS — Reverse Engineering Safety-

Critical Systems’ Proc International Conference on Software Maintenance, Nice, France, 1995 (IEEE).
*! Program Transformations, <http://www.dur.ac.uk/~dcslejy/Bylands/transforms.html> accessed on
26/10/98.

>? For issues specifically relating to Y2K see Simon Halberstam and Jonathan DC Turner (eds.),
Countdown to 2000: A Guide to the Legal Issues (Butterworths: London, 1998).

> Home page at <http://www.sourceretrieval.com/doccl.html> accessed on 2/11/98.

>* E-mail response from Gerald Gannod of Computer Science Department of the Arizona State

University on 12/11/98.

27

developers or in-house engineers. For example, Source Recovery Company offers
decompilation services to IBM 360/370/380 clients who have lost their source code.”
Software Migrations Ltd provides a service for its clients who wish to translate IBM
370 Assembler modules into equivalent readable and maintainable COBOL
programs.”® Access Research Corporation provides support and maintenance services
for various network installations, e.g. Novell/MS-NT-based LANs connectivity with
Internet, Electronic Name Servers (ENS), SUN/Unix, and VAX/VMS - by
developing its own methodology for enhancing code maintenance, which is called

Computer-Aided Reverse Engineering, to abstract information from existing code.””’

In conclusion, it can be seen that reverse engineering is very important to the software
industry and has a wide range of applications for both public and private sectors.
Reverse engineering 1s at present a widespread practice because it is not only
performed by the software manufacturer, but also by the company user and third
parties or even individuals. The practice of reverse engineering is also recognised in

both academic and business arenas. This indicates a potentially robust development

in this field in the near future.

However, the current regulations governing the practice of reverse engineering may
not be appropriate for the present situation, thereby leading to commercial problems.

This will be discussed in Section five.

3.3 Impact of Java on the practice of reverse engineering

The Java programming language is regarded as a very exciting development in the

field of programming languages because of its ability to deliver programs across the

*> The University of Queensland, ‘The General Approach to Decompilation’
<http:/www.csee.uq.edu.aw/csm/decompilation/general . html> accessed on 26/10/98.

Clients of Source Recovery Company are, for instance, the Social Security Administration in Baltimore
and Volt Information Sciences in Westbury, Australia, <http://www.accres.com/software.htm>
accessed on 26/10/98. Some companies even provide for hardware reverse engineering service, such
as White Rabbit Technical Services, which offers help, by means of reverse engineering, to recover
technical documentation of electrical schematics, a board layout that shows component placement or
circuitry, artwork for creation of PC cards, etc. Its web site is at
<http://www.wabasso.com/reverse.htm>.

°% Ibid.

28

Internet. The Java program can liven up the Web page, perform some sort of
calculation and help the user access information stored wherever on Internet Web
servers. One of the unique features of Java i1s that it can be used to create an
application program which can run on any operating system. This is due to the fact
that the Java program can be compiled to bytecodes, an-intermediate form between
source code and object code. With the assistant of an interpreter, a Java program in

the bytecode form can be executed in any platforms.

It can be said that the advent of Java affects the practice of reverse engineering in
software development in two different ways. On the one hand, it reduces the need to
use reverse engineering to determine the interface code between the application
program and the operating system. This is due to its platform-independent feature.
On the other hand, it increases the use of reverse engineering for determining objects,
underlying ideas, principles and structures of Java programs. This 1s because Java is a
thoroughly object-oriented programming language. The unique features of the Java
programming language, which directly result in the decrease and increase of reverse

engineering practices, will be further explained below.

Generally, programs written in other programming languages such as Basic, C and
Ada, are compiled straightaway to the appropriate object code (executable code) for a
particular operating system (a Window, a Macintosh or a Unix system). A program
that 1s compiled to the object code for the Window operating system cannot be run on
the Macintosh or Unix operating system. Thus, if the programmer wishes to run the
program on the Macintosh operating system, he has to recompile the program 1nto the
Macintosh-formatted object code. The programmer needs to know the format and
interface code of the Macintosh operating system. If the information about the format
and interface code is not readily available, reverse engineering techniques can be
performed to obtain this information. Since the Java program can be compiled to
bytecodes as mentioned above, it can be executed on any operating systems, provided
that those operating systems have a program which can read bytecodes embedded 1n

the systems. This program is called an “interpreter” or “Java Virtual Machine” (JVM)

°7 Access Research Corporation (A Division of TYX Corporation),
<http://~vww.accres.com/software.htm> accessed on 26/10/98.

29

depending on what form this program resides in.”® If this program resides in a Web
browser (e.g. Netscape Navigator or Microsoft Internet Explorer), it is called an
“interpreter”. If 1t 1s a part of an operating system, it 1s known as a JVM. An
interpreter enables the Web browser to download a Java program from the originating
Web site and run it within the Web browser. The Web browser runs and executes the
program while part of the page 1s being displayed.” It should be noted that Java
programs running across the Internet are called “applets” whereas Java programs,
which are not run from within a Web browser but run as “stand alone” programs,’ are
called “applications”.®' Because of its platform-independent feature, it can be clearly
seen that Java decreases the need for reverse engineering in order to obtain interface
code between the application program and the operating system. In other words, Java

has solved the problem of the lack of interoperability between application programs

and operating systems.

However, Java does not solve the problem of interoperability between two application

programs. The programmer still needs to know the interface code of an existing
application program if he wishes to create a new application program that 1s
compatible with the existing application program. Therefore, the need for reverse

engineering to determine the interface code of another application program still exists.

Moreover, the object-oriented feature of the Java programming language leads to the

increase of the practice of reverse engineering. Because Java is a thoroughly object-

°® It turns out that it is easier to write an interpreter for the Java bytecodes than it is to write a compiler
for the Java source code.

*? Hence, it is possible that a Web browser can perform as an operating system which operates applets
down loaded from the Internet. This may reduce the need to buy stand alone programs. For example,
we may not need to buy an MS word 97. If we want to use a word processing program, we just down
load from the Internet free of charge or paying little money.

* This kind of programs is invoked by specifying the name of the program at the command-line
interface (e.g. MS-DOS) or by clicking on a program icon in a graphical user interface (GUI).

°! However, Java applications are currently not as popular as applications written in Visual basic (VB)
or MFC programming language because the graphic toolkit supplied with Java is far too primitive to
make the design task pleasant (see John Wallberg, ‘Scenario from Ethics and Reverse engineering’
<http://ethics.cwru.edu/projects/rev_scen.html> assessed on 29/10/98). This is also due to the fact that
Java applications which are not compiled to the executable code are slower than application written in
other languages (Benoit Marchal and Marc Meurrens, ‘Java Decompilation and Reverse Engineering:
Part I’ <http://www.javacats.com/US/articles/decompiler]l.html> accessed on 3/11/98). Hence Java
applets are more common and should be brought into this reverse engineering discussion.

30

oriented programming language and capable of doing multithreading,®* a program
written 1n Java can be separated into many software “objects”, which can be described
as software building blocks. Each object is responsible for carrying out a set of
related tasks. Therefore, the programmer can simply assemble objects to create a new
computer program and make use of reusable components. This programming
technology has resulted in a valid practice of using objects from existing programs to

63 :
For this reason, the programmer often uses reverse

create a new program.
engineering techniques to retrieve objects from existing Java programs readily
available on the Internet. This is also due to the fact that Java programs in the
bytecodes form can be decompiled easily, and such a practice is currently widespread.
The object-oriented feature of the Java programming language is considered relevant
In the context of this thesis’ proposed framework because it is an important factor that

will impact the courts’ method of determining infringement.

To summarise, it can be seen that reverse engineering has played an important role in
the software industry because it is the only way to recover information and understand
how the systems work, when the source code and necessary documents as well as
personnel are not available for consulting. Despite the fact that computer technology
has now advanced to the point that in certain circumstances there is no need to reverse
engineer operating systems in order to retrieve the interface code for creating a
compatible application program, there is still the need to retrieve the interface code
between application programs. Furthermore, the object-oriented programming
technology leads to the increase of reverse engineering practices. Therefore, the need

for reverse engineering remains apparent in the software industry.

° Multithreading is the ability for one program to do more than one thing at once, for example, printing
while getting a fax. The benefits of multithreading are better interactive responsiveness and real-time
behaviour. |

** The procedure-oriented programming techniques are things of the past. The procedure-oriented
techniques create what is called an algorithm. Thus, to create a program in the past, the programmer
has to decide first how to manipulate the data, i.e. how to arrange the algorithm, and then decide what
structure to 1impose on the data in order to make the manipulations easier. Object-oriented
programming reverses the order. The programmer has to put data structures first, then looks at the

algorithms that operate on the data.

31

4. LEGAL PROBLEMS PRESENTED BY THE PRACTICE OF

REVERSE ENGINEERING

Leading software manufacturers argue that the practice of reverse engineering causes
commercial problems to them because they may not be able to keep information
contained in their computer programs secret or to hide the ideas of their programs
under object code. Moreover, they are anxious that the practice of reverse
engineering would lead to a high level of software piracy, in terms of piratical

copying or using their creative ideas in the programs.

They also argue that their computer programs distributed in the market normally
contain valuable information which their competitors target on in order to steal and
use that information to produce a rival product or, in the worst case, to copy illegally
and resell at very low price. Therefore, commercial problems flowing from an
inability to keep ideas and information secret are that they may lose the market share
owing to the increase of competing products or infringing copies of their programs.
Moreover, if they lose a monopoly in the market too quickly, they would not even

hope to recoup the investment that has been put in developing their products.

However, these commercial problems have been solved by copyright law, although 1n
practice the enforcement of copyright law may not be sufficiently effective in some
countries. Copyright law effectively solves these commercial problems because it
provides legal pfotection for computer programs® and provides for the holder of
copyright the exclusive rights that include the rights to perform acts necessary for the
process of reverse engineering. Thus, copyright law makes the process of reverse
engineering a breach of copyright if it is performed without an authorisation from the

copyright holder, as will be explained later in this section.

In some countries, such as the United States, those commercial problems are also

solved by trade secret law which provides protection for secret information against

% Apple Computer, Inc. v Franklin Computer Corp. 714 F.2d 1240 (3" Cir. 1983) for the United States
and the Copyright Designs and Patents Act 1988 section 3(1) for the United Kingdom.

32

acquisition by “improper means”.® Therefore, the software manufacturer can use

trade secret law to protect information contained in source code of their computer
programs 1f reverse engineering is considered to be an improper means of acquiring

66

information.” In principle, these two protections give a sufficient solution to the

commercial problems arising from the practice of reverse engineering.

However, in the United Kingdom, the law of breach of confidence (the most
equivalent of trade secret law) does not generally extend to a situation where there is
no obligation of confidence. To bring an action based on the law of breach of
confidence to protect information contained in a computer program, the plaintiff has
to establish that there is a confidential relationship between the plaintiff and the
defendant. In the case of the practice of reverse engineering by a party not in a
confidential relationship, any obligation must be imposed involuntarily by the law but
in the United Kingdom the law seems remarkably reluctant to intervene.®’ This is
because the breach of confidence action is designed to protect the relationship of
confidence between the confider and the confidee, rather than to protect the
information itself.°® Therefore, in the United Kingdom, copyright law is mainly used

to prevent the practice of reverse engineering.

The exercise of these two rights by the manufacturer (the copyright holder), where
applicable, may create commercial problems for small and medium size companies,
the user of programs and third parties, 1.e. problems arising from inability to perform
reverse engineering for legitimate reasons. In the United Kingdom, this kind of
commercial problem, arguably, arises chiefly from the exercise of copyright law, not

from the law of breach of confidence. This 1s because the law of breach of confidence

° However, some controversy arises over the validity of the application of trade secret law to this area.
The source of the difficulty was the explicit provision in the Constitution (Art. 1 sect. 8 ch. 8)
authorising federal patent and copyright law, and its consequent enactment. In two leading cases in
1964 (Sears Roebuck & Co. v Stifel Co. 376 U.S. 225 (1964); Compco Co. v Daybright Lighting Co.
376 U.S. 234 (1964)), the Supreme Court was unanimous in holding that the supremacy of federal law
implied that state law could not by-pass the restricted ambit of federal patent or copyright protection
under the guise of providing remedies of a different conceptual character. See Colin Tapper, Computer
Law (4" ed.) (Longman: London, 1989) p. 79-84.

°® However, it should be noted that trade secret law in the United States is a state, not a federal issue.
For example, the trade secret law in California is the Californta Uniform Trade Secrets Act (Dennis
Campbell (ed.), International Information Technology Law (John Wiley & Sons: Chichester, 1997) p.
378.

°7 Chris Reed, Computer Law 3™ ed. (Blackstone: London, 1996) p. 230.

33

has a limitation in its application as stated above. Copyright law applies to most
situations, even in the absence of a contract or relationship between parties. As
copyright law in most countries has the same basis, this thesis chooses to base the
discussion on the Copyright Designs and Patents Act 1988 in explaining why reverse
engineering infringes copyright and why the exercise of copyright may create
commercial problems. The thesis argues that these commercial problems destroy the

balance between the public interest and the interest of the copyright holder.

4.1 Why reverse engineering infringes copyright

Reverse engineering infringes copyright because its process 1nvolves the acts
restricted by copyright. In this part, two main sections of the Copyright Designs and
Patents Act 1988 (the CDPA 1988) will be illustrated and considered briefly. It 1s
helpful to make it clear that the CDPA 1988 provides for the copyright holder six
exclusive rights,®” two of which are relevant to the discussion in this part, namely the
right fo copy the work and the right to make an adaptation of the work. The
relationship between the process of reverse engineering and these two exclusive rights

will be considered below.

4.1.1 Act of reproduction

As described in Chapter one, the process of decompilation (the first method ot reverse
engineering) will inevitably involve reproduction of multiple copies of the object code
of the target program by the decompiler, a computer program assisting the

programmer in performing a reverse engineering task.”” Hence, the exclusive right to

% Margaret Jackson, The Development of Australian Law to Protect Undisclosed Business Information
(PhD thesis, Law School, The University of Melbourne, 1998) p. 169.

®® Section 16: The acts restricted by copyright in a work

The owner of the copyright in a work has, in accordance with the following provisions of this Chapter,
the exclusive right to do the following acts in the United Kingdom-—

(a) to copy the work;

(b) to issue copies of the work to the public;

(ba) to rent or lend the work to the public;

(c) to perform, show or play the work 1n public;

(d) to broadcast the work or include it in a cable programme service;

(e) to make an adaptation of the work or do any of the above in relation to an adaptation.

" The decompiler is also referred to as a reverse engineering tool.

34

copy is infringed, according to section 17.”' Although the copies created by the
decompiler may not be obvious to the naked eye or may be stored temporarily in an
electronic form in Random Access Memory (RAM), it is sufficient to constitute an

infringement of copyright according to section 17 (2) and (6).

In respect of the process of “black box” reverse engineering, the exclusive right to
copy may also be infringed, although the decompiler is not employed. This is because
computer programs are normally licensed to the user and the licence is usually limited
to the normal use of the program. Analysing the program by “black box” reverse
engineering 1s arguably outside the scope of the normal use. Hence, if the program is
loaded or run for the purpose of “black box” reverse engineering, it may be deemed

that an unauthorised copy is created.

4.1.2 Act of adaptation

In the process of decompilation, the creation of representations of the program in
another form falls squarely within the description of infringement by adaptation in

1.”> The act of converting a computer code either from object code to

section 2
assembly code or from assembly code to source code falls within the meaning of
“translation” which is in turn included in the definition of “adaptation”.”” The process
of “black box” reverse engineering, on the other hand, does not involve the
conversion of object code at all. Thus, 1t will not infringe the exclusive right to make

an adaptation of the work.

"' Section 17: Infringement of copyright by copying
(1) The copying of the work is an act restricted by the copyright in every description of copyright
work; and references in this Part to copying and copies shall be construed as follows.
(2) Copying 1n relation to a literary, dramatic, mustcal or artistic work means reproducing the work in
any material form.

This includes storing the work in any medium by electronic means. ...
(6) Copying in relation to any description of work includes the making of copies which are transient or
are incidental to some other use of the work.
2 Section 21: Infringement by making adaptation or act done in relation to adaptation
(1) The making of an adaptation of the work is an act restricted by the copyright in a literary, dramatic
or musical work. ...

(3) In this Part “adaptation”- ...
(ab) 1n relation to a computer program, means an arrangement or altered version of the program or a

translation of it ...
(4) In relation to a computer program a “translation” includes a version of the program in which it is

converted into or out of a computer language or code or into a different computer language or code.

35

4.2 Legal problems

The very legal problem of protecting a computer program under copyright law is that
the classification of a computer program as a literary work results in the extension of
the scope of copyright protection to ideas behind the computer program. This 1s
because the practical means of accessing the ideas of a computer program is via
reverse engineering which 1s technically prohibited as it infringes the exclusive right
of the copyright holder as shown in section 4.1. As it is recognised internationally
that copyright protects expression, not the ideas of expression,’* exercising copyright

to forbid the practice of reverse engineering goes far beyond the scope and intention

of copyright law.

The exercise of copyright to prevent an access to the idea in a computer program also
creates 1nconsistency in copyright protection of literary work. While traditional
literary works like books of fiction allow the user (the reader) to access the ideas
easily, the modern literary work which is a computer program does not allow so.
Theretore, it can be seen from the comparison between traditional literary works and
computer programs that the extension of copyright protection to computer programs
distorts the main principle of copyright law, namely that only expression of the idea is

protected, not the idea itself.

S. COMMERCIAL PROBLEMS FLOWING FROM THE EXERCISE OF

COPYRIGHT LAW

According to the legal problems of reverse engineering discussed above, the
following questions are whether the legal problems will lead to commercial problems
in the software industry and, if so, who are affected by the commercial problems, and

whether this will affect the economics of the community. In short, the issue is

> See (general discussion and comparison to previous Acts) Henry Carr and Richard Arnold, Computer

Software 2™ ed. (Sweet & Maxwell: Oxford, 1992) p. 91-103.

* See M. Lehmann and T. Dreier, ‘The Legal Protection of Computer Programs: Certain aspects of the
Proposal for an (EC) Council Directive’ [1990] Computer Law & Practice 92, 94. They argue that the
distinction between the freedom of ideas and the exclusive protectability of their expression is well
known to all continental copyright systems, such as France, Italy and Germany.

36

whether the inadvertent protection of a program’s ideas will unfairly hinder the

advancement of innovation in the software industry.”

This thesis endeavours to illustrate that the answer will be in the affirmative because it
can be seen that the pendulum of protection has swung from being inadequate to a
level that impedes competition.’® To answer the issues clearly, the thesis begins with
the discussion of commercial problems stemming from the protection of ideas (by not
permitiing reverse engineering). This will be followed by the discussion as to
whether the commercial problems need to be solved. The economic reason will
support a cogent argument that these commercial problems need to be solved as
quickly as possible because inappropriate legal protection for computer programs can
affect the pace of technological advancement in the software industry and the extent

to which this advancement is disseminated and used in the economy.’’

The commercial problems flowing from the undue exercise of copyright can be
separated into two areas, namely, commercial problems in software development and
In software maintenance. Since the software manufacturer can now protect ifs
software under copyright law, the parties who suffer from commercial problems can
be said to be the user of software and the third party who wishes to enter the same
market. Thus, this thesis defines “commercial problems” as the inability of
individuals and companies to perform software reverse engineering legally for their

businesses, which may lead to financial difficulties.

5.1 Commercial problems in software development

To analyse commercial problems in software development efficiently and
realistically, this thesis looks at the software development market as consisting of

three groups. The first group consists of leading companies or major software

> Gary R. Ignatin, ‘Let the Hackers Hack: Allowing the Reverse Engineering of Copyrighted
Computer Programs to Achieve Compatibility’ (1992) 140 University of Pennsylvania Law Review

1999, 2015.
’® The CLRC Recommendations on Reverse Engineering and Decompilation: Giving Local Developers

an Equal Right to Compete (Executive Summary) <http://www.sisa.org.auw/SISASubmissionl.html>
accessed on 25/5/98. See also the Powerflex case.

" “The OTA Report — Background Paper — Summary, Overview and Issues’ [1990-91] 4 The
Computer Law and Security Report 11.

37

manufacturers who dominate the software market. For the ease of understanding, the
first group 1s referred to as the “insider”. The second group comprise small and
medium size companies which have a minor share in the software market and which
attempt to enter the market. They are referred to as the “outsider”. The last group is
called the “consumer” who may be companies or individuals who use software of the

insider for their businesses.

In this analysis, the thesis assumes that the insider is free of commercial problems
arising from the practice of reverse engineering because it can employ copyright law
to prevent such practice by others. The thesis now turns to consider what are the

commercial problems for the outsider and the consumer in not being able to perform

reverse engineering.

For the outsider, the prohibition of reverse engineering will lead to three main direct

commercial problems. There are as follows:

1. inability to develop interoperable products;
1. inability to develop competing products; and
1il. inability to develop other products which are based on the same ideas and

principles but which do not compete or are not interoperable with the product

of the insider.

These three problems are derived from the same basis, that is, the outsider cannot
ascertain ideas, principles and interface specifications of the product of the insider by
using reverse engineering techniques. Without the assistance of the reverse
engineering technique, it would be impossible for competitors to develop competing
software products since it is necessary to understand how a program functions before

7

one can develop a competitive or compatible program,”® and frequently external

constraints often dictate conformity with indusfry’s standards of format and

expression.”” These commercial problems will prevent the outsider from entering the

’® Kathleen Gilbert-Macmillan, ‘Intellectual Property Law for Reverse Engineering Computer
Programs‘in the European Community’ (1993) 9 Computer & High Technology Law Journal 247, 256.
” Linda G. Morrison, ‘The EC Directive on the Legal Protection of Computer Programs: Does It Leave
Room for Reverse Engineering Beyond the Need for Interoperability’ (1992) 25 Vanderbilt Journal of
Transnational Law 293 at 324, Interoperability can only be achieved if the developer knows the rules

38

market or from retaining its small market share. This is because the consumer may be
locked info the product of the insider and the only way for the outsider to enter the
market 1s to create a program which conforms to the de facto standard created by the
insider’s product, that is to produce a product compatible with the insider’s product.80
A number of the European Community-based outsider operates in the software market
by developing add-on or substitute software products designed to interoperate with
the products of the American outsiders or to emulate their functionality.’’ These
outsiders inevitably rely upon a degree of openness and the ability to analyse
competitor’s products by reverse engineering, which leads to copying of portions of
code and in some instances whole programs.®* The undue exercise of exclusive rights
by the insider may result in the hindrance of the development of a new product by the
outsider. This 1s because in the software industry the nature of developing a new

product usually requires building upon the ideas and functions of existing product,™

which is in turn assisted by the practice of reverse engineering to glean those ideas.

The outsider may also face difficulty in attempting to retain its market share because
the insider may slightly change the standard so that the existing product of the
outsider is not compatible with the insider’s product which still holds a majority of the
market share. Moreover, the commercial problem, which arises from the inability to
make use of existing resources such as ideas and principles of the product of the
insider, may result in unnecessarily greater capital being required for developing a
new program based on existing ideas and principles. Frequently, software licensing
for the use of specifications necessary for creating a new compatible product may
incur unreasonable expense to the outsider. Therefore, inability to perform reverse
engineering lawfully may prevent small companies from developing programs of the
same type (which may effectively prevent them from entering the market) or creating

a new section of the software market.

of interconnection with the other systems (The CLRC Executive Summary,
<http://www.sisa.org.aw/SiSASubmissionl.html>).

%0 Gilbert-Macmillan, supra note 78, at 250.

81 Eric Alexander Dumbill, ‘EC Directive on Computer Software Protection’ [1991] Computer Law &
Practice 210. ¢

82 Jonathan Owens, ‘Software Reverse Engineering and Clean-Rooming, When Is It Infringement?”
(1993) 9 Computer & High Technology Law Journal 527, 528.

5 John A. William, ‘Can Reverse Engineering of Software Ever Be Fair Use: Application of
Campbell’s “Transformative Use” Concept’ (1996) 71 Washington Law Review 255, 269.

39

Finally, these commercial problems may lead to a decrease of competition, which, in
the end, may create a monopoly in the software market. A monopoly in the market
may result in few varieties of products and retard the development of technoln:)gy.84 It
1s suggested that when a monopoly occurs the incentive of the software manufacturer
to develop a better product will be reduced.® Hence, the advancement of technology
will be stifled. Thus, it can be concluded that over-enhanced protection is likely to
impair competition and innovation, in so far as it limits the opportunities to write
software which can interoperate with, or emulate, the functions of the products of the
insider. This situation 1s not only in conflict with competition policy but also in
contrast to the intention of copyright law which aims to promote the development of

science and technology.86

From the consumer’s point of view (companies and individuals), the exercise of
copyright law to prevent the practice of reverse engineering will create the following

problems:

1. inability to develop (enhance) the software purchased (licensed) from the

insider; (this category overlaps with the first category of software

maintenance)

1. inability to develop their own software that is compatible with the purchased
software;

111. inability to create their own software based on the purchased software for their
own use.

All three types of inability can be described as commercial problems because they
may result in the consumer’s inability to improve productivity, to improve efficiency

in management, or to improve the quality of the product.

% Lawrence D. Graham and Richard O. Zerbe, Jr., ‘Economically Efficient Treatment of Computer
Software: Reverse Engineering, Protection, and Disclosure’ (1996) 22 Rutgers Computer &

Technology Law Journal 61, 71-78.

%> Dumbill, supra note 81, at 210.

% <[Clopyright law does not give rise to monopolies. At least, in principle, it should not do so.’ See
David Bainbridge, Software Copyright Law 3" ed. (Butterworths: London, 1997) p. 13. See also U.S.
Constitution Article I, § 8, cl. 8.

40

In many instances, the consumer’s need to improve productivity of his goods is
frustrated because his software system cannot be enhanced as his programmers or a
third party company cannot understand the system well enough to modify the system.
From time to time, the consumer may need to produce an additional program which
can interoperate with the system that he purchases from the insider in order to
improve productivity or to improve efficiency in management. Moreover, the
enhancement of the purchased system or the creation of a new program, compatible
with the purchased system, may be done for the purpose of improving the quality of
the product itself. This 1s to maximise the return on the investment in the purchased
system. Maximising the return can also be done by developing, for the consumer’s
own use, his own program based on the purchased system. The program developed as
such can be designed to be used for the same purpose or a ditterent purpose which

may not atfect the business of the insider.

The three types of the consumer inability may create a chain of commercial problems
that affect the business of a third party company who offers software development
services. Normally, the third party company i1s called in to help in the development of
the system, particularly the legacy system. The prohibition on the practice of reverse
engineering may considerably damage the business of the third party company as
there may be no other way to understand the system before making changes and
development. The consumer i1s also normally limited by a software contract to
perform the acts of copying and adaptation so far as it necessitates the use of the
program only, but not to authorise a third party company to do the acts restricted by
copyright. In addition, the software licensing usually states clearly that reverse
engineering is not permitted.®” Therefore, the consumer and a third party company
are not only restricted by copyright law, but also bound by contractual obligations not

to perform reverse engineering.

To sum up, it can be seen that inability to perform reverse engineering legally will
lead to many different commercial problems and the problems are not limited to the

software industry. It extends to other businesses which rely heavily on computer

systems.

41

J.2 Commercial problems in software maintenance

Commercial problems in software maintenance may also arise from the exercise of
exclusive rights by the manufacturer who supplies the software. In the process of
software maintenance, the understanding of the system 1s crucial. Without the use of
reverse engineering techniques, software maintenance tasks could not be executed

easily, if the documentation of the system is not complete.88

Frequently, the software maintenance task 1s not carried out by the manufacturer who
supplies software, but by the end-user company’s programmers or a third party
company who specialise in maintaining software systems. If the end user or the third
party company cannot perform reverse engineering, 1t means that they may not be
able to maintain their system properly, particularly if the system 1s a “legacy”
system.”” For the purpose of analysis in this part, the “insider” means the software
manufacturer who supplies software to the consumer and provides a maintenance
service as part of its business. Companies being the “outsider” are those which offer

maintenance services in competition with the insider.

The main commercial problem flowing from a ban on reverse engineering 1s that the
consumer may not be able to perform software maintenance for his own software and
the outsider may not be able to carry out software maintenance services.” However,
the term “software maintenance” is too wide to define specific commercial problems.
Therefore, the term “software maintenance” needs to be clarified. The IEEE Standard

Glossary defines software maintenance as:

The process of modifying a software system or component after delivery to

correct faults, improve performance or other attributes, or adapt to a changed

environment.

" However, because of the legal response to these problems, many software contracts have been

amended accordingly.
** Gilbert-Macmillan, supra note 78, at 259.
* Please see the definition of “legacy system” in the abbreviations & definitions part at the beginning

of this thesis.
*® Clifford Chance, The European Software Directive at p. 7.

42

According to this definition, software maintenance can be classified into four types —
perfective, corrective, adaptive and preventive. Each of these types of software
maintenance requires the understanding of the detailed aspects of the system prior to
making changes to the system. Therefore, the ban on reverse engineering may result

in four different commercial problems as follows:

(The consumer and the outsider are)

1. perfective: unable to modify or enhance the existing functionality or
performance of software; (this type of problem overlaps with the problem in
software development as discussed previously)

1. corrective: unable to correct error;

111. adaptive: unable to make changes to software necessary to adapt it for a
change of the supporting environment, network or hardware platform;

iv. preventive: unable to take actions necessary to make subsequent maintenance

of application software more efficient and reliable.

These commercial problems may result in, first of all, the loss of investment in the
system. In some cases, the consumer may not yet have recouped any benefit from his
investment in the current system. When the system breaks down, he will need a large
budget to restore the system or to purchase a new one. This makes the consumer not
only unable to maximise the return on the previous investment, but also having to

spend capital for a new investment, which may atfect its financial stability.

Moreover, 1f the system breaks down due to poor maintenance, the consumer may
lose data contained in the defective system and this will incur expense in re-entering
the data. If the consumer is involved in servicing businesses, the failure of
maintenance of software may aftect his management efficiency, thereby, the standard
of his company may not be maintained. At present, competition in most market
sectors 1s very high and the success of many companies relies on the efficiency of its
computer system. Therefore, commercial problems derived from an inability to
maintain software cannot be ignored since such commercial problems may put

companies at the risk of being liquidated.

43

Commercial problems, which arise from the inability to change or modify software
for a new environment, network or platform, may cause the consumer to encounter
difficulties by being rejected from other companies which employ a different
technological standard. For example, if the communication among companies or
between the consumer and his clients needs to be through an open system and the
consumer 1s unable to adapt his system to conform to such a system, he will have

difficulty in operating his business. He may then be forced to go out of the business.

Finally, for the “preventive” maintenance, the consumer’s inability to analyse the
quality of the code whilst maintaining the system in order to evaluate the impact of
future changes or to make subsequent maintenance of the software more etficient and
reliable — may have a far-reaching effect. An application of “preventive”
maintenance is obvious in the late 1990s. Y2K problem is a good example for the
need for “preventive’ maintenance. If the consumer could not prevent this potential
error, the problem would clearly affect their software system which in turn would
affect the management of the company. Therefore, it can be seen that if the practice
of reverse engineering 1s not permitted, many companies will not be able to prepare
themselves for the impact of the future changes and this will atfect the prospenty of

the companies.

6. CONCLUSION

From the commercial problems described above, it is necessary to consider whether
those commercial problems need to be solved. The factor, which is frequently used to

evaluate the appropriateness of legal intervention to solve the commercial problems,

1

is usually the economic impact of the commercial problems.”’ If the commercial

problems do not badly impact upon the economics of the society as a whole, then
there is no need of legal intervention. On the other hand, if they actually affect
society in the way that the public interest is prejudiced, such legal intervention
becomes necessary. It i1s suggested that the public interest be best served by

encouraging technical progress, even where i1t means that original works can be

’! Tt is sometimes said that enormous economic importance is attached to decompilation or ‘reverse
engineering’ of interfaces. See Andreas Wiebe, ‘European Copyright Protection of Software from a
German Perspective’ (1993) 9 Computer Law & Practice 79, 83.

44

reproduced, both cheaply and easily. It is essential to foster a legal environment
which favours creativity, innovation and compniatiti(.m.’:“2 Therefore, in this context, the
underlying rationale is that there should be no overprotection of intellectual industrial
quasi-monopoly-rights. This would avoid the possibility of there being a barrier of
entry for competition and, more generally, would never hinder competition more than

is absolutely necessary to allow the author his adequate market participation.”

As can be seen from the discussion in the previous section, the commercial problems
(inability to enter market in both software development and software maintenance)
will directly result in a decrease of competition in the software market. The European
Committee for Interoperable Systems (ECIS) confirms that the strong protection of
computer programs that creates the commercial problems would have the effect of
stifling innovative competition from, at leést, interoperable products.” ECIS
illustrates clearly from the business perSpective‘ that the small and medium size
companies’ commercial problems will result in a reduction of competitive supply of
compatible products. This will also inhibit the growth of small and medium sized
European suppliers of computer products intended for open systems, and jeopardise
the future entrepreneurial producers of computer products who depend upon access to
interfaces in developing innovative and competitive products.”” Likewise the EC
Commission appears to be aware of the fact that a strong copyright protection would
reduce competition in the software industry.”® The decrease of competition would
eventually create a de facto monopoly in the software market; an unwanted situation
that the EC seeks to avoid. Some monopolies, it can be said, are extended to services

beyond the scope of copyright, such as maintenance or systems integration.”’

Monopolies in the software market are considered undesirable because they will
hinder free exchange of ideas and, therefore, stifle innovation.” Moreover, because a

monopoly will curb competition on proprietary systems, it will adversely attect the

°2 European Commission Green Paper on Copyright [(1) COM (88) 172], [1988] 3 The Computer Law
and Security Report 8.

> Lehmann and Dreier, supra note 74.

’* Mark Powell, ‘The Software Directive’ p. 5.

> ECIS, ‘The Proposed EC Directive on the Legal Protection for Computer Programs: Position
Statement’ [1990] Computer Law & Practice 97, 98.

% 1.ehmann and Dreier, supra note 74, at 93.

’’ Powell, supra note 94, at 5.
”8 Gilbert-Macmillan, supra note 78, at 260.

45

emergence and growth of open systems, and the creation of an open market for the
information industry. This will in particular deprive European consumers of access to

innovative and competitive products because the European software industry will be

99

placed at an extreme disadvantage in the international marketplace.” It will also

thwart the maintenance of open interfaces in other industries, such as in the
telecommunications industry.'® As computer programs have been essential to recent
advances in biotechnology, communications, transportation, manufacturing and
virtually every other field of study, the improper protection of computer programs
will have ramifications far beyond the perimeters of the software industry.'”’
Therefore, it can be seen that the legal protection of computer programs without
permitting reverse engineering will cause the copyright holder’s right and the public
interest to become unbalanced because copyright protection can be used by the

copyright holder as a mechanism to impede competition and extract monopolistic

profits from consumers.

In solving such problems, the underlying policy is normally consulted and it has been
widely accepted- that the law should permit reverse engineering. This 1s because
although the software manufacturer may lose the exclusive right to control the
derivative market and the maintenance market, society would gain from the increase

102

of competition which would advance the technology. ™ If society’s gain outweighs

the loss to the copyright holder, the justification of reverse engineering 1s deemed to
be satisfied.'® Indeed, authorities in many countries have agreed that permitting
reverse engineering will encourage the free flow of non-protected ideas and stimulate

the creation of new forms of expression of those ideas for the public benefit'”*, and

*> ECIS Position Statement, supra note 95, at 98.

'* Ibid.

' Ignatin, supra note 75, at 2022.

'92 paul Durdik, ‘Reverse Engineering As a Fair Use Defense to Software Copyright Infringement’
(1994) 34 Jurimetrics Journal 451, 465.

' Morrison, supra note 79, at 323. She refers to J.H. Reichman, ‘Computer Programs as Applied
Scientific Know-How: Implications of Copyright Protection for Commercialized University Research’
(1989) 42 Vand. L. Rev. 639, 699 n. 312

'% The CLRC Executive Summary p. 7 of 11. It is also generally accepted in US copyright law that
compatibility within the computer industry is in the interests of the general public (Daniel Hayes,
‘London Branch Report: Reverse Engineering — The American Experience’ [1994]) Computer and Law

13).

46

will be consistent with the purpose of copyright, i.e. to promote the progress of

science and the useful arts.'?”

However, the extent to which reverse engineering is permitted varies from one
country to another. This thesis will examine in the next chapter whether the extent to
which reverse engineering is permitted in the European Community, the United

Kingdom and the United States, can solve the commercial problems addressed above.

' U.S. Const. Art. 1, § 8, cl. 8. It can be seen that the potential rewards of open systems, which are the
result of the legality of reverse engineering, are so great that many organisations within central and

local governments and the armed forces have already started to put in place open systems strategtes.
Many private sector organisations are now moving in the same direction (Clifford Chance, The

European Software Directive, p. 8).

47

CHAPTER THREE

THE CURRENT LEGAL RESPONSE AND ITS

DEFICIENCY

-

. Introduction
2. Software Directive
2.1 The direct answers
2.1.1 Inability to develop interoperable products
2.1.2 Inability to perform corrective maintenance
2.2 The unsolved proble<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>