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Water delivery arrangements in irrigation systems range from completely fixed where 
duration, discharge and start time are set once and seldom or never change to on-demand, 
where users can take water whenever they need it in whatever quantity desired. In between 
these two extremes lies a range of arranged-demand systems where duration, discharge 
and/or start time are flexible to a certain degree but are agreed upon before the irrigation 
event takes place. 

This thesis shows how arranged-demand scheduling can be interpreted as a single or 
multi-machine scheduling problem. Mixed integer linear programming is used to develop 
a series of models that allow scheduling of irrigation turns in a wide range of irrigation 
systems. Given that duration and target start time of the irrigation turns are specified by the 
users, the objective of all models is to find a schedule such that the difference between 
target start time and scheduled start time are as small as possible. 

Two types of models are presented that reflect different management options at 
tertiary level. Contiguous scheduling schedules irrigation turns back-to-back so that 
operational spillage and/or gate operations are minimised. In non-contiguous schedules 
idle time can be inserted in between irrigation turns, which allows greater opportunity to 
match target start times with scheduled start times. Travel times play an important role in 
open channel irrigation systems and need to be taken into account when determining 
irrigation schedules. In pressurised systems on the other hand, travel times are non-
existent. Models that incorporate travel times as well as models without travel times are 
presented to demonstrate scheduling of irrigation turns in both open channel and 
pressurised irrigation systems. Irrigation systems that operate under a sequential irrigation 
schedule are well represented by the single machine problem, in which water is seen as a 
machine that processes jobs (users) one-by-one. Where users irrigate simultaneously water 
can be seen as consisting of several machines (or stream tubes) that each process a 
separate job. In simple multi-machine scheduling all users receive the same discharge and 
each job is processed by one stream tube. In irrigation systems where discharges vary from 
user to user, complex multi-machine scheduling, in which each job can be processed by 
more then one machine, can be applied to obtain a schedule. In this thesis models are 
presented that allow single machine scheduling, simple multi-machine scheduling and 
complex multi-machine scheduling. 

An irrigation interval is not a one-off event, but part of an irrigation season. 
Scheduling decisions made during previous intervals can be used to influence scheduling 
decision made for the coming interval. By adjusting the costs of water being delivered 
early or tardy, it is possible to give priority to those users who were disadvantaged in 
earlier intervals. A method is presented that can determine appropriate earliness/tardiness 
costs. Finally the earliness/tardiness index is presented. This index is a measure of the 
fairness of a schedule or series of schedules. 
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Notation 
Sy = travel time for channel section b, 
b = index representing channel section 1,2,...,5, 
B = total number of sections between user i and user j, 
c = large constant; 
C, = scheduled completion time of job i; 
Cf. = scheduled completion time of the job in position t , 
dj = duration of job i\ 
df* = sequence dependent duration of job i if job i directly precedes job 7; 
dj = duration of job 7; 
dj. = duration of job in position &; 

= duration of job in position m; 
d^ = duration of job «; 

= earliness of job z; 
Efp = earliness of job i in interval p\ 
E^. = earliness of the job in position k\ 
^max = maximum allowable earliness; 
g = irrigation interval over which all jobs must be completed; 

= I when user i irrigates during period p, 0 otherwise. 
i = index representing job 1,2,...,TV; 

= initial setup time 
j = index representing job 1,2,...,#; 
k = index representing position 1,2,...,7V in a schedule; 
Zj = length of channel section b, 
m = index representing position 1,2,...,^ in a schedule; 
M = a large positive number; 
n = index representing job 1,2,...,#; 
N = number of jobs to be scheduled; 
p = index representing interval 1,2,...,P; 
P = current interval; 
p, = processing time of job i\ 

= processing time of the job in position m\ 
q = size of machine (discharge of stream tube); 
Q - set of jobs to be scheduled; 

= channel capacity; 
9, = due date of job z; 
Qi = discharge required for job z; 

= due date of the job in position t , 
r, = target start time for job z; 

= target start time of the job in position b. 
Si = scheduled start time of job z; 
Sj = scheduled start time of job 7; 

= scheduled start time of the job in position t , 
= travel time for channel section b\ 

Tj = tardiness of job z; 
ty = sequence dependent setup time from user i to user7; 

= tardiness of job i in interval p; 
tji = sequence dependent setup time from user7 to user i; 
% = tardiness of the job in position k; 
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Tmax ̂  maximum allowable tardiness; 
V = set of machines available to process jobs; 

= velocity in channel section b, 
w = index representing machine 1,2,..., 

= idle time preceding the start of the first job in the schedule; 
= idle time preceding the start of the first job of the schedule on machine w; 

Xij = idle time proceeding the end of the last job in the schedule; 
Xf̂ ^ = idle time following the end of the last job of the schedule on machine w; 
X .̂ = idle time inserted directly before the job in position t , 
X„, = idle time inserted directly before the job in position m; 
Z = objective function; 
a = earliness penalty cost per unit of time; 
a,- = cost of earliness per unit of time for j ob / ; 

= earliness cost of job of joby in interval/?; 
P = tardiness cost per unit of time; 
P,. = cost of tardiness per unit of time for job /; 

= tardiness cost of job y in interval 
Yy = binary variable; 
dy = binary variable; 

= binary variable 
= binary variable 
= binary variable 
= binary variable 
= binary variable 

(p,y„ = binary variable 
cp^ = binary variable 
Sp = earliness-tardiness index; 
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1 Introduction/background 

1.1 Irrigation 

It is estimated the world's population will increase to 8 billion in the next three decades. 

Planners project that the food production increase needed to match population growth will 

have to come from irrigated agriculture. Currently 17 percent of the world's agriculture is 

irrigated, accounting for around 40 percent of the total food production (Skogerboe, 2000). 

Increasing the irrigated agricultural area however is not an easy answer to the problem of 

increasing food production. Water is becoming more scarce through competition from 

urban and industry sectors and the environment. Land suitable for (irrigated) agriculture 

has had to be given up to meet urban and industry demands or has been lost due to 

salinisation and high ground water tables. The increased productivity of irrigated 

agriculture will have to come from improved performance and better irrigation water 

management (Clyma and Reddy, 2000). 

Surface irrigation -furrow, basin and border- is still the predominant method of 

irrigation (Clyma and Reddy, 2000). The majority of irrigation projects around the world 

have some type of rotation delivery (Plusquellec et al., 1994). It consists of granting each 

of the users (or group of users) of a tertiary canal the exclusive use of the available water 

for a certain duration, turning the water over to the next user when the allocated time has 

passed. After each user has had a turn, the cycle is repeated (Rathod and Prajapati, 1998). 

Rotation schedules require relatively low capital investment in infrastructure and involve 

the least water-agency management and operational input. They are relatively easy and 

cheap to implement and the required skill level of both field staff and user is low 

(Replogle, 1987). On the negative side rotation schedules allow very little flexibility. Flow 

rates, duration and start time are very often fixed for an entire growing season or even 

longer. Users do not always get water when needed most or may get water when it is not 

wanted at all. Rotation schedules can result in inefficient irrigation, over-irrigation or 

under-irrigation, which in their turn can lead to yield reduction, high ground water tables 

and/or salinisation. 

At the other end of the surface irrigation spectrum is on-demand irrigation. The 

principle of this type of irrigation is that water is available at any time, for any duration 

and at any flow rate. In practise there are some limits to the maximum available flow rate 
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and in most on-demand systems some advance notice (usually 24-48 hours) is required 

before an irrigation turn can start (Burt and Styles, 2000; McComick, 1993). The initial 

capital investment in infrastructure of on-demand irrigation systems is large. Sufficient 

system capacity is needed to meet demands if several users in a tertiary unit require water 

simultaneously. A major storage reservoir or pumping facilities may be needed to meet 

peak demands. Since requested flow rates may differ from user to user or from irrigation 

turn to irrigation turn, regulatory structures are needed. Staff with high skill levels are 

needed to operate the system, take water orders, determine delivery schedules etc. Farmers 

may need training to be able to order the appropriate flow rate, duration and time for 

irrigation turns (Merriam, 1987). The danger of inefficient irrigation, over-irrigation and/or 

under-irrigation still exists, but if managed properly on-demand irrigation can give a user 

the opportunity to grow crops efficiently and economically whilst meeting environmental 

demands (Cross, 2000). 

Clearly, users could benefit from on-demand irrigation. Currently 93 % of the 

irrigation districts in Mid-Pacific Region of the United States operate on a unlimited 

frequency basis, i.e. users are free to choose the day they receive water (Burt and Styles, 

2000). Outside the United States however, most irrigation systems still operate on rotation 

schedules (Burt, 2000). Many of these systems operate under protective irrigation rules, 

where the major objective is to spread the available water to the largest possible area to 

prevent drought and famine. Since the basic requirement for an on-demand supply system 

is the availability of unrestricted and variable amounts of water during the growing season, 

it is not possible to convert systems under protective irrigation to on-demand irrigation 

unless new water sources become available or the irrigated area is decreased. In irrigation 

systems where sufficient water is available, the introduction of on-demand irrigation 

would still require large investments in hardware (structures as regulators, spillways, etc. 

and communication system) and software (institutions, management and training) (Sarwar 

et al., 2001). The facilities required for measured and controlled delivery, which are both 

essential for on-demand irrigation, are not in place and their introduction would require a 

massive investment in physical, legal and administrative infrastructure (Perry, 2001). For 

most irrigation systems outside the United States on-demand irrigation facilities and 

investments needed for on-demand irrigation are not available. Therefore for these systems 

on-demand irrigation is at the moment not a viable option and improvements in the 

performance of water allocation and water management are more important. 



1.2 Irrigation modelling 

Irrigation management has received a lot of attention over the last couple of decades. 

Numerous models have been developed to assist managers in decision making processes at 

all levels, for a number of different goals and objectives, such as irrigation system layout 

and water allocation. To identify the different levels in an irrigation scheme it can be seen 

as a three tiered system: the source (reservoirs, rivers, lakes etc.), the distribution system 

(canals, pumping stations, division structures etc.) and the final target of fields and crops. 

Goals and objectives of irrigation models can be divided into three main groups: 

planning 

allocation 

scheduling 

Planning is defined as "to devise, design, project, arrange beforehand" (Simpson and 

Weiner, 1989). In irrigation modelling planning occurs at two different levels, 

source/distribution and field level. At source (and distribution) level modelling is used to 

decide the layout of a future irrigation scheme. Models have been developed to choose the 

most suitable system of dams, reservoirs, river diversions and irrigation canals, making it 

possible to consider a number of alternative irrigation development strategies (Onta et al., 

1991; Rose, 1973). At field level planning models are concerned with cropping pattern 

(Kumar et al., 1998; Kuo et al., 2000). Some models use of combination of both (Malek-

Mohammadi, 1998; Paudyal and Das Gupta, 1990). All planning models aim to maximise 

profitability, whether it is at source or field level. 

Allocation is defined as "to set or lay apart for a special purpose, to apportion, assign, 

to give one as his special portion or share" (Simpson and Weiner, 1989). In irrigation, 

modelling allocation refers to the process of determining how to divide the available 

water. This process becomes especially important in time of water scarcity. Allocation of 

irrigation water can be done at several levels, from source to field. Most irrigation 

allocation models allocate water at the source level (e.g. Dudley et al., 1971; Hannan and 

Coals, 1995; Kipkorir et al., 2001; Petriczek and Uhrynowski, 1986; Wardlaw, 1999), 

although models for canal level (Khepar et al., 2000) and field level allocation (Akhand et 

al., 1993) do exist. Allocation models have a number of different purposes. They can be 

aimed at preserving equity between users (Khepar et al., 2000), to maximize crop revenue 

(Kipkorir et al., 2001), to optimize reservoir levels (Ponnambalam and Adams, 1987), to 



minimize yield losses (Wardlaw and Barnes, 1999) or to minimize irrigation water 

distribution costs (Muspratt, 1971). 

A schedule is a time-table, a programme or plan of events, operations (Simpson and 

Weiner, 1989). In irrigation modelling, scheduling refers to when a certain irrigation 

related event takes places. It occurs at all levels of the irrigation system, from when to 

operate pumping stations to when to irrigate a certain field. At source level scheduling is 

concerned with when to release water from reservoirs in order to satisfy irrigation 

demands (Naresh and Sharma, 2000). Scheduling at distribution level is a relatively new 

area of interest. The main concern here is the sequencing of the users of a tertiary unit 

(Anwar and Clarke, 2001; Wang et al., 1995; Suryavanshi and Reddy, 1986). Field level 

scheduling has been studied far more extensively and numerous models have been 

developed to decide when to irrigate a field (Naadimuthu et al., 1999; Pleban et al., 1983). 

Scheduling models have a range of purposes including comparing irrigation strategies 

(Lembke and Jones, 1972), maximizing profits (Holzapfel et al., 1986) and minimizing 

yield losses (Pleban et al., 1983). 

Some irrigation models combine planning, allocation and scheduling. Upcraft et al. 

(1996) developed a model which determines the order of irrigating (scheduling) and the 

duration of each irrigation (allocation). The model described by Paul et al. (2000) first 

plans the acreage of each crop and then allocates water to each crop. Most of the 

mentioned models for irrigation planning, irrigation scheduling and water allocation use 

optimisation techniques for solving. These techniques are also widely used in the field of 

Operations Research. 

1.3 Operations Research 

During the Second World War, British military leaders asked scientists to analyse a 

number of military problems such as the deployment of radar and the management of 

convoy and mining operations. This application of mathematics and scientific methods to 

military problems was called Operations Research. Today Operations Research is defined 

as 

and operate a system, usually under conditions requiring the allocation of scarce 

resources (Winston, 1994). 



A large part of Operations Research involves the study of optimisation problems. The goal 

of this type of problem is the minimisation or maximisation of one or more objectives 

(Pinedo, 1995). For optimisation problems one can think of two object classes, the first of 

which is limited resources (such as land or raw materials) and the second is activities 

(such as produce stainless steel or serve costumers). Each activity consumes or possibly 

contributes additional resources (Schrage, 1999). Objectives can also take many shapes 

such as maximize profit or minimize time needed to complete a task. 

A simple example of where optimisation can be of use is that of a machine painting 

cars. The machine has the capacity to paint a certain number of cars, but can only do one at 

a time. Which car is the first to be painted? If all cars are the same there might be not 

much difference, but what if some cars are bigger than others and there is a limited amount 

of paint available? Do all cars get an equal amount of paint and thus remain partially 

unpainted or do some cars get painted and others not? What happens if the bigger cars can 

be sold for a higher profit, should they get a higher priority? If a problem like this can be 

adequately represented in a mathematical model, it can be studied using optimisation 

techniques. 

One of the allocation processes studied in Operations Research is the allocation of 

resources over time to perform a number of activities or tasks. This type of problem is 

called scheduling. Scheduling can only be done in a situation where the nature of the tasks 

to be scheduled has been described and the configuration of the available resources has 

been determined (Baker, 1974). Planning always precedes scheduling. First, three 

fundamental managerial questions need to be answered: what product or service is going 

to be provided, on what scale will it be provided, and what resources are available? 

Finding the answers to these questions is the planning phase, only once they have been 

answered scheduling becomes important. 

There are many different types of scheduling. The example used above where a 

machine paints cars is one of them. This kind of scheduling is aptly called machine 

scheduling. In machine scheduling there is a machine capable of a certain activity (in case 

of the example painting) and a number of jobs (cars) need to be processed (painted). Each 

job has a processing time (larger cars will take longer to paint than small cars). There will 

be a number of limited resources (paint, time). The objective can be many things; process 

as many jobs as possible in a given time or process the jobs so that profit are maximised 

(Crama and Spieksma, 1996; Soric, 2000). Within the field of machine scheduling there 



are again many different forms. The most basic form is single-machine scheduling. The 

single-machine problem is characterized by the following conditions: 

1. a set of # independent, single-operation jobs is available for processing at time zero, 

2. job descriptors are known in advance, 

3. one machine is continuously available and is never kept idle while work is waiting, 

4. once processing begins on a job, it is processed to completion without interruption, 

i.e. preemption of jobs is not allowed (Baker, 1974). 

Two pieces of information help to describe the job to be processed: processing time 

and due date. Sometimes a third one, the ready time is added. Processing time is the 

duration required to process a job and due date is the point in time at which a job is due to 

be finished. Ready time is the point in time when a job becomes available for processing. 

Schedules are evaluated by the objective function. In certain situations it is important 

to meet due dates as closely as possible, since being late may result in angry customers and 

being early can cause perishable goods to deteriorate. This can be achieved by including a 

earliness/tardiness objective function in the mathematical model (Li, 1997; Ow and 

Morton, 1989). In other situations it may be more useful to keep the time a machine is 

processing a job to a minimum, in that case a flow time objective function has to be added 

to the mathematical model (Bard et al., 1993). 

Machine scheduling can be used not only for problems with real machines, but in any 

situation where an activity takes places. An airport with just one runway can be seen as 

single machine scheduling problem, with the runway being the machine and the air planes 

coming in for landing the jobs to be scheduled. The single machine problem is only the 

basic form of machine scheduling. It can be expanded to a multi-machine problem, where 

two or more machines are capable of doing the same activity (Balakrishnan et al., 1999). 

In the multiple machine problem jobs need to undergo two (or more) processes at different 

machines, not necessarily in a certain order (Sun and Hwang, 2001). Another factor that 

can be added is multi periods. In this type of scheduling the effect of sequencing over a 

number of periods instead of just one period is studied. In many situations a certain time is 

needed to set up the machine so it can process the next job. In a scheduling situation this 

means that additional time has to be included in the schedule. Furthermore idle time 

between jobs can be allowed etc. A large number of possibilities exist. 



1.4 Irrigation and Operations Research 

A number of models have been developed for irrigation management. None of these 

models seem to have made the connection to Operations Research and more specifically 

machine scheduling or used the wealth of information available and work done on the 

subject. To continue in the same way would be a waste of a large source of new insights. 

Operations Research has been successfully applied to many different organisations as 

diverse as police departments and oil refineries. An irrigation department is no different 

from any other organisation in that scarce resources, such as water and time, have to be 

allocated, in this case to water users. These users in turn have their own demands, such as 

a preferred time to start irrigation or a certain amount of irrigation water requested. 

Matching theses demands within the constraints of the irrigation systems can be a very 

complex tasks. Operations Research may be a valuable tool to the management of an 

irrigation district. It allows easy and quick scheduling and can provide an insight into the 

effects of different scheduling policies. Hopefully it will optimise use of scarce resources 

such as water and labour. 

1.4.1 Irrigation as single machine problem 

Allocating water to users in an irrigation system can be seen as a single machine 

scheduling problem. There is a single activity (giving water) and there are a number of 

jobs (users wanting water) to be processed. In section 1.3 single machine scheduling 

models were characterised by the following conditions: 

1. a set of # independent, single-operation jobs is available for processing at time zero, 

2. job descriptors are known in advance, 

3. one machine is continuously available and is never kept idle while work is waiting, 

4. once processing begins on a job, it is processed to completion without interruption. 

An irrigation scheme that operates under a rotational schedule, i.e. each user of a 

tertiary canal is granted the exclusive use of the water for a certain period, after which the 

water is turned over to the next user, can be seen as a single machine scheduling problem: 

A. a group of TV users is awaiting their irrigation turn at the start of an irrigation interval, 
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B. irrigation turn characteristics such as duration and desired start time are known in 

advance, 

C. water is continuously available everywhere in the tertiary canal and is not allowed to 

be spilled, i.e. there is always someone irrigating, 

D. once an irrigation turn has started it will be completed without interruption, 

All jobs have a processing time (irrigation duration) and a ready time (start of an 

interval). The due date used in operations research however has to be replaced with a 

target start time since irrigation users do not specify when they want to finish an irrigation 

turn, but when they want it to start (Clemmens, 1987). 

There are many possible sequences for a set of irrigation events that needs to be 

scheduled. As in irrigation scheduling the aim is to deliver water at the requested time, it is 

possible to evaluate the suitability of a schedule by its ability to match these target start 

times. The objective is to find the best schedule which can be found by minimizing the 

difference between the target start times and the actual or scheduled start time. 

In Operations Research sometimes due dates become deadlines. Smith (1956) first 

described the scheduling problem with deadlines. In this type of problem jobs need to be 

completed on or before the deadline, i.e. no tardiness is allowed. In irrigation scheduling a 

similar problem arises. The irrigation interval is a specific period within which all jobs 

have to be processed, no job is allowed to be completed outside this period. The irrigation 

interval can be perceived as a common deadline for all jobs. But unlike the more classic 

single machine scheduling problems described in Operations Research, there is still a 

target start time (the irrigation equivalent of the due date) that needs to be considered. So 

although in irrigation scheduling jobs are allowed to be both early and tardy, they are not 

allowed to be completed past the common deadline of the irrigation interval. 

1.4.2 Idle time 

Baker and Scudder (1990) observed that not allowing idle time to be inserted into a 

schedule can have an undesired effect. It could force a job to be scheduled early whereas if 

idle time was allowed to be inserted the job would be processed exactly on time. Not 

allowing idle time to be inserted can be contrary to the objective of trying to match water 



delivery with the requested start time. If idle time is allowed to be inserted into the 

irrigation schedule, the irrigation channel would be flowing continuously for the entire 

duration of the irrigation interval. Users abstract water as scheduled and when water is not 

being used, it spills into a drainage system and/or if possible is reused further downstream. 

This type of scheduling offers a greater opportunity for scheduled start time to match 

target start time, however at the expense of wastage. One could suggest that the channel be 

shut after every contiguous block of jobs is completed and reopened when the next job is 

scheduled to start. However, this can require an excessive number of gate operations. An 

alternative solution could be to remove idle time from the schedule and only allow jobs to 

be scheduled contiguously. If all jobs are scheduled contiguously gates would only need to 

be opened once, when the first users starts irrigation, and only closed one, when the last 

users finishes irrigation. This would reduce the need for large numbers of gate operation 

and prevent wastage of water. The choice whether to allow non-contiguous scheduling, 

where idle time is inserted in between jobs or to schedule contiguously, largely depends on 

the associated costs of water wastage, gate operations and the level of service an irrigation 

district wishes to provide. 

1.4.3 Sequence dependent set-up times 

In many situations a certain time is needed to set up the machine so it can process the next 

job. These setup times can play an important role in irrigation scheduling. In an irrigation 

system setup times would include the time needed for a user to close a farm outlet and the 

next user to open the following outlet. This time is insignificant compared to the irrigation 

duration and can be ignored. In open channel irrigation systems another important 

contribution to setup times is travel times. After irrigation at one outlet has been 

completed water needs to be diverted to another outlet. Depending on the distance between 

the outlets this time cannot be ignored. It also takes time for the channel to fill up to 

operating depth. The time needed for this process varies with the location of the outlets 

and the order in which they are operated. Figure 1.1 shows it may take a significant 

amount of time for water to travel from one user to another or none at all. This means that 

this part of the setup time is sequence dependent and cannot be ignored. 



a) User 2 is scheduled after User 1 b) User 1 is scheduled after User 2 

i) User 2 abstracts water i) User 1 abstracts water 

ii) User 2 stops irrigating. Water immediate available to User 1. 
User 1 starts irrigating 

ii) User 1 stops irrigating. Water travels to User 2 

iii) User 2 start irrigating iii) User 2 start irrigating 

Figure 1.1 Sequence dependent setup times 

1.4.4 Multi-machine scheduling 

In multi-machine scheduling several machines are capable of processing any of the jobs 

available for processing. Water can be seen as one machine when one user receives all the 

water. It can also be seen as consisting of several machines if two or more users irrigate 

simultaneously. Wang et al. (1995) introduced the concept of stream tubes. The total 

discharge in a canal is composed of a number of (imaginary) stream tubes. A stream tube 

delivers water to only one outlet at any given time, but can supply water to a number of 

outlets in sequence. Figure 1.2 shows the relationship between stream tubes and outlets. 
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Figure 1.2 Relationship between stream tubes 
and outlets (from Wang et al., 1995) 

Anwar and Clarke (2001) showed that stream tubes can be used to schedule a number 

of irrigation jobs according to their target start time. A limitation of the models used by 

Wang et al. (1995) and Anwar and Clarke (2001) is that the discharge of all outlets is 

identical. However by allowing two or more stream tubes to simultaneously supply water 

to one outlet it is possible to vary the discharge. In theory it is possible to divide the water 

in a channel into an infinite number of stream tubes. If an outlet is allowed to be 

simultaneously supplied by any number of stream tubes, virtually any discharge can be 

delivered to the outlet. In this thesis multi-machine scheduling of outlets where the 

discharge of all outlets is identical is referred to as simple multi-machine scheduling. 

When the discharge of the outlets are not identical, multi-machine scheduling is referred to 

as complex multi-machine scheduling. 

1.4.5 Multi-interval scheduling 

An irrigation interval is not a one-off sequence of irrigation events, but part of a series of 

similar intervals, together forming an irrigation season. Although it is important to match 

target start times as closely as possible during each interval, it is perhaps even more 

important that after an entire irrigation season all users have incurred a similar degree of 

earliness/tardiness. In multi-interval (or multi-period) scheduling decisions made in a 

previous interval can be used to influence the decisions that will be made for the current 
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interval. In irrigation scheduling the earliness and tardiness incurred in earlier intervals can 

be used to give priority to those users who have been most affected. The need for giving 

priority to certain users can be demonstrated by the example of an irrigation system where 

all users always ask for the same duration and target start time. Using optimisation 

techniques to determine a schedule would result in the same schedule for each interval. 

Consequently some users will always receive their water on time whereas others are 

always scheduled to receive water early or late. Giving priority to those users with the 

highest earliness/tardiness would result in different schedules that distribute the 

earliness/tardiness amongst all users. This hypothetical example may be an extreme case 

but unequal distribution of earliness/tardiness can result from any schedule, although to a 

lesser extent. To give preference to one job being processed on time over another, 

earliness and tardiness may be weighted. This would ensure that those jobs that already 

have incurred a large amount of earliness/tardiness contribute more heavily to the 

objective function than those jobs with a small amount of earliness/tardiness. Appropriate 

costs of earliness/tardiness are difficult to ascertain. James and Buchanan (1998) have 

described that, for typical 'industrial' applications, earliness costs can include cost of 

storage, cost of invested funds and cost of deterioration and tardiness costs can include the 

need for a product, availability of substitutes and the value of costumers. The actual value 

of these costs depends on who determines them. Very often costs of earliness/tardiness are 

set arbitrarily, in many cases by setting all costs of earliness/tardiness equal to 1 (Arkin 

and Roundy, 1991), which is the same as using a single interval model. Anwar and Clarke 

(2001) described a method to determine the earliness and tardiness costs for multi-interval 

scheduling. If earliness is equally as undesirable as tardiness, the earliness cost per unit of 

time of job j can be set equal to the tardiness cost per unit of time of job j. 
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2 Aim and objectives 

2.1 Problem description 

Water demands in irrigation systems are determined in a number of different ways, e.g. 

based on crop growth models or experience. Water demands consist of two parts, the 

requested amount of water and the desired time of delivery. The amount of water can be 

specified as a depth of water to be applied, a volume or as a discharge and duration of 

irrigation. Whatever method used to determine these demands, water deliveries need to 

match them as closely as possible. In irrigation systems that operate on an on-demand 

basis this can be achieved quite easily, but in other irrigation systems the situation is more 

complex. In those systems very often a rigid rotational schedule is operated with little 

opportunity to match demands and deliveries. By allowing some flexibility into a 

rotational schedule it may be possible to improve the current situation whilst retaining the 

simplicity of the rotational schedule. This flexibility can be achieved by creating more 

time within the schedule by increasing the discharge so that irrigation time becomes 

shorter, by allowing the irrigation interval to increase or by omitting users from the 

schedule. Increasing the discharge is very often not possible due to restrictions in either 

water availability or channel capacity. During periods of peak water use neither increasing 

the irrigation interval nor omitting users is an acceptable solution and a rotational schedule 

will almost certainly have to be operated. During other periods however, when demands 

decrease, both options could be used to create room for manoeuvring. 

2.2 Aim 

The aim of this research is to develop a series of management models for scheduling 

irrigation in tertiary units that operate an arranged-demand schedule. The main purpose of 

the models is to match water deliveries as closely as possible to water demands. To do so 

machine scheduling is used to schedule a number of users in a tertiary unit according to 

their requested start times, taking into account idle time and sequence dependent setup 

times. Both single machine scheduling (users irrigate sequentially) and multi-machine 

scheduling (users irrigate simultaneously) will be studied. The effects of scheduling over a 
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number of periods is also studied. A small computational experiment is conducted to 

determine the sensitivity of the models to the number of jobs to be scheduled. 

2.3 Objectives 

The objectives of this research are; 

1. to develop single machine irrigation management models, which allow non-

contiguous (idle time between jobs is allowed) and contiguous (no idle time in 

between jobs) scheduling of the irrigation turns of a number of farmers, minimizing 

the differences between the actual start times and the requested start time; 

2. to include sequence dependent setup times in the models; 

3. to develop the models into multi-machine models, which allow both simple multi-

machine scheduling (all outlets have an identical discharge) and complex multi-

machine scheduling (discharges vary from outlet to outlet); 

4. to include sequence dependent setup times in the multi-machine models; 

5. to enhance the models such that they accommodate multi-period scheduling; 

6. to determine the sensitivity of the models to the number of jobs to be scheduled. 

A number of different models need to be developed in order to achieve the objectives 

mentioned. Table 2.1 shows an overview of these models and their main features. It can be 

seen in Table 2.1 that the models are divided into two main categories, single machine 

scheduling and multi-machine scheduling models. The 7 key features of the models, non-

contiguous scheduling, contiguous scheduling, sequence dependent setup times (travel 

times), sequential irrigation, simultaneous irrigation, simple multi-machine scheduling and 

complex multi-machine scheduling, can be found as rows. 
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Table 2.1: Overview of different models and their features 
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2.4 Methodology 

There is a large number of techniques available to solve optimisation problems. Perhaps 

the most well known are linear programming, integer programming, non-linear 

programming, heuristics and genetic algorithms. Winston (1994) characterised linear 

programming as follows: 

1. a linear function of the decision variable is to be maximised or minimised. The 

function to be maximised or minimised is called the objective function, 

2. the values of the variables must satisfy a set of constraints. Each must be a linear 

equation or linear inequality, 

3. a sign restriction is associated with each variable. For any variable, the sign restriction 

specifies whether the variable is non-negative or unrestricted in sign. 

Linear programming problems can be solved using the Simplex algorithm developed by 

George Dantzig in 1947. 
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An integer programming problem, or IP, is a form of linear programming problem 

where some or all of the variable are required to be integers. An IP where all the variables 

are integers is called a pure IP and an IP where the variables must be equal to 0 or 1 is a 0-

1 IP. Any integer programming problem where there is a combination of 0-1, integer and 

non-integer variables is called a mixed integer linear programming problem. IP's can be 

solved using a number of techniques, including LP relaxation, branch and bound methods 

and cutting plane algorithms (Winston, 1994). 

Non-linear programming, which includes quadratic programming, is a term used to 

describe problems in which the objective function and/or one or more of the constraints 

are not linear. Quadratic programming has received considerable attention over the years. 

Townsend (1978) first formulated a single machine scheduling problem with a quadratic 

objective function and many have improved and extended the methods used for solving it 

(Alidaee et al., 1994; Delia Croce et al., 1995; Mondal and Sen, 2000). However, although 

non-linear functions may better describe certain situations, the solution may not be the 

optimal solution (Winston, 1994). Figure 2.1 shows the graphical solution for a linear 

objective function and a quadratic objective function. It can be seen that for the linear 

function a global optimum is found. For the quadratic function three optima are found. Of 

these three only one is the global optimum, the other two are local optima. This example 

shows how for nonlinear functions solutions can be found that are not necessarily the 

optimal solution. 

It can be proven that for linear and integer programming problems an optimal solution 

can be found. The disadvantage, especially of integer programming, is that the solution 

process is computationally very demanding. Many authors have solved the single machine 

scheduling problem by using linear/integer programming and have developed methods to 

cut down on computation time. Although great progress has been made, often other 

techniques are needed to solve larger problems. 

A heuristic is a search procedure, based on a number of criteria, methods and 

principles, that may give an optimal solution but does not guarantee to do so. The criteria, 

methods and principles can be rules of thumb, common sense rules drawn from 

experience, mathematically proven algorithms or a combination thereof. 
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A) contours of a linear objective function B) contours of a quadratic objective function 

optimum solution optimum solution 
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0 

Figure 2.1 Contour lines for linear and quadratic objective functions 

Genetic algorithms were developed by Holland (1975) to mimic processes observed 

in natural evolution. Davis (1991) described several of the general features of natural 

evolution as follows: 

• evolution is a process that operates on chromosomes rather than on the living being 

that the chromosomes encode, 

natural selection is the link between chromosomes and the performance of their 

decoded structures. Processes of natural selection cause those chromosomes that 

encode successful structures to reproduce more often than those that do not, 

• the process of reproduction is the point at which evolution takes place. Mutations may 

cause the chromosomes of biological children to be different from those of their 

biological parents, and recombination processes may create quite different 

chromosomes in the children by combining material from the chromosomes of two 

parents, 

• biological evolution has no memory. Whatever it knows about producing individuals 

that will function well in their environment is contained in the gene pool - the set of 

chromosomes carried by the current individuals- and in the structure of the 

chromosome decoders. 

Holland (1975) developed algorithms that manipulate a series of binary integers as if they 

were chromosomes. The chromosomes are manipulated, like in nature, without knowing 

anything about the problem to be solved and each new chromosome is evaluated for its 
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fitness. The result of that evaluation is used to bias the selection of chromosomes, so that a 

better evaluation gives a higher chance of survival. 

Although heuristics and genetic algorithms can solve large problems, there is no 

guarantee that the obtained solution is the optimal solution or even near it. This does not 

need to be an issue if the problem to be solved has already been studied and benchmark 

solution are available to be able to compare quality. If a new kind of problem is studied it 

may be better to first use techniques such as linear and integer programming which 

provide the optimal solution, albeit for smaller problems. This allows for greater 

understanding of the problem and can set a series of bench marks against which the quality 

of the heuristics and genetic algorithms can be tested. As the study of irrigation scheduling 

interpreted as a machine scheduling problem is new, it is believed that in the first instance 

linear and integer programming are more appropriate optimisation techniques than 

heuristics and genetic algorithms. 

2.5 Data mining and data generation 

In the development of the different proposed models there will be a need for a small 

amount of testing, firstly to check the models actually works and secondly to be able to 

compare the models with each other. To be able to run any of the models one or more data 

sets are needed. Rardin and Uzsoy (2001) describe the following types of data sets: 

1. Real world data sets 

2. Random variations of real data sets 

3. Published and online libraries of data sets 

4. Randomly generated data sets 

Real world data sets are thought to be the best, but very difficult to obtain and there may 

be only a limited amount of sets. Data on real irrigation systems is widely available, but 
( 

most systems are not suitable for the purpose of this research because they are not operated 

under a rotational schedule, they are too big to be of practical use or essential information 

is lacking. Since no complete sets of real data are available. Option 2 where part of the 

data set is kept constant and part is varied randomly is also not suitable for this research. 

There is no known library of the necessary information, so Option 3 is not viable either. 

Therefore data needs to be randomly generated. However it is possible to use data from 
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real irrigation systems where available. All models described in this thesis need some or 

all of the following data: 

• irrigation duration, 

irrigation interval, 

• travel time between the field outlets, 

• target start time. 

A number of papers describe tertiary units under a rotational schedule containing useful 

information pertinent to this research. Khepar et al. (2000) described a tertiary unit in India 

with 89 users. Not all of the outlets in this tertiary unit have been fully described. Sharma 

and Oad (1990) described two tertiary units, one in India with 32 users and one in Pakistan 

with 60 users. The latter has no details on the field outlets, but for the former the following 

data is available: distance between field outlets, landholding size, irrigation duration, and 

volume of water delivered to each outlet. Latif and Sarwar (1994) described a tertiary unit 

in Pakistan with 20 users. The following data is available for this tertiary unit: distance 

from the canal outlet to field outlets, volume of water delivered and irrigation time. Bishop 

and Long (1983) described a tertiary unit in the Phillippines with 16 users. The following 

information is available for this tertiary unit: land holding size, irrigation duration, channel 

length, velocity in channel sections and irrigation interval. The information on the unit 

described by Bishop and Long (1983) is most complete, irrigation duration and irrigation 

interval are given and the travel times between field outlets can be determined. As this 

tertiary unit is irrigated under a 'bottom-up' rotation, no target start times are given. All 

tertiary units described here operate under a rotational schedule. Suryavanshi and Reddy 

(1986) described a tertiary unit in India with 8 users who are allowed to irrigate 

simultaneously. The following information is available for this tertiary unit; land holding 

size, irrigation duration, channel length, irrigation interval and discharge per outlet. 

In a real world irrigation system the target start times can be expected to have a 

certain distribution. A large number of factors influences this distribution: users may 

prefer to irrigate during the day and rather not during their rest days, there may be some 

sort of incentive for night time irrigation and the weekly market day may not be very 

popular for irrigation. As far as known there has been no research into the actual 

distribution of target start times. As a study of the distribution of target start times is 

beyond the scope of this research, the target start times are assumed to be uniformly 

distributed along the irrigation interval. 
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It has been widely reported that solution times of integer programmes increase 

substantially with the size of the problem, e.g. Bard et al. (1993) and Fry et al. (1987). To 

test the sensitivity of the solution times of the models to the number of jobs to be 

scheduled and the data sets, a small computational experiment is used. In this experiment 

for an increasing number of jobs a number of different data sets are generated. The 

procedure for generating these data sets has been described by Anwar and de Vries (2003). 

This paper is included in Appendix C. 

2.6 Summary 

The models described in Table 2.1 first need to be defined by selecting appropriate 

variables and describing the objective function and constraints. Once they have been 

mathematically formulated mixed integer linear programming can be used to solve the 

model. Several different software programmes, such as Lingo, XPress"^ and GAMS are 

available for solving integer programmes. No preference exists for any of these 

programmes. Lingo 6 for Windows will be used as a general purpose solver as a licensed 

copy was made available. Initially data will be randomly generated to test the models. To 

apply the models to an existing situation, an irrigation system will be selected from 

available literature. Where necessary existing data will be supplemented by randomly 

generated data. 
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3 Irrigation as single machine scheduling^ 

An analogy can be drawn between scheduling the irrigation turns of a number of users in a 

tertiary unit of an irrigation systems and the machine scheduling problem from the field of 

Operations Research. There is a single activity (delivering water to field outlets) and there 

are a number of jobs (users requesting water for an outlet) to be processed. If a irrigation 

scheme operates under an rotational schedule, i.e. users irrigate sequentially, the water can 

be seen as a single machine that 'processes' the outlets (jobs) one by one. Each job has a 

certain duration, a target start time and there can be earliness/tardiness costs (the costs 

associated with delivering water before or after the target start time) for each job. These 

earliness/tardiness costs will become particularly important when scheduling over more 

than one irrigation interval and will be further discussed in Chapter 7. 

Santhi and Pundarikanthan (2000) suggested that irrigation optimisation models do 

not take into account managerial tasks such as the minimisation of gate operations. Two 

models reflect different management options at the tertiary level. In the first model all jobs 

are scheduled non-contiguously, i.e. idle time is allowed to be inserted between jobs. In 

the second model all jobs are scheduled contiguously, no idle time is allowed between 

jobs. Although contiguous scheduling can reduce water spillage and gate operations, non-

contiguous scheduling allows better matching of target start times and scheduled start 

times. 

If the sum of the durations (commonly referred to as makespan in Operations 

Research) is less than the length of the interval, there are three possible variations on 

scheduling all jobs contiguously. Figure 3.1 shows these variations. Figure 3.1a shows all 

jobs scheduled such that the first job starts at the beginning of the interval and any idle 

time is inserted after the last job in the schedule has been completed. Figure 3.1b shows 

how all jobs are scheduled such that the last job is completed at the end of the interval and 

any idle time is inserted at the beginning of the interval. Figure 3.1c is an intermediate 

form where the first job is scheduled to start sometime after the start of the interval and the 

last job is scheduled to finished sometime before the end of the interval. 

1 Parts of this chapter and Chapter 7 have been written up as two companion papers (de Vries 
and Anwar, 2003; and Anwar and de Vries, 2003). These papers have been accepted for 
publication by the ASCE Journal of Irrigation and Drainage Engineering. Copies of the 
papers can be found in Appendix B and C. 
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a) Contiguous scheduling with idle time at end of the schedule 

job 1 job 2 job 3 job 4 jobs j * 6 il 

b) Contiguous scheduling with idle time at start of the schedule 

job 1 job 2 jobs job' job 5 job 6 

c) Contiguous scheduling with idle time at start and end of the schedule 
^ 0 

job 2 job 3 job 4 job 5 

Tstart of interval 
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job number 
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i Idle time 

Figure 3.1 Three alternative methods for contiguous scheduling 

In this chapter the models for non-contiguous and contiguous single machine 

scheduling are developed. An alternative formulation for these models is also presented. 

These alternative models can reduce the number of constraints and variables (and therefore 

solution times), but have a limited use. A computational experiment will show the effect 

of the number of jobs on the solution times. The highlighted area of Table 3.1 shows an 

overview of the features of the models that are developed in this chapter. 

Table 3.1; Overview of different models and their features 
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3.1 Analysis and development of non-contiguous single machine model 

The non-contiguous single machine model, herein referred to as Model 1, allows 

scheduling of a number of jobs (user requests) according to their target start times. Let Q = 

{1,2,...,A^ be a set of jobs to be scheduled. The following parameters are specified for 

each job i e Q: duration, target start time, earliness cost and tardiness cost. In Model 1 

there is one decision to be made, what is the scheduled start time of each job. If the answer 

to this question is known, then the schedule is known too. The objective of the model is to 

minimize the difference between target start time and scheduled start time. In single 

machine scheduling the equivalent problem is called the earliness/tardiness or E/T 

problem. Liaw (1999) suggested the following formulation for objective function of the 

single machine earliness/tardiness problem 

Z = + (^r,) (3 1) 
i= 1 

where Z = objective function; a, = cost of earliness per unit of time for job z; = earliness 

of job /; P, = cost of tardiness per unit of time for job /; = tardiness of job z; i = index 

representing job and # = number of jobs to be scheduled. As any job can precede 

any other job in the schedule a variable is used to define which job precedes which 

6.. = 1 if job i precedes job j 

= 0 otherwise 

where 6^ = binary variable; and j = index representing job \,2,...,N. It is not possible for a 

job to incur a negative earliness or tardiness (in fact a negative earliness is a positive 

tardiness and vice versa). Therefore for 2]. and the following constraints need to be 

satisfied 

7: :> 0 (3.3) 

£"• > 0 V/= 1,2,...Jsf (3.4) 
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Liaw (1999) suggested the following constraint to determine the scheduled 

completion time of a job 

- E, + ^ 

where C, = scheduled completion time of job z; and = due date of job i. 

Under arranged delivery schedules users request a time when irrigation delivery is to 

begin (Clemmens, 1987). Therefore for irrigation scheduling it is more sensible to express 

constraint (3.5) in terms of target start time and scheduled start time rather then due date 

and completion time. Constraint (3.5) now becomes 

= r. - E. + T. V/= 1,2,...JSf (3.6) 

where 5, = scheduled start time of job and r, = target start time of job i. 

The final constraints described by Liaw (1999) are the capacity and availability 

constraints of the machine. In irrigation scheduling the water in a channel is considered to 

be the machine and since in a rotational system irrigation turns are taken sequentially, jobs 

must not be executed simultaneously. This implies that if job i precedes job j the following 

inequality must hold 

^ Vf = y / = 1,2, . . .^; (3.7) 

where Sj = scheduled start time of job j\ and 4 = duration of job i. Similarly if job j 

precedes job i the following must be true 

- "S} 3: <5̂. V;= 1,2,.. .^; y / = 1,2,.../T; (3.8) 

where dj = duration of job j. Constraints (3.7) and (3.8) are mutually exclusive and are 

called disjunctive constraints. Baker (1974) described how to accommodate these 

constraints by using the precedence variable described in (3.2). Constraint (3.7) now 

becomes 

6̂ . - 5"̂  + M(1 - 6 .̂) k (/. Vf= 1,2,...,A^; y / = 1,2,...,A^; (3.9) 
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where M = any large positive number. Constraint (3.8) becomes 

5",. - ^ ^ Vz= 1,2,...^; y / = 1,2,...^; (3_io) 

Model 1 as it stands now allows scheduling of a number of users according to their 

target start time. The model does not take into account that in irrigation there is a finite 

period, the irrigation interval, within which all users have to start and finish their irrigation 

turn. Another constraint is needed to ensure all jobs are processed within the irrigation 

interval. 

3 g \ / f= 

where g = irrigation interval over which all jobs must be completed. Therefore Model 1 is 

defined by the objective function (3.1) and constraints (3.2), (3.3), (3.4), (3.6), (3.9), (3.10) 

and (3.11). 

3.2 Analysis and development of contiguous scheduling model 

The contiguous scheduling model, herein referred to as Model 2, is similar to Model 1 in 

that it allows scheduling of a number of jobs according to their target start times. The main 

difference is that to reduce water spillage and/or gate operations idle time between jobs is 

not allowed. The objective function and most of the constraints of Model 1 remain valid. 

3.2.1 Contiguous single machine scheduling: Model 2a 

To ensure idle time is only inserted after the last job has been processed, no job may finish 

later than the sum of all durations. Therefore constraint (3.11) of Model 1 must be 

replaced by 

N 

\ / ;= C112) 
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where = duration of job n\ and n = index representing job 1,2,..., N. Model 2a is 

therefore defined by the objective function (3.1) and constraints (3.2), (3.3), (3.4), (3.6), 

(3.9), (3.10) and (3.12). 

3.2.2 Contiguous single machine scheduling: Model 2b 

In Model 2b all job are scheduled contiguously and idle time is inserted prior to the start of 

the first job. Constraint (3.11) becomes 

N 

> g - I I ( 3 13) 
1 

No job may finish outside the irrigation interval, therefore constraint (3.11) is also 

necessary. Model 2b is defined by the objective function (3.1) and constraints (3.2), (3.3), 

(3.4), (3.6), (3.9), (3.10), (3.11) and (3.13). 

3.2.3 Contiguous single machine scheduling: Model 2c 

In Model 2c idle time may precede the start of the first job and/or follow the end of the last 

job, therefore (3.11) is altered to 

(3.14) 
/= 1 

where = idle time preceding the start of the first job in the schedule; and = idle time 

following the completion of the last job in the schedule. The following additional 

constraints also need to be included for Model 2c 

< g - V;= CS15) 

iS". > V / - 1,2,...,A^ (3.16) 



Model 2c is therefore defined by the objective function (3.1) and constraints (3.2), (3.3), 

(3.4), (3.6), (3.9), (3.10), (3.14), (3.15) and (3.16). 

3.3 Results and discussion 

In Models 1, 2a, 2b, and 2c setup times are not considered. This is true for pressurised 

irrigation systems. In systems where the distance between the outlets is very small and/or 

the velocity in the channels very high, setup times will be very small compared to the 

irrigation duration and can be ignored. No information is available on such irrigation 

systems where setup times play no role. To demonstrate the principles of Models 1, 2a, 2b 

and 2c they will be applied to a (open channel) tertiary unit assuming that setup times are 

part of the irrigation duration. 

Bishop and Long (1983) presented a procedure for setting up a rotation delivery 

schedule and applied it to a tertiary unit of 37.06 ha with 16 water users. Water in this 

tertiary unit was allocated pro rata with area at 172 min/ha and 349 min were made 

available for management/canal filling. This management/filling time consists of 209 

minutes need to fill the channels and another 140 minutes for necessary management tasks 

such as adjusting of checks and gate closing. Bishop and Long (1983) suggested the 

irrigation to be scheduled in turn from downstream upwards, target start times were not 

included in their data. For the purpose of this application of the models developed the 

irrigation interval is assumed as 7 days (10080 minutes) and the target start times are 

randomly generated with a uniform distribution over the irrigation interval. The duration 

of each job is 172 min/ha as suggested by Bishop and Long (1983). Management/fill time 

is equally divided amongst all users and is added to the duration. Figure 3.2 shows a 

overview of the tertiary unit and Table 3.2 shows the job descriptors. 
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Figure 3.2 Tertiary unit, Bula project, the Phillippines (Bishop and Long, 1983) 

Table 3.2: Irrigation duration and target start times for tertiary unit Bula project 

Job number Lot number' Irrigation duration Target start times 

(minutes) (minutes) 

(1) (2) (3) (4) 

1 2 6 3 461 2140 

2 26.2 451 9783 

3 2&1 537 8009 

4 25J 387 8889 

5 25^ 537 4841 

6 251 537 771 

7 24.4 202 3362 

8 24J 193 5635 

9 23/4 360 5408 

10 2 3 3 193 5699 

11 24J! 537 1365 

12 23:% 193 1503 

13 241 537 19 

14 211 451 9515 

15 22^ 572 1206 

16 221 572 990 

From Bishop and Long (1983) 
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Models 1, 2a, 2b and 2c were implemented in Lingo 6.0® for Windows® using data 

from Table 3.2 . The Lingo input files are included in Appendix A. Figure 3.3 shows a 

graphical representation of the schedules obtained when applying the various models. 
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Figure 3.3 Schedules applying Models 1, 2a, 2b and 2c 

For Model 1 idle time is inserted in three places in the schedule; after Lot 7 is irrigated, 

after Lot 8 is irrigated and again after Lot 3 is iiTigated. The schedule obtained with Model 

1 results in an average earliness/tardiness of 4.0 hrs/user. Figure 3.3 shows that for Model 

2a all idle time is inserted after all users have finished irrigating. This schedule results in 

an average earliness/tardiness of 20.5 hrs/user. For Model 2b all idle time is inserted 

before any of the users starts irrigation. The average earliness/tardiness of this schedule is 

33.3 hrs/user. Finally, for Model 2c 7.7 hours of idle time is inserted before the first user 

(Lot 13) and another 48.3 hours is inserted after the last user (Lot 4) has finished 

irrigation. This schedule results in an average earliness/tardiness of 19.8 hrs/user. 

Although Model 1 gives the best results in terms of average earliness/tardiness, this 

model can lead either to operational spillage or an excessive number of gate operations. If 

operational spillage is to be avoided extra gate operations are required. It can be seen in 

Figure 3.3 that for this schedule three extra operations are needed to close the gate after 

irrigation on Lots 7, 8 and 3 have been completed and another extra three operation are 

needed to reopen the gate before irrigation on Lots 5, 3 and 4 can start. The number of 

extra gate operations depend on the number of jobs and the schedule, but can theoretically 

range from 2 to 2N-2 (where number of jobs to be scheduled). If like in Models 2a, 2b 
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and 2c the gate can only be opened once, before irrigation on the first lot starts and closed 

once, after the last irrigation has been completed, 33% of the water will be lost due to 

operational spillage. 

Model 2b gives the highest average earliness/tardiness. This is due to the 

concentration of target start times early in the interval. Model 2a and 2c perform better 

than Model 2b, with only a small difference between them. It is incidental that Model 2a 

performs better than Model 2b. This is due to the large concentration of target start times 

early in the interval. Model 2c can always be expected to perform at least as good as 

Model 2a and 2b and will often perform better. This is due to the restrictions in where jobs 

can be placed in Model 2a and 2b. Models 2a, 2b and 2c do not perform as well as Model 

1, as Model 1 has the largest amount of freedom in where to place jobs and therefore gives 

the best result. However gate operations for Models 2a, 2b, and 2c are limited to opening 

once and closing once and spillage can be easily avoided. 

Figure ?.? shows a second set of schedules obtained when applying Models 1, 2a, 2b 

and 2c. New target start times have been randomly generated, irrigation durations are the 

same as for the set of schedules described earlier in this section. 
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Figure 3.4 Second set of schedules applying Models 1, 2a, 2b and 2c 

It can be seen in Figure ?.? that due to the larger degree of freedom Model 1 again 

performs better than any of the other models. As mentioned before. Model 2c can always 

be expected to perform at least as good as Model 2a and 2b. It can be seen in Figure ?.? 

that Model 2c performs considerably better than either of those two. This is due to the 

more even distribution of the target start times over the interval. There is still a larger 
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concentration of target start times in the beginning of the interval, which is why Model 2a 

outperforms Model 2b. It can be seen that the performance of Models 2a, 2b and to a lesser 

degree Model 2c, depends on the distribution of the target start times over the interval. 

When target start times are concentrated in the beginning of the interval Model 2a will 

perform better and when start times are more concentrated towards the end of the interval 

Model 2b will perform better. 

3.4 Analysis and development of an alternative formulation 

The models developed in the previous paragraph of this chapter use a 0-1 variable to 

define which job precedes which in a schedule. Fry and Leong (1987) formulated an 

mixed integer program for the E/T problem in which a 0-1 variable defines the location of 

the jobs in the schedule, i.e whether a job is the first in a schedule or second and so on. 

Again let Q = {\,2,...,N} be a set of jobs to be scheduled. The following parameters are 

specified for each job i e Q. duration, target start time, earliness cost and tardiness cost. 

Although the models recognise that there can be a difference in the costs between a job 

being scheduled early or late, they do not allow different costs of earliness and tardiness 

for each individual job. This limits the use of this model to single interval scheduling as 

will be further explained in Chapter 7. A detailed description of the objective function and 

the constraints as Fry and Leong (1987) used them and how they can be adapted so as to 

be suitable for irrigation scheduling follows. 

3.4.1 Alternative formulation of Model 1 

The objective defined by Fry and Leong (1987) was to minimize total earliness and flow 

time rather than to minimize earliness and tardiness as in irrigation scheduling. The 

objective function however is only a performance measure, it does not influence the 

restrictions of the system behind it. That means that the constraints and variables from the 

model from Fry and Leong (1987) can be used together with an objective function that 

minimizes earliness and tardiness. The objective function for this formulation is 
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AT 
minimize Z = 7^ (3.17) 

t= 1 k= \ 

where a = earliness penalty cost per unit of time; Ep. = earliness of the job in position P = 

tardiness cost per unit of time; 7^ = tardiness of the job in position k, and k = index 

representing position Any job, in this case an irrigation event, can be assigned to 

any position in the schedule, therefore the following variable is defined 

= 1 if job i is assigned to position k in the schedule 
0 ^ ) 

where A.,* = binary variable. Fry and Leong (1987) described a number of constraints, some 

of which are directly transferable to the irrigation situation, some of which need 

modification. The first constraint is that each job can only once be assigned to a position 

N 

= 1 1 , 2 ^ , / / (3.19) 
/= 1 

Also each position can only be assigned once 

N 

= 1 Vi= C3.20) 
1 

The due date constraint described by Fry and Leong (1987) is as follows 

Cj^ + Ej^ - V^= 1,2,...JSf (3.21) 

where Q = scheduled completion time of the job in position k\ and q,^ = due date of the job 

in position k. Like for Model 1, completion time is of no interest, but start time is. So 

(3.21) becomes 

where S^. - scheduled start time of the job in position k, and r* = target start time of the job 
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in position k. 

Fry and Leong (1987) introduced a variable for idle time so that 

C. = (3.23) 
TM = 1 7M = 1 

where X,„ = idle time inserted directly before the job in position m; m- index representing 

position 1,2,. ..,k; and = processing time of the job in position m and can be calculated 

with 

N 

= 1,2,...,^ A:- 1,2, . . .^ (3.24) 
/ = 1 

where A,„ = binary variable; and = processing time of job i. Converting to start times 

(3.23) becomes 

St ' "t - i k ' l X - f f (3.25) 
m=1 m=1 

where = duration of the job in position m. Equality (3.24) becomes 

N 

1,2,...,^; A:= 1,2,.. .// (3.26) 
f = 1 

Also according to Fry and Leong (1987) 

N 

9* = A,*?/ V*= l,2,..rAr (3/27) 
i= 1 

Likewise for start times 

N 

f = 1 

= VA;=l,2,...,A/^ (3.28) 
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Fry and Leong (1987) used (3.23), (3.24) and (3.27) to rewrite (3.21) as 

E K * t Y .X„q , \ / k - (3.29) 
m = l 

Similarly using (3.25), (3.26) and (3.28), (3.22) can be rewritten as 

E K * E t h J , * T , ' V i = 1,2,....^ (3.30) 
m= I m= 1 /= 1 /= 1 

No job may be completed outside the irrigation interval. Therefore 

N 

I 
1 

Y(Xi,*d,) 1. g (3.31) 

where = idle time inserted directly before the job in position k, and d,̂  = duration of the 

job in position k. Therefore the alternative formulation to Model 1 based on the work by 

Fry and Leong (1987) is defined by the objective function (3.17) and constraints (3.18), 

(3.19), (3.20), (3.30) and (3.31). 

3.4.2 Alternative formulation of Model 2 a 

In Model 2a all jobs are scheduled contiguously with idle time inserted at the end of the 

interval, and (3.25) is replaced by 

t-1 
= 1 2 (3J2) 

m= 1 

from (3.26), (3.28) and (3.32), (3.22) becomes 

E ' E V , - E,* T, -ik- 1.2,....iV (3.33) 
m= I / = 1 /•= 1 

Model 2a now consists of the objective function (3.1) and constraints (3.18), (3.19), (3.20) 

and (3.33). 



3.4.3 Alternative formulation of Model 2b 

To ensure idle time is inserted at the beginning of an interval, as is the case for Model 2b, 

constraint (3.22) is replaced by 

T t h J , ' E V , - E , * T , - V i = 1,2,...JV (3.34) 
m= \ /= 1 i= 1 

The following additional constraint ensures any idle time is inserted before the first job in 

the schedule starts 

t d t ' g - K (3-35) 
1 

Model 2b now consists of the objective function (3.17) and constraints (3.18), (3.19), 

(3.20), (3.34) and (3.35). 

To schedule a number of jobs so that the first job is scheduled to start some time after the 

start of the interval and the last job is scheduled to finish sometime before the end of the 

interval (Model 2c), the constraints for Model 2b are used with equality (3.35) omitted. 

3.4.5 Comparison offirst and alternative formulation 

The first and the alternative formulation both aim at scheduling all jobs such that the 

differences between the target start times and the scheduled start times are minimised. 

Both formulation use mixed integer linear programming to find a solution. As linear 

programming will always result in the optimum solution and both formulations have the 

same objective, the results will always be the same. There is however a difference in the 

way both are formulated, which is reflected in the number of variables and constraints 
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necessary for each formulation. Table 3.3 shows the number of variables and constraints 

for each model with both formulations. 

Table 3.3: Number of variables and constraints for all models 

Model Formulation Number of variables Number of constraints 

(1) (2) (3) (4) 

1 
First Â +̂3Â  2#^+l 

1 
Alternative 3 m 2 

2a 
First 27\^^+l 

2a 
Alternative #^+2Ar 3 m 1 

2b 
First 2#^+A/:^2 

2b 
Alternative 3 m i 

2c 
First 

Alternative 

A^^+3m3 

# ^ + 2 m i 

A/'̂ +27V+l 

3 m i 

Table 3.3 shows the number of variables for all models is in the order ofN^. The 

difference in number of constraints between the two formulations explains why the 

alternative formulation is less computationally demanding: for the first formulation the 

number of constraints is in the order of N \ but for the alternative it is only in the order of 

N. Figures 3.4 and 3.5 stress this difference. Figure 3.4 shows that the number of variables 

for Model 1 are the same for both formulations, even with an increasing number of jobs. 

Figure 3.5 shows that the number of constraints for the first formulation rises 

exponentially with the number of jobs, whereas the number of constraints for the 

alternative formulation rises only linearly. 
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Figure 3.6 Number of constraints Model 1 

However not just the number of variables and constraints influence computation time. 

Table 3.4 shows computation times for the problem with 16 jobs described in Section 3.3. 

Table 3.4: Computation times (in sees) for Model 1, 2a, 2b, 

2c 

Model 

Formulation 1 2a 2b 2c 

(1) (2) (3) (4) 

First 185 >20000 >20000 >20000 

Alternative 88 12074 19 8286 
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It can be seen that there is a considerable variation in computation time between the four 

models, even where there are a comparable number of variables and constraints. 

Comparing Model 2a and 2b of the alternative formulation shows that even for two 

formulations with exactly the same number of variables and constraints, using the same 

data set there can be a large difference in solution times. This show that solution times are 

sensitive to the formulation. Although from the comparison it appears the alternative 

formulation is computationally more efficient and would allow larger problems to be 

solved, there is a distinct disadvantage to this formulation. The alternative formulation 

does not allow for different costs of earhness and tardiness for each job. As will be shown 

in Chapter 7 these earliness and tardiness costs play an important role in multi-interval 

scheduling. The use of the alternative formulation is therefore limited to those cases where 

earliness/tardiness costs play no part. 

3.5 Solution times 

A computational experiment was conducted to examine the effect of the number of jobs on 

the solution time. 25 instances (data sets) each of problems with 8, 10, 12, 15, 20 and 25 

jobs and 15 instances each of problems with 30 and 35 jobs were generated according to 

the method described by Anwar and de Vries (2003) (this paper is included in Appendix C 

and contains a more detailed description of the experiment). Model 1 was implemented in 

Lingo 6.0 ® for Windows® using the generated data sets. For the purpose of this 

experiment the solver was interrupted after 10^ seconds (approximately 27.7 hours). The 

integer programme did not solve to a global optimum within this allocated time for 4 out 

of the 25 instances with 25 jobs. Similarly 3 out of 15 instances with 30 jobs and 10 out of 

15 instances for 35 jobs did not solve to completion within this allocated time. Figure 3.6 

shows that the solution times increase several order of magnitude with the number of jobs. 

Figure 3.6 shows that not only the number of jobs has an influence on the solution time, it 

also show that solution times vary for instances with the same formulation and number of 

jobs, but with different data sets. It can be seen that solving Model 1 for 20 jobs can take 

as little as 10 seconds or as much as 70000 seconds (~ 19.5 hours). This shows that 

solution times are particularly data sensitive. The exponential increase of the solution time 

with the number of jobs means that only smaller problems can be solved with a reasonable 
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Figure 3.7 Solution times for Model 1 

time. As many tertiary unit have large numbers of outlets that would need to be scheduled, 

different solution techniques may be needed to obtain a schedule. 

The computational experiment in this section consists of a total of 150 instances of 

Model 1. The combined solution time of these instances is 633 hours. The other models in 

this chapter and the models that are developed in subsequent chapters are of an increasing 

complexity with more variables and constraints. Zhu and Heady (2000) reported increasing 

solution times with increasing complexity. It is very likely that the same will be true for 

the models presented here and in other chapters and it is therefore not feasible to do 

similar experiments with any of the other models within the time allotted for this research. 

3.6 Conclusions single machine scheduling 

In this chapter it is shown how irrigation scheduling at a tertiary level can be interpreted as 

a single machine problem. It is shown how existing single machine scheduling models for 

the earliness/tardiness problem can be adapted to allow irrigation scheduling. By applying 

the models to a tertiary unit it is shown how different management options such as non-

contiguous and contiguous scheduling have an influence on the schedule and the 

earliness/tardiness, gate operation or operational spillage. An alternative formulation to the 
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models is presented and compared to the original formulation. Although solution times can 

decrease when applying the alternative formulations, there are limitations to its use. There 

are some disadvantages to the models described in this chapter: 

1. Setup times are assumed to be non-existent. Although this may be true for pressurised 

systems, many systems irrigation systems have open channels where setup times can 

have a large influence on the schedule. This problem will be addressed in the next 

chapter, Chapter 4. 

2. The models only apply to irrigation systems that operate under sequential schedule. 

Many irrigation systems however allow simultaneous irrigation. This problem will be 

addressed in Chapters 5 and 6. 

3. Integer programming can be computationally very demanding and only small 

problems can be solved within reasonable time. Solution techniques such as heuristics 

or genetic algorithms may be needed to solve larger problems. 

4. It is assumed the sum of the durations of all users is less then the irrigation interval. If 

users are allowed to request any irrigation duration, the sum of durations may become 

larger than the irrigation interval. How to adjust the irrigation durations such that the 

sum is not larger than the interval needs to be studied in future. Possible solutions are 

adjusting the durations pro rata or imposing an upper limit to the duration. 

5. When an upstream user takes over from a down stream user, some residual volume of 

water is left in the channel which could be used by the down stream user. Further 

study is needed to study the effect of this residual volume on the irrigation duration, 

e.g. should the irrigation duration be reduced to account for this extra water. 
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4 Sequence dependent setup times 

Figure ?.? shows that setup times can play an important role in open channel irrigation 

systems. There are two types of setup times, those which on which the sequence of the job 

has no influence, the sequence independent setup times, and those on which the order has 

an influence, the sequence dependent setup times. Sequence independent setup times 

would include time needed for a user to close a farm outlet and the next user to open the 

following outlet. This time is negligible compared to the irrigation duration and can 

therefore be ignored. Travel times on the other hand are, as shown in Figure ?.?, dependent 

on the order of irrigation and can only be ignored if they are very small compared to the 

irrigation duration. This is the case if the distances between outlets are very small and/or 

the velocity in the channel is large. However in most open channel irrigation systems 

neither is the case and therefore sequence dependent setup times must be taken into 

account. 

In this chapter the models for non-contiguous and contiguous single machine 

scheduling with sequence dependent setup times are developed. By applying the models to 

a tertiary unit the significance of including sequence dependent setup times is shown. The 

highlighted area of Table 4.1 shows an overview of the features of the models that will be 

developed in this chapter. 

Table 4.1: Overview of different models and their features 
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4.1 Analysis and development of non-contiguous single machine scheduling with 

sequence dependent setup times 

The non-contiguous single machine irrigation scheduling model with sequence dependent 

setup times (herein to referred to as Model 3) allows scheduling of a number of jobs 

according to their target start times, whilst taking into account the sequence dependent 

setup times. Let Q = {l,2,...,iV} be a set of jobs to be scheduled. The following parameters 

are specified for each job i 6 Q: duration, target start time, earliness cost, tardiness cost 

and sequence dependent setup times. In Model 3 the decision to be made is; what is the 

scheduled start time of each job. If the answer to this question is known then the schedule 

is known. The objective of Model 3 is to find a schedule such that the differences between 

the target start time and the scheduled start time is as small as possible. This can be 

achieved by minimising the earliness/tardiness. Therefore the objective function is 

N 

Minimize Z = ^ + p.r.) V/ = (4.1) 
i= 1 

Any job (irrigation event) can precede any other job in the schedule. To define which job 

precedes which, the following variable is defined 

= 0 otherwise ' 

The scheduled start time of a job is determined from the target start time, the earliness and 

the tardiness 

^ = r, + r, - ^ Vz = 

It is not possible for a job to incur a negative earliness or tardiness (in fact a negative 

earliness is a positive tardiness and vice versa). Therefore for 7̂ . and the following 

constraints need to be satisfied 

iz: k 0 \/z= 1,2,...,// 
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a I) \ / z = 1 , 2 , ( 4 . 5 ) 

Any two jobs cannot be serviced simultaneously. This implies that either job i precedes job 

j or vice versa. The following two disjunctive constraints that will enforce this constraint 

- 6.) 2: d^+ JF= 1 , 2 , f s s f (4.6) 

^ + î .. V ; - 1,2,..,A^; / = 1,2,...,A^; (4.7) 

where tjj = sequence dependent setup time from user i to user j\ and tp = sequence 

dependent setup time from user j to user i. Every job must be completed within the 

irrigation interval 

^ V z = (4^) 

In addition to the setup times needed between two jobs , there may be some setup time 

required to prepare for the first job to be able to start. In irrigation scheduling this initial 

setup time can be seen as the time needed for the water to travel from the head of the 

tertiary canal to the field outlet of the first user to start irrigating. This initial setup time 

can be incorporated into the model as follows 

5",. a 7, (,19) 

where /, = initial setup time. Therefore Model 3 is defined by the objective function (4.1) 

and constraints (4.2) through to (4.9) inclusive. 

4.2 Analysis and development of contiguous single machine scheduling with sequence 

dependent setup times 

The contiguous single machine irrigation scheduling model with sequence dependent setup 

times (herein to be referred to as Model 4) is similar to Model 3 in that it allows 
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scheduling of a number of jobs according to their target start times, whilst taking into 

account the sequence dependent setup times. The main difference is that, like in Model 2, 

to reduce water spillage and/or gate operations, idle time between jobs is not allowed. As 

with Model 2 there are three possible variations on scheduling all jobs contiguously. 

Model 4a schedules all jobs such that the first job starts at the beginning of the interval and 

any idle time is inserted after the last job in the schedule has been completed. In Model 4b 

all jobs are scheduled such that the last job is scheduled to finished at the end of the 

interval. Any idle time is inserted before the first job in the schedule starts. Model 4c is an 

intermediate form between Models 4a and 4b. In this model the first job is scheduled to 

start some time after the start of the interval and the last job is scheduled to finish 

sometime before the end of the interval. Model 3 described earlier in this chapter cannot 

be adapted to enable contiguous scheduling without making use of non-linear constraints. 

A different approach is therefore needed. 

4.2.1 Contiguous scheduling with sequence dependent setup times: Model 4a 

Bianco et al. (1988) described a mixed integer linear programming model that allows 

minimizing the maximum completion time of a number of tasks with sequence dependent 

setup times. This model can be adapted to enable irrigation scheduling. In this model 

sequent dependent setup times and durations are combined to form a new matrix of 

sequence dependent durations. A dummy variable with index 0 is introduced as to allow 

initial setup times to be included in the sequence dependent duration matrix. Let Q = 

{ 0 , b e a set of jobs to be scheduled. The following parameters are specified for 

each job i e Q: target start time, earliness cost, tardiness cost and sequence dependent 

duration. In Model 4 the decision to be made is: what is the scheduled start time of each 

job? If the answer to this question is known then the schedule is known. The objective of 

Model 4 is to find a schedule such that the differences between the target start time and the 

scheduled start time is as small as possible. This can be achieved by minimising the 

earliness/tardiness. Therefore the objective function is 

N 

OUO) 
/= 1 
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Any job can directly precede any other job in a irrigation schedule. To define which job 

directly precedes which, the following decision variable is used 

Y,7 = 1 if job i directly precedes job j . . 
* _ ^ ^ (4^1) 

= 0 otherwise 

where jy = binary variable (/' = 0 if job i is the last in the sequence). The scheduled start 

time of a job is determined from the target start time, the earliness and the tardiness 

+ Ty - Vi = (4J^) 

It is not possible for a job to incur a negative earliness or tardiness. Therefore 

% () \/z= 1,2,..,7/ (4L13) 

E. > 0 V/= 1,2, . . .^ (4.14) 

Any job can be preceded by only one other job. Therefore 

N 

Y = 1 = 0,l,..rAr ('l.lfl) 
j=0 

Similarly any job can be followed by only one other job 

N 

Ya = 1 (4.16) 
/=o 

No job should start before the previous job has finished. Therefore 

+ d;Y,y + JtdCYp- 1) < V;== 0,1,..rAf; \ / /= 1,2,..,//; (4.17) 

where dj* = sequence dependent duration of job i if job i directly precedes job 7 (/ = 0 if 

job i is the last in the sequence, dg* = the initial setup time if the sequence starts with job 
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j). To ensure that idle time is only inserted after the last job has been processed, no job 

may finish later than the sum of all durations 

•S, + I ; ( 4 ' Y s ) ^ V i = 0 , l , . . . ^ (4.18) 
;•= 0 /= 0 y= 0 

Model 4a is defined by the objective function (4.10) and constraints (4.11) - (4.18). 

Model 4b is similar to Model 4a with the difference that in Model 4b all jobs are 

scheduled contiguously and idle time is inserted prior to the start of the first job. The 

amount of idle time inserted into the schedule depends on the sum of the sequence 

dependent durations 

(4.19) 
/= 0 y= 0 

Idle time is inserted before the first job in the schedule starts therefore 

,S\ > \/z== 

Model 4b is defined by the objective function (4.10) and constraints (4.11) - (4.17), (4.19) 

and (4.20). 

4.2.3 Contiguous scheduling with sequence dependent setup times: Model 4c 

Model 4c again closely resembles Model 4a, with the difference that idle time may precede 

the start of the first job in the schedule and/or follow after the completion of the last job, 

therefore (4.18) is replaced with 

S , " s 0,1.... ,* (4.21) 
j= 0 i= 0 7= 0 



Constraint (4.20) is also necessary to ensure correct insertion of idle time in Model 4c. 

Model 4c is therefore defined by the objective function (4.10) and constraints (4.11) -

(4.17), (4.20) and (4.21). 

4.3 Results and discussion single machine scheduling with setup times 

The tertiary unit described by Bishop and Long (1983) is used for application of the 

models developed in this chapter. No detailed information, other than the map in Figure 

3.2, of this tertiary unit is available to determine the exact measurements of fields and 

channels or the placement of field outlets, all of which are needed to determine the travel 

times between field outlets. Figure 4.1 shows a schematic representation of the tertiary 

unit. Field outlets are assumed to be in the upstream comer of each field. Table 4.2 gives 

the dimensions of each field as determined from Figure 4.1. Table 4.3 gives the velocity in 

the channel sections, as given by Bishop and Long (1983). 
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Schematic representation of a tertiary unit, Bula project, Phillippines (from 
Bishop and Long, 1983) 
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Table 4.2: Approximate field dimensions tertiary unit 

Field number Length (m) Width (m) Area (ha) 

(1) (2) (3) (4) 

1 200 150 3.00 

2 167 150 2 5 0 

3 170 150 2.55 

4 142 150 2JJ 

5 200 150 1 0 0 

6 200 150 3.00 

7 70 150 1.05 

8 67 150 1.01 

9 131 150 1.97 

10 67 150 LOl 

11 200 150 3.00 

12 67 150 1.01 

13 200 150 3^0 

14 167 150 2 5 0 

15 142 225 1 2 0 

16 142 225 1 2 0 

Table 4.3: Velocity in channel sections 

Channel section Velocity (m/s) 

(1) (2) 

A-B 0.650 

B-C 0.456 

B-D &223 

D-E 0.682 

D-F &223 

F-G &229 

F-H 0.223 

H-J &229 

The sequence dependent setup times can be determined as follows 

= E 
6= 1 

V/= 1,2,...^; \/j= i^j (4.22) 

where = travel time for channel section h\b = index representing channel section 

1,2,...,5; and B = total number of sections between user i and user j. Bishop and Long 



(1983) suggested that the travel time for each channel section can be determined by 

where = length of channel section 6; and = average velocity in channel section h. 

Multiplying the velocity by 0.7 compensates for the lower advance velocity that generally 

exist when initially filling a channel and will also compensate for the additional time 

needed to fill the channel to operating depth (Bishop and Long, 1983). The method 

described here to calculate travel times is empirical. To obtain more exact travel times 

hydro-dynamic modelling may be required, e.g. De Bievre et al. (2003) use hydro-dynamic 

modelling to calculate travel times. 

Table 4.4 shows the travel times for the tertiary unit, determined with (4.22) and 

(4.23). 

Table 4.4; Travel times (in minutes) from outlet i to outlet j 

to outlet j 

1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 - 0 0 42 21 0 16 14 10 8 7 6 0 0 7 0 

2 17 - 0 42 21 0 16 14 10 8 7 6 0 0 7 0 

3 38 21 42 21 0 16 14 10 8 7 6 0 0 7 0 

4 69 52 31 - 0 0 16 14 10 8 7 6 0 0 7 0 

5 69 52 31 21 - 0 16 14 10 8 7 6 0 0 7 0 

6 69 52 31 42 21 - 16 14 10 8 7 6 0 0 7 0 

7 85 68 47 57 36 16 - 0 0 0 0 0 0 0 7 0 

i 8 85 68 47 57 36 16 2 - 0 0 0 0 0 0 7 0 

1 9 85 68 47 57 36 16 6 3 - 0 0 0 0 0 7 0 

10 85 68 47 57 36 16 8 6 2 - 0 0 0 0 7 0 

11 85 68 47 57 36 16 9 7 4 1 " 0 0 0 7 0 

12 85 68 47 57 36 16 10 8 5 2 1 - 0 0 7 0 

13 85 68 47 57 36 16 16 14 10 8 7 6 - 0 7 0 

14 85 68 47 57 36 16 16 14 10 8 7 6 0 - 7 0 

15 101 83 63 73 52 31 32 30 26 24 23 21 16 16 - 0 

16 101 83 63 73 52 31 32 30 26 24 23 21 16 16 7 — 

The highlighted area in Table 4.4 shows an example of the travel time from Outlet 3 to 

Outlet 4. It can be seen in Figure 4.1 that when Outlet 3 is running channel sections A-B, 
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B-D, D-F and F-H are filled. When irrigation at Outlet 3 stops and Outlet 4 takes over 

water needs to be diverted at F and travel to Outlet 4 (at G). The travel time is the time it 

will take to fill channel section F-G, and is calculated to be 42 minutes. 

Bishop and Long (1983) gave the irrigation duration as 172 min/ha. In their 

scheduling method 30 min/day was set apart for management purposes. As management 

time is usually not considered to be a component of travel time (e.g. Khepar et al., 2000; 

Latif and Sarwar, 1994) this time is added to the irrigation duration. The irrigation 

duration is given in Table 4.5. Target start times as generated for the application of Models 

1 and 2 in Chapter 3 are used here too and are given in Table 4.5. The initial setup times 

for each job can also be determined with (4.22) and (4.23) and are given in Table 4.5. 

Table 4.5: Job parameters 

Job number Irrigation Target start Initial setup 

duration (min) times (min) time (min) 

(1) (2) (3) (4) 

1 453 2140 108 

2 443 9783 91 

3 529 8009 70 

4 379 8889 80 

5 529 4841 59 

6 529 771 39 

7 194 3362 39 

8 185 5635 37 

9 352 5408 33 

10 185 5699 31 

11 529 1365 30 

12 185 1503 29 

13 529 19 23 

14 443 9515 23 

15 563 1206 15 

16 564 990 7 

Models 3, 4a, 4b and 4c were implemented in Lingo® for Windows® using the data from 

Table 4.4 and 4.5. The Lingo input files are included in Appendix A. Table 4.6 shows the 

schedule obtained when applying Model 3. The first row of the table shows that Field 13 is 

the first to be irrigated. At 08:00 the setup time for this field is scheduled to start. This 
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means that at this time the water is at the main inlet of the tertiary channel and starts 

travelling to the field inlet of Field 13. The travel time from the main inlet to Field 13 is 23 

minutes and irrigation can start at 08:23. 

Table 4.6: Irrigation schedule Model 3 

Setup time Irrigation 

Field Start On Off 
(1) (2) (3) (4) 

13 Mon 08:00 Mon 08:23 Mon 17:13 

6 Mon 17:13 Mon 17:29 Tue 02:18 

16 Tue 02:18 Tue 02:18 Tue 11:42 

12 Tue 11:42 Tue 12:03 Tue 15:08 

11 Tue 15:08 Tue 15:09 Tue 23:58 

1 Wed 01:16 Wed 01:23 Wed 08:56 

15 Wed 08:56 Wed 09:03 Wed 18:27 

7 Wed 18:52 Thu 09:03 Thu 12:17 

5 Thu 15:52 Thu 16:08 Fri 00:57 

9 Fri 0&57 Fri 0L07 Fri 06:59 

10 Fri 0&59 Fri 06:59 Fri 10:04 

8 Fri 10:04 Fri 10:10 Fri 13:15 

3 Sat 21^5 Sat 2L29 Sun 0&18 

4 Sun 0&16 Sun 0947 Sun 16:06 

14 Sun 16:06 Sun 1&06 Sun 23:29 

2 Sun 23:29 Mon 00:37 Mon O&OO 

Figure 4.2 shows a graphical representation of the last two days of the schedules obtained 

with Model 1 and Model 3. As explained in Appendix D Model 1 has to be slightly 

adjusted before it can be directly compared to Model 3. 
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It can be seen in Figure 4.2 that an equal amount of setup time, 13 minutes, is inserted 

before each job for Model 1. For Model 3 the inserted setup times vary from 0 minutes 

between Job 4 and Job 14 to 68 minutes between Jobs 14 and 2. If Model 1 was 

implemented rather than Model 3 the schedule does not always allow enough time for the 

water to reach the field inlet of the next user to irrigate. For instance the travel time 

between Job 14 and 2 is 68 minutes, if only 13 minutes is available as in Model 1, the 

users would have to wait 55 minutes for the water to reach the field and either to finish 

irrigating on the agreed time and loose out on irrigation time or to continue irrigating 

beyond the agreed time and disadvantage other users. Neither is an acceptable course of 

action. Model 3 takes into account the actual travel time between users, water is therefore 

delivered the scheduled start time and the irrigation can proceed according to the schedule. 

As reported in section 3.5, solution times increase with the complexity of the model 

that is being solved. The formulation for Models 4a, 4b and 4c is more complex as that for 

Model 3. Although it is possible to solve Model 3 for 16 users, for Model 4a, 4b and 4c 

this resulted in excessively large solution times (> 10 days). The tertiary unit described by 

(Bishop and Long, 1983) has been modified to allow the models to be solved for a smaller 

number of jobs. The 6 users furthest away from the inlet on the main canal (users 1 

through 6) have been excluded. The irrigation interval has been shortened to 5.5 days and 

new target start times were generated randomly. Figure 4.3 shows a graphical 

representation of the schedules obtained for Models 4a, 4b, and 4c. Model 3 was also run 

with the 6 further users removed and is included in Figure 4.3 too. 
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Figure 4.3 Schedules applying Models 3, 4a, 4b, 4c 

4.4 Conclusions single machine scheduling with sequence dependent setup times 

In this chapter the models for non-contiguous and contiguous single machine scheduling 

with sequence dependent setup times are developed. It is shown that sequence dependent 

setup times can have an influence on the schedule. By applying the models to a tertiary 

unit the importance of including sequence dependent setup times is demonstrated. It 

should be noted that travel times are not constant over time. Discharge and velocity in the 

channel can vary due to external influences such as rain or shortage of water at the source 

and can vary from interval to interval or even within an interval. This means that travel 

times may need to be recalculated to reflect these changes in discharge and/or velocity. 

There are some disadvantages/shortcomings to the models described in this chapter; 

1. It is assumed that users irrigate sequentially, but in many irrigation systems 

simultaneous irrigation is allowed. This problem will be addressed in the next two 

chapters. Chapter 5 and 6. 

2. Solution times increase with the number of jobs. As a result thereof only small 

problems can be solved with the models developed in this chapter. Other solution 

techniques such as heuristics or genetic algorithms may be required to solve larger 

problems. 
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5 Simple multi-machine scheduling 

In single machine scheduling water is seen as a machine that can be used by at most 

one user at a time. This makes it a suitable analogy for rotational irrigation where users use 

the water sequentially. There are however many irrigation systems where two or more 

users irrigate simultaneously. Wang et al. (1995) introduced the concept of stream tubes. 

One stream tube supplies water to only one user at a time, but can supply several users in 

sequence. As water can divided in to more than one (imaginary) stream tube, more than 

one user can be supplied at a time. Each stream tube can be seen as a separate machine and 

multi-machine scheduling can be used to find the irrigation schedule for a number of 

users. 

The work by Wang et al. (1995) focussed on the decision of whether to operate the 

outlets of a tertiary unit simultaneously or in sequence. Figure 5.1a shows how irrigating 

simultaneously requires a larger canal capacity (economically undesirable) and the 

availability of sufficient water resources. The large flow required to allow simultaneous 

irrigation can exceed the capacity of the channel. Figure 5.1b shows how running the 

outlets sequentially allows the use of a smaller channel, but the total running time of a 

channel may exceed the irrigation interval. Figure 5.1c shows the optimal schedule, 

wherein all outlets are supplied with water within the irrigation interval, using the smallest 

possible discharge. Anwar and Clarke (2001) further developed the work by Wang et al. 

(1995) by showing how the concept of stream tubes can be used to schedule a number of 

jobs according to their target start times. This formulation was limited to non-contiguous 

scheduling. A limitation of the work by both Wang et al. (1995) and Anwar and Clarke 

(2001) is that the discharges of all outlets are assumed to be identical. By allowing each 

outlet to receive water from more than one stream tube at the same time, it is possible to 

vary the discharge to that outlet. Stream tubes supplying water to outlets can be seen as 

machines processing jobs. If more than one machine is available to process jobs, multi-

machine scheduling can be used to find the optimal schedule. The case where all outlets 

receive the same discharge will be referred to as simple multi-machine scheduling. The 

case where the discharges vary from outlet to outlet and more than one machine may be 

needed to process that job will be referred to as complex multi-machine scheduling. Multi-

machine scheduling, whether simple or complex, can offer a degree of flexibility in a 

schedule. If canal capacity and available water resources permit, the discharge in a channel 
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can be increased. This can improve the timeliness of water deliveries, which is of 

importance to irrigation districts where penalties are imposed if water is not delivered on 

time. 

a) Simultaneous irrigation 

& job 1 

job 2 

jobs 

Channel capacity 

Irrigation interval 

b) Sequential irrigation 

& 
Channel capacity Channel capacity 

jobl job 2 jobs 

Irrigation interval 

c) Combination of simultaneous and sequential irrigation 

f 
Channel capacity 

job 1 
Channel capacity 

job 2 jobs 

Irrigation interval 

Figure 5.1 Simultaneous and sequential irrigation 

In this chapter the models for simple multi-machine scheduling (non-contiguous and 

contiguous), with and without sequence dependent setup times, will be developed. The 

non-contiguous multi-machine model achieves the same results as the work done by 

Anwar and Clarke (2001). However the formulation by Anwar and Clarke (2001) does not 

allow contiguous scheduling nor complex multi-machine scheduling. Models for complex 

multi-machine scheduling and complex multi-machine scheduling with setup times will 

follow in the following chapter, Chapter 6. A series of alternatives to the simple multi-
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machine scheduling will also be presented. These models can reduce the number of 

constraints and variables and therefore the solution times, but have a limited use. The issue 

of timeliness of deliveries is discussed in this chapter and constraints are presented that 

allow the concept of timeliness to be incorporated into any of the multi-machine models. 

Table 5.1 shows an overview of the models that will be developed in this chapter. 

Table 5.1: Overview of different models and their features 
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5.1 Analysis and development of non-contiguous simple multi-machine scheduling 

The simple non-contiguous multi-machine schedule, herein referred to as Model 5, allows 

scheduling of a number of jobs (irrigation events) according to their target start times. In 
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this model more than one machine (stream tube) is available to process jobs, i.e. users are 

allowed to irrigate simultaneously. A fictitious job with index 0 is used to simplify writing 

of the constraints. Let Q = {0,1,2,...,//} be a set of jobs to be scheduled. The following 

parameters are specified for each job i 6 Q\ duration, target start time, earliness cost, 

tardiness cost and sequence independent setup time. Also let V= {\,2,...,W) be a set of 

machines available to process jobs. All jobs require equal discharges and the size of each 

machine is equal to this discharge. In Model 5 there are two decisions to be made, which 

machine processes which job and what is the scheduled start time of each job. If the 

answers to these questions are known, the schedule is known too. The objective of the 

model is to find a schedule such that every job starts as close as possible to the target start 

time. The objective function consists of two terms. The first aims to find the sequence of 

jobs and scheduled start time for each job so that every job starts as close as possible to the 

target start time. This is achieved by minimising the penalties incurred when a job is either 

early or tardy. The second term aims to limit the wastage of water by reducing the 

discharge in the channel. This can be done by minimizing the number of stream tubes 

used. Multiplying the second term by a large constant will ensure that minimizing the 

discharge has priority over the minimizing the earliness/tardiness. This constant will have 

to be chosen such that the second goal will be several orders of magnitude larger than the 

first (Anwar and Clarke, 2001). The objective function can be written as 

minimize Z = ^ + pT.) + (5.1) 
f=l W=1 

where c = large constant; w = index representing machine W= number of 

available machines; and = binary variable, which is used to define whether a machine is 

being activated, i.e. processes one or more jobs 

= 1 if machine w is activated 

= 0 otherwise 

Any job can directly precede any other job on a machine, therefore a variable is used to 

define which job precedes which other job on what machine 
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(p^ = 1 if job z directly precedes job j on machine w 

= 0 otherwise 

where (p^ = binary variable. A job can be processed by any machine, so a variable is used 

to define which job is processed by which machine 

= 1 if job / is processed by machine w 

= 0 otherwise 

where = binary variable. 

The scheduled start time of a job is determined from the target start time, the earliness and 

the tardiness 

%= r, + a"; (5.5) 

It is not possible for a schedule to incur a negative earliness or tardiness (in fact a negative 

tardiness is the same as a positive earliness and vice versa), therefore the following 

constraints need to be satisfied 

7 : a 0 \ / z = ( 5 . 6 ) 

JS, 2: 0 \ / ; = 1 , 2 , ( 5 . 7 ) 

Each job can be processed by only one machine 

w 
(5.8) 

1 

Each job can at most precede one other job 

N 

< TYw ^ ^ 1 = 0 , 1 , . . ^ % ! ; V w = 1 , 2 f P ; z ( 5 . S 0 

Each job (with the exception of job 0) must follow one other job 
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N 

y/'= 1,2,...^; Vw= 1,2,. . . ,^ z#y (5.10) 
ryw yw 

z= 0 

No job is allowed to start before the previous job on the same machine has finished 

Sj - S. - M(py^ > d. - M V/= 0,1,...^; \fj= 1,2,...^; Vw= 1,2,...,W; i*j (5.11) 

Each job should be finished within the interval 

5",. + ^ g Vf= 1 ,2 , . . .^ (5.12) 

A machine is activated if it processes at least one job (supplies at least one outlet with 

water) 

Vw= (5.13) 
i= 1 

The capacity of a channel may not be exceeded 

w 
3 E t ^ 6 . ( 5 . 1 4 ) 

W= 1 

where q = size of machine (discharge of stream tube); and = channel capacity. For each 

machine the sum of durations must be less than or equal to the length of the interval 

N 

1,2 Mr (5.15) 
f = 1 

This constraint is not absolutely essential to the model, as it achieves the same as 

constraint (5.12), but is found to greatly reduce solution times. Model 5 is therefore 

defined by the objective function (5.1) and the constraints (5.3) - (5.15). 

5.2 Analysis and development contiguous simple multi-machine scheduling 
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The contiguous simple multi machine scheduling model, herein referred to as Model 6, is 

based on Model 5. The objective function and constraints described for Model 5 remain 

valid. Some extra constraints are necessary to ensure correct insertion of idle time. 

5.2.1 Contiguous simple multi-machine modelling: Model 6a 

In Model 6a all idle time is inserted after the last job in the schedule has been completed, 

therefore no job should finish later than the sum of durations of all jobs processed on the 

same machine 

N 

5". + ^ 1,2,...^; Vw= (5.16) 
i= 1 

Model 6a is therefore defined by the objective function (5.1) and the constraints (5.3) 

(5.16). 

5.2.2 Contiguous simple multi-machine scheduling: Model 6b 

Model 6b is similar to Model 6a with the difference that all idle time is inserted before the 

first job in the schedule starts. The amount of idle time inserted on each machine depends 

on the duration of the jobs processed by that machine. Therefore 

= 1,2,..,pr (5.1'7) 
/= 1 

where = idle time preceding the start of the first job of the schedule on machine w. Idle 

time on each machine is inserted before the all jobs. Therefore 

+ .A4(l - :> \/z= 1,2,..J\% '9'%'= 1,2,...,// (5.ig) 

Model 6b is therefore defined by the objective function (5.1) and the constraints (5.3) 

(5.15), (5.17) and (5.18). 



5.2.3 Contiguous simple multi-machine modelling: Model 6c 

In Model 6c idle time is allowed to be inserted both before the first job in the schedule 

starts and after the last job in the schedule is finished. The total amount of idle time 

inserted (before and after all jobs) on a machine depends on the duration of the jobs 

processed by that machine 

S = Z 4 ^ , . + - y . . + V w = i x - , w ( 5 . 1 9 ) 
i= 1 

where = idle time following the end of the last job in the schedule on machine w. If 

idle time is inserted at the end of a schedule this may only be done after all jobs have been 

completed 

+ f/y - M l - ^ g - ^ Vf= 0,1,...^; Vw= (5.20) 

If idle time is inserted at the beginning of a schedule this may only be done before the first 

job start. Therefore constraint (5.18) is also necessary. Model 6c is therefore defined by the 

objective function (5.1) and the constraints (5.3) - (5.15) and (5.18) - (5.20) 

5.3 Simple multi-machine modelling with sequence dependent setup times 

Sequence dependent setup times for multi-machine scheduling is not as straightforward to 

incorporate as for single machine scheduling. In single machine scheduling, although the 

discharge can vary from interval to interval, it is constant during an interval. Sequence 

dependent setup times for single machine scheduling are defined as the time needed for the 

water in the channel to be diverted from one outlet to another. In multi-machine 

scheduling water is not diverted from just one outlet to only one other outlet, it is diverted 

from several outlets to several other outlets, all at different times. As a result hereof the 

discharge will vary, along the length of the channel as well as during the course of the 

interval. Figure 5.2 shows these spatial and temporal fluctuations. Figure 5.2 shows a 

channel with three outlets, A, B and C. Outlet B is located downstream of outlet A and 
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outlet C is located downstream of both outlet A and B. Figure 5.2a shows that at time T 

only outlet A is running, the channel is empty downstream of this outlet. Figure 5.2b 

shows that after a while, at time T + outlet A has stopped running, the water has been 

diverted and now outlet B is running. The sequence dependent setup time in this situation 

is the time needed for the water to travel (through the empty channel) from outlet A to 

outlet B. 

a) time T; outlet A is running c) time T: outlet A and C are running 

& 

1 
& 

a 
A 5 5 

Distance along channel 

b) Time T + At: outlet B is running 
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a 
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A B C 

Distance along channel 

d) Time T + At: outlet B and C are running 

I 
B X X c 

Distance along channel 

Figure 5.2 Spatial and temporal variation of discharge 

Distance along channel 

In multi-machine terms this situation can be seen as one machine (stream tube) that first 

processes one job (outlet A) and then another (outlet B). Figure 5.2c shows the same 

channel, again at time T, but now both outlet A and C are running. Figure 5.2d shows that 

after a while, at time T+ A?, outlet A has finished running, the water has been diverted and 

now outlet B is running. Meanwhile the situation for outlet C remains unchanged and the 

outlet is still running. The sequence dependent setup time in this situation for outlet B is 

still the time needed for water to travel from outlet A to outlet B. However the channel is 

partially filled which will reduce the time needed to divert the water. In multi-machine 

scheduling terms this situation can be seen as two machines, the first one processing job A 

and B, the second processing job C. This example shows that sequence dependent setup 

times for multi-machine scheduling not only depends on the locations of two outlets, as is 

the case for single machine scheduling, but also on the discharge of the channel between 

these two outlets. Where in single machine scheduling the water always travels through a 

dry channel, in multi-machine scheduling water can travel through a dry channel or a 
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(partially) filled channel. Whether or not a channel is filled will have an influence on the 

travel time. Furthermore it is conceivable that during the time that water is diverted from 

one outlet to another the discharge in the channel changes. This could happen if, for 

instance a third outlet located in between the two outlets finishes running. This means that 

the sequence dependent setup time is also dependent on the change in discharge between 

one outlet and another. How to exactly incorporate this multi-dimensional variable into 

multi-machine modelling needs to be further investigated in future. 

It is possible to simplify the multi-machine scheduling problem with sequence 

dependent setup times by assuming the channel is always dry. By assuming the channel is 

always empty when water is diverted from one outlet to another, sequence dependent setup 

time can now be calculated the same way as sequence dependent setup times for single 

machine scheduling. Using this approach ensures that the sequence dependent setup times 

in reality can be less than the calculated sequence dependent setup time, but never more. 

This means users may receive water earlier then scheduled, but never later. 

5.4 Analysis and development non-contiguous simple multi-machine scheduling with 

sequence dependent setup times 

The non-contiguous simple multi-machine model with sequence dependent setup times 

(herein referred to as Model 7) allows scheduling of a number of jobs (irrigation events) 

according to their target start times, whilst taking into account the sequence dependent 

setup times. In this model more than one machine (stream tube) is available to process 

jobs, i.e. users are allowed to irrigate simultaneously. A fictitious job with index 0 is used 

to simplify writing the constraints. Let Q = {0,1,...,7V} be a set of jobs to be scheduled. The 

following parameters are specified for each job i e Q: duration, target start time, earliness 

cost, tardiness cost, required discharge and sequence dependent setup times. Also let V= 

{1,2,...,W} be a set of machines (or stream tubes) available to supply water to field outlets. 

The discharge for each machine w e Vis specified and is equal to the discharge of the 

outlets. 

The objective function consists of two terms. The first aims to find the sequence of 

jobs and scheduled start time for each job so that every job starts as close as possible to the 

target start time. This is achieved by minimising the penalties incurred when a job is either 
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early or tardy. The second terms minimizes the discharge, i.e. minimizes the number of 

stream tubes used. The objective function can now be written as 

M m k m a e Z = ( 5 2 1 ) 
W=1 

As any job can directly precede any other job on a machine a variable is used to define 

which job precedes which other job on what machine 

(p^ = 1 if job i directly precedes job j on machine w . . 

= 0 otherwise 

Any job can be processed by any machine, so a variable is used to define which job is 

processed by which machine 

= 1 if job / is processed by machine w 

= 0 otherwise 

The following variable defines whether a machine is used or not 

(5.23) 

(5.24) 
i|f^ = 1 if machine w is activated 

= 0 otherwise 

The scheduled start time of a job is determined from the target start time, the eariiness and 

the tardiness 

^ 1,2,. . .^ (5.25) 

Negative eariiness or tardiness does not exist therefore for 7] and E, the following 

constraints need to be satisfied 

> 0 = 1,2,...JV (5.2(5) 

% 0 V;= 1,2,...^ (5.27) 

Each job can be processed by only one machine 
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nv 
w= 1 

Each job can at most precede one other job 

N 

~ 'iw 

] r = 1 ; 0 ^ 2 8 ) 

^ Vw= 1 , 2 , ( 5 . 2 9 ) 
y= 1 

Each job (with the exception of job 0) must follow one other job 

Vw= l,2,...,fF; (5.30) 
z= 0 

No job is allowed to start before the previous job on the same machine has finished 

5̂ . - 5"; - ^ M Vi= 0,1,...yV; y / = 1,2,...JV; Vw= 1,2 '^)(5.31) 

Each job should be finished within the interval 

5", + ^ g V!= 1,2,. . .^ (5.32) 

A stream tube is activated if it supplies at least one outlet with water 

N 

Vw=l,2,.. . ,pr (5.33) 
z= 1 

The capacity of a channel may not be exceeded 

w 
f Z V ' . ^ 8 (5.34) 

W= 1 

The following constraint is not essential to the model but is found to greatly reduce 

solution times. 
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N 

y / ' = 0 , l , . . . ^ ; V w = l , 2 P F ( 5 . 3 5 ) 
^ iw I ^iJ'W ij 

Model 7 is therefore defined by the objective function (5.21) and the constraints (5.22) -

( 5 . 3 5 ) . 

5.5 Analysis and development contiguous simple multi-machine scheduling with 

sequence dependent setup times 

The contiguous simple multi-machine model with sequence dependent setup times, herein 

referred to as Model 8, is based on Model 7. The objective function and most of the 

constraints described for Model 7 remain valid. Some extra constraints are needed to 

ensure correct insertion of idle time. 

5.5.1 Contiguous simple multi-machine scheduling with sequence dependent setup times: 

In Model 8a all idle time is inserted after the last job in the schedule has been completed, 

therefore no job should finish later than the sum of durations and sequence dependent 

setup times of all jobs processed on the same machine 

- M l - V ^ Z + Z Z " 0 , 1 , = 1 , 2 , . . . , ( 5 . 3 6 ) 
M=0 n=oy=o 

where = binary variable; and (p„ĵ  = binary variable. Model 8a is therefore defined by 

the objective function (5.21) and the constraints (5.22) - (5.36). 

5.5.2 Contiguous simple multi-machine scheduling with sequence dependent setup times: 

Model 8b 
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Model 8b is similar to Model 8a with the difference that all idle time is inserted before the 

first job in the schedule starts. The amount of idle time inserted on each machine depends 

on the duration and sequence dependent setup times of the jobs processed on that machine. 

Therefore 

^ = g - - E E (5.37) 
/= 0 i= 0 J= 0 

^ ^ + ^0/ " 1 , 2 , . . . ^ ; V w = 1 , 2 ( f j g ) 

Model 8 b is therefore defined by the objective function (5.21) and the constraints (5.22) -

(5.35), (5.37) and (5.38). 

5.5.3 Contiguous simple multi-machine scheduling with sequence dependent setup times: 

In model 8c idle time is allowed to be inserted both before the first job of a schedule starts 

and after the last job of the schedule is completed. The total amount of idle time inserted 

(before and after all jobs) on a machine depends on the sum of duration and sequence 

dependent setup time of all jobs processed by that machine 

g = Z - E E ( V P + - i ; , + 4 . V w . 1,2,... A (5.39) 
;•= 0 i= 0 j= 0 

Idle time can be inserted at the end of a schedule, but this may only be done after the last 

job of the schedule has been completed 

6",. + (/( - ^ g - ^ Vw= 1,2 PF (5.40) 

Idle time can be inserted at the beginning of a schedule, but this may only be done before 

the first job starts, therefore (5.38) is necessary. Model 8c is now defined by the objective 

function (5.21) and the constraints (5.22) - (5.35) and (5.38) - (5.40). 
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5.6 Timeliness 

One of the most important activities of irrigation district managers is the timely 

delivery of water to tertiary units (Javan et al., 2002). Some irrigation districts have rules 

and policies regarding the late or early delivery of water, e.g water must be delivered 

within 24 or 48 hours of the requested time (e.g. Palmer et al., 1991; McGomick, 1993). 

Discharges in the channels can be increased, if the capacity of the channels and the 

availability of water permits this, as to allow more users to irrigate simultaneously. This 

increases the flexibility of a irrigation schedule and can reduce the earliness/tardiness. 

Thus it may be possible to observe the restrictions set on the early or late delivery of water. 

If the discharge can be increased sufficiently it is possible to give every user water exactly 

on the requested time. This could however lead to excessive waste of water or number of 

gate operations. The necessary increase in discharge depends on the requested start times 

and durations and can therefore only be determined together with the schedule. By 

combining the model that minimises the discharge and the models that minimize the 

earliness/tardiness it is possible to develop a model that allows restrictions on 

earliness/tardiness and minimises operational spillage at the same time. 

Restrictions on maximum allowable earliness and tardiness can be formulated as 

follows 

1,2,..,7/ (5/11) 

where = maximum allowable earliness, 

- ^max l,2,...yV (5.42) 

where 7]^ = maximum allowable tardiness. These constraints can be added to any of the 

simple multi-machine models described in previous paragraphs. 

5.7 Results and discussion of simple multi-machine scheduling 

Suryavanshi and Reddy (1986) described a tertiary unit in India with 8 users who are 

allowed to irrigate simultaneously. In their paper a schematic representation and irrigation 
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durations for this tertiary unit are given. Figure 5.3 shows this schematic and Table 5.2 

shows the irrigation durations. Anwar and Clarke (2001) generated random target start 

times for the tertiary unit described by Suryavanshi and Reddy (1986). Table 5.2 also 

shows these target start times. 
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Figure 5.3 Tertiary unit, Kukadi Project, India (Suryavanshi and 
Reddy, 1986) 

Table 5.2 Outlet data 

Outlet number Irrigation duration (days) Target start time (days) 

(1) (2) (3) 

1 0.80 3J5 

2 2J3 0.41 

3 Z40 2J6 

4 L72 L49 

5 2.05 0.61 

6 2.43 &26 

7 2.05 1.60 

8 2.50 3.03 

Model 5, with and without earliness/tardiness restrictions, was implemented in Lingo 6.0® 

for Windows® using data from Table 5.2. The Lingo input files can be found in Appendix 

A. Figure 5.4 shows the schedule if no restrictions are imposed on the maximum allowable 

earliness and tardiness (this is the same result presented by Anwar and Clarke, 2001). It 

can be seen that 3 stream tubes (each of 30 1/s) are needed to supply the outlets with water. 



The total earliness/tardiness for this schedule is 4.73 days, an average of 15.9 hours per 

outlet. It can also be seen that job 1 is scheduled to start 1.01 days earlier than requested 

and job 7 is scheduled to start 2.17 days later than requested, all other jobs have an 

earliness/tardiness of less than 1 day. Figure 5.5 shows the schedule if a maximum 

allowable earliness/tardiness of 24 hours per outlet is imposed. It can be seen that 4 stream 

tubes (each of 30 1/s) are needed to accommodate this constraint. The total 

earliness/tardiness of this schedule is 1.44 days, an average of 4.32 hours per outlet. None 

of the outlet have an earliness/tardiness of more than 1 day. The restrictions on maximum 

allowable earliness tardiness do however have disadvantages. The discharge in the channel 

needs to be increased from 90 1/s to 120 1/s. If the channel is operated continuously during 

the irrigation interval, 49% of the water is lost to operational spillage (volume of water lost 

as a proportion of that requested) compared to 12% operational water loss if no restrictions 

are imposed. 
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Figure 5.4 No restrictions on earliness/tardiness 
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Figure 5.5 Timeliness restriction: water must be delivered within 24 hours of the target 
start time 

As reported in section 3.5, solution times increase with the complexity of the model 

that is being solved. Including sequence dependent setup times into a model makes the 

model more complex and it was not possible to obtain solutions for Models 7, 8a, 8b or 8c 

within a reasonable time (<lday). Therefore no results are presented for these models. 

5.8 Analysis and development of a two stage formulation for simple multi-machine 

scheduling 

The models described in the previous paragraphs all have a dual goal objective function: 

not only the earliness/tardiness is minimised, but also the number of machines needed to 

process all jobs. It is possible to split these two goals into a model that is solved in two 

separate stages, the first one minimises the number of machines needed and the second 

minimises the earliness/tardiness. The advantage of two separate models rather than one 

combined model is that the number of variables and constraints is reduced and the models 

can be solved quicker. Separate models however do not allow simultaneous determination 

of number of machines and earliness/tardiness, as is needed when timeliness constraints 

and sequence dependent setup times apply. Therefore the use of the models described 

below is limited. 



5.8.1 Integer programme to minimize the number of stream tubes 

Wang et al. (1995) developed a model to determine the minimum number of machines 

(stream tubes) needed to provide all outlets with water. Let Q = be a set of jobs 

to be scheduled. The following parameters are specified for each job i e Q: duration and 

sequence independent setup time. Also let V= {l,2,...,W} be a set of machines (stream 

tubes) available to supply water to outlets. As all jobs require equal discharge, the size of 

each machine is equal to this discharge. The aim of the model is to minimize the discharge 

in the channel, i.e. to minimize the number of activated machines 

w 
n u n u n b e Z = C5 4 3 ) 

W= 1 

A variable is used to define whether a machine is used or not 

An outlet receives water from only one stream tube 

w= 1 

A machine is activated if it processes at least one job, i.e. it supplies at least one outlet 

(5.44) 
= 1 if machine w is activated 

= 0 otherwise 

As any job can be processed by any machine a variable is used to define which job is 

processed by which machine 

= 1 if job / is processed by machine w 

= 0 otherwise 

No machine is allowed to run past the end of the irrigation interval 

N 

dTT,, 3 (5.zk)) 
i= 1 

(5.45) 

w 
Th, =: 1 1 , 2 , ( 5 / 1 7 ) 
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with water 

N 
^ 4 ' . ^ Vw=l,2.-.W ( 5 . 4 8 ) 

i= 1 

The model to determine the minimum discharge required to supply all outlets with water is 

therefore defined by the objective function (5.43) and the constraints (5.45), (5.44), (5.46), 

(5.47) and (5.48). 

5.8.2 Non-contiguous simple multi-machine scheduling 

The second stage of the non-contiguous simple multi-machine model closely resembles 

Model 5 described previously. As the objective of the model is no longer to both minimise 

the number of machines and earliness/tardiness, but just to minimise earliness/tardiness, 

the second term of the objective function of Model 5 can be removed 

N 

minimize Z = ^ {aE. + p.r.) (5.49) 
/= 1 

As the number of stream tubes that is needed is determined during the first stage of the 

model (described in paragraph 5.5.1), constraints in Model 5 directly linked to this goal are 

unnecessary and (5.2) and (5.13) can be removed. The alternative Model 5 is therefore 

defined by the objective function (5.49) and the constraints (5.3), (5.4), (5.5) - (5.12), 

(5.14) and (5.15). 

5.8.3 Contiguous simple multi-machine scheduling 

The second stages of the contiguous simple multi-machine models closely resemble model 

6a, 6b and 6c. The objective functions need to be modified in the same way as the 

alternative formulation of Model 5 and the same two constraints need to be removed. 

Therefore alternative Model 6a is defined by the objective function and the constraints 

(5.3), (5.4), (5.5) - (5.12) and (5.14) - (5.16). Model 6b is defined by the objective function 
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(5.49) and the constraints (5.3), (5.4), (5.5) - (5.12), (5.14), (5.15), (5.17) and (5.18). 

Model 6c is therefore defined by the objective function (5.49) and the constraints (5.3), 

(5.4), (5.5) - (5.12), (5.14), (5.15) and (5.18) - (5.20) 

The single and two stage models are essentially the same, the difference lies in the number 

of steps involved in solving the models. The results from both the single and two stage 

formulation are therefore the same. Table 5.3 shows the number of constraints the number 

of variables and constraints for each model for both the single and two stage formulations 

Table 5.3; Number of variable and constraints for models 5, 6a, 6b and 6c' 

Model 

(1) 

Formulation 

(2) 

Number of variables 

(3) 

Number of constraints 

(4) 

5 single stage 

first stage 

second stage 

M F + 1 

A ^ f F + 3 # + MK 

6a single stage 

first stage 

second stage 

NW+ W + N+ 1 

6b single stage 

first stage 

second stage 

+ PF 

4-7VfF+37V+2fF 

M F + 1 

6c single stage 

first stage 

second stage 

NW+ W+ N+ 1 

N= number of jobs; and W= number of stream tubes 

At first sight both formulations have a number of variables and constraints in the order of 

N^W. By applying the two stages model however it is possible to reduce the number of 

stream tubes and thereby the number of variables and constraints. The tertiary unit 

described in Section 5.7 can be used to demonstrate this reduction. The maximum number 

of stream tubes that could be required to supply all users with water is one for each user, in 

74 



this case 8. This means that if single stage Model 5 is used to obtain a schedule, the model 

has 608 variables and 552 constraints. When the two stages Model 5 is used, the first stage 

will minimise the number of stream tube required to supply all users with water. This stage 

of the model has 72 variables and 81 constraints. The outcome of this stage is that 3 

stream tubes is enough to supply all users with water. The second stage of the model 

which minimises the earliness/tardiness now has 240 variables and 219 constraints for the 

two stages model the total number of variables is 312 and the total number of constraints 

is 300. Compared to the single stage model this is a reduction of 48% in the number of 

variables and a 46% reduction in the number of constraints. Table 5.4 shows the 

computation times for the example 

Table 5.4: Computation times (in seconds) for Model 5, 6a, 6b and 6c 

Model 

Formulation 5 6a 6b 6c 

(1) (2) (3) (4) (5) 

single stage model >20000 >20000 >20000 >20000 

first stage <1 <1 <1 <1 

two stage model second stage 115 63 66 67 

total 115 63 66 67 

It can be seen in Table 5.4 that there is a large difference between the computation times of 

the single stage models, none of which solved in 5.5 hours (20000 seconds) and the two 

stage models, all of which solved in less then 2 minutes. 

5.9 Conclusions simple multi-machine scheduling 

Several models are presented in this chapter. The models allow both non-contiguous and 

contiguous simple multi-machine scheduling without and with sequence dependent setup 

times. It is also shown how timeliness of water delivery can be incorporated into the 

models. By applying the models to a tertiary unit it is shown how the earliness/tardiness of 

a model can be reduced, however at the cost of increased operational spillage. There are 

several disadvantages to the models developed in this chapter. 

1. The discharge of the outlets are assumed to be identical, but this is not necessarily 
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always true. This issue will be addressed in the next chapter, Chapter 6. 

2. Sequence dependent setup times are calculated as if the channel is always empty. In 

reality the channel may be partially filled. This can cause sequence dependent setup 

times to be less than calculated. Further research into this issue is needed. 

3. Solution times increase with the number of jobs to be scheduled and as a result only 

smaller problems can be solved. Solution techniques such as heuristics or genetic 

algorithms may be more appropriate to solve larger problems. 

4. It is assumed that the dimensions along the length of a channel remain constant. This 

may be true, but in many cases channels become smaller towards the tail-end. This 

may cause capacity problems if several tail-end users are scheduled to irrigate 

simultaneously. This issue will need to be investigated in future. 

5. It is assumed sufficient water resources are available to meet the irrigation demands. 

More research is necessary to study the effect of a less than adequate water supply. 

Possible solutions could be imposing an upper limit on the requested discharge or 

adjusting the duration. 
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6 Complex multi-machine scheduling 

In multi-machine scheduling water is modelled as several (imaginary) stream tubes. In 

simple multi-machine scheduling each job is processed by one machine (stream tube) and 

each machine can process several jobs in sequence. The limitation of such a model is that 

all outlets need to have an identical discharge for simple multi-machine scheduling to 

work. In many irrigation systems it is possible for users not only to ask for a specific 

duration and start time for their irrigation turn, but also for a specific discharge. This 

means that the discharge can vary from user to user. In complex multi-machine scheduling 

two or even more machines are allowed to process the same job, thereby allowing different 

discharges to be delivered to each user. Figure 6.1 illustrates the difference between simple 

multi-machine scheduling and complex multi-machine scheduling. 

a) Simple multi-machine scheduling 

1 1 A User 1 

1 
B User 2 

C/J 
C User 3 

Time 

b) Complex multi-machine scheduling 

Time 

Figure 6.1 Comparison simple and complex 
multi-machine scheduling 

Figure 6.1a shows simple multi-machine scheduling. Three stream tubes. A, B and C, each 

of equal discharge, are available. Stream tube A supplies outlet 1, stream tube B supplies 

outlet 2 and stream tube C supplies outlet 3. All outlet receive the same discharge. Figure 

6.1b shows complex multi-machine scheduling. Again three stream tubes, A, B and C, 

each of equal size are available. Stream tube A supplies outlet 1, and stream tubes B and C 
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supply outlet 2. Outlet 2 receives twice the discharge of outlet 1. 

In this chapter the models for complex multi-machine scheduling and complex multi-

machine scheduling with sequence dependent setup times will be developed. The 

highlighted area of Table 6.1 shows the models to be developed in this chapter: 

Table 6.1: Overview of different models and their features 
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6.1 Analysis and development non-contiguous complex multi-machine scheduling 

model 

The non-contiguous complex multi-machine model, herein referred to as Model 9, 

allows scheduling of a number of jobs (irrigation events) according to their target start 
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times. In this model more than one machine (stream tube) is available to process each of 

the jobs, i.e. users are allowed to irrigate simultaneously. A fictitious job with index 0 is 

used to simplify writing of the constraints. Let Q = {0,1,2,...,7V} be a set of jobs to be 

scheduled. The following parameters are specified for each job i e Q\ duration, target start 

time, earliness cost, tardiness cost and required discharge. Also let F = {1,2,...,W} be a set 

of machines available to process jobs. The discharge for each machine w e Vis specified. 

In Model 9 there are two decisions to be made, which machine processes which job and 

what is the scheduled start time of each job. If the answers to these questions are known, 

the schedule is known too. The objective of the model is to find a schedule such that every 

job starts as close as possible to the target start time. This is achieved by minimising the 

penalties incurred when a job is either early or tardy. The objective function can be written 

as 

0 % ^ + (&1) 
W=1 

As any job can directly precede any other job on a machine a variable is used to define 

which job precedes which other job on what machine 

%w ^ 1 if job /• directly precedes job j on machine w 

= 0 otherwise ' ^ 

A job can be processed by any machine, so a variable is used to define which job is 

processed by which machine 

= 1 if job i is processed by machine w 

= 0 otherwise 

The following variable defines whether a variable is used or not 

t|ĵ , = 1 if machine w is activated 
n ^ - (6 4) 

= 0 otherwise 

The scheduled start time of a job is determined from the target start time, the earliness and 

the tardiness 

^ ^ + Ty - (6.5) 
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It is not possible for a schedule to incur a negative earliness or tardiness (in fact a negative 

tardiness is the same as a positive earliness and vice versa), therefore the following 

constraints need to be satisfied 

T. > 0 Vz= 1,2,...,7V (6.6) 

E. > 0 V/= 1,2,...,A^ (6.7) 

Each outlet must receive the required discharge, therefore each job must be processed by 

the right number of machines 

w 
Q, (6.8) 

w= 1 

where g, = discharge required for job i. Each job can at most precede one other job 

N 

^ Vw= 1,2,...,PF; (6.9) 
7=1 

Each job (with the exception of job 0) must follow one other job 

N 

E ( P ^ = T!/. y/'= V}i,= 1 , 2 , . . . , ( 6 . 1 0 ) 
/=o 

No job is allowed to start before the previous job on the same machine has finished 

^ - M Vf= 0,l,...,Ar; y / = l,2,...,Ar; 1,2,. . . ,^ (6.11) 

Each job should be finished within the interval 

+ (/y ^ g Vi= l,2,...,Ar (6.12) 
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The capacity of a canal may not be exceeded 

w 
c Z t ^ & (6.13) 

w= 1 

Any restrictions on maximum allowable earliness and/or tardiness can be accommodated 

as follows 

V/= 1,2, . . .^ (6.14) 

T, s Vi= 1,2, . . .^ , (6.15) 

A stream tube is activated if it supplies at least one outlet with water 

i= 1 

The following constraint is not essential to the model but is found to greatly reduce 

solution times. For each machine the sum of durations must be less than or equal to the 

length of the interval. 

N 

^ g 1 , 2 , . . . , ( 6 . 1 7 ) 
i= 1 

Model 9 is therefore defined by the objective function (6.1) and the constraints (6.2) -

(6.17). 

6.2 Analysis and development contiguous complex multi-machine scheduling model 

The contiguous complex machine scheduling model, herein to be referred to as Model 10 
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is based on Model 9. The decision variables, objective function and constraints described 

for this model remain valid. Some additional constraints are needed to ensure correct 

insertion of idle time. 

6.2.1 Contiguous complex multi-machine scheduling: Model 10a 

To ensure all idle time is inserted after the last job in the schedule is completed, no job 

should finish later than the sum of the durations of all job processed on the same machine 

N 

^ V;= Vw= (6.18) 
f = 1 

Model 10a is therefore defined by the objective function (6.1) and the constraints (6.2) 

(6.18). 

6.2.2 Contiguous complex multi-machine scheduling: Model 10b 

Model 10b is similar to Model 10a with the difference that all idle time is inserted before 

the first job is scheduled to start. The amount of idle time inserted on each machine 

depends on the duration of the jobs processed by that machine. Therefore 

= g ^ E4s. Vw'l,2,..;W (6.19) 
/= 1 

Idle time on each machine is inserted before the all jobs. Therefore 

+ M l - V ^ Vf = 1,2, . . .^; V w = 1 , 2 , . . . ^ (6.20) 

Model 10b is therefore defined by the objective function (6.1) and the constraints (6.2) 

(6.17), (6.19) and (6.20). 
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6.2.3 Contiguous complex multi-machine scheduling: Model 10c 

In Model 10c idle time is allowed to be inserted both before the first job in the schedule 

starts and after the last job in the schedule is finished. The total amount of idle time 

inserted (before and after all jobs) on a machine depends on the duration of the jobs 

processed by that machine 

g = V«=0,l,....iV; Vm.= \X-,W (6.21) 
/= 1 

If idle time is inserted at the end of a schedule this may only be done after all jobs have 

been completed 

6",. + 6/y - M l - W ^ g ^ 0,1,...^; Vw= 1,2,...,^ (6.22) 

If idle time is inserted at the beginning of a schedule this may only be done before the first 

job starts. Therefore constraint (6.20) is also necessary. Model 10c is therefore defined by 

the objective function (6.1) and the constraints (6.2) - (6.17) and (6.20) - (6.22). 

6.3 Analysis and development of a two stage formulation for complex multi-machine 

scheduling 

The models described in the previous paragraphs all have a dual goal objective function: 

not only the earliness/tardiness is minimised, but also the number of machines needed to 

process all jobs. As with the models described in Chapter 5, it is possible to split these two 

goals into a model that is solved in two separate stages, the first stage minimises the 

number of machines needed and the second minimises the earliness/tardiness. The 

advantage of two separate models rather than one combined model is that the number of 

variables and constraints is reduced. Separate models however do not allow simultaneous 

determination of number of machines and earliness/tardiness, as is needed when maximum 

allowable earliness/tardiness restrictions apply. Therefore the use of the models described 

below is limited. 
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6.3.1 Integer programme to minimize the number of stream tubes 

Wang et al. (1995) developed a model to determine the minimum number of machines 

(stream tubes) needed to provide all outlets with water. This model is intended for use in 

simple multi-machine scheduling. With some enhancement it can also be used for complex 

multi-machine scheduling. Let Q = {\,2,...,N} be a set of jobs to be scheduled. The 

following parameters are specified for each job i e Q: duration, sequence independent 

setup time and required discharge. Also let V= {l,2,...,W} be a set of machines (stream 

tubes) available to supply water to outlets. The discharge for each machine w e Vis 

specified. The aim of the model is to minimize the discharge in the channel, i.e. to 

minimize the number of activated machines 

w 
minimize Z = ^ (6.23) 

W= 1 

As any job may be processed by any machine a variable is used to define which job is 

processed by which machine 

T.̂  = 1 if job / is processed by machine w 

= 0 otherwise 

A variable is used to define whether a machine is used or not 

= 1 if machine w is activated 

= 0 otherwise 

No machine is allowed to run past the end of the irrigation interval 

N 

(6.24) 

(6.25) 

\/ty== 1 , 2 , . ( 6 . : % ) ) 
i= 1 

Each outlet must receive the required discharge, therefore each job must be processed by 

the right number of machines 
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w 
= iZ V;= 0527) 

w= 1 

A machine is activated if it processes at least one job, i.e. it supplies at least one outlet 

with water 

N 

^ Vw= 1,2,...,fF (6.28) 
/= 1 

The first stage of the model that determines the minimum discharge required to supply all 

outlets with water is therefore defined by the objective function (6.23), and the constraints 

(6.24), (6.25), (6.26), (6.27) and (6.28). 

6.3.2 Non-contiguous complex multi-machine scheduling 

The separate non-contiguous simple multi-machine model closely resembles Model 9 

described previously. As the objective of the model is no longer to both minimise the 

number of machines and earliness/tardiness, but just to minimise earliness/tardiness, the 

second term of the objective function of Model 9 can be removed 

N 

minimize Z = ^ (oCyE. + p.r.) (6.29) 
i= 1 

As the number of stream tubes that is needed is determined v^ith the model described in 

paragraph 6.3.1, constraints in Model 9 directly linked to this goal are unnecessary and 

(6.4) and (6.16) can be removed. Maximum allowable earliness/tardiness cannot be 

accommodated, so constraints (6.14) and (6.15) can also be removed. The second stage of 

the model for non-contiguous complex multi-machine scheduling is therefore defined by 

the objective function (6.29) and the constraints (6.2), (6.3), (6.5) - (6.13) and (6.17). 
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6.3.3 Contiguous complex multi-machine scheduling 

The second stages of the contiguous complex multi-machine models closely resemble 

model 6a, 6b and 6c. The objective functions need to be modified in the same way as the 

second stages of the two-stage formulation of Model 5 and the same four constraints need 

to be removed. Therefore the second stage of Model 6a is defined by the objective function 

(6.29) and the constraints (6.2), (6.3), (6.5) - (6.13), (6.17) and (6.18). The second stage of 

Model 6b is defined by the objective function (6.29) and the constraints (6.2), (6.3), (6.5) -

(6.13), (6.17), (6.19) and (6.20). Finally the second stage of Model 6c is defined by the 

objective function (6.29) and the constraints (6.2), (6.3), (6.5) - (6.13), (6.17) and (6.20) -

(6.22). 

6.4 Results and discussion complex multi-machine scheduling 

The models for complex multi-machine scheduling are computationally very demanding 

and only small problems can be solved. Although in the literature several tertiary units 

have been described that could be used for applying the models developed in this chapter, 

all these tertiary units are too large to be solved in a reasonable time (< 7 days). The 

tertiary unit described by Suryavanshi and Reddy (1986), described in the previous 

chapter, can be used as a basis to show a typical complex multi-machine schedule. The 

required discharge of two randomly chosen outlets (outlet 2 and 5) are doubled and tripled 

to 60 L/s and 90 L/s respectively. If one stream tube delivers 30 L/s, this means that outlet 

2 needs to be processed by 2 machines and outlet 5 by 3. The alternative formulation for 

Model 9 will be used to find the optimal schedule. This alternative formulation consists of 

two models, the first minimises the discharge in the channel and the second minimises the 

earliness/tardiness. 

The alternative formulation for Model 9 was implemented in Xpress'^''® for 

Windows®. From the first stage model follows that 5 stream tubes delivering 150 L/s are 

needed to supply the 8 outlets with the required discharge. Figure 6.2 shows the schedule 

obtained after applying the both stages of the alternative formulation of Model 9. It can be 

seen in Figure 6.2 that 3 stream tubes (B, C and D) each deliver 30 L/s to outlet giving 90 

L/s as required. It can also be seen that 2 stream tubes (B and C) each deliver 30 L/s to 
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outlet 2, giving a total of 60 L/s. Finally it can be seen that the remaining 6 outlets each 

receive 30 L/s delivered by one stream tube. 

150„ 

120d 

D 

B 
a 

9C 

6C 

30 

2 5 4 7 

Idle time 

Irrigation outlet 3 

A, B, C, DandE 
represent 5 streamtubes 
each delivering 30 L/s 
over the 6 day interval 

Target start t imes for each outlet 

M o n 
08:00 

Tue 
08:00 

Wed 
08:00 

Thu 
O&OO 

Fri Sat Sun 
08:00 08:00 08:00 

Figure 6.2 Schedule applying Model 9 

As with the models developed in the previous chapters, here too the solution times 

increase with the complexity of the models. It was not possible to obtain solutions for any 

other model, but the alternative formulation of Model 9. 

6.5 Non-contiguous complex multi-machine scheduling with sequence dependent 

setup times 

The non-contiguous complex multi-machine model, herein referred to as Model 11, allows 

scheduling of a number of jobs (irrigation events) according to their target start times. In 

this model more than one machine (stream tubes) is available to process the jobs, i.e. users 

are allowed to irrigate simultaneously. A fictitious job with index 0 is used to simplify 

writing of the constraints. Let Q = {0,1,2,...,7V} be a set of jobs to be scheduled. The 

following parameters are specified for each job i e Q\ duration, target start time, earliness 
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cost, tardiness cost, required discharge, sequence dependent setup times. Also let V= 

{1,2,...,W} be a set of machines available to process jobs. The discharge for each machine 

w E Vis specified. In Model 11 there are two decisions to be made, which machine 

processes which job and what is the scheduled start time of each job. If the answers to 

these questions are known, the schedule is known too. The objective of the model is to 

find a schedule such that every job starts as close as possible to the target start time. This 

is achieved by minimising the penalties incurred when a job is either early or tardy. The 

objective function can be written as 

AT w 

W=1 

As any job can directly precede any other job on a machine a variable is used to define 

which job precedes which other job on what machine 

(p^ = 1 if job z directly precedes job j on machine w 

= 0 otherwise 

A job can be processed by any machine, so a variable is used to define which job is 

processed by which machine 

= 1 if job / is processed by machine w 

= 0 otherwise 

The following variable defines whether is machine is activated or not 

= 1 if machine w is activated 

= 0 otherwise 

The scheduled start time of a job is determined from the target start time, the earliness and 

the tardiness 

,9,. = r. + r. - E. Vf= 1,2, . . .^ (6.34) 

It is not possible for a schedule to incur a negative earliness or tardiness, therefore the 

following constraints need to be satisfied 
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T. > 0 Vz- 1,2,. . .^ (6.35) 

E. > 0 Vz - 1,2,...JSf (6.36) 

Each outlet must receive the required discharge, therefore each job must be processed by 

the right number of machines 

w 
= (2, (&37) 

w= 1 

Each job can at most precede one other job 

N 

^ V w - 1 , 2 , . ( 6 . 3 8 ) 
y=i 

Each job (with the exception of job 0) must follow one other job 

N 

Vw= 1 , 2 , . ( 6 . 3 9 ) 
! = 0 

No job is allowed to start before the previous job on the same machine has finished 

- 6"; - M p ^ 2: - Af Vf= 0,1,...,A^; y / = 1 , 2 , . . V w = 1,2 ;^)(6.40) 

Each job should be finished within the interval 

5". + ^ g Vy= l,2,...,A/^ (6.41) 

The capacity of a channel may not be exceeded 

w 
« E 'I'w s e (6.42) 

W= 1 
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A stream tube is activated if it supplies at least one outlet with water 

N 

Vw=l,2,-,W (6.43) 
zw T w; 

z= 1 

The following constraint is not essential to the model but is found to greatly reduce 

solution times. For each machine the sum of durations and sequence independent setup 

times must be less than or equal to the length of the interval. 

N 

< g 1^! fP ^i.44) 
i= 1 

Model 11 is therefore defined by the objective function (6.30) and the constraints (6.31) -

( 6 . 4 4 ) . 

6.6 Contiguous complex multi-machine scheduling with sequence dependent setup 

times 

The contiguous complex machine scheduling model with sequence dependent setup times, 

herein referred to as Model 12 is based on Model 11. The objective function and 

constraints described for this model remain valid. Some extra constraints are necessary to 

ensure correct insertion of idle time. 

6.6. ] Contiguous complex multi-machine scheduling with sequence dependent setup times: 

To ensure all idle time is inserted after the last job in the schedule is finished, no job 

should finish later than the sum of the durations and sequence dependent setup times of all 

jobs processed by the same machine. 
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& + - M l - V ^ Vf=0 , l , . . .^ ; Vw= l,2,...;v^ (6.45) 
n= 1 n = 0 7 = 0 

Model 12a is therefore defined by the objective function (6.30) and the constraints (6.31) -

(6.45). 

6.6.2 Contiguous complex multi-machine scheduling with sequence dependent setup times: 

Model 12b 

Model 12b is similar to Model 12a with the difference that all idle time is inserted before 

the first job in the schedule starts. The amount of idle time inserted on each machine 

depends on the duration and sequence dependent setup times of the jobs processed by that 

machine. 

^ = g - 1,2 fF (6.46) 
i= 0 i= 0 j= 0 

Job may only start after the inserted idle time has passed 

^ ^ + 0̂, - M l - T j Vf= 1,2,...^; Vw= 1 , 2 , . . . , ( 6 . 4 7 ) 

Model 12b therefore is defined by the objective function (6.30) and the constraints (6.31) -

(6.44), (6.46) and (6.47). 

6.6.3 Contiguous complex multi-machine scheduling with sequence dependent setup times: 

Model 12c 

In Model 12c idle time can be inserted both before the first job in the schedule has started 

and after the last job in the scheduled is completed. The total amount of idle time inserted 

(before and after all jobs) on a machine depends on the sum of durations and sequence 

dependent setup times of all jobs processed by that machine 



^ ^ 1,2,...,;F (6.48) 
i= 0 i= 0 j= 0 

Idle time can be inserted at the end of a schedule but this may only be done after the last 

job of the schedule has been completed. 

+ cfy - Af( l - - c j ^ g - ^ V ; - 1,2,...^; Vw= 1,2 ^ (6.49) 

If idle time is inserted at the beginning of a schedule this may only be done before the first 

job in the schedule starts. Therefore constraint (6.47) is also necessary. Model 12c is 

therefore defined by the objective function (6.30) and the constraints (6.31) - (6.44) and 

(6.47) - (6.49). 

6.7 Conclusions complex multi-machine scheduling 

It has been said before that an irrigation department is no different from any other 

organisation in that limited resources have to be allocated taking into account certain 

demands and constraints. There is however, one big difference, where in other machine 

scheduling situations the machines are real and limited in number, water can be divided 

into any number of imaginary stream tubes. By allowing each job (outlet) to be processed 

by more than one machine (stream tube) at the same time, it is possible to deliver virtually 

any discharge to an outlet. This unique feature enables scheduling of outlets that have 

varying discharges. The complex multi-machine models presented in this chapter take 

advantage of this concept. The models allow both non-contiguous and contiguous complex 

multi-machine scheduling. The models can also take into account managements policies 

on maximum allowable earliness and/or tardiness. Sequence dependent setup times are 

incorporated into one set of models. By applying one of the models to a tertiary unit the 

principle of complex multi-machine scheduling is shown. There are some disadvantages to 

the models developed in this chapter. 

1. Sequence dependent setup times are calculated as if the channel is always empty. In 

reality the channel may be partially filled. This can cause sequence dependent setup 

times to be less than calculated. Further research into this issue is needed. 
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2. Solution times increase with the number of jobs to be scheduled and as a result only 

smaller problems can be solved. Solution techniques such as heuristics or genetic 

algorithms may be more appropriate to solve larger problems. 

3. It is assumed that the dimensions along the length of a channel remain constant. This 

may be true, but in many cases channels become smaller towards the tail-end. This 

may cause capacity problems if several tail-end users are scheduled to irrigate 

simultaneously. This issue will need to be investigated in future. 
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7 Multi-interval scheduling 

In multi-interval (or multi-period) scheduling decisions made in a previous interval can be 

used to influence the decisions that will be made for the current interval. In irrigation 

scheduling the earliness and tardiness incurred in earlier intervals can be used to give 

priority to those users who have been most disadvantaged. Any of the models developed in 

the previous chapters can be used for both single and multi-interval scheduling, with the 

exception of the alternative formulation of Models 1, 2a, 2b and 2c presented in section 

3.4, as they do not allow individual earliness/tardiness costs for each job . 

Anwar and Clarke (2001) described a method to determine the weighting factor for 

multi-interval scheduling, based on the lead/lag times. Lead/lag time was defined as the 

absolute difference between scheduled and target start time and is therefore equal to the 

sum of earliness and tardiness. If earliness is equally as undesirable as tardiness, the 

earliness cost per unit of time of job j can be set equal to the tardiness cost per unit of time 

of job j. The equation for earliness/tardiness costs given by Anwar and Clarke (2001) is 

expressed in earliness/tardiness form as 

'̂ iP ^ ^ / n T ^ ^ yi = 1,2, . . .^ (7.1) 
N 

I 
i= 1 p= 1 y 

Where a,^ = earliness cost of job of job i in interval p-, = tardiness cost of job i in 

interval p-, E^p = earliness of job i in interval p-, 7]̂  = tardiness of job i in interval p',p = 

index representing interval l,...,f; and P = current interval. If either earliness or tardiness 

is more undesirable than the other it is possible to adjust the earliness and tardiness costs 

accordingly. This could be done for instance by multiplying the more undesirable costs by 

a certain factor that reflects the undesirability. It is believed however that in irrigation 

scheduling the costs earliness and tardiness are equal and that there is no need for such 

adjustment. 

The method of determining the costs of earliness/tardiness for each job described by 

Anwar and Clarke (2001) works well in most situations, but a problem arises when one or 

more jobs in the first interval is scheduled to start at exactly it's target start time (i.e. 

scheduled with no earliness/tardiness). For a job with no earliness or tardiness, the 

numerator in (7.1) becomes zero. This sets the costs of earliness/tardiness for this job to 
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zero. With a cost of earliness/tardiness of zero, this would allow the job to be scheduled 

anywhere since such a job does not contribute to the objective value. 

Anwar and Clarke (2001) used the standard deviation as an index of the quality of a 

schedule. This is no problem if all of the users irrigate all of the time, but this does not 

recognise that users may abstain during one or more intervals. This may give misleading 

results. 

In this chapter a improved method for determining the earliness/tardiness cost will be 

developed. A new way of measuring the quality of a schedule will be presented, which 

takes into account that sometimes, especially early or late in a season, users may wish to 

skip one or more irrigation turns. 

7.1 Analysis and development improved method of determining earliness/tardiness 

costs 

The method of determining the costs of earliness/tardiness for each job described by 

Anwar and Clarke (2001) works well in most situations, but a problem arises when one or 

more jobs in the first interval is scheduled to start at exactly its target start time (i.e. 

scheduled with no earliness/tardiness). For a job with no earliness or tardiness, the 

numerator in (7.1) becomes zero. This sets the costs of earliness/tardiness for this job to 

zero. With a cost of earliness/tardiness of zero, this would allow the job to be scheduled 

anywhere since such a job does not contribute to the objective value. Replacing (7.1) by an 

exponential function will set the costs of earliness and tardiness to 1 for all jobs with zero 

earliness/tardiness. This ensures that all jobs contribute to the objective value. Therefore 

(7.1) becomes 

^iP PfT' 

P= 1 
N ( P~\ 

, si,?. 
X N 

(7.2) 

V/ = 

7.2 Results and discussion improved method for determining earliness/tardiness costs 

Anwar and Clarke (2001) used the interval- averaged standard deviation (standard 
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deviation index) to investigate the usefulness of earhness/tardiness costs. A value of 0 

indicates that all users have an equal amount of earliness/tardiness, i.e. the schedule is fair. 

The higher the value of the standard deviation index the less fair the schedule. To 

investigate the differences between using costs of earliness/tardiness estimated by (7.1) 

and (7.2) the standard deviation index of the earliness and tardiness can be used. Figure 

7.1 compares the effect of using (7.1) and (7.2) on the standard deviation index using 

Model 1. Target start times and duration are randomly generated but remain constant for 

all intervals and in the first interval at least one job is scheduled to start at the target start 

time. Although in reality it is highly unlikely that all users always ask for the same 

duration and target start times, this example clearly shows the need for using 

earliness/tardiness costs. Figure 7.1 also shows the behaviour of the standard deviation 

index if the costs of earliness/tardiness are set to 1 for all intervals (single interval model). 

It is clear that if (7.1) is used to calculate the costs of earliness and tardiness the standard 

deviation index increases initially. Since the input data remains constant the standard 

deviation index for the single interval model also remains constant. In contrast the 

standard deviation index using (7.2) consistently decreases with interval. 

5 6 
Interval 

costs set at 1 

costs determined by Anwar 
and Clarke (2001) 

costs determined by 7.2 

T 

8 10 

Figure 7.1 Standard deviation index, one or more jobs with no earliness/tardiness, 
duration and target start times constant over all intervals 

In practice the input data may not remain constant. Figure 7.2 shows how the standard 
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deviation index behaves for Model 1, with target start times and duration randomly 

generated and changing with each interval, such that again at least one job is scheduled to 

start on time. Due to the changing input data the single interval model shows a decrease in 

standard deviation index. The rise in standard deviation index, when determining costs of 

earliness/tardiness with (7.1) is even more pronounced than in Figure 7.2. Using (7.2) 

again shows a decrease in standard deviation index with interval. 
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costs set at 1 

costs determined by 
Anwar and Clarke (2001) 

costs determined by 7.2 

Figure 7.2 

5 6 
Interval 

Standard deviation index, one or more jobs with no earliness/tardiness, 
duration and target start times vary over all intervals 

It is possible that in the first interval none of the jobs are scheduled to start on time. Figure 

7.3 shows how using (7.2) improves the standard deviation index compared to (7.1). 

Target start times and duration are again randomly generated but remain constant for all 

intervals. 
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Figure 7.3 Standard deviation index, all jobs with earliness/tardiness, duartion and 
target start times vary over all intervals 

Figure 7.4 shows that (7.1) and (7.2) perform equally well if the input data is random for 

each interval and no jobs start on time during the first interval. Both multi-interval models 

using (7.1) and (7.2) to calculate the costs of earliness and tardiness perform better than 

the single interval model. 
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7.3 Development and analysis earliness/tardiness index 

The purpose of using earhness and tardiness costs is to distribute earliness and tardiness 

over all users so that no one is disadvantaged or receives preferential treatment. In certain 

irrigation intervals, like early or late in a growing season, not all users may wish to irrigate. 

Comparing the two different methods to determine these costs by taking the standard 

deviation index works well if users always receive water, but not if a user skips one or 

more turns. A simple hypothetical example shows the effect of skipping turns. User A has 

received water every interval over a 10-interval period. User B skipped a number of turns 

and received water every other interval over the same period. If both always receive their 

water 10 hours late user A will have a total earliness/tardiness of 100 hours whereas user B 

will have a total earliness/tardiness of 50 hours. From this it seems user B is better off, yet 

every time water is delivered 10 hours late just like for user A. 

The problem with using the standard deviation index is that it does not distinguish 

between an earliness and tardiness of zero ( a job is scheduled to start on time) or null 

(user abstains from irrigating). A more appropriate way to determine the distribution of 

earliness and tardiness amongst users is to divide total earliness/tardiness by the number of 

periods a user has actually received water, i.e. when the earliness and tardiness are not 

null. This method can then be used to investigate the effect that skipping a turn has on the 

earliness/ tardiness cost determination, by introducing the earliness/tardiness index. 

N (^ip 

E£ = 1 
, . l ' 

p= 1 

vy = (7.3) 

where = earliness-tardiness index; and H^p= \ when user i irrigates during period p, 0 

otherwise. If no null values occur, the earliness/tradiness index is identical to the standard 

deviation index. 

Table 7.1 shows a comparison between using the standard deviation index and the 

earliness/tardiness index for a case of two users over a 10-interval period. During this 

period user A irrigates five times and user B ten times. After the 10 intervals both users 

have incurred a total earliness/tardiness of 25 hours. The standard deviation index during 

the first interval is 0 and remains 0 over the next 9 intervals, suggesting that there is no 
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difference between the users and both are treated equally. The earliness/tardiness index 

during the first interval is also 0, but during the next 9 intervals it can be seen that the 

earliness/tardiness index goes up, meaning that there is a difference between the two users. 

This shows that where the standard deviation index does not discriminate between 0 (no 

earliness/tardiness incurred) and null values (irrigation turn skipped), the 

earliness/tardiness index does. Therefore the earliness/tardiness index is a better measure 

than the standard deviation index. 

Table 7.1: Comparison standard deviation index and earliness/tardiness index 

interval earliness/tardiness earliness/tardiness standard deviation earliness/tardiness 

user A (hours) user B (hours) index index 

(1) (2) (3) (4) (5) 

1 5 5 0 0 

2 null 0 0 L25 

3 5 5 0 &83 

4 null 0 0 L25 

5 5 5 0 1.00 

6 null 0 0 L25 

7 5 5 0 L07 

8 null 0 0 L25 

9 5 5 0 1.11 

10 null 0 0 L25 

7.4 Results and discussion earliness/tardiness index 

Figure 7.5 shows the effect of having earliness and tardiness with null values on the 

standard deviation index and the earliness/tardiness index. Random target start times and 

durations were generated for 8 users. One user was randomly selected to skip every other 

turn. Model 1 was used to simulate a 10-interval period and weights were determined by 

(7.2). 
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Figure 7.5 Earliness/tardiness index vs. standard deviation index 

It can be shown that if there are no null values in a schedule the earliness/tardiness index is 

equal to the standard deviation index, Figure 7.5 shows that if one or more users skip at 

least one turn the use of the standard deviation index can give misleading results, 

sometimes appearing to perform better, sometimes appearing to perform worse. 

7.5 Conclusions multi-interval scheduling 

In this chapter an improved method for determining the earliness/tardiness costs is 

developed. A new method of measuring the quality of a schedule is also presented. The 

earliness/tardiness costs can be used to influence the decisions to be made in the current 

interval so that those users who have been disadvantaged during previous intervals get 

priority. This can help to ensure that after an entire irrigation season all users have incurred 

an equal amount of earliness/tardiness and no user has received preferential treatment. 

The earliness/tardiness index can be used as a measurement for the fairness of 

scheduling within a tertiary unit. It can also be used as a tool to determine the effect of 

different scheduling policies or to compare scheduling in the different tertiary units of an 

irrigation system. This could help in the identification of problems within the system. It 
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may also be possible to use the earliness/tardiness index to compare across different 

irrigation systems, but more research would be needed to determine if the length of an 

irrigation interval has an effect on the earliness/tardiness index and if it needs to be 

included as a parameter in expression (7.3). 

Both the improved method of determining the earliness/tardiness costs and the new 

measurement of the quality of a schedule work well. It must be brought to mind however 

that both are tested with randomly generated data as no field data is available. There may 

weaknesses and shortcomings in either method that would only become apparent if tested 

with real data. This needs to be investigated further in future. 
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8 Conclusions 

Water delivery arrangements in irrigation systems range from completely fixed where 

duration, discharge and start time are set once by the irrigation district and seldom or never 

change to on-demand where users can take water whenever needed, in whatever quantity 

desired. In between these two extremes lies a range of arranged-demand systems where 

duration, discharge and/or start time are flexible to a certain degree but are agreed upon 

before the irrigation event takes place. In these systems it is the task of the irrigation 

district to deliver water so as to best meet the requirements of the users within the physical 

constraints of the system. Developing schedules for water deliveries can be a complicated 

process, especially when a large number of users is involved. It is therefore important to 

have a tool that can determine the optimal schedule given the requirements of the users 

and the constraints of the irrigation system. In Operations Research optimisation is used to 

determine schedules in a large variety of situations, ranging from product assembly to 

aircraft landings. The work in this thesis draws an analogy between the generic machine 

scheduling problem studied in Operations Research and the scheduling of water deliveries 

in irrigation systems. Although a number of models for irrigation purposes have been 

developed in earlier research, none seem to have made the connection with Operations 

Research and the wealth of information and techniques available in that field of study. For 

the first time this large source of insight is used specifically for irrigation scheduling, 

opening a whole new area of study. 

When users irrigate sequentially the water in a channel can be seen as a single 

machine that processes a number of jobs (users). Although an analogy can be drawn 

between machine scheduling and irrigation scheduling, machine scheduling models are not 

directly applicable. Irrigation scheduling models have to take into account some unique 

features that are inherent to many irrigation situations. First of all it is customary in 

Operations Research to work with due dates and completion times, whereas in irrigation 

scheduling target start times and scheduled start times are more appropriate. Secondly, in 

Operation Research a job either has a due date or a deadline. If there is a due date earliness 

and tardiness are allowed and have no limit. If there is a dead line a job is not allowed to 

be tardy at all. In irrigation scheduling an intermediate situation occurs where a job is 

allowed to be early and tardy, but there is a fixed period, the irrigation interval in which all 

jobs must be completed. 
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A set of mixed integer linear programming models is developed in this work, that can 

aid the scheduling of water deliveries. Different management options such as contiguous 

and non-contiguous scheduling can be chosen to reduce the costs associated with 

operational spillage and gate operations or to better match target start times and scheduled 

start times. Mixed integer programming can be computationally very demanding. 

Computation times increase with the size and complexity of the problem. For example 

Model 1 with 20 users on average solves in around 1.2 hours, for 25 users the average 

solution time increases to 6.5 hours. 

Where in pressurised irrigation systems travel times are non-existent, in open 

channels travel times play an important role when determining schedules. The position of 

two users relative to each other influence the travel time between them. This travel time 

can vary from negligible to considerable depending on the order in which they irrigate. Not 

taking account of travel times can result in early and/or late deliveries of water and also in 

unintended reduction or increase of irrigation duration, which can lead to under or over 

irrigation. 

When users irrigate simultaneously water can be seen as a series of machines (stream 

tubes) that each process a job. Each stream tube can only supply one outlet at a time, but 

can supply a number of outlets in sequence. Using multi-machine scheduling it is possible 

to minimize the discharge required to supply all users with water. This could free up water 

for other (non-irrigation) uses. Minimizing the discharge can mean increased 

earliness/tardiness. Alternatively it is possible to minimize earliness/tardiness by allowing 

an increased discharge in the channel, to match irrigation demand and water delivery 

optimally. Irrigation scheduling is unique in that a job can be processed by more than one 

machine at the same time. By varying the number of stream tubes supplying a outlet with 

water, it becomes possible to schedule water deliveries in irrigation systems where 

discharges vary between users. 

The irrigation industry is increasingly becoming service-oriented. Users have their 

wishes and requirements regarding the delivery of water to their fields. Some irrigation 

district already have policies regarding the timely delivery of water. As it is almost 

inevitable that there will be some difference between the requested duration/discharge/start 

time of an irrigation turn and the actual duration/discharge/start time, it is important to 

balance the inequity between users that is a result of these discrepancies. It is vital that to 

consider the fairness of schedules over a longer period than a single interval, as what may 
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seem fair in one interval, may not be fair in the long run. Earliness/tardiness costs can be 

used to influence the decisions to be made during the current interval by giving priority to 

those who have been disadvantaged most during the previous intervals. All models 

presented in this thesis accommodate the use of earliness tardiness costs. To measure the 

fairness of a schedule the earliness/tardiness index can be used. This index can also be 

used to determine the effect of different scheduling policies or to compare scheduling in 

different tertiary units of an irrigation systems. This could help in the identification of 

problems in the irrigation system. 

The work done in this thesis has made a number of models available for use in 

irrigation scheduling. It is possible to use the models for scheduling in pressured systems 

where travel times are non-existent as well as in open channel systems where travel times 

can be considerable. Both sequential and simultaneous irrigation are accommodated and it 

is possible to schedule irrigation turns for systems where discharges vary between users. 

The models allow timeliness of delivery to be considered. Two new methods accompany 

the models, the first determines the costs of untimely deliveries so the models can be used 

to schedule over longer periods of time then just one irrigation interval. The second 

method can be used to measure the fairness of a schedule. 

8.1 Future research 

The work in this thesis covers a large variety of arranged-demand irrigation situations. The 

models presented in this thesis can be used as a basis to further develop and enhance 

arranged-demand irrigation scheduling. New solution techniques such as heuristics and 

genetic algorithms can be developed to bring down computation times, especially for 

larger problems. Although these techniques can give quick solutions to large problems, 

there is no guarantee that those solutions are optimal or even near it. The mixed integer 

linear programming models presented here play an important role in providing the bench 

mark solutions against which the performance of heuristics and/or genetic algorithms can 

be tested. 

Further research can be done on the issue of travel times. Hydro-dynamic modelling 

could be incorporated into the models as to give accurate travel times, even for complex 

multi-machine scheduling. Changes in channel dimensions, which are common in the tail-
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end of many systems, are another interesting area of future research. These changes will 

not only influence travel times, but could also decrease the capacity and limit the number 

of users that can irrigate simultaneously. Perhaps another area of research where arranged-

demand irrigation scheduling can be of use is the service levels irrigation districts provide. 

One question that can be studied is what level of service can be provided given the 

available capacity. Turning this question around into: what capacity is needed to provide a 

certain level of service, is a problem that can be studied during the planning phase of new 

irrigation systems. As shown many opportunities for future research exist, and even though 

this work has now come to an end, it is the start of a whole new area of research. 
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Appendix A: Lingo input files 

Model 1 

SETS : 
job/1..16/: alpha, beta, earliness, tardiness, duration, scheduled, 

target; 
link( job, job): delta; 

ENDSETS 

DATA: 
duration 4 6 1 451 537 387 537 537 202 193 360 

193 537 193 537 451 572 5 7 2 ; 
target 2 1 4 0 9783 8009 8 8 8 9 4841 771 3 3 6 2 5635 5408 

5 6 9 9 1365 1503 19 9515 1206 9 9 0 ; 
alpha 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1; 
beta = 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1; 
interval = 10080; 
M = 100000; 

ENDDATA 

!OBJECTIVE FUNCTION 3.1; 

min = @sum( job(i): earliness(i) * alpha(i) + tardiness(i) * beta(i)); 

!CONSTRAINT 3.2; 
@for{ link(i,j): ©bin( delta(i,j))); 

ICONSTRAINT 3 . 6 ; 

@for{ job(i): scheduled(i) = target(i) - earliness (i) + tardiness(i)); 

!CONSTRAINT 3.9; 
@for{ job(i): @for( job(j)| j #ne# i: scheduled(j) - scheduled(i) + M * 
(1-delta(i,j)) >= duration(i))); 
'CONSTRAINT 3 . 1 0 ; 
@for( job(i): @for( job(j)| j #ne# i: scheduled(i) - scheduled(j) + M * 
delta(i,j) >= duration(j))); 

'CONSTRAINT 3 . 1 1 ; 
@f or ( job(i) : scheduled(i) + duration(i) <= interval); 

Model 1 alternative formulation 

SETS : 
job/1..16/: alpha, beta, earliness, tardiness, duration, scheduled, 
target; 
l i n k( job, job): delta; 

ENDSETS 

DATA: 
duration 4 6 1 4 5 1 537 387 537 537 202 1 9 3 360 

193 537 193 537 451 572 5 72; 
target 2 1 4 0 9783 8 0 0 9 8 8 8 9 4 8 4 1 7 7 1 3 3 6 2 5 6 3 5 5408 

5699 1365 1503 19 9 5 1 5 1 2 0 6 9 9 0 ; 
alpha 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1; 
beta 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1; 
interval 1 0 0 8 0 ; 
M 100000; 

ENDDATA 

!OBJECTIVE FUNCTION 3.1; 



min = @sum( job(i): earliness(i) * alpha(i) + tardiness(i) * beta(i)); 

!CONSTRAINT 3.2; 
@for( link(i,j): @bin{ delta(i,j))); 

!CONSTRAINT 3.6; 

@for( job(i); scheduled(i) = target(i) - earliness(i) + tardiness(i)); 

'CONSTRAINT 3 . 9 ; 
@for( job(i): @for( job(j)| j #ne# i: scheduled(j) - scheduled(i) + M * 
(1-delta(i,j)) >= duration{i))); 
ICONSTRAINT 3 . 1 0 ; 
@for( job(i): @for( job(j)| j #ne# i: scheduled(i) - scheduled(j) + M * 
delta{i,j) >= duration(j))); 

'CONSTRAINT 3 . 1 1 ; 
@for( job{i): scheduled(i) + duration(i) <= interval); 

Model 1 modified for sequence independent setup times 

SETS: 
job/1..16/: alpha, beta, earliness, tardiness, duration, scheduled, 
target, setup; 
link( job, job): delta; 

ENDSETS 

DATA: 
duration 4 4 9 4 3 9 525 575 525 5 2 5 189 180 348 

180 525 180 525 4 3 9 5 5 9 5 5 9 ; 
target 2 1 4 0 9783 8 0 0 9 8 8 8 9 4 8 4 1 7 7 1 3 3 6 2 5 6 3 5 540 

5 6 9 9 1 3 6 5 1 5 0 3 19 9 5 1 5 1206 9 9 0 ; 
alpha 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1; 
beta 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1; 
setup 13 13 13 13 13 13 13 13 13 

13 13 13 13 13 1 4 ; 
interval = 7; 
M = 10000; 

ENDDATA 

'OBJECTIVE FUNCTION D . l ; 

min = @sum{ job(i): alpha(i) * earliness (i) + beta(i) * tardiness(i)); 

ICONSTRAINT D . 2 ; 
@for( link(i,j): @bin( delta(i,j))); 
!CONSTRAINT D.5; 

@for( job(i): scheduled(i) - tardiness(i) + earliness(i) = target(i)); 

1 CONSTRAINT D.6; 
@for{ link(i,j)| j #ne# i: scheduled(j) - scheduled(i) + M * (1-
delta(i,j)) >= duration(i) + setup(j) ); 
!CONSTRAINT D.7; 
@for( link(i,j)| j #ne# i: scheduled(i) - scheduled(j) + M * delta(i,j) 
>= duration(j) + setup(i)); 

!CONSTRAINT D.8; 
Ofor{ job(i): scheduled(i) + duration(i) <= interval); 
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Model 2a 

SETS: 

job/l..l5/: alpha, beta, earliness, tardiness, duration, scheduled, 
target, setup; 
link( job, job): delta; 

ENDSETS 

DATA: 
duration = 4 6 1 451 537 387 5 3 7 537 202 193 360 

193 537 193 537 451 572 572 ; 
target = 2140 9783 8 0 0 9 8 8 8 9 4 8 4 1 771 3 3 6 2 5 6 3 5 5 4 0 8 

5 6 9 9 1365 1503 19 9 5 1 5 1 2 0 6 990 ; 
alpha = 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 ; 
beta = 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 ; 
M = 1 0 0 0 0 0 ; 

ENDDATA 

lOBJECTIVE FUNCTION 3 . 1 ; 

min = @sum( job(i): earliness(i) * alpha(i) + tardiness(i) * beta(i)); 

'CONSTRAINT 3 . 2 ; 
@for( link(i,j): ©bin( delta(i,j))); 
ICONSTRAINT 3 . 6 ; 

@for( job(i): scheduled(i) - tardiness(i) + earliness(i) = target(i)); 

{CONSTRAINT 3 . 9 ; 
@for( link(i,j) | j #ne# i: scheduled(j) - scheduled (i) + 100000 * (1-
delta(i,j)) >= duration(i)); 
!CONSTRAINT 3.10; 
@for( link{i,j)| j #ne# i: scheduled(i) - scheduled(j) + 100000 * 
delta(i,j) >= duration(j)); 

'CONSTRAINT 3 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= ©sum( job(n): duration(n))); 

Model 2a alternative formulation 

SETS: 

job/1..16/: earliness, tardiness, duration, target; 
link( job, job): delta; 

ENDSETS 

DATA: 
duration = 4 6 1 451 537 3 8 7 537 537 2 0 2 193 360 

193 537 193 537 4 5 1 572 5 7 2 ; 
target = 2 1 4 0 9783 8 0 0 9 8 8 8 9 4 8 4 1 771 3 3 6 2 5 6 3 5 5408 

5 6 9 9 1365 1 5 0 3 19 9515 1 2 0 6 9 9 0 ; 
alpha = 1; 
beta = 1; 
interval = 1 0 0 8 0 ; 
M = 1 0 0 0 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 3.17; 

min = ®sum( job(i): alpha * earliness(i) + beta * tardiness(i)); 

!CONSTRAINT 3.18; 
@for( link(i,j): ©bin(delta(i,j))); 
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!CONSTRAINT 3.19; 

@for( job(i): @sum( link(j,i): delta(j,i)) = 1) ; 

ICONSTRAINT 3 . 2 0 ; 
@for( job(j): @sum( link(j,i): delta(j,i)) = 1) ; 

ICONSTRAINT 3 . 3 3 ; 
@for( job(i): @sum( job(j): @sum( job(k)|k #le# i-1: delta(j,k) * 
duration(j))) + earliness(i) - tardiness(i) = ©sum ( job(j): delta{j,i) * 
target(]))); 

Model 2b 

SETS : 
job/1..16/: alpha, beta, earliness, tardiness, duration, scheduled, 
target; 
l i n k( job, job): delta; 

ENDSETS 

DATA: 
duration = 4 6 1 451 537 387 537 537 202 193 360 

193 537 193 537 4 5 1 572 5 7 2 ; 
target 2 1 4 0 9783 8009 8 8 8 9 4 8 4 1 771 3362 5635 5408 

5 6 9 9 1365 1503 19 9515 1206 990 ; 
alpha 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 ; 
beta 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 ; 
interval 1008 0; 
M 1000 0 0 ; 

ENDDATA 

'OBJECTIVE FUNCTION 3.1; 

min = @sum( job(i): earliness(i) * alpha(i) + tardiness(i) * beta(i)); 

!CONSTRAINT 3.2; 
@for( link(i,j): ©bin( delta{i,j))); 
'CONSTRAINT 3 . 6 ; 

@for( job(i): scheduled(i) = target(i) - earliness (i) + tardiness(i)); 

'CONSTRAINT 3 . 9 ; 
@for( link(i,j)| j #ne# i: scheduled(j) - scheduled(i) + M * (1-
delta(i,j)) >= duration(i) ); 
!CONSTRAINT 3.10; 
@for( link(i,j)| j #ne# i: scheduled(i) - scheduled(j) + M * delta(i,j) 
>= duration(j)); 

'CONSTRAINT 3 . 1 1 ; 
@for( job(i); scheduled(i) + duration{i) <= interval); 

!CONSTRAINT 3.13; 
@for( job(i): scheduled(i) >= interval - @sum( job(n): duration(n))); 

Model 2b alternative formulation 

SETS: 

job/1..16/: earliness, tardiness, duration, target; 
link( job, job): delta; 

ENDSETS 
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DATA: 
duration = 4 6 1 4 5 1 537 387 537 537 202 193 360 

193 537 193 537 4 5 1 572 5 7 2 ; 
target = 2 1 4 0 9 7 8 3 8 0 0 9 8 8 8 9 4841 7 7 1 3 3 6 2 5635 540 

5 6 9 9 1 3 6 5 1 5 0 3 19 9 5 1 5 1 2 0 6 9 9 0 ; 
alpha = 1; 
beta = 1; 
interval = 1 0 0 8 0 
M = 1 0 0 0 0 0 ; 

ENDDATA 

lOBJECTIVE FUNCTION 3 . 1 7 ; 

min = @sum( job(i): alpha * earliness(i) + beta * tardiness(i)); 

'CONSTRAINT 3 . 1 8 ; 
@for( link(i,j): ©bin(delta(i,j))); 
!CONSTRAINT 3.19; 
@for( job(i): @sum( link(j,i): delta(j,i)) = 1); 

!CONSTRAINT 3.20; 
@for( job(j): @sum( link(j,i): delta(j,i)) = 1); 

ICONSTRAINT 3 . 3 0 ; 
@for( job(i) : @sum( job(j) : @sum( job(k) |k #le# i-1: delta(j,k) * 
duration(j))) + earliness(i) - tardiness(i) = @sum ( job(j): delta(j,i) 
target(j)) - Xa); 

!CONSTRAINT 3.31; 
@sum{ job{k): duration(k)) = interval - Xa; 

Model 2c 

SETS ; 
job/1..16/: alpha, beta, earliness, tardiness, duration, scheduled, 
target; 
link( job, job):delta; 

ENDSETS 

DATA: 
duration = 461 4 5 1 537 387 537 5 3 7 2 0 2 193 360 

193 537 193 537 4 5 1 572 572 ; 
target = 2 1 4 0 9 7 8 3 8 0 0 9 8 8 8 9 4 8 4 1 7 7 1 3 3 6 2 5635 5408 

5 6 9 9 1 3 6 5 1503 19 9515 1 2 0 6 990 ; 
alpha = 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 ; 
beta = 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 ; 
interval = 10080; 
M = 100000; 

ENDDATA 

!OBJECTIVE FUNCTION 3.1; 

min = @sum( job(i): earliness(i) * alpha(i) + tardiness (i) * beta(i)); 

'CONSTRAINT 3 . 2 ; 
@for( link(i,j): ©bin(delta(i,j))); 

!CONSTRAINT 3.6; 

@for( job(i): scheduled(i) = target(i) - earliness (i) + tardiness(i)); 

'CONSTRAINT 3 . 9 ; 
@for( link(i,j)| j #ne# i; scheduled(j) - scheduled(i) + M * (1-
delta{i,j)) >= duration(i) ); 
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!CONSTRAINT 3.10; 
@for ( lin]c(i,j) | j #ne# i; scheduled(i) - scheduled(j) + M *delta(i,j) 
>= duration(j)); 

'CONSTRAINT 3 . 4 ; 
irrigation_interval = @sum( job(i): duration(i)) + Xa + Xb; 

!CONSTRAINT 3.15; 
@for{ job(i): scheduled(i) + duration(i) <= interval - Xb); 

!CONSTRAINT 3.16; 
@for( job(i): scheduled(i) >= Xa); 

Model 2c alternative formulation 

SETS : 

job/1..16/: earliness, tardiness, duration, target, X; 
l i n k( job, job): delta; 

ENDSETS 

DATA: 
duration 461 4 5 1 537 387 5 3 7 537 202 193 360 

193 537 193 537 451 572 5 7 2 ; 
target 2 1 4 0 9783 8 0 0 9 8889 4 8 4 1 771 3362 5635 5408 

5 6 9 9 1365 1503 19 9 5 1 5 1 2 0 6 9 9 0 ; 
alpha 1; 
beta 1; 
interval 1 0 0 8 0 ; 
M 1 0 0 0 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 3.17; 

min = ®sum( job(i): alpha * earliness(i) + beta * tardiness(i)); 

'CONSTRAINT 3 . 1 8 ; 
@for( link(i,j): @bin(delta(i, j))) ; 

'CONSTRAINT 3 . 1 9 ; 
@for( job(i): @sum( link(j,i): delta(j,i)) = 1); 

'CONSTRAINT 3.20; 
@for( job(j): @sum( link(j,i): delta(j,i)) = 1); 

!CONSTRAINT 3.34; 
@for( job(i): @sum( job(j): @sum( job(k)|k #le# i-1; delta(j,k) * 
duration(j))) + earliness(i) - tardiness(i) = @sum ( job(j): delta(j,i) * 
target(j))- Xa); 

AfodelS 

SETS: 
job/1..16/: alpha, beta, earliness, tardiness, scheduled, target, 
duration, initial; 
l i n k ( job, job) : delta, setup; 

EMDSETS 

DATA: 
duration = 453 443 529 379 529 529 194 185 352 

185 529 185 530 4 4 3 5 6 4 564 ; 
t a r g e t = 2 1 4 0 9783 8009 8 8 8 9 4 8 4 1 7 7 1 3 3 6 2 5 6 3 5 5408 

5 6 9 9 1 3 6 5 1503 19 9 5 1 5 1 2 0 6 990 ; 
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alpha 

beta 

irrigation 
M 

initial 

setup 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 ; 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 ; 

1 0 0 8 0 ; 
1 0 0 0 0 0 ; 
108 91 70 80 59 39 39 37 33 

31 30 29 23 23 15 7 ; 

0 0 0 42 21 0 16 14 10 

8 7 6 0 0 7 0 
17 0 0 42 21 0 16 14 10 

8 7 6 0 0 7 0 
38 21 0 42 21 0 16 14 10 

8 7 6 0 0 7 0 
69 52 31 0 0 0 16 14 10 

8 7 6 0 0 7 0 
69 52 31 21 0 0 16 14 10 

8 7 6 0 0 7 0 
69 52 31 42 21 0 16 14 10 

8 7 6 0 0 7 0 
85 68 47 57 36 16 0 0 0 

0 0 0 0 0 7 0 
85 68 47 57 36 16 2 0 0 

0 0 0 0 0 7 0 
85 68 47 57 36 16 6 3 0 

0 0 0 0 0 7 0 
85 68 47 57 36 16 8 6 2 

0 0 0 0 0 7 0 
85 68 47 57 36 16 9 7 4 

1 0 0 0 0 7 0 
85 68 47 57 36 16 10 8 5 

2 1 0 0 0 7 0 
85 68 47 57 36 16 16 14 10 

8 7 6 0 0 7 0 
85 68 47 57 36 16 16 14 10 

8 7 6 0 0 7 0 
1 0 1 83 63 73 52 31 32 30 26 
24 23 21 16 16 0 0 
101 83 63 73 52 31 32 30 26 
24 23 21 16 16 7 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 4.1; 

min = @sum( job(i): earliness(i) * alpha(i) + tardiness (i) * beta(i)); 

'CONSTRAINT 4 . 2 ; 
@for( link(i,j): ©bin( delta(i,j))); 
!CONSTRAINT 4.3; 

@for( job{i): scheduled(i) = target(i) - earliness (i) + tardiness(i)); 

!CONSTRAINT 4 . 6 ; 

@for( link(i,j) | j #ne# it scheduled(j) - scheduled(i) + M * (1-
delta(i,j)) >= duration(i) + setup(i,]) ); 
'CONSTRAINT 4 . 7 ; 
@for( link(i,j)| j #ne# i: scheduled(i) - scheduled(j) + M * delta(i,]) 
>= duration(j)+ setup(j,i)); 

ICONSTRAINT 4 . 8 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 4 . 9 ; 
@for{ job(i): scheduled(i) >= initial(i)); 
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Model 4a 

SETS ; 
job/l..ll/: alpha, beta, earliness, tardiness, scheduled, target; 
link( job, job): gamma, sequence_duration; 

ENDSETS 

DATA: 
target 

sequence_duration 

0 2 8 0 0 584 2 5 1 2 8 2 9 2 6 7 4 9 1 4 
5 5 2 5 2 1 9 7 5 4 1 9 2 0 0 0 ; 
0 39 37 33 31 30 29 
23 23 15 7 
194 0 1 9 4 194 194 194 194 
194 194 201 194 
185 187 0 185 185 185 185 
185 185 192 185 
352 358 355 0 352 352 352 
352 352 3 5 9 352 
185 193 191 187 0 1 8 5 185 
185 185 192 185 
592 538 536 533 530 0 529 
5 2 9 529 536 5 2 9 
185 195 193 190 187 186 0 
185 1 8 5 192 1 8 5 
530 546 544 540 538 5 3 7 536 
0 530 537 5 3 0 
443 4 5 9 457 453 4 5 1 4 5 0 4 4 9 
443 0 4 5 0 4 4 3 
563 595 593 5 8 9 5 8 7 586 584 
579 579 0 563 
563 595 593 5 8 9 587 586 584 
579 579 570 0; 
1 0 0 0 0 0 ; 
7 9 2 0 ; 
1 1 1 1 1 1 1 
1 1 1 1; 
1 1 1 1 1 1 1 
1 1 1 1; 

M 
interval = 
alpha 

beta 

ENDDATA 

!OBJECTIVE FUNCTION 4.10; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)); 

ICONSTRAINT 4 . 1 1 ; 
@for( link(i,j): @bin( gamma{i,j))); 

!CONSTRAINT 4.12; 

@for( job(i): scheduled(i) = target(i) - earliness (i) + tardiness(i)); 

'CONSTRAINT 4 . 1 5 ; 
@for( job(i): @sum( job(j): gamma(i,j)) = 1); 

!CONSTRAINT 4.16; 
@for( job(j): @sum( job(i): gamma(i,j)) = 1); 

!CONSTRAINT 4.17; 
©for ( job(i): @for( job(j)| j #gt# 1 #and# i #ne# j: scheduled(i) + 
sequence_duration(i,j) * gamma(i,j) + M*(gamma(i,j)-1) <= 
scheduled(j))); 

'CONSTRAINT 4 . 1 8 ; 
@for( job(i): scheduled(i) + @8um( job(j): sequence_duration(i,j) * 
gamma(i,j)) <= ©sum( job(k): @sum(job(j): sequence_duration(k,j) * 
gamma(k,j)))); 



Model 4b 

SETS: 
job/1..11/: alpha, beta, earliness, tardiness, scheduled, target; 
link( job, job); gamma, sequence_duration; 

ENDSETS 

DATA: 
target 

sequence_duration 

M 
interval 
alpha 

beta 

ENDDATA 

0 2 8 0 0 584 2 5 1 2 8 2 9 267 4 9 1 4 
5 5 2 5 2 1 9 7 5419 2 0 0 0 ; 
0 39 37 33 31 30 29 
23 23 15 7 
194 0 194 194 194 194 194 
194 194 2 0 1 194 
185 187 0 185 185 1 8 5 185 
1 8 5 185 192 185 
352 358 355 0 352 3 5 2 352 
352 352 3 5 9 352 
185 193 191 187 0 185 185 
185 185 1 9 2 185 
592 538 536 533 530 0 529 
5 2 9 5 2 9 536 5 2 9 
185 195 193 190 187 186 0 
185 185 192 185 
5 3 0 546 544 540 538 537 536 
0 530 537 5 3 0 
4 4 3 4 5 9 4 5 7 4 5 3 451 4 5 0 4 4 9 
4 4 3 0 450 4 4 3 
563 595 593 5 8 9 587 586 584 
5 7 9 5 7 9 0 563 
563 595 593 5 8 9 587 586 584 
5 7 9 579 5 7 0 0; 
1 0 0 0 0 0 ; 
7 9 2 0 ; 
1 1 1 1 1 1 1 
1 1 1 1; 
1 1 1 1 1 1 1 
1 1 1 1; 

!OBJECTIVE FUNCTION 4.10; 
min = ®sum( job(i): earliness(i) * alpha(i) + tardiness(i) * beta(i)); 

'DECISION VARIABLE 4 . 1 1 ; 
@for( link(i,j): ©bin( gamma(i,j))); 

!CONSTRAINT 4.12; 

@for( job(i): scheduled(i) - tardiness(i) + earliness(i) = target(i)); 

'CONSTRAINT 4 . 1 5 ; 
@for( job(i): @sum( job(j)| i #ne# j: gamma(i,j)) = 1); 

!CONSTRAINT 4.16; 
@for( job(j): @sum( job(i)| i #ne# j: gamma(i,j)) = 1); 

!CONSTRAINT 4.17; 
@for { link{i,j)| j #gt# 1: scheduled(i) + sequence_duration(i,j) * 
gamma(i,j) + M*(gamma(i,j)-1) <= scheduled(j)); 

ICONSTRAINT 4 . 1 9 ; 
Xa= interval- @sum{ job(i): @sum{job(j): gamma(i,j) * 
sequence_duration(i,j))); 

!CONSTRAINT 4.20; 
@for( job(i): scheduled(i) >= Xa); 
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Model 4c 

SETS: 

job/1..11/: alpha, beta, earliness, tardiness, scheduled, target; 
link( job, job): gamma, sequence_duration; 

ENDSETS 

DATA: 
target 

2000; 
sequence_duration 

M 
interval 
alpha 

beta 

ENDDATA 

0 2 8 0 0 584 2 5 1 2 8 2 9 2 6 7 4914 

5 5 2 5 2 1 9 7 5419 

0 39 37 33 31 30 29 

23 23 15 7 
1 9 4 0 1 9 4 1 9 4 1 9 4 1 9 4 194 
1 9 4 1 9 4 2 0 1 1 9 4 
185 1 8 7 0 1 8 5 185 185 185 

185 185 192 1 8 5 
3 5 2 3 5 8 3 5 5 0 3 5 2 3 5 2 352 

3 5 2 3 5 2 3 5 9 3 5 2 
185 1 9 3 1 9 1 1 8 7 0 1 8 5 185 
1 8 5 185 1 9 2 1 8 5 
5 9 2 538 5 3 6 533 5 3 0 0 5 2 9 

5 2 9 5 2 9 5 3 6 5 2 9 
185 1 9 5 1 9 3 1 9 0 187 1 8 6 0 
185 1 8 5 192 1 8 5 
5 3 0 5 4 6 5 4 4 5 4 0 5 3 8 5 3 7 5 3 6 

0 5 3 0 5 3 7 530 
443 4 5 9 4 5 7 453 4 5 1 4 5 0 4 4 9 

4 4 3 0 450 4 4 3 
5 6 3 5 9 5 5 9 3 5 8 9 5 8 7 5 8 6 584 

5 7 9 5 7 9 0 5 6 3 
5 6 3 5 9 5 5 9 3 5 8 9 587 5 8 6 584 

5 7 9 5 7 9 5 7 0 0; 
1 0 0 0 0 0 ; 
7 9 2 0 
1 1 1 1 1 1 1 
1 1 1 1; 
1 1 1 1 1 1 1 
1 1 1 1; 

!OBJECTIVE FUNCTION 4.10; 
min = @sum( job(i) |i #gt# 1: earliness(i) * alpha (i) + tardiness(i) 
beta (i)) ; 

'DECISION VARIABLE 4.11; 
Ofor( link(i,j): ©bin ( gamma(i,j))) ; 

'CONSTRAINT 4.12; 
@for( job(i): scheduled(i) tardiness(i) + earliness (i) = target(i)); 

'CONSTRAINT 4 . 1 5 ; 
@for( job(i): @sum( job(j)| i #ne# j: gamma(i,j)) = 1); 

ICONSTRAINT 4 . 1 6 ; 
@for( job(j): @sum( job(i)| i #ne# j: gamma(i,j)) = 1); 

'CONSTRAINT 4 . 1 7 ; 
©for ( link(i,j)| j #gt# 1: scheduled(i) + sequence_duration(i,j) * 
gamma(i,j) + M*(gamma(i,j)-1) <= scheduled(j)); 

!CONSTRAINT 5.20; 
@for( job(i): scheduled(i) >= X a ) ; 

116 



duration 0 0 . 8 0 
2 . 5 0 ; 

2 . 13 2 , . 4 0 1 , . 72 2 , . 05 2 .43 2 . . 05 

target 0 3 . 5 5 
3 . 0 3 ; 

0 , .41 2 , , 16 1. .49 0 . , 61 0 . 2 6 1, . 60 

alpha 1 1 1 1 1 1 1 1 
beta 1 1 1 1 1 1 1 1 
interval = 6; 
M 1 0 0 0 0 ; 

!CONSTRAINT 5.21; 
@for( job(i): scheduled(i) + Osum( job(j): sequence_duration(i,j) * 
gamma(i,j))- ©sum( job(k): ©sum(job(j): sequence_duration(k,j) * 
gamma(k,j))) - Xa < = 0); 

Model 5 single stage 

SETS : 
job /I..9/: alpha, beta, duration, target, earliness, tardiness, 
scheduled; 
tube /I. . 8 / : psi; 
combi (job, tube); tau; 
combi2 (job, job, tube): phi; 

ENDSETS 

DATA: 

1; 

1 ; 

ENDDATA 

!OBJECTIVE FUNCTION 5.1; 
min = @sum( job(i): alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * @sum( tube(w): psi(w)); 

!CONSTRAINT 5.2; 
@for( tube(w): @bin(psi(w))); 

!CONSTRAINT 5.3; 
@for( combi2(i,j,w): ©bin(phi(i,j,w))); 

'CONSTRAINT 5 . 4 ; 
@for( combi(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 5.5; 

©for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness (i)); 

iCONSTRAINT 5 . 8 ; 
@for( job(i)|i #gt# 1: ©sum( tube(w): tau(i,w)) = 1); 

'CONSTRAINT 5.9; 
©for ( job(i) : ©for( tube(w) : @sum( job(j) |j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 5.10; 
@for( job(j)| j #gt# 1: ©for( tube(w): ©sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 5.11; 
©for( job(i): @for( job(j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M) )) ; 

'CONSTRAINT 5 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

!CONSTRAINT 5.13; 
©for( tube(w): ©sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 
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"CONSTRAINT 5 . 1 5 ; 
@for( tube(w): @sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

Model 5 single stage with maximum allowable earliness/tardiness 

SETS: 

job /1..11/: duration, target, earliness, tardiness, scheduled, 
alpha, beta; 

tube /1. . 3 / : psi; 
combi ( j ob , tube): tau; 
combi2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration 0 0 . 8 0 2 . 1 3 2 . 4 0 2 . 0 5 2 . 4 3 2 . 0 5 

2 . 5 0 ; 
target 0 3.55 0.41 2 .16 1.49 0.61 0 . 2 6 1 . 6 0 

3 . 0 3 ; 
alpha 1 1 1 1 1 1 1 1 1; 
beta = 1 1 1 1 1 1 1 1 1; 
interval 6; 
M 1 0 0 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 5.1; 
min = @sum( job(i): alpha(i) * earliness( i) + beta(i) * tardiness(i)) + 
100 * @sum( tube(w): psi(w)), 

'CONSTRAINT 5 . 2 ; 
@for( tube(w): ©bin(psi(w))), 

'CONSTRAINT 5 . 3 ; 
®for( combi2(i,j,w): ©bin(ph] L(i,j , w) )) ; 

ICONSTRAINT 5 . 4 ; 
@for( combi(i,w): @bin(tau(i. w ) ) ) ; 

!CONSTRAINT 5.5; 
@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

!CONSTRAINT 5.8; 
@for( job(i)|i #gt# 1: ©sum( tube(w): tau ( i , w)) = 1) ; 

'CONSTRAINT 5.9; 
@for( job(i): @for( tube(w): @sum( job(j) 1 j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau{i 

!CONSTRAINT 5.10; 
@for( job(j)| j #gt# 1: @for( tube(w): @sum( job(i)( i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

ICONSTRAINT 5 . 1 1 ; 
@for( job(i): @for( job(j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration (i) - M) ) ) ; 

!CONSTRAINT 5.12; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

!CONSTRAINT 5.13; 
®for( tube(w): ®sum( job(i)| i #gt# 1: tau{i,w)) <= psi(w) * 
©size(job)); 

!CONSTRAINT 5.15; 
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@for( tube(w): @sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

'CONSTRAINT 5 . 4 1 ; 
@for( job(i)| i #gt# 1: earliness(i) <= 24); 

"CONSTRAINT 5 . 4 2 ; 
@for{ job(i)| i #gt# 1: tardiness(i) <= 24); 

Model 5 6a 6b 6c first stage 

SETS: 

tube /I..8/: phi; 
job /1..8/: duration; 
combi(job, tube): tau; 

ENDSETS 

DATA: 
au]^U:ion = 0 . 8 2 . 1 3 2 . 4 0 1 . 7 2 2 . 0 5 2 . 4 3 2 . 0 5 2 . 5 0 ; 
interval = 6; 

ENDDATA 

!OBJECTIVE FUNCTION 5.43; 
min = @sum( tube(w): phi(w)); 

!CONSTRAINT 5.44; 
@for( tube(w): @bin{ phi(w))); 

ICONSTRAINT 5 . 4 5 ; 
@for( combi(i,w): ©bin(tau(i,w))); 

'CONSTRAINT 5 . 4 6 ; 

@for( tube(w): @sum{ job(i): tau(i,w) * duration(i)) <= interval); 

'CONSTRAINT 5 . 4 7 ; 
@for( job(i): @sum( tube(w): tau(i,w)) = 1); 
'CONSTRAINT 5 . 4 8 ; 
@for( combi(i,w): tau(i,w) <= phi(w) * ©size(job)); 

Model 5 second stage 

SETS : 

job / I . . 9 / : duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /I. . 3 / : ; 
link (job, tube); tau; 
link2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration 0 

2 . 5 0 ; 
0 . 8 0 2 . 13 2 . 4 0 1, . 72 2 , , 05 2 .43 2 , . 05 

target 0 
3 . 0 3 ; 

3 . 5 5 0 . 4 1 2 . 16 1 , . 4 9 0 , .61 0 , . 2 6 1 , . 6 0 

alpha 1 1 1 1 1 1 1 1 1; 
beta 1 1 1 1 1 1 1 1 1; 
interval 6; 
M 1 0 0 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 5.49; 



min = @sum( job(i)| i #gt# 1: a l p h a ( i ) * earliness(i) + beta(i) * 
tardiness (i)) ; 

"CONSTRAINT 5 . 3 ; 
®for( link2(i,j,w): @bin(phi(i,j,w))); 

!CONSTRAINT 5.4 ; 
@for( link(i,w): ©bin(tau(i,w))); 

'CONSTRAINT 5 . 5 ; 

@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

ICONSTRAINT 5 . 8 ; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau{i,w)) = 1); 
!CONSTRAINT 5.9; 
@for( job(i): @for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 5 . 1 0 ; 
@for( job(j)| j #gt# 1: @for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 5 . 1 1 ; 
©for( job(j)| j #gt# 1: @for( job{i)| i #ne# j:©for(tube(w): 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) -M))); 

'CONSTRAINT 5 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

!CONSTRAINT 5 . 1 5 ; 
@for( tube(w): ©sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

Model 6a single stage 

SETS : 
job /I..9/: alpha, beta, duration, target, earliness, tardiness, 
scheduled; 
tube /I..8/: psi; 
combi (job, tube): tau; 
combi2 (job, job, tube): p h i ; 

ENDSETS 

DATA: 
du]^^: ion = 0 0 . 8 0 2 . 1 3 2 . 4 0 1 . 7 2 2 . 0 5 2 . 4 3 2 . 0 5 

2 . 5 0 ; 
t a r g e t = 0 3 . 5 5 0 . 4 1 2 . 1 6 1 . 4 9 0 . 6 1 0 . 2 6 1 . 6 0 

3 . 0 3 ; 
alpha = 1 1 1 1 1 1 1 1 1; 
b e t a = 1 1 1 1 1 1 1 1 1 ; 
interval = 6; 
M = 1 0 0 0 0 ; 

ENDDATA 

lOBJECTIVE FUNCTION 5 . 1 ; 
min = @sum( job(i): alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * @sum( tube(w): psi(w)); 

!CONSTRAINT 5 . 2 ; 
@for( tube(w) : ©bin(psi(w)) ) ; 

ICONSTRAINT 5 . 3 ; 
©for( combi2(i,j,w): ©bin(phi(i,j,w))); 
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'CONSTRAINT 5 . 4 ; 
@for( combi(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 5.5; 

@for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i)) ; 

!CONSTRAINT 5 . 8 ; 
@for( job(i)|i #gt# 1: ©sum( tube(w): tau{i,w)) = 1); 
'CONSTRAINT 5 . 9 ; 
@for( job(i): Ofor( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 5.10; 
@for( job(j)| j #gt# 1: Ofor( tube(w): Osum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 5.11; 
Ofor( job(i); @for( job(j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M))); 

!CONSTRAINT 5.12; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

!CONSTRAINT 5.13; 
@for( tube(w): ©sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 

!CONSTRAINT 5 . 1 5 ; 
®for( tube(w): @sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

(CONSTRAINT 5 . 1 6 ; 
@for( job(i) I i #gt# 1: @for( tube(w) : scheduled (i) + duration(i) -
M*(1-tau(i,w)) <= @sum( job(n): duration(n) * tau(n,w)))); 

Model 6a second stage 

SETS : 
job /I..9/: duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /I..5 / ; ; 
link (job, tube); tau; 
link2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration = 0 0.80 2.13 2.40 1.72 2.05 2.43 2.05 

2 . 5 0 ; 
t a r g e t = 0 3 . 5 5 0 . 4 1 2 . 1 6 1 . 4 9 0 . 6 1 0 . 2 6 1 . 6 0 

3 . 0 3 ; 
alpha = 1 1 1 1 1 1 1 1 1; 
beta = 1 1 1 1 1 1 1 1 1; 
interval = 6; 
M = 10000; 

ENDDATA 

!OBJECTIVE FUNCTION 5 . 4 9 ; 
min = @sum( job(i) j i #gt# 1; alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) ; 

!CONSTRAINT 5.3; 
Ofor( link2(i,j,w): ©bin(phi(i,j,w))); 
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ICONSTRAINT 5 . 4 ; 
@for( link(i,w): @bin(tau(i,w))); 

!CONSTRAINT 5.5; 

@for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i) ) ; 

'CONSTRAINT 5 . 8 ; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau{i,w)) = q(i)); 

I CONSTRAINT 5 . 9 ; 
@for( job(i): @for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 5 . 1 0 ; 
@for( job(j)| j #gt# 1: @for{ tube(w): ©sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 5.11; 
@for( job(j)| j #gt# 1: @for( job(i)| i #ne# j:@for(tube(w): 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) -M))); 

!CONSTRAINT 5.12; 
@for{ job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 5 . 1 5 ; 

@for( tube(w): ©sum( job(i): duration(i) * tau(i,w)) <= interval); 

!CONSTRAINT 5.16; 
@for( job(i): @for( tube(w): scheduled(i) + duration(i) - M*(1-tau(i,w)) 
<= @sum( job(k): duration(k) * tau(k,w)))); 

Model 6b single stage 

SETS: 
job /I..9/: alpha, beta, duration, target, earliness, tardiness, 
scheduled; 
tube /I..8/: psi, Xa; 
combi (job, tube): tau; 
combi2 (job, job, tube); phi; 

ENDSETS 

DATA: 
duration = 0 0, 

2 . 5 0 ; 
. 80 2 . 13 2 .40 1 , . 72 2 , . 05 2 .43 2 , , 05 

target 0 3 . 
3 . 0 3 ; 

, 55 0 , ,41 2 . , 16 1 . , 4 9 0 , , 61 0 , . 2 6 1 . , 60 

alpha 1 1 1 1 1 1 1 1 1; 
beta 1 1 1 1 1 1 1 1 1; 
interval 6; 
M 10000; 

EMDDATA 

'OBJECTIVE FUNCTION 5.1; 
min = @sum( job(i); alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * @sum( tube(w): psi(w)); 

!CONSTRAINT 5.2; 
@for( tube(w): @bin(psi(w))); 

!CONSTRAINT 5.3; 
@for( combi2(i,j,w): ©bin(phi(i,j,w))); 

!CONSTRAINT 5.4; 
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@for( combi(i,w): ©bin{tau(i,w))); 

'CONSTRAINT 5 . 5 ; 

@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

!CONSTRAINT 5.8; 
@for( job(i)|i #gt# 1: @sum( tube(w): tau(i,w)) = 1); 
ICONSTRAINT 5 . 9 ; 
@for( job(i); @for( tube(w): @sum{ job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 5.10; 
@for( job(j)| j #gt# 1: Ofor( tube(w): ©sum{ job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 5 . 1 1 ; 
@for( job(i): @for( job(j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M))); 

!CONSTRAINT 5.12; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 5 . 1 3 ; 
@for( tube(w): ©sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 

ICONSTRAINT 5 . 1 5 ; 
@for( tube(w): ©sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

!CONSTRAINT 5.17; 
©for( tube(w): Xa(w) = interval - ©sum( job(i): duration(i) * 
tau(i,w))); 

ICONSTRAINT 5 . 1 8 ; 
@for( job(i)| i #gt# 1; ©for( tube(w): scheduled(i) + M*(1-tau(i,w)) >= 
X a ( w ) ) ) ; 

Model 6b second stage 

SETS : 
job /I..9/; duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /I..3/: Xa; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 

ENDSETS 

DATA: 
d u r a t i o n = 0 0 . 8 0 2 . 1 3 2 . 4 0 1 . 7 2 2 . 0 5 2 . 4 3 2 . 0 5 

2 . 5 0 ; 
target = 0 3.55 0 . 4 1 2.16 1.49 0.61 0.26 1.60 

3 . 0 3 ; 
alpha = 1 1 1 1 1 1 1 1 1; 
beta = 1 1 1 1 1 1 1 1 1; 
interval = 6; 
M = 10 0 0 0; 

ENDDATA 

!OBJECTIVE FUNCTION 5.49; 
min = ©sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) ; 
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!CONSTRAINT 5.3; 
@for( link2(i,j,w) : ©bin(phi(i, j , w) ) ) ; 

I CONSTRAINT 5.4; 
@for( link(i,w): @bin(tau(i , w) ) ) ; 

'CONSTRAINT 5 . 5 ; 

@for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i) ) ; 

[CONSTRAINT 5.8; 
@for( job(i)| i #gt#l: @sum( tube(w): tau(i,w)) = 1); 
'CONSTRAINT 5.9; 
@for( job(i): @for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i; 
phi(i,j,w)) <= tau(i,w))); 

ICONSTRAINT 5 . 1 0 ; 
Ofor{ job(j)| j #gt# 1: ®for{ tube(w): ®sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 5 . 1 1 ; 
@for( job(j)| j #gt# 1: @for( job(i)| i #ne# j:@for(tube(w): 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) -M))); 

!CONSTRAINT 5.12; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

ICONSTRAINT 5 . 1 5 ; 

@for(tube(w): @sum( job(i): tau(i,w) * duration(i)) <= interval); 

!CONSTRAINT 5.17; 

@for( tube(w): Xa (w) = interval - ©sum( job(i): duration(i)*tau(i,w))) ; 

!CONSTRAINT 5.18; 

@for( tube(w): @for( job(i)|i #gt# 1: scheduled(i) + M*(1-tau(i,w)) >= 
Xa(w))); 

Model 6c single stage 

SETS : 
job /I..9/: alpha, beta, duration, target, earliness, tardiness, 
scheduled; 
tube /I..8/: psi, Xa, Xb; 
combi (job, tube): tau; 
combi2 (job, job, tube): p h i ; 

ENDSETS 

DATA: 

1; 
1; 

ENDDATA 

duration = 0 0. 
2.50; 

, 80 2 . , 13 2 . . 4 0 1 . 7 2 2 , . 05 2 . 4 3 2 . . 05 

target = 0 3 , 
3 . 0 3 ; 

.55 0 , .41 2 . .16 1 . 4 9 0 . .61 0 , . 2 6 1. , 60 

alpha = 1 1 1 1 1 1 1 1 
beta = 1 1 1 1 1 1 1 1 
interval = 6; 
M = 1 0 0 0 0 ; 

!OBJECTIVE FUNCTION 5.1; 
min = @sum( job(i): alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * @sum( tube (w) : psi(w)) ; 

'CONSTRAINT 5 . 2 ; 
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@for( tube(w): @bin(psi(w) ) ) ; 

!CONSTRAINT 5.3; 
@for( combi2(i,j, w) : ©bin(phi(i , j , w) ) ) ; 

!CONSTRAINT 5.4; 
®for( combi(i,w): ©bin(tau(i, w) ) ) ; 

!CONSTRAINT 5.5; 

@for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i) ) ; 

'CONSTRAINT 5 . 8 ; 
@for( job(i)|i #gt# 1: @sum{ tube{w): tau(i,w)) = 1); 

'CONSTRAINT 5.9; 
@for( job(i) ; @for ( tube(w) : @sum( job(j) |j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 5.10; 
@for( job(j)| j #gt# 1: @for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 5.11; 
®for( job(i): @for( job{j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M))); 

'CONSTRAINT 5 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

!CONSTRAINT 5.13; 
@for( tube(w): @sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 

!CONSTRAINT 5.15; 
©for( tube(w): @sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

!CONSTRAINT 5.18; 
@for ( job(i)|i #gt# 1: @for{ tube(w) : scheduled(i) + M*(1-tau(i,w)) >= 
X a ( w ) ) ) ; 

'CONSTRAINT 5 . 1 9 ; 
@for( tube(w): interval = ©sum( job(i): duration(i) * tau(i,w)) + Xa(w) 
+ Xb (w) ) ; 

ICONSTRAINT 5 . 2 0 ; 
©for( job(i): ©for( tube(w): scheduled(i) + duration(i) - M*(1-tau(i,w)) 
<= interval - Xb(w) )) ; 

Model 6c second stage 

SETS: 
job /I..9/: duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /I..3/: Xa, Xb; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 

ENDSETS 

DATA: 
= 0 0 . 8 0 2 . 1 3 2 . 4 0 1 . 7 2 2 . 0 5 2 . 4 3 2 . 0 5 

2 . 5 0 ; 
t a r g e t = 0 3 . 5 5 0 . 4 1 2 . 1 6 1 . 4 9 0 . 6 1 0 . 2 6 1 . 6 0 

3 . 0 3 ; 
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alpha = 1 1 1 1 1 1 1 1 1 ; 
beta = 1 1 1 1 1 1 1 1 1 ; 
g = 6; 
M = 10000; 

ENDDATA 

'OBJECTIVE FUNCTION 5 . 4 9 ; 
min = @sum( job(i)| i #gt# 1: alpha(i) * earliness(i) + beta(i) * 
tardiness (i)) ; 

!CONSTRAINT 5.3; 
@for( link2{i,j,w): ©bin(phi{i,j,w))); 

!CONSTRAINT 5.4; 
@for( link(i,w): ©bin(tau(i,w))); 

'CONSTRAINT 5 . 5 ; 

©for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i)); 

!CONSTRAINT 5.8; 
©for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = 1); 
!CONSTRAINT 5.9; 
@for( job(i): @for( tube(w); ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi{i,j,w)) <= tau(i,w))); 

ICONSTRAINT 5 . 1 0 ; 
@for( job(j)l j #gt# 1; @for( tube(w); @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 5.11; 
@for( job(j)| j #gt# 1: ©for( job(i)| i #ne# j:©for(tube(w): 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) -M))); 

!CONSTRAINT 5.12; 
@for( job(i): scheduled(i) + duration(i) <= g); 

!CONSTRAINT 5.15; 
©for(tube(w) : ©sum( job(i): tau(i,w) * duration (i)) <= g) ; 

!CONSTRAINT 5.18; 
@for( tube(w): @for{ job(i)|i #gt# 1: scheduled(i) + M*(1-tau(i,w)) >= 
Xa(w))); 

'CONSTRAINT 5 . 1 9 ; 
©for( tube(w); g = ©sum( job(i): duration(i) * tau{i,w)) + Xa(w) + 
X b ( w ) ) ; 

!CONSTRAINT 5.20; 
©for( tube(w):@for( job(i)| i #gt# 1: scheduled(i) + duration(i) -M*(l-
tau(i,w)) <= g - xb(w))); 

Model 7 

SETS : 
job / 1 . . 9 / : duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /1..3/:xa, psi; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 
links (job,job): setup; 

ENDSETS 
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DATA: 
duration 
target 
a l p h a 
beta 
interval 
M 
setup 

0 0 . 8 0 2 . 13 2 .40 1 . 72 2 . 05 2 . 4 3 2 . 05 2 . 50; 
0 3 . 5 5 0 .41 2 . 16 1 .49 0 . 6 1 0 . 2 6 1 . 60 3 . 03; 
1 1 1 1 1 1 1 1 1; 
1 1 1 1 1 1 1 1 1; 

U / 
10000 
0 , . 00 0 . . 02 0 , . 0 3 0 , . 03 0 . . 07 0 . . 07 0 . , 13 0 . . 13 0. 17 
0 , . 00 0 , . 00 0 , . 01 0 , . 01 0 . . 05 0 . . 05 0 . . 11 0 , . 11 0. 15 
0 , . 00 0 . , 00 0 . . 00 0 , . 00 0 . . 04 0 . . 04 0 . , 08 0 . , 08 0 . 14 
0 . . 00 0 . , 00 0 . , 00 0 . . 00 0 . , 04 0 , . 04 0 . , 08 0 . , 08 0 . 14 
0 , , 00 0 . , 00 0 . , 00 0 , . 00 0 . ,00 0 . . 0 0 0 , , 06 0 . . 06 0 . 11 
0 . , 00 0 . . 00 0 . , 00 0 . , 00 0 . . 00 0 . . 0 0 0 . , 06 0 . .06 0 . 11 
0 . , 00 0 . 00 0 . . 00 0 . . 00 0 . . 00 0 . 0 0 0 . , 00 0 . . 00 0 . 04 
0 . . 00 0 . 00 0 . .00 0 . .00 0 . 00 0 . 0 0 0 . . 00 0 . . 00 0 . 04 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . .00 0 . 00 0 . 00; 

ENDDATA 

!OBJECTIVE FUNCTION 5.21; 
min = @sum( job(i)| i #gt# 1: alpha(i) * earliness(i) + beta(i) * 
tardiness(i)) + 100 * @sum( tube(w): psi(w)) ; 

!CONSTRAINT 5.22; 
@for( link2(i,j,w): ©bin(phi(i,j,w))); 

'CONSTRAINT 5 . 2 3 ; 
@for{ link{i,w): @bin(tau{i , w)) ) ; 

'CONSTRAINT 5 . 2 4 ; 
@for( tube(w): ©bin(psi(w))); 

!CONSTRAINT 5.25; 

@for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i)); 

'CONSTRAINT 5 . 2 8 ; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = 1); 
'CONSTRAINT 5 . 2 9 ; 
@for{ job(i): ©for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i; 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 5 . 3 0 ; 
@for( job(j)| j #gt# 1: @for( tube(w); @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 5.31; 
@for( job(j)| j #gt# 1: @for( job(i)| i #ne# j :@for(tube(w) : 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) + setup(i,j) 
-MXU; 

'CONSTRAINT 5 . 3 2 ; 
©for( job(i); scheduled(i) + duration(i) <= interval); 

ICONSTRAINT 5 . 3 3 ; 
©for( tube(w): @sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * ©size( 
tube)); 

!CONSTRAINT 5 . 3 5 ; 
©for(tube(w): ©for( job(j): @sum( job(i): tau(i,w) * duration(i) + 
setup(i,j) * phi(i,j,w)) <= interval)) 

Model 8a 

SETS ; 
job /I..9/: duration, target, earliness, tardiness,scheduled. 
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alpha, beta; 
tube /1..3/: psi, Xa; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 
links (job,job): setup; 

ENDSETS 

DATA: 
duration 
target 
alpha 
beta 
interval 
M 
setup 

0 0 . 80 2 . 13 2 .40 1 .72 2 . 05 2 . 43 2 . 05 2 . 5 0 ; 
0 3 . 55 0 .41 2 . 16 1 . 4 9 0 . 61 0 . 2 6 1 . 6 0 3 . 03; 
1 1 1 1 1 1 1 1 1; 
1 1 1 1 1 1 1 1 1; 
6; 
1 0 0 0 0 
0 . 0 0 0 , , 02 0 , . 03 0 , , 03 0 . , 07 0 , . 07 0 , , 13 0 , , 13 0. 17 
0 . 0 0 0 . . 00 0 , . 01 0 . , 01 0 . , 05 0 . . 05 0 . , 11 0 , , 11 0 . 15 
0 . 0 0 0 , , 00 0 , . 00 0 . , 00 0 . , 04 0 . . 04 0 . , 08 0 , , 08 0. 14 
0 . 0 0 0 . . 00 0 . . 00 0 . , 00 0 , , 04 0 . . 04 0 . , 08 0 , . 08 0 . 14 
0 . 0 0 0 . , 00 0 . , 00 0 . , 00 0 . 00 0 . , 00 0 . , 06 0 . , 0 6 0. 11 
0 . 0 0 0 . 00 0 . , 00 0 . . 00 0 . 00 0 . , 00 0 . . 06 0 . , 06 0. 11 
0 . 0 0 0 . , 00 0 . ,00 0 . , 00 0 . ,00 0 . , 00 0 . , 00 0 . , 0 0 0 . 04 
0 . 0 0 0 . 00 0 . , 00 0 . .00 0 . 00 0 . 00 0. , 00 0 . , 00 0 . 04 
0 . 0 0 0 . 00 0 . . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . , 00 0 . 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 5.21; 
min = @sum( job(i)| i #gt# 1: alpha(i) * earliness(i) + beta(i) * 
tardiness(i)) + 100 * ©sum( tube(w): psi(w)) ; 

!CONSTRAINT 5.22; 
@for( link2(i,j,w): ©bin(phi(i,j,w))); 

'CONSTRAINT 5 . 2 3 ; 
©for( link(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 5.24; 
@for( tube(w): ©bin(psi(w))); 

ICONSTRAINT 5 . 2 5 ; 

©for( job(i) :scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

'CONSTRAINT 5 . 2 8 ; 
@for( job(i)| i #gt#l: ©sum( tube(w); tau{i,w)) = 1); 
!CONSTRAINT 5.29; 
@for( job(i); ©for( tube(w) : ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

ICONSTRAINT 5 . 3 0 ; 
©for( job(j)| j #gt# 1: ©for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

ICONSTRAINT 5 . 3 1 ; 
@f or ( job(j)| j #gt# 1: ©f or ( job(i)| i #ne# j : @f or (tube (w) : scheduled (j ) 
-scheduled(i) - M* phi(i,j,w) >= duration(i) + setup(i,j) -M))); 

!CONSTRAINT 5.32; 
©for( job(i):scheduled(i) + duration(i) <= g); 

'CONSTRAINT 5 . 3 3 ; 
@for( tube(w): @sum( job(i); tau(i,w)) <= psi(w) * ©size(tube)); 
'CONSTRAINT 5 . 3 5 ; 
©for(tube(w) : ©sum( job(i): tau(i,w) * duration(i)) <= g) ; 

ICONSTRAINT 5 . 3 6 ; 
©for( job(i): ©for( tube(w):scheduled(i) + duration(i) - M * (1-
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tau(i,w)) <= @sum( job(k); tau(k,w)* duration(k)) + @sum( job(k): 
©sum(job( j)|j #ne# k: phi(k,j,w) * setup(k,j))))); 

Model 8b 

SETS: 
job /I..9/: duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /I..3/: psi, Xa; 
link (job, tube): tau; 
link2 (job, job, tube): 
links (job,job): setup; 

ENDSETS 

phi; 

DATA: 
duration 
target 
alpha 
beta 
interval 
M 
setup 

0 0 . 8 0 2 . 13 2 .40 1 . 72 2 . 05 2 . 4 3 2 . 05 2 .50; 
0 3 . 55 0 .41 2 . 16 1 .49 0 . 61 0 . 2 6 1 . 60 3 , .03; 
1 1 1 1 1 1 1 1 1, 
1 1 1 1 1 1 1 1 1, 

1 0 0 0 0 ; 
0 . 0 0 0 , . 02 0 , . 03 0 , . 0 3 0 , . 07 0 , . 07 0 , . 13 0 , , 13 0 , , 17 
0 . 0 0 0 , . 00 0 . . 01 0 , , 01 0 . . 05 0 . . 05 0 , . 11 0 . , 11 0 , , 15 
0 . 0 0 0 . .00 0 . . 00 0 . , 00 0 . , 04 0 , . 04 0 . . 08 0 . , 08 0 . . 14 
0 . 0 0 0 . , 00 0 , . 00 0 . . 00 0 . , 04 0 . . 04 0 , . 0 8 0 . . 08 0 , , 14 
0 . 0 0 0 . , 00 0 . , 00 0 . , 00 0 . , 00 0 . . 00 0 . . 0 6 0 . , 06 0 . , 11 
0 . 0 0 0 . , 00 0 . . 00 0 . , 00 0 . 00 0 . , 00 0 . , 06 0 . , 06 0 . , 11 
0 . 0 0 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . , 00 0 . 00 0 , ,04 
0 . 0 0 0 . , 00 0 . , 00 0 . , 00 0 . 00 0 . , 00 0 . , 00 0 . , 00 0 . . 04 
0 . 0 0 0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . , 00 0 . 00 0 . , 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 5.21; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) + 100 * @sum( tube(w): psi(w)) ; 

'CONSTRAINT 5 . 2 2 ; 
@for( link2(i,j,w): ©bin(phi(i,j,w))); 

!CONSTRAINT 5.23; 
@for( link(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 5.24; 
@for( tube(w); ©bin(psi(w))); 

'CONSTRAINT 5 . 2 5 ; 

©for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

ICONSTRAINT 5 . 2 8 ; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = 1); 
!CONSTRAINT 5.29; 
@for( job(i): @for( tube(w): ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 5 . 3 0 ; 
@for( job(j)| j #gt# 1; @for( tube(w): ©sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 5 . 3 1 ; 
©for( job(j)| j #gt# 1: @for( job(i)| i #ne# j : @for(tube(w) : 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) + setup(i,j) 
- N ) ) ) ; 
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'CONSTRAINT 5 . 3 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

iCONSTRAINT 5 . 3 3 ; 

@for( tube(w): @sum( job(i): tau(i,w)) <= psi(w) * @size( tube)); 

ICONSTRAINT 5 . 3 5 ; 

©for(tube(w): @sum( job(i): tau(i,w) * duration(i)) <= interval); 

!CONSTRAINT 5.37; 
@for( tube(w): Xa(w) = interval - @sum( job(i): duration(i)*tau(i,w)) -
@sum( job(i): @sum( job(j): phi(i,j,w) * setup(i , j )))) ; 
!CONSTRAINT 5.38; 
@for( tube(w): @for( job(i)|i #gt# 1: scheduled(i) >= Xa(w) + setup(l,i) 
- M*(l-tau(i,w)))); 

Model 8c 

SETS ; 
job /I..9/: duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /1..3/: psi, Xa, Xb; 
link (job, tube): tau; 
link2 (job, job, tube): p h i ; 
links (job,job): setup; 

ENDSETS 

DATA: 
duration 
target 
alpha 
beta 
interval 
M 
setup 

0 0 . 8 0 2 . 13 2 . 4 0 1 . 72 2 . 05 2 . 4 3 2 . 0 5 2 . 5 0 ; 
0 3 .55 0 .41 2 . 16 1 . 4 9 0 . 61 0 . 2 6 1 . 6 0 3 . 03 ; 
1 1 1 1 1 1 1 1 1, 
1 1 1 1 1 1 1 1 1, 

1 0 0 0 0 ; 
0 , . 00 0 . 02 0 , . 03 0 , . 03 0 , . 07 0 . . 07 0 , . 13 0 , . 13 0 . 17 
0 , . 0 0 0 , . 00 0 . . 01 0 . . 01 0 . . 05 0 . , 0 5 0 . . 11 0 , . 11 0 , . 15 
0 . . 00 0 , . 00 0 . , 00 0 . , 00 0 . , 04 0. , 0 4 0 . , 08 0 . . 08 0 , , 14 
0 , . 0 0 0 , . 0 0 0 . . 00 0 . . 00 0 . . 04 0 . . 0 4 0 . . 08 0 , . 0 8 0 , . 14 
0 . , 00 0 . . 00 0 . . 00 0 , . 00 0 . , 00 0 . , 0 0 0 . , 06 0 . . 06 0 , . 11 
0 . , 00 0 . , 00 0 . , 00 0 , , 00 0 . . 00 0 . 0 0 0 . , 06 0 . , 06 0 , . 11 
0 . , 00 0 . . 00 0 . 00 0 . . 00 0 . . 00 0 . 0 0 0 . , 00 0 , , 00 0 . . 04 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . . 00 0 . , 04 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . 00 0 . , 0 0 ; 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . 00 0 . , 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 5.21; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) + 100 * @sum( tube(w): psi(w)); 

ICONSTRAINT 5 . 2 2 ; 
@for( link2(i,j,w): ©bin(phi(i,j,w))); 

'CONSTRAINT 5 . 2 3 ; 
@for( link(i,w): @bin(tau(i,w))); 

'CONSTRAINT 5 . 2 4 ; 
@for( tube(w); ©bin(psi(w))); 

!CONSTRAINT 5 . 2 5 ; 
@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness (i)); 
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'CONSTRAINT 5 . 2 8 ; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = 1); 

'CONSTRAINT 5 . 2 9 ; 
Ofor( job(i): @for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 5.30; 
@for( job(j)| j #gt# 1: Ofor( tube(w): ©sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 5 . 3 1 ; 
Ofor( job(j)| j #gt# 1: @for( job{i)| i #ne# j:@for(tube(w): 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) + setup{i,j) 
- M ) ) ) ; 

'CONSTRAINT 5 . 3 2 ; 
Ofor( job(i): scheduled(i) + duration(i) <= interval); 

ICONSTRAINT 5 . 3 3 ; 

®for( tube(w): @sum( job(i): tau(i,w)) <= psi(w) * ©size(tube)); 

'CONSTRAINT 5 . 3 5 ; 

©for(tube(w): Osum( job(i): tau(i,w) * duration(i)) <= interval); 

'CONSTRAINT 5 . 3 8 ; 
©for( tube(w): ©for( job(i)|i #gt# 1: scheduled(i) >= Xa(w) - M*(l-
tau{i,w)) + setup(l,i))); 
'CONSTRAINT 5 . 3 9 ; 
Ofor( tube(w) : ©sum( job(i): duration(i)*tau(i, w)) + ©sum( job(i): ©sum( 
job(j); phi(i,j,w) * setup(i,j))) + Xa(w) + Xb(w)= interval); 
ICONSTRAINT 5 . 4 0 ; 
©for( tube(w):Ofor( job(i)| i #gt# 1: scheduled(i) + duration(i) -M*(l-
tau(i,w)) <= interval - Xb(w))); 

Model 9 single stage 

SETS: 
job / 1 . . 9 / : alpha, beta, duration, target, earliness, tardiness, 
scheduled, q; 
tube /l. .8 / : psi; 
combi (job, tube): tau; 
combi2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration = 0 0.80 2.13 2.40 1.72 2.05 2.43 2.05 

2 . 5 0 ; 
t a r g e t = 0 3 . 5 5 0 . 4 1 2 . 1 6 1 . 4 9 0 . 6 1 0 . 2 6 1 . 6 0 

3 . 0 3 ; 
alpha = 1 1 1 1 1 1 1 1 1 
beta = 1 1 1 1 1 1 1 1 1 
q = 1 1 2 1 1 3 1 1 1 
interval = 6; 
M = 10 0 0 0; 

ENDDATA 

!OBJECTIVE FUNCTION 6.1; 
min = @sum( job(i): alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * ©sum( tube(w)I psi(w)); 

ICONSTRAINT 6 . 2 ; 
Ofor( combi2(i,j,w): ©bin(phi(i,j,w))); 



ICONSTRAINT 6 . 3 ; 
®for( combi(i,w): ©bin{tau{i,w))); 

!CONSTRAINT 6.4; 
@for( tube(w): ©bin(psi(w))); 

!CONSTRAINT 6.5; 

@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

!CONSTRAINT 6.8; 
@for( job{i)|i #gt# 1: @sum{ tube(w): tau(i,w)) = q(i)); 
!CONSTRAINT 6.9; 
@for( job(i); @for( tube(w): @sum( job(j)|] #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

ICONSTRAINT 6 . 1 0 ; 
@for( job(j)| j #gt# 1: @for( tube(w): @sum{ job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 6 . 1 1 ; 
Ofor( job(i): @for( job(j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M))); 

ICONSTRAINT 6 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 6 . 1 6 ; 
@for( tube(w): @sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 

'CONSTRAINT 6 . 1 7 ; 
©for( tube(w): ©sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

Model 9 single stage with time restrictions 

SETS: 

job /I..11/: duration, target, earliness, tardiness, scheduled, 
alpha, beta; 
tube /l..3/: psi; 
combi (job, tube): tau; 
combi2 (job, job, tube): phi; 

ENDSETS 

DATA; 
duration 0 0 ^ 0 2 13 2 40 1 72 2 . 0 5 2 43 2 05 

2 . 5 0 ; 
target 0 3 .55 0. 41 2 16 1 4 9 0 61 0 26 1 60 

3 . 0 3 ; 
alpha 1 1 1 1 1 1 1 1 1; 
beta 1 1 1 1 1 1 1 1 1; 

1 1 2 1 1 3 1 1 1; 
interval = 6; 
M = 1 0 0 0 0 ; 

ENDDATA 

'OBJECTIVE FUNCTION 6.1; 
min = ©sum( job(i): alpa(i) * earliness(i) + beta(i) * tardiness(i) + 

100 * ©sum( tube(w) psi(w)); 

!CONSTRAINT 6.2; 
©for( combi2(i,j,w) ©bin(phi( ) ) ; 
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ICONSTRAINT 6 . 3 ; 
@for( combi(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 6.4; 
@for( tube(w): ©bin(psi(w))); 

'CONSTRAINT 6 . 5 ; 

®for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)) ; 

'CONSTRAINT 6 . 8 ; 
@for( job(i)|i #gt# 1: @sum( tube(w): tau(i,w)) = q(i)); 
!CONSTRAINT 6.9; 
@for( job(i): @for( tube(w): ©sum{ job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 6.10; 
@for( job(j)| j #gt# 1: ©for( tube(w): ©sum{ job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 6.11; 
©for( job(i): @for( job(j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M))); 

'CONSTRAINT 6 . 1 2 ; 
@for( job(i): scheduled{i) + duration(i) <= interval); 

!CONSTRAINT 6.14; 
@for( job(i)| i #gt# 1: earliness(i) <= 24); 

!CONSTRAINT 6.15; 
@for( job(i)| i #gt# 1: tardiness(i) <= 24); 

ICONSTRAINT 6 . 1 6 ; 
@for( tube(w): ©sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 

'CONSTRAINT 6 . 1 7 ; 
@for( tube(w): ©sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

Model 9 10a 10b 10c first stage 

SETS : 
tube /I..8/: phi; 
job /I..8/: duration, q; 
combi (job, tube): tau; 

ENDSETS 

DATA: 
c k u r a t i o n = 0 . 8 2 . 1 3 2 . 4 0 1 . 7 2 2 . 0 5 2 . 4 3 2 . 0 5 2 . 5 0 ; 
q = 1 2 1 1 3 1 1 1 
interval = 6; 

ENDDATA 

!OBJECTIVE FUNCTION 5.43; 
min = @sum( tube(w): phi(w)); 

!CONSTRAINT 5.44; 
@for( tube(w): ©bin( phi(w))); 

!CONSTRAINT 5.45; 
@for( combi(i,w): ©bin(tau(i,w))); 

ICONSTRAINT 5 . 4 6 ; 
@for( tube(w): ©sum( job(i): tau(i,w) * duration(i)) <= interval); 



ICONSTRAINT 5 . 4 7 ; 

@for( job(i): @sum( tube(w): tau(i,w)) = q(i)); 

'CONSTRAINT 5.48; 
@for( coTnbi{i,w): tau(i,w) <= phi (w) * @size(job)); 

Model 9 second stage 

SETS : 
job /1..9/: duration, target, earliness, tardiness, scheduled, 
alpha, beta, q; 
tube /I..5/:; 
link (job, tube); tau; 
link2 (job, job, tube): phi; 

ENDSETS 

DATA: 
c k L r a t i c ^ = 0 0 . 8 0 2 . 1 3 2 . 4 0 1 . 7 2 2 . 0 5 2 . 4 3 2 . 0 5 

2 . 5 0 ; 
t a r g e t = 0 3 . 5 5 0 . 4 1 2 . 1 6 1 . 4 9 0 . 6 1 0 . 2 6 1 . 6 0 

3 . 0 3 ; 
alpha = 1 1 1 1 1 1 1 1 1; 
beta = 1 1 1 1 1 1 1 1 1; 
q = 1 1 2 1 1 3 1 1 1 ; 
interval = 6; 
M = 10000; 

ENDDATA 

'OBJECTIVE FUNCTION 6 . 2 9 ; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) ; 

'CONSTRAINT 6 . 2 ; 
@for( link2(i,j,w): @bin(phi(i,j,w))); 

(CONSTRAINT 6 . 3 ; 
@for( link(i,w): ©bin(tau(i,w))); 

'CONSTRAINT 6 . 5 ; 

@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

'CONSTRAINT 6 . 8 ; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = q(i)); 
!CONSTRAINT 6.9; 
@for( job(i): @for( tube(w): ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 6 . 1 0 ; 
@for( job(j)| j #gt# 1: @for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 6 . 1 1 ; 
@for( job(j)| j #gt# 1: ©for( job(i)| i #ne# j :@for(tube(w) : 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) -M))); 

ICONSTRAINT 6 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 6 . 1 7 ; 
@for( tube(w): @sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 
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Model 10a single stage 

SETS: 
job /I..9/: alpha, beta, duration, target, earliness, tardiness, 
scheduled, q; 
tube /I. . 8/: psi; 
combi (job, tube): tau; 
combi2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration 0 0 . 8 0 

2 . 5 0 ; 
2 , 13 2 . 4 0 1 , . 7 2 2 . . 05 2 . .43 2 , . 05 

target 0 3 . 5 5 
3 . 0 3 ; 

0 , .41 2 , . 16 1 , . 4 9 0 . , 61 0 , . 2 6 1 , . 60 

alpha 1 1 1 1 1 1 1 1 1 

beta 1 1 1 1 1 1 1 1 1 

q 1 1 2 1 1 3 1 1 1 

interval 6; 
M 10000; 

ENDDATA 

'OBJECTIVE FUNCTION 6.1; 
min = @sum( job(i): alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * @sum( tube(w): psi(w)); 

'CONSTRAINT 6.2; 
@for( combi2(i,j,w): ©bin(phi(i,j,w))); 

'CONSTRAINT 6.3; 
@for( combi(i,w): ©bin(tau(i,w))); 

'CONSTRAINT 6 . 4 ; 
@for( tube(w): ©bin(psi(w))); 

!CONSTRAINT 6.5; 

@for ( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

ICONSTRAINT 6 . 8 ; 
@for( job(i)|i #gt# 1: ©sum( tube(w): tau(i,w)) = q(i)); 

ICONSTRAINT 6 . 9 ; 
®for( job(i): @for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 6 . 1 0 ; 
@for( job(j)l j #gt# 1: @for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 6.11; 
©for( job(i) : @for( job(j) | j #gt# 1 #and# j #ne# i: ©for( tube(w) : 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M) )) ; 

{CONSTRAINT 6 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

!CONSTRAINT 6.16; 
©for( tube(w): @sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 

ICONSTRAINT 6 . 1 7 ; 
©for( tube(w): @sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 
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ICONSTRAINT 6 . 1 8 ; 
@for( job(i)I i #gt# 1: @for( tube(w): scheduled(i) + duration(i) -
M*(l-tau(i,w)) <= @sum( job(n): duration(n) * tau(n,w)))); 

Model 10a second stage 

SETS: 

job / 1 . . 9 / : duration, target, earliness, tardiness, scheduled, 
alpha, beta, q; 
tube /I. . 5/: ; 
link (job, tube): tau; 
link2 (job, job, tube): p h i ; 

ENDSETS 

DATA: 
duration 0 0 . 8 0 2 . 13 2 , . 4 0 1 . 72 2 . . 05 2 , ,43 2 , , 05 

2 , .50; 
target 0 3 . 5 5 0 , . 4 1 2 . . 16 1.49 0 . , 61 0 . , 2 6 1 . , 60 

3 . , 0 3 ; 
alpha 1 1 1 1 1 1 1 1 1; 

beta 1 1 1 1 1 1 1 1 1; 

q 1 1 2 1 1 3 1 1 1; 
interval = 6; 
M = 10000; 

ENDDATA 

!OBJECTIVE FUNCTION 6.29; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) ; 

'CONSTRAINT 6.2; 
@for( link2(i,j,w): ©bin(phi{i,j,w))); 

!CONSTRAINT 6.3; 
@for( link(i,w): ©bin(tau(i,w))); 

ICONSTRAINT 6 . 5 ; 

@for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i)) ; 

!CONSTRAINT 6.8; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = q(i)); 
!CONSTRAINT 6.9; 
@for( job(i): ©for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w})); 

'CONSTRAINT 6.10; 
@for( job(j)| j #gt# 1: ©for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 6.11; 
©for( job(j)| j #gt# 1: @for( job(i)| i #ne# j :@for(tube (w) : 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration (i) -M))) ; 

'CONSTRAINT 6 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

ICONSTRAINT 6 . 1 7 ; 

@for( tube(w): @sum( job(i): duration(i) * tau(i,w)) <= interval); 

'CONSTRAINT 6 . 1 8 ; 
@f or ( job(i): @for( tube(w); scheduled(i) + duration(i) - M*(l-tau(i,w) ) 
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<= @sutn( job{k): duration (k) * tau{k,w)))); 

Model 10b single stage 

SETS : 
job /I..9/: alpha, beta, duration, target, earliness, tardiness, 
scheduled, q; 
tube /I.. 8/: psi, Xa; 
combi (job, tube): tau; 
combi2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration 0 

2 . .50; 
0 . 8 0 2 . 13 2 . 4 0 1 , . 72 2 , . 05 2 , . 4 3 2 , . 05 

target 0 
3 . 0 3 ; 

3 . 55 0 . .41 2 . . 16 1. , 4 9 0 . , 61 0 . , 2 6 1 . ,60 

alpha 1 1 1 1 1 1 1 1 1 

beta 1 1 1 1 1 1 1 1 1 

q 1 1 2 1 1 3 1 1 1 
interval = 6; 
M = 10 0 0 0; 

ENDDATA 

!OBJECTIVE FUNCTION 5.1; 
min = @sum{ job(i): alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * @sum( tube(w): psi(w)); 

'CONSTRAINT 5 . 2 ; 
@for( combi2(i,j,w): @bin(phi(i,j,w))); 

'CONSTRAINT 5.3; 
@for( combi(i,w): ©bin(tau(i,w))); 

'CONSTRAINT 5 . 4 ; 
@for( tube(w): ©bin(psi(w))); 

'CONSTRAINT 5 . 5 ; 

®for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i)); 

1 CONSTRAINT 5.8; 
@for( job(i)|i #gt# 1; @sum( tube(w): tau(i,w)) = q(i)); 
!CONSTRAINT 5.9; 
@for( job(i): @for( tube(w): @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 5.10; 
@for{ job(j)| j #gt# 1: @for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 5.11; 
@for( job(i): @for( job(j)| j #gt# 1 #and# j #ne# i: @for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M) )) ; 

'CONSTRAINT 5 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 5 . 1 6 ; 
@for( tube(w): @sum( job{i)| i #gt# 1: tau(i,w)) <= psi (w) * 
©size(job)); 

'CONSTRAINT 5 . 1 7 ; 
@for( tube(w): ©sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
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interval); 

ICONSTRAINT 5 . 1 9 ; 
@for( tube(w): Xa(w) = interval - @sum( job{i): duration{i) * 
tau(i,w))); 

'CONSTRAINT 5 . 2 0 ; 
@for( job(i)| i #gt# 1: @for( tube(w): scheduled(i) + M*(1-tau(i,w)) >= 
X a ( w ) ) ) ; 

Model 10b second stage 

SETS : 
job /I..9/; duration, target, earliness, tardiness, scheduled, 
alpha, beta, q; 
tube /I. . 5 / : Xa; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 

ENDSETS 

DATA: 
d m ^ i t i o n = 0 0 . 8 0 2 . 1 3 2 . 4 0 1 . 7 2 2 . 0 5 2 . 4 3 2 . 0 5 

2 . 5 0 ; 
t a r g e t = 0 3 . 5 5 0 . 4 1 2 . 1 6 1 . 4 9 0 . 6 1 0 . 2 6 1 . 6 0 

3 . 0 3 ; 
alpha = 1 1 1 1 1 1 1 1 1 
beta = 1 1 1 1 1 1 1 1 1 
q = 1 1 2 1 1 3 1 1 1 
interval = 6; 
M = 10000; 

ENDDATA 

lOBJECTIVE FUNCTION 6 . 2 3 ; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) ; 

'CONSTRAINT 6 . 2 ; 
@for( link2(i,j,w) : ©bin(phi(i,j,w) ) ) ; 

!CONSTRAINT 6.3; 
@for( link(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 6 . 5 ; 

@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

!CONSTRAINT 6.8; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = q(i)); 
'CONSTRAINT 6 . 9 ; 
©for( job(i): ©for( tube(w): ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 6.10; 
@for( job(j)| j #gt# 1: @for( tube(w): @sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 6 . 1 1 ; 
©for( job(j)| j #gt# 1: @for( job(i)| i #ne# j :©for(tube (w) : 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) -M))); 

!CONSTRAINT 6.12; 
©for( job(i): scheduled(i) + duration(i) <= interval); 

ICONSTRAINT 6 . 1 7 ; 
©for(tube(w): ©sum( job(i): tau(i,w) * duration(i)) <= interval); 



!CONSTRAINT 6.19; 

®for( tube(w): Xa(w) = interval - @sum( job{i): duration(i)*tau(i,w) )) ; 

ICONSTRAINT 6 . 2 0 ; 

@for( tube(w): @for( job(i)|i #gt# 1: scheduled(i) + M*(l-tau(i,w)) >= 
X a ( w ) ) ) ; 

Model 10c single stage 

SETS : 

job /I..9/: alpha, beta, duration, target, earliness, tardiness, 
scheduled, q; 
tube /I.. 8/: psi, Xa, Xb; 
combi (job, tube): tau; 
combi2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration 0 0 , 

2 . 5 0 ; 
, 8 0 2 , . 13 2 , . 4 0 1 , . 7 2 2 , , 05 2 , ,43 2 , , 05 

target 0 3 . 
3 . 0 3 ; 

,55 0 , ,41 2 , . 16 1 . ,49 0 , ,61 0 , . 2 6 1 , . 6 0 

alpha 1 1 1 1 1 1 1 1 1; 
beta 1 1 1 1 1 1 1 1 1; 

1 — 1 1 2 1 1 3 1 1 1; 
interval = 6; 
M 1 0 0 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 6.1; 
min = @sum( job(i): alpha(i) * earliness(i) + beta(i) * tardiness(i)) + 
100 * @sum( tube(w): psi(w)); 

ICONSTRAINT 6 . 2 ; 
@for( combi2(i,j,w): ©bin(phi(i,j,w))); 

'CONSTRAINT 6 . 3 ; 
@for( combi(i,w): ©bin(tau(i,w))); 

ICONSTRAINT 6 . 4 ; 
@for( tube(w): ©bin(psi(w))); 

!CONSTRAINT 6.5; 

©for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

!CONSTRAINT 6.8; 
@for( job(i)|i #gt# 1: ©sum( tube(w): tau(i,w)) = q(i)); 

'CONSTRAINT 6 . 9 ; 
@for( job(i): ©for( tube(w): ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

ICONSTRAINT 6 . 1 0 ; 
@for( job(j)| j #gt# 1: @for( tube(w): ©sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

'CONSTRAINT 6.11; 
@for( job(i): ©for( job(j)| j #gt# 1 #and# j #ne# i: ©for( tube(w): 
scheduled(j) - scheduled(i) - M*phi(i,j,w) >= duration(i) - M) )) ; 

'CONSTRAINT 6.12; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 6.16; 
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@for{ tube(w): @sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * 
©size(job)); 

!CONSTRAINT 6.17; 
@for( tube(w): @sum( job(i)| i #gt# 1: duration(i) * tau(i,w)) <= 
interval); 

'CONSTRAINT 6 . 2 0 ; 
@for( job(i)|i #gt# 1: @for( tube(w): scheduled(i) + M*(1-tau(i,w)) >= 
X a ( w ) ) ) ; 

ICONSTRAINT 6 . 2 1 ; 
@for( tube(w): interval = ©sum( job(i): duration(i) * tau(i,w)) + Xa{w) 
+ X b ( w ) ) ; 

ICONSTRAINT 6 . 2 2 ; 
@for ( job(i): @for( tube(w) : scheduled(i) + duration(i) - M* (1-tau(i,w) ) 
<= interval - Xb(w))); 

Model 10c second stage 

SETS : 
job /I..9/: duration, target, earliness, tardiness, scheduled, 
alpha, beta, q; 
tube /1. . 5/: Xa, Xb; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 

ENDSETS 

DATA: 
duration 

target 

alpha 
beta 
q 
interval 
M = 10000; 

EMDDATA 

!OBJECTIVE FUNCTION 6.23; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) ; 

!CONSTRAINT 6.2; 
@for( link2(i,j,w): ©bin(phi(i,j,w))); 

!CONSTRAINT 6.3; 
@for( link(i,w): ©bin(tau(i,w))); 

ICONSTRAINT 6 . 5 ; 

©for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i)); 

!CONSTRAINT 6.8; 
©for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = q(i)); 

ICONSTRAINT 6 . 9 ; 
©f or ( job(i) : ©f or ( tube (w) : ©sum ( job(j) |j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

!CONSTRAINT 6.10; 
©for( job(j)| j #gt# 1: ©for( tube(w): ©sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

0 0 . . 8 0 2 . 13 2 , . 4 0 1 . 72 2 , . 05 2 , . 4 3 2 , . 05 
2 . .50; 
0 3 . , 55 0 , .41 2 . , 16 1 . 4 9 0 . , 61 0 , , 2 6 1 . , 60 
3 . ,03; 
1 1 1 1 1 1 1 1 1; 
1 1 1 1 1 1 1 1 1; 
1 1 2 1 1 3 1 1 1; 
6; 
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'CONSTRAINT 6 . 1 1 ; 
@for( job(j)| j #gt# 1: @for( job(i)| i #ne# j:@for(tube(w): 
scheduled(j) - scheduled(i) - M* phi{i,j,w) >= duration(i) -M))); 

'CONSTRAINT 6 . 1 2 ; 
@for( job(i): scheduled(i) + duration(i) <= g); 

ICONSTRAINT 6 . 1 7 ; 
@for(tube(w): @sum( job(i): tau(i,w) * duration(i)) <= g); 

!CONSTRAINT 6.20; 
@for( tube(w): @for( job(i)|i #gt# 1: scheduled(i) + M*(1-tau(i,w)) >= 
X a ( w ) ) ) ; 

I CONSTRAINT 6.21; 
@for( tube(w): g = Osum( job(i): duration(i) * tau(i,w)) + Xa(w) + 
Xb(w)) ; 

'CONSTRAINT 6 . 2 2 ; 
@for( tube(w):@for( job(i)| i #gt# 1: scheduled(i) + duration(i) -M*(l-
tau(i,w)) <= g - xb(w))); 

Model 11 

SETS : 
job /I..9/: duration, target, earliness, tardiness, scheduled, 
alpha, beta, q; 
tube /1..8/:xa, psi; 
l i n k (job, tube): tau; 
link2 (job, job, tube): phi; 
links (job,job): setup; 

ENDSETS 

DATA: 
duration 
target 
q 
alpha 
beta 
interval 
M 
setup 

0 0 . 8 0 2 . 13 2 . 4 0 1 . 7 2 2 .05 2 . 4 3 2 . 05 2 .50; 
0 3 .55 0 .41 2 . 16 1 . 4 9 0 . 61 0 . 2 6 1 . 60 3 .03; 
1 1 2 1 1 3 1 1 1, 
1 1 1 1 1 1 1 1 1, 
1 1 1 1 1 1 1 1 1, 

o; 
1 0 0 0 0 
0 . . 00 0 . . 02 0 . . 03 0 . . 03 0 . . 07 0 . . 07 0 . . 13 0 . . 13 0 , . 17 
0 . , 00 0 , . 00 0 . , 01 0 . , 01 0 . , 05 0 . , 05 0 . . 11 0 . . 11 0 . . 15 
0 . , 00 0 . . 00 0 . , 00 0 . . 00 0 . , 04 0 . . 0 4 0 . . 08 0 . . 08 0 , . 14 
0 . ,00 0 , , 00 0 . , 00 0 . , 00 0 . . 04 0 . . 0 4 0 . . 08 0 . . 08 0 , . 14 
0 . 00 0 . , 00 0 . , 00 0 . , 00 0 . . 00 0 . . 0 0 0 . . 06 0 . . 06 0 . . 11 
0 . 00 0 . 00 0 . . 00 0 . .00 0 . . 00 0 . 0 0 0 . . 06 0 . . 06 0 . . 11 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . . 00 0 . . 04 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . . 00 0 . . 04 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . . 00 0 . , 0 0 ; 

EMDDATA 

!OBJECTIVE FUNCTION 6.30; 
min = @sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
tardiness(i)) + 100 * ©sum( tube(w): psi(w)) ; 

'CONSTRAINT 6 . 3 1 ; 
@for( link2(i,j,w): @bin(phi(i,j,w))); 

'CONSTRAINT 6.32; 
@for( link(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 6.33; 
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®for( tube(w) : @bin(psi(w) ) ) ; 

ICONSTRAINT 6 . 3 4 ; 

@for( job(i): scheduled(i) = target(i) + tardiness(i) - earliness(i) ) ; 

!CONSTRAINT 6.3 7; 
@for( job(i)| i #gt#l: @sum( tube(w): tau(i,w)) = q(i)); 
!CONSTRAINT 6.38; 
®for( job(i): @for( tube(w): ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 6 . 3 9 ; 
@for( job(j)| j #gt# 1: @for( tube(w): @sum( job(i)| i #ne# j: 
phi{i,j,w)) = tau(j,w))); 

'CONSTRAINT 6 . 4 0 ; 
@for( job(j)| j #gt# 1: @for( job(i)| i #ne# j:@for(tube(w): 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration{i) + setup(!,]) 
- M ) ) ) ; 

!CONSTRAINT 6 . 4 1 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 6 . 4 3 ; 
@for{ tube(w): @sum( job(i)| i #gt# 1: tau(i,w)) <= psi(w) * @size( 
tube)); 

!CONSTRAINT 6.44; 
©for(tube(w): @for( job(j): ©sum( job(i): tau(i,w) * duration(i) + 
setup(i,j) * phi(i,j,w)) <= interval)); 

Model 12a 

SETS : 
job /1..9/: duration, target, earliness, tardiness,scheduled, 
alpha, beta, g; 
tube /I..8/; psi, Xa; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 
links (job,job); setup; 

ENDSETS 

DATA: 
duration 
target 
alpha 
beta 
q 
interval 
M 
setup 

0 0 . 8 0 2 . 13 2 . 4 0 1 . 72 2 . 05 2 . 4 3 2 . 05 2 . 50 
0 3 . 55 0 .41 2 . 16 1 . 4 9 0 . 61 0 . 2 6 1 . 6 0 3 . 03 
1 1 1 1 1 1 1 1 1; 
1 1 1 1 1 1 1 1 1; 
1 1 2 1 1 3 1 1 1; 

D ; 
1 0 0 0 0 ; 
0 . . 00 0 , . 02 0 , . 03 0 , . 03 0 , . 07 0 . . 07 0 . . 13 0 . . 13 0 . 17 
0 . , 00 0, , 00 0 . . 01 0 . . 01 0 . . 05 0 . , 0 5 0 . . 11 0 . . 11 0. 15 
0 . .00 0 , , 00 0 , , 00 0 . . 0 0 0 , . 04 0 . . 0 4 0 . , 08 0 . . 08 0. 14 
0 . .00 0 . , 00 0 . , 00 0 . , 00 0 . . 04 0 . . 0 4 0 . . 08 0 . . 08 0. 14 
0 . 00 0 . , 00 0 . , 00 0 . . 00 0 , . 00 0 , . 0 0 0 . 06 0 . . 06 0 . 11 
0 . 00 0 . 00 0 . . 00 0 . 00 0 . .00 0 . 0 0 0 . 06 0 . . 06 0. 11 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . 00 0. 04 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . 00 0 . 04 
0 . 00 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . 00 0. 00 

ENDDATA 

'OBJECTIVE FUNCTION 6.30; 
min = ©sum( job(i) | i #gt# 1: alpha(i) * earliness (i) + beta(i) * 
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tardiness(i)) + 100 * @sum( tube(w): psi(w)) ; 

"CONSTRAINT 6 . 3 1 ; 
@for( link2(i,j,w): ©bin(phi{i,j,w))); 

ICONSTRAINT 6 . 3 2 ; 
@for( link(i,w): @bin(tau(i,w))); 

ICONSTRAINT 6 . 3 3 ; 
@for( tube(w): ©bin(psi(w))); 

ICONSTRAINT 6 . 3 4 ; 

@for( job(i) :scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

'CONSTRAINT 6 . 3 7 ; 
@for( job(i)| i #gt#l: @sum( tube(w): tau(i,w)) = q(i)); 
'CONSTRAINT 6 . 3 8 ; 
@for( job(i): @for( tube(w): ©sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 6 . 3 9 ; 
@for( job(j)l j #gt# 1: @for( tube(w): @sum{ job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 6.40; 
@for( job(j)| j #gt# 1: @for( job(i)| i #ne# j;Ofor(tube(w) :scheduled(j ) 
-scheduled(i) - M* phi(i,j,w) >= duration(i) + setup(i,j) -M))); 

'CONSTRAINT 6 . 4 1 ; 
@for( job(i):scheduled(i) + duration(i) <= g); 

'CONSTRAINT 6 . 4 3 ; 

@for( tube(w): @sum( job(i): tau(i,w)) <= psi(w) * ©size(tube)); 

!CONSTRAINT 6.44; 
©for(tube(w) : ©sum( job(i): tau(i,w) * duration(i)) <= g) ; 
ICONSTRAINT 6 . 4 5 ; 
©for( job(i): ©for( tube(w):scheduled(i) + duration(i) - M * (1-
tau(i,w)) <= @sum( job(k): tau(k,w)* duration(k)) + @sum( job(k); 
©sum(j ob( j) Ij #ne# k: phi(k,j,w) * setup(k,j))) ) ) ; 

Model 12b 

SETS : 
job /I..9/: duration, target, earliness, tardiness, scheduled, 

alpha, beta; 
tube /I..8/: psi, Xa; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 
links (job,job): setup; 

ENDSETS 

DATA: 
duration 0 0 , . 8 0 2 . 13 2 . .40 1, . 72 2 . . 0 5 2 , . 4 3 2 . . 05 2 . 5 0 ; 
target 0 3 . 55 0 .41 2 , .16 1 . 4 9 0 . . 6 1 0 . 2 6 1 , , 60 3 . 0 3 ; 
alpha = 1 1 1 1 1 1 1 1 1; 
beta 1 1 1 1 1 1 1 1 1; 
q 1 1 2 1 1 3 1 1 1; 
interval 6; 
M 1 0 0 0 0 ; 
setup = 0 . , 00 0 . , 02 0 . 03 0 . . 03 0 . 07 0 . , 07 0 . ,13 0 . 13 0 . 1 7 

0 . 0 0 0 . , 00 0 . , 01 0 . 01 0 . 05 0 . 0 5 0 . , 11 0 . 11 0 . 15 
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0 . 00 0 . 00 0 , . 00 0 , . 0 0 0 , . 04 0 , . 04 0 . 08 0 . 0 8 0 . . 14 
0 . . 00 0 , . 00 0 , . 00 0 , . 00 0 . , 04 0 , , 0 4 0 . . 08 0 . 08 0 . . 14 
0 , . 00 0 , . 00 0 . , 00 0 . , 00 0 , . 0 0 0 . . 0 0 0 , . 0 6 0 , . 0 6 0 . . 11 
0 . , 00 0 . . 00 0 . , 00 0 , . 00 0 . , 00 0 . , 0 0 0 . . 06 0 , . 06 0 . . 11 
0 . . 00 0 , . 00 0 . , 00 0 . , 00 0 . . 0 0 0 . . 0 0 0 , . 00 0 . 0 0 0 . . 04 
0 . , 00 0 . , 00 0 . . 00 0 . , 00 0 . , 00 0. . 0 0 0 . . 00 0 , . 00 0 . , 04 
0 . . 00 0 . . 00 0 . , 00 0 . 00 0 . , 00 0 . , 00 0 . , 00 0 , . 00 0 . , 00 

ENDDATA 

'OBJECTIVE FUNCTION 6 . 3 0 ; 
min = @sum( job{i)| i #gt# 1: alpha(i) * earliness(i) + beta(i) * 
tardiness(i)) + 100 * @sum( tube{w): psi(w)) ; 

{CONSTRAINT 6 . 3 1 ; 
@for( link2(i,j,w): @bin(phi(i,j,w))); 

'CONSTRAINT 6 . 3 2 ; 
@for{ link(i,w): @bin(tau(i,w))); 

!CONSTRAINT 6.33; 
@for( tube(w): ©bin(psi(w))); 

'CONSTRAINT 6 . 3 4 ; 

@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)); 

'CONSTRAINT 6 . 3 7 ; 
@for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = q(i)); 
'CONSTRAINT 6 . 3 8 ; 
@for( job(i): @for( tube(w): ©sum( job(j)|j #gt# 1 #and# j #ne# i; 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 6 . 3 9 ; 
@for( job(j)( j #gt# 1: @for( tube(w): ©sum{ job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 6.40; 
@for ( job(j)| j #gt# 1: ©for( job(i)| i #ne# j;©for(tube(w) : 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) + setup(i,]) 
-M))); 

!CONSTRAINT 6.41; 
@for{ job(i): scheduled(i) + duration(i) <= interval); 

'CONSTRAINT 6 . 4 3 ; 

@for( tube(w): @sum( job(i): tau(i,w)) <= psi(w) * ©size( tube)); 

'CONSTRAINT 6 . 4 4 ; 

©for(tube(w): ©sum( job(i): tau(i,w) * duration(i)) <= interval); 

'CONSTRAINT 6 . 4 6 ; 
@for( tube(w): Xa(w) = interval - @sum( job(i): duration(i)*tau(i,w)) -
@sum( job(i): @sum( job(j): phi(i,j,w) * setup(i,])))); 
'CONSTRAINT 6 . 4 7 ; 
©for( tube(w): @for( job(i)|i #gt# 1: scheduled(i) >= Xa(w) + setup(l,i) 
- M*(1-tau(i,w))) ) ; 

Model 12c 

SETS: 

job / 1 . . 9 / : duration, target, earliness, tardiness, scheduled, 
alpha, beta, q; 
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tube /I..8/: psi, Xa, Xb; 
link (job, tube): tau; 
link2 (job, job, tube): phi; 
links (job,job): setup; 

ENDSETS 

DATA: 
duration 
target 
alpha 
beta 
q 
interval 
M 
setup 

0 0 . 80 2 .13 2 . 4 0 1 . 72 2 . 05 2 .43 2 . 05 2 . 5 0 ; 
0 3 . 5 5 0 .41 2 . 16 1 . 4 9 0 . 6 1 0 . 2 6 1 . 60 3 . 03; 
1 1 1 1 1 1 1 1 1; 
1 1 1 1 1 1 1 1 1; 
1 1 2 1 1 3 1 1 1; 
6; 
1 0 0 0 0 
0 . 0 0 0 . 02 0 , . 03 0 , . 03 0 . 07 0 . . 07 0 , ,13 0 , , 13 0. 17 
0 . 0 0 0 . . 00 0 . . 01 0 , , 01 0 , . 05 0 . , 05 0 . , 11 0 , , 11 0. 15 
0 . 0 0 0 , . 00 0 . , 00 0 . , 00 0 , . 04 0 . , 0 4 0 . , 08 0 . , 08 0. 14 
0 . 0 0 0 . , 00 0 . . 00 0 . , 00 0 . , 04 0 . , 04 0 . , 08 0 , , 08 0. 14 
0 . 0 0 0 . ,00 0 . 00 0 . . 00 0 . , 00 0 . 0 0 0 . , 06 0 . , 06 0. 11 
0 . 0 0 0 . , 00 0 . , 00 0 . , 00 0 . , 00 0 . . 00 0 . , 06 0 . . 06 0 . 11 
0 . 0 0 0 . . 00 0 . 00 0 . , 00 0 . , 00 0 . 0 0 0 . . 00 0 . , 00 0. 04 
0 . 0 0 0 . 00 0 . 00 0 . 00 0 . . 00 0 . 0 0 0 . 00 0 . , 00 0. 04 
0 . 0 0 0 . 00 0 . 00 0 . 00 0 . 00 0 . 0 0 0 . 00 0 . , 00 0 . 0 0 ; 

ENDDATA 

!OBJECTIVE FUNCTION 6.30; 
min = @sum( job(i) j i #gt# 1: alpha(i) * earliness(i) + beta(i) * 
tardiness(i)) + 100 * ©sum( tube(w): psi(w)); 

ICONSTRAINT 6 . 3 1 ; 
@for( link2(i,j,w): ©bin(phi(i,j,w))); 

'CONSTRAINT 6 . 3 2 ; 
@for( link(i,w): ©bin(tau(i,w))); 

!CONSTRAINT 6.33; 
@for( tube(w); ©bin(psi(w))); 

!CONSTRAINT 6.34; 

@for( job(i): scheduled(i) = target(i) + tardiness (i) - earliness(i)) ; 

!CONSTRAINT 6.37; 
©for( job(i)| i #gt#l: ©sum( tube(w): tau(i,w)) = q(i)); 
!CONSTRAINT 6.38; 
@for( job(i): @for( tube(w); @sum( job(j)|j #gt# 1 #and# j #ne# i: 
phi(i,j,w)) <= tau(i,w))); 

'CONSTRAINT 6.39; 
@for( job(j)| j #gt# 1: ©for( tube(w): ©sum( job(i)| i #ne# j: 
phi(i,j,w)) = tau(j,w))); 

!CONSTRAINT 6.40; 
®for( job(j)| j #gt# 1: @for( job(i)| i #ne# j :@for(tube(w) : 
scheduled(j) - scheduled(i) - M* phi(i,j,w) >= duration(i) + setup(i,j) 
-M))) ; 

ICONSTRAINT 6 . 4 1 ; 
@for( job(i): scheduled(i) + duration(i) <= interval); 

ICONSTRAINT 6 . 4 3 ; 

@for( tube(w): @sum( job(i): tau(i,w)) <= psi(w) * ©size(tube)); 

'CONSTRAINT 6 . 4 4 ; 
©for(tube(w): @sum( job(i): tau(i,w) * duration(i)) <= interval); 
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ICONSTRAINT 6 . 4 7 ; 
@for( tube(w): Ofor( job(i)|i #gt# 1: scheduled(i) >= Xa(w) - M*(l-
tau{i,w)) + setup(1,i))); 

'CONSTRAINT 6 . 4 8 ; 
@for( tube(w) : @sum{ job{i): duration(i)*tau(i, w)) + ©sum( job(i): ©sum ( 
job(j): phi(i,j,w) * setup(i,j))) + Xa(w) + Xb(w)= interval); 

!CONSTRAINT 6.49; 
@for( tube(w):@for( job(i)| i #gt# 1: scheduled(i) + duration(i) 
tau(i,w)) <= interval - Xb(w))); 
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Appendix B; Irrigation scheduling I: an integer programming approach 

The following paper has been accepted for publication by the Journal of Irrigation and 
Drainage Engineering (American Society of Civil Engineers). 
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IRRIGATION SCHEDULING I: AN INTEGER PROGRAMMING APPROACH 
by Tonny T. de Vries^ and Arif A. Anwar^ 

Abstract 
This paper shows how a sequential irrigation schedule for a tertiary unit can be 

interpreted as a single machine scheduling problem with earliness, tardiness and a 
common deadline. An integer program solution is presented for this irrigation scheduling 
problem. Two different models are presented to reflect different management options at 
the tertiary level. The first model allows jobs to be scheduled noncontiguously. In the 
second model only contiguous jobs are allowed. The second model has three sub models 
reflecting the various ways in which contiguous jobs can be scheduled over a fixed 
interval. Earlier work in determining unit costs of earliness/tardiness is reviewed and an 
alternative improved method is suggested. The models presented in this paper are applied 
to a tertiary unit with 16 users, both as a single interval and multi interval irrigation 
scheduling problem. An alternative integer program is also presented which although 
computationally more efficient can only be used for single period scheduling problems. 
The models developed in this paper can be used to solve small scheduling problems and 
also to calibrate the heuristics as presented in the companion paper. 

Introduction 
Many irrigation systems throughout the world are operated by distributing water 

sequentially amongst a group of users, normally within a tertiary unit. Such rotational 
irrigation is typical of small holdings within large irrigation systems and has received 
considerable attention, particularly with regards to improving equity (e.g. Latif and 
Sarwar, 1994; Shah and Willardson, 1993). Bishop and Long (1983) developed a 
rotational schedule taking travel time into account to improve equity. Khepar et al (2000) 
in their study of the Kotkapura Distributary of the Sirhind System in India, modified the 
duration allocated to each user to account for seepage losses in the field channel. In both 
these cited studies, water is essentially allocated pro-rata with area and a sequential 
schedule prepared which is subsequently adjusted for travel time and/or seepage losses. In 
such rigid schedules, there is no opportunity for a user to specify how much water is 
required (duration, flow rate) or the time at which the water is required (start time of 
irrigation). Wang et al (1995) used integer programming to develop a schedule for a canal 
whereby the duration of flow at an outlet could be specified by a user. Anwar and Clarke 
(2001) expanded the work by Wang at al. (1995) and incorporated both duration and start 
time into the model. Santhi and Pundarikanthan (2000) have criticised the work by Wang 
et al. (1995) as hypothetical because of the assumption that all outlets have equal 
discharge. Reddy et al. (1999) showed that a time-block model can be used to eliminate 
the hypothetical constraint of all outlets having equal discharge. Santhi and 
Pundarikanthan (2000) also suggested that integer programmes do not take into account 

2 Research Student, Dept. Of Civ. and Envir.. Engrg., Univ. of Southampton, 
Highfield, Southampton, U.K. S017 IB J. E-mail: T.T.de-Vries@soton.ac.uk . 
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practical management problems. 

The machine scheduling problem is a generic problem and has found applications 
ranging from; the packaging industry, Alder et al (1993) to aircraft landing problems, 
Beasley et al (2000). In this paper integer programming is used to develop schedules for 
irrigation systems. The paper shows how the irrigation scheduling problem can be 
interpreted as the single-machine scheduling problem, hence utilizing some of the wealth 
of research and literature available on the machine scheduling problem. 

The single machine problem and the irrigation scheduling problem 
The single-machine problem is one of scheduling any given number of jobs on a 

single machine. Some characteristics of a typical single machine problem are 
• jobs cannot be preempted. 

jobs cannot be serviced simultaneously. 
• idle time between jobs may or may not be permitted. 

jobs are processed only once. 
In Operations Research over the past decade or so, interest has grown in just-in-time 
scheduling. Such scheduling, often referred to as the Earliness/Tardiness or E/T problem 
(Mannur and Addagatla, 1993), encapsulates the notion that a job should finish neither 
early nor tardy. The earliness costs can be considered as holding costs for finished goods, 
deterioration of perishable goods and opportunity costs, whereas tardiness costs can be 
regarded as the costs of back logs, lost sales and loss of goodwill (Liaw, 1999). This 
dimension of scheduling is captured by penalizing both earliness and tardiness. Baker and 
Scudder (1990) have presented an authoritative review on the subject. 

An analogy can be drawn between a sequential irrigation schedule and the single 
machine problem. The resource, i.e. the water in the channel is comparable to the machine. 
The duration of water required by any user is comparable to the processing time of any 
job. In an irrigation schedule, a user may specify when water is required, i.e. a target start 
time, likewise, for just-in-time scheduling, the due (completion) time of every job is 
specified. As with job scheduhng, when a user starts to irrigate, the user must be permitted 
to irrigate without interruption, i.e. preemption is not allowed. Since the schedule is 
sequential, no two users abstract water from the channel simultaneously - jobs cannot be 
processed simultaneously on the machine. It would be desirable to provide a user with 
water exactly when requested, neither early nor tardy, i.e. just-in-time. Finally for a given 
irrigation interval, a user is provided water only once - jobs are processed only once. 

More recent developments in the single machine scheduling incorporate sequence 
dependent job setup times (Allahverdi et al, 1999; Yang and Liao, 1999). Sequence 
dependent set up times captures the notion that when one job is complete, the next job can 
only be started after the machine is appropriately set up. The duration of this setup time 
will depend upon which job has been completed and which is about to be executed -
hence sequence dependent setup time. An analogy also exists between the single machine 
problem with sequence dependent setup times and the rotational irrigation schedule. When 
an upstream user completes irrigating, there is a certain travel time before the next user 
can start to irrigate. In fact this issue of travel time causes the inequity as discussed by 
Bishop and Long (1983). Therefore strictly speaking the rotational irrigation schedule is a 
single machine problem with sequence dependent setup times. Where the setup times are 
equal and/or small relative to processing times, these can be approximated by inclusion in 
the processing time (Bianco et al., 1988). This simplifies the scheduling problem, and for 
the purpose of this paper, setup times are ignored. 
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Irrigation schedules operate over an irrigation interval typically one week or ten 
days. Therefore, all jobs or irrigation events must be completed by this time. Such a 
constraint is, as will be demonstrated not an insignificant consideration. Chand and 
Schneeberger(1988) introduced a single machine scheduling problem where no job is 
allowed to be tardy. Bagchi and Ahmadi (1992) use the term deadlines to describe the 
situation where each job has a specific deadline before which it must to be completed. 
Both these problems have relevance to the irrigation scheduling problem. In irrigation 
scheduling jobs are allowed to be tardy and do not have job specific deadlines, however all 
jobs have a common deadline, represented by the irrigation interval. All jobs must be 
completed before the end of the irrigation interval. 

In single machine scheduling problems idle time insertion can lead to significant 
improvements in the solution. Baker and Scudder (1990) considered the assumption of no 
inserted idle time inconsistent with the E/T criterion. As described below in irrigation 
scheduling there is however a legitimate reason for not always allowing inserted idle time. 
The method of inserting idle time in any irrigation scheduled depends on the manner in 
which the channel is operated and hence two models are presented. Contrary to the 
suggestion by Santhi and Pundarikanthan (2000), constraints can be imposed on models to 
reflect practical management issues as presented. Two models (the second with three 
further variations) are presented to reflect differing management practices. 

Model 1 
One alternative is to allow the channel to flow continuously for the entire duration 

of the irrigation interval. Users abstract water as scheduled and when water is not being 
used, it spills into a drainage system and/or if possible is reused further downstream. In 
this form of management the jobs need not be contiguous. This offers greater opportunity 
for scheduled start time to match target start time, however at the expense of wastage. One 
could suggest that the channel be shut after every contiguous block of jobs is complete and 
reopened when the next job is scheduled. However, this would require an excessive 
number of gate operations. 

Model 2 
This model requires the jobs to be contiguous, i.e. idle time between jobs is not 

permitted. Hence the gate can be opened before the first job is scheduled and closed once 
the last job is completed and therefore avoids spillage. There is less opportunity to match 
scheduled start time with target start time and therefore this model is likely to give a lower 
level of service than Model 1. However even in keeping the jobs contiguous there is a 
choice of the idle time proceeding all jobs, preceding all jobs, or both proceeding and 
preceding all jobs. Hence Model 2 has three variations, namely 

Model 2a all jobs are contiguous, idle time proceeds all jobs. 
Model 2b all jobs are contiguous, idle time precedes all jobs. 
Model 2c all jobs are contiguous, idle time precedes and/or proceeds all jobs. 

For the purpose of this paper a distinction is made between duration and time; 
duration is used to describe an interval along a time-line eg. irrigation duration. In contrast 
time refers to an instantaneous point along a time-line eg. scheduled start time. Time along 
the time line increases from left to right. 
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Integer programme 
Model 1 can be formulated as a mixed integer programme based on that by 

Coleman (1992). Let Q = {Jj, be a set of jobs to be scheduled. The following 
parameters are specified for each job J, e Q\ duration, target start time, earliness cost and 
tardiness cost. A detailed description of the decision variable, objective function and the 
constraints on each variable follows. 

Decision variable 
Any job (irrigation event) can precede any other job in the schedule. To define 

which job precedes which, a decision variable is introduced. This dimensionless variable 
is a binary integer with indices i and j representing a job. Then 

6̂ . = 1 if job / precedes job 7 

= 0 otherwise 

where by = decision variable, i = index representing job = index representing job 
and 7V= number of jobs to be scheduled. 

Objective function 
The goal of the objective function is to find the sequence of jobs and scheduled 

start time for each job so that every job starts as close as possible to the target start time. 
This is achieved by minimising the penalties incurred when a job is either early or tardy. 
The objective function can be written as 

N 

A i m u a b e Z : ] ] 0^% + g (2) 
/ = I 

where Z = objective function variable; = earliness of job i (appropriate time units); a, = 
cost of earliness per unit of time for job /; 2] = tardiness of job i (appropriate time units); 
and P, = cost of tardiness per unit of time for job /; and J, = any job to be scheduled. 

Constraints 
The scheduled start time of a job is determined from the target start time, the 

earliness and the tardiness 
Si = r. + T. - E. i = (3) 

where = scheduled start time of job i; and r,- = target start time for job i. Any two jobs 
cannot be serviced simultaneously. This implies that either job i precedes job j or vice 
versa. This can be enforced by using the following two disjunctive constraints 

5. - Sj + Mb.j > d. i=\,..M i^j (5) 

where Sj = scheduled start time of job y; M = a large positive number; J, = duration of job f; 
and dj = duration of job j. Every job must be completed within the irrigation interval 
(before the common deadline). 

% + ( 0 
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where g = irrigation interval over which all jobs must be completed (common deadline). 

Model 2a, 2b and 2c 

In Model 2a all jobs are scheduled contiguously with idle time inserted at the end of 
the last job. Therefore (6) is replaced by 

N 

;= 1 

1 , . . ^ (7) 

In Model 2b all jobs are scheduled contiguously and idle time is inserted prior to the start 
of the first job. Hence constraint (6) becomes 

N 

> g - (8) 
z= 1 

In Model 2c, all jobs are scheduled contiguously with idle time preceding the start of the 
first job and/or proceeding the end of the last job, therefore (6) is altered to 

N 

S - Ed, * X , . X, i= (9) 
/= 1 

where = idle time preceding the start of the first job in the schedule; andX^ = idle time 
proceeding the end of the last job in the schedule. The following additional constraints 
also need to be included for Model 2c. 

^ 1 = 1 ^ . ( 1 0 ) 

and 
i= (11) 

Multi interval scheduling 
In multi-interval (or multi-period) scheduling decisions made in a previous interval 

can be used to influence the decisions that will be made for the current interval. In 
irrigation scheduling the earliness and tardiness incurred in earlier intervals can be used to 
give priority to those users who have been most affected. To do so earliness and tardiness 
may be weighted to give preference to one job being processed on time over another. 
Appropriate costs of earliness/tardiness are difficult to ascertain. Very often costs of 
earliness/tardiness are set arbitrarily, in many cases by setting all costs of 
earliness/tardiness equal to 1 (Arkin and Roundy, 1991), which is the same as using a 
single interval model. Anwar and Clarke (2001) described a method to determine the 
weighting factor for multi-interval scheduling, based on the lead/lag times. Lead/lag time 
was defined as the absolute difference between scheduled and target start time and is 
therefore equal to the sum of earliness and tardiness. Earliness is equally as undesirable as 
tardiness and the earliness cost per unit of time of job j can be set equal to the tardiness 
cost per unit of time of job j. The equation for earliness/tardiness costs given by Anwar 
and Clarke (2001) can be expressed in earliness/tardiness form as 

E V 
p= 1 = P. 

ij' N 

E 
i= 1 

P - 1 

E % 
\p= 1 

X for all jobs 

UP V 

(12) 
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Where = earliness cost of job of job j in interval = tardiness cost of job j in 
intervalp;p = index representing interval l,...,f; and P = current interval. 

This method of determining the costs of earliness/tardiness for each job works well 
in most situations, but a problem arises when one or more jobs in the first interval are 
scheduled to start at exactly its target start time (i.e. scheduled with no earliness/tardiness). 
For a job with no earliness or tardiness, the numerator in (12) becomes zero. This sets the 
costs of earliness/tardiness for this jobs to zero. With a cost of earliness/tardiness of zero, 
this would allow the job to be scheduled anywhere since from (2) such a job does not 
contribute to the objective value. Replacing (12) by an exponential function will set the 
costs of earliness and tardiness to 1 for all jobs with zero earliness/tardiness. This ensures 
that all jobs contribute to the objective value. Therefore (12) becomes 

P, 

P= 1 
•lj>* 

X 

ij" 

N 

E 
V (=1 V P' 1 / for all jobs 

(13) 

To investigate the differences between using costs of earliness/tardiness estimated 
by (12) and (13) the interval-averaged standard deviation of the earliness and tardiness 
can be used. Figure la compares the effect of both methods on the standard deviation 
using Model 1. Target start times and duration are randomly generated but remain constant 
for all intervals and in the first interval at least one job is scheduled to start at the target 
start time. Figure la also shows the behaviour of the standard deviation if the costs of 
earliness/tardiness are set to 1 for all intervals (single interval model). It is clear that the 
standard deviation increases initially if (12) is used to calculate the costs of earliness and 
tardiness. Since the input data remains constant the standard deviation for the single 
interval model also remains constant. In contrast the standard deviation using (13) 
decreases with interval. 

50 
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Figure 1 Standard deviation, one or more jobs with no earliness/tardiness 

In practice the input data may not remain constant. Figure lb show how the 
standard deviation behaves for Model 1, with target start times and duration randomly 
generated and changing with each interval, such that again at least one job is scheduled to 
start on time. Due to the changing input data the single interval model shows a decrease in 
standard deviation. The rise in standard deviation, when determining costs of 
earliness/tardiness with (12) is even more pronounced then in Figure la. Using (13) again 
shows a decrease in standard deviation with interval. 

It is possible that in the first interval none of the jobs are scheduled to start on time. 
Figure 2a shows how using (13) improves the standard deviation compared to (12). Target 
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start times and duration are again randomly generated but remain constant for all intervals. 
Figure 2b shows that (12) and (13) perform equally well if the input data is random for 
each interval and no jobs start on time during the first interval. Both multi-interval models 
using (12) and (13) to calculate the costs of earliness and tardiness perform better than the 
single interval model. 

X V 10 4 5 6 
I n l c n a l 

Figure 2 Standard deviation, all jobs with earliness/tardiness 

The models presented in this section can be computationally demanding and 
relatively small problems may not solve in reasonable time. In Appendix I, an alternative 
formulation for each of Model 1, 2a, 2b and 2c is presented. The alternative formulation is 
computationally more efficient and allows larger problems to be solved but does not allow 
for different costs of earliness and tardiness for each job as needed for multi-interval 
scheduling. Table 1 shows the number of constraints and variables for each model with 
both formulations. 

TABLE 1; Number of variables and constraints for all models 

Model Formulation Number of 
variables 

Number of 
constraints 

(1) (2) (3) (4) 

1 
First 2#^+l 

1 
Alternative 3 m 2 

2a 
First 

Alternative 

Ar̂ +3A^ 2A^̂ +1 

3 m i 

2b 
First Ar̂ +3AH-l 2A/'^+m2 

2b 
Alternative AA^+2# 3#+l 

2c 
First #^+3AA-3 #^+2m-i 

2c 
Alternative A/'̂ +27V+l 3AA-1 

Table 1 shows the number of variables for all models is 0(A^^). The difference in number 
of constraints between the two formulations explains why the alternative formulation is 
less computationally demanding: for the first formulation the number of constraints is 
0(7V )̂, but for the alternative it is only 0(N). However this is not the only influence on 
computation time. Table 2 shows computation times for a problem with 16 jobs. 

Formulation Model 
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1 2a 2b 2c 
(1) (2) (3) (4) 

First 185 >20000 >20000 >20000 

Alternative 88 12074 19 8286 

It can be seen that there is a considerable variation in computation time between the four 
models. Computation time is particularly data sensitive, and cannot be predicted a priori. 

Practical application 
Models 1, 2a, 2b and 2c were implemented in Lingo 6.0® for Windows®, using 

data from Bishop and Long (1983). Bishop and Long (1983) presented a procedure for 
setting up a rotation delivery schedule and applied it to a tertiary unit of 37.06 ha with 16 
water users. Water in this tertiary unit is allocated pro rata with area at 172 min/ha and 349 
min are available for management/canal filling. Bishop and Long (1983) suggested the 
irrigation to be scheduled in turn from downstream upwards, target start times were not 
included in their data. For the purpose of this practical application the irrigation interval is 
set at 7 days and the target start times are randomly generated over this interval. The 
duration of each job is 172 min/ha as suggested by Bishop and Long (1983). 
Management/fill time is equally divided amongst all users to account for setup times and is 
added to the duration. 

Figure 3 shows the four different schedules obtained when applying Model 1, 2a, 
2b and 2c. It can be seen in Modell that idle time is inserted in three places in the 
schedule; after lot 24.4 is irrigated, after lot 24.3 is irrigated and after lot 26.1 is irrigated. 
The schedule from Model la results in an average earhness/tardiness of 4.0 hrs/user. For 
Model 2a all idle time is inserted after all users have finished irrigating. This schedule 
results in an average earliness/tardiness of 20.5 hrs/user. Figure 3 also shows that for 
Model 2b all idle time is inserted before any of the users starts irrigation. The average 
earliness/tardiness of this schedule is 33.3 hrs/user. Figure 3 shows how for Model 2c 7.7 
hours of idle time is inserted before the first user (lot 24.1) and another 48.3 hours is 
inserted after the last user (lot 25.3) has finished irrigation. This schedule results in an 
average earliness/tardiness of 19.8 hrs/user. 
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Targei start 

Figure 3 Single-interval schedules 
applying Models 1, 2a, 2b and 2c 

It is clear that Model 1 gives the best results in terms of average earliness/tardiness, 
however this model leads either to operational spillage or an excessive number of gate 
operations. Model 2b gives the highest average earliness/tardiness. This is due to the 
concentration of target start times early in the interval. Model 2a and 2c perform better 
than Model 2b, with only a small difference between them. Their results are not as good as 
those of Model 1, however gate operations are limited to opening once and closing once 
and spillage can be easily avoided. 

Table 3 is a multi-interval schedule obtained by applying Model 1 over 3 intervals. 

TABLE 3: Irrigation schedule for three intervals 
Interval 1 Interval 2 Interval 3 

Lot On Off Lot On Off Lot On Off 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

24.1 Mo 08dW Mo 16:57 262 Mo 10:22 Mo 19:23 23.1 Mo 08:00 Mo 18:49 

25.1 Mo 16:57 Tu 01:54 213 Mo 1923 Mo 23:15 25.1 Mo 1&49 Tu 07:42 

22.1 Tu 01:54 Tu 11:26 2&3 Mo 23:15 Tu 0828 24J Tu 07:42 Tu 12:20 

212 Tu 11:26 Tu 14:39 222 Tu 0828 Tu 19:54 24.1 Tu 12:20 We 01:13 

242 Tu 14:39 Tu 2336 242 Tu 20:15 We 06:59 2 6 j We 01:13 We 12:17 

2&3 Tu 23 We 07:17 214 We 06:59 We 14:11 222 We 12:17 Th 02:00 

222 We 07:17 We 16:49 24.4 We 14:11 We 18:13 26.1 Th 02:00 Th 14:53 

24.4 We 16:49 We 20:11 26.1 We 18:13 Th 04:57 25J Th 14:53 Fr 00:10 

252 Th 16:02 Fr 00:59 232 Th 04:57 Th 08:49 232 Fr 06:58 Fr 11:36 

234 Fr 00:59 Fr 06:59 25.1 Th 08:49 Th 19:33 242 Fr 11:36 Sa 00:29 

23J Fr 06:59 Fr 10:12 25J Th 19:33 Fr 03:17 24.4 Sa 0029 Sa 05:19 

24J Fr 10:12 Fr 13:25 252 Fr 03:17 Fr 14:01 252 Sa 05:19 Sa 18:12 

2&I Sa 21:29 Su 0&26 23^ Fr 16:42 Sa 01:43 213 Sa 18:12 Sa 22:50 
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253 Su 10:31 Su 1&:58 221 Sa 01:43 Sa 13:09 2&2 Su 22:50 Su 0939 

211 Su 16̂ W Mo 00:29 24^ Sa 13^9 Sa 23:53 234 Su 0939 Su 18J^ 

2&2 Mo 00:29 Mo 08̂ W 243 Mo 04:08 Mo O&OO 221 Su 18^^ Mo 08:00 

The data for the first interval is the same as used for Figure 3. For the second and third 
interval new target start times are generated randomly. To simulate an increase in water 
demand the duration of each job has been increased by 20% for the second interval and by 
another 20% for the third interval. Earliness and tardiness costs have been calculated using 
(13). The average earliness/tardiness for the first interval is 4.0 hrs/user. Due to the 
increased duration and different start times the schedules for the second and third intervals 
are distinct with an average earliness/tardiness of 4.1 hrs/user and 4.9 hrs/user 
respectively. 

The technique used to determine the schedules presented in Table 3 is more 
sophisticated than that presented by Bishop and Long (1983), but the output is a simple, 
easy to understand schedule. The difference lies in the level of service that can be provided 
with this new technique. Whereas Bishop and Long (1983) promoted a rigid schedule that 
is fixed and cannot be changed, the proposed method allows users to request water when it 
is needed most. The method can also be adapted so that both target start times and duration 
can be requested and a schedule is generated accordingly. 

Conclusion 
Integer programmes provide optimum solutions, however for combinatorial 

problems such as scheduling, they are computationally demanding and often cannot solve 
large problems within reasonable time. Although other methods are needed to be able to 
use single machine scheduling in practical irrigation systems, integer programming also 
has it uses. Methods such as the heuristics proposed in the companion paper are 
computationally efficient and can handle any practical size of problems but do not 
necessarily provide an optimum solution. As the companion paper shows integer 
programming can be used to test the quality of heuristics in addition to solving problems 
with a small number of jobs. 

Sequence dependent setup times capture the notion that a certain amount of time is 
required to prepare for the next job to be processed. In an irrigation environment this is the 
time needed for water to travel from one user to the next. Setup times have currently not 
been considered. This is a valid assumption if the setup times required are small compared 
to the duration of jobs. However, if this is not the case sequence dependent setup times 
need to be included. 

In certain irrigation intervals, like early or late in a growing season, not all users 
may wish to irrigate. The proposed method of determining the costs of earliness and 
tardiness do not take this possibility into account. Setting the duration of the job that is to 
be skipped to zero would mean that this job will be considered as scheduled to be on time, 
allowing it to be more early or tardy in a consequent interval. This effectively penalises a 
user for not irrigating. This issue needs to be addressed in further work 

Authors' note 
Trade names and company names are used in this paper solely for the purpose of 

providing specific information. Their mention does not constitute a guarantee or warranty 
or endorsement of the company or product by the authors or by the Department of Civil & 
Environmental Engineering, University of Southampton, UK. 
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Appendix I. Alternative single interval mixed integer linear programme 
Model 1 can be formulated as a mixed integer linear programme based on that 

presented by Fry and Leong (1987). A detailed description of the decision variable, 
objective function and the constraints on each variable follows. 

Decision variable 
Any job (irrigation event) can be assigned to any position in the schedule. To define 

which job is assigned to which position, a decision variable is introduced. This 
dimensionless variable is a binary integer with index i representing job J, and index k 
representing a position in a schedule. Then 

= 1 if job / is assigned to position k in the schedule 

0 otherwise 

where = decision variable; and k = index representing position 1,..,N; 

Objective function 
The objective is to minimize the cost of a job being scheduled early or tardy becomes 

minimize Z = 7^ (15) 
k=\ k=\ 

where Z = objective function variable; a = earliness penalty cost per unit of time; Ê . = 
earliness of the job in position A:; p = tardiness cost per unit of time; and T,̂  = tardiness of 
the job in position k. 

Each job can only once be assigned to a position 

= 1 (16) 
f = I 

Each position can only be assigned once 

N 

k= 1 

The scheduled start time for the job in position k is equal to the target start time and the 
earliness/tardiness of that job 

US) 

where Ŝ . = scheduled start time of the job in position t , and r* = target start time of the job 
in position k. 

Since 

= Z y . + E d, (19) 
m = l m = l 

where m = an index representing a position in the schedule; = idle time inserted directly 
before the job in position m; and with 

d . = E K A (20) 
i= 1 
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and 
N 

4 EV, (21) 
f = 1 

Using (19), (20) and (21), (18) can be rewritten as 

k k-l N N 

E y . + E = T . h ' - , - E , * T, (22) 
m= 1 m= 1 /= 1 i= 1 

Model 2 

In Model 2a all jobs are scheduled contiguously with idle time inserted at the end of the 
interval, and (19) is replaced by 

s, ' E 4 (23) 
m= 1 

from (20), (21) and (23), (18) becomes 

EE^„4 = EV, --B, - n (24) 
m= 1 /= 1 i= 1 

For Model 2b, (24) is replaced by 

E E EV, --s. - - z, (25) 
m= 1 /= 1 i= 1 

The following additional constraint is necessary for Model 2b. 

E 4 = (26) 

To schedule a number of jobs so that the first job is scheduled to start some time after the 
start of the interval and the last job is scheduled to finish sometime before the end of the 
interval (Model 2c), the constraints for Model 2b are used with the equality given by (26) 
omitted. 
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the following notation was used in this paper 
di = duration of job r; 
dj = duration of job 7; 
E^ = number of time units job i is early; 

= number of time units job in position k is early; 
g = total irrigation (duration) interval; 
i = integer representing the index of a job; 

j = integer representing the index of a job; 
J, = job to be scheduled; 
k = integer representing the index of a position; 
m = integer representing the index of a position; 
Af = a large positive number; 
N = number of jobs to be scheduled; 
P = current interval; 
p = integer representing the index of an interval; 
Q = set of jobs to be scheduled; 
r, = target start time for job z; 

= target start time for job in position t , 
Sj = scheduled start time of job /; 
Sj = scheduled start time of joby; 
Ŝ . = scheduled start time of job in position A:; 
7] = number of time units job i is tardy; 
Tp. = number of time units job in position k is tardy; 

= idle time preceding the start of the first job in the schedule 
Xf, = idle time proceeding the end of the last job in the schedule. 
Y,„ = idle time inserted before job in position m\ 
Z = objective function variable; 
a = cost of earliness per unit of time; 
a, = cost of earliness per unit of time for job z; 
a, p = cost of earliness per unit of time for job i in interval p-, 
P = cost of tardiness per unit of time; 
P, = cost of tardiness per unit of time for job/ ; 
P, = cost of tardiness per unit of time for job i in interval p\ 
by = decision variable; and, 

= decision variable; 
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Appendix C: Irrigation scheduling II: an heuristic approach 

The following paper has been accepted for publication by the Journal of Irrigation and 
Drainage Engineering (American Society of Civil Engineers). 
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IRRIGATION SCHEDULING II: A HEURISTICS APPROACH 
by Arif A. Anwar"* Tonny T, de Vries^ 

Abstract 
A sequential irrigation schedule that honours user demands of duration and 

minimizes earliness and tardiness is interpreted as a single machine schedule with 
earliness and tardiness costs and a common deadline (or fixed interval). A heuristic 
solution is presented for this irrigation scheduling problem. Four models are presented to 
reflect the different methods in which an irrigation system at the tertiary unit level may be 
operated, the first model permits jobs to be non-contiguous i.e. idle time between jobs is 
permitted, whereas the others permit contiguous jobs only. The heuristic is tested 
extensively and the solution quality is compared with, either an optimum solution from an 
integer programme, or the best available solution obtained from an integer programme 
within allocated computation time. The heuristic is computationally efficient for all 
models presented, however for schedules with non-contiguous jobs, or where idle time is 
inserted before and after a contiguous set of jobs, solution quality deteriorates. The work 
brings the science of single scheduling from operations research into irrigation scheduling 
and suggests areas for further development. 

Introduction 
The companion paper demonstrated that the irrigation scheduling problem which 

honours user demands of duration and minimizes earliness and tardiness can be analysed 
as a machine scheduling problem. The scheduling of water within a tertiary unit over a 
given irrigation interval was shown to be similar to a single machine scheduling problem. 
The companion paper used integer programming to solve the single machine scheduling 
problem. Although integer programming does give optimum solutions, it is 
computationally demanding and when the number of water users (jobs) exceeds 20, it is no 
longer a very practical tool. In this paper heuristics are used as an alternative tool to solve 
the irrigation scheduling problem. Heuristics are developed for all four models introduced 
in the companion paper. All models are for sequential irrigation i.e. only one user may 
utilize water at any one time. Model 1 reflects a practice where one user does not 
necessarily use water immediately after the previous user finishes using water i.e. idle time 
is permitted. In Model 2, idle time between users is not permitted, rather the idle time is 
aggregated either after all users have finished using water - Model 2a, or aggregated 
before all users start using water - Model 2b, or both before and after all users have been 
scheduled water - Model 2c. 

The heuristic is tested extensively tested for solution quality against hypothetically 
generated data to evaluate solution quality against various parameters. The heuristic is 

Lect., Inst, of Irrigation and Devel. Studies, Dept. of Civ. and Envir. Engrg., 
Univ. of Southampton, Highfield, Southampton, U.K. SO 17 IB J. Email: 
A.A.Anwarf&soton.ac.uk. 

^ Research Student., Dept. Of Civ. and Envir.. Engrg., Univ. of Southampton, 
Highfield, Southampton, U.K. S017 IBJ. E-mail: T.T.de-Vries®,soton.ac.uk . 
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then applied to a practical irrigation scheduling problem for conditions under which it 
provides reasonable solution quality. 

Heuristics 
Heuristics for the machine scheduling problem typically consist of a 'dispatching 

rule' which is essentially a of rule that decides which job to 'dispatch' first and which to 
dispatch second. This is then followed by an interchange procedure and then (if idle time 
is permitted), idle times are inserted between jobs where it improves the schedule. The 
heuristic presented here uses the four dispatching rules suggested by Kim and Yano (1994) 
but modified to accommodate job target start time rather than job due (completion) time. 
1. EST (Earliest Start Time): In this rule the jobs are sorted in ascending order of 

target start time. If any two or more jobs have identical earliest start times, these 
are sorted using the Earliest Completion Time (ECT) rule below. The job ranked 
first is dispatched first. 

2. ECT (Earliest Completion Time): In this rule the jobs are sorted in ascending order 
of completion time (sum of start time and duration). If any two or more jobs have 
identical earliest completion times, these are ranked using the EST rule above. 

3. PRIO (Priority): In this precedence rule, every job is assigned a ranking integer 
initially 0. Every job i is then compared with every other job j using the EST rule. If 
job i is to precede job j then the ranking integer for job i is updated by adding 1 to 
it and the ranking integer for job j is updated by subtracting 1 from it. Conversely if 
using the EST rule job j is to precede job i, the ranking integers are updated by 
adding 1 to that of job j and subtracting 1 from that of job i. After comparing all 
jobs, the jobs are sorted in decreasing order of the ranking integer. 

4. NEH (Nawaz, Enscore and Ham rule): This rule was developed by Nawaz et al 
(1983) for multi machine problems and was adapted by Kim and Yano (1994) for 
the single machine problem. This rule first requires jobs to be sorted by a specified 
rule. Kim and Yano (1994) specified four alternative sorting rules which are 
adapted for target start times as: EST (earliest start time), LST (latest start time), 
SPT (shortest processing time), and LPT (longest processing time). The dispatching 
rules are denoted NEHest, NEHlst, NEHspt and NEHlpt respectively. The schedule 
is built up by taking the first job from the sorted set directly. The next job is placed 
either before or after the first job depending on which insertion increases the 
objective function least. This procedure is repeated for each of the jobs in the sorted 
set to produce a sequence of jobs. 

Once a schedule is prepared using the dispatching rules, the best schedule (that with 
the smallest objective function as defined by equation (2) in the companion paper) is 
improved by a pairwise interchange (PI). In this interchange every job is exchanged with 
every other in an attempt to improve (reduce) the objective function. If the objective 
function improves the new schedule is retained, otherwise it is discarded. Clearly there is 
little benefit in exchanging the first job with one considerably further along the time line, 
since the first job will have a much higher ranking than any one further along. Often 
pairwise interchange routines are restricted to exchange within an arbitrary number of 
jobs. Lee et al (1997) restricted pairwise interchange of a given job to within the next 20 
jobs only. An extreme of this restriction would be to only attempt a pairwise interchange 
between adjacent jobs - called adjacent pairwise interchange (API). The only advantage to 
any such restrictions on pairwise interchange is to improve computational efficiency of the 
algorithm albeit possibly at the expense of solution quality. Kim and Yano (1994) 
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indicated that the pairwise interchange procedure is sufficiently fast that it does not merit 
reducing the number of exchanges. Mazzini and Armantano (2001) indicated that for their 
heuristic the full pairwise interchange increases computational time significantly whereas 
improvement in solution quality is minimal and hence advocated against the pairwise 
interchange for their heuristic. The heuristic presented here incorporates an adjacent 
pairwise interchange. 

The third phase in the development of the heuristic is to take the schedule after the 
interchange procedure and insert idle time. This in turn depends on whether or not idle 
time is permitted between jobs i.e. can jobs be non-contiguous. 
Model 1 

This model allows idle duration to be inserted between jobs. The procedure is 
based on the Optimal Adjacency Theorem (Ow and Morton, 1989). It is modified here to 
include scheduling over a fixed interval. A block is defined as a group of contiguous jobs 
(no idle duration between jobs). Blocks are numbered in ascending order along the time 
line. For any block 

= 1'^ (27) 

where 5",.] = scheduled start time of job i-\, di_^ = duration of job i-l; = scheduled start 
time of job i = integer representing index of a job; = number of jobs in block b ;b = 
order of block; and t = total number of blocks. 

The idle duration insertion procedure consists of left displacement and right 
displacement procedures. The left displacement procedure attempts to improve the 
solution by adjusting the idle duration to the left of any block. The right displacement 
procedure attempts to improve the solution by adjusting idle duration to the right of any 
block. Figure 1 is a schematic of the left displacement procedure. 

block 1 block 2 block 3 

a) schedule with three blocks before idle 
time insertion 

b) last block displaced left by Y(ii.) 

—^ y (bL) 

% " 

c) last block displaced left by recalculated 
after excluding last job. Idle time inserted 

d) Step c) repeated after excluding last two jobs etc. 

e) Procedure repeated with block 2, block 1 

Figure 4 Schematic of left displacement procedure 
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It starts with the last block along the time line. Displacing a block left will improve 
tardiness of all jobs that are tardy, although it will exacerbate earliness. The maximum 
duration a block can be displaced to the left is given by 

ybL minimum of 
- d,. 

V b= t- 1..2 (28) 

where block displacement left; = minimum positive tardiness of all jobs in the 

block; 5"̂  = scheduled start time of the first job in the block ; = scheduled start time 

of last job in the preceding block; and = duration of the last job in the preceding 

block. For the first block (6=1), (2) becomes 

Yii minimum of 

T mm. 

& - 0 
(34) 

where block displacement left for the first block; 7 ^ = minimum positive 

tardiness of all jobs in the first block;, = scheduled start time of the first job in the 

first block.. The procedure involves displacing the block by the block displacement left as 
calculated from (2) or (3). If this displacement decreases the objective function, the 
displacement is retained otherwise it is discarded. The procedure now recalculates the 
block displacement left from (2) or (3) excluding the last job in the block under 
consideration. This procedure is repeated for all the jobs in the block with each iteration 
excluding additional jobs on the right of the block. Once all jobs in a block have been 
processed in this way, the preceding block is processed in a similar manner ( b = 
2,....l). 

The procedure continues with inserting idle duration by displacing each block right 
in turn starting with the first block. For right displacement (2) and (3) become 

Yjjj = + minimum of \f b = l..t- 1 
- K + 

(38) 

where block displacement right; and, = minimum positive earliness of all jobs 

in the block; 6"̂  = scheduled start time of the first job in the proceeding block; S^ = 

scheduled start time of last job in the block; and d^ = duration of the last job in the block, 

and 

y,R + minimum of (44) 
g d. 

where block displacement right for the last block; and, = minimum positive 

earliness of all jobs in the last block; g = irrigation interval (duration); = scheduled 

start time of last job in the last block; and d = duration of the last job in the last block . 

The procedure is identical to that described for the left displacement except; the routine 
starts with the first rather than last block; all displacements are to the right; and, the first 
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job, second job etc. are excluded in each iteration. 
After each idle duration insertion, the blocks within the feasible ordered set need to 

be re-identified. By inserting idle duration between two jobs, jobs may become contiguous 
with the preceding or proceeding block and therefore needs to be considered as jobs within 
that block for any further processing. 
Model 2a 

Model 2a is simply a sequencing problem and there is no insertion of idle time. 
Model 2b 

Model 2b is again a sequencing problem without any idle time and is a mirror 
image of Model 2a. By measuring target start time from the end of the interval, rather than 
the beginning of the interval, Model 2b becomes identical to Model 2a. Scheduled times 
will also be relative to the end of the interval rather than beginning of the interval. 

Model 2c only inserts idle time before and/or after a contiguous block of jobs. 
Therefore the left displacement and right displacement procedures described for Model 1 
are executed on the entire block only. The procedure then terminates without excluding 
any jobs. 

Computational Experiments 
Rardin and Uzsoy (2001) presented a comprehensive tutorial on the evaluation of 

heuristics and suggested the best test instances are those taken from real application. 
However it is rare to obtain more than a few real data sets which would be insufficient to 
test any heuristic comprehensively. Alternative sources of data include; random variation 
of real data sets; published on line libraries eg. Beasley, (1996); and, randomly generated 
instances. Since real data sets in sufficient quantity are unavailable, using real data sets 
and/or random variation of real data sets is not possible. Published online libraries for the 
irrigation scheduling problem do not exist. Although numerous libraries for the single 
machine problem do exist, none include the constraint of completing all jobs over a given 
interval. For this work randomly generated data are used to test the heuristic. 

Rardin and Uzsoy (2001) cautioned against testing heursitics against integer 
programmes if the size of problems solved by integer programmes is considerably smaller 
than practical problems. For larger problems it may not be possible to solve the scheduling 
problem within reasonable computation time using integer programme. Therefore, any 
new heuristic needs to be tested against other heuristics, and that which consistently gives 
the lower objective function is considered to be the better. For the irrigation scheduling 
problem, results from earlier heuristics are not available. Hence the heuristic can only be 
tested against exact solutions obtained from the integer programmes in the companion 
paper. To manage computation time a limit of 10"̂  seconds (2.77 hours) is set for the 
integer programme. In test instances where the integer programme is interrupted it reaches 
a feasible but not necessarily global optimum solution. Hence it is possible that the 
heuristic may reach a better solution when compared against the integer programme for 
these instances i.e. the heuristic is being compared against the best known solution. 

Durations, target start times and cost of earliness/tardiness for each of the jobs are 
generated following the method suggested by Potts and Van Wassenhove (1982). This 
technique is widely used in testing of heuristics eg. Kim and Yano (1994), Mazzini and 
Armentano (2001). Job duration (duration a user requires water) is generated as a 
uniformly distributed random integer from the range [1,100]. 

Potts and Van Wassenhove (1982) presented the following expressions for 
estimating the lower and upper bounds for randomly generated target start times 
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Bl-

Bu = 
2/ 

(49) 

(50) 

where = lower bound for target start time; By = upper bound for target start time; F 
= tardiness factor; and, R = start time range factor. A high tardiness factor implies that all 
jobs have a target start time nearer the beginning of the interval eg. all users requested 
water nearer the beginning of an interval, therefore any schedule will have a high number 
of jobs that are tardy - high tardiness factor. For a given data set, the tardiness factor is 
simply 

1 - - (8) 
g 

where r= average target start time of all jobs. The start time range factor is a measure of 
the range of target start times over the interval. A low start time range factor implies all 
target start times will lie within a narrow range of the interval. A start time range factor of 
1.0 implies that target start time may lie anywhere along the interval. For a given data set 
the start time range factor is 

g 

where maximum target start time; and, = minimum target start time. In practice 

users can request water for any time during an interval i.e. target start time range = 1.0. 
The target start time for each job is a uniformly distributed random integer generated from 
the range [Bjjg, Byg\, where g = interval. This is in slight contrast to the method suggested 
by Potts and Van Wassenhove (1982) in which the range is the product of lower 
bound/upper bound factor and makespan (sum of all job durations). 

Cost of earliness/tardiness per unit of time is a uniformly distributed randomly 
generated integer from a range [0,5]. If cost of earliness is set equal to cost of tardiness, 
this implies if a user is scheduled water one unit of time early, this is equally undesirable 
to the case where the user is scheduled to receive water a unit of time tardy. If one user 
has higher cost of earliness/tardiness than a second user, this implies the first is to receive 
priority over the second. 

The interval is a constant of 800 time units - the product of the number of jobs 
and the maximum duration of any job. The ratio of interval to makespan (sum of 
processing duration of all jobs) is defined by 

^[0) 

/= 1 

where = interval to makespan ratio; J, = duration of job i and; N= number of jobs, a 
range of values 1.00 - 2.50 for the interval to makespan ratio (IM ratio) are selected. A 
ratio of 1.0 reflects a high demand for water, whereas a higher ratio indicates lower 
demand. 

For each of the parameters defined above, a range of values is selected and 
instances generated. Each instance is checked to ensure that the target completion time 
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does not exceed the end of the interval, otherwise the instance is rejected and is 
regenerated. This reflects rejecting a request for water that is impossible to meet 
(completion time exceeds interval). 

Computational Experiment 1 
The first computational experiment is designed to test the quality of the solution 

from the heuristic for Model 1. For this experiment the number of jobs selected is 8 i.e. 
8 water users. The tardiness factors considered are 0.9, 0.7, 0.5, 0.3 and 0.1. The target 
start time range factor is kept constant at 0.2.to reduce the number of variables in this 
experiment. Only those combinations of tardiness factors and target start time range 
factors yielding non-negative values of upper and lower bounds in (6) and (7) are 
considered. Cost of earliness/tardiness are generated randomly and, the cost of earliness 
is set equal to cost of tardiness. The parameters for generating random test instances are 
summarized in Table 1. For each set of parameters, 10 instances were generated. 

TABLE 1: Parameters for Experiment 1 

Parameter Values selected 

(1) (2) 

Number of jobs 8 

Processing duration Uniformly distributed random integers from the range 
[1,100] 

Tardiness factor 0.9, 0.7, 0.5, 0.3, 0.1 

Target start time range 0.2 

Target start time Uniformly distributed random integer {{\-F-RI2)g, (1-
F+;;/2)g] 

Cost of earliness/ 
tardiness per unit of time 

Uniformly distributed random integer from the range [0,5] 

Irrigation interval 800 

No. of instances 140 for each tardiness factor - total instances 700 

Computational Experiment 2 
Experiment 2 examines the effect of the interval to makespan ratio (IM ratio) on 

the quality of the solution obtained from the heuristic. Table 2 summarizes the 
parameters used to generate data for Experiment 2. 

TABLE 2: Parameters for Experiment 2 

Parameter Values selected 

(1) (2) 

Number of jobs 8 

Processing duration Uniformly distributed random integers from the range [1,100] 

Tardiness factor 0.9, 0.7, 0.5, 0.3,0.1 
interval: makespan ratio 1.00, 1.25, 1.50,1.75, 2.00,2.25,2.50 
Target start time range 0.2 
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Target start time 

Cost of earliness/ 
tardiness per unit of time 
No. of instances 

Uniformly distributed random integer [{\-F-RI2)g, (1-
F+j;/2)g] 

Uniformly distributed random integer from the range [0,5] 

20 for each tardiness factor - total instances 700 

Computational Experiment 3 
This experiment examines the effect of the number of jobs on the solution 

obtained from the heuristic. Although it is instructive to limit the target start time range, 
this arbitrarily restricts when a user might be able to wish to start irrigating. In practical 
terms a water user would be allowed to select a target start time at any time within the 
interval provided the target completion time did not exceed the interval. For 
Experiment 3 the target start time range is set to 1.0 and the tardiness factor is set at 0.5. 
Table 3 summarizes the parameters for this experiment. 

TABLE 3: Parameters for Experiment 3 

Parameter Values selected 

(1) (2) 

Number of jobs 8 , 1 0 , 1 2 , 1 5 , 2 0 , 2 5 

Processing duration Uniformly distributed random integers from the range 
[ 1 , 1 0 0 ] 

Tardiness factor 0 . 5 

Target start time range 1 . 0 

Target start time Uniformly distributed random integer {{l-F-RH)g, (1-
F + ; ; / 2 ) g ] 

Cost of earliness/ Uniformly distributed random integer from the range [0,5] 
tardiness per unit of time 

Irrigation interval No of jobs X 100 

No. of instances 25 for each number of jobs - total instances 150 

Computational Experiment 4 
The fourth experiment examines the quality of solution obtained from the 

heuristic against that obtained from the integer programme for Models 2a, 2b and 2c. 
This reflects operation of a tertiary unit where every user starts using water directly 
after the previous user. The data used in Experiment 4 is reused for this experiment. 

Results 
Results from Experiment 1 

Figure 2 compares the objective value obtained from the heuristic with that from 
the integer programme. In Figure 2a the tardiness factor is high. The mean error in the 
solution obtained from the heuristic relative to that from the integer programme is 4.9% 
over the 140 instances tested. The maximum error is 79%, and in 63 of the 140 (45%) 
instances tested, the objective value from heuristic and integer programme were 
identical. 
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Figure 5 Solution quality of heuristic for various tardiness factors and due date range 
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Figure 2b, 2c, 2d and 2e show that as the tardiness factor is decreases, the quality 
of the solution obtained by the heuristic is generally poorer. These results are 
summarized in Table 4 which shows with increasing tardiness factor, the error increases 
and the number of instances where the heuristic solves to the exact value (as obtained 
from the integer programme) decreases. 

TABLE 4: Statistics for results from Experiment 1 

Statistic Tardiness factor 

0.9 0.7 0.5 0.3 0.1 

(1) (2) (3) (4) (5) (6) 

Mean error (%) 4.9 3L7 6&5 5L2 

Minimum error (%) 0 0 0.47 2.41 0 

Maximum error (%) 7&7 24^4 298.5 24&1 23&2 

Standard deviation OJl &41 &53 0.42 045 

No. of exact solutions 63 11 0 0 4 

The heuristic is developed from a machine scheduling problem without a fixed interval, 
alternatively this can be expressed as a schedule with an infinite interval. If the target 
start times are early in the interval i.e. a high tardiness factor, all jobs will have a target 
start time near the beginning of the interval. This case approaches that of a machine 
scheduling problem with an infinite interval. As the tardiness factor decreases, the target 
start times of jobs move towards the end of the interval. The heuristic commits itself to a 
certain sequence based on the dispatching rules early in the algorithm which is followed 
by an interchange routine. Idle times are then inserted without reconsidering the 
sequence and the final schedule is produced. However the error in the solution from the 
heuristic clearly indicates that there is merit in re-examining the sequence of jobs. As 
the algorithm of the current heuristic does not perform such an analysis the solution 
quality deteriorates. The performance of the heuristic does appear to improve slightly at 
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the extreme value of tardiness factor tested. This anomaly merits further investigation. 

Results from Experiment 2 
Figure 3 shows the average error for various interval to makespan ratios (IM 

ratio). 
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Figure 6 Solution quality of heuristic for various interval makespan 
ratios 

At low IM ratio values, the error is relatively small (of the order of 5%) irrespective of 
the tardiness factor. Furthermore, for a very low tardiness factor, the error remains 
relatively low across the entire range of the IM ratio. This appears to contradict Figure 1 
which suggests that the best results are for the highest tardiness factor. This difficulty 
arises because in Experiment 1 the interval to makespan is a variable which, by virtue of 
the data generation, can not be controlled. In Experiment 2 the target start time range 
factor can not be controlled and hence is a variable. Between Experiments 1 and 2 it 
appears that the heuristic performs relatively better at extremes of tardiness factor. 

Results from Experiment 3 
Table 5 presents various statistics for Experiment 3. 

TABLE 5: Statistics for results from Experiment 3 

Model Statistic Number of jobs 

8 10 12 15 20 25 

(1) (2) (3) (4) (5) (6) (7) (8) 

Mean error (%) 2320 4376 2077 2927 1765 1895 
Model 1 Minimum error (%) 70 72 125 211 288 164 

Maximum error (%) 22000 43700 21231 47251 7494 7277 

Standard deviation 4&84 102.77 42.60 93.20 19.53 14.85 

No. of exact solutions 0 0 0 0 0 0 

Instances unsolved 0 0 0 0 2 9 

The results do not show any definite trend in the quality of the solution obtained from 
the heuristic with the number of jobs. Comparing column (3) of Table 5 with column 
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(4) of Table 2, the error increases by many orders of magnitudes. This indicates that if 
the lower and upper bound factors are set at 0 and 1 respectively, the quality of the 
solution obtained from this heuristic is poor. 

Figure 4 compares the solution time for the integer programme and the heuristic 
with number of jobs. 
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Figure 7 Solution time for heuristic and integer 
programme 

The solution time for the integer programme not only increases by several order of 
magnitude but also the variation in solution time also increases considerably. The 
integer programme, did not solve within the allocated time of W s for 2 of the 25 
instances with 20 jobs. Similarly 9 of the 25 instances with 25 jobs did not reach a 
global optimum within the allocated time limit. In contrast the maximum solution time 
for the heuristic is only 2.82s. 

Results from Experiment 4 
Table 6 presents statistics for Experiment 4. 

TABLE 6: Statistics for results from Experiment 4 

Model Statistic Number of jobs 

8 10 12 15 20 25 

(1) (2) ( 3 ) ( 4 ) ( 5 ) (6) ( 7 ) (8) 

Mean error (%) 8 1.1 3.7 -7.7 -10.8 -12.1 

Model 2a 
Minimum error (%) 0.0 0.0 7^0 -3L50 -36.0 -29.8 

Model 2a Maximum error (%) 2&9 10L5 34.2 2.3 8.1 -0/1 

Standard deviation 4.2 2.6 9.9 8.2 1L6 7.5 

No. of exact solutions 19 18 n/a n/a n/a n/a 

Instances unsolved 0 0 8 24 24 25 

Mean error (%) 0.4 1.4 -3.1 -25.2 -30.1 -33.0 

Model 2b 
Minimum error (%) 

Maximum error (%) 

0 

2.6 

0 

6.2 

-40.9 

13.9 

-54.9 

2.4 

-53.0 

-4.1 

-51.0 

-14.3 

Standard deviation 0.7 2.2 1L3 15.2 1L3 10.0 

No. of exact solutions 17 14 n /a n/a n/a n/a 
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Instances unsolved 0 0 13 25 25 25 

Mean error (%) 155.5 285.2 258.4 243J 164.1 135.3 

Model 2c 
Minimum error (%) 420 8&2 85.6 129.0 114.5 45^ 

Model 2c Maximum error (%) 352.9 525.7 892.3 73&2 249.6 27L0 

Standard deviation 131.8 192.4 288.0 21&0 45^ 716 

No. of exact solutions 0 0 0 0 0 0 

Instances unsolved 0 0 0 12 25 0 
n/a: not applicable 

For Model 2a the quality of the solutions obtained from the heuristic are a significant 
improvement over Model 1 (Table 5). For the 8 jobs problem, the solution obtained 
from the heuristic matched that obtained from the integer programme in 19 of the 25 
instances tested. For the 10 jobs problem, the number of exact matches was 18. For the 
12 jobs problem, the integer programme failed to solve within the time limit for 8 of the 
25 instances tested. Coincidentally for every instance where the integer programme 
failed to solve, the heuristic was able to find a better solution than the integer 
programme. For such circumstances, the count of exact solutions is no longer applicable 
as a measure of solution quality from the heuristic. For the 15 jobs problem all but one 
instance failed to solve within the allocated time using the integer programme. For 24 of 
the 25 instances tested, the heuristic was able to obtain a better solution than the integer 
programme, hence the negative mean error in column (6). It is worth noting that the 
integer programme would have obtained a solution equal to or better than that from the 
heuristic if it were allowed to continue running beyond the allocated time. For the 20 
and 25 jobs problem, all instances failed, within the time allocated, to reach a global 
optimum using the integer programme. Interestingly, the increased number of instances 
failing to reach a global optimum using the integer programme for Model 2a (as 
compared to Model 1) indicates that Model 2a is computationally more demanding than 
Model 1. The solution time using the heuristic for Model 2a is of the same order as that 
for Model 1 a. 

The results for Model 2b are similar to that for Model 2a. This is to be expected 
since Model 2b is in a sense an inversion of Model 2a. As with Model 2a the solution 
obtained from the heuristic is of reasonable quality even for problems with a small 
number of jobs. For the 8 jobs problem the heuristic was able to obtain the exact 
solution for 17 of the 25 instances tested. For the 10 jobs problem in 14 of the 25 
instances, the heuristic was able to obtain the exact solution. For the 12 jobs problem 
and larger, the integer programme was not able to obtain an optimum solution in the 
allocated time and therefore, the heuristic was able to obtain a better solution than the 
integer programme. The solution time for the heuristic for Model 2b is of a similar order 
of magnitude as for Model 2a and a very small fraction of the solution time for the 
integer programme for Model 2b. 

For Model 2c the heuristic no longer performs well, although not quite as poorly 
as Model 1. This is to be expected since in terms of complexity of the solution, Model 
2c lies between Model 1 as that with the most complex solution, and Model 2a and 2b as 
those with the simplest solution. For Model 2c the heuristic was unable to obtain a better 
solution than the integer programme even where the integer programme did not solve to 
a global optimum. 

Practical Application 
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The heuristic developed in this paper is applied to a tertiary unit taken from 
Bishop and Long (1983) where a schedule was developed for a tertiary unit of 37.06 ha 
with 16 water users. In the original schedule developed by Bishop and Long (1983) 
water is allocated pro rata with area at 172 min/ha, and a management/canal fill time of 
349 min. Bishop and Long (1983) advocated a simple "irrigate fields starting from the 
downstream end upwards". 

For the purpose of this example, the interval is assumed to have a duration of 1 
week starting from Monday OSOOhrs. The duration of each job is estimated using the 
allocation of 172 min/ha as suggested by Bishop and Long (1983). The management/ 
canal fill time (349 min) is divided equally amongst all users to account for setup time 
(time required when one user completes irrigation and the second one is setting up 
irrigating) and is added to the duration. Target start times are uniformly generated 
random numbers over the irrigation interval (Monday 08;00hrs to Monday 07:59hrs) 
with tardiness factor set at 0.50 and start time range factor set at 1.0. The actual 
tardiness factor for the data estimated from (7) is 0.57, and the actual start time range 
factor for the data from (8) is 0.97. 

Table 7 presents the value of the objective function when the heuristic for each 
model is applied. 

TABLE 7 Objective value and error for Practical Application 

(1) 

Model 1 Model 2 

(1) 

Model 1 

2a 2b 2c 

(1) (2) (3) (4) (5) 

Heuristic 15,830 19,987 33,821 25,635 

Optimum value (IP) 3,822 19,667 31,952 19,001 

Error (%) 314/2 1.6 5.9 34.9 

Again for Models 2a and 2b the heuristics obtains reasonable results, verifying the 
results from the extensive computational testing. The heuristic solved in around 6 
seconds as compared to approximately 3:00 hrs required by the integer programme. 
Therefore the schedule obtained for either of these models could be used. Table 8 
presents the schedule for the first irrigation interval from the heuristic for Model 2a. 

TABLE 8: Detailed schedule for irrigation interval from Model 2a 

Lot Area Duration Target start Scheduled start 
(ha) (hrs: min) 

(1) (2) (3) (4) (5) 

24^ L05 &57 IW0O&I9 Mo 08:00 
25J 100 8:57 Mo 20:51 Mo 16:57 

221 320 9:32 Tu00:30 Tu 01:54 
212 LOO 3JJ Tu 09:03 Tu 11:26 
242 100 8:57 Tu 06:45 Tu 14:39 
263 2.56 741 Tu 19:40 Tu 22:36 
222 320 9:32 Tu 04:06 We 07:17 
24.4 1.05 322 We 16:02 We 16:49 
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25/2 3^0 8:57 Th 16:41 \Ve 20:11 

26.1 3^0 8:57 Sa2L29 Th 05:08 

25.3 2J3 6:27 Su 12:09 Th 14:05 

23/1 L97 6:00 Fr 02:08 Th 20:32 

24J LOO :kl3 Fr 05:55 Fr 02:32 

23.3 LOO :kl3 Fr 06:59 Fr 05:45 

23.1 2.50 Su22:35 Fr 08:58 

26uZ :150 7:31 Mo 03:03 Fr 16:29 

For subsequent intervals, the heuristics developed can be used as a multi interval model 
in which case the cost of earliness/tardiness per unit of time for job for the second and 
subsequent periods can be calculated using the method outlined in the companion paper. 

Conclusion 
Heuristics present a computationally efficient method of solving scheduling 

problems irrespective of the number of jobs. The sequential irrigation scheduling 
problem is described in operations research literature as a single machine E/T 
(earliness/tardiness) model with deadlines, or a single machine E/T problem with 
deadlines. For the sequential irrigation scheduling problem if jobs are to be scheduled 
contiguously with idle time inserted as a contiguous block either only before or only 
after all jobs, then the quality of the solution obtained by the heuristics presented is very 
high. If jobs are scheduled non-contiguously, or if idle time is permitted to be inserted 
both before and after the contiguous jobs, the solution quality of the heuristic 
deteriorates and better heuristics need to be developed. The heuristic presented does not 
consider sequence dependent setup time independent of job duration. This assumption is 
reasonable if the setup times are small relative to job duration. However if job duration 
is large or varies, then sequent dependent setup times needs to be considered. 

This set of companion papers draws in some of the wealth available in 
Operations Research on scheduling and shows how it can be applied to irrigation 
scheduling at an operational level. Exact solutions are developed but not recommended 
for large problems due to excessive computation time. The exact solutions do present 
useful benchmarks for the approximate but computationally efficient procedures 
presented. It is anticipated that these papers will provide a starting point for further 
development in this area of irrigation scheduling. 

Perhaps beyond the more technological issues discussed in these papers is the 
broader issue; Should irrigation managers be providing a service i.e. water to their 
customers? If so then like other service industries - potable water, telecommunications, 
electricity etc. the customers should specify their demand (duration), and when they 
require the service. 
The irrigation manager should provide this service. Many irrigation systems would not 
have the capacity to operate on an absolute demand based system - hence the alternative 
is a scheduled demand system - prepare a schedule that manages demand within the 
capacity constraints of the system. This set of companion papers presents tools for 
preparing such schedules. 
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Appendix II. Notation 
the following notation was used in this paper 
Bi = lower bound for target start time; 
By = upper bound factor for target start time; 
d-̂  = duration of job z; 
4.1 = duration of job z-1; 

^ = duration of the last job in block 6-1; 

d^= duration of the last job in the last block; 

= duration of the last job in block b=t; 

minimum positive earliness of all jobs in block 6; 

-̂ min, ^ minimum positive earliness of all jobs in the last block; 

F = tardiness factor; 
g = interval; 
i = index representing index of a job; 
N= number of jobs. 
n^ = number of jobs in block b ; 
5"̂  = scheduled start time of the first job in the first block; 

S^= scheduled start time of the first job in block b; 

5"̂  ^ = scheduled start time of the first job in block b+1; 

Sj = scheduled start time of job i; 
= scheduled start time of job i-l, 
= scheduled start time of last job in block 6; 
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= scheduled start time of last job in block 6-i; 

= scheduled start time of last job in the last block; 

R = target start time range factor; 

r = average target start time; 
rji^ = interval to makespan ratio; 

maximum target start time; 

minimum target start time; 

^min, ^ minimum positive tardiness of all jobs in the first block; 
minimum positive tardiness of all jobs in the last block; 

t = total number of blocks in the ordered set of blocks; 
Yii= block displacement left for the first block; 

block displacement left; 

block right displacement; and, 

block right displacement for the last block. 
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Appendix D: setup times in irrigation scheduling 

Setup times capture the notion that when one job is completed a certain amount of setup 
time may be required before the next job can start. In irrigation this setup time is the 
time needed for water to be diverted from one outlet to another. 

Baker (1974), amongst others, stated that if setup times are independent of the 
order in which jobs are processed, they can be included in the duration of the jobs. 
Figure D. 1 shows that because in irrigation scheduling target start times are used rather 
than due dates, setup times cannot be included in the duration. 

a) completion time, setup time not inluded in duration c) start time, setup time not included in duration 

time ' 1 

jobl 

tune 

due date target start time 

b) completion time, setup time included in duration d) start time, setup time included in the duration 

jobl 

time 

due date 

jobl 

time 

target start time 

Figure D.l Comparison completion time and start time 

Figure D.l a shows a job that needs to be completed by a certain time, the due date. The 
setup time for this job is not included in the duration. The job is scheduled to finish 
exactly on time. Figure D.lb shows the same job, but now the setup time is included in 
the duration. The inclusion of the setup time has caused the job to start earlier but the 
job is still scheduled to finish on time. This shows that if completion times are 
considered setup times can indeed safely be included in the duration. Figure D.lc shows 
that a job needs to start on a certain time, the target start time. The setup time is not 
included in the duration. The job is scheduled to start exactly on time. Figure D.ld 
shows the same job, but now the setup time is included in the duration. It can be seen 
that the job is scheduled to start on time, but this is the time the setup time starts, not the 
time the actual job starts. This means that when start times are considered setup times 
cannot be included in the duration and need to be considered separately. 

In the example used in Chapter 3, setup times are included in the irrigation 
duration. The example above shows that this is not entirely correct. However, as 
explained the example only serves to demonstrate the principles of Models 1, 2a, 2b and 
2c. It is believed that the fact that in the example the start of the travel time is optimised 
rather than the start of the irrigation duration, does not make a difference to those 
principles. However to be able to compare Model 1 and Model 3, Model 1 needs to be 
adjusted slightly so that the start of the irrigation duration is optimised. This adjustment 
follows below. 

The non-contiguous single machine model allows scheduling of a number of jobs 
(user requests) according to their target start times. Let Q = {1,2,...,A^ be a set of jobs to 
be scheduled. The following parameters are specified for each job i e Q\ duration, target 
start time, earliness cost and tardiness cost. In this model there is one decision to be 

179 



made, what is the scheduled start time of each job. If the answer to this question is 
known, then the schedule is known too. The objective of the model is to minimize the 
difference between target start time and scheduled start time. Therefore 

N 

Z = + (%R,) (111) 
i= 1 

As any job can precede any other job in the schedule a variable is used to define which 
job precedes which 

= 1 if job ;prew%ks ^ * y 
= 0 otherwise 

It is not possible for a job to incur a negative earliness or tardiness. Therefore for 2] and 
Ej the following constraints need to be satisfied 

T. > 0 Vz = 1,7.,...JSf (D.3) 

E. > 0 V/= (D.4) 

The scheduled start time of a job is determined from the target start time, the earliness 
and the tardiness 

S^ = r. - E. + T. Vz= 1,2,...// (D.5) 

Jobs may not be processed simultaneously, therefore 

- gly) % ^ \/;= Z*/ (D.6) 

and 

a + f, \/z= L2^"jy; \ / /= QD/O 

All jobs must be processed within the irrigation interval. 

5",. + ^ g V!= 1,2,...^ (D.8) 

Therefore the adjusted version of Model 1 is defined by the objective function (D.l) and 
constraints (D.2), (D.3), (D.4), (D.5), (D.6), (D.7) and (D.8). 

3.2 Analysis and development of contiguous scheduling model 

The contiguous scheduling model, herein referred to as Model 2, is similar to Model 1 in 
that it allows scheduling of a number of jobs according to their target start times. The 
main difference is that to reduce water spillage and/or gate operations idle time between 
jobs is not allowed. The objective function and most of the constraints of Model 1 
remain valid. 
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3.2.1 Contiguous single machine scheduling: Model 2a 

To ensure idle time is only inserted after the last job has been processed, no job may 
finish later than the sum of all durations. Therefore constraint (3.11) of Model 1 must be 
replaced by 

N 

V ; = (EX9) 
i=\ 

Model 2a is therefore defined by the objective function (3.1) and constraints (3.2), (3.3), 
(3.4), (3.6), (3.9), (3.10) and (3.12). 

3.2.2 Contiguous single machine scheduling: Model 2b 

In Model 2b all job are scheduled contiguously and idle time is inserted prior to the start 
of the first job. Constraint (3.11) becomes 

N 

> g - 12 ODJK)) 
/= 1 

Model 2b is defined by the objective function (3.1) and constraints (3.2), (3.3), (3.4), 
(3.6), (3.9), (3.10) and (3.13). 

3.2.3 Contiguous single machine scheduling: Model 2c 

In Model 2c idle time may precede the start of the first job and/or follow the end of the 
last job, therefore (3.11) is altered to 

g ' Y - d , * X , ( D . l l ) 
i= 1 

where = idle time preceding the start of the first job in the schedule; and = idle 
time following the completion of the last job in the schedule. The following additional 
constraints also need to be included for Model 2c 

6^ + 3 g - V ; = (1X12) 

\/;= 1,2,..fAf ([).13) 

Model 2c is therefore defined by the objective function (3.1) and constraints (3.2), (3.3), 
(3.4), (3.6), (3.9), (3.10), (3.14), (3.15) and (3.16). 
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