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Video technology is one of the most advanced fields of modern electronics. The degree 
of interaction between different disciplines is simply extraordinary. In particular, the 
introduction of digital signal processing has revolutionised video technology. 
Sophisticated mathematical techniques are applied at several points in the video chain. 
One of the most common tasks in video processing is de-interlacing, i.e. the conversion 
from an interlaced format to a progressive format. De-interlacing can be considered as a 
form of interpolation, where the even lines of a frame in a video are estimated by 
interpolating the odd lines in the frame. De-interlacing is a task that is often required in 
real time, therefore the amount of computation required is a critical parameter. A 
straightforward way of achieving this task is by employing some form of linear 
interpolation. Linear techniques are fast, robust, and theoretically tractable. 
Unfortunately, the results are often unsatisfactory in terms of image quality. A more 
sophisticated approach is offered by the implementation of non-linear techniques. When 
dealing with non-linear methods, two main factors must be considered: the amount of 
computation required and the tendency to over-fit the data (generalisation). In this work 
two non-linear techniques are investigated, the Volterra series and the Radial Basis 
Function Networks (RBFN). Volterra series can be considered as an extension of the 
linear model to a polynomial series. RBFN is a functional series that creates arbitrary 
interpolation mappings due to its localisation properties. It is shown how both 
techniques produce results that are superior compared to linear techniques in terms of 
image quality. However great care must be taken and proper training procedures must 
be devised in order to maintain the computational load to an acceptable level and to 
avoid over-fitting. In this thesis a novel approach is devised to reduce the computational 
load in RBFN at the same time increasing the generalisation ability of the network by 
exploiting the symmetries arising in the input space when the sampling lattice is 
symmetric. Symmetrisation is initially developed for linear techniques, where an 
analytic derivation leads to a reduction in the number of operations required. 
Successively this technique is extended to RBFN by devising a mathematical approach 
that is both intuitive and rigorous. It is shown how symmetrisation leads to a reduction 
of the computational load required at the same time increasing the generalisation ability 
of the interpolation. 
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PREFACE 

Introduction 

Video technology is one of the most advanced fields of modern electronics. The 

degree of interaction between different disciplines is simply extraordinary. Optics, 

analog and digital electronics, analog and digital signal processing, psychology of 

visual perception, all contribute to create the field. In particular, the introduction of 

digital signal processing has revolutionised video technology. Sophisticated 

mathematical techniques are applied at several points in the video chain, from the 

camera that creates the video signal to the device that displays it. 

One of the points that engineers have to tackle is the necessity of communication and 

interaction between devices that work to different standards. This has always been an 

issue since the early days of the entertainment industry. On one side is the desire to 

make video production available to the broadest audience that pushes for the 

integration of different systems and for a complete update of the available technology 

whenever new developments are ready for the market. On the other side, it is 

commercially unthinkable to force customers to completely renew their home 

systems; the history of consumer technological products is full of blunders, that failed 

because customers were just not ready to spend money on them. Since the diversity of 

standards arose at the beginning (e.g., the American-Japanese NTSC standard, against 

the European PAL), the result is that a plethora of different systems are forced to 

interact. This diversity has not changed with the advent of digital technology and high 

definition television (HDTV). On the contrary, a new challenge has been posed, since 

it is now necessary to convert the immense video production available from the old 

standards to the new one, and vice-versa. In the effort to convert a video signal from 

one standard to another, it is vital to preserve the quality of the video images as much 

as possible. 

In this struggle to make different worlds live together, the de-interlacing of video 

images plays a remarkable role. In simple words, de-interlacing is a form of 

interpolation, as we shall see shortly. De-interlacing is required whenever it is 



necessary to modify the rate at which images are presented (frame rate), the 

dimension of the image, etc. Conventional interpolation is performed using linear 

techniques. Linear interpolation is fast, easy to implement in both software and 

hardware, and has well-assessed theoretical background. Unfortunately, its 

application is limited by the fact that de-interlacing is basically a non-linear problem. 

The result is that the performance of linear de-interlacers is often unsatisfactory. Non-

linear interpolation techniques, noticeably the polynomial series, have been recently 

studied, and they show remarkable improvements compared to the linear approach. 

Unfortunately the amount of computation required is a major limitation to the 

application of non-linear techniques. 

The main subject of this work is the study of a particular form of non-linear 

interpolation scheme, called the Radial Basis Function Network (RBFN). The key 

points of this technique are its scalability, its high degree of architectural parallelism, 

and its connection with many aspects of signal processing that together make RBFN a 

very flexible and robust interpolation technique. The task of this work is to find a 

reasonable way to build an RBFN-based interpolation scheme with a quality 

comparable to polynomial series, and with comparable, if not reduced, computational 

burden. 

In pursuing this task, we have developed a novel technique that exploits some peculiar 

properties of image processing to reduce the computational complexity of RBFN 

interpolators. This approach is based on the symmetry properties of the sampling 

lattices used to perform image interpolation. These properties are successfully applied 

to simplify the computational demands of linear interpolation. We attempted to 

transfer these properties to the RBFN model. This task is performed considering the 

topological properties of RBFN in the input space. Although the results can not be 

considered definitive, the path is promising. We reserve future efforts to complete the 

framework depicted in this work. 

Description of the chapters 

In this section, we give a concise description of contents of each of the chapters that 

compose this work. The chapters have been grouped into two parts. The first part 
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(chapter 1 to 7) is focused on the description of the de-interlacing problem, and of the 

theory and application of the currently available technology, specifically linear 

interpolation, Volterra series, and RBFN. 

The second part (chapter 8 to 10) contains the majority of the original contributions of 

this work, the analysis of the theoretical and practical consequences of the symmetry 

constraints in image interpolation, and the consequent development of different 

techniques that are able to reduce the computational demands of RBFN. 

Part 1. RBFN de-interlacing 

Chapter 1. Introduction to de-interlacing 

In this chapter, we give a general view of the de-interlacing problem. We introduce 

the concepts of interlaced and progressive video, and the reasons why the first 

technology was chosen in the early days of video technology. De-interlacing is then 

modelled as an interpolation problem, and we describe the problems arising when we 

perform this interpolation using standard linear methods. These problems justify the 

use of non-linear techniques. 

Chapter 2. Single-layer networks 

This chapter introduces the general concepts of single-layer networks, and many of 

the issues associated with this model. The single-layer network is a general model that 

includes linear interpolation, Volterra series, and RBFNs. As such, this chapter is a 

necessary introduction to the study and application of these techniques to the 

interpolation problem. Some general concepts of system modelling and pattern 

learning are introduced. The concepts of parametric models, learning by examples, 

and cost functions are presented. 

Chapter 3. Radial Basis Function Networks 

This chapter gives a thorough description of the RBFN model. A panoramic view of 

the many theoretical aspects of RBFNs is given, and the most popular RBFN schemes 

are introduced. The chapter shows the links between RBFN and two main subjects of 
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research, the theory of probabiHstic neural networks, and the theory of functional 

approximation. 

Chapter 4. Orthogonal Least Squares Algorithm 

This chapter describes the Orthogonal Least Squares Learning algorithm (OLS). It 

provides an overview of the basic algorithm, together with some of the theoretical 

aspects of orthogonal least squares techniques that motivated the development of 

OLS. The practical algorithms applied in the successive sections are also fully 

described. 

Chapter 5. Wiener and Volterra de-interlacing 

This chapter investigates the practical application of linear filters and the Volterra 

polynomial series to de-interlace a sample frame. Linear interpolation is the technique 

currently used in most of the broadcast systems, and previous work has considered the 

application of Volterra series. An initial cost analysis on the Volterra series is 

performed, motivating the choice of a particular sampling structure that trades off 

performance and cost. OLS is applied to the Volterra series, and it is shown how the 

different kernels are relevant to the performance according to their order. 

Chapter 6. RBFN de-interlacing 

In this chapter, a series of experiments are used to explore the advantages and 

limitations of RBFN to de-interlace a frame. Initially, a simple training strategy is 

devised to avoid the problems associated with the training of non-linear parameters in 

RBFN. OLS is applied throughout the chapter as the main technique to achieve 

reduced complexity at the same time striving to maintain performance. Successively, 

more sophisticated learning procedures are proposed and applied. A comparison with 

Volterra series is conducted. This comparison is based on the simple cost analysis 

described in appendix B. 

Chapter 7. Generalisation 

One of the main issues in pattern recognition is the ability to produce systems that, 

trained on a limited set of data, are able to produce the same performance on a much 
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larger set of inputs. This ability is called generalisation. A realistic de-interlacing 

system must yield satisfactory results on a very large set of inputs and it is clear that a 

learning procedure must deal with a much smaller subset of training patterns. 

This chapter firstly presents an overview of many of the theoretical aspects involved 

in generalisation. This field of research has a large theoretical background, and it is 

obviously impossible to present all the aspects of generalisation theory and all the 

techniques available in this work. Therefore, the relevant theoretical aspects of 

generalisation will be introduced, together with few practical techniques to achieve 

general training. A series of experiments will be applied using a set of six frames, and 

the system is evaluated whereas training will only employ single frames. 

Part 2. Symmetric RBFN de-interlacing 

Chapter 8. Exploiting symmetry for linear filters 

This chapter introduces the theoretical consequences of the symmetric sampling of 

images. In many interpolation schemes, it is likely that the sampling lattice has a 

number of symmetries with respect to the target pixel. The symmetric properties of 

the sampling lattice and some general consideration of images will lead to a set of 

conditions that an image interpolation system should abide by. A simple analytical 

derivation based on these considerations leads to the conclusion that it is possible to 

reduce the computational burden required by linear de-interlacing. 

Chapter 9. Exploiting symmetry in Radial Basis Function Networks 

This chapter describes the attempt to apply the properties of symmetry to a RBFN 

interpolation scheme. Initially, the problems of extending the linear approach to the 

non-linear case are introduced. Two interesting theoretical developments that lead to 

two reduced RBFN architectures, the symmetric RBFN model and the folded RBFN, 

are studied and applied. It is shown how it is possible to achieve computational 

savings using these two techniques. 
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Chapter 10. Generalisation of symmetric strategies 

Symmetric structures are based on the idea that an interpolation system must yield the 

same performance over a rotated version of the input image. By doing so, somehow 

the system increases its generality, since it produces similar performance on different 

versions of a given image. This chapter demonstrates that this is the case, specifically 

that by reducing the computational load using symmetric techniques, one also 

improves the generality of the system, providing further reason to implement 

symmetric training strategies. 

Chapter 11. Conclusions 

This section summarises and discusses the results obtained in the previous sections, 

providing hints for future developments. 

Appendices 

Appendix A. Fourier spectra of the video signal 

This appendix is a brief study of Fourier analysis applied to video sequences. In 

particular it explains the theoretical background to understand why de-interlacing is 

fundamentally a non-linear problem. 

Appendix B. Cost considerations 

In this appendix a simple cost comparison between the techniques applied in this 

work is developed, in order to compare their relative cost in terms of computational 

requirements. This cost comparison is based on reasonable considerations of the 

relative cost of the elementary computational units involved. A more accurate cost 

analysis should require the study of hardware and software issues that are out of the 

scope of this thesis. 

Appendix C. Nelder-Mead simplex algorithm 

This appendix briefly describes a popular iterative optimisation technique, that is 

applied to the non-linear parameters of RBFN to produce further improvements to the 

performance of RBFN de-interlacers. 
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Nomenclature 

The symbols used for the most commonly occurring quantities in the thesis are listed 

below: 

n training pattern label 

L number of patterns 

j input label 

D dimension of the input space 

M number of nodes in the network 

p degree of the Volterra series 

X input variable 

X input vector variable 

X input space 

h node output (layer output) variable 

h intermediate vector (layer output) variable 

H intermediate space 

t target output variable 

T target space, symmetry operator' 

y network output variable 

Y output space 

(f) node's weight (linear parameter) 

0 node weight (linear parameter) 

c node centre 

(J node width 

C cost function 

D regularisation fijnction 

V regularisation factor 

' Whenever T indicates a symmetry operator (chapters 8, 9 and 10), it is usually shown with a subscript 
label indicating the angle of symmetry. It is evident from the context whether T indicates the sequence 
of targets (target space) or the generic symmetry operator. 
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1.1. Introduction 

The creation of continuously varying images, known as video, is a science that has 

been studied since the XlXth century. Amateur scientists created different mechanical 

means to entertain the spectators. It was immediately clear then that a sequence of still 

images, accurately drawn and shown in sequence at an appropriate repetition rate, can 

create the illusion of motion. The key to this approach is that the human eye acts as a 

temporal low-pass system, blending still images into a single, continuous flow by 

means of the phenomenon of image persistence on the retina. 

Early studies showed that a frame rate (the rate at which the pictures are presented to 

the eye) of roughly 10 pictures per second is the lower limit needed to create the 

impression of continuity. Early movie pictures used a frame rate of 24 frames/second. 

This rate was later doubled to 48 frames/second to reduce the effect of f l ickering. This 

phenomenon can be described as a rapid change in the luminosity of the picture, due 

to the decay of retinal persistence between two successive frames. The up-conversion 

of the frame-rate was obtained by showing the same frame twice, and doubling the 

shutter speed. 

The frame rate partly defines the scanning format of the motion picture. Vertical 

resolution (i.e. the number of horizontal lines in the picture) and horizontal resolution 

together contribute to define the scanning format. In movie pictures horizontal and 

vertical resolution are determined by the size of light-sensitive particles in the 

photographic emulsion on the film. The drawback of having smaller particles (i.e. 

higher resolution) is that they require more light to be properly developed, reducing 

the possibility of shooting low-light scenes (Stroebel, Zakia 1993). In television 

systems vertical and horizontal resolution are critical since they determine the 

bandwidth requirements of the signal chain. 



1.2. Historical background of interlaced video 

When engineers attempted to build commercial TV systems in the mid-thirties of the 

XXth century, they faced a formidable challenge posed by the limited bandwidth 

available. The frame rate was initially set to the frequency of the power supply line, in 

order to avoid interference. In the USA and other countries the scanning format was 

set to 60 frames/second and 525 scanning lines (vertical resolution). In Europe the 

format was set to 50 frames/second and 625 lines. The horizontal resolution was 

mainly determined by the available scanning technology (cathodic ray tube, CRT) and 

by other bandwidth requirements. 

Unfortunately, such high frame-rates proved to be uneconomical given the bandwidth 

requirements, pulling the required base-band up to lOMHz. Using a technique called 

interlacing, engineers managed to compress the base-band of the video signal to the 

range 0~5 MHz, a requirement that could be fulfilled at the time. 

(1/50 seCp (1/50 sec^. 

n+\ n+\ 

Frame number (Time) Field number (Time) 

Figure 1. Progressive (left) and interlaced (right) video sequence. Field lines (—), missing lines (~). 

Interlacing compresses the bandwidth by alternately showing an image's odd lines 

(referred to as the odd field) and even lines (even field) as illustrated in figure 1. The 

rate at which the fields are shown is called the field rate. Given its low-pass 

characteristic, the human eye in fact integrates the partial information contained in the 

interlaced picture to recover the missing information. Hence, the viewer observes an 



effective frame rate of 50 frames/second (in fact, the field rate) although the real 

frame rate is 25 frames/second. Unfortunately, this compression comes with the cost 

of a reduced perceived quality, and with a series of characteristic artefacts. 

Interlacing is performed at the camera level, so the missing lines in each field are 

never measured. Mathematically, interlacing is a vertical sub-sampling of the original 

picture, and as such, an amount of aliasing is expected (see section 1.4). 

Unfortunately, this aliasing occurs in the optical path, at the very beginning of the 

video process, and efficient optical anti-alias filters are still not an economical 

solution. One example of artefacts introduced by interlacing can be seen by 

considering a completely dark picture with a single thin horizontal white line. This 

line may appear in only one of the fields, and its frame rate is in fact halved, and the 

resulting video will show the line blinking. This effect is called line flicker. Another 

problem arises with moving objects in the picture. If the human eye tracks an object 

moving in the vertical direction at the speed of one scanning line per field, the effect 

is that the underlying line structure will be "visible", in the sense that the scan of the 

horizontal line will be perceivable (Sellers, 1999). This artefact is called line crawl, 

since the perceived impression is that of the scanning line moving at the same speed 

of the object. 

Interlacing preserves vertical resolution, reducing the flicker while yielding an 

affordable field rate. The downside is that artefacts are introduced, due to high spatial 

frequencies and motion. These effects however were less obvious at the time 

interlacing was developed, mainly due to the slow response of the CRT at that time. 

Hence interlaced video was the choice adopted by broadcast companies. 

1.3. De-interlacing 

Nowadays, the situation is rather different. The advent of broad-band digital video 

transmission, the improvement in CRT technology and the development of new, fast 

video capture and rendering devices like charge coupling devices (CCD) and liquid 

crystal displays (LCD), makes the transmission of high quality, high frame-rate 

progressive (i.e. non-interlaced) video possible. However, the greatest proportion of 

video production is currently in interlaced format. Moreover, interlacing is an 



effective compression technique, and is required in many standards-conversion 

problems. For these reasons, there is a general interest in studying feasible ways to 

convert an interlaced signal into progressive format. This task is called de-interlacing. 

From the signal processing point of view, de-interlacing is a form of interpolation. 

The task is to estimate the missing lines that, in fact, have never been shot. Hence, in 

general there is no reference signal to compare results with. Such a reference signal 

can be estimated using motion estimation techniques to move the even-field lines in 

time to fill the line gaps in the odd field. However, note that such motion estimation is 

part of the problem. If we are able to produce a "perfect" back-dating at time i of the 

i+1 field, the problem of de-interlacing field i is trivially solved. In general, a proper 

de-interlacing scheme requires the interpolation to be performed either in space 

{intra-frame de-interlacing) and in time (inter-frame de-interlacing) (Figure 2). An 

exhaustive treatment of the matter is given in Sellers (1999) and Tekalp (1995). 

Figure 2 space-time sampling of interlaced video sequences. Intra-field and inter-field pixels are 
considered (white dots) to estimate the pixel in the missing line of field n. (black dot). 

In absence of significant motion, inter-frame interpolation is sufficient to estimate the 

missing lines. However when motion is present, inter-frame interpolation is more 

complex and requires the use of motion estimators, that in turn require the use of 

spatial de-interlacers (in order to compute the motion occurring in two successive 

fields, the missing lines should be estimated). Therefore one can regard spatial de-

interlacing as the more low level operation. In this work we will limit our attention to 

intra-frame (spatial) interpolation. Examples of motion-compensated schemes can be 

found in Sugiyama, Nakamura(1999), and Jung et al. (2000). 



In the next section we will discuss the issue of aliasing in video signals. This 

discussion requires the analysis of the signal in the frequency domain through the 

Fourier transform. 

1.4. Fourier transform of video signals and aliasing 

In this section we will discuss the spectral analysis of video signals, both in 

progressive and interlaced formats. A continuous video signal can be modelled as a 

function Fc{x,y , t) of two continuous spatial variables x , y and the continuous time 

variable t. Consequently, its complete Fourier transform is a three-dimensional 

function of the two spatial frequency variables and f y , and of the temporal 

frequency f t 

( / x 

Clearly, any realistic video-processing system deals with a discretised version of the 

continuous signal F^{x,y,t). Typically the sampling occurs on a periodic lattice that 

defines the scanning format 

{n,m,k) = F^ (n-Ax,m-Ay,k-At) (1.2) 

where Ax, Ay and At are respectively the horizontal, vertical and temporal 

resolution of the discrete signal. Note that A/"' is the frame rate of the video 

sequence. We can write equation (1.2) as a sampling of F^{x,y,t) 

Ay)g(f -A: A/) (1.3) 
n m k 



The Fourier transform of F^{n, m, k) can be expressed as: 

trf (a . f y (1.4) 

that will result in a periodic spectrum as shown in figure 3. The grey circle represents 

the continuous spectrum (supposed band-limited), and the white circles represent its 

periodic replications. 

fx 

Figure 3. Three-dimensional spectrum of a video signal. 

The uniqueness of the Fourier representation ensures that it is, in theory, possible to 

recover the original continuous signal, provided that the repetitions of ^ c i f x - ' f y f t ) 

of the continuous spectrum do not overlap, i.e. there is no aliasing in the process of 

sampling that leads to the discrete spectrum. This is expressed mathematically by 

Nyquist's theorem that states that perfect reconstruction is possible if the inverse of 

the sampling spacing in each direction is at least twice the bandwidth of the respective 

frequency. In other words, perfect reconstruction is possible if; 

(A%)-̂  > 2^^ ; (Ay)-^ > 2 ^ . ; > 22, (15) 



In practice, the discrete signal is always an aliased version of the hypothetical, 

continuous one. This is because the physical device that samples the continuous 

signal, be it a photosensitive emulsion, a CRT camera or a CCD device, has less 

resolution (spatial and temporal) of the pattern of light that ultimately comprises the 

continuous signal. As a rather scholastic consideration, we can assume that the 

continuous image has a spatial resolution in the order of microns (10"® metres), being 

this, the minimum size that visible light can discriminate without diffracting (about 10 

times the visible light's wavelength range, 4-8x10'^ m). Such resolution is well 

beyond the capability of any image-capture device, including the human eye. 

1.4.1. Spectrum of the interlaced video signal 

The Fourier analysis can be equally applied to the interlaced video signal. However, 

this time the discrete video signal will have a displaced structure in the y-t plane. It is 

possible to show (Tekalp 1995) that the resulting spectrum will have a corresponding 

displaced structure, as shown in figure 4. The details of these results are not included 

here, but a discussion of Fourier spectra for arbitrary scanning formats can be found 

in appendix A. 

o - o 

Figure 4. Progressive (left) and interlaced (centre) video spectra. The frame rate of the progressive 
signal is equal to the field rate of the interlaced signal. Right: spectrum of a single field sequence. 



In figure 4 the field rate of the interlaced signal is equal to the frame rate of the 

progressive signal (see appendix A). This choice is made so that the progressive 

sequence (spectrum on the left side) is the signal we wish to obtain by de-interlacing 

the interlaced sequence (the spectrum on the right side). 

From the figure, the non-linear nature of the de-interlacing problem can be seen. We 

can see how, in the interlaced format, the repetitions of the continuous spectrum are 

more closely packed than in the progressive format we wish to estimate. Therefore it 

is likely that, even if the target progressive spectrum satisfies (1.5), the interlaced 

spectrum might not. From the frequency domain it is easy to understand how the de-

interlacing problem is strongly ill-conditioned. 

In order to obtain the desired estimate from the interlaced field, the corresponding 

progressive frame should be band-limited, specifically its vertical and temporal 

single-side bandwidths should be limited respectively to By < 1/2Ay and Bj <1/2A/. 

In simpler words, the progressive unknown signal should not have any vertical detail 

finer than two progressive, consecutive lines, and no significant time variation 

between two frames, that is to say that each odd field is substantially similar to its 

corresponding even field, and vice-versa. Under these conditions, perfect 

reconstruction is achievable by an ideal low-pass filter in \hey-t plane. In other words, 

the de-interlacing problem is linear. Unfortunately, as we have discussed already, any 

reasonable video signal occupies most, if not all, of the available bandwidth, that is to 

say, it has detail on the finest scale available by the scanning format. Hence linear up-

sampling will perform relatively poorly because of the constraints of Nyquist's 

theorem. 

1.4.2. Effect of motion on the video spectrum 

Another interesting aspect of frequency analysis is the effect of motion on the video 

spectrum. Suppose that there is an amount of vertical motion in the picture. For 

instance, there is an object that moves vertically with velocity in a otherwise 

static scene. Hence, the continuous video sequence with motion, can be 

related to its static (without motion) version 



(%,;/, f) = (x, y, f) * J (y - Vj,f) (16) 

By performing a Fourier transform in the spatial variables, we obtain: 

(1.7) 

where 0^ ' "^ 0 '̂̂ ^ denote the partial Fourier transforms with respect to the spatial 

variables of the moving and static sequences respectively. By transforming both sides 

of (1.7) with respect to the temporal variable we finally obtain: 

(1.8) 

i 

Vy > 0 

1 a / v 

\ ^ \ \ \ \ \ \ k. 

Figure 5. The effect of vertical motion on the continuous signal spectrum (left) and the discrete 
signal spectrum (right) The spectrum has been assumed elliptic in order t o highlight the effect of 
motion. 

Hence, the original static spectrum is sheered in the direction by an amount that is 

linearly dependent on the value of f y , as illustrated in figure 5. Note how motion can 

be another source of aliasing. 



1.5. Linear interpolation and de-interlacing 

The simplest way to realise an interpolation scheme is some form of linear 

combination of the sampling taps. However we have seen that in general the Nyquist's 

criterion is not satisfied by the video sequences both in spatial and temporal frequency 

domains. Linear interpolation does not address this problem and consequently linear 

filtering will only provide a simplified solution. Section 1.4 shows that in regions with 

little vertical detail (i.e. where the vertical alias is negligible), spatial linear filters can 

achieve a reasonably good interpolation. Conversely, for sequences with little inter-

field motion, temporal filters can again obtain a satisfactory result. In which case 

linear interpolation can still play an important role in de-interlacing. Linear 

interpolation will be more completely discussed in the next chapter. In this section, 

we present two simple examples of the artefacts that can be generated by linear 

interpolation, whenever the bandwidth requirements for successful spatial/temporal 

linear interpolation are not satisfied. The demonstrations are performed separately in 

space and time. 

As an illustration consider one of the simplest linear filter that can be employed, 

where the missing lines in the odd field are replaced by the average of the lines above 

and below the line being considered. A result using this scheme is shown in figure 6, 

where this simple algorithm has been applied to a 300x300-pixel test pattern. One can 

see that horizontal lines become blurred and oblique lines become stepped. The 

stepping of oblique lines is called jagging. The reduction of these jagging artefacts in 

spatial interpolation will be a main goal of this thesis. Note that an amount of jagging 

is already present in the original frame (left picture in figure 6). This is due to the low 

resolution chosen. One can see how the effect is much more pronounced in the de-

interlaced frame (right picture in figure 6). 

An alternative strategy is to use linear interpolation in the time domain, where the 

lines in the even field of a frame are replaced by the average of the corresponding 

lines of the previous and succeeding fields. Figure 7 illustrates some of the artefacts 

that can be introduced by such a routine. In this simulation the amount of movement 

has been purposely exaggerated, and it clearly exceeds the bandwidth limitations in 
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the temporal frequency domain. The result dramatically shows the form of artefact 

generated. 

Figure 6. Spatial linear interpolation and "jagging" artefacts (right). 300x300 pixel test image. Note 
that the source frame (left) is already "jagged" on the oblique lines. This is due to the low resolution 
of the image. One can see how the jagging is much more evident in the de-interlaced frame (right) 
obtained by linearly up-sampling the even field of the source frame. 

Figure 7. Non-motion compensated temporal linear interpolation, and motion artefacts (bottom). 
The even lines in the top-centre frame have been replaced by the average of the even lines in the 
previous frame (top-left) and the succeeding frame (top-right). 
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1.6. Non-linear interpolation and de-interlacing 

An obvious step to overcome the limitations of linear interpolators is to use non-linear 

techniques. The basis of the interpolation is the same, since we use the information 

contained in a set of neighbouring pixels in the horizontal, vertical and possibly 

temporal directions. However, in the non-linear case the interpolation function is 

expressed as a non linear combination of these neighbouring pixel values (the 

sampling taps). 

There are at least three arguments in favour of the non-linear approach. The first is 

based on simple considerations of the nature of the problem in the frequency domain. 

Any linear transformation of an arbitrary signal performs a linear weighting of the 

signal's spectrum. Some frequencies of the original spectrum are attenuated and some 

are amplified, with the phase usually experiencing some form of distortion, typically a 

phase shift in the transition bands of the spectrum. However, linear operations do not 

add new frequencies to the spectrum. For instance, a low-pass signal will remain low-

pass, a band-pass signal will remain band-pass, and a high-pass signal will remain 

high-pass. Aliasing conversely is a form of distortion that changes the nature of the 

signal's spectrum, since it adds frequency bands that did not exist in the original 

signal, e.g. mapping high frequency content into the low-frequency band, and vice-

versa. Many non-linear systems act in a similar way. A simple example is the 

multiplication of a signal by a cosine of frequency /q (modulation), which transforms 

low-pass signals into band-pass signals, and vice-versa. We assume that a proper non-

linear system may take into account the non-linear distortion caused by aliasing and, 

once properly trained, could mitigate, if not completely reverse, it. 

Another point in favour of the non-linear approach arises from geometrical 

interpretations. As we will see in the next chapter, interpolation can be described as a 

form of multi-dimensional mapping. Linear interpolators generate very simple 

mappings, insufficient to describe the complex input-output relationships occurring in 

the multi-dimensional input-output space. Non-linear techniques allow us to generate 

more complex and arbitrary shapes for this mapping. 
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The third reason in favour of the non-linear approach is of a statistical nature. The 

typical training procedure for a linear filter (learning-by-examples using a minimum 

mean squares error criteria, chapter 2) is such that the unavoidable error between the 

estimated output and the test output will be statistically orthogonal to the input. This 

kind of estimate can be considered satisfactory when the distribution in the input-

output space has Gaussian statistics. This is a requirement that is not satisfied by 

natural images (Petrou, Bosdogianni 1999). Non-linear techniques are able to deal 

with more complex statistical relations between the error and the input by taking 

account of the higher-order moments of the input distribution (Collis, 1997). 

In this thesis, we will study two non-linear techniques: the Volterra series and the 

Radial Basis Function Networks. Volterra series is a mathematical tool that has been 

intensively studied to model non-linear systems (Schetzen, 1989). We can describe 

Volterra series as a polynomial (Taylor) series with finite memory. The application of 

Volterra series to de-interlacing has been studied by Collis et al. (1997), with 

interesting results in terms of the output quality. Being polynomial, Volterra series 

generate mappings far more complex and flexible than the linear interpolator does. 

Furthermore, it has been shown that a Volterra series, trained using a learning-by-

examples procedure, is able to uncorrelate the error not only with the input, as in the 

linear case, but with higher-order combinations of the input elements. In fact, the 

linear filter is a special case of Volterra series, specifically a series of first order. 

These properties come from the strong bond Volterra series have with Higher Order 

Spectra theory (Schetzen, 1989), as we will see in chapter 2. 

Radial Basis Function Networks (RBFN) (Powell, 1987) is another technique that has 

been applied to a variety of non-linear problems. RBFN generate a greater range of 

input-output mappings than Volterra series. Furthermore, RBFN have a strong 

theoretical bond with statistical density estimation, notably with Gaussian Mixture 

models (see chapter 3). The study of RBFN applied to de-interlacing will constitute 

the primary subject of this work, and chapter 3 will be dedicated solely to the 

description of RBFN in a more general context. 

Linear filters, Volterra series and RBFN are specific examples of the more general 

structure of single-layer feed-forward networks. These structures are part of an even 



larger family of networks, the multi-layer feed-forward networks. Compared to the 

latter, single-layer networks have distinct advantages (and disadvantages) that will be 

discussed in chapter 2. A schematic of a general single-layer feed-forward network is 

shown in figure 8. 

1 -St network's node (Branch) 

Node's weight 

Input 

Activation function 
(Non-linear) 

Output 

y 

M-th network's node (Branch) 

Figure 8. Schematic diagram of a single-layer network. 

The main disadvantage of the non-linear approach is the computational effort 

required, that often makes non-linear techniques impractical. Consider a 25 

frames/second, 625 lines/frame video sequence, and a horizontal resolution equal to 

the vertical resolution, so that there are 625 columns per frame. One then has 25 x 625 

X 625/2=4.5 X \(f missing pixels per second to estimate. Hence the computational lag 

must be limited to the order of tenths of microseconds. Such time scales require the 

filter to be implemented in hardware. Non-linear filters, with their relatively large 

computational burden, may lead to impractical expensive hardware. Appendix B is 

focused on the study of computational requirements of the two non-linear techniques 

studied in this thesis. 
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1.7. Conclusions 

In this chapter the de-interlacing problem has been briefly introduced, together with 

the fundamental engineering problems related to it. De-interlacing is a form of 

interpolation and as such, the possibility of recovering the missing information is 

limited by the Nyquist's theorem. The performance of linear spatial-temporal filters is 

conditioned by the frequency content of the image. Typical video signals occupy the 

available bandwidth well beyond the Nyquist's limit and the up-sampling problem is 

ill-posed in those regions of the video sequence where rapid variations in the vertical 

direction and in time occur. This results in a series of characteristic aliasing artefacts. 

An example of spatial aliasing is the "jagging" artefact, where the alternation of 

blurred lines (the interpolated lines) and sharp lines (the original lines) create a 

stepping effect on oblique, high contrast edges. Nevertheless, linear de-interlacing 

often provides satisfactory results and in fact it is a common choice for consumer 

electronics. 

In order to increase the performance of linear de-interlacing, non-linear interpolation 

may be attempted. Non-linear systems are capable of yielding a much richer 

functional relationship between the sampled input and the target output. In particular, 

three aspects of the non-linear approach are interesting in terms of de-interlacing: the 

ability of generating new frequency content beyond the Nyquist's limit, the increased 

arbitrariness of the multi-dimensional mapping, the superior statistical modelling of 

the input-output pattern. 

Possible choices for the non-linear architecture are the Volterra series and the Radial 

Basis Function Networks. These two techniques belong to the larger family of single-

layer feed-forward networks, that are commonly used in signal processing and that 

show interesting properties in terms of training and performance, as it will be shown 

in the next chapter. A point to remember is that the increased performance given by 

non-linear techniques comes with an increase in the computational complexity. 

Therefore one should be careful to trade-of accuracy with computational convenience. 



2.1. Introduction 

In the previous chapter, we have introduced the motivation that lays behind the quest 

for de-interlacing systems. De-interlacing can be described as an interpolation task, 

being a form of up-sampling. In order to estimate each pixel in the missing lines that 

transform a field into a frame, we try to realise a suitable function of a set of 

neighbouring pixels in the corresponding known field (intra-frame de-interlacing) and 

in the previous and successive known fields (inter-frame de-interlacing). Specifically 

we try to realise a mapping x y{x) from a multidimensional input space of vectors 

il = \xi . . .X£)Y (the vector of samples, where D is clearly the number of taps in the 

sampling lattice) to a one-dimensional output space y . For colour pictures, the output 

is three-dimensional, representing the three colour components. However, in the 

general case the de-interlacing problem for colour pictures can be separated into three 

one-dimensional output mappings. Thus, the main task of de-interlacing is to find an 

appropriate function y = / ( x ) that realises a satisfactory estimate of the missing lines 

via such a mapping. We can call this function the model of our de-interlacing system. 

Unfortunately linear models for de-interlacing perform poorly, since the nature of the 

de-interlacing problem is non-linear. The task of finding an appropriate non-linear 

model is rather more difficult than the task of finding a linear one, for reasons that 

will be discussed in more detail later. Linear models benefit from a broad collection 

of analytical tools that help to identify appropriate solutions in a computationally 

efficient manner. Conversely, non-linear techniques often do not benefit from an 

exact solution, and usually are computationally demanding. However, the point to 

remember here is that the task of finding a model for a de-interlacing system, linear or 

non-linear, is the task of finding a multidimensional mapping. 

In this chapter, we will now discuss the properties of a particular family of models 

that can realise such mappings, namely the family of single-layer networks. Single-

layer networks can implement both linear and non-linear mappings. The principal task 
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of this thesis is to produce a successful non-linear de-interlacing system using a 

particular single-layer network called the Radial Basis Function Network (RBFN). 

Prior to the description of the basic theory of single-layer networks, we introduce the 

concepts of parametric models, learning by examples and cost functions that form the 

basis of the aforementioned theory. 

2.2. Parametric models 

A model is defined as parametric whenever its input-output function ;^(x) = / ( x ) 

contains a number of adjustable parameters that change the mapping x - > j;(x). This 

can be expressed as ^(x) = / ( x ; 0 ) , where O = [^ j . . .^ ^ ] ^ is a vector formed 

by the M parameters of the model (the reason why the first element of 0 is 

represented with subscript 1 will be explained in the following sections, when the bias 

term (pQ will be introduced). The determination of the best set of parameters, i.e. a set 

of parameters that achieves a determinate goal, is known as parameter optimisation. 

In many cases, such a problem is non-linear. Non-linear behaviour may arise from the 

non-linear dependence of / ( x ; 0 ) on 0 , or from the non-linear nature of the 

particular goal we have to achieve. The latter is usually expressed in terms of a cost 

fimction. By cost function we mean a function C ( 0 ) whose values are high when the 

model performs poorly, and is low when the system performs well. Note that we have 

expressed the cost function as dependent on a set of variables, still unspecified. 

However, in a parametric model C ( 0 ) is necessarily a function of the model's 

parameters 0 . Thus, the main task of determining an appropriate set 0 is that of 

finding an optimal set of parameters that minimises the cost function. 

In determining the appropriate model to describe a system, a possible approach is to 

derive an analytical expression based on a prior knowledge or assumptions on the 

system itself. This is, for instance, the case in many mechanical or electronic systems, 

where we model the system in terms of masses, forces etc, or conversely resistors, 

capacitors, inductors and other physical components of the system under 

investigation. This particular model is often referred as transparent box since the 
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parameters and the functional structure of the model give an interpretation in terms of 

the physical system. 

If the information necessary to create a transparent box model is not available, an 

alternative is to describe a very general parametric model with enough degrees of 

freedom to generate a satisfactory input-output mapping, without a specific relation 

with the physical system {black box). 

2.3. Leaming-by-examples training 

Regardless of the choice of the model, we have to face the task of identifying the 

suitable values for the parameter set 0 . In many cases, the only information available 

is that a given sequence of L inputs X = [xo.. .x^_j]^ generates a corresponding 

sequence of targets T = [/q . ..ti^\f. The most reasonable way to estimate the system 

is then to use a model that is able to generate an output sequence 

Y(X) = [yo - = [ y ( ^ 0 ) ] ^ that matches (in a sense that will be 

clarified later) the sequence T , once the input sequence has been fed into its input. 

This procedure is often referred as learning-by-examples. We assume that the 

observed input-target sequence is representative of the problem by somehow 

representing all the possible input sequences. The input-target sequence 

{X,T}= {x„ is called the /rammg jg/. 

When the model is parametric, the training set must be used somehow to determine 

the model's parameters. In other words, scope of the training procedure is to adjust 

the model's parameters so that the model fits the training set in terms of the cost 

function C ( 0 ) . In other words, the task of the training procedure is to find the set 

# * of parameters such that: 

0 * = a r g j / M m [ c ( 0 | T , X ) ] j (2.1) 



Figure 1 shows a schematic diagram of the learning-by-examples training procedure. 

The choice of the parametric model determines the residual cost C ( 0 * ) , that is 

usually not null, and thus the choice of the model is a key point of our analysis. 

Cost function 

C ( 0 | T , X ) 

Parameter update 

Unknown system 

Parametric model 

Figure 1. Learning-by-examples and cost function 

2.3.1. Size of the model and generalisation 

As has already been discussed, the choice of an appropriate model structure is crucial 

to produce a proper representation of the unknown system. In the case of a parametric 

model trained using a learning-by-examples procedure, this choice can basically be 

divided in two sub-problems: choice of the number of parameters in the model, and 

choice of the mathematical relations that link these parameters to the model output. In 

this section we will focus on the first of these two problems. 

In learning-by-examples training, there is a trivial way to generate a parametric model 

that exactly matches the training set: a look-up table (LUT). In simple words, a LUT 

is a memory bank that associates, to any of its memory locations, a corresponding 

value. In a LUT each memory location's address represents an input to the function, 

and the corresponding value in the table represents the output. With such a model, the 

training problem is trivial because we can store the full training set in the LUT, where 

the sequence T can be viewed as the parameter of the model, and is exactly matched 
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for any input belonging to the training set. This approach leads to impractical methods 

for modelling complex systems for two reasons (Girosi, Poggio 1989). 

Firstly, as the number L of training patterns increases, the size of the LUT becomes 

unrealistic. This is often referred as the curse of dimensionality (Bellman 1961). 

Secondly, and more importantly, there is a subtle difference between exact 

interpolation and learning. Both cases can be solved using a learning-by-examples 

strategy; however, in the former case we want to achieve the best match possible 

between the model's output Y and the system's output T. Conversely in learning we 

want our model to describe the data generator that lies behind the training set (Bishop, 

1995), rather than the particular, incomplete realisation of such generator given by the 

training set. Hence, exact interpolation is generally not desirable, since the model 

must be able to correctly estimate input-target patterns that are not included in the 

training set. 

Excessive accuracy in interpolation is often referred as over-fitting. A model that fits 

the training set with excessive accuracy will generally fail to produce accurate 

estimates of patterns not included in the training set. This unwelcomed behaviour is 

amplified when the training set is affected by noise that generates incorrect patterns. 

An over-fitted model will interpolate these noisy patterns and will produce a poor 

performance. 

In order to reduce over-fitting in parametric models, an accurate choice of the size 

(number of parameters) of the model is of paramount importance. The problem of 

selecting an appropriate size for a parametric model is a classic example of Occam's 

razor (Domingos 1999). The principle is that we prefer simple models to more 

complex models, and this preference must be traded off against the accuracy of the 

model in fitting the training set. The ability of a model to predict unseen patterns is 

called generalisation. Chapter 7 of this thesis will consider this problem in detail. 
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2.4. Cost functions 

To operate a learning-by-examples strategy one must provide a suitable cost function. 

This function must produce a small outcome when the model's output matches the 

target sequence and a large outcome when it does not. 

This section mainly discusses a particular kind of cost function, the Mean Squared 

Error (MSB). This cost function presents some useful advantages, noticeably the fact 

that it leads to simple training algorithms, and has a strong statistical background. 

Some alternatives to this cost function will be presented. 

From now on, the model will be considered parametric. Hence the cost function will 

depend on the model's parameters. The goal of the training algorithm is to produce a 

mapping with the minimum MSB (MMSB). 

2.4.1. Mean Squared Error 

Among different cost functions used in applications, MSB is by far one of the most 

popular. Given the parametric model y ( x ) = / ( x ; ® ) , the MSB for the training set 

{X,T} is given by; 

C C ® ) - — ^ (2.2) 
^ M=0 ^ M=0 

The term 1/Z is introduced in order to make meaningful comparisons between 

training set of different size L. For an infinite training set ( i —> oo), equation (2.2) 

can be written as (Bishop, 1995): 

I 
lim C ( 0 ) = lim — V 

(2.3) 

x)dx j | j / ( i ; 0 ) - ( f |x)]^ ;7(i)(& + j " x ) - ( / 1%)^ ];)( 
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Where (t |x^ is the conditional average of t over the set x, and /»(x) is the probability 

density function of the input. The second term in the right side of (2.3) does not 

depend on the parameters and can be neglected. The first term vanishes if 

_y(x;0) = ( / | %) (2 4) 

Hence the MMSE solution is the value 0 * that satisfies (2.4). Equation (2.4) is a key 

result as it describes the optimal network mapping in terms of a conditional average of 

the data, i.e. as the regression of target data t conditioned on x. This result is 

illustrated graphically in figure 2 for a single dimensional case, and assuming i?(^|x) 

Gaussian for simplicity. 

Figure 2. MMSE estimate and conditional mean of the data. 

The residual error e = e ( 0 * ) is the second term at the right hand side of (2.3) 

evaluated for 0 = 0 *, and can be written as the average of a variance function s^{x): 

, .2 (x) = E\a^ (x ) ]= JcJ^ {x)p{x)dx (2 5) 

Where cr (x) = x y - ( q x ) is the output variance of t conditioned on the 

input X. Equations (2.4) and (2.5) are the quantities that we can determine by 
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minimising the MSB. Hence, the MMSB mapping cannot discriminate two training 

sets with the same conditional mean (2.4) and conditional average variance (2.5). 

Note that the input density p(x) weights both integrands on the right hand side of 

(2.3). From the first term, we infer that the network function incurs little cost to 

departures from the conditional average in regions where the density is small. 

The key consequence is that we must consider the representativeness of the input set. 

If we desire a small error in a subset Xj of the input sequence, the subset density 

/ i ( x | x g X i ) must be reasonably high. The training must be reasonably 

representative of the general, real behaviour of the input. However, we may want an 

accurate model of the system for input-output patterns that rarely occur in real 

situations and/or in the training set, but nevertheless are critical in terms of 

performance if not described accurately. Hence, we must compensate the density 

function of the training set in order to make these patterns sufficiently represented. 

Different attempts have been made to compensate for poor performance over low-

density subsets, and more generally to account in the cost function features that are 

insufficiently represented by the density function. An example, applied in image 

processing, can be found in Tompa et a/. (2000), where density function is 

compensated according to some measure of perceptual relevance, i.e. some measure 

of the observer's perception. De Stefano et al. (2000) analyse a Frequency Weighted 

MSB in order to emphasise the performance in the bands where the human visual 

system is more sensitive. 

2.4.2. Linear MM SB training 

Learning-by-examples MMSE training benefits of a simple solution 0 * if the model 

input-output mapping is linear, i.e. given by a weighted sum of the input vector's 

elements: 

D 
y = ^(t> jX j + (pQ = 1L +(f)Q (2.6) 

7=1 
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Such a model is usually known as Wiener filter (Oppenheim, Schafer 1974), or as 

moving-average (MA) as the output is the result of a weighted average of the input 

samples. The elements of the parameter vector are denoted as weights. Note that we 

have introduced a constant parameter 0o, the bias term, briefly introduced in section 

2.2. 

Substituting (2.6) in (2.2) and neglecting the scaling factor L we obtain 

c ( ® ) = t ' l S I - i 
n=0 n=0 

.T (2.7) 
«=o 

where the bias term has been appended to the parameter (weight) vector and 

consequently a unitary factor has been appended to the input vector; 

(2.8) 

Equation (2.7) can be expressed in a more compact form as: 

c ( 0 ) = T ? ' T + @ 7 ' R 0 - 2 P (2 9) 

where R is the correlation matrix of the input, and P is the input-output cross-

correlation vector: 

R = E P = = X^T (2.10) 
n=0 n=0 

Equation (2.9) is quadratic in 0 , and its solution can be easily found solving 

8 0 
0 => R 0 - P = O (211) 
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Assuming R is non-singular the solution can be written as: 

0 * = R-^ P (2.12) 

It is equally easy to demonstrate that: 

= 0 => - - j - ] [ : * r . %„ (2.13) 

Therefore the bias accounts for the difference between the average value of the 

weighted sum of the input elements and the mean value of the target t . For simplicity, 

we will commonly refer to O * (rather than 0 * ) implicitly assuming the presence of 

the bias term. 

Problems arise in solving (2.11) when R is singular, or the calculation of R " ' ill-

conditioned (i.e. the eigenvalues of R span a large dynamic range). Techniques like 

singular value decomposition (SVD) and regularisation (Golub 1970) can be used to 

find a suitable solution in these cases. 

One property of the linear MMSE estimate that can be easily inferred from above is 

the orthogonality principle, that states that the residual MMSE error g* = g ( 0 *) is 

statistically orthogonal to the input x . It is easy to show that; 

| !][,_.((& j=() (2.141) 

Equation (2.14) is a statement of orthogonality for the optimal solution. The one-

dimensional space spanned by the error is orthogonal to the multi-dimensional space 

spanned by the input. 

25 



2.4.3. MMSE and Maximum Likelihood estimate 

Assuming that the target sequence is the sum of a deterministic sequence and a 

zero mean Gaussian stochastic process e„ , 

it is possible to demonstrate (Van Trees 1971) that the MMSE solution O * is also the 

Maximum-Likelihood (ML) solution, maximising the maximum-likelihood function: 

L(0) = ; , ( T | X , 0 ) (2.16) 

Equation (2.16) corresponds to the intuitive idea of choosing the parameter # which 

is most likely to give rise to the observed target, given the observed input. A more 

formal discussion of the origins of the ML procedure is given by Akaike (1973). 

2.4.4. Minkowskier ror 

As an example of an alternative cost function, we now discuss the Minkowski-R error. 

The Minkowski-^ error function gives the ML estimate for a more general 

distribution of e„ compared to (2.15), given by (Bishop, 1995): 

= j (2.18) 

Where F is the Gamma function 

(2.19) 
0 
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Note that (2.17) reduces to the MSE function and (2.18) to the Gaussian distribution if 

R=2. If R=l, the distribution (2.16) becomes a Laplacian distribution. In this case the 

ML estimate is less sensitive to outliers, i.e. isolated small groups of inputs that 

sensibly depart from the rest of the input set and could dominate the MMSE solution 

by virtue of their large value. On the other hand, more accuracy on the outliers could 

be achieved if R>2. The obvious drawback of the Minkowski-i? error compared to the 

MMSE estimate is that it does not benefit of a simple solution like (2.12). 

This section highlights three key requirements for successful learning-by-examples 

training. Firstly, the training set must be sufficiently representative of the unknown 

system's behaviour. This usually leads to a lower bound in the size of the training set. 

Secondly, the model function / ( x ; 0 ) must be sufficiently general to describe the 

complexity of the system. Usually this determines a lower bound for the complexity 

of the network. The third assumption is that we are able to achieve a reasonable 

minimisation of the cost function. In other words, the cost function C ( 0 ) must be 

simple enough to allow the global minimum to be found. 

2.5. Single-layer networks 

We now analyse a parametric model, called single-layer networks, which forms the 

basis for the techniques we will use in this work. In this section we introduce some 

preliminary concepts, which are generally shared by all the particular realisations of 

this architecture. The general mathematical formulation of a single layer network with 

Mnodes, or branches, is the expression: 

M 
:y(%v:) = #0 + (2 20) 

y=i 

The element •/2y(x„) is called the j-th node of the network, where is a 

generic, possibly non-linear, node activation function —>R, and (pj is called the 

weight of the node j. 
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The model expressed by (2.20) is an evident generalisation of the linear model 

described in (2.6). It is therefore straightforward to compute the MMSE estimate of 

the parameters 

0 " ( h ^ H )" H Y = R (2 21) 

Where H = [ h o . . . h ^ _ j ] ^ , h „ = [1 /2i(x„) ... / z ^ ( x „ ) ] ^ and the matrices R and 

P are analogous to those in (2.12), with H taking the role of X. The matrix 

H""" = - H ) is known as the Moore-Penrose pseudo-inverse of H 

(Penrose, 1955), and provides a way to solve a linear system when the number of 

unknowns is different from the number of equations. If M>L (under-determined 

system, infinite number of solutions), (2.21) provides the solution 0 * with the 

smallest norm. If M<L (over-determined system), (2.21) provides the MMSE solution. 

(jk) 

01 

•! 

- • y 

Hidden layer Output layer 

Input space Intermediate space Output space 

Figure 3. Two-layer formalism of the single-layer network. 

Single-layer networks belong to the larger family of feed-forward networks, 

characterised by having no feed-back loops or lateral node connections. The single-

layer structure is depicted in figure 3. 

28 



One may note that in the figure we use a two-layer formalism. In literature the linear 

weights are commonly considered part of the node, rather than being part of a 

separate layer in series with the non-linear function, as depicted in figure 3. One 

advantage of the single-layer formalism is to exploit the similarity between single 

layer networks and Gaussian mixtures, described in chapter 3. In this model, the 

weight j is considered as the prior probability of a class j having generated the input x, 

while A (x) is the density of x, supposed to be generated by that class. Hence a 

weight and its corresponding activation function are closely related and considered as 

part of the same node. 

Nevertheless, the two-layer formalism gives us a more precise description of the 

mapping obtained. It is clear that (2.20) is the combination of a mapping 

x e —> h e , typically non-linear, and a linear mapping h e > y e . It is 

possible to identify an intermediate space H c R^ . 

Therefore the linear weights have the status of nodes of the R ^ —> i? linear mapping. 

Consequently, the non-linear layer should generate a R ^ R ^ mapping that makes 

the R''^^ —> R mapping as "linearly solvable" as possible. 

2.5.1. Non-linear parameters 

The network described by (2.20) is usually referred as a linear-in-the-parameters 

network (Duda, Hart 1973). The extension of the model to include non-linear 

parameters (i.e. parameters in the non-linear activation functions) is straightforward. 

In this way we add more degrees of freedom that can be used to find a suitable 

solution to our problem and achieve a more satisfactory residual error in equation 

(2.6). 

Unfortunately, the cost we pay is that the MMSE solution is non-linear. Therefore 

some form of non-linear optimisation is generally required. This leads to the problem 

of finding the global minimum of a cost function that potentially contains large 

number of local minima. 
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2.6. The Volterra series 

The linear interpolator described by (2.6) is the simplest example of single-layer 

network, where the intermediate space is equal to the input, H(X) = X . Equation 

(2.6) is the discrete version of the continuous linear filter expressed by the 

convolution: 

y{t)= ^v{x)-x{t-T)dx (2.22) 

where V(T) is the impulse response of the linear filter (assumed here to be causal). 

Volterra (1959) was the first to study a powerful, non-linear extension of the 

convolution integral in (2.22) by introducing a series of high-order, multi-linear 

operators defined by multiple convolutions 

K . / f 
y{t)=- Jv'''(T)-x(r-T)£/T+ J jv''̂ \T:i,T2)-x{t-Ti)-x{t-T2)dTid-T2 + 

—oo —oo —oo 

(223) 

-co —OQ —OO 

The element is called the Volterra kernel of order p of the functional 

series (2.23). Clearly the impulse response V(T) in (2.22) is the Volterra kernel of first 

order. The dxscrete-timQ, finite-memory version of (2.23) is given by: 

Tj=l Ti=1T2=1 

•••+ I - % + " 
T, =1 =1 

(2.24) 



Where a bias has been added in the form of a Volterra kernel of order zero, .The 

functional ••• t is /"-linear, in the sense 

that: 

X ^ 7 ] ' ••• 
Vl Vp 

(225) 

Vl 

And it can be demonstrated (Schetzen, 1989), by applying the commutative property 

in (2.24), that the Volterra kernel is symmetric: 

' i f ' . . . ! , = ' ' ^ L ( r , T , ) 

where perm{T],...,r p ) is any possible permutation of the indexes Ti, . . . ,Tp. 

The Volterra series can be regarded as Taylor series with memory. In fact, Volterra 

series share the same constraints on convergence. The systems modelled by Volterra 

series must yield an input-output map that is everywhere differentiable to an order of 

differentiation equal to the order of the series. For this reason, Volterra series can not 

be applied to systems with abrupt (i.e. discontinuous) changes in the output, e.g. bi-

stable elements. This limitation however is not critical if the model is allowed to have 

a sufficient amount of smoothness in its mapping. 

Volterra series have been studied in the context of High-order Spectra analysis of 

non-linear systems. (Schetzen, 1980, 1981; Nikias, Petropolou, 1993, Collis, 1996). 

Volterra series can exploit more complex relationships between inputs. It is possible 

to show that the higher-order polynomials in (2.24) are related to the higher-order 

moments of the input distribution. Higher-order analysis proves to be useful when 

dealing with non-linear and non-Gaussian model identification problems. The main 



condition is for the system to be stationary, so that the kernels in (2.24) do not change. 

Different methods have been proposed to estimate the Volterra kernels in the 

frequency domain for continuous-time systems. 

Collis et al. (1997) have considered the application of Volterra series to model a de-

interlacing system. The motivation is that real images rarely possess Gaussian 

statistics. The results of this method are very encouraging, since it is possible to 

produce a significant increase in the performance in terms of MSB and in terms of 

subjective measures. Hence we will present the application of this technique in 

chapter 5, together with standard linear filtering, in order to provide a baseline 

performance comparison for the main subject of this work, the application of Radial 

Basis Function Networks. The two techniques will be compared in terms of 

qualitative performance (interpolation error) and complexity, i.e. computational load. 

Other aspects of Volterra series will be discussed in chapter 5 and in appendix B. A 

more complete study of Volterra series in de-interlacing is outside the scope of this 

thesis. 

2.6.1. MMSE solution 

In order to calculate the kernels one can exploit the single-layer structure of the 

Volterra series, as shown in figure 4 for p - 3. In this context, the elements of 

Volterra kernels play the role of linear weights, while the multiplicative combinations 

of input elements play the role of node activation functions. Being the nodes non-

parameterised, the Volterra series is completely linear-in-the-parameters. Hence 

Volterra kernels can be estimated in the MMSE sense by equation (2.21). We can 

form the intermediate vector 

I x j ... X ^2 ^2^3 ••• ^2^ D ' 

= [h(o) r h O ) r h ( 2 ) r _ 

(2.27) 

where we have divided the intermediate vector in sub-elements according to the 

degree of the monomials in h. 
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first order 

•^J — 

second order 

•^J 

i ——•(^ 

/ I 

third order 

y 
— 

Figure 4. Single-layer representation of a third-order Volterra series. 

Note how we have used the commutative property in (2.27) since the second-order 

products for the input %2 starts from xf rather than • I" other words, the term 

X2X\ is omitted because there is a X\X2 term that has previously been accounted for. 

From (2.27), The matrix H will assume the form: 

H = [ho ••• 

, (o ) r , ( . ) r , ( 2 ) r ... 

(2.28) 

The corresponding kernel vector (i.e. weight vector 0 ) will be: 

(2.29) 

And the MMSE solution is given by (2.21). It is interesting to examine the structure 

of the matrices R and P. We limit our analysis to a third-order series, but the results 

can be extended to an arbitrary order. By using (2.28) we get: 



H ^ H 

I ' l - S " t ? ' ' ' 2 h M . h ( » 
«=0 «=0 «=0 «=0 

s ' h ® h(»)^ Z b W h W r 
«=0 K=0 «=0 «=0 

^ ' (2).h(o)r T V 2 ) . h O y Vh(2) .h (2X Vh(2) .h(3)^ Yh^ .. 
77 2^"/% "/? 

f h ? ) . h » f h W . h O ) ^ f h ( 3 ) . h W ^ f b W . h W -
«=0 «=0 «=0 «=0 

(2.30) 

Given the structure of the vectors and h^"''', each element h^"''-h 

in (2.27) is a matrix composed of monomials xf^ . A similar consideration can be 

made on the elements of the vector P: 

.(3) , w . h ( ^ y 

P = H ^ Y 
. M = 0 n=0 n=0 n=0 

(231) 

The structure of R and P in terms of the degree of their elements is depicted in figure 

5. The elements of R can be seen as the estimates of higher-order moments of x, and 

the elements of P as the estimates of higher-order joint moments of x and y . It has 

been shown (Nikias, Petropolou, 1993) that if the joint density of the elements of x is 

symmetric with zero mean, then the joint moments of an odd number of elements are 

null. Therefore if x and y have zero-mean and symmetric joint distribution, then the 

odd-degree elements in R and P will be null. 

Volterra series are completely linear in the parameters. However, the number of 

branches, M, is not a free parameter of the network, but is determined by the degree of 

the series,/), and by the dimension of the input D. These act as non-linear parameters 

that determine the complexity of the network. The number of branches in a Volterra 

series increases in proportion to . This represents the main limitation to the 

application of Volterra series, because the computational load required can easily 

become unpractical (see table 1). 



Figure 5. Degree of the elements in R (left) and P (right) for a third-order Volterra series. 

input dimension D 

4 6 8 12 20 

1 4 6 8 12 20 

=5, 
2 14 27 44 90 230 

3 34 73 164 454 1770 

Q 
4 69 199 494 1&^ 10625 

5 121 451 1286 6187 53129 

Table 1. Number of nodes in Volterra series. 

2.6.2. Skewness and Kurtosis. 

In the study of higher-order moments, particular importance is given to the third and 

fourth-order central moments, 1I3 = and 1X4 = £'[(x-i?[x])^] . Two 

derived quantities are the skewness 1x3/0"^ and kiirtosis . From the previous 

discussion, is clear that a symmetric distribution has zero skewness. Moreover, for a 

scalar Gaussian variable it can be shown that the kurtosis is equal to 3 (Nikias, 

Petropolou, 1993). Hence these two quantities assume an importance as indicators of 

non-Gaussianity. In figure 6, examples of probability density functions are shown, 

with non-zero skewnesses, and with kurtoses different from 3. 

35 



kurtosis < 3 
(lepto-kurtic) ' 

skewness < 0 skewness > 0 

A 
kurtosis>3 \ 

(platy-kurtic),' / , \ ' 

Figure 6. Examples of skewed and kurtic density functions (dashed line), compared to Gaussian 
functions (solid line). 

2.7. Radial Basis Function Networks 

The main task of this thesis is the study of a particular single-layer network called 

Radial Basis Function Network (RBFN) (Powell, 1987; Broomhead, Lowe 1988). 

RBFNs are able to generate arbitrary multi-dimensional mappings, and have a strong 

statistical background. RBFNs will be discussed in depth in the next chapter. 

Many works illustrate the application of RBFN techniques to image processing. 

Examples are given by Sherstinsky and Picard (1992), Rosenblum et al. (1994), Arad 

and Reisfeld (1995), Howell and Buxton (1995), Kassaam and Cha (1996), Gutta and 

Wechsler (1996). 

2.8. Multi-layer networks 

In the previous sections we have studied the main properties of single-layer networks. 

In order to achieve a better understanding of these structures, in this section we will 

briefly discuss multi-layer networks. A multi-layer network with p layers is a 

structure described by the equation 

M, 
( p ) 

7^=0 J p-i 

M, 

Z A), + 
7i=o 

.(1)1 
j\ j\ 

(2.32) 

/ y 
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Note that in (2.32) the activation functions are fed with a linear combination of the 

input. This linear operation is part of the activation function and it is different for each 

node. It is not be considered as a layer, but rather as part of the R mapping 

performed by each h j . A common choice for the non-linear activation functions is 

often the sigmoidal function 

A(r) = : ; : (2.33) 
1 + expy- <y • r) 

If (T —> oo, equation (2.29) becomes the threshold activation function 

h^F^(r) = ̂  
1 r > 0 

(2.34) 
0 r <0 

The most studied class of multi-layer network is the two-layer network. 

Kolmogorov's theorem (Kolmogorov, 1957; Lorentz, 1976) states that a network with 

two layers of univariate non-linear activation functions can exactly interpolate any 

multi-variate continuous function. Unfortunately, it has been also shown that the 

activation functions are highly non-smooth (Vitushkin, Henkin 1977), and as complex 

as the original functions in terms of computational complexity. 

However, multi-layer networks prove to be effective in many applications, especially 

in classification and decision problems. These networks typically require a significant 

amount of non-linear training in order to find the set of weights , the so-called 

backprogagation algorithm (Rumelhart et al, 1986) is used to relate the output error 

to the different layers of weights. Multi-layer networks are not the subject of this 

thesis, so we will not continue with their description. 
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2.9. Conclusions 

This chapter has presented the general issues involved in the design of an 

interpolation system based on the single-layer feed-forward architecture. The 

principle of training a flexible (i.e. parametrised) system in order to approximate an 

observed input-output set (learning by examples) has been explained in its most 

relevant aspects. 

Firstly, it has been shown how the complexity of the model is related to the size of the 

training set. As the latter increases, more complexity is in principle required to 

account for the new information available. However this approach not only leads to 

unpractical solutions, but it also fails one basic goal of a learning algorithm, which is 

the ability to predict patterns not seen during the training process. This ability is 

usually referred as generalisation. Chapter 7 will examine this issue in much more 

detail. 

An important problem to tackle is the choice of the cost function that measures the 

performance of the model. An analysis has been carried on a particular cost function, 

the minimum mean square error (MSE). This function is a popular choice because it 

usually leads to a closed solution for the optimal parameters. This is particularly true 

for the linear weights of a single-layer network trained in the MMSE sense. However, 

other choices are available, that might better exploit the peculiar characteristics of the 

system at the price of a more expensive training. 

The choice of the functional mapping yield by the network is fundamental in order to 

model the complexity of the system with the minimum computational cost. More 

importantly it is necessary to avoid excessive specialisation on the particular training 

set, in order to produce a general result. As the complexity of the model increases, it 

is easier for the training algorithm to over-fit the data set and reduce the generality of 

the mapping. 

Volterra series is an intuitive extension of the linear model and, although not the main 

focus of this thesis, a general survey is presented in this chapter. By introducing 

higher-order monomial terms it is possible to account for more complex dependencies 



between the input pixels. Chapter 5 will show how this richer set of relationships will 

lead to the expected performance gains. The degree of the series and the number of 

taps in the sampling lattice determine the non-linear structure of the network. 

Therefore Volterra series are completely linear in the parameters and MMSE training 

leads to a closed solution for the optimal parameters. The major drawback of Volterra 

series is that seeking for more complexity by increasing the sampling aperture or the 

degree the series leads to unpractical computational costs. This is particularly the case 

when modelling steep variations in the mapping. 

Radial Basis Function Networks represent the main focus of this thesis and the next 

chapter will be dedicated to the subject. Multi-layer networks are briefly introduced 

for the sole purpose of a better understanding of the single-layer architecture. 

However their application to the de-interlacing problem is not considered in this 

thesis. 



3. RADIAL BASIS FUNCTION NETWORKS 

3.1. Introduction 

In the previous chapter we have described the main features of a family of techniques 

known as single-layer networks. We have seen how linear and polynomial series can 

be modelled as particular cases of this structure. In this chapter we discuss a single-

layer architecture where each node's activation function is a function of the Euclidean 

distance between the input vector and a prototype vector called the centre. Because of 

the radial symmetry of the distance measure in the input space, these networks are 

called Radial Basis Function Networks (RBFN) (Powell, 1987; Broomhead, Lowe 

1988). RBFN are able to create arbitrary mappings by a superposition of these radial 

functions. The basic philosophy behind this technique is that each node acts in a local 

fashion, i.e. deals with a particular zone of the input space. The centre of symmetry of 

each node's activation function defines the middle of this zone. 

Like linear filters and Volterra series, RBFN form a unifying link between different 

concepts such as interpolation, regularisation and density estimation. The 

consequence of such an interaction is that we can devise efficient training procedures 

that draw their justification from different theoretical backgrounds. RBFN are 

different from linear filters and Volterra series in that centres act as non-linear 

parameters. 

One basic training principle is that parameters governing inner units can be trained 

using either supervised or unsupervised procedures (i.e., using the input set X 

respectively with or without an association with a corresponding target set T). 

Unsupervised training uses the non-linear parameters to estimate the input 

distribution, leaving the linear parameters to map the input-output dynamics. 

Supervised training uses both non-linear and linear parameters to estimate the 

mapping. We will investigate this point shortly. Many works illustrate the application 

of RBFN techniques in non-linear system identification and in image processing. 

Examples are given by Chen et al, (1990), Sherstinsky and Picard (1992), Rosenblum 
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et al. (1994), Arad and Reisfeld (1995), Howell and Buxton (1995), Kassaam and Cha 

(1996), Gutta and Wechsler (1996). 

3.2. RBFN Architecture 

The general form of a single-output RBFN is (Broomhead, Lowe 1988): 

V = 1 

The first function applied to the input is the Euclidean distance r j = ||x„ -Cy || of the 

current input x„ from a vector c j e called the y-th centre of the RBFN. The 

resulting value will be passed to the function h{rj ;a j ) \ —> i?. The support of h 

in is controlled by the width parameter a j. Note that the presence of this 

parameter is not necessary to identify a structure as RBFN. The important point is that 

each node realises a mapping R^ R that has radial support in R^. The single-

layer structure of the network is evident. 

3.3. Exact interpolation 

Historically, Radial Basis Function methods originated as methods to perform exact 

interpolation of a multi-dimensional function (Powell, 1987). The exact interpolation 

problem requires each multi-dimensional input to be exactly mapped into the 

corresponding target. Consider a training set of M input-output patterns. Our goal is to 

find a function y = / ( x ) such that 

zz./tKy )==f^ , (3.2) 

The Radial Basis Function approach introduces a set of M basis functions, one for 

each data point, which take the form of A(|j i - i y | |) where /?(r ), r = || x - x y | is 
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some form of non-linear function which will be discussed shortly. The output 

mapping is given by a weighted sum of these basis functions 

jy(:%)== I II ) (3.3) 
y=i 

Clearly, the interpolating function must be sufficiently smooth in order to generate a 

realistic map, that correctly estimates the output corresponding to inputs outside the 

training set. For example the activation function A ( | | x - x y || )= 5 ( | x - x y ||) 

achieves perfect interpolation in Xy, but is null elsewhere. Using the training set 

{xy , t j } it is possible to write equation (3.3) in matrix form; 

H<D = Y (3.4) 

where H is a square matrix such that Hy = /z(|| x,- - Xj ||). The system (3.4) is easily 

solved; 

<D = If (3.5) 

provided H is invertible. It has been shown (Schoenberg, 1938; Micchelli, 1986) that 

for a large class of functions h the matrix H is invertible. Examples of this class are 

the Gaussian function 

h{r;o) = e x p { ^ I ( 3 . 6 a ) 

the multi-quadratic function 

h { r ; ( j ) - ^ r ^ +0'^ (3.6b) 
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and the Hnear function 

h{r-,a) = G-r (3.6c) 

It is important to notice that these are sufficient conditions for the invertibility of H. 

For instance, the popular thin plate spline function (Powell 1987) 

h{r) = r^ln{r) (3.6d) 

does not satisfy Micchelli's conditions (Poggio, Girosi 1989). Nevertheless its 

effectiveness has been demonstrated in many applications. It has been shown (Powell, 

1987) that in the context of exact interpolation the exact analytical expression for h is 

not critical. This empirical statement eases the problem of finding the optimal non-

linear parameter set. In the experiments however, it will be shown that this 

assumption must be considered with great care, since it will be shown to be only valid 

when the number M of nodes is high. Furthermore, it will be shown that the width 

parameter has a significant effect on the resulting error. As a final remark, note that in 

the context of exact interpolation the centres are not considered as parameters, since 

they are determined once and for all by the training set. Furthermore, in the 

Schoenberg's solution for the invertibility problem, the activation functions shown in 

equations (3.6) are non-parametric, i.e. without a width parameter. Hence, in their 

original formulation, RBFN are purely linear in the parameters. 

In this work we will focus on the Gaussian function (3.6a) (Gaussian RBFN, 

GRBFN). This function presents, together with an intuitive localisation property, 

some interesting analytical properties and an immediate link with the theory of 

density estimation using Gaussian Mixtures (Titterington et a!., 1985). These 

properties will be discussed later in this chapter. 
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3.4. Radial Basis Function Networks 

The Radial Basis Function interpolator suffers from a number of serious limitations. 

One major drawback is the number of basis functions required, which is given by the 

number of input-output patterns. This condition often leads to impracticably large 

networks. 

Another limitation, possibly more important, is that exact interpolation gives very 

poor generalisation. In other words, a network built to exactly interpolate a specific 

pattern generally exhibits a severe oscillating behaviour away from the interpolated 

points, especially in presence of noisy data (overfitting). It is important to remember 

that we want to generate a model able to describe the general behaviour of the data 

rather than an exact match of the training set. It has already been discussed the need 

for a smooth interpolation of data, possibly loosing the exact interpolation constraints. 

By introducing a number of modifications to the exact interpolation procedure we 

obtain the Radial Basis Function Network model (Broomhead and Lowe, 1988; 

Moody and Darken, 1989). These modifications are: 

The number M of basis functions is commonly much smaller than the number of 

training patterns L. 

The centres for the basis functions are no longer constrained to be picked from the 

data, but can be moved in the input space during the training process. 

A bias parameter is introduced to account for the difference between the average 

value of basis functions over the input set and the average value of the output. 

The aim is to yield a smooth interpolation with the number of basis functions 

determined by the complexity of the mapping rather than by the size of the training 

set. It has been shown that RBFN is capable of universal approximation (Girosi and 

Poggio, 1989b; Hartman et al. 1990); i.e. a RBFN with a suitable number of basis 

function can approximate any mapping. Clearly, the promotion of the centres to the 
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rank of free parameters raises the problem of finding their optimal values. Like width 

parameters, the problem of finding optimal centres is non-linear. 

3.5. Extensions of the RBFN model 

The model proposed in (3.1), with Gaussian basis functions, can be extended to allow 

generalised covariance matrices Zy (Musavi et al, 1992) for each basis function j 

(Multi-variate GRBFN). 

K4 r 1 
( i - C y ) ] (3.7) 

7=1 

Where Ay = ( x - C y ( x - C y ) is called the Mahalanobis distance (squared) 

between x and c j . The immediate advantage of multivariate Gaussians is that they 

have a more general (elliptical) support in the input space, possibly requiring fewer 

basis functions than the circular case. Obviously, this approach leads to a more 

complicated, and possibly more costly, architecture, as the number of parameters is 

increased. Examples of multivariate GRBFN can be found in Musavi et al. (1992), 

Kassaam and Cha (1993). 

In a Hybrid GRBFN (Kassaam and Cha 1993) an explicit linear path is added in 

parallel to the GRBFN to give: 

M r -j 

} ' ( i ) = w ^ x + Y ^ ^ g : ^ [ - ( i - C y ) ^ 2 : y ( x - c ^ ) j (3.8) 
j=\ 

where w is a vector of linear weights. This model is very important in terms of 

network efficiency vs. complexity (i.e. size), whenever the interpolation problem can 

be divided into a linear and non-linear part. It has also been suggested (Girosi and 

Poggio, 1990) that convergence of non-linear methods is improved by the addition of 

a linear path. 
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Other extensions found in literature are the normalised GRBFN (Kassaam and Cha 

1993^ 

^ ^ ^ (3 9) 

k=\ 

and the connectionist normalised local spline (CNLS) (Jones et.al. 1990): 

M 
y =1 

e % p [ - ( x - c ^ )] 
A=l 

Where Gy is an additional vector of parameters. The terms G y ( x - C y )^, coupled 

with normalisation, provide a means to utilise information on the gradient of the 

desired function in proximity of each centre. This extension will be discussed shortly 

in the context of Gaussian Mixtures models. Clearly the models (3.8), (3.9) and (3.10) 

can be also derived for the mono-variate model (3.1). 

In Girosi and Poggio (1989), RBFN are studied as part of a more complex model 

given by: 

i=\ 5=1 

where (x) = 1...5'} is a basis of the space of polynomials 

^ with degree at most k-1. The model (3.10) is a polynomial generalisation of 

the hybrid model (3.8). 
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3.6. Training of RBFN 

A key aspect of RBFN training is the difference between linear and non-linear 

parameters. The theoretical link between RBFN and density estimation (section 3.7), 

together with the space mapping nature of the network suggests that the centres could 

be trained with an unsupervised algorithm (Musavi et ai, 1992; Bishop, 1995; Fung, 

et al, 1996). The goal of this phase should be some form of density mapping of the 

input space, without considering the relationship with the target data (unsupervised 

training). In other words, centres should be placed in a way to resemble the 

distribution of the inputs in the input space, regardless the associated dynamics of the 

target data. The second (linear) layer is successively trained with supervised linear 

techniques (MMSE estimate) to match the estimated input distribution with the target 

data. However, classic supervised optimisation methods like simplex or derivative-

based algorithms work equally well. 

Given a training set {X,T} of L examples and M basis functions, it is possible to 

derive a MMSE solution for 0 from (3.4) 

<D* = H^T7 (3.12) 

where is the pseudo-inverse of H introduced in section 2.5. The problem remains 

to find the MMSE solution for H, i.e. to find a good minimiser for first layer's free 

parameters. 

If we consider the training of a Gaussian RBFN, each node of the first layer has two 

parameters, the centre and width. The simplest approach is to select the M centres 

from a uniform sampling of the input space. Clearly the idea is to make a "copy" of 

the input distribution, and as such is an unsupervised approach. The assumption that a 

random sampling of the input set generates a faithful, reduced copy of the input's 

distribution is generally correct, if a large number of centres is chosen. However, this 

approach may lead to impractical, large networks. 
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In general, RBFN are affected by the so-called ''curse of dimensionality" from the 

very nature of the way they create maps. This problem is particularly severe when 

noisy patterns are presented to the network. These inputs obviously increase the 

dimensionality of the problem, but in fact represent a nuisance factor in determining 

the intrinsic dimensionality of the model. 

It has been shown (Barron, 1993) that the residual MSE falls as , irrespective of 

the dimensionality D of the input space. Conversely, a polynomial model with M 

coefficients generally decays as . Thus RBFN offer an advantage whenever 

we deal with high dimensional problems. The number of nodes can be reduced when 

the basis functions include a covariance matrix E . However, this significantly 

increases the number of parameters required to define a node. 

Another difficulty arises from the task of choosing widths G j . In principle, we 

require the width parameter to create a "smooth" mapping with high accuracy. 

Intuitively, large values of a j (broad Gaussians) make the mapping very smooth. 

Conversely, small values of a j (narrow Gaussians) are able to match the "fine 

detail" in the output dynamics. 

The problem of determining optimal widths is in principle non-linear. However, to 

trade-off narrow Gaussians against broad Gaussians, we can consider some measure 

of input space density around each centre c j . The approach developed in this work is 

to calculate the mean distance 5 j of the other centres from c j , and determine <j j 

ensuring that the Gaussian function h j ( r ) has a pre-determined value at the mean 

distance S j. This pre-determined value controls the trade off between smoothness 

and accuracy. A similar technique has been applied to multivariate Gaussians by 

Musavi et al, (1992). This approach will be more completely described in chapter 6. 

It will be also shown that the use of hybrid GRBFNs simplifies the problem of 

determining suitable width parameters. 
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A more general approach necessarily involves some form of non-linear optimisation 

based on iterative search techniques. Fletcher (1987) gives a comprehensive review of 

non-linear minimisation techniques. Nelder and Mead (1965) proposed an 

optimisation algorithm based on modified simplex technique. This algorithm is more 

completely discussed in appendix C and it will be applied in chapter 6. 

3.7. GRBFN and Gaussian Mixtures 

RBFN have a very strong bond with the field of density estimation. One density 

model, the mixture distribution (Titterington et a/.,1985; McLahan and Basford, 1988) 

makes the assumption that a stochastic process is the ensemble of M stochastic 

processes whose distributions have a simple parametrised functional form that is 

localised in space. 

In terms of density function, we can then write our global function ^(x) as a linear 

combination of class conditional densities J3( x | j ) 

p{j) is the prior probability of class j. These priors satisfy the constraints 

= 1 (3.14a) 
7=1 

0 1 (S-l^lb) 

Using Bayes's theorem, we can determine the posterior probability of component j 

having generated x 

(3.15) 



These posteriors, as functions of j, are the likehhood function of class j given the 

observed data x. The Gaussian mixture model is a mixture distribution with Gaussian 

class conditional densities 

/)( 7 ) = ^ ) i (3.16) 

(2%) I 

Maximum Likelihood methods like Expectation-maximisation (EM) algorithm 

(Dempster et. al, 1997) have been applied to optimise Gaussian mixtures. The EM 

algorithm is an iterative parameter updating procedure that combines Bayes's theorem 

together with gradient calculation to compute the maximum likelihood estimate of the 

parameters given the current training input and the previous parameter estimates. A 

review is given by Redner and Walker (1994). 

The formal similarity between Gaussian mixtures and GRBFN is evident. One should 

note that Gaussian mixtures only model the input distribution. There is no link to the 

output. In fact, the formal equivalence between the prior p{j) and the (pj parameter 

in RBFN is misleading. Priors p{j) model the relative influence of different classes 

in order to describe a density function of a variable x in . In RBFN (pj models the 

relative influence of different nodes in order to interpolate a function ^ R . An 

example of this difference is depicted in figure 1 for the 7-dimensional case. 

Figure 1. Gaussian Mixtures model the density function (dashed line) of the unlabeled data (white 
dots on the axis). RBFN mapping (solid line) attempts to interpolate the targets (black dots) 
associated with the data. In the example the target function is greater on the left side of the axis, while 
the input density is greater on the right side of the axis. 
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A possible solution is to discard the priors and calculate ^ with standard linear 

methods. A more generalised approach is given by the theory of probabilistic neural 

networks, PNN (Perlovsky and McManus, 1991; Streit and Luginbuhl, 1994). An 

intersting derivation for a MMSE interpolator based on PNN is given by Cha and 

Kassaam (1995). 

They model both input and output as realisations of two correlated processes X and Y 

described by a mixture of M Gaussian vectors = [ x ^ Y j \ in . The prior of 

each population j is p{j) - Xj, whilst its mean and covariance matrix are given by: 

(c. \ 

nij = 
W j 

V ^ y 

^7 
J-^J (3.17) 

Where Cy =£'[Xy], Wj =£'[Yy], and: 

^y. -E 

x,.x^ -c.cr 
J J J J J 

Y y V T l-w? 
J J J J 

= .Efx,.Y 
L J 

(3Ji8) 

; y J y ; 

From these assumptions Cha and Kassaam demonstrate that the MMSE estimate of}/ 

is given by: 



M r 

7=1'- ^ 

(3.19) 

A. gay ^ ( x - c , ) ^ Z 1 ( % - c , ) 

M 

1 4 
k=\ ^k 

J_ 
T . - i r ( ^ - c * Y Z (%-c& ) 

2 ^k 

which has the formal structure of a CNLS. It is also suggested that the EM algorithm 

can be used to train this network. 

3.8. GRBFN and Steepest Descent techniques 

GRBFN can be trained using classic line-search non-linear optimisation methods 

based on first or second derivatives. Given the MSE expression: 

L—\ L—\ 

n=Q n=0 

M 
|2 \ 

(3.20) 

it is straightforward to calculate the partial derivatives: 

BC X„ - Cj 

o\ 
(3.21a) 

a c 

a c , 

L-\ - C / ) 

«=0 
-gjicp 

| Z n - C ; 

(T? 

ii2 A 

(3.21b) 

j n=0 
-23%) 

I H 2 ^ 

(3.21c) 
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Analogous expressions can be obtained for second partial derivatives and the Hessian 

matrix used in Newton-like methods (Fletcher, 1987). Notice that given two generic 

parameters, a , , f i j , belonging to two different bases i,j 

0 f ; / ; (32% 
dUj dp 

3.9. RBFN and Regularisation theory 

RBFN possess a strong bound with the theory of regularisation (Tikhonov, 1963; 

Tikhonov, Arsenin, 1977; Morozov, 1984; Bertero, 1986; Poggio, Girosi, 1989; 

Girosi et al, 1995). Regularisation is a way to control the smoothness of a mapping 

introducing terms in the cost function that penalise non-smooth maps. By doing so, 

we make sure that the mapping does not overfit the data, and has a degree of 

smoothness to deal with patterns that have not been included in the training set. Hence 

regularisation can be also viewed as a generalisation technique. A regularised MMSE 

training attempts to minimise the quantity 

L—\ 
c = (3J3) 

«=0 

where Q is the regularisation term that is assumed to increase as the mapping overfits 

the data, and v is called the regularisation parameter. An example of regulariser for a 

one input, one output system is given by the class of Tikhonov regularisers (Tikhonov 

and Arsenin, 1977): 

R b f 

' r = 0 a 

(124) 

/ 

Without discussing the details of the formulation, it is clear that the regularisation 

term is inversely proportional to the smoothness of the mapping, since the derivatives 

of j (x ) will increase as the mapping becomes less smooth. 
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Girosi and Poggio (1989) proposed a regularised cost function that assumes the 

general form 

^ = (3.25) 

where Q is some differential operator. Non-smooth mappings will give large values of 

|i2[j^(x)]| and hence will be penalised. This approach leads to a more general 

network mapping given by: 

/» 
}<][)== ' (Zlll % | ) (3.26) 

7=1 

Where G is the Green's function of the operator QQ and is defined as: 

g { g [ G ( i , / ) ] } = g ( x - / ) (3.27) 

Q is the adjoint differential operator to Q. If Q is rotational ly invariant, then the 

Green's functions depend only on || x - x y ||, and so they are radial functions. If the 

differential operator Q is given by: 

/ = 0 # 2 ' ' 

where = ( v ^ y , = v ( v ^ J with V and denoting the gradient and 

Laplacian respectively, then it is proved (Weiss, 1987; Yuille and Grzywacz, 1988; 

Girosi and Poggio 1989) that the Green's function is a Gaussian with width a . 
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Bishop (1991b) gives another example of a regularisation term; 

«=0 ;=1 dX; 
(3.29) 

which penalises mappings with large curvature. The regularised MMSE solution 0 * 

can be found solving the system: 

M 0 = H ^ T (3.30) 

where 

L-l 
M = Z 

n=0 

D 

9%? 
(331) 

One of the simplest forms of regulariser is the weight decay regulariser (Hinton, 1987; 

Bishop, 1995) 

M 

i=\ 
0 ^ 0 (3.32) 

The intuitive idea is that overfitted mappings usually yield large weights, while 

smooth mappings yield smaller weights. This technique will be more completely 

investigated in chapter 7. 

3.10. Conclusions 

This chapter illustrates the basic principles and training techniques of RBFN. 

Originally developed in the context of exact interpolation, RBFN are able to generate 

a smooth interpolation of a set of scattered input-output patterns, under a reasonable 

set of conditions. The main advantage of RBFN is that it is possible to devise simple 

training strategies for the network parameters. In theory RBFN require the 

determination of a set of non-linear parameters. However the principle that the node's 

activation function is "localised" on an area of the input space determined by the 
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centre allows one to devise simple training strategies that overcome the necessity of 

non-linear training. These linear training strategies produce satisfactory results if a 

sufficiently high number of centres (i.e. nodes) is allowed. More accurate results can 

be obtained for smaller networks if non-linear techniques are adopted. 

The basic RBFN architecture can be easily extended to provide more efficient 

mappings in terms of the number of centres employed. An example is the hybrid 

architecture that implements an explicit linear path in the RBFN. 

RBFN have two interesting theoretical connections. The first is with the theory of 

statistical density estimation, specifically with the Gaussian Mixtures model. It is 

important to notice that density estimation and functional approximation are in 

principle two different goals. However by considering the joint densities of the input-

output pattern it is possible to put RBFN and GM into a single training framework as 

illustrated in section 3.7. 

Another important point in favour of RBFN comes from the theory of regularisation. 

This has been developed as a general methodology for approximation in order to 

ensure a smooth approximating function. This goal is achieved by including 

regularisation terms in the error function that penalise non-smooth mappings. It is 

possible to show that Gaussian RBFN satisfy one possible choice for the 

regularisation function. Other interesting aspects of RBFN with regards to the 

regularisation theory will be illustrated in chapter 7, in the context of generalisation. 
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4. ORTHOGONAL LEAST SQUARES REDUCTION 

4.1. Introduction 

In chapter 2, we have discussed the necessity of finding suitable techniques in order to 

determine the optimal size of a network (number of nodes). Clearly, the optimal 

number of nodes is a trade-off between the accuracy of the solution, and the 

computational requirements. An accurate match to the training pattern is generally 

obtained at the cost of a large network. Conversely a smaller network, which may 

satisfy practical constraints, will realise a poorer fit of the data. One should remember 

that, aside computational considerations, there are two other main reasons to keep the 

network size small. Firstly, noisy data require large networks, in order to match the 

random fluctuations of the training set's dynamics. Although it may show higher 

MSE, in this case a smaller network might be a better choice, since the lower MSE of 

a larger network is a consequence of a better match to the noise fluctuations. It can be 

assumed that a smaller network, properly trained, shows an higher resilience to noisy 

training patterns. The second reason regards the generalisation ability of the network, 

i.e. its ability to estimate the correct output when new inputs, not included in the 

training set, are presented at its input. A large network may easily become too 

specialised and loose its ability to represent the general characteristics of the signal 

rather than the characteristics of the particular realisation given by the training set. 

One possible strategy is to select an initially large set of nodes related to the training 

set (e.g. centres selected from the input set in a RBFN), and successively reduce this 

large number using a pruning algorithm. An alternative strategy is to start with a 

relatively small number of nodes, and successively add nodes according to some 

growing strategy. In this chapter, we will discuss a particular pruning technique, 

known as Orthogonal Least Squares algorithm, OLS (Chen et al, 1989, 1991). This 

technique, applied to single-layer networks optimised in the MMSE sense, reduces the 

dimensionality of the R mapping in the linear layer and produces a 

corresponding reduction in the number of nodes. 
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4.2. Pruning algorithms 

The input sequence of D-dimensional vectors x„ is mapped by the non-linear layer 

into the sequence of M-dimensional vectors for 

n = Q...L-\. The sequence h„ is linearly mapped into the output sequence 

y = 0 ^ h „ . l t i s realistic to assume that a large network always possesses a margin 

of redundancy in this mapping, and hence it is possible to find an optimal subset of 

M' nodes, M' < M, such that the performance using the mapping R'^ —>72 is 

relatively unaffected. In theory, the problem of finding a subset of nodes from an 

initially large population is difficult, since it requires the investigation of all possible 

combinations of M' nodes. A sub-optimal reduction may be obtained considering 

nodes individually, and at each step selecting the best node according to its 

contribution to the performance. In this way, the nodes are "ranked" according to their 

individual contributions with the lower rank nodes being removed to achieve the 

desired network size. This technique, referred as forward selection, it is sub-optimal 

in the sense that a group of two or more given nodes, whose combined contribution is 

large, might individually be ranked poorly with other nodes performing better than 

each single node in the group. 

Such a ranking strategy is commonly referred to as saliency of weights (Bishop, 

1995). After an initial training, the network is examined to assess the relative 

importance (saliency) of the weights. Typically some further training is required, and 

the procedure of training and pruning may be repeated for several cycles. There are 

various choices that can be made concerning the criterion used to assess the saliency. 

The simplest criterion is that smaller weights have smaller saliency, and therefore 

should be removed first. However, especially in non-linear networks, different nodes 

could have very different dynamic range, therefore the value of the weight might not 

reflect the saliency of the node. 

A more principled approach is to consider the contribution of each node in the 

reduction of the cost function. Such an approach considers the change in the cost 

function due to small variations of the weights. The variation of the cost function C 
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due to the weight vector's variation 0 + 53>, truncated at the second order, is given 

by: 

M •p.f M M 
(4.i) 

Where Hy are the elements of the Hessian matrix 

If the training process has converged, the first term in (4.1) vanishes. Hence the 

influence of each weight (pj is determined by the /-th row of the Hessian matrix (4.2). 

Le Cun et al. (1990) assume that the non-diagonal elements of the Hessian are null, 

and develop a pruning algorithm termed optimal brain damage. A technique that 

considers a non-diagonal Hessian matrix, termed the optimal brain surgeon, has been 

introduced by Hassibi and Stork (1993). 

If the cost function is the MSE, the function C ( 0 ) is quadratic and (4.1) assumes a 

very simple form. In section 4.3 we will see that the contribution of the node (i.e. 

weight) to the minimisation of the MSE is given by its "self-contribution", 

corresponding to the diagonal elements of the Hessian matrix, and by its interaction 

with other nodes ("cross-contribution") corresponding to the non-diagonal elements. 

Both these factors should be taken into account if one is to consider the full effect of a 

node removal. In section 4.3 we will see how in OLS the orthogonalisation phase, 

based on the Gram-Schmidt algorithm, allows one to separate the two contributions, 

and plays a crucial role in the process of determining the real importance of each 

node. 
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4.3. MSE and orthogonality 

The MMSE solution for the weight vector 0 is given by (2.21). The problem 

addressed by a pruning algorithm is to decide which of the terms hj{-) in (2.20) can 

be safely discarded with the minimum degradation of the MMSE. We denote the /-th 

column P; = {hi (XQ ) -Ay (x^ - i )Y of the intermediate space H the /-th regressor 

of the regression represented by equation (2.20). The regressor py is a vector in . 

Given the desired output (target) sequence T, it is easy to show that the contribution 

of the /-th regressor to the reduction of the MSE is proportional to a quantity called 

Error Reduction Ratio (Chen et al, 1989): 

V 

P f P," + P ; P ; 
J^i 

Note that the summation in (4.3) is a measure of the cross-correlation of the regressor 

/ with all the other regressors. Hence, if we discard p,-, we increase the MSE by the 

"self-contribution" (given by but also by the "cross-contribution" 

(j)j (pi p j p / - Hence, we also decrease the error reduction ratio of all the other 

regressors. Furthermore, the weight depends on the combined effect of all the 

regressors with the target sequence. 

Clearly, the problem of determining the best regressor, at each step of the ranking 

procedure, is not separable unless the cross-correlation terms is removed. We can 

transform the intermediate space H into another space W with the same span as H, 

where W describes a new set of M regressors w,- = [w/o •••W/(/,-i) ] ^ , / = 1. . .M 

that satisfy an orthogonality condition, i.e. w j w , =0,\/ i^ y . I n this case the cross-

contributions in (4.3) vanish and the saliency of w,- does not depend on its interaction 

with the other regressors. 
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Thus it is necessary to devise a procedure that orthogonalises the regressors p, in 

. The well known Gram-Schmidt orthogonalisation algorithm, in its classical form 

(CGS) or in its modified form (MGS) (Chen et al, 1989), provides an appropriate tool 

for this orthogonalisation. The MGS possesses superior numerical properties relative 

to CGS. The inclusion of a saliency criterion based on the error reduction ratio 

computed in terms of orthogonalised regressors forms the Orthogonal Least Squares 

Learning algorithm. 

4.4. Orthogonal Least Squares Learning Algorithm 

Orthogonal Least Squares Learning algorithm (Chen et al, 1989, 1991) is an effective 

technique to reduce the number of nodes in a linear-in-the-parameters network (like 

single-layer networks) by means of a Gram-Schmidt orthogonalisation, coupled with 

a saliency criterion that finds the optimal regressor at each step of the 

orthogonalisation procedure. This criterion used is to choose the orthogonal regressor 

at step k with the highest error reduction ratio (4.3), once the cross-contribution has 

been eliminated, and use this regressor as the A;-th basis of the representation. We now 

describe the algorithm using the CGS algorithm; 

1) At the first step, for each / = 1.. . M , we compute the regressor's gain: 

where = p / . Then we compute the error reduction ratio: 

(4.5) 
' T ^ T 
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and determine the first orthogonal basis by choosing the index /j that 

maximises err ,• 

: ii =argYnax{err j)\,i = \...M (4.6) 

Let us consider equations (4.5) and (4.6) in more detail. Each regressor p,- is 

considered as if it was the only element in the regression series. In other words, at 

the first step the algorithm selects the best single regressor that approximates the 

desired target signal T. The regressor gain (4.4) the MMSE solution (weight) for a 

network made of a single node. 

2) At the k-th step, where k>2, for i = \...M, / € {/j ...i }, Z] < 

compute: 

a (4/7a) 

==1P; TV; (4 7b) 
j 

These equations have a simple interpretation. Equation (4.7b) orthogonalises each 

remaining candidate p,- / = 1 . . .M, f with respect to the set of 

orthogonal regressors already found, w, - - w , . To obtain this orthogonal 

vector, the projection of p/ over , is equal to Wy , and is 

subtracted from the non-orthogonal regressor p , . Equation (4.7a) is an ancillary 

equation that calculates the projection of p,- over Wy (scalar product, divided by 

the squared norm of w^). 
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The k-ih orthogonal regressor will be chosen using the following equation: 

err 
T ^ T 

(4.8a) 

where 

g (4jb) 

And by substituting (4.8b) in (4.8a) we can express the error reduction ratio in 

terms of the coherence function: 

T ^ w 
0L8c) 

We can either stop the algorithm when we get the required number of regressors (i.e. 

nodes) or alternatively when we get a satisfactory MSE (compared with the MSE 

obtained using the original full set of regressors). 

It can be easily shown that the orthogonalised problem corresponds to a MSE 

equation where the cross-correlation matrix W^W is diagonal. Furthermore, the 

columns of H (the original regressor set) will be related to the columns of W by an 

upper triangular matrix; 

H = W A = W 

1 

0 
(%]2 

0 0 1 

(4.9) 

Equation (4.9) is the key to obtain the desired reduction, since the reduced orthogonal 

set W' with M' <M corresponds to an equally reduced, non-orthogonal set H 
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A relation similar to (4.9) may be obtained, that relates the MMSE weights (pj of the 

non-orthogonal set to the weights g j , through the matrix A. Alternatively, one may 

choose to recalculate the weights of the reduced network using equation (2.21). 

The previous formulation of the OLS algorithm is based on the classical form of the 

Gram-Schmidt algorithm. In this formulation, at each step k the remaining regressors 

are orthogonalised with respect to the previously found k-\ orthogonal regressors, and 

then the A:-th orthogonal regressor is found. Experimental results (Rice, 1966) and the 

theoretical analysis (Bjorck, 1967) show that, if H is ill-conditioned, the columns of 

W will soon loose their orthogonality and re-orthogonalisation becomes necessary. 

The modified Gram-Schmidt (MGS) orthogonalisation (Bjorck, 1967) possesses 

superior numerical qualities (Chen et al, 1989). Once the (t-l)-th regressor have been 

found, the remaining columns of H are orthogonalised, and the A:-th regressor is 

found. The first step of the OLS based on MGS is the same as that used in the CGS 

procedure, according to equations (4.4), (4.5) and (4.6). However, using MGS the 

remaining M-1 non-orthogonal regressors are orthogonalised with respect to prior 

to the next iteration. Hence at the A-th step, the regressors have been already 

orthogonalised to the previous k-2 bases. Hence equation (4.7b) is reduced to; 

= P ; w , - (4.1 Oa) 

where p/ denotes the regressor that has been orthogonalised with respect to the 

previous k-2 orthogonal bases. The target sequence is also orthogonalised: 

Tr== T - , (4.lot,) 

It is important to note that, in absence of round-off errors, the two procedures are 

equivalent. 
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4.5. Matrix form of the OLS algorithm 

It is convenient to express the OLS algorithm, in its MGS form, directly in terms of 

the matrices R and P as in (2.21). Specifically in terms of their elements and . 

Equation (4.4) can be expressed as: 

and consequently the error reduction ratio can be computed as follows: 

(zn"; (412) 

Note how these two quantities depend on the diagonal elements of R. The MGS 

orthogonalisation is calculated on the z-th column and row of R and the z-th element 

of P. At the A-th step the projection of the /-th candidate (4.7a) is calculated as: 

7 = 4 - 1 , ( 4 i3 ) 

The elements r , / ' , / it. /j ...z^_j o f R and P are orthogonalised using: 

The matrix formulation of the OLS algorithm is useful when the direct computation of 

the correlation matrices R and P is impractical. For instance, if the regressor's length 

L is excessive the computation the scalar product = wfwj for the whole sequence 

imposes a heavy computational load. In this case, the computation of the correlation 

matrices can be split into smaller training sets, and the overall result is obtained by 

summing the results and applying OLS directly on the final matrices. 
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4.6. Conclusions 

The computational effort is a factor of paramount importance when designing a de-

interlacing system. Single-layer networks easily incur in the so-called "curse of 

dimensionality" by delivering performance improvement at the cost of increased 

complexity. Improper training may lead to excessively large networks. A possible 

strategy is to train an initially large network and successively to remove those nodes 

whose contribution to the goal is somehow least relevant. Such a strategy is known as 

saliency of weights. If the cost function is the MSE, it is easy to determine a saliency 

function for the linear parameters. The Error Reduction Ratio in (4.3) accounts for the 

individual contribution of each node to the reduction of the MSE. 

In order to select an optimal subset, one should consider all the possible combinations 

of nodes. This is reflected in (4.3), since the contribution of the individual node 

depends on the other nodes. A sub-optimal strategy is represented by Orthogonal 

Least Squares techniques. A Gram-Schmidt based orthogonalisation is coupled with 

the Error Reduction Ratio in order to produce a triangular decomposition of the 

normal equation where the orthogonal basis have decreasing saliency according to 

(4.3). The principle is that at each step of the algorithm, each individual node is 

assessed in its ability to reduce the MSE. 

Some care must be taken in order to ensure a numerically robust algorithm. This is 

because as the orthogonal isation proceeds, the remaining regressors yield output 

values closer to the limits of the available numerical range. It has been observed that 

the Modified Gram-Schmidt algorithm is less prone to this kind of problems. A matrix 

formulation of the algorithm is also provided that allows the orthogonalisation of long 

training sequences of data to be split in smaller batches of data. 



5. WIENER AND VOLTERRA DE-INTERLACING 

5.1. Introduction 

In this chapter we will discuss the results obtained by de-interlacing the picture in 

figure 1 using Wiener linear filters and Volterra series. The odd field and the even 

field are obtained from the odd and even rows of the picture. The even field is 

sampled to produce the input set, and the even field is used to obtain the 

corresponding target set. 

pixel value 

Figure 1. (a) "Girl" picture (301x301 pixels), (b) histogram (percent of total number of pixels). 

In choosing an appropriate de-interlacing system based on these two techniques, one 

is presented with the choice of different architectural alternatives. The choice of a 

proper filter aperture D is an immediate concern in the design of a de-interlacing 

system. Realistic systems are limited by computational constraints, usually 

determined by speed requirements and hardware limitations. Therefore, it is of no use 

to obtain good performance with a broad aperture, if this choice leads to an unfeasible 

architecture. Moreover, it will be shown that, at least for the linear case, there is an 

aperture limit beyond which there is no significant gain in performance. The Wiener 

and Volterra interpolators are tested with the apertures depicted in figure 2. Note that 

in some cases, the same number of pixels is used in different apertures. The aim of 

this is to show the relative importance of vertical and horizontal information in the 

recovery of the original field. It will be shown that the vertical axis yields most of this 
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relevant information for the linear case. However in the application of the Volterra 

series, the horizontal taps will play an important, albeit secondary, role. Another point 

of concern with Volterra series is the choice of the order p. In chapter 2 we have seen 

how p determines, together with the sampling aperture D, the number of branches in 

the Volterra network. 

-0~~0—o~ 

J>_J) A—()-

r^TTT 

Figure 2. Sampling apertures. The black pixel is the pixel to be estimated. There are various apertures 
using the same number of pixels. In each case, the best shape (see table 1) is highlighted using a 
dotted frame. The pixel numbering of the elements of the input vector x is from left to right, top to 
bottom as shown for aperture 8,. 



The relationship between the order of the series and the order of the statistics of the 

training signal has also been discussed. This relationship helps us to determine a 

reasonable order for a Volterra series that produces a feasible de-interlacing system. 

In figure 1 the histogram of the single pixels comprising the picture, normalised to the 

number of pixels, is plotted. Clearly the pixel histogram can not produce an estimate 

of the joint input-target density, p{x,t) which is the problem we seek to solve. 

However, it does produce an estimate of all the marginal distributions of p{x,t). We 

can clearly see how the histogram is skewed and plati-kurtic (table 1). Hence it is 

reasonable to assume that the unknown distribution ought to be described at least in 

terms of its fourth-order moments, which implies that at least a third-order Volterra 

series should be implemented. 

Gaussian N(0.1299, 0.1522) "Girl" (normalised) 

mean 0 J 2 # 0.1299 

variance 0.1522 0.1522 

skewness 0 -0.2827 

kurtosis 3 24549 

Table 1. Higher-order moments for the picture "girl" (normalised) compared to the moments of a 
Gaussian distribution with the same mean and variance. 

5.2. Wiener Linear Filters 

The results for the Wiener filters (2.12) with the various apertures in figure 2 are 

shown in Table 2 and the MSE plot is shown in figure 3 (where for a given aperture 

size only the result from the best shape is plotted). Regardless of the aperture's shape 

and size, it is evident that most of the information is drawn from the closest vertical 

neighbours of the target pixel, see figures 4 and 5. In fact, a reasonable linear 

interpolator merely computes an average of these two values. Note the small MSE 

improvement when apertures with some horizontal extent are used (e.g. 8,) compared 

with purely vertical apertures (e.g. 82). This implies that horizontal information plays 

a minor role in the estimation of the output. On the other hand, apertures that do not 

use vertical information (e.g. 83 and 84) produce worse results. 
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2 4, 42 61 62 81 

bias -0.2100 -0.3057 0.0345 -0.1619 -0.0211 0.0266 

MSE 1.2369 2.7737 1.0083 1.1916 0.9971 0.9893 

82 83 84 12, 122 123 

bias -0.0040 -0.0661 -0.0469 0X%82 0.0251 -0.0880 

MSE Oji&K 2.5169 2.3406 &97M 0.9885 2.5147 

16 18 22 24 

bias 0.0277 -0.0193 -0.0198 -0.0041 

MSE 0.9773 0.9655 0.9634 0.9624 

Table 2. Output MSB, Wiener filter (bold; optimal shapes). 

1.25 

8 12 16 
filter aperture (optimal) 

Figure 3. Output MSB vs. filter's aperture. 

The smoothing artefacts introduced by linear filters can be readily explained. The 

effect of a linear filter is that the outcome will be roughly equal to the averaged 

luminosity of the closest neighbours. If these differ by a significant amount, like for 

example in a high-contrast area of the image, the resulting output will have an 

intermediate value, producing the smoothing effect. The "jagging" artefacts are a 

peculiarity of de-interlacing on oblique edges. Since only the interpolated field will be 

smoothed, that will create a pattern of alternating sharp and smoothed edges. 
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One can see an overall 22% MSE improvement in moving from a 2 to 24 pixel 

aperture, with an associated increase of 1100% in the number of pixel values 

processed. Moreover, the performance (figure 3) rapidly flattens and there appears to 

be no reason to assume that a further increase in the aperture size will yield significant 

increases in performance. 

Aperture 2 aperture 24 

0.6 
0} 

frame rows -7 .2 frame columns 
Frame row s^ frame columns 

Figure 4. Filter weights for 2 and 24 pixel apertures. 

linear weights 

Figure 5. Wiener optimal weights for aperture 8,, plotted on a one-dimensional axis. 

It is also evident that the influence of the bias is negligible. In 8 bit precision, we can 

assume that the bias is zero for any aperture. This is easy to explain, considering that 

the bias accounts for the difference between the average value of the vertical 
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neighbours and the average of the target. Since these pixels come from the same 

frame, one might anticipate that this difference is close to zero. 

5.3 Volterra interpolation 

The results for a 3"" order Volterra deinterlacer employing each of the sampling 

schemes proposed in figure 2 are shown in table 3. Although powerful, Volterra series 

are computationally demanding and so the number of pixels in the aperture and the 

degree of the polynomial must be limited. It has been assumed that a reasonable 

model is obtained by a third order series. Collis et al. (1997) suggests that an aperture 

like 8] and a 3"̂  degree Volterra series (164 nodes) is likely to be an affordable target 

in terms of hardware. A 12-taps aperture requires 454 nodes giving a relatively 

modest increase of the performance (table 3). An 8-pixel, fifth order series will have 

the unrealistic number of 1286 nodes. For these reasons, we will consider orders no 

higher than 3. Furthermore, the aperture 8, will be the only aperture considered in the 

following chapters. 

The results for the Volterra series are compared with those for linear interpolation in 

figure 6. Some qualitative comparison between the two techniques is given in figures 

7.a and 7.b. It is evident that the Volterra deinterlacer performs significantly better 

than the linear filter. However note how the rate of improvement over the linear filter 

decreases when the aperture becomes larger than 4. In the larger apertures many 

coefficients prove to be redundant (Section 5.4). Table 3 indicates that apertures with 

horizontal taps alongside the vertical ones are more effective than in the linear case, 

for example comparing the performance of apertures 8] and 82 with the corresponding 

performance with linear interpolation. Horizontal information plays a more important 

role in the higher order kernels. 

Figure 8 shows the absolute value of the linear coefficients of the Volterra model for 

the aperture 8,. These appear very similar to the isolated linear filter (figure 5). The 

full Volterra coefficients for apertures 2, 4], 8, and 18 are plotted in figure 9a and 9b. 

When examining figure 9 one should realise that the coefficients are on different 

scales depending on the kernel order they refer to. 
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lattice 

2 4. 42 61 62 8, 

Number of 
coefficients/ 
degree 

jst 2 4 - 6 - 8 
Number of 
coefficients/ 
degree 2"" 3 10 - 21 - 36 

Number of 
coefficients/ 
degree 

3rd 4 20 - 56 - 120 

MSE 1.1082 1.1082 0.7850 0.9451 0.7575 0.6956 

82 83 84 12, 12% 123 

J St - - - 12 - -

2"^ - - - 78 - -

3rd 
- - - 364 - -

MSE 0.7432 2.1210 1.8335 0.6521 0.6715 2.0314 

16 18 22 24 

1" 16 18 22 24 

2..d 136 171 253 300 

3rd 816 IMO 2024 2600 

MSE 0.5947 &5751 0.5025 0.4676 

Table 3. Output MSE, 3"" order Volterra series. The best results for each aperture are highlighted. 

12 aperture 16 18 22 24 

Figure 6. Volterra (—) and Wiener (~) de-interlacing. 
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Figure 7.a. "jagging" artefacts in linear interpolation and edge preserving properties of Volterra 
interpolation. Aperture 8, has been used for both systems. 
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(a) (b) 

... . I. V " - . . • 

• ' > • 

1 ^7-

Figure 7.b. Difference field with respects to the target field, (a) Linear filter (b) Volterra series 

The reason for this characteristic outcome is partially to be found in the dynamics 

involved in the solution and application of the Volterra series. It is hence incorrect to 

deduce, from the analysis of the weights alone, that the linear kernel is more 

important than the quadratic and the cubic kernels. In the linear case, the regressor h 

spans a cube in 7?^ bounded by [-127,128]. In the Volterra case, second order 

regressors will span a subspace bounded by [-127^,128^] and third order regressors 

will be bounded by [-127^,128^]. 

In fact, if we take into account the different dynamics of the first, second and third 

order nodes we have a different picture about the relative importance of the kernels. 

In figure 10 the dynamics of the matrices P and R are shown, and it is possible to 

appreciate the effect of varying scales in the matrix. Figure 11 a shows the different 

dynamics of the matrix R calculated for the aperture 8i. The brackets indicate the 

kernel order. It is evident how the 3'̂ '̂ -order dynamics dominate the dynamics of the 

first and second order kernels. Figure l ib , where R is normalised to the local dynamic 

range, shows a clearer picture of the relative magnitude of each order of kernels. 

However, it would be incorrect to draw any assessment about the relative importance 

of each kernel from this picture. One should remember that figure 1 Ob is normalised 

to the local dynamics. Furthermore, we have not performed a similar analysis on the 

cross-correlation vector P. A more structured approach is presented in the next 

section, where OLS reduction is applied to the series. 
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1 3 Linear Volterra kernel 6 8 

Figure 8. Volterra linear coefficients (aperture 8,), plotted on a one-dimensional axis. 

quadratic inear cubic 
Volterra kernels 

Figure 9a. Volterra kernels for apertures 2 (a) and 4; (b). 
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' • (n; ' ' - t' -t 

1 18 189 1329 

Figure 9b. Volterra kernels for apertures 8, (a) and 18 (b) (log x-axis). 

Figure 10. Dynamics of P and R for 3rd order Volterra series. 
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x10 ' 

2.5 

165 

Figure 11a. Cross-correlation matrix R of the Volterra kernels, aperture 8, 

3000 . 

165 

5000 

165 1 9 

Figure 1 lb. Same matrix as in figure 10a, normalised to the relative dynamics. 
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5.4. Orthogonal Least Squares Volterra series 

It is reasonable to question whether the Volterra model gives a correctly sized 

network, i.e. if the system, whose number of nodes is determined a priori by the 

degree and aperture size, rather than by the observed complexity of the data, is 

redundant. From a visual analysis in figure l ib , clearly appears that the regressors are 

strongly correlated. It is natural to question whether OLS might lead to solutions 

using a reduced number of nodes but yielding the similar MSE as the full Volterra 

scheme. 

til 0.7 

tu 0.7 

10 1620 25 

8 0 7 

16 20 25 50 75 100 125 
orthogonal regressors 

Figure 12. Orthogonal MSE sequence for the Volterra series, apertures 42 (a), 8, (b) and 18 (c). 
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In figure 12 we show the MSE for the OLS Volterra series with apertures 42, 8] and 

18. It is apparent that the corresponding series are highly redundant, and an advantage 

in terms of efficiency of the network may be obtained by using OLS. However, the 

picture shown in these plots may be misleading when we want to estimate the 

corresponding reduction in the computational load required. In figure 13, the degrees 

of the orthogonalised regressors are shown. As one can see, although the first four 

regressors are always linear, the successive regressors are mainly third-order 

regressors. Hence, the reduction in the network's size does not correspond to an equal 

reduction in the computational load, since although we can use a smaller number of 

nodes to obtain approximately the same MSE, these nodes will be largely drawn from 

the third-order kernel, that requires the highest computational effort. This point will 

be further discussed in chapter 6, where we will compare the performance of RBFN 

and Volterra series. 

(a) 

34 

(b) 

164 

O 9 9 O 9Q09V 

(c) 

1 1329 

orthogonal regressors 

Figure 13. Degree of the orthogonal Volterra regressors, apertures 4% (a), 8, (b) and 18(c). 
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Figure 13 confirms our early observation that the de-interlacing problem should be 

addressed by a series whose order is at least 3. Moreover, they show how the second-

order kernels play a lesser role, compared to linear and cubic ones, in minimising the 

MSB. In figures 14a, 14b and 14c we can see the composition (degree and lattice 

position) of the monomials forming the first ten orthogonal regressors, for the three 

apertures considered. 

Wi Wio 

o o o o o o © © o © 
o o o o © © © © o © 
# e • • e # # • • # 

o o o o o o © © o © 
o o o o o © © © o © 

Figure 14a. Monomial composition of the first 10 orthogonal regressors, aperture 4;. The number 
in the circles show which pixels are used in the regressor, with their degree in the monomial. 
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Figure 14b. Monomial composition of the first 10 orthogonal regressors, aperture 8,. 

81 



ooo ooo ooo 
ooo 
ooo ooo 

ooo ooo ooo 
ooo 
ooo ooo 

ooo ooo ooo 
ooo 
ooo ooo 

ooo ooo ooo 
ooo 
ooo ooo 

ooo ooo ooo 
ooo 
ooo ooo 
ooo ooo ooo 
ooo 
ooo 
ooo 

ooo ooo ooo 
ooo 
ooo ooo 
ooo ooo ooo 
ooo 
ooo ooo 

ooo ooo ooo 
ooo 
ooo ooo 
ooo ooo ooo 
ooo 
ooo ooo 

Figure 14c. Monomial composition of the first 10 orthogonal regressors, aperture 18. 

In each figure the values in the surrounding pixels indicate the pixel degree in the 

monomial. It is confirmed that the four closest vertical neighbours play the most 

important role. Note also how, in the composition of the third-order nodes, some 

vertical information, coming from the four closest vertical taps, is always present. 

However, in the case of the apertures 8] and 18, this vertical information is 

"modulated" by some horizontal information. This observation confirms the 

importance of horizontal information in reducing the MSB. We could view these 

third-order nodes as being first-order, with adaptive weights formed by the product of 

the MMSE weight and some other taps, mainly horizontal. It appears that the vertical 

information is adapted to some local measure of contrast/luminosity. A 
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comprehensive analysis of the nodes' composition in terms of their importance is 

however beyond the scope of this thesis. 

5.5. Conclusions 

This chapter has provided a significant overview on the application of linear and 

polynomial models to spatial de-interlacing. The experiments clearly show how 

Volterra-based de-interlacing produces a superior result compared to linear filters. 

They also provide some interesting insights into the way Volterra series exploit their 

internal structure to produce the mapping. 

Firstly, a set of 16 sampling lattices has been selected to carry the experiments. The 

apertures increase from 2 to 24 pixels, and for each aperture several pixel 

arrangements are presented by stretching the lattice either in the vertical or the 

horizontal direction. The goal is to show how vertical and horizontal information play 

different roles in reducing the error. 

These 16 considered in the experiments sampling lattices generate the training sets 

used to calculate a corresponding number of linear filters. The results clearly show the 

main limitations of linear interpolation. It is clear from the MSB plot that the error 

curve quickly flattens and there is little gain in further increasing the aperture. This is 

dramatically reflected in the much higher value of the weights corresponding to the 

vertical pixels, most noticeably the two close vertical neighbours. It is clear that the 

output value is mainly dependent on local vertical information and that explains the 

rapid flattening of the MSB curve. The resulting linear filters basically compute a 

local vertical average. The immediate effect is that contrasted areas get blurred. The 

alternation of sharp (source) and blurred (interpolated) lines in the de-interlaced frame 

eventually produces the observed "jagging" artefacts. 

The picture changes when Volterra series are applied. The blurring is clearly reduced 

and the jagging mitigated. This time the experiments show that the horizontal 

information play a major role in achieving a much improved performance. Although 

the linear kernel remains basically unchanged, the plot of the higher order kernels 

shows a rich set of inter-pixel dependencies. 
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The application of OLS shows that the Volterra series is redundant. This is due to the 

way the series is initially built by fixing the degree p and the aperture D. OLS shows 

how the cubic terms play a major role in the error reduction. The observation of the 

first orthogonal regressors suggests an interpretation of the Volterra series in terms of 

adaptive filters, where the horizontal pixels provide local measurements of contrast 

and luminosity to change the values of a vertical linear filter. 
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(5. (]u4LlJE;s;LfLb4 RBITfJ 

6.1. Introduction 

In the previous chapter we have discussed the application of linear filters and Volterra 

series to de-interlace a single frame. In this chapter we will discuss the application of 

Gaussian Radial Basis Function networks (GRBFN) to de-interlace that same frame. 

RBFN differ in many aspects from polynomial techniques like the Volterra series, as 

already discussed in chapter 2. In Volterra series, the non-linear element is not 

involved in the training process. In other words, once one has determined the degree p 

of the series and the dimensionality D of the input vector, the dependence of the 

output on the network's parameters is linear, and consequently parameters can be 

simply calculated, if a MSE cost function is assumed. This happens because the non-

linear structure of the network is determined once and for all by D and p. Conversely, 

in RBFN the non-linearities are parameterised, and therefore we have a non-linear 

dependence of the output on these parameters. Hence it is impossible, even using the 

MMSE training, to determine the optimal non-linear parameters by solving a linear 

system of equations like (2.21). Therefore, non-linear training plays an essential role. 

However, being a single-layer network, RBFN benefits from linear techniques in 

determining the optimal value (in the MMSE sense) of its linear parameter vector 0 . 

Together with the simple solution, equation (2.21), for the linear parameter vector, 

orthogonalisation can be efficiently applied to reduce the number of nodes and the 

associated complexity of the network. 

In this chapter we will cover all these aspects. Firstly, we will briefly recall the 

problems related to the choice of the aperture (already discussed in the preceding 

chapter). This will lead us to choose a single aperture for the experiments. Then, we 

will determine the architectures to be used in the experiments, that have been 

described in chapter 3. 
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Secondly, we will describe a suitable procedure to determine the non-linear 

parameters of a RBFN with Gaussian kernels (i.e. the centres and the width 

parameters) that does not involve non-linear techniques but rather uses a series of 

heuristic considerations. This will involve an initial choice of a large number of nodes 

in the network. In order to obtain a reasonable size for the network, we will 

successively apply the OLS reduction algorithm. The results of these experiments will 

be discussed. An algorithm (iterative orthogonalisation) will also be proposed in order 

to apply OLS to large sets of nodes that generate correlation matrices too large to be 

reduced in a single application of the OLS algorithm. 

Finally, a non-linear optimisation technique, the Nelder-Mead modified simplex 

algorithm, discussed in detail in appendix C, will be applied to obtain further 

improvements. The application of this technique to an initially large network pruned 

via OLS will be compared to the application of the same technique to a small, 

inefficient, randomly initialised network. 

Throughout the results will be compared with those obtained with the linear Wiener 

filter, as well as the S"' order Volterra series, both using the same aperture. In order to 

evaluate the performance in terms of computational complexity, a simple cost analysis 

outlined in appendix B will be used. The cost comparison will be performed initially 

with a Volterra series with its full set of nodes. Successively, the series will be pruned 

using OLS and a more detailed cost comparison will take place. 

6.2. Sampling aperture, network size and architecture 

From the analysis in the previous chapter we have adopted an 8 pixel aperture 

(aperture 81) for use with a 3'̂ ^-order Volterra series. This was based on the evidence 

that such an aperture produced a reasonable MSB minimisation compared to larger 

apertures, with a number of nodes (164) that was considered feasible. This choice was 

made by considering a variety of other apertures. Smaller apertures produce 

somewhat poorer results, whilst the improvements obtained with larger apertures do 

not justify the resulting increase of complexity. Furthermore, the size of the series 

obtained using the aperture 81 can be reduced by OLS without excessively degrading 

the performance. 
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In order to restrict the number of experiments, and to provide a comparison with 

Volterra series, the RBFN has been implemented using the aforementioned 8, 

aperture. Clearly, this decision is also justified by the fact that we want to study how 

the RBFN deals with the same amount of information provided to the Volterra series. 

However, as already stated, for a RBFN the number of nodes M is a free parameter. 

Based on some rough estimates of the computational cost of a RBFN network 

(appendix B), we deduced that a RBFN network, using the 8| aperture, should be built 

with no more than 10-30 nodes in order to be computationally comparable with the 

3 ""-order Volterra de-interlacer. 

Test will be conducted involving larger networks, which will be successively reduced 

to the target size by application of the OLS algorithm. This point is very important, 

because the idea of selecting a large network and successively pruning it by the 

application of OLS is the basis by which we will try to overcome the need for a non-

linear training stage. The following section discusses this approach, and the 

experimental evidence will provide its justification, as well as showing its limitations. 

The final point covered in this section is the choice of the network's architecture. We 

assume that the kernels are Gaussian. In chapter 3 we have shown different possible 

architectures that generally go under the guise of RBFN. In this chapter we will 

consider two architectures. One is a standard RBFN with Gaussian kernels. The other 

one is the hybrid GRBFN (HGRBFN) that has an explicit linear kernel in parallel to 

the RBFN core. It will be shown that the hybrid scheme presents superior 

performance compared to the non-hybrid architecture, especially when the number of 

nodes is reduced. This superior performance is obtained at a very little increase in 

computational cost. 

6.3. Heuristic choice of centres and determination of width parameter 

As already discussed in chapter 3, a possible way to choose a set of centres is to pick 

them randomly from the input set. If the number of centres M is large enough, this 

approach leads to a set of centres which mimics the distribution of the input set. 

Throughout it has been presumed that in a large network the exact functional 
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expression of the non-linear kernels is not critical to the determination of an effective 

interpolation. One way to understand this is to imagine a network with a centre for 

each input. In this case, the functional expression of the kernel may assume the trivial 

form of the unitary impulse 

A ( | | % - C y | | ) = A ( n ) = l Q (6 .1) 

and the linear weight corresponding the i-th input is equal to the /-th target. 

= f; (6.2) 

Clearly such a network completely lacks any form of generalisation and, due to the 

absence of a width parameter, its input-output mapping is extremely non-smooth. 

However it is clear that in such hypothesis the problem of finding the non-linear 

parameters (i.e. centres and widths) is trivial. It seems then likely that, when the 

number of centres is large, the non-linear problem can be addressed in a simple way. 

As we will see, this assumption fails dramatically whenever a small number of centres 

(10-30) is used. Computational problems and the need for sufficient generalisation 

(i.e. avoiding over-fitted interpolators) suggest that M should be smaller than 1000. 

One also need to consider how to determine the width parameter for the Gaussian 

function. A possible approach was introduced in section 3.5, based on the average 

distance of each centre from the other centres. This technique is now described in 

detail. Given the /-th centre c,, the average distance 5, of c, from the remaining 

centres Cj is computed 

This mean distance is used to determine the width parameter by specifying the height 

7 of the Gaussian function at the distance 5, from the centre c, 



y - * ( g , - ) ) (6 .4) 

max {h{ ri )] A(0) 
r e a + 

We call Y the overlap factor since it controls the degree to which the kernels overlap 

each other, and it follows that 0 < 7 < 1. In principle, a different 7 can be used for 

each node; however, this adds to the problem of determining a suitable overlap for all 

nodes. Thus, a single 7 is used for all the centres. Since A,(<5,)= e x p ( - 5 ; ^ / ( 7 f ) , of 

is determined using 

2 a / 
cr? == ! — (6.5) 

Note that fixing 7 for all the centres results in different widths for each node. There 

remains the problem of finding a "good" overlap. The trade-off is between smooth 

mapping (i.e. broad Gaussians, 7 - ^ 1 ) and "crisp" mapping (i.e. narrow Gaussians, 

7 - * 0 ) . The two alternatives will be heuristically discussed in the next two sections. 

6.4. Random selection of centres 

This section presents the results of GRBFN and HGRBFN de-interlacing using the 

criteria previously considered to select the non-linear parameters. Centres are 

randomly selected from the input set, and the error is evaluated for 10, 25, 50, 100, 

250, 500 and 1000 centres. In order to account the variability of the MSB arising from 

the random selection process, trials are independently repeated 10 times for each 

network size, architecture and width factor. The width parameters have been chosen 

according to the criteria in section 6.3, and overlap factors 7 of 0.1 (narrow Gaussian) 

and 0.9 (broad Gaussian) have been employed. 

The results are detailed in figure 1 and tables la, b, c and d. The maximum, minimum 

and mean value of the MSB are reported for each value of M. Note that the results 

have been compared to those obtained in chapter 5 using the S'^-order Volterra series 



and the linear filter. The curves in figure 1 allow one to understand the general 

behaviour of the system. Firstly, one can see how random selection progressively fails 

as the number of centres decreases. The results confirm our previous assumption, 

since a large number of centres produces a good, consistent performance, with a 

negligible difference between the maximum and minimum value. 
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Figure 1. Random selection of centres for GRBFN and HGRBFN, mean values and min-max variation. 

The broad Gaussians (7 = 0.9) help to reduce the MSB degradation for small M, but 

prevents the network from obtaining good MSB reductions when the number of 

centres increases. The reason is that as the number of centres increases, a greater local 

definition is obtained by narrowing the Gaussians (y = 0.1). On the other hand, 

narrow Gaussians fail dramatically when M i s small. 

These results also indicate that the HGRBFN structure achieves better results than the 

standard GRBFN when narrow Gaussians are employed. Clearly, the explicit linear 

path in HGRBFN assures that a reasonable linear de-interlacing is always achieved, 

even in areas of the input space where the narrow Gaussians fail to produce a good 

input-target mapping. The difference between the two structures is reduced for the 

broad Gaussians. This is because the broad Gaussian functions are better able to 

mimic linear functions with a smaller number of centres. Thus the explicit linear path 

adds little extra capability. 
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MSB NUMBER OF CENTRES M 

10 25 50 100 250 500 1000 

Min 3.9990 2.0805 1.2357 0.9589 0.7029 0.6301 0.5633 

Mean 7.9266 2.7452 1.5258 1.0229 0.7202 0.6364 0.5679 

Max 17.1336 3.6930 2.0527 1.1112 0.7440 0.6432 0.5730 

Table l.a. GRBFN, randomly initialised, f=0.1 (Wiener MSE=0.9893. VolterraMSE=0.6956). 

10 25 50 100 250 500 1000 

Min 1.3618 0.9270 0.8656 0.7949 0.7588 0.7151 0.7043 

Mean 1.6702 0.9578 0.8869 0.8129 0.7736 0.7226 0.7093 

Max 2.2181 0.9867 0.9068 0.8388 0.7982 0.7315 0.7151 

Table l.b. GRBFN, randomly initialised, y=0.9. 

10 25 50 100 250 500 1000 

Min 0.9783 0.9036 0.8697 0.7937 0.6868 0.6232 0.5606 

Mean 0.9849 0.9563 0.9051 0.8009 0.6997 0.6260 0.5636 

Max 0.9882 0.9744 0.9381 0.8125 0.7103 0.6285 0.5673 

Table I.e. Hybrid GRBFN, randomly initialised, 7=0.1. 

10 25 50 100 250 500 1000 

Min 0.9725 0.9209 0.8980 0.8738 0.8700 0.7147 0.7029 

Mean 0.9798 0.9470 0.9262 0.9037 0.8886 0.7215 0.7081 

Max 0.9854 0.9594 0.9472 0.9348 0.9054 0.7299 0.7135 

Table l.d. Hybrid GRBFN, randomly initialised, 7=0.9. 

6.5. Orthogonalisation of randomly selected GRBFN and HGRBFN 

In the previous section, it has been shown how the heuristic approach of choosing the 

centres randomly from the input set and selecting the width parameter on the basis of 

a general overlapping criterion fails when M is small. However, this selection 

criterion is a preliminary step towards a more structured technique. Since a large, 

randomly selected network succeeds in producing a good mapping, it is reasonable to 

assume that a large number of nodes, with a proper choice of centres and width 
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parameter, contains most of the necessary information in order to produce a 

satisfactory interpolation. We will now show the results of applying the OLS 

algorithm described in chapter 4, in an attempt to extract this information from an 

initially large network. 

There are several reasons that justify the application of this selection-reduction 

technique. Standard non-linear methods are not guaranteed to converge to a global 

optimum, and may be strongly dependent on the initial conditions. Moreover, non-

linear optimisation techniques usually require a large number of iterations. Since we 

assume that a random selection of 1000 centres contains (in principle at least) a 

sufficient information to solve the problem, we might wish to extract as much of this 

information as possible from the surrounding haze of redundancy, rather than 

surrender to a "brute-force" approach. Further non-linear optimisation can be used at a 

later stage. 

1000 

ir]i i;:E# 
iitnat- :|: gg : I 

1000 1 1000 
y=0.1 y=G.9 

Figure 2. Normalised correlation matrix of RBFN regressors. y^OA (left) and y=0.9 (Right). 

If we plot the normalised cross-correlation matrix R for 1000 centres, 7=0.1 and y=0.9 

with a GRBFN architecture, we can clearly see that there is linear redundancy, since 

the regressors are highly correlated (Figure 2). Note that regressors with y=0.9 are 

more correlated than those with 7=0.1, as portrayed by the brighter shades reflecting 

the greater correlation. This is a consequence of the broad support which means that 

many of the regressors repeat similar information, since they overlap the same (broad) 
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region of the input space. Figure 2 gives a visual explanation as to why the use of a 

large number of broad regressors does not produce the reduction in MSB obtained 

with narrow regressors. However figure 2 also explains why broad Gaussians perform 

better with a smaller number of regressors. 

Tables 2a, b show the MSB obtained using the OLS reduction for y=0.05, 0.1, 0.5, 

0.9. The networks for which the MSB is smaller than that obtained using the Volterra 

series are shaded in light grey, and the MSB which are worse than the Wiener filter 

are shaded in dark grey. Not surprisingly, hybrid architectures produce MSB that are 

always smaller than the Wiener MSB. Figures 3 and 4 show the plot of these 

sequences. 

7 CENTRES 

10 25 50 100 250 500 1000 

0.05 1.9423 1JQ72 0.9320 0.7824 0.6651 0.5972 0.5695 

0.1 1.5226 1.1071 0.8534 0.7374 0.6387 0.5872 0.5658 

0.5 1.1602 0.8659 0.7557 0^865 0.6414 0.6231 0.6125 

0.9 0.9936 0.9423 0.8320 0.7598 0.7306 0.7174 0.7080 

Table 2.a. OLS GRBFN, (Wiener MSE=0.9893. Volterra MSE=0.6956). 

7 CENTRES 

10 25 50 100 250 500 1000 

0.05 0.9377 0.8279 0.7199 0.6493 0.5890 0.5593 

0.1 0.9528 0.8534 0.7765 0.7142 0.6376 0.5897 0.5616 

0.5 0.9839 0.8726 0.7563 0.7009 0.6404 0.6237 0.6113 

0.9 0.9816 0.8947 0.7981 0.7515 0.7298 0.7221 0.7058 

Table 2.b. OLS HGRBFN. 

Figure 5.a and 5.b provide a visual comparison between different de-interlaced 

frames. A hybrid network with 100 OLS reduced centres leads to a result that is 

visually comparable to the result of a Volterra series. However, the computational 

cost of such a network is too high to make it a convenient solution (see appendix B). 

A network with 10 OLS centres has a computational cost that is comparable with that 
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of a Volterra series, however its performance is only just better that the linear case. 

This highlights the need to include some non-linear optimisation stage in our training 

strategy. 

linear 
Volterra 

E 0.8 

50 100 
orthogonalised centres 

1000 

Figure 3. O L S sequence, G R B F N . 

=0.05 

inear 
Volterra 

9 &7 

# 1M 
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Figure 4. O L S sequence, H G R B F N . 
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Figure 5.a. (a) source frame, (b) Linear interpolation, (c) random RBFN 10 centres, (d) OLS 
Hybrid RBFN 10 centres, (e) OLS Hybrid RBFN 100 centres, (f) 3'̂ '' order Volterra series. 
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Figure 5.b. Difference fields with respects to the target field, (a) Linear interpolation, (b) random 
RBFN 10 centres, (c) OLS Hybrid RBFN 10 centres, (d) OLS Hybrid RBFN 100 centres, (e) 3"" 
order Volterra series. 
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6.6. Iterative orthogonalisation 

The experiments in the previous section illustrate that OLS has the ability to select 

medium-sized sub-optimal sets of nodes from an initially large population. The size 

M of this initial set is a trade-off between the ability to represent the training set, and 

OLS computational demands that increase as the initial set broadens. In section 6.3 

we have seen how different sets of 1000 centres, randomly chosen from the input set 

give rise to similar MSB. It could be assumed that a subsequent OLS reduction to M' 

nodes shows the same stability, regardless of the 1000 centres initially selected. In 

fact, when M' is small compared to M (for instance, M'=\Qi), two different initial 

sets of M regressors may result in two very different MSB when successively reduced 

to M'. In figure 6, the average results of 10 OLS reductions from 1000 randomly 

selected centres are plotted together with their maximum and minimum value. 

mean OLS sequence 
rrin-max values 

50 100 250 
orthogonalised centres 

Figure 6. Variability of OLS reduction over 10 different initial set of 1000 regressors. 

It is clear that, as the reduction increases, the variability also increases. There are a 

large number of initial sets of M vectors in the input space that produce an initial good 

result, but only a small number of these produce a satisfactory reduction. In other 

words, OLS successfully removes the redundancy from a large set of centres, 

extracting the relevant regressors. However a given set, randomly selected from the 

input space, may not contain the optimal M' centres. It seems reasonable to assume 
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that, the smaller M' we want to achieve, the larger the initial set should be in order to 

increase the chance to include the "best" M' regressors set. Unfortunately this 

assumption leads to computational problems, since OLS should operate on correlation 

matrices as large as, in principle, the whole input set. 

This section describes a sub-optimal strategy to compare and orthogonalise large 

number of candidates, keeping M small at each orthogonalisation phase. The 

principle is to perform separate orthogonalisations of M' regressors from each of G 

groups of M candidates, followed by randomly rearranging the M' • G outcomes into 

new groups of M candidates and repeating the orthogonalisation. A progressive 

reduction of the number of groups leads to a final orthogonalisation of M' centres 

from M candidates. This algorithm is depicted in figure 7, with M=1000, and 

M'=10, 25, 50 and 100. 

The results are shown in figure 8 and table 3. As we can see, the algorithm is able to 

extract progressively better sets of regressors. For M'> 25, the final outcome is 

equivalent to the best of the initial groups of candidates. However for smaller number 

of centres this ability fades. In this case, iterative orthogonalisation tends to approach 

the average output value of the initial sets. This algorithm has not been fully assessed, 

however it provides additional evidence for the assumption that large numbers of 

randomly selected centres that may lead to similar results are not guaranteed to yield 

equivalent results once they are reduced via OLS. By choosing the initial set in a more 

appropriate manner than just randomly selecting the centres from the input set, one 

can obtain better reductions. It could be wiser to apply iterative schemes like the 

algorithm proposed here in order to create large number of centres that yield sub-

optimal results once they are reduced. 

A possible approach, which has similarities with the method discussed here, could be 

the use of genetic algorithms (Goldberg, 1953). However this approach will not be 

considered in this work. Work in this field include Coley (1999), and Mitchell (1998). 
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Figure 7. Iterative orthogonalisation algorithm. 
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phase1 phase2 phases 

min (18568 (19343 

10 mean 0.9586 0.9645 (19559 

max 0 9861 (19822 

min 118240 (18109 

P. 25 mean (18774 (18409 0 8240 

o 

% 

max (19562 (18759 
o 

% 
min (17589 0.7415 

a 50 mean 0.7883 0.7491 (17325 

max (18508 0.7598 

min 0.7034 (16787 

100 mean 0.7206 0.6937 (16803 

max 0.7360 0.7025 

Table 3. Iterative orthogonalisation; comparison of the results at different phases. 
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Figure 8. Iterative orthogonalisation, results of the first and third phases. 
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6.7. Non-linear optimisation 

Previous sections have demonstrated the limitations of linear training in RBFN. We 

have tried to overcome the necessity of non-linear training of centres and widths by 

choosing large networks, whose size is reduced using the OLS algorithm. In this 

approach, centres are selected randomly from the input set, and widths are calculated 

using a heuristic approach. The quantities left to be determined are the linear weights, 

which can be easily found using standard linear techniques. This approach fails to 

yield good results as the number of centres falls below a certain value. 

It is necessary to apply some form of non-linear optimisation for the centres and 

widths. This section considers the use of a well-known optimisation technique, the 

Nelder-Mead (NM) modified simplex algorithm (Nelder, Mead 1965). The algorithm 

is described in appendix C. Other techniques, e.g. the Gradient Descent (GD) 

algorithm (Fletcher 1987), are also applicable. Differently from the GD algorithm, 

NM does not require knowledge of the gradient of the function. 

Firstly, OLS is applied to a HRBFN with y=OA to produce two sets of 10 and 25 

centres from 1000 candidates. These two OLS networks are trained using the NM 

algorithm. The results are compared with two HGRBFN initialised with a random 

selection of 10 and 25 centres. The aim is to see if these two networks converge, i.e. 

to explore whether the OLS reduction offers an effective technique to create better 

initialisation for NM training. The number of iterations of the N M algorithm is fixed 

at 800 times the number of parameters. 

The results are shown in figure 9, and in table 4. From these results one can see that 

OLS creates good initial condition for the non-linear techniques. Note that, with 25 

centres, orthogonalisation followed by optimisation achieves a performance 

equivalent to that of a randomly initialised network, optimised with NM, in about half 

the number of iterations. For 10 centres however, this advantage is almost completely 

lost. The curves are similar and there is little advantage in applying OLS before the 

NM algorithm. It seems that below a certain threshold the random selection strategy, 

outlined in sections 6.2 and 6.3, produces a poor network. A non-linear technique like 

NM recalculates the networks parameters to make them fit the problem. In figure 9 
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the results have also been compared to those obtained by the simple use of OLS 

(horizontal dashed lines), and the optimised 10 centre network achieves a 

performance equivalent to a 50 centre OLS network. Whereas the 25 centre network 

performance improves to a level comparable with a 75 centre OLS network. 

ofthoQonal centres, no opthnbatkm 
10 

-O- optimised 10 random cwitrw 
- g - optimised 10 OLS ceAres 
- B - optimised 25 OI_S centres 
-O- optimised 25 random centres 

400 

Kerations per parameter 

Figure 9. Nelder Mead optimisation of random RBFN and OLS RBFN. 

Iterations per parameter 

Initial value 200 400 600 800 

Random 10 0.9850 0.8703 0.7880 0.7799 0.7737 

OLS 10 0.9528 0.8508 0.8060 0.7898 0.7825 

Random 25 0.9673 0.8266 0.7886 0.7590 0.7491 

OLS 25 0.8534 0.7796 0.7554 0.7434 0.7397 

Table 4. Nelder-Mead optimisation of randomly initialised and OLS HGRBFN (Volterra MSE=0.6956) 
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6.8. Comparison between HGRBN and OLS Volterra series 

In previous sections the performance of the HGRBFN has been compared with the 

performance of the 3"'-order Volterra series. From the analysis in appendix B the 

computational cost of a HGRBFN can be compared to the cost of the Volterra series if 

its number of centres is smaller than 30. Experiments suggest that the best HGRBFN 

performance in this range (table 4, 25 OLS centres), obtained by the combined use of 

OLS and NM, is slightly worse than the performance of a Volterra series. However 

there is little qualitative difference in the results, and the two techniques are roughly 

equivalent in terms of cost and performance. 

In order to produce a fairer comparison, one should compare the orthogonalised 

HGRBFN with an orthogonalised Volterra series. In chapter 5 it was shown that the 

Volterra series benefits significantly from OLS. Recall that the Volterra nodes have 

differing costs, according to the degree of their monomials, so the reduction in cost is 

not necessarily in proportion to the reduction in the number of nodes. For example we 

know that, although the first four Volterra regressors are linear, the succeeding ones 

are mainly cubic and therefore impose a higher computational cost. 
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Figure 10. M S E vs. cost plot, O L S - N M H G R B F N , O L S 3 ' -order Vol t e r ra series. 
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Figure 10 shows the MSE-versus-cost plot for the 10 and 25 centre OLS-NM 

HGRBFN networks, and the OLS Volterra series. This is based on assuming that 

multiplication is eight times the cost of a sum, = 8 - (see appendix B). This 

assumption tends to favour the HRBFN (given the high number of products in 

Volterra series) and the break-even network size is 50 centres rather than 30. 

6.9. Representation of the input space 

This section presents some tools to aid the understanding of the complex phenomena 

arising in these experiments. Given the strong topological nature of RBFN, it is useful 

to have some form of graphical representation of the input space and of the centre set, 

that by construction belong to the same space. This representation is particularly 

useful when localising kernels, such as Gaussians, are used, allowing one to consider 

the "area of influence" of a kernel, i.e. the local neighbourhood of the corresponding 

centre. Unfortunately, as the dimensionality of the input set D is bigger than 3, there 

is no natural representation of the input space. 

Nevertheless, it is useful to represent the input set in some projected planes of the 

sampling lattice, i.e. projecting D-2 dimensions into a plane. Figure 11 shows 

examples of the projected inputs for the 8i-aperture. Note that only 6 out of 32 

possible projected planes are shown. This choice is intentional, and will be justified 

later in chapter 9, by considering the symmetry properties of images. 

From figure 11 one can see that there is a trend for inputs to cluster around the main 

diagonal of the input space, in a sort of elliptical "bubble". Of course, this trend might 

be misleading, since the full 8-dimensional manifold could be far more complicated. 

Note that the projections based on neighbouring pixels, e.g. X3 and xe, are more 

concentrated on the diagonal than projections based on distant pixels, e.g. xi-xg. This 

reflects the higher correlation between adjacent pixels. 
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Figure 11. Input space in some of thie projected planes. 

Simple considerations of the picture make this conjectured clustering reasonable. An 

input vector on the main diagonal is simply a vector arising from the sampling of a 

uniform area of the image. In fact, in many images there is a reasonable prevalence of 

uniform or quasi-uniform areas. One must take care however not to consider this as a 

property of all images. As a counter-example, a picture of a "shaded chessboard" 
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generates inputs concentrated on both diagonals of an 8-dimensional cube, as 

illustrated in figure 12. 

128 

- 1 2 8 
-128 128 

Figure 12. "shaded chessboard" input distribution in the projected plane Xj-Xg. 

6.9.1. Orthogonal centres 

As an example figure 13 illustrates two projected planes for a sequence of OLS 

centres of a HGRBFN with width parameter 7 = 0.1. The projected planes 

corresponding to the external (xi-xg) and internal (xs-xe) vertical taps of the sampling 

lattice are shown. Remember that in the linear case, these taps carry most of the 

information used by the linear filter, hence they are likely to be of greatest importance 

even in the non-linear case. Note how the centres move apart as the number of centres 

is decreased. This is the effect of orthogonalisation removing overlapping centres. 

6.9.2. Nelder-Mead centres 

In this section, the behaviour of the centres in a hybrid Gaussian RBFN optimised 

with the NM algorithm are discussed. Figure 14 shows the results for a set of 25 

orthogonal centres. The most important characteristic is that some centres move a 

long way outside the input cluster. It seems that to achieve better performance one 

should move some centres outside the input cluster. It is reasonable to consider that 

the outlying centres generate smooth, quasi-uniform slopes over the input cluster. 

106 



since as r = ||x - c| becomes large, the exponential function becomes more like a 

linear plane over the input space. 
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Figure 13. OLS centres (black diamonds) in the projected planes XpXg (left) andxi-x^ (right). 
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Figure 14. NM optimisation, orthogonal hybrid GRBFN. planes Xi-Xg (left), (right). 
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6.10. Conclusions 

In this chapter the application of RBFN in de-interlacing has been investigated. The 

main task was to construct an efficient RBFN with performance and computational 

cost comparable to a Volterra de-interlacer. A hybrid RBFN employing Gaussian 

Basis Functions acting on the 8, aperture was selected. 

The training of a RBFN requires the optimisation of its non-linear parameters, the 

centres and the widths. In order to avoid the difficulties involved in optimising those 

parameters, a different approach has been chosen. It has been shown that large 

networks are relatively resilient to the choice of the non-linear parameters. 

Specifically, a random selection of centres, followed by a heuristic determination of 

the widths, lead to good results if the network has a relatively large number of nodes. 

The application of OLS to prune the network of redundant branches has proven 

successful to reduce the size of the network by a significant degree. The iterative 

application of the OLS algorithm has proven successful to reduce the variability of the 

result given by the initial conditions. 

However, the computational constraints of the problem impose a target size of the 

network that cannot be reached by the simple linear OLS training without degrading 

the performance. The application of a simple iterative optimisation technique to the 

centres and widths of the network proves successful to achieve a good result using the 

target number of centres. 

The main crux of the application of RBFN in de-interlacing is the reduction of the 

number of nodes. In chapter 8 some constraints that a de-interlacing system must 

satisfy will be discussed. These constraints, applied the RBFN, will lead to a further 

reduction of the number of centres, as discussed in chapter 9. 

The two non-linear techniques investigated, the Volterra series and the RBFN, 

produce results that are substantially equivalent, in terms of interpolation error and 

computational cost. However, the investigation has been carried on a single test 

frame. The next chapter discusses the performance on a wider set of images. 
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7. 

7.1. Introduction 

In previous chapters, the ability of linear and non-linear techniques to produce reliable 

de-interlacing systems has been examined. Wiener linear filters, Volterra series and 

RBFN have been used to de-interlace a sample frame ("girl") and the results have 

been discussed. The main goal of these experiments has been to minimise the 

interpolation error, in the MSE sense. Obviously, a realistic de-interlacing system 

must produce satisfactory results over a range of inputs. However, real images have 

very different characteristics from each other. It is questionable then how a system, 

trained on a single image, can produce satisfactory results on a range of other inputs. 

As previously emphasised, the goal of a training procedure is not to learn the exact 

pattern presented as the training set, but rather to create a statistical model of the 

process that generates the training data. This is of paramount importance if the 

network is meant to produce satisfactory results when interpolating unknown patterns. 

From this viewpoint, the training set is just a particular realisation of a more general 

process. 

The ability of a model to predict values not seen in the training set is called its 

generalisation. The most intuitive way of achieving generalisation is to extend the 

training set to include as many training patterns as possible. Clearly any realistic 

training procedure limits the size of the training set, and even a set made of a modest 

number of frames might prove infeasible for high-speed computers. More generally, it 

is often impossible to produce a large training set, as sometimes there might be 

scarcity of available data. But there is a more subtle reason that leads us to pursue 

generalisation using a limited number of training patterns. In fact, one wish to build a 

system with a-priori generalisation abilities by creating appropriate training 

procedures, rather than surrender to a "brute-force" approach. 
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This chapter addresses the problem of generalisation firstly introducing a larger 

general set of frames, which will be used either as training set or as test set to assess 

the generalisation performance. Prior to presenting the results, two key parameters in 

assessing the generalisation ability of a network, the bias and variance, will be 

discussed. 

The next step will be to use a generalisation technique known as weight decay 

(Bishop, 1995). This technique draws its theoretical background from the theory of 

regularisation. An extended training set will be used in order to enhance the system 

ability to generalise. This extended set deliberately includes one frame that is very 

different from the others. Whilst most of the frames represent "natural" scenes, this 

special frame is a page of text. 

This investigation also considers the possibility of adding a-priori knowledge to the 

training procedure. For some specific patterns we can determine, a-priori, the desired 

output. It is desirable that our training is constrained to abide to these known patterns, 

that the unconstrained MMSE solution does not generally achieve. This introduces the 

subject of constrained optimisation, and it will be seen how this affects the 

performance. 

Finally, a mixture of experts (Jacobs et al, 1991) is introduced that overcomes many 

of the limitations of alternative methods. Whenever a single, fixed-parameters 

network does not deliver satisfactory results, it may be convenient to adopt a more 

flexible solution, where the parameters are changed adaptively according to the 

current input. This approach can be seen as a pool of networks that specialise their 

mapping on different clusters of inputs. A decision algorithm determines which 

network to use according to some features in the input. It is clear that the main 

drawback of this approach is the increased computational complexity. Therefore it is 

necessary to maximise the performance with the minimum additional cost. 
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7.2. The frame set 

Figures l.a to l.f show the frames that will be used in the following experiments. 

Figures 2.a to 2.f show their normalised histograms. One can see that the images 

present different visual features, like different textures, borders, uniform areas, etc. 

The different shapes of the histograms in part reflect this variety. In particular, frames 

4 and 6 have peculiar characteristics that differentiate them from the other frames. 

Frame 4 has a characteristic line texture, appearing in the oblique rows in the man's 

shirt, that represent an insolvable problem to many de-interlacing systems, since the 

corresponding spectral contribution is located in the high-frequency part of the 

spectrum. Specifically, in some regions the spacing between a dark line and a bright 

line will be exactly one pixel in the vertical direction. In the resulting source field, a 

uniform bright area needs to be replaced by a series of alternating bright and dark 

lines. This is clearly a case of unrecoverable aliasing, since the sampling process has 

completely destroyed the original information. Figures 3.a and 3.b show the frequency 

spectra for frames 3 and 4 respectively. The broader frequency content of frame 4 is 

evident. Also figures 3.c and 3.d show the projected distributions for these two 

frames. The greater spread in figure 3.d arises because of the fact that dark and light 

lines are in close proximity. 

Frame 6 ("latin") is of particular interest, since it differs in many ways from the 

"natural" scenes depicted in the other frames. The corresponding patterns are mainly 

uniform black areas (background), uniform white areas (the letters) and sharp 

transition areas. One can see from figures 4.a and 4.b that the spectrum of frame 6 has 

a broader frequency content compared to frame 3, and the distribution of inputs is 

rather different, being mainly concentrated on the borders of the input space. It will be 

shown how this will dramatically affect the OLS training of RBFN. 

1 1 2 



Figure 1 .a. Frame 1 ("pond"). 

Figure l.b. Frame 2 ("boat"). 
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Figure I.e. Frame 3 ("girl"). 

I 

Figure l.d. Frame 4 ("shirt"). 
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Figure I.e. Frame 5 ("face"). 
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Figure l.f. Frame 6 ("latin"). 
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Figure 2. Frame set histograms; (a) frame 1, (b) frame 2, (c) frame 3, (d) frame 4 
(e) frame 5, (f) frame 6. 
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Figure 3.a. Frame 3 spectrum. 
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Figure 3.b. Frame 4 spectrum. 

Figure 3.c. Frame 3 input distribution. 

-128 0 

Figure 3.d. Frame 4 input distribution. 
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Figure 4.a. Frame 6 spectrum. Figure 4.b. Frame 6 input distribution. 
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7.3. Bias and Variance 

One of the key points to obtain a sufficiently general training is to make sure that the 

estimated mapping is sufficiently smooth, i.e. to ensure it does not over-fit the data. In 

order to predict unseen patterns, one should avoid too closely matching of the training 

patterns, since these may be not sufficiently representative of the full data. On the 

other hand, excessive smoothing of the mapping produces a poor result, albeit 

uniform over a wide range of inputs. 

There are two key factors that govern this phenomenon. One is the order of the model, 

which dictates the size of the network. The other one is the training set, and its ability 

to represent the underlying data generator. Even if one had access to an exceptionally 

good set of training patterns, a poor interpolation maybe produced simply because the 

order of the model is insufficient to fit the data properly. Alternatively, a high-order 

model may over-fit the data. If these are noisy, or poorly represent general inputs, 

then the effect of the increased order is that the model fits the noise together with the 

data or, in the second case, that it specialises its mapping to an unrepresentative 

training set. 

One way of measuring these effects is to decompose the error into bias and variance 

components (Geman et al, 1992). In the case of a MSE training, the error can be 

written as (assuming an infinite training set): 

where is the density of the input set, (?|x^ = J /p{ t \x)d iL is the conditional 

average of the target set and |x^ = x)dx is the conditional second-

moment of the target. 
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As already discussed in chapter 2, the first term in (7.1) vanishes when the MMSE 

solution is reached: 

.y(i)==(f|3:) (7.2) 

The second term does not depend on the mapping j (x ) . In fact, the second term 

represents the intrinsic noise in the data and sets the lower limit on the error that can 

be achieved (Bishop, 1995). In practical situations, the network is trained on a finite 

number N of patterns. Hence, the first term in (7.1) depends on the particular set 

chosen. If we consider an ensemble of T training sets, all made of N patterns, and all 

drawn from the same joint distribution we can remove the dependency from 

the single training set by the ensemble average Ej- over the ensemble T\ 

(7.3) 

If the first term in (7.1) is zero for a particular training set, the ensemble (7.3) could 

still be greater than zero because (7.2) is not valid for the other sets. The quantity in 

(7.3) somehow represents the intrinsic ability of a particular model to characterise the 

system. In fact it averages the influence of the particular training set on the 

determination of the model. We can decompose (7.3) in bias and variance 

components: 

+ 

( b i a s ) : 

j " E r E r 

variance 
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The details of this decomposition can be found in Bishop (1995). Equation (7.4) 

makes explicit why (7.3) could be greater than zero. Specifically, it makes explicit the 

influence of the model's order, and the influence of the training set. 

Consider a situation when a low-order model, for instance a l^'-order polynomial, is 

trained to interpolate a 3'̂ ^-order system (see figure 5.a). The T training sets are all 

supposed to be appropriate, e.g. with a low level of noise. In this case, the variance 

will be very small, since all the sets generate approximately the same mapping 

7 ( X ) = E j [3 (̂ X )]. Conversely, the bias will be high since the insufficient order of 

the model will generate mappings that are on average very different from the "true" 

mapping (?| • 

The opposite happens when the model order is higher than the system (e.g. 10^-order 

model), and the set of training patterns is noisy (see figure 5.b). The effect of noise 

will be cancelled out by the ensemble average, and the bias will be negligible. On the 

other hand, the high order will make the model over-fit the data. Each individual 

mapping y(x) will be very different from the average Ej- [;^( x )], and the variance 

will be high. 

1000 

-1000 

system 
training 
model 

1000 

-1000 

Figure 5. Polynomial fitting, (a) linear approximation to a cubic (b) lO^-order polynomial 
approximation to a cubic. 

One might assume that the two quantities trade-off against each other, although it is 

not necessarily so. For instance, a model might have high bias and variance, if its 

order is insufficient and it is trained on noisy data. On the other hand, it is possible for 
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both quantities to be small if the model is accurately chosen to match the system's 

complexity, and the training sets are properly chosen. 

In the case of RBFN, one expects the models to have higher variance and lower bias 

when the number of nodes is high, and the contrary to be true when the number of 

nodes is small. In chapter 6 it was shown that a RBFN with a large number of nodes 

has sufficient complexity to produce accurate mappings of the training set considered. 

We will shortly see that the price paid for this accuracy is that the model specialises 

on the training set, producing poor results when attempting to interpolate a new set of 

inputs. 

Given the previous considerations, one way to reduce variance keeping the bias low is 

to join training sets, i.e. creating an ensemble of sets that are the union of two or more 

frames. In this case, the sets are more uniform, therefore reducing the variance. As 

already stated, this approach is limited by computational issues, and does not produce 

"built-in" generalisation. 

7.4. Regularisation 

It has been shown how a network that over-fits the training set may produce 

insufficiently general results. Therefore we should try to limit the tendency of the 

training to over-fit the data. 

One way of doing so is by means of regularisation (also see section 3.9). 

Regularisation has been introduced in chapter 3, in relation to RBFN. Regularisation 

is a way to control the smoothness of an interpolating mapping, and as such is clearly 

a generalisation technique since it tends to cancel out high-curvature over-fitting. The 

technique consists of adding a penality term to the cost function, so that the tendency 

of the network to minimise the error at the cost of smoothness is counter-balanced by 

a factor that increases as smoothness decreases: 

^ + ^ ^ (7-5) 
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Where [^(x),jv(x)] is the unregularised cost function (e.g. the MSB), that 

typically depends on how close the mapping 3^(x) is to the particular training pattern 

/(x). Conversely the regularisation term, Q, is a function of only the network's 

mapping. The contribution of the regularisation term is controlled by the 

regularisation factor v. In general, the unregularised cost function decreases as the 

training progresses, while the regularisation term increases as the mapping approaches 

the training set. A minimum of C can be found that is a compromise between the 

accuracy of the mapping and its ability to generalise (figure 6). Examples of 

regularised cost functions have been given in section 3.9. In this chapter a simple 

regulariser is applied; the weight decay training technique. 

1.4 
higher bias 
lower variance 
under-fitting 

lower bias 
higher variance 
over-fitting 

+ n 

20 30 40 50 60 70 
training iterations 

90 100 

Figure 6. Illustrative example of regularised training for a general iterative optimisation. 

7.4.1. Weight decay training 

One of the simplest forms of regulariser is weight decay, which uses a penalty term 

consisting of the sum of the squared values of the linear weights: 

Q 
1 M 

(7.6) 
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This constitutes a regulariser in the sense of Arsenin and Tikhonov (Tikhonov, 

Arsenin, 1977). The subsequent regularised minimisation function is referred as ridge 

regression (Bishop, 1995; Smola et al, 1996). The empirical justification for this 

form of regulariser is that over-fitted mappings with large curvatures usually require 

large values of the weights. By using in (7.5) the regulariser given by (7.6), the 

training algorithm is encouraged to produce small weights and consequently, 

smoother mappings. It has been shown that a regulariser of this form can lead to 

significant improvements in the generalisation ability of a mapping (Hinton, 1987). 

If is the sum-of-squares error function, insights into the effect of weight 

decay can be drawn. In the absence of regularisation, the error function can be written 

as a quadratic form: 

^ ERR — ^ — P ^ (7.7) 

The solution that minimises (7.7) is the familiar one: 

R 0 - P = O = (7.8) 

In presence of the weight decay regularisation term, it is easy to show that the solution 

is given by: 

( R + v I ) 0 —P = 0 = ^ > 0 = (R + V - I ) ' P (7.9) 

Hence, the solution moves away from the minimum of the error function, to a sub-

optimal solution that trades accuracy with generalisation. Equation (7.9) also provides 

a direct implementation of the algorithm, by adding the factor v to the diagonal 

elements of R. 
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7.4.2. Orthogonal weight decay training 

Having described the weight decay technique, we seek to apply it to the OLS 

algorithm described in chapter 4. At each step k of the orthogonalisation, the selected 

regressors are arranged into an orthogonal set and R is diagonal with non-null 

elements r,/ = wfW/ . Consequently, the error reduction ratio given by substituting 

(4.4) in (4.5) will be modified by weight decay to become; 

7.4.3. Support Vector Machines 

An alternative viewpoint to the problem of generalisation is given by the theory of 

Support Vector machines (SV) (Smola et al. 1996; Vapnik, et al. 1997; Drucker et al. 

1997, Smola, Scholkopf, 1998). The SV theory is a non-linear generalisation of the 

Generalised Portrait algorithm (Vapnik, Lerner, 1963; Vapnik, Chervonenkis, 1964). 

In its most general form, the SV regression algorithm tries to determine the mapping 

>'(x) = 4>^h (x) , with maximum flatness, constrained to some condition on 

the mapping's error, C{e)= C{t-y). The flatness is defined as the squared sum of the 

weights as in (7.6) (Smola et al. 1996). Therefore, the flattest mapping is the line with 

minimum slope in that satisfies the constraining condition. 

Different to conventional regularisation techniques, in SV theory the function to 

minimise is the squared sum of weights (7.6), which therefore is called the primal 

objective function, while C{e) represents a condition (constraint) for the minimisation 

problem. Hence, the SV problem is a constrained minimisation of (7.6), where the 

constraint can be, for instance, the maximum permitted value of the error function. 

It can be shown that there are several connections between the SV theory and 

regularisation. In particular, if C{e) is the standard MSB error, the two approaches 
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lead to the same algorithm (Smola, Scholkopf, 1998). For this reason, we will not 

investigate the application of SV theory to the solution of our problem, but rather 

apply the weight-decay technique that has the minimisation of the MSB as its main 

goal 

7.5. Individual results 

In this section we will present the performance of the system trained on individual 

images and then applied to the wider data set. In other words, we will examine how 

each of the frames 1 to 6 can be considered as being representative of the other 

frames. The systems investigated will be the linear filter, the 3"'-order Volterra series, 

and the HGRBFN using the 8] sampling lattice. 

These experiments will show how inappropriate training leads to poorly generalised 

mappings and, more importantly, how non-linear performance is affected. As the 

order of the system increases, an unrepresentative training set produces less general 

results. 

7.5.1. Linear filters 

Table l.a shows the MSE of 6 linear filters. Each filter is trained using one image and 

its performance is measured for all 6 images. The results are arranged in a matrix 

whose rows represent the individual filters (i.e. the training sets) and the columns the 

resulting normalised MSE on the frames. Each column j is normalised with respect to 

its y-th element. In other words, the ability of the filter i to de-interlace the frame j 

(hereinafter referred a "cross-result") is compared to the result obtained with the filter 

j, which will necessarily produce the most accurate result ("self-result"), since it has 

been trained on they-th frame. 

One can see how the performance is similar for all the filters. From table 1 .b, one can 

see that frame 2 produces the best overall performance, although the differences are 

not significant. Note that in table l.b, the self-result has not been included in the 

calculation. 
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input image 
1 2 3 4 5 6 

1 1 1.0591 1.2518 1.0964 1.1577 1.1541 
2 1.0364 1 1.0438 1.0304 1.0169 1.0228 

.2 
3 1.0865 1.0265 1 1.0889 1.0080 1.0188 

Li. 4 1.0891 1.0552 1.2177 1 1.1359 1.0600 
5 1.0625 1.0163 1.0118 1.0729 1 1.0243 
6 1.0902 1.0250 1.0333 1.0522 1.0260 1 

Table 1 .a. Linear results. 

Filter 
1 2 3 4 5 6 

mean 1.1438 1.0301 1.0457 1.1116 1.0376 1.0453 
stdev 0.0731 0.0107 0.0389 0.0674 0.0281 0.0274 

Table Lb. Linear results, average and standard deviation. 

7.5.2. Volterra series 

Tables 2 show the corresponding results for a 3""-order Volterra model. In table 2.a 

the self-results are normalised with respect to the corresponding linear self-result, 

whilst in table 2.b and c the cross-results are normalised with respect to the 

corresponding Volterra self-result. The situation observed in the last section changes 

dramatically when a 3""-order Volterra series is examined. The results noticeably 

differ and in some cases there is a dramatic effect on performance with a complete 

lack of generalisation. 

As anticipated in previous sections, the most peculiar behaviour is shown by filter 6, 

which has been trained on the text image. This series exhibits the largest performance 

increase compared to the linear filter (table 2.a), but it also exhibits a very poor ability 

to generalise (table 2.b). It is evident that the attempt of the series to match such a 

peculiar pattern produces an over-specialised (i.e. over-fitted) map, that is unable to 

estimate patterns different to those included in the training set. Unsurprisingly, the 

other series poorly estimate frame 6. Patterns like those encountered in frame 6 are 

generally rarely encountered in the other frames. Therefore, their density p{x) is 

small, and they scarcely influence the minimisation of the error. 
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input i m a g e 

1 2 3 4 5 6 

ratio 0.7745 0.8463 0.7726 0.7865 0.8658 0.4789 

Table 2.a. Volterra/Linear ratio (self-results). 

Input i m a g e 

1 2 3 4 5 6 

1 1 1.1520 1.3615 1.5163 1.3593 2.4340 

2 1.2002 1 1.1257 1.3046 1.2615 2.0619 

3 1.7131 1.2051 1 1.7228 1.2184 3.9398 

m 
tn 4 2.4079 2.0198 3.1139 1 2.7101 3.7983 

5 2.3924 1.3673 1.2587 2.5180 1 11.2321 

6 13.4649 18.8674 40.7060 !:9126 121.3406 1 

Table 2.b. Volterra results (normalised to self-results). 

filter 
1 2 3 4 5 6 

mean 1.5646 1.3908 1.9598 2.8100 3.7537 40.0583 

stdev 0.5029 0.3812 1.1354 0.6829 4.2198 47.2478 

Table 2.c. Volterra results, average and standard deviat ion. 

A similar behaviour is found, although not in such dramatic way, for series 4. The 

presence of high frequency patterns affects the general performance of the mapping. 

An opposite behaviour can be conjectured for series 5 ("face"). The prevalence of 

uniform areas in the training set produces a mapping that lacks precision on the 

images with a preponderance of high contrast areas (frame 1, 4 and 6). Series 1, 2 and 

3 show a reasonably stable behaviour over the frame set, albeit frame 6 remains 

difficult to interpolate. The average results are shown in table 2.c. 

These simulations clearly highlight the degradation in generalisation that using a 

Volterra series introduces, as compared to a linear de-interlacer. 

7.5.3. Hybrid GRBFN 

A corresponding behaviour is found in the application of RBFN techniques. Tables 3 

show the results using a hybrid network with OLS training. As the model order (i.e. 

the number of centres) increases, the performance of the mapping on the training 

pattern improves and produces a corresponding reduction in the ability to generalise. 

Again, networks trained on frame 6 show the most peculiar behaviour. 
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M=10 
input i m a g e 

M=10 
1 2 3 4 5 6 

1 1 1.0554 1.2550 1.1444 1 2240 1.3167 

.V 
2 1.0627 1 1.0539 1.0944 1.2467 1.1967 

1 
3 1.1068 1.0247 1 1.1489 1.1520 1.1527 

1 4 1.1157 1.1458 1.4829 1 1.2153 1.1501 
L_ 5 1.0770 1.0187 1.0223 1.0959 1 1.1612 

6 2.5660 5.1117 13.5979 2.9994 29.4186 1 

M=25 
input i m a g e 

M=25 
1 2 3 4 5 6 

1 1 1.1293 1.5442 1.4169 1.5599 1.6066 

2 1.1341 1 1.0724 1.1649 1.2214 1.5905 

1 
3 1.1822 1.0461 1 1.2436 1.0846 1.4409 

1 4 1.2709 1.3196 2.0299 1 4.1006 1.4587 

5 11782 1.0315 1.0343 1.2087 1 1.4867 

6 3.7294 4.1191 9.3875 2.7428 56.0766 1 

M=50 
input image 

M=50 
1 2 3 4 5 6 

1 1 1.1935 1.7192 1.5693 1 6573 1.9771 

2 1.1866 1 1.1414 1.2603 1.2787 1.9364 

1 
0) 

3 1.2593 1.0929 1 1.4418 1 2700 2.0237 
1 
0) 4 1.5774 1L5675 2.7314 1 14.3283 2.0534 
L- 5 1.2715 11048 1.1807 1.3634 1 1.9777 

6 3.6851 3.4543 8 j & # 3.4752 27.8970 1 

M= 100 
input image 

M= 100 
1 2 3 4 5 6 

1 1 1.2624 1.6620 1.5920 1.7430 2.6317 

2 1.2823 1 1.2071 1.3844 2 4735 2.2670 

i 

3 1.3413 1.1346 1 1.5306 1.2584 2.5933 

i 4 1.7150 1.7249 2.9347 1 7.6300 2.4784 

5 1.3658 1.2012 1.2947 1.5385 1 2.3311 

6 5.2940 5.7335 16.0688 4.7179 42.8350 1 

Table 3.a. OLS cross-results, normalised to self-results. 10 (top), 25, 50 and 100 (bottom) centres. 

network 

1 2 3 4 5 6 

2 

10 1.1991 1.1309 1.1170 1.2220 1.0750 10.7387 

2 25 1.4514 1.2367 1.1995 2.0359 1.1879 15.2111 
c 50 1.6233 1.3607 1.4175 4.4516 1.3796 9.3872 
o 

100 1.7782 1.7229 1.5716 3.2966 1.5463 14.9298 

Table 3.b. OLS mean results, normalised to self-results. 
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input image 
1 2 3 4 5 6 

10 0.9804 0.9903 0.9924 0.949 0.9826 0.8901 

25 0.8922 0.9662 0.9625 0.8725 0.9579 0.7144 

50 0.8183 0.905 0.8422 0.8096 0.9299 0.5529 

100 0.7388 0.8422 0.7759 0.7457 0.871 0.4472 

Table 3.c. RBFN/linear ratio sequence. 

input image 
1 2 3 4 5 6 

10 1.266 1.1702 1.2844 1.2066 1.135 1.8585 

25 1.152 1.1416 1.2458 1.1093 1.1064 1.4917 

50 1.0566 1.0694 1.0901 1.0294 1.0741 1.1544 

100 0.954 0.9951 1.0042 0.9482 1.006 0.9338 

Table 3.d. RBFN/Volterra ratio sequence. 

Attempting to produce more general results by reducing the network's size is 

obviously limited by the general increase of the error. However, these results confirm 

the observations on the increasing specialisation, since as the number of centres 

decreases, the network is forced to map the general pattern of the data common to all 

frames considered, rather than the specific, particular patterns in the training set. This 

point will be re-addressed when the bias and variance for the orthogonal sequence are 

evaluated (section 7.5.5). 

7.5.4. Linear and non-linear parameters 

The Volterra series uses a fixed non-linear structure and produces poor general 

mapping but the best self-results. This is because the non-linear layer is, in principle, 

able to estimate any pattern, and therefore is highly general. It is therefore the weights 

that, trained to match a specific set, are responsible for the lack of generalisation. 

From this point of view, one might assume that the generalisation problem is a linear 

one. Techniques that achieve more general results by linear means (e.g. the weight-

decay technique illustrated in section 7.4.1) might be applied successfully to improve 

performance. 

In RBFN, the picture is different. The non-linear parameters (i.e. centres and widths) 

are related to the training set since the distribution of centres approximates the 

distribution of inputs. This is especially true when the initial centres are chosen from 
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the training set. Furthermore the application of OLS may reduce the generalisation of 

the non-linear layer. Nodes in an initially large network are chosen only according to 

their ability to describe that particular training set. Therefore, nodes that might prove 

useful to generalise the result may yet be discarded by OLS. 

% 0.9 
(O 

100 

orthogonalised centres 

Figure 7. Network trained on frame 2 and tested on frame 6. Normalised with respect to the linear 
self-result. (1) orthogonalisation, weights and centres from frame 2. (2) weights calculated on 
frame 6. (3) orthogonalisation and weight calculation based on frame 6. (4) frame 6 self-result. 

It is then reasonable to explore how the generalisation ability of the network is 

determined by the linear and non-linear layers, and how OLS influences the results. 

Figure 7 shows the results of the following experiment. A number of centres (1000) is 

randomly selected from frame 2, from which three networks are created. The first is 

trained on frame 2, using OLS; the second is initially orthogonalised on frame 2, but 

the weights are re-calculated from frame 6. Hence the centres are selected from and 

optimised for frame 2, but the weights are optimised for frame 6. Finally, the last 

network is orthogonalised and trained on frame 6, although its initial centres are still 

drawn from frame 2. The performance of the three networks is evaluated on frame 6, 

and compared with frame 6 self-result. The MSB is normalised with respect to the 

MSB of the linear self-result. 

These results show how the three phases of the training (selection of centres, 

orthogonalisation, and weight's calculation) determine the generalisation ability of the 

model. The first network, completely unrelated to frame 6, produces a result that is 

worse than that obtained with the linear filter. The second network is the most 
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interesting case, since although the centres are drawn from frame 2, and 

orthogonalised on it, the recalculation of weights based on frame 6 produces a 

reasonable result. (This is an understandable result, since the exceptional self-result of 

network 6 is largely due to over-fitting). Hence centres whose position is optimised 

for frame 2 still produce a good result if the weights are properly "re-tuned". Finally, 

the full OLS training on frame 6 of centres initially drawn from frame 2 produces a 

result that is virtually identical to that produced by network 6. This suggests that the 

source of the initial population of 1000 centres is unimportant. 

Therefore it is reasonable to assume that in the RBFN case, the problem of 

generalisation can be addressed by investigating more general training procedures for 

the linear layer. In other words, the experiment shows that the initial choice of centres 

is not as critical, in terms of generalisation, as the determination of weights. 

25 50 
orthogonalised centres 

100 10 100 

Figure 8. Network trained on frame 6 and tested on frame 2: (I) orthogonalisation, weights 
and centres from frame 6. (2) weights calculated on frame 2. (3) orthogonalisation and weight 
calculation on frame 2. (4) frame 2 self-result. 

One should be careful however that the initial centres are chosen from a sufficiently 

general set. The same experiment is repeated with the role of frame 2 and frame 6 

reversed. The results are shown in figure 8, that is divided in two separate plots 

because of the different scales needed to represent the curves. This time, the 

orthogonalisation on frame 2 of centres selected from frame 6 produces a result that is 

very different from the frame 2 self-result. Therefore, we must assume that the 

random selection of centres from frame 6 does not produce a generalised set, and in 
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this case the generalisation problem is truly non-linear, a situation to be avoided 

where possible. 

7.5.5. Bias and variance 

This section investigates how the bias and variance change as the order of the model 

(i.e. number of centres) increases. Specifically, we seek to calculate these two 

quantities for a model attempting to interpolate frame 2, i.e. compute the two terms in 

(7.4). The main problem is the determination of the "true" mapping | , since this 

is the overall goal of the thesis. 

105 

o 3 

(0 0.95 

50 
orthogonal centres 

100 

Figure 9. Training on the full frame set. (1) Self-result of frame 2. (2) Centres selected from 
frame 2, and orthogonalised on the whole frame set (frame 6 excluded). (3) Average of the 
cross-results on frame 2. (frame 2 and 6 excluded). 

One way to achieve an estimate of the true mapping is by training 100 centres, 

orthogonalised from frame 2, on a training set consisting of the set of 5 frames (frame 

6 being excluded as non-representative of a general image set). In this way the 

mapping will not over-fit frame 2, since it has been trained on a larger set. One might 

question whether 100 centres are sufficient to guarantee a low bias (i.e. if the model 

order does not over-smooth the set and hence frame 2), but the objective is to validate 

the discussion in section 7.3, so that shortcomings in our absolute measures of bias 

and variance are not critical. Figure 9 plots the full-training MSE computed on frame 

2 and normalised with respect to the linear self-result for various network sizes. From 
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figure 9 one can see that the training on the larger frame set produces sub-optimal 

results compared to frame 2 self-result^. 

The individual responses 3^(x) are calculated by firstly training the centres on frames 

1 to 5 (hence creating individual mappings optimised on these frames), and then using 

frame 2 as input. The results are averaged to estimate Ej- . Frame 6 is excluded 

from all the calculations, since it is not representative of frame 2 and it would only 

generate unwanted outliers. 

The density of x is considered uniform over Z, the number of pixels of the training set, 

p{s )=I7^ , although this is a rather simplistic assumption. The results are shown in 

figure 10. The plots are normalised with respect to their maximum value. It is evident 

that the plots conform to those anticipated in light of the discussion in section 7.3, 

despite of the simplistic method used. Increasing the number of centres reduces the 

bias since the model's order is increased, but conversely this makes the model more 

sensitive to the specific training pattern and increases the variance. 

bias 
variance 

5 0 

orthogonal centres 
100 

Figure 10. Bias and variance for the or thogonal model aimed at in terpola t ing f r ame 2. 

^ One may question why we do not use this extended training model in the first p l ace . The point is that 

we want to devise procedures that give intrinsic generalisation for limited t ra in ing sets. 



7.6. Weight-decay training of Volterra series and RBFN 

This section considers the application of weight decay techniques described in section 

7.4.1, to Volterra series and RBFN. In figure 11 the average output error is shown 

(cross-results and self-result) for each series, vs. the regularisation factor. The plots 

also show the minimum and maximum values of the cross-result. The performances 

of series 1 to 5 on frame 6 have been purposely omitted from the results, since they 

generate unwanted outliers. All the sequences are normalised with respect to their 

non-regularised MSB. 

From figure 11 it is clear that frames 1, 2 and 3 produce the most general training sets. 

The regularisation of their respective series produces little improvements to their 

general performance. On the other hand, regularisation improves the performance of 

non-general series, like 4, 5 and 6. However, the improvement is insufficient to 

consider the corresponding series of practical use. 

A similar result is obtained when regularisation is applied to the orthogonal training 

of the RBFN. One should remember that weight decay is a linear technique, hence the 

centres are not directly optimised to produce smoother mappings. However, since 

regularisation is applied to the OLS procedure through equation (7.10), in some way 

we also choose centres that, once trained, yield smaller weights. 

Figure 12 and 13 show the results obtained using 100 and 25 centres. Note how 

network 6 yields a relatively better result than the corresponding Volterra series. One 

should be careful to consider that these results depend on the initial random selection 

of centres (chapter 6), therefore it is inappropriate to draw any general conclusions 

from this result. 

Note also how the reduction of the number of centres improves the generalisation 

performance of all the networks. We have already seen that this approach is limited 

by the fact that the overall performance decreases when M is reduced. It has been 

demonstrated that this is due to the decreased order of the model, and the consequent 

decrease in variance. 
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Figure 11. Regularisation of Volterra series. Mean, minimum and maximum values over frames 
to 5. (a) Frame 1, (b) frame 2, (c) frame 3, (d) frame 4, (e) frame 5, (f) frame 6. 
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Figure 12. Regularisation of RBFN series, 100 OLS centres. Mean, minimum and maximum 
values over frames 1 to 5. (a) Frame 1, (b) frame 2, (c) frame 3, (d) frame 4, (e) frame 5, (f) 
frame 6. 



3.5 

3 

% 2 5 
CO 

^ 2 

I 1.5 
LU 
W 1 

0 . 5 

0 

(a) 

— a v e r a g e 
min-max values 

^ 

- - - - , 

10"® 10"* 10^ 10^ 

regularisation parameter v 
i(r icr icr lo' 

Figure 13. Regularisation of RBFN series, 25 OLS centres. Mean, minimum and maximum 
values over frames 1 to 5. (a) Frame 1, (b) frame 2, (c) frame 3, (d) frame 4, (e) frame 5, (f) 
frame 6. 
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Figure 14. Regularisation of RBFN series, 100 OLS centres with frame 6 as input, (a) Frame 1, 
(b) A-ame 2, (c) frame 3, (d) frame 4, (e) &ame 5, (f) frame 6. 



7.7. Extended training set 

The preceeding sections demonstrated that it is difficult to improve the performance 

of the interpolator with the training techniques adopted. Training based on frame 2 for 

instance is sufficiently general to produce reasonable results over frames with similar 

characteristics, e.g. frame 1 and 3. Nevertheless, it proves ineffective on images like 

frame 6. Figure 14 shows the regularisation sequence for RBFN networks 1 to 6, 

when frame 6 (excluded from figures 12 and 13) is the input. The values are 

normalised with respect to the network 6 self-result. It is clear that, although 

regularisation may produce some improvement, good performances achieved by 

training on that frame is never repeated, and a specialised network is required to 

obtain good results for this frame. 

In fact, reaching such result requires a non-smooth mapping, which makes weight-

decay counter-productive. It is unclear whether training on a single frame is sufficient, 

and whether a single network can cope with such differing inputs. In this section, we 

will address the first of these questions. 

The goal of this section is to produce a training that minimises the MSB on a 

combination of patterns from frame 2 and frame 6. However, we will use the non-

linear structure of network 2, so the initial set of 1000 centres will be drawn from 

frame 2. It has been shown that this selection is not critical to the performance on 

frame 6. A weighted sum of two correlation matrices R and two cross-correlation 

vectors P is formed. The two correlation structures are computed from the non-linear 

layer, when the inputs are respectively frames 2 and 6. 

R = ( l - v ) . H ^ ( i ) H ( x ) (x)H(x) T 
xe frame! 

p - (I - V). H ' (x) / (x) + V • H ' (x)/(x) 

x€ frame 6 

x,/e frame 6 

( % I 1 ) 

with V G [O, l]. Finally, the OLS algorithm is applied in its matrix form (chapter 4, 

section 3) to orthogonalise the matrices R and P. Note that (7.11) has the formal 

structure of a regularisation. One can assume that the solution of (7.11) forces a 

network designed to minimise the error on frame 2 to yield a reasonable result on 
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frame 6 (or vice-versa, given the symmetric form of the regularisation). In fact, 

<1> = P with R and P as in (7.11) is the MMSE solution of the error function: 

L-\ 

n=0 

L-\ 

( l -v) - X 
«=0 

n=0 frame 6 

\„,t„e frame! 

(7.12) 

(It has been assumed for simplicity that the two training sets have the same length L): 

This formal analogy justifies the choice of indicating the weighting factor as v. 

The results, for a network with 100 centres, are shown in figure 15. The plot shows 

the variations of the error on frame 2 and on frame 6 normalised to their self-result 

(that clearly occur at v = 0 for frame 2 and v = 1 for frame 6). The average result over 

the two frames is also shown. 

<a 2.5 

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1 

regularisation parameter v 

Figure 15. Extended training set. (1) result on frame 2 normalised on frame 2 self-result 
(2) result on frame 6 normalised on frame 6 self-result (3) average result. 
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From the average curve one may assume that, at its minimum, little improvement is 

achieved. However, from figure 16, where the variations are normalised to the 

corresponding linear self-result, one can see that for v ~ 0.15 there is a noticeable 

improvement for frame 6. Conversely, there is a much smaller decrease of 

performance for frame 2, to a level that might be considered acceptable. It is clear 

how the controlled extension of the training pattern can improve the performance of a 

network over particularly intractable inputs, at the same time assuring a satisfactory 

level of smoothness and generalisation. 
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Figure 16. Extended training set. (1) result on frame 2 normalised on frame 2 linear 
self-result (2) result on frame 6 normalised on frame 6 linear self-result. 

7.8. Comparison of results 

The following figures show the comparative results obtained training the Volterra 

series and a 100-centres network on frame 2 using the different techniques described 

previously. In figure 17 one can see the MSB of the Volterra series 2 and RBFN 

network 2, unregularised and regularised, over the frame set. In the upper frame of the 

plot the results are normalised to the linear self-result, whilst the bottom plot is 

normalised with respect to the corresponding non-linear self-result. From these plots, 

it appears that the Volterra series produces a more general result than RBFN, albeit 

the difference is primarily on frame 5. However, the regularisation of the RBFN 

produces a result on frame 5 that is comparable to that obtained by the Volterra series. 
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That said in general, the application of regularisation does not produce any substantial 

advantage on the other frames. 

• (2) 

w 1 . 4 

3 4 

input frame number 

O (2) 

o (4) 

3 4 

input frame number 

Figure 17. Comparison of Volterra and RBFN trained on frame 2, tested over the frame set. 
Top; normalised to linear self-result. Bottom; normalised to non-linear self-result. (1) Volterra 
series, (2) RBFN, (3) regularised Volterra series (v = 10"^) (4) regularised RJ3FN (v = 10"''). 

Figure 18 shows the result of the application of the extended RBFN trained on frame 

2 and 6, with v = 0.15. Note that the training is not regularised. The extended training 

has a beneficial effect and yields a MSB on frame 5 which is comparable to that 

obtained via regularisation, and with the expected improvement of the performance on 

frame 6. 
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Figure 18. Extended training of RBFN network 2 (3), compared to non-regularised (1) 
and regularised training (2), normalised to self-result. 

It is then reasonable to ask why frame 5 is so poorly de-interlaced by network 2, since 

the characteristics of the image do not look extremely different f rom frame 2 as in the 

case of frame 6. Figure 19 shows the frame 5 target field, and two error fields de-

interlaced using RBFN. The first shows the absolute value of the difference between 

the network 5 self-result and the network 2 cross-result. In the second the difference is 

between the self-result and the cross-result of regularised network 2. It is clear that, 

among other differences, there is a large error concentrated on a large uniform white 

area (the collar), and that this error is basically a mismatch of the correct luminosity. 

From the histograms in figure 2, note how frame 5 has a peak on the far right of the 

histogram, corresponding to a high density of white values. Such a peak is not present 

in the histogram of frame 2. It seems clear that the training on frame 2 fails to produce 

the correct output on uniform, white inputs, because there are not enough patterns in 

frame 2 to force a MSB solution to correctly account for these bright areas. Figure 20 

shows this effect. The output of the de-interlacer is computed for inputs consisting of 

uniform input x(o:) = a • [ l . . . l ]^ of value a, a e [ -128,127] . Figure 20 shows the 

output y{a) for a network trained on frame 2, a network trained on frame 5, and a 

network trained on frame 2 and regularised. The plot clearly shows that training on 
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frame 2 lacks precision in the right end of the range. Regularisation, by generally 

smoothing the response, tends to amend this problem. 

(1) 

(2) 

(3) 

Figure 19. (1) field 5 interpolated by network 5. (2) Difference with same field 
interpolated by network 2 and (3) network 2 regularised. 

The inset shows a detailed plot in the neighbourhood of « = 127, allowing one to 

better appreciate the difference between the different results. The functions have been 

evaluated at 64 grey levels, which was chosen to correspond to the smallest 

perceptible grey level difference. Both the frame 5 self-result and the regularised 

training on frame 2 produce results whose tolerance is less than this difference, while 

the unregularised training on frame 2 fails this criterion. 
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Figure 20. Network's response on the bisector of the input space. (1) ideal response (2) network 
5 self-result (3) network 2 self-result (4) network 2 regularised. Three of the corresponding 
input-output pattern lattices are also shown. 

7.9. Constrained optimisation 

The previous section showed that a network trained on frame 2 fails to generate a 

proper mapping of patterns on the diagonal of the input space. This produces a 

perceputally disturbing artefact, because incorrect outputs are placed in a regular 

geometric pattern (field lines). An example of this is in figure 21. 

Figure 21. Line artefacts. Uniform white area de-interlaced using (a) network trained on frame 2 
(b) network trained on frame 2, regularised (c) network trained on frame 5. Images are enlarged 2 
times for a clearer perception of the artefacts. 

For these patterns, which represent uniform areas in the image, the most desirable 

outcome is known a priori. However, this information is not explicitly provided to the 
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training procedure. Broadly speaking, if the training sequence includes a sufficient 

number of these patterns, like in frame 5, the result will generate a correct mapping 

along the diagonal. If this information is absent, like in frame 2 for a ~\21, then the 

training procedure may produce incorrect results. It seems reasonable to build a 

network that has an explicit ability to map these patterns, regardless their relative 

preponderance in the training set. A way to achieve this is by constraining the 

optimisation to satisfying these conditions. 

To achieve this the optimisation is modified by incorporating a linear constraint. 

Specifically the problem becomes that of minimising (7.7) subject to the constraint 

= O V « e [ - 1 2 8 , 1 2 7 ] (7 .13) 

where h # i s the vector of nodal outputs assuming a uniform input with grey level a. 

In practice a limited number of constraints are used. One should understand that by 

imposing the constraints on (7.7) the solution departs from the MMSE solution. An 

excessive number of constraints lead to an inconsistent solution, i.e. there might not 

be a minimiser for the constrained problem. Supposing that there are K constraints, 

oce [«] (7.13) can be expressed in matrix form: 

K ^ 0 = A 

= [ h e , . . . h e j , ] ( 7 1 4 ) 

A = [ai 

7.9.1. Lagrange multipliers 

A well known technique to obtain constrained optimisation is by Lagrange multipliers 

(Fletcher, 1987). The solution to the constrained optimisation is obtained by 

minimising the Lagrangian function with respect to 0 and A 

146 



C ( 0 ) = 0 ^ R 0 - 2 0 ^ P - A ^ ( K ^ 0 - A ) (7.15) 

where A = [A] ... is the set of Lagrange multipHers, one for each constraint. If 

the inverse of the Lagrangian matrix L exists. 

R - K -1 B - T 
- K ^ 0 - T ^ U _ 

(7.16) 

then the solution in 0 can be written as: 

@ = B P + T A (%17) 

The explicit expressions for B and T are: 

1 -1 f r ^ 
K ' R K 

- 1 

B = R - R K K ^ R 

T = R K l K R K 

V y 

-1 

(7J8) 

In figure 22 we show the results on the diagonal of the input space, for 3 constraints 

a==0, a = -128 ,+ 127, (corresponding to the extremes and the mid-point of the 

diagonal), for 5 constraints (additional constraints at « = ±64), and for 9 constraints 

(additional constraints at a = ±32 , a = ±96). It is clear how, as the number of 

constraints increases, the performance on the diagonal increases. In fact the result for 

5 constraints is nearly indistinguishable from those obtained with 9 constraints. In 

figure 23 we show the normalised cross-results for the unconstrained and constrained 

cases. One can see the noticeable improvement in the results for frame 5. Again, there 

is a negligible difference among the three constrained schemes. 

More constraints could be considered by investigating other a-priori patterns. One 

could use inequalities in (7.13) rather than equalities (e.g., -a<\, if we 
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intend to use 8-bit precision in the range -128 to 127). That would afford more 

flexibility to the optimisation algorithm. However, care should be taken to abide by 

the main goal of the optimisation (i.e. the minimisation of the error), and avoid 

inconsistent constraints. 

unconstrained 
3 constraints 

0) 

- 1 2 8 0 

a 
127 

8 -

5 constraints 
9 constraints 

0) 

1 
0 

- 1 2 8 0 

a 

127 

Figure 22. Constrained optimisation of network 2, 100 centres: absolute error on the diagonal. 

o (1) 
• 2 

O 4 

1 2 3 4 5 
input frame nurrter 

Figure 23. Cross-results, network 2 with 100 centres. (1) unconstrained (2) 3 constraints 
(3) 5 constraints (4) 9 constraints. 
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7.10. Mixture of experts 

The difficulty in reproducing the self-result on frame 6 without directly training on it 

has been demonstrated. The extended training of network 2 on frames 2 and 6 reduces 

the gap, albeit not completely. It has also been shown that, with the proper choice of 

centres, the burden of specialisation falls mainly on the network's weights. 

This raises the question as to whether a network with fixed weights is an appropriate 

solution to the problem. One may imagine a model that changes its structure 

according to the pattern presented at its input. A possible solution would be to create a 

set of K networks that specialise their mappings on different sectors of the input 

space. These networks might be even use different architectures, e.g. being a mixture 

of linear, RBFN, and Volterra networks. A gating network selects the expert network, 

i.e. the best mapping among the different alternatives, according to the position of the 

current input in the input space. Such a structure is known as mixture-of-experts 

model (Jacobs et ah, 1991). The schematic diagram of the model is depicted in figure 

24. 

LIZ-

network 1 network 2 network 3 
• • • 

network K 
gating 

network 

i i i V i I i I 

Figure 24. Schematic diagram of a mixture of experts model. 
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This model can be described by the equation: 

jy(][)== (*( 7 ; )jy; (%) (7.ISO 
7=1 

where y j i ^ ) is the output of the network j, j j = j j (x) is the 7-th output of the 

gating network, and a ^ J j ) is the mixing coefficient j. aj can be either a "hard" 

switching function, in which case only one network operates at any time, or a "soft" 

switching function, in which case the output is a weighted sum of all the networks' 

responses. The latter solution is preferable, since a properly trained system guarantees 

continuity and smoothness on the transition from one partition of the input space to 

another. This avoids artefacts due to responses on similar patterns that lay across a 

partition boundary. An example of a soft gating is given by the softmax function 

(Bridle, 1990; Jacobs, 1991): 

a G o ) = f ' (? :%)) 
( / / ) 

k 

Another point in favour of a "soft" switching function is that it can also be 

demonstrated (Bishop, 1995) that the error of a weighted sum of networks can be 

singnificantly reduced. A weighted sum of networks is referred in literature as 

committee of networks (Perrone and Cooper, 1993; Perrone, 1994). This reduction can 

be seen as arising from a reduced variance due to the averaging over many networks. 

Therefore, it is suggested (Bishop, 1995) that the individual networks should not 

optimally trade-off bias and variance, but rather prefer smaller bias, since the variance 

is reduced by the averaging process. 

To illustrate the applicability of the technique to the de-interlacing problem, a system 

is developed based on separating the input into high and low contrast regions. Two 
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features are derived for the input vector x. One is the projection x j, of x onto the 

diagonal, and the other is the norm of the component of x orthogonal to the diagonal, 

that we call xj_ = |{xj_||, see figure 25. The two axis are denoted as k (parallel) and co 

(orthogonal). The value of Xj_ can be interpreted as a measure of contrast, whilst x j 

is a measure of brightness. It is then relatively easy to decompose the input space in a 

high-contrast and a low-contrast region. Figure 26 shows the squared errors resulting 

from applying various de-interlacing schemes to the whole frame set, plotted in the tt-

0) plane. The errors are normalised by the total sum of squared errors. Results are 

shown for a network fully trained on frame 2, for a network using centres from frame 

2 and the weights recalculated on frame 6, and a network fully trained on frame 6. 

White areas represent zones where no input has been encountered. 

high contrast 

low-Contrast 

high contrast 

128.V2 

- • 0) 

-128 V2 

, . / l 2 8 . V 2 

Figure 25. Parallel and orthogonal components illustrated for a 2-tap vertical lattice. 

These differences can be further appreciated in figure 27. The difference in the n-co 

plane between the errors of the network trained on frame 6 and of the network trained 

on frame 2 is plotted, along with the difference between the errors of the network 

trained on frame 6 and the network initially trained on network 2 and with calculated 

on frame 6. A negative value indicates that in that area network 6 produces on average 

a smaller error. 
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Figure 26. oy-n error planes, showing the average error calculated using the full frame set. 
Network 2 (a), network 2 with weight calculation on frame 6(b), network 6 (c). 
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Figure 27. (O-k error difference planes, showing the average error difference between different 
training schemes, calculated using the full frame set. Network 6 minus network 2 (a), network 
6 minus network 2 with weight calculation on frame 6 (b), network 2 with weight calculation 
on frame 6 minus network 2 (c). 
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These figures illustrate that networks 2 and 6 perform well in different regions of the 

n-(0 plane. Note also how network 2, with weights calculated on frame 6, has a 

smoother performance than the other two networks. Therefore, a mixture of experts, 

i.e. a system that applies different de-interlacing schemes to different regions of the n-

00 plane, could produce a result that is general but also able to produce good results on 

difficult frames like frame 6. 

It is beyond the scope of this thesis to investigate this possibility. What it is suggested 

here is that the n and m components of x could be used by the gating network to 

switch between a general de-interlacer like a RBFN trained on frame 2 and 

constrained on the diagonal, and a more specialised system like a RBFN trained on 

frame 6. 

7.11. Conclusions 

In chapter 5 and 6 the linear filter, the Volterra series and RBFN have been 

investigated in order to realise a de-interlacing system. The results have shown that 

non-linear techniques have superior performance in terms of the resulting MSB. 

However, in this section it has been shown how this increased performance pays the 

cost of reduced generalisation ability. The better the performance achieved on a single 

frame is, the worse the performance achieved on frames not included in the training 

set is. Including additional patterns (i.e. frames) in the training set is not a feasible 

solution, since it increases the computational load. 

Several theoretical aspects of generalisation have been investigated. It has been seen 

how the MSB can be decomposed into a component that depends on the lack of 

complexity of the model (bias), and a component that depends on the specialisation on 

the training set considered (variance). 

The main problem is that the unconstrained minimisation of the MSB leads to 

excessive specialisation. Therefore the lack of generalisation lays mainly in the 

training procedure. It is necessary to devise a cost function that, along with the error 

term, includes a term that measures the generalisation ability of the system and trades-

off the minimisation of the MSB. This approach is known as regularisation. 
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One possible form of regularisation is the weight-decay training, often referred as 

ridge-regression. The principle is that a specialised network is non-smooth, and that 

non-smooth mappings yield high weight values. Weight-decay seeks generality by 

trading-off the MSE with the sum of the squared weights. The results show that this 

technique has a beneficial effect on non-general systems. 

Another possible technique to add generality is to introduce prior constraints to the 

training. For many input patterns the input can be easily forecast. By constraining the 

minimisation of the MSE to consider these known patterns, the system achieves 

generality since this prior knowledge is derived from general considerations on 

images. The results show that the generality of the system is increased, without 

significantly affecting the MSE performance. 

However, some patterns present peculiar characteristics that are rarely found in a 

typical training set. An example is a frame containing a page of text. A network 

trained on this frame yields poor results on other more "general" frames. Conversely, 

a network trained on a general training set cannot achieve the good performance of a 

specialised system. A solution could be to include some of these patterns in the 

training set. The results show that some improvements can be achieved in this way. 

A better solution is to create a network that changes its mapping according to the 

input. The investigation of such a network is beyond the scope of this thesis. 

Nevertheless, a simple introduction to the subject is given, together with a suggested 

technique to determine the appropriate system's mapping according to some 

properties of the input in the input space. 

In the next two chapters, the subject of symmetry is discussed for linear filters and 

RBFN. It will be shown that, assuming rotational invariance for the mapping, it is 

possible to devise prior conditions that lead to a reduced computational load. In 

chapter 10 it will be shown that this also leads to an increased generality of the 

system. 
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8. SYMMETRY CONSTRAINTS FOR LINEAR NETWORKS 

8.1. Introduction 

In many practical situations, the input space created by the process of sampling 

contains information that is, in some way, redundant. The removal of any redundancy 

may reduce the dimensionality of the problem and result in a reduction of the 

computational effort. By means of simple operations, typically linear ones, it is often 

possible to transform the input space into a new space that has a lower dimension. The 

subsequent application of non-linear techniques clearly benefits from such a 

reduction. 

Sometimes such reduction can be obtained in an intuitive way. As a simple example, 

if the system task is to process the average luminosity of the input vector, it is wise to 

calculate this quantity first by a simple weighted sum, so that the dimensionality is 

reduced to 1, and then process the result. In the literature, such process is often 

referred as feature extraction. In other words, one tries to obtain the salient 

information (features) from the input space, so that this information has a reduced 

dimensionality compared to the original space. The process of identifying the features 

of interest requires an analysis of the problem that is both analytical and intuitive. 

This chapter exploits a particular feature set derived for images that applies whenever 

the sampling lattice has certain geometrical symmetries. Consider the picture in figure 

1, where a square neighbourhood of the pixel p is sampled to obtain an input vector 

X. Now, suppose the image is rotated around p by 90 degrees; in general the input 

will be different and denoted %%. Clearly, the target pixel's value p has not changed, 

and more importantly the geometry of the lattice in relation to the image has not 

changed either, since the lattice can be rotated by any integer multiple of 90°. It is 

therefore desirable that the interpolator produces the same output when either x or 

X90 are presented to the input. 
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Figure 1. Symmetry in image sampling. 

More formally, if / ( x ) is the interpolation function, then it is required that: 

; r ( i ) = = . / ( i 9 o ) , ^ / : K ( 8 1 ) 

This equation is called a condition of symmetry, in the sense that it describes a 

condition any interpolator should respect, regardless the particular image/training set 

considered, when the sampling lattice is transformed according to its symmetries. It is 

then an a priori constraint, valid for all images. Note that we are able to draw a matrix 

relation between the two inputs, x and Xgg. The matrix T90 (figure 1) is then called a 

rotation operator, with the following properties: 

The matrix T90 is full rank, rank{i:^Q) = 4. 

The columns of T90 are equal to the columns of the identity matrix, rearranged. 

The columns of the matrix form an orthonormal basis in 7?^. 

. ||x|| = IIT9Q x||, ||xi - X 2 II = I I T 9 0 X ] - T 9 0 X2 II (Isometry) 
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Note that all these properties are intimately linked. They are consequences of the fact 

that the operator T90 simply swaps the position of pixels associated in a one-to-one 

fashion. More generally, one can say that T90 is a member of a class of symmetric 

operators on the sampling lattice. These operators transform the input space into 

another with same span (isometry), with the constraint that the operator is derived 

from a symmetric transform of the sampling lattice. 

8.2. Symmetric transforms of the sampling lattice 

T90 is not the only possible transform of the sampling lattice shown in figure 1 that 

preserves the sampling topology (symmetry). The chosen lattice, being a square, 

allows 8 possible transformations, with the same topological/algebraic properties as 

T90 (i.e. being a rearrangement of the co-ordinates system, and preserving the 

geometry). Figure 2 illustrates all these transforms. Following the previous 

considerations, all the input vectors coming from these rotations should lead to the 

same interpolator output. 

I I 90° ) •? 

- T T t r - 7 

4 )—j—C) 

T T 

180° 

A 
0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 

3 
lih < 

4 3 

. \P 

1 r i T . 

" 1 — \ ' . 90° \ 

r 
1 

1 r 

Figure 2. Self-similar transforms of the square lattice. 

Note the introduction of a new operator Ty that performs the rotation about the 

horizontal axis (mirror symmetry), Ty shall be referred to as the "vertical flip" 
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operator, since it "flips" the pixels in the vertical direction. The operator Ty has the 

same properties as T90, and belongs to the same class of operators. 

1 2 

P P 

3 4 

180° 
T//K -

0 0 0 1 
0 0 1 0 
0 1 0 0 
1 0 0 0 

[0 1 0 ol 

T// = 1 
0 

0 
0 

0 
0 

0 
1 

0 0 1 0 

2 i 1 

180° 

Figure 3. Self-similar transforms of the rectangular lattice. 

8.2.1. Symmetric transforms of a rectangular lattice 

The picture described for the square sampling lattice alters if the shape is rectangular 

(figure 3). The problem is that not all the rotations shown for the square lattice 

preserve the shape of the rectangular lattice. Specifically, the T90 transform cannot be 

applied. In the rectangular case the number of transformations is smaller than in the 

case of square sampling lattice, as can be seen in figure 3. Two new transforms, 

(horizontal flip) and (horizontal-vertical flip), have been introduced. Since the 

only transforms allowed are 180° degree rotations, one can see that a rotation 

followed by a vertical flip is equivalent to a flip about the vertical axis, that is 

expressed by . The transform has the following properties: 

T / / F - T 9 0 T 9 0 

Tv Tfs =TuT-^HV - *-H H 

(8.2.a) 

(8.2.b) 
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8.2.2. Conditions of symmetry 

The conditions of symmetry for the two cases can be derived; 

Square samphng (4 pixels): 

/ W = / ( T 9 o x ) 

/ ( i ) = / ( T v y y x ) = / ( T ^ Tp. x ) = / ( T p . x ) 

= x ) 

/ ( % ) = / ( T p ^ x ) 

(8.3.a) 

rectangular sampling (4 pixels): 

V i -

/ ( l ) = / ( T ; ^ l ) = / ( T ; / x ) = / ( T p ^ Tyy x ) 

/ W = / ( T / / %) 

/ (%) = / ( T K x) 

(8.3.b) 

In general, any combination (multiplication) of the operators must satisfy the 

condition of symmetry, that is: 

V % : / 
n / n 

« - l y 

(8.3.C) 

where the set of operators = = are drawn from the set of 

all the possible operators for the given lattice. 

8.3. Symmetric reduction of the input space - the linear case 

In this section, it will be shown how the symmetry properties of the sampling lattice 

can be exploited when the interpolator is linear. The case of a linear interpolator is 

initially addressed to provide foundations for the extension to the non-linear case. 

This is based on extracting features from the input space that are invariant under the 

transforms T90, and T//f/. 
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In the case of linear systems it is easy to deal with the algebra of the conditions of 

symmetry. We shall present in detail the case of a 4 pixel square aperture as an 

example of the methodology adopted. The linear interpolator can be expressed as: 

/ ( l ) = 0 ^ 1 , 0 = ^ 2 ^ 3 ^ 4 (8 4) 

Applying the conditions (8.3.a) (square shape) to (8.4), yields: 

Vx 

0 ^ ( I - T 9 o ) x = O 

O ^ (I — ^HV )x = 0 

0 ^ ( I - T ^ ) x = 0 

0 ^ ( I - T p . ) i = 0 

(8.5) 

where I and 0 are the identity matrix and the null vector in i? . I t follows that 0 

should be orthogonal to the spaces defined by the span of (l —Tgg), 

(l - T//) and (l - T y ) . It is easy to see that: 

ran V T , E { T 9 o , T ; f , T r , T ; f r } ( g j i ) 

Hence ( l - I } ) is 2-dimensional and, considering that the input space is 4-

dimensional, it follows that the 4 spaces described in (8.5) can not be orthogonal. The 

simplest way to calculate the combined dimension of these spaces is to compute the 

rank of the matrix product of the operators, i.e. the dimensionality of the projection of 

one space onto the others. This leads to the following results: 

/ ' a M ^ [ ( l - T p . ) ^ ( l - T / / p . ) ] 

r a M ^ [ ( l - T j y ) ^ ( l - T ; / ^ ) ] 

(8 7 ^ 
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Hence, ( l - T ^ ) , ( l - T j y ) and { l - T ^ T y ) overlap each other in one dimension. 

Furthermore 

) ^ ( I - T 9 0 ) ] 

/ ' a » A [ ( l - T p . r ( l - T 9 o ) ] 

) ^ ( I - T 9 o ) ] 

(8.7b) 

Therefore one can see that from (8.6) the 2-D space ( I - T 9 0 ) is equivalent to 

( l - T / / y ) , ( l - T j y ) and ( l -T j / ) . Considering that T,- = tJ,i = H,V,HV, we also 

have: 

= T ; ^ ( T ; ^ - T p . ) = 

T / / (T / / - 1 + I - Tj- ) = T / / [(I - T j - ) - (l - T / / )] 
(8.7c) 

hence the space { i - T ^ y ) is a linear combination of ( l - ) and ( l - T y ) . The 

conditions of symmetry imply that the linear weight vector 0 is orthogonal to the 3 

dimensional sub-space of defined by the two 2 dimensional spaces ( l - T / / ) and 

( l - T f / ) overlapping in one dimension. Note however that the condition 

0 ^ ( l - Tf^y) = 0 is still necessary in order to ensure that the combined application of 

, Tj/ abides to the conditions of symmetry. 

Seeing that 0 is orthogonal to a 3-D sub-space of , there is an appropriate system 

of co-ordinates that makes 0 1-D. One can easily find a transform from equation 

(8.5) that identifies the suitable reduction 
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( I -T/ / ) - [01 02 03 04 ]• 

O ^ ( I - T f / ) - [01 0 2 03 0 4 ] 

1 - 1 0 0 
- 1 1 0 0 
0 0 1 ^ 1 
0 0 - 1 1 

1 o - i o " 
0 1 0 - 1 

- 1 0 1 0 
0 - 1 0 1 

= 0 => 

0 => 

01=02 

0 3 = 0 4 

01=03 

0 2 = 0 4 

(8.8a) 

(8.8b) 

O ^ ( I - ) - [01 0 2 0 3 0 4 ] • 

1 0 0 - 1 
0 1 - 1 0 
0 - 1 1 0 

- 1 0 0 1 

= 0 => 
01=04 

0 2 = 0 3 
(8.8c) 

Hence the hnear equation is trasformed into: 

[01 0 2 0 3 0 4 ]• [%i X2 %3 ^ 4 Y - 0 5 (-^l + ^ 2 + ^ 3 + -^4 ) (8.9) 

0 

Xi 

02 

^2-

03 
- • 

a;4. 

04 
- • 

Standard linear filter: 
3 additions 
4 multiplications 

/ W 

xi 

X2 

X3 

0 . 

— — • / W 

Symmetric linear filter: 
3 additions 
1 multiplication 

Figure 4. Architectural reduction for the square/rectangular lattice. 

Equation (8.9) determines the architectural changes, and the computational savings 

obtained by making use of symmetry, as can be seen in figure 4. The same structure 

results for the rectangular lattice, and any symmetric lattice can be reduced in a 

similar way. 
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However, the results obtained so far have been deduced for two specific cases. It is 

possible to draw similar equations for any lattice which has symmetric properties, but 

it is desiderable to produce more general results. In order to achieve this the case of a 

continuous input space is considered. Although of little practical importance, the 

results obtained in the next section provide a greater theoretical breath to the 

reduction obtained so far and can be used to obtain a general criterion for the 

reduction of arbitrary symmetric lattices. 

8.4. Symmetry in a continuous image space 

In the continuous image space, an image is defined as a continuous function of two 

variables, l{p) = l{x,y). In the context of this discussion, the continuous linar 

interpolation of an image point po can be defined as the 2-D integral, over some 

neighbourhood JVp of pg, of the image function /(p) multiplied by a weight density 

function 0 (p): 

j ( / ) = J ^ ( p ) / ( p ) < 5 ^ p (8 .10 ) 

It is assumed that 0 ( p ) has closed support in (corresponding to the use of finite 

apertures in the discrete case), and assume very loose conditions on the shape of 

to ensure that it is meaningful in terms of a real, discrete sampling lattice. It is also 

assumed for simplicity that the co-ordinate system is centred on po . 

8.4.1. Circular sampling and symmetry operators 

In the following discussion a circular neighbourhood jVp of radius r and centered in 

Po is considered. This choice is clearly justified in the context of the study of 

symmetric lattices, / ( p ) can be rotated by any angle 0 , and flipped around any axis 

(figure 5). Using polar co-ordinates centered at the origin then: 
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I i 

)' ( 
j ^ 

t Po ) • L ^ 

Figure 5. Circular sampling and symmetry operators. 

r IK 

0 0 

( g J i ) 

Where / ( p , t ? ) is the image espressed in polar co-ordinates centred at po . The next 

step is to find an explicit description of the operators T in the continuous space. The 

rotation operator T90 becomes a more general operator 

(8.12a) 

The operators T/^, Ty and become the mirror symmetry operator about an 

axis a : 

( 8 . 1 % ^ 

The two operators are pictorially described in figure 5. These operators can be 

expressed as; 

2;r 

T ^ [ 7 ( p , 7 ) ) ] = + (8.13a) 
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IK 

(8.13b) 

8.4.2. Radial symmetry 

The condition of symmetry in the continuous space can be formulated as follows: 

= V ( ^ e [ 0 , 2 ; F ] , V / (8.14a) 

= V « E [ 0 , 2 ; r ] , V / (8.14b) 

which expresses rotational and mirror symmetry with arbitrary angles (j) and a . It is 

assumed that (8.14a) and (8.14b) are valid for any image I. This leads to the following 

equations: 

r 2; : 

0, 

0 0 

r In 

0 , VCK 

0 0 

Substituting (8.13a) in (8.15a), we obtain: 

(8.15a) 

(8.15b) 

r In 

0 0 

r In r In In 

J J n ( p , t ? ) J 5 ( v - ? ? + 0 ) / ( p , v ) J v 

0 0 _ 0 

(8.16) 
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By inverting the roles of v and in the second term of (8.16) and changing the order 

of integration, one obtains 

r In 
j j 

" 2;r 

j ^ ( 
0 0 . 0 

r In IK 

J«(v 
0 0 0 

r In 
j j ' 7 ( p , v ) 0 ( p , v 4 

0 0 

j#(v -T^ + (f))I{p,v)dv 

(v - J? + ^ )Q ( p , 

di}dp = 

(&17) 

By substituting (8.17) in (8.16), one can easily see that the conditions of symmetry for 

arbitrary angles imply that the weight density function has radial symmetry. 

(8.18a) 

and therefore. 

r 2;r 2;r 

_y(/) = j j" = j" 0 ( p ) j ( 8 . 1 8 b ) 

0 0 

Note that (8.18b) justifies, in the continuous space, the reduction obtained for the 

discrete, square sampling case. 

8.4.3. Mirror symmetry 

In the scenario depicted previously, the image neighbourhood can be rotated by any 

arbitrary angle, and the interpolation must yield the same output. The consequence is 

that the weight density function has radial symmetry. However, it is difficult to 

translate this result in discrete terms, since sampling apertures usually have few axis 
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of symmetry (typically 2). The result (8.18a) has been obtained applying the radial 

symmetry operator (8.13a). 

In this section we will focus our attention on the operator (8.13b), in the case of 

= 0,;r/2 which matches 2 symmetries in the 8i sampling lattice (figure 6), and 

includes the 180° degree rotational symmetry. The missing lines in the discrete lattice 

(target field) can be modelled as missing zones (shaded areas) in the continuous 

neighbourhood. 

« < • 

% 

Figure 6. Aperture 8,, and its continuous space model. 

Following the derivation as in section 8.4.2 one can obtain an equation similar to 

(8.16), this time however using the specular symmetry operator (8.13b); 

r In 

0 0 

r 2K 

0 0 

2n 

j " j" 0 ( p , * ) ) ^5{y+ T^-2a)l{p,v)d\ 

(&19) 

di}dp = 0, a = 0, 
n 

This time the equation is only valid for two values of a . Again, inverting the roles of 

V and Td- leads to: 
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Q{p,'&)= Q{p,7V -•d-) = Q.{p,-i})=Q{p-7u + -d-) (8.20) 

In expressing (8.20) the fact that the axis of symmetry a = Q,K/2 are equivalent to 

a = TC,-Kl2 has been used. The associated areas are schematically represented by the 

white dots in in figure 6. 

8.5. Symmetry in the discrete space 

The results obtained in the previous section allow one to exploit the symmetric 

reductions of the linear interpolator for any lattice, without performing the analysis of 

the operators T seen in section 8.3. By simply inspecting the lattice, one can 

determine the available symmetries. The results in section 8.3 ensure that pixels 

associated by symmetry yield the same weight. Examples are shown in figure 7, 

where single weights values are associated with pixels shown with the same shading. 

The case of aperture 8i is included, as well as a more general lattice using all the 

available lines (i.e. without the missing lines typical of de-interlacing apertures). The 

latter example has an extra axis of symmetry (diagonal). 

- 4 - u U 

Figure 7. Symmetry in sampling lattices. Pixels with the same shading should be summed using 
the same weights. 

The symmetric linear interpolator for the 8i aperture is given by 

j ( x ) - ^ (x] + Xg)+(j){f^ (x3 +-^4 + -̂ 5 + ^7 ) (8.21) 
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and therefore: 

y ( x ) = 0 ( ' ^ ^ ^ C x 

1 0 0 0 0 0 0 1 

0 0 1 0 0 1 0 0 

0 1 0 1 1 0 1 0 

(8.22) 

= »(') 

The compression matrix C serves to reduce the dimension of the input from 8 to 3. 

The output of the linear de-interlacer is only a function of the 3-elements vector C x . 

Similar compression matrices can be defined for any discrete aperture. 

8.5.1. Axial sampling. 

In this section we want to show how the structure of the lattice is reflected in the flip 

operator T when some of the pixels lay on one of the axes of symmetry. For the 4 

pixel square lattice depicted in figure 7, where all the pixels are off the axis, there is a 

reduction by a factor of 4 in the number of multipliers required to implement the 

scheme. For the 6 and 8 pixel apertures however, this reduction is 3 and 8/3 

respectively. This is primarily because these apertures contain axial pixels. 

Consider how the presence of axial pixels is reflected in the structure of the flip 

operators, and how this determines the reduction that can be obtained. For the 8, 

lattice the two operators are: 

0 0 0 0 0 0 0 1 
0 0 0 0 1 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 0 0 1 0 
0 1 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 
0 0 0 1 0 0 0 0 
1 0 0 0 0 0 0 0 

T// = 

1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 1 0 0 0 0 0 
0 1 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 
0 0 0 0 0 1 0 0 
0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 1 

(&23) 

The analysis for the 4-taps case can be repeated, as in section 8.3. However, here T// 

has 4 entries on the diagonal, reflecting the fact that T// maps axial taps into 

themselves (Figure 8). Hence: 
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% - ! = 

0 0 0 0 
0 - 1 0 1 
0 0 0 0 

0 0 0 0 
0 0 0 0 
0 0 0 0 

0 1 0 -1 0 0 0 0 
0 0 0 0 -1 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

0 0 0 0 
1 0 - 1 0 
0 0 0 0 

(8.24) 

There are 4 null columns, corresponding to the 4 axial pixels. Hence, 

rank{Ty rankijjj-1) = 2 and ranki^^-if {ly—\)=\, so that the 

vector 0 is orthogonal to a 5-dimensional space (4+2-1), and a reduction by 8/(8-5) = 

8/3 is observed. The same reasoning can be used to explain the reduction by 3 

obtained when the 6-pixel lattice in figure 6 is considered. 

£t= 

Figure 8. Off-axis and axial pixels. In the first case, both flipping operators map each pixel into a 
different pixel. In the second case, the horizontal flip maps axial pixels onto themselves. This is 
reflected as null columns in the orthogonal spaces I T#. 

8.6. Experimental results. 

These concepts are applied to the 3 symmetric sampling lattices depicted in figure 9. 

Of course, the 2-pixel lattice has only 1 axis of symmetry, hence one can only apply 

one flip operator, specifically Ty, whilst the 4 pixel lattice and the 8-pixel lattice can 

be reduced with the two operators and Tj/. 

The experiments are conducted as follows: firstly, the MMSE filter is calculated, then, 

the image is "flipped" according to the flip operators the lattice permits, and the MSE 

1 7 1 



is computed when the original filter is applied to the flipped image. The results are 

compared with those obtained with the symmetric architecture, see table 1. 

4 X] 

^5 % ±7... % 

jKH 

Figure 9. Sampling lattices, and symmetry reduced architectures. 

2 taps 4 taps 

Normal input 1.2369 2.7737 0.9893 

H-flipped input 2.9199 1.0596 

V-flipped input 1.2379 2.9214 1.0616 

HV-flipped image 2.7752 0.9913 

Symmetric architecture 1.2372 2.8106 1.0072 

Table I. Results for 3 sampling lattices, compared with symmetric architecture. 

It can be seen that the non-symmetric architecture works better than the symmetric 

architecture on the original image, i.e. the training set. This can be interpreted as an 

excessive specialisation of the non-symmetric algorithm. The symmetric filter 

provides robust performance across the set of flipped images, so is more general. This 

can be regarded as a consequence of being more parsimonious. This benefit is gained 

along with computational savings. 

172 



8.7. Conclusions 

It has been highlighted in previous sections how the computational demand of a de-

interlacing system is of paramount importance. In single-layer networks, 

computational complexity is proportional to the number of nodes employed by the 

network, and to the complexity of the individual linear and non-linear kernels. 

Another advantage of seeking for smaller architectures is that this typically determine 

a more general result. 

It is often possible to achieve computational savings by seeking for invariant features, 

e.g. invariance to translation and rotation. The first part of this chapter describes one 

of these invariant properties that can be postulated to be valid for any reasonable 

image. This invariance comes from the constancy of the target value under rotations 

of a symmetric sampling lattice. This determines a set of conditions (symmetry 

constraints) that a de-interlacing system should verify in order to preserve such 

rotational invariance. The case for a linear system is discussed in this chapter. 

The conditions of symmetry for a linear system lead to simple linear algebraic 

equations. Initially, two very simple cases are presented, regarding a 4-tap sampling 

lattice with square and rectangular aperture. It is demonstrated that the conditions of 

symmetry imply that it is possible to reduce the dimensionality of the input without 

affecting the performance. This in turn allows a rearrangement of the algebra that 

leads to computational savings. 

In order to generalise these results to arbitrary apertures, a brief discussion of the 

continuous case is presented. This discussion leads to the general principle that pixels 

associated by the symmetry operators should be multiplied by the same weight. This 

leads to a very simple procedure to determine the desired computational reduction. 
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9. SYMMETRY IN RADIAL BASIS FUNCTION NETWORKS 

9.1. Introduction 

The previous chapter highlighted the advantages of exploiting symmetry in linear 

interpolation and, specifically, in linear de-interlacing, and a theoretical foundation 

was presented for achieving this. In this chapter we seek to extend these concepts to a 

non-linear de-interlacing system based on RBFN. 

For the linear case it has been shown how the output of a symmetric linear system 

depends on a reducing transformation of the input vector x expressed by 

; / ( ] [ ) = ) " ( ( : : % ) (9 1) 

where C is the compression matrix that reduces the dimensionality of the input space. 

For the 8; aperture, C reduces the dimension of the input space from 8 to 3. It has 

been shown that, in the linear case, this reduction leads to computational savings. 

A natural approach to applying the results of the last chapter to a non-linear system is 

to consider employing the same compression matrix. This is based on the fact that 

symmetry is a property of images that is valid regardless the particular technique 

adopted, and we can always write conditions of symmetry for the mapping function 

/ ( x ) , provided the sampling lattice is symmetric. 

Unfortunately the assumption of a linear interpolation is integral to the derivation of 

(9.1). A counter-example that illustrates this failing is to consider a 2 pixel non-linear 

de-interlacer given by / ( x j ,^2 ) = . Evidently, this function satisfies the 

symmetry condition / ( x j ,^2 ) = / (%2 ) but / ( x ] ,X2 ) cannot be expressed in 

the form / ( C x ) = / ( x j + X2 )• 
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A simple experiment shows the limitation of the linear approach in the case of RBFN. 

A 1000-centre, narrow support (y = 10"^ ~10~^) hybrid Gaussian RBFN is trained 

with the input space obtained using the 8, sampling lattice, and the input's dimension 

is reduced using the compression matrix C. Figure 1 depicts the MSE as the number 

of centres is increased and, despite using width parameters that differ by 5 orders of 

magnitude, the results are very similar and both are poor in comparison to the system 

using the full 8 dimensions. 

1 

0 . 9 5 

0 . 9 

0 . 8 5 

0.8 

0 . 7 5 

0 . 7 

0 . 6 5 

0.6 

reduced input, 7=0.1 
reduced input, 7=0.000001 
8-dimensional input 

0 . 5 5 

10 2 5 5 0 1 0 0 2 5 0 

ortliogonalised centres 
5 0 0 1000 

F igure 1. Gauss ian R B F N t ra ined witli t he reduced input se t . 

In this chapter two procedures to reduce RBFN complexity making use of symmetry 

will be presented. These procedures are based essentially on two different properties 

of the RBFN expansion. 

Firstly, RBFN is a series of a non-linear transform on the input space, 

followed by a linear regression i? ̂  > i? of the M dimensional intermediate space. 

The symmetric RBFN model described in section 9.2 is an attempt to transfer the 

symmetry properties of the input space to the intermediate space. This will result in a 

reduced vector 0 , that will result in a reduced number of output multiplications. 
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The second technique derives from considering the way the non-linear mapping is 

performed in RBFN. As a general principle, the distribution of the centres set c,-, 

i = \...M tries to approximate the distribution of the input set x „ , « = 0. . .Z - 1 in 

. For L-M, we have that any input x„ has a corresponding centre c,- = x„ 

(exact interpolation, section 3.3). In the general (and realistic) case, L » M , one 

may assume that the centres set is distributed according to the input distribution. It 

seems reasonable to consider any input as being "associated" with some centre Cy, 

possibly its closest neighbour. This bond between centres and inputs, and the 

interpretation of symmetry as a relationship between different zones of the input 

space, will lead to the definition of folding techniques in section 9.3. Folding 

techniques lead to more general results than the symmetric model, since they use 

symmetry to reduce the complexity of the non-linear transformation. Furthermore, a 

folded RBFN model is also implicitly a symmetric model. 

9.2. The symmetric RBFN model 

This section considers one method by which symmetry can be enforced on a RBFN. 

The output of the RBFN is the outcome of a linear transform of the intermediate 

space. In other words, the RBFN can be written as: 

= ) = A/(x) = 0 ^ h (9.2) 

where h = [/zj(x).../z^(x)]^ is a vector in the intermediate space (spanning a sub-

space of R ^ ) , and <E> = [^] ... is a set of weights that create the linear 

transform R ^ —>R . Note that in (9.2) the dependence of hj{-) on the parameter cr,-

that controls the node's support in R ^ is made explicit. For the 8i sampling lattice, 

the three flip operators, , Ty and • Ty are those we seek invariance to. 
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9.2.1. Properties of flip operators and kernels 

Consider the following definition: A RBFN is said to be symmetric to the operators 

T^, and if 

V/z,- = / z | x - c y | | ; c r , - ) , 3 h \ ^ \ h f ^ ^ w h e r e 

(%) = /:(||% - T/f Cy ||;(7; ) (9.3a) 

A } ^ \ x ) = A(||i-Tp/ ) (9.3b) 

= (9.3c) 

In other words, the set of centres is closed to the flip operators, i.e. any flip of a centre 

results in a vector that is also a member of the centre set. From the properties of the 

general flip operator T (see chapter 8), it is easy to demonstrate that: 

A ( ^ ) ( T ; / i ) = A , ( % ) (9 .4a ) 

A ( ^ ) ( T ^ x ) = A ( ^ ) ( i ) (9.4b) 

i ) = (x) (9.4c) 

A F \ T p . x ) = A,(x) (9.4d) 

A,F) (T;^x) = A ( ^ ) ( i ) (9.4e) 

A , F ) ( T ; ^ i ) = A ( ^ ) ( x ) (9.4Q 

A,^^^(T;/K%) = Ay(x) (9.4g) 

A ( ^ \ T ; / x ) = A ( ^ \ x ) (9.4h) 

A ( ^ ) ( T p . x ) = A,^^)(x) (9.4i) 
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Now, we group the 4 scalar kernels (the elements h\'^) into a single kernel vector: 

is) (9 5) 

Under these conditions, equation 9.2 can be arranged as: 

} ' ( % ) = % h W ( x ) 
;=1 

(9 6) 

where 0 ; 

vector. 

( ' ) _ I is the weight vector for the z-th kernel 

9.2.2. Kernel vector flip operators 

Given the properties (9.4a...i), it is easy to show that: 

h p ) ( T ; / x ) = T j ; ) b y ( l ) (9.7a) 

h ( ' ) ( T r i ) = T y ) h , . ( x ) (9.7b) 

h ( ' ) ( T ; / p . x ) = T ) ; / b , ( x ) = h , (%) , ( j ) (.? ) FT, (5) (9.7c) 

where 

0 1 0 0" 0 0 1 0 
1 0 0 0 0 0 0 1 
0 0 0 1 l y - 1 0 0 0 
0 0 1 0 0 1 0 0 

(9.8) 

178 



A 

Figure 2. Left; formal sampling structure of the kernel vector. Right: reduction of the kernel vector. 

The operators and have the formal structure of the flip operator defined on 

a 4-pixel rectangular lattice. In other words, the 8-dimensional flip of the input 

generates a 4-dimensional flip of the kernel vectors Vi = 1 . . . M / 4 (Figure 2). 

The two basic conditions of symmetry can be expressed as: 

M / 4 
2 [ h W ( i ) - h W ( T ^ x) ]= ^ 0 W ^ ( l - T j ^ ) ) h W = O (9.9a) 
/ = ! / = ! 

Y =0 (9.9b) 

From these identities it follows that: 

(9.10a) 

(9.10b) 

and finally: 

(911) 
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The result is that the flipping of the input vector can be related to flipping operators 

acting on the kernel vectors. It is interesting to note a difference between the input 

space and the intermediate space. The number of symmetries in the sampling lattice 

determines the number of flip operators acting on the input space. However, the rank 

of the matrices T is determined by the dimensionality of the input space. In the 

intermediate space the rank of is equal to the number of symmetries in the 

lattice, and is therefore independent from the dimensionality of the input space. 

9.2.3. Realisation of a symmetric RBFN 

In a symmetric RBFN each kernel vector is simplified by the condition of symmetry, 

so that it requires 3 additions and 1 product. This results in a reduction by 4 of the 

number of output product units. The structure to achieve this is shown in figure 2. The 

symmetric model can be extended to arbitrary symmetric lattices, provided the kernel 

vector is created according to the number of flip operators defined by the symmetries 

of the lattice. 

Consider the training of such a symmetric model. A simple technique is to take a large 

set of centres, c,-, i = , then from each create 3 new centres; T// C/, T y c , 

and Cy. This set of 4 M centres can then be orthogonalised, forcing the OLS to 

evaluate the combined effect of each set of 4 regressors, i.e. to save or discard the 

entire kernel vector to preserve the symmetric structure. A downside of this 

approach is its inability to simplify the kernel vector. Suppose that c, is such that 

Cii =Cj^,Ci2 =C/6, and Cj2 =c^. = C/g =c/7 (assuming a 8i sampling lattice). In this 

case, we have c, = T ^ C; = T^ c, = c,-. The kernel vector is redundant, and this 

redundancy will not be removed if we force OLS to consider the 4 kernels together. 

Figure 3 shows the results obtained using this training technique applied to a Gaussian 

RBFN. 

Despite the degradation of the MSE performance, the proposed model offers a 

reasonable saving in the number of output multipliers (1/4). Note that the 

orthogonal isation in figure 3 has been performed on multiples of 4, in order to build 

the kernel vectors in the symmetric model. 
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Figure 3. OLS training of the symmetric GRBFN. The horizontal axis shows the total number of 
scalar kernels (centres) involved. 

The observed degradation maybe due to two factors. Firstly, the network is less 

specialised on the training set. This can be considered as a desirable effect, as it 

produces more general results. Firstly, the training procedure proposed is sub-optimal, 

since it does not remove redundant regressors in the kernel vector. 

Unfortunately, the amount of computation involved in a RBFN is mainly dependent 

on M (the number of branches), i.e. on the dimensionality of the intermediate space, 

since most of the computational burden is associated with evaluating the 

mapping (see appendix B). The symmetric RBFN, in which M is not reduced, only 

marginally reduces the computational load. Reducing M by means of symmetry 

involves the analysis of the non-linear core of the RBFN mapping. 

9.3. Folding techniques in the input space 

We have already underlined how RBFN are strongly related to a geometrical 

description of the input space and to the position centres occupy in this space. In 

simple words, centres map the input distribution, and hence work as prototypes of the 

input set. The training phase aims to find the set of output weights that minimises the 
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MSE, i.e. such that these prototypes generate the best approximation of the output 

dynamic (target sequence) associated with the input. 

In this section a novel technique is presented that reduces the number of nodes in a 

RBFN trained to de-interlace a frame using a symmetric sampling lattice. This 

reduction is achieved by reducing the span of the input set in the input space, 

therefore reducing the number of centres required to yield the desired mapping. The 

technique is based on the principle that, since two input vectors associated by a flip 

operator T yield the same output, it is possible to merge them into a single input 

vector without affecting the performance. This principle is called folding, and the 

techniques developed in the next sections are called folding techniques. 

9.3.1. The folding principle 

The folding principle can be described as follows. The condition of symmetry in its 

most general form states that, given the input x and the flip transform T , then 

/ ( x ) = / ( T x ) . The input x and its flipped version Tx generally lie in different 

positions of the input space. Suppose that our interpolation system is able to 

discriminate the two inputs, and if presented with Tx as an input, moves it to the 

position occupied by x . This movement is easily obtained applying the operator T , 

since T ( T x ) = x . Given the condition of symmetry, such a movement will not affect 

the performance of the interpolator. 

Now, suppose that, in an RBFN-based system, the two inputs are most closely 

associated with the two centres c and Tc. Since the position formerly occupied by 

T x is now empty, it seems reasonable to remove the Tc term, or alternatively to 

move Tc into the position of c , since c will now represent the moved input T x as 

well as X. This concept is graphically represented in figure 4, in the two dimensional 

case. Note that the 2-dimensional span of the input set is reduced by half. In other 

words, the discrimination and movement system makes the input distribution more 

compact, at the same time yielding a similar output. Since the input space is 

compressed by a factor of 2 one might anticipate a corresponding reduction in the 

number of centres needed. In the 2 dimensional example, it is easy to find a suitable 
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^2 Fold input/centre 

Leave input/centre 
^2 ^ => unchanged 

T I 
T-c 

Xi 

Figure 4. Folding in the 2 dimensional input space, and folding algorithm. 

algorithm that halves the area of the input space. The algorithm is described in the 

inset in figure 4. 

Basically, the input space is folded along the quadrant bisector A. If D >2 this 

graphical representation fails, and one has to determine suitable alternatives that 

transcend the visual approach. 

The folding principle has a downside, at least when applied to RBFN. Since the span 

of the input set is halved, we expect a similar MSE with half the number of centres. 

However the kernels A(]|x-c||;cr) usually have infinite support in . Hence, the 

kernel generated by the centre T c , that represents the removed (folded) input T x , 

will have an influence on the interpolation function at x . This problem is graphically 

represented in the left frame of figure 5. One may assume that centres far from the 

bisector A have little influence in the opposite half-quadrant, if the parameter a is 

reasonably small. On the other hand, if Tc is very close to A we may assume that it 

significantly overlaps its folded version T ( T c ) , and hence is largely redundant. 

These limitations are depicted in the right frame of figure 5. 
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^2 

A 
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This centre can be folded 
because its influence in 
the uppe r half-quadrant is 
negl igible 

This centre can not be 
folded without loss of 
performance. 

Th i s centre can be folded 
because its influence in 
the upper half-quadrant is 
a lmost equal to the 
inf luence of its folded 
vers ion ^ 

• X i 

Figure 5. Effects of kernel's support on folding. 

A folding strategy based on the geometrical properties of the flip operator in the plane 

has been devised in . The flip operator mirrors inputs and centres about the 

bisector A, therefore the folding strategy is based on the position of the input/centre in 

the quadrant with respect to A. 

Unfortunately, with D>2 such strategy is not achievable in the same way, for the 

reason that, although it is possible to consider the main diagonal A in as the 

natural equivalent of the bisector in , it is not possible to unambiguously determine 

whether a vector is "above" or "below" A. Furthermore, with lattices that extend in 

both the horizontal and vertical directions, more than one flip operator is usually 

required. Consequently, more than one decision has to be made. 

However, the principle that different inputs associated by the flip operators can be 

folded onto each other is a concept independent of the dimension D of the input 

space and of the number of operators involved. In the following sections methods that 

extend this principle to arbitrary dimensions are discussed. 
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To achieve this goal, a proper geometrical abstraction of the folding principle is 

needed. Initially the general topological properties of the generic flip operator in 

are discussed. 

9.3.2. Topological properties of the flip operator in 

From figure 4, one can identify a series of properties that T satisfies in R^ . Firstly, 

the bisector A defines the set of fixed points of T, i.e. a vector in A is folded onto 

itself. In the bisector A is more properly described as the main diagonal of the 

input space. A can be mathematically described as the span of the vector 

V = v [ l - - - l ] with V G [ -128,127] . The span of v defines the set of inputs whose 

elements are all equal, and v satisfies: 

T ( a v ) = a v , V T , « (9.12) 

Differently from the two-dimensional case, in R ^ A is only a subset of the set of 

fixed points of T. Given an arbitrary T, the set of its fixed points is properly defined 

as the sub-space F j c R ^ such that —>Tx = x . Hence x e must satisfy 

the equation: 

XE jFy (TT - l ) x = = 0 (9.13) 

From (9.13) it follows that the space of fixed-points abides by the condition: 

jFjT (T --I)== 0 (9.14) 

Equation (9.14) defines a sub-space of R ^ , depending on the particular operator 

considered. In many cases J ™ ( F j ) > 1 , and hence dim{F'Y;)> dim{h). However, 

given a general set of operators T^, the corresponding fixed-point spaces will all 

intersect at A. As an example, consider the R"̂  case corresponding to the rectangular 
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lattice described in section 8, and its horizontal flip operator . It can be shown that 

ra«A:(l-T//)=2, hence dim{Fj^ ) = 2 and F y is a 2 dimensional subspace of 

. Further it can be shown that dim[Fj }=2, and Fj nFj = A . 

There are two other interesting properties of T in . Firstly, the segment x - Tx is 

perpendicular to A. Secondly, x and Tx are equidistant from A. These properties 

extend to the general case in for an arbitrary T. The general properties of T noted 

in section 8 will be used to prove these results. Specifically, that T is equal to its 

inverse, i.e. T is orthogonal, which implies that det{T)=\. 

Consider the projection (scalar product) of the vector difference x - Tx over the 

vector V. Using (9.12), 

(][--Tr][)== V^ (I -T")! (9.15ii) 

but since v ^ = v ^ T we have; 

T/T (][_. ][][)== 0 (9.151]) 

Hence x - Tx is orthogonal to A. The distance between Tx and A is given by: 

d%ff(T][,/l)==|| T i - ( v r r TTx) | (9.16a) 

but from the isometric property of T it follows that: 

dist{Tx,A)= x - ( v ^ x ) II = i5?M'/'(x,A) (9.16b) 

Hence Tx and x are equidistant from A. Note that the kernel vector in the symmetric 

model (section 9.2) has a well-defined topological structure that benefits from the 



analysis conducted in this section. The important point is that a methodology of 

abstraction has been defined, that will be used in the subsequent sections to determine 

a possible folding algorithm in R D 

9.3.3. Analysis of the eigenspace of the flip operators 

This section describes another important framework of analysis; the general properties 

of the eigenvalues and eigenvectors sets of the folding operator. Before proceeding 

further, recall the property of T being a full-rank matrix, with rank{T) = D and 

det(^) = \. This property arises from the general definition of T as an isometric 

rearrangement of the co-ordinate system in . In other words, T is a "shuffling" 

without duplication of the columns of the identity matrix in R D 

Alternatively, T can be described as an operator that associates each pixel with one 

and only one other pixel. A pixel can also be associated with itself, for example x j 

and xg in the lattice 8, under the action of the horizontal operator Tyy . This property 

leads to a straightforward method to calculate the D eigenvectors of T. Suppose that 

the flip operator T associates the pixels jc, and Xj, and define the vector 

,i') 
VY 

0 - - 0 1 0 
/ - I ;• /•+] 

0 1 0 - 0 
y y+i 

(9.17) 

with null entries except for the z'-th and they'-th element, and with | | = 1. It is 

clear that T . In the same way, given the vector 

v ( r ) = 

42 
0 0 1 0 

/-I i i+\ 
0 - 1 0 - " 0 

; v+i 
(9.18) 
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we have Clearly, and are both eigenvectors of T, with 

eigenvalues respectively +1 and -1. Since is left unchanged by T, both in norm 

and direction, we refer to it as an invariant eigenvector. Conversely is termed a 

variant eigenvector. 

Now, suppose that T associates the pixel with itself Then, the vector 

0 — 0 1 0 — 0 
/-I / i+l 

(9 19) 

is clearly an invariant eigenvector of T. One can generalise these results stating that 

for each pixel association, that is not a self-associated, the eigenspace contains one 

invariant eigenvector and one variant eigenvector. On the other hand, if T associates a 

pixel with itself, then its eigenspace contains the appropriate invariant eigenvector. 

The eigenspace of T is completely described in terms of invariant and variant 

eigenvectors. Since rank(^) = D, the set of all its eigenvectors defines a basis for 

. Hence it is possible to divide in an invariant space defined by the span of 

and into a variant space defined by the span of =Uv^^^ . 

The input x can be projected into these eigenspaces. Therefore, x can be divided into 

an invariant part and a variant part x = Clearly, 

(9 20) 

If / ( x O ) is the expression of / ( x ) in the eigenspace, we can express the 

condition of symmetry for the operator T as: 

(9.21) 

implying that / is even in the variant space. Finally, it can be shown from (9.21) that 

the locus of the fixed points of T is equal to the invariant space . 
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9.3.4. Binary classification of inputs and cluster reduction 

This section discusses the extension of the decision algorithm to D dimensions. As 

already discussed, the problem in high-dimensional spaces is not only the ambiguity 

of the concept "above" and "below" A, but also the presence of more than one flip 

operator. 

One method to extend the decision algorithm is as follows. Consider the 2-

dimensional case first. Given the folding operator T, define a binary class function 

Specifically, ?Cj(x)=l if xi>x2, Ky(x) = 0 otherwise. In 

other words, KrT(x)= 0 if x is in the lower half-quadrant, and hence x is said to 

belong to class 0. On the other hand, if x is in the upper half-quadrant (including A), 

then /Cx(x)=l, and consequently x is said to belong to class 1. With these 

definitions, the folding algorithm in simply determines the class of the input, and 

decides to leave the input unchanged if k:j(x)=1 or to fold it in the upper half-

quadrant if k : j ( x ) = 0 . Note that by definition k t j ( a v ) = 1 , V g : . This choice is 

arbitrary and one may equally assign A to class 0. However this choice would be 

computationally more expensive, because the flip operator would be applied to the set 

of fixed points. 

There are several characteristics of ?Cx(*) that we wish to focus on. The first is 

that the flip operator in corresponds to the algebraic N O T operation in the 

Boolean output space of the binary class function. In other words. 

r T ( x ) = K T ( T x ) ( 9 T ^ 

It is trivial to show that the two sets K j = {x: ktj (x)= l} and Kg = {x: ?Cj(x)= O} are 

such that Kg u K | = X and Kq n K ] = 0 (the empty set). More importantly, 

T 

Kq < >Ki, if xi Fj. Formally the operator T is closed in the set Kq u K j . The 

set T = Kq u K ] is called a cluster. In R^ there is only one cluster, corresponding to 

the whole input set. As we will see, in higher-dimensional spaces and with more than 
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one operator there will be more than one cluster. Note that (x) operates on the 

variant projection of the input, that in is equal to {x-[ — X2), so that one can 

write K j (x) = K j ). 

X2iX3x 1^4 

(1) 

f l 0 0 0 0 0 0 ol Fo 0 0 0 0 0 0 11 
0 0 0 I 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 

T 0 1 0 0 0 0 0 0 Tr, — 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
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Figure 6. Properties of tlie flip operators for the lattice 8, depicted in ( I ) . Matrix form of the 
independent operators (2). Variant and invariant eigenspaces, variant and invariant inputs for the 
vertical flip operator (3). Variant and invariant eigenspaces, variant and invariant inputs for the 
horizontal flip operator (4). 
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These concepts form the basis for our abstraction that can be summarised in the 

following general properties of the folding algorithm: 

• The folding algorithm is based on an operator closed in the cluster. 

• The algorithm folds one of the classes in the cluster onto the other class, halving 

the number of classes in each cluster. 

• The decision is made according to a binary function (binary class function). 

® The particular flip operator considered determines clusters and relative classes, the 

decision strategy and the binary class function. 

• The binary class function operates on the variant space defined by the operator 

considered. 

These properties can be used to describe a possible folding strategy in the input space 

defined by the 8, sampling lattice. 

9.3.5. Binary classification of the 8i sampling lattice 

For the 8, sampling lattice two flip operators can be defined, specifically the 

horizontal flip operator and the vertical flip operator Ty. It is also possible to 

define an horizontal-vertical operator T f [ y = T// Ty. The flip performed on the 

lattice by these operators, their explicit matrix form and their invariant and variant 

space basis, together with the explicit expression of the invariant and variant 

projections of the input x are summarised in figure 6. Note how generates an 

asymmetric set of eigenvalues, since the taps X], xg, and %g flip onto themselves. 

We now consider a folding algorithm coherently with the general principles defined in 

the previous sections. 

Since the variant spaces are 2 and 4 dimensional, the binary class functions define a 2 

and 4 bit resolution output respectively. This leads to 16 classes and 8 clusters for Ty, 

and 4 classes and 2 clusters for T// , as summarised in tables 1 and 2. 
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CLASS (x2 - X5 ) > 0 (:C3 ( % 4 0 CLUSTER 

0 0 0 0 0 
0 

15 1 1 1 1 
0 

1 0 0 0 1 
1 

14 1 1 1 0 
1 

2 0 0 1 0 
2 

13 1 1 0 1 

3 0 0 1 1 
3 

12 1 1 0 0 

4 0 1 0 0 
4 

11 1 0 1 1 

5 0 1 0 1 
5 

10 1 0 1 0 

6 0 1 1 0 
6 

9 1 0 0 1 

7 0 1 1 1 
7 

8 1 0 0 0 

Table 1. Classes and clusters for the operator Ty. Note that we numbered the classes according to the 
base-10 value of their binary class function. 

CLASS (%2-:*:4)>0 CLUSTER 

0 0 0 
0 

3 1 1 
0 

1 0 1 
1 

2 1 0 
1 

Table 2. Classes and clusters for the operator T„ 

The two sets of clusters defined by T/j and Ty are independent, in the sense that the 

class of X given by the first operator's binary class function does not determine the 

class given by the second operator. Hence, two independent decision strategies for 

T// and Ty can be specified, hence including a decision strategy for . 

For each operator the classes defined in tables 1 and 2 can be grouped into two groups 

according to the value of their most significant bit MSB. Since ? c ' j ' ( x ) = / C j ( T - x ) , the 

folding operator always moves the input from one group to another. Note that the 
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MSB in k : x ( x ) is determined by the order in which the pixels are sorted. From the 

beginning of this work, pixel numbering has reflected the natural line-scan order in 

video broadcast systems, but this choice is arbitrary. Any of the bits in k ' X ( x ) could 

correspond to the MSB by a simple rearrangement of the sampling lattice. This leads 

at least to 4 possible algorithms: 

Apply Ty if (xj -%g)> 0, and T// if (x2 -X4)> 0 

Apply Ty if (xg - % ) > 0 , and if (%2-%4)>0 

Apply Ty if (xi -Xg) > 0, and Tff if ( % g - x j ) > 0 

Apply Ty if (%3 - % ) > 0 , and T// if (%g-XJ)> 0 

In all 4 cases, the decision problem in is reduced to a decision in two distinct 

spaces. This has an immediate consequence in the way the input space is folded. 

Figure 7. Folded Input space, algorithm 1. Original input space (grey), folded input space (black). 
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Figure 7 shows the projected planes of the input space folded using algorithm 1. Note 

the sharp cut in plane x j - x g and plane X2-X4 (the planes where the decision 

algorithm is applied). However, there is also some reduction in the planes - x ^ and 

X5 - X7 . This can be explained by considering that if - xg > 0 , there is a reasonable 

probability of a local vertical gradient, so one might anticipate that also X3 - X5 > 0 . 

The same consequence can be deduced in presence of a horizontal gradient, and hence 

for the plane X5 -xy . 

After being used to fold the input set, the chosen algorithm must be applied to the 

centres of a Gaussian RBFN to achieve the desired reduction. However, as already 

introduced in section 9.3, there is the problem of the influence of each class of centres 

on the other classes. Since the choice of algorithms determine a particular 

"movement" of the folded centres in the input space, the different algorithms will, in 

general, yield different results. The issue of determining the best algorithm among the 

4 possible choices should be addressed in future work. 

Note that the cluster folding technique embeds the symmetric model described in 

section 9.2. In fact, the folding algorithm reduces the kernel vector h|'^^(x) to one of 

its scalar components, consequently reducing the number of output multipliers by 4. 

9.3.6. Results for binary cluster folding RBFN 

Figure 8 shows the OLS reduction of the four proposed folding strategies applied to 

HGRBFNs. The results are compared with the OLS reduction of a standard (unfolded) 

network. Firstly note that the four results are very similar. For networks with 

M = 50 ~ 200 one can approximately halve the number of centres and retain a similar 

MSE as the unfolded network, regardless the folding strategy chosen. For M>200, it 

seems that cluster folding looses its effectiveness, and the same may be true for 

M<50. Secondly, since the volume of the input set in has been reduced by 4, one 

may anticipate an equivalent reduction in the number of centres. It is somewhat 

surprising to observe only a halving of the number of centres necessary to achieve a 

given level of performance. 
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Figure 8. Comparison of MSB ortliogonal sequences using the binary folding. 

It is not easy to justify these observations rigorously, but we shall provide some 

conjectures to explain them. Firstly, there is the issue of the infinite support of the 

Gaussian kernels, and the resulting interaction between classes/clusters. As already 

stated, this mutual influence is changed as the input/centre space is folded. This might 

explain the small variations between different algorithms, since each technique moves 

the classes in a different way. 

Secondly, many of the most significant centres may lie close to the set of fixed points. 

Clearly, these centres do not benefit the geometrical reduction given by folding. The 

study and identification of the fixed points is an interesting key to the optimisation of 

the algorithm. As we will see shortly, better results are obtained using a technique that 

in principle is equivalent to the clustering folding. 

9.3.7. Moment-based classification of inputs 

The previous two sections have developed an approach to extend the folding principle 

from the 2-dimensional case to an arbitrary number of dimensions. It has been shown 
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how the abstract properties of the folding principle can be applied to define a folding 

technique in a realistic case, the 8i sampling lattice. 

In this section an alternative, more intuitive description of the folding principle is 

given, which will lead to a folding technique more general than cluster folding. Rather 

than focusing on the pixel-to-pixel relationships yielded by the flip operators, we will 

concentrate our attention on the change occurring in the luminance gradients when the 

input is flipped. Herein, this will be applied directly to the case of the 8i lattice. 

Consider a generic input x . The vertical flip Ty swaps the position of the pixels 

above the (horizontal) flip axis, specifically X], X2, X3 and X4, with the position of 

the pixels below the flip axis, specifically X5, xg, xy and Xg. Consider a function 

that calculates a generic vertical mass gradient of x , defined as: 

d y (x) = (Oj X^ + (32 X2 + ^ 3 X3 + 0 4 X 4 ) — 

(9.18) 

with the constraint that all the weights a,- are positive. If the weights associated with 

pixels at the same distance from the horizontal axis are all equal, equation (9.18) 

represents the vertical moment of mass (around the horizontal axis), expressed as; 

my (x) = my X = 

[mjy f f i j y tn2y ~^2V ~^3V ^ ^ ^ (9.19) 

(^1 " ^ 8 ( x g - Xg ( x 2 + :(4 " ^ 5 " ^ 7 ) 

The moment of mass can be considered as a measure of the average luminosity, and 

(9.19) is constructed as the weighted difference in luminosity above and below the 

horizontal axis, weighted according to the distance from the axis. 

It is straightforward to see that my (x) = -my {Ty x ) . Hence the vertical moment of 

mass changes sign according to the sign of the variant part of x . It is easy to 
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demonstrate that the null space of my(x), defined as xeli^:my(x)=0, includes the 

set of the fixed points of Ty . To show this, recall that is defined as the set 

of inputs X such that Ty x = x . For the 8, lattice, this implies that 

= » , x g = = ^ 7 ( 9 2 0 ) 

Substituting (9.20) in (9.19), shows that my(x) = 0. Note that (9.20) is more general 

than (9.19), since the condition 02 = = a-j is not necessary. 

One can equally define an horizontal moment of mass, relative to the horizontal flip 

operator and the vertical axis of symmetry. However, the expression is simpler, 

since the pixels on the vertical axis do not appear: 

w / / ( x ) = m ^ x = [ O m / / O f f 7 / / 0 - ? ? ? / / 0 ] x = 

( 9 . 2 2 ) 

( ^ 2 " ^ 4 + ^ 5 " ^ 7 ) 

In this case m^ (x) = -m// (T// x), and again the condition of equal weights on the 

off-axis pixels is not necessary for the null space of m^{x) to correspond to . 

This condition becomes necessary if it is required that m { x ) = mj^ {Ty x) and 

my (x) = my {T^ x) in order to make the horizontal luminosity gradient 

independent of Ty and vice-versa. 
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Figure 9. Projected planes: moment folded inputs (black), original inputs (grey). 

Figure 9 shows the distribution of inputs before and after moment folding in two of 

the projected planes. It is evident that there is no sharp cut in %% — as seen in cluster 

folding. This is because the cuts happen in planes orthogonal to the two moment 

vectors and my , not parallel to the planes shown in figure 9. 

9.3.8. Results for moment folding RBFN 

One is free to choose the three moment weights, but there are several alternatives that 

suggest themselves. Figure 10 shows the orthogonalisation plot of the moment-

reduced network for 3 different choices: all weights equal to 1, m 2 y = 2 and 

miy = m^v = 1, rnij/ = 1 and m2y = = 2 . 

These results imply that moment folding generally outperforms binary cluster folding. 

Specifically, the plot clearly shows that the window of reducible centres is enlarged to 

20 ~ 200. Different trends may appear as the initial choice of centres is changed, and 

we can not definitely conclude that moment folding has a better performance than 

cluster folding. However in the region M>25 the two methods are similar and neither 

achieves the performance of a Volterra series (MSE=0.6956%) with M<50. 
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Figure 10. Comparison o f M S E ortiiogonal sequences using the moment folding scheme. 

9.3.9. Non-linear optimisation and folding 

This section considers the application of the Nelder-Mead optimisation scheme to 

enhance the performance of the folded networks. The network is reduced to 10, 16, 20 

and 25 orthogonal folded centres. The cluster folding algorithm based on the sign of 

X] -%g is applied. The 4 networks are successively optimised using the Nelder-Mead 

algorithm. The results are depicted in figure 11, where the MSE is plotted as the 

number of iterations of the NM algorithm is increased. As in standard RBFN, some 

form of non-linear optimisation improves the interpolator performance. However the 

curves tend to flatten as the number of iterations increases. Note that in this case the 

RBFN is able to achieve the same MSE as the Volterra model using only 16 centres. 

This is well within the range suggested in appendix B. As in chapter 6 the 

optimisation has driven some of the centres outside the boundaries of the input set 

(figure 12). This phenomenon again re-emphasises one limitation of the random initial 

selection of centres from the input space. 
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Figure 11. MSE sequences for 25, 20, 16 and 10 centres folded networks optimised using the 
Nelder-Mead optimisation algorithm. 
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Figure 12. projected spaces of Nelder-Mead optimised symmetric networks (16 centres). 
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9.4. Conclusions 

Chapter 8 showed that the symmetry properties of the linear interpolating function can 

be used to provide significant reductions in the computational cost without loss of 

performance. The built-in symmetry of the sampling lattice, and the conjectured 

rotational invariance of the local topology of the interpolation map, ensures that the 

optimal linear weight vector is orthogonal to a subspace of the input space. Hence the 

linear interpolating function can be re-arranged such that the number of multiplication 

units is reduced for a broad range of sampling lattices. 

This chapter showed how these principles can be extended to exploit similar 

properties in RBFN. It has been shown that while the information contained in the 

orthogonal space is not relevant to the linear problem, RBFN use a significant portion 

of it to yield a better interpolation. However, the conditions of symmetry are derived 

from a set of general properties of image interpolation, and do not depend on the 

particular model. It is reasonable to expect that some form of symmetric reduction is 

possible for non-linear systems, and specifically for RBFN. 

In the linear case the conditions of symmetry modify the geometrical properties of the 

—> R mapping. RBFN have a strong geometrical structure, and the set of centres 

can be regarded as a prototype of the distribution of the input set. It is reasonable to 

expect that symmetry modifies the properties of the R^ —> R^ —> R RBFN 

mapping. 

Symmetry was used to relate an input x with its flipped versions, since they are 

assumed to generate the same output. In the symmetric RBFN (section 9.2), each 

centre is used to generate a set of flipped centres. Consequently, the intermediate 

space can be divided into symmetric subspaces that can be reduced using linear 

techniques. The input distributions are generally symmetric, or quasi-symmetric, 

hence the symmetric RBFN is a valid model at least when the number of centres is 

high. Training is critical when the number of centres is small, since the condition of 

local symmetry may affect the performance of orthogonalisation techniques. 
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Experiments show that the proposed model is reasonably valid, but training should be 

studied more completely. 

The main computational load in the RBFN is proportional to the number of centres 

M . A cost-saving strategy must aim principally at reducing the network branches, i.e. 

to reduce the number of centres. In this case it is not possible to derive simple 

analytical results, since the reduction of centres affects the non-linear part of the 

RBFN model. 

The folding principle derives from an observation of the RBFN model in 2 

dimensions, and considering simplified non-linear kernels with small support in . 

An interesting consequence is that the input space is separable into two sub-spaces, 

which yield the same output dynamics. These sub-spaces have mirror symmetry along 

the bisector. The application of the flip operator to one of these sub-spaces makes it 

fold onto the other sub-space. Hence the area of the input space can be reduced by 

half without significantly affecting the dynamics. This reduction can be obtained 

either by discarding one of the two subspaces, or alternatively by folding the input 

space across the symmetry line. RBFN are generally based on infinite support kernels, 

so that some consequences are introduced. Basically, the set of centres cannot be 

folded without experiencing some loss in performance. This problem is discussed in 

section 9.3.1, where qualitative considerations suggest some mechanisms that 

generate these performance degradations. In sections 9.3.2 and 9.3.3 the folding 

principle is extended into spaces with an arbitrary number of dimensions. Two folding 

strategies are produced: the binary class folding method and the moment-based 

folding method. 

The work concentrated on the practical case of a HGRBFN with lattice 8i. The results 

show a significant reduction of the number of centres required to achieve a specified 

MSB. However, the simplistic expectation of a reduction by 4 (a factor 2 for each flip 

operator) is not matched by the results. It is necessary to improve the model in order 

to account for, and compensate for, any loss given by the missing cross-influence of 

the clusters, and the influence of centres near the locus of fixed points should be 

accounted for. 
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A simple application of Nelder-Mead optimisation shows again the limitations of the 

choice of centres from the input set. The optimisation algorithm is encouraged to 

recover the essential information missed in folding. Folding reduction, followed by 

Nelder-Mead optimisation, matches the performance of the 3"̂^ order Volterra series in 

a complexity range where predictions suggest that folded RBFN is comparable to the 

Volterra series, in terms of computational load. 
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10. GENERALISATION OF SYMMETRIC ARCHITECTURES 

10.1. Introduction 

This chapter presents the results of studies into the generalisation ability of symmetric 

architectures, specifically the symmetric linear filter and the folded HGRBFN, both 

using the 8, sampling lattice. The investigation will make use of the same frame set 

and techniques used in section 7. 

10.2. Linear results 

Two aspects regarding the generality of the symmetric linear filter are considered. 

The first regards the ability of the filter to interpolate a rotated/flipped version of the 

training set. The second regards the cross-result over the complete frame set 

compared to the best result achievable on each frame. 

In chapter 8 it was already pointed out that, at least for a flip around the vertical axis, 

corresponding to the flip operator T// , the flipped image can be considered as a valid 

image. On the other hand a horizontally rotated image (Ty) more often looks 

unnatural, yet it can be conjectured that a realistic system should yield a uniform 

result on any possible flip or rotation of the training set. 

Table 1 shows the results of applying non-symmetric linear filters to the flipped 

versions of their training sets, compared to the corresponding symmetric result (that, 

by construction, is identical over the 3 flip operators). The results are normalised with 

respect to the non-symmetric self-result (i.e. the result using the non-symmetric filter 

on the non-flipped frame). One can see that the symmetric filter produces a slightly 

worse result on the non-flipped training set than that achieved using the non-

symmetric filter. This is indicated by the normalised result being greater than unity. 

This result is not a surprise, since the non-symmetric filter is not constrained in its 

interpolation by the conditions of symmetry. However, the symmetric filter performs 

better on any flipped version of the training set, and its error is below the average 
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result of the non-symmetric filter. It is therefore reasonable to conclude that the 

symmetric filter increases the generalisation ability of the filter. 

input frame rotation (non-symmetric filter) 

H V HV average Symmetric filter 

1 

.5 
C 

1 

1 1.2669 I J ^ M 1.0066 1.1365 1.0652 

1 

.5 
C 

1 

2 1.0342 1.0248 0.9904 1.0123 1.0095 
1 

.5 
C 

1 

3 1.0089 1.0119 1.0029 1.0059 1.0022 1 

.5 
C 

1 

4 1.0582 1.0522 0.9937 1.0260 1.0144 

1 

.5 
C 

1 5 1.0020 1.0066 1.0046 1.0033 1.0011 

1 

.5 
C 

1 
6 1.0121 1.0146 1.0083 1.0087 1.0031 

Table 1. Error of the non-symmetric filters on flipped inputs, normalised with respect to the error on 
the non-flipped input. Error of the symmetric linear filters. 

Input frame 

1 2 3 4 5 6 

1 

.S 
c 

1 1.0000 1.0021 1.0112 1.0415 1.0028 i jm65 

1 

.S 
c 

2 l.OOM 1.0000 1.0137 1.0308 LOOM 1.0022 
1 

.S 
c 

3 1.0066 1.0090 1.0000 1.0620 1.0029 1.0185 1 

.S 
c 

4 1.0606 1.0565 1J785 1.0000 1 J 2 6 0 1.0350 

1 

.S 
c 

5 1.0025 1.0077 1.0063 1.0618 LOOM) 1.0194 

1 

.S 
c 

6 1.0038 1.0026 1.0325 1.02M 1.0168 l.OOW 

Table 2.a. Symmetric linear filter cross-results, normalised with respect to symmetric self-results. 

Input frame 

1 2 3 4 5 6 

1 1.0652 0.9552 0.8096 0.9636 0 .8672 0.8747 

1 
OD 

'c 

2 1.0287 1.0095 0.9733 1.0149 0 .9908 0.9829 
1 
OD 

'c 

3 0.9869 0.9923 1.0022 CL9894 0.9961 1.0027 1 
OD 

'c 4 1.0373 1.0108 0.9699 l.OLM 0.9924 0.97M 

1 5 1.0051 1.0010 0.9968 1.0040 1.0011 0.9983 

6 0.9808 CL9875 1XW15 0.9838 0.99ZZ 1.0031 

Table 2.b. Symmetric/non-symmetric linear filters cross-result ratio. 

Table 2.a shows the symmetric cross-results. One can see how the cross-results are 

always worse than the self-result. Table 2.b shows the ratio of the MSB obtained for 

symmetric and non-symmetric filters when trained on one frame and tested on a 

second. It can be seen that the symmetric filter generally offers slightly better 

performance when applied to frames it has not been trained on. In fact, one can see 

that the average deviation from the unity of the results in table 2.a is smaller than the 
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corresponding deviation in table l.a in section 7.5.1, illustrating a more uniform 

behaviour. 

From these tables, we can assess the effectiveness of the symmetric reduction as a 

generalisation technique. As well as a computational advantage, an improvement in 

generalisation is obtained. This improvement is due to a training procedure that forces 

the filter to produce uniform results over flipped versions of the training set. 

Moreover, this generalisation ability is built-in via a-priori conditions, which do not 

increase the computational load, unlike regularisation that typically requires the 

minimisation of extra terms. In fact, the computational load is reduced since there are 

fewer coefficients to calculate. 

10.3. RBFN results 

Figure 1 shows a comparison of the self-results for a folded and unfolded networks 

using 4 different folding strategies. All three results are normalised with respect to the 

non-symmetric linear result. Two binary folding techniques are used, the first using 

5/g«(x]-X8) as the decision threshold for the vertical flip, and the second using 

sign{x2 -X(,). Both techniques use sign{x2-x^) for the horizontal flip. Results for 

two moment folding techniques are also depicted, which use respectively 

my = [ l 1 1 1 - 1 - 1 - 1 - l ] ^ and m f / = [ l 1 2 1 - 1 - 2 - 1 - l ] ^ (closest 

neighbours moment, with xg and % being emphasised) for the vertical flip. Both use 

the horizontal moment vector n i f / = [ 0 1 0 1 - 1 0 - 1 O]^. 

The plots clearly show results similar to those obtained in section 9. There is an 

approximate reduction by a factor of a half of the number of centres required to yield 

a given MSB, although the exact value varies from network to network (with an 

impressive reduction by 4 for network 5), and from strategy to strategy. One should 

remember that the training is initialised using a random selection strategy from an 

initially large number of centres (M=1000) and, as observed in chapter 6, the 

subsequent reduction may produce different results depending on this choice. 

However, it seems clear that the observed halving of centres can be considered as a 

general "rule of thumb". 
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Figure 1. Folded self-results, compared to non-folded self-results. (1) non-folded OLS sequence. 

(2) binary folding using sign{xi-x^\ (3) binary folding using sign{x-^-%&). (4) moment 

folding, equal weights. (5) moment folding, closest neighbours. Resuhs are normalised with 
respect to the linear non-symmetric self-result. 

The behaviour of network 1 is rather peculiar. In this case, the folding techniques 

seem to degrade the performance, especially for M=100. This lack of performance 

may be the consequence of peculiar characteristics of the training set, rather than a 

general failure of the folding technique. 
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Figure 2.a. results over the flipped frames, unfolded networks 1 to 6, normalised with 
respect to the performance on the unfolded input. 

none 1 
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Figure 2.b. results over the flipped frames, equal weights moment folded networks 1 to 6, 
normalised with respect to the performance on the unfolded input. 
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Figure 2.a shows the MSE obtained when the training sets and their flipped versions 

are submitted as input to their corresponding non-symmetric (unfolded) network, 

using 100 OLS centres. The results are normalised with respect to the MSE obtained 

using the non-flipped set. One can see that network 1 exhibits a clear lack of 

generalisation, since the //-flip and F-flip versions of the training set produce 

significantly different results, whilst the HV-f[\^ interpolation is more accurate. That 

might be explained by the presence of a dominant directional feature in the frame, 

invariant to the //F-flip. Note that similar behaviour is also shown by network 6. This 

might be explained by the presence of a directional feature invariant to the //-flip. 

Conversely, the corresponding equal weight moment folded network exhibits a quasi-

uniform outcome over the 4 versions of the training set (Figure 2.b.). We will shortly 

see how the folded version of network 1 produces more general results than the 

unfolded one. One can see from figure 2.b. that the folded network performance is not 

absolutely constant over the 4 flipped versions of the input. In the linear case, the 

symmetric filter yields an exactly constant result by construction. In the RBFN case, 

the folding strategy does not yield a constant result due to the fact that the folded basis 

functions have large support. Therefore folding strategies do not produce exact 

symmetrisation. 

10.3.1. RBFN cross-results 

This section discusses the cross-results over the 6 frames, using 100 centres and 50 

centres folded networks. Figures 3.a and 3.b show the plots for 50 centres folded 

network 1 to 6 compared to the 100 centre unfolded networks, with MSE normalised 

with respect to the unfolded self-result. In figures 3.c. and 3.d. equivalent results using 

100 centres folded networks are plotted. Note that the unfolded result is highlighted 

by the dotted line for clarity. One can see how the results vary from network to 

network, and how the different folding strategies act in different ways. Some general 

conclusions can be drawn from these plots. It is clear that, with the proper choice of 

network and folding technique, it is possible to improve the generalisation ability of a 

network. At the same time one can produce a similar error on the self-result with half 

the number of centres. In particular it appears that the closest-neighbour moment 

folding produces, on average, best performance both in terms of MMSE and 

generalisation. 
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Figure 3.a. 50 centres folded cross-results, compared to 100 centres unfo lded cross-results, 

normalised with respect to 100 centres unfolded self-results. (1) unfolded result (2) binary 

folding on s i g n { x i - x { ) (3) binary folding on sign{xT, - X ( , ) (4) equal weights moment 

folding (5) closest neighbour moment folding, (a) network 1 (b) network 2 (c) network 3. 
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Figure 3.b. 50 centres folded cross-results, compared to 100 centres unfo lded cross-results, 
normalised with respect to 100 centres unfolded self-results. (1) unfo lded result (2) binary 
folding on sign{x]-x^) (3) binary folding on sign{x2-x(,) (4) equal weights moment 

folding (5) closest neighbour moment folding, (a) network 4 (b) network 5 (c) network 6. 
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Figure 3.c. 100 centres folded cross-results, compared to 100 centres unfolded cross-results, 

normalised with respect to 100 centres unfolded self-results. (1) unfolded result (2) binary 

folding on sign{x\-x^) (3) binary folding on sign{x^-x^) (4) equal weights moment 

folding (5) closest neighbour moment folding, (a) network 1 (b) network 2 (c) network 3. 
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Figure 3.d. 100 centres folded cross-results, compared to 100 centres unfo lded cross-results, 

normalised with respect to 100 centres unfolded self-results. (1) unfolded result (2) binary 

folding on sign{xi-x^) (3) binary folding on sign{x^-x(,) (4) equal weights moment 

folding (5) closest neighbour moment folding, (d) network 4 (e) network 5 ( f ) network 6. 
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10.3.2. Bias and Variance 

The top and middle plots in figure 4 illustrate the squared bias and variance of the 

closest-neighbour folded network trained on frame 2, plotted along with the results for 

the corresponding unfolded network. Despite the simplistic technique used to 

calculate the bias and variance (section 7.5.5), one can gain insights into the way 

folding techniques works. Note how the variance is approximately halved using the 

folding technique. This explains the improved generalisation of the folded network. A 

reduced variance implies that the 6 folded mappings are close to each other. 
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1. 0.5 

-O (1) 
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(4) 

orthogonalised centres 

Figure 4. Squared bias and variance, unfolded and closest neighbours m o m e n t folded network 
2. Unfolded (1) and folded (2) squared bias. Unfolded (3) and folded (4 ) variance. Unfolded 

(5) and folded (6) squared bias using a folded model to estimate ( ' | x ) • 
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One can also see a corresponding degradation in the bias, which flattens for M>50. 

This increase in the bias is unexpected, since the MSE yielded by the folded networks 

is typically lower than for their unfolded counterparts. However, one should realise 

that is calculated using an unfolded network. Therefore, ^/| may account for 

asymmetries in the training set that are primarily cancelled by the folded techniques 

and, in fact, represent a nuisance factor since the mapping should abide by the 

conditions of symmetry. Therefore it is assumed that the lower bias of the unfolded 

training is mainly due to the over-fitting of the unfolded (̂ t | on asymmetric 

features. 

The bottom graph in figure 4 shows how, using a folded model to estimate (^| , the 

folded network yields lower bias and variance than its unfolded counterpart. Figure 5 

shows that ( / |x^, calculated using the folded model, produces results comparable to 

the unfolded in terms of individual results and generalisation. Therefore, we 

can assume that it is the bottom graph in figure 4, rather than the top one, which truly 

represents bias. 
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Figure 5. Estimate o f . (1) Evaluated with 100 centres, unfolded network. (2) Evaluated with 

100 centres, folded network. Plots normalised with respect to self-results. 
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10.3.3. Weight-decay training 

Figure 6 shows the results of weight-decay training (sections 7.4.1 and 7.6), applied to 

the closest-neighbour moment folded networks with 50 centres, compared to their 

unfolded version using 100 centres. The plots show the average, maximum and 

minimum value over the whole frame set. The results are normalised with respect to 

the non-regularised, unfolded self-result (using 100 centres). 

One can see that weight-decay has an effect on folded networks similar to its effect on 

unfolded networks. In particular in the case of network 2, one can see that the initial 

maximum value for the folded network is higher, but regularisation rapidly reduces 

this value. Table 3 shows how the sum-of-squared-weights value changes with the 

network considered, and with the folding technique. In particular, one can see that the 

50 centres, closest-neighbour folded network 2 has a greater sum-of-squared-weights 

value, compared to its 100 centres unfolded counterpart. This may explain the initially 

poorer results seen in figure 6. 

It is interesting to discuss, albeit in a qualitative fashion, the relationship between 

symmetrisation and weight-decay in the linear case. Figure 7 illustrates three 2-

dimensional examples. With two weights, wj and W2, coming from a vertical 

symmetric sampling lattice, the symmetric solution fixes wj = W2, so the solution is 

constrained to lie on the main diagonal of the weight space. On the other hand, a 

regularised solution is such that the sum of squared weights is minimised together 

with the sum-of-squared errors. The curves + ^2 ~ const trace circles in the 

weight space centred in the origin. It is clear from this figure that the symmetric sum-

of-squared-weights value will be greater or smaller than the non-symmetric solution 

depending upon the orientation of the quadratic error surface with respects to the main 

diagonal. 
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Figure 6. Weight decay training of folded networks (red) compared to unfolded networks (black). 
Results are normalised with respect to non-regularised unfolded results. (1) average over the frame 
set, standard network (2) minimum and maximum values over the frame set, standard network (3) 
average over the frame set, symmetric network (4) minimum and maximum values over the frame 
set, symmetric network. 
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M unfolded equal weights c. neighbours x j - x g X3-X6 

1 
50 7.8504 2.4802 2.2976 4JU34 7.0287 

1 
100 4.2493 5.6976 15.6113 13.2129 29.0995 

2 
50 2.7868 1.7814 2.5185 1.8030 o^mw 

2 
100 1.5085 2.9628 3.2271 3.5246 5.1097 

50 5.4700 6.3237 4.0356 1 5886 2.4275 

1 J 
100 2.9608 3.9306 3.1315 3 ^ 8 2 9 3.1065 

z 4 
50 5.3989 3.3101 0.8241 2.6180 3.7219 

4 
100 2.9223 4.0390 4.1367 5.6610 6.5139 

5 
50 6.1225 2.7696 3.7347 5 3 4 5 2 2.1168 

5 
100 3.3140 1.7185 3.5280 2.9461 4.0320 

50 8.9955 2.4041 5.4389 6.7705 3.1059 
6 

100 4.8691 7.8743 16.6147 11.4006 7.1085 

Table 3. Sum-of-squared weights for unfolded and folded networks, normalised (10 - 4 0 ' ' o / M ) . 

= 1̂ 2 

^/\ / \ -f wj = CO/7S/ 

/ 

> 0^0 

Figure 7. Symmetric solution and weight decay. The symmetric MMSE solution 0 is found on the 

intersection of the quadratic error function with the bisector w, = Wj . The non-symmetric solution 0 

and 0̂ '̂ ^ lay on the direction identified by the smallest eigenvalue of the Hessian matrix (minimum 
slope). The squared sum of weights is increased or decreased by symmetrisation according to the 
orientation of the quadratic function. 
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10.3.4. Extended training on frame 6 

Another point in common between the generalisation behaviour of unfolded and 

unfolded techniques is the poor performance on frame 6. In this section the extended 

training in section 7.7 is developed for this case. The initial set of centres is drawn 

from frame 2, folded using the closest neighbour moment technique and 

orthogonalised on frame 2, and the weights are recalculated using a linear 

combination of the cross-correlation matrices (equation 7.11). The results, compared 

to a 100 centres unfolded extended training, are shown in figures 8.a and 8.b, for 50 

and 100 folded centres, respectively. 

Using 50 folded centres, the results are practically indistinguishable from those 

obtained with the 100 centres unfolded network. Not surprisingly, the 100 centres 

folded network in fig. 8.b produces superior results. 

From figure 9 one can see the generalisation performance of the extended training 

(v = 0.15) of the 50 centres folded network 2. Constraints were also added on the 

main diagonal of the input space, in order to reduce the degradation of the 

performance on frame 5 (see section 7.9). The result is compared to a 100 centres 

unfolded network, trained on frame 2 only, and to a 100 centres unfolded network 

trained using the constrained, extended training. It is evident that the folding 

technique offers comparable performance in terms of MSE and generalisation using 

half the number of centres and proves to be an effective and convenient reduction 

technique. 
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Figure 8.a. Extended training of network 2, 100 centres unfolded (black) and 50 centres 
folded (red) networks. (1) combined performance on training sets 2 and 6. (2) performance on 
training set 2 (3) performance on training set 6. Plots are normalised with respect to the 
unfolded initial values (v = 0). 
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Figure S.b. Extended training of network 2, 100 centres unfolded (black) and 100 centres 
folded (red) networks. (1) combined performance on training sets 2 and 6. (2) performance on 
training set 2 (3) performance on training set 6. Plots are normalised with respect to the 
unfolded initial values ( v = 0). 
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Figure 9. Extended training ( v = 0 .15) and constrained optimisation o f networlc 2, over the 
frame set. (1) 100 centres unfolded network, unconstrained, non-extended. (2) 100 centres 
unfolded network, constrained, extended. (3) 50 centres folded network, constrained, 
extended. 

10.4. Conclusions 

The preceding two sections have developed a novel approach to the problem of 

reducing the complexity of an interpolation scheme based on RBFN. This approach 

addresses some rotational invariant features that standard RBFN training does not 

consider. By constructing systems that account for these features, these redundancies 

can be eliminated. In the case of a linear interpolator, such a problem has an exact and 

easily tractable solution. In RBFN case, a mixture of heuristic considerations 

regarding the geometry of the problem is used to obtain a convenient reduction in the 

number of centres necessary to yield a given MSB. 

In this section, it has been shown that symmetrisation techniques also exhibit superior 

generalisation properties. Forcing the network to produce similar results on rotated 

versions of the same training set help to avoid over-fitting of directional features that 

cannot be considered as general properties of images. Moreover by using half the 

number of centres one can obtain the same results on a set of test frames. Another 

quantitative proof of this amelioration is given by the simultaneous reduction of bias 

and variance. 
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Clearly, there are some points that ought to be further investigated in the application 

of folding techniques. The most interesting of all is the relation between the reduction 

achieved and the topology of the input space. It has already been seen that an input 

space whose inputs are concentrated on the main diagonal (broadly corresponding to 

an image with few high-frequency components) might not benefit from the 

application of the folding techniques. On the other hand, there is little to be gained by 

using a non-linear technique for such an input space. A more accurate analysis would 

involve the study of the spaces of fixed-points , F j ^ and .Py , and how inputs 

and centres relate to these spaces where the folding technique is less effective. 

Finally, non-linear minimisation techniques, which have not been investigated in the 

context of generalisation, should also be applied to obtain further reductions of the 

error. Such techniques should be used taking appropriate measures to avoid an 

excessive specialisation and consequently a decrease of generalisation. 
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11. CONCLUSIONS 

The first part of this thesis (chapters 1 to 7) have shown how non-linear techniques 

produce significant improvements over linear filters when applied to solve the de-

interlacing problem. 

We have seen how de-interlacing can be considered a non-linear problem, mainly 

because in the process of interlacing there is a significant amount of information that 

is not registered, and cannot be recovered using linear methods since it constitutes a 

form of aliasing. The consequence is that linear filters typical produce a blurring 

artefact, known as "jagging", that is particularly noticeable on edges and detailed 

areas of an image. Another problem related to the application of linear filters is that 

they have insufficient complexity to deal with different situations. It has been shown 

how linear systems, trained on "natural" images, basically compute the average of the 

neighbouring pixels in order to estimate the unknown target pixel. This result explains 

the "jagging" artefact, since although an average filter produces good interpolation of 

uniform and smooth areas, unsatisfactory results are produced on edges and detailed 

areas. 

The application of non-linear techniques mitigates this problem by inferring more 

complex relationships between neighbouring pixels, so that non-linear filters can deal 

with more complex situations. The performance on edges and detailed areas is better, 

and accordingly so is the perceptual quality of the interpolation. In this work we have 

investigated the application of two non-linear techniques, the Volterra series and the 

Radial Basis Function Networks, specifically focusing on the latter. 

Both techniques deliver effective results, but this comes at the cost of increased 

computational complexity. This is a critical point in de-interlacing, since most de-

interlacing systems are implemented in hardware and usually operate under real-time 

conditions. Therefore, a great effort must be placed in trying to reduce the 

computational cost. The comparison between Volterra series and RBFN has been 

conducted considering their relative computational cost, on the basis of some simple, 

yet realistic, considerations developed in appendix B. It has been shown that, with a 
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careful training, the two techniques can be considered equivalents in terms of results 

and costs. 

Another problem that must be tackled when dealing with interpolation techniques is 

the ability to produce general systems, i.e. systems that are able to produce reasonable 

performance over a set of images much larger that the training set. This ability is 

called generalisation. Chapter 7 deals with this problem, and it is shown how an 

improper training leads to very specialised (i.e. non general) results. The problem is 

that the increased degrees of freedom given by non-linear techniques are spent to 

specialise the system on the particular training image. Therefore the training must be 

constrained somehow in order to avoid an excess of specialisation without affecting 

the error performance. A well known technique, weight-decay training, has been used 

to produce results that trade-off accuracy for generality. This has produced more 

general results, preserving the advantages of non-linear techniques. However, we 

believe that the problem cannot be completely solved using a single system, and 

suggested that the problem could be better tackled using a mixture of differently 

specialised systems. 

The second part of this thesis (chapters 8 to 10) introduces a new RBFN training 

paradigm for image interpolation, the symmetric training. Image interpolation is 

typically performed using spatially symmetric sampling lattices, in which case, it is 

possible to devise equivalence relationships between vectors in the input space. In the 

linear case, the consequence is that the algebraic form of the filter can be simplified, 

and the computational load reduced. 

Unfortunately, it is not possible to devise the same conclusions for non-linear 

techniques, since the algebra is non-linear. However, RBFN have a strong relationship 

to the topology of the input space, since the distribution of centres can be considered 

as a "copy" of the distribution of the input vectors. Therefore, a relationship between 

input vectors can be transferred to the centre vectors. We have described two 

techniques that are based on this principle. The symmetric RBFN successfully 

attempts to produce a result similar to the linear case, by inferring the same properties 

and reducing the number of linear weights in the RBFN. This does not produce large 

computational savings, as the greatest computational burden in the RBFN occurs the 
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non-linear layer. The folded RBFN directly tackles the non-linear problem by 

inferring symmetry constraints in the non-linear layer of the network. Albeit the 

analysis is more heuristic than in the symmetric RBFN case, nevertheless the results 

are satisfactory, and the computational load is reduced, on average, by half 

Furthermore, the folded RBFN model includes the symmetric model. 

Another advantage of exploiting symmetries in de-interlacing is that symmetrisation 

can be considered as a form of generalisation. By constraining the system to produce 

the same result on different areas of the input space, we obtain a more general result. 

The constraint of symmetry can be explained in this way: given an image, the system 

must produce equal (or similar) results on differently orientated versions of this 

image. This is equivalent to force the system to produce the same result on different 

images, and therefore the generality of the result is increased. Chapter 10 shows how 

symmetrisation is not only an effective reduction technique, but also a generalisation 

technique. 

225 



jAi.jPOlLnRIELR S ] P I i ( : T R v \ (IMF TTHi; EKCjCN/U. 

A. 1. Introduction 

This appendix considers the spectrum of a video signal. The results obtained are 

applied in chapter 1 to draw the schematic plots of progressive and interlaced video, 

and to highlight their differences. 

A.l. Continuous video signal and spectrum 

A hypothetical continuous video signal can be expressed as a continuous sequence in 

time of continuous still images. Therefore, the signal is a function of two spatial co-

ordinates x and;; and a time co-ordinate/, F^(x, >>,/), where conventionally x re-

presents the horizontal direction, and y represents the vertical direction. Under the 

usual convergence conditions F^{x,y,t) can be Fourier-transformed into a frequency 

domain consisting of two spatial frequencies , f y and one temporal frequency 

0 

A.3. Discrete video signal 

Any real video sequence can be viewed as a sampled version of F^{x,y,t). The 

sampling spaces in each co-ordinate x, y and t are determined by a variety of 

circumstances. The consequence of this sampling is that the spectrum assumes a more 

complex form than that expressed by (A.l). From the sampling theorem, valid for any 

number of dimensions, the spectrum will be typically formed by an infinite series of 

replicas (aliases) of (A.l). The position of these aliases will be determined by the 

particular shape and structure of the sampling. For instance, if the sampling is uniform 

in space and time, the discrete signal can be expressed as: 

{n,m,k) = '^^^F^ {x,y,t)S(x +n • Ax)S{y + m • Ay)S{t + k • At) (A.2) 
n m k 
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the spectrum of which is related to the continuous version by: 

r J V 

0 ^ 3 ) 

However, in many video applications the sampling lattice is more complicated than a 

simple, uniformly spaced one. Interlaced video represents one example, since the 

position of the lattice in the vertical direction is displaced by one row on adjacent time 

instants. To obtain an expression for the discrete spectrum it requires a more 

sophisticated analysis than the simple application of the sampling theorem, as in 

(A.3). The next sections will consider the Fourier spectrum of a continuous signal 

sampled on an arbitrary lattice. 

A.4. Arbitrary lattice sampling 

In order to produce the desired Fourier analysis, an arbitrary sampling of a continuous 

image is defined through a three dimensional relation between the continuous 

variables x, y, and /, and the corresponding discrete variables «, m, and k These 

relations can be summarised as 

X = V i i n + vj2 W + V13 A 

J '= V21 « +V22 w + V23 A: (A.4a) 

/ = V3J /J + V32 AW + V33 k 

that can be described in a more compact form as: 

x = Vn (A.4b) 

where x = [x y r] ^ and n = [n m k]^. It is useful (as will be clear shortly) to 

express the matrix V in terms of column vectors, V = [v| V2 v 3 ] . It is therefore 

possible to express the sampling (A.2) in matrix notation: 
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= + V n) = (V n)g(% + V n) (A.5) 
n n 

The notation has been shghtly abused: the summation is in fact a triple summation, 

and the vector sampling pulse 5(x + V-n) is the product of three one-dimensional 

pulses. 

A.4.1. Progressive and interlaced video 

For the progressive video, the matrix V can be expressed as: 

V 
Ax 0 0 
0 Ay 0 
0 0 Af 

(A.6a) 

while for interlaced video the matrix V can be expressed as; 

V = 
A% 0 0 
0 2 Ay Ay 
0 0 A//2 

(A.6b) 

The analysis of (A.6a) is straightforward. It is also easy to understand (A.6b). In that 

case, the position of the sample on thej^-axis is given by 

_y = ffz2Ay+ A:Ay (A. 7) 

Hence the position of the sample is displaced by /^y at the discrete time k = 1,3,5,... 

(Figure 1). From figure 1 it is possible to appreciate the column vector notation for V. 

The vectors v j , V2 and vg determine the position of the first samples, and so of the 

whole lattice. This is particularly evident for the interlaced video, since the oblique 

position of vg determines the interlaced lattice. Note that in the latter case, we have 

not depicted the x-axis for simplicity. However, in interlaced format the horizontal 

sampling is identical to the progressive case (left side of figure 1). 
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Figure 1. Sampling lattice and V vectors. Progressive (left) and interlaced (right) video. 

A.5. Vector form of the Fourier transform 

It is possible to express the Fourier transform in a vector notation applying a formula 

like (A.4b) to the frequency components. Define a frequency vector 

f = [ / x / , f i Y (AS) 

the Fourier transform of the video signal (x) can be expressed as 

Og ( f ) = (x)exp(-2;rzf )c/x (A.9a) 

and the inverse transform will be expressed as: 

f c ( x ) = ( f ) e x / ? ( 2 ; r / f ^ x )^/f (A.9b) 

Note the integrals in (A.9a) and (A.9b) are triple integrals. 
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We can obtain the vector Fourier transform for the sampled signal: 

O J ( f ) = (Vn)ex/?(-2;r /f ^ V n ) (A. 10a) 

and the inverse transform will be expressed as: 

+1/2 

jFc (1/::)== C4ul()b) 

- V 2 

However, substituting (A.4b) directly into (A.9b) leads to 

.Fd(T/i»)== (f)gj%)(2;c;ff^yn)amF ( V l . l l ) 

Making the change of variables v = V^f , with d\ = IvWf and f = Uv , where 

u = (v^ ) gives 

+ 0 0 

F j ( V n ) = j | V I ' <I>̂  (Uv)ex/>(2;r/v^n)(iv (A.12) 

Dividing the integration over the volume v into intervals between —1/2 and 1/2: 

F ^ ( V n ) = J ^\\\~^ (!? ̂ \\}{\-\i)]exp{2ni\^ n^expiy-2K n)d\ (A.13) 
- 1 / 2 k 

Comparing (A. 13) with (A. 10b), and considering that ex/>(-27r /k^n)=l (k and n 

are both integers), one finally obtains 
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k 

0 V 1 4 ) 

which expresses the spectrum of the sampled signal in terms of replicas of the 

continuous spectrum. The periodicity of the sampled spectrum will be determined by 

the matrix U, hence by the sampling matrix V. 

A.5.1 Progressive and interlaced video 

In both cases it is easy to calculate U from (A.6a) and (A.6b). 

0 0 
u = 0 Ay-1 0 (progressive) (A. 15a) 

0 0 / k " ' 

Ar"' 0 0 
u = 0 (2Ay)-' 0 (interlaced) 

0 A/-' (A//2)r' 

Figure 2. Spectrum and U vectors. Progressive (left) and interlaced (right) video. For simplicity, 
we depict only the centroids (black dots) of the replicas. 

Again, we can express the matrix U in terms of column vectors u j , U2 and U3, that 

will determine the periodicity of the spectrum (figure 2). The figures in chapter 1 are 

drawn according to the results obtained in this section. A more general discussion on 

the subject can be found in Tekalp (1995). Dubois (1985) has extended the presented 

results to an arbitrary number of dimensions. 
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B. COST CONSIDERATIONS 

B.l. Introduction 

A meaningful comparison between the performances of RBFN and Volterra de-

interlacers can not be conducted solely on the basis of the MSB. In fact, the universal 

approximation principle (Chapter 2) indicates that RBFN can always perform better 

than any given Volterra series, provided that the number of centres is large enough. 

Some account of the computational complexity should be taken to make a realistic 

comparison. 

The main field of application for de-interlacing techniques is digital video processing. 

Real-time or near real-time applications often require the algorithms to be built in 

hardware, most likely designed at port-level using programmable gate arrays (PGA). 

Computational complexity, in terms of the number of elementary computational units, 

is a measure of cost of paramount importance at the hardware level. Another 

parameter that influences the cost is the degree of parallelism of the algorithm, since 

this influences the processing time. Note that both Volterra series and RBFN have 

been defined as single-layer networks. However, this definition is not correct in terms 

of elementary computational units, since the relative kernels are composed of a series 

of simpler operations, like multiplies and additions. In this work we will not consider 

directly the timing problems. Our analysis will hence focus on the more general 

computational complexity of the two networks. 

We will basically decompose the two networks in terms of scalar multipliers and 

scalar adders, and the cost will be expressed as a function of their respective costs, 

Cmult . In the Gaussian RBFN we have to consider a third component, the 

scalar exponential and its cost . In practice it is difficult to determine the real 

costs and Cg^p . A complete analysis is beyond the scope of this work. 

Hence we will use a mixture of practical and qualitative considerations to estimate 

some form of relative cost of the networks. Specifically, we will make the reasonable 
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assumption that the scalar adder has the lowest cost, and consider the results for a 

sensible range of possible costs and C g ^ , relative to • 

B.2. Computational cost of the 3"'-order Volterra series 

The number M of branches in the network diagram of the Volterra series is not a free 

parameter as in RBFN, but is determined by the degree p of the series and the 

dimension D of the input space. For a 3"̂  order series, we can identify 3 groups of 

. . _ D ( D + l ) . D ( D ^ + 3 D + 2 ) , ^ o 
branches, with D , and — ^ ' elements, corresponding to the 3 

2 6 

degrees of the expansion (Figure 1), and there is a different cost per branch for each 

group. The cost of the 3"̂  order branches can be reduced by pipe-lining the 3"̂  order 

group with the output of 2"̂ * order branches. (Figure 1). The linear group is considered 

to be of cost zero, since it merely transfers the input in the intermediate space h . 

r XI 

{ 
Xj — ^ 

^7-

D 

> 
D ( D + l ) 

"7 ,T r 
> 

V 

^ ( 0 ^ + 3 ^ + 2 ) 

J 
- 3 -

^ 1" order 1 

order! 

.h"* order 1 

Figure 1. Branch decomposition of the 3""-order Volterra network 
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The cost per branch for each group is given by: 

D ( D + 1) 

. D(D^+3D + 2) ^ 
^(3)- f- '^mult 

Note that we have used the pipe-lined structure to compute the cost of the 3"'-degree 

group. To complete the cost evaluation we have to consider the number of output 

multipliers (the weights of the series) D + —+3D + 2) ^ 
2 6 

+1) H 3Z) + :!) , 
number of output summations, D 4 1 — 1 . 

The computational cost of a 3"̂  order Volterra series, with Z) = 8 , is then: 

C m i r - 320 - +164 - (A.2) 

B.3. Computational cost of Radial Basis Function Networks 

The analysis of the cost of the RBFN is more complicate than the Volterra series. 

Here we have a kernel that comprises of vector and scalar multipliers and adders, and 

we have to evaluate the cost of implementing the Gaussian function. The vector 

elements can be easily expressed in terms of scalar elements, once we determine a 

value for D . 

The evaluation of is more complicate. Basically, the most immediate way to 

realise an arbitrary scalar-to-scalar function in hardware is to use a look-up table 

(LUT). Since the LUT is basically a read-only memory (ROM), its performance is 

limited by the size of its memory, i.e. the bit-resolution of the dynamics involved. On 

the other hand, the computational effort can be considered very small. Clearly the cost 

function depends mainly on the size of the LUT. The memory size influences the 
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coarseness of the approximation of the LUT to the non-linear function chosen, and 

hence affects the MSB performance of the interpolator. The effects of such 

approximations have not been considered here, so a detailed cost analysis of these 

elements is not available. 

Figure 2 shows the branch decomposition of the Gaussian RBFN. Note how the left 

side of the branch is kept in vector form. In fact, the scalar multiplier/scalar adder 

representation is more complex. 

r 
|" • ^ • ) 

A 

(7 

'{ — 

vector 

J 

scalar 

J 
y M 

V. J 

Figure 2 Branch decomposition of the Gaussian RBFN 

This time the number of branches M is a free parameter of the network. The resulting 

cost can be easily calculated as: 

M [ D - + ( D + 2 ) - ] + ( M - 1 ) C 'sum (A.3) 

The cost of the hybrid architecture is equally simple to calculate: 

CfMTM + ( ^ + 2 ) + C ' g ; ^ ] + D + 

+ (M+ D - 2 ) 

(A.4) 
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B.4. Cost comparison of Volterra series and hybrid Gaussian RBFN. 

The cost comparison of the two techniques is performed assuming a range 1~10 for 

the costs and Cg^ relative to . We consider a set of ten hybrid RBFN 

networks, with centres increasing in number from 10 to 100. More detail is given to 

the range 10-50, since this will prove to be the range of interest to us. Figure 3 shows 

the cost plots against the relative value of with C g ^ = l . Figure 4 shows the 

same plots, with =10. 

4 5 6 7 
multiplier/adder cost ratio 

Figure 3. Volterra cost function (—) against tlie relative cost ratio C,„ult / Csim , 

compared with hybrid networks (--) in the range jW=1 0-100, Cexp = 1. 

From the plots it seems reasonable to deduce that RBFN can be competitive compared 

to Volterra series if the number of centres is in the range 10-30. The lower bound is 

given by the assumption that for M<10, the MSB performance degrades very 

quickly. Hence we should pursue a training strategy to reduce the number of centres 

down to this range, at the same time keeping the MSB at least equal to the 3"'-order 

Volterra series. 
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3 4 5 6 7 8 9 10 
multiplier/adder cost ratio 

Figure 4. Volterra cost function (—) against the relative cost ratio Cmiih / Csum , 

compared with hybrid networks (--) in the range A/=l 0-100, Cexp = 10. 

The results shown give an estimate for the useful range of centres that looks 

reasonably robust to a broad set of conditions. However, the cost model is based on 

very general assumptions that greatly simplify the issues involved in a real hardware 

implementation of the algorithms. This cost analysis is not exhaustive but 

nevertheless represents a reasonable framework to set our strategy in pursuing a 

convenient RBFN implementation of a de-interlacing system. 
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C.l. The Simplex method 

The Simplex method (Spendley et al., 1962) is a simple yet powerful iterative method 

to find minima in a function by simply observing its values (and not its derivatives). A 

regular simplex in a D-dimensional space is a set of equidistant Z)+l points 

forming a D-dimensional tetrahedron (figure 1). The simplex method 

computes the function values at these points, y\---yD+\^ and applies the reflection 

rule (figure 1) according to these values. 

Figure 1. (a) 2-D simplex (b) 3-Z) simplex (c) reflection (d) expansion (e) contraction 

On the first step of the iteration, the algorithm determines the maximum value . 

The corresponding vertex is then reflected into the centroid x of the other D 

points, thus forming a new simplex with the old points (excluding ) and the new 

point X* = 2 x - x ^ . The function value j * = >/(x*) is evaluated and the process is 

repeated. 

After the first iteration, it is possible that the new vertex yields the largest value in the 

new simplex, and consequently its reflection would cause an oscillation. In which 

case the second largest value is selected. However, after a number of iterations the 

algorithm will fail to proceed, since any choice will reflect a vertex already 

considered. In that case, after a certain vertex x has been in the current simplex for 

more than a fixed number of iterations /, then the simplex is reduced by replacing the 
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other vertices by new ones half way along the edge to the vertex x . Spendley et al. 

suggest the empirical relationship 

/ = 1.65Z) + 0.05Z)2 (CI) 

An example for D=2 is shown in figure 2. As one can see, vertex 7 in the simplex 

(4,6,7) is not reflected immediately, although yielding the highest value, since it is the 

newest vertex and its reflection would cause an oscillation. When the simplex (6,9,10) 

is reached, the vertex 6 has been in the current simplex for 4 consecutive iterations, 

and since 7=3.5, the simplex is reduced. 

Figure 2. Simplex algorithm, convergence over a convex function in 2 dimensions 

C.2. The Nelder-Mead algorithm 

Nelder and Mead (1965) propose a modified simplex method that allows distortion in 

the simplex, in order to accommodate the local geometry of the function. Specifically, 

if the new vertex value y* is smaller than yi-.-y^+x^ then the new vertex is 

expanded (figure 1): 

+ ( l - a ) x (C.2) 

where a is an expansion coefficient, and is greater than the unity. If however 

y**> min{yi ...jV/j+i}, then the expansion failed and x* will remain the new vertex. 
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A failed expansion might happen for instance if the simplex reaches a steep valley, at 

an angle perpendicular to the valley's direction (figure 3). 

(a) 

6 4 2 6 8 7 ^ 

Figure 3. (a) failed expansion, (b) failed contraction. The numbers on the dashed lines represent the 
function's value. In (a), the simplex (2,3,4) coming from the reflection of (1,2,3) tries to expand, but 
it fails to do so as vertex 4 is on the rising edge of a valley. In (b), vertex 4 falls in a shallow valley 
contiguous to a deeper valley. Therefore, the simplex (1,2,3) is halved in the direction of vertex 3 
(minimum of the simplex). 

Another amendment to Spendley's algorithm is the introduction of a contraction 

(figure 1). If the new vertex x* is such that j,- <y* <yM •: so that the new vertex 

value is still the maximum, then x* is replaced by: 

X*'' = + ( l - ^ ) x (C.2) 

where /? is a contraction coefficient, 0 < /3 < 1. If y** <min{y*,yj^}, then x** is 

the new vertex. If the latter condition is not satisfied, so that x * * produces a worse 

result than x* and x ^ , then the contraction failed. A failed contraction is more 

unlikely to happen than a failed expansion (Nelder, Mead 1965). It may happen when 

the simplex is in a valley that curves, and one of the vertexes is farther from the valley 

bottom than the others. Then x* could fall into a descending area, and the contraction 

would be ascending (figure 3). In this case, the size of the non-reflected simplex is 

halved in the direction of the minimum of the simplex, as in section C.l. 

The final issue concerns the criterion for stopping the algorithm. One method 

computes the standard deviation of the values 
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D+1 _ 
(y, ( C 3 ) 

If (C.3) falls below a given value, the algorithm stops. 

C.3. Estimate of the Hessian matrix 

The minimisation methods proposed in the previous sections are independent of the 

analytic properties of the function, specifically the second derivatives expressed by 

the Hessian matrix Jl •. hy = dy^ jdxidxj , and the gradient vector g : g i = d y / d x j . 

However, it is desirable to have an estimate of these two quantities, since almost any 

minimisation problem can be approximated by a quadratic function in a sufficient 

small neighbourhood of the minimum (Fletcher, 1987), and therefore can benefit from 

the analytic solution of the quadratic problem. 

Nelder and Mead (1965) provide a method to estimate the Hessian matrix and the 

gradient vector from the vertices of the simplex. We will not describe the details of 

the derivation. They point out two major hazards of their proposed estimate. The first 

is that, if the simplex is too small, the differences in the vertex values might consist 

largely of rounding errors, therefore producing poor estimates. The second hazard 

might occur if the simplex is too large, and the estimates are again poor. The authors 

suggest that, provided a convergence has occurred, the former rather than the latter is 

the main risk to avoid. In which case the solution proposed is to enlarge the simplex, 

so that the effect of rounding errors is mitigated. 
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