
SYMMETRIC RADIAL BASIS FUNCTION
NETWORKS AND THEIR APPLICATION

TO VIDEO DE-INTERLACING

Alfredo Giani

A thesis submitted for the degree of

Doctor of Philosophy

University of Southampton

Faculty of Engineering and Applied Science

Institute of Sound and Vibration Research

December 2002

University of Southampton

Abstract

Faculty of Engineering and Applied Science
Institute of Sound and Vibration Research

Doctor of Philosophy

Symmetric Radial Basis Function Networks and their Application to
Video De-interlacing

by Alfredo Giani

Video technology is one of the most advanced fields of modern electronics. The degree
of interaction between different disciplines is simply extraordinary. In particular, the
introduction of digital signal processing has revolutionised video technology.
Sophisticated mathematical techniques are applied at several points in the video chain.
One of the most common tasks in video processing is de-interlacing, i.e. the conversion
from an interlaced format to a progressive format. De-interlacing can be considered as a
form of interpolation, where the even lines of a frame in a video are estimated by
interpolating the odd lines in the frame. De-interlacing is a task that is often required in
real time, therefore the amount of computation required is a critical parameter. A
straightforward way of achieving this task is by employing some form of linear
interpolation. Linear techniques are fast, robust, and theoretically tractable.
Unfortunately, the results are often unsatisfactory in terms of image quality. A more
sophisticated approach is offered by the implementation of non-linear techniques. When
dealing with non-linear methods, two main factors must be considered: the amount of
computation required and the tendency to over-fit the data (generalisation). In this work
two non-linear techniques are investigated, the Volterra series and the Radial Basis
Function Networks (RBFN). Volterra series can be considered as an extension of the
linear model to a polynomial series. RBFN is a functional series that creates arbitrary
interpolation mappings due to its localisation properties. It is shown how both
techniques produce results that are superior compared to linear techniques in terms of
image quality. However great care must be taken and proper training procedures must
be devised in order to maintain the computational load to an acceptable level and to
avoid over-fitting. In this thesis a novel approach is devised to reduce the computational
load in RBFN at the same time increasing the generalisation ability of the network by
exploiting the symmetries arising in the input space when the sampling lattice is
symmetric. Symmetrisation is initially developed for linear techniques, where an
analytic derivation leads to a reduction in the number of operations required.
Successively this technique is extended to RBFN by devising a mathematical approach
that is both intuitive and rigorous. It is shown how symmetrisation leads to a reduction
of the computational load required at the same time increasing the generalisation ability
of the interpolation.

r A J B L] 3 () F (: c % N T n E N r r s

Preface I

Introduction 1

Description of the chapters 11

Acknowledgements VII

Nomenclature VIII

Part 1. Non-linear de-interlacing

1. Introduction to de-interlacing 1

1.1. Introduction 1

1.2. Historical background of interlaced video 2

1.3. De-interlacing 3

1.4. Fourier transform of video signals and aliasing 5

1.4.1. Spectrum of the interlaced video signal 1

1.4.2. Effect of motion on the video spectrum 8

1.5. Linear interpolation and de-interlacing 10

1.6. Non-linear interpolation and de-interlacing 12

1.7. Conclusions 15

2. Single-layer networks and interpolation 16

2.1. Introduction 16

2.2. Parametric models 17

2.3. Learning-by-examples training 18

2.3.1. Size of the model and generalisation 19

2.4. Cost functions 21

2.4.1. Mean Squared Error 21

2.4.2. Linear MMSE training 23

2.4.3. MMSE and Maximum Likelihood estimate 26

2.4.4. Minkowski-7? error 26

2.5. Single-layer networks 27

2.5.1. Non-linear parameters 29

2.6. The Volterra series 30

2.6.1. MMSE solution 32

2.6.2. Skewness and Kurtosis 35

2.7. Radial Basis Function Networks 36

2.8. Multi-layer networks 36

2.7. Conclusions 38

3. Radial Basis Function Networks 40

3.1. Introduction 40

3.2. RBFN Architecture 41

3.3. Exact interpolation 41

3.4. Radial Basis Function Networks 44

3.5. Extensions of the RBFN model 45

3.6. Training of RBFN 47

3.7. GRBFN and Gaussian Mixtures 49

3.8. GRBFN and Steepest Descent techniques 50

3.9. RBFN and Regular)sation theory 53

3.10. Conclusions 55

4. Orthogonal Least Squares reduction 57

4.1. Introduction 57

4.2. Pruning algorithms 58

4.3. MSE and orthogonality 59

4.4. Orthogonal Least Squares Learning Algorithm 60

4.5. Matrix form of the OLS algorithm 64

4.6. Conclusions 64

5. Wiener and Volterra de-interlacing 67

5.1. Introduction 67

5.2. Wiener Linear Filters69

5.3 Volterra interpolation 72

5.4. Orthogonal Least Squares Volterra series 79

5.5. Conclusions 79

6. Gaussian RBFN de-interlacing 85

6.1. Introduction 85

6.2. Sampling aperture, network size and architecture 86

6.3. Heuristic choice of centres and determination of width parameter 87

6.4. Random selection of centres 89

6.5. Orthogonal isation of randomly selected GRBFN and HGRBFN 91

6.6. Iterative orthogonalisation 97

6.7. Non-linear optimisation 101

6.8. Comparison between HGRBN and OLS Volterra series 103

6.9. Representation of the input space 104

6.9.1. Orthogonal centres 106

6.9.2. Nelder-Mead centres 106

6.10. Conclusions 109

7. Generalisation 110

7.1. Introduction 110

7.2. The frame set 112

7.3. Bias and Variance 118

7.4. Regularisation 121

7.4.1. Weight decay training 122

7.4.2. Orthogonal weight decay training 124

7.4.3. Support Vector Machines 124

7.5. Individual results 125

7.5.1. Linear filters 125

7.5.2. Volterra series 126

7.5.3. Hybrid GRBFN 127

7.5.4. Linear and non-linear parameters 129

7.5.5. Bias and variance 132

7.6. Weight-decay training of Volterra series and RBFN 134

7.7. Extended training set 139

7.8. Comparison of results 141

7.9. Constrained optimisation 145

7.9.1. Lagrange multipliers 146

7.10. Mixture of experts 149

7.11. Conclusions 154

Part 2. Symmetric de-interlacing

8. Symmetry constraints for Linear networks 156

8.1. Introduction 156

8.2. Symmetric transforms of the sampling lattice 158

8.2.1. Symmetric transforms of a rectangular lattice 159

8.2.2. Conditions of symmetry 160

8.3. Symmetric reduction of the input space - the linear case 160

8.4. Symmetry in a continuous image space 164

8.4.1. Circular sampling and symmetry operators 164

8.4.2. Radial symmetry 166

8.4.3. Mirror symmetry 167

8.5. Symmetry in the discrete space 169

8.5.1. Axial sampling 170

8.6. Experimental results 171

8.7. Conclusions 171

9. Symmetry in Radial Basis Function Networks 174

9.1. Introduction 174

9.2. The symmetric RBFN model 176

9.2.1. Properties of flip operators and kernels 177

9.2.2. Kernel vector flip operators 178

9.2.3. Realisation of a symmetric RBFN 180

9.3. Folding techniques in the input space 181

9.3.1. The folding principle 182

9.3.2. Topological properties of the flip operator in r'^ 185

9.3.3. Analysis of the eigenspace of the flip operators 187

9.3.4. Binary classification of inputs and cluster reduction 189

9.3.5. Binary classification of the 8, sampling lattice 191

9.3.6. Results for binary cluster folding RBFN 194

9.3.7. Moment-based classification of inputs 195

9.3.8. Results for moment folding RBFN 198

9.3.9. Non-linear optimisation and folding 199

9.4. Conclusions 201

10. Generalisation of symmetric architectures 204

10.1. Introduction 204

10.2. Linear results 204

10.3. RBFN results 206

10.3.1. RBFN cross-results 209

10.3.2. Bias and Variance 214

10.3.3. Weight-decay training 216

10.3.4. Extended training on frame 6 219

10.4. Conclusions 221

11. Conclusions 223

A. Fourier spectra of the video signal 226

A.l . Introduction 226

A.2. Continuous video signal and spectrum 226

A.3. Discrete video signal 226

A.4. Arbitrary lattice sampling 227

A.4.1. Progressive and interlaced video 228

A.5. Vector form of the Fourier transform 229

A.5.1 Progressive and interlaced video 231

B. Cost considerations 232

B.l . Introduction 232

B.2. Computational cost of the 3"'-order Volterra series 233

B.3. Computational cost of Radial Basis Function Networks 234

B.4. Cost comparison of Volterra series and hybrid Gaussian RBFN 236

C. Nelder-Mead simplex algorithm 238

C.l The Simplex method 238

C.2. The Nelder-Mead algorithm 239

C.3. Estimate of the Hessian matrix .241

Bibliography 242

PREFACE

Introduction

Video technology is one of the most advanced fields of modern electronics. The

degree of interaction between different disciplines is simply extraordinary. Optics,

analog and digital electronics, analog and digital signal processing, psychology of

visual perception, all contribute to create the field. In particular, the introduction of

digital signal processing has revolutionised video technology. Sophisticated

mathematical techniques are applied at several points in the video chain, from the

camera that creates the video signal to the device that displays it.

One of the points that engineers have to tackle is the necessity of communication and

interaction between devices that work to different standards. This has always been an

issue since the early days of the entertainment industry. On one side is the desire to

make video production available to the broadest audience that pushes for the

integration of different systems and for a complete update of the available technology

whenever new developments are ready for the market. On the other side, it is

commercially unthinkable to force customers to completely renew their home

systems; the history of consumer technological products is full of blunders, that failed

because customers were just not ready to spend money on them. Since the diversity of

standards arose at the beginning (e.g., the American-Japanese NTSC standard, against

the European PAL), the result is that a plethora of different systems are forced to

interact. This diversity has not changed with the advent of digital technology and high

definition television (HDTV). On the contrary, a new challenge has been posed, since

it is now necessary to convert the immense video production available from the old

standards to the new one, and vice-versa. In the effort to convert a video signal from

one standard to another, it is vital to preserve the quality of the video images as much

as possible.

In this struggle to make different worlds live together, the de-interlacing of video

images plays a remarkable role. In simple words, de-interlacing is a form of

interpolation, as we shall see shortly. De-interlacing is required whenever it is

necessary to modify the rate at which images are presented (frame rate), the

dimension of the image, etc. Conventional interpolation is performed using linear

techniques. Linear interpolation is fast, easy to implement in both software and

hardware, and has well-assessed theoretical background. Unfortunately, its

application is limited by the fact that de-interlacing is basically a non-linear problem.

The result is that the performance of linear de-interlacers is often unsatisfactory. Non-

linear interpolation techniques, noticeably the polynomial series, have been recently

studied, and they show remarkable improvements compared to the linear approach.

Unfortunately the amount of computation required is a major limitation to the

application of non-linear techniques.

The main subject of this work is the study of a particular form of non-linear

interpolation scheme, called the Radial Basis Function Network (RBFN). The key

points of this technique are its scalability, its high degree of architectural parallelism,

and its connection with many aspects of signal processing that together make RBFN a

very flexible and robust interpolation technique. The task of this work is to find a

reasonable way to build an RBFN-based interpolation scheme with a quality

comparable to polynomial series, and with comparable, if not reduced, computational

burden.

In pursuing this task, we have developed a novel technique that exploits some peculiar

properties of image processing to reduce the computational complexity of RBFN

interpolators. This approach is based on the symmetry properties of the sampling

lattices used to perform image interpolation. These properties are successfully applied

to simplify the computational demands of linear interpolation. We attempted to

transfer these properties to the RBFN model. This task is performed considering the

topological properties of RBFN in the input space. Although the results can not be

considered definitive, the path is promising. We reserve future efforts to complete the

framework depicted in this work.

Description of the chapters

In this section, we give a concise description of contents of each of the chapters that

compose this work. The chapters have been grouped into two parts. The first part

II

(chapter 1 to 7) is focused on the description of the de-interlacing problem, and of the

theory and application of the currently available technology, specifically linear

interpolation, Volterra series, and RBFN.

The second part (chapter 8 to 10) contains the majority of the original contributions of

this work, the analysis of the theoretical and practical consequences of the symmetry

constraints in image interpolation, and the consequent development of different

techniques that are able to reduce the computational demands of RBFN.

Part 1. RBFN de-interlacing

Chapter 1. Introduction to de-interlacing

In this chapter, we give a general view of the de-interlacing problem. We introduce

the concepts of interlaced and progressive video, and the reasons why the first

technology was chosen in the early days of video technology. De-interlacing is then

modelled as an interpolation problem, and we describe the problems arising when we

perform this interpolation using standard linear methods. These problems justify the

use of non-linear techniques.

Chapter 2. Single-layer networks

This chapter introduces the general concepts of single-layer networks, and many of

the issues associated with this model. The single-layer network is a general model that

includes linear interpolation, Volterra series, and RBFNs. As such, this chapter is a

necessary introduction to the study and application of these techniques to the

interpolation problem. Some general concepts of system modelling and pattern

learning are introduced. The concepts of parametric models, learning by examples,

and cost functions are presented.

Chapter 3. Radial Basis Function Networks

This chapter gives a thorough description of the RBFN model. A panoramic view of

the many theoretical aspects of RBFNs is given, and the most popular RBFN schemes

are introduced. The chapter shows the links between RBFN and two main subjects of

III

research, the theory of probabiHstic neural networks, and the theory of functional

approximation.

Chapter 4. Orthogonal Least Squares Algorithm

This chapter describes the Orthogonal Least Squares Learning algorithm (OLS). It

provides an overview of the basic algorithm, together with some of the theoretical

aspects of orthogonal least squares techniques that motivated the development of

OLS. The practical algorithms applied in the successive sections are also fully

described.

Chapter 5. Wiener and Volterra de-interlacing

This chapter investigates the practical application of linear filters and the Volterra

polynomial series to de-interlace a sample frame. Linear interpolation is the technique

currently used in most of the broadcast systems, and previous work has considered the

application of Volterra series. An initial cost analysis on the Volterra series is

performed, motivating the choice of a particular sampling structure that trades off

performance and cost. OLS is applied to the Volterra series, and it is shown how the

different kernels are relevant to the performance according to their order.

Chapter 6. RBFN de-interlacing

In this chapter, a series of experiments are used to explore the advantages and

limitations of RBFN to de-interlace a frame. Initially, a simple training strategy is

devised to avoid the problems associated with the training of non-linear parameters in

RBFN. OLS is applied throughout the chapter as the main technique to achieve

reduced complexity at the same time striving to maintain performance. Successively,

more sophisticated learning procedures are proposed and applied. A comparison with

Volterra series is conducted. This comparison is based on the simple cost analysis

described in appendix B.

Chapter 7. Generalisation

One of the main issues in pattern recognition is the ability to produce systems that,

trained on a limited set of data, are able to produce the same performance on a much

IV

larger set of inputs. This ability is called generalisation. A realistic de-interlacing

system must yield satisfactory results on a very large set of inputs and it is clear that a

learning procedure must deal with a much smaller subset of training patterns.

This chapter firstly presents an overview of many of the theoretical aspects involved

in generalisation. This field of research has a large theoretical background, and it is

obviously impossible to present all the aspects of generalisation theory and all the

techniques available in this work. Therefore, the relevant theoretical aspects of

generalisation will be introduced, together with few practical techniques to achieve

general training. A series of experiments will be applied using a set of six frames, and

the system is evaluated whereas training will only employ single frames.

Part 2. Symmetric RBFN de-interlacing

Chapter 8. Exploiting symmetry for linear filters

This chapter introduces the theoretical consequences of the symmetric sampling of

images. In many interpolation schemes, it is likely that the sampling lattice has a

number of symmetries with respect to the target pixel. The symmetric properties of

the sampling lattice and some general consideration of images will lead to a set of

conditions that an image interpolation system should abide by. A simple analytical

derivation based on these considerations leads to the conclusion that it is possible to

reduce the computational burden required by linear de-interlacing.

Chapter 9. Exploiting symmetry in Radial Basis Function Networks

This chapter describes the attempt to apply the properties of symmetry to a RBFN

interpolation scheme. Initially, the problems of extending the linear approach to the

non-linear case are introduced. Two interesting theoretical developments that lead to

two reduced RBFN architectures, the symmetric RBFN model and the folded RBFN,

are studied and applied. It is shown how it is possible to achieve computational

savings using these two techniques.

V

Chapter 10. Generalisation of symmetric strategies

Symmetric structures are based on the idea that an interpolation system must yield the

same performance over a rotated version of the input image. By doing so, somehow

the system increases its generality, since it produces similar performance on different

versions of a given image. This chapter demonstrates that this is the case, specifically

that by reducing the computational load using symmetric techniques, one also

improves the generality of the system, providing further reason to implement

symmetric training strategies.

Chapter 11. Conclusions

This section summarises and discusses the results obtained in the previous sections,

providing hints for future developments.

Appendices

Appendix A. Fourier spectra of the video signal

This appendix is a brief study of Fourier analysis applied to video sequences. In

particular it explains the theoretical background to understand why de-interlacing is

fundamentally a non-linear problem.

Appendix B. Cost considerations

In this appendix a simple cost comparison between the techniques applied in this

work is developed, in order to compare their relative cost in terms of computational

requirements. This cost comparison is based on reasonable considerations of the

relative cost of the elementary computational units involved. A more accurate cost

analysis should require the study of hardware and software issues that are out of the

scope of this thesis.

Appendix C. Nelder-Mead simplex algorithm

This appendix briefly describes a popular iterative optimisation technique, that is

applied to the non-linear parameters of RBFN to produce further improvements to the

performance of RBFN de-interlacers.

VI

Acknowledgements

Finally, I wish to express my considerable gratitude to everybody who, in a way or

another, have helped me in the process of writing this thesis. Firstly, I wish to thank

my parents. They deserve my gratitude if only for the simple fact that they gave me

birth. Unlimited gratitude goes to Donatella. Her support during these years has been

priceless, and she gave me motivation to pursue a career in research.

I wish to thank all the people, students and academics that I had the pleasure to meet

in the ISVR. Of course, my gratitude goes to my supervisor, mentor and friend Dr.

Paul White. His unique mixture of competence, modesty, humanity and great sense of

humour has been one of the best lessons I ever got from life, and greatly contributed

to make me enjoy the pursue of this work.

I apologise to anyone who thinks he/she should have an explicit place in this section,

and that I did not mention for evident reasons of space. I can only say that readers

usually do not pay much attention to the acknowledgements, so it is not the case to

break a good friendship for that.

VII

Nomenclature

The symbols used for the most commonly occurring quantities in the thesis are listed

below:

n training pattern label

L number of patterns

j input label

D dimension of the input space

M number of nodes in the network

p degree of the Volterra series

X input variable

X input vector variable

X input space

h node output (layer output) variable

h intermediate vector (layer output) variable

H intermediate space

t target output variable

T target space, symmetry operator'

y network output variable

Y output space

(f) node's weight (linear parameter)

0 node weight (linear parameter)

c node centre

(J node width

C cost function

D regularisation fijnction

V regularisation factor

' Whenever T indicates a symmetry operator (chapters 8, 9 and 10), it is usually shown with a subscript
label indicating the angle of symmetry. It is evident from the context whether T indicates the sequence
of targets (target space) or the generic symmetry operator.

vni

1.1. Introduction

The creation of continuously varying images, known as video, is a science that has

been studied since the XlXth century. Amateur scientists created different mechanical

means to entertain the spectators. It was immediately clear then that a sequence of still

images, accurately drawn and shown in sequence at an appropriate repetition rate, can

create the illusion of motion. The key to this approach is that the human eye acts as a

temporal low-pass system, blending still images into a single, continuous flow by

means of the phenomenon of image persistence on the retina.

Early studies showed that a frame rate (the rate at which the pictures are presented to

the eye) of roughly 10 pictures per second is the lower limit needed to create the

impression of continuity. Early movie pictures used a frame rate of 24 frames/second.

This rate was later doubled to 48 frames/second to reduce the effect of f l ickering. This

phenomenon can be described as a rapid change in the luminosity of the picture, due

to the decay of retinal persistence between two successive frames. The up-conversion

of the frame-rate was obtained by showing the same frame twice, and doubling the

shutter speed.

The frame rate partly defines the scanning format of the motion picture. Vertical

resolution (i.e. the number of horizontal lines in the picture) and horizontal resolution

together contribute to define the scanning format. In movie pictures horizontal and

vertical resolution are determined by the size of light-sensitive particles in the

photographic emulsion on the film. The drawback of having smaller particles (i.e.

higher resolution) is that they require more light to be properly developed, reducing

the possibility of shooting low-light scenes (Stroebel, Zakia 1993). In television

systems vertical and horizontal resolution are critical since they determine the

bandwidth requirements of the signal chain.

1.2. Historical background of interlaced video

When engineers attempted to build commercial TV systems in the mid-thirties of the

XXth century, they faced a formidable challenge posed by the limited bandwidth

available. The frame rate was initially set to the frequency of the power supply line, in

order to avoid interference. In the USA and other countries the scanning format was

set to 60 frames/second and 525 scanning lines (vertical resolution). In Europe the

format was set to 50 frames/second and 625 lines. The horizontal resolution was

mainly determined by the available scanning technology (cathodic ray tube, CRT) and

by other bandwidth requirements.

Unfortunately, such high frame-rates proved to be uneconomical given the bandwidth

requirements, pulling the required base-band up to lOMHz. Using a technique called

interlacing, engineers managed to compress the base-band of the video signal to the

range 0~5 MHz, a requirement that could be fulfilled at the time.

(1/50 seCp (1/50 sec^.

n+\ n+\

Frame number (Time) Field number (Time)

Figure 1. Progressive (left) and interlaced (right) video sequence. Field lines (—), missing lines (~).

Interlacing compresses the bandwidth by alternately showing an image's odd lines

(referred to as the odd field) and even lines (even field) as illustrated in figure 1. The

rate at which the fields are shown is called the field rate. Given its low-pass

characteristic, the human eye in fact integrates the partial information contained in the

interlaced picture to recover the missing information. Hence, the viewer observes an

effective frame rate of 50 frames/second (in fact, the field rate) although the real

frame rate is 25 frames/second. Unfortunately, this compression comes with the cost

of a reduced perceived quality, and with a series of characteristic artefacts.

Interlacing is performed at the camera level, so the missing lines in each field are

never measured. Mathematically, interlacing is a vertical sub-sampling of the original

picture, and as such, an amount of aliasing is expected (see section 1.4).

Unfortunately, this aliasing occurs in the optical path, at the very beginning of the

video process, and efficient optical anti-alias filters are still not an economical

solution. One example of artefacts introduced by interlacing can be seen by

considering a completely dark picture with a single thin horizontal white line. This

line may appear in only one of the fields, and its frame rate is in fact halved, and the

resulting video will show the line blinking. This effect is called line flicker. Another

problem arises with moving objects in the picture. If the human eye tracks an object

moving in the vertical direction at the speed of one scanning line per field, the effect

is that the underlying line structure will be "visible", in the sense that the scan of the

horizontal line will be perceivable (Sellers, 1999). This artefact is called line crawl,

since the perceived impression is that of the scanning line moving at the same speed

of the object.

Interlacing preserves vertical resolution, reducing the flicker while yielding an

affordable field rate. The downside is that artefacts are introduced, due to high spatial

frequencies and motion. These effects however were less obvious at the time

interlacing was developed, mainly due to the slow response of the CRT at that time.

Hence interlaced video was the choice adopted by broadcast companies.

1.3. De-interlacing

Nowadays, the situation is rather different. The advent of broad-band digital video

transmission, the improvement in CRT technology and the development of new, fast

video capture and rendering devices like charge coupling devices (CCD) and liquid

crystal displays (LCD), makes the transmission of high quality, high frame-rate

progressive (i.e. non-interlaced) video possible. However, the greatest proportion of

video production is currently in interlaced format. Moreover, interlacing is an

effective compression technique, and is required in many standards-conversion

problems. For these reasons, there is a general interest in studying feasible ways to

convert an interlaced signal into progressive format. This task is called de-interlacing.

From the signal processing point of view, de-interlacing is a form of interpolation.

The task is to estimate the missing lines that, in fact, have never been shot. Hence, in

general there is no reference signal to compare results with. Such a reference signal

can be estimated using motion estimation techniques to move the even-field lines in

time to fill the line gaps in the odd field. However, note that such motion estimation is

part of the problem. If we are able to produce a "perfect" back-dating at time i of the

i+1 field, the problem of de-interlacing field i is trivially solved. In general, a proper

de-interlacing scheme requires the interpolation to be performed either in space

{intra-frame de-interlacing) and in time (inter-frame de-interlacing) (Figure 2). An

exhaustive treatment of the matter is given in Sellers (1999) and Tekalp (1995).

Figure 2 space-time sampling of interlaced video sequences. Intra-field and inter-field pixels are
considered (white dots) to estimate the pixel in the missing line of field n. (black dot).

In absence of significant motion, inter-frame interpolation is sufficient to estimate the

missing lines. However when motion is present, inter-frame interpolation is more

complex and requires the use of motion estimators, that in turn require the use of

spatial de-interlacers (in order to compute the motion occurring in two successive

fields, the missing lines should be estimated). Therefore one can regard spatial de-

interlacing as the more low level operation. In this work we will limit our attention to

intra-frame (spatial) interpolation. Examples of motion-compensated schemes can be

found in Sugiyama, Nakamura(1999), and Jung et al. (2000).

In the next section we will discuss the issue of aliasing in video signals. This

discussion requires the analysis of the signal in the frequency domain through the

Fourier transform.

1.4. Fourier transform of video signals and aliasing

In this section we will discuss the spectral analysis of video signals, both in

progressive and interlaced formats. A continuous video signal can be modelled as a

function Fc{x,y , t) of two continuous spatial variables x , y and the continuous time

variable t. Consequently, its complete Fourier transform is a three-dimensional

function of the two spatial frequency variables and f y , and of the temporal

frequency f t

(/ x

Clearly, any realistic video-processing system deals with a discretised version of the

continuous signal F^{x,y,t). Typically the sampling occurs on a periodic lattice that

defines the scanning format

{n,m,k) = F^ (n-Ax,m-Ay,k-At) (1.2)

where Ax, Ay and At are respectively the horizontal, vertical and temporal

resolution of the discrete signal. Note that A/"' is the frame rate of the video

sequence. We can write equation (1.2) as a sampling of F^{x,y,t)

Ay)g(f -A: A/) (1.3)
n m k

The Fourier transform of F^{n, m, k) can be expressed as:

trf (a . f y (1.4)

that will result in a periodic spectrum as shown in figure 3. The grey circle represents

the continuous spectrum (supposed band-limited), and the white circles represent its

periodic replications.

fx

Figure 3. Three-dimensional spectrum of a video signal.

The uniqueness of the Fourier representation ensures that it is, in theory, possible to

recover the original continuous signal, provided that the repetitions of ^ c i f x - ' f y f t)

of the continuous spectrum do not overlap, i.e. there is no aliasing in the process of

sampling that leads to the discrete spectrum. This is expressed mathematically by

Nyquist's theorem that states that perfect reconstruction is possible if the inverse of

the sampling spacing in each direction is at least twice the bandwidth of the respective

frequency. In other words, perfect reconstruction is possible if;

(A%)-̂ > 2^^ ; (Ay)-^ > 2 ^ . ; > 22, (15)

In practice, the discrete signal is always an aliased version of the hypothetical,

continuous one. This is because the physical device that samples the continuous

signal, be it a photosensitive emulsion, a CRT camera or a CCD device, has less

resolution (spatial and temporal) of the pattern of light that ultimately comprises the

continuous signal. As a rather scholastic consideration, we can assume that the

continuous image has a spatial resolution in the order of microns (10"® metres), being

this, the minimum size that visible light can discriminate without diffracting (about 10

times the visible light's wavelength range, 4-8x10'^ m). Such resolution is well

beyond the capability of any image-capture device, including the human eye.

1.4.1. Spectrum of the interlaced video signal

The Fourier analysis can be equally applied to the interlaced video signal. However,

this time the discrete video signal will have a displaced structure in the y-t plane. It is

possible to show (Tekalp 1995) that the resulting spectrum will have a corresponding

displaced structure, as shown in figure 4. The details of these results are not included

here, but a discussion of Fourier spectra for arbitrary scanning formats can be found

in appendix A.

o - o

Figure 4. Progressive (left) and interlaced (centre) video spectra. The frame rate of the progressive
signal is equal to the field rate of the interlaced signal. Right: spectrum of a single field sequence.

In figure 4 the field rate of the interlaced signal is equal to the frame rate of the

progressive signal (see appendix A). This choice is made so that the progressive

sequence (spectrum on the left side) is the signal we wish to obtain by de-interlacing

the interlaced sequence (the spectrum on the right side).

From the figure, the non-linear nature of the de-interlacing problem can be seen. We

can see how, in the interlaced format, the repetitions of the continuous spectrum are

more closely packed than in the progressive format we wish to estimate. Therefore it

is likely that, even if the target progressive spectrum satisfies (1.5), the interlaced

spectrum might not. From the frequency domain it is easy to understand how the de-

interlacing problem is strongly ill-conditioned.

In order to obtain the desired estimate from the interlaced field, the corresponding

progressive frame should be band-limited, specifically its vertical and temporal

single-side bandwidths should be limited respectively to By < 1/2Ay and Bj <1/2A/.

In simpler words, the progressive unknown signal should not have any vertical detail

finer than two progressive, consecutive lines, and no significant time variation

between two frames, that is to say that each odd field is substantially similar to its

corresponding even field, and vice-versa. Under these conditions, perfect

reconstruction is achievable by an ideal low-pass filter in \hey-t plane. In other words,

the de-interlacing problem is linear. Unfortunately, as we have discussed already, any

reasonable video signal occupies most, if not all, of the available bandwidth, that is to

say, it has detail on the finest scale available by the scanning format. Hence linear up-

sampling will perform relatively poorly because of the constraints of Nyquist's

theorem.

1.4.2. Effect of motion on the video spectrum

Another interesting aspect of frequency analysis is the effect of motion on the video

spectrum. Suppose that there is an amount of vertical motion in the picture. For

instance, there is an object that moves vertically with velocity in a otherwise

static scene. Hence, the continuous video sequence with motion, can be

related to its static (without motion) version

(%,;/, f) = (x, y, f) * J (y - Vj,f) (16)

By performing a Fourier transform in the spatial variables, we obtain:

(1.7)

where 0^ ' "^ 0 '̂̂ ^ denote the partial Fourier transforms with respect to the spatial

variables of the moving and static sequences respectively. By transforming both sides

of (1.7) with respect to the temporal variable we finally obtain:

(1.8)

i

Vy > 0

1 a / v

\ ^ \ \ \ \ \ \ k.

Figure 5. The effect of vertical motion on the continuous signal spectrum (left) and the discrete
signal spectrum (right) The spectrum has been assumed elliptic in order t o highlight the effect of
motion.

Hence, the original static spectrum is sheered in the direction by an amount that is

linearly dependent on the value of f y , as illustrated in figure 5. Note how motion can

be another source of aliasing.

1.5. Linear interpolation and de-interlacing

The simplest way to realise an interpolation scheme is some form of linear

combination of the sampling taps. However we have seen that in general the Nyquist's

criterion is not satisfied by the video sequences both in spatial and temporal frequency

domains. Linear interpolation does not address this problem and consequently linear

filtering will only provide a simplified solution. Section 1.4 shows that in regions with

little vertical detail (i.e. where the vertical alias is negligible), spatial linear filters can

achieve a reasonably good interpolation. Conversely, for sequences with little inter-

field motion, temporal filters can again obtain a satisfactory result. In which case

linear interpolation can still play an important role in de-interlacing. Linear

interpolation will be more completely discussed in the next chapter. In this section,

we present two simple examples of the artefacts that can be generated by linear

interpolation, whenever the bandwidth requirements for successful spatial/temporal

linear interpolation are not satisfied. The demonstrations are performed separately in

space and time.

As an illustration consider one of the simplest linear filter that can be employed,

where the missing lines in the odd field are replaced by the average of the lines above

and below the line being considered. A result using this scheme is shown in figure 6,

where this simple algorithm has been applied to a 300x300-pixel test pattern. One can

see that horizontal lines become blurred and oblique lines become stepped. The

stepping of oblique lines is called jagging. The reduction of these jagging artefacts in

spatial interpolation will be a main goal of this thesis. Note that an amount of jagging

is already present in the original frame (left picture in figure 6). This is due to the low

resolution chosen. One can see how the effect is much more pronounced in the de-

interlaced frame (right picture in figure 6).

An alternative strategy is to use linear interpolation in the time domain, where the

lines in the even field of a frame are replaced by the average of the corresponding

lines of the previous and succeeding fields. Figure 7 illustrates some of the artefacts

that can be introduced by such a routine. In this simulation the amount of movement

has been purposely exaggerated, and it clearly exceeds the bandwidth limitations in

10

the temporal frequency domain. The result dramatically shows the form of artefact

generated.

Figure 6. Spatial linear interpolation and "jagging" artefacts (right). 300x300 pixel test image. Note
that the source frame (left) is already "jagged" on the oblique lines. This is due to the low resolution
of the image. One can see how the jagging is much more evident in the de-interlaced frame (right)
obtained by linearly up-sampling the even field of the source frame.

Figure 7. Non-motion compensated temporal linear interpolation, and motion artefacts (bottom).
The even lines in the top-centre frame have been replaced by the average of the even lines in the
previous frame (top-left) and the succeeding frame (top-right).

11

1.6. Non-linear interpolation and de-interlacing

An obvious step to overcome the limitations of linear interpolators is to use non-linear

techniques. The basis of the interpolation is the same, since we use the information

contained in a set of neighbouring pixels in the horizontal, vertical and possibly

temporal directions. However, in the non-linear case the interpolation function is

expressed as a non linear combination of these neighbouring pixel values (the

sampling taps).

There are at least three arguments in favour of the non-linear approach. The first is

based on simple considerations of the nature of the problem in the frequency domain.

Any linear transformation of an arbitrary signal performs a linear weighting of the

signal's spectrum. Some frequencies of the original spectrum are attenuated and some

are amplified, with the phase usually experiencing some form of distortion, typically a

phase shift in the transition bands of the spectrum. However, linear operations do not

add new frequencies to the spectrum. For instance, a low-pass signal will remain low-

pass, a band-pass signal will remain band-pass, and a high-pass signal will remain

high-pass. Aliasing conversely is a form of distortion that changes the nature of the

signal's spectrum, since it adds frequency bands that did not exist in the original

signal, e.g. mapping high frequency content into the low-frequency band, and vice-

versa. Many non-linear systems act in a similar way. A simple example is the

multiplication of a signal by a cosine of frequency /q (modulation), which transforms

low-pass signals into band-pass signals, and vice-versa. We assume that a proper non-

linear system may take into account the non-linear distortion caused by aliasing and,

once properly trained, could mitigate, if not completely reverse, it.

Another point in favour of the non-linear approach arises from geometrical

interpretations. As we will see in the next chapter, interpolation can be described as a

form of multi-dimensional mapping. Linear interpolators generate very simple

mappings, insufficient to describe the complex input-output relationships occurring in

the multi-dimensional input-output space. Non-linear techniques allow us to generate

more complex and arbitrary shapes for this mapping.

12

The third reason in favour of the non-linear approach is of a statistical nature. The

typical training procedure for a linear filter (learning-by-examples using a minimum

mean squares error criteria, chapter 2) is such that the unavoidable error between the

estimated output and the test output will be statistically orthogonal to the input. This

kind of estimate can be considered satisfactory when the distribution in the input-

output space has Gaussian statistics. This is a requirement that is not satisfied by

natural images (Petrou, Bosdogianni 1999). Non-linear techniques are able to deal

with more complex statistical relations between the error and the input by taking

account of the higher-order moments of the input distribution (Collis, 1997).

In this thesis, we will study two non-linear techniques: the Volterra series and the

Radial Basis Function Networks. Volterra series is a mathematical tool that has been

intensively studied to model non-linear systems (Schetzen, 1989). We can describe

Volterra series as a polynomial (Taylor) series with finite memory. The application of

Volterra series to de-interlacing has been studied by Collis et al. (1997), with

interesting results in terms of the output quality. Being polynomial, Volterra series

generate mappings far more complex and flexible than the linear interpolator does.

Furthermore, it has been shown that a Volterra series, trained using a learning-by-

examples procedure, is able to uncorrelate the error not only with the input, as in the

linear case, but with higher-order combinations of the input elements. In fact, the

linear filter is a special case of Volterra series, specifically a series of first order.

These properties come from the strong bond Volterra series have with Higher Order

Spectra theory (Schetzen, 1989), as we will see in chapter 2.

Radial Basis Function Networks (RBFN) (Powell, 1987) is another technique that has

been applied to a variety of non-linear problems. RBFN generate a greater range of

input-output mappings than Volterra series. Furthermore, RBFN have a strong

theoretical bond with statistical density estimation, notably with Gaussian Mixture

models (see chapter 3). The study of RBFN applied to de-interlacing will constitute

the primary subject of this work, and chapter 3 will be dedicated solely to the

description of RBFN in a more general context.

Linear filters, Volterra series and RBFN are specific examples of the more general

structure of single-layer feed-forward networks. These structures are part of an even

larger family of networks, the multi-layer feed-forward networks. Compared to the

latter, single-layer networks have distinct advantages (and disadvantages) that will be

discussed in chapter 2. A schematic of a general single-layer feed-forward network is

shown in figure 8.

1 -St network's node (Branch)

Node's weight

Input

Activation function
(Non-linear)

Output

y

M-th network's node (Branch)

Figure 8. Schematic diagram of a single-layer network.

The main disadvantage of the non-linear approach is the computational effort

required, that often makes non-linear techniques impractical. Consider a 25

frames/second, 625 lines/frame video sequence, and a horizontal resolution equal to

the vertical resolution, so that there are 625 columns per frame. One then has 25 x 625

X 625/2=4.5 X \(f missing pixels per second to estimate. Hence the computational lag

must be limited to the order of tenths of microseconds. Such time scales require the

filter to be implemented in hardware. Non-linear filters, with their relatively large

computational burden, may lead to impractical expensive hardware. Appendix B is

focused on the study of computational requirements of the two non-linear techniques

studied in this thesis.

14

1.7. Conclusions

In this chapter the de-interlacing problem has been briefly introduced, together with

the fundamental engineering problems related to it. De-interlacing is a form of

interpolation and as such, the possibility of recovering the missing information is

limited by the Nyquist's theorem. The performance of linear spatial-temporal filters is

conditioned by the frequency content of the image. Typical video signals occupy the

available bandwidth well beyond the Nyquist's limit and the up-sampling problem is

ill-posed in those regions of the video sequence where rapid variations in the vertical

direction and in time occur. This results in a series of characteristic aliasing artefacts.

An example of spatial aliasing is the "jagging" artefact, where the alternation of

blurred lines (the interpolated lines) and sharp lines (the original lines) create a

stepping effect on oblique, high contrast edges. Nevertheless, linear de-interlacing

often provides satisfactory results and in fact it is a common choice for consumer

electronics.

In order to increase the performance of linear de-interlacing, non-linear interpolation

may be attempted. Non-linear systems are capable of yielding a much richer

functional relationship between the sampled input and the target output. In particular,

three aspects of the non-linear approach are interesting in terms of de-interlacing: the

ability of generating new frequency content beyond the Nyquist's limit, the increased

arbitrariness of the multi-dimensional mapping, the superior statistical modelling of

the input-output pattern.

Possible choices for the non-linear architecture are the Volterra series and the Radial

Basis Function Networks. These two techniques belong to the larger family of single-

layer feed-forward networks, that are commonly used in signal processing and that

show interesting properties in terms of training and performance, as it will be shown

in the next chapter. A point to remember is that the increased performance given by

non-linear techniques comes with an increase in the computational complexity.

Therefore one should be careful to trade-of accuracy with computational convenience.

2.1. Introduction

In the previous chapter, we have introduced the motivation that lays behind the quest

for de-interlacing systems. De-interlacing can be described as an interpolation task,

being a form of up-sampling. In order to estimate each pixel in the missing lines that

transform a field into a frame, we try to realise a suitable function of a set of

neighbouring pixels in the corresponding known field (intra-frame de-interlacing) and

in the previous and successive known fields (inter-frame de-interlacing). Specifically

we try to realise a mapping x y{x) from a multidimensional input space of vectors

il = \xi . . .X£)Y (the vector of samples, where D is clearly the number of taps in the

sampling lattice) to a one-dimensional output space y . For colour pictures, the output

is three-dimensional, representing the three colour components. However, in the

general case the de-interlacing problem for colour pictures can be separated into three

one-dimensional output mappings. Thus, the main task of de-interlacing is to find an

appropriate function y = / (x) that realises a satisfactory estimate of the missing lines

via such a mapping. We can call this function the model of our de-interlacing system.

Unfortunately linear models for de-interlacing perform poorly, since the nature of the

de-interlacing problem is non-linear. The task of finding an appropriate non-linear

model is rather more difficult than the task of finding a linear one, for reasons that

will be discussed in more detail later. Linear models benefit from a broad collection

of analytical tools that help to identify appropriate solutions in a computationally

efficient manner. Conversely, non-linear techniques often do not benefit from an

exact solution, and usually are computationally demanding. However, the point to

remember here is that the task of finding a model for a de-interlacing system, linear or

non-linear, is the task of finding a multidimensional mapping.

In this chapter, we will now discuss the properties of a particular family of models

that can realise such mappings, namely the family of single-layer networks. Single-

layer networks can implement both linear and non-linear mappings. The principal task

16

of this thesis is to produce a successful non-linear de-interlacing system using a

particular single-layer network called the Radial Basis Function Network (RBFN).

Prior to the description of the basic theory of single-layer networks, we introduce the

concepts of parametric models, learning by examples and cost functions that form the

basis of the aforementioned theory.

2.2. Parametric models

A model is defined as parametric whenever its input-output function ;^(x) = / (x)

contains a number of adjustable parameters that change the mapping x - > j;(x). This

can be expressed as ^(x) = / (x ; 0) , where O = [^ j . . .^ ^] ^ is a vector formed

by the M parameters of the model (the reason why the first element of 0 is

represented with subscript 1 will be explained in the following sections, when the bias

term (pQ will be introduced). The determination of the best set of parameters, i.e. a set

of parameters that achieves a determinate goal, is known as parameter optimisation.

In many cases, such a problem is non-linear. Non-linear behaviour may arise from the

non-linear dependence of / (x ; 0) on 0 , or from the non-linear nature of the

particular goal we have to achieve. The latter is usually expressed in terms of a cost

fimction. By cost function we mean a function C (0) whose values are high when the

model performs poorly, and is low when the system performs well. Note that we have

expressed the cost function as dependent on a set of variables, still unspecified.

However, in a parametric model C (0) is necessarily a function of the model's

parameters 0 . Thus, the main task of determining an appropriate set 0 is that of

finding an optimal set of parameters that minimises the cost function.

In determining the appropriate model to describe a system, a possible approach is to

derive an analytical expression based on a prior knowledge or assumptions on the

system itself. This is, for instance, the case in many mechanical or electronic systems,

where we model the system in terms of masses, forces etc, or conversely resistors,

capacitors, inductors and other physical components of the system under

investigation. This particular model is often referred as transparent box since the

17

parameters and the functional structure of the model give an interpretation in terms of

the physical system.

If the information necessary to create a transparent box model is not available, an

alternative is to describe a very general parametric model with enough degrees of

freedom to generate a satisfactory input-output mapping, without a specific relation

with the physical system {black box).

2.3. Leaming-by-examples training

Regardless of the choice of the model, we have to face the task of identifying the

suitable values for the parameter set 0 . In many cases, the only information available

is that a given sequence of L inputs X = [xo.. .x^_j]^ generates a corresponding

sequence of targets T = [/q . ..ti^\f. The most reasonable way to estimate the system

is then to use a model that is able to generate an output sequence

Y(X) = [yo - = [y (^ 0)] ^ that matches (in a sense that will be

clarified later) the sequence T , once the input sequence has been fed into its input.

This procedure is often referred as learning-by-examples. We assume that the

observed input-target sequence is representative of the problem by somehow

representing all the possible input sequences. The input-target sequence

{X,T}= {x„ is called the /rammg jg/.

When the model is parametric, the training set must be used somehow to determine

the model's parameters. In other words, scope of the training procedure is to adjust

the model's parameters so that the model fits the training set in terms of the cost

function C (0) . In other words, the task of the training procedure is to find the set

* of parameters such that:

0 * = a r g j / M m [c (0 | T , X)] j (2.1)

Figure 1 shows a schematic diagram of the learning-by-examples training procedure.

The choice of the parametric model determines the residual cost C (0 *) , that is

usually not null, and thus the choice of the model is a key point of our analysis.

Cost function

C (0 | T , X)

Parameter update

Unknown system

Parametric model

Figure 1. Learning-by-examples and cost function

2.3.1. Size of the model and generalisation

As has already been discussed, the choice of an appropriate model structure is crucial

to produce a proper representation of the unknown system. In the case of a parametric

model trained using a learning-by-examples procedure, this choice can basically be

divided in two sub-problems: choice of the number of parameters in the model, and

choice of the mathematical relations that link these parameters to the model output. In

this section we will focus on the first of these two problems.

In learning-by-examples training, there is a trivial way to generate a parametric model

that exactly matches the training set: a look-up table (LUT). In simple words, a LUT

is a memory bank that associates, to any of its memory locations, a corresponding

value. In a LUT each memory location's address represents an input to the function,

and the corresponding value in the table represents the output. With such a model, the

training problem is trivial because we can store the full training set in the LUT, where

the sequence T can be viewed as the parameter of the model, and is exactly matched

19

for any input belonging to the training set. This approach leads to impractical methods

for modelling complex systems for two reasons (Girosi, Poggio 1989).

Firstly, as the number L of training patterns increases, the size of the LUT becomes

unrealistic. This is often referred as the curse of dimensionality (Bellman 1961).

Secondly, and more importantly, there is a subtle difference between exact

interpolation and learning. Both cases can be solved using a learning-by-examples

strategy; however, in the former case we want to achieve the best match possible

between the model's output Y and the system's output T. Conversely in learning we

want our model to describe the data generator that lies behind the training set (Bishop,

1995), rather than the particular, incomplete realisation of such generator given by the

training set. Hence, exact interpolation is generally not desirable, since the model

must be able to correctly estimate input-target patterns that are not included in the

training set.

Excessive accuracy in interpolation is often referred as over-fitting. A model that fits

the training set with excessive accuracy will generally fail to produce accurate

estimates of patterns not included in the training set. This unwelcomed behaviour is

amplified when the training set is affected by noise that generates incorrect patterns.

An over-fitted model will interpolate these noisy patterns and will produce a poor

performance.

In order to reduce over-fitting in parametric models, an accurate choice of the size

(number of parameters) of the model is of paramount importance. The problem of

selecting an appropriate size for a parametric model is a classic example of Occam's

razor (Domingos 1999). The principle is that we prefer simple models to more

complex models, and this preference must be traded off against the accuracy of the

model in fitting the training set. The ability of a model to predict unseen patterns is

called generalisation. Chapter 7 of this thesis will consider this problem in detail.

20

2.4. Cost functions

To operate a learning-by-examples strategy one must provide a suitable cost function.

This function must produce a small outcome when the model's output matches the

target sequence and a large outcome when it does not.

This section mainly discusses a particular kind of cost function, the Mean Squared

Error (MSB). This cost function presents some useful advantages, noticeably the fact

that it leads to simple training algorithms, and has a strong statistical background.

Some alternatives to this cost function will be presented.

From now on, the model will be considered parametric. Hence the cost function will

depend on the model's parameters. The goal of the training algorithm is to produce a

mapping with the minimum MSB (MMSB).

2.4.1. Mean Squared Error

Among different cost functions used in applications, MSB is by far one of the most

popular. Given the parametric model y (x) = / (x ; ®) , the MSB for the training set

{X,T} is given by;

C C ®) - — ^ (2.2)
^ M=0 ^ M=0

The term 1/Z is introduced in order to make meaningful comparisons between

training set of different size L. For an infinite training set (i —> oo), equation (2.2)

can be written as (Bishop, 1995):

I
lim C (0) = lim — V

(2.3)

x)dx j | j / (i ; 0) - (f |x)]^ ;7(i)(& + j " x) - (/ 1%)^];)(

21

Where (t |x^ is the conditional average of t over the set x, and /»(x) is the probability

density function of the input. The second term in the right side of (2.3) does not

depend on the parameters and can be neglected. The first term vanishes if

_y(x;0) = (/ | %) (2 4)

Hence the MMSE solution is the value 0 * that satisfies (2.4). Equation (2.4) is a key

result as it describes the optimal network mapping in terms of a conditional average of

the data, i.e. as the regression of target data t conditioned on x. This result is

illustrated graphically in figure 2 for a single dimensional case, and assuming i?(^|x)

Gaussian for simplicity.

Figure 2. MMSE estimate and conditional mean of the data.

The residual error e = e (0 *) is the second term at the right hand side of (2.3)

evaluated for 0 = 0 *, and can be written as the average of a variance function s^{x):

, .2 (x) = E\a^ (x)]= JcJ^ {x)p{x)dx (2 5)

Where cr (x) = x y - (q x) is the output variance of t conditioned on the

input X. Equations (2.4) and (2.5) are the quantities that we can determine by

22

minimising the MSB. Hence, the MMSB mapping cannot discriminate two training

sets with the same conditional mean (2.4) and conditional average variance (2.5).

Note that the input density p(x) weights both integrands on the right hand side of

(2.3). From the first term, we infer that the network function incurs little cost to

departures from the conditional average in regions where the density is small.

The key consequence is that we must consider the representativeness of the input set.

If we desire a small error in a subset Xj of the input sequence, the subset density

/ i (x | x g X i) must be reasonably high. The training must be reasonably

representative of the general, real behaviour of the input. However, we may want an

accurate model of the system for input-output patterns that rarely occur in real

situations and/or in the training set, but nevertheless are critical in terms of

performance if not described accurately. Hence, we must compensate the density

function of the training set in order to make these patterns sufficiently represented.

Different attempts have been made to compensate for poor performance over low-

density subsets, and more generally to account in the cost function features that are

insufficiently represented by the density function. An example, applied in image

processing, can be found in Tompa et a/. (2000), where density function is

compensated according to some measure of perceptual relevance, i.e. some measure

of the observer's perception. De Stefano et al. (2000) analyse a Frequency Weighted

MSB in order to emphasise the performance in the bands where the human visual

system is more sensitive.

2.4.2. Linear MM SB training

Learning-by-examples MMSE training benefits of a simple solution 0 * if the model

input-output mapping is linear, i.e. given by a weighted sum of the input vector's

elements:

D
y = ^(t> jX j + (pQ = 1L +(f)Q (2.6)

7=1

23

Such a model is usually known as Wiener filter (Oppenheim, Schafer 1974), or as

moving-average (MA) as the output is the result of a weighted average of the input

samples. The elements of the parameter vector are denoted as weights. Note that we

have introduced a constant parameter 0o, the bias term, briefly introduced in section

2.2.

Substituting (2.6) in (2.2) and neglecting the scaling factor L we obtain

c (®) = t ' l S I - i
n=0 n=0

.T (2.7)
«=o

where the bias term has been appended to the parameter (weight) vector and

consequently a unitary factor has been appended to the input vector;

(2.8)

Equation (2.7) can be expressed in a more compact form as:

c (0) = T ? ' T + @ 7 ' R 0 - 2 P (2 9)

where R is the correlation matrix of the input, and P is the input-output cross-

correlation vector:

R = E P = = X^T (2.10)
n=0 n=0

Equation (2.9) is quadratic in 0 , and its solution can be easily found solving

8 0
0 => R 0 - P = O (211)

24

Assuming R is non-singular the solution can be written as:

0 * = R-^ P (2.12)

It is equally easy to demonstrate that:

= 0 => - - j -] [: * r . %„ (2.13)

Therefore the bias accounts for the difference between the average value of the

weighted sum of the input elements and the mean value of the target t . For simplicity,

we will commonly refer to O * (rather than 0 *) implicitly assuming the presence of

the bias term.

Problems arise in solving (2.11) when R is singular, or the calculation of R " ' ill-

conditioned (i.e. the eigenvalues of R span a large dynamic range). Techniques like

singular value decomposition (SVD) and regularisation (Golub 1970) can be used to

find a suitable solution in these cases.

One property of the linear MMSE estimate that can be easily inferred from above is

the orthogonality principle, that states that the residual MMSE error g* = g (0 *) is

statistically orthogonal to the input x . It is easy to show that;

| !][,_.((& j=() (2.141)

Equation (2.14) is a statement of orthogonality for the optimal solution. The one-

dimensional space spanned by the error is orthogonal to the multi-dimensional space

spanned by the input.

25

2.4.3. MMSE and Maximum Likelihood estimate

Assuming that the target sequence is the sum of a deterministic sequence and a

zero mean Gaussian stochastic process e„ ,

it is possible to demonstrate (Van Trees 1971) that the MMSE solution O * is also the

Maximum-Likelihood (ML) solution, maximising the maximum-likelihood function:

L(0) = ; , (T | X , 0) (2.16)

Equation (2.16) corresponds to the intuitive idea of choosing the parameter # which

is most likely to give rise to the observed target, given the observed input. A more

formal discussion of the origins of the ML procedure is given by Akaike (1973).

2.4.4. Minkowskier ror

As an example of an alternative cost function, we now discuss the Minkowski-R error.

The Minkowski-^ error function gives the ML estimate for a more general

distribution of e„ compared to (2.15), given by (Bishop, 1995):

= j (2.18)

Where F is the Gamma function

(2.19)
0

26

Note that (2.17) reduces to the MSE function and (2.18) to the Gaussian distribution if

R=2. If R=l, the distribution (2.16) becomes a Laplacian distribution. In this case the

ML estimate is less sensitive to outliers, i.e. isolated small groups of inputs that

sensibly depart from the rest of the input set and could dominate the MMSE solution

by virtue of their large value. On the other hand, more accuracy on the outliers could

be achieved if R>2. The obvious drawback of the Minkowski-i? error compared to the

MMSE estimate is that it does not benefit of a simple solution like (2.12).

This section highlights three key requirements for successful learning-by-examples

training. Firstly, the training set must be sufficiently representative of the unknown

system's behaviour. This usually leads to a lower bound in the size of the training set.

Secondly, the model function / (x ; 0) must be sufficiently general to describe the

complexity of the system. Usually this determines a lower bound for the complexity

of the network. The third assumption is that we are able to achieve a reasonable

minimisation of the cost function. In other words, the cost function C (0) must be

simple enough to allow the global minimum to be found.

2.5. Single-layer networks

We now analyse a parametric model, called single-layer networks, which forms the

basis for the techniques we will use in this work. In this section we introduce some

preliminary concepts, which are generally shared by all the particular realisations of

this architecture. The general mathematical formulation of a single layer network with

Mnodes, or branches, is the expression:

M
:y(%v:) = #0 + (2 20)

y=i

The element •/2y(x„) is called the j-th node of the network, where is a

generic, possibly non-linear, node activation function —>R, and (pj is called the

weight of the node j.

27

The model expressed by (2.20) is an evident generalisation of the linear model

described in (2.6). It is therefore straightforward to compute the MMSE estimate of

the parameters

0 " (h ^ H)" H Y = R (2 21)

Where H = [h o . . . h ^ _ j] ^ , h „ = [1 /2i(x„) ... / z ^ (x „)] ^ and the matrices R and

P are analogous to those in (2.12), with H taking the role of X. The matrix

H""" = - H) is known as the Moore-Penrose pseudo-inverse of H

(Penrose, 1955), and provides a way to solve a linear system when the number of

unknowns is different from the number of equations. If M>L (under-determined

system, infinite number of solutions), (2.21) provides the solution 0 * with the

smallest norm. If M<L (over-determined system), (2.21) provides the MMSE solution.

(jk)

01

•!

- • y

Hidden layer Output layer

Input space Intermediate space Output space

Figure 3. Two-layer formalism of the single-layer network.

Single-layer networks belong to the larger family of feed-forward networks,

characterised by having no feed-back loops or lateral node connections. The single-

layer structure is depicted in figure 3.

28

One may note that in the figure we use a two-layer formalism. In literature the linear

weights are commonly considered part of the node, rather than being part of a

separate layer in series with the non-linear function, as depicted in figure 3. One

advantage of the single-layer formalism is to exploit the similarity between single

layer networks and Gaussian mixtures, described in chapter 3. In this model, the

weight j is considered as the prior probability of a class j having generated the input x,

while A (x) is the density of x, supposed to be generated by that class. Hence a

weight and its corresponding activation function are closely related and considered as

part of the same node.

Nevertheless, the two-layer formalism gives us a more precise description of the

mapping obtained. It is clear that (2.20) is the combination of a mapping

x e —> h e , typically non-linear, and a linear mapping h e > y e . It is

possible to identify an intermediate space H c R^ .

Therefore the linear weights have the status of nodes of the R ^ —> i? linear mapping.

Consequently, the non-linear layer should generate a R ^ R ^ mapping that makes

the R''^^ —> R mapping as "linearly solvable" as possible.

2.5.1. Non-linear parameters

The network described by (2.20) is usually referred as a linear-in-the-parameters

network (Duda, Hart 1973). The extension of the model to include non-linear

parameters (i.e. parameters in the non-linear activation functions) is straightforward.

In this way we add more degrees of freedom that can be used to find a suitable

solution to our problem and achieve a more satisfactory residual error in equation

(2.6).

Unfortunately, the cost we pay is that the MMSE solution is non-linear. Therefore

some form of non-linear optimisation is generally required. This leads to the problem

of finding the global minimum of a cost function that potentially contains large

number of local minima.

29

2.6. The Volterra series

The linear interpolator described by (2.6) is the simplest example of single-layer

network, where the intermediate space is equal to the input, H(X) = X . Equation

(2.6) is the discrete version of the continuous linear filter expressed by the

convolution:

y{t)= ^v{x)-x{t-T)dx (2.22)

where V(T) is the impulse response of the linear filter (assumed here to be causal).

Volterra (1959) was the first to study a powerful, non-linear extension of the

convolution integral in (2.22) by introducing a series of high-order, multi-linear

operators defined by multiple convolutions

K . / f
y{t)=- Jv'''(T)-x(r-T)£/T+ J jv''̂ \T:i,T2)-x{t-Ti)-x{t-T2)dTid-T2 +

—oo —oo —oo

(223)

-co —OQ —OO

The element is called the Volterra kernel of order p of the functional

series (2.23). Clearly the impulse response V(T) in (2.22) is the Volterra kernel of first

order. The dxscrete-timQ, finite-memory version of (2.23) is given by:

Tj=l Ti=1T2=1

•••+ I - % + "
T, =1 =1

(2.24)

Where a bias has been added in the form of a Volterra kernel of order zero, .The

functional ••• t is /"-linear, in the sense

that:

X ^ 7] ' •••
Vl Vp

(225)

Vl

And it can be demonstrated (Schetzen, 1989), by applying the commutative property

in (2.24), that the Volterra kernel is symmetric:

' i f ' . . . ! , = ' ' ^ L (r , T ,)

where perm{T],...,r p) is any possible permutation of the indexes Ti, . . . ,Tp.

The Volterra series can be regarded as Taylor series with memory. In fact, Volterra

series share the same constraints on convergence. The systems modelled by Volterra

series must yield an input-output map that is everywhere differentiable to an order of

differentiation equal to the order of the series. For this reason, Volterra series can not

be applied to systems with abrupt (i.e. discontinuous) changes in the output, e.g. bi-

stable elements. This limitation however is not critical if the model is allowed to have

a sufficient amount of smoothness in its mapping.

Volterra series have been studied in the context of High-order Spectra analysis of

non-linear systems. (Schetzen, 1980, 1981; Nikias, Petropolou, 1993, Collis, 1996).

Volterra series can exploit more complex relationships between inputs. It is possible

to show that the higher-order polynomials in (2.24) are related to the higher-order

moments of the input distribution. Higher-order analysis proves to be useful when

dealing with non-linear and non-Gaussian model identification problems. The main

condition is for the system to be stationary, so that the kernels in (2.24) do not change.

Different methods have been proposed to estimate the Volterra kernels in the

frequency domain for continuous-time systems.

Collis et al. (1997) have considered the application of Volterra series to model a de-

interlacing system. The motivation is that real images rarely possess Gaussian

statistics. The results of this method are very encouraging, since it is possible to

produce a significant increase in the performance in terms of MSB and in terms of

subjective measures. Hence we will present the application of this technique in

chapter 5, together with standard linear filtering, in order to provide a baseline

performance comparison for the main subject of this work, the application of Radial

Basis Function Networks. The two techniques will be compared in terms of

qualitative performance (interpolation error) and complexity, i.e. computational load.

Other aspects of Volterra series will be discussed in chapter 5 and in appendix B. A

more complete study of Volterra series in de-interlacing is outside the scope of this

thesis.

2.6.1. MMSE solution

In order to calculate the kernels one can exploit the single-layer structure of the

Volterra series, as shown in figure 4 for p - 3. In this context, the elements of

Volterra kernels play the role of linear weights, while the multiplicative combinations

of input elements play the role of node activation functions. Being the nodes non-

parameterised, the Volterra series is completely linear-in-the-parameters. Hence

Volterra kernels can be estimated in the MMSE sense by equation (2.21). We can

form the intermediate vector

I x j ... X ^2 ^2^3 ••• ^2^ D '

= [h(o) r h O) r h (2) r _

(2.27)

where we have divided the intermediate vector in sub-elements according to the

degree of the monomials in h.

32

first order

•^J —

second order

•^J

i ——•(^

/ I

third order

y
—

Figure 4. Single-layer representation of a third-order Volterra series.

Note how we have used the commutative property in (2.27) since the second-order

products for the input %2 starts from xf rather than • I" other words, the term

X2X\ is omitted because there is a X\X2 term that has previously been accounted for.

From (2.27), The matrix H will assume the form:

H = [ho •••

, (o) r , (.) r , (2) r ...

(2.28)

The corresponding kernel vector (i.e. weight vector 0) will be:

(2.29)

And the MMSE solution is given by (2.21). It is interesting to examine the structure

of the matrices R and P. We limit our analysis to a third-order series, but the results

can be extended to an arbitrary order. By using (2.28) we get:

H ^ H

I ' l - S " t ? ' ' ' 2 h M . h (»
«=0 «=0 «=0 «=0

s ' h ® h(»)^ Z b W h W r
«=0 K=0 «=0 «=0

^ ' (2).h(o)r T V 2) . h O y Vh(2) .h (2X Vh(2) .h(3)^ Yh^ ..
77 2^"/% "/?

f h ?) . h » f h W . h O) ^ f h (3) . h W ^ f b W . h W -
«=0 «=0 «=0 «=0

(2.30)

Given the structure of the vectors and h^"''', each element h^"''-h

in (2.27) is a matrix composed of monomials xf^ . A similar consideration can be

made on the elements of the vector P:

.(3) , w . h (^ y

P = H ^ Y
. M = 0 n=0 n=0 n=0

(231)

The structure of R and P in terms of the degree of their elements is depicted in figure

5. The elements of R can be seen as the estimates of higher-order moments of x, and

the elements of P as the estimates of higher-order joint moments of x and y . It has

been shown (Nikias, Petropolou, 1993) that if the joint density of the elements of x is

symmetric with zero mean, then the joint moments of an odd number of elements are

null. Therefore if x and y have zero-mean and symmetric joint distribution, then the

odd-degree elements in R and P will be null.

Volterra series are completely linear in the parameters. However, the number of

branches, M, is not a free parameter of the network, but is determined by the degree of

the series,/), and by the dimension of the input D. These act as non-linear parameters

that determine the complexity of the network. The number of branches in a Volterra

series increases in proportion to . This represents the main limitation to the

application of Volterra series, because the computational load required can easily

become unpractical (see table 1).

Figure 5. Degree of the elements in R (left) and P (right) for a third-order Volterra series.

input dimension D

4 6 8 12 20

1 4 6 8 12 20

=5,
2 14 27 44 90 230

3 34 73 164 454 1770

Q
4 69 199 494 1&^ 10625

5 121 451 1286 6187 53129

Table 1. Number of nodes in Volterra series.

2.6.2. Skewness and Kurtosis.

In the study of higher-order moments, particular importance is given to the third and

fourth-order central moments, 1I3 = and 1X4 = £'[(x-i?[x])^] . Two

derived quantities are the skewness 1x3/0"^ and kiirtosis . From the previous

discussion, is clear that a symmetric distribution has zero skewness. Moreover, for a

scalar Gaussian variable it can be shown that the kurtosis is equal to 3 (Nikias,

Petropolou, 1993). Hence these two quantities assume an importance as indicators of

non-Gaussianity. In figure 6, examples of probability density functions are shown,

with non-zero skewnesses, and with kurtoses different from 3.

35

kurtosis < 3
(lepto-kurtic) '

skewness < 0 skewness > 0

A
kurtosis>3 \

(platy-kurtic),' / , \ '

Figure 6. Examples of skewed and kurtic density functions (dashed line), compared to Gaussian
functions (solid line).

2.7. Radial Basis Function Networks

The main task of this thesis is the study of a particular single-layer network called

Radial Basis Function Network (RBFN) (Powell, 1987; Broomhead, Lowe 1988).

RBFNs are able to generate arbitrary multi-dimensional mappings, and have a strong

statistical background. RBFNs will be discussed in depth in the next chapter.

Many works illustrate the application of RBFN techniques to image processing.

Examples are given by Sherstinsky and Picard (1992), Rosenblum et al. (1994), Arad

and Reisfeld (1995), Howell and Buxton (1995), Kassaam and Cha (1996), Gutta and

Wechsler (1996).

2.8. Multi-layer networks

In the previous sections we have studied the main properties of single-layer networks.

In order to achieve a better understanding of these structures, in this section we will

briefly discuss multi-layer networks. A multi-layer network with p layers is a

structure described by the equation

M,
(p)

7^=0 J p-i

M,

Z A), +
7i=o

.(1)1
j\ j\

(2.32)

/ y

36

Note that in (2.32) the activation functions are fed with a linear combination of the

input. This linear operation is part of the activation function and it is different for each

node. It is not be considered as a layer, but rather as part of the R mapping

performed by each h j . A common choice for the non-linear activation functions is

often the sigmoidal function

A(r) = : ; : (2.33)
1 + expy- <y • r)

If (T —> oo, equation (2.29) becomes the threshold activation function

h^F^(r) = ̂
1 r > 0

(2.34)
0 r <0

The most studied class of multi-layer network is the two-layer network.

Kolmogorov's theorem (Kolmogorov, 1957; Lorentz, 1976) states that a network with

two layers of univariate non-linear activation functions can exactly interpolate any

multi-variate continuous function. Unfortunately, it has been also shown that the

activation functions are highly non-smooth (Vitushkin, Henkin 1977), and as complex

as the original functions in terms of computational complexity.

However, multi-layer networks prove to be effective in many applications, especially

in classification and decision problems. These networks typically require a significant

amount of non-linear training in order to find the set of weights , the so-called

backprogagation algorithm (Rumelhart et al, 1986) is used to relate the output error

to the different layers of weights. Multi-layer networks are not the subject of this

thesis, so we will not continue with their description.

37

2.9. Conclusions

This chapter has presented the general issues involved in the design of an

interpolation system based on the single-layer feed-forward architecture. The

principle of training a flexible (i.e. parametrised) system in order to approximate an

observed input-output set (learning by examples) has been explained in its most

relevant aspects.

Firstly, it has been shown how the complexity of the model is related to the size of the

training set. As the latter increases, more complexity is in principle required to

account for the new information available. However this approach not only leads to

unpractical solutions, but it also fails one basic goal of a learning algorithm, which is

the ability to predict patterns not seen during the training process. This ability is

usually referred as generalisation. Chapter 7 will examine this issue in much more

detail.

An important problem to tackle is the choice of the cost function that measures the

performance of the model. An analysis has been carried on a particular cost function,

the minimum mean square error (MSE). This function is a popular choice because it

usually leads to a closed solution for the optimal parameters. This is particularly true

for the linear weights of a single-layer network trained in the MMSE sense. However,

other choices are available, that might better exploit the peculiar characteristics of the

system at the price of a more expensive training.

The choice of the functional mapping yield by the network is fundamental in order to

model the complexity of the system with the minimum computational cost. More

importantly it is necessary to avoid excessive specialisation on the particular training

set, in order to produce a general result. As the complexity of the model increases, it

is easier for the training algorithm to over-fit the data set and reduce the generality of

the mapping.

Volterra series is an intuitive extension of the linear model and, although not the main

focus of this thesis, a general survey is presented in this chapter. By introducing

higher-order monomial terms it is possible to account for more complex dependencies

between the input pixels. Chapter 5 will show how this richer set of relationships will

lead to the expected performance gains. The degree of the series and the number of

taps in the sampling lattice determine the non-linear structure of the network.

Therefore Volterra series are completely linear in the parameters and MMSE training

leads to a closed solution for the optimal parameters. The major drawback of Volterra

series is that seeking for more complexity by increasing the sampling aperture or the

degree the series leads to unpractical computational costs. This is particularly the case

when modelling steep variations in the mapping.

Radial Basis Function Networks represent the main focus of this thesis and the next

chapter will be dedicated to the subject. Multi-layer networks are briefly introduced

for the sole purpose of a better understanding of the single-layer architecture.

However their application to the de-interlacing problem is not considered in this

thesis.

3. RADIAL BASIS FUNCTION NETWORKS

3.1. Introduction

In the previous chapter we have described the main features of a family of techniques

known as single-layer networks. We have seen how linear and polynomial series can

be modelled as particular cases of this structure. In this chapter we discuss a single-

layer architecture where each node's activation function is a function of the Euclidean

distance between the input vector and a prototype vector called the centre. Because of

the radial symmetry of the distance measure in the input space, these networks are

called Radial Basis Function Networks (RBFN) (Powell, 1987; Broomhead, Lowe

1988). RBFN are able to create arbitrary mappings by a superposition of these radial

functions. The basic philosophy behind this technique is that each node acts in a local

fashion, i.e. deals with a particular zone of the input space. The centre of symmetry of

each node's activation function defines the middle of this zone.

Like linear filters and Volterra series, RBFN form a unifying link between different

concepts such as interpolation, regularisation and density estimation. The

consequence of such an interaction is that we can devise efficient training procedures

that draw their justification from different theoretical backgrounds. RBFN are

different from linear filters and Volterra series in that centres act as non-linear

parameters.

One basic training principle is that parameters governing inner units can be trained

using either supervised or unsupervised procedures (i.e., using the input set X

respectively with or without an association with a corresponding target set T).

Unsupervised training uses the non-linear parameters to estimate the input

distribution, leaving the linear parameters to map the input-output dynamics.

Supervised training uses both non-linear and linear parameters to estimate the

mapping. We will investigate this point shortly. Many works illustrate the application

of RBFN techniques in non-linear system identification and in image processing.

Examples are given by Chen et al, (1990), Sherstinsky and Picard (1992), Rosenblum

40

et al. (1994), Arad and Reisfeld (1995), Howell and Buxton (1995), Kassaam and Cha

(1996), Gutta and Wechsler (1996).

3.2. RBFN Architecture

The general form of a single-output RBFN is (Broomhead, Lowe 1988):

V = 1

The first function applied to the input is the Euclidean distance r j = ||x„ -Cy || of the

current input x„ from a vector c j e called the y-th centre of the RBFN. The

resulting value will be passed to the function h{rj ;a j) \ —> i?. The support of h

in is controlled by the width parameter a j. Note that the presence of this

parameter is not necessary to identify a structure as RBFN. The important point is that

each node realises a mapping R^ R that has radial support in R^. The single-

layer structure of the network is evident.

3.3. Exact interpolation

Historically, Radial Basis Function methods originated as methods to perform exact

interpolation of a multi-dimensional function (Powell, 1987). The exact interpolation

problem requires each multi-dimensional input to be exactly mapped into the

corresponding target. Consider a training set of M input-output patterns. Our goal is to

find a function y = / (x) such that

zz./tKy)==f^ , (3.2)

The Radial Basis Function approach introduces a set of M basis functions, one for

each data point, which take the form of A(|j i - i y | |) where /?(r), r = || x - x y | is

41

some form of non-linear function which will be discussed shortly. The output

mapping is given by a weighted sum of these basis functions

jy(:%)== I II) (3.3)
y=i

Clearly, the interpolating function must be sufficiently smooth in order to generate a

realistic map, that correctly estimates the output corresponding to inputs outside the

training set. For example the activation function A (| | x - x y ||)= 5 (| x - x y ||)

achieves perfect interpolation in Xy, but is null elsewhere. Using the training set

{xy , t j } it is possible to write equation (3.3) in matrix form;

H<D = Y (3.4)

where H is a square matrix such that Hy = /z(|| x,- - Xj ||). The system (3.4) is easily

solved;

<D = If (3.5)

provided H is invertible. It has been shown (Schoenberg, 1938; Micchelli, 1986) that

for a large class of functions h the matrix H is invertible. Examples of this class are

the Gaussian function

h{r;o) = e x p { ^ I (3 . 6 a)

the multi-quadratic function

h { r ; (j) - ^ r ^ +0'^ (3.6b)

42

and the Hnear function

h{r-,a) = G-r (3.6c)

It is important to notice that these are sufficient conditions for the invertibility of H.

For instance, the popular thin plate spline function (Powell 1987)

h{r) = r^ln{r) (3.6d)

does not satisfy Micchelli's conditions (Poggio, Girosi 1989). Nevertheless its

effectiveness has been demonstrated in many applications. It has been shown (Powell,

1987) that in the context of exact interpolation the exact analytical expression for h is

not critical. This empirical statement eases the problem of finding the optimal non-

linear parameter set. In the experiments however, it will be shown that this

assumption must be considered with great care, since it will be shown to be only valid

when the number M of nodes is high. Furthermore, it will be shown that the width

parameter has a significant effect on the resulting error. As a final remark, note that in

the context of exact interpolation the centres are not considered as parameters, since

they are determined once and for all by the training set. Furthermore, in the

Schoenberg's solution for the invertibility problem, the activation functions shown in

equations (3.6) are non-parametric, i.e. without a width parameter. Hence, in their

original formulation, RBFN are purely linear in the parameters.

In this work we will focus on the Gaussian function (3.6a) (Gaussian RBFN,

GRBFN). This function presents, together with an intuitive localisation property,

some interesting analytical properties and an immediate link with the theory of

density estimation using Gaussian Mixtures (Titterington et a!., 1985). These

properties will be discussed later in this chapter.

43

3.4. Radial Basis Function Networks

The Radial Basis Function interpolator suffers from a number of serious limitations.

One major drawback is the number of basis functions required, which is given by the

number of input-output patterns. This condition often leads to impracticably large

networks.

Another limitation, possibly more important, is that exact interpolation gives very

poor generalisation. In other words, a network built to exactly interpolate a specific

pattern generally exhibits a severe oscillating behaviour away from the interpolated

points, especially in presence of noisy data (overfitting). It is important to remember

that we want to generate a model able to describe the general behaviour of the data

rather than an exact match of the training set. It has already been discussed the need

for a smooth interpolation of data, possibly loosing the exact interpolation constraints.

By introducing a number of modifications to the exact interpolation procedure we

obtain the Radial Basis Function Network model (Broomhead and Lowe, 1988;

Moody and Darken, 1989). These modifications are:

The number M of basis functions is commonly much smaller than the number of

training patterns L.

The centres for the basis functions are no longer constrained to be picked from the

data, but can be moved in the input space during the training process.

A bias parameter is introduced to account for the difference between the average

value of basis functions over the input set and the average value of the output.

The aim is to yield a smooth interpolation with the number of basis functions

determined by the complexity of the mapping rather than by the size of the training

set. It has been shown that RBFN is capable of universal approximation (Girosi and

Poggio, 1989b; Hartman et al. 1990); i.e. a RBFN with a suitable number of basis

function can approximate any mapping. Clearly, the promotion of the centres to the

44

rank of free parameters raises the problem of finding their optimal values. Like width

parameters, the problem of finding optimal centres is non-linear.

3.5. Extensions of the RBFN model

The model proposed in (3.1), with Gaussian basis functions, can be extended to allow

generalised covariance matrices Zy (Musavi et al, 1992) for each basis function j

(Multi-variate GRBFN).

K4 r 1
(i - C y)] (3.7)

7=1

Where Ay = (x - C y (x - C y) is called the Mahalanobis distance (squared)

between x and c j . The immediate advantage of multivariate Gaussians is that they

have a more general (elliptical) support in the input space, possibly requiring fewer

basis functions than the circular case. Obviously, this approach leads to a more

complicated, and possibly more costly, architecture, as the number of parameters is

increased. Examples of multivariate GRBFN can be found in Musavi et al. (1992),

Kassaam and Cha (1993).

In a Hybrid GRBFN (Kassaam and Cha 1993) an explicit linear path is added in

parallel to the GRBFN to give:

M r -j

} ' (i) = w ^ x + Y ^ ^ g : ^ [- (i - C y) ^ 2 : y (x - c ^) j (3.8)
j=\

where w is a vector of linear weights. This model is very important in terms of

network efficiency vs. complexity (i.e. size), whenever the interpolation problem can

be divided into a linear and non-linear part. It has also been suggested (Girosi and

Poggio, 1990) that convergence of non-linear methods is improved by the addition of

a linear path.

45

Other extensions found in literature are the normalised GRBFN (Kassaam and Cha

1993^

^ ^ ^ (3 9)

k=\

and the connectionist normalised local spline (CNLS) (Jones et.al. 1990):

M
y =1

e % p [- (x - c ^)]
A=l

Where Gy is an additional vector of parameters. The terms G y (x - C y)^, coupled

with normalisation, provide a means to utilise information on the gradient of the

desired function in proximity of each centre. This extension will be discussed shortly

in the context of Gaussian Mixtures models. Clearly the models (3.8), (3.9) and (3.10)

can be also derived for the mono-variate model (3.1).

In Girosi and Poggio (1989), RBFN are studied as part of a more complex model

given by:

i=\ 5=1

where (x) = 1...5'} is a basis of the space of polynomials

^ with degree at most k-1. The model (3.10) is a polynomial generalisation of

the hybrid model (3.8).

46

3.6. Training of RBFN

A key aspect of RBFN training is the difference between linear and non-linear

parameters. The theoretical link between RBFN and density estimation (section 3.7),

together with the space mapping nature of the network suggests that the centres could

be trained with an unsupervised algorithm (Musavi et ai, 1992; Bishop, 1995; Fung,

et al, 1996). The goal of this phase should be some form of density mapping of the

input space, without considering the relationship with the target data (unsupervised

training). In other words, centres should be placed in a way to resemble the

distribution of the inputs in the input space, regardless the associated dynamics of the

target data. The second (linear) layer is successively trained with supervised linear

techniques (MMSE estimate) to match the estimated input distribution with the target

data. However, classic supervised optimisation methods like simplex or derivative-

based algorithms work equally well.

Given a training set {X,T} of L examples and M basis functions, it is possible to

derive a MMSE solution for 0 from (3.4)

<D* = H^T7 (3.12)

where is the pseudo-inverse of H introduced in section 2.5. The problem remains

to find the MMSE solution for H, i.e. to find a good minimiser for first layer's free

parameters.

If we consider the training of a Gaussian RBFN, each node of the first layer has two

parameters, the centre and width. The simplest approach is to select the M centres

from a uniform sampling of the input space. Clearly the idea is to make a "copy" of

the input distribution, and as such is an unsupervised approach. The assumption that a

random sampling of the input set generates a faithful, reduced copy of the input's

distribution is generally correct, if a large number of centres is chosen. However, this

approach may lead to impractical, large networks.

47

In general, RBFN are affected by the so-called ''curse of dimensionality" from the

very nature of the way they create maps. This problem is particularly severe when

noisy patterns are presented to the network. These inputs obviously increase the

dimensionality of the problem, but in fact represent a nuisance factor in determining

the intrinsic dimensionality of the model.

It has been shown (Barron, 1993) that the residual MSE falls as , irrespective of

the dimensionality D of the input space. Conversely, a polynomial model with M

coefficients generally decays as . Thus RBFN offer an advantage whenever

we deal with high dimensional problems. The number of nodes can be reduced when

the basis functions include a covariance matrix E . However, this significantly

increases the number of parameters required to define a node.

Another difficulty arises from the task of choosing widths G j . In principle, we

require the width parameter to create a "smooth" mapping with high accuracy.

Intuitively, large values of a j (broad Gaussians) make the mapping very smooth.

Conversely, small values of a j (narrow Gaussians) are able to match the "fine

detail" in the output dynamics.

The problem of determining optimal widths is in principle non-linear. However, to

trade-off narrow Gaussians against broad Gaussians, we can consider some measure

of input space density around each centre c j . The approach developed in this work is

to calculate the mean distance 5 j of the other centres from c j , and determine <j j

ensuring that the Gaussian function h j (r) has a pre-determined value at the mean

distance S j. This pre-determined value controls the trade off between smoothness

and accuracy. A similar technique has been applied to multivariate Gaussians by

Musavi et al, (1992). This approach will be more completely described in chapter 6.

It will be also shown that the use of hybrid GRBFNs simplifies the problem of

determining suitable width parameters.

48

A more general approach necessarily involves some form of non-linear optimisation

based on iterative search techniques. Fletcher (1987) gives a comprehensive review of

non-linear minimisation techniques. Nelder and Mead (1965) proposed an

optimisation algorithm based on modified simplex technique. This algorithm is more

completely discussed in appendix C and it will be applied in chapter 6.

3.7. GRBFN and Gaussian Mixtures

RBFN have a very strong bond with the field of density estimation. One density

model, the mixture distribution (Titterington et a/.,1985; McLahan and Basford, 1988)

makes the assumption that a stochastic process is the ensemble of M stochastic

processes whose distributions have a simple parametrised functional form that is

localised in space.

In terms of density function, we can then write our global function ^(x) as a linear

combination of class conditional densities J3(x | j)

p{j) is the prior probability of class j. These priors satisfy the constraints

= 1 (3.14a)
7=1

0 1 (S-l^lb)

Using Bayes's theorem, we can determine the posterior probability of component j

having generated x

(3.15)

These posteriors, as functions of j, are the likehhood function of class j given the

observed data x. The Gaussian mixture model is a mixture distribution with Gaussian

class conditional densities

/)(7) = ^) i (3.16)

(2%) I

Maximum Likelihood methods like Expectation-maximisation (EM) algorithm

(Dempster et. al, 1997) have been applied to optimise Gaussian mixtures. The EM

algorithm is an iterative parameter updating procedure that combines Bayes's theorem

together with gradient calculation to compute the maximum likelihood estimate of the

parameters given the current training input and the previous parameter estimates. A

review is given by Redner and Walker (1994).

The formal similarity between Gaussian mixtures and GRBFN is evident. One should

note that Gaussian mixtures only model the input distribution. There is no link to the

output. In fact, the formal equivalence between the prior p{j) and the (pj parameter

in RBFN is misleading. Priors p{j) model the relative influence of different classes

in order to describe a density function of a variable x in . In RBFN (pj models the

relative influence of different nodes in order to interpolate a function ^ R . An

example of this difference is depicted in figure 1 for the 7-dimensional case.

Figure 1. Gaussian Mixtures model the density function (dashed line) of the unlabeled data (white
dots on the axis). RBFN mapping (solid line) attempts to interpolate the targets (black dots)
associated with the data. In the example the target function is greater on the left side of the axis, while
the input density is greater on the right side of the axis.

50

A possible solution is to discard the priors and calculate ^ with standard linear

methods. A more generalised approach is given by the theory of probabilistic neural

networks, PNN (Perlovsky and McManus, 1991; Streit and Luginbuhl, 1994). An

intersting derivation for a MMSE interpolator based on PNN is given by Cha and

Kassaam (1995).

They model both input and output as realisations of two correlated processes X and Y

described by a mixture of M Gaussian vectors = [x ^ Y j \ in . The prior of

each population j is p{j) - Xj, whilst its mean and covariance matrix are given by:

(c. \

nij =
W j

V ^ y

^7
J-^J (3.17)

Where Cy =£'[Xy], Wj =£'[Yy], and:

^y. -E

x,.x^ -c.cr
J J J J J

Y y V T l-w?
J J J J

= .Efx,.Y
L J

(3Ji8)

; y J y ;

From these assumptions Cha and Kassaam demonstrate that the MMSE estimate of}/

is given by:

M r

7=1'- ^

(3.19)

A. gay ^ (x - c ,) ^ Z 1 (% - c ,)

M

1 4
k=\ ^k

J_
T . - i r (^ - c * Y Z (%-c&)

2 ^k

which has the formal structure of a CNLS. It is also suggested that the EM algorithm

can be used to train this network.

3.8. GRBFN and Steepest Descent techniques

GRBFN can be trained using classic line-search non-linear optimisation methods

based on first or second derivatives. Given the MSE expression:

L—\ L—\

n=Q n=0

M
|2 \

(3.20)

it is straightforward to calculate the partial derivatives:

BC X„ - Cj

o\
(3.21a)

a c

a c ,

L-\ - C /)

«=0
-gjicp

| Z n - C ;

(T?

ii2 A

(3.21b)

j n=0
-23%)

I H 2 ^

(3.21c)

52

Analogous expressions can be obtained for second partial derivatives and the Hessian

matrix used in Newton-like methods (Fletcher, 1987). Notice that given two generic

parameters, a , , f i j , belonging to two different bases i,j

0 f ; / ; (32%
dUj dp

3.9. RBFN and Regularisation theory

RBFN possess a strong bound with the theory of regularisation (Tikhonov, 1963;

Tikhonov, Arsenin, 1977; Morozov, 1984; Bertero, 1986; Poggio, Girosi, 1989;

Girosi et al, 1995). Regularisation is a way to control the smoothness of a mapping

introducing terms in the cost function that penalise non-smooth maps. By doing so,

we make sure that the mapping does not overfit the data, and has a degree of

smoothness to deal with patterns that have not been included in the training set. Hence

regularisation can be also viewed as a generalisation technique. A regularised MMSE

training attempts to minimise the quantity

L—\
c = (3J3)

«=0

where Q is the regularisation term that is assumed to increase as the mapping overfits

the data, and v is called the regularisation parameter. An example of regulariser for a

one input, one output system is given by the class of Tikhonov regularisers (Tikhonov

and Arsenin, 1977):

R b f

' r = 0 a

(124)

/

Without discussing the details of the formulation, it is clear that the regularisation

term is inversely proportional to the smoothness of the mapping, since the derivatives

of j (x) will increase as the mapping becomes less smooth.

53

Girosi and Poggio (1989) proposed a regularised cost function that assumes the

general form

^ = (3.25)

where Q is some differential operator. Non-smooth mappings will give large values of

|i2[j^(x)]| and hence will be penalised. This approach leads to a more general

network mapping given by:

/»
}<][)== ' (Zlll % |) (3.26)

7=1

Where G is the Green's function of the operator QQ and is defined as:

g { g [G (i , /)] } = g (x - /) (3.27)

Q is the adjoint differential operator to Q. If Q is rotational ly invariant, then the

Green's functions depend only on || x - x y ||, and so they are radial functions. If the

differential operator Q is given by:

/ = 0 # 2 ' '

where = (v ^ y , = v (v ^ J with V and denoting the gradient and

Laplacian respectively, then it is proved (Weiss, 1987; Yuille and Grzywacz, 1988;

Girosi and Poggio 1989) that the Green's function is a Gaussian with width a .

54

Bishop (1991b) gives another example of a regularisation term;

«=0 ;=1 dX;
(3.29)

which penalises mappings with large curvature. The regularised MMSE solution 0 *

can be found solving the system:

M 0 = H ^ T (3.30)

where

L-l
M = Z

n=0

D

9%?
(331)

One of the simplest forms of regulariser is the weight decay regulariser (Hinton, 1987;

Bishop, 1995)

M

i=\
0 ^ 0 (3.32)

The intuitive idea is that overfitted mappings usually yield large weights, while

smooth mappings yield smaller weights. This technique will be more completely

investigated in chapter 7.

3.10. Conclusions

This chapter illustrates the basic principles and training techniques of RBFN.

Originally developed in the context of exact interpolation, RBFN are able to generate

a smooth interpolation of a set of scattered input-output patterns, under a reasonable

set of conditions. The main advantage of RBFN is that it is possible to devise simple

training strategies for the network parameters. In theory RBFN require the

determination of a set of non-linear parameters. However the principle that the node's

activation function is "localised" on an area of the input space determined by the

55

centre allows one to devise simple training strategies that overcome the necessity of

non-linear training. These linear training strategies produce satisfactory results if a

sufficiently high number of centres (i.e. nodes) is allowed. More accurate results can

be obtained for smaller networks if non-linear techniques are adopted.

The basic RBFN architecture can be easily extended to provide more efficient

mappings in terms of the number of centres employed. An example is the hybrid

architecture that implements an explicit linear path in the RBFN.

RBFN have two interesting theoretical connections. The first is with the theory of

statistical density estimation, specifically with the Gaussian Mixtures model. It is

important to notice that density estimation and functional approximation are in

principle two different goals. However by considering the joint densities of the input-

output pattern it is possible to put RBFN and GM into a single training framework as

illustrated in section 3.7.

Another important point in favour of RBFN comes from the theory of regularisation.

This has been developed as a general methodology for approximation in order to

ensure a smooth approximating function. This goal is achieved by including

regularisation terms in the error function that penalise non-smooth mappings. It is

possible to show that Gaussian RBFN satisfy one possible choice for the

regularisation function. Other interesting aspects of RBFN with regards to the

regularisation theory will be illustrated in chapter 7, in the context of generalisation.

56

4. ORTHOGONAL LEAST SQUARES REDUCTION

4.1. Introduction

In chapter 2, we have discussed the necessity of finding suitable techniques in order to

determine the optimal size of a network (number of nodes). Clearly, the optimal

number of nodes is a trade-off between the accuracy of the solution, and the

computational requirements. An accurate match to the training pattern is generally

obtained at the cost of a large network. Conversely a smaller network, which may

satisfy practical constraints, will realise a poorer fit of the data. One should remember

that, aside computational considerations, there are two other main reasons to keep the

network size small. Firstly, noisy data require large networks, in order to match the

random fluctuations of the training set's dynamics. Although it may show higher

MSE, in this case a smaller network might be a better choice, since the lower MSE of

a larger network is a consequence of a better match to the noise fluctuations. It can be

assumed that a smaller network, properly trained, shows an higher resilience to noisy

training patterns. The second reason regards the generalisation ability of the network,

i.e. its ability to estimate the correct output when new inputs, not included in the

training set, are presented at its input. A large network may easily become too

specialised and loose its ability to represent the general characteristics of the signal

rather than the characteristics of the particular realisation given by the training set.

One possible strategy is to select an initially large set of nodes related to the training

set (e.g. centres selected from the input set in a RBFN), and successively reduce this

large number using a pruning algorithm. An alternative strategy is to start with a

relatively small number of nodes, and successively add nodes according to some

growing strategy. In this chapter, we will discuss a particular pruning technique,

known as Orthogonal Least Squares algorithm, OLS (Chen et al, 1989, 1991). This

technique, applied to single-layer networks optimised in the MMSE sense, reduces the

dimensionality of the R mapping in the linear layer and produces a

corresponding reduction in the number of nodes.

57

4.2. Pruning algorithms

The input sequence of D-dimensional vectors x„ is mapped by the non-linear layer

into the sequence of M-dimensional vectors for

n = Q...L-\. The sequence h„ is linearly mapped into the output sequence

y = 0 ^ h „ . l t i s realistic to assume that a large network always possesses a margin

of redundancy in this mapping, and hence it is possible to find an optimal subset of

M' nodes, M' < M, such that the performance using the mapping R'^ —>72 is

relatively unaffected. In theory, the problem of finding a subset of nodes from an

initially large population is difficult, since it requires the investigation of all possible

combinations of M' nodes. A sub-optimal reduction may be obtained considering

nodes individually, and at each step selecting the best node according to its

contribution to the performance. In this way, the nodes are "ranked" according to their

individual contributions with the lower rank nodes being removed to achieve the

desired network size. This technique, referred as forward selection, it is sub-optimal

in the sense that a group of two or more given nodes, whose combined contribution is

large, might individually be ranked poorly with other nodes performing better than

each single node in the group.

Such a ranking strategy is commonly referred to as saliency of weights (Bishop,

1995). After an initial training, the network is examined to assess the relative

importance (saliency) of the weights. Typically some further training is required, and

the procedure of training and pruning may be repeated for several cycles. There are

various choices that can be made concerning the criterion used to assess the saliency.

The simplest criterion is that smaller weights have smaller saliency, and therefore

should be removed first. However, especially in non-linear networks, different nodes

could have very different dynamic range, therefore the value of the weight might not

reflect the saliency of the node.

A more principled approach is to consider the contribution of each node in the

reduction of the cost function. Such an approach considers the change in the cost

function due to small variations of the weights. The variation of the cost function C

58

due to the weight vector's variation 0 + 53>, truncated at the second order, is given

by:

M •p.f M M
(4.i)

Where Hy are the elements of the Hessian matrix

If the training process has converged, the first term in (4.1) vanishes. Hence the

influence of each weight (pj is determined by the /-th row of the Hessian matrix (4.2).

Le Cun et al. (1990) assume that the non-diagonal elements of the Hessian are null,

and develop a pruning algorithm termed optimal brain damage. A technique that

considers a non-diagonal Hessian matrix, termed the optimal brain surgeon, has been

introduced by Hassibi and Stork (1993).

If the cost function is the MSE, the function C (0) is quadratic and (4.1) assumes a

very simple form. In section 4.3 we will see that the contribution of the node (i.e.

weight) to the minimisation of the MSE is given by its "self-contribution",

corresponding to the diagonal elements of the Hessian matrix, and by its interaction

with other nodes ("cross-contribution") corresponding to the non-diagonal elements.

Both these factors should be taken into account if one is to consider the full effect of a

node removal. In section 4.3 we will see how in OLS the orthogonalisation phase,

based on the Gram-Schmidt algorithm, allows one to separate the two contributions,

and plays a crucial role in the process of determining the real importance of each

node.

59

4.3. MSE and orthogonality

The MMSE solution for the weight vector 0 is given by (2.21). The problem

addressed by a pruning algorithm is to decide which of the terms hj{-) in (2.20) can

be safely discarded with the minimum degradation of the MMSE. We denote the /-th

column P; = {hi (XQ) -Ay (x^ - i)Y of the intermediate space H the /-th regressor

of the regression represented by equation (2.20). The regressor py is a vector in .

Given the desired output (target) sequence T, it is easy to show that the contribution

of the /-th regressor to the reduction of the MSE is proportional to a quantity called

Error Reduction Ratio (Chen et al, 1989):

V

P f P," + P ; P ;
J^i

Note that the summation in (4.3) is a measure of the cross-correlation of the regressor

/ with all the other regressors. Hence, if we discard p,-, we increase the MSE by the

"self-contribution" (given by but also by the "cross-contribution"

(j)j (pi p j p / - Hence, we also decrease the error reduction ratio of all the other

regressors. Furthermore, the weight depends on the combined effect of all the

regressors with the target sequence.

Clearly, the problem of determining the best regressor, at each step of the ranking

procedure, is not separable unless the cross-correlation terms is removed. We can

transform the intermediate space H into another space W with the same span as H,

where W describes a new set of M regressors w,- = [w/o •••W/(/,-i)] ^ , / = 1. . .M

that satisfy an orthogonality condition, i.e. w j w , =0,\/ i^ y . I n this case the cross-

contributions in (4.3) vanish and the saliency of w,- does not depend on its interaction

with the other regressors.

60

Thus it is necessary to devise a procedure that orthogonalises the regressors p, in

. The well known Gram-Schmidt orthogonalisation algorithm, in its classical form

(CGS) or in its modified form (MGS) (Chen et al, 1989), provides an appropriate tool

for this orthogonalisation. The MGS possesses superior numerical properties relative

to CGS. The inclusion of a saliency criterion based on the error reduction ratio

computed in terms of orthogonalised regressors forms the Orthogonal Least Squares

Learning algorithm.

4.4. Orthogonal Least Squares Learning Algorithm

Orthogonal Least Squares Learning algorithm (Chen et al, 1989, 1991) is an effective

technique to reduce the number of nodes in a linear-in-the-parameters network (like

single-layer networks) by means of a Gram-Schmidt orthogonalisation, coupled with

a saliency criterion that finds the optimal regressor at each step of the

orthogonalisation procedure. This criterion used is to choose the orthogonal regressor

at step k with the highest error reduction ratio (4.3), once the cross-contribution has

been eliminated, and use this regressor as the A;-th basis of the representation. We now

describe the algorithm using the CGS algorithm;

1) At the first step, for each / = 1.. . M , we compute the regressor's gain:

where = p / . Then we compute the error reduction ratio:

(4.5)
' T ^ T

61

and determine the first orthogonal basis by choosing the index /j that

maximises err ,•

: ii =argYnax{err j)\,i = \...M (4.6)

Let us consider equations (4.5) and (4.6) in more detail. Each regressor p,- is

considered as if it was the only element in the regression series. In other words, at

the first step the algorithm selects the best single regressor that approximates the

desired target signal T. The regressor gain (4.4) the MMSE solution (weight) for a

network made of a single node.

2) At the k-th step, where k>2, for i = \...M, / € {/j ...i }, Z] <

compute:

a (4/7a)

==1P; TV; (4 7b)
j

These equations have a simple interpretation. Equation (4.7b) orthogonalises each

remaining candidate p,- / = 1 . . .M, f with respect to the set of

orthogonal regressors already found, w, - - w , . To obtain this orthogonal

vector, the projection of p/ over , is equal to Wy , and is

subtracted from the non-orthogonal regressor p , . Equation (4.7a) is an ancillary

equation that calculates the projection of p,- over Wy (scalar product, divided by

the squared norm of w^).

62

The k-ih orthogonal regressor will be chosen using the following equation:

err
T ^ T

(4.8a)

where

g (4jb)

And by substituting (4.8b) in (4.8a) we can express the error reduction ratio in

terms of the coherence function:

T ^ w
0L8c)

We can either stop the algorithm when we get the required number of regressors (i.e.

nodes) or alternatively when we get a satisfactory MSE (compared with the MSE

obtained using the original full set of regressors).

It can be easily shown that the orthogonalised problem corresponds to a MSE

equation where the cross-correlation matrix W^W is diagonal. Furthermore, the

columns of H (the original regressor set) will be related to the columns of W by an

upper triangular matrix;

H = W A = W

1

0
(%]2

0 0 1

(4.9)

Equation (4.9) is the key to obtain the desired reduction, since the reduced orthogonal

set W' with M' <M corresponds to an equally reduced, non-orthogonal set H

63

A relation similar to (4.9) may be obtained, that relates the MMSE weights (pj of the

non-orthogonal set to the weights g j , through the matrix A. Alternatively, one may

choose to recalculate the weights of the reduced network using equation (2.21).

The previous formulation of the OLS algorithm is based on the classical form of the

Gram-Schmidt algorithm. In this formulation, at each step k the remaining regressors

are orthogonalised with respect to the previously found k-\ orthogonal regressors, and

then the A:-th orthogonal regressor is found. Experimental results (Rice, 1966) and the

theoretical analysis (Bjorck, 1967) show that, if H is ill-conditioned, the columns of

W will soon loose their orthogonality and re-orthogonalisation becomes necessary.

The modified Gram-Schmidt (MGS) orthogonalisation (Bjorck, 1967) possesses

superior numerical qualities (Chen et al, 1989). Once the (t-l)-th regressor have been

found, the remaining columns of H are orthogonalised, and the A:-th regressor is

found. The first step of the OLS based on MGS is the same as that used in the CGS

procedure, according to equations (4.4), (4.5) and (4.6). However, using MGS the

remaining M-1 non-orthogonal regressors are orthogonalised with respect to prior

to the next iteration. Hence at the A-th step, the regressors have been already

orthogonalised to the previous k-2 bases. Hence equation (4.7b) is reduced to;

= P ; w , - (4.1 Oa)

where p/ denotes the regressor that has been orthogonalised with respect to the

previous k-2 orthogonal bases. The target sequence is also orthogonalised:

Tr== T - , (4.lot,)

It is important to note that, in absence of round-off errors, the two procedures are

equivalent.

64

4.5. Matrix form of the OLS algorithm

It is convenient to express the OLS algorithm, in its MGS form, directly in terms of

the matrices R and P as in (2.21). Specifically in terms of their elements and .

Equation (4.4) can be expressed as:

and consequently the error reduction ratio can be computed as follows:

(zn"; (412)

Note how these two quantities depend on the diagonal elements of R. The MGS

orthogonalisation is calculated on the z-th column and row of R and the z-th element

of P. At the A-th step the projection of the /-th candidate (4.7a) is calculated as:

7 = 4 - 1 , (4 i3)

The elements r , / ' , / it. /j ...z^_j o f R and P are orthogonalised using:

The matrix formulation of the OLS algorithm is useful when the direct computation of

the correlation matrices R and P is impractical. For instance, if the regressor's length

L is excessive the computation the scalar product = wfwj for the whole sequence

imposes a heavy computational load. In this case, the computation of the correlation

matrices can be split into smaller training sets, and the overall result is obtained by

summing the results and applying OLS directly on the final matrices.

65

4.6. Conclusions

The computational effort is a factor of paramount importance when designing a de-

interlacing system. Single-layer networks easily incur in the so-called "curse of

dimensionality" by delivering performance improvement at the cost of increased

complexity. Improper training may lead to excessively large networks. A possible

strategy is to train an initially large network and successively to remove those nodes

whose contribution to the goal is somehow least relevant. Such a strategy is known as

saliency of weights. If the cost function is the MSE, it is easy to determine a saliency

function for the linear parameters. The Error Reduction Ratio in (4.3) accounts for the

individual contribution of each node to the reduction of the MSE.

In order to select an optimal subset, one should consider all the possible combinations

of nodes. This is reflected in (4.3), since the contribution of the individual node

depends on the other nodes. A sub-optimal strategy is represented by Orthogonal

Least Squares techniques. A Gram-Schmidt based orthogonalisation is coupled with

the Error Reduction Ratio in order to produce a triangular decomposition of the

normal equation where the orthogonal basis have decreasing saliency according to

(4.3). The principle is that at each step of the algorithm, each individual node is

assessed in its ability to reduce the MSE.

Some care must be taken in order to ensure a numerically robust algorithm. This is

because as the orthogonal isation proceeds, the remaining regressors yield output

values closer to the limits of the available numerical range. It has been observed that

the Modified Gram-Schmidt algorithm is less prone to this kind of problems. A matrix

formulation of the algorithm is also provided that allows the orthogonalisation of long

training sequences of data to be split in smaller batches of data.

5. WIENER AND VOLTERRA DE-INTERLACING

5.1. Introduction

In this chapter we will discuss the results obtained by de-interlacing the picture in

figure 1 using Wiener linear filters and Volterra series. The odd field and the even

field are obtained from the odd and even rows of the picture. The even field is

sampled to produce the input set, and the even field is used to obtain the

corresponding target set.

pixel value

Figure 1. (a) "Girl" picture (301x301 pixels), (b) histogram (percent of total number of pixels).

In choosing an appropriate de-interlacing system based on these two techniques, one

is presented with the choice of different architectural alternatives. The choice of a

proper filter aperture D is an immediate concern in the design of a de-interlacing

system. Realistic systems are limited by computational constraints, usually

determined by speed requirements and hardware limitations. Therefore, it is of no use

to obtain good performance with a broad aperture, if this choice leads to an unfeasible

architecture. Moreover, it will be shown that, at least for the linear case, there is an

aperture limit beyond which there is no significant gain in performance. The Wiener

and Volterra interpolators are tested with the apertures depicted in figure 2. Note that

in some cases, the same number of pixels is used in different apertures. The aim of

this is to show the relative importance of vertical and horizontal information in the

recovery of the original field. It will be shown that the vertical axis yields most of this

67

relevant information for the linear case. However in the application of the Volterra

series, the horizontal taps will play an important, albeit secondary, role. Another point

of concern with Volterra series is the choice of the order p. In chapter 2 we have seen

how p determines, together with the sampling aperture D, the number of branches in

the Volterra network.

-0~~0—o~

J>_J) A—()-

r^TTT

Figure 2. Sampling apertures. The black pixel is the pixel to be estimated. There are various apertures
using the same number of pixels. In each case, the best shape (see table 1) is highlighted using a
dotted frame. The pixel numbering of the elements of the input vector x is from left to right, top to
bottom as shown for aperture 8,.

The relationship between the order of the series and the order of the statistics of the

training signal has also been discussed. This relationship helps us to determine a

reasonable order for a Volterra series that produces a feasible de-interlacing system.

In figure 1 the histogram of the single pixels comprising the picture, normalised to the

number of pixels, is plotted. Clearly the pixel histogram can not produce an estimate

of the joint input-target density, p{x,t) which is the problem we seek to solve.

However, it does produce an estimate of all the marginal distributions of p{x,t). We

can clearly see how the histogram is skewed and plati-kurtic (table 1). Hence it is

reasonable to assume that the unknown distribution ought to be described at least in

terms of its fourth-order moments, which implies that at least a third-order Volterra

series should be implemented.

Gaussian N(0.1299, 0.1522) "Girl" (normalised)

mean 0 J 2 # 0.1299

variance 0.1522 0.1522

skewness 0 -0.2827

kurtosis 3 24549

Table 1. Higher-order moments for the picture "girl" (normalised) compared to the moments of a
Gaussian distribution with the same mean and variance.

5.2. Wiener Linear Filters

The results for the Wiener filters (2.12) with the various apertures in figure 2 are

shown in Table 2 and the MSE plot is shown in figure 3 (where for a given aperture

size only the result from the best shape is plotted). Regardless of the aperture's shape

and size, it is evident that most of the information is drawn from the closest vertical

neighbours of the target pixel, see figures 4 and 5. In fact, a reasonable linear

interpolator merely computes an average of these two values. Note the small MSE

improvement when apertures with some horizontal extent are used (e.g. 8,) compared

with purely vertical apertures (e.g. 82). This implies that horizontal information plays

a minor role in the estimation of the output. On the other hand, apertures that do not

use vertical information (e.g. 83 and 84) produce worse results.

69

2 4, 42 61 62 81

bias -0.2100 -0.3057 0.0345 -0.1619 -0.0211 0.0266

MSE 1.2369 2.7737 1.0083 1.1916 0.9971 0.9893

82 83 84 12, 122 123

bias -0.0040 -0.0661 -0.0469 0X%82 0.0251 -0.0880

MSE Oji&K 2.5169 2.3406 &97M 0.9885 2.5147

16 18 22 24

bias 0.0277 -0.0193 -0.0198 -0.0041

MSE 0.9773 0.9655 0.9634 0.9624

Table 2. Output MSB, Wiener filter (bold; optimal shapes).

1.25

8 12 16
filter aperture (optimal)

Figure 3. Output MSB vs. filter's aperture.

The smoothing artefacts introduced by linear filters can be readily explained. The

effect of a linear filter is that the outcome will be roughly equal to the averaged

luminosity of the closest neighbours. If these differ by a significant amount, like for

example in a high-contrast area of the image, the resulting output will have an

intermediate value, producing the smoothing effect. The "jagging" artefacts are a

peculiarity of de-interlacing on oblique edges. Since only the interpolated field will be

smoothed, that will create a pattern of alternating sharp and smoothed edges.

70

One can see an overall 22% MSE improvement in moving from a 2 to 24 pixel

aperture, with an associated increase of 1100% in the number of pixel values

processed. Moreover, the performance (figure 3) rapidly flattens and there appears to

be no reason to assume that a further increase in the aperture size will yield significant

increases in performance.

Aperture 2 aperture 24

0.6
0}

frame rows -7 .2 frame columns
Frame row s^ frame columns

Figure 4. Filter weights for 2 and 24 pixel apertures.

linear weights

Figure 5. Wiener optimal weights for aperture 8,, plotted on a one-dimensional axis.

It is also evident that the influence of the bias is negligible. In 8 bit precision, we can

assume that the bias is zero for any aperture. This is easy to explain, considering that

the bias accounts for the difference between the average value of the vertical

71

neighbours and the average of the target. Since these pixels come from the same

frame, one might anticipate that this difference is close to zero.

5.3 Volterra interpolation

The results for a 3"" order Volterra deinterlacer employing each of the sampling

schemes proposed in figure 2 are shown in table 3. Although powerful, Volterra series

are computationally demanding and so the number of pixels in the aperture and the

degree of the polynomial must be limited. It has been assumed that a reasonable

model is obtained by a third order series. Collis et al. (1997) suggests that an aperture

like 8] and a 3"̂ degree Volterra series (164 nodes) is likely to be an affordable target

in terms of hardware. A 12-taps aperture requires 454 nodes giving a relatively

modest increase of the performance (table 3). An 8-pixel, fifth order series will have

the unrealistic number of 1286 nodes. For these reasons, we will consider orders no

higher than 3. Furthermore, the aperture 8, will be the only aperture considered in the

following chapters.

The results for the Volterra series are compared with those for linear interpolation in

figure 6. Some qualitative comparison between the two techniques is given in figures

7.a and 7.b. It is evident that the Volterra deinterlacer performs significantly better

than the linear filter. However note how the rate of improvement over the linear filter

decreases when the aperture becomes larger than 4. In the larger apertures many

coefficients prove to be redundant (Section 5.4). Table 3 indicates that apertures with

horizontal taps alongside the vertical ones are more effective than in the linear case,

for example comparing the performance of apertures 8] and 82 with the corresponding

performance with linear interpolation. Horizontal information plays a more important

role in the higher order kernels.

Figure 8 shows the absolute value of the linear coefficients of the Volterra model for

the aperture 8,. These appear very similar to the isolated linear filter (figure 5). The

full Volterra coefficients for apertures 2, 4], 8, and 18 are plotted in figure 9a and 9b.

When examining figure 9 one should realise that the coefficients are on different

scales depending on the kernel order they refer to.

72

lattice

2 4. 42 61 62 8,

Number of
coefficients/
degree

jst 2 4 - 6 - 8
Number of
coefficients/
degree 2"" 3 10 - 21 - 36

Number of
coefficients/
degree

3rd 4 20 - 56 - 120

MSE 1.1082 1.1082 0.7850 0.9451 0.7575 0.6956

82 83 84 12, 12% 123

J St - - - 12 - -

2"^ - - - 78 - -

3rd
- - - 364 - -

MSE 0.7432 2.1210 1.8335 0.6521 0.6715 2.0314

16 18 22 24

1" 16 18 22 24

2..d 136 171 253 300

3rd 816 IMO 2024 2600

MSE 0.5947 &5751 0.5025 0.4676

Table 3. Output MSE, 3"" order Volterra series. The best results for each aperture are highlighted.

12 aperture 16 18 22 24

Figure 6. Volterra (—) and Wiener (~) de-interlacing.

73

Figure 7.a. "jagging" artefacts in linear interpolation and edge preserving properties of Volterra
interpolation. Aperture 8, has been used for both systems.

74

(a) (b)

... . I. V " - . . •

• ' > •

1 ^7-

Figure 7.b. Difference field with respects to the target field, (a) Linear filter (b) Volterra series

The reason for this characteristic outcome is partially to be found in the dynamics

involved in the solution and application of the Volterra series. It is hence incorrect to

deduce, from the analysis of the weights alone, that the linear kernel is more

important than the quadratic and the cubic kernels. In the linear case, the regressor h

spans a cube in 7?^ bounded by [-127,128]. In the Volterra case, second order

regressors will span a subspace bounded by [-127^,128^] and third order regressors

will be bounded by [-127^,128^].

In fact, if we take into account the different dynamics of the first, second and third

order nodes we have a different picture about the relative importance of the kernels.

In figure 10 the dynamics of the matrices P and R are shown, and it is possible to

appreciate the effect of varying scales in the matrix. Figure 11 a shows the different

dynamics of the matrix R calculated for the aperture 8i. The brackets indicate the

kernel order. It is evident how the 3'̂ '̂ -order dynamics dominate the dynamics of the

first and second order kernels. Figure l ib , where R is normalised to the local dynamic

range, shows a clearer picture of the relative magnitude of each order of kernels.

However, it would be incorrect to draw any assessment about the relative importance

of each kernel from this picture. One should remember that figure 1 Ob is normalised

to the local dynamics. Furthermore, we have not performed a similar analysis on the

cross-correlation vector P. A more structured approach is presented in the next

section, where OLS reduction is applied to the series.

75

1 3 Linear Volterra kernel 6 8

Figure 8. Volterra linear coefficients (aperture 8,), plotted on a one-dimensional axis.

quadratic inear cubic
Volterra kernels

Figure 9a. Volterra kernels for apertures 2 (a) and 4; (b).

76

' • (n; ' ' - t' -t

1 18 189 1329

Figure 9b. Volterra kernels for apertures 8, (a) and 18 (b) (log x-axis).

Figure 10. Dynamics of P and R for 3rd order Volterra series.

77

x10 '

2.5

165

Figure 11a. Cross-correlation matrix R of the Volterra kernels, aperture 8,

3000 .

165

5000

165 1 9

Figure 1 lb. Same matrix as in figure 10a, normalised to the relative dynamics.

78

5.4. Orthogonal Least Squares Volterra series

It is reasonable to question whether the Volterra model gives a correctly sized

network, i.e. if the system, whose number of nodes is determined a priori by the

degree and aperture size, rather than by the observed complexity of the data, is

redundant. From a visual analysis in figure l ib , clearly appears that the regressors are

strongly correlated. It is natural to question whether OLS might lead to solutions

using a reduced number of nodes but yielding the similar MSE as the full Volterra

scheme.

til 0.7

tu 0.7

10 1620 25

8 0 7

16 20 25 50 75 100 125
orthogonal regressors

Figure 12. Orthogonal MSE sequence for the Volterra series, apertures 42 (a), 8, (b) and 18 (c).

79

In figure 12 we show the MSE for the OLS Volterra series with apertures 42, 8] and

18. It is apparent that the corresponding series are highly redundant, and an advantage

in terms of efficiency of the network may be obtained by using OLS. However, the

picture shown in these plots may be misleading when we want to estimate the

corresponding reduction in the computational load required. In figure 13, the degrees

of the orthogonalised regressors are shown. As one can see, although the first four

regressors are always linear, the successive regressors are mainly third-order

regressors. Hence, the reduction in the network's size does not correspond to an equal

reduction in the computational load, since although we can use a smaller number of

nodes to obtain approximately the same MSE, these nodes will be largely drawn from

the third-order kernel, that requires the highest computational effort. This point will

be further discussed in chapter 6, where we will compare the performance of RBFN

and Volterra series.

(a)

34

(b)

164

O 9 9 O 9Q09V

(c)

1 1329

orthogonal regressors

Figure 13. Degree of the orthogonal Volterra regressors, apertures 4% (a), 8, (b) and 18(c).

80

Figure 13 confirms our early observation that the de-interlacing problem should be

addressed by a series whose order is at least 3. Moreover, they show how the second-

order kernels play a lesser role, compared to linear and cubic ones, in minimising the

MSB. In figures 14a, 14b and 14c we can see the composition (degree and lattice

position) of the monomials forming the first ten orthogonal regressors, for the three

apertures considered.

Wi Wio

o o o o o o © © o ©
o o o o © © © © o ©
e • • e # # • • #

o o o o o o © © o ©
o o o o o © © © o ©

Figure 14a. Monomial composition of the first 10 orthogonal regressors, aperture 4;. The number
in the circles show which pixels are used in the regressor, with their degree in the monomial.

" © © © © © "

ooo ooo ooo ooo ooo
e • # # #

ooo ooo ooo ooo ooo
© © © © ©

" ' © © © ©

ooo ooo ooo ooo ooo
• #

ooo ooo ooo ooo ooo
© © © © ©

Figure 14b. Monomial composition of the first 10 orthogonal regressors, aperture 8,.

81

ooo ooo ooo
ooo
ooo ooo

ooo ooo ooo
ooo
ooo ooo

ooo ooo ooo
ooo
ooo ooo

ooo ooo ooo
ooo
ooo ooo

ooo ooo ooo
ooo
ooo ooo
ooo ooo ooo
ooo
ooo
ooo

ooo ooo ooo
ooo
ooo ooo
ooo ooo ooo
ooo
ooo ooo

ooo ooo ooo
ooo
ooo ooo
ooo ooo ooo
ooo
ooo ooo

Figure 14c. Monomial composition of the first 10 orthogonal regressors, aperture 18.

In each figure the values in the surrounding pixels indicate the pixel degree in the

monomial. It is confirmed that the four closest vertical neighbours play the most

important role. Note also how, in the composition of the third-order nodes, some

vertical information, coming from the four closest vertical taps, is always present.

However, in the case of the apertures 8] and 18, this vertical information is

"modulated" by some horizontal information. This observation confirms the

importance of horizontal information in reducing the MSB. We could view these

third-order nodes as being first-order, with adaptive weights formed by the product of

the MMSE weight and some other taps, mainly horizontal. It appears that the vertical

information is adapted to some local measure of contrast/luminosity. A

82

comprehensive analysis of the nodes' composition in terms of their importance is

however beyond the scope of this thesis.

5.5. Conclusions

This chapter has provided a significant overview on the application of linear and

polynomial models to spatial de-interlacing. The experiments clearly show how

Volterra-based de-interlacing produces a superior result compared to linear filters.

They also provide some interesting insights into the way Volterra series exploit their

internal structure to produce the mapping.

Firstly, a set of 16 sampling lattices has been selected to carry the experiments. The

apertures increase from 2 to 24 pixels, and for each aperture several pixel

arrangements are presented by stretching the lattice either in the vertical or the

horizontal direction. The goal is to show how vertical and horizontal information play

different roles in reducing the error.

These 16 considered in the experiments sampling lattices generate the training sets

used to calculate a corresponding number of linear filters. The results clearly show the

main limitations of linear interpolation. It is clear from the MSB plot that the error

curve quickly flattens and there is little gain in further increasing the aperture. This is

dramatically reflected in the much higher value of the weights corresponding to the

vertical pixels, most noticeably the two close vertical neighbours. It is clear that the

output value is mainly dependent on local vertical information and that explains the

rapid flattening of the MSB curve. The resulting linear filters basically compute a

local vertical average. The immediate effect is that contrasted areas get blurred. The

alternation of sharp (source) and blurred (interpolated) lines in the de-interlaced frame

eventually produces the observed "jagging" artefacts.

The picture changes when Volterra series are applied. The blurring is clearly reduced

and the jagging mitigated. This time the experiments show that the horizontal

information play a major role in achieving a much improved performance. Although

the linear kernel remains basically unchanged, the plot of the higher order kernels

shows a rich set of inter-pixel dependencies.

83

The application of OLS shows that the Volterra series is redundant. This is due to the

way the series is initially built by fixing the degree p and the aperture D. OLS shows

how the cubic terms play a major role in the error reduction. The observation of the

first orthogonal regressors suggests an interpretation of the Volterra series in terms of

adaptive filters, where the horizontal pixels provide local measurements of contrast

and luminosity to change the values of a vertical linear filter.

84

(5. (]u4LlJE;s;LfLb4 RBITfJ

6.1. Introduction

In the previous chapter we have discussed the application of linear filters and Volterra

series to de-interlace a single frame. In this chapter we will discuss the application of

Gaussian Radial Basis Function networks (GRBFN) to de-interlace that same frame.

RBFN differ in many aspects from polynomial techniques like the Volterra series, as

already discussed in chapter 2. In Volterra series, the non-linear element is not

involved in the training process. In other words, once one has determined the degree p

of the series and the dimensionality D of the input vector, the dependence of the

output on the network's parameters is linear, and consequently parameters can be

simply calculated, if a MSE cost function is assumed. This happens because the non-

linear structure of the network is determined once and for all by D and p. Conversely,

in RBFN the non-linearities are parameterised, and therefore we have a non-linear

dependence of the output on these parameters. Hence it is impossible, even using the

MMSE training, to determine the optimal non-linear parameters by solving a linear

system of equations like (2.21). Therefore, non-linear training plays an essential role.

However, being a single-layer network, RBFN benefits from linear techniques in

determining the optimal value (in the MMSE sense) of its linear parameter vector 0 .

Together with the simple solution, equation (2.21), for the linear parameter vector,

orthogonalisation can be efficiently applied to reduce the number of nodes and the

associated complexity of the network.

In this chapter we will cover all these aspects. Firstly, we will briefly recall the

problems related to the choice of the aperture (already discussed in the preceding

chapter). This will lead us to choose a single aperture for the experiments. Then, we

will determine the architectures to be used in the experiments, that have been

described in chapter 3.

85

Secondly, we will describe a suitable procedure to determine the non-linear

parameters of a RBFN with Gaussian kernels (i.e. the centres and the width

parameters) that does not involve non-linear techniques but rather uses a series of

heuristic considerations. This will involve an initial choice of a large number of nodes

in the network. In order to obtain a reasonable size for the network, we will

successively apply the OLS reduction algorithm. The results of these experiments will

be discussed. An algorithm (iterative orthogonalisation) will also be proposed in order

to apply OLS to large sets of nodes that generate correlation matrices too large to be

reduced in a single application of the OLS algorithm.

Finally, a non-linear optimisation technique, the Nelder-Mead modified simplex

algorithm, discussed in detail in appendix C, will be applied to obtain further

improvements. The application of this technique to an initially large network pruned

via OLS will be compared to the application of the same technique to a small,

inefficient, randomly initialised network.

Throughout the results will be compared with those obtained with the linear Wiener

filter, as well as the S"' order Volterra series, both using the same aperture. In order to

evaluate the performance in terms of computational complexity, a simple cost analysis

outlined in appendix B will be used. The cost comparison will be performed initially

with a Volterra series with its full set of nodes. Successively, the series will be pruned

using OLS and a more detailed cost comparison will take place.

6.2. Sampling aperture, network size and architecture

From the analysis in the previous chapter we have adopted an 8 pixel aperture

(aperture 81) for use with a 3'̂ ^-order Volterra series. This was based on the evidence

that such an aperture produced a reasonable MSB minimisation compared to larger

apertures, with a number of nodes (164) that was considered feasible. This choice was

made by considering a variety of other apertures. Smaller apertures produce

somewhat poorer results, whilst the improvements obtained with larger apertures do

not justify the resulting increase of complexity. Furthermore, the size of the series

obtained using the aperture 81 can be reduced by OLS without excessively degrading

the performance.

86

In order to restrict the number of experiments, and to provide a comparison with

Volterra series, the RBFN has been implemented using the aforementioned 8,

aperture. Clearly, this decision is also justified by the fact that we want to study how

the RBFN deals with the same amount of information provided to the Volterra series.

However, as already stated, for a RBFN the number of nodes M is a free parameter.

Based on some rough estimates of the computational cost of a RBFN network

(appendix B), we deduced that a RBFN network, using the 8| aperture, should be built

with no more than 10-30 nodes in order to be computationally comparable with the

3 ""-order Volterra de-interlacer.

Test will be conducted involving larger networks, which will be successively reduced

to the target size by application of the OLS algorithm. This point is very important,

because the idea of selecting a large network and successively pruning it by the

application of OLS is the basis by which we will try to overcome the need for a non-

linear training stage. The following section discusses this approach, and the

experimental evidence will provide its justification, as well as showing its limitations.

The final point covered in this section is the choice of the network's architecture. We

assume that the kernels are Gaussian. In chapter 3 we have shown different possible

architectures that generally go under the guise of RBFN. In this chapter we will

consider two architectures. One is a standard RBFN with Gaussian kernels. The other

one is the hybrid GRBFN (HGRBFN) that has an explicit linear kernel in parallel to

the RBFN core. It will be shown that the hybrid scheme presents superior

performance compared to the non-hybrid architecture, especially when the number of

nodes is reduced. This superior performance is obtained at a very little increase in

computational cost.

6.3. Heuristic choice of centres and determination of width parameter

As already discussed in chapter 3, a possible way to choose a set of centres is to pick

them randomly from the input set. If the number of centres M is large enough, this

approach leads to a set of centres which mimics the distribution of the input set.

Throughout it has been presumed that in a large network the exact functional

87

expression of the non-linear kernels is not critical to the determination of an effective

interpolation. One way to understand this is to imagine a network with a centre for

each input. In this case, the functional expression of the kernel may assume the trivial

form of the unitary impulse

A (| | % - C y | |) = A (n) = l Q (6 .1)

and the linear weight corresponding the i-th input is equal to the /-th target.

= f; (6.2)

Clearly such a network completely lacks any form of generalisation and, due to the

absence of a width parameter, its input-output mapping is extremely non-smooth.

However it is clear that in such hypothesis the problem of finding the non-linear

parameters (i.e. centres and widths) is trivial. It seems then likely that, when the

number of centres is large, the non-linear problem can be addressed in a simple way.

As we will see, this assumption fails dramatically whenever a small number of centres

(10-30) is used. Computational problems and the need for sufficient generalisation

(i.e. avoiding over-fitted interpolators) suggest that M should be smaller than 1000.

One also need to consider how to determine the width parameter for the Gaussian

function. A possible approach was introduced in section 3.5, based on the average

distance of each centre from the other centres. This technique is now described in

detail. Given the /-th centre c,, the average distance 5, of c, from the remaining

centres Cj is computed

This mean distance is used to determine the width parameter by specifying the height

7 of the Gaussian function at the distance 5, from the centre c,

y - * (g , -)) (6 .4)

max {h{ ri)] A(0)
r e a +

We call Y the overlap factor since it controls the degree to which the kernels overlap

each other, and it follows that 0 < 7 < 1. In principle, a different 7 can be used for

each node; however, this adds to the problem of determining a suitable overlap for all

nodes. Thus, a single 7 is used for all the centres. Since A,(<5,)= e x p (- 5 ; ^ / (7 f) , of

is determined using

2 a /
cr? == ! — (6.5)

Note that fixing 7 for all the centres results in different widths for each node. There

remains the problem of finding a "good" overlap. The trade-off is between smooth

mapping (i.e. broad Gaussians, 7 - ^ 1) and "crisp" mapping (i.e. narrow Gaussians,

7 - * 0) . The two alternatives will be heuristically discussed in the next two sections.

6.4. Random selection of centres

This section presents the results of GRBFN and HGRBFN de-interlacing using the

criteria previously considered to select the non-linear parameters. Centres are

randomly selected from the input set, and the error is evaluated for 10, 25, 50, 100,

250, 500 and 1000 centres. In order to account the variability of the MSB arising from

the random selection process, trials are independently repeated 10 times for each

network size, architecture and width factor. The width parameters have been chosen

according to the criteria in section 6.3, and overlap factors 7 of 0.1 (narrow Gaussian)

and 0.9 (broad Gaussian) have been employed.

The results are detailed in figure 1 and tables la, b, c and d. The maximum, minimum

and mean value of the MSB are reported for each value of M. Note that the results

have been compared to those obtained in chapter 5 using the S'^-order Volterra series

and the linear filter. The curves in figure 1 allow one to understand the general

behaviour of the system. Firstly, one can see how random selection progressively fails

as the number of centres decreases. The results confirm our previous assumption,

since a large number of centres produces a good, consistent performance, with a

negligible difference between the maximum and minimum value.

=0.1 =0.9
5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

GRBFN mean sequence
HGRBFN mean sequence

10 25 50 100 250 500 1000
number of centres M

5r

4

3.5

3

2.5

2

1.5

1

0.5
10 25 50 100 250 500 1000

number of centres M

Figure 1. Random selection of centres for GRBFN and HGRBFN, mean values and min-max variation.

The broad Gaussians (7 = 0.9) help to reduce the MSB degradation for small M, but

prevents the network from obtaining good MSB reductions when the number of

centres increases. The reason is that as the number of centres increases, a greater local

definition is obtained by narrowing the Gaussians (y = 0.1). On the other hand,

narrow Gaussians fail dramatically when M i s small.

These results also indicate that the HGRBFN structure achieves better results than the

standard GRBFN when narrow Gaussians are employed. Clearly, the explicit linear

path in HGRBFN assures that a reasonable linear de-interlacing is always achieved,

even in areas of the input space where the narrow Gaussians fail to produce a good

input-target mapping. The difference between the two structures is reduced for the

broad Gaussians. This is because the broad Gaussian functions are better able to

mimic linear functions with a smaller number of centres. Thus the explicit linear path

adds little extra capability.

90

MSB NUMBER OF CENTRES M

10 25 50 100 250 500 1000

Min 3.9990 2.0805 1.2357 0.9589 0.7029 0.6301 0.5633

Mean 7.9266 2.7452 1.5258 1.0229 0.7202 0.6364 0.5679

Max 17.1336 3.6930 2.0527 1.1112 0.7440 0.6432 0.5730

Table l.a. GRBFN, randomly initialised, f=0.1 (Wiener MSE=0.9893. VolterraMSE=0.6956).

10 25 50 100 250 500 1000

Min 1.3618 0.9270 0.8656 0.7949 0.7588 0.7151 0.7043

Mean 1.6702 0.9578 0.8869 0.8129 0.7736 0.7226 0.7093

Max 2.2181 0.9867 0.9068 0.8388 0.7982 0.7315 0.7151

Table l.b. GRBFN, randomly initialised, y=0.9.

10 25 50 100 250 500 1000

Min 0.9783 0.9036 0.8697 0.7937 0.6868 0.6232 0.5606

Mean 0.9849 0.9563 0.9051 0.8009 0.6997 0.6260 0.5636

Max 0.9882 0.9744 0.9381 0.8125 0.7103 0.6285 0.5673

Table I.e. Hybrid GRBFN, randomly initialised, 7=0.1.

10 25 50 100 250 500 1000

Min 0.9725 0.9209 0.8980 0.8738 0.8700 0.7147 0.7029

Mean 0.9798 0.9470 0.9262 0.9037 0.8886 0.7215 0.7081

Max 0.9854 0.9594 0.9472 0.9348 0.9054 0.7299 0.7135

Table l.d. Hybrid GRBFN, randomly initialised, 7=0.9.

6.5. Orthogonalisation of randomly selected GRBFN and HGRBFN

In the previous section, it has been shown how the heuristic approach of choosing the

centres randomly from the input set and selecting the width parameter on the basis of

a general overlapping criterion fails when M is small. However, this selection

criterion is a preliminary step towards a more structured technique. Since a large,

randomly selected network succeeds in producing a good mapping, it is reasonable to

assume that a large number of nodes, with a proper choice of centres and width

91

parameter, contains most of the necessary information in order to produce a

satisfactory interpolation. We will now show the results of applying the OLS

algorithm described in chapter 4, in an attempt to extract this information from an

initially large network.

There are several reasons that justify the application of this selection-reduction

technique. Standard non-linear methods are not guaranteed to converge to a global

optimum, and may be strongly dependent on the initial conditions. Moreover, non-

linear optimisation techniques usually require a large number of iterations. Since we

assume that a random selection of 1000 centres contains (in principle at least) a

sufficient information to solve the problem, we might wish to extract as much of this

information as possible from the surrounding haze of redundancy, rather than

surrender to a "brute-force" approach. Further non-linear optimisation can be used at a

later stage.

1000

ir]i i;:E#
iitnat- :|: gg : I

1000 1 1000
y=0.1 y=G.9

Figure 2. Normalised correlation matrix of RBFN regressors. y^OA (left) and y=0.9 (Right).

If we plot the normalised cross-correlation matrix R for 1000 centres, 7=0.1 and y=0.9

with a GRBFN architecture, we can clearly see that there is linear redundancy, since

the regressors are highly correlated (Figure 2). Note that regressors with y=0.9 are

more correlated than those with 7=0.1, as portrayed by the brighter shades reflecting

the greater correlation. This is a consequence of the broad support which means that

many of the regressors repeat similar information, since they overlap the same (broad)

92

region of the input space. Figure 2 gives a visual explanation as to why the use of a

large number of broad regressors does not produce the reduction in MSB obtained

with narrow regressors. However figure 2 also explains why broad Gaussians perform

better with a smaller number of regressors.

Tables 2a, b show the MSB obtained using the OLS reduction for y=0.05, 0.1, 0.5,

0.9. The networks for which the MSB is smaller than that obtained using the Volterra

series are shaded in light grey, and the MSB which are worse than the Wiener filter

are shaded in dark grey. Not surprisingly, hybrid architectures produce MSB that are

always smaller than the Wiener MSB. Figures 3 and 4 show the plot of these

sequences.

7 CENTRES

10 25 50 100 250 500 1000

0.05 1.9423 1JQ72 0.9320 0.7824 0.6651 0.5972 0.5695

0.1 1.5226 1.1071 0.8534 0.7374 0.6387 0.5872 0.5658

0.5 1.1602 0.8659 0.7557 0^865 0.6414 0.6231 0.6125

0.9 0.9936 0.9423 0.8320 0.7598 0.7306 0.7174 0.7080

Table 2.a. OLS GRBFN, (Wiener MSE=0.9893. Volterra MSE=0.6956).

7 CENTRES

10 25 50 100 250 500 1000

0.05 0.9377 0.8279 0.7199 0.6493 0.5890 0.5593

0.1 0.9528 0.8534 0.7765 0.7142 0.6376 0.5897 0.5616

0.5 0.9839 0.8726 0.7563 0.7009 0.6404 0.6237 0.6113

0.9 0.9816 0.8947 0.7981 0.7515 0.7298 0.7221 0.7058

Table 2.b. OLS HGRBFN.

Figure 5.a and 5.b provide a visual comparison between different de-interlaced

frames. A hybrid network with 100 OLS reduced centres leads to a result that is

visually comparable to the result of a Volterra series. However, the computational

cost of such a network is too high to make it a convenient solution (see appendix B).

A network with 10 OLS centres has a computational cost that is comparable with that

93

of a Volterra series, however its performance is only just better that the linear case.

This highlights the need to include some non-linear optimisation stage in our training

strategy.

linear
Volterra

E 0.8

50 100
orthogonalised centres

1000

Figure 3. O L S sequence, G R B F N .

=0.05

inear
Volterra

9 &7

1M

orthogonalised centres

Figure 4. O L S sequence, H G R B F N .

1000

9 4

1

Figure 5.a. (a) source frame, (b) Linear interpolation, (c) random RBFN 10 centres, (d) OLS
Hybrid RBFN 10 centres, (e) OLS Hybrid RBFN 100 centres, (f) 3'̂ '' order Volterra series.

95

(a) Cb)

• •

V

J

-

^ ^ ' . 4 s e c -
(c) (d)

.
(e)

,' : - •
. . . . -

' I , : / ; %rr--

- . . v . "

Figure 5.b. Difference fields with respects to the target field, (a) Linear interpolation, (b) random
RBFN 10 centres, (c) OLS Hybrid RBFN 10 centres, (d) OLS Hybrid RBFN 100 centres, (e) 3""
order Volterra series.

96

6.6. Iterative orthogonalisation

The experiments in the previous section illustrate that OLS has the ability to select

medium-sized sub-optimal sets of nodes from an initially large population. The size

M of this initial set is a trade-off between the ability to represent the training set, and

OLS computational demands that increase as the initial set broadens. In section 6.3

we have seen how different sets of 1000 centres, randomly chosen from the input set

give rise to similar MSB. It could be assumed that a subsequent OLS reduction to M'

nodes shows the same stability, regardless of the 1000 centres initially selected. In

fact, when M' is small compared to M (for instance, M'=\Qi), two different initial

sets of M regressors may result in two very different MSB when successively reduced

to M'. In figure 6, the average results of 10 OLS reductions from 1000 randomly

selected centres are plotted together with their maximum and minimum value.

mean OLS sequence
rrin-max values

50 100 250
orthogonalised centres

Figure 6. Variability of OLS reduction over 10 different initial set of 1000 regressors.

It is clear that, as the reduction increases, the variability also increases. There are a

large number of initial sets of M vectors in the input space that produce an initial good

result, but only a small number of these produce a satisfactory reduction. In other

words, OLS successfully removes the redundancy from a large set of centres,

extracting the relevant regressors. However a given set, randomly selected from the

input space, may not contain the optimal M' centres. It seems reasonable to assume

97

that, the smaller M' we want to achieve, the larger the initial set should be in order to

increase the chance to include the "best" M' regressors set. Unfortunately this

assumption leads to computational problems, since OLS should operate on correlation

matrices as large as, in principle, the whole input set.

This section describes a sub-optimal strategy to compare and orthogonalise large

number of candidates, keeping M small at each orthogonalisation phase. The

principle is to perform separate orthogonalisations of M' regressors from each of G

groups of M candidates, followed by randomly rearranging the M' • G outcomes into

new groups of M candidates and repeating the orthogonalisation. A progressive

reduction of the number of groups leads to a final orthogonalisation of M' centres

from M candidates. This algorithm is depicted in figure 7, with M=1000, and

M'=10, 25, 50 and 100.

The results are shown in figure 8 and table 3. As we can see, the algorithm is able to

extract progressively better sets of regressors. For M'> 25, the final outcome is

equivalent to the best of the initial groups of candidates. However for smaller number

of centres this ability fades. In this case, iterative orthogonalisation tends to approach

the average output value of the initial sets. This algorithm has not been fully assessed,

however it provides additional evidence for the assumption that large numbers of

randomly selected centres that may lead to similar results are not guaranteed to yield

equivalent results once they are reduced via OLS. By choosing the initial set in a more

appropriate manner than just randomly selecting the centres from the input set, one

can obtain better reductions. It could be wiser to apply iterative schemes like the

algorithm proposed here in order to create large number of centres that yield sub-

optimal results once they are reduced.

A possible approach, which has similarities with the method discussed here, could be

the use of genetic algorithms (Goldberg, 1953). However this approach will not be

considered in this work. Work in this field include Coley (1999), and Mitchell (1998).

98

Training set
(10^ candidates for a 300x300 frame)

1000 groups of 1000
candidates

400 groups of
1000 candidates

OLS (10)

200 groups of
1000 candidates

OLS (25) OLS (50)

100 groups of
1000 candidates

OLS (100)

Random rearrangement
of the 10,000 outcomes

First phase

1 r 1 T y r 1 r

100 groups of 1000
candidates

40 groups of
1000 candidates

OLS (10)

20 groups of
1000 candidates

OLS (25)

Second phase

OLS (50)

10 groups of
1000 candidates

OLS (100)

1 ODD candidates 1000 candidates

OLS (10)

1000 candidates

OLS (25) OLS (50)

1000 candidates

OLS (100)

Third phase

Final centres

Figure 7. Iterative orthogonalisation algorithm.

99

phase1 phase2 phases

min (18568 (19343

10 mean 0.9586 0.9645 (19559

max 0 9861 (19822

min 118240 (18109

P. 25 mean (18774 (18409 0 8240

o

%

max (19562 (18759
o

%
min (17589 0.7415

a 50 mean 0.7883 0.7491 (17325

max (18508 0.7598

min 0.7034 (16787

100 mean 0.7206 0.6937 (16803

max 0.7360 0.7025

Table 3. Iterative orthogonalisation; comparison of the results at different phases.

0.95

0.9

0.85

o.e

075

0.7

0.65

-B- mean first phase
G rnin first phase
o max first phase

--m- third phase

10 25 50 100
orthogonalised centres

Figure 8. Iterative orthogonalisation, results of the first and third phases.

100

6.7. Non-linear optimisation

Previous sections have demonstrated the limitations of linear training in RBFN. We

have tried to overcome the necessity of non-linear training of centres and widths by

choosing large networks, whose size is reduced using the OLS algorithm. In this

approach, centres are selected randomly from the input set, and widths are calculated

using a heuristic approach. The quantities left to be determined are the linear weights,

which can be easily found using standard linear techniques. This approach fails to

yield good results as the number of centres falls below a certain value.

It is necessary to apply some form of non-linear optimisation for the centres and

widths. This section considers the use of a well-known optimisation technique, the

Nelder-Mead (NM) modified simplex algorithm (Nelder, Mead 1965). The algorithm

is described in appendix C. Other techniques, e.g. the Gradient Descent (GD)

algorithm (Fletcher 1987), are also applicable. Differently from the GD algorithm,

NM does not require knowledge of the gradient of the function.

Firstly, OLS is applied to a HRBFN with y=OA to produce two sets of 10 and 25

centres from 1000 candidates. These two OLS networks are trained using the NM

algorithm. The results are compared with two HGRBFN initialised with a random

selection of 10 and 25 centres. The aim is to see if these two networks converge, i.e.

to explore whether the OLS reduction offers an effective technique to create better

initialisation for NM training. The number of iterations of the N M algorithm is fixed

at 800 times the number of parameters.

The results are shown in figure 9, and in table 4. From these results one can see that

OLS creates good initial condition for the non-linear techniques. Note that, with 25

centres, orthogonalisation followed by optimisation achieves a performance

equivalent to that of a randomly initialised network, optimised with NM, in about half

the number of iterations. For 10 centres however, this advantage is almost completely

lost. The curves are similar and there is little advantage in applying OLS before the

NM algorithm. It seems that below a certain threshold the random selection strategy,

outlined in sections 6.2 and 6.3, produces a poor network. A non-linear technique like

NM recalculates the networks parameters to make them fit the problem. In figure 9

10]

the results have also been compared to those obtained by the simple use of OLS

(horizontal dashed lines), and the optimised 10 centre network achieves a

performance equivalent to a 50 centre OLS network. Whereas the 25 centre network

performance improves to a level comparable with a 75 centre OLS network.

ofthoQonal centres, no opthnbatkm
10

-O- optimised 10 random cwitrw
- g - optimised 10 OLS ceAres
- B - optimised 25 OI_S centres
-O- optimised 25 random centres

400

Kerations per parameter

Figure 9. Nelder Mead optimisation of random RBFN and OLS RBFN.

Iterations per parameter

Initial value 200 400 600 800

Random 10 0.9850 0.8703 0.7880 0.7799 0.7737

OLS 10 0.9528 0.8508 0.8060 0.7898 0.7825

Random 25 0.9673 0.8266 0.7886 0.7590 0.7491

OLS 25 0.8534 0.7796 0.7554 0.7434 0.7397

Table 4. Nelder-Mead optimisation of randomly initialised and OLS HGRBFN (Volterra MSE=0.6956)

102

6.8. Comparison between HGRBN and OLS Volterra series

In previous sections the performance of the HGRBFN has been compared with the

performance of the 3"'-order Volterra series. From the analysis in appendix B the

computational cost of a HGRBFN can be compared to the cost of the Volterra series if

its number of centres is smaller than 30. Experiments suggest that the best HGRBFN

performance in this range (table 4, 25 OLS centres), obtained by the combined use of

OLS and NM, is slightly worse than the performance of a Volterra series. However

there is little qualitative difference in the results, and the two techniques are roughly

equivalent in terms of cost and performance.

In order to produce a fairer comparison, one should compare the orthogonalised

HGRBFN with an orthogonalised Volterra series. In chapter 5 it was shown that the

Volterra series benefits significantly from OLS. Recall that the Volterra nodes have

differing costs, according to the degree of their monomials, so the reduction in cost is

not necessarily in proportion to the reduction in the number of nodes. For example we

know that, although the first four Volterra regressors are linear, the succeeding ones

are mainly cubic and therefore impose a higher computational cost.

0.95

0.9

0.85

UJ

0.8

0.75

0.7

0.65 I

10 centres

OLS Volterra series
OLS HGRBFN
Nelder Mead (10 centres)
Nelder Mead (25 centres)

100

100 164 Volterra nodes

2000 4000 6000
computational cost

8000 10000

Figure 10. M S E vs. cost plot, O L S - N M H G R B F N , O L S 3 ' -order Vol t e r ra series.

103

Figure 10 shows the MSE-versus-cost plot for the 10 and 25 centre OLS-NM

HGRBFN networks, and the OLS Volterra series. This is based on assuming that

multiplication is eight times the cost of a sum, = 8 - (see appendix B). This

assumption tends to favour the HRBFN (given the high number of products in

Volterra series) and the break-even network size is 50 centres rather than 30.

6.9. Representation of the input space

This section presents some tools to aid the understanding of the complex phenomena

arising in these experiments. Given the strong topological nature of RBFN, it is useful

to have some form of graphical representation of the input space and of the centre set,

that by construction belong to the same space. This representation is particularly

useful when localising kernels, such as Gaussians, are used, allowing one to consider

the "area of influence" of a kernel, i.e. the local neighbourhood of the corresponding

centre. Unfortunately, as the dimensionality of the input set D is bigger than 3, there

is no natural representation of the input space.

Nevertheless, it is useful to represent the input set in some projected planes of the

sampling lattice, i.e. projecting D-2 dimensions into a plane. Figure 11 shows

examples of the projected inputs for the 8i-aperture. Note that only 6 out of 32

possible projected planes are shown. This choice is intentional, and will be justified

later in chapter 9, by considering the symmetry properties of images.

From figure 11 one can see that there is a trend for inputs to cluster around the main

diagonal of the input space, in a sort of elliptical "bubble". Of course, this trend might

be misleading, since the full 8-dimensional manifold could be far more complicated.

Note that the projections based on neighbouring pixels, e.g. X3 and xe, are more

concentrated on the diagonal than projections based on distant pixels, e.g. xi-xg. This

reflects the higher correlation between adjacent pixels.

104

Figure 11. Input space in some of thie projected planes.

Simple considerations of the picture make this conjectured clustering reasonable. An

input vector on the main diagonal is simply a vector arising from the sampling of a

uniform area of the image. In fact, in many images there is a reasonable prevalence of

uniform or quasi-uniform areas. One must take care however not to consider this as a

property of all images. As a counter-example, a picture of a "shaded chessboard"

105

generates inputs concentrated on both diagonals of an 8-dimensional cube, as

illustrated in figure 12.

128

- 1 2 8
-128 128

Figure 12. "shaded chessboard" input distribution in the projected plane Xj-Xg.

6.9.1. Orthogonal centres

As an example figure 13 illustrates two projected planes for a sequence of OLS

centres of a HGRBFN with width parameter 7 = 0.1. The projected planes

corresponding to the external (xi-xg) and internal (xs-xe) vertical taps of the sampling

lattice are shown. Remember that in the linear case, these taps carry most of the

information used by the linear filter, hence they are likely to be of greatest importance

even in the non-linear case. Note how the centres move apart as the number of centres

is decreased. This is the effect of orthogonalisation removing overlapping centres.

6.9.2. Nelder-Mead centres

In this section, the behaviour of the centres in a hybrid Gaussian RBFN optimised

with the NM algorithm are discussed. Figure 14 shows the results for a set of 25

orthogonal centres. The most important characteristic is that some centres move a

long way outside the input cluster. It seems that to achieve better performance one

should move some centres outside the input cluster. It is reasonable to consider that

the outlying centres generate smooth, quasi-uniform slopes over the input cluster.

106

since as r = ||x - c| becomes large, the exponential function becomes more like a

linear plane over the input space.

128

-128
-128

128

• • • • • ' • *•••-

• #-
•

• • ^ . %
4

• #
• • • *

. * * . . . ' * .

128

100 CENTRES 0

128
-128

-128

-128
-128

128

••

: • • ••
> •

*

.*•••
*

• % *
• •

* +
*

128

25 CENTRES 0

128
-123

-128

- 1 2 8

• •
• •

128

10 CENTRES

- 128 128
- 1 2 8

-128

• 4 V . -

r . •

•

128

• •

128

$

128

Figure 13. OLS centres (black diamonds) in the projected planes XpXg (left) andxi-x^ (right).

107

200 ITERATIONS

400 ITERATIONS

167
-183

193 131

600 ITERATIONS

-184 -128
563 -128 162 -128

184 137

800 ITERATIONS

-189 -325
128 128 -128 148

Figure 14. NM optimisation, orthogonal hybrid GRBFN. planes Xi-Xg (left), (right).

108

6.10. Conclusions

In this chapter the application of RBFN in de-interlacing has been investigated. The

main task was to construct an efficient RBFN with performance and computational

cost comparable to a Volterra de-interlacer. A hybrid RBFN employing Gaussian

Basis Functions acting on the 8, aperture was selected.

The training of a RBFN requires the optimisation of its non-linear parameters, the

centres and the widths. In order to avoid the difficulties involved in optimising those

parameters, a different approach has been chosen. It has been shown that large

networks are relatively resilient to the choice of the non-linear parameters.

Specifically, a random selection of centres, followed by a heuristic determination of

the widths, lead to good results if the network has a relatively large number of nodes.

The application of OLS to prune the network of redundant branches has proven

successful to reduce the size of the network by a significant degree. The iterative

application of the OLS algorithm has proven successful to reduce the variability of the

result given by the initial conditions.

However, the computational constraints of the problem impose a target size of the

network that cannot be reached by the simple linear OLS training without degrading

the performance. The application of a simple iterative optimisation technique to the

centres and widths of the network proves successful to achieve a good result using the

target number of centres.

The main crux of the application of RBFN in de-interlacing is the reduction of the

number of nodes. In chapter 8 some constraints that a de-interlacing system must

satisfy will be discussed. These constraints, applied the RBFN, will lead to a further

reduction of the number of centres, as discussed in chapter 9.

The two non-linear techniques investigated, the Volterra series and the RBFN,

produce results that are substantially equivalent, in terms of interpolation error and

computational cost. However, the investigation has been carried on a single test

frame. The next chapter discusses the performance on a wider set of images.

109

7.

7.1. Introduction

In previous chapters, the ability of linear and non-linear techniques to produce reliable

de-interlacing systems has been examined. Wiener linear filters, Volterra series and

RBFN have been used to de-interlace a sample frame ("girl") and the results have

been discussed. The main goal of these experiments has been to minimise the

interpolation error, in the MSE sense. Obviously, a realistic de-interlacing system

must produce satisfactory results over a range of inputs. However, real images have

very different characteristics from each other. It is questionable then how a system,

trained on a single image, can produce satisfactory results on a range of other inputs.

As previously emphasised, the goal of a training procedure is not to learn the exact

pattern presented as the training set, but rather to create a statistical model of the

process that generates the training data. This is of paramount importance if the

network is meant to produce satisfactory results when interpolating unknown patterns.

From this viewpoint, the training set is just a particular realisation of a more general

process.

The ability of a model to predict values not seen in the training set is called its

generalisation. The most intuitive way of achieving generalisation is to extend the

training set to include as many training patterns as possible. Clearly any realistic

training procedure limits the size of the training set, and even a set made of a modest

number of frames might prove infeasible for high-speed computers. More generally, it

is often impossible to produce a large training set, as sometimes there might be

scarcity of available data. But there is a more subtle reason that leads us to pursue

generalisation using a limited number of training patterns. In fact, one wish to build a

system with a-priori generalisation abilities by creating appropriate training

procedures, rather than surrender to a "brute-force" approach.

110

This chapter addresses the problem of generalisation firstly introducing a larger

general set of frames, which will be used either as training set or as test set to assess

the generalisation performance. Prior to presenting the results, two key parameters in

assessing the generalisation ability of a network, the bias and variance, will be

discussed.

The next step will be to use a generalisation technique known as weight decay

(Bishop, 1995). This technique draws its theoretical background from the theory of

regularisation. An extended training set will be used in order to enhance the system

ability to generalise. This extended set deliberately includes one frame that is very

different from the others. Whilst most of the frames represent "natural" scenes, this

special frame is a page of text.

This investigation also considers the possibility of adding a-priori knowledge to the

training procedure. For some specific patterns we can determine, a-priori, the desired

output. It is desirable that our training is constrained to abide to these known patterns,

that the unconstrained MMSE solution does not generally achieve. This introduces the

subject of constrained optimisation, and it will be seen how this affects the

performance.

Finally, a mixture of experts (Jacobs et al, 1991) is introduced that overcomes many

of the limitations of alternative methods. Whenever a single, fixed-parameters

network does not deliver satisfactory results, it may be convenient to adopt a more

flexible solution, where the parameters are changed adaptively according to the

current input. This approach can be seen as a pool of networks that specialise their

mapping on different clusters of inputs. A decision algorithm determines which

network to use according to some features in the input. It is clear that the main

drawback of this approach is the increased computational complexity. Therefore it is

necessary to maximise the performance with the minimum additional cost.

I l l

7.2. The frame set

Figures l.a to l.f show the frames that will be used in the following experiments.

Figures 2.a to 2.f show their normalised histograms. One can see that the images

present different visual features, like different textures, borders, uniform areas, etc.

The different shapes of the histograms in part reflect this variety. In particular, frames

4 and 6 have peculiar characteristics that differentiate them from the other frames.

Frame 4 has a characteristic line texture, appearing in the oblique rows in the man's

shirt, that represent an insolvable problem to many de-interlacing systems, since the

corresponding spectral contribution is located in the high-frequency part of the

spectrum. Specifically, in some regions the spacing between a dark line and a bright

line will be exactly one pixel in the vertical direction. In the resulting source field, a

uniform bright area needs to be replaced by a series of alternating bright and dark

lines. This is clearly a case of unrecoverable aliasing, since the sampling process has

completely destroyed the original information. Figures 3.a and 3.b show the frequency

spectra for frames 3 and 4 respectively. The broader frequency content of frame 4 is

evident. Also figures 3.c and 3.d show the projected distributions for these two

frames. The greater spread in figure 3.d arises because of the fact that dark and light

lines are in close proximity.

Frame 6 ("latin") is of particular interest, since it differs in many ways from the

"natural" scenes depicted in the other frames. The corresponding patterns are mainly

uniform black areas (background), uniform white areas (the letters) and sharp

transition areas. One can see from figures 4.a and 4.b that the spectrum of frame 6 has

a broader frequency content compared to frame 3, and the distribution of inputs is

rather different, being mainly concentrated on the borders of the input space. It will be

shown how this will dramatically affect the OLS training of RBFN.

1 1 2

Figure 1 .a. Frame 1 ("pond").

Figure l.b. Frame 2 ("boat").

113

F

Figure I.e. Frame 3 ("girl").

I

Figure l.d. Frame 4 ("shirt").

114

Figure I.e. Frame 5 ("face").

inwquat v
iu*w odog
WW dofof
*imtl w n p
itdoiof fu(
Immpor cu
auodm»i(i

a

Figure l.f. Frame 6 ("latin").

115

1,06

1.51

pixel value

317

127

127

1.37

6.75

127

127

127

- 128 127

Figure 2. Frame set histograms; (a) frame 1, (b) frame 2, (c) frame 3, (d) frame 4
(e) frame 5, (f) frame 6.

116

14.83 0.5

- 0 . 5

- 0 . 5 0 0 .5

Figure 3.a. Frame 3 spectrum.

r
' J

1
a mr »

"

-0.28 - 0 . 5
- 0 . 5 0 0.5

Figure 3.b. Frame 4 spectrum.

Figure 3.c. Frame 3 input distribution.

-128 0

Figure 3.d. Frame 4 input distribution.

0 0.5

Figure 4.a. Frame 6 spectrum. Figure 4.b. Frame 6 input distribution.

117

7.3. Bias and Variance

One of the key points to obtain a sufficiently general training is to make sure that the

estimated mapping is sufficiently smooth, i.e. to ensure it does not over-fit the data. In

order to predict unseen patterns, one should avoid too closely matching of the training

patterns, since these may be not sufficiently representative of the full data. On the

other hand, excessive smoothing of the mapping produces a poor result, albeit

uniform over a wide range of inputs.

There are two key factors that govern this phenomenon. One is the order of the model,

which dictates the size of the network. The other one is the training set, and its ability

to represent the underlying data generator. Even if one had access to an exceptionally

good set of training patterns, a poor interpolation maybe produced simply because the

order of the model is insufficient to fit the data properly. Alternatively, a high-order

model may over-fit the data. If these are noisy, or poorly represent general inputs,

then the effect of the increased order is that the model fits the noise together with the

data or, in the second case, that it specialises its mapping to an unrepresentative

training set.

One way of measuring these effects is to decompose the error into bias and variance

components (Geman et al, 1992). In the case of a MSE training, the error can be

written as (assuming an infinite training set):

where is the density of the input set, (?|x^ = J /p{ t \x)d iL is the conditional

average of the target set and |x^ = x)dx is the conditional second-

moment of the target.

118

As already discussed in chapter 2, the first term in (7.1) vanishes when the MMSE

solution is reached:

.y(i)==(f|3:) (7.2)

The second term does not depend on the mapping j (x) . In fact, the second term

represents the intrinsic noise in the data and sets the lower limit on the error that can

be achieved (Bishop, 1995). In practical situations, the network is trained on a finite

number N of patterns. Hence, the first term in (7.1) depends on the particular set

chosen. If we consider an ensemble of T training sets, all made of N patterns, and all

drawn from the same joint distribution we can remove the dependency from

the single training set by the ensemble average Ej- over the ensemble T\

(7.3)

If the first term in (7.1) is zero for a particular training set, the ensemble (7.3) could

still be greater than zero because (7.2) is not valid for the other sets. The quantity in

(7.3) somehow represents the intrinsic ability of a particular model to characterise the

system. In fact it averages the influence of the particular training set on the

determination of the model. We can decompose (7.3) in bias and variance

components:

+

(b i a s) :

j " E r E r

variance

119

The details of this decomposition can be found in Bishop (1995). Equation (7.4)

makes explicit why (7.3) could be greater than zero. Specifically, it makes explicit the

influence of the model's order, and the influence of the training set.

Consider a situation when a low-order model, for instance a l^'-order polynomial, is

trained to interpolate a 3'̂ ^-order system (see figure 5.a). The T training sets are all

supposed to be appropriate, e.g. with a low level of noise. In this case, the variance

will be very small, since all the sets generate approximately the same mapping

7 (X) = E j [3 (̂ X)]. Conversely, the bias will be high since the insufficient order of

the model will generate mappings that are on average very different from the "true"

mapping (?| •

The opposite happens when the model order is higher than the system (e.g. 10^-order

model), and the set of training patterns is noisy (see figure 5.b). The effect of noise

will be cancelled out by the ensemble average, and the bias will be negligible. On the

other hand, the high order will make the model over-fit the data. Each individual

mapping y(x) will be very different from the average Ej- [;^(x)], and the variance

will be high.

1000

-1000

system
training
model

1000

-1000

Figure 5. Polynomial fitting, (a) linear approximation to a cubic (b) lO^-order polynomial
approximation to a cubic.

One might assume that the two quantities trade-off against each other, although it is

not necessarily so. For instance, a model might have high bias and variance, if its

order is insufficient and it is trained on noisy data. On the other hand, it is possible for

120

both quantities to be small if the model is accurately chosen to match the system's

complexity, and the training sets are properly chosen.

In the case of RBFN, one expects the models to have higher variance and lower bias

when the number of nodes is high, and the contrary to be true when the number of

nodes is small. In chapter 6 it was shown that a RBFN with a large number of nodes

has sufficient complexity to produce accurate mappings of the training set considered.

We will shortly see that the price paid for this accuracy is that the model specialises

on the training set, producing poor results when attempting to interpolate a new set of

inputs.

Given the previous considerations, one way to reduce variance keeping the bias low is

to join training sets, i.e. creating an ensemble of sets that are the union of two or more

frames. In this case, the sets are more uniform, therefore reducing the variance. As

already stated, this approach is limited by computational issues, and does not produce

"built-in" generalisation.

7.4. Regularisation

It has been shown how a network that over-fits the training set may produce

insufficiently general results. Therefore we should try to limit the tendency of the

training to over-fit the data.

One way of doing so is by means of regularisation (also see section 3.9).

Regularisation has been introduced in chapter 3, in relation to RBFN. Regularisation

is a way to control the smoothness of an interpolating mapping, and as such is clearly

a generalisation technique since it tends to cancel out high-curvature over-fitting. The

technique consists of adding a penality term to the cost function, so that the tendency

of the network to minimise the error at the cost of smoothness is counter-balanced by

a factor that increases as smoothness decreases:

^ + ^ ^ (7-5)

121

Where [^(x),jv(x)] is the unregularised cost function (e.g. the MSB), that

typically depends on how close the mapping 3^(x) is to the particular training pattern

/(x). Conversely the regularisation term, Q, is a function of only the network's

mapping. The contribution of the regularisation term is controlled by the

regularisation factor v. In general, the unregularised cost function decreases as the

training progresses, while the regularisation term increases as the mapping approaches

the training set. A minimum of C can be found that is a compromise between the

accuracy of the mapping and its ability to generalise (figure 6). Examples of

regularised cost functions have been given in section 3.9. In this chapter a simple

regulariser is applied; the weight decay training technique.

1.4
higher bias
lower variance
under-fitting

lower bias
higher variance
over-fitting

+ n

20 30 40 50 60 70
training iterations

90 100

Figure 6. Illustrative example of regularised training for a general iterative optimisation.

7.4.1. Weight decay training

One of the simplest forms of regulariser is weight decay, which uses a penalty term

consisting of the sum of the squared values of the linear weights:

Q
1 M

(7.6)

122

This constitutes a regulariser in the sense of Arsenin and Tikhonov (Tikhonov,

Arsenin, 1977). The subsequent regularised minimisation function is referred as ridge

regression (Bishop, 1995; Smola et al, 1996). The empirical justification for this

form of regulariser is that over-fitted mappings with large curvatures usually require

large values of the weights. By using in (7.5) the regulariser given by (7.6), the

training algorithm is encouraged to produce small weights and consequently,

smoother mappings. It has been shown that a regulariser of this form can lead to

significant improvements in the generalisation ability of a mapping (Hinton, 1987).

If is the sum-of-squares error function, insights into the effect of weight

decay can be drawn. In the absence of regularisation, the error function can be written

as a quadratic form:

^ ERR — ^ — P ^ (7.7)

The solution that minimises (7.7) is the familiar one:

R 0 - P = O = (7.8)

In presence of the weight decay regularisation term, it is easy to show that the solution

is given by:

(R + v I) 0 —P = 0 = ^ > 0 = (R + V - I) ' P (7.9)

Hence, the solution moves away from the minimum of the error function, to a sub-

optimal solution that trades accuracy with generalisation. Equation (7.9) also provides

a direct implementation of the algorithm, by adding the factor v to the diagonal

elements of R.

123

7.4.2. Orthogonal weight decay training

Having described the weight decay technique, we seek to apply it to the OLS

algorithm described in chapter 4. At each step k of the orthogonalisation, the selected

regressors are arranged into an orthogonal set and R is diagonal with non-null

elements r,/ = wfW/ . Consequently, the error reduction ratio given by substituting

(4.4) in (4.5) will be modified by weight decay to become;

7.4.3. Support Vector Machines

An alternative viewpoint to the problem of generalisation is given by the theory of

Support Vector machines (SV) (Smola et al. 1996; Vapnik, et al. 1997; Drucker et al.

1997, Smola, Scholkopf, 1998). The SV theory is a non-linear generalisation of the

Generalised Portrait algorithm (Vapnik, Lerner, 1963; Vapnik, Chervonenkis, 1964).

In its most general form, the SV regression algorithm tries to determine the mapping

>'(x) = 4>^h (x) , with maximum flatness, constrained to some condition on

the mapping's error, C{e)= C{t-y). The flatness is defined as the squared sum of the

weights as in (7.6) (Smola et al. 1996). Therefore, the flattest mapping is the line with

minimum slope in that satisfies the constraining condition.

Different to conventional regularisation techniques, in SV theory the function to

minimise is the squared sum of weights (7.6), which therefore is called the primal

objective function, while C{e) represents a condition (constraint) for the minimisation

problem. Hence, the SV problem is a constrained minimisation of (7.6), where the

constraint can be, for instance, the maximum permitted value of the error function.

It can be shown that there are several connections between the SV theory and

regularisation. In particular, if C{e) is the standard MSB error, the two approaches

124

lead to the same algorithm (Smola, Scholkopf, 1998). For this reason, we will not

investigate the application of SV theory to the solution of our problem, but rather

apply the weight-decay technique that has the minimisation of the MSB as its main

goal

7.5. Individual results

In this section we will present the performance of the system trained on individual

images and then applied to the wider data set. In other words, we will examine how

each of the frames 1 to 6 can be considered as being representative of the other

frames. The systems investigated will be the linear filter, the 3"'-order Volterra series,

and the HGRBFN using the 8] sampling lattice.

These experiments will show how inappropriate training leads to poorly generalised

mappings and, more importantly, how non-linear performance is affected. As the

order of the system increases, an unrepresentative training set produces less general

results.

7.5.1. Linear filters

Table l.a shows the MSE of 6 linear filters. Each filter is trained using one image and

its performance is measured for all 6 images. The results are arranged in a matrix

whose rows represent the individual filters (i.e. the training sets) and the columns the

resulting normalised MSE on the frames. Each column j is normalised with respect to

its y-th element. In other words, the ability of the filter i to de-interlace the frame j

(hereinafter referred a "cross-result") is compared to the result obtained with the filter

j, which will necessarily produce the most accurate result ("self-result"), since it has

been trained on they-th frame.

One can see how the performance is similar for all the filters. From table 1 .b, one can

see that frame 2 produces the best overall performance, although the differences are

not significant. Note that in table l.b, the self-result has not been included in the

calculation.

125

input image
1 2 3 4 5 6

1 1 1.0591 1.2518 1.0964 1.1577 1.1541
2 1.0364 1 1.0438 1.0304 1.0169 1.0228

.2
3 1.0865 1.0265 1 1.0889 1.0080 1.0188

Li. 4 1.0891 1.0552 1.2177 1 1.1359 1.0600
5 1.0625 1.0163 1.0118 1.0729 1 1.0243
6 1.0902 1.0250 1.0333 1.0522 1.0260 1

Table 1 .a. Linear results.

Filter
1 2 3 4 5 6

mean 1.1438 1.0301 1.0457 1.1116 1.0376 1.0453
stdev 0.0731 0.0107 0.0389 0.0674 0.0281 0.0274

Table Lb. Linear results, average and standard deviation.

7.5.2. Volterra series

Tables 2 show the corresponding results for a 3""-order Volterra model. In table 2.a

the self-results are normalised with respect to the corresponding linear self-result,

whilst in table 2.b and c the cross-results are normalised with respect to the

corresponding Volterra self-result. The situation observed in the last section changes

dramatically when a 3""-order Volterra series is examined. The results noticeably

differ and in some cases there is a dramatic effect on performance with a complete

lack of generalisation.

As anticipated in previous sections, the most peculiar behaviour is shown by filter 6,

which has been trained on the text image. This series exhibits the largest performance

increase compared to the linear filter (table 2.a), but it also exhibits a very poor ability

to generalise (table 2.b). It is evident that the attempt of the series to match such a

peculiar pattern produces an over-specialised (i.e. over-fitted) map, that is unable to

estimate patterns different to those included in the training set. Unsurprisingly, the

other series poorly estimate frame 6. Patterns like those encountered in frame 6 are

generally rarely encountered in the other frames. Therefore, their density p{x) is

small, and they scarcely influence the minimisation of the error.

126

input i m a g e

1 2 3 4 5 6

ratio 0.7745 0.8463 0.7726 0.7865 0.8658 0.4789

Table 2.a. Volterra/Linear ratio (self-results).

Input i m a g e

1 2 3 4 5 6

1 1 1.1520 1.3615 1.5163 1.3593 2.4340

2 1.2002 1 1.1257 1.3046 1.2615 2.0619

3 1.7131 1.2051 1 1.7228 1.2184 3.9398

m
tn 4 2.4079 2.0198 3.1139 1 2.7101 3.7983

5 2.3924 1.3673 1.2587 2.5180 1 11.2321

6 13.4649 18.8674 40.7060 !:9126 121.3406 1

Table 2.b. Volterra results (normalised to self-results).

filter
1 2 3 4 5 6

mean 1.5646 1.3908 1.9598 2.8100 3.7537 40.0583

stdev 0.5029 0.3812 1.1354 0.6829 4.2198 47.2478

Table 2.c. Volterra results, average and standard deviat ion.

A similar behaviour is found, although not in such dramatic way, for series 4. The

presence of high frequency patterns affects the general performance of the mapping.

An opposite behaviour can be conjectured for series 5 ("face"). The prevalence of

uniform areas in the training set produces a mapping that lacks precision on the

images with a preponderance of high contrast areas (frame 1, 4 and 6). Series 1, 2 and

3 show a reasonably stable behaviour over the frame set, albeit frame 6 remains

difficult to interpolate. The average results are shown in table 2.c.

These simulations clearly highlight the degradation in generalisation that using a

Volterra series introduces, as compared to a linear de-interlacer.

7.5.3. Hybrid GRBFN

A corresponding behaviour is found in the application of RBFN techniques. Tables 3

show the results using a hybrid network with OLS training. As the model order (i.e.

the number of centres) increases, the performance of the mapping on the training

pattern improves and produces a corresponding reduction in the ability to generalise.

Again, networks trained on frame 6 show the most peculiar behaviour.

127

M=10
input i m a g e

M=10
1 2 3 4 5 6

1 1 1.0554 1.2550 1.1444 1 2240 1.3167

.V
2 1.0627 1 1.0539 1.0944 1.2467 1.1967

1
3 1.1068 1.0247 1 1.1489 1.1520 1.1527

1 4 1.1157 1.1458 1.4829 1 1.2153 1.1501
L_ 5 1.0770 1.0187 1.0223 1.0959 1 1.1612

6 2.5660 5.1117 13.5979 2.9994 29.4186 1

M=25
input i m a g e

M=25
1 2 3 4 5 6

1 1 1.1293 1.5442 1.4169 1.5599 1.6066

2 1.1341 1 1.0724 1.1649 1.2214 1.5905

1
3 1.1822 1.0461 1 1.2436 1.0846 1.4409

1 4 1.2709 1.3196 2.0299 1 4.1006 1.4587

5 11782 1.0315 1.0343 1.2087 1 1.4867

6 3.7294 4.1191 9.3875 2.7428 56.0766 1

M=50
input image

M=50
1 2 3 4 5 6

1 1 1.1935 1.7192 1.5693 1 6573 1.9771

2 1.1866 1 1.1414 1.2603 1.2787 1.9364

1
0)

3 1.2593 1.0929 1 1.4418 1 2700 2.0237
1
0) 4 1.5774 1L5675 2.7314 1 14.3283 2.0534
L- 5 1.2715 11048 1.1807 1.3634 1 1.9777

6 3.6851 3.4543 8 j & # 3.4752 27.8970 1

M= 100
input image

M= 100
1 2 3 4 5 6

1 1 1.2624 1.6620 1.5920 1.7430 2.6317

2 1.2823 1 1.2071 1.3844 2 4735 2.2670

i

3 1.3413 1.1346 1 1.5306 1.2584 2.5933

i 4 1.7150 1.7249 2.9347 1 7.6300 2.4784

5 1.3658 1.2012 1.2947 1.5385 1 2.3311

6 5.2940 5.7335 16.0688 4.7179 42.8350 1

Table 3.a. OLS cross-results, normalised to self-results. 10 (top), 25, 50 and 100 (bottom) centres.

network

1 2 3 4 5 6

2

10 1.1991 1.1309 1.1170 1.2220 1.0750 10.7387

2 25 1.4514 1.2367 1.1995 2.0359 1.1879 15.2111
c 50 1.6233 1.3607 1.4175 4.4516 1.3796 9.3872
o

100 1.7782 1.7229 1.5716 3.2966 1.5463 14.9298

Table 3.b. OLS mean results, normalised to self-results.

128

input image
1 2 3 4 5 6

10 0.9804 0.9903 0.9924 0.949 0.9826 0.8901

25 0.8922 0.9662 0.9625 0.8725 0.9579 0.7144

50 0.8183 0.905 0.8422 0.8096 0.9299 0.5529

100 0.7388 0.8422 0.7759 0.7457 0.871 0.4472

Table 3.c. RBFN/linear ratio sequence.

input image
1 2 3 4 5 6

10 1.266 1.1702 1.2844 1.2066 1.135 1.8585

25 1.152 1.1416 1.2458 1.1093 1.1064 1.4917

50 1.0566 1.0694 1.0901 1.0294 1.0741 1.1544

100 0.954 0.9951 1.0042 0.9482 1.006 0.9338

Table 3.d. RBFN/Volterra ratio sequence.

Attempting to produce more general results by reducing the network's size is

obviously limited by the general increase of the error. However, these results confirm

the observations on the increasing specialisation, since as the number of centres

decreases, the network is forced to map the general pattern of the data common to all

frames considered, rather than the specific, particular patterns in the training set. This

point will be re-addressed when the bias and variance for the orthogonal sequence are

evaluated (section 7.5.5).

7.5.4. Linear and non-linear parameters

The Volterra series uses a fixed non-linear structure and produces poor general

mapping but the best self-results. This is because the non-linear layer is, in principle,

able to estimate any pattern, and therefore is highly general. It is therefore the weights

that, trained to match a specific set, are responsible for the lack of generalisation.

From this point of view, one might assume that the generalisation problem is a linear

one. Techniques that achieve more general results by linear means (e.g. the weight-

decay technique illustrated in section 7.4.1) might be applied successfully to improve

performance.

In RBFN, the picture is different. The non-linear parameters (i.e. centres and widths)

are related to the training set since the distribution of centres approximates the

distribution of inputs. This is especially true when the initial centres are chosen from

129

the training set. Furthermore the application of OLS may reduce the generalisation of

the non-linear layer. Nodes in an initially large network are chosen only according to

their ability to describe that particular training set. Therefore, nodes that might prove

useful to generalise the result may yet be discarded by OLS.

% 0.9
(O

100

orthogonalised centres

Figure 7. Network trained on frame 2 and tested on frame 6. Normalised with respect to the linear
self-result. (1) orthogonalisation, weights and centres from frame 2. (2) weights calculated on
frame 6. (3) orthogonalisation and weight calculation based on frame 6. (4) frame 6 self-result.

It is then reasonable to explore how the generalisation ability of the network is

determined by the linear and non-linear layers, and how OLS influences the results.

Figure 7 shows the results of the following experiment. A number of centres (1000) is

randomly selected from frame 2, from which three networks are created. The first is

trained on frame 2, using OLS; the second is initially orthogonalised on frame 2, but

the weights are re-calculated from frame 6. Hence the centres are selected from and

optimised for frame 2, but the weights are optimised for frame 6. Finally, the last

network is orthogonalised and trained on frame 6, although its initial centres are still

drawn from frame 2. The performance of the three networks is evaluated on frame 6,

and compared with frame 6 self-result. The MSB is normalised with respect to the

MSB of the linear self-result.

These results show how the three phases of the training (selection of centres,

orthogonalisation, and weight's calculation) determine the generalisation ability of the

model. The first network, completely unrelated to frame 6, produces a result that is

worse than that obtained with the linear filter. The second network is the most

130

interesting case, since although the centres are drawn from frame 2, and

orthogonalised on it, the recalculation of weights based on frame 6 produces a

reasonable result. (This is an understandable result, since the exceptional self-result of

network 6 is largely due to over-fitting). Hence centres whose position is optimised

for frame 2 still produce a good result if the weights are properly "re-tuned". Finally,

the full OLS training on frame 6 of centres initially drawn from frame 2 produces a

result that is virtually identical to that produced by network 6. This suggests that the

source of the initial population of 1000 centres is unimportant.

Therefore it is reasonable to assume that in the RBFN case, the problem of

generalisation can be addressed by investigating more general training procedures for

the linear layer. In other words, the experiment shows that the initial choice of centres

is not as critical, in terms of generalisation, as the determination of weights.

25 50
orthogonalised centres

100 10 100

Figure 8. Network trained on frame 6 and tested on frame 2: (I) orthogonalisation, weights
and centres from frame 6. (2) weights calculated on frame 2. (3) orthogonalisation and weight
calculation on frame 2. (4) frame 2 self-result.

One should be careful however that the initial centres are chosen from a sufficiently

general set. The same experiment is repeated with the role of frame 2 and frame 6

reversed. The results are shown in figure 8, that is divided in two separate plots

because of the different scales needed to represent the curves. This time, the

orthogonalisation on frame 2 of centres selected from frame 6 produces a result that is

very different from the frame 2 self-result. Therefore, we must assume that the

random selection of centres from frame 6 does not produce a generalised set, and in

131

this case the generalisation problem is truly non-linear, a situation to be avoided

where possible.

7.5.5. Bias and variance

This section investigates how the bias and variance change as the order of the model

(i.e. number of centres) increases. Specifically, we seek to calculate these two

quantities for a model attempting to interpolate frame 2, i.e. compute the two terms in

(7.4). The main problem is the determination of the "true" mapping | , since this

is the overall goal of the thesis.

105

o 3

(0 0.95

50
orthogonal centres

100

Figure 9. Training on the full frame set. (1) Self-result of frame 2. (2) Centres selected from
frame 2, and orthogonalised on the whole frame set (frame 6 excluded). (3) Average of the
cross-results on frame 2. (frame 2 and 6 excluded).

One way to achieve an estimate of the true mapping is by training 100 centres,

orthogonalised from frame 2, on a training set consisting of the set of 5 frames (frame

6 being excluded as non-representative of a general image set). In this way the

mapping will not over-fit frame 2, since it has been trained on a larger set. One might

question whether 100 centres are sufficient to guarantee a low bias (i.e. if the model

order does not over-smooth the set and hence frame 2), but the objective is to validate

the discussion in section 7.3, so that shortcomings in our absolute measures of bias

and variance are not critical. Figure 9 plots the full-training MSE computed on frame

2 and normalised with respect to the linear self-result for various network sizes. From

132

figure 9 one can see that the training on the larger frame set produces sub-optimal

results compared to frame 2 self-result^.

The individual responses 3^(x) are calculated by firstly training the centres on frames

1 to 5 (hence creating individual mappings optimised on these frames), and then using

frame 2 as input. The results are averaged to estimate Ej- . Frame 6 is excluded

from all the calculations, since it is not representative of frame 2 and it would only

generate unwanted outliers.

The density of x is considered uniform over Z, the number of pixels of the training set,

p{s)=I7^ , although this is a rather simplistic assumption. The results are shown in

figure 10. The plots are normalised with respect to their maximum value. It is evident

that the plots conform to those anticipated in light of the discussion in section 7.3,

despite of the simplistic method used. Increasing the number of centres reduces the

bias since the model's order is increased, but conversely this makes the model more

sensitive to the specific training pattern and increases the variance.

bias
variance

5 0

orthogonal centres
100

Figure 10. Bias and variance for the or thogonal model aimed at in terpola t ing f r ame 2.

^ One may question why we do not use this extended training model in the first p l ace . The point is that

we want to devise procedures that give intrinsic generalisation for limited t ra in ing sets.

7.6. Weight-decay training of Volterra series and RBFN

This section considers the application of weight decay techniques described in section

7.4.1, to Volterra series and RBFN. In figure 11 the average output error is shown

(cross-results and self-result) for each series, vs. the regularisation factor. The plots

also show the minimum and maximum values of the cross-result. The performances

of series 1 to 5 on frame 6 have been purposely omitted from the results, since they

generate unwanted outliers. All the sequences are normalised with respect to their

non-regularised MSB.

From figure 11 it is clear that frames 1, 2 and 3 produce the most general training sets.

The regularisation of their respective series produces little improvements to their

general performance. On the other hand, regularisation improves the performance of

non-general series, like 4, 5 and 6. However, the improvement is insufficient to

consider the corresponding series of practical use.

A similar result is obtained when regularisation is applied to the orthogonal training

of the RBFN. One should remember that weight decay is a linear technique, hence the

centres are not directly optimised to produce smoother mappings. However, since

regularisation is applied to the OLS procedure through equation (7.10), in some way

we also choose centres that, once trained, yield smaller weights.

Figure 12 and 13 show the results obtained using 100 and 25 centres. Note how

network 6 yields a relatively better result than the corresponding Volterra series. One

should be careful to consider that these results depend on the initial random selection

of centres (chapter 6), therefore it is inappropriate to draw any general conclusions

from this result.

Note also how the reduction of the number of centres improves the generalisation

performance of all the networks. We have already seen that this approach is limited

by the fact that the overall performance decreases when M is reduced. It has been

demonstrated that this is due to the decreased order of the model, and the consequent

decrease in variance.

134

"S
CO ro §
o c

LU
CO

3.5

2.5

0.5

average
rrin-max values

10"̂ 10"* 10^ 10'̂

regularisation parameter v

(c)

150

100

10̂ icr iQ-̂ 10'̂

10'= 10"* i (r 10̂ ^

Figure 11. Regularisation of Volterra series. Mean, minimum and maximum values over frames
to 5. (a) Frame 1, (b) frame 2, (c) frame 3, (d) frame 4, (e) frame 5, (f) frame 6.

135

(a)
3 . 5

3

oS 2 . 5
w

(U

E
2

n r 1 . 6 1 . 6

m
w 1

0 . 5

0

average
min-max values

10^ lO-t 10"̂ 10"'

regularisation parameter v

(c)

3.5

3

2.5

2

1 . 5

1

0 . 5

10

8

6

4

(b)

60

5 0

4 0

3 0

20

10

OL

10"=

10'=

10"'

(d)

1CM

(f)

10-

lO-"

10'̂

10"̂

10-= i (r ic r icr

Figure 12. Regularisation of RBFN series, 100 OLS centres. Mean, minimum and maximum
values over frames 1 to 5. (a) Frame 1, (b) frame 2, (c) frame 3, (d) frame 4, (e) frame 5, (f)
frame 6.

3.5

3

% 2 5
CO

^ 2

I 1.5
LU
W 1

0 . 5

0

(a)

— a v e r a g e
min-max values

^

- - - - ,

10"® 10"* 10^ 10^

regularisation parameter v
i(r icr icr lo'

Figure 13. Regularisation of RBFN series, 25 OLS centres. Mean, minimum and maximum
values over frames 1 to 5. (a) Frame 1, (b) frame 2, (c) frame 3, (d) frame 4, (e) frame 5, (f)
frame 6.

137

10^ 10-* 10"̂ 10^

regularisation parameter v

(c)

10 ' 10"* i (r 10'

i (r i (r 10^ 10' i(r i(r lo-" 10"

Figure 14. Regularisation of RBFN series, 100 OLS centres with frame 6 as input, (a) Frame 1,
(b) A-ame 2, (c) frame 3, (d) frame 4, (e) &ame 5, (f) frame 6.

7.7. Extended training set

The preceeding sections demonstrated that it is difficult to improve the performance

of the interpolator with the training techniques adopted. Training based on frame 2 for

instance is sufficiently general to produce reasonable results over frames with similar

characteristics, e.g. frame 1 and 3. Nevertheless, it proves ineffective on images like

frame 6. Figure 14 shows the regularisation sequence for RBFN networks 1 to 6,

when frame 6 (excluded from figures 12 and 13) is the input. The values are

normalised with respect to the network 6 self-result. It is clear that, although

regularisation may produce some improvement, good performances achieved by

training on that frame is never repeated, and a specialised network is required to

obtain good results for this frame.

In fact, reaching such result requires a non-smooth mapping, which makes weight-

decay counter-productive. It is unclear whether training on a single frame is sufficient,

and whether a single network can cope with such differing inputs. In this section, we

will address the first of these questions.

The goal of this section is to produce a training that minimises the MSB on a

combination of patterns from frame 2 and frame 6. However, we will use the non-

linear structure of network 2, so the initial set of 1000 centres will be drawn from

frame 2. It has been shown that this selection is not critical to the performance on

frame 6. A weighted sum of two correlation matrices R and two cross-correlation

vectors P is formed. The two correlation structures are computed from the non-linear

layer, when the inputs are respectively frames 2 and 6.

R = (l - v) . H ^ (i) H (x) (x)H(x) T
xe frame!

p - (I - V). H ' (x) / (x) + V • H ' (x)/(x)

x€ frame 6

x,/e frame 6

(% I 1)

with V G [O, l]. Finally, the OLS algorithm is applied in its matrix form (chapter 4,

section 3) to orthogonalise the matrices R and P. Note that (7.11) has the formal

structure of a regularisation. One can assume that the solution of (7.11) forces a

network designed to minimise the error on frame 2 to yield a reasonable result on

139

frame 6 (or vice-versa, given the symmetric form of the regularisation). In fact,

<1> = P with R and P as in (7.11) is the MMSE solution of the error function:

L-\

n=0

L-\

(l -v) - X
«=0

n=0 frame 6

\„,t„e frame!

(7.12)

(It has been assumed for simplicity that the two training sets have the same length L):

This formal analogy justifies the choice of indicating the weighting factor as v.

The results, for a network with 100 centres, are shown in figure 15. The plot shows

the variations of the error on frame 2 and on frame 6 normalised to their self-result

(that clearly occur at v = 0 for frame 2 and v = 1 for frame 6). The average result over

the two frames is also shown.

<a 2.5

0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6 0 . 7 0 . 8 0 . 9 1

regularisation parameter v

Figure 15. Extended training set. (1) result on frame 2 normalised on frame 2 self-result
(2) result on frame 6 normalised on frame 6 self-result (3) average result.

140

From the average curve one may assume that, at its minimum, little improvement is

achieved. However, from figure 16, where the variations are normalised to the

corresponding linear self-result, one can see that for v ~ 0.15 there is a noticeable

improvement for frame 6. Conversely, there is a much smaller decrease of

performance for frame 2, to a level that might be considered acceptable. It is clear

how the controlled extension of the training pattern can improve the performance of a

network over particularly intractable inputs, at the same time assuring a satisfactory

level of smoothness and generalisation.

115

1 . 0 5 4

ffi s
0 . 9 5

0 . 8 5

0 . 1 0 . 2 0 . 3

regularisation parameter v

Figure 16. Extended training set. (1) result on frame 2 normalised on frame 2 linear
self-result (2) result on frame 6 normalised on frame 6 linear self-result.

7.8. Comparison of results

The following figures show the comparative results obtained training the Volterra

series and a 100-centres network on frame 2 using the different techniques described

previously. In figure 17 one can see the MSB of the Volterra series 2 and RBFN

network 2, unregularised and regularised, over the frame set. In the upper frame of the

plot the results are normalised to the linear self-result, whilst the bottom plot is

normalised with respect to the corresponding non-linear self-result. From these plots,

it appears that the Volterra series produces a more general result than RBFN, albeit

the difference is primarily on frame 5. However, the regularisation of the RBFN

produces a result on frame 5 that is comparable to that obtained by the Volterra series.

141

That said in general, the application of regularisation does not produce any substantial

advantage on the other frames.

• (2)

w 1 . 4

3 4

input frame number

O (2)

o (4)

3 4

input frame number

Figure 17. Comparison of Volterra and RBFN trained on frame 2, tested over the frame set.
Top; normalised to linear self-result. Bottom; normalised to non-linear self-result. (1) Volterra
series, (2) RBFN, (3) regularised Volterra series (v = 10"^) (4) regularised RJ3FN (v = 10"'').

Figure 18 shows the result of the application of the extended RBFN trained on frame

2 and 6, with v = 0.15. Note that the training is not regularised. The extended training

has a beneficial effect and yields a MSB on frame 5 which is comparable to that

obtained via regularisation, and with the expected improvement of the performance on

frame 6.

142

2.6 r

2.4

2.2

2
0)
p 1.8

()
c 1.6 -

Pil
% 1.4 -

<>

U
1.2 ^

1 ^

na
1

• (1)
o (2)
O (3)

o
a

2 3 4 5 6
input frams number

Figure 18. Extended training of RBFN network 2 (3), compared to non-regularised (1)
and regularised training (2), normalised to self-result.

It is then reasonable to ask why frame 5 is so poorly de-interlaced by network 2, since

the characteristics of the image do not look extremely different f rom frame 2 as in the

case of frame 6. Figure 19 shows the frame 5 target field, and two error fields de-

interlaced using RBFN. The first shows the absolute value of the difference between

the network 5 self-result and the network 2 cross-result. In the second the difference is

between the self-result and the cross-result of regularised network 2. It is clear that,

among other differences, there is a large error concentrated on a large uniform white

area (the collar), and that this error is basically a mismatch of the correct luminosity.

From the histograms in figure 2, note how frame 5 has a peak on the far right of the

histogram, corresponding to a high density of white values. Such a peak is not present

in the histogram of frame 2. It seems clear that the training on frame 2 fails to produce

the correct output on uniform, white inputs, because there are not enough patterns in

frame 2 to force a MSB solution to correctly account for these bright areas. Figure 20

shows this effect. The output of the de-interlacer is computed for inputs consisting of

uniform input x(o:) = a • [l . . . l]^ of value a, a e [-128,127] . Figure 20 shows the

output y{a) for a network trained on frame 2, a network trained on frame 5, and a

network trained on frame 2 and regularised. The plot clearly shows that training on

143

frame 2 lacks precision in the right end of the range. Regularisation, by generally

smoothing the response, tends to amend this problem.

(1)

(2)

(3)

Figure 19. (1) field 5 interpolated by network 5. (2) Difference with same field
interpolated by network 2 and (3) network 2 regularised.

The inset shows a detailed plot in the neighbourhood of « = 127, allowing one to

better appreciate the difference between the different results. The functions have been

evaluated at 64 grey levels, which was chosen to correspond to the smallest

perceptible grey level difference. Both the frame 5 self-result and the regularised

training on frame 2 produce results whose tolerance is less than this difference, while

the unregularised training on frame 2 fails this criterion.

144

1 2 7

o o o

o o o

Figure 20. Network's response on the bisector of the input space. (1) ideal response (2) network
5 self-result (3) network 2 self-result (4) network 2 regularised. Three of the corresponding
input-output pattern lattices are also shown.

7.9. Constrained optimisation

The previous section showed that a network trained on frame 2 fails to generate a

proper mapping of patterns on the diagonal of the input space. This produces a

perceputally disturbing artefact, because incorrect outputs are placed in a regular

geometric pattern (field lines). An example of this is in figure 21.

Figure 21. Line artefacts. Uniform white area de-interlaced using (a) network trained on frame 2
(b) network trained on frame 2, regularised (c) network trained on frame 5. Images are enlarged 2
times for a clearer perception of the artefacts.

For these patterns, which represent uniform areas in the image, the most desirable

outcome is known a priori. However, this information is not explicitly provided to the

145

training procedure. Broadly speaking, if the training sequence includes a sufficient

number of these patterns, like in frame 5, the result will generate a correct mapping

along the diagonal. If this information is absent, like in frame 2 for a ~\21, then the

training procedure may produce incorrect results. It seems reasonable to build a

network that has an explicit ability to map these patterns, regardless their relative

preponderance in the training set. A way to achieve this is by constraining the

optimisation to satisfying these conditions.

To achieve this the optimisation is modified by incorporating a linear constraint.

Specifically the problem becomes that of minimising (7.7) subject to the constraint

= O V « e [- 1 2 8 , 1 2 7] (7 .13)

where h # i s the vector of nodal outputs assuming a uniform input with grey level a.

In practice a limited number of constraints are used. One should understand that by

imposing the constraints on (7.7) the solution departs from the MMSE solution. An

excessive number of constraints lead to an inconsistent solution, i.e. there might not

be a minimiser for the constrained problem. Supposing that there are K constraints,

oce [«] (7.13) can be expressed in matrix form:

K ^ 0 = A

= [h e , . . . h e j ,] (7 1 4)

A = [ai

7.9.1. Lagrange multipliers

A well known technique to obtain constrained optimisation is by Lagrange multipliers

(Fletcher, 1987). The solution to the constrained optimisation is obtained by

minimising the Lagrangian function with respect to 0 and A

146

C (0) = 0 ^ R 0 - 2 0 ^ P - A ^ (K ^ 0 - A) (7.15)

where A = [A] ... is the set of Lagrange multipHers, one for each constraint. If

the inverse of the Lagrangian matrix L exists.

R - K -1 B - T
- K ^ 0 - T ^ U _

(7.16)

then the solution in 0 can be written as:

@ = B P + T A (%17)

The explicit expressions for B and T are:

1 -1 f r ^
K ' R K

- 1

B = R - R K K ^ R

T = R K l K R K

V y

-1

(7J8)

In figure 22 we show the results on the diagonal of the input space, for 3 constraints

a==0, a = -128 ,+ 127, (corresponding to the extremes and the mid-point of the

diagonal), for 5 constraints (additional constraints at « = ±64), and for 9 constraints

(additional constraints at a = ±32 , a = ±96). It is clear how, as the number of

constraints increases, the performance on the diagonal increases. In fact the result for

5 constraints is nearly indistinguishable from those obtained with 9 constraints. In

figure 23 we show the normalised cross-results for the unconstrained and constrained

cases. One can see the noticeable improvement in the results for frame 5. Again, there

is a negligible difference among the three constrained schemes.

More constraints could be considered by investigating other a-priori patterns. One

could use inequalities in (7.13) rather than equalities (e.g., -a<\, if we

147

intend to use 8-bit precision in the range -128 to 127). That would afford more

flexibility to the optimisation algorithm. However, care should be taken to abide by

the main goal of the optimisation (i.e. the minimisation of the error), and avoid

inconsistent constraints.

unconstrained
3 constraints

0)

- 1 2 8 0

a
127

8 -

5 constraints
9 constraints

0)

1
0

- 1 2 8 0

a

127

Figure 22. Constrained optimisation of network 2, 100 centres: absolute error on the diagonal.

o (1)
• 2

O 4

1 2 3 4 5
input frame nurrter

Figure 23. Cross-results, network 2 with 100 centres. (1) unconstrained (2) 3 constraints
(3) 5 constraints (4) 9 constraints.

148

7.10. Mixture of experts

The difficulty in reproducing the self-result on frame 6 without directly training on it

has been demonstrated. The extended training of network 2 on frames 2 and 6 reduces

the gap, albeit not completely. It has also been shown that, with the proper choice of

centres, the burden of specialisation falls mainly on the network's weights.

This raises the question as to whether a network with fixed weights is an appropriate

solution to the problem. One may imagine a model that changes its structure

according to the pattern presented at its input. A possible solution would be to create a

set of K networks that specialise their mappings on different sectors of the input

space. These networks might be even use different architectures, e.g. being a mixture

of linear, RBFN, and Volterra networks. A gating network selects the expert network,

i.e. the best mapping among the different alternatives, according to the position of the

current input in the input space. Such a structure is known as mixture-of-experts

model (Jacobs et ah, 1991). The schematic diagram of the model is depicted in figure

24.

LIZ-

network 1 network 2 network 3
• • •

network K
gating

network

i i i V i I i I

Figure 24. Schematic diagram of a mixture of experts model.

149

This model can be described by the equation:

jy(][)== (*(7 ;)jy; (%) (7.ISO
7=1

where y j i ^) is the output of the network j, j j = j j (x) is the 7-th output of the

gating network, and a ^ J j) is the mixing coefficient j. aj can be either a "hard"

switching function, in which case only one network operates at any time, or a "soft"

switching function, in which case the output is a weighted sum of all the networks'

responses. The latter solution is preferable, since a properly trained system guarantees

continuity and smoothness on the transition from one partition of the input space to

another. This avoids artefacts due to responses on similar patterns that lay across a

partition boundary. An example of a soft gating is given by the softmax function

(Bridle, 1990; Jacobs, 1991):

a G o) = f ' (? :%))
(/ /)

k

Another point in favour of a "soft" switching function is that it can also be

demonstrated (Bishop, 1995) that the error of a weighted sum of networks can be

singnificantly reduced. A weighted sum of networks is referred in literature as

committee of networks (Perrone and Cooper, 1993; Perrone, 1994). This reduction can

be seen as arising from a reduced variance due to the averaging over many networks.

Therefore, it is suggested (Bishop, 1995) that the individual networks should not

optimally trade-off bias and variance, but rather prefer smaller bias, since the variance

is reduced by the averaging process.

To illustrate the applicability of the technique to the de-interlacing problem, a system

is developed based on separating the input into high and low contrast regions. Two

1 5 0

features are derived for the input vector x. One is the projection x j, of x onto the

diagonal, and the other is the norm of the component of x orthogonal to the diagonal,

that we call xj_ = |{xj_||, see figure 25. The two axis are denoted as k (parallel) and co

(orthogonal). The value of Xj_ can be interpreted as a measure of contrast, whilst x j

is a measure of brightness. It is then relatively easy to decompose the input space in a

high-contrast and a low-contrast region. Figure 26 shows the squared errors resulting

from applying various de-interlacing schemes to the whole frame set, plotted in the tt-

0) plane. The errors are normalised by the total sum of squared errors. Results are

shown for a network fully trained on frame 2, for a network using centres from frame

2 and the weights recalculated on frame 6, and a network fully trained on frame 6.

White areas represent zones where no input has been encountered.

high contrast

low-Contrast

high contrast

128.V2

- • 0)

-128 V2

, . / l 2 8 . V 2

Figure 25. Parallel and orthogonal components illustrated for a 2-tap vertical lattice.

These differences can be further appreciated in figure 27. The difference in the n-co

plane between the errors of the network trained on frame 6 and of the network trained

on frame 2 is plotted, along with the difference between the errors of the network

trained on frame 6 and the network initially trained on network 2 and with calculated

on frame 6. A negative value indicates that in that area network 6 produces on average

a smaller error.

151

372

-372

X 10"

372

372

-372

X 10

372

372

-372

X 10

372

Figure 26. oy-n error planes, showing the average error calculated using the full frame set.
Network 2 (a), network 2 with weight calculation on frame 6(b), network 6 (c).

152

372
X 10"

-372
372

372
X 10"

-372
372

372

-372
372

Figure 27. (O-k error difference planes, showing the average error difference between different
training schemes, calculated using the full frame set. Network 6 minus network 2 (a), network
6 minus network 2 with weight calculation on frame 6 (b), network 2 with weight calculation
on frame 6 minus network 2 (c).

153

These figures illustrate that networks 2 and 6 perform well in different regions of the

n-(0 plane. Note also how network 2, with weights calculated on frame 6, has a

smoother performance than the other two networks. Therefore, a mixture of experts,

i.e. a system that applies different de-interlacing schemes to different regions of the n-

00 plane, could produce a result that is general but also able to produce good results on

difficult frames like frame 6.

It is beyond the scope of this thesis to investigate this possibility. What it is suggested

here is that the n and m components of x could be used by the gating network to

switch between a general de-interlacer like a RBFN trained on frame 2 and

constrained on the diagonal, and a more specialised system like a RBFN trained on

frame 6.

7.11. Conclusions

In chapter 5 and 6 the linear filter, the Volterra series and RBFN have been

investigated in order to realise a de-interlacing system. The results have shown that

non-linear techniques have superior performance in terms of the resulting MSB.

However, in this section it has been shown how this increased performance pays the

cost of reduced generalisation ability. The better the performance achieved on a single

frame is, the worse the performance achieved on frames not included in the training

set is. Including additional patterns (i.e. frames) in the training set is not a feasible

solution, since it increases the computational load.

Several theoretical aspects of generalisation have been investigated. It has been seen

how the MSB can be decomposed into a component that depends on the lack of

complexity of the model (bias), and a component that depends on the specialisation on

the training set considered (variance).

The main problem is that the unconstrained minimisation of the MSB leads to

excessive specialisation. Therefore the lack of generalisation lays mainly in the

training procedure. It is necessary to devise a cost function that, along with the error

term, includes a term that measures the generalisation ability of the system and trades-

off the minimisation of the MSB. This approach is known as regularisation.

154

One possible form of regularisation is the weight-decay training, often referred as

ridge-regression. The principle is that a specialised network is non-smooth, and that

non-smooth mappings yield high weight values. Weight-decay seeks generality by

trading-off the MSE with the sum of the squared weights. The results show that this

technique has a beneficial effect on non-general systems.

Another possible technique to add generality is to introduce prior constraints to the

training. For many input patterns the input can be easily forecast. By constraining the

minimisation of the MSE to consider these known patterns, the system achieves

generality since this prior knowledge is derived from general considerations on

images. The results show that the generality of the system is increased, without

significantly affecting the MSE performance.

However, some patterns present peculiar characteristics that are rarely found in a

typical training set. An example is a frame containing a page of text. A network

trained on this frame yields poor results on other more "general" frames. Conversely,

a network trained on a general training set cannot achieve the good performance of a

specialised system. A solution could be to include some of these patterns in the

training set. The results show that some improvements can be achieved in this way.

A better solution is to create a network that changes its mapping according to the

input. The investigation of such a network is beyond the scope of this thesis.

Nevertheless, a simple introduction to the subject is given, together with a suggested

technique to determine the appropriate system's mapping according to some

properties of the input in the input space.

In the next two chapters, the subject of symmetry is discussed for linear filters and

RBFN. It will be shown that, assuming rotational invariance for the mapping, it is

possible to devise prior conditions that lead to a reduced computational load. In

chapter 10 it will be shown that this also leads to an increased generality of the

system.

1 5 5

8. SYMMETRY CONSTRAINTS FOR LINEAR NETWORKS

8.1. Introduction

In many practical situations, the input space created by the process of sampling

contains information that is, in some way, redundant. The removal of any redundancy

may reduce the dimensionality of the problem and result in a reduction of the

computational effort. By means of simple operations, typically linear ones, it is often

possible to transform the input space into a new space that has a lower dimension. The

subsequent application of non-linear techniques clearly benefits from such a

reduction.

Sometimes such reduction can be obtained in an intuitive way. As a simple example,

if the system task is to process the average luminosity of the input vector, it is wise to

calculate this quantity first by a simple weighted sum, so that the dimensionality is

reduced to 1, and then process the result. In the literature, such process is often

referred as feature extraction. In other words, one tries to obtain the salient

information (features) from the input space, so that this information has a reduced

dimensionality compared to the original space. The process of identifying the features

of interest requires an analysis of the problem that is both analytical and intuitive.

This chapter exploits a particular feature set derived for images that applies whenever

the sampling lattice has certain geometrical symmetries. Consider the picture in figure

1, where a square neighbourhood of the pixel p is sampled to obtain an input vector

X. Now, suppose the image is rotated around p by 90 degrees; in general the input

will be different and denoted %%. Clearly, the target pixel's value p has not changed,

and more importantly the geometry of the lattice in relation to the image has not

changed either, since the lattice can be rotated by any integer multiple of 90°. It is

therefore desirable that the interpolator produces the same output when either x or

X90 are presented to the input.

156

^ r r i r

X = [x j % 2 ^ 3

I

....< k
1

....<

2 r 2

* 9 0 ~ k ^4 ^2]

X90 =

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

Tgo I

Figure 1. Symmetry in image sampling.

More formally, if / (x) is the interpolation function, then it is required that:

; r (i) = = . / (i 9 o) , ^ / : K (8 1)

This equation is called a condition of symmetry, in the sense that it describes a

condition any interpolator should respect, regardless the particular image/training set

considered, when the sampling lattice is transformed according to its symmetries. It is

then an a priori constraint, valid for all images. Note that we are able to draw a matrix

relation between the two inputs, x and Xgg. The matrix T90 (figure 1) is then called a

rotation operator, with the following properties:

The matrix T90 is full rank, rank{i:^Q) = 4.

The columns of T90 are equal to the columns of the identity matrix, rearranged.

The columns of the matrix form an orthonormal basis in 7?^.

. ||x|| = IIT9Q x||, ||xi - X 2 II = I I T 9 0 X] - T 9 0 X2 II (Isometry)

157

Note that all these properties are intimately linked. They are consequences of the fact

that the operator T90 simply swaps the position of pixels associated in a one-to-one

fashion. More generally, one can say that T90 is a member of a class of symmetric

operators on the sampling lattice. These operators transform the input space into

another with same span (isometry), with the constraint that the operator is derived

from a symmetric transform of the sampling lattice.

8.2. Symmetric transforms of the sampling lattice

T90 is not the only possible transform of the sampling lattice shown in figure 1 that

preserves the sampling topology (symmetry). The chosen lattice, being a square,

allows 8 possible transformations, with the same topological/algebraic properties as

T90 (i.e. being a rearrangement of the co-ordinates system, and preserving the

geometry). Figure 2 illustrates all these transforms. Following the previous

considerations, all the input vectors coming from these rotations should lead to the

same interpolator output.

I I 90°) •?

- T T t r - 7

4)—j—C)

T T

180°

A
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3
lih <

4 3

. \P

1 r i T .

" 1 — \ ' . 90° \

r
1

1 r

Figure 2. Self-similar transforms of the square lattice.

Note the introduction of a new operator Ty that performs the rotation about the

horizontal axis (mirror symmetry), Ty shall be referred to as the "vertical flip"

158

operator, since it "flips" the pixels in the vertical direction. The operator Ty has the

same properties as T90, and belongs to the same class of operators.

1 2

P P

3 4

180°
T//K -

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

[0 1 0 ol

T// = 1
0

0
0

0
0

0
1

0 0 1 0

2 i 1

180°

Figure 3. Self-similar transforms of the rectangular lattice.

8.2.1. Symmetric transforms of a rectangular lattice

The picture described for the square sampling lattice alters if the shape is rectangular

(figure 3). The problem is that not all the rotations shown for the square lattice

preserve the shape of the rectangular lattice. Specifically, the T90 transform cannot be

applied. In the rectangular case the number of transformations is smaller than in the

case of square sampling lattice, as can be seen in figure 3. Two new transforms,

(horizontal flip) and (horizontal-vertical flip), have been introduced. Since the

only transforms allowed are 180° degree rotations, one can see that a rotation

followed by a vertical flip is equivalent to a flip about the vertical axis, that is

expressed by . The transform has the following properties:

T / / F - T 9 0 T 9 0

Tv Tfs =TuT-^HV - *-H H

(8.2.a)

(8.2.b)

159

8.2.2. Conditions of symmetry

The conditions of symmetry for the two cases can be derived;

Square samphng (4 pixels):

/ W = / (T 9 o x)

/ (i) = / (T v y y x) = / (T ^ Tp. x) = / (T p . x)

= x)

/ (%) = / (T p ^ x)

(8.3.a)

rectangular sampling (4 pixels):

V i -

/ (l) = / (T ; ^ l) = / (T ; / x) = / (T p ^ Tyy x)

/ W = / (T / / %)

/ (%) = / (T K x)

(8.3.b)

In general, any combination (multiplication) of the operators must satisfy the

condition of symmetry, that is:

V % : /
n / n

« - l y

(8.3.C)

where the set of operators = = are drawn from the set of

all the possible operators for the given lattice.

8.3. Symmetric reduction of the input space - the linear case

In this section, it will be shown how the symmetry properties of the sampling lattice

can be exploited when the interpolator is linear. The case of a linear interpolator is

initially addressed to provide foundations for the extension to the non-linear case.

This is based on extracting features from the input space that are invariant under the

transforms T90, and T//f/.

160

In the case of linear systems it is easy to deal with the algebra of the conditions of

symmetry. We shall present in detail the case of a 4 pixel square aperture as an

example of the methodology adopted. The linear interpolator can be expressed as:

/ (l) = 0 ^ 1 , 0 = ^ 2 ^ 3 ^ 4 (8 4)

Applying the conditions (8.3.a) (square shape) to (8.4), yields:

Vx

0 ^ (I - T 9 o) x = O

O ^ (I — ^HV)x = 0

0 ^ (I - T ^) x = 0

0 ^ (I - T p .) i = 0

(8.5)

where I and 0 are the identity matrix and the null vector in i? . I t follows that 0

should be orthogonal to the spaces defined by the span of (l —Tgg),

(l - T//) and (l - T y) . It is easy to see that:

ran V T , E { T 9 o , T ; f , T r , T ; f r } (g j i)

Hence (l - I }) is 2-dimensional and, considering that the input space is 4-

dimensional, it follows that the 4 spaces described in (8.5) can not be orthogonal. The

simplest way to calculate the combined dimension of these spaces is to compute the

rank of the matrix product of the operators, i.e. the dimensionality of the projection of

one space onto the others. This leads to the following results:

/ ' a M ^ [(l - T p .) ^ (l - T / / p .)]

r a M ^ [(l - T j y) ^ (l - T ; / ^)]

(8 7 ^

161

Hence, (l - T ^) , (l - T j y) and { l - T ^ T y) overlap each other in one dimension.

Furthermore

) ^ (I - T 9 0)]

/ ' a » A [(l - T p . r (l - T 9 o)]

) ^ (I - T 9 o)]

(8.7b)

Therefore one can see that from (8.6) the 2-D space (I - T 9 0) is equivalent to

(l - T / / y) , (l - T j y) and (l -T j /) . Considering that T,- = tJ,i = H,V,HV, we also

have:

= T ; ^ (T ; ^ - T p .) =

T / / (T / / - 1 + I - Tj-) = T / / [(I - T j -) - (l - T / /)]
(8.7c)

hence the space { i - T ^ y) is a linear combination of (l -) and (l - T y) . The

conditions of symmetry imply that the linear weight vector 0 is orthogonal to the 3

dimensional sub-space of defined by the two 2 dimensional spaces (l - T / /) and

(l - T f /) overlapping in one dimension. Note however that the condition

0 ^ (l - Tf^y) = 0 is still necessary in order to ensure that the combined application of

, Tj/ abides to the conditions of symmetry.

Seeing that 0 is orthogonal to a 3-D sub-space of , there is an appropriate system

of co-ordinates that makes 0 1-D. One can easily find a transform from equation

(8.5) that identifies the suitable reduction

162

(I -T/ /) - [01 02 03 04]•

O ^ (I - T f /) - [01 0 2 03 0 4]

1 - 1 0 0
- 1 1 0 0
0 0 1 ^ 1
0 0 - 1 1

1 o - i o "
0 1 0 - 1

- 1 0 1 0
0 - 1 0 1

= 0 =>

0 =>

01=02

0 3 = 0 4

01=03

0 2 = 0 4

(8.8a)

(8.8b)

O ^ (I -) - [01 0 2 0 3 0 4] •

1 0 0 - 1
0 1 - 1 0
0 - 1 1 0

- 1 0 0 1

= 0 =>
01=04

0 2 = 0 3
(8.8c)

Hence the hnear equation is trasformed into:

[01 0 2 0 3 0 4]• [%i X2 %3 ^ 4 Y - 0 5 (-^l + ^ 2 + ^ 3 + -^4) (8.9)

0

Xi

02

^2-

03
- •

a;4.

04
- •

Standard linear filter:
3 additions
4 multiplications

/ W

xi

X2

X3

0 .

— — • / W

Symmetric linear filter:
3 additions
1 multiplication

Figure 4. Architectural reduction for the square/rectangular lattice.

Equation (8.9) determines the architectural changes, and the computational savings

obtained by making use of symmetry, as can be seen in figure 4. The same structure

results for the rectangular lattice, and any symmetric lattice can be reduced in a

similar way.

163

However, the results obtained so far have been deduced for two specific cases. It is

possible to draw similar equations for any lattice which has symmetric properties, but

it is desiderable to produce more general results. In order to achieve this the case of a

continuous input space is considered. Although of little practical importance, the

results obtained in the next section provide a greater theoretical breath to the

reduction obtained so far and can be used to obtain a general criterion for the

reduction of arbitrary symmetric lattices.

8.4. Symmetry in a continuous image space

In the continuous image space, an image is defined as a continuous function of two

variables, l{p) = l{x,y). In the context of this discussion, the continuous linar

interpolation of an image point po can be defined as the 2-D integral, over some

neighbourhood JVp of pg, of the image function /(p) multiplied by a weight density

function 0 (p):

j (/) = J ^ (p) / (p) < 5 ^ p (8 .10)

It is assumed that 0 (p) has closed support in (corresponding to the use of finite

apertures in the discrete case), and assume very loose conditions on the shape of

to ensure that it is meaningful in terms of a real, discrete sampling lattice. It is also

assumed for simplicity that the co-ordinate system is centred on po .

8.4.1. Circular sampling and symmetry operators

In the following discussion a circular neighbourhood jVp of radius r and centered in

Po is considered. This choice is clearly justified in the context of the study of

symmetric lattices, / (p) can be rotated by any angle 0 , and flipped around any axis

(figure 5). Using polar co-ordinates centered at the origin then:

164

I i

)' (
j ^

t Po) • L ^

Figure 5. Circular sampling and symmetry operators.

r IK

0 0

(g J i)

Where / (p , t ?) is the image espressed in polar co-ordinates centred at po . The next

step is to find an explicit description of the operators T in the continuous space. The

rotation operator T90 becomes a more general operator

(8.12a)

The operators T/^, Ty and become the mirror symmetry operator about an

axis a :

(8 . 1 % ^

The two operators are pictorially described in figure 5. These operators can be

expressed as;

2;r

T ^ [7 (p , 7))] = + (8.13a)

165

IK

(8.13b)

8.4.2. Radial symmetry

The condition of symmetry in the continuous space can be formulated as follows:

= V (^ e [0 , 2 ; F] , V / (8.14a)

= V « E [0 , 2 ; r] , V / (8.14b)

which expresses rotational and mirror symmetry with arbitrary angles (j) and a . It is

assumed that (8.14a) and (8.14b) are valid for any image I. This leads to the following

equations:

r 2; :

0,

0 0

r In

0 , VCK

0 0

Substituting (8.13a) in (8.15a), we obtain:

(8.15a)

(8.15b)

r In

0 0

r In r In In

J J n (p , t ?) J 5 (v - ? ? + 0) / (p , v) J v

0 0 _ 0

(8.16)

166

By inverting the roles of v and in the second term of (8.16) and changing the order

of integration, one obtains

r In
j j

" 2;r

j ^ (
0 0 . 0

r In IK

J«(v
0 0 0

r In
j j ' 7 (p , v) 0 (p , v 4

0 0

j#(v -T^ + (f))I{p,v)dv

(v - J? + ^)Q (p ,

di}dp =

(&17)

By substituting (8.17) in (8.16), one can easily see that the conditions of symmetry for

arbitrary angles imply that the weight density function has radial symmetry.

(8.18a)

and therefore.

r 2;r 2;r

_y(/) = j j" = j" 0 (p) j (8 . 1 8 b)

0 0

Note that (8.18b) justifies, in the continuous space, the reduction obtained for the

discrete, square sampling case.

8.4.3. Mirror symmetry

In the scenario depicted previously, the image neighbourhood can be rotated by any

arbitrary angle, and the interpolation must yield the same output. The consequence is

that the weight density function has radial symmetry. However, it is difficult to

translate this result in discrete terms, since sampling apertures usually have few axis

1 6 7

of symmetry (typically 2). The result (8.18a) has been obtained applying the radial

symmetry operator (8.13a).

In this section we will focus our attention on the operator (8.13b), in the case of

= 0,;r/2 which matches 2 symmetries in the 8i sampling lattice (figure 6), and

includes the 180° degree rotational symmetry. The missing lines in the discrete lattice

(target field) can be modelled as missing zones (shaded areas) in the continuous

neighbourhood.

« < •

%

Figure 6. Aperture 8,, and its continuous space model.

Following the derivation as in section 8.4.2 one can obtain an equation similar to

(8.16), this time however using the specular symmetry operator (8.13b);

r In

0 0

r 2K

0 0

2n

j " j" 0 (p , *)) ^5{y+ T^-2a)l{p,v)d\

(&19)

di}dp = 0, a = 0,
n

This time the equation is only valid for two values of a . Again, inverting the roles of

V and Td- leads to:

168

Q{p,'&)= Q{p,7V -•d-) = Q.{p,-i})=Q{p-7u + -d-) (8.20)

In expressing (8.20) the fact that the axis of symmetry a = Q,K/2 are equivalent to

a = TC,-Kl2 has been used. The associated areas are schematically represented by the

white dots in in figure 6.

8.5. Symmetry in the discrete space

The results obtained in the previous section allow one to exploit the symmetric

reductions of the linear interpolator for any lattice, without performing the analysis of

the operators T seen in section 8.3. By simply inspecting the lattice, one can

determine the available symmetries. The results in section 8.3 ensure that pixels

associated by symmetry yield the same weight. Examples are shown in figure 7,

where single weights values are associated with pixels shown with the same shading.

The case of aperture 8i is included, as well as a more general lattice using all the

available lines (i.e. without the missing lines typical of de-interlacing apertures). The

latter example has an extra axis of symmetry (diagonal).

- 4 - u U

Figure 7. Symmetry in sampling lattices. Pixels with the same shading should be summed using
the same weights.

The symmetric linear interpolator for the 8i aperture is given by

j (x) - ^ (x] + Xg)+(j){f^ (x3 +-^4 + -̂ 5 + ^7) (8.21)

169

and therefore:

y (x) = 0 (' ^ ^ ^ C x

1 0 0 0 0 0 0 1

0 0 1 0 0 1 0 0

0 1 0 1 1 0 1 0

(8.22)

= »(')

The compression matrix C serves to reduce the dimension of the input from 8 to 3.

The output of the linear de-interlacer is only a function of the 3-elements vector C x .

Similar compression matrices can be defined for any discrete aperture.

8.5.1. Axial sampling.

In this section we want to show how the structure of the lattice is reflected in the flip

operator T when some of the pixels lay on one of the axes of symmetry. For the 4

pixel square lattice depicted in figure 7, where all the pixels are off the axis, there is a

reduction by a factor of 4 in the number of multipliers required to implement the

scheme. For the 6 and 8 pixel apertures however, this reduction is 3 and 8/3

respectively. This is primarily because these apertures contain axial pixels.

Consider how the presence of axial pixels is reflected in the structure of the flip

operators, and how this determines the reduction that can be obtained. For the 8,

lattice the two operators are:

0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0

T// =

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

(&23)

The analysis for the 4-taps case can be repeated, as in section 8.3. However, here T//

has 4 entries on the diagonal, reflecting the fact that T// maps axial taps into

themselves (Figure 8). Hence:

170

% - ! =

0 0 0 0
0 - 1 0 1
0 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

0 1 0 -1 0 0 0 0
0 0 0 0 -1 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0
1 0 - 1 0
0 0 0 0

(8.24)

There are 4 null columns, corresponding to the 4 axial pixels. Hence,

rank{Ty rankijjj-1) = 2 and ranki^^-if {ly—\)=\, so that the

vector 0 is orthogonal to a 5-dimensional space (4+2-1), and a reduction by 8/(8-5) =

8/3 is observed. The same reasoning can be used to explain the reduction by 3

obtained when the 6-pixel lattice in figure 6 is considered.

£t=

Figure 8. Off-axis and axial pixels. In the first case, both flipping operators map each pixel into a
different pixel. In the second case, the horizontal flip maps axial pixels onto themselves. This is
reflected as null columns in the orthogonal spaces I T#.

8.6. Experimental results.

These concepts are applied to the 3 symmetric sampling lattices depicted in figure 9.

Of course, the 2-pixel lattice has only 1 axis of symmetry, hence one can only apply

one flip operator, specifically Ty, whilst the 4 pixel lattice and the 8-pixel lattice can

be reduced with the two operators and Tj/.

The experiments are conducted as follows: firstly, the MMSE filter is calculated, then,

the image is "flipped" according to the flip operators the lattice permits, and the MSE

1 7 1

is computed when the original filter is applied to the flipped image. The results are

compared with those obtained with the symmetric architecture, see table 1.

4 X]

^5 % ±7... %

jKH

Figure 9. Sampling lattices, and symmetry reduced architectures.

2 taps 4 taps

Normal input 1.2369 2.7737 0.9893

H-flipped input 2.9199 1.0596

V-flipped input 1.2379 2.9214 1.0616

HV-flipped image 2.7752 0.9913

Symmetric architecture 1.2372 2.8106 1.0072

Table I. Results for 3 sampling lattices, compared with symmetric architecture.

It can be seen that the non-symmetric architecture works better than the symmetric

architecture on the original image, i.e. the training set. This can be interpreted as an

excessive specialisation of the non-symmetric algorithm. The symmetric filter

provides robust performance across the set of flipped images, so is more general. This

can be regarded as a consequence of being more parsimonious. This benefit is gained

along with computational savings.

172

8.7. Conclusions

It has been highlighted in previous sections how the computational demand of a de-

interlacing system is of paramount importance. In single-layer networks,

computational complexity is proportional to the number of nodes employed by the

network, and to the complexity of the individual linear and non-linear kernels.

Another advantage of seeking for smaller architectures is that this typically determine

a more general result.

It is often possible to achieve computational savings by seeking for invariant features,

e.g. invariance to translation and rotation. The first part of this chapter describes one

of these invariant properties that can be postulated to be valid for any reasonable

image. This invariance comes from the constancy of the target value under rotations

of a symmetric sampling lattice. This determines a set of conditions (symmetry

constraints) that a de-interlacing system should verify in order to preserve such

rotational invariance. The case for a linear system is discussed in this chapter.

The conditions of symmetry for a linear system lead to simple linear algebraic

equations. Initially, two very simple cases are presented, regarding a 4-tap sampling

lattice with square and rectangular aperture. It is demonstrated that the conditions of

symmetry imply that it is possible to reduce the dimensionality of the input without

affecting the performance. This in turn allows a rearrangement of the algebra that

leads to computational savings.

In order to generalise these results to arbitrary apertures, a brief discussion of the

continuous case is presented. This discussion leads to the general principle that pixels

associated by the symmetry operators should be multiplied by the same weight. This

leads to a very simple procedure to determine the desired computational reduction.

173

9. SYMMETRY IN RADIAL BASIS FUNCTION NETWORKS

9.1. Introduction

The previous chapter highlighted the advantages of exploiting symmetry in linear

interpolation and, specifically, in linear de-interlacing, and a theoretical foundation

was presented for achieving this. In this chapter we seek to extend these concepts to a

non-linear de-interlacing system based on RBFN.

For the linear case it has been shown how the output of a symmetric linear system

depends on a reducing transformation of the input vector x expressed by

; / (] [) =) " ((: : %) (9 1)

where C is the compression matrix that reduces the dimensionality of the input space.

For the 8; aperture, C reduces the dimension of the input space from 8 to 3. It has

been shown that, in the linear case, this reduction leads to computational savings.

A natural approach to applying the results of the last chapter to a non-linear system is

to consider employing the same compression matrix. This is based on the fact that

symmetry is a property of images that is valid regardless the particular technique

adopted, and we can always write conditions of symmetry for the mapping function

/ (x) , provided the sampling lattice is symmetric.

Unfortunately the assumption of a linear interpolation is integral to the derivation of

(9.1). A counter-example that illustrates this failing is to consider a 2 pixel non-linear

de-interlacer given by / (x j ,^2) = . Evidently, this function satisfies the

symmetry condition / (x j ,^2) = / (%2) but / (x] ,X2) cannot be expressed in

the form / (C x) = / (x j + X2)•

174

A simple experiment shows the limitation of the linear approach in the case of RBFN.

A 1000-centre, narrow support (y = 10"^ ~10~^) hybrid Gaussian RBFN is trained

with the input space obtained using the 8, sampling lattice, and the input's dimension

is reduced using the compression matrix C. Figure 1 depicts the MSE as the number

of centres is increased and, despite using width parameters that differ by 5 orders of

magnitude, the results are very similar and both are poor in comparison to the system

using the full 8 dimensions.

1

0 . 9 5

0 . 9

0 . 8 5

0.8

0 . 7 5

0 . 7

0 . 6 5

0.6

reduced input, 7=0.1
reduced input, 7=0.000001
8-dimensional input

0 . 5 5

10 2 5 5 0 1 0 0 2 5 0

ortliogonalised centres
5 0 0 1000

F igure 1. Gauss ian R B F N t ra ined witli t he reduced input se t .

In this chapter two procedures to reduce RBFN complexity making use of symmetry

will be presented. These procedures are based essentially on two different properties

of the RBFN expansion.

Firstly, RBFN is a series of a non-linear transform on the input space,

followed by a linear regression i? ̂ > i? of the M dimensional intermediate space.

The symmetric RBFN model described in section 9.2 is an attempt to transfer the

symmetry properties of the input space to the intermediate space. This will result in a

reduced vector 0 , that will result in a reduced number of output multiplications.

175

The second technique derives from considering the way the non-linear mapping is

performed in RBFN. As a general principle, the distribution of the centres set c,-,

i = \...M tries to approximate the distribution of the input set x „ , « = 0. . .Z - 1 in

. For L-M, we have that any input x„ has a corresponding centre c,- = x„

(exact interpolation, section 3.3). In the general (and realistic) case, L » M , one

may assume that the centres set is distributed according to the input distribution. It

seems reasonable to consider any input as being "associated" with some centre Cy,

possibly its closest neighbour. This bond between centres and inputs, and the

interpretation of symmetry as a relationship between different zones of the input

space, will lead to the definition of folding techniques in section 9.3. Folding

techniques lead to more general results than the symmetric model, since they use

symmetry to reduce the complexity of the non-linear transformation. Furthermore, a

folded RBFN model is also implicitly a symmetric model.

9.2. The symmetric RBFN model

This section considers one method by which symmetry can be enforced on a RBFN.

The output of the RBFN is the outcome of a linear transform of the intermediate

space. In other words, the RBFN can be written as:

=) = A/(x) = 0 ^ h (9.2)

where h = [/zj(x).../z^(x)]^ is a vector in the intermediate space (spanning a sub-

space of R ^) , and <E> = [^] ... is a set of weights that create the linear

transform R ^ —>R . Note that in (9.2) the dependence of hj{-) on the parameter cr,-

that controls the node's support in R ^ is made explicit. For the 8i sampling lattice,

the three flip operators, , Ty and • Ty are those we seek invariance to.

176

9.2.1. Properties of flip operators and kernels

Consider the following definition: A RBFN is said to be symmetric to the operators

T^, and if

V/z,- = / z | x - c y | | ; c r , -) , 3 h \ ^ \ h f ^ ^ w h e r e

(%) = /:(||% - T/f Cy ||;(7;) (9.3a)

A } ^ \ x) = A(||i-Tp/) (9.3b)

= (9.3c)

In other words, the set of centres is closed to the flip operators, i.e. any flip of a centre

results in a vector that is also a member of the centre set. From the properties of the

general flip operator T (see chapter 8), it is easy to demonstrate that:

A (^) (T ; / i) = A , (%) (9 .4a)

A (^) (T ^ x) = A (^) (i) (9.4b)

i) = (x) (9.4c)

A F \ T p . x) = A,(x) (9.4d)

A,F) (T;^x) = A (^) (i) (9.4e)

A , F) (T ; ^ i) = A (^) (x) (9.4Q

A,^^^(T;/K%) = Ay(x) (9.4g)

A (^ \ T ; / x) = A (^ \ x) (9.4h)

A (^) (T p . x) = A,^^)(x) (9.4i)

177

Now, we group the 4 scalar kernels (the elements h\'^) into a single kernel vector:

is) (9 5)

Under these conditions, equation 9.2 can be arranged as:

} ' (%) = % h W (x)
;=1

(9 6)

where 0 ;

vector.

(') _ I is the weight vector for the z-th kernel

9.2.2. Kernel vector flip operators

Given the properties (9.4a...i), it is easy to show that:

h p) (T ; / x) = T j ;) b y (l) (9.7a)

h (') (T r i) = T y) h , . (x) (9.7b)

h (') (T ; / p . x) = T) ; / b , (x) = h , (%) , (j) (.?) FT, (5) (9.7c)

where

0 1 0 0" 0 0 1 0
1 0 0 0 0 0 0 1
0 0 0 1 l y - 1 0 0 0
0 0 1 0 0 1 0 0

(9.8)

178

A

Figure 2. Left; formal sampling structure of the kernel vector. Right: reduction of the kernel vector.

The operators and have the formal structure of the flip operator defined on

a 4-pixel rectangular lattice. In other words, the 8-dimensional flip of the input

generates a 4-dimensional flip of the kernel vectors Vi = 1 . . . M / 4 (Figure 2).

The two basic conditions of symmetry can be expressed as:

M / 4
2 [h W (i) - h W (T ^ x)]= ^ 0 W ^ (l - T j ^)) h W = O (9.9a)
/ = ! / = !

Y =0 (9.9b)

From these identities it follows that:

(9.10a)

(9.10b)

and finally:

(911)

179

The result is that the flipping of the input vector can be related to flipping operators

acting on the kernel vectors. It is interesting to note a difference between the input

space and the intermediate space. The number of symmetries in the sampling lattice

determines the number of flip operators acting on the input space. However, the rank

of the matrices T is determined by the dimensionality of the input space. In the

intermediate space the rank of is equal to the number of symmetries in the

lattice, and is therefore independent from the dimensionality of the input space.

9.2.3. Realisation of a symmetric RBFN

In a symmetric RBFN each kernel vector is simplified by the condition of symmetry,

so that it requires 3 additions and 1 product. This results in a reduction by 4 of the

number of output product units. The structure to achieve this is shown in figure 2. The

symmetric model can be extended to arbitrary symmetric lattices, provided the kernel

vector is created according to the number of flip operators defined by the symmetries

of the lattice.

Consider the training of such a symmetric model. A simple technique is to take a large

set of centres, c,-, i = , then from each create 3 new centres; T// C/, T y c ,

and Cy. This set of 4 M centres can then be orthogonalised, forcing the OLS to

evaluate the combined effect of each set of 4 regressors, i.e. to save or discard the

entire kernel vector to preserve the symmetric structure. A downside of this

approach is its inability to simplify the kernel vector. Suppose that c, is such that

Cii =Cj^,Ci2 =C/6, and Cj2 =c^. = C/g =c/7 (assuming a 8i sampling lattice). In this

case, we have c, = T ^ C; = T^ c, = c,-. The kernel vector is redundant, and this

redundancy will not be removed if we force OLS to consider the 4 kernels together.

Figure 3 shows the results obtained using this training technique applied to a Gaussian

RBFN.

Despite the degradation of the MSE performance, the proposed model offers a

reasonable saving in the number of output multipliers (1/4). Note that the

orthogonal isation in figure 3 has been performed on multiples of 4, in order to build

the kernel vectors in the symmetric model.

180

symmetric
non-symmetric

HI

S 0 . 7 5

5 2 1 0 0 2 4 0

orthogonalised centres
1000

Figure 3. OLS training of the symmetric GRBFN. The horizontal axis shows the total number of
scalar kernels (centres) involved.

The observed degradation maybe due to two factors. Firstly, the network is less

specialised on the training set. This can be considered as a desirable effect, as it

produces more general results. Firstly, the training procedure proposed is sub-optimal,

since it does not remove redundant regressors in the kernel vector.

Unfortunately, the amount of computation involved in a RBFN is mainly dependent

on M (the number of branches), i.e. on the dimensionality of the intermediate space,

since most of the computational burden is associated with evaluating the

mapping (see appendix B). The symmetric RBFN, in which M is not reduced, only

marginally reduces the computational load. Reducing M by means of symmetry

involves the analysis of the non-linear core of the RBFN mapping.

9.3. Folding techniques in the input space

We have already underlined how RBFN are strongly related to a geometrical

description of the input space and to the position centres occupy in this space. In

simple words, centres map the input distribution, and hence work as prototypes of the

input set. The training phase aims to find the set of output weights that minimises the

181

MSE, i.e. such that these prototypes generate the best approximation of the output

dynamic (target sequence) associated with the input.

In this section a novel technique is presented that reduces the number of nodes in a

RBFN trained to de-interlace a frame using a symmetric sampling lattice. This

reduction is achieved by reducing the span of the input set in the input space,

therefore reducing the number of centres required to yield the desired mapping. The

technique is based on the principle that, since two input vectors associated by a flip

operator T yield the same output, it is possible to merge them into a single input

vector without affecting the performance. This principle is called folding, and the

techniques developed in the next sections are called folding techniques.

9.3.1. The folding principle

The folding principle can be described as follows. The condition of symmetry in its

most general form states that, given the input x and the flip transform T , then

/ (x) = / (T x) . The input x and its flipped version Tx generally lie in different

positions of the input space. Suppose that our interpolation system is able to

discriminate the two inputs, and if presented with Tx as an input, moves it to the

position occupied by x . This movement is easily obtained applying the operator T ,

since T (T x) = x . Given the condition of symmetry, such a movement will not affect

the performance of the interpolator.

Now, suppose that, in an RBFN-based system, the two inputs are most closely

associated with the two centres c and Tc. Since the position formerly occupied by

T x is now empty, it seems reasonable to remove the Tc term, or alternatively to

move Tc into the position of c , since c will now represent the moved input T x as

well as X. This concept is graphically represented in figure 4, in the two dimensional

case. Note that the 2-dimensional span of the input set is reduced by half. In other

words, the discrimination and movement system makes the input distribution more

compact, at the same time yielding a similar output. Since the input space is

compressed by a factor of 2 one might anticipate a corresponding reduction in the

number of centres needed. In the 2 dimensional example, it is easy to find a suitable

182

^2 Fold input/centre

Leave input/centre
^2 ^ => unchanged

T I
T-c

Xi

Figure 4. Folding in the 2 dimensional input space, and folding algorithm.

algorithm that halves the area of the input space. The algorithm is described in the

inset in figure 4.

Basically, the input space is folded along the quadrant bisector A. If D >2 this

graphical representation fails, and one has to determine suitable alternatives that

transcend the visual approach.

The folding principle has a downside, at least when applied to RBFN. Since the span

of the input set is halved, we expect a similar MSE with half the number of centres.

However the kernels A(]|x-c||;cr) usually have infinite support in . Hence, the

kernel generated by the centre T c , that represents the removed (folded) input T x ,

will have an influence on the interpolation function at x . This problem is graphically

represented in the left frame of figure 5. One may assume that centres far from the

bisector A have little influence in the opposite half-quadrant, if the parameter a is

reasonably small. On the other hand, if Tc is very close to A we may assume that it

significantly overlaps its folded version T (T c) , and hence is largely redundant.

These limitations are depicted in the right frame of figure 5.

183

^2

A

~ X) T c

This centre can be folded
because its influence in
the uppe r half-quadrant is
negl igible

This centre can not be
folded without loss of
performance.

Th i s centre can be folded
because its influence in
the upper half-quadrant is
a lmost equal to the
inf luence of its folded
vers ion ^

• X i

Figure 5. Effects of kernel's support on folding.

A folding strategy based on the geometrical properties of the flip operator in the plane

has been devised in . The flip operator mirrors inputs and centres about the

bisector A, therefore the folding strategy is based on the position of the input/centre in

the quadrant with respect to A.

Unfortunately, with D>2 such strategy is not achievable in the same way, for the

reason that, although it is possible to consider the main diagonal A in as the

natural equivalent of the bisector in , it is not possible to unambiguously determine

whether a vector is "above" or "below" A. Furthermore, with lattices that extend in

both the horizontal and vertical directions, more than one flip operator is usually

required. Consequently, more than one decision has to be made.

However, the principle that different inputs associated by the flip operators can be

folded onto each other is a concept independent of the dimension D of the input

space and of the number of operators involved. In the following sections methods that

extend this principle to arbitrary dimensions are discussed.

184

To achieve this goal, a proper geometrical abstraction of the folding principle is

needed. Initially the general topological properties of the generic flip operator in

are discussed.

9.3.2. Topological properties of the flip operator in

From figure 4, one can identify a series of properties that T satisfies in R^ . Firstly,

the bisector A defines the set of fixed points of T, i.e. a vector in A is folded onto

itself. In the bisector A is more properly described as the main diagonal of the

input space. A can be mathematically described as the span of the vector

V = v [l - - - l] with V G [-128,127] . The span of v defines the set of inputs whose

elements are all equal, and v satisfies:

T (a v) = a v , V T , « (9.12)

Differently from the two-dimensional case, in R ^ A is only a subset of the set of

fixed points of T. Given an arbitrary T, the set of its fixed points is properly defined

as the sub-space F j c R ^ such that —>Tx = x . Hence x e must satisfy

the equation:

XE jFy (TT - l) x = = 0 (9.13)

From (9.13) it follows that the space of fixed-points abides by the condition:

jFjT (T --I)== 0 (9.14)

Equation (9.14) defines a sub-space of R ^ , depending on the particular operator

considered. In many cases J ™ (F j) > 1 , and hence dim{F'Y;)> dim{h). However,

given a general set of operators T^, the corresponding fixed-point spaces will all

intersect at A. As an example, consider the R"̂ case corresponding to the rectangular

185

lattice described in section 8, and its horizontal flip operator . It can be shown that

ra«A:(l-T//)=2, hence dim{Fj^) = 2 and F y is a 2 dimensional subspace of

. Further it can be shown that dim[Fj }=2, and Fj nFj = A .

There are two other interesting properties of T in . Firstly, the segment x - Tx is

perpendicular to A. Secondly, x and Tx are equidistant from A. These properties

extend to the general case in for an arbitrary T. The general properties of T noted

in section 8 will be used to prove these results. Specifically, that T is equal to its

inverse, i.e. T is orthogonal, which implies that det{T)=\.

Consider the projection (scalar product) of the vector difference x - Tx over the

vector V. Using (9.12),

(][--Tr][)== V^ (I -T")! (9.15ii)

but since v ^ = v ^ T we have;

T/T (][_.][][)== 0 (9.151])

Hence x - Tx is orthogonal to A. The distance between Tx and A is given by:

d%ff(T][,/l)==|| T i - (v r r TTx) | (9.16a)

but from the isometric property of T it follows that:

dist{Tx,A)= x - (v ^ x) II = i5?M'/'(x,A) (9.16b)

Hence Tx and x are equidistant from A. Note that the kernel vector in the symmetric

model (section 9.2) has a well-defined topological structure that benefits from the

analysis conducted in this section. The important point is that a methodology of

abstraction has been defined, that will be used in the subsequent sections to determine

a possible folding algorithm in R D

9.3.3. Analysis of the eigenspace of the flip operators

This section describes another important framework of analysis; the general properties

of the eigenvalues and eigenvectors sets of the folding operator. Before proceeding

further, recall the property of T being a full-rank matrix, with rank{T) = D and

det(^) = \. This property arises from the general definition of T as an isometric

rearrangement of the co-ordinate system in . In other words, T is a "shuffling"

without duplication of the columns of the identity matrix in R D

Alternatively, T can be described as an operator that associates each pixel with one

and only one other pixel. A pixel can also be associated with itself, for example x j

and xg in the lattice 8, under the action of the horizontal operator Tyy . This property

leads to a straightforward method to calculate the D eigenvectors of T. Suppose that

the flip operator T associates the pixels jc, and Xj, and define the vector

,i')
VY

0 - - 0 1 0
/ - I ;• /•+]

0 1 0 - 0
y y+i

(9.17)

with null entries except for the z'-th and they'-th element, and with | | = 1. It is

clear that T . In the same way, given the vector

v (r) =

42
0 0 1 0

/-I i i+\
0 - 1 0 - " 0

; v+i
(9.18)

187

we have Clearly, and are both eigenvectors of T, with

eigenvalues respectively +1 and -1. Since is left unchanged by T, both in norm

and direction, we refer to it as an invariant eigenvector. Conversely is termed a

variant eigenvector.

Now, suppose that T associates the pixel with itself Then, the vector

0 — 0 1 0 — 0
/-I / i+l

(9 19)

is clearly an invariant eigenvector of T. One can generalise these results stating that

for each pixel association, that is not a self-associated, the eigenspace contains one

invariant eigenvector and one variant eigenvector. On the other hand, if T associates a

pixel with itself, then its eigenspace contains the appropriate invariant eigenvector.

The eigenspace of T is completely described in terms of invariant and variant

eigenvectors. Since rank(^) = D, the set of all its eigenvectors defines a basis for

. Hence it is possible to divide in an invariant space defined by the span of

and into a variant space defined by the span of =Uv^^^ .

The input x can be projected into these eigenspaces. Therefore, x can be divided into

an invariant part and a variant part x = Clearly,

(9 20)

If / (x O) is the expression of / (x) in the eigenspace, we can express the

condition of symmetry for the operator T as:

(9.21)

implying that / is even in the variant space. Finally, it can be shown from (9.21) that

the locus of the fixed points of T is equal to the invariant space .

188

9.3.4. Binary classification of inputs and cluster reduction

This section discusses the extension of the decision algorithm to D dimensions. As

already discussed, the problem in high-dimensional spaces is not only the ambiguity

of the concept "above" and "below" A, but also the presence of more than one flip

operator.

One method to extend the decision algorithm is as follows. Consider the 2-

dimensional case first. Given the folding operator T, define a binary class function

Specifically, ?Cj(x)=l if xi>x2, Ky(x) = 0 otherwise. In

other words, KrT(x)= 0 if x is in the lower half-quadrant, and hence x is said to

belong to class 0. On the other hand, if x is in the upper half-quadrant (including A),

then /Cx(x)=l, and consequently x is said to belong to class 1. With these

definitions, the folding algorithm in simply determines the class of the input, and

decides to leave the input unchanged if k:j(x)=1 or to fold it in the upper half-

quadrant if k : j (x) = 0 . Note that by definition k t j (a v) = 1 , V g : . This choice is

arbitrary and one may equally assign A to class 0. However this choice would be

computationally more expensive, because the flip operator would be applied to the set

of fixed points.

There are several characteristics of ?Cx(*) that we wish to focus on. The first is

that the flip operator in corresponds to the algebraic N O T operation in the

Boolean output space of the binary class function. In other words.

r T (x) = K T (T x) (9 T ^

It is trivial to show that the two sets K j = {x: ktj (x)= l} and Kg = {x: ?Cj(x)= O} are

such that Kg u K | = X and Kq n K] = 0 (the empty set). More importantly,

T

Kq < >Ki, if xi Fj. Formally the operator T is closed in the set Kq u K j . The

set T = Kq u K] is called a cluster. In R^ there is only one cluster, corresponding to

the whole input set. As we will see, in higher-dimensional spaces and with more than

189

one operator there will be more than one cluster. Note that (x) operates on the

variant projection of the input, that in is equal to {x-[— X2), so that one can

write K j (x) = K j).

X2iX3x 1^4

(1)

f l 0 0 0 0 0 0 ol Fo 0 0 0 0 0 0 11
0 0 0 I 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

T 0 1 0 0 0 0 0 0 Tr, — 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

(2)

1 0 0 0 ' 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 v(/) =_J_

0 0 1 0
0 0 0 1 v(/) =_J_ 0 0 0 1
0 -1 0 0 V2 0 1 0 0
0 0 -1 0 V2 0 0 1 0
0 0 0 -1 0 0 0 1
-1 0 0 0 1 0 0 0

V2

X,+Xg
Z2+I5

* 3 + * 6
X 4 + X 7

X<J> =
V Y

X^-Xg
X2-X5

^3~*6
•̂ 4

(3)

/(K)

r " 0 1 [0 0 1 0 0 0
1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0

i -1 0 1 0 u
0 0 0 0

V2 0
n

1
0 ^ V 2 0

0
1
0

u 0
0

0
0

u
1

u
0

n -1 0 1 0 0 0 0
0 0 0 0 0 0 0 i j

- 42 X5-X7

Xi
X3
^6

(X2 +X4)/VT
(x^+xj)/VY

(4)

Figure 6. Properties of tlie flip operators for the lattice 8, depicted in (I) . Matrix form of the
independent operators (2). Variant and invariant eigenspaces, variant and invariant inputs for the
vertical flip operator (3). Variant and invariant eigenspaces, variant and invariant inputs for the
horizontal flip operator (4).

190

These concepts form the basis for our abstraction that can be summarised in the

following general properties of the folding algorithm:

• The folding algorithm is based on an operator closed in the cluster.

• The algorithm folds one of the classes in the cluster onto the other class, halving

the number of classes in each cluster.

• The decision is made according to a binary function (binary class function).

® The particular flip operator considered determines clusters and relative classes, the

decision strategy and the binary class function.

• The binary class function operates on the variant space defined by the operator

considered.

These properties can be used to describe a possible folding strategy in the input space

defined by the 8, sampling lattice.

9.3.5. Binary classification of the 8i sampling lattice

For the 8, sampling lattice two flip operators can be defined, specifically the

horizontal flip operator and the vertical flip operator Ty. It is also possible to

define an horizontal-vertical operator T f [y = T// Ty. The flip performed on the

lattice by these operators, their explicit matrix form and their invariant and variant

space basis, together with the explicit expression of the invariant and variant

projections of the input x are summarised in figure 6. Note how generates an

asymmetric set of eigenvalues, since the taps X], xg, and %g flip onto themselves.

We now consider a folding algorithm coherently with the general principles defined in

the previous sections.

Since the variant spaces are 2 and 4 dimensional, the binary class functions define a 2

and 4 bit resolution output respectively. This leads to 16 classes and 8 clusters for Ty,

and 4 classes and 2 clusters for T// , as summarised in tables 1 and 2.

191

CLASS (x2 - X5) > 0 (:C3 (% 4 0 CLUSTER

0 0 0 0 0
0

15 1 1 1 1
0

1 0 0 0 1
1

14 1 1 1 0
1

2 0 0 1 0
2

13 1 1 0 1

3 0 0 1 1
3

12 1 1 0 0

4 0 1 0 0
4

11 1 0 1 1

5 0 1 0 1
5

10 1 0 1 0

6 0 1 1 0
6

9 1 0 0 1

7 0 1 1 1
7

8 1 0 0 0

Table 1. Classes and clusters for the operator Ty. Note that we numbered the classes according to the
base-10 value of their binary class function.

CLASS (%2-:*:4)>0 CLUSTER

0 0 0
0

3 1 1
0

1 0 1
1

2 1 0
1

Table 2. Classes and clusters for the operator T„

The two sets of clusters defined by T/j and Ty are independent, in the sense that the

class of X given by the first operator's binary class function does not determine the

class given by the second operator. Hence, two independent decision strategies for

T// and Ty can be specified, hence including a decision strategy for .

For each operator the classes defined in tables 1 and 2 can be grouped into two groups

according to the value of their most significant bit MSB. Since ? c ' j ' (x) = / C j (T - x) , the

folding operator always moves the input from one group to another. Note that the

192

MSB in k : x (x) is determined by the order in which the pixels are sorted. From the

beginning of this work, pixel numbering has reflected the natural line-scan order in

video broadcast systems, but this choice is arbitrary. Any of the bits in k ' X (x) could

correspond to the MSB by a simple rearrangement of the sampling lattice. This leads

at least to 4 possible algorithms:

Apply Ty if (xj -%g)> 0, and T// if (x2 -X4)> 0

Apply Ty if (xg - %) > 0 , and if (%2-%4)>0

Apply Ty if (xi -Xg) > 0, and Tff if (% g - x j) > 0

Apply Ty if (%3 - %) > 0 , and T// if (%g-XJ)> 0

In all 4 cases, the decision problem in is reduced to a decision in two distinct

spaces. This has an immediate consequence in the way the input space is folded.

Figure 7. Folded Input space, algorithm 1. Original input space (grey), folded input space (black).

193

Figure 7 shows the projected planes of the input space folded using algorithm 1. Note

the sharp cut in plane x j - x g and plane X2-X4 (the planes where the decision

algorithm is applied). However, there is also some reduction in the planes - x ^ and

X5 - X7 . This can be explained by considering that if - xg > 0 , there is a reasonable

probability of a local vertical gradient, so one might anticipate that also X3 - X5 > 0 .

The same consequence can be deduced in presence of a horizontal gradient, and hence

for the plane X5 -xy .

After being used to fold the input set, the chosen algorithm must be applied to the

centres of a Gaussian RBFN to achieve the desired reduction. However, as already

introduced in section 9.3, there is the problem of the influence of each class of centres

on the other classes. Since the choice of algorithms determine a particular

"movement" of the folded centres in the input space, the different algorithms will, in

general, yield different results. The issue of determining the best algorithm among the

4 possible choices should be addressed in future work.

Note that the cluster folding technique embeds the symmetric model described in

section 9.2. In fact, the folding algorithm reduces the kernel vector h|'^^(x) to one of

its scalar components, consequently reducing the number of output multipliers by 4.

9.3.6. Results for binary cluster folding RBFN

Figure 8 shows the OLS reduction of the four proposed folding strategies applied to

HGRBFNs. The results are compared with the OLS reduction of a standard (unfolded)

network. Firstly note that the four results are very similar. For networks with

M = 50 ~ 200 one can approximately halve the number of centres and retain a similar

MSE as the unfolded network, regardless the folding strategy chosen. For M>200, it

seems that cluster folding looses its effectiveness, and the same may be true for

M<50. Secondly, since the volume of the input set in has been reduced by 4, one

may anticipate an equivalent reduction in the number of centres. It is somewhat

surprising to observe only a halving of the number of centres necessary to achieve a

given level of performance.

194

0.7765

standard HRBFN
Algorithm I
Algorithm 2
Algorithm 3
Algorithm 4

0 ^ # -

0 # % -

055
50 100

orthogonalised centres

1000

Figure 8. Comparison of MSB ortliogonal sequences using the binary folding.

It is not easy to justify these observations rigorously, but we shall provide some

conjectures to explain them. Firstly, there is the issue of the infinite support of the

Gaussian kernels, and the resulting interaction between classes/clusters. As already

stated, this mutual influence is changed as the input/centre space is folded. This might

explain the small variations between different algorithms, since each technique moves

the classes in a different way.

Secondly, many of the most significant centres may lie close to the set of fixed points.

Clearly, these centres do not benefit the geometrical reduction given by folding. The

study and identification of the fixed points is an interesting key to the optimisation of

the algorithm. As we will see shortly, better results are obtained using a technique that

in principle is equivalent to the clustering folding.

9.3.7. Moment-based classification of inputs

The previous two sections have developed an approach to extend the folding principle

from the 2-dimensional case to an arbitrary number of dimensions. It has been shown

1 9 5

how the abstract properties of the folding principle can be applied to define a folding

technique in a realistic case, the 8i sampling lattice.

In this section an alternative, more intuitive description of the folding principle is

given, which will lead to a folding technique more general than cluster folding. Rather

than focusing on the pixel-to-pixel relationships yielded by the flip operators, we will

concentrate our attention on the change occurring in the luminance gradients when the

input is flipped. Herein, this will be applied directly to the case of the 8i lattice.

Consider a generic input x . The vertical flip Ty swaps the position of the pixels

above the (horizontal) flip axis, specifically X], X2, X3 and X4, with the position of

the pixels below the flip axis, specifically X5, xg, xy and Xg. Consider a function

that calculates a generic vertical mass gradient of x , defined as:

d y (x) = (Oj X^ + (32 X2 + ^ 3 X3 + 0 4 X 4) —

(9.18)

with the constraint that all the weights a,- are positive. If the weights associated with

pixels at the same distance from the horizontal axis are all equal, equation (9.18)

represents the vertical moment of mass (around the horizontal axis), expressed as;

my (x) = my X =

[mjy f f i j y tn2y ~^2V ~^3V ^ ^ ^ (9.19)

(^1 " ^ 8 (x g - Xg (x 2 + :(4 " ^ 5 " ^ 7)

The moment of mass can be considered as a measure of the average luminosity, and

(9.19) is constructed as the weighted difference in luminosity above and below the

horizontal axis, weighted according to the distance from the axis.

It is straightforward to see that my (x) = -my {Ty x) . Hence the vertical moment of

mass changes sign according to the sign of the variant part of x . It is easy to

196

demonstrate that the null space of my(x), defined as xeli^:my(x)=0, includes the

set of the fixed points of Ty . To show this, recall that is defined as the set

of inputs X such that Ty x = x . For the 8, lattice, this implies that

= » , x g = = ^ 7 (9 2 0)

Substituting (9.20) in (9.19), shows that my(x) = 0. Note that (9.20) is more general

than (9.19), since the condition 02 = = a-j is not necessary.

One can equally define an horizontal moment of mass, relative to the horizontal flip

operator and the vertical axis of symmetry. However, the expression is simpler,

since the pixels on the vertical axis do not appear:

w / / (x) = m ^ x = [O m / / O f f 7 / / 0 - ? ? ? / / 0] x =

(9 . 2 2)

(^ 2 " ^ 4 + ^ 5 " ^ 7)

In this case m^ (x) = -m// (T// x), and again the condition of equal weights on the

off-axis pixels is not necessary for the null space of m^{x) to correspond to .

This condition becomes necessary if it is required that m { x) = mj^ {Ty x) and

my (x) = my {T^ x) in order to make the horizontal luminosity gradient

independent of Ty and vice-versa.

197

128

-128

128

-128 0 X]
-128

128 -128 0 >3 133

Figure 9. Projected planes: moment folded inputs (black), original inputs (grey).

Figure 9 shows the distribution of inputs before and after moment folding in two of

the projected planes. It is evident that there is no sharp cut in %% — as seen in cluster

folding. This is because the cuts happen in planes orthogonal to the two moment

vectors and my , not parallel to the planes shown in figure 9.

9.3.8. Results for moment folding RBFN

One is free to choose the three moment weights, but there are several alternatives that

suggest themselves. Figure 10 shows the orthogonalisation plot of the moment-

reduced network for 3 different choices: all weights equal to 1, m 2 y = 2 and

miy = m^v = 1, rnij/ = 1 and m2y = = 2 .

These results imply that moment folding generally outperforms binary cluster folding.

Specifically, the plot clearly shows that the window of reducible centres is enlarged to

20 ~ 200. Different trends may appear as the initial choice of centres is changed, and

we can not definitely conclude that moment folding has a better performance than

cluster folding. However in the region M>25 the two methods are similar and neither

achieves the performance of a Volterra series (MSE=0.6956%) with M<50.

198

0.8534

0.7765

2
0.7142

0.6376

s tandard HRBFN
- Momen t 1

Momen t 2
Moment 3

50 100
orthogonalised centres

1000

Figure 10. Comparison o f M S E ortiiogonal sequences using the moment folding scheme.

9.3.9. Non-linear optimisation and folding

This section considers the application of the Nelder-Mead optimisation scheme to

enhance the performance of the folded networks. The network is reduced to 10, 16, 20

and 25 orthogonal folded centres. The cluster folding algorithm based on the sign of

X] -%g is applied. The 4 networks are successively optimised using the Nelder-Mead

algorithm. The results are depicted in figure 11, where the MSE is plotted as the

number of iterations of the NM algorithm is increased. As in standard RBFN, some

form of non-linear optimisation improves the interpolator performance. However the

curves tend to flatten as the number of iterations increases. Note that in this case the

RBFN is able to achieve the same MSE as the Volterra model using only 16 centres.

This is well within the range suggested in appendix B. As in chapter 6 the

optimisation has driven some of the centres outside the boundaries of the input set

(figure 12). This phenomenon again re-emphasises one limitation of the random initial

selection of centres from the input space.

199

0.95

0.85

UJ
co

25 centres
—B - 20 centres

16 centres
10 centres
Volterra error

0.75

200 400
Iterations per parameter

800

Figure 11. MSE sequences for 25, 20, 16 and 10 centres folded networks optimised using the
Nelder-Mead optimisation algorithm.

-170

170

-170 170
-150

150

-170 170

Figure 12. projected spaces of Nelder-Mead optimised symmetric networks (16 centres).

200

9.4. Conclusions

Chapter 8 showed that the symmetry properties of the linear interpolating function can

be used to provide significant reductions in the computational cost without loss of

performance. The built-in symmetry of the sampling lattice, and the conjectured

rotational invariance of the local topology of the interpolation map, ensures that the

optimal linear weight vector is orthogonal to a subspace of the input space. Hence the

linear interpolating function can be re-arranged such that the number of multiplication

units is reduced for a broad range of sampling lattices.

This chapter showed how these principles can be extended to exploit similar

properties in RBFN. It has been shown that while the information contained in the

orthogonal space is not relevant to the linear problem, RBFN use a significant portion

of it to yield a better interpolation. However, the conditions of symmetry are derived

from a set of general properties of image interpolation, and do not depend on the

particular model. It is reasonable to expect that some form of symmetric reduction is

possible for non-linear systems, and specifically for RBFN.

In the linear case the conditions of symmetry modify the geometrical properties of the

—> R mapping. RBFN have a strong geometrical structure, and the set of centres

can be regarded as a prototype of the distribution of the input set. It is reasonable to

expect that symmetry modifies the properties of the R^ —> R^ —> R RBFN

mapping.

Symmetry was used to relate an input x with its flipped versions, since they are

assumed to generate the same output. In the symmetric RBFN (section 9.2), each

centre is used to generate a set of flipped centres. Consequently, the intermediate

space can be divided into symmetric subspaces that can be reduced using linear

techniques. The input distributions are generally symmetric, or quasi-symmetric,

hence the symmetric RBFN is a valid model at least when the number of centres is

high. Training is critical when the number of centres is small, since the condition of

local symmetry may affect the performance of orthogonalisation techniques.

201

Experiments show that the proposed model is reasonably valid, but training should be

studied more completely.

The main computational load in the RBFN is proportional to the number of centres

M . A cost-saving strategy must aim principally at reducing the network branches, i.e.

to reduce the number of centres. In this case it is not possible to derive simple

analytical results, since the reduction of centres affects the non-linear part of the

RBFN model.

The folding principle derives from an observation of the RBFN model in 2

dimensions, and considering simplified non-linear kernels with small support in .

An interesting consequence is that the input space is separable into two sub-spaces,

which yield the same output dynamics. These sub-spaces have mirror symmetry along

the bisector. The application of the flip operator to one of these sub-spaces makes it

fold onto the other sub-space. Hence the area of the input space can be reduced by

half without significantly affecting the dynamics. This reduction can be obtained

either by discarding one of the two subspaces, or alternatively by folding the input

space across the symmetry line. RBFN are generally based on infinite support kernels,

so that some consequences are introduced. Basically, the set of centres cannot be

folded without experiencing some loss in performance. This problem is discussed in

section 9.3.1, where qualitative considerations suggest some mechanisms that

generate these performance degradations. In sections 9.3.2 and 9.3.3 the folding

principle is extended into spaces with an arbitrary number of dimensions. Two folding

strategies are produced: the binary class folding method and the moment-based

folding method.

The work concentrated on the practical case of a HGRBFN with lattice 8i. The results

show a significant reduction of the number of centres required to achieve a specified

MSB. However, the simplistic expectation of a reduction by 4 (a factor 2 for each flip

operator) is not matched by the results. It is necessary to improve the model in order

to account for, and compensate for, any loss given by the missing cross-influence of

the clusters, and the influence of centres near the locus of fixed points should be

accounted for.

202

A simple application of Nelder-Mead optimisation shows again the limitations of the

choice of centres from the input set. The optimisation algorithm is encouraged to

recover the essential information missed in folding. Folding reduction, followed by

Nelder-Mead optimisation, matches the performance of the 3"̂^ order Volterra series in

a complexity range where predictions suggest that folded RBFN is comparable to the

Volterra series, in terms of computational load.

203

10. GENERALISATION OF SYMMETRIC ARCHITECTURES

10.1. Introduction

This chapter presents the results of studies into the generalisation ability of symmetric

architectures, specifically the symmetric linear filter and the folded HGRBFN, both

using the 8, sampling lattice. The investigation will make use of the same frame set

and techniques used in section 7.

10.2. Linear results

Two aspects regarding the generality of the symmetric linear filter are considered.

The first regards the ability of the filter to interpolate a rotated/flipped version of the

training set. The second regards the cross-result over the complete frame set

compared to the best result achievable on each frame.

In chapter 8 it was already pointed out that, at least for a flip around the vertical axis,

corresponding to the flip operator T// , the flipped image can be considered as a valid

image. On the other hand a horizontally rotated image (Ty) more often looks

unnatural, yet it can be conjectured that a realistic system should yield a uniform

result on any possible flip or rotation of the training set.

Table 1 shows the results of applying non-symmetric linear filters to the flipped

versions of their training sets, compared to the corresponding symmetric result (that,

by construction, is identical over the 3 flip operators). The results are normalised with

respect to the non-symmetric self-result (i.e. the result using the non-symmetric filter

on the non-flipped frame). One can see that the symmetric filter produces a slightly

worse result on the non-flipped training set than that achieved using the non-

symmetric filter. This is indicated by the normalised result being greater than unity.

This result is not a surprise, since the non-symmetric filter is not constrained in its

interpolation by the conditions of symmetry. However, the symmetric filter performs

better on any flipped version of the training set, and its error is below the average

204

result of the non-symmetric filter. It is therefore reasonable to conclude that the

symmetric filter increases the generalisation ability of the filter.

input frame rotation (non-symmetric filter)

H V HV average Symmetric filter

1

.5
C

1

1 1.2669 I J ^ M 1.0066 1.1365 1.0652

1

.5
C

1

2 1.0342 1.0248 0.9904 1.0123 1.0095
1

.5
C

1

3 1.0089 1.0119 1.0029 1.0059 1.0022 1

.5
C

1

4 1.0582 1.0522 0.9937 1.0260 1.0144

1

.5
C

1 5 1.0020 1.0066 1.0046 1.0033 1.0011

1

.5
C

1
6 1.0121 1.0146 1.0083 1.0087 1.0031

Table 1. Error of the non-symmetric filters on flipped inputs, normalised with respect to the error on
the non-flipped input. Error of the symmetric linear filters.

Input frame

1 2 3 4 5 6

1

.S
c

1 1.0000 1.0021 1.0112 1.0415 1.0028 i jm65

1

.S
c

2 l.OOM 1.0000 1.0137 1.0308 LOOM 1.0022
1

.S
c

3 1.0066 1.0090 1.0000 1.0620 1.0029 1.0185 1

.S
c

4 1.0606 1.0565 1J785 1.0000 1 J 2 6 0 1.0350

1

.S
c

5 1.0025 1.0077 1.0063 1.0618 LOOM) 1.0194

1

.S
c

6 1.0038 1.0026 1.0325 1.02M 1.0168 l.OOW

Table 2.a. Symmetric linear filter cross-results, normalised with respect to symmetric self-results.

Input frame

1 2 3 4 5 6

1 1.0652 0.9552 0.8096 0.9636 0 .8672 0.8747

1
OD

'c

2 1.0287 1.0095 0.9733 1.0149 0 .9908 0.9829
1
OD

'c

3 0.9869 0.9923 1.0022 CL9894 0.9961 1.0027 1
OD

'c 4 1.0373 1.0108 0.9699 l.OLM 0.9924 0.97M

1 5 1.0051 1.0010 0.9968 1.0040 1.0011 0.9983

6 0.9808 CL9875 1XW15 0.9838 0.99ZZ 1.0031

Table 2.b. Symmetric/non-symmetric linear filters cross-result ratio.

Table 2.a shows the symmetric cross-results. One can see how the cross-results are

always worse than the self-result. Table 2.b shows the ratio of the MSB obtained for

symmetric and non-symmetric filters when trained on one frame and tested on a

second. It can be seen that the symmetric filter generally offers slightly better

performance when applied to frames it has not been trained on. In fact, one can see

that the average deviation from the unity of the results in table 2.a is smaller than the

205

corresponding deviation in table l.a in section 7.5.1, illustrating a more uniform

behaviour.

From these tables, we can assess the effectiveness of the symmetric reduction as a

generalisation technique. As well as a computational advantage, an improvement in

generalisation is obtained. This improvement is due to a training procedure that forces

the filter to produce uniform results over flipped versions of the training set.

Moreover, this generalisation ability is built-in via a-priori conditions, which do not

increase the computational load, unlike regularisation that typically requires the

minimisation of extra terms. In fact, the computational load is reduced since there are

fewer coefficients to calculate.

10.3. RBFN results

Figure 1 shows a comparison of the self-results for a folded and unfolded networks

using 4 different folding strategies. All three results are normalised with respect to the

non-symmetric linear result. Two binary folding techniques are used, the first using

5/g«(x]-X8) as the decision threshold for the vertical flip, and the second using

sign{x2 -X(,). Both techniques use sign{x2-x^) for the horizontal flip. Results for

two moment folding techniques are also depicted, which use respectively

my = [l 1 1 1 - 1 - 1 - 1 - l] ^ and m f / = [l 1 2 1 - 1 - 2 - 1 - l] ^ (closest

neighbours moment, with xg and % being emphasised) for the vertical flip. Both use

the horizontal moment vector n i f / = [0 1 0 1 - 1 0 - 1 O]^.

The plots clearly show results similar to those obtained in section 9. There is an

approximate reduction by a factor of a half of the number of centres required to yield

a given MSB, although the exact value varies from network to network (with an

impressive reduction by 4 for network 5), and from strategy to strategy. One should

remember that the training is initialised using a random selection strategy from an

initially large number of centres (M=1000) and, as observed in chapter 6, the

subsequent reduction may produce different results depending on this choice.

However, it seems clear that the observed halving of centres can be considered as a

general "rule of thumb".

206

network 1 network 2

o 0.85

HI 0 . 8

10 25 50 100

orthogonalised centres

network 3

10 25

0.95

0.85

50

network 5

100

0.95

0,85

10 25

network 4

50

network 6

100

100

Figure 1. Folded self-results, compared to non-folded self-results. (1) non-folded OLS sequence.

(2) binary folding using sign{xi-x^\ (3) binary folding using sign{x-^-%&). (4) moment

folding, equal weights. (5) moment folding, closest neighbours. Resuhs are normalised with
respect to the linear non-symmetric self-result.

The behaviour of network 1 is rather peculiar. In this case, the folding techniques

seem to degrade the performance, especially for M=100. This lack of performance

may be the consequence of peculiar characteristics of the training set, rather than a

general failure of the folding technique.

207

none 1
network

Figure 2.a. results over the flipped frames, unfolded networks 1 to 6, normalised with
respect to the performance on the unfolded input.

none 1
network

Figure 2.b. results over the flipped frames, equal weights moment folded networks 1 to 6,
normalised with respect to the performance on the unfolded input.

208

Figure 2.a shows the MSE obtained when the training sets and their flipped versions

are submitted as input to their corresponding non-symmetric (unfolded) network,

using 100 OLS centres. The results are normalised with respect to the MSE obtained

using the non-flipped set. One can see that network 1 exhibits a clear lack of

generalisation, since the //-flip and F-flip versions of the training set produce

significantly different results, whilst the HV-f[\^ interpolation is more accurate. That

might be explained by the presence of a dominant directional feature in the frame,

invariant to the //F-flip. Note that similar behaviour is also shown by network 6. This

might be explained by the presence of a directional feature invariant to the //-flip.

Conversely, the corresponding equal weight moment folded network exhibits a quasi-

uniform outcome over the 4 versions of the training set (Figure 2.b.). We will shortly

see how the folded version of network 1 produces more general results than the

unfolded one. One can see from figure 2.b. that the folded network performance is not

absolutely constant over the 4 flipped versions of the input. In the linear case, the

symmetric filter yields an exactly constant result by construction. In the RBFN case,

the folding strategy does not yield a constant result due to the fact that the folded basis

functions have large support. Therefore folding strategies do not produce exact

symmetrisation.

10.3.1. RBFN cross-results

This section discusses the cross-results over the 6 frames, using 100 centres and 50

centres folded networks. Figures 3.a and 3.b show the plots for 50 centres folded

network 1 to 6 compared to the 100 centre unfolded networks, with MSE normalised

with respect to the unfolded self-result. In figures 3.c. and 3.d. equivalent results using

100 centres folded networks are plotted. Note that the unfolded result is highlighted

by the dotted line for clarity. One can see how the results vary from network to

network, and how the different folding strategies act in different ways. Some general

conclusions can be drawn from these plots. It is clear that, with the proper choice of

network and folding technique, it is possible to improve the generalisation ability of a

network. At the same time one can produce a similar error on the self-result with half

the number of centres. In particular it appears that the closest-neighbour moment

folding produces, on average, best performance both in terms of MMSE and

generalisation.

209

2.5

- o (1)
<1 (2)
> (3)
• (4)
o (5)

1.5

2.5

1.5

0.5

3 4
input frame number

• o

(a)

(c)

Figure 3.a. 50 centres folded cross-results, compared to 100 centres unfo lded cross-results,

normalised with respect to 100 centres unfolded self-results. (1) unfolded result (2) binary

folding on s i g n { x i - x {) (3) binary folding on sign{xT, - X (,) (4) equal weights moment

folding (5) closest neighbour moment folding, (a) network 1 (b) network 2 (c) network 3.

210

O (1)

O 5)

2 . 5

1 . 5

0 . 5

(a)

3 4

input frame nurrter

(b)

5 0 0

4 0 0

3 0 0

200

100

<
- - - -g

(C)

Figure 3.b. 50 centres folded cross-results, compared to 100 centres unfo lded cross-results,
normalised with respect to 100 centres unfolded self-results. (1) unfo lded result (2) binary
folding on sign{x]-x^) (3) binary folding on sign{x2-x(,) (4) equal weights moment

folding (5) closest neighbour moment folding, (a) network 4 (b) network 5 (c) network 6.

211

2.5

1.5

2.5

1.5

0.5

o (1)
<] (2)
> (3)
n (4)
o (5)

3 4
input frame nurrber

•
o

>
o

(a)

(b)

Figure 3.c. 100 centres folded cross-results, compared to 100 centres unfolded cross-results,

normalised with respect to 100 centres unfolded self-results. (1) unfolded result (2) binary

folding on sign{x\-x^) (3) binary folding on sign{x^-x^) (4) equal weights moment

folding (5) closest neighbour moment folding, (a) network 1 (b) network 2 (c) network 3.

212

14

12

10

o n)

O (5)

70

60

50

40

30

20

10

P.

(d)

3 4
input frame number

•
,Q

o. •

(f)

Figure 3.d. 100 centres folded cross-results, compared to 100 centres unfo lded cross-results,

normalised with respect to 100 centres unfolded self-results. (1) unfolded result (2) binary

folding on sign{xi-x^) (3) binary folding on sign{x^-x(,) (4) equal weights moment

folding (5) closest neighbour moment folding, (d) network 4 (e) network 5 (f) network 6.

213

10.3.2. Bias and Variance

The top and middle plots in figure 4 illustrate the squared bias and variance of the

closest-neighbour folded network trained on frame 2, plotted along with the results for

the corresponding unfolded network. Despite the simplistic technique used to

calculate the bias and variance (section 7.5.5), one can gain insights into the way

folding techniques works. Note how the variance is approximately halved using the

folding technique. This explains the improved generalisation of the folded network. A

reduced variance implies that the 6 folded mappings are close to each other.

1.5

I ^

1. 0.5

-O (1)
^ (2)

' ' - (

(3)
(4)

orthogonalised centres

Figure 4. Squared bias and variance, unfolded and closest neighbours m o m e n t folded network
2. Unfolded (1) and folded (2) squared bias. Unfolded (3) and folded (4) variance. Unfolded

(5) and folded (6) squared bias using a folded model to estimate (' | x) •

2 1 4

One can also see a corresponding degradation in the bias, which flattens for M>50.

This increase in the bias is unexpected, since the MSE yielded by the folded networks

is typically lower than for their unfolded counterparts. However, one should realise

that is calculated using an unfolded network. Therefore, ^/| may account for

asymmetries in the training set that are primarily cancelled by the folded techniques

and, in fact, represent a nuisance factor since the mapping should abide by the

conditions of symmetry. Therefore it is assumed that the lower bias of the unfolded

training is mainly due to the over-fitting of the unfolded (̂ t | on asymmetric

features.

The bottom graph in figure 4 shows how, using a folded model to estimate (^| , the

folded network yields lower bias and variance than its unfolded counterpart. Figure 5

shows that (/ |x^, calculated using the folded model, produces results comparable to

the unfolded in terms of individual results and generalisation. Therefore, we

can assume that it is the bottom graph in figure 4, rather than the top one, which truly

represents bias.

2 . 5

Bj
1 . 5

o (1)

• (2) 6

• o

1 L_

o •

3

input frame number

Figure 5. Estimate o f . (1) Evaluated with 100 centres, unfolded network. (2) Evaluated with

100 centres, folded network. Plots normalised with respect to self-results.

215

10.3.3. Weight-decay training

Figure 6 shows the results of weight-decay training (sections 7.4.1 and 7.6), applied to

the closest-neighbour moment folded networks with 50 centres, compared to their

unfolded version using 100 centres. The plots show the average, maximum and

minimum value over the whole frame set. The results are normalised with respect to

the non-regularised, unfolded self-result (using 100 centres).

One can see that weight-decay has an effect on folded networks similar to its effect on

unfolded networks. In particular in the case of network 2, one can see that the initial

maximum value for the folded network is higher, but regularisation rapidly reduces

this value. Table 3 shows how the sum-of-squared-weights value changes with the

network considered, and with the folding technique. In particular, one can see that the

50 centres, closest-neighbour folded network 2 has a greater sum-of-squared-weights

value, compared to its 100 centres unfolded counterpart. This may explain the initially

poorer results seen in figure 6.

It is interesting to discuss, albeit in a qualitative fashion, the relationship between

symmetrisation and weight-decay in the linear case. Figure 7 illustrates three 2-

dimensional examples. With two weights, wj and W2, coming from a vertical

symmetric sampling lattice, the symmetric solution fixes wj = W2, so the solution is

constrained to lie on the main diagonal of the weight space. On the other hand, a

regularised solution is such that the sum of squared weights is minimised together

with the sum-of-squared errors. The curves + ^2 ~ const trace circles in the

weight space centred in the origin. It is clear from this figure that the symmetric sum-

of-squared-weights value will be greater or smaller than the non-symmetric solution

depending upon the orientation of the quadratic error surface with respects to the main

diagonal.

216

3.5

3

f 2.5
:=

CD o

i , . s
L U

i '
0.5

0

Network 1 N e t w o r k 2

^ (1)
- - (2)
—e— (3)

(4)

= 1

10= 10^ 10"̂ ia=

regularisation parameter v

Network 3

10^ 10^

Network 5

Network 4

10-" 10^ 10^

Network 6

Figure 6. Weight decay training of folded networks (red) compared to unfolded networks (black).
Results are normalised with respect to non-regularised unfolded results. (1) average over the frame
set, standard network (2) minimum and maximum values over the frame set, standard network (3)
average over the frame set, symmetric network (4) minimum and maximum values over the frame
set, symmetric network.

217

M unfolded equal weights c. neighbours x j - x g X3-X6

1
50 7.8504 2.4802 2.2976 4JU34 7.0287

1
100 4.2493 5.6976 15.6113 13.2129 29.0995

2
50 2.7868 1.7814 2.5185 1.8030 o^mw

2
100 1.5085 2.9628 3.2271 3.5246 5.1097

50 5.4700 6.3237 4.0356 1 5886 2.4275

1 J
100 2.9608 3.9306 3.1315 3 ^ 8 2 9 3.1065

z 4
50 5.3989 3.3101 0.8241 2.6180 3.7219

4
100 2.9223 4.0390 4.1367 5.6610 6.5139

5
50 6.1225 2.7696 3.7347 5 3 4 5 2 2.1168

5
100 3.3140 1.7185 3.5280 2.9461 4.0320

50 8.9955 2.4041 5.4389 6.7705 3.1059
6

100 4.8691 7.8743 16.6147 11.4006 7.1085

Table 3. Sum-of-squared weights for unfolded and folded networks, normalised (10 - 4 0 ' ' o / M) .

= 1̂ 2

^/\ / \ -f wj = CO/7S/

/

> 0^0

Figure 7. Symmetric solution and weight decay. The symmetric MMSE solution 0 is found on the

intersection of the quadratic error function with the bisector w, = Wj . The non-symmetric solution 0

and 0̂ '̂ ^ lay on the direction identified by the smallest eigenvalue of the Hessian matrix (minimum
slope). The squared sum of weights is increased or decreased by symmetrisation according to the
orientation of the quadratic function.

218

10.3.4. Extended training on frame 6

Another point in common between the generalisation behaviour of unfolded and

unfolded techniques is the poor performance on frame 6. In this section the extended

training in section 7.7 is developed for this case. The initial set of centres is drawn

from frame 2, folded using the closest neighbour moment technique and

orthogonalised on frame 2, and the weights are recalculated using a linear

combination of the cross-correlation matrices (equation 7.11). The results, compared

to a 100 centres unfolded extended training, are shown in figures 8.a and 8.b, for 50

and 100 folded centres, respectively.

Using 50 folded centres, the results are practically indistinguishable from those

obtained with the 100 centres unfolded network. Not surprisingly, the 100 centres

folded network in fig. 8.b produces superior results.

From figure 9 one can see the generalisation performance of the extended training

(v = 0.15) of the 50 centres folded network 2. Constraints were also added on the

main diagonal of the input space, in order to reduce the degradation of the

performance on frame 5 (see section 7.9). The result is compared to a 100 centres

unfolded network, trained on frame 2 only, and to a 100 centres unfolded network

trained using the constrained, extended training. It is evident that the folding

technique offers comparable performance in terms of MSE and generalisation using

half the number of centres and proves to be an effective and convenient reduction

technique.

219

0.3 0,4 0.5 0.6

regularisation factor v

Figure 8.a. Extended training of network 2, 100 centres unfolded (black) and 50 centres
folded (red) networks. (1) combined performance on training sets 2 and 6. (2) performance on
training set 2 (3) performance on training set 6. Plots are normalised with respect to the
unfolded initial values (v = 0).

0,3 0.4 0,5 0.6

regularisation parameter v

Figure S.b. Extended training of network 2, 100 centres unfolded (black) and 100 centres
folded (red) networks. (1) combined performance on training sets 2 and 6. (2) performance on
training set 2 (3) performance on training set 6. Plots are normalised with respect to the
unfolded initial values (v = 0).

220

2.5

E
i 1.5

-o (1)

• (2)
O (3)

•
o

3 4
input frame number

Figure 9. Extended training (v = 0 .15) and constrained optimisation o f networlc 2, over the
frame set. (1) 100 centres unfolded network, unconstrained, non-extended. (2) 100 centres
unfolded network, constrained, extended. (3) 50 centres folded network, constrained,
extended.

10.4. Conclusions

The preceding two sections have developed a novel approach to the problem of

reducing the complexity of an interpolation scheme based on RBFN. This approach

addresses some rotational invariant features that standard RBFN training does not

consider. By constructing systems that account for these features, these redundancies

can be eliminated. In the case of a linear interpolator, such a problem has an exact and

easily tractable solution. In RBFN case, a mixture of heuristic considerations

regarding the geometry of the problem is used to obtain a convenient reduction in the

number of centres necessary to yield a given MSB.

In this section, it has been shown that symmetrisation techniques also exhibit superior

generalisation properties. Forcing the network to produce similar results on rotated

versions of the same training set help to avoid over-fitting of directional features that

cannot be considered as general properties of images. Moreover by using half the

number of centres one can obtain the same results on a set of test frames. Another

quantitative proof of this amelioration is given by the simultaneous reduction of bias

and variance.

221

Clearly, there are some points that ought to be further investigated in the application

of folding techniques. The most interesting of all is the relation between the reduction

achieved and the topology of the input space. It has already been seen that an input

space whose inputs are concentrated on the main diagonal (broadly corresponding to

an image with few high-frequency components) might not benefit from the

application of the folding techniques. On the other hand, there is little to be gained by

using a non-linear technique for such an input space. A more accurate analysis would

involve the study of the spaces of fixed-points , F j ^ and .Py , and how inputs

and centres relate to these spaces where the folding technique is less effective.

Finally, non-linear minimisation techniques, which have not been investigated in the

context of generalisation, should also be applied to obtain further reductions of the

error. Such techniques should be used taking appropriate measures to avoid an

excessive specialisation and consequently a decrease of generalisation.

222

11. CONCLUSIONS

The first part of this thesis (chapters 1 to 7) have shown how non-linear techniques

produce significant improvements over linear filters when applied to solve the de-

interlacing problem.

We have seen how de-interlacing can be considered a non-linear problem, mainly

because in the process of interlacing there is a significant amount of information that

is not registered, and cannot be recovered using linear methods since it constitutes a

form of aliasing. The consequence is that linear filters typical produce a blurring

artefact, known as "jagging", that is particularly noticeable on edges and detailed

areas of an image. Another problem related to the application of linear filters is that

they have insufficient complexity to deal with different situations. It has been shown

how linear systems, trained on "natural" images, basically compute the average of the

neighbouring pixels in order to estimate the unknown target pixel. This result explains

the "jagging" artefact, since although an average filter produces good interpolation of

uniform and smooth areas, unsatisfactory results are produced on edges and detailed

areas.

The application of non-linear techniques mitigates this problem by inferring more

complex relationships between neighbouring pixels, so that non-linear filters can deal

with more complex situations. The performance on edges and detailed areas is better,

and accordingly so is the perceptual quality of the interpolation. In this work we have

investigated the application of two non-linear techniques, the Volterra series and the

Radial Basis Function Networks, specifically focusing on the latter.

Both techniques deliver effective results, but this comes at the cost of increased

computational complexity. This is a critical point in de-interlacing, since most de-

interlacing systems are implemented in hardware and usually operate under real-time

conditions. Therefore, a great effort must be placed in trying to reduce the

computational cost. The comparison between Volterra series and RBFN has been

conducted considering their relative computational cost, on the basis of some simple,

yet realistic, considerations developed in appendix B. It has been shown that, with a

223

careful training, the two techniques can be considered equivalents in terms of results

and costs.

Another problem that must be tackled when dealing with interpolation techniques is

the ability to produce general systems, i.e. systems that are able to produce reasonable

performance over a set of images much larger that the training set. This ability is

called generalisation. Chapter 7 deals with this problem, and it is shown how an

improper training leads to very specialised (i.e. non general) results. The problem is

that the increased degrees of freedom given by non-linear techniques are spent to

specialise the system on the particular training image. Therefore the training must be

constrained somehow in order to avoid an excess of specialisation without affecting

the error performance. A well known technique, weight-decay training, has been used

to produce results that trade-off accuracy for generality. This has produced more

general results, preserving the advantages of non-linear techniques. However, we

believe that the problem cannot be completely solved using a single system, and

suggested that the problem could be better tackled using a mixture of differently

specialised systems.

The second part of this thesis (chapters 8 to 10) introduces a new RBFN training

paradigm for image interpolation, the symmetric training. Image interpolation is

typically performed using spatially symmetric sampling lattices, in which case, it is

possible to devise equivalence relationships between vectors in the input space. In the

linear case, the consequence is that the algebraic form of the filter can be simplified,

and the computational load reduced.

Unfortunately, it is not possible to devise the same conclusions for non-linear

techniques, since the algebra is non-linear. However, RBFN have a strong relationship

to the topology of the input space, since the distribution of centres can be considered

as a "copy" of the distribution of the input vectors. Therefore, a relationship between

input vectors can be transferred to the centre vectors. We have described two

techniques that are based on this principle. The symmetric RBFN successfully

attempts to produce a result similar to the linear case, by inferring the same properties

and reducing the number of linear weights in the RBFN. This does not produce large

computational savings, as the greatest computational burden in the RBFN occurs the

224

non-linear layer. The folded RBFN directly tackles the non-linear problem by

inferring symmetry constraints in the non-linear layer of the network. Albeit the

analysis is more heuristic than in the symmetric RBFN case, nevertheless the results

are satisfactory, and the computational load is reduced, on average, by half

Furthermore, the folded RBFN model includes the symmetric model.

Another advantage of exploiting symmetries in de-interlacing is that symmetrisation

can be considered as a form of generalisation. By constraining the system to produce

the same result on different areas of the input space, we obtain a more general result.

The constraint of symmetry can be explained in this way: given an image, the system

must produce equal (or similar) results on differently orientated versions of this

image. This is equivalent to force the system to produce the same result on different

images, and therefore the generality of the result is increased. Chapter 10 shows how

symmetrisation is not only an effective reduction technique, but also a generalisation

technique.

225

jAi.jPOlLnRIELR S] P I i (: T R v \ (IMF TTHi; EKCjCN/U.

A. 1. Introduction

This appendix considers the spectrum of a video signal. The results obtained are

applied in chapter 1 to draw the schematic plots of progressive and interlaced video,

and to highlight their differences.

A.l. Continuous video signal and spectrum

A hypothetical continuous video signal can be expressed as a continuous sequence in

time of continuous still images. Therefore, the signal is a function of two spatial co-

ordinates x and;; and a time co-ordinate/, F^(x, >>,/), where conventionally x re-

presents the horizontal direction, and y represents the vertical direction. Under the

usual convergence conditions F^{x,y,t) can be Fourier-transformed into a frequency

domain consisting of two spatial frequencies , f y and one temporal frequency

0

A.3. Discrete video signal

Any real video sequence can be viewed as a sampled version of F^{x,y,t). The

sampling spaces in each co-ordinate x, y and t are determined by a variety of

circumstances. The consequence of this sampling is that the spectrum assumes a more

complex form than that expressed by (A.l). From the sampling theorem, valid for any

number of dimensions, the spectrum will be typically formed by an infinite series of

replicas (aliases) of (A.l). The position of these aliases will be determined by the

particular shape and structure of the sampling. For instance, if the sampling is uniform

in space and time, the discrete signal can be expressed as:

{n,m,k) = '^^^F^ {x,y,t)S(x +n • Ax)S{y + m • Ay)S{t + k • At) (A.2)
n m k

226

the spectrum of which is related to the continuous version by:

r J V

0 ^ 3)

However, in many video applications the sampling lattice is more complicated than a

simple, uniformly spaced one. Interlaced video represents one example, since the

position of the lattice in the vertical direction is displaced by one row on adjacent time

instants. To obtain an expression for the discrete spectrum it requires a more

sophisticated analysis than the simple application of the sampling theorem, as in

(A.3). The next sections will consider the Fourier spectrum of a continuous signal

sampled on an arbitrary lattice.

A.4. Arbitrary lattice sampling

In order to produce the desired Fourier analysis, an arbitrary sampling of a continuous

image is defined through a three dimensional relation between the continuous

variables x, y, and /, and the corresponding discrete variables «, m, and k These

relations can be summarised as

X = V i i n + vj2 W + V13 A

J '= V21 « +V22 w + V23 A: (A.4a)

/ = V3J /J + V32 AW + V33 k

that can be described in a more compact form as:

x = Vn (A.4b)

where x = [x y r] ^ and n = [n m k]^. It is useful (as will be clear shortly) to

express the matrix V in terms of column vectors, V = [v| V2 v 3] . It is therefore

possible to express the sampling (A.2) in matrix notation:

227

= + V n) = (V n)g(% + V n) (A.5)
n n

The notation has been shghtly abused: the summation is in fact a triple summation,

and the vector sampling pulse 5(x + V-n) is the product of three one-dimensional

pulses.

A.4.1. Progressive and interlaced video

For the progressive video, the matrix V can be expressed as:

V
Ax 0 0
0 Ay 0
0 0 Af

(A.6a)

while for interlaced video the matrix V can be expressed as;

V =
A% 0 0
0 2 Ay Ay
0 0 A//2

(A.6b)

The analysis of (A.6a) is straightforward. It is also easy to understand (A.6b). In that

case, the position of the sample on thej^-axis is given by

_y = ffz2Ay+ A:Ay (A. 7)

Hence the position of the sample is displaced by /^y at the discrete time k = 1,3,5,...

(Figure 1). From figure 1 it is possible to appreciate the column vector notation for V.

The vectors v j , V2 and vg determine the position of the first samples, and so of the

whole lattice. This is particularly evident for the interlaced video, since the oblique

position of vg determines the interlaced lattice. Note that in the latter case, we have

not depicted the x-axis for simplicity. However, in interlaced format the horizontal

sampling is identical to the progressive case (left side of figure 1).

228

Figure 1. Sampling lattice and V vectors. Progressive (left) and interlaced (right) video.

A.5. Vector form of the Fourier transform

It is possible to express the Fourier transform in a vector notation applying a formula

like (A.4b) to the frequency components. Define a frequency vector

f = [/ x / , f i Y (AS)

the Fourier transform of the video signal (x) can be expressed as

Og (f) = (x)exp(-2;rzf)c/x (A.9a)

and the inverse transform will be expressed as:

f c (x) = (f) e x / ? (2 ; r / f ^ x)^/f (A.9b)

Note the integrals in (A.9a) and (A.9b) are triple integrals.

229

We can obtain the vector Fourier transform for the sampled signal:

O J (f) = (Vn)ex/?(-2;r /f ^ V n) (A. 10a)

and the inverse transform will be expressed as:

+1/2

jFc (1/::)== C4ul()b)

- V 2

However, substituting (A.4b) directly into (A.9b) leads to

.Fd(T/i»)== (f)gj%)(2;c;ff^yn)amF (V l . l l)

Making the change of variables v = V^f , with d\ = IvWf and f = Uv , where

u = (v^) gives

+ 0 0

F j (V n) = j | V I ' <I>̂ (Uv)ex/>(2;r/v^n)(iv (A.12)

Dividing the integration over the volume v into intervals between —1/2 and 1/2:

F ^ (V n) = J ^\\\~^ (!? ̂ \\}{\-\i)]exp{2ni\^ n^expiy-2K n)d\ (A.13)
- 1 / 2 k

Comparing (A. 13) with (A. 10b), and considering that ex/>(-27r /k^n)=l (k and n

are both integers), one finally obtains

230

k

0 V 1 4)

which expresses the spectrum of the sampled signal in terms of replicas of the

continuous spectrum. The periodicity of the sampled spectrum will be determined by

the matrix U, hence by the sampling matrix V.

A.5.1 Progressive and interlaced video

In both cases it is easy to calculate U from (A.6a) and (A.6b).

0 0
u = 0 Ay-1 0 (progressive) (A. 15a)

0 0 / k " '

Ar"' 0 0
u = 0 (2Ay)-' 0 (interlaced)

0 A/-' (A//2)r'

Figure 2. Spectrum and U vectors. Progressive (left) and interlaced (right) video. For simplicity,
we depict only the centroids (black dots) of the replicas.

Again, we can express the matrix U in terms of column vectors u j , U2 and U3, that

will determine the periodicity of the spectrum (figure 2). The figures in chapter 1 are

drawn according to the results obtained in this section. A more general discussion on

the subject can be found in Tekalp (1995). Dubois (1985) has extended the presented

results to an arbitrary number of dimensions.

231

B. COST CONSIDERATIONS

B.l. Introduction

A meaningful comparison between the performances of RBFN and Volterra de-

interlacers can not be conducted solely on the basis of the MSB. In fact, the universal

approximation principle (Chapter 2) indicates that RBFN can always perform better

than any given Volterra series, provided that the number of centres is large enough.

Some account of the computational complexity should be taken to make a realistic

comparison.

The main field of application for de-interlacing techniques is digital video processing.

Real-time or near real-time applications often require the algorithms to be built in

hardware, most likely designed at port-level using programmable gate arrays (PGA).

Computational complexity, in terms of the number of elementary computational units,

is a measure of cost of paramount importance at the hardware level. Another

parameter that influences the cost is the degree of parallelism of the algorithm, since

this influences the processing time. Note that both Volterra series and RBFN have

been defined as single-layer networks. However, this definition is not correct in terms

of elementary computational units, since the relative kernels are composed of a series

of simpler operations, like multiplies and additions. In this work we will not consider

directly the timing problems. Our analysis will hence focus on the more general

computational complexity of the two networks.

We will basically decompose the two networks in terms of scalar multipliers and

scalar adders, and the cost will be expressed as a function of their respective costs,

Cmult . In the Gaussian RBFN we have to consider a third component, the

scalar exponential and its cost . In practice it is difficult to determine the real

costs and Cg^p . A complete analysis is beyond the scope of this work.

Hence we will use a mixture of practical and qualitative considerations to estimate

some form of relative cost of the networks. Specifically, we will make the reasonable

232

assumption that the scalar adder has the lowest cost, and consider the results for a

sensible range of possible costs and C g ^ , relative to •

B.2. Computational cost of the 3"'-order Volterra series

The number M of branches in the network diagram of the Volterra series is not a free

parameter as in RBFN, but is determined by the degree p of the series and the

dimension D of the input space. For a 3"̂ order series, we can identify 3 groups of

. . _ D (D + l) . D (D ^ + 3 D + 2) , ^ o
branches, with D , and — ^ ' elements, corresponding to the 3

2 6

degrees of the expansion (Figure 1), and there is a different cost per branch for each

group. The cost of the 3"̂ order branches can be reduced by pipe-lining the 3"̂ order

group with the output of 2"̂ * order branches. (Figure 1). The linear group is considered

to be of cost zero, since it merely transfers the input in the intermediate space h .

r XI

{
Xj — ^

^7-

D

>
D (D + l)

"7 ,T r
>

V

^ (0 ^ + 3 ^ + 2)

J
- 3 -

^ 1" order 1

order!

.h"* order 1

Figure 1. Branch decomposition of the 3""-order Volterra network

233

The cost per branch for each group is given by:

D (D + 1)

. D(D^+3D + 2) ^
^(3)- f- '^mult

Note that we have used the pipe-lined structure to compute the cost of the 3"'-degree

group. To complete the cost evaluation we have to consider the number of output

multipliers (the weights of the series) D + —+3D + 2) ^
2 6

+1) H 3Z) + :!) ,
number of output summations, D 4 1 — 1 .

The computational cost of a 3"̂ order Volterra series, with Z) = 8 , is then:

C m i r - 320 - +164 - (A.2)

B.3. Computational cost of Radial Basis Function Networks

The analysis of the cost of the RBFN is more complicate than the Volterra series.

Here we have a kernel that comprises of vector and scalar multipliers and adders, and

we have to evaluate the cost of implementing the Gaussian function. The vector

elements can be easily expressed in terms of scalar elements, once we determine a

value for D .

The evaluation of is more complicate. Basically, the most immediate way to

realise an arbitrary scalar-to-scalar function in hardware is to use a look-up table

(LUT). Since the LUT is basically a read-only memory (ROM), its performance is

limited by the size of its memory, i.e. the bit-resolution of the dynamics involved. On

the other hand, the computational effort can be considered very small. Clearly the cost

function depends mainly on the size of the LUT. The memory size influences the

234

coarseness of the approximation of the LUT to the non-linear function chosen, and

hence affects the MSB performance of the interpolator. The effects of such

approximations have not been considered here, so a detailed cost analysis of these

elements is not available.

Figure 2 shows the branch decomposition of the Gaussian RBFN. Note how the left

side of the branch is kept in vector form. In fact, the scalar multiplier/scalar adder

representation is more complex.

r
|" • ^ •)

A

(7

'{ —

vector

J

scalar

J
y M

V. J

Figure 2 Branch decomposition of the Gaussian RBFN

This time the number of branches M is a free parameter of the network. The resulting

cost can be easily calculated as:

M [D - + (D + 2) -] + (M - 1) C 'sum (A.3)

The cost of the hybrid architecture is equally simple to calculate:

CfMTM + (^ + 2) + C ' g ; ^] + D +

+ (M+ D - 2)

(A.4)

235

B.4. Cost comparison of Volterra series and hybrid Gaussian RBFN.

The cost comparison of the two techniques is performed assuming a range 1~10 for

the costs and Cg^ relative to . We consider a set of ten hybrid RBFN

networks, with centres increasing in number from 10 to 100. More detail is given to

the range 10-50, since this will prove to be the range of interest to us. Figure 3 shows

the cost plots against the relative value of with C g ^ = l . Figure 4 shows the

same plots, with =10.

4 5 6 7
multiplier/adder cost ratio

Figure 3. Volterra cost function (—) against tlie relative cost ratio C,„ult / Csim ,

compared with hybrid networks (--) in the range jW=1 0-100, Cexp = 1.

From the plots it seems reasonable to deduce that RBFN can be competitive compared

to Volterra series if the number of centres is in the range 10-30. The lower bound is

given by the assumption that for M<10, the MSB performance degrades very

quickly. Hence we should pursue a training strategy to reduce the number of centres

down to this range, at the same time keeping the MSB at least equal to the 3"'-order

Volterra series.

236

3 4 5 6 7 8 9 10
multiplier/adder cost ratio

Figure 4. Volterra cost function (—) against the relative cost ratio Cmiih / Csum ,

compared with hybrid networks (--) in the range A/=l 0-100, Cexp = 10.

The results shown give an estimate for the useful range of centres that looks

reasonably robust to a broad set of conditions. However, the cost model is based on

very general assumptions that greatly simplify the issues involved in a real hardware

implementation of the algorithms. This cost analysis is not exhaustive but

nevertheless represents a reasonable framework to set our strategy in pursuing a

convenient RBFN implementation of a de-interlacing system.

237

(: . /U^CjCMBLETHIvI

C.l. The Simplex method

The Simplex method (Spendley et al., 1962) is a simple yet powerful iterative method

to find minima in a function by simply observing its values (and not its derivatives). A

regular simplex in a D-dimensional space is a set of equidistant Z)+l points

forming a D-dimensional tetrahedron (figure 1). The simplex method

computes the function values at these points, y\---yD+\^ and applies the reflection

rule (figure 1) according to these values.

Figure 1. (a) 2-D simplex (b) 3-Z) simplex (c) reflection (d) expansion (e) contraction

On the first step of the iteration, the algorithm determines the maximum value .

The corresponding vertex is then reflected into the centroid x of the other D

points, thus forming a new simplex with the old points (excluding) and the new

point X* = 2 x - x ^ . The function value j * = >/(x*) is evaluated and the process is

repeated.

After the first iteration, it is possible that the new vertex yields the largest value in the

new simplex, and consequently its reflection would cause an oscillation. In which

case the second largest value is selected. However, after a number of iterations the

algorithm will fail to proceed, since any choice will reflect a vertex already

considered. In that case, after a certain vertex x has been in the current simplex for

more than a fixed number of iterations /, then the simplex is reduced by replacing the

238

other vertices by new ones half way along the edge to the vertex x . Spendley et al.

suggest the empirical relationship

/ = 1.65Z) + 0.05Z)2 (CI)

An example for D=2 is shown in figure 2. As one can see, vertex 7 in the simplex

(4,6,7) is not reflected immediately, although yielding the highest value, since it is the

newest vertex and its reflection would cause an oscillation. When the simplex (6,9,10)

is reached, the vertex 6 has been in the current simplex for 4 consecutive iterations,

and since 7=3.5, the simplex is reduced.

Figure 2. Simplex algorithm, convergence over a convex function in 2 dimensions

C.2. The Nelder-Mead algorithm

Nelder and Mead (1965) propose a modified simplex method that allows distortion in

the simplex, in order to accommodate the local geometry of the function. Specifically,

if the new vertex value y* is smaller than yi-.-y^+x^ then the new vertex is

expanded (figure 1):

+ (l - a) x (C.2)

where a is an expansion coefficient, and is greater than the unity. If however

y**> min{yi ...jV/j+i}, then the expansion failed and x* will remain the new vertex.

239

A failed expansion might happen for instance if the simplex reaches a steep valley, at

an angle perpendicular to the valley's direction (figure 3).

(a)

6 4 2 6 8 7 ^

Figure 3. (a) failed expansion, (b) failed contraction. The numbers on the dashed lines represent the
function's value. In (a), the simplex (2,3,4) coming from the reflection of (1,2,3) tries to expand, but
it fails to do so as vertex 4 is on the rising edge of a valley. In (b), vertex 4 falls in a shallow valley
contiguous to a deeper valley. Therefore, the simplex (1,2,3) is halved in the direction of vertex 3
(minimum of the simplex).

Another amendment to Spendley's algorithm is the introduction of a contraction

(figure 1). If the new vertex x* is such that j,- <y* <yM •: so that the new vertex

value is still the maximum, then x* is replaced by:

X*'' = + (l - ^) x (C.2)

where /? is a contraction coefficient, 0 < /3 < 1. If y** <min{y*,yj^}, then x** is

the new vertex. If the latter condition is not satisfied, so that x * * produces a worse

result than x* and x ^ , then the contraction failed. A failed contraction is more

unlikely to happen than a failed expansion (Nelder, Mead 1965). It may happen when

the simplex is in a valley that curves, and one of the vertexes is farther from the valley

bottom than the others. Then x* could fall into a descending area, and the contraction

would be ascending (figure 3). In this case, the size of the non-reflected simplex is

halved in the direction of the minimum of the simplex, as in section C.l.

The final issue concerns the criterion for stopping the algorithm. One method

computes the standard deviation of the values

240

D+1 _
(y, (C 3)

If (C.3) falls below a given value, the algorithm stops.

C.3. Estimate of the Hessian matrix

The minimisation methods proposed in the previous sections are independent of the

analytic properties of the function, specifically the second derivatives expressed by

the Hessian matrix Jl •. hy = dy^ jdxidxj , and the gradient vector g : g i = d y / d x j .

However, it is desirable to have an estimate of these two quantities, since almost any

minimisation problem can be approximated by a quadratic function in a sufficient

small neighbourhood of the minimum (Fletcher, 1987), and therefore can benefit from

the analytic solution of the quadratic problem.

Nelder and Mead (1965) provide a method to estimate the Hessian matrix and the

gradient vector from the vertices of the simplex. We will not describe the details of

the derivation. They point out two major hazards of their proposed estimate. The first

is that, if the simplex is too small, the differences in the vertex values might consist

largely of rounding errors, therefore producing poor estimates. The second hazard

might occur if the simplex is too large, and the estimates are again poor. The authors

suggest that, provided a convergence has occurred, the former rather than the latter is

the main risk to avoid. In which case the solution proposed is to enlarge the simplex,

so that the effect of rounding errors is mitigated.

241

BIBLIOGRAPHY

Akaike H.
Information Theory and an Extension of the Maximum Likelihood Principle
In B. N. Petrov and F. Csaki (Eds.)
2'"^ International Symposium on Information Theory
pp. 267-28 L Tsahicadsov, Armenia, USSR 1973

Arad N., D. Reisfeld
Image Warping using few Anchor Points and Radial Functions
Computer Graphics Forum

volume 14, pages 35-46. Eurographics, Basil Blackwell Ltd, 1995. Eurographics '95 Conference issue.

Barron A.R.

Universal Approximation Bounds for Superposition of a Sigmoidal Function
IEEE transactions on information theory
Vol. 39, No3 , May 1993
Beliefs, E.B.
De-interlacing. A Contribution to the Interlaced versus Progressive Video Debate
Proefschrift Technische Universiteit Delft - Philips Electronics N.V. 1999
CIP-Gegevens Koninklijke Bibliotheek, Den Hag

Bellman, R.
Adaptive Control Processes: A Guided Tour
Princeton University Press, 1961

Bertero M., T. Poggio, V. Torre
ill-Posed Problems in Early Vision
Proceedings of the IEEE
76: 869-889, 1988

Bishop C. M.
Curvature Driven Smoothing: a Learning Algorithm for Feedforward Networks
IEEE transactions on neural networks
4 (5), 882-884 1993

Bishop C. M.
Novelty Detection and Neural Network Validation
lEEproceedings: vision, Image and Signal Processing
141 (4), 217-222 special issue on applications of neural networks, 1994

Bishop, C.M.
Neural Networks for Pattern Recognition
1995 Oxford University press

Bjork,A.
Solving Linear Least Squares Problems by Gram-Schmidt Orthogonahsation
Nordisk Tidshrift for Informationsbehadlung
7,1-21, 1967

Bridle J.S.
Probabilistic Interpretation of Feedforward Classification Network Outputs, with Relationship
to Statistical Pattern Recognition
In F. Fogelman Soulie' and J. Herault (Eds.)

pp.227-236. New York, Springer-Verlag 1990

242

Broomhead D.S., D. Lowe

Multivariable Functional Interpolation and Adaptive Networks

2 pp.321-355, 1988

Cha L, Kassaam A.
RBFN Restoration of Nonlinearly Degraded Images
IEEE transactions on image processing
Vol. 5, No. 6, June 1996

Chen S., S.A. Billings, W. Luo
Orthogonal Least Squares Methods and their Application to Non-Linear System Identification
Int. J. Control
Vol. 50, No. 5, pp. 1873-1896, 1989

Chen S., S.A. Billings, C.F. Cowan, P.M. Grant
Practical Identification of NARMAX Models Using Radial Basis Functions
Int. J. Control
Vol. 52, No. 6, pp. 1327-1350, 1990

Chen S, C.F.N. Cowan, P.M. Grant
Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks

Vol. 2, pp. 302-309, No. 2,March 1991

Coley D. A.
An introduction to genetic algorithms for scientists and engineers
Singapore : World Scientific, 1999

Collis W.B.
Higher-order Spectra and their application to nonlinear mechanical systems
f AD

Institute of Sound and Vibration Research, University of Southampton, UK, 1996

Collis W.B., M. Weston, and P.R. White

The Application of Non-linear Volterra Type Filters to Television Images
IEEE workshop on Higher Order Spectra, Banff
Canada, pp. 1-10, 1997.

Dempster A. P., N. M. Laird, D. B. Rubin
Maximum Likelihood from Incomplete Data via EM Algorithm
J. Royal Statist. Soc.
Ser. B (Methodological)
1997, No. 39, pp. 1-38

De Stefano A., P.R. White, W.B. Collis
An Innovative Approach for Spatial Video Noise Reduction Using a Wavelet Based
Frequency Decomposition
f /C / f 2000
September 2000

Domingos P.

The role of Occam's razor in knowledge discovery

3(4): 409-425, 1999

243

Drucker H., C. J. C. Surges, L. Kaufman, A. Smola, V. Vapnik
Support Vector Regression Machines
In M. Mozer, M. Jordan, and T. Petsche, editors
Advances in Neural Information Processing Systems
9, pages 155-161, Cambridge, MA, 1997. MIT Press.

Dubois, E.
The Sampling and Reconstruction of Time Varying Imagery with Application in Video Systems
Proceedings IEEE
Vol. 73, No 4, pp. 502-522, April 1985

Duda, R. O., P.E. Hart
Pattern Classification and Scene Analysis
New York: John Wiley, 1973

Fletcher, R.
Practical Methods of Optimisation
1987 Second Edition Wiley and Sons

Fung, C. F., S. A. Billings, W. Luo
Online Supervised Adaptive Training Using Radial Basis Function Networks
Neural Networks
vol. 9, pp. 1597-1617, 1996

Geman, S., E. Bienestock, and R. Doursat
Neural Networks and the Bias/Variance Dilemma
Neural Computation
1992,4(1), 1-58

Giordano A., F. M. Hsu
Least Squares Estimation with Applications to Digital Signal Processing
John Wiley & Sons 1985

Girosi F., T. Poggio
A Theory of Networks for Approximation and Learning
A.I.Memo No. 1140, C.B.I.P. paper No.31
MIT Artificial Intelligence Laboratory July 1989

Girosi P., T. Poggio (b)
Networks and the Best Approximation Property
AIM-1164,22, 1989

Girosi F., T. Poggio,
Networks for Approximation and Learning
Proceedings of the IEEE,
Vol. 78 No. 9, September 1990

Girosi F., M. Jones, T. Poggio
Regularization Theory and Neural Networks Architectures
Neural Computation
vol. 7 No 2 219-269, 1995

Goldberg, D E., 1953
Genetic algorithms in search, optimization, and machine learning
Reading, Mass : Addison-Wesley, 1989

Golub G.H., C. Reinsch
Handbook Series Linear Algebra: Singular Value Decomposition and Least Squares Solutions
Numer. Math.
14, pp. 403-420,1970

244

Gutta S, Wechsler H.
Face Recognition using Hybrid Classifier Systems.
Proceedings of the IEEE International Conference on Neural Networks,
1996.p.l017-1022.

Hartman E. J., J. D. Keeler, J. M. Kowalski
Layered Neural Networks with Gaussian Hidden Units as Universal Approximations
Neural Computation
1990, 2 (2), 210-215

Hassibi B., D.G. Stork
Second Order Derivatives for Network Pruning: Optimal Brain Surgeon
In S.J. Hanson, J.D. Cowan, C.L. Giles (Eds)
Advances in Neural Information Processing Systems
Vol. 5, pp. 164-171, San Mateo CA: Morgan Kaufmann 1993

Hinton G.E,
Learning Translation Invariant Recognition in Massively Parallel Networks
In J. W. de Bakker, A. J. Nijman, and P. C. Treleaven (Eds.)
Proceedings PARLE Conference on Parallel Architectures and Language Europe
pp. 1-13, Berlin; Springer - Verlag.

Howell, A. J., H. Buxton
Invariance in Radial Basis Function Neural Networks in Human Face Classification
Technical Report CSRP 365, School of Cognitive and Computing Sciences, University of Sussex. 1995

Jacobs R. A. M., I. Jordan, S. J. Nowlan, G. E. Hinton
Adaptive Mixtures of Local Experts
Neural Computation
3 (1) 1991, pp 79-87

Jones R.D.
Function Approximation and Time Series Prediction With Neural Networks
Proc. Int. Joint Conf Neural Networks
Vol. 4, 1991, pp 89-102

Jung Y., B. Choi, Y. Park, S. Ko,
An Effective De-interlacing Technique using Motion Compensated Interpolation
IEEE Transactions on Consumer Electronics,
Vol. 46, NO 3, August 2000

Kassaam S.A., I. Cha
Radial Basis Function Network in Non-Linear Signal Processing Applications
Proc. 2?"'Annual Asilomar Conf. Signals, Syst., Comput.
Asilomar CA, Nov. 1993, Vol. l , p . 1022-1025

Kohonen T.
The Self Organising Map
Proceedings of the IEEE
vol. 78, No. 9, September 1990

Kolmogorov A. N.
On the representation of Continuous Functions of Several Variables by Superposition of
Continuous Functions of One Variable and Addition
Dokl. Akad.Nauk SSSR
114:953-956, 1957

245

Le Cun Y., J.S. Danker, S.A. Solla
Optimal Brain Damage.
In D.s. Touretzky (Ed.),
Advances in Neural Information Processing Systems
Volume 2, pp. 598-605. San Mateo CA: Morgan Kaufmann 1990

Lorentz G. G.
On the O"* Problem of Hilbert
Proceedings of Symposia in Pure Mathematics
pages 419-429, Providence, RI, 1976. American Mathematical Society

McLachlan G. J., K. Basford
Mixture Models: Inference and Applications to Clustering
1988 New York: Marcel Dekker

Micchelli C.A.
Interpolation of Scattered Data: Distance Matrices and Conditionally Positive Definite Functions
Constr. Approx. 1986, 2: 11-22
Mitchell M.
An Introduction to Genetic Algorithms
Cambridge, Mass.: MIT, 1998

Moody J., C. J. Darken
Fast Learning in Networks of Locally-Tuned Processing Units
Neural Computation
1 (2), pp. 281-294, 1989

Morozov V.A.
Methods for Solving Incorrectly Posed Problems
Springer-Verlag, Berlin 1984

Musavi M.T., W. Ahmed, K. H. Chan, K. B. Paris, D.M. Hummels
On The Training of Radial Basis Function Classifiers

Vol. 5, pp. 595-603, 1992

Nelder J.A., R. Mead
A Simplex Method for Function Minimisation
Computer journal
Vol. 7 pp. 308-313, 1965

Nikias L.N., A. P. Petropulu
Higher-order Spectra analysis
Prentice Hall signal processing series
Prentice Hall, New Jersey, 1993

Papoulis A.
Probability Random Variables and Stochastic Processes
Mcgraw-Hill, New York 1984

Penrose R.
A Generalized Inverse for Matrices
Proceedings of the Cambridge Phil. Soc.
51,406-413, 1955.

Perlovsky L.I., M.M. McManus

Maximum likelihood Neural Networks for Sensor Fusion and Adaptive Classification

Vol.4, pp. 89-102, 1991

246

Perrone M. P.
General Averaging Results for Convex Optimisation
Proceedings 1993 Connectionist Models Summer School
M.C. Mozer et al. (Eds.) pp. 364-371. Hillsdale, NJ: Lawrence Erlbaum, 1993

Perrone M. P., L. N. Cooper
When Networks disagree: Ensemble Methods for Hybrid Neural Networks
Artificial Neural Networks for Speech and Vision
R.J. Mammone (Ed.) pp. 126-142. London: Chapman & Hall (1993)

Petrou M., P. Bosdogianni
Image Processing - the Fundamentals
John Wiley and Sons, LTD 1999

Powell M. J. D.
Radial Basis Function Approximations to Polynomials
Proceedings of the 12''' Biennal Numerical Analysis Conference
Dundee, UK pp. 223-241,1987

Oppenheim A. V., R.W. Schafer
Digital Signal Processing
Prentice-Hall 1974

Redner R.A., H.F. Walker
Mixture Densities, Maximum Likelihood and the EM Algorithm
SIAM review
Vol. 26, No. 2, April 1994

Rice J.R.
Experiments on Gram-Schmidt Orthogonalisation
Mathematics of Computation
20, 325-328, 1966

Rosenblum M., Y. Yacoob and L.S. Davis
Human Emotion Recognition from Motion Using a Radial Basis Function Network Architecture
IEEE Workshop on Motion of Non-Rigid and Articulated Objects
Austin, 1994

Rumelhart D. E., G. E. Hinton, R. J. Williams
Learning Internal Representations by Error Propagation
In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group (Eds.)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
Volume 1; Foundations, pp. 318-362. Cambridge, MA: MIT press 1986

Schetzen M.
The Volterra and Wiener Theory of Non Linear Systems
Krieger Publishing company, 1980 Malabar, Florida

Schetzen M.
Nonlinear System Modeling Based on the Wiener Theory
Proceedings of the IEEE,
Vol. 69, No 12, December 1981

Schoenberg 1. J.
Metric Spaces and Completely Monotone Functions
Ann. o/zwa//?., 44:522-841, 1938

Sherstinsky A., R. W. Picard
On Training Gaussian Radial Basis Functions for Image Coding
Tech. Rep. 188, M.I.T. Media Lab Vision and Modeling Group, Feb. 1992.

247

Smola A. J.
Regression Estimation with Support Vector Learning Machines.
Master's thesis, Technische Universitat, Munchen, 1996.

Smola A.J., B. Scholkopf
A Tutorial on Support Vector Regression
NeuroCOLTI Technical Report Series
Produced as part of the ESPRIT Working Group in Neural Computation and Learning II
NC2-1998-030 October 1998
Spendley W., G. R. Hext, F. R. Himsworth
Sequencial Application of Simplex Designs in Optimisation and Evolutionary Operation
Technometrics,
Vol. 4, No. p. 441, 1962

Streit R.L., T.E.Luginbuhl
Maximum Likelihood Training of Probabilistic Neural Networks
IEEE transactions on neural networks
Vol. 5, No. 5, September 1994

Stroebel L., R. Zakia
The Focal Encyclopedia of Photography
Focal Press, 1993

Sugiyama K., H. Nakamura
A Method of De-interlacing with Motion Compensated Interpolation
IEEE transactions on Consumer Electronics
Vol. 45, No.3, August 1999

Tekalp, M. A.
Digital Video Processing
Prentice Hall PTR 1995

Tikhonov, A.N.
Solution of Incorrectly Formulated Problems and the Regularisation Method
Soviet Math. Dokl.
4: 1035-1038, 1963

Tikhonov, A.N., V. Y. Arsenin
Solution of ill-posed problems
Washington D C.: V. H. Winston 1977

Titterington D. M., A. F. M. Smith, U.E. Makov
Statistical analysis of Finite Mixture Distributions
New York, John Wiley 1985

Tompa D., J. Morton, E. Jernigan
Perceptually Based Image Comparison
Proceedings of ICIP2000 conference
September 2000

Van Trees FI. L.
Detection, Estimation, and Modulation Theory
John Wiley and Sons, 1971

Vapnik V., A. Lerner
Pattern Recognition Using Generalised Portrait Method
Automation and remote control
24, 1963

248

Vapnik V., A. Chevronenkis
A note on one class of perceptrons
Automation and remote control
25, 1964

Vapnik V., S. Golowich, A. Smola
Support vector method for function approximation, regression estimation and signal processing
In M. Mozer, M. Jordan, T. Petsche, editors
Advances in neural Information Processing Systems 9
Pages 281-287, Cambridge, MA, MIT Press 1997.

Vitushkin A. G., G. M. Henkin
Linear Superposition of Functions.
Russian Mathematical Surveys
22:77-125, 1967

Volterra, V.
Theory of Functional and of Integral and Integro-Differencial Equations
New York: Dover, 1959.
Weiss Y.
Smoothness in Layers: Motion Segmentation using Non-parametric Mixture Estimation.
CVPR, pp. 520-526, 1997

Yuille A., N. M. Grzywacz
The Motion Coherence Theory
Proceedings of the International Conference on Computer Vision
pages 344-354, Washington D C., December 1988 IEEE Computer Society Press

249

