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Nonlinear realizations of the groups SU{N), SO(m) and SO{t,s) are analysed, de-

scribed by the coset spaces The 

analysis consists of determining the transformation properties of the Goldstone Bosons, 

constructing the most general possible Lagrangian for the realizations, and as a result 

identifying the coset space metric. We view the A matrices of SU(N) as being the basis 

of an (iV^ — 1) dimensional real vector space, and from this we learn how to construct 

the basis of a Cart an Subspace associated with a vector. This results in a mathematical 

structure which allows us to find expressions for coset representative elements used in 

the analysis. This structure is not only relevant to SU{N) breaking models, but may 

also be used to find results in SO{m) and 50(1, m — 1) breaking models. 
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Preface 

No claim to originality is made for the content of the Introduction, or Chapter 1, which 

were compiled using a variety of sources. 

The first part of Chapter 2 is based on a paper by L. Michel and L. A. Radicati entitled 

'The geometry of the octet'. Original work starts towards the end of the Chapter, and 

continues throughout Chapters 3, 4 and 5. It is mainly the approach to the analysis 

of this subject which is original, since some of the subsequent work contains models 

which have been studied at length before. I have therefore tried to reference, where 

appropriate, as many of these models as possible. 

Some of the work found in Appendix A has been submitted as a paper entitled 'How 

orbits of SU{N) can describe rotations in 30(6)' to the Journal of Physics A (authors 

K. J. Barnes, J. Hamilton-Charlton and T. R. Lawrence); the relevant ideas of this 

paper have been tailored to suit the work found in this thesis. 

The adjoint representation linear operator work, found in the first two sections of 

Appendix B, comes from the paper by L. Michel and L. A. Radicati. The last three 

sections of this appendix are original. 

The work found in Appendix C is a collection of well known results from many sources; 

including the paper 'How orbits of SU{N) can describe rotations in 30(6)'. 

The second part of Appendix D is original work, and is an extension to the well 

established results contained in the first part of the appendix. 
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Introduction. 

Symmetries in physical theories, and Spontaneous 

Symmetry Breaking. 

To understand the ideas of symmetry breaking in a physical theory, it is important that 

we first introduce the nature of symmetries with respect to a Lagrangian framework. 

We will begin by introducing some very simple models, which demonstrate the power of 

the Lagrangian formulation, and then discuss the nature of symmetries and how they 

are important. Once we have done this we will be able to explain the ideas behind 

spontaneous symmetry breaking, and where the mathematical framework of this thesis 

haa come from. 

A Lagrangian formulation of classical particle mechanics requires that a Lagrangian, 

L{qi,qi) = r — V, be constructed out of generalized coordinates, %, and generalized 

velocities, Here T is the kinetic energy associated with the system, and V is the 

potential of the system. Hamilton's principle, the principle of least action, leads to the 

Euler-Lagrange equations 

azr 
dt % 

which give the equations of motion. Similar ideas may also be used in the Lagrangian 

formulation of a relativistic quantum field theory. If this time a Lagrangian density, 



= T — y , is constructed out of fields, and field gradients, d̂ cj), then 

when the principle of least action is applied (which is now a more complicated idea 

because we are dealing with functions of space-time coordinates) we find the Euler-

Lagrange equations 

dCi 
(2) 

which give the equations of motion for the field, cj). To give some examples 

• A particle is classically idealized as a point of mass, m. Now if this particle moves 

in a region where the potential is given by V{x, y, z) then the Lagrangian is 

& == 3̂ (3* 4 - - 1/(3,%, 2) (3) 

The Euler-Lagrange equation for the first coordinate, x, yields 

" __ fM/ 
TTIX — — 

OX 
= F:, 

with similar results for the y and z coordinates. Collectively we may write 

F = mr (4) 

which is Newton's Second Law of motion. 

• The simplest example in a (quantum) field theory is the Lagrangian density 

describing a relativistic, free (non-interacting), real scalar field (f) :-

L = d (̂j) - \m 4̂>^ (5) 

The Euler-Lagrange equation for (j) is :-

((] = 0 (6) 



and this is the Klein-Gordon equation which is used to describe uncharged parti-

cles. We note that the Schrodinger equation is the non-relativistic approximation 

to the Klein-Gordon equation. 

* The simplest extension to the real scalar field is the free complex scalar field and 

the Lagrangian density 

== - int'lA'd' (7) 

where (f) = (j)i + In this case ^ and (j)* are now regarded as independent fields 

and this is the Lagrangian density for free charged particles; we will soon explain 

the importance of charge. This time we will find two equations of motion 

([] = 0 (8) 

([] 4- 0 (9) 

which are the Klein-Gordon equations for the two complex fields. Notice that 

we may also rewrite the Lagrangian density explicitly in terms of the two real 

components of the complex field :-

/C, == 0^4^ -- (!()) 

with z = 1,2 and therefore obtain similar Klein-Gordon equations of motion for 

(j)i and (f)2- It is obvious that further generalisations are possible if we let the 

range of the index i increase. 

A theory concerning (charged) particles (and anti-particles) with spin is produced 

using spinor fields. The simplest Lagrangian density is :-

Xj = — mipip 

= lip 

= — ill (11) 



where ^ is a one column matrix, and therefore ^ has one row. Also note that, 

in this thesis, the notation is used for the gamma matrices of the SO(t,s) 

groups, and 7^ for the SO{rn) groups. This time we must use the Euler-Lagrange 

equations 

d., 
dilj 

These yield the equations of motion 
— 

= 0 

i— 
ip l i^+m) = 0 

dtp 

(12) 

(13) 

which are the Dirac equations of motion for ^ and 1]). We note that these equa-

tions of motion may also be derived from the density 

£ iij; 0 ip — mipij} (14) 

The only difference between this and equation (11) is a total divergence which 

does not change the action; so the physics remains the same. 

Thus, in a Lagrangian formulation of a (field) theory, the principle of least action 

leads to the Euler-Lagrange equations which act on a Lagrangian (density) function. 

If this Lagrangian function is written properly then the laws of physics, which govern 

the behaviour of the system, are automatically encoded within the framework. Now, 

the variational principle also has another consequence, and this is where the idea of 

symmetries comes in. In both the classical and quantum field theory cases, the action 

is invariant with respect to transformations of the coordinates (fields) and velocities 

(field gradients). This means that there will be one or more conserved quantities, i.e. 

combinations of coordinates (fields) and velocities (field gradients) which are invariant 

under the transformations. We say that the system posesses a symmetry or, with more 



conserved quantities, a set of symmetries. This subject was formally investigated in 

1918 and is the concern of Noether's theorem [1]. In a field theory context the theorem 

states that the invariance of the action, under transformation of the fields and field 

gradients, leads to a conserved (divergenceless) current, Jj^ 

with d^Jj^ = 0. We note that, in the definition of the current, we have used the 

energy-momentum tensor 

and the quantities and relate to the transformations of 4> and 

Aa;'' = 

for the infinitesimal transformation parameter . The current gives rise to a con-

served (time independent) charge, Q^, which is defined by 

g , = (17) 
Jv 

The integration is taken to be over a spacelike hypersurface where t = const; i.e. over 

the 3-volume V. Conservation of follows because 

dQu 
dt 

0 

Now, when 0^ = 0 and ^ 0, Noether's theorem tells us that energy-momentum 

and angular momentum are conserved (for spatial translations and rotations respec-

tively). It is true that energy and momentum are conserved for any system whose 

Lagrangian (density) is not explicitly dependent on x'^, whereas conservation of angu-

lar momentum requires 9^ to be symmetric; if it is not then we may define a canonical 



energy-momentum tensor, , which is. In contrast, any additional conserved quanti-

ties which a system may possess (like electric charge, isospin, strangeness . . . ) require 

0^ ^ 0, i.e. the fields themselves must be transformed; which implies that they must 

have more than one component. For the real scalar (Poincare invariant) field theory 

above, cj) has only one real component and so the theory represented by the respective 

Lagrangian density is subject to energy, momentum and angular momentum conserva-

tion only. 

However, for the cases of the complex scalar fields and spinor fields, the field com-

ponents may be transformed into one another. The transformations are produced by 

matrices which are elements of Lie groups, and the simplest example is the transfor-

mation of a complex scalar field by a U{1) group element :-

uE.U{l)\ (j) i-> (j)' = u(j) (18) 

where u = e'® is just a complex number. Under this transformation the Lagrangian 

density, equation (7), is invariant. The components of ^ are found to transform :-

cose sine 

- s i n e cose j \ ^2 / 

So this field transformation is just a rotation in the internal space of not a space-time 

transformation. In this case Noether's theorem gives the divergenceless current 

cx (20) 

When 0 = 0(3;^) the group element produces a local transformation of (f). As a 

result, a gauge field must be introduced into ,C to guarantee invariance under the local 

transformation, and in this case we will eventually find a divergenceless 'covariant' 

current :-

j r oc (21) 



where V^cj) is the covariant derivative of (j). The corresponding conserved quantity is 

electric charge. Thus, conservation of electric charge emerges when we require L to be 

invariant under local U[l) gauge transformations; electric charge is a locally conserved 

quantity. On the other hand isospin, strangeness and so on result from invariance under 

global (space-time independent) transformations by elements of other Lie groups. For 

the Dirac Lagrangian density 

XL = itp — mipil) 

we may use, in the absence of spacetime transformations (i.e. = 0), the Noether 

current relation 

+ (22) 

% ^ ) 8(^8^) 

In the simplest case where ^ is transformed by a w € U{1), we have = —iip and 

= iip. So we find the divergenceless current 

JP = (23) 

= 0 

The roots of the work found in this thesis lie in the 1960s. It was understood that some 

(quantum mechanical) systems possess a property which was distinctly different from 

the simple systems we have looked at so far. Two examples are the superconductor and 

the ferromagnet; we will briefly discuss the latter. If we define a general Hamiltonian 

density by 

where tt, = ^ is the momentum field canonically conjugate to then % is a scalar 

and is therefore invariant under rotations. For a ferromagnet, the contributions to CK 

come from the spin-spin interactions between the atoms in the sample and above the 



ferromagnetic transition temperature the spins are randomly aligned. However, below 

the ferromagnetic transition temperature the ground state is not rotationally invariant 

because the spins (within a domain) become aligned and we have the situation of spon-

taneous magnetisation in a particular direction. The actual direction of spontaneous 

magnetisation is 'chosen' randomly; all the other possible ground state configurations 

may be reached from a particular one by rotation. Thus, the ground state configura-

tion of the system does not display the full symmetry of the Hamiltonian. We say that 

the full symmetry of the Hamiltonian (and Lagrangian) density is hidden, or sponta-

neously broken. It is important to remember that the full symmetry of the system is 

still there; it is just that, even though any direction of magnetisation is equally good, 

the necessity of associating one direction with the ground state has hidden it. 

In 1961 Goldstone published a paper [2] which looked at this situation with respect to 

a Lagrangian density for an interacting scalar field theory. The Lagrangian density is 

constructed out of a scalar field, or scalar field multiplet, and to achieve the required 

property the scalar field (s) is (are) thought of as having an imaginary mass. He found 

that if the Lagrangian density has a discrete symmetry (as is the case for a single real 

scalar field), then the ground state configuration will be discrete. In the case of a 

Lagrangian constructed from a scalar field multiplet, he found that since possesses 

a continuous symmetry, then the ground state is comprised of a continuous set of 

degenerate configurations (vacua). For example, the Lagrangian density ;-

Xj = d̂ <p* -I- (24) 

is invariant under the C/(l) field transformations (p' = u(j), see equation (19), and 

this situation has already been discussed for a free field theory where A = 0. Since 

(j) = (1)1 + i^2 the potential may be rewritten in terms of these real components 

V = + ^2) + A(<^i + ^2)^ (25) 



To find the minimum of V we calculate 

ay (m^ + 2X(jf<f)(j) 
or 

^ = {w? + 2X(j)* (j))(j)* 

^ + 2A(^i 4- ̂ 2)]^! 

^ = 2[m^ + 2A(^i + ^2)]^ 
(26) 

Prom these we see that, when > 0, the minimum of F is at ^ = 0; which is 

equivalent to the condition = <^ = 0. However, if < 0 then V is minimised by 

the condition 

(f)*(j) _ (^1 + ^2) — a (27) 

i.e. the minimum of V is where (j>l+4'2 — ^ t h i s case the potential has the following 

form (we also show a vertical slice of V through the origin) 

Figure 1: The U{1) ~ S0{2) invariant potential. 

To obtain the physical fields for the theory it is necessary to redefine the scalar fields 

such that one of the minima represents the ground/vacuum state of the system. This 

hides part of the symmetry enjoyed by XL (or similarly !H). For this example, if we 

redefine ^2 as 

(j}2 ^ % + Q (28) 



then the potential may be rewritten 

y = + x'̂ )] - Aa^ (29) 

Thus we see that (j)i has become a massless field, and the % field now has a mass squared 

of = 4Aof. This is an important feature of Goldstone's method. In the context of 

breaking invariance under symmetry group G down to a subgroup H, it is more useful 

to construct a Lagrangian density (with a similar form as the one above) out of three 

scalar fields. This time we will have G = 50(3) ~ SU(2) and H = 50(2) ~ U{1). In 

this case we could write the potential part of the Lagrangian density as 

V = —(01 4- <̂2 + 03) + A(0i + <̂2 + (30) 

This time, when we differentiate V with respect to the scalar fields, we find 

^ = (m^ + 4A0&0t)<Ai (31) 
u(pi 

so when < 0, the minimum of the potential lies on a sphere of radius a because, 

to minimize V, we need 

M k = (32) 

If we now say that the vacuum configuration points in the direction of 03 then trans-

forming the scalar field multiplet about the 3'"'̂  (internal) direction (an H = 50(2) 

transformation) will leave the vacuum invariant. Whereas transforming about the 

other two directions will rotate the initial vacuum configuration onto one of the other 

degenerate vacua. So if we now redefine 03 as 03 = % 4- a then we find 

V = 4Aa^ + A[(01 + 02 + X )̂̂  + 4%G(0i + 02 + X^)] ~ (33) 

This time both 0i and 02 have become massless fields and now the % field has a mass 

squared value of = 8Aa .̂ In the following year (1962) Goldstone, together with 

10 



Salam and Weinberg, published [3] in which these results were restated in a more 

general form. They found that whenever a Lagrangian is invariant under a continuous 

symmetry group but the ground state configuration (vacuum) is not, there will be 

spinless, zero mass fields present; these are known as Goldstone boson fields. Both of 

these papers [2, 3] were purely theoretical in nature. A more detailed discussion of 

Goldstone's Theorem may be found in any good textbook on quantum field theories, 

such as [4, 5, 6]. 

In contrast, a year earlier, Gell-Mann and Levy had published [7] which concerned 

pion decays (in a system of pions and nucleons). This was classic phenomenology. The 

nucleons were made to transform as a representation of -SO (4), whereas the pions were 

taken to only transform as a representation of its SO (3) vector subgroup. A fourth 

scalar field called a ' was introduced such that a ' and tt formed a multiplet of 5(9(4). 

The a ' field was then eliminated from the Lagrangian density by using the condition 

which constrains the modulus of a'. This gives the relation a ' = —y/C"̂  — Thus, 

wherever a ' had previously appeared in the Lagrangian density, it was now replaced 

by this nonlinear function of tt. This model therefore became known as the 'nonlinear 

sigma model'. This has since become a generic name for the theories found in this 

thesis. 

During the 1960's the ideas of Gell-Mann and Levy became increasingly popular. Much 

of the research was phenomenological in nature, and most of the focus was placed on 

the calculations for specific chiral groups (like 5/7(2) ® 5(7(2) or SU(3) <8) 5(7(3)). 

However, in 1969, the geometry of nonlinear realizations was studied by Isham [8]. 

This paper employed a Killing vector method in the examination of Goldstone boson 

transformations, and also introduced the concept of a Goldstone boson manifold metric. 

Later on that year Callan, Coleman, Wess and Zumino also used a geometrical approach 

11 



to produce theories which agreed with (had similar properties to) the phenomenological 

models [9, 10]. They showed that, given any Lie group, G, and any Lie subgroup, H, 

it was possible to construct a general Lagrangian density in which the in variance of -C 

would be produced by linear transformations of fields and field covariant derivatives 

under transformations of H] i.e. the fields and covariant derivatives would form a 

linear representation of H. The invariance of Xj under transformations of the rest 

of the internal symmetry group G would be realized nonlinearly; i.e. under these 

transformations the fields and covariant derivatives would form a nonlinear realization 

of G. We note that (phenomenological) fields which exhibit this behaviour are known 

as standard coordinates (since they are the coordinates of a manifold on which the 

group acts), and the transformations properties they exhibit are known as a standard 

realization of G. (A good summary of Callan, Coleman, Wess and Zumino's work is also 

to be found in [11], since their work is also applicable to theories where supersymmetry 

is broken.) 

The work of Salam and Strathdee [12] proved that if a nonlinear realization were 

obtained from a (linear) representation of a group, then the vacuum could not be 

invariant under the whole group of transformations. Furthermore, they showed that if 

one were to demand that a system's Lagrangian density be invariant under (internal) 

transformations of a Lie group G and its vacuum be invariant under a subgroup H, 

then the method of Callan, Coleman, Wess and Zumino [9, 10] was the way to produce 

general couplings between the Goldstone fields and any other (matter) fields in the 

theory. In this way, a Lagrangian density constructed out of standard fields, forming a 

nonlinear realization of G which reduces to a linear representation of H, was just the 

effective Lagrangian of a theory resulting from the spontaneous breaking of a symmetry 

(or symmetries) of XL. 

Finally, the line of chiral symmetry breaking research culminated in the work of Barnes, 

12 



Dondi and Sarkar [13]. They used a projection operator method, in the framework 

of [9, 10, 8], to construct a general effective Lagrangian density for theories where 

chiral SUiiN) ® SUii{N) invariance is broken to invariance under SUv{N), the vector 

subgroup. 

The structure of this thesis. 

This thesis was inspired by three specific models 

1. When SU(2) invariance is broken to U{1), 

2. when 5'0(1,4) invariance is broken to 50(1,3), and 

3. when SO (6) invariance is broken to 50(4) (g SO (2). 

The first two models were simple enough to analyse, and results were readily found; 

these models are contained in chapter 3. However the third model seemed impossible 

to analyse. The problem lay in the fact that the mathematical framework relies on 

manipulating a quantity called the coset representative element, which is the exponen-

tial of a linear sum of the coset generators (group elements are the exponentials of a 

linear sum of all the generators of group transformations). For the first two models 

the relevant coset representative elements were easy to calculate to all orders (as re-

quired by theory), whereas the coset representative element of the third model seemed 

impossible to find. Therefore, it became necessary to look at the exponents in a new 

way; which would make the process of exponentiation much easier. The exponents 

were understood in terms of the work of Michel and Radicati [17] and, as a result, took 

on a geometrical meaning; in this thesis the linear sum of coset generators is known 

as the coset vector. With this new understanding of coset vectors it was clear that a 

whole series of models could be studied at the same time. Thus, the calculations (and 
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results) which appear in this thesis are kept in a general form, and therefore apply to 

a whole series of models simultaneously. 

The mathematical difference between each model, in a section/chapter, is provided by 

the index ranges because, as we go up through a series of models, the relevant coset 

vectors have an ever increasing number of components. The difference between each 

model, in a series, lies in their physical interpretation. For example, the CP2 model 

(which results when SU{2) invariance is broken to [/(!)) has two charged pions (tt^ 

and TT") as the Goldstone bosons, whereas the CP4 model (which results when SU{3) 

invariance is broken to SU{2) O U{1)) has four Kaons K^, K" and K^) as the 

Goldstone bosons. We note that the CP2 and CP4 models will appear in different 

chapters (3 and 4 respectively) because the mathematics associated with the CP4 

model is much more complicated than that of the CP2 model; in fact, the results of the 

CP2 model bear more resemblance to the two sets of models which make up the rest of 

chapter 3 (which is why these models have been grouped together). Nevertheless, the 

general results in chapter 4 which concern the CP2(N-1) series of models yield, when 

N = 2, the results for CP2 as one would expect. The only specific model which is 

calculated in this thesis is that of CP2. For the more mathematically inclined readers we 

note that, strictly speaking, true CP2(N-1) models are achieved by rewriting the coset 

space coordinates as 'stereographic coordinates'; by forming complex combinations 

and then making antipodean identifications. This is briefly discussed in the concluding 

chapter where the scalar part of the SU{2) breaking to U{1) model (with S"^ Goldstone 

boson manifold) is rewritten as a CP2 model. This transformation does not affect the 

Kahlerian properties of the Goldstone boson manifold. 

Our choice of models which appear in this thesis has been guided by a theorem of 

Borel [14] which states that, for a group G and a subgroup H, the manifold associated 

with the coset space (^) will be Kahler if the centralizer of H in G, denoted Cg(G), 
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is toroidal. This means either 

1. H is a, U{1) group, or a product of commuting U(l) groups, i.e. 

= or = 

2. H has a commuting U{1) group, or a product of commuting U{1) groups, i.e. 

H = Hi®U{l) or H = Hi®U{l)®U{l)®---

The same is also true if, in the above, we replace U{1) by 50(2) or 50(1,1); because 

of the homomorphism between U{1) and 50(2). The importance of Borel's Theorem 

is that any theory with this property may be extended to include A/" = 1 Supersym-

metry Therefore, we have mainly chosen to study models which contain a Kahler 

Goldstone boson manifold; which may be identified with the coset space (^). 

In this thesis we will analyse various nonlinear realizations. The analysis will consist 

of determining the transformation properties of the Goldstone fields using the Killing 

vector method, and then constructing invariant quantities from fields, and covariant 

derivatives, which may be used to form the Effective Lagrangian for the theory. 

Chapter 1 begins by introducing group elements, subgroup elements and the coset 

representative element. The rest of the chapter focuses on the methods of Callan, 

Coleman, Wess and Zumino [9, 10]. We show how the notion of a symmetric space 

allows the use of an isomorphic mapping of the group generators (an outer involutive 

automorphism) which helps in the study of field transformations. We then use the 

first order Killing vector method, introduced by Isham [8], to study the Goldstone 

field transformations. Next, we show how the covariant derivatives are formed, for the 

Goldstone fields and the matter fields, and how they transform too. Finally we show 

how an effective Lagrangian density for the theory may be constructed; consisting 

^This assumes that the fields are defined in a normal four dimensional spacetime. If the fields, 

however, are defined in a two dimensional spacetime then a theory with a Kahler ^ will admit Af = 2 

Extended Supersymmetries. 
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of two parts. Firstly, the Goldstone boson part is shown to contain a metric, also 

introduced by Isham [8], which is associated with the Goldstone boson manifold. We 

show that this metric may also be constructed from the Killing vector components. 

Finally, we show how the matter field part of the Lagrangian density is written. 

Chapter 2 introduces the mathematics of real vector spaces and Cartan Subspaces, 

studied by Michel and Radicati [17]. We then tailor, and extend, their methods to 

suit the necessities of this thesis. We show how to write (some of) the basis elements 

of the Cartan subspace associated with a vector x, denoted Cx- This tells us how we 

may express the coset vectors which, in turn, helps us to find the coset representative 

element. (This element is a fundamental quantity used in the mathematical framework 

of the preceeding chapter.) We find that this process is possible when we understand 

the geometric implications of the characteristic equation of a vector. It is also clear 

that this language may be used for SU{N) breaking and SO{m) breaking theories; 

because the mathematics has no regard for the physical theory we wish to investigate. 

We end the chapter by showing how to calculate the exponentials of various important 

types of vector. Thus, this chapter sets up the mathematical formalism adopted in the 

last three chapters. 

In chapter 3 we look at the (sets of) theories which may be studied when the relevant 

(normalized) coset vectors square to the identity element. We begin with the theory 

which arises when SU(2) invariance is broken to (7(1), we then look at the theories 

which arise when SO{m) invariance is broken to SO(m — 1), and finally we look at 

the theories which arise when SO{l,m — 1) invariance is broken to 50(1,771 — 2). In 

each case we find the Killing vector components which describe the Goldstone field 

transformations, we find the covariant derivatives for the Goldstone fields and matter 

fields and then we construct the Goldstone part of the effective Lagrangian densities. 

We also check the form of the Goldstone boson manifold using the Killing vector 

16 



components. We note here that the specific nonlinear realization of is studied, 

and the effective Lagrangian density for the theory found, in [15, 18]. Also, the specific 

nonlinear realization of is studied, and the effective Lagrangian density for the 

theory found, in [15] only. As far as we know the general sets of models have not been 

studied before; just specific examples. We see that this chapter contains three models 

which have a Kahler Goldstone boson manifold. These are the theories which arise 

when SU{2) invariance is broken to U{1), when S0{3) invariance is broken to 50(2) , 

and when 50(1,2) invariance is broken to 50(1,1). 

In chapter 4 we look at CP2(N-1) models which result when chiral SU{N) invariance 

is broken to SU{N) ® U{1). We show how these models may be embedded within 

the framework of general chiral symmetry breaking models [13]; i.e. the models which 

arise when SU{N)l ® SU{N)r invariance is broken to SU{N)v, the vector subgroup. 

We also show which models from chapter 3 are contained in, or are relevant to, this 

chapter. Again, we find the Killing vector components which describe the Goldstone 

field transformations, we find the covariant derivatives for the Goldstone fields and 

the matter fields and then we construct the Goldstone part of the effective Lagrangian 

densities. We also check the form of the Goldstone boson manifolds using the Killing 

vector components for each model. We note that all the CP2(N-1) models have a 

Kahler Goldstone boson manifold. 

In chapter 5, the final chapter of results, we look at three models with the same 

structure. These are the theories which arise when SO{m) invariance is broken to 

SO{m — 2) (8) 50(2) for m = 4,5,6. Again, we find the Killing vector components 

which describe the Goldstone field transformations, we find the covariant derivatives 

for the Goldstone fields and the matter fields and then we construct the Goldstone 

part of the effective Lagrangian densities. We also check the form of the Goldstone 

boson manifolds using the Killing vector components for each model. We note that the 
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final model where 50(6) invariance is broken to S0{4) (g) 50(2) also appears in [15]. 

However, unlike in [15], we are able to find the Killing vector components for the 

Goldstone field transformations and therefore check the form of the Goldstone boson 

manifold. This work was omitted from [15] because the method he used in the analysis 

was based on the projection operator method of [13]; which yielded answers which were 

not as transparent (or as easy to manipulate), as the results which we have found 

We note that all the models in this chapter have a Kahler Goldstone boson manifold. 

This thesis also contains four appendices, which we will now briefly discuss. The ap-

pendices are fairly extensive because we felt it was important to maintain the flow of 

ideas and results in the main body of the thesis. Appendix A is designed as supple-

mentary work to chapter 2 and contains the more relevant ideas found in [16]; which 

was a geometric examination of the homomorphism between the groups SU{4:) and 

50(6). In this appendix we explicitly calculate the diagonal r and -vectors of the 

real vector spaces and With these explicit forms in mind (and remembering 

the use of the characteristic equation in the idea of rotating vectors around the real 

vector spaces) it is easier, for example, to see how to form group elements, or com-

muting subgroup elements. We also get a better 'feel' of the form of the results in the 

thesis; in particular, because we do not resort to a projection operator method from 

the start (see [13, 15]) which in effect hides the coset vector structure, we are able 

to keep vector-like quantities (associated with the coset and subgroup spaces) in our 

expressions. 

Appendix B looks at some relevant adjoint representation operator relations for SU{N)-, 

discussed in [17]. We then go on to calculate the form of the adjoint representation 

projection operators which appear in the calculations in this thesis. For example, all 

^The projection operator method of [13] is particularly useful for studying generic coset models 

(where general G invariance is broken to If) , whereas if we choose to study certain sets of models 

which have simpler coset vectors then the methods and ideas found in this thesis are preferable. 
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results for the Killing vectors and Goldstone boson manifold metrics are phrased with 

respect to these adjoint projection operators. This is especially helpful when we use 

the Killing vectors to reconstruct the Goldstone boson manifold metric; this procedure 

forming a doublecheck for the metric result. 

Appendix C discusses the Weyl representation of the generators of SO{m) and SO{t,s) 

groups; the generators being constructed from a set of gamma matrices for the groups. 

We look at the homomorphism between 50(6) and SU(4:), and also discuss some 

useful subgroups of S0{6) which appear in this thesis; this discussion being phrased 

with respect to the r and g^-vector framework. 

Lastly, appendix D shows how the results for field gradients, and vector length gradi-

ents, are calculated. These results are just quoted throughout this thesis as they are 

substituted into the end of the various calculations. For example in chapter 4, the 

coset vector in an SU{N) breaking to SU{N — 1) ® U(l) model may be written as 

X — (jy Ag 

— (J) TV AQ 

where 4> is the length of the vector, and rf'Xa is a unit vector which points in the 

direction of x. It turns out that quantities like and d^cj) will appear in our 

calculations. However, we find that their explicit forms are only required towards the 

end of each calculation, and this saves on the ammount we actually need to write. As 

a result, the equations are also easier to read because we are able to use an index free 

notation throughout. So appendix D shows how to calculate quantities like these for 

all the coset vectors which appear in this thesis. 
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Chapter 1 

Effective Lagrangians for nonlinear 

(j-models. 

The aim of this chapter is to introduce the important results found in [8, 9, 10], with 

regards to constructing, and analysing, the effective Lagrangians of nonlinear cr-models. 

We will, however, begin by giving simple definitions of the quantities used to build the 

effective Lagrangians. Here the definitions are deliberately kept simple because it is 

only necessary, at the moment, to introduce ideas which will later be developed, and 

also to introduce the notation used in calculating the various quantities in the theory. 

Once this is done we can then go on to describe the mathematical framework. 

1.1 The exponential quantities in this thesis. 

The construction of an effective Lagrangian density relies on the manipulation of a 

quantity known as the coset representative element; essentially, it is transformed by 

the elements of Lie groups. Both the coset representative element and the Lie group 

elements are in the form of exponentials, which we will now introduce. The following 
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definitions simply illustrate the difference in notation between the groups considered in 

the following chapters; more rigorous definitions will be introduced where appropriate. 

1.1.1 Lie group elements. 

For a Lie group, G, we may write elements of the group, g e G 

9 = e - " (1.1) 

If the dimension (total number of generators) of a Lie group is denoted dim(G) then x 

is a linear combination of dim(G) generators. These generators are traceless hermitian 

matrices and, because they are linearly independent, we are able to think of them as 

forming the basis of a real vector space of dimension dim{G), which we denote . 

Real vector spaces are examined in detail in the next chapter. Thus, we may think of 

X as being a general vector of ; and we will refer to this general vector as the 

group vector. An important property of group elements is given by 

91-92 ^ 93 

Thus, on one hand, if we multiply any two group elements together then we just end 

up with another group element and, on the other, a group element may be rewritten 

as the product of two other elements. 

Group elements, and all subsequent quantities of this form, are defined by the power 

series expansion of the exponential 

- zz - + - - -

where the subscript N implies we are working with Nx N matrices. We may rearrange 

this expression and write 

= l[Ar] + + —x'^ — —X® H ^ + —X® —I ^ 
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which is rather suggestive because, if iV = 1 and x = 0 is just a real number, then this 

expansion is 

^ l + (cos6 — 1) — % sin 8 

= cos 8 — 2 sin 6 

This is a very familiar result. In this case though, because N = \ implies that the 

generator cannot be traceless, it is called an element of the group of unitary 

1 x 1 matrices, denoted (7(1). In this example the element is said to be in the defining 

representation as it is just a complex number. We remark that the odd function, 

s ine , is the imaginary part of the complex number; that is, it is accompanied by 

the imaginary number i. We make this remark because, even when x is a matrix, the 

(odd) sine functions are always preceeded by the imaginary number i; the (even) cosine 

functions are always contained in the rest of the expansion of the exponential. 

When N >2, the traceless nature of the generators leads to group elements with unit 

determinant, det g = 1, and thus we will be dealing with elements of SU{N) (the group 

of Special Unitary NxN matrices) and SO{m) (the group of Special Orthogonal mxm 

matrices). The size of the matrix, x, involved in the exponent depends on the group 

we are considering; and also on the representation we are using for the generators of 

the group elements. How x is mathematically expressed depends on the group we are 

using 

1. The group of Special Unitary matrices (with N > 2) is denoted as G = SU{N), 

and has a dimension of dim{G) = {N^ — 1). We write the group vector x 

X for 7 = 1 , 2 , . . . , ( ^ ^ - 1 ) . 

where the 9̂  are {N"̂  — 1) real parameters. The T/ are defined by a relation 

known as the Lie Algebra 
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where I, J,K = 1,2,... , (A^ — 1). The meaning of this relation will be discussed 

further in section 1.1.4. 

In the Defining representation the generators are defined by T/ = |A/, and are 

N X N traceless Hermitian matrices. In this thesis we use the A/ which therefore 

obey 

[A/, Aj] = ^ifuK^K 

In the Adjoint representation the generators, T/, are [N"^ — l ) x — 1) traceless 

Hermitian matrices, which are defined using the structure constants 

= —ifUK f o r / , J, K = 1, 2 , . . . , — 1). 

where this is an expression for the matrix components of the generators. This is 

possible because the structure constants of SU{N) form a representation of the 

Lie algebra, i.e. they too obey the commutation relations above. 

2. The group of Special Orthogonal matrices is denoted G = SO{m) with m> 2, 

and has a dimension dim{G) = |m(m — 1). The group vector x is written 

X = u}^^Tab for B = 1,2, . . . ,m. 

where the are \m{m — 1) real parameters. We will be dealing 

with SO{m) groups in the Weyl representation where the Tab = \cfab, and we 

construct the <7^b(= —(TBA) from a set of m gamma matrices, 7^. Both the 

(T-matrix construction, and the form of the commutation relations, are discussed 

in Appendix C, from page 191. 

3. For G = SO{t, s), with i + s = m > 2, we write x 
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where the index ranges depend on the values of t and s. Again, the —w"'') 

are |m(m — 1) real parameters. In the Weyl representation the T^u = and 

we construct the Z^(= —^u^) from a set of m gamma matrices, these are 

derived from the m gamma matrices of SO{m), the 

For m {or t + s) = 2k, 2k+ 1 with integer k (> 1), the generators of SO{m) and 

SO{t, s) are 2* x 2* matrices; this thesis only concerns models where t = 1 and 

therefore s = (m — 1). In chapter 3 we will look at models where G = SO{m) 

invariance will be broken to H = S0{m—1), and G = 5(9(1, TO—1) invariance will 

be broken to H = 50(1, TO — 2). In these cases, we must obviously have to > 3 

to define the group, G, which can be broken to a normal subgroup, H <G. In 

chapter 5 we will look at other possibilities. 

1.1.2 Subgroup elements. 

For a subgroup of G, denoted H, we may write elements of the subgroup, h e H 

A = e - ^ (LSO 

where x is now a linear combination of the dim(H) generators which generate the 

subgroup element. Thus we may think of the vector, x, as one which lies in a subspace 

of This subspace is We will refer to this restricted vector (in the 

sense that it lies in a subspace of as the subgroup vector, and the subspace 

of in which it lies, as the subgroup subspace. In this thesis we will mainly be 

considering models where G invariance is spontaneously broken to a subgroup H < G 

where H is of the same rank as G\ any exceptions will be noted. The rank of a 

(sub)group is defined as the maximum number of generators, or equivalently (sub)group 

elements, which will mutually commute. 
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1.1.3 Cosets and the coset representative. 

A left coset, denoted (^) , is formed by acting on the subgroup, H, from the left with 

a general group element 

piT = ggAJf 

= LH (1.3) 

where, in the notation of SU(N), we define the subgroup as H = V 9^}, and 

because of the properties of group elements, we have written g = g'Ji. We define the 

coset representative element, L as 

L — Qf. 

== e - " (1^0 

where x is a linear combination of dim{G) — dim(H) generators. These generators are 

generators of G in the orthogonal complement of H. Thus, the vector x is one which 

lies in a coset (sub)space, ^ and we will refer to it as a coset vector. 

It is the coset vector parameters/coordinates which identify a particular coset, and a 

different set of parameters will define a difi'erent coset; hence L being called the coset 

representative element. In physical applications the coset parameters are functions of 

x^, the spacetime coordinates, and are known as interpolating fields; for the SU{N) 

breaking models in this thesis they are denoted where a runs over the coset indices. 

They are related to the Goldstone Boson fields, the M®, that arise in a theory when 

we spontaneously break G in variance down to H. The relation is as follows. In terms 

of the interpolating fields the coset vector has a length of ( j ) , we then make a specific 

reparameterization and write ^ = ^{M) = M + O(M^) where M is the length of the 

Goldstone boson coset vector. So when we write the Goldstone vector as M°Aa it 

points in the same direction as and their lengths are arbitrarily related. We note 

that this is not the most general reparameterization. 
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It is simple to demonstrate how many Goldstone fields there will be in a model which 

incorporates the phenomenon of spontaneous symmetry breaking. In such models the 

vacuum state is not invariant under all transformations of a group G (it is transformed 

to another vacuum state); it is only invariant under transformations of a subgroup, 

H, of G. So if we take as an example a scalar field theory, then under the field 

transformations g E G \ (f) ^ (j)' = g(j) -we know that the potential in the Lagrangian 

density is invariant, i.e. V{^) = So if we Taylor expand the potential about its 

minimum value then we find 

= + ( 0 7 ) w ; + ^ + " (1-5) 

The first order term is zero because we are expanding about the vacuum value and so, 

for small variations, we must have the condition 

Firstly, when g = h E H we find 

00 — (^/i) J 00 

= 00 

where Th is a (matrix) representation of the subgroup element, h E H. Therefore 

54>l = 0 and equation (1.6) is automatically satisfied. However, when g ^ H then we 

find 

00 — (^g) J 00 

= 00 + ^00 

To first order in the transformation parameters we have (rg) j = 5j — iu°'{Ta)j and so 

we find 

== ,6 0 (1.7) 
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Therefore, in this case, equation (1.6) is satisfied when 

\ w w ) , . = " 

and this implies that 5(j)l = —iuj"'{Ta)j(f)Q are massless fields. We notice that the 

quantity 5(j)Q is always a function of a number of fields equal to the number of coset 

space parameters, w". Therefore there is a one-to-one mapping between the space of 

massless (Goldstone) fields and the space of coset parameters. If we assign particular 

values to each of the w" then this is equivalent to assigning particular amplitudes to the 

Goldstone fields. In particular, if we set all the w" to zero, then all the Goldstone field 

amplitudes also become zero. Thus, the isomorphic mapping maps the origin of one 

space onto the origin of the other; which may be interpreted as changing coordinates, 

in a patch, from coset space parameters to Goldstone fields. 

At this point it should be understood that, when it comes to calculating explicit results 

in the physical theory, it is far simpler to deal with the SU(N) groups because we have 

less indices to worry about. However we will see in the next chapter that, using the 

A-matrices of SU{N), we are able to develop a mathematical structure which allows 

us to describe coset vectors in an index free way; and we may apply this method to 

the coset vectors associated with Special Orthogonal group breaking models, which 

effectively removes this complication. 

1.1.4 Structure of the Lie algebra for G = SU{N). 

Here we will discuss the structure of the Lie algebras with respect to G = SU{N) 

breaking to H = SU(N — 1) (8> £/(!), with G and H being of the same rank. We will 

construct similar results for SO{m) and SO(t, s) breaking calculations in Appendix C. 

This work is to be found in sections C 2 and G 3 which start on page 195. 

• The generators of SU{N), the T/, obey a set of commutation relations which we 
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call the Lie Algebra of SU{N) 

where I, J, K = 1,2,... , (N"^ — 1) and the f u K , which are called structure con-

stants, are totally antisymmetric under the interchange of any two (neighbour-

ing) indices; i.e. fuK = - f i K j = fxij- In this thesis we use a set of A-matrices, 

which are related to the generators by Tj = |A/. So the A/ obey the commutation 

relation 

[A/, Aj] = 2ifijK^K 

To give an example, the group SU{2) has, in the defining representation, a Lie 

algebra :-

where i,j,k = 1,2,3. The with 6123 = 1, are the structure constants of 

SU(2). Notice that the A, have been rewritten as cr, and this is because the Oi 

are the three Pauli spin matrices which obey the Lie algebra. Any three traceless 

Hermitian matrices which obey the above relation may be used as the generators 

of SU{2) group elements and, as it turns out, they will be related to the Pauli 

spin matrices by a unitary similarity transformation :-

a'i = GiU 

In the next chapter we will examine the geometric meaning, and the consequences, 

of this relation for all SU{N)] when we define the A-matrices as the basis of 
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» For the subgroup, H, of G we must have the Lie algebra 

[As, Af] = 2,ifEFG^G 

where the E,F,G = 1 ,2 , . . . , (A^ — 1)^ — 1 and — 1 are the set of indices 

which label the subgroup generators. 

• For the coset G/H we have 

[Aa, Aj] = 2ifabiXi 

~ '^ifabc^c ~l~ '^ifabE^E 

where the I are the (iV^ — 1) group indices, the a,b,c = (N — 1)^, . . . ,N^ — 2 

are coset indices, and the E are the subgroup indices. In our work we will be 

dealing with symmetric spaces where the fabc = 0 V a, 6 and c. Thus we have 

[Aa, Aj,] = ^ifabE^E 

We note that symmetric spaces allow an isomorphic mapping of the coset space 

generators (Aq i-4 —Aa), known as an Outer Involutive Automorphism, which 

maps G onto itself; this useful property will be discussed in the next section. 

• So between subgroup and coset we have 

[Ao, Ag] = ^ifaEb^b 

We note that the Lie algebra exhibits a Zg grading structure. 

1.2 Goldstone Boson t ransfor mat ions. 

We will now look at the mathematical structure used to find the transformations of 

the Goldstone bosons in the theory. The method of construction centres around trans-

forming the coset, LH, with a global group element, g E G, from the left. However, as 
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we will soon see, the properties of group elements allow us to ignore the H part of the 

coset because it is invariant; so we may restrict our attention to the coset representative 

element, L. When we transform L from the left with a global g e G we find 

4^ = 99c 

= / 

= g'ch 

= L'h (1.9) 

where the properties of group elements have again been used. This is an important 

equation because it is also used in the construction of the rest of the theory. We see 

that the h E H will have no effect on the H in the coset because h : H H' = H. 

This is why we have ignored it. Since we are using (interpolating or Goldstone) fields 

to parameterize L, it is clear that A is a local transformation. 

• Now if g = h E H then we may write 

gL = hL 

= hL {h~^h) 

= i:'/* 

and so we immediately see that 

2/ = (LIO) 

This is a linear transformation of the coset parameters (Goldstone Bosons); in the 

next chapter we will see that a relation of this form tells us that they transform 

in the Adjoint/Vector representation. We will find, for some models, that we are 

able to calculate this transformation to all orders if we consider certain subgroup 

elements. 
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• g = c ^ H then we can only make these transformations more explicit if the 

coset space is a symmetric space. If it is, then it admits an automorphism which 

maps the coset space basis 

Aa 1—y — for SU{N) breaking models, 

<̂ aA —<?oA for SO{m,) breaking models, and 

~SaA for SO{t, s) breaking models. 

The subgroup generators, which form the subspace basis, are invariant under the 

automorphism, and so looking back to Section 1.1.4 (on page 27), and forward 

to Appendix C (on page 195), we see that the structure relations of G remain 

unchanged. Note also that the index ranges will be properly defined where appro-

priate; but for now it is sufficient to understand that they are coset indices which 

run over a subset of all possible values. If the coset space is a symmetric space 

then we proceed by inverting equation (1.9) and then applying the automorphism 

to give 

Lc = h ^L' 

which we may combine with equation (1.9) to find 

(z/y* == c i f c (1.11) 

which is a nonlinear transformation of the Goldstone Bosons. 

In general we have 

(•^0 = {9 (1-12) 

where A {g~^) has been used to denote the result of applying the automporhism to the 

inverse of an element g. For a transformation produced by an element of the subgroup, 
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that is g = h E H, this relation reduces to 

This implies that L' = hLh~^ which is just equation (1.10), as desired. 

1.2.1 Analysis to first order using Killing vectors. 

For both the linear and nonlinear cases we may also find quantities known as Killing 

vectors. They contain information about the generators of the transformations of the 

Goldstone Bosons because we are working with equation (1.12) to first order. In an 

SU(N) notation the Goldstone Bosons transform 

= Jkf' 4-6̂ G]K:% 4- (1.13) 

where the Kg are the linear Killing vector components, and the Kg are the nonlinear 

Killing vector components. The 0® and 0° are the subgroup element and (coset) el-

ement transformation parameters respectively. We are able to find the Killing vector 

components using the coset representative, L. If we understand that a transformed 

coset representative element written in terms of the original Goldstone fields has the 

same form as the original coset representative written in terms of transformed fields, 

i.e. L'{M) = L{M') and use the notation of differentiation with respect to Goldstone 

fields L^a = dL/dM"', then we may write 

j&'fvkr) == j&fVkf) 4- aj : 

= jC(Jtf) 

and if we use equation (1.13) we find 
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• For the linear transformation 

1/ = 6 ( l jU) 

where L' => L'{M) and L => L{M). If we expand the LHS to first order in the 

transformation parameters we find 

L' = hLh-^ 

== 6 -- Z,] (1.15) 

and so, to find the K.% we must solve 

If the subgroup transformation parameters, the 6^, are removed from the calcu-

lation we have 

[Aa.IJ = 0L16) 

• For the nonlinear transformation 

== Z,: + (l-l'f) 

Notice the use of squared terms; because we are considering a 'coset' of transfor-

mations. If we use the the same approach as before, then we find that to calculate 

the Kg we must solve ;-

When the coset transformation parameters, the 0 ,̂ are removed from the calculation 

we have 

{/Xa.j&s} == (1.18) 
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Lastly, from [8], we understand that not only do these Killing vectors tell us about the 

transformations of the nonlinear realizations, but they may also be used to check the 

form of the Goldstone boson part of the Lagrangian which we will build. This will be 

explained in section 1.4.1a. 

1.3 Covariant derivatives for the Goldstone bosons 

and matter fields. 

To construct an Effective Lagrangian we must find Covariant derivatives for the fields in 

the theory. We know that there will be Goldstone boson fields and we have just looked 

at a method of finding their transformation properties. Now, even though Goldstone's 

theorem does not require any other fields in the theory, we will introduce a set of matter 

fields that interact with the Goldstone bosons in a natural way. We will then show how 

to find covariant derivatives for both the Goldstone fields and the (standard) matter 

fields. 

1.3.1 The form of the Standard field covariant derivative. 

The fields in the unbroken theory, which we may call $ , transform as a linear repre-

sentation of G 

g eG •. $ 1-4 

Using the $ we may define a set of matter fields, also called Standard fields 

== 6 -1$ QLig) 
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The standard fields have the property that they transform 

g •. ip tp' = 

= hip (1.20) 

where, in the second line, we have used equation (1.9). For the moment we note that 

the Pauli adjoint spinor, transforms as 

g : ip i -^ ip ' = ip h"^ (1.21) 

1.3.1a Transformation of 

We now ask how 9^-0 transforms by using the above relation. We see 

^ : 9^^ 1-4 + (8^A) ̂  

and so d^ip is not a Covariant derivative; its transformation is different to that in 

equation (1.20). What we need is such that V^ip i-4 hV^ip. Using this 

new form we now have as our transformation 

^ : (9ju + X p ) t p 1-4 [(5^ + X ^ ) ip] = + X ' ^ ip' 

= + 

= (8^A) ^ 

which must equal h (9^ + X ^ j ) t p , and so we must have 

This tells us how the quantity X^ transforms. We see 

= hXfJV^ + hd^h'^ (1-22) 
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We will now show how to find which will give us our covariant derivative for the 

standard fields, and also how to find the covariant derivative for our Goldstone fields. 

1.3.2 The Covariant derivatives. 

The following method will give us covariant derivatives for the Goldstone fields and 

Standard fields. By difi'erentiating equation (1.9) with respect to the spacetime coor-

dinates, a: ,̂ we find 

and if we now take g to be the local transformation g = then we have 

L (1.23) 

Under the action of ^ 6 G this transforms 

= hL'^dfj, {Lh~^) 

= /i (1.24) 

So we find that under the action oi g e G 

ttfi 1-4 (1.25) 

— 1-̂  hi——Vfijh ^ + hdfj,h ^ (1.26) 

Firstly, equation (1.25) tells us that we may interpret the components of as a 

covariant derivative for the Goldstone fields. In the next chapter we will see that 

this has the same form as the transformation of a vector, so the components are 

transforming in the adjoint representation. So our covariant derivative for the 

Goldstone boson fields is written in the form 

== (L27) 
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in SU{N) breaking calculations, or 

== (1.28) 

in SO(m), and SO(t,s), breaking calculations. Note that for these models the 

indices will be properly defined where appropriate. 

• Secondly, if we compare equation (1.26) with equation (1.22) we see that we have 

found what we needed to form the covariant derivative T>̂ ip. We thus have 

== (cip -- (1-219) 

Using a similar line of reasoning we may also construct a covariant derivative for 

ijj which we can write as 

== %&((%, 4-4^ ,̂) (l.cK)) 

Notice the change in sign of the second term. By definition, this transforms in 

the same way as V* 

,, : 0^ 25;,) (iA Z^,)' == (i6 I)p) &--1 (1.31) 

1.4 Invariants terms and the Effective Lagrangian. 

We now have all we need to construct an Effective Lagrangian for the theory. We must 

now find invariant terms which may be used to form the pieces of the Lagrangian. The 

scalar (Goldstone boson) and the spinor (matter field) parts of the effective Lagrangian 

density will be considered separately. 
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1.4.1 The Goldstone boson part of the Lagrangian. 

If we look at the form of equation (1.25), we see that the quantity is invariant 

under group transformations 

\tray,a^ i->- ^tra'^a^ = ^tr ha^h^^ha'^h~^ 

= ^tr 

== (cPJkf*) (1.32) 

where, in the last line, we have introduced the coset space metric, Qab, of Isham [8]. 

In practice we use half this quantity in the Lagrangian, and when it is expanded ^ we 

find that the first term we get may be interpreted as a Kinetic term for the Goldstone 

bosons; the other terms being interaction terms between the Goldstone bosons. For 

SO(m) and SO{t, s) breaking we will find the following form 

l&r == jir (l.ZKi) 

and the index ranges will be properly defined in the relevant sections. In the next 

chapter we will also introduce the notation (op,a^) = and we will have 

(op,aP) == 

in the SU{N) breaking models. This is simple to see because if then (a^, a^) 

contains (Ao, At) = Sab- For the SO{m) and 50(1, m — 1) breaking models we will have 

the quantity 

{flu, of^) = K a^^ciix 

Notice that a constant, K, has appeared on the right hand side because {oix, o-jy) and 

(EiXj^jv) depend on the size of the sigma matrices (see Appendix C). However, this 

^For the SU{N) models gab = Sab + — 
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constant may be ignored because it will also appear when we physically calculate the 

left hand side. Therefore we will just calculate/consider the language used 

in the next chapter we say that the SO{m) sigma matrices, aAs, are not orthonormal 

basis vectors; instead they are just orthogonal vectors (which may be normalized to 

form a set of basis vectors). 

1.4.1a Using the Killing vectors to construct t h e metric. 

We understand, from the paper by Isham [8], that we may use the Killing vector com-

ponents to check the form of the Goldstone boson manifold metric. It is therefore 

true that, for the more complicated models considered in this thesis, this metric recon-

struction may be used as a doublecheck to verify the results for the nonlinear Killing 

vector components (assuming the metric to be correct). In contrast, the results for the 

linear Killing vector components may be verified with only a small ammount of extra 

work, and so the relevant doublecheck will be included in the thesis; and this met-

ric reconstruction then becomes a triplecheck for the form of the linear Killing vector 

components. 

• For SU(N) breaking models we have :-

and we may form the Goldstone boson manifold metric 

= (K&K^ + K;Kg)-' (1.34) 

where the quantity (K%K% + K^K^) is the inverse of the left hand side, and so 

has the property :-

(K' j .K| + K^Kj) = Si 
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For these models there is no distinction between covariant and contravariant 

indices. 

• For S O { m ) , and S O ( t , s ) breaking models we have 

and we may form the Goldstone boson manifold metric 

dkr jy = Q c i f K " + (135) 

where the quantity (K|f •'^) is the inverse of the left hand side, 

and so has the property 

For S O { m ) breaking calculations there is no distinction between covariant and 

contravariant indices, but to make things easier when we come to work on 

50(1, m — 1) breaking models we keep the indices balanced and sum over the 

repeated upper and lower indices. 

1.4.2 The matter field part of the Lagrangian. 

For the matter fields we see that we may form two invariant terms. In a little while we 

will show how to construct the Pauli adjoint spinor, i j j , which transforms 

g : i j j i p ' = 

However, since we know its transformation properties, it is obvious that we may form 

an invariant mass term for the matter field part of the Lagrangian density because 

g : m i p i p m i p h ~ ^ h i p = m t p t p . (1.36) 
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This quantity is also invariant under Lorentz transformations of the spacetime coordi-

nates. Secondly, we see that we also have an invariant 

—y 

where 2?^ =^2?^. However is invariant only under group action. On the other 

hand it is a 4-vector, and so to make this piece invariant under Lorentz transformations 

we must use the quantity 

Also, from the transformation property of the covariant derivative for the Adjoint Pauli 
— •(— 

spinor, we see that we also have an invariant 

g : ip " p ip ip "p h ^ ^ h i j j = i p ' p ip (1.38) 

which is also Lorentz invariant. Therefore, together with we may write an 

invariant term 

i j j = ^ ' 0 —-0 '0) (1.39) 

1.4.2a Constructing ip, the Pauli Adjoint of the spinor i/j. 

The Lagrangian has been constructed such that it is invariant under Lorentz trans-

formations of the spacetime coordinates. In constructing the matter part of the La-

grangian we have used the Pauli adjoint spinor, ijj, which is defined 

ijj = A (1.40) 

We will now show how to find the matrix A. Firstly, the Dirac adjoint of a matrix, X, 

is defined by :-

== iarjcip (1.4=1) 
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Using the definition of the Pauli adjoint spinor, the left hand side of this is 

= 

= 

Therefore, we see that we need to satisfy :-

For simplicity, if we now let A be an Hermitian matrix, i.e. = A, then this relation 

may be written 

JT == (1.42) 

Now, in the theory, we would like ^ = (p, J) to be a divergenceless = 0) 

Noether current which will lead to a charge operator 

Q ~ y 

~ J ip^ ipd^x 

which is the conserved quantity. So if we now have X = then we need to find 

the Hermitian matrix A such that = F^ (which will give the four-current, real 

components). A set of gamma matrices is defined in Appendix C; or rather, we define 

the F^ which are just zy^^F'', but this will not change the qualitative results of what 

follows. We will now work on equation (1.42) in parts. Firstly, since F°^ = F°, we have 

the relation 

FO = A-^r^^A 

F° = A-^r^A 
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Premultiplying this with A leads to 

^4,r°] == 0 (1.43) 

Secondly, since = —r\ following the same procedure as above will now produce the 

anticommutator 

{v4,]r'} =E 0 (i.<w) 

The gamma matrices obey the two relations 

[ r^ , r , ] = 22 2 ^ 

{r^ , r^} = 2?7^yi[2fc] 

If we now, appropriately, restrict the indices in these expressions we find 

[r^.To] = 22 2 ^ 

r i} = 2 1 pt j 

and then, clearly, equations (1.43) and (1.44) are satisfied by the Hermitian matrix 

choice A = r°. 

It is important to understand that for different SO(t, s) models the matrix A will be 

also be different. To give an example, without justification, we find for 50(2,4) that 

we need to have A = r°r® = — 

1.4.3 The complete Effective Lagrangian density. 

Putting the results of the last two sections together we see that we may construct an 

Effective Lagrangian density which is the sum of a Goldstone boson part and a matter 

field part. Therefore we have 

'^eff = ^ (aft,a^)+'i/;(ip-m)ip (1-45) 
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where the form of the {a^,a^) = \tr term is given 

= gab{dij.M°-) {d^M^) for 5C/(A^) breaking. 

= QiXjY for SO{m) or SO(t,s) breaking. 

It is usual though just to consider the Lagrangian density 

== ^ -)?%)%& (i-"i6) 

where the acts to the right only. This is permissible since the only difference between 

equation (1.45) and equation (1.46) is a total divergence; which does not change the 

action. Both Lagrangian densities, however, are what we would expect for a theory of 

this type since 

1. The massless scalar field multiplet (Goldstone boson) part of the Lagrangian 

density contains, at lowest order, the kinetic term This is the 

usual form of a scalar field multiplet Lagrangian density kinetic term. This is 

also accompanied by higher order (self) interaction terms. 

2. The matter field part of the density has the usual form of a Dirac-like Lagrangian 

density. This is accompanied by interaction terms between the matter fields and 

the massless scalar (Goldstone) fields; provided by the term in the covariant 

derivative 
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Chapter 2 

The geometry of Real vector spaces. 

IT IS CLEAR FROM THE CONSTRUCTION OF THE PHYSICAL THEORY THAT WE DO NOT EVER NEED TO FIND 

EXPLICIT EXPRESSIONS FOR GENERAL GROUP ELEMENTS. IN FACT WE ONLY REALLY NEED TO WRITE 

EXPRESSIONS FOR THE COSET REPRESENTATIVE, AND WE WILL SEE THAT ONLY CERTAIN SUBGROUP 

ELEMENTS NEED TO BE CONSIDERED TO UNDERSTAND SOME OF THE PHYSICAL CONSEQUENCES OF 

THE THEORY. T H E APPROACH WE WILL USE IS TO UNDERSTAND THE REAL VECTOR SPACE ASSOCIATED 

WITH THE GENERATORS OF GROUP ELEMENTS. T H E CONSTRUCTION IS PHRASED WITH RESPECT TO 

S U ( N ) GROUP ELEMENT GENERATORS, BECAUSE IT IS BASED ON THE TECHNIQUES EMPLOYED 

BY L.MICHEL AND L.RADICATI [17] IN THEIR STUDY OF SU(3) AND THE GEOMETRY OF 3 ^ . 

ALTHOUGH THE THEORY HAS BEEN EXPLICITLY FORMULATED FOR S U { N ) GROUPS, WE MAY WORK 

WITH SO{m) GROUPS TOO. W E DO NOT NECESSARILY HAVE TO EXPLOIT ANY HOMOMORPHISMS 

TO DO THIS (THOUGH WE MAY) BECAUSE THE GENERATORS OF SO{m) GROUPS ARE ALSO TRACELESS 

HERMITIAN MATRICES. THEREFORE OUR FRAMEWORK WILL ALLOW US TO APPLY THE SAME IDEAS 

TO FIND THE COSET REPRESENTATIVE, AND SUBGROUP ELEMENTS, FOR THEORIES OF BROKEN SO{m) 

GROUP SYMMETRIES. 

GROUP ELEMENTS HAVE BEEN INTRODUCED IN SECTION 1 . 1 . 1 , BUT HERE WE WILL BE A LITTLE MORE 

RIGOROUS. IN THE defining REPRESENTATION, SU{N) IS THE GROUP OF SPECIAL (unimodular => 
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detg = 1 ) , UNITARY (g^ = g ^), N x N MATRICES. GENERAL L I E GROUP ELEMENTS, g E G, 

M A Y B E WRITTEN 

p = e - " 

== ( 2 j j 

T H E FIRST TWO LINES ARE THE DEFINITION OF L I E GROUP ELEMENTS, AND THE LAST LINE SHOWS 

EXPLICITLY THE QUANTITIES WE WILL DEAL WITH; THE A / ARE A SET OF ( N ^ — 1 ) TRACELESS, 

HERMITIAN N x N MATRICES, AND THE 6^ ARE A SET OF — 1 ) REAL PARAMETERS. T H E 

GENERATORS FOR S U { N ) ARE THE T j . N O W THE A / OBEY ANTICOMMUTATION AND COMMUTATION 

RELATIONS 

{ A / , A J } = ~ 5 / 7 L[AR] + 2 RF/JII-AIF ( 2 . 2 ) 

= 'iifuK^K (2.3) 

W H E R E THE D J J K ARE SYMMETRIC, AND THE F U K ANTISYMMETRIC, UNDER INTERCHANGE OF ANY 

TWO INDICES. T H E COMMUTATION RELATION IS CALLED THE L I E ALGEBRA OF S U ( N ) AND DEFINES 

THE GENERATORS OF THE GROUP TRANSFORMATIONS; AND THEREFORE THE XK- S O WE HAVE THE 

PRODUCT RULE 

2 
Sij l[Ar] + (dijK + i JUK) XK (2-4) 

P R O M THIS WE SEE THAT WE HAVE A QUANTITY 

= G A / A J ( 2 . 5 ) 

= Sij 

AND SO WE M A Y THINK OF THE Xj AS FORMING A Basis FOR AN ( J V ^ — 1 ) DIMENSIONAL Real 

Vector Space, THIS RELATION BEING THE EUCLIDEAN SCALAR PRODUCT BETWEEN THE 
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BASIS VECTORS. S O THE EUCLIDEAN SCALAR PRODUCT BETWEEN TWO VECTORS, x AND y, IS 

(%,%) := 
= 

WHICH, FOR JV := 2 , IS A VERY FAMILIAR EXPRESSION SINCE WE ARE DEALING WITH VECTORS IN 

3%^. ALSO, WHEN y = x we HAVE AN EXPRESSION FOR THE N O R M OF x , AND WE WILL SOON SEE 

THAT THIS IS AN INVARIANT UNDER A ROTATION OF THE BASIS OF THE VECTOR SPACE; IT IS KNOWN 

AS A MATRIX INVARIANT. 

2.1 The algebras of Real Vector Spaces, 

W E REPRESENT A GENERAL VECTOR OF 

X = - X , 

= X^\j 

F R O M THE PRODUCT RULE WE M A Y DEFINE TWO LINEARLY I N D E P E N D E N T ALGEBRAS 

1 . T H E FIRST IS BASED ON THE COMMUTATOR OF BASIS VECTORS 

[A/, A J] = 2i fijK^K 

WHICH IS THE L I E ALGEBRA OF SU{N). W E REWRITE THIS 

Xi A X j = — - [ A / J A J ] ( 2 . 6 ) 

= IurXK 

FOR TWO VECTORS x AND y WE HAVE 

4 7 



AND THE VECTOR x A y is ORTHOGONAL TO BOTH x AND y SINCE : 

{x Ay, x) = 0 

(a;a2/,2/) = 0 

FOR THE EXAMPLE OF THE L I E ALGEBRA OF SU{2), WHERE THE PAULI SPIN MATRICES ARE 

USED TO REPRESENT THE BASIS OF A REAL 3 DIMENSIONAL VECTOR SPACE, WE UNDERSTAND 

THAT EQUATION ( 2 . 7 ) IS THE USUAL VECTOR PRODUCT, OR CROSS PRODUCT, BETWEEN TWO 

VECTORS. 

2 . T H E SECOND ALGEBRA IS A SYMMETRIC ALGEBRA BASED O N THE ANTICOMMUTATOR BETWEEN 

BASIS VECTORS 

4 

{ a j , a j } = —Sijl[N] + 2dijK)^K 

WHICH WE REWRITE 

A / V A J = - ^ ^ { A / , A J } - ( A / , A J ) IFAT] ( 2 - 8 ) 

= VN dijK^^K 

FOR TWO VECTORS WE HAVE 

xV y = \ / I V x ^ y ^ d u K ^ K (2-9) 

T H I S IS A NEW TYPE OF VECTOR PRODUCT WHICH IS POSSIBLE FOR WITH N > 3 . 

T H E S E TWO ALGEBRAS ARE USED TO DEFINE LINEAR OPERATORS OF THE ADJOINT, = xA AND 

DX = X Y , WHICH TRANSFORM THE VECTOR SPACES THEMSELVES. T H I S IS DONE IN A P P E N D I X B , 

ON PAGE 1 6 7 , WHERE WE ALSO FIND S O M E RELATIONS BETWEEN THE ADJOINT OPERATORS. BUT FOR 

NOW WE PROCEED BY LETTING y = x. W E FIND 

X Ax = 0 

xV x = [NX"^ - 2 {x, x ) l[IV]) 

VN 
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T H E SECOND OF THESE TWO EXPRESSIONS MAY BE REARRANGED 

X 
2 _ = tc'sc) 1[a3 4- \/;c (2.1(]) 

AND WE SEE THAT WE HAVE AN INDEX FREE EXPRESSION FOR THE SECOND POWER IN THE EXPANSION 

OF THE GROUP ELEMENT. HOWEVER, WE ARE NO FURTHER FORWARD AT THE MOMENT SINCE WE DO 

NOT UNDERSTAND, YET, WHAT x y x REALLY MEANS. ALL WE CAN SAY IS THAT A; V A; IS A VECTOR 

WHICH commutes WITH x. 

2.2 Rotating vectors of and the characteris-

tic equation. 

IN ORDER TO CONTINUE WE MUST UNDERSTAND THE NATURE OF THE BASIS OF TRACELESS HERMITIAN 

MATRICES. P R O M A PURELY MATHEMATICAL POINT OF VIEW A TRACELESS HERMITIAN MATRIX, x , 

OBEYS A CHARACTERISTIC EQUATION 

x^ - J2{x)x^~^ - ^3{x)x^''^ 7iv(a;) l[Ar] = 0 (2-11) 

WITH 

^ (2.12) 

PROM THIS WE SEE : 

1 

2 
1 

72 W = = (:r,a;) 

73 w = 

AND WE HAVE ALREADY MET 72 (x). W E NOTE HERE THAT THIS CHARACTERISTIC EQUATION IMPLIES 

THAT, FOR N > 2, THE HIGHEST POWER OF x APPEARING IN THE EXPANSION OF THE GROUP ELEMENT 

IS HIGHER POWERS OF x REDUCE. 
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W E KNOW THAT (TRACELESS) HERMITIAN MATRICES MAY BE DIAGONALIZED BY A UNITARY S I M I -

LARITY TRANSFORMATION 

U\ X XD = v ) x u ( 2 . 1 3 ) 

WHICH WE THINK OF AS A TRANSFORMATION OF BY M E SU{N)\ THE TRANSFORMATION 

BEING DEFINED AS A ROTATION OF THE VECTOR SPACE BASIS. THEREFORE THE MATHEMATICAL ACT OF 

DIAGONALIZING THE MATRIX, x, MAY BE PHYSICALLY INTERPRETED AS THE ROTATION OF THE VECTOR, 

X, INTO THE SUBSPACE OF WHICH IS DEFINED BY THE DIAGONAL BASIS VECTORS. T H U S , WE 

HAVE DEFINED THE ACTION OF THE ADJOINT REPRESENTATION SINCE, FOR any g 6 SU{N), THE 

COMPONENTS OF x TRANSFORM 

G : (A;, AF) T-4 A ; ) = A ; ) 

= 

WHERE R U = {g^Xjg, A / ) = \tr {gXig'^Xj) IS DEFINED AS THE ADJOINT REPRESENTATION OF THE 

GROUP ELEMENT g E G, SOMETIMES CALLED Ad{g). W E SEE THAT THE SCALAR PRODUCT BETWEEN 

TWO VECTORS, {x,y), IS invariant UNDER THIS TRANSFORMATION OF THEREFORE, QUITE 

OBVIOUSLY, {x, x ) IS TOO. IN GENERAL 

7a; {y)xu) = ^tr f u^x^u — ^ % {u^xu) v)x^ 
h—2 

fl—2 
k—2 

/'/• I — > ""v i 'f. 1'/'^ ^ 

= ! % ( % ) . 

THEREFORE THE % ( % ; ) ARE KNOWN AS MATRIX INVARIANTS AND, FOR A GENERAL N x N TRACELESS 

HERMITIAN MATRIX, THERE ARE (A^ — 1 ) OF THEM. T H E CHARACTERISTIC EQUATION AFTER THE 

BASIS ROTATION TRANSFORMATION BECOMES 

U^X^U — — J3IX)U^X^~^U — • • • — 1[N] = 0 

= 0 
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T H E DIAGONAL ELEMENTS oi XD ARE REAL NUMBERS, KNOWN AS EIGENVALUES, AND THE FORM OF 

THE EQUATION NOW IMPLIES THAT IT MAY BE INTERPRETED AS AN EIGENVALUE EQUATION FOR x\ 

WITH {N — 1 ) INDEPENDENT SOLUTIONS. W E NOW MAKE A VERY IMPORTANT POINT, WHICH WE 

MAY STATE IN TWO EQUIVALENT WAYS 

• A N Y TWO TRACELESS HERMITIAN MATRICES, x AND y , WITH THE SAME CHARACTERISTIC 

EQUATION HAVE THE SAME EIGENVALUES. T H I S MEANS THAT THEY ARE SIMILAR, OR RELATED 

TO EACH OTHER VIA A UNITARY SIMILARITY TRANSFORMATION. 

• A N Y TWO VECTORS, x AND y, WITH THE SAME CHARACTERISTIC EQUATION HAVE THE SAME 

EIGENVALUES. T H I S MEANS THAT THEY ARE RELATED TO EACH OTHER VIA A ROTATION IN 

IN THE LANGUAGE OF [17] WE SAY THAT THESE TWO VECTORS DEFINE AN ORBIT 

WHICH LIES IN A PARTICULAR STRATUM OF 

W E NOTICE THAT, SINCE NEITHER OF THESE STATEMENTS D E P E N D S ON G , WE MAY NOT ONLY USE 

THIS PROPERTY FOR GROUP VECTORS OF SU{N) GROUPS, BUT ALSO FOR GROUP VECTORS OF SO{m) 

GROUPS. T H U S , THE MATHEMATICAL LANGUAGE/NOTATION WE WILL USE TO DESCRIBE THE S U { N ) 

BREAKING MODELS IS SUITED TO THE SO{m) BREAKING MODELS TOO. 

W E END THIS SECTION WITH THE PHYSICAL IMPLICATIONS OF THE SIMPLEST CHARACTERISTIC EQUA-

TION. FOR N = 2 we HAVE 

~ 72(3̂ ) 1[2] = 0 

SINCE WE ARE DEALING WITH 2 X 2 TRACELESS HERMITIAN MATRICES THERE IS, EFFECTIVELY, ONLY 

ONE WAY OF DIAGONALIZING any MATRIX x. T H I S IS BECAUSE, IN THIS CASE, THERE IS ONLY ONE 

MATRIX INVARIANT, 7 2 ( 0 ; ) , AND THEREFORE ONLY ONE DIAGONAL MATRIX IN THE 9%^ BASIS. I N 

GEOMETRICAL TERMS WE MAY SAY THAT IT MAKES NO DIFFERENCE IN WHICH DIRECTION any VECTOR, 

X, ACTUALLY POINTS IN SINCE WE MAY ALWAYS ROTATE IT AROUND THE VECTOR SPACE UNTIL IT 

POINTS IN THE THIRD DIRECTION WHICH, USING THE PAULI S P I N MATRICES TO REPRESENT THE BASIS 

VECTORS OF THE SPACE, IS THE DIAGONAL DIRECTION. W E ALSO SEE THIS BECAUSE THE THREE PAULI 

51 



S P I N MATRICES ARE SIMILAR MATRICES (RELATED TO EACH OTHER VIA SIMILARITY TRANSFORMATIONS 

EACH HAVING EIGENVALUES ± 1 ) AND THIS M E A N S THAT THERE IS ONLY ONE TYPE OF VECTOR 

WHICH M A Y BE DEFINED IN T H E L I E ALGEBRA IS A STATEMENT OF THE FAMILIAR VECTOR 

(CROSS OR A ) PRODUCT. 

2.3 Vectors in the Cartan Subspace of x. 

W E M A Y USE THE SYMMETRIC, V , ALGEBRA TO BUILD A SET OF MUTUALLY C O M M U T I N G VECTORS. 

W E HAVE ALREADY CONSTRUCTED A VECTOR WHICH C O M M U T E S WITH x] NAMELY x\J x WHICH IS 

DEFINED 

N O W THE EUCLIDEAN SCALAR PRODUCT BETWEEN x AND A; V A; IS 

(a;,a;va;) = 272(3) l[ar]) 

= 

== (2 150 

S O WE FIND, GEOMETRICALLY, THAT THE MATRIX INVARIANT 7 3 ( 2 ; ) IS RELATED TO THE SCALAR PRODUCT 

BETWEEN x AND xW x, AND THESE TWO VECTORS LIE IN, AND THEREFORE DEFINE, A C O M M U T I N G 

PLANE. IF x AND xV x ARE UNIT VECTORS, THAT IS 7 2 ( x ) = 7 2 ( X V A;) = 1 , THEN WE FIND THAT 

(xjxvx) = C O S Q ; WHERE a IS THE ANGLE BETWEEN THE TWO VECTORS IN THE C O M M U T I N G 

PLANE. 

W E FIND A THIRD ORDER EXPRESSION 

xVxVx = - 272(0:) X - 373(x) 1 [AT] (2.16) 

WHICH IS CONSTRUCTED FROM x AND xVx, BUT SINCE xyy=y\/x we DON'T NEED TO USE 
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ANY BRACKETS. W E FIND 

( X J X V X V X ) = 2A/ '74 (3;) + (A^ - 2 ) 7 2 ( 0 : ) ^ ( 2 . 1 7 ) 

= (a; V z, a; V a;) 

(xV X,X\/ xV x) = + ^{5N-12)'y2{x)j3(x) ( 2 . 1 8 ) 

A FOURTH ORDER EXPRESSION IS 

(X V 3;) V (A; V X) = / / V [A''A;^ - 2 ( 2 7 4 ( 2 ; ) + 7 | ( X ) ) L[JV]] - 4 7 2 ( 0 : ) A; V A; ( 2 . 1 9 ) 

THESE RELATIONS ARE GETTING COMPLICATED SO WE WILL NOT PROCEED ANY FURTHER; BESIDES WE 

NOW HAVE ALL WE REALLY NEED TO CONTINUE SINCE THE VECTORS WE WILL MEET ARE not GENERAL 

'GROUP' VECTORS OF THE whole VECTOR SPACE AND SO ARE EASIER TO HANDLE. HOWEVER, WE NOTE 

THAT 

• A: V A; V A; IS never HNEARLY INDEPENDENT FROM x, 

• xV X MAY BE LINEARLY INDEPENDENT FROM x, BUT ONLY IF 7 3 ( 3 ; ) = 0 . IN THIS CASE WE 

FIND THAT A; V A; V A; = N X ^ — 2 J 2 { X ) X AND 7 3 ( 3 ; ) = 0 <=> A;̂  IS A VECTOR. 

2.4 The basis for Cx-

W E MAY NOW DEFINE A SET OF VECTORS WHICH CAN FORM (PART OF) A basis FOR THE CARTAN, 

OR COMMUTING, SUBSPACE ASSOCIATED WITH A VECTOR, x. O N C E WE HAVE DONE THIS WE WILL 

BE ABLE TO REWRITE x IN TERMS OF THIS BASIS. IN DOING SO WE WILL BE ABLE TO EXPONENTIATE 

X WITHOUT MUCH TROUBLE BECAUSE WE WILL KNOW HOW THE BASIS VECTORS BEHAVE. 
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2 .4 .1 R-vectors . 

T H E SIMPLEST TYPE OF VECTOR IS THE R-VECTOR DEFINED B Y ITS MATRIX INVARIANTS 

7 2 (R) = 1 

(R) = 0 y 3 < k < N. 

T H U S THE CHARACTERISTIC EQUATION FOR AN R-VECTOR IS 

r " == 0 (2/20) 

SINCE THIS IS EQUIVALENTLY AN EIGENVALUE EQUATION, THE BEHAVIOUR OF THE R-VECTOR UNDER 

MULTIPLICATION IS GIVEN BY 

— r = 0 

BECAUSE 7 ^ (R) = 0 ^ 3 < k < N we FIND THAT THE R-VECTOR HAS THE EIGENVALUES ± 1 

TOGETHER WITH {N — 2 ) ZEROS. T H E EXPLICIT FORM OF DIAGONAL R-VECTORS OF 9?® AND 

ARE GIVEN IN A P P E N D I X A , WHICH STARTS ON PAGE 1 5 2 . S I N C E 7 2 (R) = 1 THE R-VECTOR IS 

A UNIT VECTOR. EVEN THOUGH R VECTORS ARE DEFINED f o r AT > 3 WE MAY USE THE NOTATION 

WHEN N = 2. W E HAVE ALREADY DISCUSSED THAT THERE IS ONLY ONE TYPE OF VECTOR DEFINED 

IN AND FOR A UNIT 2 X 2 MATRIX WE HAVE A CHARACTERISTIC EQUATION : -

x"̂  — 1[2] = 0 

BECAUSE IN THIS CASE 7 2 ( 3 ) = 1 . IF WE MULTIPLY THIS BY x AGAIN WE HAVE 

x^ — X = 0 

AND THUS WE SEE THAT UNIT VECTORS IN EXHIBIT THE SIMPLEST POSSIBLE GEOMETRICAL 

PROPERTIES OF R VECTORS OF HIGHER DIMENSIONAL REAL VECTOR SPACES. SO, TO KEEP NOTATION 

TO A M I N I M U M , WE WILL CALL ANY UNIT VECTOR IN AN R-VECTOR. 

^These are root vectors; see p 154. 
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2.4.2 g^-vectors. 

W H E N N > 3 we MAY USE THE SYMMETRIC VECTOR PRODUCT AND AN R-VECTOR TO CONSTRUCT 

ASSOCIATED VECTORS 

r V r = 

= y / n ^ qr (2.21) 

WHERE THE R SUBSCRIPT ON THE VECTOR REMINDS US WHICH r VECTOR IT IS ASSOCIATED WITH; 

THIS IS BECAUSE IN WE MAY DEFINE ^N{N — 1) DIFFERENT R-VECTORS. IN THE DEFINITION 

THE Y/N - 2 ENSURES THAT THE IS ALSO NORMALIZED, THAT IS 7 2 (G^) = 1- T H I S IS JUST A 

SPECIAL CASE OF EQUATION ( 2 . 1 4 ) . T H E EXPLICIT FORM OF DIAGONAL G^-VECTORS OF 9?® AND 

ARE GIVEN IN A P P E N D I X A , WHICH STARTS ON PAGE 1 5 2 . 

2.4.3 Relationship between r and 

USING THESE DEFINITIONS FOR R-VECTORS, AND THEIR ASSOCIATED G^-VECTORS, WE MAY NOW 

REWRITE EQUATIONS ( 2 . 1 5 ) TO ( 2 . 1 9 ) WITH x = r 

• EQUATION ( 2 . 1 5 ) , WHICH GIVES US THE COSINE OF THE ANGLE BETWEEN x AND xWx WHEN 

THEY ARE NORMALIZED, MAY NOW BE WRITTEN 

{r,qr) = 0 (2.22) 

WHICH TELLS US THEY ARE orthonormal VECTORS IN G^ IS LINEARLY INDEPENDENT 

FROM R BECAUSE 7 3 (R) = 0 . T H I S IMPLIES THAT R AND G^ MAY BE USED TO FORM THE 

basis OF A COMMUTING PLANE IN THE CART AN SUBSPACE. FOR N = 3 THIS IS THE BASIS 

OF THE WHOLE OF THE CART AN SUBSPACE BECAUSE SU ( 3 ) IS A GROUP OF RANK 2 . 

• EQUATION ( 2 . 1 6 ) REDUCES TO 

rV QR = VN - 2 r ( 2 . 2 3 ) 
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WHICH ALSO IMPLIES THE PRODUCT 

TQr = QrT 

/ N ~1 n-» 

E EQUATIONS ( 2 . 1 7 ) AND ( 2 . 1 8 ) REDUCE TO 

( R , R ) = 'Y2(R) = 1 

(r,gr) = 0 

RESPECTIVELY, WHICH IS NOTHING NEW. 

• LASTLY, EQUATION ( 2 . 1 9 ) REDUCES TO 

9R V GR = Qr ( 2 . 2 4 ) 

2.5 The exponentials of vectors. 

SINCE WE WILL BE DESCRIBING COSET VECTORS WITH RESPECT TO R-VECTORS AND G^-VECTORS WE 

WILL NOW SHOW HOW EACH OF THESE MAY BE EXPONENTIATED. W E ALSO SHOW HOW TO EXPO-

NENTIATE VECTORS WITH A PARTICULARLY SIMPLE MATHEMATICAL BEHAVIOUR; THOSE WHICH OBEY 

THE RELATION X V A; = 0 . 

2.5.1 Exponentiating r-vectors. 

T H E MATRIX INVARIANTS OF AN R-VECTOR : -

72 (r) = 1 

7 * 0 ^ = 0 V 3 < & < J V 
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TELL US THAT = r, AND THEREFORE IT IS SIMPLE TO EXPONENTIATE THE R-VECTOR, OR ANY 

VECTOR WHICH IS PROPORTIONAL TO AN R-VECTOR. W E HAVE 

G-ZAR _ _ ^ ^ 2 ^ 2 _|_ ^ ^ 3 ^ 3 1 4 ^ 4 _ ^ ^ 5 J 

Jml t 0» » 0» 

= l[Ar] + —h • • • ^ — i —I- • • 

= IFAT] + (COSA — 1 ) — I S I N A R 

= L[AR] + (COSA - 1 ) ^ ( 2 l[Ar] + s/N{N - 2) G^) - I S I N A r 

I F A = F , WHICH IS THE USUAL VALUE FOR AN SU{N) (sub)group OR COSET REPRESENTATIVE 

ELEMENT, THEN 

E ' 2 = JL -J- 2 (COS® — 1 ) ] L[JV] + y j ( C O S Y — 1 ) ~ ^ SIN® r ( 2 . 2 5 ) 

OBVIOUSLY WE WOULD HAVE ARRIVED AT THE same RESULT IF WE HAD KEPT EVERYTHING IN TERMS 

OF X AND UNDERSTOOD THAT THE CHARACTERISTIC EQUATION OF THE VECTOR x IS, IN THIS CASE, 

x^ — 7 2 ( 2 ; ) A; = 0 . FOR N = 2 EQUATION ( 2 . 2 5 ) REDUCES TO 

= COS® 1 [ 2 ] — I S I N F R ( 2 .26 ) 

W E END THIS SECTION BY EMPHASIZING THAT IT WAS THE SIMPLICITY OF THE CHARACTERISTIC 

EQUATION OF THE R-VECTOR WHICH MADE THE EXPANSION, AND SUBSEQUENT GROUPING OF TERMS, 

THIS SIMPLE. 

2.5.2 Exponentiating vectors. 

UNLIKE R-VECTORS, WE FIND THAT EXPONENTIATING GR-VECTORS IS A LITTLE MORE INVOLVED. T H I S 

IS BECAUSE -VECTORS HAVE A MORE COMPLICATED CHARACTERISTIC EQUATION. SINCE 

9 r V 9 r = 2 l [ A r ] ) 

N-i „ 
Vn=2 
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WE FIND THAT 

9? = lsr(2l|ivl + ( ' v - 4 ) y S « r ) 

AND SO, ON THE FACE OF IT, THE REGROUPING OF TERMS IN THE EXPANSION OF THE EXPONENTIAL WILL 

BE DIFFICULT SINCE THE CUBIC, AND HIGHER ORDER TERMS, B E C O M E MORE AND MORE COMPLICATED. 

HOWEVER, THERE IS ONE EXCEPTION 

• W H E N IV = 4 THE SYMMETRIC ALGEBRA FOR VECTORS IS TRIVIAL, AND SO WE SEE 

AND THIS IMPLIES = Y/^QR, WHICH, JUST LIKE THE R-VECTOR, IS EASY TO DEAL 

WITH 

= COS^i j 1[4] — i S I N ^ ^ V^qr ( 2 . 2 7 ) 

WHERE = 1[4]. 

W H E N AT ^ 4 WE MUST EMPLOY A NEW METHOD; A M E T H O D BASED UPON THE IDEA OF PRO-

JECTION OPERATORS. IN THE DEFINING REPRESENTATION OF S U ( N ) WE CAN DEFINE N PROJECTION 

OPERATORS P " WHERE a = 1 , 2 , . . . , N . T H E Y HAVE THE FOLLOWING PROPERTIES 

f FOR A = B 
fwpa = j (&28) 

I 0 FOR A ^ B 

N 

e f = i w (2-29) 
0 = 1 

Z R F " = 1 V O ( & 3 0 ) 

W E HAVE ALREADY MET THESE OPERATORS SINCE R-VECTORS ARE JUST THE DIFFERENCE BETWEEN 

ANY TWO OF THEM. FOR EXAMPLE IF R = A3 THEN WE MAY VYRITE R = — P"^. W I T H THESE 
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DEFINITIONS OF THE PROJECTION OPERATORS, WE FIND THAT THE EXPONENTIAL OF A LINEAR S U M OF 

any NUMBER, k , OF PROJECTION OPERATORS IS JUST 

(2.31) 

WHERE WE HAVE k CONSTANTS, THE O F W E COULD HAVE USED PROJECTION OPERATORS AS SOON 

AS WE DEFINED THE R-VECTORS, BUT EACH SUBSEQUENT RELATION WOULD HAVE LOOKED MORE 

COMPLICATED THAN WAS NECESSARY. AT THIS STAGE IT IS NOT IMPORTANT, BUT WHEN WE COME 

TO CALCULATE THE COVARIANT DERIVATIVE FOR THE GOLDSTONE BOSONS AND THE METRIC CONNECTION 

FOR THE STANDARD FIELDS, USING THIS FORM IS NOT SO USEFUL AS IT OVER COMPLICATES 

THE CALCULATION BECAUSE IT IS MORE DIFFICULT TO ISOLATE THE COSET ( G B COVARIANT DERIVATIVE) 

AND SUBGROUP (METRIC CONNECTION) PIECES. 

SINCE R \ / R = ^ (JVR^ — 2 L[AR]) = y/N - 2 Qr WE SEE 

g-:a,r _ (^r^ - 2 1^) 

4=3 J vjv(«-2) 
= E 

IF WE NOW USE QR = 

k=3 

THEN, AFTER SOME REARRANGING AND 

SETTING a = F , WE FIND 

[N] + (at - 2)e 1[ 

J ( 2 . 3 2 ) 

T H I S REDUCES TO EQUATION ( 2 . 2 7 ) WHEN N = A . 

2.5.3 Exponentiating vectors when x\/ x = Q. 

IN THIS FINAL SECTION WE WILL, FOR THE MOMENT, IGNORE ALL WE HAVE LEARNED ABOUT THE 

CARTAN SUBSPACE, AND THE USE OF ITS BASIS IN REWRITING VECTORS, AND LOOK AT A SPECIAL 

59 



TYPE OF VECTOR WHICH WILL SATISFY THE RELATION xV x = 0. IF A VECTOR HAS THE FORM 

X = aS 

WHERE a IS PROPORTIONAL TO THE LENGTH OF x, AND S HAS THE PROPERTY = L[AR] THEN WE 

GAIN TWO IMPORTANT FACTS ABOUT x 

1 . X MUST BE A LINEAR S U M OF all DEFINING REPRESENTATION PROJECTION OPERATORS, AND 

2 . THIS IMPLIES, BECAUSE S IS TRACELESS, THAT x MUST B E AN even DIMENSIONAL MATRIX; 

THAT IS, N IS AN EVEN NUMBER. 

W E WILL NOW ESTABLISH THE DEFINING REPRESENTATION PROJECTION OPERATOR FORM OF S. FIRSTLY 

WE WRITE 

S = ttiP^ i = 1 , 2 , . . . ,N. 

WHERE THE O, ARE N CONSTANTS. FOR 5 ^ = L[AR] WE M U S T HAVE OJ = ± 1 AND, SINCE N 

MUST BE AN EVEN NUMBER, THERE ARE Y PROJECTION OPERATORS WITH A POSITIVE COEFFICIENT 

AND Y PROJECTION OPERATORS WITH A NEGATIVE COEFFICIENT. THEREFORE S MUST BE OF THE 

FORM 

f # 

' = 1 I=Y4-L 

T H I S FORM FOR S IMPLIES THAT 7 2 ( 5 ) = Y . W E HAVE ALREADY MET THIS TYPE OF VECTOR : 

• FOR N = 2 we HAVE 

5" = 

AND THIS IS AN R VECTOR, AND 
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• FOR IV = 4 WE HAVE 

AND THIS IS EQUAL TO W E NOTE THAT IF WE HAD DEFINED S WITH A DIFFERENT 

ARRANGEMENT OF THE PROJECTION OPERATORS, THEN W E WOULD HAVE ENDED UP WITH A 

DIFFERENT Q .̂ HERE. FOR IV = 4 WE HAVE THE CHOICES S = WITH k = 1 , 2 , 3 . 

W E WILL NOW LOOK AT THE BEHAVIOUR OF x UNDER MULTIPLICATION. SINCE x GIVEN BY 

X = aS 

WE WILL FIND, USING 5 ^ = L[AR], THAT WE OBTAIN 

2.2a:+1 _ ^2k ^ 

= 

WHERE A: > 0 ; THOUGH IN PRACTICE WE NEVER MEET THE EXPRESSION X^ BECAUSE IT IS ALWAYS 

WRITTEN AS L[IV]. THEREFORE, WITH THIS BEHAVIOUR, WE WILL FIND THAT THE EXPONENTIAL OF A 

VECTOR OF THIS FORM IS 

= COS A L[AR] — I S I N A S ( 2 . 3 3 ) 

W E HAVE, QUITE OBVIOUSLY, ALREADY SEEN THIS RESULT TWICE BEFORE : 

1 . W H E N WE CALCULATED FOR N = 2, we FOUND A RESULT OF THIS FORM, SEE EQUA-

TION ( 2 . 2 6 ) . T H I S IS BECAUSE, IN THIS CASE, WE ONLY HAVE VECTORS PROPORTIONAL TO 

THE r VECTOR; AND R VECTORS, FOR IV = 2 , HAVE THE CHARACTERISTIC EQUATION = I P ] -

2 . W H E N WE CALCULATED E" '% FOR TV — 4 , WE ALSO FOUND A RESULT OF THIS FORM, SEE 

EQUATION ( 2 . 2 7 ) . T H I S IS BECAUSE, IN THIS CASE, WE FIND WHICH IMPLIES 

( v ^ r ) ^ = 1[4]. 
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FINALLY, IT IS SIMPLE TO SHOW THAT THESE VECTORS SATISFY A: V A; = 0 . W E HAVE DEFINED THE 

VECTOR A; V A; TO BE 

z v z = 2^2(3) l[an) 

IF WE NOW USE x = a S THEN 

^2 _ Q,2 

'y2(a;) = 

AND SO, USING THESE TWO RESULTS, WE FIND 

a; V 3 = l[jv] - l[;v]) 

= 0 

2.5.3a Basis of Cx when A; V A; = 0. 

W E KNOW THAT SU{2) IS A GROUP OF RANK 1 , AND THAT SO{m), for m = 2k, 2k + 1, is & 

GROUP OF RANK K. T H E RANK 1 GROUPS SU{2), 5 0 ( 3 ) AND 5 0 ( 1 , 2 ) ALL HAVE group VECTORS 

WHICH OBEY xV x = 0. IN THE NEXT CHAPTER WE WILL FIND THAT COSET VECTORS WITH THIS 

BEHAVIOUR APPEAR IN THREE TYPES OF MODEL 

1 . WHEN SU{2) INVARIANCE IS BROKEN TO U ( l ) , 

2. WHEN SO{m) INVARIANCE IS BROKEN TO SO{m — 1 ) , AND 

3 . WHEN 5 0 ( 1 , M — 1 ) INVARIANCE IS BROKEN TO 5 0 ( L , M — 2 ) . 

IN THIS THESIS THE GENERATORS OF THE SPECIAL ORTHOGONAL GROUPS WILL BE IN THE WEYL 

REPRESENTATION. W E WILL NOW FOCUS ON THE COSET VECTORS FOR SO{m) BREAKING TO 5 0 ( M — 1 ) 

WHEN THE RANK IS GREATER THAN 1; SIMILAR RESULTS MAY BE FOUND FOR THE COSET VECTORS OF 
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SO{l,m — 1 ) BREAKING TO SO{l,m — 2 ) . FOR SO{m) BREAKING TO SO{m - 1 ) (WITH 

m = 2k, 2k + 1 ) WE FIND THAT THE COSET VECTOR IS 

X = Q S 
= 

WHERE A = m AND 5 ^ = I P * ] - NORMALLY WHEN WE REWRITE x, FOR EXAMPLE IN TERMS OF 

r VECTORS AND/OR q^. VECTORS, WE SOLVE THE CHARACTERISTIC EQUATION WHICH x OBEYS AND, 

AS WE HAVE SEEN, THIS IS MOST EASILY VIEWED AS AN EIGENVALUE EQUATION FOR x] WHEN x 

IS DIAGONALIZED. IN PRACTICE WE DO NOT DIAGONALIZE x, BUT IN THEORY WE KNOW THAT THIS 

TRANSFORMATION IS POSSIBLE. T H E DIAGONALIZED COSET VECTOR IS NOW, AT LEAST IN OUR M I N D S , 

A VECTOR OF THE SUBGROUP SUBSPACE. T H I S IS MOST EASILY SEEN FOR THE COSET VECTOR (WHICH 

IS USED TO EVALUATE THE COSET REPRESENTATIVE ELEMENT) FOR THE COSET W E HAVE 

WITH a = 1 , 2 . T H I S MAY BE DIAGONALIZED to XD = F A S AND IN CONSTRUCTING THE COSET 

REPRESENTATIVE ELEMENT AS IS USED TO GENERATE SUBGROUP ELEMENTS. HOWEVER, FOR THE 

SO{m) COSET VECTORS WE ARE ABLE TO DIAGONALIZE TO A VECTOR IN THE COSET SUBPSACE TOO. 

FOR EXAMPLE IN THE THEORY OF 5 0 ( 4 ) BREAKING TO SO {3) WE HAVE A COSET VECTOR 

X = Q 71*^(7(4 

WHICH MAY BE DIAGONALIZED TO 2 DIFFERENT VECTORS IN 3?® OF SO(4) 

Ui : X xf — ulxui 
= 

U2 : X ^ X2 = U2XU2 

— O CT34 
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FOR OUR PURPOSES HERE WE WILL CHOOSE THE FIRST SIMILARITY TRANSFORMATION AND WRITE 

u •. S ^ SD = Su 

= (712 

AND THIS IMPLIES THAT x = Q.UGI2U^. FOR GENERAL SO{m) BREAKING TO SO{m — 1 ) BOTH 

S AND a 12 HAVE A NORM OF 7 2 ( S ) = 7 2 (<712) = F- AND SINCE X V A; = 0 WE CAN SAY THAT 

THE FIRST DIRECTION OF THE BASIS OF CX POINTS IN THE DIRECTION OF x AND IS 

4 = \iiva12u' 

= f i s 

W H E N k > 2 THE SECOND BASIS VECTOR DIRECTION IN IS 

IN THIS WAY, WE FIND THE GENERAL BASIS DIRECTIONS OF TO BE 

AND THE M A X I M U M VALUE OF N IS /C. IN THIS NOTATION U IS THE UNITARY SIMILARITY TRANS-

FORMATION WHICH DIAGONALIZES S TO A ^ , THAT IS, IT IS THE TRANSFORMATION WHICH ROTATES 

THE VECTOR S AROUND THE VECTOR SPACE, WITH BASIS VECTORS GIVEN BY THE NORMALIZED A ' S , 

ONTO THE VECTOR AI2 WHICH, IN THE WEYL REPRESENTATION, IS A DIAGONAL VECTOR. 

2.6 Matrix invariants and variables found in the La-

grangian. 

IN THE PREVIOUS SECTIONS WE SAW HOW TO EXPONENTIATE S O M E VECTORS. IT IS NOW IMPORTANT 

TO BRING WHAT WE HAVE LEARNED INTO LINE WITH THE LANGUAGE FOUND IN THE LITERATURE; SEE 
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FOR EXAMPLE [ 1 3 , 1 7 , 1 9 , 1 6 ] . W E REFER TO VECTORS, N x N TRACELESS HERMITIAN MATRICES, 

WITH {N — 1 ) different EIGENVALUES AS BEING Generic. T H U S , IN CONTRAST, ^^-VECTORS ARE 

OBVIOUSLY NON-GENERIC. W H E N WE COME TO EXPONENTIATE VECTORS, x, IN THE FOLLOWING 

CHAPTERS WE WILL FIRST REWRITE THEM IN TERMS OF THE BASIS VECTORS OF CX WHICH WE HAVE 

STUDIED, AND THEN USE THE EXPONENTIALS WE HAVE FOUND. FOR EXAMPLE, IF A VECTOR WE 

NEED TO EXPONENTIATE IS PROPORTIONAL TO AN R-VECTOR THEN WE JUST HAVE THE RESULT GIVEN 

BY EQUATION ( 2 . 2 5 ) . HOWEVER IF, FOR EXAMPLE, x MAY BE WRITTEN AS THE LINEAR SUM OF TWO 

COMMUTING R-VECTORS 

X = ar(i)+6r(2) 

THEN TO EXPONENTIATE THIS VECTOR WE NEED TO CALCULATE 

T H E IMPORTANT POINT IS THAT GENERIC group VECTORS, THE VECTORS WHOSE EXPONENTIALS ARE 

GROUP ELEMENTS, ARE DESCRIBED BY A LINEAR S U M OF all THE BASIS VECTORS OF C^. T H U S , FOR A 

RANK k GROUP, THE GROUP VECTOR WILL CONTAIN k VARIABLES IN ITS DESCRIPTION. A DISCUSSION 

OF THE 2 AND 3-DIMENSIONAL Cart an SUBSPACES IN AND IS GIVEN IN A P P E N D I X A . 

HOWEVER, THERE DO EXIST GENERIC VECTORS WHICH MAY BE DESCRIBED BY FEWER VARIABLES THAN 

ONE WOULD EXPECT. T O TAKE AT = 4 a s a n EXAMPLE, THE GENERIC GROUP VECTOR MAY BE 

WRITTEN 

X = ar -\-bqr + crx_ 

AND THIS VECTOR OBEYS THE CHARACTERISTIC EQUATION 

- 7 2 (2;) - 7 3 (2;) A; - 7 4 (A;) 1[4] = 0 

WHERE NONE OF THE MATRIX INVARIANTS, THE %(x), ARE ZERO. S O , IN THIS CASE, SINCE SU{4) 

IS A RANK 3 GROUP THERE ARE 3 INDEPENDENT MATRIX INVARIANTS WHICH IS REFLECTED BY THE 
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USE OF 3 VARIABLES IN THE DESCRIPTION OF x. T H E EXPONENTIAL OF THIS VECTOR, AS SHOWN IN 

A P P E N D I X A , IS A GENERAL SU{A) GROUP ELEMENT. IN CONTRAST THOUGH, WE MAY ALSO HAVE 

THE DIAGONAL GENERIC VECTOR 

/ a 0 0 0 \ 

0 - a 0 0 

0 0 6 0 

\ 0 0 0 -b J 

= o r 3 + 6r3_L 

HOWEVER THIS MATRIX OBEYS 

— 72 (^) 3;̂  — 74 (^) 1[4] = 0 

THERE ARE 2 INDEPENDENT MATRIX INVARIANTS IN THIS CHARACTERISTIC EQUATION; WHICH IS 

REFLECTED BY THE USE OF ONLY 2 VARIABLES IN THE DESCRIPTION OF x\ NOT 3 AS WE WOULD 

NAIVELY EXPECT FOR A GENERIC VECTOR. T H I S VECTOR M A Y B E USED FOR TWO M A I N PURPOSES. 

IN A P P E N D I X C WE SHOW THAT IF THIS VECTOR IS ROTATED TO 

X = ar + HT±^ 

WITH r = n^L}. AND RJ. = A * THEN WE MAY EXPONENTIATE IT TO FORM A GENERAL SUi{2) ® 

SUR{2) ~ SO{A) GROUP ELEMENT; SO IN THIS RESPECT IT IS A GENERIC GROUP VECTOR. WHEREAS 

IN CHAPTER 5 WE WILL USE THIS RELATION TO DESCRIBE THE COSET VECTORS OF THE S O { M - 2 ^ S O { 2 ) 

COSETS (WITH M = 4 , 5 , 6 ) . T H U S , WE MAKE THE FOLLOWING STATEMENT REGARDING THE FORM 

OF LAGRANGIANS FOUND IN THIS THESIS. 

• T H E COSET REPRESENTATIVE ELEMENT, L = IS USED TO CONSTRUCT VARIOUS OBJECTS 

LIKE THE GOLDSTONE FIELD COVARIANT DERIVATIVE A ^ , THE MATTER FIELD SPINOR AND 

THE METRIC CONNECTION FOR THE MATTER FIELD COVARIANT DERIVATIVE I N TURN WE USE 

THESE QUANTITIES TO BUILD THE EFFECTIVE LAGRANGIAN DENSITY FOR THE THEORY. FOR THIS 

REASON, IT MUST BE TRUE THAT THE EFFECTIVE LAGRANGIAN DENSITY WILL CONTAIN ONLY AS 

MANY VARIABLES AS WAS NEEDED TO DESCRIBE THE COSET VECTOR, x. 
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Chapter 3 

Theories from coset vectors which 

obey xW X = 0. 

W E WILL FIND, FOR ALL OF THE THEORIES PRESENTED IN THIS CHAPTER, THAT THE COSET VECTOR, x, 

SATISFIES A; V X = 0 . T H I S IS EQUIVALENT TO SAYING THAT x SQUARES TO THE IDENTITY ELEMENT 

MULTIPLIED BY A CONSTANT TERM. IT IS FOR THIS REASON ALONE THAT THE DIFFERENT THEORIES HAVE 

RESULTS WHICH ARE EXPRESSED IN A SIMILAR WAY. T H I S IS ALSO A VERY SPECIAL RESULT SINCE WE 

MAY PERFORM ALL THE CALCULATIONS USING THE GENERATORS DIRECTLY; THE MORE SOPHISTICATED 

TECHNIQUE OF UNDERSTANDING THE CARTAN SUBSPACE ASSOCIATED WITH x, DENOTED CX, BY 

SOLVING x's CHARACTERISTIC (EIGENVALUE) EQUATION IS NOT NECESSARY. 

3.1 The SU{2) breaking to C/(l) model . 

T H E GROUP SU{2) AND THE COSET INTRODUCE, ALBEIT IN A RATHER OVERSIMPLIFIED FASHION, 

MANY OF THE IDEAS REQUIRED TO CALCULATE EFFECTIVE LAGRANGIANS. T H E GROUPS SU{2) AND 

U ( l ) ARE OF RANK 1 , WHICH GEOMETRICALLY MEANS THAT WE CAN ONLY DEFINE ONE TYPE OF 

VECTOR, THE R-VECTOR, IN THE VECTOR SPACE, WITH THE PAULI MATRIX BASIS. T H E CARTAN 
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SUBSPACE ASSOCIATED WITH A VECTOR, CX, LIES IN THE DIRECTION OF x ONLY. T H U S WE DO NOT 

MEET vectors, AND IN FACT IT IS OBVIOUS, NOT ONLY FROM THE CHARACTERISTIC EQUATION FOR 

2 X 2 TRACELESS, HERMITIAN MATRICES 

- 'y2(a:) 1[2] = 0 

BUT ALSO, EQUIVALENTLY, FROM THE BASIS MATRIX PRODUCT RULE 

ctjctj = 1[2] + icy-fccrfc 

THAT WE DO NOT REALLY HAVE TO UNDERSTAND THE GEOMETRICAL NATURE OF AT ALL IN ORDER 

FOR US TO CALCULATE THE REQUIRED PIECES FOR THE LAGRANGIAN. 

3.1.1 The coset representative, L. 

IF WE GENERATE THE SUBGROUP U{1) OF TRANSFORMATIONS USING TG = THEN THE COSET 

VECTOR IS 

X = x'^Oa 

_ 
2 

T H I S SQUARES TO 

= zfa" 1[2] 

SO THE NORM OF x IS 

(a;,%) = 72(2) 

2=3* 

= 
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WHICH IS JUST A NUMBER. SO IF WE DEFINE THEN WE COULD HAVE WRITTEN FOR x 

= ^ 

= 

WHERE N°'(JA = R IS A (UNIT) R-VECTOR WHICH IS SCALED BY THE LENGTH OF X, WHICH IS W E 

CALL THE QUANTITY RFCA AN R VECTOR EVEN THOUGH, FOR IV = 2 , WE CAN ONLY DEFINE ONE TYPE 

OF VECTOR; BECAUSE OF THE CHARACTERISTIC EQUATION. NEVERTHELESS, SINCE = I P ] WE MUST 

HAVE = r AND THIS IS HOW R-VECTORS ARE DEFINED IN [ 1 7 ] FOR T H U S THE COSET VECTOR, 

X, SQUARES AND CUBES TO 

X = [2] 

AND SO, USING EQUATION ( 2 . 2 6 ) , THE COSET REPRESENTATIVE ELEMENT IS 

= C O S | 1[2] - i S I N | R ( 3 . 1 ) 

WITH r = N®O"A. T H I S AGREES, AS IT SHOULD, WITH EQUATION ( 2 . 3 3 ) WITH O; = | AND S = r. 

3.1.2 Goldstone boson transformations. 

SINCE THE PHYSICAL THEORY DEALS WITH THE TRANSFORMATION OF THE COSET REPRESENTATIVE, 

TO FIRST ORDER IN THE TRANSFORMATION PARAMETERS, BY AN ELEMENT OF THE SUBGROUP ON ITS 

OWN, AND BY AN ELEMENT OF THE COSET ITSELF, WE WILL DIVIDE THIS PART INTO TWO SECTIONS. 

T H E PHYSICAL THEORY IS STRUCTURED IN THIS WAY BECAUSE FOR MORE COMPLICATED MODELS OF 

SYMMETRY BREAKING WE WILL ONLY FIND THE KILLING VECTORS WHICH DESCRIBE THE TRANSFOR-

MATION OF THE GOLDSTONE BOSONS TO FIRST ORDER IN THE TRANSFORMATION PARAMETERS; WE DO 
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NOT LOOK AT THE TRANSFORMATION TO ALL ORDERS. HOWEVER IN THIS CASE, SINCE WE ARE DEALING 

WITH SU{2) BREAKING TO U{1), WE ARE ONLY HAVING TO MANIPULATE PAULI S P I N MATRICES 

TO FIND RESULTS AND THIS IS A SIMPLE EXCERSISE. 

3.1.2a The transformation of L by a subgroup element. 

T H E ( 7 ( 1 ) SUBGROUP ELEMENT, h, ALSO HAS THE SAME FORM 

h = COSF 1[2] - i S INF n^as ( 3 . 2 ) 

WITH = 1. T H E COSET REPRESENTATIVE IS TRANSFORMED BY THIS SUBGROUP ELEMENT 

i;' = 

= COSF 1[2] — i SINF h {rfaa) 

T H E SECOND TERM CONTAINS THE TRANSFORMED, OR ROTATED, R-VECTOR 

h {n°'aa) h~^ = n"' (COSF I P ] - i S INF n^a^) (Ja ( C O S F 1[2] + i S INF n^a^) 

= (COS^F CTq + i S INF COSF [aa, ERA] + S IN^F CXSFAO'S) 

= (cose - sine 60%) cr,, 

SINCE H{N°'AA)H^^ = RF^'CA WE SEE THAT, AFTER WE RELABEL INDICES, WE HAVE 

n/"' := (ccNse - sine 63*6) nf (3.31) 

WHICH IS AN SO {2) ROTATION IN THE 1 - 2 PLANE (ABOUT THE 3^"^ AXIS) OF THE COORDINATES, 

W E HAVE THIS FORM BECAUSE THE ADJOINT REPRESENTATION OF SU{2) IS HOMOMORPHIC 

TO 5 0 ( 3 ) , WHICH IMPLIES THAT THE ADJOINT REPRESENTATION OF THE U ( l ) TRANSFORMATION IS 

HOMOMORPHIC TO AN SO (2) TRANSFORMATION. 
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IF WE NOW WRITE EQUATION ( 3 . 3 ) TO FIRST ORDER IN THE TRANSFORMATION PARAMETER, 6 , THEN 

WE FIND 

m ab ©^sah) ̂  

OR, IN TERMS OF THE GOLDSTONE BOSONS 

= a t ' - e g a o b m ' ' 

IF WE COMPARE THIS WITH EQUATION ( 1 . 1 3 ) , WHICH GIVES THE KILLING VECTOR COMPONENTS OF 

THE TRANSFORMATION, THEN WE HAVE 

= ( f . 6 - m ( 7 ^ ) ^ ) m » 

WITH ( 3 3 ) 0 6 = —iesab- IN THIS CASE WE HAVE THE SUBGROUP INDEX E = 3, WHICH IMPLIES 

THAT WE HAVE ONE SUBGROUP PARAMETER 9^ = Q . SO THE LINEAR KILLING VECTOR COMPONENTS 

ARE 

kg = 

== cosbjtf* (3^1) 

T H I S IS A RESULT WHICH WE WILL CONFIRM LATER ON. 

3.1.2b The transformation of L by a coset element. 

IN THIS PART WE WILL BE USING IN OUR CALCULATION SINCE THIS IS HOW WE FIND THE NONLINEAR 

KILLING VECTOR COMPONENTS IN THE REST OF THE THESIS. T H I S METHOD WILL NOT BE REPEATED 

ANYWHERE ELSE, ALTHOUGH IN PRINCIPLE IT COULD BE SINCE WE HAVE DEVELOPED A METHOD OF 

CALCULATING COSET ELEMENTS TO ALL ORDERS. W E PROCEED BY WRITING THE COSET REPRESENTATIVE 
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AND COSET TRANSFORMATION ELEMENTS 

= C O S ^ 1[2] — 2SIN(6 R 

C = COSF 1[2] - I S I N F I 

WHERE R = rf'aa WITH = 1 , AND t = f^aa WITH tH"- = 1 . S O 

= (COSF 1 [ 2 ] - « S I N F t) L"^ (COSF L[2]+i S I N F t) 

= - ^ S I N E - S I N ^ F ^ 

W E CALCULATE 

= 2cos(j) t - ism(j) {r,t} 

— 2coS(j) t — 2ism.(j) {r,t) Ip] 

t{L'^,t} = 2cos^ 1[2] - 2isin<?i {r,t) t 

AND THEREFORE WE FIND 

{L')^ = —2s inr + cos^ — i s i n ( r , () (c^ — Ip]) t 

W E FIND THE CHANGE IN THE COSET REPRESENTATIVE, SL"^ = { L ' Y — L ^ , IS 

SL'̂  = [COS (6 (COS 8 — 1) — sin<^ (r, t) sin8 ] Ip] 

—% [COS (6 SIN 6 + S I N ^ (r, () (cos 8 — 1 ) ] t 

F R O M THE PHYSICAL THEORY WE KNOW THAT SL"^ TO FIRST ORDER IN 6 IS EQUAL TO 

THEREFORE TO FIRST ORDER IN 9 THIS QUANTITY IS 

SL"^ = — SINI?I n°'9°' I P ] — icos4> 0°'aa ( 3 . 5 ) 
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W E NOW CALCULATE FIRSTLY WE HAVE 

= -8ill,^^,al[2]-2c08(6<^,ar-i8ill9&ro 

AND SINCE R_A = ^ {5AT - RFN^) ÔB THEN WE FIND : -

= - sin <;& 1[2] - 2 cos (6 r - '̂'Kgcic 

IF WE COMPARE THIS WITH EQUATION ( 3 . 5 ) THEN WE SEE THAT ^ , A K J = N^, AND SO COMPARING 

THIS RESULT WITH THE EXPRESSION FOR WE FIND : -

COS (f) 9°'aa = COS (f) n^O^rf'aa + {5ac - n°"rf) O^Klac 

WHICH IS SIMPLE TO REARRANGE AND THEN ISOLATE K g BECAUSE M ^ K g = ^ n^- W e THEREFORE 

FIND : -

== jktcot^ 03 6) 

T H I S RESULT WILL CONFIRMED IN THE NEXT SECTION. 

3.1.3 Analysis to first order using Killing vectors. 

T H I S SECTION CONTAINS THE USUAL METHODS WHICH WILL B E EMPLOYED THROUGHOUT THE REST 

OF THE THESIS TO FIND THE KILLING VECTOR COMPONENTS. 

3.1.3a The linear Killing vector components, Kg. 

T O FIND THE LINEAR K G COMPONENTS WE MUST SOLVE 

[az,L] = 2 i l a k g 

FIRSTLY, WE HAVE FOR L 

L = COSF 1[2] - i SIN|n°cro 
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THEREFORE, FOR THE LEFT HAND SIDE, WE FIND 

[03,1] == (3t0 

W H E N WE DIFFERENTIATE L WITH RESPECT TO THE GOLDSTONE FIELDS WE FIND 

SO THE RIGHT HAND SIDE IS 

2% = - 2 sin^ Ip] + cos^ + 2 sin^ (3-8) 

SO COMPARING THE TWO SIDES, EQUATIONS ( 3 . 7 ) AND ( 3 . 8 ) , WE SEE THAT = 0 AND 

THEREFORE 

= ^ (f w - n v ) kg 

= 

SO WE HAVE FOUND THE LINEAR K G TO BE 

PC; = (3.91) 

WHICH IS PRECISELY EQUATION ( 3 . 4 ) WHICH WE FOUND EARLIER. 

3.1.3b The nonlinear Killing vector components, Kg. 

T H I S TIME, TO FIND THE NONLINEAR K G COMPONENTS WE M U S T SOLVE 

{ ( T J . I ' } = 2 I £ F „ K ; 

FIRSTLY, WE HAVE FOR LF' 

L?' = cos^ 1[2] — i sin<^ 
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THEREFORE, FOR THE LEFT HAND SIDE, WE FIND 

{ C R 6 , L ^ } = 2 C O S — 2Z SIN(6 I P ] ( 3 . 1 0 ) 

W H E N WE DIFFERENTIATE LF' WITH RESPECT TO THE GOLDSTONE FIELDS WE FIND 

— sin <;6 1 [2] - i COS - 2 Sin 

SO THE RIGHT HAND SIDE IS 

2i = - 2 i SIN CJ) I P ] + 2 COS (6 ^^GKLRFAC + 2 SIN M^KGCTC ( 3 . 1 1 ) 

SO COMPARING THE TWO SIDES, EQUATIONS ( 3 . 1 0 ) AND ( 3 . 1 1 ) , WE SEE THAT AND 

THEREFORE 

COS ^ GB = COS (J) N^RFAC + SIN ^ 

REMOVING THE BASIS WE HAVE 

COS (j) 5 be = COS 9̂  nJ'rf + SIN ^ 

= COS (F) N̂ RF + SIN (6 ̂  {5ca - rfn°') Kg 

WHICH WE REARRANGE TO FIND 

K J = Mcot(f) (Sab-n'^ri'')+ ^^n°"n'' ( 3 . 1 2 ) 

a(p 

WHICH IS EXACTLY THE RESULT WE FOUND IN EQUATION ( 3 . 6 ) EARLIER. 

3.1.4 Covariant derivatives and the Goldstone boson metric. 

FOR THE COVARIANT DERIVATIVES OF OUR THEORY WE NEED TO CALCULATE 2 I L ~ ^ D ^ L = 

WHERE IS ACTUALLY THE GOLDSTONE BOSON COVARIANT DERIVATIVE, AND IS PROPORTIONAL 

TO THE METRIC CONNECTION FOR THE STANDARD FIELD COVARIANT DERIVATIVE. 

7 5 



W E HAVE FOR THE COSET REPRESENTATIVE 

L = C O S | 1[2] - 2 S I N | R 

WHERE R = N°'CRA- W E FIND 

1 1 
a,;!, = - - sin^ " 2 ^ ^ 

THEREFORE WE FIND : -

1 i 
L'^d^L = - - S INF COSF 1[2] - - COS^F rd^(j) - i S I N F COSF d^r 

i 1 
- - s i n ^ ^ + -s in^ cos^ 

SINCE = I P ] WE FIND : -

^ sin 

2iL~^dfj,L = (rdfj,(j) + sin (I) d^r)+ 2ism'^^rdfj,r ( 3 . 1 3 ) 

= ttfi + Vfi 

THEREFORE, USING THE RESULTS IN A P P E N D I X D , WE HAVE THE COVARIANT DERIVATIVES : -

+ ( ^ ) J ( 3 . 1 4 ) 

= | S „ + J J ^ S M ^ | A F ° A ^ A F ' E . J 3 < R 3 | ? S ( 3 . 1 5 ) 

FOR THE GOLDSTONE BOSON PART OF THE EFFECTIVE LAGRANGIAN, AND THE METRIC FOR THE 

GOLDSTONE BOSON MANIFOLD, WE REFER TO EQUATION ( 1 . 3 2 ) A N D CONSTRUCT : -

dpo'' = + sin,^ + sin^,^ 

= R ^ ( 9 ^ ^ ) (d'^cj)) + SIN ^ {d^(f))d^r^ + SIN^$I. ( 9 ^ R ) (d^r) 

SINCE = I P ] WE HAVE ; -

= (a^<^)(a^^)l[2]+8in^<6(9^r)(8^r) 
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THEREFORE WE CAN SEE 

= + sin (6 (8̂ 71°) (8̂ 71'*) 

AGAIN, USING THE RESULTS IN APPENDIX D , WE HAVE :-

m'') + j 

WHERE WE MAY NOW IDENTIFY THE GOLDSTONE BOSON MANIFOLD METRIC AS : -

to = + (3ig) 

T H I S , FROM [14 ] , IS THE METRIC OF A KAHLER MANIFOLD; IT IS DENOTED S"^. THEREFORE IT IS 

POSSIBLE TO EXTEND THIS MODEL TO INCLUDE J \ f = 1 SUPERSYMMETY. 

3.1.4a Verifying the metric result. 

W E MAY CONSTRUCT THE METRIC ASSOCIATED WITH THE GOLDSTONE BOSON MANIFOLD FROM 

to = (KSK| + KJK»)-' (3.17) 

T O EASILY INVERT THE RIGHT HAND SIDE WE NEED IT TO BE WRITTEN IN TERMS OF ADJOINT REPRE-

SENTATION PROJECTION OPERATORS; AND IN THIS CASE THIS IS EXACTLY WHAT WE HAVE. T H E FORM 

OF THESE PROJECTION OPERATORS IS DISCUSSED IN A P P E N D I X B , SECTION B 3 . 1 , ON PAGE 1 7 1 . 

W E HAVE 
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NOTICE THAT, IN TERMS OF ADJOINT OPERATORS, WE COULD HAVE JUST WRITTEN 

k ? k | = - m ' ( a ) „ 3 (/,)s4 
= 

= M'(lm-r><r)^ 

=> (5ab - n""n^) 

AND TO PUT THIS EXPLICITLY INTO ADJOINT PROJECTION OPERATOR TERMS WE WOULD USE 

(l[3])a6 = + + 

WHERE {'P^)ab = {r><r)ab = rfn''. FOR THE SECOND TERM WE HAVE 

d ( j ) 
K G K G = ( M COT (J) (SAC - N°"N'^) + COT (F) (6BE - N^'RF) + 

2 

cot̂ <^ {5ab - n°"n^) + ' ^ ^ n n 

T H I S WAS A SIMPLE STEP SINCE (JA6 — = 0 , OR I N TERMS OF THE ADJOINT PROJECTION 

OPERATORS THIS IS + V'^^)ABV^C = 0- THEREFORE WE FIND 

WHICH WE MAY SIMPLY INVERT TO FIND 

+ nfm* (&18) 

T H I S IS EXACTLY THE RESULT OF EQUATION ( 3 . 1 6 ) , WHICH WE FOUND IN THE LAST SECTION. 

3.2 The SO{m) breaking to SO(m — 1) models. 

3.2.1 The coset representative, L. 

THESE MODELS USE THE COSET REPRESENTATIVE FOR THE COSETS. T H E CALCULATIONS 

IN THIS SECTION WILL RESPECT COVARIANT AND CONTRAVARIANT INDICES; EVEN THOUGH, FOR THE 
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SPACES CONSIDERED HERE, IT IS NOT STRICTLY NECESSARY. HOWEVER, IF WE ARE RIGOROUS HERE WE 

WILL BE ABLE TO USE THE RESULTING STRUCTURE IN THE NEXT SECTION, WITH ONLY A FEW MINOR 

MODIFICATIONS. FOR THE CLIFFORD ALGEBRA WE WILL USE 

{7^,73} = 2^v4bl[2*] 

AND WE CAN THEN REINSTATE qab = Sab FOR THESE ORTHOGONAL GROUP MODELS AT THE END 

OF THE CALCULATIONS. T H E SIGMA MATRICES FOR SO{m), I N THE WEYL REPRESENTATION ARE 

DEFINED 

WHERE A,B = 1 , 2 , . . . , M . IF WE GENERATE THE SUBGROUP SO{m — 1 ) USING THE OAB THEN 

THE COSET VECTOR WE NEED IS 

a; = 

WHERE a = 1 , 2 , . . . , ( M — 1 ) AND A = M . SO IF WE WRITE x = Qn°'^aaA THEN THE SQUARE 

OF THIS IS 

— ^ 1 [2̂ ] 

T H U S X = QS AND A; V X = 0 . S O THE COSET REPRESENTATIVE ELEMENT, L , MAY BE WRITTEN 

L = COSO L[2FC] — I S I N F I S 

= COSFI L[2/B] - I S I N O N°^(TAA ( 3 . 1 9 ) 

AS EXPECTED FROM EQUATION ( 2 . 3 3 ) . IN TERRAS OF AN S U { N ) DESCRIPTION WE HAVE 

• FOR M = A = 3 WE HAVE k = 1, AND N°'^AAA IS AN r VECTOR, 

• FOR M = A = 4 , 5 WE HAVE k = 2, AND n°'^aaA IS PROPORTIONAL TO A VECTOR, AND 
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• FOR M = A = 6 WE HAVE k = 3. HOWEVER, SINCE THE 5 0 ( 6 ) , WEYL REPRESENTATION, 

GENERATORS ARE IN BLOCK DIAGONAL 4 © 4 FORM, WE JUST WORK WITH THE TOP LEFT ENTRIES 

WHICH GENERATE TRANSFORMATIONS ON THE LEFT HANDED SPINOR. T H U S THE N^'^CR^A 

WHICH WE USE IS A 4 X 4 MATRIX AND IS PROPORTIONAL TO A QR VECTOR. 

FOR SO{m) BREAKING TO SO(m — 1 ) WE NOTE THAT only WHEN m IS AN ODD NUMBER DOES 

THE SUBGROUP HAVE THE SAME RANK AS THE GROUP; WHEN m IS EVEN THE SUBGROUP HAS A 

RANK WHICH IS ONE LESS THAN THE GROUP. IN A P P E N D I X C , FROM PAGE 1 9 1 , WE DISCUSS 

THE CONSTRUCTION OF THE GENERATORS, AND LIE ALGEBRAS, OF SO{m) GROUPS IN THE WEYL 

REPRESENTATION. IN THIS SCHEME m MAY TAKE ON THE TWO VALUES m = (2A:), {2k + 1 ) 

WITH & > 1 . SINCE IT IS THE ODD M , I .E. m = {2k + 1 ) , G A M M A MATRICES WHICH ARE 

INITIALLY DEFINED AND USED TO CONSTRUCT GENERATORS FOR SO {2k + 1 ) WE FIND THAT THE 

GENERATORS OF S0{2k) ARE DEFINED AS A SUBSET OF THE GENERATORS OF S0{2k + 1 ) IN THE 

WEYL REPRESENTATION. SINCE THE GENERATORS OF SO{2k) ARE IN A BLOCK DIAGONAL FORM THE 

LAST G A M M A MATRIX, 7 2 ^ + 1 , IS USED TO CONSTRUCT A PROJECTION OPERATOR WHICH WILL NOT 

ONLY PROJECT OUT THE LEFT AND RIGHT HANDED SPINORS, BUT ALSO THE LEFT AND RIGHT HANDED 

GENERATORS. W E HAVE USED THIS NOTATION {m = {2k), {2k + 1 ) ) BECAUSE THE INTEGER k is 

THE RANK OF THE GROUP. THEREFORE, TO GIVE TWO EXAMPLES, WE SEE 

1 . IF M = 5 , WHICH IMPLIES k = 2, we ARE CONSIDERING THE SPONTANEOUS BREAKING OF 

AN 5 0 ( 5 ) SYMMETRY DOWN TO AN 5 0 ( 4 ) SYMMETRY. W E IMMEDIATELY UNDERSTAND 

FROM THE CONSTRUCTION THAT BOTH 5 0 ( 5 ) AND 5 0 ( 4 ) ARE GROUPS OF RANK 2 , WHEREAS 

2 . IF M = 6 , WHICH IMPLIES A: = 3 , WE ARE CONSIDERING THE SPONTANEOUS BREAKING OF 

AN 5 0 ( 6 ) SYMMETRY DOWN TO AN 5 0 ( 5 ) SYMMETRY. HOWEVER, IN THIS CASE, THE 

GENERATORS OF 5 0 ( 6 ) ARE VIEWED AS BEING A SUBSET OF THE GENERATORS OF 5 0 ( 7 ) ; AND 

BOTH 5 0 ( 6 ) AND 5 0 ( 7 ) ARE RANK 3 GROUPS. B U T , AS WE HAVE SEEN, 5 0 ( 5 ) IS A RANK 

2 GROUP. 
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3.2.2 Goldstone boson transformations. 

3.2.2a The linear Killing vector components, 

T O FIND THE LINEAR COMPONENTS WE MUST SOLVE 

= 2 i l , „ a k ; f 

T H E COSET REPRESENTATIVE AND ITS DERIVATIVE WITH RESPECT TO THE GOLDSTONE FIELDS ARE 

L = COSFI 1[2A] — I S I N O 

L,AA = - SIN O 1 [2*] - % COS N - i SLN FI 

FOR THE LEFT HAND SIDE WE HAVE 

[(76c, = -2 sin n 7%°̂  [(7k:, (7(1̂ ] 

IT IS AT THIS POINT THAT OUR RESULTS IN THE NEXT SECTION, FOR THE 5 0 ( 1 , M — 1 ) BREAKING TO 

5 ( 9 ( 1 , M — 2 ) MODELS, WILL DIFFER IN SIGN ONLY FROM THE FORM WE WILL FIND HERE. FOR THE 

SO{m) BREAKING TO SO{m - 1 ) MODELS, THIS COMMUTATOR IS 

[(^bc} ÔA] — 2? i^Qab'^cA 9ac^bA) 

WITH Qab = Sab-

IF WE NOW EQUATE THE LEFT AND RIGHT HAND SIDES OF OUR RELATION TO BE SOLVED WE FIND 

SINFI igabCTcA - Qacf^bA) = S I N O 0 , O A K G ^ IPFC] + COS n Q-,AA'K.lf'n^^adA 

4k suan 

WHICH AUTOMATICALLY IMPLIES = 0 . IF WE SUBSTITUTE THIS INTO THE ABOVE WE 

HAVE 

(9a6cra& - - = = 
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SINCE TRAAACRTA = ^'^QABQAA WE MAY REMOVE THE S I G M A MATRICES TO FIND 

DA TYAA, 
'^bAdce '^cAQbe — ^,aA^6c 9de9AA 

= ~ n^^UaA) gde9AA^b^ 

T H E SECOND TERM ON THE RIGHT HAND SIDE IS ZERO SO WE HAVE : -

Mf)A9ce ^cA9be ~ ^eA aA^bc 

I F WE ACT ON THIS WITH THEN WE FIND THE SOLUTION : -

== .Afa'&a? - (s.sio) 

FOR M = A = 3 WE MAY FURTHER REFINE THIS RESULT. I N DOING SO WE WILL SHOW, MORE 

EXPLICITLY, THE HOMORAORPHISM BETWEEN THESE LINEAR KILLING VECTOR COMPONENTS, AND THE 

ONES WE FOUND IN THE SU{2) BREAKING TO U{1) CALCULATION IN THE LAST SECTION. W E M A Y 

WRITE 

]k:%? = jtfasd: -

3 

THEREFORE WE FIND 

63 — ^aSbM 

BECAUSE THERE IS NO DISTINCTION BETWEEN UPPER AND LOWER INDICES. T H I S IS OBVIOUSLY 

SIMILAR TO EQUATION ( 3 . 9 ) . 
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3.2.2b The nonlinear Killing vector components, 

T O FIND THE NONLINEAR COMPONENTS WE MUST SOLVE 

= 2'Ll^Ktt 

T H I S TIME WE FIND THE RELATION 

COS 2FI (76A - I SIN 2 0 UTA 1[2&] = SIN R F ^ K ^ ^ A C A + 2 COS 2 0 O.AAKJ^N'^^CTCA 

—2ZSIN2FL I P T ] 

WHICH IMPLIES 2 0 _ q a K j ^ = N^A- W H E N WE SUBSTITUTE THIS IN WE FIND 

cos 2fi (jfta = cos 2fi ubarf^c^ca + sin 20 rfaa^ba^^ca 

R E M O V I N G THE SIGMA MATRICES AND SUBSTITUTING IN FOR 7 % ^ YIELDS 

cos 20 {̂ qbdqaa ~ ^6a^da) — ^ (j^iadcdqaa a 1^6a ) 

SIN 2 0 / dM \ 
K-dA bA — ITTFSr̂ iÂ dA I 

THEREFORE WE MAY NOW REARRANGE THIS TO FIND THE SOLUTION 

K q A bA — A F COT 2 0 {(jabdAA J^AA^FTA) ~L~ ( 3 . 2 1 ) 

WHERE, FOR THESE MODELS, GAB = SAB-

3.2.3 Covariant derivatives and the Goldstone boson metric. 

T O FIND THE COVARIANT DERIVATIVES FOR THE GOLDSTONE BOSONS AND THE STANDARD FIELDS OF 

THE THEORY WE MUST FIND 
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WHERE IS THE COVARIANT DERIVATIVE FOR THE GOLDSTONE FIELDS, AND IS THE METRIC 

CONNECTION IN THE COVARIANT DERIVATIVE FOR THE STANDARD FIELDS OF THE THEORY. NOW 

L~^ = COSO L[2FC]+ISINFI S 

d^L = — S I N 1 PT] — iCOSO Sd^Q, — isiuQ, dfj,S 

WHERE S = AND S"^ = I P ^ ] . BECAUSE OF THE FORM OF S, CALCULATING 2iL~^d^L 

IS JUST AS SIMPLE AS IN THE SU{2) BREAKING TO U ( l ) MODEL. W E FIND 

2IL~^DFJ_L = 2SDFI,IL + SIN 2 0 D ^ S + SIN^FI S D ^ S 

THEREFORE WE HAVE 

.FJ, — 2 5 5 ^ 0 + SIN 2 0 9 ^ 5 ( 3 . 2 2 ) 

V N — 2ZSIN^Q SDF^S ( 3 . 2 3 ) 

USING APPENDIX D , WE FIND THE EXPLICIT FORMS FOR THE COVARIANT DERIVATIVES TO BE 

V ^ M " " = + ( ^ ) J 8 , ^ ' ^ ( 3 . 2 4 ) 

+-^sm'n gAA^cbl (3.25) 

T O FIND THE METRIC FOR THE GOLDSTONE BOSON MANIFOLD w e MUST NOW EVALUATE 

WHICH WE SIMPLY FIND 

= {2N°'^D^FL + SIN 2 0 {2NAAD''FL + SIN 2 0 D^UAA) 

= Adf̂ O.d'̂ Q, + sm'̂ 2Q df̂ n°'̂ d'̂ naA (3.26) 

USING APPENDIX D WE FIND THAT THIS IS 

S I N ^ 2 0 , . / d 2 Q \ 
2 

(qabsaa — ^oa'^sa) + ( , , , i ^aa'^fta ^ 2 

AND WE HAVE AS OUR GOLDSTONE BOSON MANIFOLD METRIC 

(3.27) 

6a 
S I N ^ 2 0 f d2Q \ 

{gabdAA — MaÂ 6A) + f j ^aA^SA (3.28) 
m2 
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WHERE, FOR THESE MODELS, QAT = SAB-

W E NOTE THAT only FOR M = A = 3 AND a,h = 1 , 2 IS THIS, FROM [14] , THE METRIC OF 

A KAHLER MANIFOLD. THAT IS, only THE MODEL ARISING FROM THE SPONTANEOUS BREAKING OF 

AN 5 0 ( 3 ) SYMMETRY DOWN TO AN 5 0 ( 2 ) SYMMETRY WILL YIELD A KAHLER GOLDSTONE BOSON 

MANIFOLD METRIC; IMPLYING THAT ONLY THIS MODEL CAN B E EXTENDED TO INCLUDE J V = 1 

SUPERSYMMETRY. 

3.2.3a Verifying the metric result. 

IT IS NOW POSSIBLE FOR US TO CHECK THE FORM OF THE GOLDSTONE BOSON MANIFOLD METRIC 

RESULT USING THE KILLING VECTOR COMPONENTS. W E FIRSTLY NEED TO FIND 

= ( m / f g -

SECONDLY WE NEED 

= m^cot^2fi 

T H E INVERSE OF THE GOLDSTONE BOSON MANIFOLD METRIC IS GIVEN BY 

(^«a6a)- ' = 

T H I S IS OBVIOUSLY THE INVERSE OF EQUATION ( 3 . 2 8 ) . 
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3.3 The 50(1, m — 1) breaking to 50(1, m —2) models. 

3.3.1 The coset representative, L. 

THESE MODELS USE THE COSET REPRESENTATIVE FOR THE COSETS. FIRSTLY WE STATE THAT 

THERE IS AN ISOMORPHISM BETWEEN THE GROUPS SOim) and SO(l,m — 1 ) . T H I S MEANS 

THAT THE METHOD AND FORM OF THE RESULTS IN THIS SECTION MIRROR THE METHOD AND FORM 

OF THE RESULTS OF THE LAST. W I T H SUCH SIMILARITIES IT IS IMPORTANT TO REMEMBER THAT THE 

DIFFERENCES BETWEEN THIS SECTION AND THE LAST LIE ENTIRELY IN THE INTERPRETATION OF THE 

MODELS. W E WILL NOW SEE HOW THE MATHEMATICS OF THESE MODELS DIFFERS FROM THE LAST 

section. 

FOR THESE MODELS WE USE MODIFIED SO{m) G A M M A MATRICES WHICH NOW HAVE THE CLIFFORD 

Eilgebra 

{f^, f j ,} = 1[2*] 

WHERE AND YU, I/ = 0 , 1 , 2 , . . . , ( M — 2 ) , M . T H E MATRIX r], USED TO RAISE AND LOWER 

INDICES, IS DEFINED IN A P P E N D I X C , ON PAGE 1 9 6 . T H E S I G M A MATRICES FOR 5 0 ( 1 , M — 1 ) , 

IN THE WEYL REPRESENTATION ARE DEFINED 

= + 2 [fp, r j 

WITH /j.jU = 0,1,2,... ,(m — 2),m. I F WE GENERATE THE SUBGROUP SO{l,m — 2 ) USING 

T,A0, WITH A , / ) = 0 , 1 , 2 , . . . , ( M — 2 ) , THEN THE COSET VECTOR WE NEED IS 

z = 

WHERE WE HAVE ALSO INTRODUCED THE LABEL A = m. 
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SO THE SQUARE OF THIS IS 

l[2t] 

+ 0 ^ IPJK] FOR A TIMELIKE 

1[2&] FOR A SPACELIKE 

BECAUSE WE NO LONGER HAVE A POSITIVE DEFINITE METRIC. FOR ALL OUR RESULTS WE WILL USE A 

TIMELIKE UNIT VECTOR DEFINED BY R F ^ U A ^ = + 1 . THEREFORE, BECAUSE z V z = 0 AGAIN, 

THE COSET REPRESENTATIVE ELEMENT, L, HAS THE SAME FORM AS BEFORE 

L = COSFI I P I ] - I S I N O ( 3 . 2 9 ) 

T H U S , NOT ONLY ARE WE ABLE TO USE THE SAME METHOD AS BEFORE BUT IT IS ALSO CLEAR, EVEN 

AT THIS STAGE, THAT THE RESULTS WILL HAVE THE SAME FORM TOO. 

ONCE MORE WE NOTE THAT only WHEN m IS AN ODD N U M B E R DOES THE SUBGROUP HAVE THE 

SAME RANK AS THE GROUP; WHEN m IS EVEN THE SUBGROUP HAS A RANK WHICH IS ONE LESS 

THAN THE GROUP. FOR EXAMPLE 

1 . I f m = 5 w e ARE CONSIDERING THE SPONTANEOUS BREAKING OF AN 5 0 ( 1 , 4 ) SYMMETRY 

DOWN TO AN 5 0 ( 1 , 3 ) SYMMETRY AND 5 0 ( 1 , 4 ) IS OF RANK 2 AND SO IS 5 0 ( 1 , 3 ) , 

WHEREAS 

2 . IF M = 6 WE ARE CONSIDERING THE SPONTANEOUS BREAKING OF AN 5 0 ( 1 , 5 ) SYMMETRY 

DOWN TO AN 5 0 ( 1 , 4 ) SYMMETRY AND 5 0 ( 1 , 5 ) IS A GROUP OF RANK 3 BUT 5 0 ( 1 , 4 ) IS 

OF RANK 2 . 

3.3.2 Goldstone boson transformations. 

3.3.2a The linear Killing vector components, K ^ . 

T O FIND THE LINEAR COMPONENTS WE MUST SOLVE '"(37 

'•(97 
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T H E COSET REPRESENTATIVE AND ITS DERIVATIVE WITH RESPECT TO THE GOLDSTONE FIELDS ARE 

L = COSO L[2FC] - I S I N F I 

~ S I N 0 N 1 [ 2 ^ ] I C O S O ^ S I N O TI^ 

FOR THE LEFT HAND SIDE WE HAVE 

[ 2 ^ , Z,] = - I GIN N E G A ] 

T H I S TIME, FOR THESE 5 0 ( 1 , M — 1 ) BREAKING TO SO{l,m — 2 ) MODELS WE WILL HAVE 

p/37) eq;a] — 2i 

WITH = TJA^. NOTE THE MINUS SIGN WHICH OCCURS FOR THIS COMMUTATOR. IF WE NOW 

EQUATE THE LEFT AND RIGHT HAND SIDES OF OUR RELATION TO B E SOLVED WE FIND 

- sinn (^a(,2ca - ^oce(,a) = -2 81110 o ^ o a k ^ iggt] +008^ n,aak]g^n,'^^efa 

+ 8inn m ^ k ^ e f a 

WHICH AUTOMATICALLY IMPLIES O ^ q a K ^ ^ = 0 . IF WE SUBSTITUTE THIS INTO THE ABOVE WE 

HAVE 

—n°'^ {gaP^'yA — ga-y^PA) = 

SINCE tr E q a E / j a = '^^QapQAA WE MAY REMOVE THE SIGMA MATRICES. W E MULTIPLY BY E ^ a 

AND TRACE THE EXPRESSION TO FIND 

-n 

-- ml7a<%8f) := 

= ^ (<̂ aa ~ n^^^aA) QSeQAA^^'^ 

AGAIN, THE SECOND TERM ON THE RIGHT HAND SIDE IS ZERO SO WE HAVE : -

— {M^AO-ye — Mj/^gpe) = ^eA aA^'^j 
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IF WE ACT ON THIS WITH AND RELABEL, THEN WE FIND THE SOLUTION 

-- (3 :50) 

WHERE WE HAVE CHOSEN TO KEEP THE MINUS SIGN, INTRODUCED BY THE COMMUTATOR, EXPLICIT. 

T H I S DIFFERENCE IS CANCELLED WHEN WE COME TO CALCULATE THE GOLDSTONE BOSON MANIFOLD 

METRIC FOR THESE MODELS. 

3.3.2b The nonlinear Killing vector components, 

T O FIND THE NONLINEAR COMPONENTS WE MUST SOLVE 

T H I S TIME WE FIND THE RELATION 

COS 2(1 — % SIN 2(1 I P T J = —2% SIN 2(1 + SIN2FL ^ ^ A ^ / 8 A ^ 7 A 

2 COS 2 0 

WHICH IMPLIES 20_qaK^a = W H E N WE SUBSTITUTE THIS IN WE FIND 

C O S 2 0 E/3A = C O S 2 0 + S I N 2 0 T Z ^ K ^ ^ S ^ A 

R E M O V I N G THE SIGMA MATRICES AND EXPANDING YIELDS 

C O S 2 0 {GPSGAA — N P A ^ S A ) = — — ( ^ J I A D Y S G A A — ^ i J A ^ o a K ^ a ) 

SIN 2 0 / dM 
= (^k,a 

THEREFORE WE MAY NOW REARRANGE THIS TO FIND THE SOLUTION 

i((ka /3a == jlfccdskl (<?af(?aj\ -- m(,a?t/%l) 4" (3 *31) 

WHERE, FOR THESE MODELS, WE HAVE 
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3.3.3 Covariant derivatives and the Goldstone boson metric. 

T O FIND THE COVARIANT DERIVATIVES FOR THE GOLDSTONE BOSONS AND THE STANDARD FIELDS OF 

THE THEORY WE MUST FIND 2 I L ' ' ^ D ^ , L = WHERE IS THE COVARIANT DERIVATIVE FOR 

THE GOLDSTONE FIELDS, AND V^, IS THE METRIC CONNECTION IN THE COVARIANT DERIVATIVE FOR THE 

STANDARD FIELDS OF THE THEORY. N O W 

L~^ = COSFI I P A ] + 2SINF2 S 

d^L = - SIN N 1 - % cos N Sd^Q. - isinU d^S 

WHERE NOW S = AND, FOR TIMELIKE WE HAVE 5 ^ = I P * ] . A S WE FOUND BEFORE, 

CALCULATING 2iL~^dnL IS JUST AS SIMPLE AS IN THE SU{2) BREAKING TO U{1) MODEL. W E 

FIND 

2 I L ' ' ^ D ^ L = 2SDFJQ, + S I N 9 ^ 5 + 2i SIN^Q S D F I S 

THEREFORE WE HAVE 

= 2 5 5 ^ 0 + SIN 2FI 9 ^ 5 ( 3 . 3 2 ) 

== 0^33) 

USING APPENDIX D , WE FIND THE EXPLICIT FORMS FOR THE COVARIANT DERIVATIVES TO BE 

v ^ m ' ^ = (3.34) 

v f i ' = | s „ - ( 3 . 3 5 ) 

T O FIND THE METRIC FOR THE GOLDSTONE BOSON MANIFOLD W E MUST NOW EVALUATE 

= { 2 R F ^ D ^ Q . + S I N 2 N { 2 N A A D ^ ^ + SIN 2 0 D'^UAA) 

= d^Q + sin^2n d^n^^d^naA 

W E MAY AGAIN USE APPENDIX D TO WRITE THIS EXPLICITLY. W E FIND : 

sin^2n , , /d2Q,^ ^ „Q:a u _ 
"aa — m2 

. , / d a n ) / 
'{9a09AA WaÂ /JA; 4" I I ?̂ aÂ /3A (3.36) 
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AND WE HAVE AS OUR GOLDSTONE BOSON MANIFOLD METRIC 

gaA PA — idaffQAA " ?̂ aÂ /?A) + I j (cJ.dYj 

WHERE, FOR THESE MODELS, GAFF = RJAP-

W E NOTE THAT only FOR M = A = 3 AND a, (3 = 0 , 1 IS THIS, FROM [14] , THE METRIC OF 

A KAHLER MANIFOLD. THAT IS, only THE MODEL ARISING FROM THE SPONTANEOUS BREAKING OF 

AN 5 0 ( 1 , 2 ) SYMMETRY DOWN TO AN 5 0 ( 1 , 1 ) SYMMETRY WILL YIELD A KAHLER GOLDSTONE 

BOSON MANIFOLD METRIC; IMPLYING THAT ONLY THIS MODEL CAN BE EXTENDED TO INCLUDE M = I 

SUPERSYMMETRY. 

3.3.3a Verifying the metric result. 

IT IS NOW POSSIBLE FOR US TO CHECK THE FORM OF THE GOLDSTONE BOSON MANIFOLD METRIC 

RESULT USING THE KILLING VECTOR COMPONENTS. FIRSTLY, SQUARING THE LINEAR KILLING VECTOR 

COMPONENTS, WE FIND 

== a'tg** --

== - -

= 2m^ 

NOTICE THAT THE MINUS SIGN WHICH APPEARED IN THE LINEAR KILLING VECTORS FOR THESE MODELS 

IS OF NO CONSEQUENCE IN THE CALCULATION OF THE GOLDSTONE BOSON MANIFOLD METRIC. 

SECONDLY WE NEED 

c0t^2n 
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T H E INVERSE OF THE GOLDSTONE BOSON MANIFOLD METRIC IS GIVEN BY 

sin''20 

T H I S IS OBVIOUSLY THE INVERSE OF EQUATION ( 3 . 3 7 ) . 
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Chapter 4 

CP2(N-1) models from coset 

vectors of form x = tr. 

4.1 CP 2(N-1) models in Chiral symmetry breaking 

theories. 

IF WE WANTED TO DO CALCULATIONS FOR A CHIRAL SYMMETRY BREAKING MODEL, WHERE SUL{N)® 

SUii(N) INVARIANCE IS BROKEN TO SUv{N), THEN WE WOULD CERTAINLY, FOR N > 3, NEED 

TO USE A METHOD BASED UPON PROJECTION OPERATORS RIGHT FROM THE START; THE DETAILS OF 

THIS METHOD ARE IN [13] . HOWEVER, FOR N = 2, THE FULL SUL{2) ® SUR{2) BREAKING TO 

SUv{2) MODEL MAY EASILY BE STUDIED WITHOUT HAVING TO RESORT TO THIS METHOD AND, 

IN SECTION 4 . 1 . 1 , WE WILL SHOW THAT THE DETAILS OF THIS MODEL ARE CONTAINED IN THE LAST 

CHAPTER. IN THIS CHAPTER WE ARE ONLY GOING TO CONCERN OURSELVES WITH S U { N ) BREAKING 

TO SU{N — 1 ) (8) U{1) BECAUSE THIS IS A FAR SIMPLER PROBLEM TO DEAL WITH AND, AS WE 

WILL NOW SHOW, IT MAY ALSO BE EMBEDDED INTO A FULL CHIRAL SYMMETRY BREAKING MODEL; 

WHERE SUL{N) O SUii{N) INVARIANCE IS BROKEN TO SUyiN). 

SUL{N) ® SUii{N) IS GENERATED BY 2 ( I V ^ — 1 ) GENERATORS, WHICH WE CALL L / AND I ? / , 
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WHERE I = 1 , 2 , . . . ,N'^ — 1. T H E LIE ALGEBRA IS 

[Li,Lj] = ^IJjjkLK 

[Ri,Rj] = 2ifijKRK 

AND BY DEFINITION [Lj, IZJ ] = [ R j , Lj] = 0 V / , J . IF WE NOW FORM LINEAR COMBINATIONS 

OF THESE GENERATORS 

Vi = Lj + Rj 

A.J = LJ — Rf 

THEN IT IS SIMPLE TO SHOW THAT THEY OBEY 

[vr, 

Vj] = ^IJukAK 

T H E FIRST OF THESE COMMUTATION RELATIONS IS THE L I E ALGEBRA FOR AN S U V I N ) , PARITY 

CONSERVING, SUBGROUP. I F WE NOW RESTRICT OUR ATTENTION TO THE SUBSET OF THE V j , NAMELY 

THE VE, WHICH GENERATE A (PARITY CONSERVING) SU{N — 1 ) (G) (7(1) SUBGROUP OF SUv{N), 

THEN THE SUBSET OF THE A j , THE Aa, WHICH ARE PRESENT I N THE LAST TWO COMMUTATORS ARE 

COSET DIRECTIONS. EXPLICITLY 

[VE, VP] = 2ifEFGVG 

= ^ifabsVE 

= '^ifaEbAb 

IN THE LANGUAGE OF [18] WE REFER TO THE SU{N) GROUP, WHICH IS GENERATED BY THE VE AND 

Aa, AS A CHIRAL SU{N) GROUP. T H U S , IN THE FULL THEORY, WHEN WE HAVE SUL{N)<S>SUR{N) 

SYMMETRY BROKEN TO SUv{N) THEN, NECESSARILY, WE ARE ABLE TO FIND AN EMBEDDED MODEL 
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WHERE A CHIRAL S U ( N ) SYMMETRY IS BROKEN TO SU{N — 1 ) (G) { / ( I ) . FOR SIMPLICITY WE 

WORK WITH SU{N) IN THE DEFINING REPRESENTATION, THEREFORE WE MAY EMBED THE WORK 

CONTAINED IN THIS CHAPTER INTO A FULL CHIRAL SYMMETRY BREAKING MODEL BY MAKING THE 

IDENTIFICATIONS Xa -4- Aa AND XE - > VE- T H I S M E A N S THAT, FOR EXAMPLE, WHEN WE 

CALCULATE THE QUANTITY 2iL~^dy,L = ay,-\-v^ IN THE CHIRAL SU{N) BREAKING MODEL AND 

FIND 

ttn = V^M°'Xa 

= V^XE 

THEN, BY MAKING THE BASIS IDENTIFICATIONS Aq Aa AND XE ^ VE, we MAY REWRITE THESE 

QUANTITIES AS 

Aa 

THESE ARE CONTAINED AS A SUBSET OF THE AND = V J Y I WHICH RESULT IN THE 

FULL CHIRAL SUL(N) (G) SUR{N) BREAKING TO SUv{N) MODEL. 

W E NOTE THAT IN [18] WE FIND THE MAIN RESULTS FOR THE SU{2) BREAKING TO U{1) MODEL, 

TOGETHER WITH HOW THE MODEL MAY BE EMBEDDED IN THE FULL CHIRAL SUL{2) ® SUR{2) 

BREAKING TO SUv{2) SCHEME; IT IS INCLUDED IN THIS THESIS BECAUSE IT IS AN INSTRUCTIVE 

'TOY' MODEL. A GENERAL DISCUSSION OF EMBEDDING MAY B E FOUND IN [19] , TOGETHER WITH 

THE SPECIFIC RESULTS FOR THE C P 2 AND C P 4 METRICS. HOWEVER, THESE RESULTS ARE ALSO 

EXTENDED BY REWRITING THE CORRESPONDING GOLDSTONE B O S O N PART OF THE LAGRANGIAN USING 

STEREOGRAPHIC COORDINATES [21] WHICH ALLOWS, IN THE C P 4 CASE, THE RETRIEVAL OF THE F U B I N I -

STUDY METRIC. T H E C P 4 METRIC IS OBVIOUSLY CONTAINED WITHIN THIS CHAPTER TOO, THOUGH 

ITS FORM IS DIFFERENT TO THAT FOUND IN [19] BECAUSE WE USE A DIFFERENT METHOD TO CALCULATE 

IT. 
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4.1.1 Cross-referencing three models. 

IN THE PREVIOUS CHAPTER WE CONSIDERED AN INFINITE NUMBER OF MODELS. HOWEVER, THE THREE 

SIMPLEST ARE THE MODELS RESULTING FROM 

• AN 5 0 ( 4 ) SYMMETRY BREAKING TO 5 0 ( 3 ) , 

• AN 5 0 ( 3 ) SYMMETRY BREAKING TO 5 0 ( 2 ) , AND 

• AN 5 ( 7 ( 2 ) SYMMETRY BREAKING TO U{1). 

A S WE HAVE STATED, THE MAIN RESULTS FOR THE 5 ( 7 ( 2 ) BREAKING TO U{1) MODEL, TOGETHER 

WITH HOW THE MODEL MAY BE EMBEDDED IN THE FULL CHIRAL 5 % ( 2 ) (8> SUR{2) BREAKING 

TO 5 L V ( 2 ) SCHEME, MAY BE FOUND IN [18] . HOWEVER, THIS PAPER DOES NOT MENTION THE 

HOMOMORPHIC 5 0 ( 3 ) SYMMETRY BREAKING MODEL; OR ITS EMBEDDING INTO THE FULL 5 0 ( 4 ) 

BREAKING SCHEME. T O THIS END WE WILL FIRSTLY DISCUSS THE FULL 5 0 ( 4 ) BREAKING TO SO (3) 

MODEL AND THEN, SECONDLY, WE WILL SHOW HOW THE 5 0 ( 3 ) (AND THEREFORE THE HOMOMORPHIC 

5 ( 7 ( 2 ) ) BREAKING 'TOY' MODELS MAY BE EMBEDDED. IT ALSO SEEMS REASONABLE TO SAY THAT, 

USING SIMILAR IDEAS, IT IS POSSIBLE TO EMBED THE 5 0 ( 1 , 2 ) SYMMETRY BREAKING TO 5 0 ( 1 , 1 ) 

MODEL (CONTAINED IN THE PREVIOUS CHAPTER) INTO THE FRAMEWORK OF THE LARGER 5 0 ( 1 , 3 ) 

BREAKING TO 5 0 ( 1 , 2 ) THEORY. 

4.1.1a SUL{2) 0 5%(2) breaking to 5(7y(2). 

FIRSTLY, WE WILL EXPLOIT THE H O M O M O R P H I S M BETWEEN THE GROUPS SU(2) (G SU(2) AND 

5 0 ( 4 ) . T H E SIGMA MATRICES, USED TO FORM 5 0 ( 4 ) GROUP ELEMENTS, ARE 

0% u u ^ 
Cij — ^ijk (^k4 

\ 0 0%; y 
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WHERE i,j, k = 1,2,3. W E MAY THEREFORE REWRITE THESE AS 

ffij = ^ijkiLk + Rk) 

~ ^ijkVk 

0'k4 — (-̂ 'fc -rfc) 

— 

W E NOW FIND THAT THE % AND A I OBEY THE COMMUTATION RELATIONS 

[A-i, v4j] = 2i£jjjf:V}~ 

vj] — 2iS{j]^Ajf 

W E MAY NOW REWRITE THE COSET VECTOR FOR THE | § | | | COSET AS 

a; = w" (7*4 
= 

SO IT IS CLEAR THAT, BY WORKING OUT THE LAGRANGIAN FOR THE 5 0 ( 4 ) BREAKING TO 5 0 ( 3 ) 

MODEL WE HAVE, IN A HOMOMORPHIC WAY, ALSO WORKED OUT THE LAGRANGIAN FOR THE FULL 

SUL(2) 0 SUR{2) BREAKING TO SUv{2) MODEL. 

4.1.1b Chiral SU{2) breaking to U{1). 

IN THIS SECTION WE WILL CONSIDER THE EFFECT OF RESTRICTING THE FROM THE LAST SECTION, TO 

JUST VZ WHICH YIELDS THE COMMUTATORS 

= 0 

[•̂ o) A(,] = 226063̂ 3 

~ 2?£cj3i,aj 
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T H E S E ARE THE COMMUTATION RELATIONS FOR A CHIRAL SU(2) GROUP GENERATED BY THE SET 

{A I ,A2,V3} . NOTICE THAT V3 IS BEING USED TO GENERATE THE ABELIAN U{1) SUBGROUP, AND 

THEREFORE THE A A ARE THE COSET SPACE DIRECTIONS. 

W E FIRST NOTICE THAT IF WE WERE TO FOLLOW THE RULES FOR BUILDING THE SIGMA MATRICES FOR 

SO (3), WHICH USES THE THREE 5 0 ( 3 ) G A M M A MATRICES (DEFINED AS THE THREE PAULI S P I N 

MATRICES), THEN WE WOULD HAVE FOUND THEM TO BE 

— Sijk^k 

WHERE THE A/, ARE THE 3 PAULI SPIN MATRICES. THEREFORE, WORKING OUT THE 5 0 ( 3 ) BREAKING 

TO 5 0 ( 2 ) MODEL BASED ON THE COSET VECTOR 

a; = 

WITH a,b = 1 , 2 , IS OBVIOUSLY A H O M O M O R P H I C PROBLEM TO THE SU{2) BREAKING TO U ( l ) 

MODEL (THE FIRST MODEL IN THIS THESIS) WHICH HAS THE COSET VECTOR 

a; = 9^% 

WHERE A = 1 , 2 . I F WE NOW IDENTIFY THE cTqs, OR 'EQUIVALENTLY' THE cTq, WITH THE AA4 = AA 

( I .E . THE SUBSET OF THE 5 0 ( 4 ) ~ SUL{2) 0 SUR{2) S IGMA MATRICES WHICH ARISES WHEN WE 

RESTRICT OUR ATTENTION TO Vs WHICH GENERATES A ? 7 ( 1 ) ~ SO(2) SUBGROUP) , THEN WE HAVE 

E M B E D D E D BOTH THESE 'CHIRAL' MODELS INTO THE FULL CHIRAL 5 % ( 2 ) 0 5 % ( 2 ) BREAKING 

TO SUv{2) ( H O M O M O R P H I C TO 5 0 ( 4 ) BREAKING TO 5 0 ( 3 ) ) MODEL OF THE PREVIOUS SECTION. 

FOR THE REST OF THE THESIS WE WILL JUST USE THE TERMS ^ S U { N ) \ AND ^ S U { N — 1 ) (G) C / ( L ) ' ; 

BUT WE WILL REMEMBER THAT THE 'SU{NY TO WHICH WE REFER IS REALLY THE chiral SU{N) 

SUBGROUP OF 5 % ( A ^ ) O 5 % ( ] V ) . 
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<1.2 TITlie tc) --1) GDrn()dE!lsi. 

4.2.1 Identifying the Goldstone bosons. 

W E WILL NOW SHOW HOW THE COSET VECTOR MAY BE FORMED USING THE FUNDAMENTAL REPRE-

SENTATION OF SU(N). W E MAY WRITE THE COSET VECTOR 

X = X°'XA 

= (%au%) ao 

WHERE % IS THE FUNDAMENTAL REPRESENTATION OF SU{N) 

% = d 
s 

\ / 

I F THIS IS DONE THEN WE MAY IDENTIFY THE GOLDSTONE BOSONS OF THE MODEL. W E GIVE TWO 

EXAMPLES 

1 . FOR N = 2, THE GOLDSTONE BOSONS ARE THE TWO CHARGED P I O N S , AND x IS 

/ 0 n+ ^ 
X = 

tt" 0 / 

2 . FOR N = 3 THE GOLDSTONE BOSONS ARE THE FOUR K A O N S AND x IS 

X = 

0 0 

0 0 

K- 0 \ 

4.2.2 The coset representative, L. 

THESE MODELS USE THE COSET REPRESENTATIVE FOR THE S U { ^ ^ ^ ® U { I ) COSETS. W E NOTE THAT, 

FOR ALL THESE MODELS, THE SUBGROUP OF TRANSFORMATIONS, H = SU{N — 1 ) <S>U{1), HAS THE 
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SAME RANK AS THE FULL SYMMETRY GROUP, G = SU(N)-, THE RANK BEING EQUAL TO {N — 1 ) . 

IN THE DEFINING REPRESENTATION WE HAVE, IN GENERAL, A COSET VECTOR OF THE FORM 

x 

0 0 • 0 4 ^ 

0 0 • 0 4 

0 0 • 0 ^N-1 

Zl % -
• Zff-1 0 / 

WITH ( N — l ) COMPLEX 'NUMBERS' IN THE LAST ROW OF THE MATRIX, AND ( N — l ) CORRESPONDING 

COMPLEX CONJUGATE 'NUMBERS' IN THE LAST COLUMN. FOR EXAMPLE Z* = 

BUT WE MUST REMEMBER THAT THE ^ ' S ARE fields. SQUARING THIS MATRIX (VECTOR) WE FIND 

X 

( 

4^1 

ZFF_IZ2 

Z2ZN—1 

Zlf-lZff-l 

%(*)/ 

WHERE 7 2 ( X ) = [ZLZI + ZLZ2 4 H W H E N WE CALCULATE THE NEXT POWER WE 

FIND 

X ( 4 . 1 ) 

W I T H THIS BEHAVIOUR WE UNDERSTAND THAT x IS PROPORTIONAL TO AN R-VECTOR BECAUSE x 

NOW HAS THE CHARACTERISTIC EQUATION 

2;̂  — 72(3;) a; = 0 

- 72(0;) ^ — 0 

WHICH IMPLIES THAT 7 ^ ( 0 ; ) = 0 V A: > 3 . SO WE MAY WRITE 

x 

(4.2) 
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THEREFORE THE COSET REPRESENTATIVE ELEMENT, L , IS 

L = ^ { N + 2 (COSF - 1 ) ) L[AR] + (COSF - I ) - i SINF r ( 4 . 3 ) 

T H E INDICES OF THE COSET VECTOR, r , HAVE THE RANGE {N — l y < a < — 2 , AND, FOR 

N > 3, THE INDICES OF THE G^-VECTOR HAVE THE RANGE E = 1 , 2 , . . . , ( IV - 1 ) ^ - 1 , — 1 . 

4.2.3 Linear Goldstone boson transformations. 

SINCE WE ARE BREAKING G = SU{N) INVARIANCE DOWN to H = SU(N — 1 ) ® ( 7 ( 1 ) , AND 

THE TWO SUBGROUPS OF H COMMUTE, WE ARE ABLE TO LOOK AT THE EFFECTS OF TRANSFORMING 

L IN TWO PARTS. FIRSTLY WE WILL SEE HOW L IS TRANSFORMED BY AN ELEMENT OF THE U{1) 

SUBGROUP, AND THEN WE WILL SEE HOW IT IS TRANSFORMED BY AN ELEMENT OF THE SU{N — 1 ) 

SUBGROUP. 

4.2.3a Transforming L with a U{1) subgroup element. 

SINCE THE COSET REPRESENTATIVE ELEMENT IS PRODUCED BY EXPONENTIATING THE COSET VECTOR 

X = = | R THEN A SUBGROUP U{1) ELEMENT, u, WILL COMMUTE WITH THE G^-VECTOR, 

THEREFORE 

L' — uLu~^ 

= + 2(C08§ - 1)) 1[N] + (C08̂  - 1) gr - % 8111̂  (4.4) 

IN GENERAL, FOR A G SU{N BOTH R AND WILL B E TRANSFORMED, BUT BOTH WILL 

STILL LIE IN THEIR ORIGINAL RESPECTIVE SUBSPACES OF 

W E NOW NEED THE EXPLICIT FORM OF THE U{1) GROUP ELEMENT. FOR THE SAME REASON THAT 

WE NEEDED PROJECTION OPERATORS TO WRITE THE EXPONENTIAL OF A G^-VECTOR WE NEED TO 

USE PROJECTION OPERATORS HERE. BESIDES, SINCE WE WISH TO FIND RESULTS FOR A GENERAL 

G = SU{N) BREAKING to H = SU{N—1)<^U{1) IT IS ALSO DESIRABLE TO USE THE PROJECTION 
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OPERATOR METHOD. N O W , THE U{1) GROUP ELEMENT IS GENERATED USING THE LAST A MATRIX 

OF SU(N), THE {N^ — 1)*^ BASIS ELEMENT OF WHICH HAS THE FOLLOWING FORM 

A^V'^-L — — {Pi + I^2 ~L" • • • + Pn-1 ~ ~ 1)-FIV) 

WHERE ~ NORMALIZES THE MATRIX. SINCE WE WISH (AJYA-I, AYVA_I) = 1 THIS IMPLIES 

= ( ^ _ 1 ) 2 + ^ - 1 

= A R ( A R - I ) 

SO WE FIND THAT A ^ ^ - I IS 

^ # 3 - 1 = ( P I + -P2 H H Pa t - i - ( I V - I ) F J V ) 

THEREFORE THE u E U ( l ) IS 

m 

_ G ^2N(N-i) _J. P2 + • • • + Pn-I) + ^ P]v 

w 

SO WE NEED TO WORK OUT URU~^ IN EQUATION (4.4). W E FIND 

r' = uru~^ 

W E CAN TIDY THIS U P A LITTLE IF WE USE THE FOLLOWING NOTATION : 

r@ = 

rg = 

O = E " ® / 2 ( J V - 1 ) 

SUCH THAT R = R® + R®. IN TERMS OF THE MATRIX, r, W E FIND THAT R® IS JUST THE LAST 

COLUMN OF R, AND R® IS THE LAST ROW OF R. SO WE HAVE 

AR® + A^R® ( 4 . 5 ) 
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T H I S SHOWS THAT EACH ENTRY OF THE LAST COLUMN OF r IS MODIFIED BY THE U{1) PHASE WHICH 

WE HAVE CALLED A, AND EACH ENTRY OF THE LAST ROW OF R IS MODIFIED BY THE OPPOSITE U{1) 

PHASE, ANOTHER WAY OF SAYING THIS IS THAT R, THE GOLDSTONE BOSON VECTOR, IS SPLIT 

INTO TWO PIECES. EACH PIECE REPRESENTS ONE HALF OF THE THE GOLDSTONE BOSON MULTIPLET 

STATES. W E SEE THAT BOTH HALVES TRANSFORM IN EQUAL, BUT OPPOSITE, WAYS. 

T H I S IS WHAT WE FOUND IN THE SU{2) BREAKING TO C / ( L ) CALCULATION, BUT INSTEAD OF HAVING 

{N — 1 ) STATES IN EACH HALF (AS WE DO HERE) WE ONLY HAD ONE GOLDSTONE BOSON IN EACH 

HALF; R® BEING REPRESENTED BY THE 7R+, AND R® BY THE TT". 

4.2.3b Transforming L with an SU{N — 1) subgroup element. 

USING THE SAME NOTATION FROM THE LAST SECTION, AND CONSIDERING A SPECIFIC EXAMPLE, WE 

MAY ARRIVE AT THE REQUIRED GENERAL RESULT. W E CONSIDER THE CASE OF TV = 3 , THAT IS THE 

SPONTANEOUS BREAKING OF AN SU{3) SYMMETRY DOWN TO SU{2) ® U{1) AND ASK WHAT 

HAPPENS TO THE COSET VECTOR UNDER THE SU(2) SUBGROUP TRANSFORMATION. 

A GENERAL u e SU(2) GROUP ELEMENT HAS THE FORM 

u 
^ a b* 

-b a* 0 

0 0 1 

THEREFORE THE KAON GOLDSTONE BOSON MULTIPLET, OR COSET VECTOR, IS TRANSFORMED 

X uxu ( 
T 

a b* 0 

-b a' 0 

0 0 1 

/ 0 0 K+\ [ a' -b* 0 

0 0 #0 

0 / 

b a 0 

0 0 1 

0 0 

0 0 

0 

\ 

(4.6) 

IF WE NOW CONSIDER A DEFINING SU{2) TRANSFORMATION, G , ON A FUNDAMENTAL 2 REPRESEN-
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tation OF SU{2), WHICH WE HAVE PREVIOUSLY CALLED % THEN WE HAVE 

/ 
a b* 

-b a* 

\ / \ u 

^ au + b*d ^ 

—bu + a*d 
( 4 U O 

AND WE ALSO HAVE 

V" ' j y , a j 

= A ' « + W - 6 * N + 0(F (4.8) 

COMPARING THE RESULTS OF ( 4 . 7 ) AND ( 4 . 8 ) WITH THE K A O N TRANSFORMATION ( 4 . 6 ) WE SEE 

THAT WE CAN GENERALIZE THESE RESULTS. 

• UNDER A SUBGROUP u e SU{N — 1 ) TRANSFORMATION OF THE SU{N — 1 ) ® ( 7 ( 1 ) 

SUBGROUP OF TRANSFORMATIONS WE FIND 

1 . T H E R® PART OF THE NORMALIZED GOLDSTONE BOSON COSET VECTOR, R, TRANSFORMS 

LIKE THE FUNDAMENTAL REPRESENTATION OF SU{N — 1 ) , %, I .E 

r 1—>• r ur^ 

2 . T H E R® PART TRANSFORMS LIKE %, I.E 

R® I-> R® = R® 

NOTICE THAT MR® = R® AND r®u^ = R®, SO UNDER A TRANSFORMATION BY M G SU{N — 1 ) WE 
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MAY WRITE 

u •. r ^ r' = uru^ 

u (R® + R®) v) 

ur®u^ + ur^v} 

— 2/r® + r^v) (4.9) 

T H I S TRANSFORMATION will HAVE AN EFFECT ON THE G^-VECTOR IN THE EXPRESSION FOR THE COSET 

REPRESENTATIVE; BUT SINCE THE R-VECTOR REMAINS IN THE SUBSPACE OF WHERE IT STARTED, 

THE GR-VECTOR ALSO REMAINS IN ITS ORTHOGONAL SUBSPACE WHERE IT STARTED. T H E COMPONENTS 

OF THE GR-VECTOR WHICH ARE TRANSFORMED LIE IN THE SUBSPACE OF ASSOCIATED WITH 

THE GENERATORS OF THE SUBGROUP SU{N — 1 ) . 

4.2.4 Analysis to first order using Killing vectors. 

4.2.4a The linear Killing vector components, K%. 

T O FIND THE LINEAR KILLING VECTOR COMPONENTS WE MUST SOLVE 

( i lO) 

N O W THE COSET REPRESENTATIVE ELEMENT IS 

= ;^[AR + 2 ( C O 8 ^ - L ) ] L[;V] + Y ^ ( C O 8 ^ - L ) G R - 2 8 I N # R 

AND SO THE LEFT HAND SIDE OF EQUATION (4.10) IS 

= y^(co8^-l)[AB ,GR]-%8in^[A^,r] (4.11) 

WHICH, IN TERMS OF COMPONENTS, IS 

[AG, JC] = 2% (CO8^ - 1 ) G^R/BFCAG + 2 SIN^ M' ' /^ ;O6A6 
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W E WILL NOW WORK OUT THE RIGHT HAND SIDE OF EQUATION ( 4 . 1 0 ) . FIRSTLY WE FIND 

8 I N ^ GR + CO8§ R) 

+ (COSF — 1 ) ,O + 2 S I N | R Q) K G 

AND SINCE THIS IS EQUAL TO EQUATION ( 4 . 1 2 ) WHICH ONLY CONTAINS VECTOR-LIKE PIECES, WE 

MUST HAVE THE CONDITION <}>,A}^E = 0 . HERE WE USE THE WORDING VECTOR-LIKE BECAUSE THE 

TRACE OF EQUATION ( 4 . 1 2 ) IS ZERO. SO IF WE EQUATE WHAT WE HAVE LEFT WE FIND WE HAVE TWO 

EQUATIONS TO SOLVE 

9R IEFG^G — Qr,a^E ( 4 - 1 2 ) 

N°'FEAB^B = ( 4 . 1 3 ) 

W E KNOW, IF THE MATHEMATICS HAS BEEN WORKED OUT CORRECTLY, THAT THE SOLUTION OF BOTH 

THESE EQUATIONS should YIELD THE SAME RESULT. W E WILL NOW SHOW THAT THEY INDEED DO. 

1 . FIRSTLY WE HAVE 

QrfEFG = Qr,J^E 

~ ((^OC — 

USING THE NOTATION OF ADJOINT REPRESENTATION OPERATORS IN A P P E N D I X B , WE M A Y 

WRITE THIS 

2 

N O W , SINCE ( /G^) = ^ ^ _ 2 F R D R WE FIND WE ARE ABLE TO WRITE : -

^ ifr)Ec (dr)cG ~ ^E (4)CG 
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T H U S , BY INSPECTION, WE FIND 

= 

== VCAWAF* ( 4 . 1 4 ) 

2 . SECONDLY, WE HAVE A SIMPLER RELATION TO SOLVE. W E HAVE 

( / R ) S 6 = 

— ^ ( ^ 6 0 - n^rf) K | 

— — k ' 
M ^ 

THEREFORE WE SEE 

= M ( A ) ^ , 

= 

= ( 1 1 5 ) 

T H E TWO RESULTS ARE THE SAME. SINCE THIS IS TRUE WE COULD HAVE, FOR EXAMPLE, JUST 

SOLVED THE SECOND SET OF RELATIONS AND THEN SUBSTITUTED THE RESULT INTO THE FIRST 

RELATION TO SHOW THAT BOTH SIDES WERE EQUAL. T H I S IS THE DOUBLECHECK WE WILL USE 

FOR THE NONLINEAR CASE, SINCE IT TURNS OUT THAT ONE OF THE TWO RELATIONS WE END U P 

WITH IS EXTREMELY HARD TO SOLVE. 

W E END THIS SECTION BY TAKING THE SIMPLE CASE OF WHEN A?" = 2 . IN THIS CASE WE HAVE 

FIJK = AND THEREFORE 

WHICH IS IN AGREEMENT WITH THE RESULT OF EQUATION ( 3 . 4 ) , FOR THE SUBGROUP U{1) TRANS-

FORMATION OF THE COSET VECTOR. 
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4.2.4b The nonlinear Killing vector components, Kg. 

T O FIND THE NONLINEAR KILLING VECTOR COMPONENTS WE M U S T SOLVE 

{ A J , L ^ } = 2 I L F . K ; 

T H I S TIME WE HAVE AN ANTICOMMUTATOR, WHICH WE FIND TO BE 

= ^ ( N + 2(CO8,^ - L ) ) A ( , + 2 Y ^ ( C O 8 < ^ 

L[Ar] - 2ism.(j) rfdbaE^E ( 4 . 1 6 ) 

AND WE FIND 2IL '^ JK.^ TO BE 

22L^^Kj = — ^ , a K ^ 1[#] — (/)^a^bVr + 2lC0S(f> Jfooixlip ~ Y , O ^ 6 Y R T VUBIP V.A-RVJ / 

COS - 1 ) GR ,OKG + 2 SIN ^ K ^ ( 4 . 1 7 ) 

THIS TIME, WHEN WE COMPARE THE TWO, WE FIND THAT ^ , q K j = ^ M ° K G = n''. YET AGAIN 

WE HAVE TWO ORTHOGONAL RELATIONS. 

1 . T H E FIRST IS ASSOCIATED WITH THE DIRECTIONS OF THE VECTOR 

sin (6 (sin - (cos < 6 - 1 ) 

SINCE ^ = 2 Y ^ N ^ ( N J J ) DCDE THEN WE FIND : -

— 1& ((4-)AG ^ 6 -

WHERE WE UNDERSTAND THAT nJ'q^ (r xgr)^^. THEREFORE, IN TERMS OF THE ADJOINT 

OPERATORS, THE RELATION WE MUST SOLVE IS 

8IN(6 ( 4 ) ( , G = - L ) ) ( R > < G R ) 6 B 

- ^ ( C 0 8 9̂  - L ) ( 4 ) ^ K G ( 4 . 1 8 ) 

HOWEVER THIS RELATION IS VERY HARD TO SOLVE; BECAUSE SIMPLIFYING ( D R ) O S K J WILL NOT 

BE EASY. SO IT IS FORTUNATE THAT WE HAVE A CHOICE OF TWO RELATIONS TO WORK WITH. 
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2 . T H E SECOND RELATION, ASSOCIATED WITH THE DIRECTIONS OF THE R-VECTOR, IS 

COS (J) N^RF + SIN (F> ^ (TV + 2(COS ^ — 1 ) ) 5BE 

- - 1 ) GFD&BC ( 4 . 1 9 ) 

T H I S RELATION IS MUCH SIMPLER TO SOLVE FOR K G BECAUSE WE KNOW 

n%Kt = I ( I „ - N W ) K ? 

THEREFORE IF WE SUBSTITUTE THIS IN THEN, AFTER S O M E SIMPLE REARRANGING, WE FIND 

== 2(c(x;^ -- 1)) #06 4- -- 1) (dgr)** 

—M COT (f> r f n ' ' + ( 4 . 2 0 ) 
d(p 

T O CHECK THIS RESULT WE MAY SUBSTITUTE IT INTO OUR FIRST RELATION, EQUATION ( 4 . 1 8 ) . 

HOWEVER, THIS IS NOT STRICTLY NECESSARY AS WE WILL SOON BE USING THESE K G TO 

CONSTRUCT THE GOLDSTONE BOSON MANIFOLD METRIC; THIS VERIFICATION IS JUST AS GOOD. 

FOR COMPLETENESS THOUGH WE PERFORM THE SUBSTITUTION IN A P P E N D I X B , ON PAGE 1 8 2 . 

IN THE NEXT SECTION WE WILL ALSO FIND AN EXPRESSION WHICH ALLOWS US TO WRITE DG^ 

IN TERMS OF ADJOINT REPRESENTATION PROJECTION OPERATORS; THE DETAILS OF THIS ARE 

GIVEN IN A P P E N D I X B , SECTION B 4 . 2 . W E WILL DO THIS JUST BEFORE WE CONSTRUCT 

THE GOLDSTONE BOSON MANIFOLD METRIC. BUT FOR N O W WE SEE THAT FOR A?' = 2 THIS 

EQUATION REDUCES TO 

PEG == JUR(X)T(6 (FA* -

WHICH IS THE SAME AS EQUATION ( 3 . 6 ) IN THE SU{2) BREAKING TO U{1) CALCULATION. 

1 0 9 



4.2.5 Covariant derivatives and the Goldstone boson metric. 

FOR ALL THESE MODELS WE HAVE 

^ ~ N" "I" 2 ( C O S | — 1 ) ) L[AR] + ( C O S | — 1) qj. — i S I N | r 

AND THEREFORE WE FIND 

^ ^ ( ^ + 2 (COSF — 1 ) ) L[AR] + ( C O S | — 1) Qr + i S I N | r 

L[;Y] - (CO8§ - 1 ) 

COSF {ducj)) r - i SINF d^r 

T O FIND THE GOLDSTONE BOSON COVARIANT DERIVATIVE AND THE METRIC CONNECTION FOR THE 

MATTER FIELD COVARIANT DERIVATIVE WE CALCULATE 2 I L ~ ^ D ^ L = + VFJ,. W E FIND 

dfi = rd^cj) + ^[N + 2 (COSF - 1 ) ] S I N | d^r 

WHICH WE WILL SIMPLIFY USING THE RELATION 

SO THE RESULTS FOR AND ARE 

o-ti — + SIN,^ d^r - 2 ^ ^ (COSF - 1 ) SINF {r, df,qr} ( 4 . 2 1 ) 

(COS^ - 1 ) [1 + ^ ( C 0 8 ^ - 1 ) ] ( C 0 8 ^ - 1 ) ^ 
2 " / ; - V 

+ SIN^FR9;^R ( 4 . 2 2 ) 

IN THE NEXT SECTION WE WILL GIVE THE EXPLICIT FORM OF THE GOLDSTONE BOSON COVARIANT 

DERIVATIVE WE WILL NOT DO THE SAME FOR THE MATTER FIELD COVARIANT DERIVATIVE 

VFIIP = {DFI - ^VFJ,)IP BECAUSE IT'S FORM WILL BE EXTREMELY UNTIDY. 

W E WILL NOW CONSTRUCT THE LAGRANGIAN FOR THE GOLDSTONE BOSONS. IN DOING SO WE WILL FIND 

A RELATION WHICH WILL HELP US TO VASTLY SIMPLIFY THE WHOLE CALCULATION (THIS IS EXAMINED IN 
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APPENDIX B ) , AND WILL ALSO ALLOW US TO EASILY CHECK THE RESULT FOR THE GOLDSTONE BOSON 

MANIFOLD METRIC IN THE NEXT SECTION. W E PROCEED BY CALCULATING ( 0 ^ , 0 ^ ) = ITRA^A^^ 

USING THE FORM OF ABOVE. T H I S CALCULATION IS SLIGHTLY SIMPLIFIED BECAUSE, OBVIOUSLY, 

THE TERMS (R, D^R) ARE ZERO. W E FIND 

(A ,̂ a^) = d^(j)d'^(j) + 

! SIN^ (COS^ - 1 ) SIN (R {R, + {R, 

+ 4 % ^ S I N ^ L (CO8^ - 1 ) ^ (R ({R, {R, 8 ^ G R } ) ( 4 . 2 3 ) 

IT IS THE FIRST TRACE EXPRESSION WHICH HOLDS THE KEY TO SIMPLIFICATION OF THE CALCULATION 

AS A WHOLE. T H I S IS DISCUSSED IN A P P E N D I X B , SECTION B 4 . 2 ON PAGE 1 8 5 . BUT FOR NOW 

WE WILL PROCEED. W E FIND 

FR {R, + {R, 8 ^ 9 ^ } = 2 (R 

FOR THE FINAL TRACE EXPRESSION WE FIND 

(R({R,a^GR}{R,a^GR}) = 2a^G^8^G;F 

WHERE WE HAVE USED RELATIONS LIKE RD^QR = D^{RQR) — {D^R)QJ., AND WE HAVE THEN CALCU-

LATED tr qrdfj,qrd'^qr = AFTER WE SUBSTITUTE THESE IN WE FIND, AFTER A 

LITTLE REARRANGING, THAT WE END UP WITH 

(O;;, A ' ' ) = + 8IN^<^ ^ (COS ^ — 1 ) ^ ( 4 . 2 4 ) 

W E MAY NOW WRITE THIS RESULT EXPLICITLY USING THE RESULTS 

4 
M2(JV-2) 

111 

b 

( « ) ^ - (A, -



WHICH WE SUBSTITUTE IN TO FIND 

+ (((^R)«6 - ( ^ -

WHERE WE HAVE FOR THE GOLDSTONE BOSON MANIFOLD METRIC ; -

S-l, = + ! G - ( { . 0 - n'n") + % T ; " ' { ( 4 U - ( A " - 2 ) « ° N ' ' ) ( 4 . 2 6 ) 

T H I S WILL BE FURTHER SIMPLIFIED IN THE NEXT SECTION. 

4.2.5a Verifying the metric result. 

BEFORE WE VERIFY THE METRIC RESULT WE WILL USE THE IDEAS IN A P P E N D I X B , SECTION B 4 . 2 

ON PAGE 1 8 5 , TO SIMPLIFY THE FORM OF A^. W E WILL THEN FIND THE FORM OF THE GOLDSTONE 

BOSON MANIFOLD METRIC AGAIN. T H I S IS NOT STRICTLY NECESSARY, SINCE WE COULD USE RESULTS 

FOUND IN APPENDIX B TO SIMPLIFY EQUATION ( 4 . 2 5 ) , BUT IT WILL AT LEAST BE QUICK BECAUSE 

WE WILL BE USING ADJOINT REPRESENTATION PROJECTION OPERATORS. W E WILL THEN USE THE 

KILLING VECTORS TO VERIFY THE METRIC RESULT AS USUAL. 

W E START BY REWRITING IN TERMS OF ADJOINT REPRESENTATION PROJECTION OPERATORS. W E 

HAVE FOUND 

GFI = rd^(f> + SIN ^ d^r - 2 ^ ^ (COSF - 1 ) SINF {R, d^qr} 

T H E ANTICOMMUTATOR MAY NOW BE REWRITTEN 
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WHERE THE LAST STEP HAS USED THE RESULT FOUND IN A P P E N D I X B , SECTION B 4 . 2 ON PAGE 1 8 5 . 

SINCE ( A ^ , A^) = WE JUST NEED AN EXPRESSION FOR WHICH WE SEE IS 

a" ( ^ ) R > < R + ^ - R X R ) - ] ^ ( C O 8 ^ -
ab 

AND SINCE ( L [ A R 2 - I ] ) O 6 = + V'^ + r><r + Vf2)ab WE FIND 

M + ( ^ ) R > < R + ^ 8 I N | 
ab 

B L 2 6 ) 

T H I S , AS PROMISED, IS THE EXPLICIT FORM OF THE GOLDSTONE BOSON COVARIANT DERIVATIVE. IT 

IS NOW VERY SIMPLE TO FORM THE METRIC BECAUSE WE ARE DEALING WITH AN EXPRESSION WHICH 

IS COMPLETELY IN TERMS OF ADJOINT REPRESENTATION PROJECTION OPERATORS. W E HAVE 

AND WE FIND, WITHOUT MUCH TROUBLE, THAT 

9ab M2 (7^^ + ( R > < R ) G ( , + ^ ( 1 — C08<^ (4.27) 

W E ALSO ARRIVE AT THIS RESULT IF WE JUST SIMPLIFY EQUATION ( 4 . 2 5 ) , WHICH WE FOUND 

AT THE END OF THE LAST SECTION, BY SUBSTITUTING IN THE PROJECTION OPERATOR RESULT FOR 

{{DR)AB — ( N - 2 ) N ° " N ' ' ) WHICH WE USED TO SIMPLIFY ABOVE. W E NOTE THAT THESE, FROM [ 1 4 ] , 

ARE THE METRICS OF KAHLER MANIFOLDS. T H I S TELLS US THAT IT IS POSSIBLE TO EXTEND ALL THESE 

MODELS TO INCLUDE J V = 1 SUPERSYMMETRY. 

T O VERIFY THAT THE RESULT FOR THE METRIC IS CORRECT, WE WILL NOW USE THE RELATIONSHIP 

BETWEEN THE METRIC AND THE KILLING VECTORS 

= ( K ^ K ^ + K : K 9 - ' 

IN TERMS OF LINEAR OPERATORS, AND PROJECTION OPERATORS, OF THE ADJOINT REPRESENTATION WE 
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have found, equations (4.15) and (4.20), the Killing vector components 

K G — A F (YR)G( 

K ? = I I ? , I ( I V + 2 { C O S ^ + - L ) ( R F „ ) . , 

- M COT 

- M C O T ( ^ ( ? ^ + P ^ ) A 6 + ( ^ ) ( R > < R ) A 6 - | 

Where we have used equation (B.38) to write in terms of the adjoint representation 

PROJECTION OPERATORS. T H U S WE FIND 

= - M ' ( / J ) ^ 

= M ^ C O T ^ ^ ( ? : + ? ' ) ^ + ( ^ ) ' ( R X R ) ^ + 

When we ADD these TWO together we FINALLY arrive at :-

K % K % + K I K \ = + V ) ^ + [ % ) \ R > < R U + , ^ ^ ^ ( V I , ) ^ ( 4 . 2 8 ) 

which is obviously the inverse of the Kahler manifold metrics, equation (4.27) above. 
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Chapter 5 

The sO{J°2)SsO{2) models, for 

m = 4,5 and 6. 

T H E MODELS IN THIS CHAPTER CONCERN THE BREAKING OF AN SO{m) INVARIANCE DOWN TO 

SO{m — 2) ® S0{2). A P P E N D I X C , FROM PAGE 1 9 1 , DETAILS THE CONSTRUCTION OF THE 

GENERATORS OF SO{m) IN THE WEYL REPRESENTATION; FROM WHICH WE SEE THAT THE FOLLOWING 

MODELS RESULT FROM THE MANIPULATION OF 4 X 4 MATRICES. T H U S , ALL MAY BE WORKED OUT 

USING THE LANGUAGE OF THE A-MATRICES OF 5 C / ( 4 ) . T O P U T IT ANOTHER WAY, WE ARE JUST 

EXPLOITING THE HOMOMORPHISMS BETWEEN 

. and 

. 5 ' 0 ( 4 ) AND ^ ( 7 ( 2 ) ® AND 

. ^ 0 ( 2 ) AND [ / ( I ) . 

W E NOTE THAT, FOR ALL THESE MODELS, THE SUBGROUP OF TRANSFORMATIONS, H = SO{m —2)® 

5 0 ( 2 ) , HAS THE SAME RANK AS THE FULL SYMMETRY GROUP, G = SO{m). W H E N M = 4 , 5 

THE RANK IS 2 , AND WHEN m = 6 THE RANK IS 3 . 
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FOR THE THREE MODELS IN THIS CHAPTER, THE COSET VECTOR IS WRITTEN AS A: = UI°'^AAX WITH 

a = 1 , 2 , . . . , M — 2 AND X = m — W E WILL NOW SHOW THAT THESE THREE COSET VECTORS 

OBEY THE SAME CHARACTERISTIC EQUATION. T H I S IMPLIES THAT WE ARE ABLE TO DESCRIBE THEM 

IN THE SAME WAY, THUS ALLOWING US TO MANIPULATE A SINGLE COSET VECTOR EXPRESSION, JUST 

AS WE DID FOR ALL OF THE C P 2 ( N - 1 ) MODELS. HOWEVER, UNLIKE THE COSET VECTORS OF THE 

LAST CHAPTER, THE COSET VECTORS IN THESE MODELS HAVE VERY DIFFERENT FORMS; WHICH MEANS 

THAT THE FACT THAT THEY OBEY THE SAME CHARACTERISTIC EQUATION IS NOT AT ALL OBVIOUS. 

HOWEVER, AS WE WILL SOON SEE, EVEN THOUGH ALL THREE COSET VECTORS HAVE THE SAME FORM 

AND MATHEMATICAL BEHAVIOUR, THE COSET VECTOR OF THE FIRST MODEL (WHEN 5 0 ( 4 ) IN VARIANCE 

IS BROKEN TO S0(2) G) S0(2)) HAS A SPECIAL FORM. T H I S MEANS THAT, EVEN THOUGH THE 

RESULTS IN THIS CHAPTER CONCERN ALL THREE MODELS, THEY M A Y BE SIMPLIFIED FOR THE CASE 

WHERE M = 4 . W E WILL GIVE THE RESULTS FOR THIS MODEL IN SECTION 5 . 2 before WE GO ON TO 

CALCULATE THE MORE COMPLICATED RESULTS FOR THE OTHER TWO MODELS (WHEN M = 5 , 6 ) . 

T H E METHOD/IDEA OF REWRITING THE COSET VECTORS IN TERMS OF THE 'EQUIVALENT' 5 ( 7 ( 4 ) VIEW 

IS essential, BECAUSE TRYING TO WORK OUT HIGHER AND HIGHER POWERS of x = LO°'^aaX IS 

AN EXCEPTIONALLY DIFFICULT TASK. FOR EXAMPLE, USING THE G A M M A MATRICES OF SO{m), WE 

FIND 

= (^6ab 1[2*] + iO'ab) {SXY + ICTXY) 

= 1[2&] -

WHICH DOESN'T SEEM TOO BAD, APART FROM THE FACT THAT THE SECOND TERM IS A LITTLE CLUMSY. 

T H E PROBLEMS REALLY START WHEN WE WRITE THE CUBIC AND QUARTIC POWERS OF X] WE JUST 

END U P WITH A NASTY JUMBLE OF TERMS AND INDICES AND IT IS VERY DIFFICULT TO SPOT ANY 

116 



PATTERNS EMERGING; SO WE CANNOT EASILY REGROUP TERMS I N THE EXPANSION OF L. SO WE WILL 

CONTINUE WITH THE RECONSTRUCTION OF OUR VIEW OF THE PROBLEM. 

5.1 The coset vectors, and expressions for L. 

5.1.1 The coset vector for the 30(4) 
A ' 0 ( 2 ) ® 6 : O ( 2 ) 

coset. 

T H I S MODEL IS THE THEORY RESULTING FROM THE SPONTANEOUS BREAKING OF AN SO (4) GLOBAL 

SYMMETRY DOWN TO AN SO{2)<S)SO{2) SYMMETRY. T O ALL INTENTS AND PURPOSES THIS MODEL, 

MATHEMATICALLY AT LEAST, LOOKS LIKE TWO COMMUTING COPIES OF THE SU(2) BREAKING TO U(1) 

MODEL ^ ALREADY WORKED OUT IN CHAPTER 3 ; AS WE WILL N O W SEE. 

T H E 
GO(4) 

GO(2)»GO(2) 
COSET VECTOR, x = co°'^aax, is : 

/ ( ) X ' 0 0 ^ 

v4 0 0 0 

0 0 0 A ' 

0 0 B 0 y 

FOR THIS MATRIX WE THEREFORE FIND THAT 

\ 

1 . THE TOP LEFT ENTRIES MAY BE WRITTEN AS X ^ L P ( P = L , 2 ) WITH 

X , 

X , 

WHICH IMPLIES A = x\-\- i x \ , 

2. AND THE BOTTOM RIGHT ENTRIES M A Y BE WRITTEN AS xFRRP WITH 

x R 

X R 

^This means that the Goldstone boson manifold will be 5^ ® S"̂ . 
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WHICH IMPLIES B = Z G + 

SINCE WE HAVE THIS FORM, IT IS IMMEDIATELY APPARENT THAT TRX^ = 0 . THERE ARE 4 

GOLDSTONE BOSONS IN THIS THEORY. T H E COSET INDICES, IN TERMS OF THE A-MATRIX BASIS OF 

ARE A = 1 , 2 , 1 3 , 1 4 . T H E COSET GENERATORS ARE 

(731 

0-23 

(714 

<724 

( A 2 + A 1 4 ) 

( A i + A 1 3 ) 

( A i — A 1 3 ) 

( A 2 — A 1 4 ) 

( L 2 + R2) 

( ^ L + ^ L ) 

( ^ 1 - A I ) 

{L2 — R2) 

5.1.2 The coset vector for the 30(5) 
GO(3)(G,GO(2) coset. 

T H I S MODEL IS THE THEORY RESULTING FROM THE SPONTANEOUS BREAKING OF AN SO{b) GLOBAL 

SYMMETRY DOWN TO AN S0{^)®S0{2) SYMMETRY. T H E GO(3)»GO(2) COSET VECTOR, 

IS 

\ 
T H I S TIME IT IS A LITTLE MORE INVOLVED TO SEE THAT TRX^ = 0 . FIRST, WE FIND THE SECOND 

POWER OF X TO BE 

/ 
0 —AJ. 

(T& 0 

X W W 1[4] + 

\ 

T H E CUBE OF x IS THEN 

X 
IX, .IX 

W UJ X 2U) U)^ ^IJK^KLM 

\ 

/ 

AND THIS OBVIOUSLY IS A VECTOR; HAS A TRACE OF ZERO. W H E N x IS REWRITTEN AS x"'XA THE 

COSET INDICES ARE a = 1,2,3,4,6,7,8,9,10,11,13,14,15 BUT THE COSET GENERATORS OF THE 
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ORTHOGONAL SYMMETRY BREAKING MODEL ARE JUST LINEAR COMBINATIONS OF PAIRS OF THE 

BASIS VECTORS 

(7i4 

<^24 

C34 

0"15 

(^25 

( A I — A13) 

( A 2 — A 1 4 ) 

(RS -

— (Ag + Ag) 

(A? — AIO) 

— ( A 4 + A l l ) 

WHERE RG = A3 AND = — ̂ A G + Y | A I 5 . T H I S IS WHY THERE ARE 6 GOLDSTONE BOSONS IN 

THIS MODEL. 

5.1.3 The coset vector for the 3 0 ( 6 ) 

G O ( 4 ) ® G O ( 2 ) 
coset. 

T H I S MODEL IS THE THEORY RESULTING FROM THE SPONTANEOUS BREAKING OF AN 5 0 ( 6 ) GLOBAL 

SYMMETRY DOWN TO AN 5 0 ( 4 ) 0 5 0 ( 2 ) SYMMETRY. T H E 5 0 ( ^ ) ^ 5 0 ( 2 ) COSET VECTOR, UJ"'^AAX, 

IS 

^ 0 0 A* C* ^ 

0 0 A* ZR 

,4 A 0 0 

C D 0 0 

WHERE WE HAVE FOR EXAMPLE A* = — ix^. IN TERMS OF THE 5 0 ( 4 ) ^ 5 0 ( 2 ) COSET PARAMETERS 

THE COMPONENTS OF A* ARE 

X 

x^ = — 
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AND SO = > WITH THE COSET INDICES GIVEN B Y A = 4 , 5 , 6 , 7 , 9 , 1 0 , 1 1 , 1 2 . B Y 

INSPECTION WE SEE THAT TRX^ = 0 . THERE ARE 8 GOLDSTONE BOSONS IN THIS MODEL. 

FOR ALL THREE COSET VECTORS IN THIS CHAPTER WE SEE THAT THE QUANTITY IS ITSELF A VECTOR. 

T H I S IMPLIES, FROM SECTION 2 . 3 , THAT x y x AND x ARE LINEARLY INDEPENDENT; THEY ARE 

ORTHOGONAL VECTORS. 

5.1.4 Description of x and the Coset representative, L = e 

T H E COSET VECTORS, x, MUST ALL OBEY A CHARACTERISTIC EQUATION, $ ( A ; ) , OF THE FORM 

—zx 

X 7 2 W : C ^ - 7 4 ( A ; ) L [ 4 ] = 0 (5.1) 

BECAUSE THIS IS THE MOST GENERAL CHARACTERISTIC EQUATION ALLOWED FOR 4 X 4 TRACELESS, 

HERMITIAN MATRICES WITH TRX^ = 3 7 3 ( 0 ; ) = 0 . W E MAY REPRESENT THE EIGENVALUE EQUATION 

IMPLIED BY THIS CHARACTERISTIC EQUATION GRAPHICALLY 

FIGURE 5 . 1 : T H E R AND QR VECTOR EIGENVALUE EQUATIONS. 

T H E EIGENVALUES, EI TO 64, FOR THE VECTORS LIE ON THE LINE $ = 0 , OR, AS INDICATED, 

THE E-AXIS. T H E VERTICAL DASHED LINES LIE AT E = ± ; ^ , ± 1 , AND THE HORIZONTAL ONES AT 

$ = ± | . NOTICE THAT THE GR-vector's EIGENVALUES ALSO SATISFY A QUADRATIC CURVE (BECAUSE 

QrV qr = 0). 
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T H E EIGENVALUE EQUATIONS FOR R AND vectors, SHOWN ABOVE, ARE SYMMETRIC ABOUT THE 

ORIGIN, AS IS THE EIGENVALUE EQUATION FOR OUR COSET VECTOR, x. S O IN ORDER FOR OUR VECTOR 

TO HAVE veal EIGENVALUES IT MUST BE TRUE THAT, ONCE NORMALIZED, ITS EIGENVALUE EQUATION 

WILL 'LIE BETWEEN' THE r AND qr EQUATIONS. T H E FORM OF THE CHARACTERISTIC EQUATION FOR x 

MAKES ITS EIGENVALUES SIMPLE TO FIND. W E HAVE 

- 7 4 W 1[4] = 0 

SO LET y = x"^. T H I S GIVES 

- 7 2 ( 2 ; ) ? / - 7 4 ( X ) = 0 

y = I {l2ix) ± \ / 4 7 4 ( A : ) + 7 2 ( A ; ) 2 J 

T H U S THE EIGENVALUES OF OUR COSET VECTORS, x, ARE SIMPLY 

€ := D: ^ 4 7 4 ( 2 ; ) + 7 2 

OR, MORE CLEARLY 

±a = I (72(3;) + + 72(a;)2j 

== ( 7 2 ( 2 ) - 1^/474(3;) 4 - 7 2 ( 2 ) 2 ) 

SO, IF WE WERE TO DIAGONALIZE x, WE COULD WRITE THESE EIGENVALUES 

a b 
XD = 7 ; ? ^ -H - RSJ. 

WHERE WE HAVE CHOSEN TO USE AND 7-3J_. IT REALLY DOESN'T MATTER WHICH PAIR WE USE; 

WE COULD HAVE USED RI AND RI±_ OR RG AND RGJ.- W E HAVE ALSO USED CONVENTIONAL VALUES, 

A = I AND /? = | , FOR THE LENGTHS OF THE TWO COMMUTING, ORTHOGONAL VECTORS WHICH 

MAKE U P x. IN TERMS OF DIAGONAL PROJECTION OPERATORS, XD CAN BE WRITTEN 

XD = ~ P^) + \ ( P ' - P*) 
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OR EXPLICITLY AS A MATRIX : 

/ 
+a 0 0 0 

0 —a 0 0 

0 0 +0 0 

0 0 0 - A 

THEREFORE, WHEN WE ROTATE XD BACK ONTO x, WE FIND THAT THE COSET REPRESENTATIVE IS 

SIMPLY 

G - « & P 3 G + « # P 4 (6.2) 

WHERE THE PROJECTION OPERATORS ARE OBVIOUSLY NO LONGER DIAGONAL. HOWEVER, WE WILL NOT 

USE L IN THIS FORM. INSTEAD WE WILL WRITE L IN TERMS OF THE CARTAN SUBSPACE BASIS 

{ R , R ± , Q R } AND THE IDENTITY ELEMENT AS USUAL. T H I S IS A VERY SIMPLE TASK BECAUSE WHEN 

WE ROTATE X U OUT OF CJJ THEN WE JUST HAVE 

XD ^ X 

a h a h 
2 ^ 3 + - R3_L I-> - R + - R_L 

AND STILL RRJ_ = r±r = 0 . S O WE FIND 

L g - % # R + 4 R ± ) 

1 [4 ] + ( (COSF - 1 ) + ( C O S | - 1 ) — i ( S I N | r + S I N | R X ) 

^ ( C 0 8 § + C 0 8 ^ ) 1[4] + ^ ( C 0 8 § - C 0 8 ^ ) % ( 8 M § 7" + SIN^ T J . ) (5.3) 

T H I S IS A SIMPLE RESULT TO FIND. FIRSTLY, WE CAN JUST E X P A N D THE FIRST LINE BECAUSE 

CALCULATING POWERS OF x IS SIMPLE; WE QUICKLY ARRIVE AT THE THIRD LINE. SECONDLY, WE M A Y 

USE INDEPENDENT RESULTS FOR E " ' ? ' ' AND GIVEN B Y EQUATION ( 2 . 2 5 ) , AND MULTIPLY 

THEM TOGETHER; THIS SPLITTING OF THE EXPONENTIAL IS POSSIBLE BECAUSE [R, RJ,] = 0 . T H I S 
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SECOND METHOD IS A LITTLE MORE INVOLVED BECAUSE WE NEED TO REMEMBER HOW R VECTORS 

AND QR VECTORS MULTIPLY TOGETHER; STILL, THE RESULT IS THE SAME. W E WOULD HAVE ALSO 

ARRIVED AT EQUATION ( 5 . 3 ) IF WE HAD STARTED OFF WITH EQUATION ( 5 . 2 ) AND SUBSTITUTED IN 

RELATIONS FOR THE PROJECTION OPERATORS; PROVIDED BY R = ( P ^ — P ^ ) AND r± = ( P ^ — P^). 

T H E S E ARE 

P ^ = | ( R ^ + R) 

P 2 = 

^ 

W E THEN SUBSTITUTE 2R^ — 1[4] = AND 2 R ^ — 1[4] = — V 2 Q R AND REARRANGE; NOTICE 

THAT WE HAVE ALSO USED THE SPECIFIC 5 C / ( 4 ) RELATION GRJ. = ~QT TO SIMPLIFY THE RESULT. 

IT IS IMPORTANT TO UNDERSTAND THAT, WHEN IV > 5 , WE FIND THAT ^ —9R AND SO THE 

COSET REPRESENTATIVE ELEMENT, IN THESE CASES, WILL BE IN A MORE COMPLICATED FORM 

^ ( C 0 8 § + C 0 8 | ) - % (8IN§ R + 8 I N | RJ,) 

- - 1 ) (K (COE^I - - 1 ) GRJJ (F) .4) 

IF WE USE TV == 5 i n THIS EQUATION, THEN THE RESULTING COSET REPRESENTATIVE ELEMENT M A Y 

BE USED TO FIND THE EFFECTIVE LAGRANGIAN WHEN SU{5) IS BROKEN TO SU{3)®SU{2)®U{1)-, 

THIS WILL BE DISCUSSED IN THE CONCLUDING CHAPTER. 

W E WILL ALSO BRIEFLY DISCUSS A FURTHER GENERALIZATION TO THIS RESULT; CASES WHERE THE COSET 

VECTOR IS A LINEAR S U M OF ANY ALLOWED NUMBER OF C O M M U T I N G orthonormal R-VECTORS. I N 

THIS CASE THE COSET REPRESENTATIVE ELEMENT IS 

== G ( 5 . 5 ) 
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T H I S EXPRESSION IS VALID FOR Y > A > 1 , WHERE A. IS THE TOTAL NUMBER OF COMMUTING 

ORTHONORMAL R-VECTORS USED TO DESCRIBE THE COSET VECTOR. T H U S , THE INDEX k IS USED TO 

DISTINGUISH BETWEEN THE DIFFERENT R-VECTORS. W E FIND THAT THIS WORKS OUT TO BE 

k=l 

= ( T ) + # : C O 8 ^ - % A 
k=l k=l 

+ ) / - L)G(FC) ( 5 . 6 ) 

k=l 

AND THE RELATIONSHIP BETWEEN THE R-VECTORS IS DEFINED 

— ^ijkf(k) 

WITH 5IJK = 1 WHEN i = j = k. 

W E END THIS SECTION BY NOTING SOME IMPORTANT RESULTS CONTAINED WITHIN EQUATION ( 5 . 6 ) . 

W E FIND 

1 . W H E N a = 1 AND N = 2 THE IMPLIED COSET VECTOR IS ^ R ( I ) AND IN CHAPTER 3 WE 

WROTE THIS AS | R . W E FIND THAT THE COSET REPRESENTATIVE ELEMENT OF EQUATION ( 5 . 6 ) 

REDUCES TO EQUATION ( 3 . 1 ) . 

2 . W H E N O; = 1 AND N > 2 THE IMPLIED COSET VECTOR IS AND IN CHAPTER 4 WE 

WROTE THIS AS | R. T H E COSET REPRESENTATIVE ELEMENT OF EQUATION ( 5 . 6 ) REDUCES TO 

EQUATION ( 4 . 3 ) . 

3 . LASTLY, WHEN a = 2 AND IV > 4 THE IMPLIED COSET VECTOR IS ( ^ R(I) + ^ R(2)) AND 

IN THIS CHAPTER IT IS WRITTEN AS ( ^ R + § r±). W E FIND THAT THE COSET REPRESENTATIVE 

ELEMENT OF EQUATION ( 5 . 6 ) REDUCES TO EQUATION ( 5 . 4 ) . W H E N N = 4 THIS MAY B E 

FURTHER REDUCED TO THE FORM OF EQUATION ( 5 . 3 ) BECAUSE GR± = ~~Qr-
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5.2 Simple results when 6'0(4) invariance is broken 

t o 6'0(2) 0 6'0(2). 

T H E RESULTS we have FOUND IN THIS CHAPTER ARE VALID FOR THE three MODELS CONSIDERED. 

However for the Erst model, when 5'0(4) invariance is broken to 5'0(2) (gi 5^0(2), the 

form of the coset vector allows the results to be simpliAed. This is because the coset 

vector is 

^ 0 0 0 ^ 

0 0 0 

0 0 0 g* 

0 0 A 0 

O 6 

and only in this cage do both r and r_L square to quantities 

1 0 0 0 ^ 

0 1 0 0 

0 0 0 0 

0 0 0 0 

and = 

^ 0 0 0 0 ^ 

0 0 0 0 

0 0 1 0 

0 0 0 1 

'-R 

where still + = 1̂ , + 1;̂  = 1̂ 4] as required; which implies that the associated gr-

vector is diagonal. This is similar to the fact that the r-vector, of given by r = 

(for A: = 1,2,3) has the associated g^-vector which is gr = = Ag. Thus, 

we will End that = 0. Now because the r-vectors lie in non-interacting commuting 

SPACES WE MAY NOW WRITE L AS 

Z, = 1[4] + ((cos§ - 1) + (cos§ - 1) - % (sin§ r + sin^ rj.) 

+ COS^ I J 1; - %SM^ R_L 

So, in e^ect, we may now ignore the vector altogether. To see the results for this 

model in the calculations which appear in the rest of this chapter remember that 

= 0 when evaluating terms like r9̂ r_L are zero too. 
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We also see that and will act as projection operators 

PL r'^ = 1L = ^ - 7 5 ) = 

= 
5 ' I W -- 7 5 ) = 

F L + F R = 1[4] 

THESE PROJECTION OPERATORS WILL PROJECT OUT t h e LEFT AND RIGHT PIECES FROM L, SO WE CAN 

work on 'the two halves' independently (both of which are like the Grst coset model, 

namely in this thesis). Equivalently, the projection operators will project out 

the left and right 2 -8pheres from the coset space; which we now denote 6^ (g) 6"̂ . These 

projection operators are also deBned in Appendix C. 

THEREFORE, when we CALCULATE 2 I L ~ ^ D ^ L , WE WILL FIND 

where and Obviously has projected out the other two 

QUANTITIES. SO WE FIND 

K T = - " - " ' ' I + 8 , ^ " 

« r = (iSMe - "W] + ) a.MI 

WHERE a, (3 = 1 , 2 AND <7, R = 1 , 2 . T O USE THESE INDEX VALUES WE MUST REDEFINE t h e 

5'f7R(2) components Mj_ and note that we cannot form objects 

with a mix of these two sets of indices. 

T H E GOLDSTONE covariant derivatives ARE GIVEN ABOVE, AND the MATTER FIELD COVARIANT 
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derivatives are 

( 5 - 7 ) 

K X = J A ^ + ^ S I R / | M I A , M I E , , 3 A ; J % ( 6 , 8 ) 

W E ALSO FIND THE KILLING VECTOR COMPONENTS TO BE : -

( K I ) J = E „ 3 ^ A F 

(K,j; = M cota {S'^c - n'ri") +'^n'n" 

( K / E ) 3 = Sa3T^± 

( K „ ) ; = M I C O T I ( E - " > L ) + ^ N L N L 

AND, FINALLY, WE have THE GOLDSTONE BOSON PART OF THE EFFECTIVE LAGRANGIAN DENSITY 

T H E TWO 5 ^ MANIFOLDS have METRICS LIKE EQUATION ( 3 . 1 6 ) . FROM THE WORK OF GALPERIN, 

IVANOV, OGIEVETSKY AND SOKATCHEV [22] WE UNDERSTAND THAT THE GOLDSTONE BOSON MANI-

fold (gi 5"̂  is Hyper-K^ler; and so this model (with Selds defined in a 4-dimen8ional 

spacetime) will admit = 2 extended supersymmetry. This is the example of 

a Hyper-Kahler manifold since [22] also suggests that if OM?/ coset space (^) is K^ler 

then (^) (gi 6"̂  will be Hyper-Kahler; and (^) = is the simplest Kahler 

MANIFOLD. W E WILL NOW FIND THE RESULTS FOR THE other TWO MODELS; WHEN M = 5 , 6 . 

5.3 Goldstone boson transformations. 

5.3.1 The linear Killing vector components, K^. 

T O FIND THE LINEAR K G WE MUST, AS USUAL, SOLVE 
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W E HAVE FOUND THE COSET REPRESENTATIVE ELEMENT TO BE 

I , = § ( c o 8 § + c o 8 ^ ) 1[4] 4- ( c o 8 § - c o s ^ ) gr - % ( 8 i n # r + 8 in^ r j . ) 

AND SO THE LEFT HAND SIDE IS SIMPLY 

[ A g , ( c o 8 § - c o 8 | ) [ A g , gr] - i [ A g , r ] - i 8 i n | [Ag , r ± ] ( 5 . 9 ) 

NEXT, FOR THE RIGHT HAND SIDE, WE CALCULATE 

^,6 = - % ( 8 i n # a,6 + 8 i n | 6&) 1[4] - ^ (8 i i i § 0,5 - 8 m | 6,6) 

(C08§ - C08§ ) gr ,6 - i C08§ (Z,6 r - 2 8 i n § r,(, 

C 0 8 | 6,6 r_L - 2 s i n ^ rj_ ,& 

AND SO, FOR THE RIGHT HAND SIDE, WE FIND 

2 2 1 , , = - i ( 8 i i i § 0,6 + 8 i n | 6,;,) 1[4] - ( 8 m § 0,6 - 8 i n § 6,6) 

+i\/2 (COSF - C O S | ) Qr , 6 K G + COSF r + 2 SINF 

+ COSF 6,6 RJ_KG + 2 SINF RJ. , 6 K G ( 5 . 1 0 ) 

SINCE EQUATIONS ( 5 . 9 ) AND ( 5 . 1 0 ) ARE EQUAL, WE IMMEDIATELY SEE THAT THE PIECES IN FRONT 

OF 1[4] ON THE RIGHT HAND SIDE YIELD THE RESULTS 

TTHKI = 0 

' , 6 K ^ 6 K K P = 0 

WHICH WE MAY THEN USE TO VASTLY SIMPLIFY THE RIGHT HAND SIDE TO 

2%Z, ,6K^ = + Z V ^ ( C O S F - C O S | ) GR.FIKI; + 2 S I N F TFTKL; + 2 S I N | R X , 6 K | ; ( 5 . 1 1 ) 
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O N C E AGAIN, BECAUSE OF THE INDICES INVOLVED, WE HAVE TWO SEPARATE RELATIONS WHICH WE 

MAY SOLVE FOR THE K | . FIRSTLY WE HAVE THE RELATION 

( C 0 8 § - C 0 8 | ) [AG, GR] = Z \ / 2 (C08§ - C 0 8 | ) FR 

( / , R ) A G == CFLBKA, ( 5 . 1 2 ) 

AND SECONDLY WE HAVE 

- i SINF [ A S , r] - i S I N | [ A S , r±] = 2 SINF + 2 SINF r± 

8 M # ( / R ) G . + 8 M | ( / R ^ ) E A = 8 I I I § 7 I ; ; , K ^ + 8 I I I | M L _ ( , K G ( 5 . 1 3 ) 

IT IS FAR MORE STRAIGHTFORWARD TO WORK WITH EQUATION ( 5 . 1 2 ) AS WE WILL NOW SHOW. IF WE 

WRITE THE COSET VECTOR IN TERMS OF THE GOLDSTONE FIELDS 

X = O 

= M rfXa + M± Ao 

THEN, IN TERMS OF THE GOLDSTONE FIELDS, THE G^-VECTOR COMPONENTS MAY BE WRITTEN 

9R ~ dabG 

I F WE NOW DIFFERENTIATE THESE COMPONENTS WITH RESPECT TO THE GOLDSTONE FIELDS AND 

MULTIPLY BY THE KILLING VECTOR COMPONENTS THEN THE RELATION, EQUATION ( 5 . 1 2 ) , IS NOW 

iU)EO = + 

— {^rn)cG^B 

BECAUSE THE FIRST TERM ON THE RIGHT HAND SIDE IS IDENTICALLY ZERO. W E POINT OUT THAT WE 

HAVE USED THE UNIT VECTOR m = - ^ r + ^ r± AND SO WE M A Y WRITE 

(U)EG = + (5.14) 

1 2 9 



N O W , FOR # = 4 , WE HAVE THE ADJOINT OPERATOR RELATIONS 

^rfr = '^fqr 

drj_fr± = -:^fqr 

DRFR± "F" = 0 

FRDJ-J^ 4" — 0 

AND IF WE ANALYSE THE RIGHT HAND SIDE OF EQUATION ( 5 . 1 4 ) , BY PARTS, USING LINEAR KILLING 

VECTOR COMPONENTS WITH THE FORM K% = —M {fr)cE " ifr±)cE THEN WE WILL FIND 

— —M {drfr^GE ~~ {drfr^QE 

IFGR)GE ~ {DRFRS_)GE 
W 

'V2 

AND, IN THE SAME WAY, WE WILL ALSO FIND THE RESULT 

A D D I N G THESE TWO RELATIONS TOGETHER GIVES US 

+ % " M M J _ ( ( 4 J . Y R ) G B 

— ~ ML) ifgr)GE 

- ^ ~ ^ I ) ( A J G C 

SO IF WE NOW USE THIS RESULT IN EQUATION ( 5 . 1 4 ) THEN WE HAVE 

(fir) eg ~ dr + M± drj^Gc^E 

— f n \ 

~ V/2 KJQTJEG 

— ifqr)EG 
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T H I S TELLS US THAT OUR 'GUESSED' FORM FOR THE LINEAR KILLING VECTOR COMPONENTS WAS 

CORRECT, AND SO WE NOW KNOW THAT WE HAVE THE DEFINITE ANSWER 

= —M {fr)aE ~ - ^ - 1 ifr±)aE 

= faEbM'' + faEbM^ 

= FAEBM' ' ( 5 . 1 5 ) 

W E WILL NOW USE THIS RESULT TO VERIFY THE SECOND OF THE TWO RELATIONS, EQUATION ( 5 . 1 3 ) , 

WHICH WE COULD SOLVE FOR THE LINEAR KILLING VECTOR COMPONENTS. W E HAD 

( / r ) g . + 8 i l l | = 8 i l l § + 8 i n | M l 

W E WILL NOW SUBSTITUTE INTO THE RIGHT HAND SIDE OF THIS, AND EVENTUALLY OBTAIN THE LEFT 

HAND SIDE. USING EQUATIONS ( D . 2 2 ) AND ( D . 2 3 ) FROM A P P E N D I X D AND OUR RESULT FOR K | 

WE WILL WORK ON THE RIGHT HAND SIDE IN PIECES. FIRSTLY, WE FIND 

= (AF/R + ^ ± / R X ) „ E ~ I ~ ^±fr±)aE 

= - M ( / R ) A 2 

= ( / r ) 

WHERE, IN THE FIRST LINE, TERMS IN WHICH WILL PRODUCE A ZERO WHEN WE FORM 

HAVE BEEN OMITTED. SECONDLY, USING THE SAME METHOD, WE MAY ALSO FIND THE RESULT 

= ifr±)Ea 

IT IS NOW SIMPLE TO SEE THAT SUBSTITUTING THESE TWO RESULTS INTO THE RIGHT HAND SIDE OF 
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EQUATION ( 5 . 1 3 ) WILL GIVE US 

8 i i i | + s i n | = 8 i n § + 8 i n | 

T H I S IS JUST THE RELATION WE WANTED TO VERIFY. THEREFORE WE ARE SURE THAT THE FORM OF 

THE KILLING VECTOR COMPONENTS IS CORRECT. T H I S ENDS THE DOUBLECHECK ON THE RESULT FOR 

THE LINEAR KILLING VECTOR COMPONENTS. 

5.3.2 The nonlinear Killing vector components, K^. 

IN THIS SECTION WE WILL, AS USUAL, FIND TWO RELATIONS WHICH WE MAY SOLVE TO FIND THE 

NONLINEAR KILLING VECTOR COMPONENTS. HOWEVER, THIS TIME WE WILL ONLY SOLVE ONE OF 

THEM; WE WILL USE THE RECONSTRUCTION OF THE GOLDSTONE BOSON MANIFOLD METRIC AS OUR 

SECOND CHECK AS TO WHETHER THE RESULT FOR THE NONLINEAR KILLING VECTOR COMPONENTS IS 

CORRECT; THIS WILL PRESERVE THE FLOW OF THE CALCULATIONS. W E WILL ALSO SEE THAT, TO FIND THE 

KILLING VECTOR COMPONENTS, WE WILL NEED TO USE A SLIGHTLY DIFFERENT APPROACH THAN THE 

ONE USED IN PREVIOUS CHAPTERS. A S USUAL, WE MUST SOLVE 

= 2 I L L K T ( 6 . 1 6 ) 

TO FIND THE NONLINEAR K G COMPONENTS. W E USE THE SQUARE OF THE COSET REPRESENTATIVE 

ELEMENT 

L"^ = I (COS A + COS 6 ) l [4 ] + ; ^ ( C O S A — c o s 6 ) — 2 s i n o r — % s i n 6 rj_ 

WHICH, WHEN WE DIFFERENTIATE WITH RESPECT TO THE GOLDSTONE BOSON FIELDS, GIVES US 

( s i n a + s i n 6 6 ^ ) ( s i n a - s i n 6 6 o ) 

+ ̂  (cos a — COSb) Qr^a - i COS a r — 2 sin a — 2 COS b b^aXx 

- 2 s i n 6 r_L,a 
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SO THE LEFT HAND SIDE OF EQUATION ( 5 . 1 6 ) IS 

{ A 6 , L ^ } = 1 (COSA + C 0 S 6 ) { A J , 1 [ 4 ] } + : ^ ( C O S A - cosb ) {Xb,qr} 

-2 SIN A { X b , r } - i s m b {AT, RJ.} 

= —i (SIN A + SIN 6 1[4] - 2i (SIN A rfdbcE + SIN 6 n'l^dbcE) AG 

+ [(COS a + COS 6 ) (JFTA + \ / 2 (COS a - COS b ) qfd^Ea] K 

WHERE WE HAVE WRITTEN OUT THE ANTICOMMUTATORS EXPLICITLY AND THEN REGROUPED THE 

RESULTING TERMS. T H E RIGHT HAND SIDE IS JUST 

= - i (SINA C q + SIN6 6 ^ ) K G LU] - Z \ / 2 (S INA CO + SIN6 H^g) K ^ 9 R 

(COSA - COS6 ) G R + 2COSG O , O K J R + 2 S I N A 

+2 cos 6 r± + 2 sin 6 r± 

W H E N WE COMPARE THESE LAST TWO EQUATIONS WE OBVIOUSLY HAVE THREE RELATIONS. T H E FIRST 

RELATION CONCERNS THE COMPONENTS IN FRONT OF THE IDENTITY ELEMENTS 

SIN A A A K G + SIN 6 6 G K G = SIN A 7Z'' + SIN6 

AND THIS HAS TWO IMPLICATIONS 

n 

6 A K G = n \ 

(5.17) 

(5.18) 

T H E LAST TWO, VECTOR-LIKE, ORTHOGONAL RELATIONS ARE 

i\/2 (COS a - COS 6 ) GR ,OKG 

- Z \ / 2 (SINA A,A - SINB 6 ^ ) K G QR 

2 (COS a A,Q R + COS 6 B̂ A R ± ) K G 

4- 2 (sina + 81116 7'±,a)Kg 

-2i (SINO r f + SIN 6 r f j ) D&CAA 

(COSA + COS 6 ) 5LA 

+ ( c o s O — COS 6 ) 

E 

A„ 
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WHICH, AFTER REMOVING THE BASIS VECTORS AND USING THE RESULTS IMPLIED BY THE FIRST RELA-

TION, REDUCE TO 

i^/2 (COS a — 0 0 8 6 ) GF 

= —2i{sinarf + smbn'}^dbcE (5.19) 
- I V 2 (SIN A - SIN 6 N ^ ) 

2 (COS a n^rf' + COS b n\ ) (COS a + COS 6 ) 
\ ^ = ( & 2 0 ) 

+ 2 (SIN A + SIN 6 J K J + (COS A — COS 6 ) QFDBEA 

W E WILL NOT TRY TO SOLVE EQUATION ( 5 . 1 9 ) BECAUSE, THE G^-VECTOR COMPONENTS ARE 

OF = 

AND IF WE DIFFERENTIATE THEM WITH RESPECT TO THE GOLDSTONE BOSON FIELDS, THEN WE FIND 

( M M ' : __ 

((FR)CB ^2^ ( (4 \ I )CE NFI) 

SUBSTITUTING THIS RESULT INTO EQUATION ( 5 . 1 9 ) GIVES 

2V2 

SINO ((FR)6B + SIN6 (DR^)BE = (SIN A N ' ' - S I N 6 N ^ ± ) Q F 

- M± n'JKt 

- " T « ° - M I ) ' ' + ^ ( 4 J C E ] K 

WHICH WILL BE DIFFICULT TO SOLVE. T H I S IS SIMILAR TO THE CORRESPONDING RELATION IN THE LAST 

CHAPTER, SEE EQUATION ( 4 . 1 8 ) , WHICH WE COULDN'T DIRECTLY SOLVE EITHER. 

SO WE WILL INSTEAD SOLVE THE FINAL RELATION GIVEN BY EQUATION ( 5 . 2 0 ) . FIRSTLY, WE WILL 

REWRITE IT 

2 ( c o 8 o r X r + COS 6 r ± > < r ± ) c o s a ( l [ i 5 ] + 

+ 2 ( 8 i l l o + S i n t + c o s t ( l [ i 5 ] -
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N O W , IN A P P E N D I X B ON PAGE 1 8 6 WE ARE ABLE TO FIND THE ADJOINT PROJECTION OPERATOR 

RESULTS 

( L [ I = I ~ ^ 2 ( P " + 7 ' " + RJ, > < R _ L ) ^ , + 

ab 

^ ah 

WHICH, WHEN SUBSTITUTED, WILL SIMPLIFY THE RELATION TO 

SIN A + SIN 6 = COS A + COS 6 

+^(co8o+0086) (7 /̂3)06 (5.21) 

W E ARE NOW IN A POSITION TO FIND THE NONLINEAR K G . UNFORTUNATELY, UNLIKE IN THE PREVIOUS 

CHAPTERS, WE DO NOT HAVE A SIMPLE SUBSTITUTION OF THE FIELD DIFFERENTIALS WHICH WILL ALLOW 

US TO SIMPLY REARRANGE THE RESULTING EXPRESSION TO REVEAL THE NONLINEAR K G . T H I S IS 

BECAUSE THE COSET VECTOR IS NOW A LINEAR S U M OF TWO C O M M U T I N G ORTHONORMAL R-VECTORS, 

NAMELY r AND r±, AND THIS MEANS THAT WE NO LONGER HAVE, FOR EXAMPLE, THE RELATION 

{SAB — RF-N^) WHICH WOULD ALLOW SUCH A SIMPLE SOLUTION. INSTEAD WE MUST NOW 

ADOPT A DIFFERENT APPROACH; WE NOTE THAT THIS NEW M E T H O D COULD HAVE BEEN ADOPTED IN 

THE PREVIOUS CHAPTERS, AND WE WOULD HAVE ARRIVED AT THE SAME RESULTS. 

IN A P P E N D I X B WE FIND THE DIFFERENTIALS, WITH RESPECT TO THE GOLDSTONE FIELDS, OF THE 

TWO R-VECTOR COMPONENTS ARE GIVEN BY EQUATIONS ( D . 2 4 ) AND ( D . 2 5 ) WHICH ARE 

Mn „ — TTTo TPr\ ",0 — + V'^^)ac + M^i'Pf0ac + MM±(4frfr_Jc 

== (AFR&AFT) - - A F ] : ) ( 7 : * 4 -K F ) * ; ) , , __ JKRF ( ? ) / , ) , , - - JKTJKFLOL/R.FRI). 

WHERE, IN THE ABOVE, WE HAVE USED THE LINEAR COMBINATIONS OF TWO 'NEW' ADJOINT REPRE-

SENTATION PROJECTION OPERATORS 

4 / R / R ^ = 

= V%+P e 
/I 
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T H U S , IT IS OBVIOUS THAT BOTH SIDES OF EQUATION ( 5 . 2 1 ) ARE NOW IN TERMS OF ADJOINT 

REPRESENTATION PROJECTION OPERATORS; AND IT IS THIS IMPORTANT PROPERTY WHICH DEFINES 

OUR NEW METHOD. IF WE NOW OPERATE ON OUR RELATION WITH APPROPRIATE (COMBINATIONS 

OF) ADJOINT REPRESENTATION PROJECTION OPERATORS, THEN W E WILL ISOLATE THE CORRESPONDING 

PIECES FROM THE NONLINEAR K G ; ONCE WE HAVE USED ALL POSSIBLE PROJECTION OPERATORS 

AVAILABLE TO US, WE WILL HAVE ALL THE PIECES WE REQUIRE TO RECONSTRUCT K G . FOR EXAMPLE, 

IF THE NONLINEAR K G HAS THE FORM 

K G = + + 

WHERE THE LAST TERM REPRESENTS A LINEAR S U M OF all THE OTHER POSSIBLE ADJOINT REPRESEN-

TATION PROJECTION OPERATORS, AND WE ACT ON IT WITH ( P ^ ^ + THEN WE FIND 

ab 

AND, IN THIS WAY, WE HAVE MANAGED TO ISOLATE THE FIRST TERM OF K G . 

SO, BEARING IN M I N D THE ADJOINT REPRESENTATION PROJECTION OPERATORS PRESENT IN THE RIGHT 

HAND SIDE OF EQUATION ( 5 . 2 1 ) , IF WE WORK ON THE RESULTS FOR THEN WE SEE THAT THE ONLY 

NON-ZERO QUANTITIES WHICH MAY BE FORMED IN THIS WAY ARE 

(FC 

— M^M'l i'^fq)dc + M2-MI i^frfr±)dc 

== (4=/RYRJL).K 4" ( I P / : ) , : 

SIMILARLY, WORKING ON THE ^ GIVES THE NONTRIVIAL RESULTS : -

(2 ,34 7 , 4 3 ) ^ 2 , 4 3 ) 

0^f^)daM±n°l_^^ = — {'Pf2)dc — ( 4 /R /RX)DC 

( 4 / R / R X ) D A - ^ ± ? ^ L , C " ""AF'-JWI (4/R/RX)DC — I'PF^)DC 
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W E WILL NOW START TO BUILD K g . T H E SIMPLEST PIECES OF K G TO FIND ARE GIVEN BY THE ACTIONS 

OF R X R AND r±><r± ON THE K G ; WHICH ARE IMPLIED BY EQUATIONS ( 5 . 1 7 ) AND ( 5 . 1 8 ) . 

THESE GIVE 

( R > < R ) ^ K G = ( ^ ) ( R > < R ) . 6 

( R _ L > < R _ L ) ^ K G = ( ^ ) ( R _ L > < R _ L ) ^ 

SO WE IMMEDIATELY HAVE THE PARTIAL RESULT 

^ 6 = ( ^ ) ( R > < R ) ^ + ( ^ ) ( R ± > < R ± ) ^ + - . . 

USING THE SIX RELATIONS ABOVE, WE WILL FIND THE CONTRIBUTIONS MADE BY THE OTHER ADJOINT 

REPRESENTATION PROJECTION OPERATORS. IF WE ACT ON EQUATION ( 5 . 2 1 ) WITH + THEN 

WE FIND 

K G = M C O T A ( ? ^ " + P " % 

USING VF2 LEADS TO 

^ ( ^ / | ) D C + M^-MI i^frfr±)dc^ K G 

+ SIN6 m2-m| (^/ |)dc ~ M^-Ml (4 /r/rx)dcj K 

USING IFRFRJ, GIVES US 

(4 /r / rx )dc+ (^ / | )dc j Kg 

+ SIN6 M^M'I i^frfr±)dc " Kj 

LASTLY, IF WE USE ( P ^ ^ + P ^ ^ ) THEN WE FIND 

T H E FIRST, AND THE LAST, OF THESE FOUR RESULTS IMMEDIATELY GIVE US TWO MORE PIECES FOR 

THE NONLINEAR KILLING VECTOR RESULT; WE NOW HAVE 

K g = M c o t a ( r x r ) . ; , 

+ M j _ c o t 6 ( P ^ + P ^ ) ^ + ( ^ ) ( r ^ X + - - -
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THERE ARE ONLY TWO PROJECTION OPERATOR TERMS LEFT TO SORT OUT, AND WE FIND THESE USING 

THE SECOND AND THIRD RESULTS FOUND ABOVE. T H E POINT AT WHICH WE STOP THE FOLLOWING 

ANALYSIS IS SOLELY GOVERNED BY OUR CHOICE OF PROJECTION OPERATORS USED TO EXPRESS THE 

RESULT FOR K g . FIRSTLY, IF WE ADD THE TWO RESULTS TOGETHER THEN WE FIND 

M-MJ_ ~ S IN6 ) ( ^ / 2 + 4 /R/RJ^)ACKJ = G (COS A + C0S6 4" 4/R/RJ^)AJ 

IF WE NOW SUBTRACT THE THIRD RESULT FROM THE SECOND, THEN WE FIND 

+ S I N 6 - 4 /R/RJ . )ACKG = | ( C 0 8 A + C 0 8 6 ) ( ? / , - 4 /R/RJ . )A6 

IF WE WANTED TO EXPRESS K g USING THE ADJOINT PROJECTION OPERATORS V P AND V P THEN 

THESE LAST TWO RELATIONS ARE THE APPROPRIATE RESULTS. HOWEVER, IF WE ADD THEM TOGETHER 

THEN WE FIND 

= )i'PfsU 

sina - Msint 

AND WE UNDERSTAND THAT THIS SINGLE EXPRESSION IS ALSO A COMPLETE RESULT. W E SEE THIS 

BECAUSE, IF THE LAST PART OF THE UNKNOWN K g IS EXPRESSED IN TERMS OF COEFFICIENTS MULTI-

PLIED BY THE ADJOINT REPRESENTATION PROJECTION OPERATOR COMBINATIONS VF2 AND 4 / R A J . ; 

THEN USING VF2 IN THIS WAY HAS JUST ISOLATED THE ABOVE PIECES FROM K G . THEREFORE, USING 

V% AND , WE HAVE THE RESULT 
Jq Jg 

K ; = A F C O T O ( P " + 7 ' = I ) „ J + { « ) ( R > < R ) . I + M X C O T 6 ( P « + 7 ' ® ) . I 

+ (r±><r±U + 

(M+Mj_)(cosa +COS6 ) ^T)Q \ 09) 
2(SINO+SM6) KL^FPAB \P.Z,Z.) 
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OR, USING P / | AND I / R / N , , w e FIND AN EQUIVALENT EXPRESSION 

+ ( ^ ) (r±><rj.)^ - sino - M^sinb )%).& 

+ 2 ( C O S O I C O 8 6 ) ( ^ J - 8 I : I « - JWRGIIIA )( /L/RJ^M)O6 (S-SK!) 

5.4 Covariant derivatives and the Goldstone boson 

metric. 

W E HAVE FOUND AN EXPRESSION FOR THE COSET REPRESENTATIVE ELEMENT, L 

Z, == A (CCWS* (KAS*-) ]L[4] 4 - - - C O G ^ ) - % (GIIIIG R - ^ SIN* RJ,) 

T H U S WE FIND 

L~^ = I (COSF + C O S | ) 1 [4] + (COSF - C O S | ) Qr + i (SINF R + SINF r±) 

:= - - % ( 8 I I I § SIN* ] L # - - ^^G(8IRI§ G%*O - SIII* 6^*6) GY 

(CO8§ - C O 8 § ) I (CO8§ 9 ^ 0 R + C O 8 § ^ ^ 6 R ± ) 

-i (SINF dfj,r + S I N | d^r±) 

T H I S TIME IT TAKES A LITTLE LONGER TO FIND 2IL^^DFJ ,L = BUT THE CALCULATION IS 

STRAIGHTFORWARD. W E FIND FOR OUR GOLDSTONE BOSON COVARIANT DERIVATIVE 

o,, = + r_L̂ 6̂ + (co8§ + cos*) (8in§ + sin^ 

V 2 (COS§ - COS*) [SIN§ - R9^GR) + S I N * - R ± 8 ^ G R ) ] 

WHICH, AS BEFORE, WE MAY SIMPLIFY TO : -

% = rdfj,a + r±d^b + SIN a + SIN b d^r±_ 

- V 2 (cos§ - cos*) [sin§ {r, + sin* {r±, 8^9r}] (5 24) 
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W E ALSO FIND THE METRIC CONNECTION FOR THE STANDARD FIELD COVARIANT DERIVATIVE TO B E 

^ (c08^§ - C08̂ § ) + % (C08§ - C08§ V2 

2i [SIN^F + 8 I N ^ § R ± 9 ^ R ± + SINF SINF + R±DF,R)] (5.25) 

T H E LAGRANGIAN DENSITY FOR THE GOLDSTONE BOSONS IS FOUND BY CONSTRUCTING THE QUANTITY 

( A ^ , A ^ ) = ^ T R A ^ A ^ . IF WE WERE TO CALCULATE THE QUANTITY THEN WE WOULD END U P 

WITH MANY TERMS. T O SIMPLIFY OUR TASK WE WILL USE THE FACT THAT WE HAVE TRIVIAL RESULTS 

f o r ( r , a ^ r _ L ) , ( r , { r , 8 ^ g r } ) , ( r , { r _ L , a ^ g r } ) , ( r ± , W , ( r _ L , { r , a ^ g r } ) , ( r ± , { r ± , a ; , g r } ) , 

{r,d^r) AND (RJ_, SO, WRITING AS BEST WE CAN WE FIND 

= d^a d^a + dj) d^b + SIN^A dfj_rfd^n°' 

+ SIN^6 D^N°LD^N°L + 2 SIN A SIN 6 

-2\/5(co8§ - co8§) sin a [8in§ (9,;r, {r, }) + })] 

-2v^(co8§ - C08|) 8in6 [8iii§ {r, (9„r_L, {r_L, 9^gr})] 

8in^§ ({r, , {r, 

+ 8in^| ({r±, , {r±, 

+ 2 S I N | SINF ({R, d^Qr} , {r±, df'qr}) 

W E NOW NEED TO WORK ON THE SCALAR PRODUCT TERMS IN THE SQUARE BRACKETS; WRITING THEM 

IN TERMS OF FIELDS, FIELD GRADIENTS AND THE dux- I t TAKES A LITTLE TIME, BUT WE FIND THE 

r e s u l t s 

+ 2 ( C O S F - C O S | ) ^ 

(a^r, {r, 

{R_L, 9 ^ G R } ) 

{r, a^gr}) 
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( { R , A ^ G R } , { R , A ^ G R } ) = 

( { R J . , A , , G R } , { R ± , 9 ^ G R } ) = 

( { R , A ^ G R } , { R ± , A ^ G R } ) = - 2 ^ / ^ 7 1 ° 

S O , AFTER WE SUBSTITUTE THESE IN, WE EVENTUALLY FIND : -

A°OG = dfj,a d^a + 5 ^ 6 d^b + SIN^A d^n'^d'^rf + SIN^6 

+ 2 SIN A SIN 6 + | ( C O S A - COS 6 YDFJ,QFD^QF ( 5 . 2 6 ) 

AT THIS POINT WE WILL DIGRESS, SLIGHTLY, BY RESTRICTING THE PARAMETERS a AND b IN THESE 

PRIMARY RESULTS FOR AND GIVEN IN EQUATIONS ( 5 . 2 4 ) AND ( 5 . 2 6 ) . W H A T WE ARE ABOUT 

TO DO HAS NO PHYSICAL SIGNIFICANCE WITHIN THE THEORY; IT WILL BE PURELY A MATHEMATICAL 

EXCERSISE WHICH WILL GIVE A SIMPLE 'CHECK' FOR THE RESULTS WE HAVE FOUND. O F COURSE, THE 

PROPER CHECK FOR THE FORM OF A ° A ^ WILL BE ACHIEVED, AS USUAL, WITH THE RECONSTRUCTION OF 

THE GOLDSTONE BOSON MANIFOLD METRIC USING THE KILLING VECTOR COMPONENTS. HOWEVER, 

WE CONTINUE FOR THE MOMENT BY FIRSTLY IMPOSING THE CONDITION a = b AND THEN SEE WHAT 

THIS MEANS. SECONDLY, WE WILL I M P O S E THE TWO (SEPARATE) CONDITIONS A = 0 AND THEN 

6 = 0. 

• FOR A = & WE FIND THAT THE PRIMARY AND RESULTS REDUCE TO 

a , ; = ( r + + s i n o 8 , , ( r + r ± ) 

= 2df^ad^a + SIN^A ( N ° + ) 9 ^ ( N ° + N ® ) 

W H E N IV = 4 WE KNOW THAT RS + R 3 ± = ^ / 2 % . S O IF WE LET A = 2 0 THEN THESE 
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EXPRESSIONS BECOME 

Off = + \ / 2 s i n a 8 ^ 9 2 

= Sd^A + SIN a df^S 

= 2 5 5 ^ 0 + SIN 2FI D ^ S 

\ = dfj,a d^a + SIN^A d^q^d'^q^ 

= 4 5 ^ Q 9 ' ' 0 + SIN^2N d^n°'^d^naA 

THESE HAVE THE SAME FORM AS THE RESULTS GIVEN BY EQUATIONS ( 3 . 2 2 ) AND ( 3 . 2 6 ) ON 

PAGE 8 4 , IN THE SECTION ON SO{m) BREAKING TO SO{m — 1 ) WHERE M = 4 , 5 , 6 . T H E 

RESULTS HAVE THE SAME FORM BECAUSE, FOR THESE PARTICULAR SO{m) BREAKING MODELS, 

THE COSET VECTOR IS PROPORTIONAL TO A G^-VECTOR; AND THIS IS ALSO WHAT WE HAVE 

WHEN A = 6; IT JUST HAPPENS TO BE A DIFFERENT G^-VECTOR WITH A DIFFERENT NUMBER OF 

COMPONENTS. 

FOR A = 0 WE FIND THAT THE PRIMARY RESULTS FOR AND A°A^ REDUCE TO 

+ 81116 + \ / ^ ( c o 8 § - 1 ) s i n ^ { r j , , 

= D^BD^H + SIN^6 + | ( C O S 6 — r 

AND WHEN 6 = 0 WE FIND THAT THE PRIMARY AND REDUCE TO 

= rd^a + SIN a d^r - \ / 2 ( C O S | - 1 ) SINF {R, 

OPOO = d^ad'^a + SIN^A + ^(COSC — l^d^q^d^qf 

NOTE THAT { r j _ , = — {R, WHICH ACCOUNTS FOR THE DIFFERENCE IN SIGN OF 

THE LAST TERM OF NOW, IN BOTH THESE CASES, w e HAVE A COSET VECTOR WHICH IS 

PROPORTIONAL TO AN R-VECTOR. THEREFORE WE EXPECT THESE RESULTS TO BE FOUND IN THE 
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PREVIOUS CHAPTER, AND INDEED THEY ARE. O N PAGE 1 1 0 WE FOUND EQUATION ( 4 . 2 1 ) 

WHICH, FOR IV = 4 , IS 

O/LT = + SIN (F) D^R - (COSF - 1 ) SINF { R , D^QR} 

AND ON PAGE 1 1 1 WE FOUND EQUATION ( 4 . 2 4 ) WHICH, AGAIN FOR N = 4, is 

(OP, A ^ ) = DI^(J)D^(J) + 8IN^(;6 | (COS (6 - 1 ) ^ D ^ Q F D ^ Q F 

T H I S SEEMS TO SUGGEST THAT THE FORMS OF AND ARE CORRECT. 

W E WILL NOW REWRITE EQUATION ( 5 . 2 6 ) IN TERMS OF THE ADJOINT REPRESENTATION PROJECTION 

OPERATORS. T H E FIRST TWO TERMS ARE SIMPLE TO DEAL WITH AND WE FIND 

d^a&'a = 

FOR THE OTHER TERMS WE NOTICE THAT, SINCE ( 0 ^ , 0 ^ ) = GAIDFIM" ' , WE ARE ABLE TO 

REMOVE THE GOLDSTONE FIELD GRADIENTS FROM THE EXPRESSIONS IN A P P E N D I X D AND THEREFORE 

FIND THE REST OF GAB DIRECTLY. T H U S , THE RELEVANT EXPRESSIONS WE NEED, IN THE ORDER THAT 

THEY APPEAR IN EQUATION ( 5 . 2 6 ) , ARE 

+ jaMijri'PfSU + 2pS»F (4 /R /r , )a6 

+ iM frfr±)ab 

9?A = W W 

143 



SUBSTITUTING IN ALL THESE RESULTS LEADS TO 

ab 

+ p ^ 2 Z M j j 2 \P'M^{1 — COS a c o s 6 ) - AMM± s i n a s i n 6 ] {Vf^ab 

+ (M2-Mi)2 - c o s a c o s t ) - A i ^ s i n o s i n 6 ] (4/r/r±)o6 (5.27) 

AND EQUIVALENTLY, THIS MAY ALSO BE WRITTEN AS 

gab = ( R > < R ) A 6 

+^{-P"+P"U + ( J L ) ' ( R X > < R X ) . I 

+ (M-Mj.)2 - s i n 6 + ( c o s o - c o s t ) ^ ] ( ? ^ ) ( , ( , 

+ (M4&IF + 8 m 6 )^ + ( c o s o - cos6 )^] (?^)a6 (5.28) 

5.4.1 Verifying the metric result. 

T O VERIFY THAT THE RESULT FOR THE METRIC IS CORRECT, WE WILL NOW USE THE RELATIONSHIP 

BETWEEN THE METRIC AND THE KILLING VECTORS 

to = { k j k ^ + K;KJ)" ' 

HOWEVER, THIS RELATION IMPLIES 

S„(KfKf + K K ) = (5.29) 

WHICH IS SIMPLER TO USE; THE RIGHT HAND SIDE BEING DEFINED BY 

( I [ I6 ] )A6 = ( P ' " + ? ^ ' + R > < R + P / G + P ^ + ? ^ ^ + R J . > < R ± ) ^ 
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If we now use the and Kg in the form given in equations (5.15) and (5.22) then we 

FIND 

K F K 

K " K :G = COT^A ( P I 2 + P 2 I ) ^ + (R > < R ) ^ + COT^A ( P " ^ + P " ^ ) . 6 

+ [r^xr^U + ')' 

I ( {M+MJ_)(COS G + COS 6 ) \ ^ ( ^ Q \ 
\ 2(SINA+SIN6) J \ 

W H E N WE ADD THESE TOGETHER WE OBTAIN : -

K F K F + K J K J = + + 

+ { ' ^ F ( ' • ^ > < ' - J A 6 + C ^ F 1 + {V\ 2 jab 

M+MJ_ \ 2 
+ \ 2 V i + ( s s s f f ) ' (̂ |)<.» 

T H E FIRST FOUR QUANTITIES, ON THE RIGHT HAND SIDE OF THIS EXPRESSION, ARE OBVIOUSLY THE 

inverses of the first four quantities on the right hand side of equation (5.28) and, with 

A SMALL AMMOUNT OF WORK, IT IS SIMPLE TO THEN SHOW THAT THE LAST TWO QUANTITIES, OF 

the above relation, are the inverses of the last two quantities in equation (5.28). Thus 

EQUATION ( 5 . 2 9 ) WILL BE SATISFIED. THEREFORE, EQUATION ( 5 . 2 8 ) IS THE CORRECT RESULT FOR THE 

GOLDSTONE BOSON MANIFOLD METRICS OF THE THREE MODELS CONSIDERED IN THIS CHAPTER. A S 

previously discussed, when m = 4, the manifold is 5'̂  ® 5"̂  and is hyper-Kahler; which 

ALLOWS THE THEORY TO BE EXTENDED TO INCLUDE M = 2 EXTENDED SUPERSYMMETRY. When 

m = 5,6 we just have the metrics of Kahler manifolds, and it is therefore possible to 

extend these models to include JV = 1 Supersymmetry only. 
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Chapter 6 

Conclusions. 

IN THIS CHAPTER WE SUMMARIZE OUR MAIN FINDINGS AND TAKE A BRIEF LOOK AT POTENTIAL 

avenues for further research. 

We have seen how the mathematical techniques in [8, 9, 10], of evaluating effective 

LAGRANGIAN DENSITIES AND STUDYING FIELD TRANSFORMATIONS, ARE BASED UPON THE MANIPULA-

TIONS OF AN EXPONENTIAL QUANTITY KNOWN AS THE COSET REPRESENTATIVE ELEMENT, L. THERE-

FORE, TO GET ANYWHERE WITH MANY PHYSICAL MODELS WE M A Y WISH TO CONSIDER, IT WAS 

EVIDENT THAT WE NEEDED A MATHEMATICAL FRAMEWORK TO HELP US CALCULATE L. BY EX-

tending the work in [17] and applying it to this problem, we have ended up with an 

index free notation (which also supplies a geometrical understanding) and this helps 

us describe the coset vectors; which allows us to calculate the coset representative el-

ement Then, because the coset vectors are written in terms of vectors with a well 

deGned behaviour, we 6nd that the mathematical behaviour of any other vectors con-

STRUCTED FROM THE COSET VECTORS IS ALSO UNDERSTOOD. FOR EXAMPLE, IF L IS THE EXPONENTIAL 

OF AN R-VECTOR THEN WE know THAT, WHEN IT IS EXPLICITLY CALCULATED, IT WILL CONTAIN THE 

^In this thesis we have not considered general SU{N) coset models as they require a projection 

operator method from the outset. This method is used in [13, 15] 
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THE IDENTITY ELEMENT, THE R-VECTOR ITSELF AND THE COMMUTING VECTOR QR (ALL TERMS BEING 

PRECEEDED BY COEFFICIENTS). SO WHEN WE CALCULATE 2 I L ^ ^ D ^ L = A^ + V^ WE WILL FIND TERMS 

INVOLVING rd^r, rd^Qr, grd^r AND SO ON; AND WE IMMEDIATELY KNOW WHICH PIECES ARE PART 

OF AND WHICH ARE PART OF V^. W E HAVE ALSO SEEN HOW THE SYMMETRIC ALGEBRA (USED TO 

BUILD COMMUTING VECTORS) ALSO HELPS US TO FIND FIELD DIFFERENTIALS LIKE FOR THE MODELS 

IN CHAPTER 5 (SEE THE SECOND PART OF A P P E N D I X D ) . 

IN THIS THESIS WE HAVE LOOKED AT MANY MODELS OF SPONTANEOUS SYMMETRY BREAKING 

• WHEN SU{2) INVARIANCE IS BROKEN TO [ / ( I ) , 

e WHEN SO{m) INVARIANCE IS BROKEN TO SO{m — 1 ) FOR ALL M > 3 , 

• WHEN S0{1, m — 1) INVARIANCE IS BROKEN TO S0{1, m — 2) FOR ALL M > 3 , 

• WHEN SU{N) INVARIANCE IS BROKEN TO SU{N — 1 ) (8> U{1) FOR ALL N > 3, AND 

• WHEN SO{m) INVARIANCE IS BROKEN TO SO{m — 2) 0 5 ( 9 ( 2 ) FOR M = 4 , 5 , 6 ONLY. 

FOR ALL OF THESE MODELS WE FOUND THE LINEAR KILLING VECTOR COMPONENTS AND THE NONLINEAR 

KILLING VECTOR COMPONENTS WHICH DESCRIBE THE GOLDSTONE FIELD TRANSFORMATIONS. W E ALSO 

FOUND THE COVARIANT DERIVATIVES, FOR THE GOLDSTONE FIELDS AND THE MATTER FIELDS OF THE 

THEORY, WHICH ARE USED IN CONSTRUCTING THE EFFECTIVE LAGRANGIAN DENSITY. LASTLY, WE 

VERIFIED THE FORM OF THE GOLDSTONE BOSON MANIFOLD METRIC (CONTAINED IN THE SCALAR PART 

OF THE DENSITY) BY RECONSTRUCTING IT USING THE KILLING VECTOR COMPONENTS. 

ALL THE MODELS WHERE THE SUBGROUP CONTAINS A C O M M U T I N G U{1) ^ 5 0 ( 2 ) GROUP HAVE 

A KAHLER GOLDSTONE BOSON MANIFOLD, AND THEREFORE A D M I T J V = 1 SUPERSYMMETRY; THE 

MANIFOLD IN THE 5 0 ( 4 ) BREAKING TO 5 0 ( 2 ) 0 5 0 ( 2 ) MODEL IS HYPER-KAHLER AND SO ADMITS 

M = 2 EXTENDED SUPERSYMMETRY. W E KNOW THIS BECAUSE [22] TELLS US THAT any KAHLER 

(ji) Ccm l)e niEKle Hyiper-IfjUiler tgr forminig (4 )̂ 39 zm(i is 
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S"^ (G) WHICH IS THE SIMPLEST EXAMPLE. ALL THIS ASSUMES THAT FIELDS ARE DEFINED IN A 

4-DIMENSIONAL SPACETIME. IF THE SPACETIME IS 2-DIMENSIONAL THEN A KAHLER GOLDSTONE 

BOSON MANIFOLD IMPLIES THAT THE MODEL WILL ADMIT J\f = 2 EXTENDED SUPERSYMMETRY, 

AND A HYPER-KAHLER MANIFOLD IMPLIES THAT THE MODEL WILL ADMIT W = 4 EXTENDED 

SUPERSYMMETRY. 

T O INCORPORATE SUPERSYMMETRY WE PAIR U P THE EVEN NUMBER OF GOLDSTONE BOSON M A N I -

FOLD COORDINATES INTO COMPLEX COMBINATIONS. T H E N THE FUNCTIONS OF THE INVARIANTS OF THE 

FIELDS ARE RESTRICTED, LEADING TO A BASIS OF STEREOGRAPHIC COORDINATES. A SUPERSYMMETRIC 

VERSION OF THE THEORY IS THEN GIVEN BY REPLACING THESE COORDINATES WITH CHIRAL SUPER-

FIELDS. T H I S METHOD WAS INTRODUCED BY Z U M I N O [21] . IN [ 1 8 ] WE FIND THE RESULTING METRIC 

FOR C P 2 , AND IN [19] THE C P 2 AND C P 4 METRICS ARE INVESTIGATED. W E WILL BRIEFLY SHOW 

THE PROCEDURE FOR THE C P 2 CASE. IF WE WRITE Z = +iM'^, WHICH IMPLIES zz = 

THEN THE GOLDSTONE BOSON MANIFOLD METRIC 

2 / r J J n 2 

MAY BE WRITTEN 

8M^<^ N - NU 1 

dcj) 

4-
d(f) SIN^^ 

M 2 

T H E FINAL TERMS ARE REMOVED BY THE CONDITION ^ WHICH IS SOLVED BY INTEGRATION. 

W E FIND : -

/ — d M = J cosec (j)d(j) 

I N M = IN T A N | + L N C 

— = T A N | 
C 

W E USE SIMPLE TRIGONOMETRIC RELATIONS TO SHOW THAT AND SO USING 
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STEREOGRAPHIC COORDINATES WE FIND 

2P2 

ANOTHER FINE DISCUSSION OF THIS TOPIC, INCLUDING A SECTION ON COMPLEX MANIFOLDS AND THE 

EXTENSION TO A SUPERSYMMETRIC THEORY, MAY BE FOUND IN [20 ] . THEREFORE IT WOULD BE 

GOOD TO ADD SUPERSYMMETRY TO THOSE MODELS IN THIS THESIS WHICH WILL ALLOW IT. 

W E WILL NOW DISCUSS A NEW SERIES OF MODELS WHICH CAN B E INVESTIGATED USING THE MATH-

EMATICAL STRUCTURE OF THIS THESIS. T H E SERIES CONCERNS THE SITUATION WHERE SU{N) IN-

VARIANCE IS BROKEN TO SU{N - 2 ) O SU{2) O C / ( L ) ; THESE MODELS BEING ASSOCIATED WITH 

THE COSETS. IF WE WRITE N = 2k, {2k + 1 ) THEN WE FIND THAT THE COSET 

VECTOR, FOR ANY PARTICULAR MODEL IN THE SERIES, WILL B E A LINEAR S U M OF k ORTHOGONAL, 

COMMUTING, R-VECTORS. W E NOTE THAT THE COSET REPRESENTATIVE ELEMENTS FOR THIS SERIES 

OF MODELS IS GIVEN BY EQUATION ( 5 . 6 ) . IN THE SAME WAY THAT THE C P 2 MODEL (ASSOCIATED 

WITH THE COSET) MAY BE REGARDED AS THE FIRST OF THE C P 2 ( N - 1 ) SERIES OF MODELS 

(ASSOCIATED WITH THE COSETS), WE SEE THAT THE C P 4 MODEL (ASSOCIATED WITH 

THE SU\2)MJ{I) COSET) IS THE FIRST OF THIS SERIES. T H I S IS SIMPLE TO SEE WHEN WE CONSIDER 

THE CHARACTERISTIC EQUATIONS OF THE COSET VECTORS OF THE SERIES; ALL OF WHICH HAVE TRIVIAL 

ODD MATRIX INVARIANTS (I .E. 7 2 ^ + 1 {x) = 0 FOR ALL INTEGER n > 1 ) . T H E CALCULATION OF 

THE DETAILS OF THIS SERIES, ALTHOUGH POSSIBLE, WOULD NOT B E EASY; AND THE DESIRE TO DO SO 

WOULD COME FROM A MATHEMATICAL INTEREST ONLY, AS THERE IS NO PARTICULAR PHYSICAL REA-

SON FOR WANTING TO FIND RESULTS FOR ALL OF THE POSSIBLE MODELS. S O IT WOULD BE BEST IF WE 

RESTRICTED OUR ATTENTION TO THE FIRST THREE MODELS IN THE SERIES. T H E RESULTS FOR THE FIRST 

TWO MODELS ARE ALREADY CONTAINED IN THIS THESIS; IN CHAPTERS 4 AND 5 . T H E THIRD MODEL, 

WHICH RESULTS WHEN SU{b) IN VARIANCE IS BROKEN TO SU{3) ® SU{2) IS OF INTEREST 

SINCE SU(3) G) SU(2) ® U{1) IS NOT ONLY OF THE SAME RANK AS SU{5), BUT THIS MODEL 

WILL ALSO ADMIT M = 1 SUPERSYMMETRY; WHICH MEANS THAT THE THREE COUPLING CONSTANTS 
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(OF THE STRONG, WEAK AND ELECTROMAGNETIC INTERACTIONS) IN THE THEORY WILL CONVERGE AT 

A HIGH ENOUGH ENERGY ~ 10^^ G E V . IN CHAPTER 5 WE GAVE THE APPROPRIATE EXPRESSION 

FOR THE COSET REPRESENTATIVE FOR THIS MODEL, SEE EQUATION ( 5 . 4 ) . T H I S MODEL WOULD BE 

INTERESTING TO INVESTIGATE AND, SUPERFICIALLY, ONLY DIFFERS FROM THE MODEL 

BECAUSE THE COSET REPRESENTATIVE, GIVEN BY EQUATION ( 5 . 4 ) , NOW CONTAINS THE VECTOR 

T H I S WILL INCREASE THE COMPLEXITY/LENGTH OF THE CALCULATIONS BUT THIS IS NO PROBLEM; IT 

WOULD JUST REQUIRE A LITTLE EXTRA THOUGHT. T H E RESULTS IN THE SECOND PART OF A P P E N D I X 

D WILL ALSO NEED TO BE CHANGED BECAUSE WE WOULD NOW NEED TO ACCOMODATE THE EFFECTS 

OF HAVING TO INCLUDE • FOR THE ROLE OF SU(5) IN THIS GRAND UNIFIED THEORY SEE, FOR 

EXAMPLE, THE WORK BY GEORGI AND GLASHOW [23 ] . 

W E WOULD ALSO LIKE TO SEE IF THE RESULTS OF CHAPTER 5 , IN SOME WAY, COULD REPRESENT 

THE MODELS WHERE S0{2,m — 2 ) INVARIANCE BROKEN TO SO{l,m — 3 ) (8> 5 0 ( 1 , 1 ) WITH 

m = 4 , 5 , 6 ; IN THE SAME WAY THAT, IN CHAPTER 3 , THE RESULTS FOR THE MODELS WHERE 

SO{l,m — 1 ) INVARIANCE IS BROKEN TO 5 0 ( 1 , M — 2 ) LOOKED LIKE THE RESULTS FOR THE 

MODELS WHERE SO{m) INVARIANCE IS BROKEN TO SO{m— 1 ) . IF IT IS POSSIBLE THEN IT WOULD 

BE USEFUL IN THE MALDECENA CONJECTURE [24] WHICH STATES THAT T Y P E I I B STRING THEORY ON 

AN A D S ^ ® BACKGROUND (WHICH HAS THE ISOMETRY GROUP 5 0 ( 2 , 4 ) ® 5 0 ( 6 ) ) IS DUAL TO 

Qxi N = A CONFORMALLY INVARIANT FIELD THEORY IN A MINKOWSKI SPACETIME. SINCE NEITHER 

5 0 ( 2 , 4 ) , NOR 5 0 ( 6 ) , ARE OBSERVED IN NATURE, THESE SYMMETRIES MUST BE BROKEN AT LOW 

ENERGIES; AND IN CHAPTER 5 WE LOOKED AT ONE POSSIBLE MODEL WHERE 5 0 ( 6 ) INVARIANCE IS 

BROKEN TO 5 0 ( 4 ) 0 5 0 ( 2 ) . IF A CORRESPONDENCE BETWEEN THE RESULTS OF THE S O { M - 2 ^ S O { 2 ) 

COSET MODELS AND THE S O { I M - 3 ) ® S O { I I) COSET MODELS IS POSSIBLE THEN, WHEN M = 6 , WE 

WOULD HAVE THE MODEL WHERE 5 0 ( 2 , 4 ) INVARIANCE IS BROKEN TO 5 0 ( 1 , 3 ) ® 5 0 ( 1 , 1 ) TOO. 

LASTLY, IN THIS THESIS WE HAVE ONLY CONSIDERED INVARIANCE UNDER global TRANSFORMATIONS 

OF G BROKEN TO GLOBAL TRANSFORMATIONS OF H. HOWEVER, IT IS POSSIBLE TO CONSIDER THE 

BREAKING OF local GAUGE TRANSFORMATIONS TOO, AND THIS TOPIC IS ALSO BRIEFLY DISCUSSED 
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IN [10 ] . A SET OF GAUGE FIELDS AND ARE THEN INTRODUCED WHICH ARE ASSOCIATED WITH 

THE COSET AND SUBGROUP GENERATORS RESPECTIVELY. T H E GAUGE FIELD TRANSFORMATION LAW IS 

TAKEN TO BE 

WHERE / IS A CONSTANT WHICH GIVES THE STRENGTH OF THE UNIVERSAL COUPLING OF THE GAUGE 

FIELDS TO ALL OTHER FIELDS. W E WOULD NOW FIND THAT 

AND THE COVARIANT DERIVATIVES ARE GIVEN BY 

SO THE EFFECTIVE LAGRANGIAN DENSITY, FOR THIS NEW LOCALLY INVARIANT THEORY, WILL BE 

JUST LIKE THE LAGRANGIAN DENSITIES WE HAVE FOUND IN THIS THESIS. 
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Appendix A 

Cartan subspaces in 3̂ ^ and % 

A 1 The Gell-Mann A-matrix basis of 

T H E GROUP SU(3), IN THE DEFINING REPRESENTATION, IS GENERATED BY 8 GENERATORS, 7 } 

| A ^ . I N THE GELL-MANN BASIS THE A'S ARE 

^ 0 1 0 ^ 0 —i 0 ^ 0 0 ^ 

Ai = 1 0 0 Az = i 0 0 A3 — 0 - 1 0 

U 0 oy u 0 oy u 0 0 / 

^ 0 0 ' 0 0 . \ 
—I 

A4 = 0 0 0 A5 " 0 0 0 

u 0 0 J V » 0 o j 

' 0 0 0 ^ 0 0 0 

Ae = 0 0 1 = 0 0 -i 

1° 1 0 / l o % 0 / 

A s - — ^/3 

1 0 0 

0 1 0 

Y 0 0 - 2 Y 

T H E Y HAVE THE PROPERTY 

72 (A;) = ^̂ rÂ  

Sij 

1 V I = 1,2,... ,1 
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THEREFORE THEY ARE ORTHOGONAL AND NORMALIZED, OR ORTHONORMAL, VECTORS; WHICH MEANS 

THEY FORM A BASIS; THEY ARE THE BASIS VECTORS OF 3?®. 

W E SEE THAT [AJ, AG] = 2ifi8K^K = 0 FOR A L H = 1 , 2 , 3 AND K = 1,2,... ,8. THEREFORE 

THE THREE AJ MAY BE USED TO GENERATE AN ISOSPIN SU{2) SUBGROUP (OF SU(3)) WITH A L I E 

ALGEBRA 

[AJ, AJ] = 2i 

— V i , j , k — 1 , 2 , 3 . 

AND THIS ISOSPIN SUBGROUP WILL COMMUTE WITH A 'hypercharge' U{1) SUBGROUP GENERATED 

USING AG ALONE. TOGETHER THEY FORM THE MAXIMAL SUBGROUP 5 ( 7 ( 2 ) (G> T / ( L ) . T H E AJ FORM 

THE FAMILIAR BASIS FOR THE 3?^ SUBSPACE OF T H E EIGENVALUES OF THE A, ARE THE SAME, 

SO THEY ARE SIMILAR MATRICES, I .E. THEY ARE RELATED TO EACHOTHER BY A ROTATION. FOR THE 

MOMENT WE WILL JUST FOCUS ON THE DIAGONAL MATRICES. 

A 1.1 The Cartan Subspace basis of 

FOR THE DIAGONAL A-MATRICES WE SEE 

[AS, AG] = 0 

(ASJAG) = -trXaXs 

= 0 BECAUSE AG AND AG ARE PART OF THE basis. 

SO WE SAY THAT AG AND AG FORM THE BASIS FOR A commuting SPACE CALLED THE CARTAN 

SUBSPACE, WHICH IN THIS CASE IS DIAGONAL, SO WE CALL IT CD- I N GENERAL THE (DIAGONAL) 

CARTAN SUBSPACE HAS A DIMENSION EQUAL TO THE RANK OF THE GROUP; AND S U ( N ) IS A GROUP 

OF RANK (A^ - 1 ) . 

N O W , THE DIAGONAL generators OF SU{3), NAMELY TG AND TG, M A Y BE USED TO CONSTRUCT 
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THREE WEIGHT VECTORS ^ 

Wi = 

W2 = 

W3 = 

1 1 
J 

1 

2 ' 2 V 3 7 ^ 

1 

0, 

2 ' 2 V 3 

1 1 
AS 

\ / 3 / \ / 3 

FOR SU{N) THERE WILL BE N OF THESE. T H E R VECTORS ARE THE root VECTORS, CONSTRUCTED 

BY TAKING THE DIFFERENCES BETWEEN THESE WEIGHT VECTORS 

. n \ 

1 , \ / 3 , 
RI = W2 — ws — -Az + — AG — 

7*2 — W3 — WI 
~2 Y ~ 

0 0 0 

0 1 0 

\ 0 0 -1 J 

^ - 1 0 0 ^ 

0 0 0 

0 0 1 

/ 1 0 0 ^ 

Ts = Wi- W2 A.Q 0 - 1 0 

0 0 0 

AND, IN GENERAL FOR THERE ARE L N { N — 1 ) OF T H E M . T H E R VECTORS HAVE THE 

CHARACTERISTIC EQUATION = 0 WHICH REDUCES TO — R = 0 V TV. T H I S REDUCED 

EQUATION IS NOT THE CHARACTERISTIC EIGENVALUE EQUATION, BUT IT STILL DESCRIBES THE behaviour 

OF THE MATRIX IF, FOR EXAMPLE, WE WANTED TO USE IT TO GENERATE A GROUP ELEMENT. 

T O CONSTRUCT VECTORS WHICH COMMUTE WITH THESE R-VECTORS WE USE THE SYMMETRIC VECTOR 

PRODUCT RELATION 

R V R = ^ (Nr"^ - 2 L[JV]) = VN - 2 Qr 

T H U S WHEN TV = 3 WE HAVE 

Qr — ~ ^ ^ [3] ) ~ V S 

^The components of the weight vectors are the simultaneous eigenvalues of the generators. 
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USING THE SECOND OF THE RELATIONS WE FIND FOR 7-3 

% FOR K = 1 , 2 , . . . , 8 . 

FOR SU{2) WE KNOW THAT dijk = 0 V I , J . A: = 1 , 2 , 3 . THEREFORE WE MUST HAVE 

% \ / 3 £^338 AG 

W E KNOW THAT 0(338 = ^ BECAUSE {q,q) = 1 AND (AG, AG) = 1 . T H U S WE HAVE 

% AS 

T H I S WAS A RATHER LONG WINDED WAY OF FINDING % SINCE WE COULD HAVE JUST USED THE 

EXPLICIT FORM OF 7-3 IN R V R = QR 

1 
^ 3 V R3 — - J = ( 3 — 2 1[3]) 

X / 3 

1 

1 

/ Q N N \ ( 3 0 0 

0 3 0 

L \ 0 0 0 , 

/ 1 0 0 ^ 

0 1 0 

0 0 - 2 

\ 
2 0 0 

0 2 0 

\ O 0 2 Y J 

BUT OUR FIRST METHOD WAS A LITTLE MORE RIGOROUS. 

W E WILL NOW FIND THE -VECTORS ASSOCIATED WITH RI AND R^- W E HAVE A CHOICE OF METHODS 

TO FOLLOW. FIRSTLY, WE MAY USE THE EXPLICIT FORMS OF THE VECTORS AS WE HAVE JUST DONE 

FOR R3 ABOVE; THIS IS THE SIMPLEST METHOD. SECONDLY, WE M A Y REWRITE THEM IN TERMS OF 

THE UNIT VECTORS AND % 

1 V 3 
RG + 

1 

n 

r2 

2 RG + — % 

\ / 3 

2 ^ 3 ^ 93 
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and then when we calculate (r V r) we just need the SU{3) relations rg V rg = 

qs = rs and % V % = —ga- So to find gi we calculate 

9 I ri V ri 

7 3 

1 \/3 3 
— rg V rg — 3̂ V 93 + - 3̂ V 3̂ 

1 x/3 3 
= ^93 - - ^ 7 - 3 -

\/3 1 
2 

-qs 

^-2 0 0 ̂  
1 

0 1 0 

\ 0 0 V 

and, using the same method, we 

f' 1 0 0 ̂  
1 

0 - 2 0 

0 0 1 

So it is now possible to put all these diagonal vectors together, and draw the Cart an 

subspace which, for is a commuting plane 

Figure A.l: The 2-dimensional Cart an subspace of 

We see that we have three choices for the basis of CD- All choices are equally good, 
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SINCE THEY ARE ALL RELATED BY A ROTATION 

R I-> R' = U R U ^ 

Qr ^ Qr — UqrU^ 

IF, FOR EXAMPLE, WE HAVE FOR u 

u 

0 1 0 ^ 

0 0 1 

1 0 0 

THEN THE BASIS OF IS TRANSFORMED 

AI A'I 

AG I—^ A2 

AS ^ AG 

A41—>• A4 

A4 

AS 

r2 

AE 

AS ^ AG 

AE AG 

AY I—> AY 

AG I-> AG 

A? 

AI 

A2 

92 

AND WE ARE NOW USING 7-2 AND Q2 FOR THE BASIS. W E ALSO FIND 

n 1-4 r[ = rs 

9 I = 93 

RG 1-4 FG = RI 

<l2^ q'2 = #1 

BUT, AS BEFORE, THESE LAST FOUR QUANTITIES ARE NOT LINEARLY INDEPENDENT, AND MAY BE 

REWRITTEN, THIS TIME, IN TERMS OF THE NEW BASIS VECTORS R2 AND 

SO FINALLY, WE SUMMARIZE BY SAYING THAT IF WE WANT A BASIS FOR 3?®, THEN WE MUST PICK 
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EIGHT MATRICES FROM 

' 0 1 0 ' 0 -

Ai = 1 0 0 A2 — i 

\ o 0 o y u 
' 0 0 1 ^ ' 0 0 

A4 = 0 0 0 As = 0 0 

u 0 o j 0 

{ 0 0 0 ( 0 0 

Ae — 0 0 1 A7 = 0 0 

^ 0 1 0 / v O % 

0 0 A, = 

/ 

^ 1 0 0 ^ 

0 - 1 0 

\ 0 0 0 / 

\ 

1 0 0 ^ 

r2 

n 

- 1 0 0 

0 0 0 

0 0 1 / 

1 0 0 ^ 

0 - 1 0 

0 0 0 

92 

9I 

1 

V3 

1 

s/3 

1 

0 1 0 

0 0 -2 

1 0 0 

0 -2 0 

\ 0 0 1 / 

/ - 2 0 0 ^ 

0 1 0 

0 0 1 

WITH THE PROPERTY THAT NOT ONLY SHOULD THEY ALL BE ORTHONORMAL, BUT TWO SHOULD ALSO 

commute. THEREFORE WE ARE FREE TO PICK ALL THE MATRICES FROM THE FIRST TWO COLUMNS, 

AND ANY OF THE THREE r — PAIRS IN THE LAST TWO COLUMNS AS A BASIS FOR THE Cart an 

SUBSPACE, CD- NOTE 

1 . IF WE CHOOSE RS AND % AS THE DIAGONAL Cart an SUBSPACE BASIS THEN THE ISOSPIN 

SU{2) SUBGROUP IS GENERATED BY A I , A 2 AND RG, A N D THE COMMUTING U{1) HYPER-

CHARGE SUBGROUP IS GENERATED BY % , o r 

2 . IF WE CHOOSE RG AND % AA THE DIAGONAL CART AN SUBSPACE BASIS THEN THE ISOSPIN 

SU{2) SUBGROUP IS GENERATED BY A4; AG AND RG, A N D THE COMMUTING U{1) HYPER-

CHARGE SUBGROUP IS GENERATED BY o r 

3 . IF WE CHOOSE RI AND QI AS THE DIAGONAL CARTAN SUBSPACE BASIS THEN THE ISOSPIN 

SU{2) SUBGROUP IS GENERATED BY AG, AY AND RI , A N D THE COMMUTING C/ (L) HYPER-

CHARGE SUBGROUP IS GENERATED BY QI. 
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A 1.2 Rewriting a general group vector of 

SINCE A GENERAL VECTOR, x, MAY BE DIAGONALIZED TO 

/ Y4 0 0 \ 

0 B 0 

\ 0 0 C / 

WHERE C = — ( ^ + 5 ) FOR A TRACELESS MATRIX, WE MAY REWRITE THIS 

xd = -Ar2 + Bti 

ORG + 6 % 

^ ^3 J -F B I RA + ^ ^3 J 

WITH a = AND b = V^iA+B) ^ 'PJ^GPGFQPG^ WE must FIND THAT OUR ORIGINAL GENERAL 

VECTOR IS 

x — ar + bqr 

WHERE THE R AND ARE THE ROTATED VERSIONS OF RG AND W E SEE THAT 72 ( x ) = 0^ + 6^ 

BECAUSE THE R AND ARE ORTHONORMAL. IF WE NOW WISH TO KNOW WHAT R AND G^ ACTUALLY 

ARE IN TERMS OF OUR ORIGINAL VECTOR x AND xV x, THEN WE SIMPLY NEED TO FORM 

X Vx = 2abr + — b^) Qr 

AND THEN WE MAY NOW SOLVE THESE LAST TWO EQUATIONS TO FIND 

1 
r = 

Qr 

a (a^ — 36^) 
1 

([o^ — 6^] X — bxV x) 

a 2 _ 3 6 2 + 

WITH X = x^XI AND xV x = \/^x^x^duK^K, AND THE TWO QUANTITIES a AND b ARE RELATED 

TO THE EIGENVALUES OF x BY CONSTRUCTION. 
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A 1.3 The form of group elements. 

It is now simple to write general group elements for 5(7(3). We have 

WHERE FOR N = 3 WE HAVE 

G-IOR = 2 ^ _ 1 ) _ Z S I N O R 

A 2 The A - m a t r i x basis of 

T H E GROUP 5 ( 7 ( 4 ) , IN THE DEFINING REPRESENTATION, IS GENERATED BY 1 5 GENERATORS, T J = 

The A's are 

AI = 

A4 = 

AE = 

A Q — 

ALL — 

AL3 — 

0 1 0 0 

I 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 1 0 

0 0 0 0 

1 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 0 0 0 

0 0 0 1 

0 0 0 0 

0 0 0 0 

1 0 0 0 ^ 

^ 0 0 0 0 

0 0 0 1 

0 0 0 0 

0 1 0 0 

A2 = 

AS — 

A? 

A l o = 

0 - t 0 0 

t 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 - i 0 

0 0 0 0 

i 0 0 0 

0 0 0 0 

/ 0 0 0 0^ 

0 0 0 

0 : 0 0 

y 0 0 0 0 y 

^ 0 0 0 

0 0 0 0 

0 0 0 0 

: 0 0 0 

^0 0 0 O\ 

AQ — 

/ 1 0 0 0 

0 - 1 0 0 

0 0 0 0 

0 0 0 0 

^ 1 0 0 0^ 

0 1 0 0 

0 0 -A 0 

0 0 0 0 

A15 — TO 

1 0 0 0 

0 1 0 FL 

0 0 1 0 

0 0 U - 3 

0 0 0 0 

0 0 0 0 

0 0 0 1 

0 0 1 0 

A12 = 

AW — 

0 0 0 - * 

0 0 0 0 

0 * 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 - t 

0 0 z 0 
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T H I S TIME WE HAVE THE PROPERTY 

( A ; , A J ) = 

7 2 ( A / ) = ^ I R A J = 1 V / = 1 , 2 , . . . , 1 5 . 

THEREFORE THEY ARE ORTHOGONAL AND NORMALIZED, OR ORTHONORMAL, VECTORS; WHICH MEANS 

THEY FORM A BASIS; THEY ARE THE BASIS VECTORS OF 

W E SEE THAT [A,, AIS] = ' H J H ^ K ^ K = 0 FOR A L H = 1 , 2 , . . . , 8 AND K = 1 , 2 , . . . , 1 5 . 

THEREFORE THE EIGHT AJ MAY BE USED TO GENERATE AN SU(3) SUBGROUP (OF SU{A)) WITH A 

LIE ALGEBRA 

[AI ,AJ] = V 2 , ; , A = 1 , 2 , . . . , 8 . 

AND THIS SU{3) SUBGROUP WILL COMMUTE WITH A ( 7 ( 1 ) SUBGROUP GENERATED USING A15 

ALONE. TOGETHER THEY FORM THE MAXIMAL SUBGROUP SU(3) <S> ( 7 ( 1 ) . 

A 2.1 The Cartan Subspace basis of 3%̂ .̂ 

T H E DIAGONAL COMMUTING A'S ARE A 3 , AG AND A15; WHICH IS ONE POSSIBLE CHOICE FOR THE 

BASIS OF THE DIAGONAL CARTAN SUBSPACE. HOWEVER WE WILL CONTINUE AS BEFORE AND CONSTRUCT 

THE WEIGHT VECTORS 

W4 = 
2V2' 

W3 — — ^ A G + / - A I 5 
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T H I S TIME WE CAN CONSTRUCT SIX R-VECTORS. T H E FIRST THREE ARE 

_ 
W2 — W3 — ~2 ^ ^ ^ ® ~ 

_ 
W3 — Wi — " 2 3 — 

Wi — W2 = Xz = 

'0 \ 
1 

- 1 

0 

(-I 
0 

1 

/ 

0 

n 

r2 

= RG 

WHICH ARE AN EXTENSION OF THE THREE R-VECTORS OF AND 

1 , 1 / 2 , 
Wi — W4 — - A 3 4 - 4 - Y - A i 5 — 

1 1 2 
W2 — W4 = — - A 3 4 - + Y G AIS 

1 , / 2 ^ 
W 3 - W 4 = - ^ A g 4 - y - A i 5 = 

/O \ 

/O \ 

= R ± 

W E HAVE CHOSEN TO USE THE NOTATION OF THE LAST THREE R-VECTORS FOR A SIMPLE REASON, 

WHICH WE WILL NOW SHOW BY GIVING AN EXAMPLE : -

• T H E NOTATION R ^ IMMEDIATELY TELLS US THAT THIS VECTOR IS PERPENDICULAR TO RG, 

I .E. (RG, R ^ ) = 0 . IT IS NOT ONLY ORTHONORMAL AND COMMUTING, BUT IT ALSO HAS THE 

PROPERTY SUCH THAT RGR^ = 0 (AND OBVIOUSLY = 0 ) TOO. I F WE HAD NOT USED THIS 

NOTATION THEN WE SHOULD HAVE CALLED THIS VECTOR RE, FOR EXAMPLE, AND ON THE FACE 

OF IT WE WOULD HAVE SIX VECTORS, r j . . . RG. W E WOULD THEREFORE HAVE TO REMEMBER 

MORE RELATIONSHIPS BETWEEN THEM. T H E NOTATION THEREFORE HELPS IN UNDERSTANDING 

THE STRUCTURE, AND GEOMETRY, OF THE SPACES CONTAINING THESE VECTORS. 

162 



W E MAY NOW CONSTRUCT THE G^-VECTORS ASSOCIATED WITH THESE R-VECTORS. T O DO THIS WE 

USE THE SU{4:) RELATION R V R = 2R^ — 1[4] = V ^ Q R , AND DO THIS FOR RG FIRST 

= I 1[4] + ^338 AG + ^ 3 3 15 A15 

= I 1[4] + : ^ AG + (^3315 AI5 

AND IF WE REARRANGE THIS WE FIND 

— <^3315^15 

AND 8 0 (FA315 = THEREFORE 

y— / \ 
% = ^ 2 AG + ; ^ AI5Y 

1 

- 1 / 

NOTICE THAT THIS IS A LONG WINDED METHOD BECAUSE WE FOUND £^3315 FIRST. W E COULD HAVE 

BEEN MUCH QUICKER AND JUST USED THE R V R EXPRESSION WITH THE EXPLICIT FORM OF THE R 

VECTOR 

1 
Qs M - 1[4] ) 

/ (2 1 1 \ 
2 1 

0 1 

\ °) \ 
y 7^ 

1 

FOR THE OTHER VECTORS WE FIND 

9 I = 

92 — ^ (^2 V RG) 
1 
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AND WE FIND THAT r±\/ r± = = —V^qr- THEREFORE WE HAVE THE RELATIONS 

(r,r±) = 0 BECAUSE OF THE DEFINITION OF RJ. . 

( r , Qr) = 0 BY DEFINITION; BECAUSE 7 3 ( R ) = 0 . 

( R ± , 9R) = 0 BECAUSE qrj_ = -Qr-

(9%: Qj) — ^ij foi" i)j —1)2,3. 

AND WE ARE FREE TO CHOOSE AS OUR BASIS FOR CD •-

1 . EITHER THE SET OF THREE G^-VECTORS { 9 1 , 9 2 , 9 3 } , OR 

2 . THE SET OF VECTORS {r,r±,qr}. THERE ARE THREE OF THESE BASIS SETS TO CHOOSE FROM; 

{ R G , A N D { R G , 7 - ^ , 9 3 } . HOWEVER THESE THREE ARE ALL SIMILAR 

CHOICES, RELATED BY A ROTATION. T H I S IS THE SAME I D E A a s WE FOUND FOR THE CART AN 

SUBSPACE OF SU(3); BUT INSTEAD OF HAVING A 2-DIMENSIONAL Cart an PLANE IN 3?®, 

WE NOW WE HAVE A 3-DIMENSIONAL Cart an SUBSPACE IN 3?^^. W E PREFER TO USE THE 

BASIS { R , R ± , Q J . } IN CALCULATIONS BECAUSE THESE ARE ALWAYS ORTHONORMAL COMMUTING 

VECTORS FOR ALL iV; WHEREAS THE THREE G-VECTORS ARE ONLY ORTHONORMAL FOR iV = 4 . 

THEREFORE THE 3-DIMENSIONAL CART AN SUBSPACE OF M A Y BE PICTURED 

FIGURE A . 2 ; T H E 3-DIMENSIONAL CART AN SUBSPACE OF 3%^^. 

W E NOTE THAT THE R, AND R/- (TOGETHER WITH —R, AND — R ^ ) POINT TO THE 1 2 VERTICES, AND 
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THE % TOGETHER WITH THE — % POINT OUT THROUGH THE 6 SQUARE FACES. ( T H E EDGES HAVE 

BEEN DRAWN IN TO HELP VISUALIZE THE STRUCTURE OF THE SPACE). 

FINALLY, WE EMPHASIZE THAT WHEN TV > 4 we MAY always DEFINE THE SET OF THREE VECTORS 

{R, r±,QR} WHICH ARE COMMUTING and ORTHONORMAL. T H U S , WHEN N = A THESE THREE FORM 

THE BASIS FOR THE WHOLE OF THE CART AN SUBSPACE, AND WHEN AT > 4 THEY ARE THREE, OF A 

POSSIBLE [N — 1), ORTHONORMAL DIRECTIONS IN THE CARTAN SUBSPACE. 

A 2.2 Rewriting a general group vector of 

SINCE A GENERAL VECTOR, x, MAY BE DIAGONALIZED TO 

^ 0 0 0 ^ 

0 5 0 0 

0 0 C 0 

0 0 0 D 

WHERE D = — ( A + JB + C ) FOR A TRACELESS MATRIX, WE M A Y REWRITE THIS 

XD Ari± + Br2x + Crs± 

OR3 + 6R3_L + CG3 

WHERE a = b = AND C = 

THEREFORE, WE must FIND THAT OUR ORIGINAL GENERAL VECTOR IS 

X = ar + br± + cQr 

WHERE THE R, r± AND QR ARE THE ROTATED VERSIONS OF r^, r3± AND W E SEE THAT 72 (x) = 

BECAUSE THE R, r± AND qr ARE ORTHONORMAL. T O FIND THE VALUES OF A, b AND C 

FOR A SPECIFIC x WE NEED TO SOLVE THE EIGENVALUE EQUATION OF x. 
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A 2.3 The form of 5(7(4) group elements. 

IT IS NOW SIMPLE TO WRITE GENERAL GROUP ELEMENTS FOR <S '£ / (4) . W E HAVE 

P = E 

^-i(ar + br±+ cqr) 

^-iar^-ibr±^-icqr 

WHERE 

g - j o r _ I ( C O S A + 1 ) 1 [ 4 ] + ; ^ ( C O S A - 1 ) - ^ S I N A R 

^ - i b r ± _ i ( c o s 6 + 1 ) 1 [ 4 ] - ^ ( c o s 6 - 1 ) " ? s i n 6 r ± 

^-ICQR _ C O S ; ^ 1[4] - % S I N ^ ^/2QR 

T O FIND THE SPECIFIC FORMS OF R , A N D WE WOULD NEED TO CONSTRUCT xWx AND xVxVx 

AND THEN SOLVE THREE SIMULTANEOUS MATRIX EQUATIONS. W E WILL NOT DO THIS HERE BECAUSE IT 

WILL TAKE TOO LONG; BESIDES, WE DON'T EXPLICITLY USE SU(4) GROUP ELEMENTS IN THIS THESIS. 

( W E ONLY DID THIS EXPLICITLY IN THE SU{3) SECTION BECAUSE WE JUST HAD TWO EQUATIONS TO 

SOLVE, AND THIS WAS EASY TO DO.) 
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Appendix B 

Adjoint representation operators, 

B 1 Defining the linear operators and 

BOTH f x AND ARE SU{N) ADJOINT REPRESENTATION LINEAR OPERATORS WHICH TRANSFORM THE 

— l)-dimen8ionai real vector spaces denoted WIE will now de&ne them. 

FIRSTLY, = xA IS A LINEAR OPERATOR WHICH ACTS ON A VECTOR y 

: 2/ 

= X /\y 

W E MAY WRITE AS AN ADJOINT REPRESENTATION OPERATOR IF WE TAKE THE EUCLIDEAN SCALAR 

PRODUCT OF THE TRANSFORMED VECTOR y' WITH THE BASIS VECTORS. T H I S ACTION TAKES US FROM 

THE DEFINING REPRESENTATION INTO THE ADJOINT REPRESENTATION. SO WE FIND 

(Z/' .AJR) = ( ( A ; A 2 / ) , A K ) 

— ifx)Kjy'^ 
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THEREFORE WE HAVE 

C/z);jr (B.l) 

T H E SECOND OPERATOR, DX = Z V I S A LINEAR OPERATOR WHICH ACTS ON A VECTOR y 

4% : 3 / I - » == 

= xy y 

= VN X^y^'duK^K 

IN THE SAME WAY AS FOR FX, WE MAY WRITE DX AS AN ADJOINT OPERATOR USING THE EUCLIDEAN 

SCALAR PRODUCT 

= VOV 

= \ / ] V 

= V W 

— {^x)Kjy^ 

THEREFORE WE HAVE 

( B 2 ) 

B 2 Some relationships between the f's and d's. 

W E NOW WRITE SOME RELATIONS BETWEEN THE F'S AND THE D ' S 

• / I IS A DERIVATION OF THE LIE ALGEBRA, SO WE HAVE 

J Z ( & / \ Z) = (y,:?/) A 2 4 - % A(JTCZ) 
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T H I S IS THE JACOBI IDENTITY. WRITTEN MORE EXPLICITLY WE HAVE 

X /\ {y /\ z ) y h {z A x) + z ^ {x ^y) — 0 

AND, IF WE ISOLATE THE LINEAR ADJOINT OPERATORS WHICH ACT ON Z, THIS IS 

[ f x j f y ] — fxAy (B 3) 

• f x IS ALSO A DERIVATION OF THE SYMMETRIC ALGEBRA, SO WE HAVE 

/ Z ( % / V Z ) = ( A Z / ) V ^ + 2 / V ( / C ^ ) 

W H E N REARRANGED WE FIND THE LINEAR OPERATOR COMMUTATOR 

[/ICJ — DIXAY ( ® - ^ ) 

W E ALSO FIND 

A ( 2 / V Z ) + / Y ( Z V A ; ) + / X A ; V 2 / ) = ( A 2 / ) V Z 4 - 2 / V ( / A . ^ ) 4 - ( / Y Z ) V A ; 

+ Z V V 2/ 4 - A; V ( / ,%/) 

= 0 

SO ISOLATING THE LINEAR OPERATORS YIELDS 

+ = A V Y ( B . 5 ) 

I F WE TRANSPOSE THIS RELATION THEN WE FIND 

dxfy 4" dyfx — fxVy (B.6) 

NOTICE THAT WHEN y = x we FIND 

= 0 (B.7) 

= /CVZ ( B . 8 ) 
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* The agsociator of the V algebra is 

Z V ( ^ V Z ) — ( A ; V ^ ) V Z = ] V ^ A ( 3 : A Z ) — 2 Z ; ( % / , % ) + 2 Z (3;,%/) 

OR, MAKING THE OPERATORS MORE OBVIOUS WE HAVE 

- 4vi,) - ^ A A + 2 (z, %/)) - z - 2 (? / , z) a; 

If we deGne the operator z x i / by its action (a;><?/) z = a;(3/, z) then the last 

EQUATION IS NOW 

dxdy dx\/y — N f y f x 2 (X, Y) 1 2 x >< y (13 .9) 

and its transpose is 

DYDX DXVY — /X/JZ ~F~ 2 (Y, X) 1 J Y " 2 _ J — 2 Y > < 2 ; ( B . I O ) 

AND WE SEE THAT WHEN y = x THEY BOTH REDUCE TO 

= 4 v . + 2(a; ,T)( l [ ;v2_i ] -P, ) (B.ll) 

WHERE Vx = 72(X)"^RC ><x. W E WILL MEET THIS PROJECTION OPERATOR, FOR unit VECTORS, 

LATER; WHERE WE WILL RETAIN THE NOTATION x x x . FOR REFERENCE WE MAY FORM TWO 

NEW RELATIONS 

[d3;,(fy] + Ar[/g.,/y] = -2(z><?/-2/><3;) (B.12) 

{DXIDY\ — IDXYY = { / S J / ? / } ~L~ 4 (X, Y) — 1] 

—2(z><y + 2/><a;) (B.13) 
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B 3 Adjoint representation Projection Operators. 

B 3.1 The adjoint representation of SU{2). 

IT IS SIMPLEST, AND ALSO VERY INFORMATIVE, TO START WITH THE GROUP SU{2). I N THE DEFINING 

REPRESENTATION AN R-VECTOR IS GIVEN BY 

R = N (̂TFC = 

WHERE WE HAVE 

= 1[2] 

T O FORM ADJOINT REPRESENTATION PROJECTION OPERATORS W E NOTE THAT 

S O IF WE TAKE HALF THE TRACE OF THIS EXPRESSION, I .E . WE FORM ( A I , A J ) , WE FIND 

Sij = + + + (B.14) 

T H E LEFT HAND SIDE IS NOW THE S U M OF three PROJECTION OPERATORS, SO WE DEFINE 

(•p'% = \{p%p'^i) 

(•P%i = ^{P'^iP'ai + P'aiP\) 

THEREFORE EQUATION ( B . 1 4 ) IS NOW JUST 

( l | 3 l ) « = ( P ' % + ( V ' % + ( P % ( B . 1 5 ) 
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WHERE WE MAY SIMPLY CALCULATE THE ADJOINT PROJECTION OPERATOR MATRIX COMPONENTS TO 

BE 

== 4- (13-16) 

== - - RN'R*?) - ( B - I T O 

(7,3);j == nf,*; (I3.1IS) 

W E MAY NOW WRITE THESE IN TERMS OF THE ADJOINT OPERATORS INTRODUCED AT THE BEGINNING 

OF THIS A P P E N D I X . W E WILL DO THIS IN A FAIRLY RIGOROUS WAY. FIRSTLY WE MAY WRITE 

— ~ ^ i f r ) i j 

N O W , IF WE SQUARE THIS WE GET 

( 7 , 1 2 4 -

= ( L M - R > < R K & 

WHERE WE HAVE USED EQUATION ( B . L L ) FOR iV = 2 AND x = r. So WE SEE THAT, IN TERMS 

OF THE ADJOINT REPRESENTATION OPERATORS, THE ADJOINT REPRESENTATION PROJECTION OPERATORS 

MAY BE WRITTEN 

( P % i = 5 ( L | 3 | - P % - ^ ( / R ) « ( B - 1 9 ) 

= 5 ( L [ 3 , - 7 " ) I I + ^ ( / R ) « ( B . 2 0 ) 

= ( R > < R ) I J ( B . 2 1 ) 

WHERE P S _ ^^3^. 

B 3.2 Some more adjoint projection operators of SU{N). 

W E START BY RESTATING THE FACT THAT THE RELATIONS BETWEEN r AND GR-VECTORS IS THE SAME 

NO MATTER WHAT THE SPECIFIC FORM THE R-VECTOR, OR ITS ASSOCIATED G^-VECTOR, ACTUALLY 
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TAKE. THEREFORE, FOR THE PURPOSES OF THIS SECTION, WE WILL DEFINE THE R-VECTOR WE WILL BE 

USING AS THE DIAGONAL A3 OF THE GELL-MANN BASIS OF 3%^; THE ASSOCIATED G^-VECTOR BEING 

DEFINED BY THE RELATION R V R = WHICH IN THIS CASE IS AG. NOW IN EXACTLY THE SAME 

WAY THAT R X R IS AN ADJOINT REPRESENTATION PROJECTION OPERATOR, WE FIND THAT Q R X Q R 

IS ONE TOO. HOWEVER SINCE WE HAVE MORE THAN THREE ADJOINT PROJECTION OPERATORS WE 

UNDERSTAND THAT THE QUANTITY (L[AR2_I] — r x r ) NOW NEEDS TO BE FURTHER REFINED SINCE 

IT MUST CONTAIN QJ-XQ^. . W E WILL NOW EXPLICITLY WRITE THE ADJOINT OPERATORS OF SU{3), 

WITH RESPECT TO r AND Q̂ . VECTORS. W E FIND 

Ir = 

0 - 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 

0 0 0 | 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 0 

^ 0 0 0 

0 ^ 0 

1 0 0 

( 

dr 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 

0 0 

0 0 0 0 

0 0 0 0 ^ 0 

0 0 

0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 1 0 0 0 

F 0 0 

0 

0 0 

W E MAY NOW EITHER USE OUR KNOWLEDGE OF THE ANTISYMMETRIC AND SYMMETRIC STRUCTURE 

CONSTANTS FOR SU{3), OR USE THE RELATIONS 

DĜ  + 2 1[8] — 2R > < R 

2/RRFR = /< qr 

TO CALCULATE DQ^ AND FG^. W E FIND THEM TO BE 

/ 

fgr — 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 2 0 0 0 

0 0 0 2 0 0 0 0 

0 0 0 0 0 0 2 0 

0 0 0 0 0 2 0 0 

0 0 0 0 0 0 0 0 

d, Qr 

1 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 

-1 0 0 0 

5 0 0 

5 0 
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LASTLY, FOR THIS EXAMPLE WHERE R = A3 AND N = 3, we FIND ; 

/ 

rxr 

^ 0 0 0 0 0 0 0 0 ^ 

0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

QJ- XQJ-

\ 

\ 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

O O O O O O O l y 

IN PRACTICE WE WILL KEEP THE NOTATION OF THE LAST SECTION AND WRITE = r x r . W E ALSO 

NOTE HERE THAT IN OUR CALCULATIONS WHERE WE NEED TO USE THE LANGUAGE OF ADJOINT PRO-

JECTION OPERATORS TO SIMPLIFY EXPRESSIONS WE DO NOT ENCOUNTER THE PROJECTION OPERATOR 

Q R X Q R - T H I S IS BECAUSE THE MATRIX INDICES WE ARE CONCERNED WITH IN EXPRESSIONS LIKE 

THE GOLDSTONE BOSON MANIFOLD METRIC ARE COSET INDICES, AND {qr><Qr)ab = 0 . THEREFORE 

WE WILL NOT GIVE IT ANOTHER NAME. 

B 3.2a The projection operator combinations + and + 

W E WILL NOW USE A SIMILAR APPROACH TO THAT FOUND ON PAGE 1 7 1 , WHERE WE LOOKED AT 

THE ADJOINT OF SU{2), TO RE-CALCULATE THE FIRST TWO ADJOINT REPRESENTATION PROJECTION 

OPERATORS FOR GENERAL N . A S BEFORE, IF WE DEFINE : -

P I _ P 2 ^ R 

THEN THIS TIME WE HAVE 

N ( 2 + YAR(VV-2)GR) 
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WHERE P ^ ^ With the adjoint projection operators P 12 

AND V DEFINED AS BEFORE :-

THEN WE FIND WE HAVE THE COMBINATIONS 

( P + P ) 7 J = (R A;R A J - R A / R A J ) 

= ; ( R ( R A F R ^ A J - R ^ A F R A J ) 

(B.22) 

(B.23) 

FOR THE FIRST EXPRESSION WE FIND :-

^ P I 2 _L_ [ ( & ^ ) GRAF^RAJ — RA/RAJ] 

Now, using the general result :-

(R ( Z A ; Z A J ) = ^ ( 2 A R / ^ + + 2 ( Z , 2;) L [ ; V 2 _ I ] ) 
i j 

AND SUBSTITUTING IN FOR x — Qr AND ALSO FOR X = R WE EVENTUALLY FIND 

P L 2 P 21 ^ F2 _ /'2 
V J OR V r 

f r (B.24) 

T H I S QUANTITY IS USED IN OUR CALCULATIONS; AND WE WILL SOON EXAMINE V F 2 . FOR NOW, WE 

MAY CALCULATE WHEN N = 3 AND R = A3 

f r = 

^ 1 0 0 0 0 0 0 0 ^ 

0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

O O O i O O O O 

0 0 0 0 ^ 0 0 0 

0 0 0 0 0 ^ 0 0 

0 0 0 0 0 0 ^ 0 

0 0 0 0 0 0 0 0 
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AND COMPARE THIS WITH EQUATION ( B . 2 4 ) . USUALLY, IN OUR CALCULATIONS WE WILL USE 

== (13 25) 

W e SEE THAT, FOR N = 2, we HAVE 

4 - == ._J% 

-[3] Irai — rxr 

WHICH IS OBVIOUSLY CORRECT BECAUSE THERE ARE NO G^-VECTORS AND IJSJ = + 

N O W , EVEN THOUGH WE DO NOT MEET THE QUANTITY IN OUR CALCULATIONS, TO 

COMPLETE THIS SECTION WE WILL GIVE THE RESULT 

? , 1 2 P S L == __2I ( /R - - DZFNFDR/G, - - DGY-FR)) 

AND IT IS POSSIBLE TO SHOW, USING THIS EQUATION, THAT AS IS 

OBVIOUSLY REQUIRED. 

IN CHAPTER 5 WE ALSO NEED AN EXPRESSION FOR THE ADJOINT REPRESENTATION PROJECTION O P -

ERATOR COMBINATION + V ^ ^ ) . T H I S IS BECAUSE, TO DESCRIBE THE COSET VECTOR, WE NOT 

ONLY NEED TO USE R BUT ALSO AN ORTHONORMAL, COMMUTING R-VECTOR CALLED r± = — P^-

T H E METHOD USED TO CALCULATE NOW YIELDS 

7)34 4- = 1 (B.26) 

WHERE WE HAVE SUBSTITUTED IN A'' = 4 AND USED THE FACT THAT, FOR = 4 , WE HAVE THE 

RELATION = —QR-
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B 3.2b The adjoint projection operator Vf2. 

W E KNOW FROM EQUATION ( B . 6 ) THAT = FXVX: EQUATION ( B . 7 ) TELLS US THEY 

COMMUTE, SO WHEN x = Qr we HAVE 

^^grfqr JQr^Qr 

-A. f ^ J Q: VN^ Jlr 

IF WE NOW PREMULTIPLY THIS BY dg^ AND USE EQUATION ( B . L L ) WITH x = Qr THEN WE FIND 

AFTER A LITTLE REARRANGING THAT 

4(JV-2) — f 
N J q-r J IT 

T H I S RELATION IMPLIES THAT 

4(AR-
N J Qr 

THEREFORE THIS QUANTITY HAS PROJECTION OPERATOR QUALITIES, AND SO WE WRITE 

4(IV-: 2 1 / 2 
OF 

(B.27) 

FOR THE EXPLICIT EXAMPLES GIVEN EARLIER WHERE N = 3 AND R = AS WE FIND 

= 

^ 0 0 0 0 0 0 0 0 ^ 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 

0 0 0 0 1 0 0 0 

0 0 0 0 0 1 0 0 

0 0 0 0 0 0 1 0 

o o o o o o o o y 

OBVIOUSLY THIS IS THE S U M OF 4 PROJECTION OPERATORS. HOWEVER THEY ARE DIFIICULT TO 

ISOLATE, SO WE WILL NOT TRY TO. 
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W H E N TV = 4 , SPECIFICALLY IN CHAPTER 5 , THINGS ARE A LITTLE DIFFERENT BECAUSE VF2 M A Y 

BE, MORE READILY, SPLIT U P INTO A LINEAR S U M OF TWO OTHER PROJECTION OPERATORS; THESE WE 

WILL CALL V p AND V p - T o INTRODUCE THIS IDEA WE FIRST RECALL TWO RESULTS FROM THE LAST 

SECTION, NAMELY 

P L 2 + P 2 1 _ 

P 3 4 ^ P 4 3 ^ 

PROM THESE RELATIONS WE NOTICE 

AND SINCE [FR, FRJ_] = 0 WE HAVE 

T O ANALYSE THIS WE WILL START BY CONSTRUCTING THE ADJOINT MATRICES FR AND / N , WHICH WILL, 

INDEPENDENTLY, GIVE US THE FORM OF V F 2 . W E WILL THEN FIND OUT WHAT THE PRODUCT 4:FRFR_̂ _ 

LOOKS LIKE. USING, FOR SIMPLICITY, THE R-VECTOR R = AS WE HAVE THE RELEVANT STRUCTURE 

CONSTANTS 

/ L 2 3 — 1 

/ 3 4 5 = / 3 9 I O = 2 

/ 3 6 7 = / 3 I I I 2 = — 2 

AND FROM THESE IT IS SIMPLE TO CONSTRUCT THE ADJOINT MATRIX OPERATOR BECAUSE 

{ f r ) l J = fl3J 

= —fsTJ 
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Therefore, we find the adjoint operator to be 

f r 

0 - 1 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 ^ 0 0 0 0 0 

0 ^ 0 0 

\ 

0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

O O O O O O O O i 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

1 0 

Therefore we have : 

/ 

7 , 

1 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

O O O i Q O O O O 

O O O O l O O O O 

O O O O O i O O O 

O O O O O O j O O 

0 0 0 0 0 0 0 0 0 

O O O O O O O O i 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

2 
0 0 

0 0 

0 -I 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

i 0 

0 I 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

i 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

I 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

P L 2 

Similarly, for r± — — + •y/|Ai5, using — / e r s — /sqio — / s 1112 2\/3' 
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/ S 1 3 1 4 a n d fg 10 15 — / l l 1215 — / l 3 14 15 — — 

^ 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

o o o o j o o o o o o 

f , r± 

0 0 0 - i 0 0 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 - | o 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

O O O O O O O O O O l 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

T H I S MATRIX, WHEN SQUARED, GIVES THE RESULT 

2 
RX 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

o o o o i o o o o o 

0 0 0 1 

0 0 0 0 0 

0 0 0 0 0 0 

0 

0 0 0 0 0 

0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

O O O O O O O O i O O 

O O O O O O O O O i 0 

O O O O O O O O O O J 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 

WE FIND 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

- 1 0 0 0 

0 0 0 0 

0 0 - 1 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

i 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 0 

P 3 4 ,43 

THEREFORE, USING THE RESULTS FOR — / ^ AND — W E SEE THAT IT IS EASY TO ISOLATE THE ADJOINT 
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PROJECTION OPERATOR V F I AND ALSO THE PROJECTION OPERATOR COMBINATIONS AND 

W E MAY ALSO USE FR AND TO FIND THE QUANTITY 

4 / R / , 7-X 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 - 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 - 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ° / 

= 

WHERE IS MADE FROM THE FOUR OUTER (POSITIVE) COMPONENTS, AND V J 2 FROM THE FOUR 

INNER (NEGATIVE) ONES. W E NOTICE THAT THIS IS AN ADJOINT VECTOR QUANTITY BECAUSE 

tr {4:frfr±) = 0 . T H U S , A VECTOR QUANTITY MAY BE DESCRIBED BY THE DIFFERENCE OF TWO 

PROJECTION OPERATORS IN THE DEFINING REPRESENTATION AND ALSO IN THE ADJOINT REPRESENTA-

TION TOO. ALSO NOTE 

4 / R / , R_L i f r + f r ± y - { f r " /r±)^ 

g2 
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WHERE WE MAY FIND, USING AND FR_^, THE RESULTS 

B 4 Additional work for Chapter 4. 

B 4.1 Checking the result. 

IF WE SUBSTITUTE THE RESULT FOR K G , EQUATION ( 4 . 2 0 ) , INTO THE RELATION WE COULDN'T DIRECTLY 

SOLVE, EQUATION ( 4 . 1 8 ) , THEN WE FIND, AFTER A LITTLE BIT OF WORK, THAT WE CAN GET AS FAR AS 

WRITING 

= ( C 0 8 9 & - L ) ^ M ' ' G F - ; ^ ( C 0 8 ( 6 - L ) X 4 ) ^ W G R L 

- L ) ( A R + 2(CO8, ; ) - L ) ) W R ) 6 F ; ( B . 2 8 ) 

IT IS THE SECOND TERM WHICH CAUSES US PROBLEMS. IT M A Y BE WRITTEN EITHER 

i^r)aE i^qr)ab ~ 

= {drdq^)^^ 

OR IT MAY BE WRITTEN 

i^r)aE (^9r)a6 — (^9r)k, i^r)aE 

= {d'qrdr)ijE 

T H E RELATIONS BETWEEN D .̂ AND DQ^ WHICH WE MAY WORK OUT DO NOT HELP US HERE. W E HAVE 

FOR EXAMPLE 

DRDQ^ - NFG^ FJ. = V N - 2 D R - 2 R > < Q R 

DR - A T / R = \ / A R - 2 ( F R - 2 G R > < R 
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and we also know that [/r, = 0- But this seems to be as far as we can go; at least 

AT THIS LEVEL OF ENQUIRY. HOWEVER, IF WE ASSUME THAT OUR CALCULATION IS CORRECT TO THIS 

POINT, THEN WE must HAVE THE RELATION 

{dgj.dr) 6 ^ ( 4 ) 6 G + T ( R > < G R ) (B.29) 

where (rxgr)^^ order that both sides of equation (B.28) balance. In 

GENERAL THIS RELATION IS ALSO DIFFICULT TO CONFIRM, BUT WE WILL NOW SHOW THAT IT IS CORRECT 

for TV = 3, i.e. using the adjoint operators for 5'(7(3). 

N O W IN [ 1 7 ] WE FIND THAT THE TWO EQUATIONS ( B . 1 2 ) AND ( B . 1 3 ) BECOME 

[dg^jdr] — 2f(^Qf><T TXQj'^ 

{dqr ,dj-} = {fqri f r } 

= —dj- Qj->< r T >< Qr 

(B.30) 

(B.31) 

WHICH WE WILL NOW VERIFY. W E CALCULATE 

drdqj. 

\ 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 - 1 

0 0 0 4 0 0 0 0 

0 0 0 0 4 0 0 0 

0 0 0 0 0 vS 
4 0 0 

0 0 0 0 0 0 VI 
4 0 

0 0 1 0 0 0 0 0 

S O WE SEE THAT WE M A Y WRITE THESE RESULTS 

1 3 

2 ' 

1 

dfdq^ > < R 

diq^df 
1 J 3 

" 2 2 ^ ^ " ^ ' 

dq^df 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 4 
0 0 0 0 

0 0 0 0 - f 0 0 0 

0 0 0 0 0 4 
0 0 

0 0 0 0 0 0 
V 3 
4 0 

0 0 - 1 0 0 0 0 0 

(B.32) 

(B.33) 

THEREFORE FROM THESE WE FIND EXACTLY THE RESULTS OF EQUATIONS ( B . 3 0 ) AND ( B . 3 1 ) GIVEN 

in [17]. 
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IN CHECKING THE NONLINEAR KILLING VECTOR COMPONENTS, BACK ON PAGE 1 8 3 , WE WERE FORCED 

TO ASSUME THE RELATION 

{dqrdr)iE ~ 2VW-2 + Y i'''><Qr)bE 

WHICH, FOR i V = 3 IS 

{dqrdr)ijE ~ 

= - | ( R F R ) 6 £ ; + ( B . 3 4 ) 

IF WE WRITE EQUATION ( B . 3 3 ) IN TERMS OF THE OPERATOR COMPONENTS WE HAVE 

1 3 1 

J = - G ( 4 ) F J + 2 7 ^ ^ ? / - 2 

BUT THIS IS FOR GENERAL r AND -VECTORS WHICH LIE IN UNSPECIFIED DIRECTIONS. IF WE NOW 

RESTRICT THE INDEX I ^ a (ALLOWING IT TO RUN OVER THE R-VECTOR INDICES) AND THE INDEX 

J E (THEREFORE ALLOWING IT TO RUN OVER THE G^-VECTOR INDICES), THEN THE LAST TERM IN 

THE ABOVE EXPRESSION VANISHES AND WE ARE LEFT WITH EQUATION ( B . 3 4 ) . W E ALSO NOTE 

{d'qrdr)i,E ~ {d-rdg^) Eb 

AND HAD WE CONSIDERED THE RIGHT HAND SIDE'S FORM INSTEAD THEN, BY USING THE SAME LINE 

OF REASONING AS ABOVE, WE WOULD HAVE ARRIVED AT THE S A M E RESULT. N O W THAT BOTH SIDES 

OF EQUATION ( B . 2 8 ) BALANCE, WE CAN SAY THAT THE FORM OF K G IS CORRECT; BECAUSE WE HAVE 

MANAGED TO VERIFY THE RELATION WHICH WE COULDN'T DIRECTLY SOLVE. 
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B 4.2 Simplification of the CP 2(N-1) metric, gab, and {dq̂ )ab-

T H I S SECTION APPLIES TO PART OF THE METHOD IN SECTION 4 . 2 . 5 ON PAGE 1 1 0 . W E FOUND THAT 

WE HAD TO CALCULATE TR(RD^QRD^R + RD^RD^QR). W E MAY WRITE THIS IN TWO WAYS 

= <J^tr{dfqrd>'qr) 

= (B.35) 

WHICH USES THE CYCLIC PROPERTY OF THE TRACE, OR WE CAN WRITE 

= — 2tr Qrd^rd'^r ( B . 3 6 ) 

WHERE, AGAIN, WE HAVE USED THE CYCLIC PROPERTY OF THE TRACE IN CONJUNCTION WITH THE TWO 

RELATIONS rd^Qr = 5^(RGR) - qr AND (d^qr) r = d^{qrr) — qrd^r. IF WE NOW EXPLICITLY 

CALCULATE BOTH EQUATIONS, AND THEN EQUATE THE TWO, WE EVENTUALLY FIND THE RELATION 

N . B . WE HAVE REMOVED D ^ M ' ^ D ^ M ' ' FROM BOTH SIDES. W E REARRANGE THIS TO GIVE 

IDGR)AB — 2) — 2((I^)AB + — 2) ( B . 3 7 ) 

AND IF WE NOW USE THE RELATION — N f ^ = + 2 ( — r x r ) , THEN WE 

FIND THAT WE HAVE 

3-s/N — 2 {dq^)ab — {N — &)5 ab ~ '^^{fr)ab + 2N n°''n!' 

FOR THESE MODELS THE COSET INDICES OF THE IDENTITY MAY BE WRITTEN 

(l[iV2-l])a6 => Sab = +7^"^^ + r x r + Vf2)ab 
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SINCE THESE ARE THE ONLY PROJECTION OPERATORS WHICH M A Y BE CONSTRUCTED WITH NON-ZERO 

ENTRIES FOR THESE COMPONENTS. I F WE ALSO USE OUR RELATION THEN 

WE FIND 

IDQ^)AB — V N - 2 + ^ > < R ) G ( , + 2VN-2 ( B . 3 8 ) 

T H I S EXPRESSION IS USED IN SECTION 4 . 2 . 5 A TO SIMPLIFY THE FORM OF THE NONLINEAR KILLING VEC-

TOR COMPONENTS IN THE C P 2 ( N - 1 ) MODELS. I F WE NOW SUBSTITUTE THIS INTO EQUATION ( B . 3 7 ) 

THEN WE FIND : -

{dl — {N-2)r><r)ab = ( B . 3 9 ) 

WHICH WE WILL USE TO SIMPLIFY THE FORM OF THE GOLDSTONE BOSON MANIFOLD METRIC; AND 

ALSO THE FORM OF A ^ . 

B 5 Additional work for Chapter 5. 

B 5.1 Simplification of =b -̂ dq )̂ah-

T H E RESULTS OF THIS SECTION ARE USED IN THE NONLINEAR KILLING VECTOR CALCULATION IN CHAPTER 

5 , ON PAGE 1 3 5 , WHERE WE FIND THAT WE NEED TO SIMPLIFY THE QUANTITY ( ± . ^ D Q ^ ) A B -

W E WILL FIRST WORK OUT WHICH ADJOINT REPRESENTATION PROJECTION OPERATORS ARE PRESENT 

IN DG^. T O DO THIS WE CONSIDER, WHEN x = Qr, THE COSET INDEX MATRIX ELEMENTS OF 

EQUATION ( B . L L ) : -

~ 4 / ^ ) 0 6 = 2 ( L[ I5] ) ab 

W E HAVE THIS RESULT BECAUSE, f o r N = 4 , w e KNOW THAT V = 0 AND, AS USUAL, WE 

ALSO HAVE THE RELATION {QR><QR)AB = 0 . SINCE V / Z = — 2 / ^ WE M A Y WRITE THIS : -

+ '^'Pffjab = 2 ( 1[15])Q6 
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T H U S WE M A Y WRITE DG^ IN TERMS OF ADJOINT REPRESENTATION PROJECTION OPERATORS 

(dlJab 2 ( 1[15] - 'PFL)AB 

(B.40) 

T H I S IMPLIES THAT V 2 D Q ^ IS OF THE FORM 

THEREFORE WE NOW NEED TO FIND THE SIGN IN FRONT OF EACH PROJECTION OPERATOR. T O HELP 

US DO THIS WE WILL CONSTRUCT THE EXPLICIT FORM OF BY FINDING THE FORM OF DR- A S USUAL, 

TO KEEP THE ANALYSIS AS SIMPLE AS POSSIBLE, WE WILL USE R = A3 AND THEREFORE w e HAVE 

{dr)ij = Sc/s/j. 

W E FIND THE ADJOINT MATRIX DR TO BE 

d^ — 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 2 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 

0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 —1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 —1 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) 
T H E COSET INDEX MATRIX ELEMENTS OF EQUATION (B.ll), W H E N x = r AND iV = 4, ARE 

IDR)AB — 4 ( / R ) A 6 — ^{DQR)AB + 2 ( I[L5])A6 " 2 ( R > < R ) ab 
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SIMPLIFYING THE TERM, USING EQUATION ( B . 2 5 ) WITH I V = 4 , GIVES US 

( (^)O6 = V2{dg^)ab — 2 ( 7 ^ ^ + v'^^)ab + 

+ 2 ( 7 ) 3 4 + P 4 3 + R I > < R J . ) . 6 (B.41) 

NOW, CALCULATING WILL ALLOW US TO 'GUESS' THE FORM OF \ /2DG^ SINCE, WHEN WE SUBSTITUTE 

IT INTO THE RIGHT HAND SIDE, IT WILL BE OBVIOUS IF OUR GUESS IS CORRECT. T H E 'GUESS' WILL 

BE FAIRLY INTUITIVE IF WE USE OUR KNOWLEDGE OF THE FORM, AND BEHAVIOUR, OF R AND r±. 

SPECIFICALLY, WE NOTICE HOW THE DG^ TERM OCCURS IN EACH OF THE TWO OPERATOR RELATIONS 

IDR)AB - 4 ( / R )A6 ]-[15])A6 2 (R > < 

—V2{dĝ )ab + 2( 1[15])o6 — 2(r± ><r±)a6 

SO FIRSTLY, WE FIND TO BE 

dl 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

IF WE GUESS THAT Y/^DG^ HAS THE FORM 

0 

0 

0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 / 

= 2 ( P ^ ^ + P ^ ^ + R > < R + P ^ 4 + P ^ + R _ L > < R ± ) ab 
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THEN EQUATION ( B . 4 1 ) BECOMES 

(C?R)O6 = 2 ( R ><R)A6 + (•P/ | )AH + 4 ( 7 ^ ^ ^ + + R_L ><RJ_)O6 

AND THIS IS CLEARLY WRONG BECAUSE THERE SHOULD BE NO CONTRIBUTION FROM + V ^ ^ ) IN 

D" .̂ IF WE NOW GUESS THAT Y/2DQ^ IS OF THE FORM 

THEN EQUATION ( B . 4 1 ) BECOMES 

{dj.)ab — ><f)ab {'Pf^)ab 

WHICH AGREES WITH THE FORM OF THE MATRIX ABOVE. IT IS IMPORTANT TO REALISE THAT 

WE MAY IGNORE THE COMPONENTS {DF)S8 AND ( C ^ ) I 6 1 5 BECAUSE THEY ARE PROVIDED BY THE 

ADJOINT PROJECTION OPERATOR Q .̂ X Q ^ . . IT ENTERS INTO d^ VIA THE (ADJOINT) IDENTITY ELEMENT 

IN THE OPERATOR RELATION 

— 4 / ^ = \ /2DQ^ + 2 ( L[I5] — r x r ) 

SINCE Q R X Q R ONLY HAS THE NONZERO COMPONENTS { Q R > < G R ) E F , THESE COMPONENTS BEING 

SPECIFIED BY subgroup INDICES ALONE, WE KNOW THAT THIS OPERATOR IS ABSENT FROM OUR RE-

SULTS. BASICALLY, THIS IS BECAUSE WE CALCULATE QUANTITIES LIKE THE LINEAR K | . , THE NONLINEAR 

K J AND THE METRIC gab] NONE OF WHICH HAVE TWO SUBGROUP INDICES. ANOTHER WAY TO SEE 

IT IS BY REALIZING THAT ALL OF THE OBJECTS ARE CONSTRUCTED USING THE COSET REPRESENTATIVE 

ELEMENT, WHICH IS DEFINED BY THE COSET VECTOR. THEREFORE, ANYTHING CONSTRUCTED USING 

L MUST CONTAIN A COSET INDEX AND, BECAUSE OF THE STRUCTURE OF THE A AND V ALGEBRAS, 

WE NEVER SEE AN OBJECT WITH A COSET INDEX TOGETHER WITH TWO SUBGROUP INDICES. 

T O SUMMARIZE, WE HAVE FOUND 

V2(4r).6 = 2(?̂ ^ + + r><r).6 - 2(p34 + p43 + (B.42) 
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THEREFORE, WE MAY SIMPLIFY ( L [ I 5 ] + ^dq^)ab AND ( l [ I 5 ] - -^dg^)ab b y WRITING THEM IN 

TERMS OF ADJOINT REPRESENTATION PROJECTION OPERATORS. W E FIND 

(^[15] + + r><r)ab + {Vf^)ab ( B . 4 3 ) 

( ^[15] + ^ ^ 9 R ) o 6 = 2 ( 7 ^ ^ + + r_L ><rj_)ab + i'Pf^)ab ( B . 4 4 ) 
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Appendix C 

The Lie Algebras of SO{m) and 

SO{t, s). 

C 1 The role of Gamma matrices. 

FOR S O { m ) , WHERE m = 2 k , 2k + 1 , IF WE CAN FIND A SET OF 2A: + 1 HERMITIAN MATRICES 

OBEYING A C l i f f o r d ALGEBRA 

WITH A , B = 1 , 2 , . . . , M . , THEN WE MAY BUILD A SET OF TRACELESS, H E M I T I A N , GENERATORS 

FOR S 0 { 2 k + 1) 

Tab = — ̂ [tajTB] 

= 2^ab ( C - 2 ) 

WHICH ALSO OBEY THE S 0 { 2 k + 1) L IE ALGEBRA, AND ARE 2 ^ DIMENSIONAL; INSTEAD OF (2A: + 1 ) 

DIMENSIONAL. FOR S 0 { 2 k ) WE ONLY USE THE FIRST 2k G A M M A MATRICES TO CONSTRUCT THE 

CR-MATRICES; THE LAST G A M M A MATRIX MAY BE USED TO CONSTRUCT TWO PROJECTION OPERATORS 
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which project out left and the right handed spinor representation generators. We will 

EXPLAIN THIS FURTHER in THE NEXT SECTION. 

WIE have aa a product rule for the gamma matrices 

2 7 / 1 7 5 = 2 ( ^ X ^ 1 [2*] 

1[2&] + 

80 for A ̂  B we have 

(TAB = 

C 1.1 A set of 7 matrices for + 1) and 5'0(2A;). 

T H E S p i n o r REPRESENTATION OF THE GENERATORS OF S O ( 3 ) IS BUILT FROM the G A M M A MATRICES 

for 5'0(3); these are de6ned to be the Pauli Spin Matrices 

^ 0 1 

T F 

1 0 

0 - z ^ 

« 0 

7 F ® 

_ \ 0 

V - V 

CONVENTIONALLY, THE GENERATOR FOR THE NORMAL S O ( 2 ) SUBGROUP OF 5 * 0 ( 3 ) IS BUILT FROM 

the hrst 2 gamma matrices of 5*0(3). In general, we may form an iterative process 

which produces gamma matrices, with which we may construct generators, for larger 

groups of Special Orthogonal transformation matrices. 
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FOR k >2, THE FIRST 2k — 1 G A M M A MATRICES FOR SO{2k + 1 ) ARE DEFINED 

/ 

^ S 0 ( 2 K + L ) ^ 
0 . S 0 ( 2 K - 1 ) 

0 

AND THE LAST TWO ARE DEFINED 
/ 

S0(2K+1) 
72& 

S0(2K+1) _ 
'2k+l ~ 

0 

L[2&-

0 

0 

- 1 [2*-I] Y 

2& 

: - > R N lA 
S0(2K+1) 

^ = 1 

with = (1)' III this way we may produce an odd number, (2& 4-1), of gamma 

MATRICES WITH WHICH WE MAY CONSTRUCT THE GENERATORS OF SO{2k + 1 ) . For THE GROUP 

5'0(2A;) we just use the first 2A: gamma matrices, of the (2A: + 1) used to construct the 

generators of 5̂ 0(2A; + 1), to form the generators of 5'C)(2A:). 

C 1.2 Block diagonal form of S0{2k). 

Because of the form of the gamma matrices, it is obvious that the generators of 6'0(2A:) 

HAVE A BLOCK DIAGONAL STRUCTURE. I N THIS CASE THE LAST G A M M A MATRIX M A Y BE USED, 

together with the identity element, to form 2 projection operators 

Pl = 

'-[2K-

0 

I ^ 1[2&] -

( 
0 

0 1 

0 

[2&-1] 
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WHICH WILL NOT ONLY PROJECT OUT THE LEFT AND RIGHT HANDED SPINORS FROM THE FUNDAMENTAL 

WEYL SPINOR, BUT WILL ALSO PROJECT OUT THE TWO SETS OF GENERATORS WHICH INDEPENDENTLY 

act on the left and right handed spinors. We naay therefore just restrict our attention 

TO THE LEFT HANDED TRANSFORMATIONS WHICH ACT ON THE LEFT HANDED SPINOR. W E EXPLICITLY 

show this by writing a fundamental 2''-8pinor of 5'0(2A:) as 

v / 

UNDER AN S0(2k) TRANSFORMATION IN THE WEYL REPRESENTATION, PRODUCED BY AN ELEMENT 

^ E 5'0(2A;), we will 6nd that the fundamental 2*-spinor transforms 

1-4 

r . 0 
U/ y 0 9R J 

\ 

Y 

T H U S , WE SEE THAT P I WILL ISOLATE THE PART WHICH HOLDS THE RELATION 

^ 1-4 = GZ. ^ 

AND Pr WILL ISOLATE THE PART WHICH HOLDS THE RELATION 

So, for 5'0(2A;), we end up just having to work with generators which are (2*="̂  x 2*̂ "̂ ) 

MATRICES. IN THIS THESIS WE WILL, FOR 5 0 ( 6 ) , WORK with THE LEFT HANDED REPRESENTATION 

OF ( 4 X 4 ) GENERATORS WHICH GENERATE TRANSFORMATIONS ON THE LEFT HANDED SPINORS. T H I S 

WILL ALLOW US TO EXPLOIT THE H O M O M O R P H I S M BETWEEN THE GROUPS 5 0 ( 6 ) AND 5 1 7 ( 4 ) . 
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C 2 The Lie algebra of 

USING EQUATIONS C . L AND C . 2 WE FIND THE LIE ALGEBRA TO BE 

[(JABjCTCD] = AC(^BD — 5 ADC^BC) — BCf^AD — 5 BDC^AC)] 

WHERE A,B,C,D = 1 , 2 , . . . , M . W E NOTE THAT SO{m), WHERE m = 2k,2k + 1 , IS A 

GROUP OF RANK k. 

1 . FOR SO{m) BREAKING TO SO{m — 1) WE HAVE 

• T H E LIE ALGEBRA OF THE SUBGROUP SO(m — 1 ) IS 

i^ab; ^cd\ = 2 I [((^AC'^M ^ad^^bc) {^bc^ad ^bd^^ac)] 

WHERE THE a,b,c,d = 1,2,... ,m — 1. 

• T H E COSET COMMUTATOR CLOSES ONTO THE SUBGROUP 

[UaAjCTftA] = '2i6AAO'ab 

WHERE A = M ONLY. 

• SO BETWEEN SUBGROUP AND COSET WE HAVE 

[<^A6)*^CA] = 2i (^Sac^bA ^bc^aA) 

2. FOR SO{m) BREAKING TO SO{m — 2)® S0{2). 

• T H E COSET COMMUTATOR CLOSES ONTO THE SUBGROUPS 

[o'aXjCfty] = 2i{dab(^XY + SxY(^ab) 

FOR a,b = 1,2,... ,{m — 2) AND X,Y = (m — 1), m. 

• SO BETWEEN SUBGROUPS AND COSET WE HAVE 

[<^ab,(^cx] = 2i {SacCbX — 

[(^XYjO'az] = '2i {Sxz(^aY — Syzf^ax) 
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C 3 The Lie algebra of SO(t,s). 

W E CONSTRUCT THE E MATRICES OF SO{t,s), WHERE t+s = m, OUT OF MODIFIED G A M M A 

MATRICES USED FOR SO{m), WHERE m = 2A:, 2k + 1 . T H I S TIME THE G A M M A MATRICES OBEY 

A DIFFERENT Clifford ALGEBRA 

{ F P . R : } == ( ( 1 3 ) 

WITH = 0 , 1 , 2 , . . . ,TO — 2 , M . W E ALSO DEFINE THE MATRIX rj 

M—1 

T] = D I A G ( - L - L , - 1 , - 1 , . . . , - 1 ) FOR 5 0 ( 1 , TO-1) 

m—2 

TJ = DIAG(- | -L, — 1 , — 1 , . . . , — 1 , + 1 ) FOR < S ' 0 ( 2 , TO — 2 ) 

B Y CONVENTION, IN GOING FROM SO{m) TO SO{t, S ) , WE ALWAYS HAVE AND SO 

1 . FOR 5 0 ( 1 , TO — 1 ) WE WOULD MULTIPLY THE 7 ^ (FOR k = 1 , 2 , . . . , (TO — 2 ) , M ) BY i, 

THUS TO IS HERMITIAN AND THE REST ARE ANTI-HERMITIAN, AND 

2 . FOR 5 0 ( 2 , TO — 2 ) WE WOULD MULTIPLY THE 7 * (FOR A: = 1 , 2 , . . . , (TO — 2 ) ) BY I SO THEY 

ARE ANTI-HERMITIAN, AND HAVE THE HERMITIAN G A M M A MATRICES FQ AND F ^ = 7^1-

W E MAY NOW BUILD A SET OF TRACELESS, HEMITIAN, GENERATORS FOR SO{t, s) 

V = J [ R « R „ ] 

= ( C . 4 ) 

WHICH OBEY THE SO{t,s) L IE ALGEBRA, AND ARE 2 * DIMENSIONAL; INSTEAD OF {2k 4 - 1 ) DI-

MENSIONAL. SO WE HAVE 

2 F P F Y = 2/^^^ I P T ] — 2%ZPY 

F ^ F J / = 1[2*^] 
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SO FOR / / 7^ WE HAVE 

^nv = 

1 . FOR SO{l^m — 1 ) BREAKING TO SO{l,m — 2 ) 

• T H E LIE ALGEBRA OF SO{l^m — 1 ) IS DEFINED 

Spcr] = 2 i \(^TjnpYli,u — {j)up^na Vfcr^fip)] 

WHERE fi,u, p,a = 0,1,2,... ,m — 2,m. 

• FOR AN SO{l,m — 2 ) SUBGROUP WE MUST HAVE 

PQ/3) ̂ 7<5] = \{Tja'y^P5 ~ VaS^ffj) iVfi'y^aS VPS^ay')] 

WHERE THE A , /?, 7 , 5 = 0 , 1 , 2 , . . . , M - 2 . 

» T H E COSET COMMUTATOR CLOSES ON THE SUBGROUP 

[ E Q A J S ^ A ] = —2iriAA'^a0 

• SO BETWEEN SUBGROUP AND COSET WE HAVE 

S 7 A ] = 2 I 

C 4 The Lie algebra of SO (6). 

AFTER PERFORMING THE REQUIRED STEPS WE FIND THAT SO (6) CR-MATRICES, IN THE SPINOR 

REPRESENTATION, ARE A DIRECT S U M OF TWO SETS OF SU(4) A-MATRICES; NAMELY THE 4 © 4 . S O 

WE USE P I = | ( 1[8] + AND = ^ { L[G] - TO PROJECT OUT THE TWO SETS. 
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HERE IS THE 4 WHICH GENERATES TRANSFORMATIONS ON A LEFT HANDED SPINOR 

/ _ \ / 
O'ifi — ^ijk 

cr. 45 

0", 56 

0 U 

(Jti 

OI 0 

\ 0 

0 LAI 

- I A I 0 

<^6 

\ 
/ 

\ I P ] 

0 —OI 

•OI 0 

0 1[2] 

0 

C 4.1 Translation into the language of SU{4). 

T H E aAB OF S 0 ( 6 ) WRITTEN IN TERMS OF THE Xa OF SU{4) ARE 

(^12 = (I '3 + R ^ ) 

(^ij ^ i (^23 = (-^1 + '^IS) 

-"31 

(7,4 

a 14 

(A2 + A14) 

(AI — AIS) 

IS THE GENERATOR OF 5 0 ( 2 ) . 

T ARE GENERATORS OF 5 0 ( 3 ) . 

0"I6 

^24 — ("^2 A14) 

, = ( ^ 3 - R ^ ) 

<^15 — — (/^G + AG) 

<^25 — ( ^ 7 ~ -^10) 

<^35 = — (A4 — ALL) 

<745 = —(AS + A12) 

C16 — " ( - ^ 7 + AIO) 

^26 — ~i^6~ ^9) 

<^36 = - ( ^ 5 - A12) 

<746 — ( ^ 4 + ALL) 

T ARE GENERATORS OF 5 0 ( 4 ) . 

T ARE GENERATORS OF 5 0 ( 5 ) . 

^56 V^Q3 T ARE GENERATORS OF 5 0 ( 6 ) . 

\ 

/ 
\ 

/ 
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NOTE THAT THE F SYMBOL HAS BEEN USED TO REPRESENT THE PHRASE 'ALL GENERATORS IN THE 

TABLE DOWN TO THIS POINT' . W E HAVE ALSO USED THE FOLLOWING OBJECTS IN THE TABLE TO 

REPRESENT (A LINEAR S U M OF) GENERATORS 

RA = A3 

, _ L 

% 

ALSO, FROM OUR WORK IN A P P E N D I X A WE SEE THAT WE M A Y ALSO WRITE 

<J]̂ 2 — 

A. 34 

C 4.2 The 50(4) and S0{2) subgroups of 5(9(6). 

• T H E USUAL 5 ' 0 ( 4 ) SUBGROUP, WHICH IS HOMOMORPHIC TO SU{2)®SU{2), IS GENERATED 

BY 

^ ( 7 * 0 

\ 

AND 

/ 0 (7* 

T O SEE THE H O M O M O R P H I S M WE FIRST CONSTRUCT ; 

( „ \ 

\ 

(T& 0 

0 (7& 

I F WE NOW RELABEL A \ —> A , , AND THEN CONSTRUCT THE SIX GENERATORS 

/ 

= -j{Vk + M) 

Rt = l(Vk-At) 
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WE FIND THAT THEY OBEY 

[Z(JJ ZIJ] = 2i£iji~Lj~ 

[Ri; Rj] ~ 

[ L I , R J ] = 0 

T H E FIRST TWO RELATIONS TELL US THAT L I AND R I ARE THE GENERATORS OF TWO SU(2) 

GROUPS; THE LAST RELATION TELLS US THAT THESE GROUPS WILL COMMUTE. T H I S MEANS 

THAT THE Li FORM THE BASIS FOR THE (UNIT) GROUP VECTOR r AND THE Ri FORM THE BASIS 

FOR THE OTHER (UNIT) GROUP VECTOR r±-, THAT IS, WE M A Y WRITE 

r = n^Li 

r± = n\Ri 

THEREFORE THE SUBGROUP VECTOR, x, MAY BE WRITTEN IN TWO WAYS 

GO(4) WEW WCW 

AND THE < S ' 0 ( 4 ) SUBGROUP ELEMENT IS 

T H E SO{2) SUBGROUP ELEMENT, WHICH COMMUTES WITH THE 5 0 ( 4 ) SUBGROUP ELEMENT 

ALREADY CONSIDERED, IS GENERATED BY 

^ I P I 0 
(^56 

V 0 - 1 [ 2 ] Y 

T H I S IS EASY TO SHOW USING THE NOTATION OF SU{A). A S WE HAVE SEEN, IN TERMS OF 

VECTORS IN THE CARTAN SUBSPACE, THE 5 0 ( 4 ) SUBGROUP VECTOR MAY BE WRITTEN AS 

X = Ar + Br± 
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QUITE OBVIOUSLY A GENERAL ORTHOGONAL VECTOR WHICH COMMUTES WITH x, I.E. LIES IN 

CX, MAY BE WRITTEN 

2/ = C'GR 

because we know that [r, = 0- Thus, when r = and rj_ = 

WE FIND THE RESULT \ /2QR = CR̂ G. THEREFORE WE FIND THAT E 5 ' 0 ( 2 ) IS AN ELEMENT 

WHICH WILL COMMUTE WITH THE ELEMENT E 5 0 ( 4 ) . THEREFORE WE MAY WRITE 

A = G ^ 0 ( 4 ) ^ 0 ( 2 ) . 
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Appendix D 

The explicit form of diflferentials. 

IN THIS APPENDIX WE WILL CONSTRUCT THE EXPLICIT RESULTS WHICH WE FIND WHEN WE DIFFEREN-

TIATE FIELDS NOT ONLY WITH RESPECT TO THE GOLDSTONE BOSON FIELDS, BUT ALSO WITH RESPECT 

TO SPACETIME COORDINATES. T O KEEP THE CALCULATIONS IN THIS THESIS AS CONCISE AS POSSIBLE, 

THE RESULTS WHICH FOLLOW WILL BE SUBSTITUTED IN AT THE E N D OF CALCULATIONS. 

D 1 When x is in terms of one vector only. 

IF THE COSET VECTOR IS WRITTEN IN TERMS OF A SINGLE VECTOR, THEN WE FIND THAT IT IS SIMPLE 

TO OBTAIN THE RESULTS OF DIFFERENTIATION, EITHER WITH RESPECT TO THE GOLDSTONE FIELDS OR 

WITH RESPECT TO THE SPACETIME COORDINATES. T H E RESULTS IN THIS SECTION WILL APPLY TO THE 

MODELS CONSIDERED IN CHAPTERS 3 AND 4 ; WHERE THE SIZE OF x IS NOT IMPORTANT. 

D 1.1 Differentiation by d 
G M " ' 

IN PRACTICE WE USE THE NOTATION Fa = t o REPRESENT DIFFERENTIATION OF A QUANTITY, 

F , WITH RESPECT TO M ° , THE GOLDSTONE BOSON FIELDS. FOR THE CHIRAL S U { N ) BREAKING 
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MODELS OF CHAPTER 4 THE COSET VECTORS ARE WRITTEN 

X = I R 

= I 

T H I S QUANTITY, IN TERMS OF THE GOLDSTONE FIELDS, MAY B E WRITTEN 

M - A . = M M " A . 

AND THE FIELD COMPONENTS, ISOLATED USING {x,Xa), ARE 

= A F M * Q D J J 

WHERE M IS THE LENGTH OF THE VECTOR M ^ A A - T H E QUANTITY M IS DEFINED BY 

== ( D . 2 ) 

BECAUSE THE ARE THE COMPONENTS OF A UNIT VECTOR IN THE DIRECTION OF M ° A q . IF WE 

DIFFERENTIATE EQUATION ( D . 2 ) , WITH RESPECT TO THE GOLDSTONE FIELDS, WE FIND 

( M ' ^ M " ) , ; , = ( M ^ ) , ( , 

2 M ' ' = 2 M M 

M ' ' = M M 6 

BECAUSE =*- = 5AB- IF WE NOW COMPARE THIS WITH EQUATION ( D . L ) WE SEE THE 

IDENTIFICATION 

= M A ( D . 3 ) 

IF WE NOW WORK ON Mn°' AND DIFFERENTIATE WE GET 

( M N ° ) _ 6 = N ^ M S + MN°J, 
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AND SO WE SEE THE RESULT 

= W A I - N ' N > - ) ( D . 4 ) 

IN CHAPTER 3 THE COSET VECTORS ARE WRITTEN AS, THE SO{m) BREAKING TO SO{m — 1 ) 

MODELS, AND THE SO{l,m — 1 ) BREAKING TO 5 0 ( 1 , M — 2 ) MODELS, , THE COSET VECTORS ARE 

WRITTEN AS X = FLS WHERE 

S = n°'^aaA FOR THE SO{m) BREAKING TO SO(m — 1 ) MODELS, AND 

S = n°'^'En,A FOR THE SO{l,m — 1 ) BREAKING TO 5 0 ( 1 , M — 2 ) MODELS. 

S O WE FIND THE RESPECTIVE RESULTS 

<A = ( D . 6 ) 

" J A = - " " " " D A ) ( D . 6 ) 

WITH A = M . W E USE THE NOTATION A TO REMIND US THAT THIS IS A FIXED INDEX, JUST A LABEL, 

AND IT IS NECESSARY TO DISTINGUISH BETWEEN LABELS AND INDICES WHICH ARE S U M M E D OVER, 

FOR THE LATTER WE HAVE USED LOWER CASE LETTERS. W E NOTE THAT FOR THE SO(m) BREAKING TO 

SO(m — 1 ) MODELS OF CHAPTER 3 , THE INDEX a HAS THE RANGE A = 1 , 2 , . . . , ( M — 1) BUT 

FOR THE 5 0 ( 1 , M — 1 ) BREAKING TO 5 0 ( 1 , M — 2 ) MODELS WE RELABEL THIS INDEX A A TO 

REMIND US THAT IT TAKES IN THE VALUES A = 0 , 1 , 2 , . . . , ( M — 2 ) . 

LASTLY WE ENCOUNTER THE DIFFERENTIAL of 4> = 

- n' 

AND FOR THE SO{m) BREAKING TO SO{m — 1 ) MODELS, AND THE 5 0 ( 1 , m — 1) BREAKING TO 

5 0 ( 1 , m — 2) MODELS, WE FIND THE RESULTS 

" , . A = ~ N , A ( D . 7 ) 

= ^ R > , A ( D - 8 ) 
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D 1.2 Differentiation by ^ 

IN THIS THESIS WE ALSO DIFFERENTIATE QUANTITIES WITH RESPECT TO THE SPACETIME COORDINATES. 

FIRSTLY, WE DIFFERENTIATE THE LENGTH OF THE VECTOR ASSOCIATED WITH THE INTERPOLATING FIELDS. 

T H E S E ARE THE FIELDS WHICH WE INITIALLY USE TO DESCRIBE THE COSET; BEFORE THEY ARE REDEFINED 

TO REPRESENT THE GOLDSTONE FIELDS. W E HAVE 

^<T> = ^ ( D . 9 ) 

BECAUSE FOR THE SECOND TERM 2 M ° ' D ^ N ° ' = 2 M R F ' D ^ N ° - = MDFJ,{N"'N°') = 0 . FOR THE 

SO{m) BREAKING TO SO{m — l ) MODELS, AND THE 5 0 ( 1 , M — 1 ) BREAKING TO 5 0 ( 1 , M — 2 ) 

MODELS, WE FIND THE RESULTS 

d,a = (D.IO) 

9 , 0 = ( D 1 1 ) 

W E ALSO DIFFERENTIATE N'^ WITH RESPECT TO X'^ AND FIND THE RESULT 

== ( [ X 1 2 ) 

AND FOR THE SO{m) BREAKING TO SO(m — 1 ) MODELS, AND THE 5 0 ( 1 , M — 1 ) BREAKING TO 

5 0 ( 1 , M — 2 ) MODELS, WE FIND THE RESULTS 

(D.14) 
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D 2 W H E N x = + ^ r ± A N D N = A. 

IF THE COSET VECTOR IS A LINEAR SUM OF TWO COMMUTING ORTHONORMAL R-VECTORS, SAY R AND 

r_L, AND i V = 4 THEN THE SITUATION IS RATHER DIFFERENT. T H E RESULTS IN THIS SECTION WILL 

APPLY TO THE MODELS CONSIDERED IN CHAPTER 5 . 

D 2.1 Differentiation by 

FIRSTLY, WE WILL DEMONSTRATE THE DIFFICULTY OF THE TASK WE NOW FACE. IF WE FOLLOW THE IDEAS 

IN THE BEGINNING OF THE LAST SECTION, THEN THE COSET VECTORS IN CHAPTER 5 ARE WRITTEN 

X = I R + I R J_ 

T H I S QUANTITY, IN TERMS OF THE GOLDSTONE FIELDS, MAY N O W BE WRITTEN 

== (I). 15) 

REMOVING THE BASIS OBVIOUSLY GIVES 

JVF* == JTF* -K TKFF 

== AjTm' 4- Tkfi (I). 16) 

PROM THIS WE FIND THE NORM OF x TO BE 

= (JKF* 4 - -K TKRI) 

== 4 - ( I ) . I : R ) 

BECAUSE (R, RJ.) = 0 . IF WE NOW DIFFERENTIATE THIS WITH RESPECT TO M " ' THEN WE HAVE 

VVFA = 4 - A F N ^ , ) - ^ JKR2(.AFJL,^%3. 4 -JLFJLN/L^) 

= M M 6 + Mx Mj_ ,6 
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IF WE COMPARE THIS WITH EQUATION ( D . 1 6 ) THEN WE SEE 

A F J = M* ^ X 1 8 ) 

== M I ^ 1 1 9 ) 

N O W IF WE DIFFERENTIATE EQUATION ( D . 1 6 ) WITH RESPECT TO M"' THEN WE FIND 

WHERE WE MAY WRITE THE LEFT HAND SIDE AS 6ab = + M WITH THE BEING THE 

COMPONENTS OF A UNIT VECTOR DEFINED BY EQUATION ( D . 1 6 ) . SO IT IS CLEAR THAT WE NEED TO 

FIND EXPRESSIONS FOR THE TWO QUANTITIES AND U S I N G THIS SORT OF CONSTRUCTION, IT 

IS NOT IMMEDIATELY CLEAR HOW THIS MAY BE DONE. 

HOWEVER, THE PROBLEM IS SOLVED WITH THE USE OF THE SYMMETRIC VECTOR PRODUCT. FOR A 

COSET VECTOR, x = M°'Xa = M " A A + M^Xa, WE CALCULATE xW x AND xV xV x. IN TERMS 

OF BOTH DESCRIPTIONS OF x THESE QUANTITIES ARE 

xy X = y/2(M^ — M]_) QJ. 

= 2M°'M^dabEXE 

xVxVx = 2(M^ — r — M±r±) 

= 4M°'M^dabEM'^dEcdXd 

W E NOW USE THESE RELATIONS ^ TO SOLVE FOR Mr AND M±r±. W E FIND 

+ ( : R V Z V Z ) 

M_LRJ_ = ( I R V Z V Z ) 

^ These relations, and the ones which follow, will be different when iV > 4 because, in these cases, 

we will find that ^ —Qr-
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IF WE WRITE THE COMMUTING VECTORS ON THE RIGHT HAND SIDE EXPLICITLY, AND REMOVE THE 

BASIS, THEN WE FIND THE VECTOR COMPONENTS 

JKFD == 1 ( D / 2 0 ) 

JIFF == I V W * - -

W E MAY NOW DIFFERENTIATE THESE TWO EXPRESSIONS WITH RESPECT TO THE GOLDSTONE BOSON 

FIELDS (M"') WITHOUT ANY TROUBLE. W E FIND 

K = '^SD. + I S ^ [ M H L 4 , + ^ D „ Y ^ ) , , - ( M - ' - M I ) { M ' - M L ) ] { D . 2 2 ) 

M T . E = L S ^ - F I I ^ [ M ' ( L 4 , + K ' ' R U V , . U - { M ' - M I ) ( M ' - M L ) ] ( D . 2 3 ) 

W E WILL USE THESE EXPRESSIONS WHEN WE WORK OUT THE LINEAR K % . W E MAY ALSO WRITE 

THESE IN TERMS OF ADJOINT REPRESENTATION PROJECTION OPERATORS. T O DO THIS WE WILL USE 

J/FD == NFINF -T-

== -T- JKFI 

AND, SPECIFIC TO THE OPERATOR RELATIONS 

djji 4/yjj = C?mVm 4" 2 1[15] iTTlXTn 

i/5i(d,r)a6 == :2(7)̂  4- T)"* 4- r ><:rjd, - SlC?** 4- T?*: -K rj. ><:r±) ab 

T H E V* LINE IS THE APPROPRIATE FORM OF EQUATION ( B . L L ) FOR A UNIT VECTOR m IN 9?^®, 

AND THE 2 " ^ LINE IS JUST EQUATION ( B . 4 2 ) ; BOTH ARE EXPLAINED A P P E N D I X B . SINCE WE ALSO 

KNOW THAT M F M = M F R 4 - M±FRJ_ WE MAY USE THESE IN EQUATIONS ( D . 2 2 ) AND ( D . 2 3 ) 

AND REARRANGE TO EVENTUALLY FIND 

(M^ - P/2 + MM±(4/r/r^) (D.24) 
ab 

AFXNL,» = ^miMj)[(M'-Ml)(P'' + V'')-MlT,s-MM^(4frfrj\jD.25) 

W H E N WE WORK OUT THE NONLINEAR K ? WE WILL USE THESE EXPRESSIONS. 
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D 2.2 Differentiation by ^ = d .̂ 

T H E REMAINING DIFFERENTIALS ARE EASY TO FIND. IN TERMS OF THE INTERPOLATING FIELDS, THE 

COSET VECTOR x = ^m"'Xa HAS BEEN WRITTEN 

X = F R + I R_L 

IN TERMS OF THE GOLDSTONE FIELDS, THE COSET VECTOR x = '^rrf'Xa HAS BEEN WRITTEN 

X = M r + Mx r_L 

I F WE THINK ABOUT THE PROPERTIES OF THE R-VECTORS WE ARE USING, THEN WE SEE THAT WE 

MUST HAVE a = a{M) AND b = b{M±). T H I S IS ALSO SUPPORTED BY THE FACT THAT, IN THE 

TWO PARAMETERIZATIONS, THE MATRIX INVARIANT 7 2 ( x ) IS 

* / I \ 2 

-\ 2 

THEREFORE WE HAVE 

da 
dj^ 
da 

nfoLAf* (D.26) 

SIMILARLY WE FIND 

8 / = ( D . 2 7 ) 

W E ALSO HAVE THE FIELD GRADIENTS AND IN OUR CALCULATIONS. T H E S E WE FIND TO 

BE 

(D.28) 

(D.29) 
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WHERE AND ^ ARE GIVEN BY EQUATIONS ( D . 2 4 ) AND ( D . 2 5 ) . 

EVEN THOUGH CHAPTER 5 CONCERNS THE SPONTANEOUS BREAKING OF SO{m) SYMMETRIES DOWN 

TO SO{m — 2 ) (G) 5 0 ( 2 ) FOR M = 4 , 5 AND 6 , IT IS PHRASED ENTIRELY IN TERMS OF THE 

CORRESPONDING SU{4) OBJECTS; I .E. VECTOR COMPONENTS HAVE ONE INDEX NOT TWO. T H E 

CALCULATIONS ARE PERFORMED BY MANIPULATING DEFINING REPRESENTATION OBJECTS LIKE THE 

COSET VECTOR, SO WHEN IT COMES TO LOOKING AT THE TRANSFORMATION OF VECTOR COMPONENTS 

(OR EVEN JUST ISOLATING COMPONENTS), WE AUTOMATICALLY END U P WITH EXPRESSIONS WHICH 

ARE PHRASED WITH RESPECT TO THE COMPONENTS OF ADJOINT REPRESENTATION OBJECTS LIKE FR, 

DG^ OR PROJECTION OPERATORS. THEREFORE, w e WILL NOT REWRITE THE RESULTS WHICH WE HAVE 

FOUND IN AN 5 0 ( 6 ) NOTATION. W E WILL, THOUGH, REMEMBER THAT WHAT WE REALLY WANTED 

TO FIND IS ACTUALLY HOMOMORPHIC TO WHAT WE HAVE FOUND; BUT THIS DOES NOT CHANGE THE 

MATHEMATICAL RESULT. 
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