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Nonlinear realizations of the groups SU(N), SO(m) and SO(t,s) are analysed, de-

: SU(N SO(m)  SO(1,m—1) 50(m)
scribed by the coset spaces SU(N—§)®2U(1)’ 50(12—)1)7 sog1,m—2) and SO(m=2)@500)" The

analysis consists of determining the transformation properties of the Goldstone Bosons,
constructing the most general possible Lagrangian for the realizations, and as a result
identifying the coset space metric. We view the A matrices of SU(NV) as being the basis
of an (N? — 1) dimensional real vector space, and from this we learn how to construct
the basis of a Cartan Subspace associated with a vector. This results in a mathematical
structure which allows us to find expressions for coset representative elements used in
the analysis. This structure is not only relevant to SU(N) breaking models, but may

also be used to find results in SO(m) and SO(1, m — 1) breaking models.
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Preface

No claim to originality is made for the content of the Introduction, or Chapter 1, which
were compiled using a variety of sources.

The first part of Chapter 2 is based on a paper by L. Michel and L. A. Radicati entitled
‘The geometry of the octet’. Original work starts towards the end of the Chapter, and
continues throughout Chapters 3, 4 and 5. It is mainly the approach to the analysis
of this subject which is original, since some of the subsequent work contains models
which have been studied at length before. I have therefore tried to reference, where
appropriate, as many of these models as possible.

Some of the work found in Appendix A has been submitted as a paper entitled ‘How
orbits of SU(N) can describe rotations in SO(6)’ to the Journal of Physics A (authors
K. J. Barnes, J. Hamilton-Charlton and T. R. Lawrence); the relevant ideas of this
paper have been tailored to suit the work found in this thesis.

The adjoint representation linear operator work, found in the first two sections of
Appendix B, comes from the paper by L. Michel and L. A. Radicati. The last three
sections of this appendix are original.

The work found in Appendix C is a collection of well known results from many sources;
including the paper ‘How orbits of SU(NN) can describe rotations in SO(6)’.

The second part of Appendix D is original work, and is an extension to the well

established results contained in the first part of the appendix.
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Introduction.

Symmetries in physical theories, and Spontaneous
Symmetry Breaking.

To understand the ideas of symmetry breaking in a physical theory, it is important that
we first introduce the nature of symmetries with respect to a Lagrangian framework.
We will begin by introducing some very simple models, which demonstrate the power of
the Lagrangian formulation, and then discuss the nature of symmetries and how they
are important. Once we have done this we will be able to explain the ideas behind
spontaneous symmetry breaking, and where the mathematical framework of this thesis
has come from.

A Lagrangian formulation of classical particle mechanics requires that a Lagrangian,
L(gi, G;) = T — V, be constructed out of generalized coordinates, ¢;, and generalized
velocities, ¢;. Here T is the kinetic energy associated with the system, and V is the
potential of the system. Hamilton’s principle, the principle of least action, leads to the

Euler-Lagrange equations :-

d |8L oL
— |2y = 2= 1
dt [39%] Jg; M

which give the equations of motion. Similar ideas may also be used in the Lagrangian

formulation of a relativistic quantum field theory. If this time a Lagrangian density,



L(¢,8,¢) =T — V, is constructed out of fields, ¢(z#), and field gradients, 9,9, then
when the principle of least action is applied (which is now a more complicated idea

because we are dealing with functions of space-time coordinates) we find the Euler-

Lagrange equations :-

8, [5(%%] = %ii (2)

which give the equations of motion for the field, ¢. To give some examples :-

e A particle is classically idealized as a point of mass, m. Now if this particle moves

in a region where the potential is given by V' (z,y, z) then the Lagrangian is :-
L = 3@ +9"+#) - V(z,y,2) (3)

The Euler-Lagrange equation for the first coordinate, z, yields :-

oV
Oz

= F,

mi =

with similar results for the y and z coordinates. Collectively we may write :-
F = mrft (4)

which is Newton’s Second Law of motion.

e The simplest example in a (quantum) field theory is the Lagrangian density

describing a relativistic, free (non-interacting), real scalar field ¢ :-
L= 10,00%¢ — im’¢ (5)
The Euler-Lagrange equation for ¢ is :-

Ou(0"¢) = —m’¢

(O+m?)¢ = 0 (6)



and this is the Klein-Gordon equation which is used to describe uncharged parti-
cles. We note that the Schrédinger equation is the non-relativistic approximation

to the Klein-Gordon equation.
The simplest extension to the real scalar field is the free complex scalar field and
the Lagrangian density :-

L = 30,0"0"¢—im°¢"¢ (7)

where ¢ = ¢; +i¢s. In this case ¢ and ¢* are now regarded as independent fields
and this is the Lagrangian density for free charged particles; we will soon explain

the importance of charge. This time we will find two equations of motion :-

(8)
(9)

]
o

(O +m?*)¢

If
o

(O + m?)¢*

which are the Klein-Gordon equations for the two complex fields. Notice that
we may also rewrite the Lagrangian density explicitly in terms of the two real

components of the complex field :-
L = 10,¢;0"¢; — im’did; (10)

with 4 = 1,2 and therefore obtain similar Klein-Gordon equations of motion for
¢, and ¢y. It is obvious that further generalisations are possible if we let the

range of the index 4 increase.

A theory concerning (charged) particles (and anti-particles) with spin is produced

using spinor fields. The simplest Lagrangian density is :-

L o= igTo,¢ — mipy

= L@y -¥pu) - miy (11)



where 1) is a one column matrix, and therefore 1) has one row. Also note that,
in this thesis, the notation I'* is used for the gamma matrices of the SO(t, s)

groups, and y4 for the SO(m) groups. This time we must use the Euler-Lagrange

equations :-
|0k | =& ok 15 -9%
6F0,)]| O 0G|
These yield the equations of motion :-
(ig-m)p = 0 (12)
P(ig+m) = 0 (13)

which are the Dirac equations of motion for 4 and 1. We note that these equa-

tions of motion may also be derived from the density :-
._—) -
L = iY@y —mipyp (14)

The only difference between this and equation (11) is a total divergence which

does not change the action; so the physics remains the same.

Thus, in a Lagrangian formulation of a (field) theory, the principle of least action
leads to the Euler-Lagrange equations which act on a Lagrangian (density) function.
If this Lagrangian function is written properly then the laws of physics, which govern
the behaviour of the system, are automatically encoded within the framework. Now,
the variational principle also has another consequence, and this is where the idea of
symmetries comes in. In both the classical and quantum field theory cases, the action
is invariant with respect to transformations of the coordinates (fields) and velocities
(field gradients). This means that there will be one or more conserved quantities, i.e.
combinations of coordinates (fields) and velocities (field gradients) which are invariant

under the transformations. We say that the system posesses a symmetry or, with more



conserved quantities, a set of symmetries. This subject was formally investigated in
1918 and is the concern of Noether’s theorem [1]. In a field theory context the theorem

states that the invariance of the action, under transformation of the fields and field

gradients, leads to a conserved (divergenceless) current, J¥ :-

oL
T = B, — GEXE 15
= 50,0 (13)

with 9,J/ = 0. We note that, in the definition of the current, we have used the

energy-momentum tensor :-

P 6
0" ——“a(a,,qs)a”‘b 4L (16)

and the quantities ®, and X7 relate to the transformations of ¢ and z* :-
Ap = @ 00"
Azt = XlIow"”

for the infinitesimal transformation parameter dw”. The current gives rise to a con-

served (time independent) charge, @,, which is defined by :-

— 0 43 17
Q. /VJydx (17)

The integration is taken to be over a spacelike hypersurface where ¢ = const; i.e. over

the 3-volume V. Conservation of (2, follows because :-

dQy
dt

Now, when ®, = 0 and XF¥ # 0, Noether’s theorem tells us that energy-momentum
and angular momentum are conserved (for spatial translations and rotations respec-
tively). It is true that enmergy and momentum are conserved for any system whose
Lagrangian (density) is not explicitly dependent on z#, whereas conservation of angu-

lar momentum requires #* to be symmetric; if it is not then we may define a canonical



energy-momentum tensor, T#”, which is. In contrast, any additional conserved quanti-
ties which a system may possess (like electric charge, isospin, strangeness ... ) require
®, # 0, i.e. the fields themselves must be transformed; which implies that they must
have more than one component. For the real scalar (Poincaré invariant) field theory
above, ¢ has only one real component and so the theory represented by the respective
Lagrangian density is subject to energy, momentum and angular momentum conserva-
tion only.

However, for the cases of the complex scalar fields and spinor fields, the field com-
ponents may be transformed into one another. The transformations are produced by
matrices which are elements of Lie groups, and the simplest example is the transfor-

mation of a complex scalar field by a U(1) group element :-
veU(l): ¢ = ¢ = ug (18)

where u = €'© is just a complex number. Under this transformation the Lagrangian

density, equation (7), is invariant. The components of ¢ are found to transform :-

& cos® sin® o (1 9)

&b —sin® cosO @3

So this field transformation is just a rotation in the internal space of ¢; not a space-time

transformation. In this case Noether’s theorem gives the divergenceless current :-
hud
JE o it OF ¢ (20)

When © = O(z*) the group element produces a local transformation of ¢. As a
result, a gauge field must be introduced into £ to guarantee invariance under the local
transformation, and in this case we will eventually find a divergenceless ‘covariant’

current :-

T* o ied Dt ¢ (21)



where DH¢ is the covariant derivative of ¢. The corresponding conserved quantity is
electric charge. Thus, conservation of electric charge emerges when we require L to be
invariant under local U(1) gauge transformations; electric charge is a locally conserved
quantity. On the other hand isospin, strangeness and so on result from invariance under
global (space-time independent) transformations by elements of other Lie groups. For

the Dirac Lagrangian density :-
. —H e
L= i@y —myy

we may use, in the absence of spacetime transformations (i.e. X¥ = 0), the Noether

current relation :-

J¢ = a} oY + @7 ‘z& (22)
0(0u¥) 0(¥0,)

In the simplest case where 9 is transformed by a u € U(1), we have ®¥ = —it) and

®% = iy. So we find the divergenceless current :-

Jh o= YT (23)

8,J* = 0

The roots of the work found in this thesis lie in the 1960s. It was understood that some
(quantum mechanical) systems possess a property which was distinctly different from
the simple systems we have looked at so far. Two examples are the superconductor and
the ferromagnet; we will briefly discuss the latter. If we define a general Hamiltonian

density by :-
g'f = 7l'z¢z — fCJ

where m; = (%% is the momentum field canonically conjugate to ¢;, then H is a scalar
and is therefore invariant under rotations. For a ferromagnet, the contributions to J{

come from the spin-spin interactions between the atoms in the sample and above the



ferromagnetic transition temperature the spins are randomly aligned. However, below
the ferromagnetic transition temperature the ground state is not rotationally invariant
because the spins (within a domain) become aligned and we have the situation of spon-
taneous magnetisation in a particular direction. The actual direction of spontaneous
magnetisation is ‘chosen’ randomly; all the other possible ground state configurations
may be reached from a particular one by rotation. Thus, the ground state configura-
tion of the system does not display the full symmetry of the Hamiltonian. We say that
the full symmetry of the Hamiltonian (and Lagrangian) density is hidden, or sponta-
neously broken. It is important to remember that the full symmetry of the system is
still there; it is just that, even though any direction of magnetisation is equally good,

the necessity of associating one direction with the ground state has hidden it.

In 1961 Goldstone published a paper [2] which looked at this situation with respect to
a Lagrangian density for an interacting scalar field theory. The Lagrangian density is
constructed out of a scalar field, or scalar field multiplet, and to achieve the required
property the scalar field(s) is(are) thought of as having an imaginary mass. He found
that if the Lagrangian density has a discrete symmetry (as is the case for a single real
scalar field), then the ground state configuration will be discrete. In the case of a
Lagrangian constructed from a scalar field multiplet, he found that since L possesses
a continuous symmetry, then the ground state is comprised of a continuous set of

degenerate configurations (vacua). For example, the Lagrangian density :-
L = 89" 0%~ [m?¢"¢ + A(¢"¢)°] (24)

is invariant under the U(1) field transformations ¢ — ¢’ = ug, see equation (19), and
this situation has already been discussed for a free field theory where A = 0. Since

¢ = ¢1 + i¢2 the potential may be rewritten in terms of these real components :-

Vo= m?(¢f + ¢3) + A(¢? + ¢3)° (25)



To find the minimum of V we calculate :-

g = (2698 || g = 2 2261+ e -
% = (m*+ 20098 5 = 2Am’+ 2% + Bl

From these we see that, when m? > 0, the minimum of V is at ¢ = 0; which is

equivalent to the condition ¢, = ¢, = 0. However, if m? < 0 then V is minimised by

the condition :-

2

#6 = B+8) = —55 = @ (27)

i.e. the minimum of V is where ¢2+¢2 = a?. In this case the potential has the following
1T¢2 p

form (we also show a vertical slice of V' through the origin) :-

V(¢*d)a

Figure 1: The U(1) ~ SO(2) invariant potential.

To obtain the physical fields for the theory it is necessary to redefine the scalar fields
such that one of the minima represents the ground/vacuum state of the system. This
hides part of the symmetry enjoyed by L (or similarly JH). For this example, if we

redefine ¢, as :-

¢2 ~ XxX+a (28)



then the potential may be rewritten :-
Vo= )+ N(9] + x)? + dxa(9? + x*)] - Aa’ (29)

Thus we see that ¢; has become a massless field, and the y field now has a mass squared
of m2 = 4X\a®. This is an important feature of Goldstone’s method. In the context of
breaking invariance under symmetry group G down to a subgroup H, it is more useful
to construct a Lagrangian density (with a similar form as the one above) out of three
scalar fields. This time we will have G = SO(3) ~ SU(2) and H = SO(2) ~ U(1). In

this case we could write the potential part of the Lagrangian density as :-
m’ 2, 42 2, 12 2\2
vV = ‘2_(4751 + @5+ ¢3) + A(87 + 2 + b3) (30)

This time, when we differentiate V' with respect to the scalar fields, we find :-

ov
O¢i

so when M? < 0, the minimum of the potential lies on a sphere of radius a because,

(m? + 4)dxr) i (31)

to minimize V', we need :-

2
PxPr = —74”—/\ = o (32)

If we now say that the vacuum configuration points in the direction of ¢s then trans-
forming the scalar field multiplet about the 3™ (internal) direction (an H = SO(2)
transformation) will leave the vacuum invariant. Whereas transforming about the
other two directions will rotate the initial vacuum configuration onto one of the other

degenerate vacua. So if we now redefine ¢3 as ¢3 = ¥ + a then we find :-
Vo= a’x* + (87 + 65+ x7)" + 4xa(d] + 45 + x7)] — Ad’ (33)

This time both ¢; and ¢ have become massless fields and now the x field has a mass

squared value of m? = 8Xa®. In the following year (1962) Goldstone, together with
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Salam and Weinberg, published [3] in which these results were restated in a more
general form. They found that whenever a Lagrangian is invariant under a continuous
symmetry group but the ground state configuration (vacuum) is not, there will be
spinless, zero mass fields present; these are known as Goldstone boson fields. Both of
these papers [2, 3] were purely theoretical in nature. A more detailed discussion of
Goldstone’s Theorem may be found in any good textbook on quantum field theories,
such as [4, 5, 6].

In contrast, a year earlier, Gell-Mann and Lévy had published [7] which concerned
pion decays (in a system of pions and nucleons). This was classic phenomenology. The
nucleons were made to transform as a representation of SO(4), whereas the pions were
taken to only transform as a representation of its SO(3) vector subgroup. A fourth
scalar field called ¢’ was introduced such that ¢’ and 7 formed a multiplet of SO(4).

The ¢’ field was then eliminated from the Lagrangian density by using the condition :-

1
P+g? = C?

which constrains the modulus of ¢’. This gives the relation ¢’ = —/C? — 72. Thus,
wherever ¢’ had previously appeared in the Lagrangian density, it was now replaced
by this nonlinear function of 7. This model therefore became known as the ‘nonlinear
sigma model’. This has since become a generic name for the theories found in this
thesis.

During the 1960’s the ideas of Gell-Mann and Lévy became increasingly popular. Much
of the research was phenomenological in nature, and most of the focus was placed on
the calculations for specific chiral groups (like SU(2) ® SU(2) or SU(3) ® SU(3)).
However, in 1969, the geometry of nonlinear realizations was studied by Isham [8].
This paper employed a Killing vector method in the examination of Goldstone boson
transformations, and also introduced the concept of a Goldstone boson manifold metric.

Later on that year Callan, Coleman, Wess and Zumino also used a geometrical approach
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to produce theories which agreed with (had similar properties to) the phenomenological
models [9, 10]. They showed that, given any Lie group, G, and any Lie subgroup, H,
it was possible to construct a general Lagrangian density in which the invariance of £
would be produced by linear transformations of fields and field covariant derivatives
under transformations of H; i.e. the fields and covariant derivatives would form a
linear representation of H. The invariance of £ under transformations of the rest
of the internal symmetry group G would be realized nonlinearly; i.e. under these
transformations the fields and covariant derivatives would form a nonlinear realization
of G. We note that (phenomenological) fields which exhibit this behaviour are known
as standard coordinates (since they are the coordinates of a manifold on which the
group acts), and the transformations properties they exhibit are known as a standard
realization of G. (A good summary of Callan, Coleman, Wess and Zumino’s work is also
to be found in [11], since their work is also applicable to theories where supersymmetry
is broken.)

The work of Salam and Strathdee [12] proved that if a nonlinear realization were
obtained from a (linear) representation of a group, then the vacuum could not be
invariant under the whole group of transformations. Furthermore, they showed that if
one were to demand that a system’s Lagrangian density be invariant under (internal)
transformations of a Lie group G and its vacuum be invariant under a subgroup H,
then the method of Callan, Coleman, Wess and Zumino [9, 10] was the way to produce
general couplings between the Goldstone fields and any other (matter) fields in the
theory. In this way, a Lagrangian density constructed out of standard fields, forming a
nonlinear realization of G which reduces to a linear representation of H, was just the
effective Lagrangian of a theory resulting from the spontaneous breaking of a symmetry
(or symmetries) of L.

Finally, the line of chiral symmetry breaking research culminated in the work of Barnes,
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Dondi and Sarkar [13]. They used a projection operator method, in the framework
of [9, 10, 8], to construct a general effective Lagrangian density for theories where

chiral SUL(N) ® SUx(N) invariance is broken to invariance under SUy (N), the vector

subgroup.

The structure of this thesis.

This thesis was inspired by three specific models :-

1. When SU(2) invariance is broken to U(1),
2. when SO(1,4) invariance is broken to SO(1,3), and

3. when SO(6) invariance is broken to SO(4) ® SO(2).

The first two models were simple enough to analyse, and results were readily found;
these models are contained in chapter 3. However the third model seemed impossible
to analyse. The problem lay in the fact that the mathematical framework relies on
manipulating a quantity called the coset representative element, which is the exponen-
tial of a linear sum of the coset generators (group elements are the exponentials of a
linear sum of all the generators of group transformations). For the first two models
the relevant coset representative elements were easy to calculate to all orders (as re-
quired by theory), whereas the coset representative element of the third model seemed
impossible to find. Therefore, it became necessary to look at the exponents in a new
way; which would make the process of exponentiation much easier. The exponents
were understood in terms of the work of Michel and Radicati [17] and, as a result, took
on a geometrical meaning; in this thesis the linear sum of coset generators is known
as the coset vector. With this new understanding of coset vectors it was clear that a

whole series of models could be studied at the same time. Thus, the calculations (and
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results) which appear in this thesis are kept in a general form, and therefore apply to
a whole series of models simultaneously.

The mathematical difference between each model, in a section/chapter, is provided by
the index ranges because, as we go up through a series of models, the relevant coset
vectors have an ever increasing number of components. The difference between each
model, in a series, lies in their physical interpretation. For example, the CP2 model
(which results when SU(2) invariance is broken to U(1)) has two charged pions (77
and 7~) as the Goldstone bosons, whereas the CP4 model (which results when SU(3)
invariance is broken to SU(2) ® U(1)) has four Kaons (K+, K°, K~ and K?) as the
Goldstone bosons. We note that the CP2 and CP4 models will appear in different
chapters (3 and 4 respectively) because the mathematics associated with the CP4
model is much more complicated than that of the CP2 model; in fact, the results of the
CP2 model bear more resemblance to the two sets of models which make up the rest of
chapter 3 (which is why these models have been grouped together). Nevertheless, the
general results in chapter 4 which concern the CP2(N-1) series of models yield, when
N = 2, the results for CP2 as one would expect. The only specific model which is
calculated in this thesis is that of CP2. For the more mathematically inclined readers we
note that, strictly speaking, true CP2(N-1) models are achieved by rewriting the coset
space coordinates as ‘stereographic coordinates’; by forming complex combinations
and then making antipodean identifications. This is briefly discussed in the concluding
chapter where the scalar part of the SU(2) breaking to U(1) model (with S? Goldstone
boson manifold) is rewritten as a CP2 model. This transformation does not affect the

Kéhlerian properties of the Goldstone boson manifold.

Our choice of models which appear in this thesis has been guided by a theorem of
Borel [14] which states that, for a group G and a subgroup H, the manifold associated

with the coset space (%) will be Kéhler if the centralizer of H in G, denoted Cy(G),
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is toroidal. This means either :-

1. H is a U(1) group, or a product of commuting U(1) groups, i.e. :-
H=UQ1l) or H=U1)QU1)®---

2. H has a commuting U(1) group, or a product of commuting U(1) groups, i.e. :-

H=HU(l) or H=H,U1)U(l)®---

The same is also true if, in the above, we replace U(1) by SO(2) or SO(1,1); because
of the homomorphism between U(1) and SO(2). The importance of Borel’s Theorem
is that any theory with this property may be extended to include N/ = 1 Supersym-
metry 1. Therefore, we have mainly chosen to study models which contain a Kéhler

Goldstone boson manifold; which may be identified with the coset space ( -f;)

In this thesis we will analyse various nonlinear realizations. The analysis will consist
of determining the transformation properties of the Goldstone fields using the Killing
vector method, and then constructing invariant quantities from fields, and covariant

derivatives, which may be used to form the Effective Lagrangian for the theory.

Chapter 1 begins by introducing group elements, subgroup elements and the coset
representative element. The rest of the chapter focuses on the methods of Callan,
Coleman, Wess and Zumino [9, 10]. We show how the notion of a symmetric space
allows the use of an isomorphic mapping of the group generators (an outer involutive
automorphism) which helps in the study of field transformations. We then use the
first order Killing vector method, introduced by Isham [8], to study the Goldstone
field transformations. Next, we show how the covariant derivatives are formed, for the
Goldstone fields and the matter fields, and how they transform too. Finally we show

how an effective Lagrangian density for the theory may be constructed; consisting

1This assumes that the fields are defined in a normal four dimensional spacetime. If the fields,

however, are defined in a two dimensional spacetime then a theory with a Kéhler % will admit V' =2

Extended Supersymmetries.
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of two parts. Firstly, the Goldstone boson part is shown to contain a metric, also
introduced by Isham [8], which is associated with the Goldstone boson manifold. We
show that this metric may also be constructed from the Killing vector components.

Finally, we show how the matter field part of the Lagrangian density is written.

Chapter 2 introduces the mathematics of real vector spaces and Cartan Subspaces,
studied by Michel and Radicati [17]. We then tailor, and extend, their methods to
suit the necessities of this thesis. We show how to write (some of) the basis elements
of the Cartan subspace associated with a vector z, denoted C,. This tells us how we
may express the coset vectors which, in turn, helps us to find the coset representative
element. (This element is a fundamental quantity used in the mathematical framework
of the preceeding chapter.) We find that this process is possible when we understand
the geometric implications of the characteristic equation of a vector. It is also clear
that this language may be used for SU(N) breaking and SO(m) breaking theories;
because the mathematics has no regard for the physical theory we wish to investigate.
We end the chapter by showing how to calculate the exponentials of various important
types of vector. Thus, this chapter sets up the mathematical formalism adopted in the
last three chapters.

In chapter 3 we look at the (sets of) theories which may be studied when the relevant
(normalized) coset vectors square to the identity element. We begin with the theory
which arises when SU(2) invariance is broken to U(1), we then look at the theories
which arise when SO(m) invariance is broken to SO(m — 1), and finally we look at
the theories which arise when SO(1,m — 1) invariance is broken to SO(1,m — 2). In
each case we find the Killing vector components which describe the Goldstone field
transformations, we find the covariant derivatives for the Goldstone fields and matter
fields and then we construct the Goldstone part of the effective Lagrangian densities.

We also check the form of the Goldstone boson manifold using the Killing vector
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components. We note here that the specific nonlinear realization of SUU((S) is studied,
and the effective Lagrangian density for the theory found, in [15, 18]. Also, the specific
nonlinear realization of -‘;—8—8—% is studied, and the effective Lagrangian density for the
theory found, in [15] only. As far as we know the general sets of models have not been
studied before; just specific examples. We see that this chapter contains three models
which have a Kéhler Goldstone boson manifold. These are the theories which arise
when SU(2) invariance is broken to U(1), when SO(3) invariance is broken to SO(2),
and when SO(1,2) invariance is broken to SO(1,1).

In chapter 4 we look at CP2(N-1) models which result when chiral SU(N) invariance
is broken to SU(N) ® U(1). We show how these models may be embedded within
the framework of general chiral symmetry breaking models [13]; i.e. the models which
arise when SU(N)z ® SU(N)p invariance is broken to SU(N)y, the vector subgroup.
We also show which models from chapter 3 are contained in, or are relevant to, this
chapter. Again, we find the Killing vector components which describe the Goldstone
field transformations, we find the covariant derivatives for the Goldstone fields and
the matter fields and then we construct the Goldstone part of the effective Lagrangian
densities. We also check the form of the Goldstone boson manifolds using the Killing
vector components for each model. We note that all the CP2(N-1) models have a
Kéhler Goldstone boson manifold.

In chapter 5, the final chapter of results, we look at three models with the same
structure. These are the theories which arise when SO(m) invariance is broken to
SO(m — 2) ® SO(2) for m = 4,5,6. Again, we find the Killing vector components
which describe the Goldstone field transformations, we find the covariant derivatives
for the Goldstone fields and the matter fields and then we construct the Goldstone
part of the effective Lagrangian densities. We also check the form of the Goldstone

boson manifolds using the Killing vector components for each model. We note that the
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final model where SO(6) invariance is broken to SO(4) ® SO(2) also appears in [15].
However, unlike in [15], we are able to find the Killing vector components for the
Goldstone field transformations and therefore check the form of the Goldstone boson
manifold. This work was omitted from [15] because the method he used in the analysis
was based on the projection operator method of [13]; which yielded answers which were
not as transparent (or as easy to manipulate), as the results which we have found 2.

We note that all the models in this chapter have a Kédhler Goldstone boson manifold.

This thesis also contains four appendices, which we will now briefly discuss. The ap-
pendices are fairly extensive because we felt it was important to maintain the flow of
ideas and results in the main body of the thesis. Appendix A is designed as supple-
mentary work to chapter 2 and contains the more relevant ideas found in [16]; which
was a geometric examination of the homomorphism between the groups SU(4) and
SO(6). In this appendix we explicitly calculate the diagonal r and g,-vectors of the
real vector spaces R® and R'°. With these explicit forms in mind (and remembering
the use of the characteristic equation in the idea of rotating vectors around the real
vector spaces) it is easier, for example, to see how to form group elements, or com-
muting subgroup elements. We also get a better ‘feel’ of the form of the results in the
thesis; in particular, because we do not resort to a projection operator method from
the start (see [13, 15]) which in effect hides the coset vector structure, we are able
to keep vector-like quantities (associated with the coset and subgroup spaces) in our
expressions.

Appendix B looks at some relevant adjoint representation operator relations for SU(NV);
discussed in [17]. We then go on to calculate the form of the adjoint representation

projection operators which appear in the calculations in this thesis. For example, all

2The projection operator method of [13] is particularly useful for studying generic coset models
(where general G invariance is broken to H), whereas if we choose to study certain sets of models

which have simpler coset vectors then the methods and ideas found in this thesis are preferable.

18



results for the Killing vectors and Goldstone boson manifold metrics are phrased with
respect to these adjoint projection operators. This is especially helpful when we use
the Killing vectors to reconstruct the Goldstone boson manifold metric; this procedure
forming a doublecheck for the metric result.

Appendix C discusses the Weyl representation of the generators of SO(m) and SO(%, s)
groups; the generators being constructed from a set of gamma matrices for the groups.
We look at the homomorphism between SO(6) and SU(4), and also discuss some
useful subgroups of SO(6) which appear in this thesis; this discussion being phrased
with respect to the r and ¢,.-vector framework.

Lastly, appendix D shows how the results for field gradients, and vector length gradi-
ents, are calculated. These results are just quoted throughout this thesis as they are
substituted into the end of the various calculations. For example in chapter 4, the

coset vector in an SU(N) breaking to SU(N — 1) ® U(1) model may be written as :-

z = %A

= ¢nA,

where ¢ is the length of the vector, and n®)\, is a unit vector which points in the
direction of z. It turns out that quantities like 0,n® and 0,¢ will appear in our
calculations. However, we find that their explicit forms are only required towards the
end of each calculation, and this saves on the ammount we actually need to write. As
a result, the equations are also easier to read because we are able to use an index free
notation throughout. So appendix D shows how to calculate quantities like these for

all the coset vectors which appear in this thesis.
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Chapter 1

Effective Lagrangians for nonlinear

o-models.

The aim of this chapter is to introduce the important results found in [8, 9, 10], with
regards to constructing, and analysing, the effective Lagrangians of nonlinear o-models.
We will, however, begin by giving simple definitions of the quantities used to build the
effective Lagrangians. Here the definitions are deliberately kept simple because it is
only necessary, at the moment, to introduce ideas which will later be developed, and
also to introduce the notation used in calculating the various quantities in the theory.

Once this is done we can then go on to describe the mathematical framework.

1.1 The exponential quantities in this thesis.

The construction of an effective Lagrangian density relies on the manipulation of a
quantity known as the coset representative element; essentially, it is transformed by
the elements of Lie groups. Both the coset representative element and the Lie group

elements are in the form of exponentials, which we will now introduce. The following
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definitions simply illustrate the difference in notation between the groups considered in

the following chapters; more rigorous definitions will be introduced where appropriate.

1.1.1 Lie group elements.

For a Lie group, G, we may write elements of the group, g € G -

~i (1.1)

<
i
aQ

If the dimension (total number of generators) of a Lie group is denoted dim(G) then z
is a linear combination of dim(G) generators. These generators are traceless hermitian
matrices and, because they are linearly independent, we are able to think of them as
forming the basis of a real vector space of dimension dimn (G), which we denote R#™S),
Real vector spaces are examined in detail in the next chapter. Thus, we may think of
= as being a general vector of R¥™(%); and we will refer to this general vector as the

group vector. An important property of group elements is given by :-

9192 < g3

Thus, on one hand, if we multiply any two group elements together then we just end
up with another group element and, on the other, a group element may be rewritten
as the product of two other elements.

Group elements, and all subsequent quantities of this form, are defined by the power

series expansion of the exponential :-

; 1 ] 1 ) 1
e = 1 —iz— S g gt = gt -

g% Tad Tt THT Te® T

where the subscript NV implies we are working with N x N matrices. We may rearrange

this expression and write :-

e 1, 1, 1 _ 1, 1,
PR 1[N]+(_§-!x2+2fg$4—é'_i$6+_”')_Z(z_gg'm + 52 —+---)
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which is rather suggestive because, if N = 1 and £ = © is just a real number, then this

expansion is :-
e = 1+ (cos® —1)—isin®
= cos® —isin®

This is a very familiar result. In this case though, because N = 1 implies that the
generator cannot be traceless, it is called an element of the group of unitary (g7 = ¢g~')
1 x 1 matrices, denoted U(1). In this example the element is said to be in the defining
representation as it is just a complex number. We remark that the odd function,
sin® , is the imaginary part of the complex number; that is, it is accompanied by
the imaginary number i. We make this remark because, even when z is a matrix, the
(odd) sine functions are always preceeded by the imaginary number ; the (even) cosine
functions are always contained in the rest of the expansion of the exponential.

When N > 2, the traceless nature of the generators leads to group elements with unit
determinant, det g = 1, and thus we will be dealing with elements of SU(NV) (the group
of Special Unitary N x N matrices) and SO(m) (the group of Special Orthogonal m x m
matrices). The size of the matrix, z, involved in the exponent depends on the group
we are considering; and also on the representation we are using for the generators of
the group elements. How z is mathematically expressed depends on the group we are

using :-

1. The group of Special Unitary matrices (with N > 2) is denoted as G = SU(NV),

and has a dimension of dim(G) = (N? — 1). We write the group vector z :-
z = 0Ty forT=1,2,...,(N*-1).

where the §7 are (N? — 1) real parameters. The T; are defined by a relation

known as the Lie Algebra :-
[T1, T3] = ifuxTx
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where I, J,K = 1,2,...,(N?—1). The meaning of this relation will be discussed

further in section 1.1.4.

In the Defining representation the generators are defined by 77 = %/\I, and are

N x N traceless Hermitian matrices. In this thesis we use the A; which therefore

obey :-
[An Al = 2ifrkdk

In the Adjoint representation the generators, 7, are (N? —1) x (N? —1) traceless

Hermitian matrices, which are defined using the structure constants :-
(Tx)r; = —ifux for I,JJK =1,2,...,(N*=1).

where this is an expression for the matrix components of the generators. This is
possible because the structure constants of SU(NN) form a representation of the

Lie algebra, i.e. they too obey the commutation relations above.

2. The group of Special Orthogonal matrices is denoted G = SO(m) with m > 2,

and has a dimension dim(G) = 3m(m — 1). The group vector z is written :-
z = wiBTyp for A,B=1,2,...,m.

where the w?B(= —wP4) are lm(m — 1) real parameters. We will be dealing
with SO(m) groups in the Weyl representation where the Tup = 045, and we
construct the o4p(= —ops) from a set of m gamma matrices, y4. Both the

o-matrix construction, and the form of the commutation relations, are discussed

in Appendix C, from page 191.

3. For G = SO(t,s), with t + s =m > 2, we write z :-
z = w1,
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where the index ranges depend on the values of £ and s. Again, the w* (= —w"*)
are m(m — 1) real parameters. In the Weyl representation the Ty, = 3%, and
we construct the ¥, (= —X,,) from a set of m gamma matrices, I'y; these are

derived from the m gamma matrices of SO(m), the y4.

For m (or t+ s) = 2k,2k + 1 with integer k (> 1), the generators of SO(m) and
SO(t,s) are 2% x 2% matrices; this thesis only concerns models where ¢ = 1 and
therefore s = (m — 1). In chapter 3 we will look at models where G = SO(m)
invariance will be broken to H = SO(m—1), and G = SO(1, m—1) invariance will
be broken to H = SO(1,m — 2). In these cases, we must obviously have m > 3
to define the group, G, which can be broken to a normal subgroup, H < G. In

chapter 5 we will look at other possibilities.

1.1.2 Subgroup elements.

For a subgroup of G, denoted H, we may write elements of the subgroup, h € H :-
h = e—iw (12)

where z is now a linear combination of the dim(H) generators which generate the
subgroup element. Thus we may think of the vector, z, as one which lies in a subspace
of R4™&)  This subspace is R¥™H), We will refer to this restricted vector (in the
sense that it lies in a subspace of R¥™%)) as the subgroup vector, and the subspace
of R¥™G) in which it lies, as the subgroup subspace. In this thesis we will mainly be
considering models where G invariance is spontaneously broken to a subgroup H < G
where H is of the same rank as G; any exceptions will be noted. The rank of a
(sub)group is defined as the maximum number of generators, or equivalently (sub)group

elements, which will mutually commute.
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1.1.3 Cosets and the coset representative.

A left coset, denoted (&), is formed by acting on the subgroup, H, from the left with

a general group element :-

gH = g.hH

= LH (1.3)

where, in the notation of SU(N), we define the subgroup as H = {e~#"7# V §7}, and
because of the properties of group elements, we have written g = gLh. We define the

coset representative element, L as :-

L =g
i (1.4)

where z is a linear combination of dim(G) — dim(H) generators. These generators are
generators of G in the orthogonal complement of H. Thus, the vector z is one which
lies in a coset (sub)space, REMC)-dim(H) and we will refer to it as a coset vector.
It is the coset vector parameters/coordinates which identify a particular coset, and a
different set of parameters will define a different coset; hence L being called the coset
representative element. In physical applications the coset parameters are functions of
z#, the spacetime coordinates, and are known as interpolating fields; for the SU(N)
breaking models in this thesis they are denoted ¢* where a runs over the coset indices.
They are related to the Goldstone Boson fields, the M, that arise in a theory when
we spontaneously break GG invariance down to H. The relation is as follows. In terms
of the interpolating fields the coset vector has a length of ¢, we then make a specific
reparameterization and write ¢ = ¢(M) = M + O(M?) where M is the length of the
Goldstone boson coset vector. So when we write the Goldstone vector as M%), it
points in the same direction as ¢®A, and their lengths are arbitrarily related. We note

that this is not the most general reparameterization.
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It is simple to demonstrate how many Goldstone fields there will be in a model which
incorporates the phenomenon of spontaneous symmetry breaking. In such models the
vacuum state is not invariant under all transformations of a group G (it is transformed
to another vacuum state); it is only invariant under transformations of a subgroup,
H, of G. So if we take as an example a scalar field theory, then under the field
transformations g € G : ¢ — ¢ = g¢ we know that the potential in the Lagrangian
density is invariant, i.e. V(@) = V(¢'). So if we Taylor expand the potential about its

minimum value then we find -

Vigo) = Vigéo)
oV 1 an I
The first order term is zero because we are expanding about the vacuum value and so,

for small variations, we must have the condition :-

0%V
(5a7g7 ) se406d = (1.6

Firstly, when g = h € H we find :-
- e
= ¢
where T’y is a (matrix) representation of the subgroup element, h € H. Therefore

8¢} = 0 and equation (1.6) is automatically satisfied. However, when g ¢ H then we

find :-
é = (Fg){l ¢0J
= ¢+ 0%
To first order in the transformation parameters we have (')} = 67 — iw®(T3)} and so

we find :-

0y = —iw*(T)5 ¢ # 0 (1.7)
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Therefore, in this case, equation (1.6) is satisfied when :-

% B
(a—¢16¢J)¢o = 0 (1.8)

and this implies that 6] = —iw®(T,)} ¢] are massless fields. We notice that the
quantity 6@} is always a function of a number of fields equal to the number of coset
space parameters, w® Therefore there is a one-to-one mapping between the space of
massless (Goldstone) fields and the space of coset parameters. If we assign particular
values to each of the w® then this is equivalent to assigning particular amplitudes to the
Goldstone fields. In particular, if we set all the w® to zero, then all the Goldstone field
amplitudes also become zero. Thus, the isomorphic mapping maps the origin of one
space onto the origin of the other; which may be interpreted as changing coordinates,
in a patch, from coset space parameters to Goldstone fields.

At this point it should be understood that, when it comes to calculating explicit results
in the physical theory, it is far simpler to deal with the SU(V) groups because we have
less indices to worry about. However we will see in the next chapter that, using the
A-matrices of SU(N), we are able to develop a mathematical structure which allows
us to describe coset vectors in an indez free way; and we may apply this method to
the coset vectors associated with Special Orthogonal group breaking models, which

effectively removes this complication.

1.1.4 Structure of the Lie algebra for G = SU(N).

Here we will discuss the structure of the Lie algebras with respect to G = SU(N)
breaking to H = SU(N — 1) ® U(1), with G and H being of the same rank. We will
construct similar results for SO(m) and SO(t, s) breaking calculations in Appendix C.

This work is to be found in sections C2 and C3 which start on page 195.

e The generators of SU(N), the Ty, obey a set of commutation relations which we
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call the Lie Algebra of SU(N) :-

[T7,T5] = ifuuxTx

where I, J,K =1,2,...,(N? — 1) and the fryx, which are called structure con-
stants, are totally antisymmetric under the interchange of any two (neighbour-
ing) indices; i.e. frsx = —frxs = fxrs. In this thesis we use a set of A-matrices,
which are related to the generators by 77 = %AI. So the Ay obey the commutation

relation :-
An Al = 2ifikik

To give an example, the group SU(2) has, in the defining representation, a Lie

algebra :-
[0’,',0']'] = Z’iEiijk

where 1,5,k = 1,2,3. The g;;, with €193 = 1, are the structure constants of
SU(2). Notice that the ); have been rewritten as o; and this is because the o;
are the three Pauli spin matrices which obey the Lie algebra. Any three traceless
Hermitian matrices which obey the above relation may be used as the generators
of SU(2) group elements and, as it turns out, they will be related to the Pauli

spin matrices by a unitary similarity transformation :-

I
o = ulou

In the next chapter we will examine the geometric meaning, and the consequences,
of this relation for all SU(N); when we define the A-matrices as the basis of

%Nz—l
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e For the subgroup, H, of G we must have the Lie algebra :-

[Am Ar] = 2ifgreic

where the E, F,G = 1,2,...,(N —1)* — 1 and N? — 1 are the set of indices

which label the subgroup generators.

e For the coset G/H we have :-

Ao, Ae] = 2ifarrAr

= 27:fa.bc)\c + 22.fabE)\E

where the I are the (N2 — 1) group indices, the a,b,c = (N —1)%,... ,N* —2
are coset indices, and the E are the subgroup indices. In our work we will be

dealing with symmetric spaces where the fy. = 0 V a,b and ¢. Thus we have :-

A ] = 2ifur)s

We note that symmetric spaces allow an isomorphic mapping of the coset space
generators (A, — —A,), known as an Outer Involutive Automorphism, which

maps G onto itself; this useful property will be discussed in the next section.
e So between subgroup and coset we have :-

A, AE] = 2ifumse

We note that the Lie algebra exhibits a Z, grading structure.

1.2 Goldstone Boson transformations.

We will now look at the mathematical structure used to find the transformations of
the Goldstone bosons in the theory. The method of construction centres around trans-

forming the coset, LH, with a global group element, g € G, from the left. However, as
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we will soon see, the properties of group elements allow us to ignore the H part of the
coset because it is invariant; so we may restrict our attention to the coset representative

element, L. When we transform L from the left with a global g € G we find :-

gL 99,

— gII
= g";h,

= L'k (1.9)

where the properties of group elements have again been used. This is an important
equation because it is also used in the construction of the rest of the theory. We see
that the h € H will have no effect on the H in the coset because h: H — H' = H.
This is why we have ignored it. Since we are using (interpolating or Goldstone) fields

to parameterize L, it is clear that h is a local transformation.

e Now if g = h € H then we may write :-
gL = hL

= hL(h™'h)

= L'h
and so we immediately see that :-
Ll = th—-—l (110)

This is a linear transformation of the coset parameters (Goldstone Bosons); in the
next chapter we will see that a relation of this form tells us that they transform
in the Adjoint/Vector representation. We will find, for some models, that we are
able to calculate this transformation to all orders if we consider certain subgroup

elements.
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e If g = c ¢ H then we can only make these transformations more explicit if the
coset space is a symmetric space. If it is, then it admits an automorphism which

maps the coset space basis :-

Aa P =g for SU(N) breaking models,
OgA H> —0Ogn for SO(m) breaking models, and
Yor = —Zaa for SO(t, s) breaking models.

The subgroup generators, which form the subspace basis, are invariant under the
automorphism, and so looking back to Section 1.1.4 (on page 27), and forward
to Appendix C (on page 195), we see that the structure relations of G remain
unchanged. Note also that the index ranges will be properly defined where appro-
priate; but for now it is sufficient to understand that they are coset indices which
run over a subset of all possible values. If the coset space is a symmetric space
then we proceed by inverting equation (1.9) and then applying the automorphism

to give :-
Lc = h'L
which we may combine with equation (1.9) to find :-
(L'? = cL? (1.11)
which is a nonlinear transformation of the Goldstone Bosons.
In general we have :-
(L) = gL*A(g7™") (1.12)

where A (g71) has been used to denote the result of applying the automporhism to the

inverse of an element g. For a transformation produced by an element of the subgroup,
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that is g = h € H, this relation reduces to :-

(L' = hL?h!

= hLh 'hLh!

This implies that L' = hLh~! which is just equation (1.10), as desired.

1.2.1 Analysis to first order using Killing vectors.

For both the linear and nonlinear cases we may also find quantities known as Killing
vectors. They contain information about the generators of the transformations of the
Goldstone Bosons because we are working with equation (1.12) to first order. In an

SU(N) notation the Goldstone Bosons transform :-

M®— MY = M®+5M®

= M+ 60°K% + 0°K¢ (1.13)

where the K% are the linear Killing vector components, and the K are the nonlinear
Killing vector components. The ¥ and 0* are the subgroup element and (coset) el-
ement transformation parameters respectively. We are able to find the Killing vector
components using the coset representative, L. If we understand that a transformed
coset representative element written in terms of the original Goldstone fields has the
same form as the original coset representative written in terms of transformed fields,

i.e. L'(M) = L(M') and use the notation of differentiation with respect to Goldstone

fields L, = OL/OM?*, then we may write :-

L'(M) = L(M)+35L

= L(M)+L.,M"

and if we use equation (1.13) we find :-
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e For the linear transformation :-
L' = L+ L,6°K% (1.14)

where L' = L'(M) and L = L(M). If we expand the LHS to first order in the

transformation parameters we find :-

I' = hLh™!

1
= L— - [0"X\g,L 1.15
92 [9 /\E’ ] ( )
and so, to find the K% we must solve :-
[0PX5, L] = 2iL.0"K%

If the subgroup transformation parameters, the 8%, are removed from the calcu-

lation we have :-

e, L] = 2L K% (1.16)

e For the nonlinear transformation :-
(L)? = L*+L20°K (1.17)

Notice the use of squared terms; because we are considering a ‘coset’ of transfor-

mations. If we use the the same approach as before, then we find that to calculate

the K} we must solve :-
{6, L%} = 2 L%0°K}

When the coset transformation parameters, the §°, are removed from the calculation

we have :-
{M, L*} = 2L2K; (1.18)
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Lastly, from [8], we understand that not only do these Killing vectors tell us about the
transformations of the nonlinear realizations, but they may also be used to check the

form of the Goldstone boson part of the Lagrangian which we will build. This will be

explained in section 1.4.1a.

1.3 Covariant derivatives for the Goldstone bosons

and matter fields.

To construct an Effective Lagrangian we must find Covariant derivatives for the fields in
the theory. We know that there will be Goldstone boson fields and we have just looked
at a method of finding their transformation properties. Now, even though Goldstone’s
theorem does not require any other fields in the theory, we will introduce a set of matter
fields that interact with the Goldstone bosons in a natural way. We will then show how

to find covariant derivatives for both the Goldstone fields and the (standard) matter

fields.

1.3.1 The form of the Standard field covariant derivative.

The fields in the unbroken theory, which we may call ®, transform as a linear repre-

sentation of G :-
geG: 2~ ' =gd
Using the ® we may define a set of matter fields, also called Standard fields :-

v = L7 (1.19)
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The standard fields have the property that they transform :-
g: vy = L@
(RL™'g™")(9®)
= hL™'®
= hy (1.20)

where, in the second line, we have used equation (1.9). For the moment we note that

the Pauli adjoint spinor, 1, transforms as :-

9:9=9' = gh (1.21)

1.3.1a Transformation of J,%.
We now ask how 9,9 transforms by using the above relation. We see :-

g:0, =0 = hou+ (0.h)Y

and so 8,1 is not a Covariant derivative; its transformation is different to that in
equation (1.20). What we need is D, = 9, + X, such that D, — hD,1. Using this

new form we now have as our transformation:-
g: (3ﬂ + Xu)T/} = [(au + Xu) ¢]I = (8;4 + X;l,) T/},
= (B.+X,) h

(8,h) ¥ + h W + X b

which must equal / (8, + X,) %, and so we must have :-
WXy = (9uh)% + Xph

This tells us how the quantity X, transforms. We see :-
X, = hX,h7'—(Buh) R

= hX,h™'+ hd,h7! (1.22)

35



We will now show how to find X, which will give us our covariant derivative for the

standard fields, and also how to find the covariant derivative for our Goldstone fields.

1.3.2 The Covariant derivatives.

The following method will give us covariant derivatives for the Goldstone fields and
Standard fields. By differentiating equation (1.9) with respect to the spacetime coor-

dinates, z#, we find :-

90,1 = (8.L)h+ L' (3,h)
and if we now take g to be the local transformation g = L~! then we have :-

L79,L = —% (a, +v,) (1.23)
Under the action of g € G this transforms :-

g: L9, L L''9,I' = hL7'g7'9, (9Lh™)
= hL19, (Lh™)

= h(L7'8,L) R +ho,h" (1.24)
So we find that under the action of g € G :-

ay — ha,h™ (1.25)

—%vu = h (--;-u,,) h~! + ho,ht (1.26)

e Firstly, equation (1.25) tells us that we may interpret the components of a, as a
covariant derivative for the Goldstone fields. In the next chapter we will see that
this has the same form as the transformation of a vector, so the components are
transforming in the adjoint representation. So our covariant derivative for the

Goldstone boson fields is written in the form :-

@@ = D,M° (1.27)

i
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in SU(N) breaking calculations, or
a)f = D,M¥ (1.28)

in SO(m), and SO(t, s), breaking calculations. Note that for these models the

indices will be properly defined where appropriate.

e Secondly, if we compare equation (1.26) with equation (1.22) we see that we have

found what we needed to form the covariant derivative D,1. We thus have :-
Dy = (8 — tvu)¢ (1.29)

Using a similar line of reasoning we may also construct a covariant derivative for

1) which we can write as :-
_ A 4 .
YD, = P(0, +5uu) (1.30)

Notice the change in sign of the second term. By definition, this transforms in

the same way as 1) :-

g: @D~ @D = @Dy)h™ (1.31)

1.4 Invariants terms and the Effective Lagrangian.

We now have all we need to construct an Effective Lagrangian for the theory. We must
now find invariant terms which may be used to form the pieces of the Lagrangian. The
scalar (Goldstone boson) and the spinor (matter field) parts of the effective Lagrangian

density will be considered separately.
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1.4.1 The Goldstone boson part of the Lagrangian.

If we look at the form of equation (1.25), we see that the quantity 1tr a,a® is invariant

under group transformations :-

ltraue — Yraa* = Lrha,hhath7
= itraua”
= (DM%) (D*M?)
= gu (8.M°) (9" M) (1.32)

where, in the last line, we have introduced the coset space metric, gqp, of Isham [8].
In practice we use half this quantity in the Lagrangian, and when it is expanded ! we
find that the first term we get may be interpreted as a Kinetic term for the Goldstone
bosons; the other terms being interaction terms between the Goldstone bosons. For

SO(m) and SO(t, s) breaking we will find the following form :-
%tr aﬂa" = Oix Y (6”M’X) (8“ij) (133)

and the index ranges will be properly defined in the relevant sections. In the next

chapter we will also introduce the notation (a,,a*) = 3¢raua* and we will have :-
(au,a?) = G,Zaf:

in the SU(N) breaking models. This is simple to see because if a, = a%), then (ay, at)

contains (Ag, Ap) = 6 4. For the SO(m) and SO(1, m —1) breaking models we will have

the quantity :-
(au: au) = K a’fLXa:Z‘X

Notice that a constant, K, has appeared on the right hand side because (0;x, g;v) and

(Zix,X;jv) depend on the size of the sigma matrices (see Appendix C). However, this

1¥or the SU(N) models ggp = Ggp + - ---
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constant may be ignored because it will also appear when we physically calculate the

left hand side. Therefore we will just calculate/consider ai*afy. In the language used

in the next chapter we say that the SO(m) sigma matrices, o4, are not orthonormal

basis vectors; instead they are just orthogonal vectors (which may be normalized to

form a set of basis vectors).

1.4.1a Using the Killing vectors to construct the metric.

We understand, from the paper by Isham [8], that we may use the Killing vector com-
ponents to check the form of the Goldstone boson manifold metric. It is therefore
true that, for the more complicated models considered in this thesis, this metric recon-
struction may be used as a doublecheck to verify the results for the nonlinear Killing
vector components (assuming the metric to be correct). In contrast, the results for the
linear Killing vector components may be verified with only a small ammount of extra
work, and so the relevant doublecheck will be included in the thesis; and this met-

ric reconstruction then becomes a triplecheck for the form of the linear Killing vector

components.

e For SU(N) breaking models we have :-
(ap,a*) = ga (0, M%) (B“Mb)
and we may form the Goldstone boson manifold metric :-
g = (KLK%+KKY)™ (1.34)

where the quantity (K4KY% + K2K?) is the inverse of the left hand side, and so

has the property :-

goe (K5Kp + KiKg) = 4,
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For these models there is no distinction between covariant and contravariant

indices.

e For SO(m), and SO(t, s) breaking models we have :-
(awa*) = gix jv (0.M™) (0* M)
and we may form the Goldstone boson manifold metric :-
gix v = (KEXKMIY L KXKH YY) (1.35)

where the quantity (KK 7Y + Ki¥K*2 7Y) is the inverse of the left hand side,

and so has the property :-
gix kz (KERK™ 7 L KIZKW ) = oly

For SO(m) breaking calculations there is no distinction between covariant and
contravariant indices, but to make things easier when we come to work on

SO(1,m — 1) breaking models we keep the indices balanced and sum over the

repeated upper and lower indices.

1.4.2 The matter field part of the Lagrangian.

For the matter fields we see that we may form two invariant terms. In a little while we

will show how to construct the Pauli adjoint spinor, 1, which transforms :-

g: b’ = Pph

However, since we know its transformation properties, it is obvious that we may form

an invariant mass term for the matter field part of the Lagrangian density because :-
g: mPyp = myhTthy = mip. (1.36)
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This quantity is also invariant under Lorentz transformations of the spacetime coordi-

nates. Secondly, we see that we also have an invariant :-
g: @_bDu"/)H{/}—h_lhDu'@b = ";_/JD;ﬂ/"

— _
where D, = D,. However ¥D,3 is invariant only under group action. On the other

hand it is a 4-vector, and so to make this piece invariant under Lorentz transformations

we must use the quantity :-

PTED = Y Py (1.37)

Also, from the transformation property of the covariant derivative for the Adjoint Pauli

—
spinor, 9 D,, we see that we also have an invariant :-
o . 1 4
g: YPYv—=yYPh ) = YyPY (1.38)

which is also Lorentz invariant. Therefore, together with 1 P, we may write an

invariant term :-

9Py = ~GPY-FPY) (1.39)

DN | =

1.4.2a Constructing 1, the Pauli Adjoint of the spinor .

The Lagrangian has been constructed such that it is invariant under Lorentz trans-
formations of the spacetime coordinates. In constructing the matter part of the La-

grangian we have used the Pauli adjoint spinor, 1, which is defined :-
v = Yl A (1.40)

We will now show how to find the matrix A. Firstly, the Dirac adjoint of a matrix, X,

is defined by :-

(1.41)

Il
|
>
&

(Txo)'
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Using the definition of the Pauli adjoint spinor, the left hand side of this is :-
@xa)' = (vtaxe)’
= T XTATY
= oTAAT XTATY
= A  XT ATD
Therefore, we see that we need to satisfy :-
X = A txtAt

For simplicity, if we now let A be an Hermitian matrix, i.e. At = A, then this relation

may be written :-
X = A'XT4 (1.42)

Now, in the theory, we would like 1) T*1) = J* = (p, J) to be a divergenceless (9,J* = 0)

Noether current which will lead to a charge operator :-

~ [t

which is the conserved quantity. So if we now have X = T'# then we need to find
the Hermitian matrix A such that I'* = I'* (which will give the four-current, J*, real
components). A set of gamma matrices is defined in Appendix C; or rather, we define
the Iy, which are just 7,,I'”, but this will not change the qualitative results of what
follows. We will now work on equation (1.42) in parts. Firstly, since I'’f = I'?, we have

the relation :-

0 = A"'T%A

I = A°1%4
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Premultiplying this with A leads to :-

[AT’] = 0 (1.43)
Secondly, since I'f = —I'%, following the same procedure as above will now produce the
anticommutator :-

{4,T"} = 0 (1.44)

The gamma matrices obey the two relations :-

[,,T,] = 265,

{Fu,l—‘y} = 2?7uy 1[2k]

If we now, appropriately, restrict the indices in these expressions we find :-

[Fu,FO] = 22’2u0

{FIH Fz} = 277!“ l[zk]

and then, clearly, equations (1.43) and (1.44) are satisfied by the Hermitian matrix
choice A =T,

It is important to understand that for different SO(t, s) models the matrix A will be
also be different. To give an example, without justification, we find for SO(2,4) that

we need to have A = I'0'6 = —; 06,

1.4.3 The complete Effective Lagrangian density.

Putting the results of the last two sections together we see that we may construct an

Effective Lagrangian density which is the sum of a Goldstone boson part and a matter

field part. Therefore we have :-

Lot = 3 (an ) + TGP —m)u (1.45)
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where the form of the (a,,a*) = 1tr a,a” term is given

(a,0") = gay (8,M°) (8*MP) for SU(N) breaking.

(au, @) = gixjv (8,M"F) (6" M) for SO(m) or SO(t,s) breaking.
It is usual though just to consider the Lagrangian density :-

2 (@ 0) + BEP —m)y (1.46)

’c’eff
where the D, acts to the right only. This is permissible since the only difference between
equation (1.45) and equation (1.46) is a total divergence; which does not change the

action. Both Lagrangian densities, however, are what we would expect for a theory of

this type since :-

1. The massless scalar field multiplet (Goldstone boson) part of the Lagrangian
density contains, at lowest order, the kinetic term 19,M°8*M®. This is the
usual form of a scalar field multiplet Lagrangian density kinetic term. This is

also accompanied by higher order (self) interaction terms.

2. The matter field part of the density has the usual form of a Dirac-like Lagrangian
density. This is accompanied by interaction terms between the matter fields and
the massless scalar (Goldstone) fields; provided by the v, term in the covariant

derivative Dy.
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Chapter 2

The geometry of Real vector spaces.

It is clear from the construction of the physical theory that we do not ever need to find
explicit expressions for general group elements. In fact we only really need to write
expressions for the coset representative, and we will see that only certain subgroup
elements need to be considered to understand some of the physical consequences of
the theory. The approach we will use is to understand the real vector space associated
with the generators of group elements. The construction is phrased with respect to
SU(N) group element generators, because it is based on the techniques employed
by L.Michel and L.Radicati [17] in their study of SU(3) and the geometry of R°.
Although the theory has been explicitly formulated for SU(N) groups, we may work
with SO(m) groups too. We do not necessarily have to exploit any homomorphisms
to do this (though we may) because the generators of SO(m) groups are also traceless
hermitian matrices. Therefore our framework will allow us to apply the same ideas
to find the coset representative, and subgroup elements, for theories of broken SO(m)
group symmetries.

Group elements have been introduced in section 1.1.1, but here we will be a little more

rigorous. In the defining representation, SU(N) is the group of Special (unimodular =
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det g = 1), Unitary (gf = g71), N x N matrices. General Lie group elements, g € G,

may be written :-

— -1z
g = €
e—ief Ty

= WM o (2.0)

The first two lines are the definition of Lie group elements, and the last line shows
explicitly the quantities we will deal with; the A; are a set of (N2 — 1) traceless,
hermitian N x N matrices, and the 67 are a set of (N? — 1) real parameters. The

generators for SU(N) are the T;. Now the \; obey anticommutation and commutation

relations :-
4
LA} = N 017 1)+ 2dx Ak (2.2)
[AnAg] = 26 frkAk (2.3)

Where the drjx are symmetric, and the fr;x antisymmetric, under interchange of any
two indices. The commutation relation is called the Lie algebra of SU(N) and defines
the generators of the group transformations; and therefore the Ax. So we have the

product rule :-

2
Arhy = N Ors Ly + (drsx + 4 frox) Ak (2.4)

From this we see that we have a quantity :-

1
()\],/\J) = §tT)\I)\J (25)

= 01y

and so we may think of the A; as forming a Basis for an (N? — 1) dimensional Real

Vector Space, RN 2‘1; this relation being the Euclidean Scalar Product between the
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Basis

(z,

Vectors. So the Euclidean scalar product between two vectors, z and ¥, is :-

y) = z'y' (A, )

— nyI

which, for N = 2, is a very familiar expression since we are dealing with vectors in

3. Also, when y = z we have an expression for the norm of z, and we will soon see

that this is an invariant under a rotation of the basis of the vector space; it is known

as a matrix invariant.

2.1

The algebras of Real Vector Spaces, RV L.

We represent a general vector of ®V°-1 i

From

gI
= SM
= :IS‘I/\I

the product rule we may define two linearly independent algebras :-

The first is based on the commutator of basis vectors :-

A, A7l = 26 frar )k

which is the Lie algebra of SU(N). We rewrite this :-

)
ANy = —5[/\1,/\_]] (2.6)
= frixAk
For two vectors = and y we have :-
zAy = z'y fuxdik (2.7)
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and the vector z A y is orthogonal to both z and y since :

(zAy,z) = 0

(zAyy) = 0
For the example of the Lie algebra of SU(2), where the Pauli spin matrices are
used to represent the basis of a real 3 dimensional vector space, $°, we understand
that equation (2.7) is the usual vector product, or cross product, between two

vectors.

2. The second algebra is a symmetric algebra based on the anticommutator between

basis vectors :-

4
{\n, A} = N 0 Lin) + 2drix Ak

which we rewrite :-

VN

2
= Y = 2.8
A1V Ay 5 {An, Az} N (Ar, A7) 1 (2.8)
== \/NdIJK)\K
For two vectors we have :-
zVy = \/ZV—:vaJd”K)\K (29)

This is a new type of vector product which is possible for ®¥°~! with N > 3.

These two algebras are used to define linear operators of the adjoint, f, = zA and
ds; = zV, which transform the vector spaces themselves. This is done in Appendix B,
on page 167, where we also find some relations between the adjoint operators. But for
now we proceed by letting y = . We find :-

zAz = 0

L
VN

Il

zVz (Nz* — 2(z,z) 1))

48



The second of these two expressions may be rearranged :-

2 1
22 = N(IE,LL‘) l[N]+\/—N:cVa: (2.10)

and we see that we have an index free expression for the second power in the expansion
of the group element. However, we are no further forward at the moment since we do
not understand, yet, what z V z really means. All we can say is that z V z is a vector

which commutes with z.

2.2 Rotating vectors of RV 2‘1, and the characteris-
tic equation.

In order to continue we must understand the nature of the basis of traceless Hermitian
matrices. From a purely mathematical point of view a traceless Hermitian matrix, z,

obeys a characteristic equation :-
NV — p(2)zV 2 — y5(z) 2V 3 — - = (2) 1y = 0 (2.11)
with

k-2
1
Y(z) = Etr (:v’“ - nya(z)zk'“) (2.12)
a=2
From this we see :-

1
Y(z) = 5157":1:2 = (z,1)

1
y(z) = gtrw?’

and we have already met 1»(x). We note here that this characteristic equation implies
that, for N > 2, the highest power of = appearing in the expansion of the group element

is zV~2; higher powers of z reduce.
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We know that (traceless) hermitian matrices may be diagonalized by a Unitary simi-

larity transformation :-
u: T = zp = uzu (2.13)

which we think of as a transformation of R¥°~! by u € SU(N); the transformation
being defined as a rotation of the vector space basis. Therefore the mathematical act of
diagonalizing the matrix, z, may be physically interpreted as the rotation of the vector,
z, into the subspace of RV *~1 which is defined by the diagonal basis vectors. Thus, we
have defined the action of the Adjoint representation since, for any g € SU(N), the

components of z transform :-
9: (z,A1) = (&A1) = (g'zg, A1)
" = (g, M) 27
= Rpyz’
where Rry = (9'As9, A1) = 37 (gA1g' M) is defined as the Adjoint representation of the
group element g € G, sometimes called Ad(g). We see that the scalar product between

two vectors, (z,y), is invariant under this transformation of RN*~1. therefore, quite

obviously, (z,z) is too. In general :-

tr (u zu — Z Ya Txk"“u)

k-2
= —-tr (z 'ya )
a=2

= w(z).

Therefore the ;(z) are known as matrix invariants and, for a general N X N traceless

Vi (ufxu)

Hermitian matrix, there are (N — 1) of them. The characteristic equation after the

basis rotation transformation becomes :-

Il
o

w'zNu — yo(z)uleV 2u — ya(z)ulfz¥3u — - - — yx(z) Iy

—Yo(z)zy 2 —ya(z)ey P = —n(z) Ly = O
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The diagonal elements of zp are real numbers, known as eigenvalues, and the form of
the equation now implies that it may be interpreted as an eigenvalue equation for z;
with (N — 1) independent solutions. We now make a very important point, which we

may state in two equivalent ways :-

e Any two traceless Hermitian matrices, z and y, with the same characteristic
equation have the same eigenvalues. This means that they are similar, or related

to each other via a unitary similarity transformation.

e Any two vectors, z and y, with the same characteristic equation have the same
eigenvalues. This means that they are related to each other via a rotation in
RN*-1. in the language of [17] we say that these two vectors define an Orbit

)

which lies in a particular Stratum of RV°-1.

We notice that, since neither of these statements depends on G, we may not only use
this property for group vectors of SU(N) groups, but also for group vectors of SO(m)
groups. Thus, the mathematical language/notation we will use to describe the SU(N)
breaking models is suited to the SO(m) breaking models too.

We end this section with the physical implications of the simplest characteristic equa-

tion. For N = 2 we have :-

1172 ha ’)/2((12) 1[2] = 0

Since we are dealing with 2 x 2 traceless Hermitian matrices there is, effectively, only
one way of diagonalizing any matrix z. This is because, in this case, there is only one
matrix invariant, v;(z), and therefore only one diagonal matrix in the R* basis. In
geometrical terms we may say that it makes no difference in which direction any vector,
z, actually points in 2 since we may always rotate it around the vector space until it
points in the third direction which, using the Pauli Spin matrices to represent the basis

vectors of the space, is the diagonal direction. We also see this because the three Pauli
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Spin matrices are similar matrices (related to each other via similarity transformations
< each having eigenvalues 1) and this means that there is only one type of vector

which may be defined in 3. The Lie algebra is a statement of the familiar vector

(cross or A) product.

2.3 Vectors in C,, the Cartan Subspace of z.

We may use the symmetric, V, algebra to build a set of mutually commuting vectors.

We have already constructed a vector which commutes with z; namely = V = which is

defined :-
tVz = oo (N 2* — 275(z) 1(m) (2.14)
Now the Euclidean scalar product between z and z V x is :-

(z,2Vz) = sirz (N z* — 27(z) 1))
3
= %trw

" 2.15)

So we find, geometrically, that the matrix invariant y3(x) is related to the scalar product
between z and z V z, and these two vectors lie in, and therefore define, a commuting

plane. If z and z V z are unit vectors, that is v (z) = v2 (z V ) = 1, then we find that

(z,zV z) = cosa ; where « is the angle between the two vectors in the commuting
plane.

We find a third order expression :-
zVzVz = Naz*—2y(z)z — 3y(z) 11y (2.16)

which is constructed from z and z V z, but since z Vy = y V = we don’t need to use
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any brackets. We find :-

(z,zVzVz) = 2Nvy(z) + (N — 2)72(2)? (2.17)
= (zVz,zVzI)
(zVaz,zVrVz) = NWa(z)+ EGEN - 12)7(z)ys(z) (2.18)

A fourth order expression is :-
(zVz)V(zVz) = VN[Nz'-22u(z)+7%() 1m] —4r@)zve (2.19)

These relations are getting complicated so we will not proceed any further; besides we
now have all we really need to continue since the vectors we will meet are not general

‘group’ vectors of the whole vector space and so are easier to handle. However, we note

that :-

e zVzV zis never linearly independent from z,

e 7V r may be linearly independent from z, but only if v3(z) = 0. In this case we

find that zV zV z = Nz® — 2v(z)z and 13(z) = 0 < 2% is a vector.

2.4 The basis for C,.

We may now define a set of vectors which can form (part of) a basis for the Cartan,
or commuting, subspace associated with a vector, z. Once we have done this we will
be able to rewrite z in terms of this basis. In doing so we will be able to exponentiate

z without much trouble because we will know how the basis vectors behave.
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2.4.1 r-vectors.

The simplest type of vector is the r-vector !, defined by its matrix invariants :-

]
—

Ya ()
V 3<k<N.

If
o

Ve (r)
Thus the characteristic equation for an r-vector is :-

(2.20)

Since this is equivalently an eigenvalue equation, the behaviour of the r-vector under

multiplication is given by :-

Because 7, (r) = 0 V 3 < k < N we find that the r-vector has the eigenvalues +1
together with (V — 2) zeros. The explicit form of diagonal r-vectors of %% and R
are given in Appendix A, which starts on page 152. Since v, (r) = 1 the r-vector is
a unit vector. Even though r vectors are defined for V > 3 we may use the notation
when N = 2. We have already discussed that there is only one type of vector defined

in N3 and for a unit 2 x 2 matrix we have a characteristic equation :-

and thus we see that unit vectors in R3 exhibit the simplest possible geometrical
properties of r vectors of higher dimensional real vector spaces. So, to keep notation

to a minimum, we will call any unit vector in R an r-vector.

1These are root vectors; see p 154.
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2.4.2 g.-vectors.

When N > 3 we may use the symmetric vector product and an r-vector to construct

associated g, vectors :-

rvVr = %(Nr2—2 1)
(2.21)

il
>
|
[\
)

where the r subscript on the vector reminds us which r vector it is associated with;
this is because in ®V°~! we may define N (N —1) different r-vectors. In the definition
the +/N -2 ensures that the ¢, is also normalized, that is 72 (¢,) = 1. This is just a
special case of equation (2.14). The explicit form of diagonal g,-vectors of R® and R'®

are given in Appendix A, which starts on page 152.

2.4.3 Relationship between r and g,..

Using these definitions for r-vectors, and their associated g¢.-vectors, we may now

rewrite equations (2.15) to (2.19) with z = r :-

e Equation (2.15), which gives us the cosine of the angle between z and zVz when

they are normalized, may now be written :-

(ra) = 0 (2.22)

which tells us they are orthonormal vectors in RY 2‘1; g- is linearly independent
from r because 3 (r) = 0. This implies that r and ¢ may be used to form the
basis of a commuting plane in the Cartan subspace. For N = 3 this is the basis

of the whole of the Cartan subspace because SU(3) is a group of rank 2.

e Equation (2.16) reduces to :-
rVg = VN-2r (2.23)
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which also implies the product :-

¢ = GrT

e Equations (2.17) and (2.18) reduce to :-

(1) = m@) = 1

(r,gr) = 0
respectively, which is nothing new.

e Lastly, Equation (2.19) reduces to :-

(2.24)

@G Vg = _\}'VN_%%QT

2.5 The exponentials of vectors.

Since we will be describing coset vectors with respect to r-vectors and g,-vectors we
will now show how each of these may be exponentiated. We also show how to expo-

nentiate vectors with a particularly simple mathematical behaviour; those which obey

the relation z Vz = 0.

2.5.1 Exponentiating r-vectors.

The matrix invariants of an r-vector :-

yo(r) = 1

Y (r) = 0 V 3<k<N
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tell us that 7> = r, and therefore it is simple to exponentiate the r-vector, or any

vector which is proportional to an r-vector. We have :-

e = l[N]—iar_gg‘a27”2+§—!a3r3+ﬁa4r4-—g—!a5r5—+-~
! 1 4 . 1 1 5
= 1[N]+(—§a2+za —+> 7‘2—’L(a——é—!a3+5—!a _+...)7-

= 1+ (cosa — 1) r* —isina 7
= 1m+(cosa —1) 5 21y + VNN -2 ¢;) —isina 1

If a = £, which is the usual value for an SU(N) (sub)group or coset representative

element, then :-
T = FIN+2(cosg — 1)) I+ /52 (cos§ —1) g —isin§r  (2.25)

Obviously we would have arrived at the same result if we had kept everything in terms
of z and understood that the characteristic equation of the vector z is, in this case,

z3 — 7p(z) £ = 0. For N = 2 equation (2.25) reduces to :-

-8

e"2" = cos§ Ly —isin® r (2.26)

We end this section by emphasizing that it was the simplicity of the characteristic

equation of the r-vector which made the expansion, and subsequent grouping of terms,

this simple.

2.5.2 Exponentiating g.-vectors.

Unlike r-vectors, we find that exponentiating g.-vectors is a little more involved. This

is because g,-vectors have a more complicated characteristic equation. Since :-

(Ng?-21py))

B

Vg =
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we find that :-

P = i (2 Iiv + (N — 4)/75 qr)

and so, on the face of it, the regrouping of terms in the expansion of the exponential will
be difficult since the cubic, and higher order terms, become more and more complicated.

However, there is one exception :-

e When N = 4 the symmetric algebra for g, vectors is trivial, and so we see :-

and this implies (v2¢,)® = v2¢,, which, just like the r-vector, is easy to deal

with :-
. . O
=it — o imV2er

= cosZz 1y —isind; v2g, (2.27)

Where (\/iqr)z = 1[4].

When N # 4 we must employ a new method; a method based upon the idea of pro-
jection operators. In the defining representation of SU(IN) we can define N projection

operators P® where a = 1,2,... ,N. They have the following properties :-

P fora=b

PP = (2.28)
0 fora#b

N

P = 1y (2.29)

a=1

trP* = 1 Va (2.30)

We have already met these operators since r-vectors are just the difference between

any two of them. For example if 7 = )3 then we may write r = P! — P2, With these
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definitions of the projection operators, we find that the exponential of a linear sum of

any number, k, of projection operators is just :-

e=ieeP*) = g-iak pk (2.31)

where we have k£ constants, the a;. We could have used projection operators as soon
as we defined the r-vectors, but each subsequent relation would have looked more
complicated than was necessary. At this stage it is not important, but when we come
to calculate the covariant derivative for the Goldstone bosons and the metric connection
for the standard fields, using 2:L~'9, L, this form is not so useful as it over complicates
the calculation because it is more difficult to isolate the coset (GB covariant derivative)

and subgroup (metric connection) pieces.

Since rvVr = # (Nr?2 —21py)) = VN-2¢, we see :-

e——iaqr — e-—i% (N7-2 -9 1[N])
N
_ e_i—‘ﬂ% [(N —2)(P'+ P?%) — 22 P’“j'

N
oy (P1+P2) _i__ei\/_N(z.ﬁZPk

k=3
N

If we now use ¢, = ——— [(N—2) Iim—nN PkJ then, after some rearranging and
r /N(@-2) [N] g

setting a = %, we find :-

g% = ~ (2€_i%\/NT: + (N - 2)ei\7ﬁ_<%_t—2_>) 1w

. e

This reduces to equation (2.27) when N = 4.

2.5.3 Exponentiating vectors when z V z = 0.

In this final section we will, for the moment, ignore all we have learned about the

Cartan subspace, and the use of its basis in rewriting vectors, and look at a special
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type of vector which will satisfy the relation z V x = 0. If a vector has the form :-

Tz = «aS

where « is proportional to the length of z, and S has the property S* = 1y then we

gain two important facts about z :-

1. z must be a linear sum of all defining representation projection operators, and

2. this implies, because S is traceless, that x must be an even dimensional matrix;

that is, IV is an even number.

We will now establish the defining representation projection operator form of S. Firstly

we write :-
S = g P i=1,2...,N.
where the a; are N constants. For §? = l[N] we must have ¢; = =1 and, since N

must be an even number, there are % projection operators with a positive coefficient

and % projection operators with a negative coefficient. Therefore S must be of the

form :-

This form for S implies that 7, (S) = &. We have already met this type of vector :
e For N = 2 we have :-
S = P -p?

and this is an r vector, and
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e for N = 4 we have -
S = (P'+P)—(P+ P

and this is equal to v2¢3. We note that if we had defined S with a different
arrangement of the projection operators, then we would have ended up with a

different g, here. For N = 4 we have the choices S = +q; with £ = 1,2,3.
We will now look at the behaviour of z under multiplication. Since = given by :-
z = aS

we will find, using S? = 1), that we obtain :-

$2k = a2k 1[N]
$2k+1 — a2k T
C¥2k+1 S

where k£ > 0; though in practice we never meet the expression z° because it is always

written as 1jy]. Therefore, with this behaviour, we will find that the exponential of a

vector of this form is :-

e = cosa ly—isina S (2.33)

We have, quite obviously, already seen this result twice before :

1. When we calculated e~i%7 for N = 2, we found a result of this form, see equa-
tion (2.26). This is because, in this case, we only have vectors proportional to

the 7 vector; and r vectors, for N = 2, have the characteristic equation 7 = 1p.

9. When we calculated =34 for N = 4, we also found a result of this form, see
equation (2.27). This is because, in this case, we find g2 = Z; which implies

(\/5%)2 = 1[4]-
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Finally, it is simple to show that these vectors satisfy = V z = 0. We have defined the

vector z V z to be :-
ztVz = \/1—7 (Nxz — 2’}’2(.’1:) l[N])

If we now use z = « S then :-

332 = O!2 1[N]

2
(84

1l

|2

Y2()

and so, using these two results, we find :-

TtV = # (Na2 1[N] - 2%’—&2 l[N])

Il
o

2.5.3a Basis of C; when zVz=0.

We know that SU(2) is a group of rank 1, and that SO(m), for m = 2k,2k+1,is a
group of rank k. The rank 1 groups SU(2), SO(3) and SO(1,2) all have group vectors

which obey z V2 = 0. In the next chapter we will find that coset vectors with this

behaviour appear in three types of model :-
1. when SU(2) invariance is broken to U(1),
2. when SO(m) invariance is broken to SO(m — 1), and
3. When’ SO(1,m — 1) invariance is broken to SO(1,m — 2).

In this thesis the generators of the Special Orthogonal groups will be in the Weyl
representation. We will now focus on the coset vectors for SO(m) breaking to SO(m—1)

when the rank is greater than 1; similar results may be found for the coset vectors of
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SO(1,m — 1) breaking to SO(1,m — 2). For SO(m) breaking to SO(m — 1) (with

m = 2k, 2k + 1) we find that the coset vector is :-

z = QS

— al
= OQn* o,

where A = m and S? = 1. Normally when we rewrite , for example in terms of
r vectors and/or g, vectors, we solve the characteristic equation which z obeys and,
as we have seen, this is most easily viewed as an eigenvalue equation for z; when z
is diagonalized. In practice we do not diagonalize z, but in theory we know that this
transformation is possible. The diagonalized coset vector is now, at least in our minds,
a vector of the subgroup subspace. This is most easily seen for the coset vector (which

is used to evaluate the coset representative element) for the coset 5151((12))' We have :-

a
Tz = —nog,
2

with @ = 1,2. This may be diagonalized to zp = %0’3 and in constructing the coset
representative element o3 is used to generate subgroup elements. However, for the
SO(m) coset vectors we are able to diagonalize to a vector in the coset subpsace too.

For example in the theory of SO(4) breaking to SO(3) we have a coset vector :-
z = Qnioy

which may be diagonalized to 2 different vectors in R° of SO(4) :-

Ur: T — .’l?{) = u‘{xul
= 90'12
. D _
u2 . Tr 2';2 - UQ:L'UZ
= QO’34
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For our purposes here we will choose the first similarity transformation and write :-

u: S Sp = u'Su

= 012

and this implies that z = Qu o ul. For general SO(m) breaking to SO(m — 1) both
S and o2 have a norm of v, (S) = v, (012) = % and since z V z = 0 we can say that

the first direction of the basis of C, points in the direction of = and is :-

1 _ /2
€, = —1\7’1,1,0'12’1111L

S

2
N
When k > 2 the second basis vector direction in C is :-

2 2 t
€ = \/_N"U«0'34U

In this way, we find the general basis directions of C, to be :-

et = \/Zuo@myemul

and the maximum value of n is k. In this notation u is the Unitary similarity trans-
formation which diagonalizes S to o9, that is, it is the transformation which rotates
the vector S around the vector space, with basis vectors given by the normalized ¢’s,

onto the vector o2 which, in the Weyl representation, is a diagonal vector.

2.6 Matrix invariants and variables found in the La-
grangian.

In the previous sections we saw how to exponentiate some vectors. It is now important

to bring what we have learned into line with the language found in the literature; see
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for example [13, 17, 19, 16]. We refer to vectors, N x NV traceless Hermitian matrices,
with (N — 1) different eigenvalues as being Generic. Thus, in contrast, g--vectors are
obviously non-generic. When we come to exponentiate vectors, z, in the following
chapters we will first rewrite them in terms of the basis vectors of C, which we have
studied, and then use the exponentials we have found. For example, if a vector we
need to exponentiate is proportional to an r-vector then we just have the result given

by equation (2.25). However if, for example, z may be written as the linear sum of two

commuting r-vectors :-
z = arq+ bT(g)
then to exponentiate this vector we need to calculate :-

g = e—ia T(l)e—ib"'(2)

The important point is that generic group vectors, the vectors whose exponentials are
group elements, are described by a linear sum of all the basis vectors of C;. Thus, for a
rank k group, the group vector will contain & variables in its description. A discussion
of the 2 and 3-dimensional Cartan subspaces in %8 and R!® is given in Appendix A.
However, there do exist generic vectors which may be described by fewer variables than

one would expect. To take N = 4 as an example, the generic group vector may be

written :-
z = ar+bg+cry

and this vector obeys the characteristic equation :-

=@ — (@) z—ya(z) 1lg = 0

where none of the matrix invariants, the 7;(z), are zero. So, in this case, since SU(4)

is a rank 3 group there are 3 independent matrix invariants which is reflected by the
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use of 3 variables in the description of z. The exponential of this vector, as shown in
Appendix A, is a general SU(4) group element. In contrast though, we may also have

the diagonal generic vector :-

a 0 0 0
0 —a 0 0
I'p =
00 b 0

0 0 0 -b

= ar3+br3L
However this matrix obeys :-

7t — Y2 (117) z? — Y4 (:17) 1[4] = 0
There are 2 independent matrix invariants in this characteristic equation; which is
reflected by the use of only 2 variables in the description of z; not 3 as we would
naively expect for a generic vector. This vector may be used for two main purposes.

In Appendix C we show that if this vector is rotated to :-

z=ar+bry

with r = n¥L; and r; = nk R then we may exponentiate it to form a general SUL(2)®
SUR(2) ~ SO(4) group element; so in this respect it is a generic group vector. Whereas
in Chapter 5 we will use this relation to describe the coset vectors of the gb—(asz%%%m

cosets (with m = 4,5,6). Thus, we make the following statement regarding the form

of Lagrangians found in this thesis.

e The coset representative element, L = e, is used to construct various objects
like the Goldstone field covariant derivative a,, the matter field spinor ¥, and
the metric connection for the matter field covariant derivative v,. In turn we use
these quantities to build the effective Lagrangian density for the theory. For this
reason, it must be true that the effective Lagrangian density will contain only as

many variables as was needed to describe the coset vector, z.
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Chapter 3

Theories from coset vectors which

obey z V x = 0.

We will find, for all of the theories presented in this chapter, that the coset vector, z,
satisfies z V z = 0. This is equivalent to saying that z squares to the identity element
multiplied by a constant term. It is for this reason alone that the different theories have
results which are expressed in a similar way. This is also a very special result since we
may perform all the calculations using the generators directly; the more sophisticated
technique of understanding the Cartan subspace associated with z, denoted C,, by

solving z’s characteristic (eigenvalue) equation is not necessary.

3.1 The SU(2) breaking to U(1) model.

The group SU(2) and the coset %Q((I_Z;) introduce, albeit in a rather oversimplified fashion,
many of the ideas required to calculate effective Lagrangians. The groups SU(2) and
U(1) are of rank 1, which geometrically means that we can only define one type of

vector, the 7-vector, in the )3 vector space, with the Pauli matrix basis. The Cartan
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subspace associated with a vector, Cg, lies in the direction of z only. Thus we do not
meet g.-vectors, and in fact it is obvious, not only from the characteristic equation for

2 x 2 traceless, hermitian matrices :-
22— y(z)ly = 0

but also, equivalently, from the basis matrix product rule :-
0i0; = 04 Ly +igy 0k

that we do not really have to understand the geometrical nature of ®° at all in order

for us to calculate the required pieces for the Lagrangian.

3.1.1 The coset representative, L.

If we generate the subgroup U(1) of transformations using T3 = 03 then the coset

vector 1s :-

This squares to :-

2?2 = %" (5ab 1y + isabgag)

= iL’aiEa 1[2]
So the norm of z is :-

(z,2) = m(z)
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which is just a number. So if we define ¢? = ¢°¢* then we could have written for z :-

where n®g, = r is a (unit) r-vector which is scaled by the length of =, which is % We
call the quantity n®c, an r vector even though, for N = 2, we can only define one type
of vector; because of the characteristic equation. Nevertheless, since 7 = 1j5 we must

have r® = r and this is how r-vectors are defined in [17] for R®. Thus the coset vector,

Z, squares and cubes to :-

L = e“igr

= cos¢ 1y —isingr (3.1)

with r = n®0,. This agrees, as it should, with equation (2.33) with o = 5273 and S =r.

3.1.2 Goldstone boson transformations.

Since the Physical theory deals with the transformation of the coset representative,
to first order in the transformation parameters, by an element of the subgroup on its
own, and by an element of the coset itself, we will divide this part into two sections.
The Physical theory is structured in this way because for more complicated models of
symmetry breaking we will only find the Killing vectors which describe the transfor-

mation of the Goldstone Bosons to first order in the transformation parameters; we do
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not look at the transformation to all orders. However in this case, since we are dealing
with SU(2) breaking to U(1), we are only having to manipulate Pauli Spin matrices
to find results and this is a simple excersise.

3.1.2a The transformation of L by a subgroup element.

The U(1) subgroup element, h, also has the same form :-

h = cos2 1y —ising n’os (3.2)

with n® = 1. The coset representative is transformed by this subgroup element :-

L' = hLh™

cosg 1y — i sing h (no,) h™'

The second term contains the transformed, or rotated, r-vector :-

3

h (n%a,) Bt = n® (cos@ 1y — i sin n’03) o, (cos 1pg) + i sing n’os)

= n° (cos’Q g, +isin? cos? (04, 03] + sin®2 030,03)

= n(cosO 4 — SInO £,3) 0

Since h(n%g,)h~! = n* o, we see that, after we relabel indices, we have :-

n* = (coSO Jq — SINO £345) 10 (3.3)

which is an SO(2) rotation in the 1-2 plane (about the 3™ axis) of the coordinates,
n®. We have this form because the adjoint representation of SU(2) is homomorphic
to SO(3), which implies that the adjoint representation of the U(1) transformation is

homomorphic to an SO(2) transformation.
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If we now write equation (3.3) to first order in the transformation parameter, ©, then

we find :-
na’ - (5ab - 9ESLLb) n’

or, in terms of the Goldstone bosons :-

Ma, = (5ab—®53ab)Mb

Il

M® — Oezp, M°

If we compare this with equation (1.13), which gives the Killing vector components of
the transformation, then we have :-
M*+ 6K = M®— QegppM?
= (64 —i10(T5)ap) M°

with (73)s = —i€34. In this case we have the subgroup index E = 3, which implies

that we have one subgroup parameter #° = ©. So the linear Killing vector components

are :-

a b
K; = —e30M

EaM® (3.4)

This is a result which we will confirm later on.

3.1.2b The transformation of L by a coset element.

In this part we will be using L? in our calculation since this is how we find the nonlinear
Killing vector components in the rest of the thesis. This method will not be repeated
anywhere else, although in principle it could be since we have developed a method of

calculating coset elements to all orders. We proceed by writing the coset representative
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and coset transformation elements :-

L? = cos¢ 1y —isingr

¢ = cosg 1y —isindt
where 7 = n%, with n*n® =1, and t = t0, with t%* = 1. So :-

(L' = cL?!

= (cos@ 1y —isin@t) L? (cos® 1py + ising t)

= L*- —%sin@ {1%,t} —sin®2¢t {L?t}
We calculate :-

{L*t} = 2cos¢t—ising {r,t}
= 2cos¢ t— 2ising (r,t) 1y

t{L?t} = 2cos¢ 1l —2ising (r,t) ¢
and therefore we find :-
(L) = —isingr+cosgc®—ising (rt) (S — 1) ¢
We find the change in the coset representative, L2 = (L')2 — L2, is :-

6L = [cos¢ (cos® — 1) —sing (r,1)sin@] 1py
—i[cos¢ sin® +sing (r,t) (cos® —1)] ¢
From the Physical theory we know that 6L? to first order in © is equal to L%0°Kj.
Therefore to first order in © this quantity is :-
(3.5)

6L = —sing n®0® 1y —icos¢ 6%,
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We now calculate L% 0°K$. Firstly we have :-

L2 = —sing ¢glyg—icosg dar—isingr,

R

and since 7, = 7 (6@ — n°n’) 0y then we find :-

L20PKE = —sing §.0°K( 1y —icos ¢ 0Ky T — iSIJI\l;’ (0 — n°n°) Ko,

If we compare this with equation (3.5) then we see that ¢ ;K¢ = n’, and so comparing

this result with the expression for §L? we find :-

sin ¢

cos¢ 0%, = cos¢ n’°nlo, + 7 (8 4c — n°n°) 8°Klo,

which is simple to rearrange and then isolate K} because n®K} = —‘% nb. We therefore

find :-
K{ = Mcotg (8, —n'n’) + %nanb (3.6)

This result will confirmed in the next section.

3.1.3 Analysis to first order using Killing vectors.

This section contains the usual methods which will be employed throughout the rest

of the thesis to find the Killing vector components.

3.1.3a The linear Killing vector components, K.

To find the linear K§ components we must solve :-
o3, L] = 2iL,Kj}

Firstly, we have for L :-
L = cosg 1 —isingno,
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Therefore, for the left hand side, we find :-
[03, L] = 2singne3q0, (3.7)
When we differentiate L with respect to the Goldstone fields we find :-
I = L. s 1 i b L s b
@ = ~gsing Galp — 5 €083 $an’op — iSIng N, 0p
So the right hand side is :-
2 L,KS = —ising @K1y + cost ¢ ,Kino, + 2sing n’, K50y (3.8)

So comparing the two sides, equations (3.7) and (3.8), we see that ¢ ,K§ = 0 and

therefore :-
nezgp = nf’aKg
1
= —]\Z (5ba - nbna) Kg
1
= M_Kg

So we have found the linear K§ to be :-
Kg — 8a3be (39)

which is precisely equation (3.4) which we found earlier.

3.1.3b The nonlinear Killing vector components, Kj.

This time, to find the nonlinear K} components we must solve :-
(0,12} = 22K}

Firstly, we have for L? :-
L? = cos¢ 1y —ising no,
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Therefore, for the left hand side, we find :-

{os,L?} = 2cos¢ o, — 2ising n® Iy (3.10)
When we differentiate L? with respect to the Goldstone fields we find :-

L?a = —sing ¢q 1l —icose ¢ onloy — ising nf’aab
So the right hand side is :-

2%L2Kp = —2ising ¢ Kj 1y +2cos¢ ¢,Kin‘o, + 2sing n,Kjo, (3.11)

So comparing the two sides, equations (3.10) and (3.11), we see that ¢ K¢ = n and

therefore :-
cos¢ o, = cos¢ n’no, +sing n,Kpo.

Removing the basis we have :-

cos¢ 8y, = coseé n’nt+sing n,Kj
1
= cos¢ n’n®+sing i (0ca —n°n®) Ky
sin ¢ e »AM

sin ¢
K¢ —
b " dg

M

= cos¢ n’n® +

which we rearrange to find :-
dM

K = Mcotg (6 —nn’) + —dgn“nb (3.12)

which is exactly the result we found in equation (3.6) earlier.

3.1.4 Covariant derivatives and the Goldstone boson metric.

For the covariant derivatives of our theory we need to calculate 2iL™'8,L = a, + vy,
where a, is actually the Goldstone boson covariant derivative, and v, is proportional

to the metric connection for the Standard field covariant derivative.
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We have for the coset representative :-

L = cos$ 1py —isingr
where r = n%s,. We find :-
1 . 1 ..
oL = —3 sing 0,¢ 1y — 3 cos? (0,¢) r — ising 0,7
Therefore we find :-
1 )
Lo,L = ~3 sing cos2 9, 1jg — -;-COSQ-;? r8,$ — i sing cost dr

1 1 . .
D) sin®§ rB,d + 5 sing cosgr?d,¢ + sin®$ rd,r

Since r? = 1y we find :-

L‘lauL = —%rauqﬁ - % sing O,r + sin®¢ rd,r
26iL7'0,L = (rd,é +sing 8,r) + 2isin®2 rd,r (3.13)
= ayt U

Therefore, using the results in appendix D, we have the covariant derivatives :-

. sin ¢ a do \ ,
D,M* = {T/I—((Sab — n°nb) + (3]\7) n nb} 0, M?® (3.14)
Dyp = { 8, + 'M% sin®¢ M8, MV 03} ¥ (3-15)

For the Goldstone boson part of the Effective Lagrangian, and the metric for the

Goldstone boson manifold, we refer to equation (1.32) and construct :-

a0t = 7‘2(3“(]5) (8"¢) + sin ¢ (6p¢)(r3“r + (0%r)r) + sin?¢ (@ﬂ“) (B*7)

= 7‘2(8“(15) (0"¢) +sing (8ﬂ¢)8“r2 + sin’s (8,7)(0Fr)
Since r? = 1jg we have :-
a0t = (0,0)(8%¢) 1y + sin®p (8,7)(0"r)
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Therefore we can see :-

1
(au,a") = itraua“

= (0u9)(8"9) + sin’g (9n®)(8"n?)
Again, using the results in appendix D, we have :-
sin%¢ . dg \? st
(ap,y a“) - {—W_‘ (6ab —n nb) + (m) n nb @LM oM
= g0, MO MP
where we may now identify the Goldstone boson manifold metric as :-

sin’p ¢\2
b = S (6o — ( i (3.16)

This, from [14], is the metric of a Kihler manifold; it is denoted §2. Therefore it is

possible to extend this model to include N’ = 1 Supersymmety.

3.1.4a Verifying the metric result.

We may construct the metric associated with the Goldstone boson manifold from :-
g = (K§K§+KIKY)™ (3.17)

To easily invert the right hand side we need it to be written in terms of adjoint repre-
sentation projection operators; and in this case this is exactly what we have. The form
of these projection operators is discussed in Appendix B, section B 3.1, on page 171.

We have -

agsb d
K3K; = €M epzgM
= M 25 ac3€ bdcncnd
_ 2 (cbed  sdsb d
= M? (8262 — 626%) nn

= M? (6 ab — n“nb)
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Notice that, in terms of adjoint operators, we could have just written :-

KgKg = -M (fr)as (Fr)as
= =M’ (f),,
= M (1 —r><r),
= M2 (84 — non?)
and to put this explicitly into adjoint projection operator terms we would use :-
(1[3])ab = (Plz + PZI + Ps)ab

where (P3)aw = (r><7)q = n®n®. For the second term we have :-

daM
KK, = (M cot ¢ (0gc — nn°) + %n“nc) (M cot ¢ (8 — nn°) + %nbnc>

dMm\?
= M?cot?p (5ab — n“nb) + (=) n%n®
d¢
This was a simple step since (§ 5 —nn®)n®n = 0, or in terms of the adjoint projection
operators this is (P12 + P?')gP2, = 0. Therefore we find :-

M? dM\?
KGKS+ KoK = o (Jab—n“nb)—#(%) o

which we may simply invert to find :-

sin%¢ o b de \? .
Jab = ——m(dab—nn)-{—(m) non®

This is exactly the result of equation (3.16), which we found in the last section.

(3.18)

3.2 The SO(m) breaking to SO(m — 1) models.

3.2.1 The coset representative, L.

These models use the coset representative for the 6%%?_% cosets. The calculations

in this section will respect covariant and contravariant indices; even though, for the
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spaces considered here, it is not strictly necessary. However, if we are rigorous here we
will be able to use the resulting structure in the next section, with only a few minor

modifications. For the Clifford algebra we will use :-

{478} = 29481y
and we can then reinstate gap = §4p for these orthogonal group models at the end

of the calculations. The sigma matrices for SO(m), in the Weyl representation are

defined :-

7
0AB = ) [’YA,’YB]

where A, B = 1,2,... ,m. If we generate the subgroup SO(m — 1) using the g, then

the coset vector we need is :-

z = w0,
wherea = 1,2,...,(m—1) and A = m. Soif we write z = Qn* o, then the square
of this is :-
1122 = an“AnaA 1[21:]
_ Q2 1[2k]

Thus z = Q.5 and zVz = 0. So the coset representative element, L, may be written :-

L = cosQ 1lpk —isinQ S

= cosQ Iy —isinQ n*o,n (3.19)

as expected from equation (2.33). In terms of an SU(NN) description we have :-
e For m = A =3 we have k = 1, and n*®0,a is an r vector,

e for m = A = 4,5 we have k = 2, and n**c, is proportional to a g, vector, and

79



e for m = A =6 we have k = 3. However, since the SO(6), Weyl representation,
generators are in block diagonal 4@ 4 form, we just work with the top left entries
which generate transformations on the left handed spinor. Thus the Ao,

which we use is a 4 X 4 matrix and is proportional to a ¢, vector.

For SO(m) breaking to SO(m — 1) we note that only when m is an odd number does
the subgroup have the same rank as the group; when m is even the subgroup has a
rank which is one less than the group. In Appendix C, from page 191, we discuss
the construction of the generators, and Lie algebras, of SO(m) groups in the Weyl
representation. In this scheme m may take on the two values m = (2k),(2k + 1)
with £ > 1. Since it is the odd m, i.e. m = (2k + 1), gamma matrices which are
initially defined and used to construct generators for SO(2k + 1) we find that the
generators of SO(2k) are defined as a subset of the generators of SO(2k + 1) in the
Weyl representation. Since the generators of SO(2k) are in a block diagonal form the
last gamma matrix, ya541, i used to construct a projection operator which will not
only project out the left and right handed spinors, but also the left and right handed
generators. We have used this notation (m = (2k), (2k + 1)) because the integer & is

the rank of the group. Therefore, to give two examples, we see :-

1. if m = 5, which implies k¥ = 2, we are considering the spontaneous breaking of
an SO(5) symmetry down to an SO(4) symmetry. We immediately understand

from the construction that both SO(5) and SO(4) are groups of rank 2, whereas

2. if m = 6, which implies k = 3, we are considering the spontaneous breaking of
an SO(6) symmetry down to an SO(5) symmetry. However, in this case, the
generators of SO(6) are viewed as being a subset of the generators of SO(7); and
both SO(6) and SO(7) are rank 3 groups. But, as we have seen, SO(5) is a rank

2 group.

80



3.2.2 Goldstone boson transformations.
3.2.2a The linear Killing vector components, K2,

To find the linear K¢ components we must solve :-
[abca L] = 2 L,GAKI(:CA
The coset representative and its derivative with respect to the Goldstone fields are :-

L = cosQ 1l —isinQ noea

L.,n = —sinQQga 1[2k] —1cos) Q,aAnCAJCA —ising nfaAAacA

2

For the left hand side we have :-

[Obe, L] = —isin® n%® [Gbe, Tan]

It is at this point that our results in the next section, for the SO(1,m — 1) breaking to
SO(1,m — 2) models, will differ in sign only from the form we will find here. For the

SO(m) breaking to SO(m — 1) models, this commutator is :-
[Obc: GaA] = 2i (gabUcA - gacabA)

with gu = 9 4.

If we now equate the left and right hand sides of our relation to be solved we find :-

. - A, dA
sinQ n® (gabOcr — GacOba) = —isinQ Q,aAK,‘,‘CA 1[2k] + cosQ Qo aKp n oan
+sinQ nﬁfAKf}cAo*dA

which automatically implies Q ,aK¢* = 0. If we substitute this into the above we

have :-

al _ dA alA
12 (ga0cr — GacOsa) = nGaKir oua
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Since tr g.a0a = 2¥gagan We may remove the sigma matrices to find :-

A A _ . dA Teal

n"gabgeegan — 1" GacGregan = NaaKpr gaegan
. dA 1ral

TpAGce — TheAGbe = 'n',aAKbc Gaegan

= o (73— n*nan) gugasKi
The second term on the right hand side is zero so we have :-
Myngee — Meagse = Sen anKi2
If we act on this with g¢/g®? then we find the solution :-
K& = M,26% — M, 268 (3.20)

For m = A = 3 we may further refine this result. In doing so we will show, more
explicitly, the homomorphism between these linear Killing vector components, and the

ones we found in the SU(2) breaking to U(1) calculation in the last section. We may
write :-
KE = M,% - M5
= (stoz -~ atop)
= g, P
= e,

Therefore we find :-

a3 __ a3b 3
K = &*M,

b3
5a3bM

because there is no distinction between upper and lower indices. This is obviously

similar to equation (3.9).
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3.2.2b The nonlinear Killing vector components, K¢2.

To find the nonlinear K4 components we must solve :-
{ow, L*} = 26IL2,Kj

This time we find the relation :-

cos 2Q opa — 151N 2Q Nya 1[2!:] = sin2Q nfaAAKgﬁacA + 2cos2Q Q,aAK,‘fﬁnCAJCA
—2i5in 20 QA Kpa 1y

which implies 20 ,aKf& = npa. When we substitute this in we find :-

cos2Q opa = 05202 nbAnCAUCA -+ sin 2Q nfaAAKgﬁacA
Removing the sigma matrices and substituting in for nfaAA yields :-

sin 20
cos2Q (geagaa — MpaTga) = i (KA geagan — naanaa Kin)
_ sin2Q K dM o
Therefore we may now rearrange this to find the solution :-
aM
Koata = Mcot2Q (gagan — naammpa) + 7o) eATA (3.21)

where, for these models, g = 0 -

3.2.3 Covariant derivatives and the Goldstone boson metric.

To find the covariant derivatives for the Goldstone Bosons and the Standard fields of

the theory we must find :-

ZiL'layL = a,+v,
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where a, is the covariant derivative for the Goldstone fields, and v, is the metric

connection in the covariant derivative for the Standard fields of the theory. Now :-
L™ = cosQ lpy+isinQ S
OuL = —sinQ 9,0 1 —icosQ 59,00 —isinQ 9,8

where S = n®o,a and 52 = 1p). Because of the form of S, calculating 202718, L

is just as simple as in the SU(2) breaking to U(1) model. We find :-
2L7'6,L = 280,Q+sin20Q 9,5 + 2isin®Q 58,5
Therefore we have :-

4, = 258,0+sin20 9,9 (3.22)

v, = 2isin’Q 84,5 (3.23)

Using appendix D, we find the explicit forms for the covariant derivatives to be :-

in 2Q d 2%}
D M* = {SHJIVI (Bo8 — n**mpa) + (d_J\Z) n nbA} 8, M"* (3.24)
Dﬂ’L/J = {6 -+ —W sinQ M“AB Y gAAoab} Y (3'25)

To find the metric for the Goldstone Boson manifold we must now evaluate azAagA

which we simply find :-

aitaly = (2020, +sin2Q 9,n"*) (2n,a0*Q + sin 20 #*70)

= 48,000 +sin*2Q 8,0 ng (3.26)

Using appendix D we find that this is :-

. sin®20 d20\ .
“AagA = —MZ—(QabgAA—naAnbA)-}- (W) NaaTpa | OuM ApEMYA  (3.27)

and we have as our Goldstone Boson manifold metric :-

sin?20 d2Q
Jarba = 3o (9abgan — maampa) + (W) NaATWA (3.28)
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where, for these models, go = 9 4.

We note that only for m = A = 3 and a,b = 1,2 is this, from [14], the metric of
a Kahler manifold. That is, only the model arising from the spontaneous breaking of
an SO(3) symmetry down to an SO(2) symmetry will yield a Kéhler Goldstone boson

manifold metric; implying that only this model can be extended to include N' = 1

Supersymmetry.

3.2.3a Verifying the metric result.
It is now possible for us to check the form of the Goldstone Boson manifold metric

result using the Killing vector components. We firstly need to find :-

Kg,dAch bA — Kg,dAKg?gecgfd

= g (M, A0 - MA8E) (M55 — M)

(M(;Aég _ MdAJg.) (McAgbd _ MdAgbc)
= 9 (MCAMcAgabgAA - MaAMbA)

— 2M2 (gabgAA _ naAnbA)
Secondly we need :-

alAygrcA bA A BA da AA
KK = Kga oaK* g%yg

M 2
— M2 C0t22Q (gabgAA - naAnbA) -+ (329) naAnbA

The inverse of the Goldstone Boson manifold metric is given by :-

_ 1
(ga b ) 1 _ QI(gdAICCd bA I(ZAICCA bA
M? AN A bA dM\? A B
sin?20 (99 ) (dQQ) o’

This is obviously the inverse of equation (3.28).
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3.3 The SO(1,m—1) breaking to SO(1, m—2) models.

3.3.1 The coset representative, L.

These models use the coset representative for the %%%%:‘% cosets. Firstly we state that

there is an Isomorphism between the groups SO(m) and SO(1,m — 1). This means
that the method and form of the results in this section mirror the method and form
of the results of the last. With such similarities it is important to remember that the
differences between this section and the last lie entirely in the interpretation of the

models. We will now see how the mathematics of these models differs from the last

section.
For these models we use modified SO(m) gamma matrices which now have the Clifford

algebra, :-

{F;“Fu} = 29“,, 1[2k]

where g,, = M and p,v =0,1,2,... ,(m—2), m. The matrix ), used to raise and lower
indices, is defined in Appendix C, on page 196. The sigma matrices for SO(1,m — 1),

in the Weyl representation are defined :-
g
S = 45wl

with g, v = 0,1,2,...,(m — 2),m. If we generate the subgroup SO(1,m — 2) using

Yop, With o, =10,1,2,...,(m — 2), then the coset vector we need is :-

r = waA EQA

= Qn"A Ea A

where we have also introduced the label A = m.
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So the square of this is :-

1122 = QQHC‘ATLQA l[gk]
+02 11 for a timelike n®®
—02 1y for a spacelike n®®

because we no longer have a positive definite metric. For all our results we will use a
timelike unit vector n%® defined by n®*nea = +1. Therefore, because zV z = 0 again,
the coset representative element, L, has the same form as before :-

L = cos lpw —isin® n*AYea (3.29)

Thus, not only are we able to use the same method as before but it is also clear, even
at this stage, that the results will have the same form too.

Once more we note that only when m is an odd number does the subgroup have the

same rank as the group; when m is even the subgroup has a rank which is one less

than the group. For example :-

1. If m = 5 we are considering the spontaneous breaking of an SO(1,4) symmetry
down to an SO(1,3) symmetry and SO(1,4) is of rank 2 and so is SO(1, 3),

whereas

2. if m = 6 we are considering the spontaneous breaking of an SO(1,5) symmetry
down to an SO(1,4) symmetry and SO(1,5) is a group of rank 3 but SO(1,4) is

of rank 2.

3.3.2 Goldstone boson transformations.

3.3.2a The linear Killing vector components, K.

To find the linear Kg;f‘ components we must solve :-
2y, L] = 2iLoaKgo
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The coset representative and its derivative with respect to the Goldstone fields are :-

L = cosQ 1w —isinQ "2y

_ . . A P yA
Loa = —sinQ Qoa Ly —1c0sQ Qaan”Sya — isinQ nlja X

For the left hand side we have :-
[Epy, L] = —isinQn® [Sgy,Zan]

This time, for these SO(1, m — 1) breaking to SO(1,m — 2) models we will have :-
[Zpy: Zaa] = —2i(gapZya — goyZpn)

with g5 = 7.5. Note the minus sign which occurs for this commutator. If we now

equate the left and right hand sides of our relation to be solved we find :-

—sinQ n®A (gabEcA - gachA) = —is8inf) Q,QAK§$ 1[2k] + cos (2 QQAK 5A25A
+sinQ n K55 Tsa
which automatically implies Q,QAKgf = 0. If we substitute this into the above we
have :-
1 (gapZya — o Zpa) = K5 Tsa

Since tr oadiga = 2kgaﬁgAA we may remove the sigma matrices. We multiply by Xea

and trace the expression to find :-

—noA (gaﬁg'yegAA - gavgﬂegAA) = Kﬁfy Gsegan

~(ngagre — Myadse) = n‘5A K%ﬁgaeg/m

= (5 —n AnaA) g&egAAKﬂ»Y

Again, the second term on the right hand side is zero so we have :-
—(Mpgagye — Myngse) = Oen aAK3$
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If we act on this with ¢¢/¢”2, and relabel, then we find the solution :-

a — Aga Aca
K5 = —(Mg2ds — M 265) (3.30)

where we have chosen to keep the minus sign, introduced by the commutator, explicit.

This difference is cancelled when we come to calculate the Goldstone boson manifold

metric for these models.

3.3.2b The nonlinear Killing vector components, Kgﬁ.

To find the nonlinear Kgﬁ components we must solve :-
{sa, L} = 26 L2, K52
This time we find the relation :-

cos2Q Yga —18in 20 nga Ly = —2isin20 Q,QAK%‘ 1p%) + sin 20 n?’aAAKgﬁZWA

2¢0520 Q0 aKGaAn"2Sya
which implies 20, ,AK§X = nsa. When we substitute this in we find :-
= 7A i TA prald
cos2Q2 Ypa = 0820 ngan’ " Lya +8in2Q 1 A KGa2iya

Removing the sigma matrices and expanding n:"aAA yields :-

sin 2Q A
cos2Q (ggsgan — Mpamsa) = (KgAgfy&gAA - nsAnaAKgﬁ)

M
_ sin2Q K B dM o
= i BA A T o TBATIA

Therefore we may now rearrange this to find the solution :-
dM
Koa pa = Mcot2Q (gapgas — Naansa) + ‘d2—QnaAnﬁA (3.31)

where, for these models, we have gos = 145.
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3.3.3 Covariant derivatives and the Goldstone boson metric.

To find the covariant derivatives for the Goldstone Bosons and the Standard fields of
the theory we must find 2z'L‘16uL = a, + v, where g, is the covariant derivative for

the Goldstone fields, and v, is the metric connection in the covariant derivative for the

Standard fields of the theory. Now :-
L™ = cosQ lpy +isinQ S
oL = —sinQ 8,Q1pe —icosQ SG,0 —isinQ 4,8

where now S = n® T, and, for timelike n®*, we have S? = 15+ As we found before,

calculating 2iL~'9, L is just as simple as in the SU(2) breaking to U(1) model. We

find :-
2iL7'0,L = 288,0+sin20Q 9,5 + 2isin’Q 56,5
Therefore we have :-

a, = 250,02+sin20 9,5 (3.32)
v, = 2isin’Q S9,8 (3.33)

Using appendix D, we find the explicit forms for the covariant derivatives to be :-

20 d2Q
DM = {S“;W (638 — n®*nga) + (dM>n n[m} 8, M52 (3.34)
Dy = {au - W sin’Q M49, M4 gAAzaﬁ} P (3.35)
al i

To find the metric for the Goldstone Boson manifold we must now evaluate a;~a, -
a"‘Aag A = (2naA(9,,Q + sin 20 aun“A) (2n6A 082 + sin2Q 0*1qA)
= 49,008*Q +sin20 9,n** 0 ngn

We may again use appendix D to write this explicitly. We find :-

sin?20 d2Q?
agaba = Wz (9apgan — naanga) + (d_M) naanga | 0,M**0* MP* (3.36)
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and we have as our Goldstone Boson manifold metric :-

sin?20 a0
Jor pA = M2 (gaﬁgAA naAnﬁA)+ (d_M) UZINLTIN (3.37)

where, for these models, gog = 70s-

We note that only for m = A = 3 and o, 8 = 0,1 is this, from [14], the metric of
a Kéhler manifold. That is, only the model arising from the spontaneous breaking of
an SO(1,2) symmetry down to an SO(1,1) symmetry will yield a K&hler Goldstone

boson manifold metric; implying that only this model can be extended to include V' = 1

Supersymmetry.

3.3.3a Verifying the metric result.

It is now possible for us to check the form of the Goldstone Boson manifold metric
result using the Killing vector components. Firstly, squaring the linear Killing vector

components, we find :-

K:(SAK’Y(S gA KaAKﬂAge'yg
= gg" (M. 265 — M;"62) (M, 265 — My262)
—_ (M,YA(S? _ M5A5?;) ( ’yA ﬂ& M&A ﬂ'y)
— (M AMfyAgaﬁ AA MaAM,BA)

— 2M2( aﬂ AA naAnﬂA)

Notice that the minus sign which appeared in the linear Killing vectors for these models

is of no consequence in the calculation of the Goldstone boson manifold metric.

Secondly we need :-

K’yA BA géa gAA

dM
= M?cot®20 (¢*Pg*> — n®*nfA) + (_—d2ﬂ) nAnfh

A
K2AK™ % = Ksa qa
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The inverse of the Goldstone Boson manifold metric is given by :-

_ 1
(Gan ga)~" = *2‘K

MZ
- Sinzzﬂ (gaﬂgAA _ naAnﬂA) + (

alAyred bA alAprvA A
e K + KJAK

2
5;(42 ) naAnﬂA

This is obviously the inverse of equation (3.37).
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Chapter 4

CP 2(N-1) models from coset
¢

vectors of form z = 5T

4.1 CP 2(N-1) models in Chiral symmetry breaking

theories.

If we wanted to do calculations for a Chiral symmetry breaking model, where SUL(N)®
SUR(N) invariance is broken to SUy(N), then we would certainly, for N > 3, need
to use a method based upon projection operators right from the start; the details of
this method are in [13]. However, for N = 2, the full SUL(2) ® SUg(2) breaking to
SUyv(2) model may easily be studied without having to resort to this method and,
in section 4.1.1, we will show that the details of this model are contained in the last
chapter. In this chapter we are only going to concern ourselves with SU(N) breaking
to SU(N — 1) ® U(1) because this is a far simpler problem to deal with and, as we
will now show, it may also be embedded into a full Chiral symmetry breaking model,

where SUL(N) ® SUr(N) invariance is broken to SUy (N).

SUL(N) ® SUR(N) is generated by 2(N? — 1) generators, which we call L; and Ry,
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where I = 1,2,...,N? — 1. The Lie algebra is :-

[Lr,L;] = 2ifuuxLk

[Rr,R;] = 2ifiyxRk

and by definition [L;, Rj] = [Rr,Ls) =0 V I,J. If we now form linear combinations

of these generators :-

Vi = Li+ Ry

Ar = Lj—- Ry
then it is simple to show that they obey :-

Vr,Vi] = 2ifrixVk
[Ar, Ayl = 2ifuukVk

[AnL V)] = 2ifixAk

The first of these commutation relations is the Lie algebra for an SUy(N), parity
conserving, subgroup. If we now restrict our attention to the subset of the V7, namely
the Vi, which generate a (parity conserving) SU(N — 1) ® U(1) subgroup of SUy(IV),

then the subset of the Ay, the A,, which are present in the last two commutators are

SU(N)

STN=)er() Coset directions. Explicitly :-

Ve, Vr| = 2ifercVa
[Ag, 4] = 2ifuwrVE

(A, VE] = 2ifum4s

In the language of [18] we refer to the SU(N) group, which is generated by the Vg and
Ag, as a chiral SU(N) group. Thus, in the full theory, when we have SUL(N)®SUg(N)

symmetry broken to SUy(N) then, necessarily, we are able to find an embedded model
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where a chiral SU(N) symmetry is broken to SU(N — 1) ® U(1). For simplicity we
work with SU(N) in the defining representation, therefore we may embed the work
contained in this chapter into a full Chiral symmetry breaking model by making the
identifications A, — A, and Ag — Vg. This means that, for example, when we

calculate the quantity 2L7'9,L = a, + v, in the chiral SU(N) breaking model and

find :-
a, = D,M),
v, = vf)\E

then, by making the basis identifications A\, =& A, and Az — Vg, we may rewrite these

quantities as :-

a, = D,M*A,

_ . F
v = v, Vg

These are contained as a subset of the a, = al A and v, = v]V; which result in the
full chiral SUL(N) ® SUgr(N) breaking to SUy (N) model.

We note that in [18] we find the main results for the SU(2) breaking to U(1) model,
together with how the model may be embedded in the full chiral SU;(2) ® SUg(2)
breaking to SUy(2) scheme; it is included in this thesis because it is an instructive
‘toy’ model. A general discussion of embedding may be found in [19], together with
the specific results for the CP2 and CP4 metrics. However, these results are also
extended by rewriting the corresponding Goldstone Boson part of the Lagrangian using
stereographic coordinates [21] which allows, in the CP4 case, the retrieval of the Fubini-
Study metric. The CP4 metric is obviously contained within this chapter too, though

its form is different to that found in [19] because we use a different method to calculate

it.
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4.1.1 Cross-referencing three models.

In the previous chapter we considered an infinite number of models. However, the three

simplest are the models resulting from :-

e an SO(4) symmetry breaking to SO(3),
e an SO(3) symmetry breaking to SO(2), and
e an SU(2) symmetry breaking to U(1).

As we have stated, the main results for the SU(2) breaking to U(1) model, together
with how the model may be embedded in the full chiral SUL(2) ® SUg(2) breaking
to SUy(2) scheme, may be found in [18]. However, this paper does not mention the
homomorphic SO(3) symmetry breaking model; or its embedding into the full SO(4)
breaking scheme. To this end we will firstly discuss the full SO(4) breaking to SO(3)
model and then, secondly, we will show how the SO(3) (and therefore the homomorphic
SU(2)) breaking ‘toy’ models may be embedded. It also seems reasonable to say that,
using similar ideas, it is possible to embed the SO(1,2) symmetry breaking to SO(1, 1)

model (contained in the previous chapter) into the framework of the larger SO(1, 3)

breaking to SO(1,2) theory.

4.1.1a SUL(2) ® SUR(2) breaking to SUy(2).

Firstly, we will exploit the homomorphism between the groups SU(2) ® SU(2) and

SO(4). The sigma matrices, used to form SO(4) group elements, are :-

Ok 0 O 0
Ji5 = Eijk Ok4 =
0 gy 0 -0
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where 4, 7,k = 1,2,3. We may therefore rewrite these as :-

oij = €Eijr(Ly+ Ry)
= &V
ore = (Lip— Rg)

= A;
We now find that the V; and A; obey the commutation relations :-

Vi,Vi] = 2ieijnVa
[Ai, A;] = 2igipVi
[4;, V] = 2ieyndy

We may now rewrite the coset vector for the g—gg% coset as :-

r = wk4ak4

— wk4Ak

So it is clear that, by working out the Lagrangian for the SO(4) breaking to SO(3)

model we have, in a homomorphic way, also worked out the Lagrangian for the full
SUL(2) ® SUg(2) breaking to SUy (2) model.
4.1.1b  Chiral SU(2) breaking to U(1).

In this section we will consider the effect of restricting the V;, from the last section, to

just V3 which yields the commutators :-

Vs, Vi) = 0
[Ag, Ay] = 2ieg3Vs

[Aa,%] = 27:60,311146
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These are the commutation relations for a chiral SU(2) group generated by the set
{A1, A, V3}. Notice that V3 is being used to generate the abelian U(1) subgroup, and
therefore the A, are the s_[%g)z coset space directions.

We first notice that if we were to follow the rules for building the sigma matrices for

SO(3), which uses the three SO(3) gamma matrices (defined as the three Pauli Spin

matrices), then we would have found them to be :-
Oij = Eijk0k

where the o}, are the 3 Pauli spin matrices. Therefore, working out the SO(3) breaking

to SO(2) model based on the coset vector :-

z = w0,

— a3
= W ER30p

with a,b = 1,2, is obviously a homomorphic problem to the SU(2) breaking to U(1)

model (the first model in this thesis) which has the coset vector :-

z = ¢*T,

1
= §¢a0.a

where a = 1,2. If we now identify the o,3, or ‘equivalently’ the o,, with the g,4 = A,
(i.e. the subset of the SO(4) ~ SUL(2) ® SUR(2) sigma matrices which arises when we
restrict our attention to V3 which generates a U(1) ~ SO(2) subgroup), then we have
embedded both these ‘chiral’ models into the full Chiral SU;(2) ® SUg(2) breaking
to SUy(2) (homomorphic to SO(4) breaking to SO(3)) model of the previous section.
For the rest of the thesis we will just use the terms ‘SU(N)’, and ‘SU(N — 1) ® U(1)’;

but we will remember that the ‘SU(N)’ to which we refer is really the chiral SU(N)

subgroup of SUL(N) ® SUg(N).
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4.2 The SU(N) breaking to SU(N —1)®U(1) models.

4.2.1 Identifying the Goldstone bosons.

We will now show how the coset vector may be formed using the fundamental repre-

sentation of SU(N). We may write the coset vector :-

z = 1%,

= ()Z)‘aX) )‘a

where x is the fundamental representation of SU(N) :-

U

d

>
I

§

If this is done then we may identify the Goldstone bosons of the model. We give two

examples :-

1. For N = 2, the Goldstone bosons are the two charged Pions, 7%, and z is :-

2. For N = 3 the Goldstone bosons are the four Kaons and z is :-

0 0 K+
T = 0 0 KO
K- KO ¢

4.2.2 The coset representative, L.

These models use the coset representative for the S—U-WL%%W cosets. We note that,

for all these models, the subgroup of transformations, H = SU(N — 1) ® U(1), has the
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same rank as the full symmetry group, G = SU(N); the rank being equal to (N — 1).

In the defining representation we have, in general, a coset vector of the form :-

oo .- 0 2

o0 .- 0 2
T =

0 0 -+ 0 |2y

2 zZy v 2Zy-1] O

with (N —1) complex ‘numbers’ in the last row of the matrix, and (N —1) corresponding
complex conjugate ‘numbers’ in the last column. For example 2} = ¢(n_1)2 —iP(v—_1)2+1,

but we must remember that the ¢’s are fields. Squaring this matrix (vector) we find :-

a4 Zzg v 2Nt 0
2521 z;‘zz v z;zN_l 0
? =
Zy_1#41 Ey_1R2 v EnyqgAn-] O
0 0 - 0 Y2(z)

where 72(z) = (2}21 + 7322 + -+ + Ziy_,2n-1). When we calculate the next power we

find :-

3

z° = )z (4.1)

With this behaviour we understand that z is proportional to an r-vector because z

now has the characteristic equation :-

7% — ya(z) 2

If
o

¥ —p(z)zV2 = 0

which implies that yx(z) = 0 V & > 3. So we may write :-

T = Vy@)r

g (4.2)

7
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Therefore the coset representative element, L, is :-
L = #(N+2(cosg —1)) Iiny+ /%2 (cosg —1) g, — i sing r (4.3)

The indices of the coset vector, 7, have the range (N — 1)2 < ¢ < N? — 2, and, for

N > 3, the indices of the g,-vector have the range £ = 1,2,... ,(N—-1)2—1,N?—1.

4.2.3 Linear Goldstone boson transformations.

Since we are breaking G = SU(N) invariance down to H = SU(N — 1) ® U(1), and
the two subgroups of H commute, we are able to look at the effects of transforming
L in two parts. Firstly we will see how L is transformed by an element of the U(1)

subgroup, and then we will see how it is transformed by an element of the SU(N — 1)

subgroup.

4.2.3a Transforming L with a U(1) subgroup element.

Since the coset representative element is produced by exponentiating the coset vector

z = %n“)\a = %r then a subgroup U(1) element, u, will commute with the g.-vector,

therefore :-

L' = uLu™t

= & (N +2(cos? — 1)) 1ja+ /%2 (cos¢ — 1) g, — i sing uru™ (4.4)

In general, for h € SU(N —1)®U(1), both r and ¢, will be transformed, but both will
still lie in their original respective subspaces of RV -1

We now need the explicit form of the U(1) group element. For the same reason that
we needed projection operators to write the exponential of a g¢,-vector we need to
use projection operators here. Besides, since we wish to find results for a general

G = SU(N) breaking to H = SU(N —1)®U(1) it is also desirable to use the projection
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operator method. Now, the U(1) group element is generated using the last A matrix

of SU(N), the (N2 — 1) basis element of R®¥°~!, which has the following form :-
Mac = (Pt Bt oot Py = (N = 1)Py)
where al normalizes the matrix. Since we wish (Ay2_1, Ay2_1) = 1 this implies :-
2% = (N=-12+N-1
= N(N-1)
So we find that Ay2_, is :-

/\Nz_l P1+P2+'°'+PN_1'—(N—-1)PN)

1
f @-1) (
Therefore the u € U(1) is :-

u = e it

= ‘/EN—(N—T(P1+P2+ +PN—1)+6ie %PN
= /=D W}W 1+(( )e_i\/?N((aTl)_i_eie NTE—I) Py

So we need to work out uru~! in equation (4.4). We find :-

o= uru!

—i0, /3 8, /5w
= /= (e CVEINT ), 7 Py +e Z(N_I)PNTAN?_1>

We can tidy this up a little if we use the following notation :-

’I‘EB = V 'J—)‘ng_l AN'Z—-IT‘PN
r® = JMEDPyr A,

-6 2(1v i)

such that 7 = r® + r©. In terms of the matrix, r, we find that 7® is just the last

column of 7, and 7° is the last row of . So we have :-

v = ar®+alr® (4.5)
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This shows that each entry of the last column of 7 is modified by the U(1) phase which
we have called a, and each entry of the last row of r is modified by the opposite U(1)
phase, a’. Another way of saying this is that r, the Goldstone boson vector, is split
into two pieces. Each piece represents one half of the the Goldstone boson multiplet
states. We see that both halves transform in equal, but opposite, ways.

This is what we found in the SU(2) breaking to U(1) calculation, but instead of having
(N — 1) states in each half (as we do here) we only had one Goldstone boson in each

half; r® being represented by the 7t, and r® by the 7.

4.2.3b Transforming L with an SU(N — 1) subgroup element.

Using the same notation from the last section, and considering a specific example, we
may arrive at the required general result. We consider the case of N = 3, that is the
spontaneous breaking of an SU(3) symmetry down to SU(2) ® U(1) and ask what

happens to the coset vector under the SU(2) subgroup transformation.
A general u € SU(2) group element has the form :-

a 0
u = -b a* 0

0 01

Therefore the Kaon Goldstone boson multiplet, or coset vector, is transformed :-

Z = uzul
a ¥ 0 0 0 Kt at b 0
= -5 a* 0 0 0 K° b a O
0 0 1 K- K° 0 0 0 1
0 0 aK+t +b*K°
= 0 0 ~bK® +a* K+ (4.6)
a*K~ +bK9 oK0— b K- 0

If we now consider a defining SU(2) transformation, g, on a fundamental 2 represen-
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tation of SU(2), which we have previously called x then we have :-

g:x X = gx
a b i
b g d
+bd
- | ™ (4.7)
—bu + a*d

and we also have :-

e
=ab 7
( T +bd —bT+ad ) (4.8)

Comparing the results of (4.7) and (4.8) with the Kaon transformation (4.6) we see

that we can generalize these results.

e Under a subgroup u € SU(N — 1) transformation of the SU(N — 1) ® U(1)

subgroup of transformations we find :-

1. The r® part of the normalized Goldstone boson coset vector, r, transforms

like the fundamental representation of SU(N — 1), x, i.e :-

1
r® = r® = ur®

2. The r© part transforms like ¥, i.e :-

Notice that ur® = r© and r®u! = r®, so under a transformation by v € SU(N —1) we
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may write :-

u:r = = urd
= u(r®+r®)ul
= ur®ul + urlul

= ur® 4 royt (4.9)

This transformation will have an effect on the ¢,-vector in the expression for the coset
representative; but since the r-vector remains in the subspace of RV *~1 where it started,
the ¢,-vector also remains in its orthogonal subspace where it started. The components
of the g,-vector which are transformed lie in the subspace of RV ’-1 associated with

the generators of the subgroup SU(N —1).

4.2.4 Analysis to first order using Killing vectors.
4.2.4a The linear Killing vector components, K¢.
To find the linear Killing vector components we must solve :-

Mg, L] = 20L,K} (4.10)
Now the coset representative element is :-

L = eifr

= L[N+2(cost —1)] 1jn)+ /%2 (cos¢ — 1) ¢, —ising r

and so the left hand side of equation (4.10) is :-

Mg, L] = (/%2 (cost — 1) [Ag, ] — ising [Ag,7] (4.11)
which, in terms of components, is :-

[)\E, L] = 2 \/'NTT’(COS%é - 1) qfprc;)\G + 2 Sin%é ’I’LafEa,b)\b
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We will now work out the right hand side of equation (4.10). Firstly we find :-

2%L,K% = — (#sing 1jy+4/52sin2 g, +cossr) ¢,K%

-+ (2’6\/NTTZ (COS% - 1) dr.,a + 2 Siﬂ%s T,a) KaE

and since this is equal to equation (4.12) which only contains vector-like pieces, we
must have the condition ¢ ,K% = 0. Here we use the wording vector-like because the

trace of equation (4.12) is zero. So if we equate what we have left we find we have two

equations to solve :-

& ferede = @ K% (4.12)
’i’bafEab)\b = Ta xaE (413)

We know, if the mathematics has been worked out correctly, that the solution of both

these equations should yield the same result. We will now show that they indeed do.

1. Firstly we have :-

g fere = aF K%
= /& (n“nbdabc:)7c K%
= 2/&(n") o dacKy
2 (e~ 1) K
= %\/,%nbdchK%

Using the notation of adjoint representation operators in Appendix B, we may

write this :-

2
(fq'r)EG = m(dr)cGKfE

Now, since (f,,) = ﬁ frd, we find we are able to write :-

M (fr)p.(d)e = Kz (dr)eg
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Thus, by inspection, we find :-

Ky = M(fr)g,
= Mnbeba

= faumM® (4.14)

2. Secondly, we have a simpler relation to solve. We have :-

(fr)Eb = ”?aK%
1
i (5ba - nbn“) K%
1

= K/_I—K%

Therefore we see :-

KaE = M(fT)Ea
= Mn’fmm,

= famM® (4.15)

The two results are the same. Since this is true we could have, for example, just
solved the second set of relations and then substituted the result into the first
relation to show that both sides were equal. This is the doublecheck we will use
for the nonlinear case, since it turns out that one of the two relations we end up

with is extremely hard to solve.

We end this section by taking the simple case of when N = 2. In this case we have

fiit = €ijx, and therefore :-
b
Kg = 5aSbM

which is in agreement with the result of equation (3.4), for the subgroup U(1) trans-

formation of the coset vector.
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4.2.4b The nonlinear Killing vector components, K.
To find the nonlinear Killing vector components we must solve :-

{M L*} = 2%5I2K]

This time we have an anticommutator, which we find to be :-

{0, L} = Z(N+2(cos¢ —1)) X+ 2\/7"-?(c0s¢ — 1)¢Zdymee

—%i sin ¢ n® l[N] — 2isin ¢ ndpep g (4.16)
and we find 22 K§ to be :-
%L2Kp = —Lising ¢.Kf 1y — 2iy/%2sing ¢ Kjgr + 2icos¢ ¢ Kpr
(4.17)

+2iy /%P2 (cos ¢ — 1) gr oKf + 2sing 7, K

this time, when we compare the two, we find that ¢ K} = dif’zn“Kg = nb. Yet again

we have two orthogonal relations.

1. The first is associated with the directions of the g,-vector :-

= /%2 (sing n’g” — (cos¢ —1) qf,aKg)

sin ¢ nldyg =

Since ¢, = 2,/32;n°(n%) degp then we find :-

dM bE)

. d")aE Kg — eV qr

B
q, ,a.Kg = v (7171—‘:—'2" (
where we understand that n’q® = (r><g, ). Therefore, in terms of the adjoint

operators, the relation we must solve is :-

sing (dp)y; = VN-2 (singb + 24 (cos¢ — 1)) (r><qr)om

—2(cos¢ —1)(dr),z Ks (4.18)

However this relation is very hard to solve; because simplifying (d,),zKj§ will not

be easy. So it is fortunate that we have a choice of two relations to work with.
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2. The second relation, associated with the directions of the r-vector, is :-

cos¢ n’n® +sing Kgn%, = L (N +2(cos¢ — 1)) 0y
+y/ (cos ¢ — 1) g dope (4.19)

This relation is much simpler to solve for K§ because we know :-

cpra 1 €na

no Ky = 4 (0 —n°n®) Kj
— 1 c_ dM ,cb
= —M(Kb ““‘d¢nn)

Therefore if we substitute this in then, after some simple rearranging, we find :-

Ki = girg (N+2(cos¢ — 1)) 0oy + 0552 (cos g — 1) (dg,) g

—M cot ¢ n°n® + C;—J;I??f‘nb (4.20)

To check this result we may substitute it into our first relation, equation (4.18).
However, this is not strictly necessary as we will soon be using these K} to
construct the Goldstone boson manifold metric; this verification is just as good.
For completeness though we perform the substitution in Appendix B, on page 182.
In the next section we will also find an expression which allows us to write dg,
in terms of adjoint representation projection operators; the details of this are
given in Appendix B, section B4.2. We will do this just before we construct
the Goldstone boson manifold metric. But for now we see that for N = 2 this

equation reduces to :-

M
K; = Mcotg ((5ab - n“nb) + %&S—n“nb

which is the same as equation (3.6) in the SU(2) breaking to U(1) calculation.
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4.2.5 Covariant derivatives and the Goldstone boson metric.

For all these models we have :-
L = #%(N+2(cosg2 —1)) iy + /22 (cosg — 1) g, —ising r
and therefore we find :-

L7 = L(N+2(cost —1)) Ly + /%2 (cosg — 1) g+ sing 7

oL = —xsing0u¢ 1w — /22 sing (0u9) ¢ + 1/ 2572 (cosg —1) Dugr

—2% cos$ (Oup) r — ising O,r

To find the Goldstone boson covariant derivative and the metric connection for the

matter field covariant derivative we calculate 2;L~'9,L = a, + v,. We find :-

ay = 70,0+ %[N +2(cosg — 1)]sing d,r

+24 /222 (cosg —1)sing (¢,0,7 — rOug,)
which we will simplify using the relation :-

GO — 70 = /22 0,r — {r, 0.4}

So the results for a, and —%v, are :-

Gy = TOuP+sing d,r — 2¢/2=2 (cos? — 1)sing {r,0ugr} (4.21)
1
St = /5 (cost — 1)L+ F (cosd — 1)] g, + 252 (cos — 1) 4rut
+ sin®2 78,7 (4.22)

In the next section we will give the explicit form of the Goldstone boson covariant
derivative af, = D,M*; we will not do the same for the matter field covariant derivative
Dyup = (O, — £v,)9 because it’s form will be extremely untidy.

We will now construct the Lagrangian for the Goldstone bosons. In doing so we will find

a relation which will help us to vastly simplify the whole calculation (this is examined in
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appendix B), and will also allow us to easily check the result for the Goldstone boson
manifold metric in the next section. We proceed by calculating (a,,a*) = itra,a”

using the form of a, above. This calculation is slightly simplified because, obviously,
the terms (r, d,r) are zero. We find :-
(ay,a") = 0,00"¢ + sin’p §,n"0*n"
—/22sing (cos? — 1)sing ¢r (O,r {r, O q,} + {r, Ouq- } 67)

+42=26in?2 (cos$ — 1) tr ({r, Buq:} {r, O*¢:}) (4.23)

N

It is the first trace expression which holds the key to simplification of the calculation

as a whole. This is discussed in Appendix B, section B 4.2 on page 185. But for now

we will proceed. We find :-

tr (Our {r,0%q,} + {r, Oug-} %) = 2itr (r0,q.0"r + rd,rd"q;)

= 4 %311(]? 3"qf
For the final trace expression we find :-
tr ({r, Ougr } {r, #q}) = 26“(],}38"(]5
where we have used relations like r0,g, = 8,(r¢;) — (Our)¢r, and we have then calcu-

lated ¢r ¢;0,g,0tq, = —2=2—0,q"0"q”. After we substitute these in we find, after a

VN(N-2)

little rearranging, that we end up with :-
(au,a") = 8,40"¢ +sin’p 9,n0"n® + 22 (cos ¢ — 1)° B,q" 0 ¢” (4.24)
We may now write this result explicitly using the results :-

0,0 ¢ = (2)’nnb6, MO0 M®

ountdhn® = L (Jab - n“nb) 0, Mo+ M
auqfa"qf = W-(?\WTQ) ((df)ab — (N - 2)n“nb) 8NM“3”M6
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which we substitute in to find :-
(au,a") = (di]%)zn“nbauM“a“Mb + 828 (§4y — nonb) 8, MO M"
2ed 20 ((dD)as — (N - 2)n°n?) O, M O* M®

= gu0,M°0*M®

where we have for the Goldstone boson manifold metric :-

Gap = ({—%)Znanb + sin%g (5ab _ nanb) + 4(co;ﬁl;1)2 ((dz)ab — (V- 2)n“nb)

M2

This will be further simplified in the next section.

4.2.5a Verifying the metric result.

(4.25)

Before we verify the metric result we will use the ideas in Appendix B, section B 4.2

on page 185, to simplify the form of a,. We will then find the form of the Goldstone

boson manifold metric again. This is not strictly necessary, since we could use results

found in appendix B to simplify equation (4.25), but it will at least be quick because

we will be using Adjoint representation projection operators. We will then use the

Killing vectors to verify the metric result as usual.

We start by rewriting a, in terms of adjoint representation projection operators. We

have found :-
ap = 10,0 +sing §,r —2,/%2 (cosg — 1)sing {r, Jugr}
The anticommutator may now be rewritten :-

\ 22, Ougr} = 2@ TV Ougy

_ a E
= 24/%2 n®0uq. damp My

((d2)ap — (v - 2)n“nb) B My

41
NM

= 3 (Prz)ay Ou M Ny
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where the last step has used the result found in Appendix B, section B4.2 on page 185.

Since (ay,a*) = alal we just need an expression for a% which we see is :-

a = [(j‘%) r><r+ S8 (1jve—q) — r><r) — Z(cos¢ — 1)sing ’Pfqz]ab o, M°

and since (1jy2_q))as = (P + P>+ r><r + Pj2)ap we find :-

a® = [si_rjlwgs_(Pl+P2)+(%)T><T+%Sin%jpfg} auMb (4.26)

H ab

This, as promised, is the explicit form of the Goldstone boson covariant derivative. It
is now very simple to form the metric because we are dealing with an expression which

is completely in terms of adjoint representation projection operators. We have :-
(ay, a") = g0, M*0*M°
and we find, without much trouble, that :-
g = (P + P+ () (r><r)a + 21— c05 ) (Pp)as (4.27)

We also arrive at this result if we just simplify equation (4.25), which we found
at the end of the last section, by substituting in the projection operator result for
((d2)ap — (¥ - 2n®n’) which we used to simplify a,, above. We note that these, from [14],
are the metrics of Kahler manifolds. This tells us that it is possible to extend all these
models to include /' = 1 Supersymmetry.

To verify that the result for the metric is correct, we will now use the relationship

between the metric and the Killing vectors :-
g = (KpKh+KIK!)™

In terms of linear operators, and projection operators, of the adjoint representation we
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have found, equations (4.15) and (4.20), the Killing vector components :-

Ky = M(fi)g,

K¢ = M L(N+2cosé ~1))5ab+siff¢v%“2(cos¢ — 1) (dg,) s

sing N

dM
—M cot ¢ n®n® + —nonb
@ dé

M(cos¢ +1)

2sin¢ (P )

= Mcotg (P +Pas+ () (r><r)m +

Where we have used equation (B.38) to write d,, in terms of the adjoint representation

projection operators. Thus we find :-

%K% = _Mz(ff)ab

= M2 (P + P+ 1Pp)
47 e ab
M2(cos ¢ +1)?

KiK! = M2cot?s (P'+ Py + () (r><r)a + 2028 (Pp),,

When we add these two together we finally arrive at :-

2
KK, + KIK! = 20 (P! 4P, + (%) (r><ras + 5r2lss; (P2 (4.28)

which is obviously the inverse of the Kéhler manifold metrics, equation (4.27) above.
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Chapter 5

SO(m)
SO(m—2)®S0

m = 4,5 and 6.

The ) coset models, for

The models in this chapter concern the breaking of an SO(m) invariance down to
SO(m — 2) ® SO(2). Appendix C, from page 191, details the construction of the
generators of SO(m) in the Weyl representation; from which we see that the following
models result from the manipulation of 4 x 4 matrices. Thus, all may be worked out
using the language of the A-matrices of SU(4). To put it another way, we are just

exploiting the homomorphisms between :-
e SO(6) and SU(4),
e SO(4) and SU(2) ® SU(2), and
e SO(2) and U(1).

We note that, for all these models, the subgroup of transformations, H = SO(m—2) ®
SO(2), has the same rank as the full symmetry group, G = SO(m). When m = 4,5

the rank is 2, and when m = 6 the rank is 3.
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For the three models in this chapter, the coset vector is written as £ = w**g,x with
a=1,2,..., m—2and X =m—1,m. We will now show that these three coset vectors
obey the same characteristic equation. This implies that we are able to describe them
in the same way, thus allowing us to manipulate a single coset vector expression, just
as we did for all of the CP2(N-1) models. However, unlike the coset vectors of the
last chapter, the coset vectors in these models have very different forms; which means
that the fact that they obey the same characteristic equation is not at all obvious.
However, as we will soon see, even though all three coset vectors have the same form
and mathematical behaviour, the coset vector of the first model (when SO(4) invariance
is broken to SO(2) ® SO(2)) has a special form. This means that, even though the
results in this chapter concern all three models, they may be simplified for the case

where m = 4. We will give the results for this model in section 5.2 before we go on to

calculate the more complicated results for the other two models (when m =5, 6).

The method/idea of rewriting the coset vectors in terms of the ‘equivalent’ SU(4) view

is essential, because trying to work out higher and higher powers of z = w**g,x is

an exceptionally difficult task. For example, using the gamma matrices of SO(m), we

find :-

2
2 = w0, xouy

= —w ¥y yxmy

= WXy yx

= WY (Jab l[zk] -+ iaab) (5XY ].[zk] + idxy)

— wanaX l[gk] . wanbYo_aba.XY

which doesn’t seem too bad, apart from the fact that the second term is a little clumsy.
The problems really start when we write the cubic and quartic powers of z; we just

end up with a nasty jumble of terms and indices and it is very difficult to spot any
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patterns emerging; so we cannot easily regroup terms in the expansion of L. So we will

continue with the reconstruction of our view of the problem.

5.1 The coset vectors, and expressions for L.

5.1.1 The coset vector for the -5-5(—‘29—)%%—)0(—27 coset.

This model is the theory resulting from the spontaneous breaking of an SO(4) global
symmetry down to an SO(2)®S0O(2) symmetry. To all intents and purposes this model,
mathematically at least, looks like two commuting copies of the SU(2) breaking to U (1)

model ! already worked out in Chapter 3; as we will now see.

aX

S0(4) — ta
The 50(3)9300) coset vector, T = w®** 0,x, is :-
0 A 0 0
A 0 0 O
waXUaX =
0 0 0 B
0 0 B 0

For this matrix we therefore find that :-

1. the top left entries may be written as 27 L, (p=1,2) with :-
oL = WP
2 = W'+
which implies 4 = z} + iz?%,
2. and the bottom right entries may be written as % R, with :-
23 _ 14

T = wB—w

31 4

5 = w¥—w?

IThis means that the Goldstone boson manifold will be §2 ® S2.
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which implies B = z};, + iz%

Since we have this form, it is immediately apparent that frz® = 0. There are 4
Goldstone bosons in this theory. The coset indices, in terms of the Ad-matrix basis of

R, are a = 1,2, 13, 14. The coset generators are :-

o1 = (Ae+da) = (L2+ Ry)
o3 = (M +Ai3) = (L1 + Ry)
ou = (M —2Aiz) = (L1 — Ry)
0 = (Ao—Aa) = (Lo— Rp)

5.1.2 The coset vector for the m‘% coset.

This model is the theory resulting from the spontaneous breaking of an SO(5) global
symmetry down to an SO(3) ® SO(2) symmetry. The ﬁ%%%@ coset vector, w¥o;x,
is -

whoy —wPois
W oix =

—whois —wHou
This time it is a little more involved to see that ¢rz3 = 0. First, we find the second

power of z to be :-

Y o 0 —oy

2?2 = WX 1[4]+2z'w’4w756ijk
Ok 0
The cube of z is then :-
15 14

o o wPo, Wiom

$3 = szsz r — 2w’4w355ijksklm
who,, —whon,

and this obviously is a vector; has a trace of zero. When z is rewritten as z*A, the

coset indices are @ = 1,2, 3,4,6,7,8,9,10,11, 13,14, 15 but the coset generators of the
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orthogonal symmetry breaking model are just linear combinations of pairs of the R

basis vectors :-

og = (A=)
s = (Aa— An)
o34 = (rs— rgL)
o5 = —(Xe+ o)
o35 = (A7 — Aw)

o35 = —(As+ A1)

where 73 = A3 and 73 = —%/\s + \/—%)\15. This is why there are 6 Goldstone bosons in

this model.

5.1.3 The coset vector for the —S—(—)—(%%%TQ—) coset.

This model is the theory resulting from the spontaneous breaking of an SO(6) global

symmetry down to an SO(4)®SO(2) symmetry. The W(i%g‘)@ coset vector, w* o, x,

is -

0 0 A ¢

0 ¢ B D¢
waX Oux =

A B 0 0

¢ D 0 0

50(6)

where we have for example A* = z* —iz5. In terms of the W@—@ coset parameters

the components of A* are :-

1

.'E4 — ‘_(w35 i w46)
2
1

0 = _§(w36+w45)
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and so w**g,x = %)\, with the coset indices given by o = 4,5,6,7,9,10,11,12. By

inspection we see that tr £3 = 0. There are 8 Goldstone bosons in this model.

For all three coset vectors in this chapter we see that the quantity z° is itself a vector.

This implies, from section 2.3, that £ V z and z are linearly independent; they are

orthogonal vectors.

5.1.4 Description of z and the Coset representative, L = e™.

The coset vectors, z, must all obey a characteristic equation, ®(z), of the form :-

gt — y(z)2® —u(z) g = 0 (5.1)

because this is the most general characteristic equation allowed for 4 x 4 traceless,
Hermitian matrices with r 23 = 3v3(z) = 0. We may represent the eigenvalue equation

implied by this characteristic equation graphically :-

Figure 5.1: The r and g, vector eigenvalue equations.

The eigenvalues, €; to e, for the vectors lie on the line & = 0, or, as indicated,
the e-axis. The vertical dashed lines lie at ¢ = :i:%, =41, and the horizontal ones at

d = :i:i. Notice that the g-vector’s eigenvalues also satisfy a quadratic curve (because

gr vV qr EO)-
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The eigenvalue equations for r and ¢,-vectors, shown above, are symmetric about the
origin, as is the eigenvalue equation for our coset vector, z. So in order for our vector
to have real eigenvalues it must be true that, once normalized, its eigenvalue equation
will ‘lie between’ the r and ¢, equations. The form of the characteristic equation for z

makes its eigenvalues simple to find. We have :-
2 — p(z)e® — (=) 1y = 0
So let y = 2. This gives :-

¥ — @y —nul@) = 0

v = 3 (n@ Vi@ T nE?)

Thus the eigenvalues of our coset vectors, z, are simply :-

¢ = 2/2 (o) £ VG laP)

or, more clearly :-

+a = :t\/% (72($)+ 4”/4(90)+72($)2)

10 = 2/} (nlo) - VG FREP)

So, if we were to diagonalize z, we could write these eigenvalues :-

a b
Tp = §T3+§7"3_L

where we have chosen to use r3 and r3;. It really doesn’t matter which pair we use;
we could have used r; and 7, or 79 and 75, . We have also used conventional values,
a=j3and 8 = %, for the lengths of the two commuting, orthogonal vectors which

make up z. In terms of diagonal projection operators, zp can be written :-

zp = - (P'-P)+ g (P* - P

N R
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or explicitly as a matrix :-

+a 0 0 0

6 —a 0 O

Ip
0 0 +8 ©
0 0 0 -8
Therefore, when we rotate zp back onto z, we find that the coset representative is

simply :-
L = e 5P +¢t5P? 4 ¢ i P3 4 gtis Pt (5.2)

where the projection operators are obviously no longer diagonal. However, we will not
use L in this form. Instead we will write L in terms of the Cartan subspace basis
{r,71,¢-} and the identity element as usual. This is a very simple task because when

we rotate zp out of Cp then we just have :-

and still 77|, = r;r = 0. So we find :-

L = e—i(%r+%u)
_ gmifrg-ibry
= 1+ ((cosg —1)7% + (cost — 1)7r3) — i (sing r +sin¢ r,)

= ;(cosg +cos}) Ly + 75 (cosg —cost) g, — i (sing r +sing 7)) (5.3)

This is a simple result to find. Firstly, we can just expand the first line because
calculating powers of z is simple; we quickly arrive at the third line. Secondly, we may

use independent results for e~ and e~ ", given by equation (2.25), and multiply

them together; this splitting of the exponential is possible because [r,7,] = 0. This
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second method is a little more involved because we need to remember how 7 vectors
and ¢, vectors multiply together; still, the result is the same. We would have also
arrived at equation (5.3) if we had started off with equation (5.2) and substituted in
relations for the projection operators; provided by r = (P! — P?) and r, = (P* — P*).

These are :-

Pt o= Yr+r)

P2 = L(r’—r)
P3 = %(T_zl_ -+ 7‘_1_)
Pt = 3(ri—ri)
We then substitute 2r2 — 1y = v/2¢, and 2r} — 14 = —+/2¢, and rearrange; notice

that we have also used the specific SU(4) relation ¢,, = —g, to simplify the result.

It is important to understand that, when N > 5, we find that ¢,, # —¢, and so the

coset representative element, in these cases, will be in a more complicated form :-

L = (2=4) 115+ 2 (cosg +cost) 1y —i(sing r +sind )
+¢/ % [(cosg — 1) g, + (cosg — 1) ¢r,] (5.4)

If we use N = 5 in this equation, then the resulting Coset representative element may
be used to find the Effective Lagrangian when SU(5) is broken to SU(3)®@SU(2)®U(1);
this will be discussed in the concluding chapter.

We will also briefly discuss a further generalization to this result; cases where the coset
vector is a linear sum of any allowed number of commuting orthonormal r-vectors. In

this case the coset representative element is :-

o (k)
—i) Eor)
L = e k}; 2 (5.5)
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This expression is valid for % > « > 1, where « is the total number of commuting
orthonormal r-vectors used to describe the coset vector. Thus, the index k is used to

distinguish between the different r-vectors. We find that this works out to be :-

@ )

e®
L = He 7 T(k)

k=1

[¢3 [+3
= (¥5R) 1in + %Zcos%i’ l[N] - Z'Zsinﬁg2 T (k)
k=1 k=1

o
-I—\/%kz;(cos%ﬂ - 1)Q(k) (5.6)

and the relationship between the r-vectors is defined :-

TOTG) = OikTl)

e = =21+ VNN-9qw)

with 6ijlc = 1 when i = j = k.
We end this section by noting some important results contained within equation (5.6).

We find :-

1. When « = 1 and N = 2 the implied coset vector is %T(I) and in chapter 3 we

wrote this as %r. We find that the coset representative element of equation (5.6)

reduces to equation (3.1).

2. When o =1 and N > 2 the implied coset vector is %27“(1) and in chapter 4 we

wrote this as £ 7. The coset representative element of equation (5.6) reduces to

equation (4.3).

3. Lastly, when o = 2 and N > 4 the implied coset vector is (%ﬂ T+ E(;—) T(2)) and
in this chapter it is written as (57 + % r1). We find that the coset representative
element of equation (5.6) reduces to equation (5.4). When N = 4 this may be

further reduced to the form of equation (5.3) because g, = —¢.
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5.2 Simple results when SO(4) invariance is broken

to SO(2) ® SO(2).

The results we have found in this chapter are valid for the three models considered.
However for the first model, when SO(4) invariance is broken to SO(2) ® SO(2), the

form of the coset vector allows the results to be simplified. This is because the coset

vector is :-
0 A 0 0
A 0 0 O a
waXUaX - - —T—'_—T_L
0 0 0 B 2
0 0 B 0

1 0 0 0 0 0 0 0
0 1 0 ¢ 0 0 0 0
r? = =1, and % = = 1p
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

where still 7* + 73 = 1+ 1z = 1j4 as required; which implies that the associated g,-
vector is diagonal. This is similar to the fact that the r-vector, of R®, given by r = nfF\;
(for k = 1,2, 3) has the associated diagonal g,-vector which is ¢, = n*nFAg = As. Thus,
we will find that 9,¢, = 0. Now because the r-vectors lie in non-interacting commuting

spaces we may now write L as :-

L

1)+ ((cose — 1) r® + (cost — 1)) — i (sing 7 +sing 7. )

= cos¢ 1y —ising r+cost1p —isind r,

So, in effect, we may now ignore the g,-vector altogether. To see the results for this
model in the calculations which appear in the rest of this chapter remember that

0,¢- = 0 and, when evaluating 2¢:L~'9, L, terms like 79,7, are zero too.
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We also see that 7% and r? will act as projection operators :-

1

r? = 1L = 5(1[4}4-"/5) = P
1

T‘?L = ]-R = 5(1[4}—"/5) = PR

PL+PR = 1[4]

These projection operators will project out the left and right pieces from L, so we can
work on ‘the two halves’ independently (both of which are like the first coset model,
namely S—UU((I—?, in this thesis). Equivalently, the projection operators will project out

the left and right 2-spheres from the coset space; which we now denote S7 ® S2. These

projection operators are also defined in Appendix C.

Therefore, when we calculate 2L719, L, we will find :-
%L, L = (PL+ Pr)(auy+v,) = (af +0))+ (af +v])

where a = Pra, and v, = Ppuv,. Obviously Pr has projected out the other two

quantities. So we find :-

(a{;)"‘ = (Si’]‘w‘l [(5@5 — nonP] + (;%nanﬁ) 8, M”
(wh)? = Zsin®2n eq340,M°

(@) = (LR —nTnl]+ Znin]) .M]
(v? = T sin®t n% £,3,0,M7

where «, 8 = 1,2 and 0,7 = 1,2. To use these index values we must redefine the
SURg(2) components M'® ~» M] and M'" ~ M?; note that we cannot form objects
with a mix of these two sets of indices.

The Goldstone covariant derivatives are given above, and the matter field covariant
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derivatives are :-

Dfx = {&L + MZQ— sin?2 M99, M7 egra R3} % (5.8)
I

We also find the Killing vector components to be :-
(Kp)§ = caspM”
(K1) = M cota (65, — n®nf) + MnonP
(Kr)S = eo3-M]
(Kr)? = My cotd (6% —ninT)+ MininT
and, finally, we have the Goldstone boson part of the effective Lagrangian density :-

3 Jab OuM* MM = 3 9ap O M o"MP° + 5 Gor OuMT O* M7

The two S? manifolds have metrics like equation (3.16). From the work of Galperin,
Ivanov, Ogievetsky and Sokatchev [22] we understand that the Goldstone boson mani-
fold S? ® S is Hyper-Kihler; and so this model (with fields defined in a 4-dimensional
spacetime) will admit /' = 2 extended supersymmetry. This is the simplest example of

a Hyper-Kihler manifold since [22] also suggests that if any coset space (%) is Kéhler

then ($) ® §? will be Hyper-Kéhler; and (£) = (%;8)) = $? is the simplest Kéhler

manifold. We will now find the results for the other two models; when m = 5, 6.

5.3 Goldstone boson transformations.

5.3.1 The linear Killing vector components, K¢%.

To find the linear K¢, we must, as usual, solve :-

De, L] = 2LKS
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We have found the coset representative element to be :-

L = j(cos§ +cos}) 1+ 5 (cosg —cos}) g — i (sing 7 +sing r1)
and so the left hand side is simply :-

[Ag, L] = Zs(cost —cost)[Ag,q] —ising [Ag,7] — ising [Ag,7.] (5.9)
Next, for the right hand side, we calculate :-

Ly = —;(singay+sintby) 1y — 53 (sing¢ay — sindby) g,

?

+5 (cosg —cost) grp — 5 cosg ayr —ising Ty

—2cost byry —isindr, ,
and so, for the right hand side, we find :-

20L,Ky = —i(sing ap+singby) Ky 1y — & (singay —sindby) Kigr
+iv/2 (cose — cost) gr )KZ% + cosg a Kb r + 2sing r K5

+ COS% b,b T'_LKbE + 2 sing Ty ,bK% (5.10)

Since equations (5.9) and (5.10) are equal, we immediately see that the pieces in front

of 1 on the right hand side yield the results :-

aKi = 0

bKy = 0
which we may then use to vastly simplify the right hand side to :-

2%L,K% = +iv2(cost —cost) g, ;K% + 2singr, K% + 2sindr, ;K% (5.11)
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Once again, because of the indices involved, we have two separate relations which we

may solve for the K¢. Firstly we have the relation :-

75 (cosg —cost) [Ag,q;] = iv2(cosg —cost) ¢r v K
@ fere = K5
(f‘Ir)EG = (IrG,bK%: (5-12)

and secondly we have :-

. I N _ . b . b
—ising [Ag,7] —isind [Ag, 7] = 2sin2rp Ky + 2sinr, Kg
: b s b oo b — : a b O b
sing 1’ fmpe +singn) fme = singn} Ky +singnf Kpg
. s b _ . a b . b a b
sing (fr)p, +sin¢ (fr)p, = singn$Ky+sining Ky (5.13)

It is far more straightforward to work with equation (5.12) as we will now show. If we

write the coset vector in terms of the Goldstone fields :-
T = MO,
= Mn*A+ My 1%,
then, in terms of the Goldstone fields, the ¢.-vector components may be written :-
e M M dae

If we now differentiate these components with respect to the Goldstone fields and

multiply by the Killing vector components then the relation, equation (5.12), is now :-
(f‘Ir)EG = (_MTW (M’I’I, - MJ_ 'I’I/_L) MaM dabGKc + (—m—rMm dachC
M (dn) .o K5

because the first term on the right hand side is identically zero. We point out that we

have used the unit vector m = 7%42 T+ %L— 71 and so we may write :-

Veloe = wnlm Md+ Midy,)g K5 (5.14)
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Now, for N = 4, we have the adjoint operator relations :-

dify = Dl

b fro = —5fa
defpy +p fr = 0
fodry + fridy = 0

and if we analyse the right hand side of equation (5.14), by parts, using linear Killing

vector components with the form K = —-M (f;) .z — My (fr.),p then we will find :-

M (dT)Gc Ky = M (dr)Gc (_M fr— M-LfT.L)cE
= -M* (deT)GE — MM, (drfu)GE

— —TA% (fe)op — MMy (dr fr. ) or

and, in the same way, we will also find the result :-

2

My (du)c;c Ky = ATJ/%‘ (fQT')GE - MM, (dT_LfT)GE
Adding these two relations together gives us :-

(Md, + Mo dr ). Kf = _—M\/% (fa)op — MM (drfr )
+MT§ (f(Ir)GE — MM, (dufr)GE
= —\/L‘g‘ (M2 - Mi) (for)om

= % (M2 - M.QL) (fo)re
So if we now use this result in equation (5.14) then we have :-

(fQT)EG = (*]\/[_E’{LM‘QJ (M dT + MJ_ dT_J_)Gc KCE

_ 3 (MP-M%)
- (ML-ME) V2 = (qu)EG

= (fqr)EG
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This tells us that our ‘guessed’ form for the linear Killing vector components was

correct, and so we now know that we have the definite answer :-

KaE = -M (fT‘)a,E - M (fu)aE
= famM®+ fomM?
= fom (M°+ M?)

= faEbe (515)

We will now use this result to verify the second of the two relations, equation (5.13),

which we could solve for the linear Killing vector components. We had :-
sing (fr)g, +sing (fr.)p, = sing n%K% + sing nj ,beE

We will now substitute into the right hand side of this, and eventually obtain the left
hand side. Using equations (D.22) and (D.23) from Appendix D and our result for K%

we will work on the right hand side in pieces. Firstly, we find :-

b i 2 b
MniKy = 3K+ gty (30m + idmvm) o Kb

= —-;—(Mfr"f'M_Lfr_L)aE"‘%(MfT—leT‘J_)aE
= _M(fr)aE

,n’?bKlf)E’ = (fT)Ea

where, in the first line, terms in n% which will produce a zero when we form n%K}
3 ’ b b BONE

have been omitted. Secondly, using the same method, we may also find the result :-

’I’L‘i ,bK% = (fT‘J_)Ea

It is now simple to see that substituting these two results into the right hand side of
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equation (5.13) will give us :-
singny K +singnf Ky = sing (fr)p, +sing (fr)p,

This is just the relation we wanted to verify. Therefore we are sure that the form of

the Killing vector components is correct. This ends the doublecheck on the result for

the linear Killing vector components.

5.3.2 The nonlinear Killing vector components, K?.

In this section we will, as usual, find two relations which we may solve to find the
nonlinear Killing vector components. However, this time we will only solve one of
them; we will use the reconstruction of the Goldstone boson manifold metric as our
second check as to whether the result for the nonlinear Killing vector components is
correct; this will preserve the flow of the calculations. We will also see that, to find the
Killing vector components, we will need to use a slightly different approach than the

one used in previous chapters. As usual, we must solve :-
{M L’} = 2BLK; (5.16)

to find the nonlinear K¢ components. We use the square of the coset representative

element :-
L* = 1(cosa +cosb) 1y +:/1—§(COSG. —cosb ) g, —isina r—isind 7,
which, when we differentiate with respect to the Goldstone boson fields, gives us :-

[’ = —Ll(sina a,+sinb b,) g — % (sine a, —sind b,) g,
+-\}—§ (cosa —cosb ) g, o —iCOSa G T —isina 7, —icosb by

—i8inb 71 4
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So the left hand side of equation (5.16) is :-

{M, L’} = }(cosa +cosb) {Ay, Ly} + 5 (cosa —cosb) {As,qr}
—isina {Ap, 7} —isind {Xs, 71}
= —i (sina n? +sinb nf’L) 1[4] — 24 (sina n°dy.g +sinb nidbcE) AE

+ [(cosa +cosb ) p + V2 (cosa —cosb ) gFdvra] Aa

where we have written out the anticommutators explicitly and then regrouped the

resulting terms. The right hand side is just :-

2iL?aKg = —i(sina a, +sinb b,) Kj 1) —iv2(sina a, +sinbd b.) Kig,
+iv2(cosa —cosb ) ¢ JKi +2cosa a Kjr+2sina 7,Ky

+2cosb b,aKg r1 +2sinb T_L,aKg'

When we compare these last two equations we obviously have three relations. The first

relation concerns the components in front of the identity elements :-
sina a,K§ +sinb b,K§ = sina n® +sinb nf

and this has two implications :-

a K = n (5.17)
b K¢ = nf (5.18)

The last two, vector-like, orthogonal relations are :-

iv2(cosa —cosbh ) g, K¢
et = —2i(sina n°+ sinb 1) dyE

—1v/2(sina aq —sinb b,) K¢ g,

2(cosa a,T+cosb b, ) K (cosa +cosb ) dp, \
= a

+ 2(sina 74 +sinbd 75 ,) K¢ +v2(cosa — cosb ) gFdvma
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which, after removing the basis vectors and using the results implied by the first rela-

tion, reduce to :-

iv2(cosa — cosbh )qE K¢

= —2(sinan® + sinb %) dys (5.19)
—iv2 (sina n® —sinb nf) ¢~
2 (cosa n®n? + cosb n’ ns cosa +cosb )4
( int) ) s (5.20)
+ 2 (sina n% +sinb ng ) K; +v2(cosa — cosb ) qZdvr,

We will not try to solve equation (5.19) because, the g,.-vector components are :-
W@@M“Mbdaw
and if we differentiate them with respect to the Goldstone boson fields, then we find :-

q'f;,c = (W“‘TMm dacE —Iﬁ‘-{—)@(Mn "'MJ_TL_L)MaM dabE

= 2 [ () + 2 () op — &5 (M0 = MynS) of
Substituting this result into equation (5.19) gives :-

sina (d,)pz +sinb (d )y = +2(sina n® —sinb nf)q”

+2\/—(E:ija ;42C;)Sb )(M n® — M, nJ_)Kb qr

_Meona —coob) [w (g y g M(d, )] K

(M2-M%)

which will be difficult to solve. This is similar to the corresponding relation in the last

chapter, see equation (4.18), which we couldn’t directly solve either.

So we will instead solve the final relation given by equation (5.20). Firstly, we will

rewrite it :-
2(cosa r><T+cosb 1y ><T)) cosa (1us) + 75 dg, e
+ 2(sina n% +sinb n K + cosb (1us) — 75 dg,)ab
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Now, in Appendix B on page 186 we are able to find the adjoint projection operator

results :-

(1[15] + L d‘”)ab = 2(P2+ P +r><r),, + (Pfg)

ab

(Losi-Frder) = 2(P*+P +ru5<rs), + (P)

which, when substituted, will simplify the relation to :-

sina n%Kj +sinb nt Ki = cosa (P?+P) , +cost (P*+P¥),

+3 (cosa +cosd ) (Prz)a (5.21)

We are now in a position to find the nonlinear K§. Unfortunately, unlike in the previous
chapters, we do not have a simple substitution of the field differentials which will allow
us to simply rearrange the resulting expression to reveal the nonlinear K§. This is
because the coset vector is now a linear sum of two commuting orthonormal r-vectors,
namely 7 and 7, and this means that we no longer have, for example, the relation

n% = 37(0ap — n®n®) which would allow such a simple solution. Instead we must now

adopt a different approach; we note that this new method could have been adopted in

the previous chapters, and we would have arrived at the same results.

In Appendix B we find the differentials, with respect to the Goldstone fields, of the

two r-vector components are given by equations (D.24) and (D.25) which are :-

Mrs, = ity (M2 = M2) (P 4+ PP+ MP(Ppg)ac + MM (41, e
Mini, = (WETWE‘) [(MZ — M) (P + P — M3 (Pf(?)ac - MM—L(4foT_L)aC}
where, in the above, we have used the linear combinations of two ‘new’ adjoint repre-
sentation projection operators :-

4f7'f7'_]_ = Pﬁzz _Peg

Pfqz = ‘Pf% +P]?2

q
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Thus, it is obvious that both sides of equation (5.21) are now in terms of adjoint
representation projection operators; and it is this important property which defines
our new method. If we now operate on our relation with appropriate (combinations
of) adjoint representation projection operators, then we will isolate the corresponding
pieces from the nonlinear Kj; once we have used all possible projection operators
available to us, we will have all the pieces we require to reconstruct Kj. For example,

if the nonlinear K§ has the form :-
Ki = AP?+ P o+ Ai(P)as

where the last term represents a linear sum of all the other possible adjoint represen-

tation projection operators, and we act on it with (P2 4 P?!) then we find :-
(Pl2 -+ P2l)acK§ — A(P12 + le)ub

and, in this way, we have managed to isolate the first term of Kj.
So, bearing in mind the adjoint representation projection operators present in the right
hand side of equation (5.21), if we work on the results for n% then we see that the only

non-zero quantities which may be formed in this way are :-

(P12 + P21)da,M'n/a — (P12 -+ le)dc

»C

(Pf,?)daMn?c = Mz—]g?w{(Pfqz)dc %’f@frfu)dc

(4frfr_;_)da.Mn?c = %{ (4frfrl)dc =+ %{ (Pfg)dc

Similarly, working on the n¢ _ gives the nontrivial results :-

(P +P®aaMin? . = (P*+P®)q

(P)aaMint . = —gmr (Pr2)ac — shitir (4 fri)ac
(4foT_L)daM_anj_ c = ———Mg—%i— (4f,-f,1)dc - %{ (Pfg)dc
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We will now start to build K§. The simplest pieces of K¢ to find are given by the actions

of r><r and 7y ><7; on the K¢; which are implied by equations (5.17) and (5.18).

These give :-
(r><r)ecKf = () (r><r)w
(TJ_ ><7‘_|_)ac Kg = (%J‘) (TJ_ ><7'.L)ab

So we immediately have the partial result :-
K; = (%) (r><r)ep + (%‘) (ri><Ti)ap+ -
Using the six relations above, we will find the contributions made by the other adjoint

representation projection operators. If we act on equation (5.21) with (P*?+P?') then

we find :-
(PIZ 4 P21)ac Kg — MCOta (PIZ + PZl)ab
Using Py leads to :-

sina M Pr2)ac + sosr (4Fr fry )ac ) K§
(m( fg)d M?-M] ( ffl)d) b = 1(cosa +COSb)(Pf3)db
+sinb (—M—z“f-'-ﬁf(Pfg)dc "‘2_"2'(4frfr_L)dC) K;
Using 4f,f,, gives us :-
sina (W%T (4frfr_|_)dc + M_KJ'ATT (Pfg)dc) KICJ
+sind ( M2 (4frfrJ_)dc 2 (Pfq)dc) Kb

Lastly, if we use (P* + P*®) then we find :-

= L(cosa +cosb )(4frfr.)ab

(P + P8, K = Micoth (P +P%)y,

The first, and the last, of these four results immediately give us two more pieces for

the nonlinear Killing vector result; we now have :-

Ki = Mcota (P?+ P )+ () (r><r)a

+ M cotd (P +P®)gp + () (ri><ri)ap + -+
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There are only two projection operator terms left to sort out, and we find these using
the second and third results found above. The point at which we stop the following
analysis is solely governed by our choice of projection operators used to express the

result for Kj. Firstly, if we add the two results together then we find :-

: (Sina —sinb )(Pfqz + 4f7‘f7‘_1_)ach = %(COSU' =+ cosb )(’Pfq2 + 4f7‘f7‘_1_)ab

M=,

If we now subtract the third result from the second, then we find :-

b (sina +8inbd )(Prz — 4frfr) )oKy = 3(cosa +cosd )(Pp — 4fr fr))ab

M+MJ_

If we wanted to express Kj using the adjoint projection operators Pf; and Py; then
q q

these last two relations are the appropriate results. However, if we add them together

then we find :-

(Pr)acKf = 5824088 _(Msing — M, sinb )(Ps2)a
q q

2(sin?a —sin?b )

—cosatesh (N sing — Msinb (4, fr, e

2(sin®a —sin?b )

= —g— (M sina — M, sinb )(Pp2)a

" 2(cosa fcosh )

gt (M sing — Msinb )(4ffr, )a

2(cos @ +cos b )

and we understand that this single expression is also a complete result. We see this
because, if the last part of the unknown K} is expressed in terms of coefficients multi-
plied by the adjoint representation projection operator combinations Pfq2 and 4f fr,
then using Py in this way has just isolated the above pieces from Kj. Therefore, using

P& and 73)?2, we have the result :-
q q

Ki = Mcota (P +P?),+ (L) (r><r)e + My cots (P +P¥)y

+ (454) (ru><ri)o + ERIEREeel) (PR

+ (M+M, )(cosa +cosb ) (P-feg)ab (522)

2(sina +sinb )
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or, using Py and 4/ f;,, we find an equivalent expression :-

Ky

M cota (P2 +P™)gy + (4L) (r><r)ap + My cotb (P +P%)a

+ (%) (ri><Ti)ap — W(Msma — M sinb )(sz)

+ (M sina — Msinbd )(4frfr, )ab

2(cos @ + cos b )

(5.23)

5.4 Covariant derivatives and the Goldstone boson

metric.

We have found an expression for the coset representative element, L :-

L = j(cosg +cos) 1y + 75 (cosg —cost) ¢, — i (sing r + sing 1)
Thus we find :-

L™ = j(cosg +cos}) 1+ J5 (cosg —cost) gr + i (sing 7 +sing r1)

OuL = —5(sing Oua+sing 8,0) 1y — 535 (sing Oua — sing 9ub) ¢

+5 (cosg —cos}) Ougr — 4 (cos§Ouar + cos§d,bry)

s -
—i (sing 9,7 +sing 9,r)

This time it takes a little longer to find 2iL~'9,L = a, + v,, but the calculation is

straightforward. We find for our Goldstone boson covariant derivative :-

70,0 + r10,b + (cosg + cost ) (sing 0,7 + sing 8,7, )

V2 (cos2 — cost) [sin (¢-8,r — 78,4,) + sind (¢.0ur1 — r10.Gr)]

, as before, we may simplify to :-

70,0+ r10,b +sina O,r +sinb 0,71

—v/2 (cosg — cost) [sing {r,8,¢.} +sind {r., 0.q-}]
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We also find the metric connection for the Standard field covariant derivative to be :-

vy = Z5(cos’s —cos®t) Dugr + i (coss —cost)? grO,gs
2i [sin®2 rd,r + sin®Lr, 8,7y + sing sing (rO,r) + 710,7)] (5.25)

The Lagrangian density for the Goldstone bosons is found by constructing the quantity
(a,a*) = iira,a*. If we were to calculate the quantity a,a* then we would end up
with many terms. To simplify our task we will use the fact that we have trivial results
for (r,0,r1), (r,{r,8u¢:}), (r,{r1,0u:})s (ri,0um)y (ris {7, 0ua-}), (ris{rs,0ugr}),

(r,0ur) and (ry,0,r1). So, writing afa as best we can we find :-

alah = 0,a0"a+ 8,00"b+ sin’a §,n 0" n°
+ sin®h 9,n% 0*n% + 2sina sinb §,n"0*n%
—2v/2(cose — cost ) sina[sing (8,r, {r, 8¢, }) + sinl (8,7, {rL, 0"¢})]
—2v/2(cos2 — cost ) sinb [sine (8,71, {r,0"q.}) + sind (8,ry,{rL,0"q})]
st (0,0}, (n0%e)) |

+2(cosg — cost )? +sin®¢ ({r.,0uq:}, {rL,0"¢:})

| +2sing sin? ({r,0ugr}, {rs,0"a:}) |
We now need to work on the scalar product terms in the square brackets; writing them

in terms of fields, field gradients and the d;sx. It takes a little time, but we find the

results :-
(a,ﬂ", {Ta a“%‘}) = 715 uqfa"qf
(aﬂ’r3 {T—Lv 8u(]r}) = 2n“l(9ynba"qTEdabE
= —2naaunliau(1§ dabE

(aﬂrla {’f‘, a#qr}) = 2n“3,,n’ia“qfdabE

140



(Ours,{re,0"q;}) = "\/Li uqfa“qf
(r,0ugr} , {r,0"¢;}) = 3”(],?3“(]5
({rL, Ougr} s {11, 0"q;}) = au‘]fau%E

({T’ aﬂ%‘} ) {TJJ auqr}) = _2\/2—naaﬂniaqudabE

So, after we substitute these in, we eventually find :-

atal = Ouad"a+ 8,b8"b+ sina O,n*0"n® + sin®s d,ns 8*ng
+2sina sinb 9,n*0*ng + 3(cosa — cosb )20,950"qF (5.26)

At this point we will digress, slightly, by restricting the parameters a and b in these
primary results for a, and afa¥ given in equations (5.24) and (5.26). What we are about
to do has no physical significance within the theory; it will be purely a mathematical
excersise which will give a simple ‘check’ for the results we have found. Of course, the
proper check for the form of ayah will be achieved, as usual, with the reconstruction of:
the Goldstone boson manifold metric using the Killing vector components. However,
we continue for the moment by firstly imposing the condition a = b and then see what

this means. Secondly, we will impose the two (separate) conditions a = 0 and then

b=0.

e For a = b we find that the primary a, and a},a} results reduce to :-

ap = (r+r1)0ua+sina 8,(r+ry)

atak = 20,a0"a+sin’a 8,(n® +nt)o* (n® + nl)

When N = 4 we know that 73 + 735, = v/2¢s. So if we let a = 2Q then these
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expressions become :-

oy = V2¢0,a+ V2 sina d,q2
= S0,a+sina 0,5
= 258,Q+sin20 8,9
lala = 0,a0"a+sina 0,950"q3

= 49,00"Q + sin®2Q 9,n°*0*nyn

These have the same form as the results given by equations (3.22) and (3.26) on
page 84, in the section on SO(m) breaking to SO(m — 1) where m = 4,5,6. The
results have the same form because, for these particular SO(m) breaking models,
the coset vector is proportional to a g--vector; and this is also what we have

when a = b; it just happens to be a different ¢,-vector with a different number of

components.

For a = 0 we find that the primary results for a,, and aja} reduce to :-

ay = 710,b+sind 0,r ++v2(cos? —1)sing {r.,0.q,}

abak = 8,00+ sin®b 9,n%0"ns + i(cosb — 1)%0,g7 "¢
and when b = 0 we find that the primary a, and afaf reduce to :-

ap = rdua+sina Oyr — v2(cosg — 1) sing {r,duq,}

ala? = O,a0a+sin’a 9,n°0"n" + L(cosa — 1)°0.q70"q"

Note that {ri,0,¢-} = —{r,d,¢-} which accounts for the difference in sign of
the last term of a,. Now, in both these cases, we have a coset vector which is

proportional to an r-vector. Therefore we expect these results to be found in the
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previous chapter, and indeed they are. On page 110 we found equation (4.21)

which, for N =4, is :-
ay = 10,0 +sing O0,r —v2(cos¢ —1)sing {r,d.q,}
and on page 111 we found equation (4.24) which, again for N =4, is :-

(au,0") = 8,$0"¢ +sin’p ,n°0"n® + 1 (cos ¢ — 1)>d,qF0"q”

This seems to suggest that the forms of a, and aja? are correct.
We will now rewrite equation (5.26) in terms of the adjoint representation projection

operators. The first two terms are simple to deal with and we find :-

Guada = (£)*(r><r)pd,M*M®

8,0 = (d_g;t)?(m><m)abauM§aqu

For the other terms we notice that, since (ay,a*) = gab 0,M® O*M®, we are able to
remove the Goldstone field gradients from the expressions in Appendix D and therefore
find the rest of g, directly. Thus, the relevant expressions we need, in the order that

they appear in equation (5.26), are :-

2
nfanfb = MI—Z(PQ + pzl)ab + __(M‘L’/Y{M_L’)? (Pfg)ab + 2(M2/I_A1/\[,}12)2 (4f7‘f7'¢)ab
2
ng . niy = Hl{(’PM + P8 + W%(Pfg)ab + Q(TIL{%E)T(LiforL)ab

n,cani ,b = —(—Mz—:lm(2MMJ_Pfq2 + 4M2f7‘f7’_1.)a‘b

0Fat’s = Gy (M*Prz + 2MMIASfr )b
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Substituting in all these results leads to :-

Gy = (P24 P+ (&) (r><r)m
. 2
+~—rsm]‘;f (P3* 4+ P8y + (%) (rL><T1)ab

+(1T4‘2'7P)— [2M?(1 — cosa cosb ) — 4M M, sina sinb | (Ps2)a

+W— [2M M (1 — cosa cosb ) — M*sina sinbd | (4 fr e (56.27)
and equivalently, this may also be written as :-
Gab — smm (Plz P21)a (_") (7" ><7')ab
+—rsmﬂjf (P34+P43)ab + (dM_L) (7"_]_ >< ’T'_L) b
+arirye [(ine —sind )? + (cosa —cosb )?] (Pf%)ab
(5.28)

+ sy [(sina +sinb )2 + (cosa — cosb )] (P)as

5.4.1 Verifying the metric result.

To verify that the result for the metric is correct, we will now use the relationship

between the metric and the Killing vectors :-
g = (KEK%+ KK

However, this relation implies :-
0 KEKE + KUK = (Lpaa (5.29)

which is simpler to use; the right hand side being defined by :-

(1ps)ew = (P2 4+ P frscr+ Prz + PHLPB L1 s<r))w

= PR+ PR irsert (PR + P> + PR +ri><ri+Pgla
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If we now use the K% and K} in the form given in equations (5.15) and (5.22) then we
find :-
KK, = MAPPH)y + ME(PHP) g + M (PG, + ML (PG,

KeK; = M?cot’a (P+P)g + (D) (r><r)a + M2 cot?s (PP+P®),

9 B 2
+ () (ri><r e + (W %ﬁg‘fgﬁ}f?b )> (P?Zz)ab

2
+ ((M-|—ML)(cosa +cosbh )) (;Deg)ab

2(sing +sinb )

When we add these together we obtain :-

EysE cyce . M2 12 21 dM 2 M2 34 43
KKy + KK} = g (PP + P a + (F) (r><na + 5oy (PP + PP

+ <%)2(7"J_><7"J_)ab + (M—QM_L)Q 1+ (cosa+cosb )2} ( Wz)ab

db sin @ — sin
_}_(M-!—ML)Q 1+ cos @ +cosb 2 (fpe)
2 sin@ +sin b 12 ab

The first four quantities, on the right hand side of this expression, are obviously the
inverses of the first four quantities on the right hand side of equation (5.28) and, with
a small ammount of work, it is simple to then show that the last two quantities, of
the above relation, are the inverses of the last two quantities in equation (5.28). Thus
equation (5.29) will be satisfied. Therefore, equation (5.28) is the correct result for the
Goldstone boson manifold metrics of the three models considered in this chapter. As
previously discussed, when m = 4, the manifold is S ® 5% and is hyper-Kéhler; which
allows the theory to be extended to include N' = 2 extended Supersymmetry. When
m = 5,6 we just have the metrics of Kéhler manifolds, and it is therefore possible to

extend these models to include A/ = 1 Supersymmetry only.



Chapter 6

Conclusions.

In this chapter we summarize our main findings and take a brief look at potential
avenues for further research.

We have seen how the mathematical techniques in [8, 9, 10], of evaluating effective
Lagrangian densities and studying field transformations, are based upon the manipula-
tions of an exponential quantity known as the coset representative element, L. There-
fore, to get anywhere with many physical models we may wish to consider, it was
evident that we needed a mathematical framework to help us calculate L. By ex-
tending the work in [17] and applying it to this problem, we have ended up with an
index free notation (which also supplies a geometrical understanding) and this helps
us describe the coset vectors; which allows us to calculate the coset representative el-
ement '. Then, because the coset vectors are written in terms of vectors with a well
defined behaviour, we find that the mathematical behaviour of any other vectors con-
structed from the coset vectors is also understood. For example, if L is the exponential

of an r-vector then we know that, when it is explicitly calculated, it will contain the

'In this thesis we have not considered general SU(N) coset models as they require a projection

operator method from the outset. This method is used in [13, 15]
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the identity element, the r-vector itself and the commuting vector ¢, (all terms being
preceeded by coefficients). So when we calculate 2iL~'9,L = a,+v, we will find terms
involving 70,7, 704¢:, ¢:0,r and so on; and we immediately know which pieces are part
of a,, and which are part of v,. We have also seen how the symmetric algebra (used to
build commuting vectors) also helps us to find field differentials like n?% for the models

in chapter 5 (see the second part of Appendix D).

In this thesis we have looked at many models of spontaneous symmetry breaking :-

e when SU(2) invariance is broken to U(1),

e when SO(m) invariance is broken te SO(m — 1) for all m > 3,

e when SO(1,m — 1) invariance is broken to SO(1, m — 2) for all m > 3,

e when SU(N) invariance is broken to SU(N — 1) ® U(1) for all N > 3, and

e when SO(m) invariance is broken to SO(m — 2) ® SO(2) for m = 4,5, 6 only.

For all of these models we found the linear Killing vector components and the nonlinear
Killing vector components which describe the Goldstone field transformations. We also
found the covariant derivatives, for the Goldstone fields and the matter fields of the
theory, which are used in constructing the effective Lagrangian density. Lastly, we
verified the form of the Goldstone boson manifold metric (contained in the scalar part

of the density) by reconstructing it using the Killing vector components.

All the models where the subgroup contains a commuting U(1) ~ SO(2) group have
a Kahler Goldstone boson manifold, and therefore admit A/ = 1 supersymmetry; the
manifold in the SO(4) breaking to SO(2)®S0(2) model is Hyper-Kéhler and so admits
N = 2 extended supersymmetry. We know this because [22] tells us that any Kéhler

S0(4) SU(2)®SU(2)

(%) can be made Hyper-Kéhler by forming (§) ® 5% and spmesem ~ “vhetm

147



S? ® 2 which is the simplest example. All this assumes that fields are defined in a
4-dimensional spacetime. If the spacetime is 2-dimensional then a Kéhler Goldstone
boson manifold implies that the model will admit A/ = 2 extended supersymmetry,
and a Hyper-Kéhler manifold implies that the model will admit N' = 4 extended
supersymmetry.

To incorporate supersymmetry we pair up the even number of Goldstone boson mani-
fold coordinates into complex combinations. Then the functions of the invariants of the
fields are restricted, leading to a basis of stereographic coordinates. A supersymmetric
version of the theory is then given by replacing these coordinates with chiral super-
fields. This method was introduced by Zumino [21]. In [18] we find the resulting metric
for CP2, and in [19] the CP2 and CP4 metrics are investigated. We will briefly show
the procedure for the CP2 case. If we write 2 = M! +iM?, which implies 2z = M*M*,

S

then the UU((IZ)) Goldstone boson manifold metric :-

_].SiIlZ¢ a,b d¢2ab a apasb
L = §(~M2—[5ab—nn]+[m} nn BMM o*M

may be written :-

9 2 .92
L= 29 gt ([d‘b} _ s ¢)(z8u§) (202)

2M? 2M? \ |dM M?

The final terms are removed by the condition d%% = —S—%‘S— which is solved by integration.

We find :-

/-AildM = /cosec¢dq§

InM = Intang +1Inc

M

— = tan

c

. 3 3 - 1 2 .
We use simple trigonometric relations to show that s‘;‘wf = (c2i3242)2 and so using
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stereographic coordinates we find :-

2c? _
m Buz 6”’2

Lg -
Another fine discussion of this topic, including a section on complex manifolds and the
extension to a supersymmetric theory, may be found in [20]. Therefore it would be

good to add supersymmetry to those models in this thesis which will allow it.

We will now discuss a new series of models which can be investigated using the math-
ematical structure of this thesis. The series concerns the situation where SU(N) in-

variance is broken to SU(N — 2) ® SU(2) ® U(1); these models being associated with

the g7 N—2§ggg)(2)®v(1) cosets. If we write N = 2k, (2k +1) then we find that the coset

vector, for any particular model in the series, will be a linear sum of & orthogonal,
commuting, r-vectors. We note that the coset representative elements for this series
of models is given by equation (5.6). In the same way that the CP2 model (associated

with the 57 coset) may be regarded as the first of the CP2(N-1) series of models

UL
(associated with the S—U(—g[_ﬂ—&%(l—) cosets), we see that the CP4 model (associated with

the —S%IBTI) coset) is the first of this series. This is simple to see when we consider
the characteristic equations of the coset vectors of the series; all of which have trivial
odd matrix invariants (i.e. 7Yeny1(z) = 0 for all integer n > 1). The calculation of
the details of this series, although possible, would not be easy; and the desire to do so
would come from a mathematical interest only, as there is no particular physical rea-
son for wanting to find results for all of the possible models. So it would be best if we
restricted our attention to the first three models in the series. The results for the first
two models are already contained in this thesis; in chapters 4 and 5. The third model,
which results when SU(5) invariance is broken to SU(3) ® SU(2) ® U(1), is of interest
since SU(3) ® SU(2) ® U(1) is not only of the same rank as SU(5), but this model

will also admit /' = 1 supersymmetry; which means that the three coupling constants

149



(of the strong, weak and electromagnetic interactions) in the theory will converge at
a high enough energy ~ 104 GeV. In chapter 5 we gave the appropriate expression
for the coset representative for this model, see equation (5.4). This model would be

interesting to investigate and, superficially, only differs from the SU(2)®SS%(?2))®U(1) model

because the coset representative, given by equation (5.4), now contains the vector ¢, .
This will increase the complexity/length of the calculations but this is no problem; it
would just require a little extra thought. The results in the second part of Appendix
D will also need to be changed because we would now need to accomodate the effects
of having to include g,,. For the réle of SU(5) in this grand unified theory see, for

example, the work by Georgi and Glashow [23].

We would also like to see if the results of Chapter 5, in some way, could represent
the models where SO(2,m — 2) invariance broken to SO(1,m — 3) ® SO(1,1) with
m = 4,5,6; in the same way that, in Chapter 3, the results for the models where
SO(1,m — 1) invariance is broken to SO(1,m — 2) looked like the results for the
models where SO(m) invariance is broken to SO(m — 1). If it is possible then it would
be useful in the Maldecena conjecture [24] which states that Type IIB string theory on
an AdSs ® S° background (which has the isometry group SO(2,4) ® SO(6)) is dual to
an N = 4 conformally invariant field theory in a Minkowski spacetime. Since neither
50(2,4), nor SO(6), are observed in nature, these symmetries must be broken at low
energies; and in Chapter 5 we looked at one possible model where SO(6) invariance is

broken to SO(4) ® SO(2). If a correspondence between the results of the 37"75_—02%8%—0(—2—)

coset models and the So(lsg(fé;’é?g(l 7y coset models is possible then, when m = 6, we

would have the model where SO(2,4) invariance is broken to SO(1, 3) ® SO(1,1) too.

Lastly, in this thesis we have only considered invariance under global transformations
of G broken to global transformations of H. However, it is possible to consider the

breaking of local gauge transformations too, and this topic is also briefly discussed
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in [10]. A set of gauge fields x% and af are then introduced which are associated with

the coset and subgroup generators respectively. The gauge field transformation law is

taken to be :-

Xp+0, = gxu+ou)g ' —F(0ug)g™!

where f is a constant which gives the strength of the universal coupling of the gauge

fields to all other fields. We would now find that :-
_ —1
L l(au + f(Xut+ou))L = 7(% + V)
and the covariant derivatives are given by :-

D,M* = a

Dy = (au" %”y)Q/J

So the effective Lagrangian density, for this new locally invariant theory, will be :-

Llocal = % (au7 aﬂ) + ’J)(Z @ - m)"/)

just like the Lagrangian densities we have found in this thesis.
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Appendix A
Cartan subspaces in ®° and Lo,

A1 The Gell-Mann M\matrix basis of R°.

The group SU(3), in the defining representation, is generated by 8 generators, Tr =

1)4. In the Gell-Mann basis the \'s are :-

/010 0 —i 0 1 00 10 0
A = 100 Ay = i 0 0 Az = 0 -1 0 /\82% 01 0
000 0 00 0 00 00 -2
001 00 —i
M=l000]| =006 0
100 i0 0
000 00 0)
=001 M=]00 —i
010 0 i 0

They have the property :-

ir /\I/\J = (51.]

N | =

(/\I; )\J) =

1
'Yz(/\f)z—étr,\% =1 Vv I=1,2,...,8.
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Therefore they are orthogonal and normalized, or orthonormal, vectors; which means
they form a basis; they are the basis vectors of R8.

We see that [\, A\s] = 21 fisg Ak =0 foralli= 1,2,3 and K = 1,2,...,8. Therefore
the three \; may be used to generate an isospin SU(2) subgroup (of SU(3)) with a Lie

algebra :-

[)\i, /\]] = 2 fz]k)\k
= 27;5ijk/\k v i,j,k = 1,2,3.
and this isospin subgroup will commute with a ‘hypercharge’ U(1) subgroup generated
using Ag alone. Together they form the maximal subgroup SU(2) ® U(1). The A; form
the familiar basis for the )3 subspace of 8. The eigenvalues of the A; are the same,

so they are similar matrices, i.e. they are related to eachother by a rotation. For the

moment we will just focus on the diagonal matrices.

A 1.1 The Cartan Subspace basis of R8.

For the diagonal A-matrices we see :-

[As,A] = 0
1
(/\3, /\3) = 5 tr /\3/\8
=0 because A3 and Ag are part of the R® basis.

So we say that A3 and Ag form the basis for a commuting space called the Cartan
subspace, which in this case is diagonal, so we call it Cp. In general the (diagonal)
Cartan subspace has a dimension equal to the rank of the group; and SU(N) is a group
of rank (N — 1).

Now, the diagonal generators of SU(3), namely T3 and T3, may be used to construct
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three weight vectors ! :-

1 1 1 1
— - __AS

_ (L NS
w (2 2\/3) 28" 23

RPN
wy = {—=, — —— S
2 2’ 2/3 273" 9/37°

1 1
wy = |0, ——= ) =>——72A
’ ( \/5) V3"
For SU(N) there will be N of these. The r vectors are the root vectors, constructed

by taking the differences between these weight vectors :-

00 0
1 V3
TN= We—Ws = ——A3+—X = [01 0
2 2
\0 0 -1
-1 00
1 V3
Ty = W3 — W = —zA3— ——Ag = 0 00
2 2
0 01
1 0 0
Ty = W) — Wy = A3 = 0 -1 0
0 0 0

and, in general for ®V'~! there are 1 N(N — 1) of them. The r vectors have the
characteristic equation 7V — r¥~2 = 0 which reduces to 7 —r =0 V N. This reduced
equation is not the characteristic eigenvalue equation, but it still describes the behaviour
of the matrix if, for example, we wanted to use it to generate a group element.

To construct vectors which commute with these r-vectors we use the symmetric vector

product relation :-
rvVr = —\}—ﬁ (Nr2—21[N]) = +/N-2¢q,
Thus when N = 3 we have :-

1
qr = _—(37‘2—21[3]) - \/g’l“I’I‘JdIJK/\K

V3

1The components of the weight vectors are the simultaneous eigenvalues of the generators.
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Using the second of the relations we find for 73 :-
s = V3duxlx forK=12,... 8

For SU(2) we know that d;;; = 0 V 4,4,k = 1,2,3. Therefore we must have :-
g = V3dishs

We know that dszg = T}? because (¢,q) = 1 and (\s, Ag) = 1. Thus we have :-

This was a rather long winded way of finding g5 since we could have just used the

=

explicit form of r3inrVr = ¢, :-

1

rsVry = ~—3(3T§—21[3])
300 2 00
1
= _\7—§ 030]—-102¢0
0060 00 2
1 10 0
= 7= 01 0
V3
0 0 -2

but our first method was a little more rigorous.

We will now find the g,-vectors associated with 7, and r5. We have a choice of methods
to follow. Firstly, we may use the explicit forms of the vectors as we have just done
for r3 above; this is the simplest method. Secondly, we may rewrite them in terms of

the unit vectors 3 and ¢z :-

1 V3
T = —§T3+—§"Q3
r2 = —37‘3—6%
2 2
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and then when we calculate (r V r) we just need the SU(3) relations r3 V 13 = g3,

r3V g3 =13 and g3 V g3 = —¢3. So to find ¢; we calculate :-
G = T1VT
1 V3 1 V3
= (‘5"3+7%)V(“5T3+7%)
1 V3 3
= ZT3V7”3—7T3VCI3+ZQ3V£]3
! V3 3
= 4CI3 5 T3 4€]3
_ V3 1
= 9 3 2(13
-2 00
1
= -\7—?: 0 10
0 01

and, using the same method, we also find ¢s to be :-

100
g 1
= —=|0 =20
2 V3

0 0 1

So it is now possible to put all these diagonal vectors together, and draw the Cartan

subspace which, for R%, is a commuting plane :-

g3
T1

T3

a1 (7))
T2

Figure A.1: The 2-dimensional Cartan subspace of R®.

We see that we have three choices for the basis of Cp. All choices are equally good,
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since they are all related by a rotation :-

resr = uryl

QTHQ'; - 'U'(]ruJr

If, for example, we have for u :-

then the basis of R® is transformed :-

M A =\ As = Ay = A7
Ao Ay = X e A = A
Az Ay = 1 A X = Ay
M Ay = Xg As Ay = o

and we are now using o and g for the basis. We also find :-

TIEYT, = T3
Qg = g3
TolyTy = T
G2 q = q

but, as before, these last four quantities are not linearly independent, and may be

rewritten, this time, in terms of the new basis vectors 72 and ¢s.

So finally, we summarize by saying that if we want a basis for 18, then we must pick
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eight matrices from :-

010 0 —i 0 1 00 ) 10 0
M=LL100| 2= 4 00| A=|[0-10 =plo1 o0
000 0 00 0 00 00 -2
00 1 00 —i -100 1 00
M=]000]| =|00 0] == 000| ©@=7|0-20
100 i 0 0 001 0 01
000 00 0 1 00 ) -2 00
d=l001] M=[00 -] n=|0-10| a=Z| 010
010 0i 0 0 00 001

with the property that not only should they all be orthonormal, but two should also
commute. Therefore we are free to pick all the matrices from the first two columns,

and any of the three 7 — g, pairs in the last two columns as a basis for the Cartan

Subspace, Cp. Note :-

1. If we choose r3 and g3 as the diagonal Cartan subspace basis then the isospin
SU(2) subgroup is generated by A;, A2 and 73, and the commuting U(1) hyper-

charge subgroup is generated by g3, or

2. if we choose 7, and g, as the diagonal Cartan subspace basis then the isospin
SU(2) subgroup is generated by A4, As and 72, and the commuting U(1) hyper-

charge subgroup is generated by ¢y, or

3. if we choose r; and ¢; as the diagonal Cartan subspace basis then the isospin
SU(2) subgroup is generated by Ag, A7 and 71, and the commuting U(1) hyper-

charge subgroup is generated by ¢;.

158



A 1.2 Rewriting a general group vector of 2.

Since a general vector, =, may be diagonalized to :-

A0 0
Ip = 0 B O
6 ¢ C
where C' = —(A + B) for a traceless matrix, we may rewrite this :-
zp = —Are+ Br;

= —A (‘“%7‘3 _\/TEQS) + B (—%Ts+§q3)
= arz+bg

with a = é;—”i and b = —‘/—E%“Lﬂ. Therefore, we must find that our original general

vector is :-
z = ar+bg

where the 7 and ¢, are the rotated versions of 73 and g3. We see that 7 (z) = a® + b°
because the r and ¢, are orthonormal. If we now wish to know what r and ¢, actually

are in terms of our original vector z and z V z, then we simply need to form :-
VvV = 2abr+ (az—b2) Qr

and then we may now solve these last two equations to find :-

r o= m([az—bﬂ :c—b:vV:z:)

1
g = m(—ﬂ):ﬁ-’-l‘V:L‘)

with z = 2/ A; and zV z = V32 27 drsk Mk, and the two quantities a and b are related

to the eigenvalues of z by construction.
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A 1.3 The form of SU(3) group elements.

It is now simple to write general group elements for SU(3). We have :-

g = e —_ e—zare—zbqr

where for N = 3 we have :-

e~ = Z(cosa+1) ljg+ Jz(cosa —1) g —isina 7
. b

e~ = (Ze"i% + ei—zx/%) 1+ % (e”zﬁ - eﬂ\/%) gr

o=

A2 The \matrix basis of R.

The group SU(4), in the defining representation, is generated by 15 generators, T =

iAr. The Ns are :-

0100 0 =i 00 1 000 10 6o To0 o
{1000 _lioso 0 -100 _lar 0o I I
A = Ag = Az = Ag = G A = 5
0000 0 600 0 000 00 ~20 601 0
0000 6 000 0 000 06 00 800 -3
6010 00 ~i 0
_looouw 60 00
Y Ag =
10600 i0 00
6000 G0 60
0000 00 00
0010 00 —i0
A = Ay =
0100 63 0o
0000 00 00
0601 600 ~
_loaeg _leoa o
Ag = A =
0600 000 0
1000 ;00 ©
9000 6060 0
N 600 —i
A = Az =
0000 000 0
0100 0 io0 0
6000 000 0
_foooau _Jooo o
Az = Ay =
0061 000 —i
0010 00i 0
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This time we have the property :-

1
(/\1,/\J) = 5?57‘/\]/\] = (51J

1
v (A1) = 5trA§ =1 V I=1,2,...,15.

Therefore they are orthogonal and normalized, or orthonormal, vectors; which means
they form a basis; they are the basis vectors of R!°.

We see that [A;, A\i5] = 26 fiisgAx = 0 forall i =1,2,...,8 and K = 1,2,...,15.
Therefore the eight \; may be used to generate an SU(3) subgroup (of SU(4)) with a

Lie algebra :-
[)‘ia)‘]'] = 2Zfl.7k)‘k v iajak = 1a27"' )8'

and this SU(3) subgroup will commute with a U(1) subgroup generated using Ais

alone. Together they form the maximal subgroup SU(3) ® U(1).

A 2.1 The Cartan Subspace basis of R'°.

The diagonal commuting A’s are A3, Ag and Ai5; which is one possible choice for the

basis of the diagonal Cartan subspace. However we will continue as before and construct

the weight vectors :-

1 1 1
w; = A3+ Mg + A
b2 2\/58 2v/6
1 1
= —=A3+ —=A+ —=A;
Wy 573 2\/— 8+ W 15
1 1
W3 = ——Ag+ —=A
3 \/?_)8 2\/6 1o
wa = __[3_)\
‘ 2\/5 o
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This time we can construct six r-vectors. The first three are :-

1 V3 X
Wy — W3 = —5)\3+‘2—)\8 = . =7
0
-1
1 V3 .
Wy —wp = —5)\3_7)\8 = . = Tg
0
1
—wy = A3 = "10 = T3
0

which are an extension of the three r-vectors of R%, and :-

1 1 2
Wy — Wy = \/—/\8+\/;/\15 = 00 = 7"1L

2 1

Wy — Wy = —_)\3+2\/—)\8+ A5 = . = TéL
-1
2 4]
/\8+ ZA15 = ’ = 3

W3 — Wy = \/_ 3 = ,

We have chosen to use the notation of the last three r-vectors for a simple reason,

which we will now show by giving an example :-

e The notation ri- immediately tells us that this vector is perpendicular to rs,
ie. (rs,r3) =0. It is not only orthonormal and commuting, but it also has the
property such that r3r3 = 0 (and obviously 7373 = 0) too. If we had not used this
notation then we should have called this vector rg, for example, and on the face
of it we would have six vectors, 7, ... 5. We would therefore have to remember
more relationships between them. The notation therefore helps in understanding

the structure, and geometry, of the spaces containing these vectors.
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We may now construct the g.-vectors associated with these r-vectors. To do this we

use the SU(4) relation r Vr = 2r? — 15 = v/2¢,, and do this for s first :-

114 + dssg As + daz1s Ais

[ 11

2 _
Ts =

1y + 508 +dazis Ais

B [t

and if we rearrange this we find :-

1
]‘ 1

1

= d33 15/\15

-3

and so d33 15 — % Therefore :-

g3 = \/i(ﬁ)\s-f';}—g)\ls)

1

Ll

Al

-1

Notice that this is a long winded method because we found d3315 first. We could have
been much quicker and just used the r V r expression with the explicit form of the r

vector :-

g3 =

For the other ¢, vectors we find :-
-1

@ = (rivrm) =

Sl
>

G = (raVre) =

Sl -
>
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and we find that r, Vr, =v2g¢, L= -2 g-. Therefore we have the relations :-

(r,r1) = 0 because of the definition of 7.

(r,g;) = 0 by definition; because s (r) = 0.
(ri,g) = 0 because ¢,, = —q¢,.

(¢i,95) = 0y fori,j=1,2,3.

and we are free to choose as our basis for Cp :-

1. either the set of three g.-vectors {qi, g2, g3}, or

2. the set of vectors {r,7,¢-}. There are three of these basis sets to choose from;
{ri,mt, a1}, {re, 75,02} and {rs,ri,qs}. However these three are all similar
choices, related by a rotation. This is the same idea as we found for the Cartan
subspace of SU(3); but instead of having a 2-dimensional Cartan plane in 3,
we now we have a 3-dimensional Cartan subspace in R'®. We prefer to use the
basis {r, 71, ¢-} in calculations because these are always orthonormal commuting

vectors for all N; whereas the three g-vectors are only orthonormal for N = 4.

Therefore the 3-dimensional Cartan subspace of R'° may be pictured :-

ar 7- n
Figure A.2: The 3-dimensional Cartan subspace of R!°.

We note that the r; and r;- (together with —r; and —r;-) point to the 12 vertices, and
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the ¢; together with the —¢; point out through the 6 square faces. (The edges have

been drawn in to help visualize the structure of the space).

Finally, we emphasize that when N > 4 we may always define the set of three vectors
{r,71, ¢} which are commuting and orthonormal. Thus, when N = 4 these three form
the basis for the whole of the Cartan subspace, and when N > 4 they are three, of a

possible (N — 1), orthonormal directions in the Cartan subspace.

A 2.2 Rewriting a general group vector of R'°.

Since a general vector, z, may be diagonalized to :-

A0 00
0 B O 0
Ip =
00 C 0
0 0 0D
where D = —(A 4+ B+ C) for a traceless matrix, we may rewrite this :-

Ip = ATI_L+BT2J_+CT3J_

= ar3+b7‘3¢+cq3

__ A4B
and ¢ = VR

where ¢ = 458 p = 4+8=2C

Therefore, we must find that our original general vector is :-
T = ar+bry+cg

where the 7, 7, and g, are the rotated versions of 75, 75, and gs. We see that 72 (z) =

a? +b? + ¢ because the r, 7, and ¢, are orthonormal. To find the values of a,b and ¢

for a specific z we need to solve the eigenvalue equation of z.
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A 2.3 The form of SU(4) group elements.
It is now simple to write general group elements for SU(4). We have :-

g = 6—132:
— e—i(a'r+br_1_+cq,-)

—ia're—ibr_l_e—ic qr

e
where :-
e = J(cosa +1) 1y + J5(cosa — 1) g, — isina 7
e—ib’l‘_]_ p— %(COSb -+ 1) 1[4] —_ —\}fi(COSb - 1) qr — 18in b T
e~icar  — COS% 1[4] -1 SiH% V24,

To find the specific forms of 7,7, and g, we would need to construct xVz and zVzVz
and then solve three simultaneous matrix equations. We will not do this here because it
will take too long; besides, we don’t explicitly use SU(4) group elements in this thesis.

(We only did this explicitly in the SU(3) section because we just had two equations to

solve, and this was easy to do.)
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Appendix B

Adjoint representation operators.

B1 Defining the linear operators f, and d,.

Both f, and d, are SU(N) adjoint representation linear operators which transform the

(N? — 1)-dimensional real vector spaces denoted RV°~!. We will now define them.

Firstly, f, = zA is a linear operator which acts on a vector y :-

f:z Y= y’ = fzy
= Ay
= xnyf TIKAK
We may write f; as an adjoint representation operator if we take the Euclidean Scalar

Product of the transformed vector y’ with the basis vectors. This action takes us from

the defining representation into the adjoint representation. So we find :-

(y,a)‘K> = ((sz):)‘K)
(?/K)I = 'y fux

= (fw)KJ yJ
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Therefore we have :-

(fo)ry = o%fixy (B.1)

The second operator, d, = zV is a linear operator which acts on a vector y :-

de: Yy = dgy
= zVy

- \/N:EIdeIJK)\K

In the same way as for f;, we may write d; as an adjoint operator using the Euclidean

Scalar Product :-

(v, Ax) = ((zVy), k)
(yK), = VNa'yldx
= \/ledIJKyJ

= VNaldgry’

= (dw)KJ yJ

Therefore we have :-

(de)r; = VNz"drgy (B.2)

B2 Some relationships between the f’s and d’s.
We now write some relations between the f’s and the d’s :-
e f, is a derivation of the Lie algebra, so we have :-

Jz (y/\z) = (fwy)Az+yA (fxz)
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This is the Jacobi Identity. Written more explicitly we have :-
zAYAz)+yA(zAz)+2zA(zAy) = 0
and, if we isolate the linear adjoint operators which act on z, this is :-
[for fyl = fany (B.3)
e f. is also a derivation of the Symmetric algebra, so we have :-
folyVe) = (Ly)Vz+yV(fe?)
When rearranged we find the linear operator commutator :-

[fm,dy] - dz/\y (B.4)

e We also find :-

fz(y \4 z) + fy(ZVLE) + fz(x Vy) = (fzy) Vz+yV (fwz) + (fyz) Vz
+zV (fyz) + (fz) Vy+z V (f9)

=0
so isolating the linear operators yields :-
foly + fyde = fawy (B.5)
If we transpose this relation then we find :-

dxfy + dyfz - foy (B6)
Notice that when y = = we find :-

[ferds] = 0O (B.7)

{fwadm} - 2fwdw = wam (B'S)
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The associator of the V algebra is :-

zV(yVvz)—(zVy)Vz = NyA(zAz)—2z(y,2)+2z(z,y)
or, making the operators more obvious we have :-

(doty = dovy) -2 = (N fyfa+2(2,9))-2-2(y,2)x

If we define the operator z><y by its action (z><y) -z = z (y, z) then the last

equation is now :-

dedy — dovy = N fyfe +2(z,y) 1{N2—1] —2z><y (B.9)
and its transpose is :-

dydy — dovy = N fofy +2(y,z) In2—1) — 2y ><z (B.10)
and we see that when y = x they both reduce to :-

d2 =N f2 = dove+2(z,2) (1iy2_1) — Pa) (B.11)

where P, = v,(1) 'z ><z. We will meet this projection operator, for unit vectors,
later; where we will retain the notation z><z. For reference we may form two

new relations :-

[de,dy] + N(fe, fy] = —2(@><y—y><z) (B.12)
{dmdy} = 2dgyy = N{fz:fy} —}-4(2},2}) 1[N2—-—1]

—2(x><y+y><x) (B.13)
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B3 Adjoint representation Projection Operators.

B 3.1 The adjoint representation of SU(2).

It is simplest, and also very informative, to start with the group SU(2). In the defining

representation an r-vector is given by :-
r = nfop, = P'— P2
where we have :-

Pl

PZ

p! + P = 1[2]
To form adjoint representation projection operators we note that :-
(Pl -+ P2)0'z'(P1 -+ P2)Jj = PIO'iP20'j -+ P20',L'P10'j + PIO'Z'PlO'j + P2UiP20j
= O'iO’j
So if we take half the trace of this expression, i.e. we form (o;,0;), we find :-
1L o1 pe 1 s p1 L o1 pi 2_ p2
(5,']‘ = —2-(P o; P 0'])+§(P o; P JJ)+§(P o; P O'j—f-P o; P O'j) (B14)
The left hand side is now the sum of three projection operators, so we define :-
12 L1 o2
(P7)y = (P oiPoy)
1
(P*)s = ;(P’oiPlay)
1
(Ps)ij = E(PlaiPlaj +P20'ip20'j)
Therefore equation (B.14) is now just :-

(Lg)i; = P2+ (P + (P (B.15)
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where we may simply calculate the adjoint projection operator matrix components to

be :-
1 - 1
PPy = 5(5@' - n'n’) + ‘2‘nk5kz’j (B.16)
1 o ;
(PM)y = (6 —nind) — cney (B.17)
2 2 J
(P = n'n/ (B.18)

We may now write these in terms of the adjoint operators introduced at the beginning

of this Appendix. We will do this in a fairly rigorous way. Firstly we may write :-
(PIZ_ PQl)ij — anekm

~i(fr)ij

Now, if we square this we get :-

P2+PMy = —(Di

( 1[3] —_ r><r)z~k

where we have used equation (B.11) for N = 2 and £ = r. So we see that, in terms
of the adjoint representation operators, the adjoint representation projection operators
may be written :-

Py = 51y =P) — 3 (.19

DN | = DD | =

P)5 = (T~ P+ 5(f)a (B.20)

PPy = (r><r)y (B.21)

where P2 4+ P# 4 P? = 1.

B 3.2 Some more adjoint projection operators of SU(N).

We start by restating the fact that the relations between r and g,-vectors is the same

no matter what the specific form the r-vector, or its associated g.-vector, actually
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take. Therefore, for the purposes of this section, we will define the r-vector we will be
using as the diagonal A3 of the Gell-Mann basis of 18; the associated g.-vector being
defined by the relation 7 V 7 = ¢, which in this case is A\s. Now in exactly the same
way that 7><r is an adjoint representation projection operator, we find that ¢. ><g¢,
is one too. However since we have more than three adjoint projection operators we
understand that the quantity (1jx2_1; — 7><7) now needs to be further refined since
it must contain ¢, ><gq,. We will now explicitly write the adjoint operators of SU(3),

with respect to r and ¢, vectors. We find :-

0 -1 0 0 0 0 0 0 (o 00 00 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
00 0 0 0 0 0 0 000 00 0 0 1
o= 00 0 0 -1 o 0 o i = 000 0 ¥ o0 0 0 0
00 0 L o 0 0 o0 00 0 0 % 0o 0 0
0 0 0 0 0 0 1 o 0 0 0 0 0 -2 0 0
0 0 0 0 0 -1 0o o 00 0 0 0 0 -2 o0
00 0 0 0 0 0 0 00 1 0 0 0 0 0

We may now either use our knowledge of the antisymmetric and symmetric structure

constants for SU(3), or use the relations :-

d§—3f7? = qu+21[8]—27"><7"
2fpd, = fq,-

to calculate d,, and f, . We find them to be :-

00 0 0 0 0 0 0 10 0 0 0 0 0 0
000 0 0 0 0 0 01 0 0 0 0 0 0
00 0 0 0 0 0 0 00 1 0 0 0 0 0
£ = 00 0 0 -2 0 0 0 d, = 0 0o -1 0 0 0
00 0 ¥ 0 0 0 0 00 0 0 -3 0 0 0
000 0 0 0 o £ g 00 0 0 0 - 0 0
000 0 0 0 ¥ o0 0 ¢ 0 0 0 0 0 -} 0
000 0 0 0 0 0 0 00 0 0 0 0 0 -I
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Lastly, for this example where r = A3 and N = 3, we find :-

6 0 0 0 0 0 0 o 0o 0 0 0 0 0 0 O
o 0 0 0 0 0 0 0 0 0 0 0 0 0 06 o0
0 0 1. 0 0 0 0 O 0 0 0 0 0 0 0 O
0 ¢ 0 0 0 0 0 06 0 0 0 0 O
T><T = qr ><gqr —
6 0 0 0 0 0 0 0 ¢ 0 ¢ 0 0 0 0 0O
¢ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O
0 0 0 0 0 0 o0 0O 0 0 0 0 0 0 0 1

In practice we will keep the notation of the last section and write P = r><r. We also
note here that in our calculations where we need to use the language of adjoint pro-
jection operators to simplify expressions we do not encounter the projection operator
gr><¢q,. This is because the matrix indices we are concerned with in expressions like
the Goldstone boson manifold metric are coset indices, and (¢, ><gr)q = 0. Therefore

we will not give it another name.

B3.2a The projection operator combinations (P'? + P?') and (P + P*).

We will now use a similar approach to that found on page 171, where we looked at
the adjoint of SU(2), to re-calculate the first two adjoint representation projection

operators for general N. As before, if we define :-
P'—-P? =7
then this time we have :-

P'+P* = 2

= ~@21m+ /E-2g)
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where P! = L(r?+r) and P? = L(r? —r). With the adjoint projection operators P!

and P? defined as before :-

(PIZ)]J = %t’l"Pl/\[PZ)\J

(PV); = Lir PPAP');
then we find we have the combinations :-

(P2 +PYYr = Ltr(rAmr?A; —rArAy) (B.22)

4

(P2 PNy = Ltr(rAr?A; —r°AmrAy) (B.23)

For the first expression we find :-

P2+ Py = Z61+ 2052 (dg, )rs + 17 [(532) @rAigr Ay — TAITAS]
Now, using the general result :-
tr(zAizAs) = 2 (2N f2+ dovs + 2 (2, 2) 1[N2_1])U
and substituting in for z = ¢, and also for z = 7 we eventually find :-
PR = w2
= —iPp - 12 (B.24)

This quantity is used in our calculations; and we will soon examine Pfqz. For now, we
may calculate when N =3 and r = A3 :~

i 0 ¢ 0 0 0 0 O

[emd
o
<
o
o
<«
o
o

= 00 0 X 0 0 0 0
00 0 0 5 0 0 O
00 0 0 0 § 0 O
0 0 0 0 0 0 0

[en
[
[en
<
Lot
fant
[ ST
o)



and compare this with equation (B.24). Usually, in our calculations we will use :-
—Nf} = NP?+P")+4Pp (B.25)
We see that, for N = 2, we have :-

P12+?21 — _f2

1[3] - T><T

which is obviously correct because there are no g.-vectors and 1y = P2 +P* +r><r.

Now, even though we do not meet the quantity P2 — P in our calculations, to

complete this section we will give the result :-
P —P* = —% (fe = L2(dr fo, — dg, [r))

and it is possible to show, using this equation, that (P2 — P?)2 = P2 + P as is
obviously required.

In chapter 5 we also need an expression for the adjoint representation projection op-
erator combination (P3* + P*3). This is because, to describe the coset vector, we not
only need to use 7 but also an orthonormal, commuting r-vector called v, = P3 — P4,

The method used to calculate (P2 + P%) now yields :-

P3P _ 142 _ g2 (B.26)

2J¢r TL

where we have substituted in N = 4 and used the fact that, for N = 4, we have the

relation g,, = —g¢,.
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B3.2b The adjoint projection operator Pr;.
We know from equation (B.6) that 2f,d;, = fuvz, and equation (B.7) tells us they

commute, so when z = ¢, we have :-

2d4rfqr = fQTVQr
\}V—N:-.-% f(h‘
If we now premultiply this by d,, and use equation (B.11) with z = g, then we find

after a little rearranging that :-

_4N-2) £3 _ qu

N qr

This relation implies that :-

(___4@1—2) 2)2 —  __4(N-2) 2
N ar N ar

Therefore this quantity has projection operator qualities, and so we write :-

Pp = —ixaf? (B.27)

N Jgr

For the explicit examples given earlier where N = 3 and r = A3 we find :-

0 0 ¢ 0 0 0 0 O
0 0 6 0 0 0 0 0
0 0 0 6 0 0 O

<
<
o
<
—
<
e B v R o B )

[T v BN <]
[wo]
<
o
<o
(=g
—t

00 0 0 0 0 O
Obviously this is the sum of 4 projection operators. However they are difficult to

isolate, so we will not try to.
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When N = 4, specifically in chapter 5, things are a little different because Psz may
be, more readily, split up into a linear sum of two other projection operators; these we

will call Pﬁ% and ’Pfe;,. To introduce this idea we first recall two results from the last
q q
section, namely :-

P24+PY = _1p, - f

P34 + P43

_%Pfq2 - 1-2_1_

From these relations we notice :-
Rl = %Ps

and since [f,, fr,] = 0 we have :-

(4frfr_;_)(4frfr_g_) = Pfg

To analyse this we will start by constructing the adjoint matrices f, and f,, which will,
independently, give us the form of Pz We will then find out what the product 4f, fr,

looks like. Using, for simplicity, the r-vector 7 = A3 we have the relevant structure

constants :-
fizs =1
1
f345 = fagro = 9
1
fz67 = fa1112 = —5

and from these it is simple to construct the adjoint matrix operator f. because :-

(s = frss

= "'f3IJ
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Therefore, we find the adjoint operator to be :-

i

fr

Therefore we have -

£

1
4

P2 4 P2 4

= 1
237

= \/g, fso10 = fs1112

= f678

Ag + \/g/\w, using fiss

= L
RVE]

Similarly, for r
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\@, we find :-

and fo1015 = fi11215 = fis1415 = —

= L
Rz

f81314

fr_;_ =

This matrix, when squared, gives the result :-

2
Ti

-/

i

1
4

P3Py

we see that it is easy to isolate the adjoint

2
TL

=/,

Therefore, using the results for — f2 and
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projection operator Py and also the projection operator combinations (P'?+P?') and
(P34 P,

We may also use f, and f,, to find the quantity :-

0 0 000 0 0 0 0 00 0 0 0 0

0 0 00 0 0 0 0 0 0 0 0 0 0 0

00 0 0 0 0 0 00 0 0 0 0 0 0

00 0 1 0 0 0 00 0 0 0 0 0 0

00 0 0 1 0 0 0 0 0 0 0 0 0 0

00 0 0 0 -10200 00 0 0 0 0

00 00 0 0 10200200 020 0

Afpfr. = | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

00 0 0 0 0 0 010200 00 0

00 00 0 0 0 0 01020 020 0

00 00 0 0 0 00 01 0 020 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 00 0 0 0 0 00 00 0

0 0 00 0 0 0 0 0 00 0 0 0 0

0 00 0 0 0 0 0 0 00 0 00 0
= PG -P§
q q

where P%, is made from the four outer (positive) components, and P%, from the four
q q

inner (negative) ones. We notice that this is an adjoint vector quantity because
tr (4f-fr.) = 0. Thus, a vector quantity may be described by the difference of two

projection operators in the defining representation and also in the adjoint representa-

tion too. Also note :-

4frfr_L = (fr + fr_L)z - (fr - fr_;_)2
= (\/ifq2)2 - (\/ifql)2

= Pp, —Pp,
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where we may find, using f, and f. , the results :-

sz = ('PIZ +P21) +PJ?;2 + (P34 +P43)

Py = (PPN 4 PG+ (PH 4P

B4 Additional work for Chapter 4.

B 4.1 Checking the K} result.

If we substitute the result for K¢, equation (4.20), into the relation we couldn’t directly

solve, equation (4.18), then we find, after a little bit of work, that we can get as far as

writing :-

\/}%sin%s (d)yr = (cos¢ —1)°nq” — Z(cosd — 1) (dr)yp (d.)

—\/ﬁ(cow — 1) (N + 2(cos¢ — 1)) (dr)yz (B.28)

It is the second term which causes us problems. It may be written either :-

(dT‘)aE (er)ab = (dT)E'a (d(h)ab

= (drd‘Ir)Eb
or it may be written :-
(dT‘)aE (d(Ir)ab = (d(h')ba, (dr)aE
= (dqrdr)bE

The relations between d, and d,, which we may work out do not help us here. We have

for example :-

drdg, = Nfg.fr = VN —-2d,—2r><q,

dg.dr — Nfrfe, = VN —2d, —2¢ ><r
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and we also know that [f,, f;.] = 0. But this seems to be as far as we can go; at least
at this level of enquiry. However, if we assume that our calculation is correct to this

point, then we must have the relation :-

(dg,dr)yp = s (dr)er + 5 (1><@ ) (B.29)

where (r><g¢.),z = n’¢”, in order that both sides of equation (B.28) balance. In
general this relation is also difficult to confirm, but we will now show that it is correct

for N = 3, i.e. using the adjoint operators for SU(3).

Now in [17] we find that the two equations (B.12) and (B.13) become :-

[dg,,dr] = —2(g-><r—7T><qy) (B.30)
{dqmdr} = {fqﬂfr}
= —dr+ ¢ ><r+1r><gr (B.31)

which we will now verify. We calculate :-

0o 0 0 0 0 0 0 0 000 0 0 0 0 0 0
0o 0 0 0 0 0 0 00 0 0 0 0 0 0
60 0 0 0 0 0 -1 0 0 0 0 0 0 0 1
dd = |00 -4 9 0 0 0 Jd = |0 00 -5 9 0 0 0
T T qr Y1
0 00 0 -4 0 0 0 ’ 0o 0 0 0 -¥ 0 0 0
00 0 0 0 ¥ o o0 0 00 0 0 ¥ o0 0
00 0 0 0 0 ¥ 0 0o 0 0 0 0 0 ¥ o0
0o 0 1 0 0 0 0 0 0 0 -1 0 0 0 0 0
So we see that we may write these results :-
1 1 3
drdq,r, == __dr et A1 q?" + _qT ><T (B-32)
2 2 2
1 3 1
dgdr = —Edr + 5T ><dr = 54 ><T (B.33)

Therefore from these we find exactly the results of equations (B.30) and (B.31) given

in [17].
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In checking the nonlinear Killing vector components, back on page 183, we were forced

to assume the relation :-

(dedr)yr = gj/vﬁ'—_ig(df)bE+§M(r><qT)bE

which, for N = 3 is :-

(dqrd"')bE = _%(dT)bE+%(T><QT)bE

= —3(dr)og +30°07 (B.34)

If we write equation (B.33) in terms of the operator components we have :-

1 3 1
(d(IrdT)IJ = D) (dT)IJ + 5”1 1{”‘ 5‘157#.

But this is for general r and g,-vectors which lie in unspecified directions. If we now
restrict the index I ~» a (allowing it to run over the r-vector indices) and the index
J ~ E (therefore allowing it to run over the g.-vector indices), then the last term in

the above expression vanishes and we are left with equation (B.34). We also note :-

(d(Ir d"‘)bE = (drdqr)Eb

and had we considered the right hand side’s form instead then, by using the same line
of reasoning as above, we would have arrived at the same result. Now that both sides
of equation (B.28) balance, we can say that the form of K¢ is correct; because we have

managed to verify the relation which we couldn’t directly solve.
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B 4.2 Simplification of the CP 2(N-1) metric, g, and (dg,)qs.

This section applies to part of the method in section 4.2.5 on page 110. We found that

we had to calculate tr(rd,g-0*r + rd,ro*q.). We may write this in two ways :-

tr(roug-0'r + ro,ro*q,) = tr(9,r°0"q,)
= /221 (0,q.0"¢,)

= 2\/8320,70"q’ (B.35)
which uses the cyclic property of the trace, or we can write :-

tr(roug-0r + ro,rétq,) = tr(20,(rq)0r — 2¢,8,r6"r)

= 4,/%29,n°0"n® — 2tr ¢,0,rO"r (B.36)

where, again, we have used the cyclic property of the trace in conjunction with the two
relations 70,g, = Ou(r¢,) — (Ou7) ¢r and (8ugr) ¥ = Ou(grT) — ¢-Our. If we now explicitly

calculate both equations, and then equate the two, we eventually find the relation :-
2(d} = (w-2r><r), = (N-21n2_q)— VN —2d,,),,
N.B. we have removed 9,M%0*M® from both sides. We rearrange this to give :-

(dqr)ab = (N - 2) 6ab - Q(dg)ab + 2(N - 2) nn® (B'37)

and if we now use the relation d? — Nf? = VN —2d,, +2(1y2_q) — r><r), then we

find that we have :-
3VN=2(dg)ws = (N—86)0a —2N(fH)e + 2N nn’

For these models the coset indices of the identity may be written :-
(Inve—1Das = 0 = (P2 + P +rocr + Psz)ab
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since these are the only projection operators which may be constructed with non-zero

entries for these components. If we also use our relation X2 f2 — f2 = P+ P?, then
we find :-
(dqr)ab = /N =92 (PIZ + PZI + 7'><7')ab + J%(Pfg)ab (B38)

This expression is used in section 4.2.5a to simplify the form of the nonlinear Killing vec-

tor components in the CP2(N-1) models. If we now substitute this into equation (B.37)

then we find :-

(@ —w-2r><r)as = F(Pp)a (B.39)

which we will use to simplify the form of the Goldstone boson manifold metric; and

also the form of a,,.

B5 Additional work for Chapter 5.

B5.1 Simplification of (15 % J5dg, )ab-

The results of this section are used in the nonlinear Killing vector calculation in Chapter
5, on page 135, where we find that we need to simplify the quantity (1ps £ —kdqr)ab-
We will first work out which adjoint representation projection operators are present

in d,.. To do this we consider, when z = g¢,, the coset index matrix elements of

equation (B.11) :-
(@ —4f2)a = 2(1ps)a

We have this result because, for N = 4, we know that g, V ¢. = 0 and, as usual, we

also have the relation (g, ><g)q = 0. Since Pr = -2 fqzr we may write this :-
(dgr + 27:'f,?)ab = 2 1[15])ab
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Thus we may write dgr in terms of adjoint representation projection operators :-

(@)a = 2(1ps— Ppzlas

= 2P+ PR Lrocr +PH PB4 scr))a (B.40)
This implies that \/§qu is of the form :-
V2(dg)as = 2(£(PP)ap £ (P )ap £ (r><r)as £ (P*)ap £ (P®)ap £ (r1><rL)a)

Therefore we now need to find the sign in front of each projection operator. To help
us do this we will construct the explicit form of d? by finding the form of d,. As usual,
to keep the analysis as simple as possible, we will use r = A3 and therefore we have
(dr)1s = 2d31,.

We find the adjoint matrix d, to be :-

0 0 0 00 0 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0
000 0 00 0 0 % 00 0 0 0 0,2
0O 0 0 10 0 0 0 00 0 0 0 0 0
0O 0 0 01 0 0 00 0 0 0 0 0 0
O 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
O 0 0 0 0 0 -10 000 0 0 0 0
d- = |0 0o % 00 0 0 0000 00 0 0
O 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 00 0 0 0 0 0 -10 0 0 0
0 0 0 00 0 0 0 0 0 0 -1 0 0 0
00 0 00 0 0 0 0 0 0 0 0 0 0
0 0 0 00 0 0 0 0 0 0 0 0 0 0
00 200 00000000 0 0

The coset index matrix elements of equation (B.11), when z =7 and N = 4, are :-

(dg)ab - 4(f7?)ab = \/é(dqr)ab + 2( 1[15])ab - 2(7‘ >< T)ab
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Simplifying the f2 term, using equation (B.25) with N = 4, gives us :-

(@) = V2(dg)ap — 2(P? +P*")as + (Pgz)a

+2(P¥* +P® + 7 ><T1)ab (B.41)

Now, calculating d? will allow us to ‘guess’ the form of 1/2d,, since, when we substitute
it into the right hand side, it will be obvious if our guess is correct. The ‘guess’ will
be fairly intuitive if we use our knowledge of the form, and behaviour, of 7 and 7.

Specifically, we notice how the d,, term occurs in each of the two operator relations :-

(d?)ab - 4(f7-2)ab = ﬁ(dqr)ab + 2( 1[15])0.6 - 2(’/“ >< T')a,b

(d12-_,_)ab - 4(fr2_L)ab = —V2(dg)ab + 2(1pi5)as — 2(rL><T1)ab

So firstly, we find d? to be :-

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 00 00000 00
© 0 2 0 0 0 0 00 000 0 0 O
¢ 0 0 1 0 0 0 0 0 0 0 0 0 0 0
00 0 0 1 0000 O0O0CO0O0 0 0
0 0 0 0 01 0 00000 0 0 0
000 0 00 0 1 0000 0 0 0 0
@ = 100 00000 %0000 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 000 0 1 0 0 0 0
00 0 0 0 0 0 00 O0O0 1 0 0 0
00 0 0 0 000000 0 0 0 0
0 0 0 0 0 00 0 00 0 00 0 0
0 0 0 0 0 00 00 OO0 0 0 0 2

If we guess that v/2d,, has the form :-

\/i(d(h)ab = 2(P12 + P+ rocr+ P4 PB4 T ><TJ_)ab
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then equation (B.41) becomes :-
(s = 2(r><r)a+ (Ps2)as + 4PH*+ PR 1y s<r)m

and this is clearly wrong because there should be no contribution from (P34 4+ P*3) in

d2. If we now guess that v/2d,, is of the form :-

V2(d ey = 2P+ PR drocr)y —2P¥+ PR 4ri5<ri)an
then equation (B.41) becomes :-

(das = 2(r><7)as + (Psz)as

which agrees with the form of the matrix d? above. It is important to realise that
we may ignore the components (d2)ss and (d?)1515 because they are provided by the
adjoint projection operator ¢, ><¢,. It enters into d? via the (adjoint) identity element

in the operator relation :-
d?—4f1_2 = \/_Q_dqr+2( 1[15] ——7’><7’)

Since ¢- ><¢, only has the nonzero components (¢, ><g,)gr, these components being
specified by subgroup indices alone, we know that this operator is absent from our re-
sults. Basically, this is because we calculate quantities like the linear K%, the nonlinear
K¢ and the metric g,;; none of which have two subgroup indices. Another way to see
it is by realizing that all of the objects are constructed using the coset representative
element, which is defined by the coset vector. Therefore, anything constructed using
L must contain a coset index and, because of the structure of the A and V algebras,

we never see an object with a coset index together with two subgroup indices.

To summarize, we have found :-
V2(dg )y = 2P+ P +rocr)ey —2(P*+PR +ri><r)w (B.42)
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Therefore, we may simplify ( 1ps + —\};dqr)ab and (1ps — —\}—idqr)ab by writing them in

terms of adjoint representation projection operators. We find :-

(Lps + J5dg, )ab

(Lps + 5. )ab

2(P2 + P 4 ro<r)g + (P2 )ab

2(7334 + PB4 >< 71 )b + (Pfg)ab
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Appendix C

The Lie Algebras of SO(m) and
SO(t, s).

C1 The roéle of Gamma matrices.

For SO(m), where m = 2k,2k + 1, if we can find a set of 2k + 1 Hermitian matrices

obeying a Clifford algebra :-

{478} = 2604B1py (C.1)
with A,B = 1,2,...,m., then we may build a set of traceless, Hemitian, generators
for SO(2k + 1) :-

Tap = "i [v4, 78]

= %UAB (C.2)

which also obey the SO(2k+1) Lie algebra, and are 2% dimensional; instead of (2k+1)
dimensional. For SO(2k) we only use the first 2k gamma matrices to construct the

o-matrices; the last gamma matrix may be used to construct two projection operators
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which project out left and the right handed spinor representation generators. We will

explain this further in the next section.

We have as a product rule for the gamma matrices :-

2048 l[gk] + 210 4R

2v4YB

YavB = 0ap lpw +i0an
so for A # B we have :-

Oap = —UYAYB

C1.1 A set of v matrices for SO(2k+ 1) and SO(2k).

The Spinor representation of the generators of SO(3) is built from the gamma matrices

for SO(3); these are defined to be the Pauli Spin Matrices :-

SO(3
. 0 1
10
SO(3
Yo ) = 02
_ 0 —
1 0
SO(3
V3 @) = 03

Conventionally, the generator for the normal SO(2) subgroup of SO(3) is built from
the first 2 gamma matrices of SO(3). In general, we may form an iterative process
which produces gamma matrices, with which we may construct generators, for larger

groups of Special Orthogonal transformation matrices.
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For k > 2, the first 2k — 1 gamma matrices for SO(2k + 1) are defined :-

. SO(2k—1)
SO@k+1) 0 o
" =
_2.720(21(—1) 0
and the last two are defined :-
SO(2k+1) 0 1[?’“‘1]
Yox =
1[2k—1] O
SO(2k+1) 1[2’"1] 0
Vok+1
O - 1(2&—1]

_ 7\m H SO(2k+1)

with %SO(I) = (1). In this way we may produce an odd number, (2k + 1), of gamma
matrices with which we may construct the generators of SO(2k + 1). For the group
SO(2k) we just use the first 2k gamma matrices, of the (2k + 1) used to construct the

generators of SO(2k + 1), to form the generators of SO(2k).

C1.2 Block diagonal form of SO(2k).

Because of the form of the gamma matrices, it is obvious that the generators of SO(2k)
have a block diagonal structure. In this case the last gamma matrix may be used,

together with the identity element, to form 2 projection operators :-

P, = %(1{2k1+7§gfk+1))
I T
- 0 0

Pr = %( 1[2,0}__7;3(?“1))
o o
o e
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which will not only project out the left and right handed spinors from the fundamental
Weyl spinor, but will also project out the two sets of generators which independently
act on the left and right handed spinors. We may therefore just restrict our attention
to the left handed transformations which act on the left handed spinor. We explicitly

show this by writing a fundamental 2¥-spinor of SO(2k) as :-

Under an SO(2k) transformation in the Weyl representation, produced by an element

g € SO(2k), we will find that the fundamental 2*-spinor transforms :-

g ¢ = g¢
_ (gL 0 Y
. 0 gr X
_ (guﬁ
9rRX

Thus, we see that P;, will isolate the part which holds the relation :-

vy = gy

and Pg will isolate the part which holds the relation :-

x—X = grX

So, for SO(2k), we end up just having to work with generators which are (2¥-! x 2571
matrices. In this thesis we will, for SO(6), work with the left handed representation
of (4 x 4) generators which generate transformations on the left handed spinors. This

will allow us to exploit the homomorphism between the groups SO(6) and SU(4).
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C2 The Lie algebra of SO(m).

Using equations C.1 and C.2 we find the Lie algebra to be :-
[0aB,0cp] = 2i[(0acoBD — 0 4D0BC) — (8 BCOAD — 6 BDOAC)]

where A,B,C,D = 1,2,...,m. We note that SO(m), where m = 2k,2k+1, is a

group of rank k.
1. For SO(m) breaking to SO(m — 1) we have :-

e The Lie algebra of the subgroup SO(m — 1) is :-
[Oab, Oca] = 28 [(0acObd — 80dObc) — (85cTad — 0baTac)]
where the a,b,c,d=1,2,... ,m— 1.
e The coset commutator closes onto the subgroup :-
[Oans Osa] = 266 AATas
where A = m only.
e So between subgroup and coset we have :-
[Oab, Oca] = 20 (0acObA — ObeTan)
2. For SO(m) breaking to SO(m — 2) ® SO(2).
e The coset commutator closes onto the subgroups :-
[Oox,0by] = 2i(0ap0xy + 0 xv0ab)
Fora,b=1,2,...,(m-2) and X,Y = (m — 1), m.
e So between subgroups and coset we have :-
[Oab, 0cx] = 20 (80c0bx — 0peTax)

loxy,00z] = 2i(0x20ay —0vz0ax)
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C3 The Lie algebra of SO(t, s).

We construct the X matrices of SO(t,s), where ¢t + s = m, out of modified gamma

matrices used for SO(m), where m = 2k, 2k + 1. This time the gamma matrices obey

a different Clifford algebra :-
{Fm FV} = 2 Nuw 1[219] (03)

with u,v = 0,1,2,...,m — 2, m. We also define the matrix 7 :-

m—1
n = diag(+1,-1,-1,...,-1) for SO(1,m—1)
m—2
n = diag(+1,~1,—1,...,—1,+1) for SO(2,m — 2)
By convention, in going from SO(m) to SO(t, s), we always have oy Om) = Iy and so

1. for SO(1,m — 1) we would multiply the v, (for £ = 1,2,...,(m — 2),m) by i,

thus I'y is Hermitian and the rest are anti-Hermitian, and

2. for SO(2, m— 2) we would multiply the v;, (for k = 1,2,...,(m—2)) by i so they

are anti-Hermitian, and have the Hermitian gamma matrices I'y and I'r, = .
We may now build a set of traceless, Hemitian, generators for SO(t, s) :-

TNV = [FIL’F]

’L

4

L C.4
= 7w (C.4)

which obey the SO(t,s) Lie algebra, and are 2¢ dimensional; instead of (2k +1) di-

mensional. So we have :-

21—‘“1-‘,, = 277,“, 1[2k] - 2i2uu

Fp,FV = Nuv 1[2k] -+ iEw,
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so for u # v we have :-

1. For SO(1,m — 1) breaking to SO(1,m — 2)
e The Lie algebra of SO(1,m — 1) is defined :-
B, Tpel = =20 [(MuZve = Mo Zup) — (MupZo — Moolio)]
where p,v,p,0 =0,1,2,... ,m— 2, m.
e For an SO(1,m — 2) subgroup we must have :-
(Zap, Evs] = =21 [(NayZps — Nespy) — (57506 — N6 Tan)]

where the o, 8,v,6 = 0,1,2,... ,m — 2.

e The coset commutator closes on the subgroup :-
Eaa,Zga] = —2inaaXas
e So between subgroup and coset we have :-

Eaps Zya] = =20 (MayXpa — Mgy Ean)

C4 The Lie algebra of SO(6).

After performing the required steps we find that SO(6) o-matrices, in the Spinor
representation, are a direct sum of two sets of SU(4) A\-matrices; namely the 4@®4. So

we use P, = 2(1g + 7?0(7)) and Pp = (15 — 7?0(7)) to project out the two sets.
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Here is the 4 which generates transformations on a left handed spinor :-

O'kO L

L_ .. —
05 = Eijk O34 =

OO'k

/ 0 11 [2] L
i6

ok = o
\—Z' 1[2] 0
/ 1[2] 0

ok =

o, 0 0
1 0'115' _ i
0 —o; —g; 0 /
O46 =
—ig; 0 1 0 )

o )

C4.1 Translation into the language of SU(4).

The o4p of SO(6) written in terms of the A, of SU(4) are :-

(1 n
Oy9 = (T3+T3)

Ojj ~ J ol = (A1 + Ai3)
L O'gl = ()\2 -+ /\14)
ofy = (A — As)

Tig ™~ 9 0'%4 = (A2 — A14)

o5~ 4 o35 = (A = Aw)

is the generator of SO(2).

1 are generators of SO(3).

1 are generators of SO(4).

1 are generators of SO(5).

1 are generators of SO(6).
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Note that the T symbol has been used to represent the phrase ‘all generators in the
table down to this point’. We have also used the following objects in the table to

represent (a linear sum of) generators :-

Ts =

Tél‘ = )\3'{-\/‘)\15

0 = Vit e )

Also, from our work in Appendix A we see that we may also write :-

0%2 = \/5%

‘7??4 = —/2¢

C4.2 The SO(4) and SO(2) subgroups of SO(6).

o The usual SO(4) subgroup, which is homomorphic to SU(2)®SU(2), is generated

by :-

L_ O 0 and L _ ag; 0
Oi; = Eijk na o =

0 o 0 —o;
To see the homomorphism we first construct :-

1 L
Vi = 5%in0i

If we now relabel oy — A;, and then construct the six generators :-

1
Ly = §(Vk + Apg)

1
Ry = §(Vk — Ag)
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we find that they obey :-

[Li,Lj] = 2’L'8,'jkLk
[Ri,Rj] = 2i8iijk

[Li,R;] = 0

The first two relations tell us that L; and R; are the generators of two SU(2)
groups; the last relation tells us that these groups will commute. This means
that the L; form the basis for the (unit) group vector r and the R; form the basis

for the other (unit) group vector r,; that is, we may write :-
r = ’I’LiLi
Ty, = n’lR,

Therefore the subgroup vector, z, may be written in two ways :-

S50(4) view SU(2)® SU(2) view

AB N e A N Y
n“Posp & ¢n'L; + ¢n' R,

00

r =

and the SO(4) subgroup element is e~*.

e The SO(2) subgroup element, which commutes with the SO(4) subgroup element

already considered, is generated by :-

1[2] O
g éle =

0 —lp

This is easy to show using the notation of SU(4). As we have seen, in terms of

vectors in the Cartan Subspace, the SO(4) subgroup vector may be written as :-

x = Ar+Br,
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Quite obviously a general orthogonal vector which commutes with z, i.e. lies in

C., may be written :-
y = Cgq

because we know that [r,q,] = [r1,q,] = 0. Thus, when r = n’L; and r; =n' R;,
we find the result v/2 ¢, = ol;. Therefore we find that e € SO(2) is an element
which will commute with the element e™** € SO(4). Therefore we may write

h=e e =¢eWe ™ e SO4)®S0(2).
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Appendix D

The explicit form of differentials.

In this appendix we will construct the explicit results which we find when we differen-
tiate fields not only with respect to the Goldstone boson fields, but also with respect
to spacetime coordinates. To keep the calculations in this thesis as concise as possible,

the results which follow will be substituted in at the end of calculations.

D1 When z is in terms of one vector only.

If the coset vector is written in terms of a single vector, then we find that it is simple
to obtain the results of differentiation, either with respect to the Goldstone fields or
with respect to the spacetime coordinates. The results in this section will apply to the

models considered in Chapters 3 and 4; where the size of z is not important.

D1.1 Differentiation by 2.

In practice we use the notation F, = & to represent differentiation of a quantity,

F, with respect to M®, the Goldstone boson fields. For the chiral SU(N) breaking
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models of chapter 4 the coset vectors are written :-

This quantity, in terms of the Goldstone fields, may be written :-

M%), = Mn®),
and the field components, isolated using (z, A,), are :-

Me = Mno (D.1)
where M is the length of the vector M?)\,. The quantity M is defined by :-

MeM® = M? (D.2)

because the n® are the components of a unit vector in the direction of M%A,. If we

differentiate equation (D.2), with respect to the Goldstone fields, we find :-

(MM®)y = (M%),
oM = 2M M,

M = MM,

because M§ = g—%% = §,. If we now compare this with equation (D.1) we see the

identification :-

n® = M, (D.3)

If we now work on Mn® and differentiate we get :-

(M’n/a)’b = 'n/aM,b + M’n/?b
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and so we see the result :-

nG = 40w —nn) (D-4)

In Chapter 3 the coset vectors are written as, the SO(m) breaking to SO(m — 1)

models, and the SO(1, m — 1) breaking to SO(1, m — 2) models, , the coset vectors are
written as = (15 where :-
S = no,a for the SO(m) breaking to SO(m — 1) models, and

S = n®AY,a for the SO(1, m — 1) breaking to SO(1, m — 2) models.
So we find the respective results :-
nfﬁ = H(0R —n"®npa) (D.5)

% L(098 — n®**nga) (D.6)

with A = m. We use the notation A to remind us that this is a fixed index, just a label,
and it is necessary to distinguish between labels and indices which are summed over,
for the latter we have used lower case letters. We note that for the SO(m) breaking to
SO(m — 1) models of chapter 3, the index a has the range a = 1,2,...,(m — 1) but
for the SO(1, m — 1) breaking to SO(1, m — 2) models we relabel this index a ~ a to

remind us that it takes in the values @ =0,1,2,...,(m — 2).

Lastly we encounter the differential of ¢ = ¢(M) :-

do
ant M
d¢ o
"

and for the SO(m) breaking to SO(m — 1) models, and the SO(1, m — 1) breaking to

¢,a -

SO(1,m — 2) models, we find the results :-

ds2

Q,aA = WnaA (D7)
ds2

Q,aA = mnaA (D8)
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D 1.2 Differentiation by a(% = Oy

In this thesis we also differentiate quantities with respect to the spacetime coordinates.
Firstly, we differentiate the length of the vector associated with the interpolating fields.
These are the fields which we initially use to describe the coset; before they are redefined

to represent the Goldstone fields. We have :-

d
O = d]f;a M
—_ d¢ a a
— dqs a. Q Q
= dM( OuM® + M®0,n®)
A d - \
Oup = d:; n*g,M* (D.9)

because for the second term 2M®9,n®* = 2Mn*dyn® = MO,(n*n®) = 0. For the
S0O(m) breaking to SO(m — 1) models, and the SO(1, m— 1) breaking to SO(1,m — 2)

models, we find the results :-

Q
0,0 = jM a0, M (D.10)
Q
0,0 = 5M Nan0, M (D.11)

We also differentiate n® with respect to z# and find the result :-

a __ a b
Oun® = nyoM

(645 — n°n?) 8, M° (D.12)

and for the SO(m) breaking to SO(m — 1) models, and the SO(1, m — 1) breaking to

SO(1,m — 2) models, we find the results :-

Oun*® = FH(OA — n**nua) O M (D-13)

aunaA = ﬁ(%‘ﬁ - naAnﬂA) 8ﬂMﬁA (D.14)
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D2 Whenngr-l——g-m and N = 4.

If the coset vector is a linear sum of two commuting orthonormal r-vectors, say r and

Ty, and N = 4 then the situation is rather different. The results in this section will

apply to the models considered in Chapter 5.

D 2.1 Differentiation by (—97‘?70—.

Firstly, we will demonstrate the difficulty of the task we now face. If we follow the ideas

in the beginning of the last section, then the coset vectors in chapter 5 are written :-
— b
Tr = g— T+ 2 T
This quantity, in terms of the Goldstone fields, may now be written :-

MWDy = M®Ag+ M2,

Mn®Ag + Myn% A, (D.15)

]

Removing the basis obviously gives :-
M = M®+ M¢
= Mn®+ M, n% (D.16)
From this we find the norm of z to be :-
MM = (M*+ M) (M + M)
= M°M*+ MM} (D.17)
because (r,7,) = 0. If we now differentiate this with respect to M? then we have :-
MM = M°Mi+ MiME,
M = M(Myn®+ Mn%) + M (ML ynS + Ming ;)

= MMy+M, M, ,
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If we compare this with equation (D.16) then we see :-

My, = n’ (D.18)
My, = n} (D.19)

Now if we differentiate equation (D.16) with respect to M® then we find :-

My = M,bn“-i—Mnﬁ,-f—ML,bn‘j_—f—Mln‘i,b

6oy = n°n®+ Mnj, +nind + M, ni

where we may write the left hand side as 0,5 = m®m® + Mm$ with the m® being the
components of a unit vector defined by equation (D.16). So it is clear that we need to
find expressions for the two quantities n4 and nt ;. Using this sort of construction, it

is not immediately clear how this may be done.

However, the problem is solved with the use of the symmetric vector product. For a
coset vector, z = M®A, = M%)\, + M$A,, we calculate z Vz and z Vz V z. In terms

of both descriptions of z these quantities are :-

zVz = V2AAM?—-M3)q,
= 2M*MbdypAg
zVzVz = 2(M?* -~ M*)(Mr—M,r))

= AMOM°dyp MEdpeaa

We now use these relations ! to solve for Mr and M, r,. We find :-

Mr = %$+———2—4(M21_ML)(.'L'V.’EVZE)
MLT_L - %x_Z(‘MTl—TuZS(xVZEVZE)

1These relations, and the ones which follow, will be different when N > 4 because, in these cases,

we will find that ¢,, # —¢p.

207



If we write the commuting vectors on the right hand side explicitly, and remove the A,

basis, then we find the vector components :-

M* = M+ =Ty MM dyeMCdpeq (D.20)
M = jMmI- W—iMJﬂ_‘)‘MaMbdabEMchcd (D.21)

We may now differentiate these two expressions with respect to the Goldstone boson

fields (M*) without any trouble. We find :-

Mg = 30a+ grtamy [MPG doy + § dmvim)ae — (M% = M{)(M® — M£)] (D.22)

M, = Llég - ey [MP(E 2, + L dmym)ae — (M — M3)(M® — M5)] (D.23)

We will use these expressions when we work out the linear K%. We may also write

these in terms of adjoint representation projection operators. To do this we will use :-
M¢ = nip®+ Mn‘fe
Mﬁ’e = n‘_i,_nj_ + M, n‘i’e
and, specific to 35, the operator relations :-

d72n e 4f3,b = dim + 2 1[15] —2m><m

V2(dg )y = 2P+ P £ r>< T)ap — Q(P?’4 +PB Lri><r)ap

The 1° line is the appropriate form of equation (B.11) for a unit vector m in R'®,
and the 2™ line is just equation (B.42); both are explained Appendix B. Since we also
know that Mf,, = Mf. + M, f,, we may use these in equations (D.22) and (D.23)

and rearrange to eventually find :-
M7 = alam [(M2 — M2)(P? + P%) + M? Py + MM, (4f; fu)} (D24)

Mink, = g [(M? = M3)(P¥ + P) — M2 Ppy — MML(4f,fr,)|  (D.25)

When we work out the nonlinear K} we will use these expressions.
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D2.2 Differentiation by 2. = 9,.

The remaining differentials are easy to find. In terms of the interpolating fields, the

coset vector z = %m"'/\,z has been written :-

In terms of the Goldstone fields, the coset vector z = —"\2—4711"'/\,z has been written :-
T = Mr+M,r,

If we think about the properties of the r-vectors we are using, then we see that we

must have a = a(M) and b = b(M ). This is also supported by the fact that, in the
two parameterizations, the matrix invariant v, (z) is :-

(5) = 6r-()

M2 = M4 M

Therefore we have :-

da
B,La = M@,M

da
= ang M

= j_ﬂ“l n%8,M® (D.26)

Similarly we find :-

a o
aub - M TL_LauM_L (D.27)

We also have the field gradients d,n* and 9,n% in our calculations. These we find to
be :-
dun® = n4o,M° (D.28)

Ouni = nf oM’ (D.29)
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where n% and nf} , are given by equations (D.24) and (D.25).

Even though Chapter 5 concerns the spontaneous breaking of SO(m) symmetries down
to SO(m — 2) ® SO(2) for m = 4,5 and 6, it is phrased entirely in terms of the
corresponding SU(4) objects; i.e. vector components have one index not two. The
calculations are performed by manipulating defining representation objects like the
coset vector, so when it comes to looking at the transformation of vector components
(or even just isolating components), we automatically end up with expressions which
are phrased with respect to the components of adjoint representation objects like f,
dg, or projection operators. Therefore, we will not rewrite the results which we have
found in an SO(6) notation. We will, though, remember that what we really wanted
to find is actually homomorphic to what we have found; but this does not change the

mathematical result.
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